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Abstract 

Pyrrolobenzodiazepine (PBD) derivatives interact with the minor-groove of 

DNA to form mono-adducts (monomers) or cross-links (dimers).  They show 

remarkable activity in vitro and in vivo in a wide range of tumour types and one 

dimer, SJG-136 is currently in clinical development.  Preclinical studies have shown 

that SJG-136 is a P-gp substrate limiting its anti-tumour activity.  The work 

presented in this thesis identifies key physicochemical properties influencing both 

the interaction of PBDs with ABC transporters P-gp, MRP1 and BCRP and their 

growth inhibitory potency.  A testable hypothesis for further optimisation of PBDs is 

proposed. 

The biological activity of 4 dimers and 12 monomers was assessed using 

several in vitro models presenting differential expression of ABC transporters.  

Biological endpoints were the growth inhibitory effect determined using a 

sulforhodamine B assay and γ-H2AX foci formation.  In addition PBD transport was 

evaluated using a Caco-2 transwell assay. 

P-gp substrate specificity was restricted to dimers.  The MW, the number of 

(N+O) atoms (>8), a polar surface area (>75 Ǻ2) and hydrogen bonding energy (>10) 

could discriminate substrates among the PBDs.  P-gp polymorphism was also 

evaluated. The mutation in position 2677 (G/T) was associated with reduced 

sensitivity to the PBDs.  When combined mutations in position 3435/2677 were 

linked, the transporter abrogated this apparent gain of function.  The impact of MRP1 

was identified for all dimers and 1/12 monomers.  In addition, the cooperative role of 

glutathione in the resistance mediated by MRP1 to the PBDs was revealed.  The 

presence of a carbonyl moiety at the extremity was shown to discriminate the 
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substrate for MRP1 among the monomers.  A structure-activity-relationship study 

showed that negatively charged (N+O) atoms and a greater number of aromatic rings 

confer greater dependency to BCRP.  BCRP polymorphism was also evaluated.  The 

T482 mutant was associated with an increase in drug transport. 

The cytotoxicity of the PBDs correlated to the interaction of the DNA as measured 

by ΔTm.  Compounds, being non surface active, with a greater polar surface area and 

number of aromatic rings and a lower solvent accessible surface area were associated 

with a greater cytotoxicity.  Van-der-waals energy and the electrostatic forces were 

identified in silico as predictable features involved in the DNA binding.  New PBDs 

were designed and were predicted to be associated with a greater affinity for DNA 

and with minimal interaction with ABC transporters. 
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1 Chapter 1: INTRODUCTION 

1.1 Targeting DNA as a treatment for cancer 

The term chemotherapy refers generally to the use of drugs that kill dividing 

cancer cells as a treatment for cancer.  More than half of people diagnosed with 

cancer are treated with chemotherapy worldwide.  This strategy has been used since 

the 1940s, when nitrogen mustard was used for the first time as a treatment for 

cancer.  Since then, many drugs have been developed against different targets within 

the cell.  Such compounds include anti-metabolites, monoclonal antibodies, cyclin 

and tyrosine kinase inhibitors, topo-isomerase inhibitors, vinca alkaloids, and cancer 

antibiotics.  Despite the wide range of chemotherapeutic agents, cancer remains 

unbeaten.  Therefore, there is a continuing need to develop more chemotherapeutic 

agents in order to eradicate cancer.  

 Compounds that react with DNA, commonly referred to as alkylating agents, 

as they attach an alkyl group to DNA, are used clinically to treat many types of 

tumours.  Many alkylating agents have been developed such as nitrogen mustards, 

nitrosourea and alkyl sulfonates.  Alkyltating-like agents, that do not alkyl DNA, i.e 

platinum compounds have also been shown to damage DNA in a similar manner 

(Cruet-Hennequart, Glynn et al. 2008).  They may exert their anti-tumour activity by 

inhibiting the separation of the 2 strands which prevents replication, transcription and 

segregation, but also prevent transcription factors from recognizing their specific 

sequences (Lawley and Phillips 1996; Dronkert and Kanaar 2001). 

 Alkylating agents can be categorised according to the way that they bind to 

DNA.  Some agents can form mono-adducts with one strand of DNA such as 
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ecteinascidin-743 (ET-743), irofulven and hedamycin (Kelner, McMorris et al. 1987; 

Hansen, Yun et al. 1995; Zewail-Foote and Hurley 1999) (Figure 1).  These 

compounds would be referred as mono-functional DNA alkylators or mono-

alkylating agents.  Others can create 2 adducts, i.e bi-functional agents, within the 

same strand of DNA such as the platinum compounds and will be commonly referred 

as intrastrand cross-linking agents (Fichtinger-Schepman, van der Veer et al. 1985). 

Finally, agents can form adducts on the 2 opposite strands of DNA and, thereby are 

referred to as interstrand cross-linking agents (ICLs).  For instance, Mitomycin C and 

bizelesin exert their anti-tumour activity mainly by inducing ICLs (Iyer and 

Szybalski 1963; Iyer and Szybalski 1964; Thompson and Hurley 1995) (Figure 1). 

 

 
Figure 1.  Different classes of alkylating agents. The list of chemotherapeutic agents is not exhaustive 
as only few examples have been illustrated. It is noteworthy pointing out that some agents, such as 
cisplatin can form interstrand cross-links but also intrastrand cross-links.  

Mono-alkylating agents 
 
• ET-743 
• Irofulven 
• Hedamycin  

 
 

Cross-linking  
(interstrand)  
agents 
 

• Cisplatin 
• Mechlorethamine  
• Bizelesin 
• Melphalan 
• Mitomycin C 
• Cyclophosphamide Cross-linking 

(intrastrand)  
agents 
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 Alkylating agents can bind in the major groove of DNA such as the platinum 

compounds.  However, major groove binders are easily recognised by DNA repair 

machinery and their anti-tumour activity is significant only when given at high doses.  

Another class of compounds has been developed which fit in the minor groove of 

DNA.  The damage is less well recognised by DNA repair machinery and adducts 

would remain through the cell cycle.  While in S phase, the replication fork would 

stall on drug-DNA adducts and the cell may then undergo apoptosis.  In cell lines 

deficient in cell cycle checkpoints, replication would carry on, leading to 

chromosomal instability and to mitotic catastrophe (Akkari, Bateman et al. 2000) 

(Tercero and Diffley 2001). 

 

1.2 Pyrrolobenzodiazepines 

 Pyrrolo[2,1-c][1,4]benzodiazepines (PBDs) are a family of anti-tumour 

antibiotics produced by various streptomyces species (Thurston 1993). PBDs include 

anthramycin, DC-81 and tomaymycin (Figure 2). 
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Figure 2.  Structures of the naturally occurring PBD-monomers DC-81 (1), anthramycin (2) and 
tomaymycin (3) 
 
 

PBDs are tricyclic molecules containing a chiral centre (at their C11 

position), which provides them with a right-handed twist.  This creates a shape, 

which allows these molecules to fit perfectly within the minor groove of DNA 

(Figure 3).   
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Figure 3.  Interaction between a pyrrolobenzodiazepine derivative within the minor groove of DNA.  
The optimisation of the complex PBD-DNA has been minimised in silico using a molecular modelling 
approach.  The carbon skeleton of the PBD is represented in green.  The double helix of DNA has 
been represented as a cartoon in order to simplify the viewing.  The sugar phosphate backbone of 
DNA is in brown and the complimentary bases in blue. 

 

 PBD/DNA adducts are formed (aminal bond) exclusively between the N10-

C11 imine / carbinolamine moiety of the PBD and the exocyclic NH2 group of a 

guanine (Figure 4) (Puvvada, Forrow et al. 1997). 
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Figure 4. Mechanism of binding of the PBDs to DNA: the N10-C11 imine / carbinolamine moiety of 
the PBD bind to the C2-amino position of a guanine residue. 
 

 The binding sites of the naturally occurring PBDs have been extensively 

studied and most of adducts were found at a specific sequence AGA-5’.  In addition, 

tomaymycin has been shown to bind to GGA-5’ and TGA-5’.  The flanking 

sequence has also been shown to influence the binding properties (Puvvada, Forrow 

et al. 1997).  Upon binding to their specific sequence, PBDs exert their anti-tumour 

activity by inhibiting RNA polymerase and preventing other transcription factors, 
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such as sp1, to bind to their specific sequence resulting in a transcription blockage 

(Puvvada, Hartley et al. 1993; Puvvada, Forrow et al. 1997; Baraldi, Cacciari et al. 

2000).  

 
During the last decade much effort has been put into extending the 

pyrrolobenzodiazepines so that they span a greater number of base pairs with 

enhanced sequence selectivity.  One approach involved coupling two PBD units, via 

their C8-positions, to produce novel sequence-selective DNA interstrand cross-

linking agents (ICLs) (Gregson, Howard et al. 2001).   

A new challenging synthetic route was developed to produce SJG-136 

(Figure 5), the first compound in this family to enter clinical development (Gregson, 

Howard et al. 2001).  Its chemical structure comprises 2 subunits of C2-exo-

methylene-subsituted DC-81.  It spans 6 DNA base pairs with a preference for 

binding to 5’-Pu-GATC-Py-3’ sequences (Gregson, Howard et al. 2001; Hartley, 

Spanswick et al. 2004).  It exhibits a broad spectrum of cytotoxicity across the 

NCI60 cell line panel and pre-clinical studies have highlighted the potency of this 

agent in vivo in a number of tumour types (Alley, Hollingshead et al. 2004; Pepper, 

Hambly et al. 2004).  
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Figure 5.  Chemical structure of SJG-136 

 

 Other PBD-dimers have been synthesised showing differential sequence 

specificity for DNA, i.e base pair spanning and induced biological activity (Figure 

6). 
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DRG-16 

 

ELB-21 

 

Figure 6.  Chemical structure of pyrrolobenzodiazepine dimers DSB-120, DRG-16 and ELB-21  
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The structure of DSB-120 differs from SJG-136 in the absence of saturated 

carbons at the C2/C2’ positions.  The region which links the 2 subunits comprises 3 

CH2 groups.  It allows the compound to bind, similarly to SJG-136, to 5’-Pu-GATC-

Py-3’ sequences and cross-link opposite-strand guanines (Figure 7.A.) (Smellie, 

Bose et al. 2003).  DSB-120 was shown to be a potent cytotoxic agent in vitro 

against a panel of human colon carcinomas whithout being able to show activity in 

vivo (Walton, Goddard et al. 1996). 

The structures of ELB-21 and DRG-16 differ from SJG-136 in the length of 

the linker region between the two subunits containing 5 CH2 groups as opposed to 3.  

They span a sequence of one additional base pair (n =7) and cross-link 5’-Pu-

GA(G/A)TC-Py-3’ (Figure 7.B.) (Smellie, Bose et al. 2003).  These two compounds 

have been tested against Gram-positive bacteria and, when compared to SJG-136, 

shown higher activity (Hadjivassileva, Thurston et al. 2005).  DRG-16 was also 

assessed in the NCI60 cell line panel and was significantly more cytotoxic than SJG-

136 (Gregson, Howard et al. 2004).  
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    A    B 

Figure 7.  Mechanism for interstrand cross-linking of DNA by (A) PBD-dimer SJG-136 and (B) 
PBD-dimer DRG-16.  Due to the number of CH2 goups of the linker region, DSB-120 (n =3) would 
follow the pattern described by A and bind to 6 base pairs.  ELB-21 with a greater number of CH2 
groups (n=5) would follow the pattern described by B and span a 7 base pairs sequence.  X is used to 
denote any flanking base. 

 

  

The complex formed by the PBD-dimers with DNA has been modelled in 

silico and minimal or no distortion of the secondary structure of DNA was observed 

(Gregson, Howard et al. 2001). 

 
The synthesis of PBD monomers has also been undertaken and some have 

shown significant growth inhibitory effects in vitro (Cooper, Hagan et al. 2002).  The 

chemical structures of a selection of PBDs, derived from a PBD skeleton, are 

presented in Figure 8. 
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The structure of the PBD-monomers has been modified at the C2 extremity 

(R1) in all derivatives of this library and at the C8 extremity (R2) in SJG-244. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.  Chemical structure of the PBD-monomers. 

 
 We can discriminate 3 groups among the C2 paralogues: PBD-monomers 

with C2-aryl substituent (SG-2781, SG-2796, SG-2797, SG-2819, SG-2820 and SG-

2823), PBD-monomers with a poly-carbonated chain, i.e sibiromycin analogues (SG-

2825, SG-2900, SG-2901 and SG-2902) and, finally a PBD-monomer with a 

quinoline substituent (SG-2897) at the C2 extremity.  Antonow and colleagues have 

shown that PBD-monomers were associated with a high affinity for DNA as 
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determined by the thermal denaturation studies (ΔTm) suggesting that the C2 moiety 

would participate in the overall affinity for DNA (personal communication). 

1.3 DNA repair machinery 

 Besides their ability to bind to specific sequences of DNA preventing the 

interaction of different enzymes (Martin, Ellis et al. 2005), Arnould and colleagues 

have shown that the PBD-dimer, SJG-136 was associated with the formation of 

H2AX foci, a surrogate marker of double strand DNA breaks (DSB) (Arnould, 

Spanswick et al. 2006). 

 Indeed, ICLs can induce the formation of DSB when a replication fork 

collides with a cross-link or by repair intermediates during homologous 

recombination (Niedernhofer, Odijk et al. 2004).  In early response to the DSB, 

Histone H2AX is phosphorylated at serine 139.  This signal allows γ-H2AX 

(phosphorylated H2AX) to migrate to the site of damage and recruit other DNA 

repair factors involved in DNA damage-signalling pathway (Rogakou, Pilch et al. 

1998; Paull, Rogakou et al. 2000).  Thus the formation of γH2AX foci, has been 

widely used a surrogate marker of this type of damage and was observed after SJG-

136 treatment (Figure 9) (Arnould, Spanswick et al. 2006).  
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Figure 9.  H2AX foci formation following treatment with PBD-dimer, SJG-136.   SJG-136 interacts 
with the minor groove of DNA which potentially creates a cell cycle dependent double strand break.   
In an early response to DNA damage, the complex formed by NBS-MRE11 and RAD50 is recruited.   
ATM is activated as a monomer, phosphorylates NBS1 in return, which allows the complex to 
translocate to the site of damage.   ATM phosphorylates also Histone H2AX involved in cell survival 
and other multiple substrates such as CHK1, MDC1, Braca1 and P53 implied in cell cycle checkpoint 
activation, DNA repair or Apoptosis. 
 
 
 
 The ability of the cell to repair DNA ICLs is a critical factor determining 

cytotoxicity.  The nucleotide excision repair (NER) pathway (XPF-ERCC1) and the 

homologous recombination (HR) repair pathway (Rad51 paralogues) are both 

involved in the repair of ICLs (De Silva, McHugh et al. 2000).  Any defect in these 

particular pathways would result potentially in increased cytotoxicity induced by ICL 

forming agents (Damia, Imperatori et al. 1996). 
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 The repair of damage induced by major groove binders such as melphalan 

relies in a greater extend on the HR and the NER pathways than the cytotoxicity 

induced by minor groove binders such as the PBDs (Clingen, De Silva et al. 2005).  

Helical distortion is a major factor for the recruitment of DNA repair protein (Dip, 

Camenisch et al. 2004).  Minor groove binders such as PBDs inducing a minimal or 

no distortion of DNA, could be less well recognised by the repair machinery and 

therefore repaired less readily (Gregson, Howard et al. 2001).  This could result in 

greater cytotoxicity.   

 While the HR pathway remains a significant repair mechanism to the damage 

to DNA induced by the PBDs (Figure 10) (Clingen, De Silva et al. 2005), using 

PBDs in tumours, deficient in the HR proteins, would potentially result in a more 

significant cytotoxicity.  A number of cancers have been related to genetic disorders 

involving proteins associated with the HR pathway such as ataxia telangiectasia, 

Bloom syndrome, Nijmegen breakage syndrome and Fanconi anemia (Thompson 

and Schild 2002).  Tumour suppressor genes BRCA1, BRCA2 and Rad51 are 

involved in HR and have been used as predictive biomarkers in the response to 

chemotherapeutic agents (Bryant, Schultz et al. 2005; Soares, Escargueil et al. 2007).  

The impact of the PBDs in HR-deficient cells has not been elucidated to date. 
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Figure 10.  Homologous recombination (HR) pathway induced by the treatment of the 
pyrrolobenzodiazepine-dimer, SJG-136 and its mono-functional counterpart, mmy-SJG.  PBDs are 
alkylating agents inducing damage to DNA.  The MRN complex and RFA are rapidly recruited at the 
site of damage and coat the single-stranded DNA.  This signal triggers the recruitment of Rad 51 
paralogues with a prevalent role for XRCC2 in the repair induced by the PBDs.  The recruitment of a 
homologous sequence of DNA allows a DNA polymerase to synthesise de novo the complementary 
sequence.    

 
  

 PBD-monomers have been shown not to produce any ICL in contrast to the 

PBD-dimers.  However, Clingen and colleagues have reported, a similar increased 

sensitivity of the XRCC2 and XRCC3 mutants following the treatment of the mono-

functional counterpart of SJG-136, mmy-SJG (Clingen, De Silva et al. 2005).  To 
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date, no data has been reported on DSB induced by the PBD-monomers.  While ET-

743 does not cross-link DNA, it has shown a cell cycle dependency and formation of 

DSB (Niedernhofer, Odijk et al. 2004).  The specific mechanism of the activity of the 

PBD-monomers remains to be elucidated. 

 

1.4 ABC transporters and MDR phenotype 

 The PBD derivatives have shown promise in preclinical models of cancer.  

However, one of them, SJG-136 has been shown to be substrate of an ABC 

transporter, P-glycoprotein, potentially limiting its anti-tumour activity (Guichard, 

Macpherson et al. 2005). 

 Permeability-glycoprotein (P-gp) is a member of the large ATP binding 

cassette (ABC) super-family of transport proteins.  ABC transporters are highly 

conserved phylogenetically from prokaryotes to humans and constitute a structurally 

related group of transmembrane proteins.  They are localised in the intra- or extra-

cellular membranes.  They transport a wide range of substrates including endogenous 

metabolites as well as xenobiotics.  Their over-expression has been linked to the 

multidrug resistance phenotype, termed MDR, which is considered to be a major 

cause of failure of chemotherapy.   

 

 Three major ABC transporters, modifying the uptake of drugs, have been 

documented: P-gp also termed multidrug resistance 1 (mdr1) or ABCB1, ABCC1 

commonly referred as multi-drug resistance protein 1 (MRP1) and ABCG2 also 

named breast cancer resistance protein (BCRP).  In addition to conferring the MDR 
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phenotype, these ABC transporters are expressed differentially in healthy tissues 

throughout the body (Figure 11).  From the tissue distribution, ABC transporters are 

thought to participate in the absorption and secretion of endogenous and exogenous 

substances as well as providing pharmacological sanctuaries such as the brain and 

testes (Choi 2005) (Figure 11). 

 

 

Figure 11.  Physiological localisation of the ABC transporters.  Model modified from Szakacs et al 
(Szakacs, Paterson et al. 2006). P-gp is represented in a red arrow, MRP1 in a green arrow and 
ABCG2 in a blue arrow. 
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1.4.1 P-gp or ABCB1 

1.4.1.1 P-gp structure and mechanism 

P-gp was the first ABC transporter to be discovered (1976) (Juliano and Ling 

1976).  It is a 170-kDA glycoprotein, comprising 1280 amino-acids, encoded by the 

ABCB1 gene in humans, mdr1 (also called mdr1b) and mdr3 (also called mdr1a) 

genes in rodents (Germann 1996; Krishna and Mayer 2000).  It consists of two 

homologous subunits joined by a linker region (Ambudkar, Dey et al.).  Each subunit 

contains six predicted trans-membrane domains and short hydrophilic N and C-

terminal segments.  The C-terminal, of each subunit, contains the sequences for a 

nucleotide–binding domain (NBD), which is involved in the binding and hydrolysis 

of ATP.  The ATP binding cassette (ABC) commonly referred as ABC motifs 

(Walker A, Walker B and Walker C motifs) is highly conserved not only throughout 

different species but also among the different transporters of the ABC super-family.  

Both NBDs of P-gp are necessary for substrates to be expelled out of the cell (Figure 

12) (Ambudkar, Dey et al.). 
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Figure 12.  A membrane topology model of P-gp.  P-gp contains two nucleotide binding domains 
(NBD) and two membrane-spanning domains (MSD) including 6 predicted trans-membrane α-helices.  
The putative N-glycosylation site is predicted to be in the extracellular loop as indicated.  The ATPase 
binding cassette (ABC) is necessary for the binding and hydrolysis of ATP, required for the activity of 
the transporter. 

 

The most widely accepted model is that P-gp uses the energy of ATP 

hydrolysis to extrude xenobiotics from the cell.  According to this hypothesis, 

molecules diffuse down a concentration gradient into the cell.  Substrates may be 

expelled from the membrane itself or may first be transported from the cytosol to the 

bilayer.  The flippase model suggested by Gottesman et al., proposes that the drugs 

are transported from the inner to the outer leaflet of the bilayer and then extruded 

(Gottesman and Pastan 1993).  Although an alternative mechanism has been 

suggested, in which the intracellular pH and the membrane potential may alter the 
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trans-membrane partitioning or even the intracellular sequestering of the drugs, a 

large body of evidence favours the ATP-dependent active transport model (Roepe 

1995) (Figure 13). 
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Figure 13.  Representation of the transport activity of P-gp.  A compound passes through the 
membrane by passive diffusion, is recognised by the transporter and by hydrolysis of ATP is extruded 
out of the cell.  The substrate recruitment by P-gp from the cytosol or directly from the membrane 
bilayer is still a matter of debate.  Both potential mechanisms have been shown. 
 

 

 The "overall ABCB1 activity" controlling P-gp-dependent drug transport 

depends on two parameters: (i) the level of expression of the ABCB1 gene controls 

the amount of protein that is synthesised in the cells, and (ii) the functionality of the 

ABCB1-encoded P-gp determines which substrates are recognised and the extent of 

transport.   

The first parameter, the level of expression of ABCB1, has been analysed 

extensively, particularly because the sensitivity of tumour cells to chemotherapy 
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often correlates inversely with increased ABCB1 expression.  ABCB1 over-

expression can be attributed partially to gene amplifications (Chen, Chin et al. 1986; 

Yoshimoto, Iwahana et al. 1988), but also to transcriptional activation, by rifampicin 

for example (Greiner, Eichelbaum et al. 1999). 

 

1.4.1.2 P-gp substrate specificity 

 Compounds that interact with the P-gp efflux pump represent a wide 

spectrum of chemical structures and belong to  different therapeutic classes: 

anticancer drugs, HIV-protein inhibitors, antibiotics, immunosuppressant and 

antihypertensive drugs (Ambudkar, Dey et al. 1999).  Compounds recognised by the 

transporter are relatively basic molecules carrying a positive charge at physiological 

pH.  Their hydrophobicity allows them to pass trough cellular membranes by passive 

diffusion, thus being in close proximity to the transporter.   

Knowledge of the factors that determine P-gp substrate specificity is crucial 

for the rational design of new drugs.  Different attempts have been made to find a 

common set of functional features required for a substrate to interact with P-gp.  The 

lipophilicity (logP >-1), the molecular weight and several general parameters have 

shown to be related to a positive interaction with P-gp (Dellinger, Pressman et al. 

1992; Ueda, Okamura et al. 1992; Gottesman and Pastan 1993; Bain and LeBlanc 

1996; Schinkel, Wagenaar et al. 1996; Kim, Leake et al. 2001).  These studies 

provide very general models based on overall properties.  As such they are useful for 

screening the probability of a class of molecules to follow the same pattern and could 

help in the design of new compounds.  However, evaluation of the specific structural 
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features responsible for activity (substrate specificity), the pharmacophores, provides 

a more detailed understanding of the action and could allow more detailed 

engineering of the new compounds.  Seelig suggested a formalism based entirely on 

specific arrangements of hydrogen bonding moieties and may differentiate substrates 

and non-substrates (Seelig 1998).  Partitioning into the membrane (as determined by 

the surface activity) was also suggested as the rate limiting step for interaction with 

P-gp and that the number and strength of hydrogen bonds would determine the 

potential dissociation of the complex (Seelig and Landwojtowicz 2000).  The ligand 

modulation efficiency could be therefore correlated to P-gp structural recognition 

elements such as hydrogen bonding potential, the presence of a basic nitrogen and 

planar aromatic ring (Hamilton, Yazdanian et al. 2001; Didziapetris, Japertas et al. 

2003). 

 

1.4.1.3 ABCB1 polymorphism 

Allelic differences in individual ABCB1 gene sequences may be associated 

with or causative  of different expression levels (Germann, Schoenlein et al. 1994) as 

well as a differential functionality of the transporter.  To date, genetic variations of 

the human ABCB1 gene have been extensively studied and 50 Single Nucleotide 

Polymorphisms (SNPs) and 3 insertion / deletion polymorphisms in the ABCB1 gene 

have been reported (Saito, Iida et al. 2002; Weinshilboum 2003).  A main linkage 

disequilibrium comprising of three SNPs has been associated with altered 

pharmacokinetics of drug substrates (Figure 14): 
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 the synonymous SNP at position 1236 located in the exon 12: a C to T variant 

which refers to the glutamic acid in position 412  

 the synonymous SNP at position 3435 located in the exon 26 : a C to T variant 

which refers to the isoleucine in position 1145 

 the non-synonymous SNP at position 2677 located in the exon 21 

 a G to T variant which changes the amino acid from an alanine to a serine 

(commonly referred as 893) 

 a G to A variant which changes the amino acid to a threonine (commonly 

referred as 2677)  

 

 

  

 

 

 

 

Figure 14.  Cartoon showing the localisation of the three main SNPs of ABCB1 influencing the 
pharnacokinetics of drug substrates. 

 

The haplotype combining the 3 different SNPs has been widely reported and 

is predominant in Chinese, Malaysian and Indian populations.  However, most 

studies have focused on the evaluation of the impact on each individual SNP on 

tumour predisposition and the pharmacokinetics of chemotherapeutic treatment; but 
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it is evident from the literature that no real consensus can be found.  For instance, the 

C3435T polymorphism has been shown to be associated with a higher risk of 

developing colon cancer and renal epithelium tumours while other studies have 

shown a differential incidence on disease disposition such as drug resistant epilepsy 

(Sills, Mohanraj et al. 2005; Kim, Kim et al. 2006).  The impact of C3435T 

polymorphism on ABCB1 protein expression and function, as well as the reported 

influence on drug pharmacokinetics (PK), has been widely studied but still remains a 

matter of debate.  For instance, a lower in vivo fexofenadine AUC 0–4 h was 

associated with 3435TT genotype when compared to the CC variant (Kim, Leake et 

al. 2001) while another study reported no difference (Drescher, Schaeffeler et al. 

2002).  The 3435TT homozygous genotype has also been associated with reduced 

protein function in peripheral blood cells, an increase of plasma levels of the 

substrate digoxin, as well as a lower rhodamine 123 efflux (Hoffmeyer, Burk et al. 

2000; Hitzl, Drescher et al. 2001).  Decreased ABCB1 mRNA expression in 

leukocytes and in the duodenum has been associated with the TT genotype 

(Hoffmeyer, Burk et al. 2000).  Gottesman and colleagues have suggested that this 

silent polymorphism would influence the timing of co-translational folding, i.e. 

adopting its spatial functional conformation, and insertion of P-gp into the 

membrane, altering its substrate and inhibitor binding sites (Kimchi-Sarfaty, Oh et al. 

2007).  

The few studies that have evaluated the influence of the SNP at position 1236 

in the pharmacokinetic effect on drug substrates of ABCB1 led to different results 

depending on the substrates: Anglicheau and colleagues reported an increase in the 

AUC 0–4 h of cyclosporine associated with the 1236TT genotype.  In contrast, Goto 
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and colleagues have shown no difference in concentration / dose ratio of tacrolimus 

among the different genotypes (Goto, Masuda et al. 2002).  Finally, Schaich and 

colleagues have shown that patients with glioblastoma treated using temozolomide 

had an improved overall survival if they were 1236CC carriers (Schaich, Kestel et al. 

2008). 

 The ABCB1 2677G>T polymorphism (also called 893 Ala-Ser mutation) has 

been associated with a higher risk of developing diseases such as lung cancer 

(Gervasini, Carrillo et al. 2006).  The homozygous genotype TT (893serine) has been 

shown to be associated with an enhanced in vitro digoxin efflux in stably transfected 

NIH3T3 and with an in vivo lower fexofenadine AUC 0–4 h compared to the GG 

genotype (Fairchild, Moscow et al. 1990; Kim, Leake et al. 2001).  Another study 

suggested that the amino-acid substitution at position 893 would alter the ATPase 

activity and maybe the substrate specificity of the transporter (Sakurai, Onishi et al. 

2007).  Using a series of sf9 transfected cells and a wide variety of ABCB1 

substrates, the same study showed that the 2677A variant (threonine) was associated 

with a higher ATPase activity while compared with its 2677G and 2677T variant 

counterparts.   

 However when both SNPs at position 3435 and 2677 were considered, an 

increased fexofenadine AUC 0–4 h was associated with 3435CC individuals which 

could be attributed to a prevalent impact of the 2677TT genotype.  More recently, 

Sissung and colleagues have shown a combined effect of the association of the 3 

SNPs: when treated for androgen-independent prostate cancer with docetaxel, 

patients carrying the haplotype 1236C-2677G-3435C linked alleles had improved 
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overall survival.  The same set of patients carrying the haplotype 2677T-3435T had a 

shorter median survival.  

 The polymorphisms of 1236, 2677 and 3435 also exhibit wide ethnic 

differences in the allele frequency (Drescher, Schaeffeler et al. 2002; Kroetz, Pauli-

Magnus et al. 2003).  Therefore, consideration of these differences may suggest dose 

modifications to correct for altered bio-availability of the chemotherapeutic agents 

leading to a better clinical outcome.   

 

1.4.1.4 P-gp - localisation 

P-gp is not only expressed in tumour cells but also in normal tissues such as 

the gastrointestinal tract, liver, kidney, testis, lung and the placenta.  P-gp was also 

found in the endothelial cells of the blood-brain barrier (Figure 11).  In addition, P-

gp was found at the apical side in polarized cells. These localisations clearly suggest 

the potential for P-gp to act as a protective mechanism against the uptake of toxic 

xenobiotics (Ambudkar, Dey et al. 1999; Silverman 1999). 

 

1.4.1.5 P-gp and clinical outcome 

Over-expression of P-gp may lead to worse cancer treatment outcome and 

most of the time to a reduced overall survival of cancer patients.  In the UK, 

colorectal cancer is the most common cancer after breast and lung, with more than 

35,000 cases diagnosed each year.  It is the second most common cause of death 

from cancer in the UK after lung cancer, with around 16,000 deaths each year (data 
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from CRUK).  Colorectal cancer is one of the tumor types associated with the highest 

proportion of P-gp positivity; 74% of untreated colorectal tumors expressed P-gp 

compared to 43% of normal colorectal specimens, suggesting that colon epithelium 

acquires high expression of P-gp in the course of carcinogenesis (Shen LZ 1999; 

Lorke, Kruger et al. 2001).  In AML, while 30% of patients over-express P-gp at 

diagnosis, it increases to 50% at relapse, potentially due to exposure to 

chemotherapeutic agents (such as idarubicin, VP-16, ARA-C) substrates of P-gp 

(Han, Kahng et al. 2000). 

 

 One of the PBD derivatives, SJG-136 has been shown to be a substrate of P-

gp, thus limiting its anti-tumour activity.  Its chemical structure does fit in the 

general characteristics for compounds to be substrates of this specific transporter.  

However, the impact of P-gp on the anti-tumour activity of the other PBDs is 

unknown.  Determining the specific features involved in the substrate specificity of 

this class of compounds should allow the rational design of new derivatives with 

enhanced anti-tumour activity. 

 ABCB1 polymorphism has been shown to alter the substrate specificity for 

many classes of compounds.  The evaluation of the impact of the three main SNP on 

the anti-tumour activity of the PBDs should allow targeting defined tumours 

according to their genotypes with specific PBDs. 
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1.4.2 MRP1 or ABCC1 

 Numerous in vitro drug selected cell lines and some clinical situations have 

highlighted the critical role of P-gp in the resistance phenotype.  However, there is a 

growing body of evidence that other mechanisms of MDR might occur.  Indeed, 

some tumour types such as lung cancer were shown to acquire drug resistance 

without the expression of P-gp.   

(Lai, Goldstein et al. 1989).  The study of a multidrug resistant lung cancer cell line, 

H69AR, revealed that despite the lack of P-gp expression, the cell line had a cross 

resistant profile similar to the cells that express P-gp [7-9, 11](Mirski, Gerlach et al. 

1987; Slovak, Hoeltge et al. 1988; Reeve, Rabbitts et al. 1990) (Cole 1990).  While 

investigating the protein responsible for this MDR phenotype, Cole and colleagues 

identified the multidrug resistance protein 1 (MRP1) (Cole, Bhardwaj et al. 1992).  

1.4.2.1 MRP1 structure 

 MRP1 is a 190-kDA glycoprotein comprising 1531 amino-acids, encoded by 

ABCC1 gene in humans and in rodents.  The amino acid sequences contains only 

~15% homology with P-glycoprotein and unlike other ABC transporters, MRP1 

contains three membrane spanning domains (MSDs) as supposed to 2 (Figure 15) 

(Cole, Bhardwaj et al. 1992; Grant, Valdimarsson et al. 1994; Muller, Bakos et al. 

1996; Hipfner, Almquist et al. 1997). 

 MSD1 and MSD2 are typical of ABC transporters, with 6 transmembrane α- 

helices with a COOH terminal intracellular.  MDS0 contains only 5 transmembrane 

α- helices and it has been shown to be involved in the processing and the trafficking 

of the protein from the endoplasmic reticulum to plasma membrane.  The NH2 
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terminal is in this case, extracellular and is glycosylated.  The core region contains 

the elements for substrate specificity and drug transport (Westlake, Cole et al. 2005). 

 
 
Figure 15.  Cartoon of the predicted topology of MRP1.  The upper panel shows the predicted 
topology of the MSDs. The lower panel indicates the nucleotide binding domains containing the ATP 
binding Cassette. The NH2 terminal is predicted to be localised in the extracellular compartment. 

 

1.4.2.2 MRP1 substrate specificity 

 Before its molecular identity was revealed, MRP1 was mistaken for the so 

called multi-specific organic anion transporter (MOAT) (Zaman, Lankelma et al. 

1995).  MOAT (also called GS-X pump) had first been found in a variety of cells 

types such as erythrocytes, hepatocytes and cardiac cells (Keppler, Leier et al. 1997).  

MRP1 is involved in the detoxification process of many organic anions (Jedlitschky, 

Leier et al. 1994; Leier, Jedlitschky et al. 1994; Muller, Meijer et al. 1994).  Such 
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negatively charged molecules can not be recognised by P-gp.  Similarly, MRP1 

eliminates a wide range of exogenous drugs which may or may not be conjugated to 

glutathione (GSH), sulphate or glucuronide in order to be extruded out of the cell 

(Jedlitschky, Leier et al. 1996; Hipfner, Deeley et al. 1999; Konig, Nies et al. 1999).  

Besides the extrusion of exogenous added drugs, MRP1 is involved in the transport 

of a multitude of molecules endogenously produced in cells during normal 

physiological processes.  For instance, the precursor Leucotriene A4 (LTA4) is 

transformed by coupling with GSH in its mature form Leucotriene C4 (LTC4).  The 

conjugation process allows the latter to be extruded out of the cell by MRP1 and play 

its role in the allergic and inflammatory response 

 

1.4.2.3 GSH as a cofactor 

 While coupling to GSH seems to be a prerequisite for some molecules to be 

transported out of the cell, GSH can also act as a cofactor / activator to MRP1 for 

other molecules (Figure 16).  In both cases, the continuous synthesis of GSH by 

GSH-synthetase and γ-Glu-Cys-synthetase is essential for the transporter to be active 

and transport the substrates out of the cell (Figure 16).   

 In tumour cells, the multidrug phenotype is often associated with an over-

expression of both the transporter and the enzymes involved in GSH synthesis 

(Ishikawa, Wright et al. 1994; Lautier, Canitrot et al. 1996). 
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Figure 16.  Model showing the combine role of MRP1 and glutathione (GSH) in the multidrug 
resistance phenotype.  Some drugs (A) use GSH as a cofactor in order to be extruded out of the cell by 
the transporter.  GSH is being extruded as well.  Other drugs (B) can be conjugated to GSH by 
glutathione S-transferase (GST) and are then transported by MRP1.  In both cases, drug transport is 
dependent on the continued synthesis of GSH, which can be blocked by DL-buthionine (S, R)-
sulfoximine (BSO).  Some compounds are turned into MRP1 substrates by conjugation to glucuronate 
or sulfate, whereas some other substrates do not require conjugation. 
  

 Some chemotherapeutics have been shown to be differentially affected by the 

availability of GSH.  For example, the sensitivity to vinca alkaloids such as 

vinblastine or vincristine was restored more effectively by inhibition of the synthesis 

of GSH by BSO than the sensitivity to the anthracyclines such as doxorubicin in 

H69AR cells, where no P-gp is detectable (Lautier, Canitrot et al. 1996; Deeley and 

Cole 2006) (Cole 1990). 

 To date, only minor determinants of MRP1 substrate specificity have been 

identified: amphiphilic anions are more likely to be conjugated not only to 
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glutathione but also to glucuronide or sulphate (Jedlitschky, Leier et al. 1996; 

Zaman, Cnubben et al. 1996; Keppler, Leier et al. 1997; Loe, Deeley et al. 1998) 

whereas neutral or cationic lipophiles would be extruded out of the cell by MRP1, 

requiring GSH as a cofactor (Rappa, Lorico et al. 1997; Loe, Deeley et al. 1998).  

The determination of the distinct physico-chemical properties involved in the direct 

binding to MRP1 or in the conjugation to GSH would allow the establishment of 

structure-activity relationships to circumvent the detoxification process driven by 

MRP1. 

 

1.4.2.4 Glutathione S-transferase 

 The conjugation process has been shown to be the prerequisite for many 

compounds to be extruded out of the cell by MRP1 (Table 1). 

Conjugation to GSH can occur spontaneously in some instances but it is 

typically catalysed by one or several members of the multigene family of iso-

enzymes: the glutathione S-transferases (GSTs) consisting of at least six classes in 

humans (α, μ, π, θ, ω and ξ) (Salinas and Wong 1999; Hayes, Flanagan et al. 2005) 

(Townsend and Tew 2003).  The comparison of the amino-acid sequence has shown 

a relatively high structural heterogeneity of the enzymes involved in the 

detoxification process and differential substrate specificity has been demonstrated 

(O'Brien and Tew 1996; Hou, Honaker et al. 2007). 
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GST substrates Reference 
   

Chlorambucil  

(Ciaccio, Tew et al. 1990; 
Ciaccio, Tew et al. 1991; 

Meyer, Gilmore et al. 1992) 
  

Melphalan   
(Dulik, Fenselau et al. 1986; 
Bolton, Colvin et al. 1991) 

   
Cyclophosphamide  (Yuan, Smith et al. 1991) 
  
Acrolein   (Yuan, Smith et al. 1991) 
   

1,3-bis(2-chloroethyl)-1-nitrosourea   
(Smith, Evans et al. 1989; 
Berhane, Hao et al. 1993) 

   
Thiotepa   (Dirven, Dictus et al. 1995) 
   
Ethacrynic Acid  (Yuan, Smith et al. 1991) 
  
Base Propenals * (Tan, Meyer et al. 1988) 
  
Hydroxyalkenals * (Tan, Meyer et al. 1988) 
  
Hydroperoxides * (Clark, Smith et al. 1973) 

 

Table 1.  Known anticancer drugs and metabolites that are GST substrates.  * Metabolites generated 
from DNA free radical damage.  Table modified from M.L. O’Brien and K.D. Tew, 1996 (O'Brien 
and Tew 1996). 
 
 
 
 For instance, the conjugation of melphalan and chlorambucil to glutathione 

are most likely to be catalysed by GST α while the μ iso-enzyme is associated with 

the detoxification of nitrosourea.  In addition, over-expression of GSTπ has been 

found in cancer cells resistant to doxorubicin (Goto, Ihara et al. 2001) (Bolton, 

Colvin et al. 1991). 

 The differential expression of the GSTs has also been shown to be related to 

tumorigenicity.  The level of expression at both the mRNA and protein level of the 6 

classes of GSTs has been evaluated among the NCI60 panel and one of them, GSTπ 
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has been found to be the most predominant (Tew, Monks et al. 1996).  Its expression 

has not only been found in vitro but also in human cancer tissues.  Since the 

induction of GSTπ has been linked to the exposure to carcinogens, its detection is 

currently being employed as a preneoplastic and neoplastic marker (Tsuchida and 

Sato 1992) (Sato 1989).  In addition, its expression is correlated with a negative 

clinical outcome and a reduced patient survival (Satoh, Nishida et al. 2001).  

 A few studies have suggested that GSTs sequester the drugs without GSH-

conjugation but the most widely accepted model is that GST, by lowering the pKa of 

the cysteine of GSH (pKa > 9.5) to a more physiological value (pKa~7), would 

catalyse the formation of a thiol-ether bond with the drug at its electrophilic centre.   

 Electrophilicity is a major characteristic of most DNA alkylating agents and a 

number of these can conjugate to GSH.   

 

1.4.2.5 MRP1 localisation 

 MRP1 is ubiquitous throughout the body with relatively high levels found in 

the lung, kidneys, testis, skeletal muscle, and peripheral blood mononuclear cells 

while relatively low levels are found in liver (Figure 11) (Cole, Bhardwaj et al. 1992; 

Leslie, Deeley et al. 2005).  The localisation of MRP1 in polarized cell is found 

mainly at baso-lateral membranes apart from brain capillary endothelial cells where 

it is found at the apical side (Peng, Cluzeaud et al. 1999; Chan, Lowes et al. 2004). 
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1.4.2.6 MRP1 and clinical outcome 

 Clinical studies have documented the expression of MRP1 among solid and 

haematological cancers and, in some cases, have reported a correlation between 

MRP1 expression and a negative response to treatment and disease outcome 

(Schaich, Soucek et al. 2005).  For instance, when treated for adeno-carcinoma, with 

epirubicin or paclitaxel, patients with an unfavourable clinical outcome were 

characterised by increased level of MRP1 mRNA (Ohishi, Oda et al. 2002).  More 

recently, MRP1 expression was associated with poor prognosis in patients with 

nasopharyngeal carcinoma treated with 5-fluorouracil (Larbcharoensub, Leopairat et 

al. 2008). 

 

 The interaction of the PBDs with MRP1 is unknown.  However, their 

physico-chemical properties would suggest a potential interaction for the transporter 

limiting their anti-tumour activity.  PBDs exert their anti-tumour activity by 

interacting with DNA due to their relative electrophilicity.  However, this property 

would also allow the PBDs to undergo a detoxification process mediated by the 

GSTs, limiting even more their biological activity.  Determining the specific features 

involved in the substrate specificity to MRP1 and to the GSTs should allow the 

rational design of new PBD derivatives with enhanced anti-tumour activity. 
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1.4.3 ABCG2 or BCRP 

 ABCG2 was first identified 10 years ago by Doyle and colleagues (1998) in 

breast cancer cell lines selected with Doxorubicin (MCF7 AdVp) (Doyle, Yang et al. 

1998).  Because of its first localisation, this discovery led its name of breast 

resistance cancer protein or BCRP.  A number of cell lines, selected for mitoxantrone 

resistance, have shown a multidrug resistance phenotype whilst expressing neither P-

gp nor MRP1.  Indeed, mitoxantrone resistant cell lines were not only highly 

resistant to mitoxantrone but have shown a transport activity with antracyclines 

(doxorubicin and daunorubicin) without being resistant to the vinca-alkaloids such as 

vinblastine (Taylor, Dalton et al. 1991; Nakagawa, Schneider et al. 1992; Ross, Yang 

et al. 1999) (Klimecki, Futscher et al. 1994) (Hazlehurst, Foley et al. 1999).  Miyake 

and colleagues confirmed the presence of ABCG2 in mitoxantrone-resistant colon 

carcinoma cells (S1-M1-80) and named the protein MXR, relating to the 

mitoxantrone resistance phenotype (Miyake, Mickley et al. 1999). 

 

1.4.3.1 ABCG2 structure  

 ABCG2 is a half-transporter of 72kDa comprising 655 amino-acids.  It 

contains a single MSD with six putative trans-membrane-domains, a single NBS 

with three potential N-glycosylation sites (Figure 17).  It needs to homo-dimerise in 

order to exert functional transport activity (Doyle, Yang et al. 1998) (Kage, 

Tsukahara et al. 2002).  Little is known about the structural determinants responsible 

for the interaction with the different ABCG2 substrates:  the trans-membrane 

domains (TMDs) are common to the other ABC transporters P-gp and MRP1 and are 
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responsible for binding (Figure 17) (Taguchi, Kino et al. 1997; Taguchi, Morishima 

et al. 1997; Hafkemeyer, Dey et al. 1998). It has recently been suggested that, in 

contrast to P-gp, ABCG2 has at least two symmetrical binding sites (Clark, Kerr et 

al. 2006). 

 
Figure 17.  A membrane topology model of ABCG2.  ABCG2 contains one nucleotide binding 
domain (NBD) followed by one membrane-spanning domain (MSD) with 6 predicted transmembrane 
α-helices.  Two or 3 putative N-glycosylation sites are predicted to be in the extracellular loops as 
indicated.  A single nucleotide polymorphism at position 482 has been shown to alter the function of 
the transporter. R corresponds to the arginine, G to guanine and T to threonine. 

 
 

1.4.3.2 ABCG2 substrate specificity 

 Compounds that interact with ABCG2 represent a wide spectrum of chemical 

structures.  ABCG2 is involved in the removal of anticancer drugs, but also of 

therapeutic agents such as antibiotics, HIV-protease inhibitors, folates and 

porphyrins (Honjo, Hrycyna et al. 2001; Chen, Robey et al. 2003; Imai, Asada et al. 

2003; Mitomo, Kato et al. 2003) (Gupta, Zhang et al. 2004) (Janvilisri, Shahi et al. 
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2005; Shafran, Ifergan et al. 2005; Krishnamurthy and Schuetz 2006).  Similarly to 

MRP1, ABCG2 recognises a wide range of drugs which can be conjugated to 

glutathione, glucuronide and with a preferential substrate specificity for sulphated 

compounds (Suzuki, Suzuki et al. 2003).  In addition, compounds conjugated to 

glutamate may also be recognised by the transporter.  For instance, inside the cells, 

folyl-poly- -glutamate synthetase (FPGS) conjugates glutamate to methotrexate 

(MTX).  The poly-glutamylated form (MTX-Glu 2-3) was shown to be extruded by 

ABCG2 (Zeng, Chen et al. 2001).  Its role is physiological extrusion of 

chemotherapeutic agents is additional as ABCG2 is primarily involved in the 

transport of endogenous substrates such as the steroids hormones estrone-3-sulfate 

the precursor of the biologically active oestrogen as well as the mature form 17β-

estradiol-17-β-D-glucuronide (E217βG) (Chen, Robey et al. 2003). 

 Since the transporter was identified only a decade ago, only a few studies 

have attempted to determine the physico-chemical properties involved in ABCG2 

substrate specificity.  In 2006, Nagakawa showed by investigating a series of 

camptothecin (CPT) analogues that a hydroxyl group at position 10 or 11 are 

prerequisites for the compounds to be recognised by ABCG2.  Moreover, the authors 

suggested that planar structure with conjugated π-orbitals may be critical for the 

interaction with the active site of the ABCG2 protein (Nakagawa, Saito et al. 2006).  

 

1.4.3.3 ABCG2 polymorphism 

 A single amino-acid change at position 482 has been associated with altered 

substrate specificity.  To date, no real consensus has been reached regarding the 
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impact of this particular mutation on drug efflux.  For instance, the cell lines 

expressing the mutated form of the transporter (R482T or R482G) have shown a 

greater resistance to mitoxantrone and doxorubicin as well as an increase of the 

transport of rhodamine 123 compared to the cell lines expressing the wild type 

(Honjo, Hrycyna et al. 2001; Allen, Jackson et al. 2002) (Table 2).  This specific 

mutation has therefore been considered as ‘‘gain of function’’ (Ozvegy, Varadi et al. 

2002).  In contrast, other studies have reported a “loss of function” for resistance to 

methotrexate indicating the critical role of this residue in the substrate specificity of 

the transporter (Volk, Farley et al. 2002; Chen, Robey et al. 2003).  Finally, Robey 

and colleagues have recently shown that the transport of the ABCG2 substrate, 

pheophorbide A was not affected by this mutation (Robey, Steadman et al. 2004).  In 

addition, stable transfectants expressing wild-type ABCG2 with an arginine at amino 

acid 482 were resistant to mitoxantrone, camptothecin and its metabolite SN-38, 

while cells transfected with mutant ABCG2 with a glycine or threonine at the same 

position were resistant to the anthracyclines and rhodamine 123 (Robey, Honjo et al. 

2003).  Allen et al. have postulated that the loss of the negatively charged arginine 

may impact on the substrate specificity of ABCG2, suggesting that the wild-type 

protein would not recognise compounds with a positive charge (Allen, Jackson et al. 

2002).  However, a compound predicted to carry a net positive charge at physiologic 

pH, pheophorbide A (PhA) has been shown to be a substrate for wild-type and 

mutant ABCG2. Thus, the role of amino acid 482 in substrate specificity of the 

transporter remains to be elucidated. 
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    ABCG2 - 482 
         

   Wild type 
  Study  (Arginine)

Mutated 
(Threonine) 

 Mutated 
(Glutamine)

Substrates         
Doxorubicin (Robey, Honjo et al. 

2003)  Cytotoxicity  + +++ 
 

+++ 
Daunorubicin (Robey, Honjo et 

al. 2003)  flow cytometry + 0 
 

0 
  Cytotoxicity  + ++  ++ 
Epirubicin (Robey, Honjo et al. 

2003)  Cytotoxicity  + ++ 
 

++ 
Rhodamine 123 (Robey, Honjo et 

al. 2003) flow cytometry + 0 
 

0 
Methotrexate (Volk, Farley et al. 

2002) (Chen, Robey et al. 2003)  vesicles  ++ 0 
 

0 
MTX-Glu2 (Volk, Farley et al. 

2002) (Chen, Robey et al. 2003)  vesicles  ++ 0 
 

0 
MTX-Glu (Volk, Farley et al. 

2002) (Chen, Robey et al. 2003)  vesicles  ++ 0 
 

0 
Folic Acid (Chen, Robey et al. 

2003)  vesicles  ++ 0 
 

0 
Mitoxantrone (Robey, Honjo et 

al. 2003)  flow cytometry + + 
 

+ 
  Cytotoxicity  + +++  +++ 
Topotecan (Volk, Farley et al. 

2002)  Cytotoxicity  ++ ++ 
 

+ 
SN-38 (Volk, Farley et al. 2002)  Cytotoxicity  ++ ++  + 
Pheophorbide A (Robey, Steadman 

et al. 2004) flow cytometry + + 
 

+ 
Etoposide (Robey, Honjo et al. 

2003)  Cytotoxicity  + ++ 
 

++ 
        
Inhibitors        
Novobiocin (Robey, Honjo et al. 

2003)  flow cytometry + ++ 
 

++ 
FTC (Robey, Steadman et al. 2004)  flow cytometry ++ ++  ++ 
Tariquidar (Robey, Steadman et al. 

2004)  flow cytometry + + 
 

+ 
 

Table 2.  Differential impact of the single nucleotide polymorphism of ABCG2 at position 482 on the 
substrate specificity of compounds substrates and inhibitors of the transporter.  The presence of an 
arginine at position 482 is considered as the wild type form.  The presence of a threonine or a 
glutamine at the same position is considered as the mutated form of the transporter.  The detail of the 
measurement has been reported.  0 refers to a compound being not substrate for the transporter.  (+) 
refers to a compound being substrate / inhibitor for the transporter.  Compounds labelled with a 
greater number of (+) correspond to a greater interaction with ABCG2. 
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1.4.3.4 ABCG2 localisation 

 ABCG2 is highly expressed in tissues such as human placenta and to a lesser 

extent in liver, small intestine and colon, ovary, veins, capillaries, kidney, adrenal, 

lung and hematopoietic stem cells (Doyle, Yang et al. 1998; Litman, Brangi et al. 

2000) (Faneyte, Kristel et al. 2002) (Krishnamurthy and Schuetz 2006) (Figure 11).  

ABCG2 was found predominantly at the apical side of polarised cells.  This specific 

tissue and cell localisation suggests a protective role for ABCG2 similar to P-gp.   

 

1.4.3.5  ABCG2 and clinical outcome 

 In addition to its physiological localisation, ABCG2 is also expressed in a 

wide range of tumours such as acute myelogenous leukemia (AML) (Galimberti, 

Guerrini et al. 2004), acute lymphoblastic leukemia (ALL) (Sauerbrey, Sell et al. 

2002), adenocarcinomas (Faneyte, Kristel et al. 2002) and bladder tumours (Diestra, 

Condom et al. 2003).  Many studies have evaluated the clinical relevance of the 

expression of ABCG2 in the response to chemotherapy without reaching a 

consensus.  For instance, in leukemia, Benderra et al, have shown that, when treated 

daunorubicin and mitoxantrone for AML, patients expressing ABCG2 were found to 

have the poorest prognosis (Benderra, Faussat et al. 2004).  In contrast, Sauerbrey et 

al, were not able to shown any correlation between the expression of the transporter 

and prognosis to childhood ALL (Sauerbrey, Sell et al. 2002).  In breast cancer, 

Burger et al, have correlated ABCG2 expression and the clinical outcome after 

treatment with anthracyclines (Burger, Foekens et al. 2003) while 2 studies from 

Kanzaki et al (Kanzaki, Toi et al. 2001) and, Faneyte et al (Faneyte, Kristel et al. 
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2002), did not shown any correlation.  Finally, in lung cancer, ABCG2 expression 

was associated with positive response to platinum-based chemotherapy and survival 

(Yoh, Ishii et al. 2004). 

 Compounds recognised by ABCG2 are relatively diverse and physico-

chemical features involved in ABCG2 substrate specificity for one class of 

compounds may not be applicable to all. The impact of ABCG2 on the cytotoxicity 

of the PBD derivatives is unknown.  Determining the specific physico-chemical 

properties for this class of compounds would help designing new PBD derivatives 

with enhanced anti-tumour activity.  

 ABCG2 polymorphism has been shown to alter the substrate specificity for 

many classes of compounds.  The evaluation of the impact of the main SNP on the 

anti-tumour activity of the PBDs should allow targeting defined tumours according 

to their genotype with specific PBDs. 

 

1.5 ABC transporters overlapping substrate specificity 

 Taken together, the ABC transporters, P-gp, MRP1 and ABCG2 transport a 

wide variety of chemotherapeutic agents inducing a MDR phenotype.  Compounds 

may be recognised only by one or several ABC transporter suggesting in some cases 

overlapping substrate specificity (Table 3). 

 

It has been established that P-gp preferentially extrudes hydrophobic cationic and/or 

neutral molecules.  MRP1 and ABCG2 extend their spectrum to organic anions, 

including phase II conjugated metabolites.   
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 Some compounds have shown substrate specificity for all 3 transporters such 

as epirubicin, etoposide, irinotecan and methotrexate.  It is evident that these 

compounds do not share the property of being cationic, neutral and anionic 

simultaneously.  A rational screening of the chemical structures involved in the 

substrate specificity of a specific ABC transporter appears necessary.  Moreover, the 

features involved in the substrate specificity to an ABC transporter might differ 

between classes of compounds.   

 

  P-gp MRP1 ABCG2 
     
Vinca alkaloids  Vinblastine Vinblastine  
  Vincristine Vincristine  
Anthracyclines  Daunorubicin Daunorubicin Daunorubicin 
  Doxorubicin Doxorubicin Doxorubicin 
  Epirubicin Epirubicin Epirubicin 
Epipodophyllotoxins Etoposide Etoposide Etoposide 
  Teniposide  Teniposide 
Taxanes  Docetaxel   
  Paclitaxel   
Kinase inhibitors  Imatinib Imatinib Imatinib 

    Flavopiridol 

Camptothecins  Irinotecan Irinotecan Irinotecan 

  SN-38 SN-38 SN-38 
Thiopurine    Topotecan 
Other  Bisantrene  Bisantrene 
   Arsenite  
  Colchicine Colchicine  
  Methotrexate Methotrexate Methotrexate 

  Mitoxantrone Mitoxantrone Mitoxantrone 
  Saquinivir Saquinivir  
  Ritinonavir Ritinonavir  
  Actinomycin D   

    Azidothymidine 
 

 
Table 3.  Overlapping substrate specificity of the ABC transporters P-gp, MRP1 and ABCG2. Only a 
few examples of substrates are listed.  Boxes were left blank where no data are available or no 
significant interactions were reported. 
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1.6 Circumventing MDR phenotype 

 Many compounds have been classified according to their substrate specificity 

to ABC transporters, thus explaining their chemo-resistance in a wide variety of 

tumour samples.   

 The strategy to block the different transporters appears appealing in the clinic.  

Much progress has been made in the identification of the tumour type and the level 

of expression of the different ABC transporters may be easily analysed prior to any 

treatment.  Combination of treatment with a specific inhibitor appears to be a good 

strategy to circumvent the multidrug resistance phenotype.  However, over the years, 

several generations of P-gp inhibitors have raised hopes only to fail in clinical trials 

(Szakacs, Paterson et al. 2006; Szakacs, Varadi et al. 2008).  The first generation 

modulators such as verapamil, cyclosporine A and quinine were generally ineffective 

and toxic.  In an attempt to reduce the toxic side effects, a second generation of 

inhibitors such as PSC-833, an analogue of cyclosprine D, was developed.  However, 

drug-drug interactions that limited drug clearance and chemotherapeutic metabolism 

were accountable for the failure of these modulators into the clinic.  In addition, 

pharmacokinetics interactions were generally unpredictable and therefore many 

patients were under dosed while some others were overdosed.  More recently, a third 

generation of modulators such as tariquidar was tested in clinical trials without being 

able to overcome the issues mentioned above (Kurnik, Sofowora et al. 2008)].  

 Therefore, defining the features responsible for the specific interaction for the 

different ABC transporters and designing compounds which are not substrates of any 

of the transporters appears to be the best strategy to circumvent the multidrug 

resistance phenomenon.   
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1.7 Aims of the project 

In view of the apparent activity of the PBDs and the potential to design new 

derivatives, I propose to identify the structural factors responsible for ABC 

transporter substrate specificity in order to design out these features in future 

derivatives. In addition, I propose to try to identify the structural factors responsible 

for the activity of the PBDs.  Limiting the impact of the ABC transporters and 

improving the activity should allow the rational design of new PBDs with enhanced 

anti-tumour characteristics.  Finally, I propose to try to identify predictive 

biomarkers, which could enhance further the potential anti-tumour activity of the 

PBDs.  The derivatives studied will comprise both PBD-dimer analogues of the 

clinical candidate SJG-136 and PBD-monomers. 

 

The thesis will include: 

 In silico work, identifying features in the set of compounds studied presenting 

important chemical features previously published as affecting ABC 

transporter substrate specificity as well as identifying the physico-chemical 

properties involved in PBD related activity 

 

 Biological studies, evaluating the differential cytotoxicity of the compounds 

in a panel of cell lines expressing differential levels of the transporters.  In 

addition, the co-exposure to specific inhibitors will confirm ABC transporter 

substrate specificity. 
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 A comparative study between ABC transporter dependency observed in vitro 

and ABC transporter dependency predicted from in silico.  New chemical 

features may be proposed to explain the ABC transporter substrate specificity 

of PBDs. In addition, a correlation study comparing the biological activity 

and the features identified in silico may identify a structure activity 

relationship of the PBDs 

 

  Since ABCB1 and ABCG2 polymorphism can influence the substrate 

specificity of the transporter, specific experiments will be carried out 

investigating the impact of the major ABC transporters polymorphisms using 

cell lines expressing different genotypes. 

 

 The activity of the PBDs has been shown to be related to the ability for the 

cell to repair DNA damage.  Therefore, the impact of the homologous repair 

(HR) machinery on the anti-tumour activity of the PBDs will be evaluated 

using HR deficient cell lines.  
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2  Chapter 2: MATERIALS AND METHODS 

2.1 Materials 

 The pyrrolo[2,1-c][1,4]benzodiazepine derivatives (PBDs) were synthesised 

de novo.     The multiple step synthesis has been described in full elsewhere 

(Antonow, Cooper et al. 2007).  Briefly, PBD-monomers were synthesised from 

commercially available 6-nitroveratric acid.  The C2-aryl PBDs derivatives were 

obtained via Suzuki coupling from the advanced synthetic intermediate 1 (Figure 

18). 

 
 

 
 
 
Figure 18.  Chemical synthesis of the PBD-monomers.  The insertion of different substituents at the 
C2-position of the PBD triflate intermediate 1 to give intermediates of type 2 followed by conversion 
to the PBD imine sub-libraries used in this study. 
 
 
 A diverse set of commercially available boronic acids and pinacol esters were 

subject to the coupling conditions using microwave conditions (10 min, 100 ○C).  
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PS-PPh3Pd was employed as a solid-supported palladium catalyst to facilitate 

workup (on-bead reagents can be removed from the reaction mixture without 

chromatographic purification).  After complete consumption of triflate 1, N, 

Ndiethanolaminomethyl polystyrene (PS-DEAM) was added to sequester any 

unreacted boronic acid/pinacol esters (microwave radiation, 10 min, 100 ○C), and a 

phase separator cartridge then used to isolate the Suzuki products of type 2.  Finally, 

the N10-Troc group was cleaved under mild conditions using a 10% Cd/Pb couple 

leading to elimination of the C11-OTBS group to afford the target C2-substituted 

N10-C11 PBD imines used in this study (3). 

 The PBD-dimers were synthesised from the commercially available trans-4-

hydroxy-L-proline and followed the first steps of B-ring cyclisation strategy first 

reported by Fukuyama and colleagues (Fukuyama 1993).  The full chemical 

synthesis has been reported elsewhere (Gregson, Howard et al. 2001).  Both PBD-

dimers and PBD-monomers were received on dry ice and stored as a powder at -

20°C. Aliquots (~1-3mg) were dissolved in dimethylsulfoxide (DMSO) at 40 mM 

and stored at −80°C.  

 L-Glutathione reduced (dissolved in ultrapure sterile water) and 

Trichloroacetic acid ACS reagent (TCA), were obtained from Sigma-Aldrich and 

stored at 4°C.  Verapamil hydrochloride, 3,3′-Methylene-bis(4-hydroxycoumarin) 

(dicumarol), L-Buthionine-sulfoximine (BSO) and Fumitremorgin C (FTC), were 

also obtained from Sigma-Aldrich.  Aliquots were stored in DMSO at −20°C.  MK-

571 was obtained from BioMol.  Aliquots were stored in ultrapure water at −80°C.  

Calcein AM and Lucifer yellow were obtained from Molecular Probes (invitrogen) 
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and stored at −20°C and 4°C, respectively.  G418 sulfate was obtained from 

Calbiochem and stored in 100 mM Hepes, (pH = 7.3) at 4°C.  

 Mdr1 rabbit polyclonal antibody was obtained from Santa Cruz and stored at 

4°C.  The mouse monoclonal antibody to an external MDR1 epitope (4E3), MRP1 

mouse monoclonal antibody and secondary FITC-goat polyclonal to mouse antibody 

were obtained form Abcam (United Kingdom).  ABCG2 mouse antibody (BXP-21) 

was obtained from Alexis BioChemical.  Phospho-histone H2AX (Ser 139) rabbit 

antibody was obtained from Cell Signalling.  Aliquots of primary and secondary 

antibodies were stored at −20°C. 

 Transwell plates with Polyethylene Terephthalate (PET) Membrane (Millicell 

24) were obtained from Millipore and stored at RT.  Hanks buffer balanced saline 

(HBSS) was obtained from Fisher / Thermo Scientific HyClone and stored at RT. 

 

2.2 Methods. 

2.2.1 Cell culture 

 Colon cancer cell lines HCT 116, HCT-15, adenocarcinoma cell line Caco-2, 

melanoma cell line SK-MEL5 and lung cancer cell line A549 were obtained from the 

American Type Cell Culture Collection (ATCC) (Rockville, MD) and European 

Collection of Cell Cultures (Salisbury, UK).  Ovarian cancer cell line A2780 and 

drug resistant sub-clones A2780AD were provided by the National Cancer Institute 

(NCI, Bethesda, USA).  Murine fibroblasts (3T3 GP+E86 and 3T3 transfected with 

c-DNA expressing the different genotypes of mdr1 were kindly provided by Dr. E. 

Schuetz from St. Jude’s Children Research Hospital, Memphis TN, USA.  Breast 
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cancer cell line MCF7 and drug resistant sub-clones MCF7-MX were kindly 

provided by Dr. E. Schneider from the University of Maryland, USA.  Chinese 

hamster ovarian cells (CHO), VC-8 and V-79 were kindly provided by Prof. M. 

Zdzienicka from N. Copernicus University, Bydgoszcz, Poland.  Breast cancer cell 

line MDA-MB-231 transfected with an empty vector (MDA-MB-231 / V8) and 

MDA-MB-231 transfected with c-DNA expressing the different genotypes of 

ABCG2 (MDA-MB-231 / R12 and MDA-MB-231 / T3) were kindly provided by Dr. 

D. Ross from the University of Maryland, USA.  HCT 116, HCT-15, A2780 and 

A2780AD were grown in monolayer in RPMI 1640 medium supplemented with 5% 

v/v fetal calf serum.  3T3 GP+E86, Caco-2, A549, MDA-MB-231 cells were grown 

in DMEM medium supplemented with 10% v/v fetal calf serum (FCS).  VC-8 and V-

79 were grown in Ham’s F-10 medium supplemented with 10% FCS.  All cells were 

maintained at 37°C in a humidified atmosphere containing 5% CO2.  A2780AD cells 

are derived from the parental A2780 cell line and are resistant to doxorubicin.  They 

were obtained by stepwise incubation of increasing concentration of doxorubicin 

(adriamycin) (Hamilton, Winker et al. 1985).  The cells were maintained in the 

presence of 10−7 M doxorubicin and were drug-free one week prior to any 

experiment.  MCF7-MX cells are derived from the parental MCF7 cell line and are 

resistant to mitoxantrone.  They were obtained by stepwise incubation of increasing 

concentration of mitoxantrone (Nakagawa, Schneider et al. 1992).  They were 

maintained in 10-8 M mitoxantrone and were drug-free one week prior to any 

experiment.  MDA-MB-231 cells were maintained in 1 mg / mL of G418 sulfate and 

were antibiotic-free one week prior to any experiment.  All cells were tested 



 63

regularly for mycoplasma contamination and were mycoplasma-free for the period of 

the study. 

2.2.2 Growth inhibition assay  

 Drug concentrations that inhibited 50% of cell growth (IC50) were determined 

using a sulforhodamine B (SRB) technique (Skehan, Storeng et al. 1990).  Cells were 

plated on day 1 in 96-well plates.  The cell density was 2000 cells/well for HCT 116, 

3T3 GP+E86, 3500 cells/well for HCT-15, A2780, A549, MDA-MB-231, MCF7, 

VC-8 and V-79, 5000 cells/well for A2780AD and MCF7-MX cells/well in a volume 

of 150 μL / well.  All cell lines were treated on day 2 except A2780 and A2780AD 

which were treated on day 3.  When cells were pre-treated with different inhibitors 

(verapamil, MK-571, FTC, dicumarol) they were seeded in 100 μL medium and 

treated 1 h before drug exposure (24h prior to the experiment for BSO) in a final 

volume of 50 μL.  After 24h drug exposure, cells were washed once with cold 

phosphate buffer saline (PBS) and placed in 200 μL of drug-free medium for 72 h 

after the end of drug exposure.  The cells were then fixed with trichloracetic acid and 

stained with sulforhodamine B.  Optical densities were measured at 540 nm with a 

Biohit BP-800 (Bio-Hit, Helsinki, Finland).  Growth inhibition curves were plotted 

as percentage of control cells and IC50s were determined by Graphpad Prism 4 

Software (Graphpad Software, San Diego, CA) by fitting a sigmoidal curve with 

variable slope.   



 64

2.2.3 Statistical methods  

 Comparisons between mean values were performed using a two-sided t test 

after verification of the homogeneity of variances.  Confidence intervals of 95% 

confidence were used for IC50 data.  Correlations were established using Graphpad 

Prism 4 Software and the coefficient correlation significance verified with a linearity 

test. 

2.2.4 Calcein-AM assay 

 Cells (5 x 105) were aliquoted in glass tubes to a final volume of 100 μL.  50 

μL of increasing concentrations of verapamil or MK-571 diluted in the appropriate 

tissue culture media were added to the tubes and incubated for 15 minutes at 37○C.  

The master stock of calcein-acetoxymethylester (calcein-AM) (1 mM) was diluted 

1/1000 in the appropriate tissue culture medium.  50 μL of calcein-AM (1 μM) was 

added to each tube (final concentration of 250 nM) and incubated at 37○C for 15 

minutes.  The reaction was stopped by placing the samples on ice.  The samples were 

then centrifuged for 5 minutes (at 200 x g at 4○C), the media removed and replaced 

by 200 μL cold (4○C) medium.  The washing step was repeated 3 times.  The cells 

were re-suspended in a final volume of 500 μL cold (4○C) medium.  The calcein 

retention, i.e. fluorescence was measured using a FACScalibur (BD Biosciences) 

using an excitation of 488 nm and an emission filter at 515 nm (FL-1 channel).  The 

voltages were set up to display the population within the FSC and SSC channels.  

The population was gated to exclude debris and aggregates and the intensity of the 

histogram distribution of the FL-1 fluorescence in the population of cells analysed 

(10 000 cells) was recorded. 
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2.2.5 Immunostaining for γ-H2AX  

 Exponentially growing cells were seeded in chamber slides on day 1.  The 

cell density was 50 000 cells / chamber in a 4 chamber slide in a volume of 500 µL / 

chamber.  The cells were treated on day 3 with 10 nM DRG-16, 1 μM SG-2901, 

increasing concentrations of SG-2900 (100 nM, 1 μM and 10 μM) and 0.1 nM SG-

2897.  When cells were pre-treated with verapamil, they were treated with 5 μg / mL 

verapamil starting 1 h before drug exposure in a final volume of 700 µL.  Cells were 

washed in PBS.  Cells were incubated in 2% paraformaldehyde (PFA) in PBS for 10 

minutes, washed in PBS, permeabilised in 0.1% triton X100, diluted in PBS at RT for 

10 min, washed, blocked with PBS containing 1% bovine serum albumin (BSA) 

(BDH) and 5% goat serum (Jackson Immunolaboratories, West Grove, PA), and 

incubated overnight at 4°C with an anti-phosphohistone H2AX antibody (Millipore, 

United Kingdom), washed, incubated with a FITC, AlexaFluor 488-conjugated goat 

anti-mouse IgG antibody (Invitrogen, Paisley, UK) for 1 hour at room temperature, 

and washed in PBS.  Slides were mounted with Vectashield Mounting Medium 

containing or not DAPI (4’,6 diamidino-2-phenylindole) (Vector Labs, UK) and 

visualized with a Leitz Laborlux UV microscope (Wetzlar, Germany) using a 40x or 

100x objective fitted with a Spot Insight 4 camera (Diagnostic Instruments, Sterling 

Heights, MI). The intensity of fluorescence was evaluated with Photoshop CS3 

(Adobe). 
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2.2.6 Caco-2 model of permeability, optimisation of the system 

 The Caco-2 model of permeability, i.e. the transwell assay, has been widely 

used in the drug discovery and drug development area.  It has allowed many groups 

to measure the permeability of their test compounds.  

 Human colon carcinoma Caco-2 cells are grown, on permeable supports, for 

21 days to allow them to differentiate as enterocytes and express the different ABC 

transporters at the surface.  P-glycoprotein/ABCB1 and ABCG2/BCRP are located at 

the apical side while MRP1/ABCC1 is found at the basal side in polarised cells 

(Figure 19) (Evers, Zaman et al. 1996; Anderle, Niederer et al. 1998; Xia, Liu et al. 

2005). 

 

Figure 19.  Representation of the transwell assay.  After 21 days, Caco-2 cells differentiate as 
enterocytes and express the different ABC transporters: P-gp and ABCG2 at the apical side and MRP1 
at the basal side. 
 

 The assay consists of measuring the permeability (for a test compound) from 

the apical to the basal side (A-B) which corresponds to the absorption (passive 

Basolateral side

Apical side

Cell monolayer 
(Caco-2) 

Papp BA=secretion
 

Papp AB= Absorption 

ABCG2 P-gp 

MRP1



 67

transport) and compare it to the secretion which corresponds to the permeability from 

the basal to the apical side (B-A) (active transport).  It has been shown that if a 

compound has a ratio (B-A)/(A-B) greater than 3, it can be considered as being 

actively transported by P-glycoprotein (Szakacs, Paterson et al. 2006).   

 The reliability of the results generated using this assay is dependent on 

several factors: 

- Confluence of the cell monolayer which will avoid passive diffusion of the 

compound through the membrane 

- Differentiation and passage number of the cells: membrane and culture media 

might have a different impact on the cell growth and differentiation but can 

also influence the level of expression of the transporters (Anderle, Niederer et 

al. 1998) 

- Confirmation of the mass balance of the compound to ensure that intracellular 

metabolism has not biased significantly on the results generated. 

  

Therefore, the transwell assay was optimised in order to evaluate the impact of 

the different ABC transporters on the permeability of the PBD derivatives. 

2.2.6.1 Accuracy of seeding density. 

 The assay allows the Caco-2 cells to grow for 21 days and differentiate as a 

tight monolayer of enterocytes.  In order to avoid leakiness of the monolayer but also 

formation of a multilayer membrane, the number of cells seeded is critical.  It is 

important to dissociate the cells correctly as a unicellular cell suspension in order to 

seed exactly the same number of cells.  The Caco-2 cells need longer to dissociate 
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(10 / 15 min) in presence of trypsin.  This step is crucial as the cells could be seeded 

as clumps resulting in a non homogeneous membrane.  After trypsinisation, 2 

methods were used to optimise the dissociation: media was added to the flask and a 5 

mL pipette and a pump are used.  Pipeting up and down (at least 10 times) allowed 

an initial dissociation of the cells.  The cells were then passed through a needle (at 

least 5 times) with a syringe to obtain a unicellular suspension.  A microscope and 

coulter counter (Beckman Coulter, Fullerton, USA) were used to verify whether the 

cells were well dissociated.  Indeed, the latter allows the visualisation of the 

proportion of the cells within a given size (9-21µm diameter) range.  This 

optimisation process was done even when the cells were passage routinely.  

 It has been shown that the passage number of the cells has an impact on their 

differentiation (levels of mRNA, protein expression).  Therefore, Caco-2 cells with 

an identical passage number (p4) were used in all experiments. 

 Different numbers of seeded cells have been suggested by different groups 

(20 000 cells / cm2 – 100 000 cells / cm2) (Crowe and Lemaire 1998; Malago, 

Koninkx et al. 2003; Shah and Khan 2004).  Therefore, the number of seeded cells 

has been optimised “in house”. 

2.2.6.2 Measuring the viability of the system 

The Trans Epithelial Electric Resistance (TEER) measurement technology 

has been used widely in order to verify the confluence of the cell monolayer 

(Ranaldi, Islam et al. 1992; Takahashi, Kondo et al. 2002).  It allows an accurate 

measurement of the resistance of the membrane.  Briefly, as confluence increases 
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over time, the level of resistance exerted by the cells increases and reaches a plateau 

when cells are confluent.  

 In this study, different densities of Caco-2 cells were seeded into transwell 

upper chambers. The relative resistance of the cell monolayer was measured on 

alternate days using an Epithelial Voltohmmeter (EVOM) (World Precision 

Instruments, USA).  The cells were grown for up to 21 days (Figure 20). 
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Figure 20.  Impact of the cell density on the TEER of the membrane overtime.  The Caco-2 cells were 
seeded at different cell density ranging from 20 000 cells / cm2 up to 120 000 cm2 into each transwell 
membrane.  The TEER was measured every other day up to 21 days.  The values are means of n = 4 
wells.  The SD has not been represented for reasons of clarity. 
  

 A general pattern was seen for all cell densities: the TEER was first relatively 

steady for up to 7 days (from mean TEER = 160 ± 12 at day 2 to mean TEER = 200 ± 80 

at day 7) followed by an exponential increase up to 16 days (mean TEER = 900 ± 130).  
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Finally, the resistance slowly increase until day 21 (mean TEER = 1100 ± 130).  This 

pattern could be explained by 2 weeks of cell growth until reaching confluence at 

day 16.  The cells would differentiate thereafter. 

 At 16 days, the resistance is proportional to the number of cells seeded (r2 = 

0.9, P value < 0.005).  At 21 days, the relationship between the resistance and the cell 

density of cells seeded is less significative (r2 = 0.75, P value < 0.05).  For instance, the 

cell density of 80 000 cells / cm2 has shown a greater TEER (1242 Ω / cm2) than cell 

densities of 100 000 cells / cm2 and 120 000 cells / cm2 (1117 and 1227 Ω / cm2, 

respectively).  These results suggest that at high density (100 000 and 120 000 cells / 

cm2), the cells might have formed several layers and / or the cell membrane might 

have been disrupted.  Therefore, at such density, the TEER would not be 

representative of the integrity of the cell monolayer suitable for the transwell assay. 

2.2.6.3 Importance of the differentiation process  

 A monolayer associated with a TEER greater than 300 Ω / cm2 was shown to 

be suitable for the transwell assay to be performed (Markowska, Oberle et al. 2001; 

Tirumalasetty and Eley 2006).  In our case, the TEER reached 300 Ω / cm2 after only 

14 days for all the cell densities.  Therefore, other studies were performed to assess 

whether the system was “ready” at 14 days in terms of transporter expression. 

 For this purpose, the mRNA level of the different ABC transporters was 

compared after 14 and 21 days (Figure 21) (data kindly generated by Janet 

McPherson, CRUK, Edinburgh, UK, personal communication).  The level of P-gp 

transporter (normalised by housekeeping gene RPII) increases with the cell density 

up to 100 000 cells / cm2 (CD5) (r2 = 0.86, P value = 0.025).  The expression decreases 
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when the cells are seeded at a density = 120 000 cells / cm2 (CD6) suggesting a down 

regulation of the mRNA of P-gp.  Additionally, the level of P-gp was not 

significantly different between 14 and 21 days in culture when cells were seeded at 

80 000 cells / cm2 (CD4).  

 Levels of MRP1 were unaffected by the different seeding densities and 

between day 14 and day 21. 

 Finally, the levels of ABCG2 mRNA were not significantly affected by 

seeding densities at day 21. When the cells were seeded at 80 000 cells / cm2 (CD4) 

for 14 days, the level of ABCG2 was significantly lower than the level after 21 days 

(P value = 0.01). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 21.  Impact of the seeding cell density on the level of mRNA of the different ABC transporters 
after 14 days and 21 days.   CD 1 is the Cell Density 1 (20 000 cells / cm2), CD 2 = 40 000 cells / cm2, 
CD 3 = 60 000 cells / cm2, CD 4 =80 000 cells / cm2, CD 5 = 100 000 cells / cm2 and CD 6 = 120 000 
cells / cm2.  Results are means ± SEM of triplicate. 
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 Overall, these data confirm that the transwell system is “ready” after 21 days, 

i.e. cells differentiating as enterocytes and expressing a sufficient level of the 

different ABC transporters (optimal level of ABCG2 after 21 days).  In addition, A 

TEER value of 300 Ω / cm2 should not be considered as being representative of 

adequately differentiated cells.  The cells should be considered as suitable for the 

assay when TEER values are between 850 and 1100 Ω / cm2.  

2.2.6.4 Caco-2 transwell assay 

Caco-2 cells were seeded at 80 000 cells / cm2 for 21 days and the TEER was 

verified to be between 850 and 1100 Ω / cm2 prior to all experiments.  The cells were 

washed 3 times with HBSS before drug treatment.  The PBDs were diluted, on the 

same day, at a concentration of 10 µM for the PBD-dimers and 100 µM for the PBD-

monomers, in HBSS.  These concentrations have been defined according to the 

sensitivity of the mass spectrometer which can detect accurately concentrations in the 

µM range.   

 The standard procedure for drug treatment is to add 9/10 of the volume of 

Hanks buffer in each chamber and 1/10 of (10 times drug concentration in HBSS) at 

the time of the experiment.  However, in order to allow full homogenisation of the 

drug within the chamber, the protocol was modified as follows: the entire volume (1x 

drug concentration in HBSS) was prepared prior to the experiment and then added to 

the appropriate chamber.  The cells were then placed on a shaker at 60 rpm at 37○C 

for 2 hours to allow complete homogenisation.   
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A standard curve of drug concentrations was determined for each PBD 

derivative analysed, using an LC/MS method (Figure 22) (results kindly generated 

by Dr. Katan Patel, CRUK, Edinburgh, UK). 
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Figure 22.  Relationship between the peak intensity determined by mass Spectrometer analysis and 
drug concentration of 2 PBD-dimers, DRG-16 and SJG-136.  The PBDs were diluted at 
concentrations ranging from 50 µM to 3 µM in Hanks buffer.  The standard curve of SJG-136 is 
represented in green.  The standard curve for DRG-16 is represented in red.  Results are replicate. 

 
 

 A polynomial function was used for the standard curves for the PBD-dimers 

(r2 > 0.99 for both compounds) as opposed to linear function (r2 < 0.98 for both 

compounds).  In contrast, a linear function was used for the PBD-monomers (r2 > 0. 

99) (data not shown).  A volume of 10 µL of each chamber was then analysed by 

LC/MS and the concentration determined for each compound.  

 It has been shown that the permeability of a test compound can be defined by 

the following equation (Artursson and Karlsson 1991): 

 

Papp = (dQ/dt)/A C0 
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 Where A is the surface area of the transwell membrane in cm2 (= 0.31 cm2), 

C0 is the molar drug concentration in the donor chamber at time = 0 (10 x 10-6 M for 

the PBD-dimers and 100 x 10-6 M for the PBD-monomers) and dQ/dt is the rate of 

transfer of the compound to the receiver chamber, determined from the slope of the 

graph concentration (dQ) versus time (dt) (= 7200 sec). 

2.2.6.5 Determination of the mass balance 

 The mass balance (MB) of a compound is the percentage of original drug 

mass left at the end of the experiment at both apical and basal sides.  It can be 

calculated with the following formula (Rautio, Humphreys et al. 2006):  

 

MB = [(Cat x Va) + (Cbt x Vb)] / (C0 x Vd) 

 

 Where Cat is the concentration of the test compound at time = 120 min at the 

apical side, Va is the volume in the apical chamber (0.3 mL), Cbt is the concentration 

of the test compound at time = 120 min at the basal side, Vb is the volume at the basal 

side, Where C0 is the concentration of the test compound at time = 120 min at the 

donor side and Vd is the volume in the donor chamber (0.3 mL).  MB > 80% 

suggests that the intracellular metabolism did not lead to an erroneous evaluation of 

the impact of the transporters and that there was a minimal loss of drug substrate to 

plastic surfaces (Hu, Reddy et al. 2004; Rautio, Humphreys et al. 2006).  
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2.2.6.6 HPLC-Mass spectrometry analysis 

 The HPLC system comprised of a Dionex (Sunnyvale, CA, USA) 3000 

Ultimate series LC connected to a 4000 Q Trap LC-MS/MS system (Applied 

Biosystems, Foster City, CA, USA) mass spectrometer, equipped with an orthogonal 

electrospray ion source.  Data were acquired and processed with Chromeleon 6.1 and 

Analyst 1.4 chromatography manager software. 

Compounds were separated on a Dionex Acclaim® C16 (150 x 2.0mm I.D.) 

and 3µm particle size column protected by a Phenomenex Gemini® C18 (4.0 x 

2.0mm ID) and 3µm particle size guard cartridge (Phenomenex, Torrance, CA, 

USA).  The HPLC method used gradient elution; mobile phase solvent A was water 

with 0.1% formic acid and mobile phase B was acetonitrile with 0.1% formic acid.  

The initial mobile phase composition of 99% solvent A and 1% solvent B was 

maintained for 3 min.  Between 3 and 9 min the percentage of mobile phase B was 

increased to 75%, kept constant for 2 min and then back to initial the mobile phase 

composition within 2 min, with a total run time of 16 min.  The column was set at a 

flow rate of 0.23 mL.min-1 and a temperature of 33oC.  A sample volume of 6 µL 

was used for all LC-MS experiments.   

The mass spectrometer was operated in electrospray mode.  The source 

temperature was 450oC and the spray voltage 3kV was used.  The collision gas 

pressure was 1.5 mTorr.  All analytes were optimised using the Analyst software 

auto tune facility for SRM transitions with dwell times set at 75 milliseconds.   
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2.2.6.7 Re-assessing membrane integrity with lucifer yellow. 

 At the end of the transwell assay, the integrity of the monolayer can be 

verified by measuring the amount of lucifer yellow (LY), a fluorophore, which has 

passed through the membrane (Hidalgo, Raub et al. 1989).   

Concentration of LY should be proportional to its intensity.  The 

concentration was assessed by measuring the OD value using a plate reader (Wallac 

EnVision reader, PerkinElmer, USA).  A standard curve was determined with a range 

of concentrations 0-100 µM.  Measurements were estimated at the excitation 

wavelength of 430 nM and emission wavelength of 536 nM. Overall, the 

concentration of lucifer yellow correlates with its intensity (r2 = 0.98 and Pvalue < 

0.0001) (Figure 23).   
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Figure 23.  Standard curve of the fluorophore lucifer yellow.  The intensity was plotted according to 
the range of concentration 0-100 µM.  Results are means ± SEM of duplicate. 
  

 The concentration in the receiver chamber should represent < 2% of the 

concentration in the donor chamber (Samiulla, Vaidyanathan et al. 2005).  The 
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integrity of the monolayer was assessed post drug transport as lucifer yellow may 

interfere with LC/MS analysis. 

2.2.7 Determination of the level of P-gp mRNA 

2.2.7.1  RNA extraction 

 Cells were lysed in tissue culture dishes with 1 mL of TRI reagent per 10 cm2 

of flask surface area.  Cell pellets were transferred in stoppered tubes.  200 μL 

chroloroform was added per 1 mL of TRI reagent and left for 15 min at RT.  The 

samples were centrifuged at 10 000 rpm using a SS34 rotor (pre-cooled) at 4○C for 

15 min.  The top phase was transferred to a fresh tube and 500 μL of isopropanol per 

mL of TRI was added.  The samples were centrifuged at 10 000 rpm at 4○C for 10 

min.  Supernatants were removed, leaving the RNA in the pellet.  7.5 mL of cold 

75% ethanol was added and the pellet was then re-suspended by vortex.  The samples 

were transferred in sterile tubes and were centrifuged at 13 000 rpm at 4○C for 10 

min.  The ethanol was removed.  The remaining sample was air dried for 5-10 

minutes and re-suspended in distilled H2O (50 μL). 

2.2.7.2  The reverse transcription-PCR (RT-PCR) reaction  

 All transcripts were detected using Quantitect SYBR Green RT-PCR kits 

(Qiagen, Crawley, UK).  P-gp mRNA expression was determined using forward 

primer mdr1E23 F: 50-aggccaacatacatgccttc and reverse primer mdr1E23 R: 50-

ccttctctggctttgtccag.  The reaction was carried out with 22.5 pmol of each primer.  

Mouse β2 microglobulin (mβ-2m) was used as reference gene to normalize the 

results in 3T3 fibroblasts using the following primers: mβ-2m F: 50-
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gggaagccgaacatactgaa and mβ-2m R: 50-tgcttaactctgcaggcgtat.  Standard curves 

were built from human liver RNA dilutions (BD Biosciences, Oxford, UK) for P-gp 

and mouse liver RNA for mβ-2m.  Each cycle was 15 sec at 94°C (denaturation), 30 

sec annealing and 30 sec at 72°C (extension) for 40 cycles.  Fluorescence was 

recorded on the FAM channel (ExD470 nm, EmD510nm) at the end of the extension.  

Data were analyzed using Rotorgene 6 software. 

2.2.8 Evaluation of the mRNA level of the ABC transporters  

 In order to evaluate the specific impact of ABC transporters, P-gp, MRP1 and 

ABCG2 on the anti-tumour activity of the PBD derivatives, several cell lines with a 

differential expression of the transporters were chosen according to their differential 

mRNA expression.  The level of mRNA was determined for 14 different cell lines 

(data kindly generated by Janet McPherson, CRUK, Edinburgh, UK, personal 

communication) (Figure 24).   

The colon cancer cell lines HCT 116 and HCT-15 were shown to be 

associated with a differential expression of P-gp only.  Indeed, HCT 116 did not 

express the transporter in contrast to HCT-15.  The level of MRP1 was similar in the 

2 cell lines and ABCG2 was barely detectable in these 2 particular cell lines.  These 

data confirmed the utility of the model to evaluate the impact of P-gp on the anti-

tumour activity of the PBDs.  Similarly, the ovarian cancer cell line A2780 and the 

doxorubicin resistant cell line, A2780AD showed massive difference in the level of P-

gp mRNA expression and similar expression of the other 2 transporters, MRP1 and 

ABCG2.  
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 The lung cancer cell line, A549 was associated with the highest level of 

MRP1 in contrast to any other cell lines and was therefore chosen to evaluate the 

impact of this particular transporter on the anti-tumour activity of the PBDs.  

ABCG2 is also expressed in A549, in low but not negligible mRNA levels and 

results should be considered in light of this finding.   
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Figure 24.  Level of mRNA of the three different ABC transporters, P-gp, MRP1 and ABCG2 among 
14 cell lines. Resuts are means of triplicate. The SEM has not been represented for reasons of clarity.  
 

2.2.9 Evaluation of the level of P-gp protein expression by flow cytometry  

 Cells (5 x 106) were resuspended in ice cold PBS.  The mouse monoclonal 

antibody to an external P-gp epitope was added at 1/10 (4E3, Abcam, United 

Kingdom) containing 1% bovine serum albumin (BDH) and 5% goat serum (Jackson 

Immunolaboratories, West Grove, PA) for 30 min at RT.  Cells were washed with ice 

cold PBS and incubated with secondary FITC-goat polyclonal to mouse antibody at 

1/200 (Abcam, United Kingdom) in the dark for 30 minutes.  Cells were washed 
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once more with ice cold PBS and analysed by fluorescence-activated cell sorting 

FACScalibur (BD Biosciences) using an excitation of 488 nm and an emission filter 

at 515 nm (FL-1 channel).  Voltages were set up to display the population within the 

FSC and SSC channels.  The population was gated to exclude debris and aggregates 

and the intensity of the histogram distribution of the FL-1 fluorescence in the 

population of cells analysed (10 000 cells) was recorded. 

2.2.10 Evaluation of levels of MRP1 and ABCG2 protein expression by 

immunoblotting 

 Cells (1 x 106) were lysed with 200 μL lysis buffer (62.5 mM Tris pH 6.8, 6 

M urea, 10% v/v glycerol, 2% w/v SDS, 0.003% w/v bromophenol blue) and 

sonicated on ice 3 times for 5 sec.  Protein concentrations were determined using the 

bicinchonidic acid assay (Thermo Fisher Scientific, UK).  20 μg of protein was 

denatured at 45○C for 30 min in the presence of 5% v/v 2-mercaptoethanol, and 20 

μg of protein was separated by 12% SDS–PAGE at 100 V for 1 hour and transferred 

to a PVDF Immobilon- P transfer membrane (Millipore) overnight at 4○C.  The 

membrane was blocked in 5% w/v Marvel dried milk in Tris buffered saline pH 7.5 

with 0.1% v/v Tween (TBS-T) for 1 h at room temperature, probed with MRP1 

mouse monoclonal antibody (abcam, UK) at 1/500 or with BCRP mouse monoclonal 

antibody (BXP-21) (Alexis BioChemical) at 1/500 in 5% Marvel in TBS-T for 1 

hour at RT and washed with TBS-T and TBS.  After incubation with the secondary 

antibody Anti Mouse IgG-HRP (Santa Cruz Biotechnology, Santa Cruz, CA) at 

1/200 in 5% Marvel in TBS-T for 1 h at RT and further washing with TBS-T and 

TBS.  Blots were visualised by chemiluminescence using Western blotting Luminol 
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Reagent (Santa Cruz Biotechnology, Santa Cruz, CA).  The same procedure was 

performed with actin and GAPDH antibody (1/120 000) and anti-mouse IgM 

secondary antibody (1/4000). 

2.2.11 Surface activity 

 Experiments were carried out as described previously (Seelig, Gottschlich et 

al. 1994).  Water used for buffers and solutions was nanopure with a resistivity of 

17.5 MΩ/cm.  Tris buffer (50 mM, containing 114 mM NaCl) was adjusted with HCl 

to the desired pH of 7.4.  The surface pressure was measured at 23 ± 1°C using a 

Teflon trough (3-5 mL filling volume, Nima Technology Ltd, Coventry, UK) and a 

Wilhelmy plate covered by a Plexiglas hood to minimise evaporation and using drug 

concentrations ranging from 10−4 to 10−6 M.  DMSO, used as a solvent was tested to 

correct for its own surface activity.  The compounds which decreased the surface 

tension at 100 µM by > 5% were considered as being surface active.  The 

measurements were monitored using a DST9005 tensiometer (Nima Technology Ltd, 

Coventry, UK).  (Results generated with the help of Dr. Tony Gutierrez, 

Dunstaffnage Marine Laboratory, Oban, UK). 

2.2.12 Analysis of the hydrogen bond acceptor patterns 

The three-dimensional structures of compounds were modelled with a 

modified version of Allinger’s MM2 force field approach (Burkert and Allinger 

1982), using the software Chem3D (Cambridge Soft Corporation, Cambridge, MA, 

USA).  The chemical structures were then screened for electron donor groups (i.e. O, 

N, S).  The spatial distance between neighbouring atoms carrying the free electron 
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pair was measured.  The hydrogen bond acceptor pattern was determined and 

quantified as formed either by two electron donor groups separated by a spatial 

distance of 2.5 ± 0.3 Å, or two electron donor groups separated by 4.6 ± 0.6 Å or 

three electron donor groups separated by 4.6 ± 0.6 Å, as described by Seelig et al. 

(Seelig 1998).  In order to quantify the hydrogen bond acceptor pattern, relative 

hydrogen bond energy units were assigned: an oxygen-containing electron donor 

group (denoted A) = 1, while a weaker oxygen-free electron donor group such as 

tertiary amines (denoted a) = 0.5 (Seelig 1998).  

2.2.13 Determination of LogP, PSA, surface accessible solvent area and the 

partial atomic charge 

 The hydrophobicity of the molecules, LogP, the polar surface area (PSA) 

defined by the sum of surfaces of polar atoms (usually oxygens, nitrogens and 

attached hydrogens), the solvent accessible surface area (SASA) defined by the 

surface area of a molecule that is accessible to a solvent, the partial charge as 

determined by the extended Hückel calculation, were also determined using 

Chem3D.  

2.2.14 Determination of the electro-potential parameter 

 The chemical structures of the PBDs were first generated with Chem3D, 

converted as .Mol format files and exported to MarvinSketch / Chemaxon (Budapest, 

Hungary). 
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2.2.15 Molecular modelling  

2.2.15.1 Preparation of DNA-drug complex for dynamic analysis.  

 The DNA duplex was generated with MAESTRO/MACROMODEL (version 

7.5 Schrödinger 2006) with the sequence TATAGATCTATA and the .dat files were 

converted into AMBER (version 9).  Ligands were initially built and minimized 

using MACROMODEL and converted into .Mol format files.  They were then 

imported into AMBER.  Ligands were prepared for AMBER using 

ANTECHAMBER program taking a .pdb as an input format and converting it into a 

.mol2 format applying GASTEIGER charging.  Missing parameters for AMBER 

were applied using PARMCHK routine.  AMBER (XLEAP) was used to combine 

ligands with the DNA.  Parameters sets: PARM99.dat and GAFF (General AMBER 

Force Field) plus the additional parameters were added from the PARMCHK routine.  

The covalent bound was made manually using the graphic edit routine insuring that 

an S configuration of C11 was respected.  Having made the construct, the topology 

file and the coordinates were saved for use in the minimization and the dynamics 

using AMBER.  (Results kindly generated by Dr. Colin James, the School of 

Pharmacy, University of London, London, UK). 

2.2.15.2 Energy minimization of the complex using AMBER 

 The DNA-ligand complex was minimized (energy minimization) to achieve 

the nearest stable low energy conformations using AMBER.  The structures were 

subjected to 5000 steps over 10 ps.  The MM-GBSA (molecular mechanics 

generalized-Born continuum solvent) or GB/SA approach was used as an implicit 
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solvent model.  A concentration of 0.2 M of mobile counter ions was used.  A long 

range non bonded cut off (100Å) was used 

2.2.15.3 Molecular dynamics using AMBER 

Similar MM-GBSA, concentration of counter ions and cut off were used with 

a time frame of 100 ps with 2 femtoseconds time step involving 50 000 steps.  All 

the covalent bonds involving hydrogen were constrained using the SHAKE 

algorithm (allowing an increase of the dynamics time step).  Langevin dynamics was 

used for temperature scaling. 

2.2.15.4 Visualisation  

 Dynamics trajectory was visualised using VMD software (version 1.8.4) 

(Humphrey, Dalke et al. 1996) (VMD was developed by the Theoretical and 

Computational Biophysics Group in the Beckman Institute for Advanced Science 

and Technology at the University of Illinois at Urbana-Champaign) and using the 

PyMOL molecular graphics system (version 0.99) (San Carlos, CA Delano 

Scientific). 

2.2.16 In vivo anti-tumour activity 

 Animal experiments were carried out under a project license issued by the 

UK home office, and UKCCCR guidelines were followed rigorously (1998).  HCT 

116 cells (10 x 10 6 cells) were injected subcutaneously into Nu/Nu mice.  Treatment 

started when xenografts reached 50-100 mm3.  SG-2897 was prepared in 1% DMSO 

/Saline.  Animals received SG-2897 intravenously (i.v.) at the dose of 300 μg/kg as 
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single or 120 μg/kg/d day x 5 according to the dose defined for SJG-136 by Alley 

and colleagues (Alley, Hollingshead et al. 2004).  Weights were monitored daily 

from start of treatment to the end of study.  Xenografts were measured 3 times a 

week.  Tumour volumes were calculated from calliper measurements as width2 x 

lengh/2.  Relative tumour volumes (RTV) were calculated for each tumour dividing 

the tumour volume at a specific number of days after the start of treatment by the 

tumour volume at the start of treatment, day 0 multiplied by 100%.  Results are 

means ± SE 5-10 animals.  Specific growth delay (SGD) was calculated as follows: 

[TD (test) – TD (control)] / TD (control) where TD represents the time in which tumour 

has doubled or quadrupled. The tumour regression was determined as follows: T/C% 

= (mean RTV of treated group) / (mean RTV of control group) x 100.  According to 

the National Cancer Institute standards, a T/C ≤ 42% is the minimum level for 

activity (Bissery and Chabot 1991; Plowman J 1997; Johnson, Decker et al. 2001).
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3 Chapter 3: P-GP SUBSTRATE SPECIFICITY OF THE PBD 

DERIVATIVES 

3.1 Introduction 

Pyrrolo[2,1-c][1,4]benzodiazepines (PBDs) interact covalently within the 

minor groove of the DNA (Gregson, Howard et al. 2001).  One of them, SJG-136 has 

a broad spectrum of cytotoxicity across the NCI60 cell line panel, and is highly 

potent in a number of xenograft models (Alley, Hollingshead et al. 2004; Pepper, 

Hambly et al. 2004).  However, its cytotoxicity is reduced in cells expressing high 

levels of the transporter P-glycoprotein (P-gp), both in vitro and in vivo (Guichard, 

Macpherson et al. 2005).   

P-gp is a member of the phylogenetically highly conserved super-family of 

ATP-Binding Cassette (ABC) transporter proteins.  Increase in the expression of P-

gp in tumour cells leads to cellular drug efflux and is a major factor for multidrug 

resistance (MDR) observed in many cancers.  MDR can be intrinsic in some tumours 

(originating from tissues physiologically expressing high levels of P-gp such as 

colon, kidney and liver) or acquired after exposure to structurally unrelated 

anticancer drugs (Fojo, Ueda et al. 1987; Thiebaut, Tsuruo et al. 1987; Ambudkar, 

Dey et al. 1999; Silverman 1999).  

 Compounds that interact with the P-gp transporter belong to various 

therapeutic classes: anticancer drugs, HIV-protein inhibitors, detergents, antibiotics, 

immunosuppressant, antihypertensive drugs (Ambudkar, Dey et al. 1999).  Their 

chemical structures are diverse.  Knowledge of the factors that determine substrate 

specificity is crucial for the rational design of new drugs.  Various attempts have 
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been made to find a common set of functional features that would predict the 

interaction of substrates with P-gp (Dellinger, Pressman et al. 1992; Ueda, Okamura 

et al. 1992; Gottesman and Pastan 1993; Bain and LeBlanc 1996; Schinkel, 

Wagenaar et al. 1996).  However, these features have been validated for families of 

structurally related compounds and do not necessarily extend to other therapeutic 

classes (Didziapetris, Japertas et al. 2003).  Novel PBD derivatives, PBD-dimers and 

PBD-monomers have shown significant growth inhibition in vitro (Thurston 1993).  

However, their potential interaction with P-gp is unknown.  The influence of P-gp on 

the cytotoxic effect of PBDs was first assessed by measuring the relative cytotoxicity 

in different model systems expressing high and low levels of P-gp, in presence or 

absence of a P-gp blocker, verapamil.  To confirm that the reduced uptake is a major 

factor impacting on the cytotoxic effect, the measure of drug-induced damage 

indicated by γH2AX foci formation was used as endpoint instead of growth 

inhibition.  Finally, the activity of the transporter against different PBDs was 

assessed using a more specific study, the Caco-2 transwell assay.  Once the 

differential dependency of PBDs to P-gp was established, the physico-chemical 

features responsible for the interaction with the transporter were evaluated as a basis 

for chemical synthesis of new chemical entities. 

 Inter-individual variations in the ABCB1 coding region have been extensively 

studied and several single nucleotide polymorphism (SNPs) have been identified: 

Two synonymous SNPs (C1236T in exon 12 and C3435T in exon 26) and a non-

synonymous SNP (G2677T, Ala893Ser) in exon 21 were found to be associated with 

an altered protein expression as well as an altered function of the transporter which 
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could lead to redefine the spectrum of molecules recognised by the transporter 

(Hoffmeyer, Burk et al. 2000; Kim, Leake et al. 2001).  

 Data presented in this chapter identify key physicochemical properties 

influencing both the interaction of PBDs with P-gp in a series of novel PBD-dimers 

and PBD-monomers and, also the differential impact of the single or associated SNPs 

on the efflux of the PBD derivatives. 

 

 

3.2 Results 

3.2.1 Growth inhibition assay 

3.2.1.1 Growth inhibition assay of the PBDS in colon cancer cells lines HCT-15 

and HCT 116 

 The cytotoxic effect (IC50) of the PBDs was determined using 2 colon cancer 

cell lines. HCT 116 expresses very low levels of P-gp and HCT-15 expresses high 

levels (Guichard, Macpherson et al. 2005).  The PBD-dimers and the PBD-

monomers exhibited a broad range of IC50 values: from 1.1 nM [SD = ± 0.3 nM] to 

310 nM [± 72 nM] for the PBD-monomers and from 0.026 nM [± 0.01 nM] to 85 nM 

[± 32 nM] for the PBD-dimers (Table 4). 
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 HCT 116  HCT-15 
 -Ver  +Ver  -Ver   +Ver 
                 

 IC50 (nM) SD  IC50 (nM) SD  IC50 (nM)  SD  IC50 (nM) SD 
                            

SJG-136 0.72 0.24  0.44 0.24  2.5  0.46  0.59 0.21 
DSB-120 42 18  24 11  85  32  20 10 
DRG-16 0.044 0.015  0.025 0.012  0.22  0.09  0.038 0.006 
ELB-21 0.026 0.01  0.017 0.001  0.19  0.12  0.030 0.024 

             
SG-2796 6.4 0.3  n.d. n.d.  6.4  1.9  n.d. n.d. 
SG-2797 9.8 2.8  11 4.5  8.6  2.2  7.3 2.5 
SG-2781 20 8  n.d. n.d.  24  12  n.d. n.d. 
SG-2819 13 4  n.d. n.d.  13  3.3  n.d. n.d. 
SG-2820 26 4.5  24 4.9  30  8.9  16 2.2 
SG-2823 10 0.8  9.5 2.7  7.6  1.9  5.8 2.1 
SG-2825 120 16  n.d. n.d.  110  16  n.d. n.d. 
SG-2897 1.1 0.3  n.d. n.d.  1.5  0.3  n.d. n.d. 
SG-2900 120 27  n.d. n.d.  96  10  n.d. n.d. 
SG-2901 190 25  176 21  200  29  220 58 
SG-2902 65 7.3  n.d. n.d.  46  3.4  n.d. n.d. 
SJG-244 260 60  280 38  310  72  290 65 

 
Table 4. Sensitivity of HCT 116 and HCT-15 to the PBDs.  Values are means ± SD of IC50 of n = 3 
experiments performed in triplicate. 
 
 

 Since HCT-15 cells express P-glycoprotein while HCT 116 cells do not 

(Guichard, Macpherson et al. 2005), the ratio between the HCT-15 and HCT 116’s 

IC50 was calculated and considered to be a potential indicator of P-gp dependency 

(Figure 25).  A cut off value of 2 for the ratios (ratio between the IC50 in HCT-15 

cells and the IC50 in HCT 116 cells) was considered as being significant based on the 

impact of the variability between the replicates.  All 4 PBD-dimers have a ratio > 2.  

ELB-21 and DRG-16 showed the highest ratios (7.8 and 5.5, respectively).  

Conversely, all PBD-monomers show a ratio close to 1 (HCT-15 IC50/HCT 116 IC50) 

ranging from 0.72 for SG-2823 to 1.4 for SG-2897.   
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Figure 25.  Ratio between HCT-15 and HCT 116’s IC50s.  Results are means ± SEM of ratios of n = 3 
experiments performed in triplicate. 

 

 These data suggests that P-gp expression would influence the growth 

inhibitory effect of PBD-dimers but not the PBD-monomers in colorectal cell lines. 

3.2.1.2 Impact of verapamil on the growth inhibition of PBDs against HCT-15 

and HCT 116 cells 

 Verapamil is a P-gp blocker that is used widely to study the impact of P-gp 

over-expression on drug uptake. In order to confirm, whether or not the compounds 

showing a high cytotoxic ratio between HCT-15 and HCT 116 cell lines, were 

influenced by P-gp expression, HCT-15 cells and HCT 116 cells were pre-incubated 

with verapamil, a P-gp inhibitor and the cytotoxic effect of PBDs was assessed.  

Cells were pre-incubated with 5 μg/ml of verapamil 1 h prior to the start of the 

exposure to the compounds. The concentration of verapamil was chosen according to 
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the recommendations of the Developmental Therapeutics Program of the NCI/NIH 

and was confirmed as inducing no significant in control cells (data not shown).  

 The impact of verapamil was evaluated on the cytotoxicity of the PBD-dimer, 

ELB-21.  The IC50 following 24h exposure to ELB-21 decreased 4-fold when HCT-

15 cells were pre-treated with verapamil (from 0.12 nM for ELB-21 alone to 

0.047 nM in the presence of 5 μg/ml verapamil) (Figure 26).  There was no 

significant difference when HCT 116 cells were pre-treated or not with verapamil 

(16 pM and 15 pM, respectively). 
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Figure  26.  Impact of P-gp inhibition on the cytotoxic effect of ELB-21 in HCT 116 (red) and HCT-
15 (blue) cells.  Cells were treated with ELB-21 for 24 h with (□, ▼, plain connective lines) or 
without (∆, ♦, dashed connective lines) pre-treatment with 5 μg/ml of verapamil. Results are 
means ± SEM of triplicate.  

 

 The impact of verapamil was also evaluated using the PBD-monomer, SJG-

244. The IC50 following 24h exposure to SJG-244 was similar when HCT-15 cells 

were in absence or presence of verapamil (410 nM and 390 nM, respectively) (Figure 
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27).  There was also no significant difference when HCT 116 cells were pre-treated 

or not with verapamil (230 nM and 220 nM, respectively). 
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Figure 27.  Impact of P-gp inhibition on the cytotoxic effect of SJG-244 in HCT 116 (open symbols) 
and HCT-15 (closed symbols) cells.  Cells were treated with SJG-244 for 24 h with (□, ▼, plain 
connective lines) or without (∆, ♦, dashed connective lines) pre-treatment with 5 μg/ml of verapamil.  
Results are means ± SEM of triplicate. 

 

 The impact of verapamil was also evaluated for all the PBD-dimers and 5 

PBD-monomers.  The pre-incubation of HCT-15 cells (high P-gp) with 5 µg/ml 

verapamil sensitised the cells to the PBD-dimers: from 0.19 [SD = ± 0.12 nM] to 85 

nM [± 32 nM] without verapamil and from 0.030 [± 0.024 nM] to 20 nM [± 10 nM] 

with verapamil, representing a ~5-fold increase on average (Table 4).  In contrast, the 

pre-treatment of HCT 116 cells (low P-gp) with verapamil had no effect on PBD-

dimer growth inhibitory effect: from 0.017 nM [± 0.001 nM] to 24 nM [± 11 nM] 

and from 0.026 nM [± 0.01 nM] to 42 nM [± 18 nM] with and without verapamil, 

respectively (Table 4).  PBD-monomers had similar cytotoxic effect in the colorectal 
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cell lines with or without pre-exposure to verapamil: from 7.6 nM [± 1.9 nM] to 310 

nM [± 72 nM] without verapamil and, from 5.8 nM [± 2.1 nM] to 290 nM [± 65 nM] 

with verapamil in HCT-15 cells, thus providing further evidence that the PBD-

monomers are not substrates for P-gp. 

 

3.2.1.3 Growth inhibitory effect of the PBDs in ovarian cancer cell lines A2780 

and A2780AD  

 A2780AD cells are derived from the parental A2780 cell line and are resistant 

to doxorubicin.  Several studies have shown that resistance to doxorubicin is 

mediated by over-expression of P-glycoprotein (Rogan, Hamilton et al. 1984; 

Guichard, Macpherson et al. 2005).  

 The cytotoxic effect (IC50) using the A2780 and the A2780AD cells was 

determined for all PBDs.  Overall the PBD-dimers were more potent in A2780 cells 

than the PBD-monomers: the most active compounds were ELB-21 and DRG-16 

with an IC50 of 28 pM [± 1 pM] and 34 nM [± 2 pM], respectively in A2780 cells.  

The least active compounds were SJG-244 and SG-2901 (300 nM [± 9.6 nM] and 

230 nM [± 38 nM], respectively) (Table 5). 
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 A2780   A2780AD  
        
 IC50 (nM)  SD  IC50 (nM)  SD 
                
        
SJG-136 0.16  0.1  13  8.5 
DSB-120 8.2  1.2  420  110 
DRG-16 0.034  0.02  1.7  0.6 
ELB-21 0.028  0.01  1.6  0.69 
        
SG-2781 12  1.7  10  4 
SG-2796 7.1  2.1  8.2  0.1 
SG-2797 10  2.9  13  2.9 
SG-2819 17  2.3  20  1.2 
SG-2820 12  3.3  20  10 
SG-2823 5.5  0.4  12  2.1 
SG-2825 110  30  130  45 
SG-2897 1.2  0.4  4.5  0.9 
SG-2900 140  98  110  55 
SG-2901 230  38  330  190 
SG-2902 60  26  84  15 
SJG-244 300  9.6  460  4.1 
               

 
 

Table. 5.  Growth inhibitory effect of the PBDs in A2780 and A2780AD cells.  Results are means ± SD 
of n = 3 experiments performed in triplicate.  
 

 A2780AD cells over-express P-gp in contrast to its parental cell line.  

Therefore, the differential growth inhibitory effect between the 2 cell lines, as 

expressed by the ratio of the IC50s, was used to investigate the impact of the 

transporter.  

Overall the PBD-dimers were associated with the highest ratio between the 2 

cell lines: A2780 cells were 110-, 71- and 53-fold more sensitive to SJG-136, ELB-

21, and DSB-120, respectively, than to the A2780AD cells (Figure 28).  DRG-16 has 

shown the lowest differential of the PBD-dimers, between the 2 cell lines, with a 

ratio of 50. 
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 The PBD-monomers have shown IC50s ratios between the 2 cell lines ranging 

from 1.2 (SG-2825) up to 3.8 (SG-2897).  The PBD-monomer SG-2897 is the most 

potent PBD-monomer towards A2780 (IC50= 1.2 nM [± 0.2 nM]).  A2780AD cells are 

derived from the parental A2780 cell line and are resistant to doxorubicin.  It is likely 

other factors than the over-expression of the transporter in A2780 AD may explain the 

cross-resistance to the PBDs such as SG-2897. 
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 Figure 28.  Ratio between the IC50 in A2780AD cells and the IC50 in A2780 parental cells.  Results are 
means ± SEM of ratios of n = 3 experiments performed in triplicate.  

 

 As previously, the specific dependence on the P-gp transporter was assessed 

by co-incubation with verapamil.   

A2780 cells were highly sensitive to ELB-21 (IC50 = 36 pM [95% confidence 

interval = 25 – 52 pM]) after 24 h exposure (Figure 29).  The pre-treatment of A2780 

cells with verapamil induced no significant variation in growth inhibitory effect 
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(IC50 = 27 pM [22 – 33 pM]).  Using the same duration of exposure, ELB-21 induced 

a much lower cytotoxic effect against A2780AD cells (IC50 = 1.1 nM [0.8 – 1.4 nM]), 

but it was significantly increased by the presence of verapamil (IC50 = 0.18 nM [0.15 

– 0.21 nM]) representing a ~6-fold increase in activity.  
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Figure 29.  Impact of P-gp inhibition on the cytotoxic effect of ELB-21 in A2780 (open symbols) and 
A2780AD (closed symbols) cells. Cells were treated with ELB-21 for 24 h with (□, ▼, plain 
connective lines) or without (∆, ♦, dashed connective lines) pre-treatment with 5 μg/ml of verapamil.  
Results are means ± SEM of triplicate. 

 

  The incubation of verapamil only partially reversed the resistance of the 

A2780AD to the PBD-dimers (Figure 30), again suggesting that an alternative 

resistance mechanism to the PBDs has been induced in the A2780AD cell line. 

 The IC50 in A2780AD was increased by ~5-fold when the cells were pre-

incubated with verapamil: from 4.2 fold for SJG-136 up to 6.4 to DRG-16.  The pre-
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treatment of A2780AD cells with verapamil induced no significant change in 

cytotoxicity of the PBD-monomers. 

 

 

 

 

 

 

Figure 30.  Impact of pre-incubation of verapamil on the growth inhibitory effect of 4 PBD-dimers 
and 4 PBD-monomers in A2780AD cells. The cells were pre-treated for 24h with verapamil before 
PBD treatment. Results are means ± SEM of n = 3 experiments performed in triplicate. 

 

3.2.1.4  Growth inhibitory effect of the PBDs in an isogenic 3T3 fibroblast 

model 

 To confirm P-gp dependency, 3T3 fibroblasts expressing either an empty 

vector (3T3 GP + E-86) or wild type mdr-1 (pHamdr-1) were exposed to the PBD-

dimer DRG-16 and to the PBD-monomer SG-2797 (Figure 30).  DRG-16 induced a 

greater cytotoxic effect against the 3T3 parental cell line (IC50 = 0.57 nM [95% 

confidence interval = 0.37-0.88 nM]) compared to pHamdr-1 cells (IC50 = 32 nM 

[19-52 nM]) (Figure 31.A.).  Conversely, PBD-monomer SG-2797 induced a similar 

growth inhibition against 3T3 parental cells (IC50 = 12 nM [11-13 nM]) and pHamdr-

1 (IC50 = 15 nM [14-16 nM]) (Figure 31.B). 
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Figure 31.  Impact of P-gp on the growth inhibition effet of the PBDs-dimers and the PBD-monomers 
in 3T3 and pHamdr-1 cells.  Growth inhibitory effect observed in 3T3 (▼) and pHamdr-1 (□) cells 
after 24h exposure to (A) DRG-16 or (B) SG-2797.  Results are means ± SEM of triplicate. 

 
 

 The cytototoxic effect (IC50) using the 3T3 and the pHamdr1 cells was 

determined for all the PBDs.  Overall, the PBD-dimers are more potent in the 3T3 

cells than the PBD-monomers: the most active compounds were ELB-21 and DRG-
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16 with an IC50 of 0.34 nM [± 0.26 nM] and 0.54 nM [± 0.32 nM], respectively in 

3T3 cells (Table 6).  The least active compounds were SJG-244 and SG-2901 (380 

nM [± 33 nM] and 230 nM [± 65 nM], respectively). 

 3T3  pHamdr1 
        
 IC50 (nM)  SD  IC50 (nM)  SD 
        
               

SJG-136 1.3 0.3  50  21 
DSB-120 54 18  1800  1000 
DRG-16 0.54 0.32  20  13 
ELB-21 0.34 0.26  14  8.6 

       
SG-2781 13 7.9  19  11 
SG-2796 7.4 1.3  8.1  1.5 
SG-2797 9 2.5  15  0.9 
SG-2819 15 1.6  38  18 
SG-2820 21 3.1  34  2.8 
SG-2823 8.9 0.9  17  5.2 
SG-2825 160 10  190  2.3 
SG-2897 2.5 0.29  5.7  0.5 
SG-2900 140 16  240  85 
SG-2901 230 65  310  50 
SG-2902 120 54  150  76 
SJG-244 380 33  750  240 

 
 

Table 6.  Growth inhibitory effect of the PBDs in 3T3 and in pHamdr1 cells.  Results are means of n 
= 3 experiments performed in triplicate.  

 

 PHamdr1 cells over-express P-gp in contrast to its parental cell line. The 

differential growth inhibitory effect between the 2 cell lines, as expressed by the ratio 

of the IC50s, was used to investigate the impact of the transporter.  Overall, the PBD-

dimers showed the highest ratio between the 2 cell lines: 3T3 cells were 46-, 44- and 

40-fold more sensitive to ELB-21, DRG-16 and SJG-136, respectively, than to the 

pHamdr1 cells.  DSB-120 has shown the lowest differential of the PBD-dimers, 

between the 2 cell lines, with a ratio close to 33 (Figure 32).  The PBD-monomers 
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have demonstrated IC50s ratios between the 2 cell lines ranging from 1.2 (SG-2825 

and SG-2796) to 2.4 (SG-2819).  
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Figure 32.  Ratio between the IC50 in pHamdr1 cells and the IC50 in 3T3 cells.  Results are means ± 
SEM of n = 3 experiments performed in triplicate. 

 

 Previously, a cut off value of 2 for the ratios (ratio between the IC50 in HCT-

15 cells and the IC50 in HCT 116 cells) was considered as being significant.  The 

differential growth inhibition towards the 2 cell lines is greater than 2 for some PBD-

monomers (SG-2823, SG-2819, SG-2897 and SJG-244).  These compounds may be 

considered as low affinity substrates as opposed to the high affinity substrates, the 

PBD-dimers, associated with IC50 ratios ~33-46 times greater.   

 Verapamil could be used to confirm P-gp dependency of the PBDs in this 

isogenic system.  However, as pHamdr1 cells over-express the transporter in supra-
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physiological conditions, verapamil may not be able to block all the transporters and 

therefore the impact of the inhibitor may be misleading. 

In this study, the ability for verapamil to inhibit the transport of substrates 

was assessed in pHamdr1 cells using the calcein-am assay.  Calcein 

acetoxymethylester (Calcein-AM), a non-fluorescent dye, substrate of P-gp, is 

hydrolyzed by intracellular esterases into the fluorescent calcein. The impact of 

verapamil (at increasing concentrations) was evaluated on the related intracellular 

concentration of calcein, i.e. fluorescence.  The minimum fluorescence was observed 

in pHamdr1 cells without any verapamil (65) (Figure 33).  This is due to a maximum 

P-gp efflux activity of the Calcein-AM out of the cell.  Therefore, the latter was not 

able to be converted into its fluorescent dye.  The intracellular concentration of 

calcein correlated with the concentration of verapamil (r2 = 0.99, P value < 0.001) 

from 190, when the cells were incubated with 1.25 μM of verapamil to 1600 when 

the cells were incubated with 20 μM of the inhibitor, the maximum concentration 

used.  The intra-cellular concentration of calcein in pHamdr1 cells has not reached 

the concentration in 3T3 cells (not expressing the transporter) (1800).  Previously, an 

optimal concentration of 10 μM of verapamil was shown not to induce any cytotoxic 

effect (chapter 3.2.1.2) with suboptimal concentrations (20 μM) associated with a 

synergestic cytotoxic effect in a long term assay such as the SRB assay.  Therefore, 

these results provide evidence that verapamil was unable to block all the transporters 

in pHamdr1 cells and can not be used to confirm P-gp substrate specificity of the 

PBDs in this particular system. 
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Figure 33.  Impact of verapamil on the intra-cellular concentration of calcein in Phamdr1 and 3T3 
cells.  Replicate results. 

 

  In summary, these data confirm that the growth inhibitory effect of the PBD-

dimers, in contrast to the PBD-monomers is highly influenced by the expression of 

P-gp. 

3.2.2 H2AX phosphorylation (γH2AX) induced by the PBD-dimer DRG-16 in 

A2780 and A2780AD cells 

 PBD-dimers can cross-link the DNA duplex.  These cross-links can be 

detected using the comet assay or alkaline elution (Kohn 1991; Hartley, Spanswick 

et al. 1999), but more recent studies have identified the formation of γH2AX foci 

after exposure to the PBD-dimer SJG-136 (Arnould, Spanswick et al. 2006).  

γH2AX foci form at sites of DNA damage (Rogakou, Boon et al. 1999; Stojic, Mojas 

et al. 2004); therefore, their detection can be used as a marker of PBD dimer-DNA 

interaction.   
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 In order to confirm that P-gp dependency, by limiting the uptake of the drugs, 

is the main factor related to the difference in drug efficacy, γH2AX foci formation 

was determined in cells with A2780 and A2780AD in presence and absence of 

verapamil.  In A2780 cells, exposure to PBD-dimer DRG-16 induced a ~2.5-fold 

increase in γH2AX foci  (P value <0.0001) (Figure 34). 
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Figure 34.  γH2AX foci formation observed in response to DRG-16 (A) compared to the control in 
A2780 cells (B). Cells were exposed to DRG-16 for 24h at 10 nM.  A and B: representative pictures 
of γH2AX foci (represented in green). Counter-stain with DAPI (blue) confirms the nuclear 
localisation of γH2AX foci. C: γH2AX foci formation as expressed by staining intensity. Results are 
means ± SEM of 20 cells.  
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 In A2780AD cells, lower levels of γH2AX foci were observed than in A2780 

cells following incubation in equimolar concentration of DRG-16 (data not shown).  

Following pre-treatment with verapamil a ~2-fold increased γH2AX foci formation 

was seen (P value = 0.0003) (Figure 35). 
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Figure 35. γH2AX foci formation observed in response to DRG-16 without (A) and with (B) pre-
treatment with 5μg/ml verapamil.  A2780 AD cells were exposed to DRG-16 for 24h at 10nM in 
presence or absence of verapamil. A and B: representative pictures of γH2AX foci (represented in 
green). C: γH2AX foci formation as expressed by staining intensity. Results are means ± SEM of 20 
cells. 
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3.2.3 Permeability studies using the Caco-2 transwell assay 

 The Caco-2 model of permeability has been widely used to measure the rate 

of transfer of test compounds.  The system has been optimised as described in 

Materials and Methods (chapter 2).  The cells express P-gp at the apical side.  It has 

been stated that if a compound exerts a ratio between the secretion (permeability 

from the basal to the apical side (Papp B→A)) and the absorption (permeability from 

the apical to the basal side (Papp A→B)) > 3, it can be considered as being actively 

effluxed by P-gp (Szakacs, Paterson et al. 2006). 

 The permeability of SJG-136 from the apical to the basal which represents 

absorption (Papp A→B) is much lower than secretion (represented by the permeability 

from the basal to the apical side (Papp B→A)): from 9.9 x 10-6 cm/sec [SD = ± 2.7 x 

10-6 cm/sec] for the absorption to 64 x 10-6 cm/sec [± 27 x 10-6 cm/sec] for the 

secretion (Figure 36).  This represents a ratio between Papp B→A and Papp A→B of 

~6.4 suggesting that SJG-136 is actively transported by P-gp from the basal to the 

apical side.  The Mass Balance was also evaluated for SJG-136 (MB A→B = 69 ± 1%) 

suggesting that the compound may have potentially undergone metabolism and/or 

that it has been attached to plastic surface preventing the full recovery of the 

compound.  However, MB B→A = 105 ± 17% suggests a full recovery of SJG-136. 
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Figure 36.  Permeability of the PBD-dimer, SJG-136.  The permeability from the apical to the basal 
side (Papp A→B) is represented in blue.  The permeability from the basal to the apical side (Papp 
B→A) is represented in red. Results are expressed as means ± SEM of triplicate. 
 

 

 Similarly, the PBD-dimer DRG-16 showed a differential permeability 

between the secretion (Papp A→B) and the absorption (Papp B→A) with permeability 

values of 9.8 x 10-6 cm/sec [± 4.7 x 10-6 cm/sec] and 2.8 x 10-6 cm/sec [± 0.7 x 10-6 

cm/sec], respectively (Figure 37.A). This represents a ratio between Papp B→A and 

Papp A→B of ~3.5 suggesting that DRG-16 is also actively transported by P-gp from 

the basal to the apical side.  Mass balance of DRG-16 was evaluated and was 

associated with a minimal drug metabolism/adherence to the system (MB A→B = 85 ± 

2.3%] and MB B→A = 118 ± 16%).  

 Conversely, the PBD-monomer SG-2897 showed no difference between 

absorption (Papp A→B = 6.9 x 10-6 cm / sec) and secretion (Papp B→A = 6.9 x 10-6 cm / 

sec), suggesting that this particular compound is not actively transported from the 

basal to the apical side (Figure 37.B).  Mass balance of SG-2897 was evaluated and 



 107

was also associated with minimal drug metabolism/adherence to the system (MB A→B 

= 90 ± 10% and MB B→A = 119 ± 18%)  
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Figure 37.  Permeability of the PBD-dimer, DRG-16 (A) and the PBD-monomer, SG-2897 (B).  The 
permeability from the apical to the basal side (Papp A→B) is represented in blue. The permeability 
from the basal to the apical side (Papp B→A) is represented in red. Results are expressed as means ± 
SEM of triplicate. 
 

 Overall, the transwell assay has allowed us to confirm the active transport of 

the PBD-dimers, SJG-136 and DRG-16 from the basal to the apical side in contrast 

to the PBD-monomer, SG-2897. 

 

3.2.4 Chemical structure analysis 

3.2.4.1  General features involved in P-gp substrate specificity 

 From the literature, it is evident that P-gp substrates share a common set of 

physico-chemical properties.  It has been stated that a compound, in order to be 

recognised by the transporter has to have some general parameters such as at least 



 108

one basic nitrogen, a molecular weight > 400, a number of (oxygen + nitrogen) 

atoms > 8 (with (N+O) < 4, predicting P-gp non substrates), a logP > -1, at least 2 

aromatic rings and some more specific features (pharmacophores) such as, at least 

one hydrogen bond acceptor pattern.  In addition, it has been suggested that P-gp 

substrates are surface active compounds.  

 There is a noticeable heterogeneity of the structures among the PBD 

derivatives.  Some of them correspond to the features of being P-gp substrate as 

reported previously.  Their chemical features are listed in Table 7. 

 Five of the 16 compounds have their molecular weight greater than 400 

including 1 PBD-monomer (SG-2797, 402.4); 4 include ≥ 8 (N+O) atoms; 12 contain 

2 aromatic rings including 8 PBD-monomers.  All the compounds have a LogP ≥ -1 

and contain basic nitrogen. However, all of them have a number of (N+O) > 4.  This 

feature can therefore not be used to discriminate the compounds between substrates 

and non-substrates.  All the compounds carry a hydrogen bond acceptor pattern and 

this feature can not be used either to discriminate them. The PBD-dimers differ from 

the PBD-monomers by a molecular weight greater than 400, a greater number of 

(N+O) and a greater polar surface area.  

All compounds included in these studies contained at least one basic nitrogen. 

12/16 compounds had more than 2 aromatic rings.  Finally, all the PBD-dimers had a 

number of nitrogen and oxygen atoms (N+O) greater than 8, compared to the PBD-

monomers. 
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Molecular 

weight LogP 

Basic 

Nitrogen (N+O) PSA 

2 Aromatic 

Rings 

SJG-136 556.608 1.383 + 10 102.2 + 

DRG-16 584.662 2.254 + 10 102.2 + 

DSB-120 532.587 1.295 + 10 102.2 + 

ELB-21 612.715 2.989 + 10 102.2 + 

SJG-244 348.395 2.493 + 5 51.1 + 

SG-2781 377.436 2.494 + 6 54.4 + 

SG-2796 360.405 2.844 + 5 51.1 + 

SG-2797 402.366 3.13 + 5 51.1 + 

SG-2819 376.448 3.443 + 5 51.1 + 

SG-2820 359.377 2.242 + 6 74.9 + 

SG-2823 362.378 1.956 + 6 68.2 + 

SG-2825 340.416 2.788 + 5 51.1 - 

SG-2897 385.415 2.292 + 6 64 + 

SG-2900 354.442 3.205 + 5 51.1 - 

SG-2901 368.469 3.622 + 5 51.1 - 

SG-2902 340.416 2.753 + 5 51.1 - 

 

Table 7.  Chemical features of the PBDs involved in P-gp substrate specificity.  Previously suggested 
determinants for being substrates of P-gp are represented in green. 

  

3.2.4.2  Hydrogen bond acceptor pattern 

 The chemical structures were screened for electron donor groups as described 

in Materials and Methods (Section 2.2.11).   

 Among the PBD-dimers, SJG-136 and DSB-120 were associated with the 

highest number of units of hydrogen bonding energy (17), followed by ELB-21 and 

DRG-16 with 15 units. All the PBD-monomers were assigned the same amount of 

hydrogen bonding energy units (7.5) (Table 8). 
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 Electron donor pattern (hydrogen bond acceptor pattern) Units of H 

bonding 
energy 
(HBE) 

  SJG-136 

 

Aaa(1,3,6) 4.186Å  Aa (1,5) 4.835 Å  Aaa(1,3,6) 4.137Å 
AA(1,6)  5.142 Å  AA (1,4) 2.702 Å  Aa (1,5) 4.894Å 
AA(1,4) 2.634 Å  AA (1,6) 5.241Å  AA (1,5) 4.818Å  

 

17 

  DRG-16 

 

Aaa(1,3,6) 4.129Å  Aa (1,5) 4.835Å  Aaa(1,3,6) 4.161 Å 
AA(1,6)  5.094 Å  AA (1,4) 2.920Å  Aa (1,5) 4.841Å 
AA(1,4) 2.945 Å  AA (1,6) 5.019Å     

 

15 

  DSB-120 

 

Aaa(1,3,6) 4.129 Å  Aa (1,5) 4.835 Å  Aaa(1,3,6) 4.161 Å 
AA(1,6)  5.154 Å  AA (1,4) 2.940 Å  Aa (1,5) 4.841 Å 
AA(1,4) 2.770 Å  AA (1,6) 5.051 Å  AA (1,5) 4.807 Å  

 

17 

  ELB-21 

 

Aaa(1,3,6) 4.170 Å  Aa (1,5) 4.835 Å  Aaa(1,3,6) 4.161 Å 
AA(1,6)  5.162 Å  AA (1,4) 2.920 Å  Aa (1,5) 4.841 Å 
AA(1,4) 2.699 Å  AA (1,6) 5.019 Å     

 

15 

  SJG-244 

 

Aaa (1,3,6) 4.137 Å  Aa (1,5) 4.866 Å 
AA (1,6) 5.193 Å  AA (1,4) 2.690 Å  

 

7.5 

SG-2781 
SG-2796 
SG-2797 
SG-2825 
SG-2897 
SG-2819 
SG-2820 
SG-2823 
SG-2900 
SG-2901 
SG-2902  

AA (1,4) 2.697 Å 

Aa (1,5) 4.927 Å 

Aaa(1,3,6) 4.035 Å 

AA (1,6) 5.256 Å  

 

 

7.5 

Table 8. Hydrogen bond acceptors patterns and units of hydrogen bonding energy of the PBDs. A 
denotes a hydrogen bonding acceptor group (electron donor group) containing oxygen and, a denotes 
a hydrogen bonding acceptor group containing no oxygen. The numbers in brackets indicate the first 
and the nth atom with a free electron pair. The spatial distance between neighbouring atoms carrying 
the free electron pair was measured using the software Chem3D. 

 

  Since all the PBD-monomers follow the same pattern, no correlation could 

be established with the ratio.  The PBD-dimers differ by two units of hydrogen 

bonding energy and the restricted number of compounds did not allow us to make 

any correlation either with the ratio.  These results are consistent with previous 

reports suggesting that molecules with high HBE have increased likelihood of 

interacting with P-gp (Seelig 1998). 
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3.2.4.3  Polar surface area  

 The polar surface area (PSA) is defined as the sum of surfaces of polar atoms 

(usually oxygens, nitrogens and attached hydrogens). A cut-off of 75Ǻ2 has been 

suggested as a discriminator of P-gp substrates from non substrates (Varma, Sateesh 

et al. 2005).  Our study showed that PBD- dimers have a PSA > 75 Å2 while all the 

PBD-monomers have a PSA below the threshold, confirming the potential relevance 

of this parameter (Table 7). 

 

3.2.4.4  Surface activity parameter 

 It has also been suggested that surface active properties, which allow the 

compounds to partition into the membrane and decrease the surface tension, 

influence P-gp dependency (Seelig 1998).  Indeed, the amphiphilicity of a compound 

as reflected in its air-water partition coefficient, Kaw, has been shown to be 

correlated with the inverse of Michaelis-Menten constant, Km of the P-gp ATPase 

activation (Seelig and Landwojtowicz 2000).  

 The adsorption of an amphiphile at the air-water interface lowers the surface 

tension of the buffer, γ0, to a new value, γ. The difference, γ0- γ is so called surface 

pressure or surface activity. 

 Among the PBD derivatives, some compounds were surface active and 

decreased the surface tension of TRIS such as SG-2825 (Figure 38).  Others were not 

surface active and did not decrease the surface tension, such as SG-2781. 
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Figure 38.  Surface activity of 2 PBD-monomers, SG-2825 and SG-2781 as determined by the 
wilhelmy plate method. Since all the PBDs are diluted in DMSO; its surface tension has been reported 
(green).  SG-2825 does not decrease the surface tension and it is considered as being not surface 
active (blue).  SG-2781 decreases the surface tension and is considered as being surface active 
(purple). 
 

 
 The surface activity was determined for all PBDs. As a result, all the PBD-

dimers were non-surface active in the range of concentrations tested (10-9-10-4 M).  

7/12 PBD-monomers (SG-2797, SG-2819, SG-2825, SG-2900, SG-2901, SG-2902 

and SJG-244) were surface active (Table 9), while their growth inhibitory effect was 

not influenced by P-gp. Therefore, the surface activity does not predict P-gp 

interaction for this class of compounds.  

Surface active PBDs  
Non surface active 

PBDs 
   

SG-2797  SJG-136 
SG-2819  DSB-120 
SG-2825  DRG-16 
SG-2900  ELB-21 
SG-2901  SG-2781 
SG-2902  SG-2796 
SJG-244  SG-2820 

  SG-2823 
  SG-2897 

 
Table 9.  Surface activity of the PBDs. The PBD-monomers are represented in red and the PBD-
dimers in blue. 
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3.2.4.5 Lipophilicity 

 The lipophilicity or LogP was greater than -1 for all the compounds. 

However, when the PBD-dimers were considered separately, the LogP correlated 

with the IC50 ratio between HCT-15 and HCT 116 (r2 = 0.96, P value < 0.05), 

indicative of P-gp dependency (Figure 39). 
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Figure 39.  Relationship between (IC50 in HCT-15 versus IC50 in HCT 116) and LogP.  Since the 
activity of the PBD-monomers has been shown to be not affected by the expression of P-gp, only the 
ratio for the PBD-dimers is represented. Results are means ± SEM of n = 5 experiments performed in 
triplicate. 
 

3.2.4.6 Molecular weight 

 Molecular weight (MW) is a major factor related to P-gp interaction.  In our 

series, all the PBD-dimers had a MW greater than the proposed threshold of 400, 

from 532.58 (SG-2018) to 612.71 (ELB-21), in addition to the PBD-monomer (SG-

2797) (but only just > 400). 
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 There was a highly significant correlation between molecular weight and the 

HCT- 15/HCT 116 IC50 ratio (r2 = 0.99, P value < 0.001) when the dimers were 

evaluated in isolation, suggesting an impact on P-gp dependency (Figure 40). 
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Figure 40.  Relationship between (IC50 in HCT-15 versus IC50 in HCT 116) and the molecular 
weight.  Since the activity of the PBD-monomers was shown not to be affected by the expression of 
P-gp, only the ratio for the PBD-dimers is represented. Results are means ± SEM of n = 5 
experiments performed in triplicate. 
 
 

3.2.5 Impact of ABCB1 polymorphism on P-gp substrate specificity of the 

PBD derivatives 

 ABCB1 genetic polymorphisms have been shown to modify both P-gp 

expression and also function though an effect on P-gp substrate specificity 

(Hoffmeyer, Burk et al. 2000; Aird, Thomson et al. 2007; Kimchi-Sarfaty, Oh et al. 

2007).  To evaluate the effect of different polymorphisms on the growth inhibitory 

effect of PBD derivatives, a series of isogenic fibroblast cell lines with mutations in 

positions 1236, 2677 and 3435 were used.   



 115

3.2.5.1  Determination of the level of P-gp mRNA  

 The level of mRNA was evaluated for all the 3T3 cell lines expressing the 

different genotypes of P-gp by quantitative RT-PCR.   

 The level of mRNA of P-gp is maximal in the 3T3 fibroblasts expressing the 

wild type form, (pHamdr1) (Figure 41).  The presence of a G/T (893) or G/A (2677) 

mutation in position 2677 was associated with a decreased gene expression of ~1.5 

and ~32-fold, respectively.  The level of mRNA of P-gp was also reduced in cell 

lines expressing the combined mutations in positions 2677 (G/T) and 3435 

(893/3435) (~2.8-fold).  Combined mutations in position 1236 and 2677 (G/T) 

(893/1236) was associated with a decreased gene expression (~21.5-fold).  Finally, 

the P-gp mRNA level was reduced in cell lines expressing the triple mutations in 

position 2677 (G/T), in position 1236 and in position 3435 (893/1236/3435) (~18-

fold). 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 41.  Level of mRNA of P-gp, in the 3T3 fibroblasts expressing different genotypes of the 
transporter.  The levels of P-gp mRNA were corrected with the levels of mouse β-2-microglobulin 
(mB2M).  The values are means ± SD of triplicate. 
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3.2.5.2  Determination of the level of P-gp protein expression  

P-gp protein expression was measured by flow cytometry using a specific 

antibody (4E3 Ab) targeting the extracellular portion of the transporter.  P-gp protein 

expression was maximal in pHamdr1 cells (Figure 42).  The presence of a G/T (893) 

or G/A (2677) mutation in position 2677 was associated with a decreased protein 

expression of ~1.5- and ~4-fold, respectively.  Combined mutations in positions 

2677 (G/T) and 3435 (893/3435) also reduced P-gp expression (~2-fold).  The level 

of protein expression was reduced in cell line expressing the mutations in position 

1236 (~4-fold).   
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Figure 42.  ABCB1 protein expression in cells lines transfected with wild type ABCB1 (pHamdr-1) 
and with mutations in positions 1236, 2677 and 3435 of the mdr-1 gene.  Results are means ± SD of 
triplicate. 
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3.2.5.3  Relationship between the level of mRNA and protein expression of P-

gp 

The relationship between the level of protein expression and the level of 

mRNA has been evaluated and demonstrated significant correlation between gene 

and protein expression (r² = 0.98, P value = 0.0001) (Figure 43). 
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Figure 43.  Relationship between the level of P-gp protein expression and the level of mRNA in the 
3T3 fibroblasts expressing different mutations of ABCB1.  Results are means ± SD of triplicate. 
 
 

3.2.5.4  Growth inhibition studies using isogenic 3T3 cells expressing different 

genotypes of ABCB1 

In order to evaluate the impact of ABCB1 polymorphism on P-gp substrate 

specificity of the PBDs, their growth inhibitory effect was evaluated against the 3T3 

expressing mdr-1 cDNA with different mutations.  The growth inhibitory effect of a 

PBD-dimer, SJG-136 was first evaluated.  In the most resistant cell line, the 3T3 

fibroblasts expressing ABCB1 with a mutation in position 2677 (G/T) (893 cells), 
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the IC50 = 79 nM [95% CI = 18 - 154 nM] (Figure 44).  In contrast, the cell line 

expressing the wild type ABCB1 (pHamdr1) was more sensitive to SJG-136, than 

the 893 cells with an IC50 of 46 nM [28 - 75 nM].  Sensitivity to SJG-136 was 

enhanced further with combined mutations, with IC50 values of 37 nM [CI = 4 - 91 

nM] and 9 nM [CI = 6.4 -13 nM], for 893-3435 and 893/1236 cell lines, respectively.  

Finally, the 3T3 fibroblasts transfected with cDNA containing the empty vector were 

the most sensitive cell line to SJG-136 with an IC50 = 4.8 nM [CI = 3.5 - 12 nM]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 44.  Growth inhibition curves of the PBD-dimer SJG-136 towards isogenic fibroblast cell lines 
expressing ABCB1 cDNA with different mutations in positions 1236, 2677 and 3435.  Results are 
means ± SEM of triplicate. 
 

 

 The relationship between the protein expression of ABCB1 and the growth 
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considered as an outlier suggesting that the level of ABCB1 protein expression may 

not be the only factor modulating the anti-tumour activity of the PBD-dimer, SJG-

136 (Figure 45). 

SJG-136

0 50 100 150 200 250
0

25

50

75

100
893

pHamdr1
893/3435

3T3

ABCB1 protein expression

IC
50

 (n
M

)

 
 

 
Figure 45.  Relationship between ABCB1 protein expression and the growth inhibitory effect of the 
PBD-dimer, SJG-136.  The IC50 values are means ± SD of n = 4 experiments performed in triplicate.  
The 95% Confidence interval is represented in dashed lines. 
 
 
 In order to investigate the specific impact of the different mutations on the 

function of the transporter, the IC50 values were “corrected” using the level of 

ABCB1 protein expression.   

 The ratio between the IC50 and the protein expression is the highest in cells 

expressing ABCB1 with a mutation in position 2677 (G/T) (893 cells): the cells 

expressing the mutated form were ~2.3-fold more resistant to SJG-136 than 

pHamdr1 while considering a similar level of protein expression of the transporter 

(Figure 46) (P value = 0.0077).  In other words, 893 cells were associated with a ~2.3-

fold “gain of function”.   
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 With combined mutations in position 2677 (G/T) and 3435, this effect 

appears to be abrogated.  When corrected for the level of protein expression, SJG-

136 is ~1.8-fold more cytototoxic towards cell lines expressing the mutated form 

(893/3435) of the transporter than the cell line expressing only the mutated form in 

position 2677 (G/T) (P value = 0.048).   

 The combination of the mutation in position 2677 (G/T) and the mutation in 

position 1236 (893/1236 cells) has abrogated the “gain of function” associated with 

the single mutation in position 2677 (G/T) further.  Indeed, the corrected growth 

inhibitory effect of SJG-136 is similar in cell lines expressing the wild type form of 

the transporter and in cell lines expressing the combined mutations (893/1236).   

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 46.  Impact of ABCB1 polymorphism on the growth inhibitory effect of SJG-136.  The 
growth inhibition (IC50) has been corrected with the level of ABCB1 protein expression.  The IC50 
values are means ± SEM of n = 4 experiments performed in triplicate.  
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shown to be non substrates of the transporter.  The following study evaluates 

whether the growth inhibitory effect of the PBD-monomers may be affected by some 

genetic polymorphisms of the transporter. 

 

 The growth inhibitory effect of PBD-monomer, SG-2897 was evaluated in 

the 3T3 cell lines expressing different genotypes of ABCB1.  893 cell line, 

expressing the mutated form of ABCB1 (2677 (G/T)) was the least sensitive to the 

PBD-monomer, SG-2897, with an IC50 = 9.6 nM [8.6 -10.5 nM] compared to the cell 

line expressing the wild type ABCB1 (pHamdr1), with an IC50 of 6.3 nM [5.6 – 6.9 

nM] representing a ~1.5-fold increase in sensitivity (Figure 47).  The cell line 

expressing ABCB1 with a combined mutation in position 2677(G/T) and 3435 

(893/3435 cell line) was also more resistant to SG-2897 (with an IC50 = 7.8 nM [7.2 

-8.3 nM]) than the pHamdr1 cell line. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
Figure 47.  Cytotoxicity curves of a PBD-monomer SG-2897 towards isogenic fibroblast cell lines 
expressing ABCB1 cDNA with different mutations in positions 1236, 2677 and 3435.  Results are 
means ± SEM of triplicate. 
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 In contrast to the results with SJG-136, the relationship between the growth 

inhibitory effect of SG-2897 and the level of ABCB1 expression was not significant 

(r2 = 0.27 and Pvalue = 0.28) (Figure 48).  

 

 

 

 

 

 

 

 

 
 
Figure 48.  Relationship between ABCB1 protein expression and the growth inhibitory effect of the 
PBD-monomer, SG-2897.  The IC50 values are means ± SEM of n = 3 experiments performed in 
triplicate.   
 
 
 

The cell lines expressing the transporter with a mutation in position 2677 

(G/T) and the transporter with a mutation associated in position 3435 were 

significantly more resistant to SG-2897 than the parental cell lines (3T3) (P value = 

0.005 and P value = 0.05, respectively).  The growth inhibition of SG-2897 was not 

affected by any other mutated form of the transporter (893/1236; 2677 and 

893/1236/3435 cell lines) nor the wild type (pHamdr1) transporter. 
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form in positions 2677 (G/T) is on average ~2.5-fold more resistant to SG-2897 than 

the cell line expressing the wild type transporter (pHamdr1 cells) (P value = 0.0002) 

(Figure 49).  This “gain of function” has not significantly been abrogated by the 

presence of the associated mutation in position 3435 as the ratio between the 

corrected IC50 in the double mutant cell line and the corrected IC50 in the phamdr1 

cells is ~2.4 (P value = 0.006).   

 For the PBD-monomer, SG-2897, 3T3 cells expressing the mutated form of 

P-gp in position 2677 (G/T) were more resistant than the cells transfected with wild 

type P-gp, despite reduced expression.  This suggests that the mutation has altered 

the substrate specificity of the compound.  This is in contrast to the impact of the 

combined mutation in position 3435.  The latter only abrogates the “gain of function” 

in the case of the PBD-dimer, SJG-136.   

 

 

 

 

 

 

 

 

 

 

Figure 49.  Impact of ABCB1 polymorphism on the growth inhibitory effect of SG-2897.  The 
growth inhibition (IC50) has been corrected with the level of protein expression as determined 
elsewhere.  The IC50 values are means ± SEM of n = 3 experiments performed in triplicate. 
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 The impact of the mutation in position 2677 (G/T) on the growth inhibitory 

effect of the PBD-monomer, SG-2897 was confirmed by pre-incubation with 

verapamil (Figure 50).  The cytoxicity of SG-2897 in the cell lines expressing the 

mutated form of the transporter was increased by ~3-fold when the cells were pre-

incubated with verapamil (from 9.6 nM [95% CI = 6.1-15 nM] alone to 2.9 nM [CI = 

1.9-3.3 nM] when pre-treated with verapamil).  The growth inhibitory effect of SG-

2897 against the cells expressing the mutated form of the transporter, was similar 

when the cells were pre-incubated with verapamil to the parental cell lines which do 

not express the transporter (IC50 = 2.4 nM [CI = 2.2-2.6 nM]).  
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Figure 50.  Impact of verapamil on the growth inhibitory effect of the PBD-monomer, SG-2897 in 
3T3-893 fibroblasts expressing the mutated form of P-gp in position 2677(G/T).  Cells were treated 
with SG-2897 for 24h with (■) or without (▲) pre-treatment with 10 µM verapamil.  The growth 
inhibitory effect of SG-2897 in 3T3 cells is represented for comparison (●). Results are means ± SEM 
of triplicate. 
  

 The impact of the mutation in position 2677(G/T) was further investigated 

using other PBDs.  The ratio between the IC50 in the cell line expressing the mutated 

form (893) of ABCB1 and the IC50 in the cell line expressing no transporter (3T3) 
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was plotted and compared to the ratio between the IC50 in the cell line expressing the 

wild type form (pHamdr1) and the IC50 in 3T3 for 4 PBD-dimers and 4 PBD-

monomers.  Overall, the ratios between the corrected IC50s in the 893 cell line and 

the IC50s in 3T3 are greater than the ratios between the corrected IC50s in pHamdr1 

and the IC50s in 3T3, for both PBD-dimers and PBD-monomers (Figure 51).  

Therefore, the mutation at position 893 is associated with a reduced sensitivity of the 

PBD-dimers and the PBD-monomers tested than the wild type form. 

 

 

 

 

 

 

 

 

 

 
Figure 51.  Ratios between the corrected IC50 in the pHamdr1 and the IC50 in the parental cell line, 
3T3 (green) compared to the ratios between the corrected IC50 in the 893 cell line and the IC50 in 3T3 
(red) for 4 PBD-dimers and 4 PBD-monomers.  The values are means ± SD of 3 experiments, 
performed in triplicate. 
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However, the growth inhibitory effect of PBD derivatives was affected 

differentially by the presence of this specific mutation.  The impact of the 893 

mutation was evaluated by the ratio between the corrected IC50 in the 893 cell line 

and the corrected IC50 in the pHamdr1 cell line.  Ratios were evaluated for 10 PBD-

monomers and 4 PBD-dimers. When the IC50s were corrected for ABCB1 protein 

expression, the pHamdr1 cells were on average ~2-fold more sensitive to the PBD-

monomers than the 893 cells (Figure 52).  The impact of the 893 mutation was 

greater for PBD-dimers (P value = 0.0065).  Indeed, the pHamdr1 cells were on 

average ~2.8-fold more sensitive to the PBD-dimers than the 893 cells.   
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Figure 52.   Differential impact of the mutation 2677 (G/A) on the growth inhibitory effect of the 
PBD-dimers and PBD-monomers.  The values represent ratios between the corrected IC50 in 893 cells 
versus the corrected IC50 in the pHamdr1 cells.  The mean ± SD of the ratios for the PBD-monomers 
is represented in red (n = 10).  The mean of the ratios for the PBD-dimers is represented in blue (n = 
4) 
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3.3 Discussion 

 PBD-dimers have shown promising preclinical results and SJG-136 is now in 

clinical development.  SJG-136 has been shown to be a P-gp substrate and this study 

shows similar results for 3 other PBD-dimers.  In contrast, the PBD monomers were 

shown to be non substrates in cell lines expressing physiological level of the 

transporter. This was demonstrated using different model systems: differential 

growth inhibition in mdr1 low (HCT 116 and A2780) and mdr1 high cell lines 

(HCT-15 and A2780AD), inhibition of P-gp by verapamil, and with a Caco-2 model 

of permeability.  Using isogenic cell lines (3T3 and pHamdr-1), expressing the 

transporter at a supra-physiological level, all PBD-dimers were confirmed to be high 

affinity substrate of P-gp while, some PBD-monomers (SG-2823, SG-2819, SG-2897 

and SJG-244) were shown to low affinity substrate of the transporter.  More 

importantly, this study showed how P-gp, by impairing drug uptake, may decrease 

the drug-DNA interaction of the PBD-dimers and therefore their growth inhibitory 

effect.  

 The growth inhibitory effect of the PBD-dimers was improved in A2780AD 

by pre-treatment with verapamil, although not reaching the growth inhibition 

observed in A2780.  The inability for verapamil to reverse the resistance observed in 

A2780AD was also previously demonstrated with peloruside and paclitaxel (Gaitanos, 

Buey et al. 2004).  Krasznai and colleagues have demonstrated that the intracellular 

accumulation of rhodamine 123 was greater when the cells were pre-treated with a 

more potent inhibitor of P-gp such as cyclosporine A than with the pre-treatment 

with verapamil in A2780AD cells (Krasznai, Peli-Szabo et al. 2006). The impact of 

more specific inhibitors could be the basis of further studies.  A2780AD cell line has 
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been obtained by stepwise incubation with doxorubicin.  It can be argued that over-

expression of mdr-1 may not be the only factor that is up regulated in these cells that 

could contribute to the difference in growth inhibition not only for doxorubicin but, 

for the PBD derivatives as well.  Several members of the ABC family are amplified 

in A2780AD cell line (Renes, de Vries et al. 1999). The investigation of other ABC 

transporters will be reported elsewhere (Cf. Chapter 4).   

 These studies suggest that P-gp dependency can be designed out.  The 

molecular weight (MW), the polar surface activity (PSA), the number of (N+O) 

atoms and the hydrogen bonding energy were associated with P-gp substrates.  

Within the PBD-dimers, LogP and MW correlated with P-gp dependency and 

therefore could also be used to minimise the impact of P-gp over-expression.  Small 

compounds with MW < 250 are suggested to be non substrates because of either a 

fast diffusion or the fact that P-gp has a large binding pocket with fuzzy specificity 

(Sharom 1997).  One monomer had a MW slightly over a threshold suggested in the 

literature.  However, this cut-off should take into account the pKa of the molecule.  

For larger molecules, the MW cut-off would be lowered (for bases (Lee, Paull et al. 

1994)) or increased (for acids (Essodaigui, Broxterman et al. 1998; Lin 2003)) 

depending on the ionization of the compounds on the basis of the 400 cut-off defined 

by Didziapteris et al (Didziapetris, Japertas et al. 2003).  The PBD derivatives are 

weak acids (pKa = 4.1).  Therefore, the MW cut-off is probably higher for this class 

of compounds and a value between 402 and 533 would be suggested from our data. 

 Although the surface activity has been suggested to be a parameter involved 

in P-gp substrate specificity (Seelig and Landwojtowicz 2000), we found no 

evidence that this was the case with PBDs.  All the substrates described by Seelig 
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and Landwojtowicz were relatively basic (pKa > 7.4) and more likely to be ionized 

in a relatively acid environment (Seelig and Landwojtowicz 2000).  This ionized 

form is traditionally thought to be membrane impermeable.  The lipophilicity as 

described among other parameters by the surface activity would compensate and 

allow these particular compounds (when pH < pKa) to interact with the membrane 

and being recognized by P-gp.  The PBD-dimers which are not surface active are 

substrates of P-gp.  It is likely that their relative acidity decreased the impact of the 

surface activity.  

 Hydrophobicity is thought to be a major determinant of P-gp substrate 

specificity (Ambudkar, Dey et al. 1999; Seelig and Landwojtowicz 2000; Osterberg 

and Norinder 2001).  Molecules with LogP lower than 1 or greater than 5 are 

predicted to be non-substrate despite having some of the physico-chemical features 

of P-gp substrates, such as bromocriptin (BCT) using a MDCKII transwell assay 

similar to the one used in this study (Caco-2 system) (Varma, Sateesh et al. 2005).  

However, some of these compounds, have been shown to be P-gp substrates by 

others (such as BCT as determined in vivo in mdr1 -/- compared to mdr1 +/+ mice) 

(Mechetner, Kyshtoobayeva et al. 1998; Miyama, Takanaga et al. 1998; Vautier, 

Lacomblez et al. 2006).  This study showed that although LogP failed to discriminate 

substrates from non substrates in all models tested, it could be used to evaluate the 

degree of P-gp dependency, in conjunction with MW.  

 

 The rate of transfer of 3 PBDs was investigated using a Caco-2 model of 

permeability and 2 PBD-dimers (DRG-16 and SJG-136) were shown to be actively 

secreted in contrast to the PBD-monomer SG-2897.  The differentiated Caco-2 cells 
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express other ABC transporters such as ABCG2 at the apical side and MRP1 at the 

basal side.  The specific impact of P-gp could not be verified by incubation with 

verapamil as it also blocks MRP1.  Further studies are needed to investigate the 

specific contribution of the ABC transporters in the secretion of the PBD-dimers in 

the Caco-2 system. 

 The ability of the PBDs to act as P-gp inhibitors was also assessed using 

the calcein-AM assay.  However, the affinity of calcein-AM for P-gp is much greater 

than the affinity of the PBDs and therefore no significant difference in the 

fluorescence could be observed.   

 The impact of ABCB1 polymorphism on the growth inhibitory effect of the 

PBDs was also assessed.  The impact of the different mutations on the level of P-gp 

expression was evaluated first.  The wild type pHamdr1 showed the greatest 

expression of the transporter, both at the level of mRNA and protein expression.  

The presence of single or combined mutations decreased the expression of P-gp.  

This is in accordance with the findings by many groups which demonstrated a 

relationship between ABCB1 polymorphism and lower expression in the human 

intestine (Hoffmeyer, Burk et al. 2000).   

 The growth inhibitory effect of the PBD-dimers correlated only poorly with 

the level of expression of P-gp using cell lines expressing the different genotypes of 

ABCB1 suggesting that the different mutations altered the function of the 

transporter.  The cell line expressing the transporter associated with a mutation in 

position 2677 which changes the amino acid from an Alanine to a Serine (A893S) 
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was the least sensitive despite lower protein expression when compared to the cell 

line expressing the wild type transporter. 

 This finding is fully consistent with studies demonstrating an enhanced efflux 

transporting ability of the Ser 893 variant (Kim, Leake et al. 2001; Schaefer, Roots et 

al. 2006; Sakurai, Onishi et al. 2007).  The exact mechanism by which this specific 

mutation enhances transport has been a matter of debate.  It has been suggested that 

phosphorylation by protein kinase C of the serine residues might affect the activity of 

the transporter (Chambers, Pohl et al. 1993).  A similar pattern could be seen with 

the PBD-monomers.  Previously, some PBD-monomers were shown to be associated 

with a low affinity for the transporter (SG-2823, SG-2819, 2897 and SJG-244) in a 

system where supra-physiological conditions were observed.  The Ser 893 variant 

was associated with an enhanced efflux in contrast to the wild type (Ala 893).  

Among the PBD-monomers, the differential growth inhibition between the cell lines 

expressing the different variants was not significant to develop a structure activity 

relationship.  However, while considering both PBD-dimers and the PBD-monomers, 

we have shown a differential impact of this particular mutation.  The Ser 893 variant 

is associated with a greater “gain of function” in relation to the PBD-dimers, high 

affinity substrates of the transporter.   

 The mutation in position 3435 was associated with the mutation in position 

2677 (G/T), the former abrogated the “gain of function” in the efflux of the PBD-

dimers only.  Many laboratories have investigated the impact of this specific 

polymorphism revealing an altered drug phenotype without being able to reach a 

consensus (Lepper, Nooter et al. 2005).  Recently, Gottesman and colleagues have 

suggested differential mRNA splicing associated with this particular polymorphism 
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leading to differential folding of the transporter in the membrane (Kimchi-Sarfaty, 

Oh et al. 2007).  The “loss of function” was observed only among the PBD-dimers, 

which suggests that, the conformation of the protein (induced by the 3435 mutation) 

has diminished the substrate specificity to P-gp substrates.   

 The relatively low level of the transporter in the cell lines expressing the 

mutations in position 2677 (G/A), the double mutation in position 2677 (G/T) and 

1236 and the triple mutation (893/1236/3435) did not allow discrimination of the 

impact of altered function from altered protein level of the transporter.  Further 

studies are needed using cell lines or other system expressing identical levels of 

protein expression. 

 

 In summary, the 4 PBD-dimers were found to be substrates for P-gp in 

contrast to the 12 PBD-monomers in cell lines expressing physiological levels of the 

transporter.  The 5 features identified, which may predict substrate specificity for 

PBD-derivatives, were MW, LogP, the number of (nitrogen + oxygen) atoms, 

hydrogen bonding energy, and PSA, When considered separately, MW and LogP 

correlated with the differential growth inhibitory effect of the dimers in the HCT 116 

and HCT-15 cell  lines.  The impact of ABCB1 polymorphism was also investigated.  

The mutation in position 2677 (G/T) was associated with a “gain of function”.  An 

associated mutation in position 3435 abrogated this “gain of function”.  

Consideration of these factors may allow the rational design of new 

PBD analogues with reduced interaction with the P-gp transporter and this may 

enhance their anti-tumour activity. 
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4 Chapter 4: INFLUENCE OF OTHER ABC TRANSPORTERS 

ON THE GROWTH INHIBITORY EFFECT OF PBD 

DERIVATIVES 

 

4.1 Introduction  

 The effect of the MDR phenomenon on anticancer agents is very variable.  

Agents may be recognised by P-gp as well as by the other proteins of the ABC super-

family of transport proteins.  Two other major proteins have been identified, 

conferring resistance to a number of anticancer agents: ABCC1, member of the ABC 

transporter subfamily C, member 1, commonly referred as the multidrug resistance 

protein 1 (MRP1) and ABCG2, member of the ABC transporter subfamily G, 

member 2, also named the breast cancer resistance protein (BCRP)  

 MRP1 recognises a wide range of anionic molecules which may or may not 

be conjugated to glutathione, sulphate or glucuronide in order to be extruded from 

the cell (Jedlitschky, Leier et al. 1996; Hipfner, Deeley et al. 1999; Konig, Nies et al. 

1999).  From the literature, it is not evident whether glutathione acts as a cofactor for 

the activity of the transporter as numerous studies have shown a direct coupling prior 

to the extrusion (Zaman, Lankelma et al. 1995; Rappa, Lorico et al. 1997).  The 

conjugation of a compound to glutathione can occur spontaneously or enzymatically 

by the enzyme, glutathione-S-transferase or GST.  This metabolic pathway needs a 

continual supply of glutathione which is produced by the enzyme, γ-Glu-Cys-

synthetase or γ-GCS.  Cancer drug resistance is often associated with up-regulation 

of MRP1, GST and GSH, simultaneously.  In the last decade, much effort has been 
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made to define a structure activity relationship for compounds to be recognised by 

MRP1 without any success.  Since the resistance mediated by MRP1 results from the 

combination of several factors (Cf .section 1.4.2.3.), it appears necessary to 

investigate the impact of each one of them to define any specific feature involved in 

MRP1 substrate specificity. 

 ABCG2 has shown overlapping substrate specificity to that of P-gp and 

MRP1.  It recognises compounds which may or may not be conjugated with 

preferential substrate specificity for sulfate conjugates (Suzuki, Suzuki et al. 2003).  

ABCG2 substrates share a common set of properties such as a high polarity, a greater 

number of aromatic rings and hydrophilic groups.  Such properties are common 

among chemotherapeutic agents.  Defining more specific physico-chemical 

properties would help to predict ABCG2 substrate specificity. 

 Significant inter-individual variations in the ABCG2 gene have been reported 

altering the uptake of drugs.  A single amino-acid change at position 482 from an 

arginine to a threonine has been shown to mediate this phenomenon.  It has often 

been associated with a gain of function while a few studies have postulated the 

opposite (Honjo, Hrycyna et al. 2001; Ozvegy, Varadi et al. 2002).  A structure 

activity relationship, based on a great number of compounds is required to find a 

consensus of the impact of this specific mutation. 

  PBDs have a broad spectrum of anti-tumour activity in a number of human 

cancer cell lines and xenograft models.  All the PBD-dimers have been shown to be 

substrates for the ABC transporter, P-gp, potentially limiting their anti-tumour 

activity.  In contrast, the growth inhibitory effect of the PBD-monomers has been 

shown not to be affected significantly by the over-expression of the transporter in 
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cancer cells.  The affinity for PBDs interaction with other ABC transporters such as 

MRP1 and ABCG2 is unknown.   

 The work presented in this chapter investigates the impact of MRP1 and 

ABCG2 on the anti-tumour activity of the PBDs and identifies the key physico-

chemical parameters involved in the resistance mediated by these 2 transporters.  In 

addition, the impact of the SNP at position 482 on the efflux of the PBDs by ABCG2 

will be addressed. 

  

4.2 Results 

4.2.1 MRP1 (ABCC1) substrate specificity of the PBD derivatives 

4.2.1.1  Growth inhibition studies in the A549 cell line which expresses MRP1 

highly 

4.2.1.1.1 Determination of an optimal concentration of MK-571 

 MRP1 recognises a broad range of compounds and its substrate specificity 

has been shown to overlap P-gp substrate specificity (Zaman, Flens et al. 1994; Kruh 

and Belinsky 2003; Deeley and Cole 2006).  In order to verify whether the PBD-

dimers are substrates of MRP1 and the PBD-monomers non substrates, a cell line 

which expresses the transporter at high level, the human alveolar type II cell line 

A549 (non small cell lung cancer) was used in this study (Lehmann, Kohler et al. 

2001; Stehfest, Torky et al. 2006).   

 As calcein-AM is a substrate of MRP1, the calcein assay was used to 

investigate the level of activity of MRP1 in A549 and the effect of its specific 

blocker MK-571 (Feller, Broxterman et al. 1995; Gekeler, Ise et al. 1995).  A 
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concentration of the blocker retaining the maximum fluorescence within the cells 

was determined at 100µM (Figure 53). 
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Figure 53.  Dose dependent effect of MK-571 on the intracellular concentration of calcein as 
measured by the calcein-AM assay, in lung cancer cell line A549. Results are means ± SD of 3 
experiments performed in duplicate. 
 
 
 
 However, the treatment with 100µM of MK-571 in A549 cells, using the SRB 

assay, has shown a significant effect on the survival of controls cells (Table 10).  

 

  Vitality in A549 cells 
    
Control  100 ± 2.3 
50 uM MK-571 99.7 ± 2.9 
100 uM MK-571 74.7 ± 4.7 

 

Table 10.  Impact of MK-571 on the viability of A549 cells. Results are means ± SD of triplicate.  
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assay.  Indeed, the SRB assay is carried out over 6 days with the cells in contact with 

the inhibitor (MK-571) for 25 hours compared to the calcein AM assay for which 

cells are exposed to the inhibitor for less than 2 hours.  Therefore, a concentration of 

50 µM, associated with significant retention of calcein and, without any toxic effect 

was used for further experiments. 

4.2.1.1.2 Impact of MK-571 on the growth inhibitory effect of the PBD 

derivatives 

 The impact of MK-571 was evaluated on the growth inhibitory effect of 2 

PBD-monomers, SG-2823 and SJG-244.  The IC50 following 24h exposure to SG-

2823 decreased ~5-fold when A549 cells were pre-treated with MK-571 (From 52 

nM [95% confidence interval = 49-55 nM] for SG-2823 alone to 10 nM [10-11 nM] 

in the presence of 50 µM MK-571 (Figure 54.A).  The IC50 following 24h exposure 

to SJG-244 was similar when A549 cells were in presence or absence of MK-571 

(410 nM [360-460 nM] and 420 nM [350-490 nM], respectively (Figure 54.B).   
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Figure 54.  Impact of MRP1 on the cytotoxic effect of 2 PBD-monomers: SG-2823 (A) and SJG-244 
(B) in lung cancer cell line A549.  Cells were treated with SJG-244 for 24h with (▲) or without (■) 
pre-treatment with 50 µM MK-571.  Results are means ± SEM of triplicate. 

 
 

   

The cytotoxic effect (IC50) of all PBD derivatives in A549 cells in presence or 

absence of MK-571 was evaluated for all PBDs.  Overall, the PBD-dimers are more 

potent than the PBD-monomers in A549 cells (Table 11).  The most active 

compounds were ELB-21 and DRG-16 with IC50 of 0.04 nM and 0.059 nM, 

respectively, without pre-treatment with MK-571.  The least active compounds were 
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SJG-244, SG-2901, SG-2900 and SG-2825 (370 nM, 260 nM, 160 nM and 170 nM, 

respectively). 

 

 Control  MK-571 
        
 IC50 (nM)  SD  IC50 (nM)  SD 
        
SG-2781 15  4.7  17  1.4 
SG-2796 8.8  1.2  8.5  2.0 
SG-2797 14  2.0  11  0.3 
SG-2819 21  6.0  19  1.8 
SG-2820 30  0.8  21  0.9 
SG-2823 47  4.8  10  2.0 
SG-2825 170  24  160  8.9 
SG-2897 1.9  0.3  1.4  0.2 
SG-2900 160  22  150  35 
SG-2901 260  59  290  13 
SG-2902 98  7.8  79  0.2 
SJG-244 370  34  350  75 
        
DRG-16 0.052  0.020  0.022  0.011 
ELB-21 0.040  0.014  0.015  0.007 
SJG-136 0.46  0.11  0.21  0.06 
DSB-120 75  29  28  4.3 

 

Table 11.  Pyrrolobenzodiazepine derivatives IC50s in A549 lung cancer cell line.  Cells were treated 
with different PBDs for 24h with or without pre-treatment with 50 µM MK-571.  Results are means ± 
SD of 3 experiments performed in triplicate. 

  

 The ratio between the IC50 with or without MK-571 was determined for all 

the PBDs.  Pre-treatment with MK-571 sensitised A549 cells to all 4 PBD-dimers 

and to one PBD-monomer, SG-2823 (Figure 55).  Cells were ~5-fold more sensitive 

to SG-2823 and 2- to 3-fold more sensitive to the PBD-dimers.  The pre-treatment of 

A549 cells with MK-571 had no effect on the growth inhibitory effect of the PBD-

monomers (apart from SG-2823): the ratio was never greater than 2. 
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Figure 55.  Ratio between the IC50 when A549 cells where pre-treated or not with 50 µM of MK-571 
for the PBDs.  Results are presented as ratio between – MK-571 versus + MK-571.  The PBD-dimers 
are represented in blue and the PBD-monomers in orange.  Results are means ± SEM of 3 experiments 
performed in triplicate. 

  

4.2.1.1.3 Impact of dicumarol on the growth inhibitory effect of the PBD-

derivatives  

MRP1 can recognise a wide range of compounds.  Some of them have to be 

conjugated to glucuronide, sulphate but mostly to glutathione prior to the efflux by 

MRP1 (Muller, Meijer et al. 1994; Jedlitschky, Leier et al. 1996; Barnouin, Leier et 

al. 1998; Loe, Deeley et al. 1998).  In order to verify whether SG-2823 is conjugated 

to glutathione (GSH) by GST, the impact of a GST inhibitor, dicumarol, was 

evaluated in A549 cells.  The cells were pre-incubated with 100 µM of dicumarol 

prior to the start of the exposure of the compound.  This concentration of dicumarol 
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had been described elsewhere and was confirmed as inducing no significant growth 

inhibitory effect in control cells (Morrow, Diah et al. 1998).   

The impact of dicumarol on A549 cells was assessed using 2 PBD-

monomers, SG-2823 and SG-2781.  The IC50 following 24h exposure to SG-2823 

decreased ~4.5-fold when A549 cells were pre-treated with dicumarol (From 53 nM 

[95% confidence interval = 50 - 55nM] for SG-2823 alone to 11 nM [10-13 nM] in 

the presence of 100 µM dicumarol (Figure 56.A).  The IC50 following 24h exposure 

to SG-2823 when the cells were treated with MK-571 (11 nM) was similar to the 

IC50 following 24h exposure to SG-2823 when the cells were treated with dicumarol 

(11 nM).  The IC50 following 24h exposure to SG-2781 was similar in A549 cells in 

the absence or presence of dicumarol (8.1 nM [7.8 - 8.4 nM] and 6.4 nM [6 - 6.8 

nM], respectively) (Figure 56.B).   
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Figure 56.  Impact of GST inhibition on the cytotoxic effect of 2 PBD-monomers: SG-2823 (A) and 
SG-2781 (B), in A549 cells.  Cells were treated with SG-2823 or SG-2781 for 24h with (▲) or 
without (■) pre-treatment with 100µM Dicumarol.  Results are means ± SEM of triplicate. 
 
 
 
 These results provide evidence that the resistance mediated by MRP1 to SG-

2823 is reversed by the inhibition of GST in A549 cells.   

 Similar studies were also performed in a set of chemically different PBD-

monomers and 1 PBD-dimer, DSB-120. The 4 chosen PBD-monomers differ by the 

presence of an electron donor group at the C2 extremity.  The most active 
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compounds were SG-2819 and SG-2781 with an IC50 of 13 nM and 19 nM, 

respectively in A549 cells without pre-treatment with dicumarol (Table 12).  The 

least active compounds were DSB-120, SG-2823 and SG-2820 (81 nM, 58 nM and 

53 nM, respectively). 

 Control  Dicumarol 
        
 IC50 (nM)  SD  IC50 (nM)  SD 
        
SG-2781 19  4.9  17  5.9 
SG-2819 13  3.7  11  2.6 
SG-2820 53  0.1  37  7.3 
SG-2823 58  15  11  0.1 
DSB-120 81  32  44  16 

 

Table 12.  Pyrrolobenzodiazepine derivatives IC50s, in A549 cell line.  Cells were treated with PBDs 
for 24h with or without pre-treatment with 100 µM Dicumarol.  Results are means ± SD of n = 3 
experiments performed in triplicate. 

 

 The ratio between the IC50 with or without dicumarol was determined for the 

chosen PBD-monomers and PBD-dimer, DSB-120.  The growth inhibitory effect of 

SG-2823 seemed to be the only one significantly affected by the presence of 

dicumarol (ratio of IC50s between absence and presence of dicumarol greater than 2) 

(Figure 57).   
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Figure 57.  Ratio between the IC50 when A549 cells where pre-treated or not with 100 µM of 
dicumarol for a set of PBD derivatives.  Results are presented as the ratio – dicumarol versus + 
dicumarol.  Results are means ± SEM of n = 3 experiments performed in triplicate 
 

    

4.2.1.1.4 Impact of BSO on the growth inhibitory effect of the PBD-derivatives  

 To compare the impact of inhibiting the conjugation of GSH to PBDs by GST 

(impact of dicumarol) to the impact of inhibiting GSH synthesis, the cells were 

treated with buthionine sulfoximine (BSO), a potent and specific inhibitor of γ-

glutamylcysteine synthetase (γ-GCS), the rate-limiting enzyme in the synthesis of 

GSH (Dorr, Liddil et al. 1986).  A concentration of 10 µM BSO was defined as 

sensitising the A549 cells to well known substrates of γ-GCS and was confirmed as 

inducing no significant growth inhibition in control cells (Roizin-Towle 1985).   

 The impact of BSO on A549 cells was evaluated with 2 PBD-monomers, SG-

2823 and SG-2781.  The IC50 following 24h exposure to SG-2823 decreased ~2.4-
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fold when A549 cells were pre-treated with BSO (from 57 nM [95% confidence 

interval = 50-63 nM] for SG-2823 alone to 24 nM [20-28 nM], in presence of 10 µM 

BSO (Figure 58.A).  The IC50 following 24h exposure to SG-2781 was similar when 

A549 cells were in the absence or presence of BSO (24 nM [19-32 nM] and 23 nM 

[17-28 nM], respectively) (Figure 58.B).   
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Figure 58.  Impact of the inhibition of γ-GCS on the cytotoxic effect of SG-2823 (A) and SG-2781 
(B), in A549 cells.  Cells were treated with different PBD-monomers for 24h with (▲) or without (■) 
pre-treatment with 10 µM BSO.  Results are means ± SEM of triplicate. 
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 The ratio between the IC50 with or without BSO was determined for 5 PBD-

monomers and 1 PBD-dimer (DSB-120).  The PBD-dimer, DSB-120 also gave a 

ratio greater than 2 (Figure 59).  Among the PBD-monomers, SG-2823 had the 

highest ratio (2.5) followed by SG-2820 (1.6).  SG-2781 and SG-2825 have shown a 

ratio close to 1.  Using an arbitrary cut-off value of 2, only DSB-120 and SG-2823 

would be considered as being affected by the intracellular concentration of GSH. 
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Figure 59.  Ratio between the IC50 to PBD derivatives when A549 cells where pre-treated or not with 
10 µM of BSO.  Results are presented as the ratio – BSO versus + BSO.  Results are means ± SEM of 
n = 3 experiments performed in triplicate. 

  

4.2.1.2  Chemical structure analysis to explain variable MRP1 substrate 

specificity to PBD derivatives 

 All 4 PBD-dimers and SG-2823 are potential substrates of MRP1.  This 

differential substrate specificity of the PBD derivatives towards MRP1 could be 

explained by differences in their chemical structure.  Two chemical structures of 
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similar PBDs were compared: SG-2823, PBD-monomer substrate of MRP1 and SG-

2819, PBD-monomer non substrate of the transporter.  SG-2823 has a carbonyl 

moiety at the C2 aryl extremity in contrast to SG-2819 (Figure 60).  No other 

difference could be seen. 
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Figure 60.  Chemical structure of 2 PBD-monomers SG-2823 and SG-2819. 

  

 PBD-dimers have a ratio between the IC50 with or without MK-571 greater 

than 2 suggesting an impact of MRP1 on their growth inhibition in A549 cells.  

However, there is no significant difference among them (similar ratio) and no 

conclusive structure activity relationship could be developed.  Further experiments 

are needed to evaluate the differential substrate specificity of PBD-dimers to MRP1. 

 

4.2.1.3  Conjugation of SG-2823 to glutathione 

4.2.1.3.1 LC/MS analysis  

 To confirm a potential conjugation of SG-2823 to GSH, SG-2823 (10 μM) 

was incubated with GSH (1 mM) for 15 minutes at room temperature in Hanks 

buffer cell free. The products of the reaction were analysed by liquid 

chromatography / mass spectrometry (LC/MS).  Briefly, the high performance liquid 
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chromatography separates the molecules according to their polarity; the less polar 

compounds being eluted earlier than the compounds with high polarity.  The 

detection by mass spectrometry confirms the identity of the molecules based on their 

m/z values.  The total ion chromatogram shows 3 different peaks corresponding to 3 

compounds with different retention time, i.e. different polarity.  The first peak eluted 

at 3.99 minutes (Figure 61.A) was identified as GSH [M+H]+ 308.5 (Figure 61.B).  

The second peak eluted at 8.8 minutes corresponds to the conjugated form of SG-

2823 to GSH [M+H]+ 671.5 ( Figure 61.C).  Finally, a third peak at 9.77 minutes 

corresponds to SG-2823 [M+H]+ 363.5 (Figure 61.D).   

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 61.  Conjugation of SG-2823 to glutathione. (A) Total ion chromatogram for the cell free 
analysis of GSH with SG-2823 (B) Spectra taken from the peak at 3.99 min which corresponds to 
GSH [M+H]+ 308.5 (it also identifies the duplicate of GSH [M+H]+ 613.7) (C).  Spectra taken from 
the peak at 8.8 min which identifies the GSH conjugate [M+H]+ 671.5 (D) Spectra taken from the 
peak at 9.77 min which identifies SG-2823 [M+H]+ 363.5. 
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 These results suggest that SG-2823 reacts in vitro with glutathione to form a 

conjugate with a molecular weight of 671.5 g/mol.  The conjugation appears to be 

spontaneous as no GST has been added to the media.  The conjugate, being less polar 

than SG-2823, would be expected to be extruded out of the cell by MRP1. 

 

4.2.1.3.2 Kinetic activity of the formation of GS-PBD derivatives conjugates 

 To confirm the formation of the conjugate in a cell free system, GSH was 

incubated with SG-2823 and the intensity of the 671.5 peak was evaluated over-time 

(Figure 62).  The peak intensity of GS-SG-2823 increases from time 0 (1.1 x 106) to 

time = 30 min (7.68 x 106) representing a ~7-fold increase in intensity.  It is followed 

by a gradual increase up to 6 hours (2.32 x 107) representing a ~3-fold gain.  The 

intensity remained steady up to 24 hours post incubation (2.33 x 107).  Overall, the 

peak intensity was increased by ~21-fold over-time.  The intensity of the free form of 

SG-2823 has also been evaluated (Figure 62).  It is important to remember that the 

value of the peak intensity of the free form can not be compared directly to the value 

of the peak of the conjugated form.  However, it can be reported that, as expected, 

the peak intensity was maximal at time = 0 (7.33 x 106).  It then declined overtime up 

to 6 hours reaching its minimum value (4.6 x 106) representing a ~1.6-fold decrease.   
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Figure 62.  Conjugation of SG-2823 with GSH overtime.  The spectra was taken from the peak at 8.8 
min which identifies the GSH conjugate [M+H]+ 671.5 (green) and compared to the spectra taken 
from the peak at 9.77 min which identifies SG-2823 [M+H]+ 363.5 (blue). Results are replicate. 
 
 
 
 To confirm the ability of GSH to conjugate spontaneously only to SG-2823, 

the kinetics of another PBD-monomer SG-2819 were evaluated (it has been shown 

previously not to be affected by dicumarol (Cf. section 4.2.1.c.).  Surprisingly, the 

formation of the conjugate seems also to be driven spontaneously at RT (Figure 63).  

The peak intensity of GSH-SG-2819 increases slightly from time 0 (3.27 x 106) to 

time = 30 min (4.78 x 106) representing a ~1.5-fold increase in intensity.  It is 

followed by a gradual increase up to 6 hours (2.32 x 107) representing a ~3.4-fold 

gain.  Overall, the peak intensity was increased by ~3.7-fold.  The peak intensity of 

the free form of SG-2819 has also been evaluated.  It followed a similar pattern as 

SG-2823: A maximal intensity at time = 0 (5.87 x 106).  It then declined overtime 

reaching a minimal value after 24h (4.02 x 106) representing a ~1.5-fold decrease.   
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Figure 63.  Conjugation of SG-2819 with GSH overtime.  The spectra was taken from the peak at 
9.46 min which identifies the GSH conjugate [M+H]+ 684.7 (green) and compared to the spectra taken 
from the peak at 11.14 min which identifies SG-2819 [M+H]+ 377.6 (blue). Results are replicate. 
 

 

 Taken together, these results provide evidence that both SG-2823 and SG-

2819 are conjugated spontaneously to glutathione.  However, the conjugation of 

GSH is enhanced for the compound with greater electrophilic potential.   

 The concentration of the conjugates could not be determined as no standard is 

available for this entity.  Therefore, the determination of the kinetics (first/second 

order rate) of reaction may be misleading.  A chemical synthesis of the conjugates 

may help defining these parameters.  
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4.2.2 ABCG2 (BRCP) substrate specificity of the PBD derivatives 

4.2.2.1  Growth inhibition studies in MCF7 and MCF7-MX 

4.2.2.1.1 Expression of ABCG2 in MCF7 and MCF7-MX breast cancer cell 

lines 

 MCF7-MX cells are derived from the parental MCF7 cell line and are 

resistant to mitoxantrone.  Several studies have shown that the resistance to 

mitoxantrone is mediated by over-expression of the ABCG2 gene (Doyle, Yang et al. 

1998; Ross, Yang et al. 1999). 

The over-expression of ABCG2 in MCF7-MX cell line compared to MCF7 

was confirmed by immunoblotting (Figure 64). 

 

 

 

 

 

 

 

Figure 64.  ABCG2 protein expression in MCF7-MX, and MCF7 breast cancer cell lines.  The level 
of ABCG2 in A549 cell line has also been reported for comparison.  ABCG2 protein migrated at ~72 
kDa. 
 
 

4.2.2.1.2 Growth inhibitory effect of the PBDs against MCF7 and MCF7-MX 

cell lines  

 Initially, the cytotoxic effect (IC50) of 2 PBD derivatives, the PBD-dimer 

DRG-16 and the PBD-monomer SG-2901, was determined in both MCF7-MX (over-

A5
49

M
CF

-W
T

M
CF

-M
X

ABCG2

Actin

A5
49

M
CF

-W
T

M
CF

-M
X

ABCG2

Actin



 153

expressing ABCG2) cells and MCF7 cells.  DRG-16 was more potent against the 

MCF7 parental cell line (IC50 = 65 pM [95% confidence interval = 59–72 pM]) 

compared to MCF7-MX cells (IC50 = 2.2 nM [1.5–3.1 nM]) (Figure 65.A).  

Conversely, the PBD-monomer SG-2901 induced a similar growth inhibition against 

MCF7 parental cells (IC50 = 452 nM [130-1500 nM]) and MCF7-MX cells (IC50 = 

780 nM [770-790 nM]) (Figure 65.B).   
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Figure 65.  Impact of ABCG2 on the cytotoxic effect of DRG-16 (A) and SG-2901 (B) in MCF7-MX 
cells (over-expressing the transporter) (■) and in MCF7 parental cell line (▲).  Results are means ± 
SEM of triplicate. 
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 The study was extended to all PBD derivatives.  Vinblastine is not a substrate 

of ABCG2 and was used as a negative control (Litman, Brangi et al. 2000).  

Mitoxantrone is a substrate of ABCG2 and was used as a positive control (Doyle, 

Yang et al. 1998).  Overall, the PBD-dimers demonstrated greater growth inhibition 

than the PBD-monomers in MCF7 cells (Table 13).  The most active compounds 

were ELB-21 and DRG-16 with an IC50 of 0.04 nM and 0.06 nM, respectively in 

MCF7 cells.  The least active compounds were SG-2901 and SJG-244 (270 nM and 

250 nM, respectively). 

 MCF7-MX MCF7 
 
 Control +FTC Control  +FTC 

 
 IC50 (nM)  SD IC50 (nM) SD IC50 (nM) SD  IC50 (nM) SD 
           

SG-2781 32  24 7.3 3.2 9.9 9.8  9 7.7 
SG-2796 9  2.6 4.8 0.1 3.5 0.4  3.9 0.6 
SG-2797 40  20 12 3.3 8.7 0.7  8.9 0.9 
SG-2819 25  3.7 13 0.8 9.7 0.4  9.4 0.5 
SG-2820 72  36 20 6.5 22 3.8  22 0.1 
SG-2823 25  3.1 5.8 0.7 4.5 1.1  4.7 1.6 
SG-2825 260  90 200 120 110 55  120 55 
SG-2897 5.8  1.8 1.4 0.2 0.7 0.2  0.8 0.2 
SG-2900 270  16 130 19 94 14  110 8.6 
SG-2901 470  330 290 200 270 180  290 170 
SG-2902 n.d.  n.d. n.d. n.d. n.d. n.d.  n.d. n.d. 
SJG-244 1200  410 460 220 250 160  280 140 

           
SJG-136 26  4.3 2.4 0.6 0.6 0.1  0.6 0.0 
DSB-120 470  33 46 7.4 28 4.6  30 6.5 
DRG-16 1.8  0.3 0.2 0.03 0.06 0.01  0.06 0.01 
ELB-21 1.4  0.2 0.1 0.01 0.04 0.01  0.04 0.01 

 
 

Vinblastine 0.7  0.1 0.7 0.1 1.0 1.1  1.2 1.2 
 

Mitoxantrone 2200  780 32 9.5 17 2.1  13 4.1 
 
Table 13.  Sensitivity of MCF7-MX and MCF7 to pyrrolobenzodiazepine derivatives.  Values are 
means ± SD of IC50 of n = 3 experiments performed in triplicate. 
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 The ratio of IC50 between the 2 cell lines was used as an indirect way to 

assess transporter dependency.  The ratio for vinblastine, a negative control was 

close to 1 in contrast to the positive control, mitoxantrone with a ratio of 120 (Figure 

66).  Overall, the PBD-dimers had ratios of 37, 35 and 29 between MCF7-MX and 

MCF7 for DRG-16, ELB-21 and SJG-136, respectively.  DSB-120 had the lowest 

ratio, 15.   

  The PBD-monomers had IC50s ratios ranging from 2.4 (SG-2901) to 8.4 (SG-

2897).  SG-2897, the most potent PBD-monomer in MCF7 (IC50 = 0.7 nM) showed 

the highest ratio between MCF7-MX and MCF7.  SG-2901, is the least potent PBD-

monomer (IC50 = 270 nM) and had the lowest ratio.  Similarly, DSB-120, the least 

potent PBD-dimer in MCF7 (IC50 = 28 nM) had the lowest ratio between the 2 cell 

lines (Figure 66).  
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Figure 66.  Ratio between the IC50 to the PBD derivatives in MCF7-MX and MCF7-
WT.  The PBD-dimers are represented in blue and the PBD-monomers in orange.  
The ratio between the IC50s for vinblastine and mitoxantrone have also been reported 
as a negative and positive controls, respectively.  Results are means ± SEM of n = 3 
experiments performed in triplicate. 
 
 

4.2.2.1.3 Impact of fumitremorgin C on the growth inhibitory effect of the 

PBDs 

 To confirm that the difference observed above was due to ABCG2 

interaction, the growth inhibitory effect of the PBDs was determined in presence of 

absence of Fumitremorgin C (FTC), a specific ABCG2 inhibitor (Rabindran, Ross et 

al. 2000).  A concentration of FTC of 10 µM inhibits the transporter and was 

confirmed as inducing no significant growth inhibition in the cell lines (Robey, 

Honjo et al. 2001). 
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 The ratio between the IC50 of the PBDs was determined in presence or 

absence of FTC in MCF7-MX cells.  Pre-exposure of MCF7-MX to FTC increased 

the growth inhibitory effect of the 4 PBD-dimers and 6/11 PBD-monomers.  For 

instance, MCF7-MX cells were ~10-fold more sensitive to the PBD-dimers and ~2- 

to ~4-fold more sensitive to some PBD-monomers (SG-2781, SG-2797, SG-2820, 

SG-2823, SG-2897 and SJG-244). 

 Conversely, the pre-exposure of MCF7-MX cells to FTC had no effect on the 

growth inhibitory effect of the PBD-monomers SG-2796, SG-2819, SG-2825, SG-

2900 and SG-2901: the ratio was never greater than 2 (Figure 67).   
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Figure 67.  Ratio between the IC50 to the PBD derivatives when MCF7-MX cells where pre-treated or 
not with FTC.  Results are presented as the ratio – FTC versus + FTC.  Results are means ± SD of 3 
experiments performed in triplicate. 
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Pre-treatment of MCF7 WT cells with FTC had no effect on the growth 

inhibitory effect of all PBDs (Table 13).  These results provide evidence of the 

differential substrate specificity of the PBDs to ABCG2: The PBD-dimers are high 

affinity substrates of the transporter in contrast to the PBD–monomers, 6/11 being 

low affinity substrates.  However, the affinity of the PBD-dimers for the transporter 

is ~3-fold lower than the positive control, mitoxantrone. The PBD-dimers may 

therefore be considered as substrate of ABCG2 with intermediate affinity when 

compared to the high affinity substrate, mitoxantrone.  The PBD-monomeres may be 

considered as low affinity substrates. 

 

4.2.2.2  Caco-2 model of permeability: Impact of FTC on the permeability of 

the PBD derivatives. 

 The Caco-2 transwell assay has been widely used to investigate the transport 

mediated by P-gp.  However, the differentiated enterocytes also express other ABC 

transporters, such as ABCG2, localised at the apical side of the cells.  Previously, the 

PBD dimers, SJG-136 and DRG-16, were shown to be actively transported from the 

basal to the apical side suggesting that the compounds are recognised by a transporter 

and extruded on the other side of the well.  One way to investigate ABC transporter 

substrate specificity of PBD-dimers is to incubate the cells in this system together 

with a specific inhibitor.   

Incubation with FTC blocks the ABCG2 transporter and if a test compound is 

a substrate of ABCG2, the apparent permeability from A to B (Papp A→B), i.e 
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absorption should be increased while the apparent permeability from B to A (Papp 

B→A), i.e. secretion will be decreased as represented in Figure 68. 

 

 

Figure 68.  Hypothetical model of the impact of FTC on the transport of substrates of ABCG2.  A.  A 
test compound, passes through the membrane by passive diffusion from the apical to the basal 
chamber representing the absorption (↓).  The secretion, the active transport from the basal to the 
apical side (↑) is greater than the absorption in the case of ABCG2 substrate specificity of the test 
compound.  B.  The cells are treated with FTC which blocks specifically the transporter ABCG2.  In 
the case of ABCG2 substrate specificity of a test compound, the absorption should be increased and 
the secretion decreased. 
 
 
 
 The impact of the pre-treatment with FTC was evaluated on the transport 

activity of 2 PBD-dimers, SJG-136 and DRG-16 and, on the transport activity of the 

PBD-monomer SG-2897.  The absorption of SJG-136 was increased when the cells 

were treated with FTC: from 9.9 ± 2.7 x 10-6 cm/sec for the control cells up to 16 ± 

3.9 x 10-6 cm/sec, when the cells were pre-treated with FTC, so a ~1.6-fold increase 

in the absorption (no significant difference could have been seen with the secretion) 

(Figure 69).  Similarly, the pre-exposure with FTC induced a higher absorption of the 

PBD-dimer, DRG-16, across the membrane (from 2.8 ± 0.7 x 10-6 cm/sec for the 

ABCG2 P-gp

MRP1

ABCG2 P-gp 

MRP1 
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control cells to 5.9 ± 0.5.x 10-6 cm/sec for the pre-treated cells), so a ~2.1-fold 

increase in the absorption.  In addition, the pre-exposure with FTC also induced a 

slight decrease (~1.2-fold) of the secretion of DRG-16.  Conversely, the pre-exposure 

with FTC did not modify the permeability of PBD-monomer SG-2897. 

 

 

 

 

 

 

 

 
 

Figure 69.  Impact of FTC on the permeability of the PBD derivatives as determined by the transwell 
assay.  The permeability from the apical side to the apical side is represented in blue (Papp A→B) 
which corresponds to the absorption.  The secretion, the permeability from the basal to the apical side 
(Papp B→A) is represented in red. Results are means ± SEM of triplicate. 

 
  

 These results provide evidence of ABCG2 substrate specificity of PBD-

dimers as revealed by the impact of the FTC on the absorption of the compounds, in 

contrast to the PBD-monomer tested.  The impact of FTC on secretion did not show 

a significant effect.  One explanation may be that when the secretion was measured, 

FTC was incubated in the basal chamber.  ABCG2 is localised at the apical side, 

significant amounts of FTC may not have reached the transporter to block it.   
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4.2.2.3  Chemical structure analysis to explain ABCG2 substrate specificity of 

the PBDs 

ABCG2 substrates share a common set of physico-chemical properties such 

as a high polarity, a greater number of aromatic rings and hydrophilic groups 

(Nakagawa, Saito et al. 2006).  Some of these features are present among some of the 

PBDs.  In order to define the specific features relative to ABCG2 substrate 

specificity for the PBDs, the ratio between – FTC versus + FTC observed in MCF7-

MX cells was plotted against the number of (N+O) atoms.  There was a significant 

correlation between these 2 parameters suggesting that (N+O) was related to ABCG2 

substrate specificity (r2 = 0.976; P value < 0.0001) (Figure 70). 
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Figure 70.  Relationship between the ratio (– FTC versus + FTC in MCF7-MX cells) for all PBDs and 
the number of (oxygen and nitrogen) atoms.  Results are means ± SEM of n = 3 experiments 
performed in triplicate.   
  

These results provide evidence of a relationship between the electrophilic 

characteristics of PBD derivatives and ABCG2 substrate specificity.   
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 Oxygen atoms are more electronegative than nitrogen atoms.  The potential 

interaction between a PBD-monomer and ABCG2 will be different according to the 

type of atoms.  Therefore, arbitrary values have been attributed to nitrogen and 

oxygen atoms according to their electro-negativity.  An arbitrary value of 1 is given 

for a nitrogen atom.  A value of 2 is given to an oxygen atom. 

 The electronegativity of the fluoro group of SG-2797 was considered as 

similar as an atom of nitrogen and given an arbitrary value of 1.  Indeed, the spatial 

distance between the different atoms of fluor is too limited for them to make an 

impact as separated entities. The ratio between (–/+ FTC) was plotted against the 

electronegativity of the different compounds and demonstrated a good correlation (r2 

= 0.985; P value < 0.0001) (Figure 71). 
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Figure 71.  Relationship between the ratio (– FTC versus + FTC in MCF7-MX cells) for all the PBDs 
and the number of arbitrary values given for (oxygen and nitrogen) atoms.  Results are means ± SEM 
of n = 3 experiments performed in triplicate.   
 
 
 
 However, the ratio of SG-2781 was ~2.8 while its structure contained 6 

(N+O) atoms.  The structure of SG-2897 had the same number of (N+O) atoms but a 
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ratio between – FTC / + FTC of ~4.2.  The major difference is that the position of the 

nitrogen is within an aromatic ring and this may have generated a greater interaction 

with the transporter (Figure 72). 

 

SG-2781     SG-2897 

 

 

Figure 72.  Chemical structure of 2 PBD-monomers SG-2781 and SG-2897. 

 

 It could be argued that the electronic environment of the nitrogen atom plays 

an important role in the electrostatic potential interaction with ABCG2.  One way to 

investigate the chemical reactivity of an atom is to calculate its partial charge using 

the extended Hückel calculation.  This parameter can be calculated in silico using 

Chem3D.  As a result, the partial charge on the nitrogen (amine) of SG-2781 is 

positive (0.22).  In contrast, the nitrogen (pyridine) of SG-2897 has a negative partial 

charge (- 0.23).  When only the C2 extremity of the PBD-monomers was considered, 

the number (N+O) atoms, negatively charged, as determined by the extended Hückel 

calculation, was determined for all PBDs (Figure 73).   
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Figure 73. C2 extremity of the PBD-monomers, SG-2781 (left) and SG-2897 (right) involved in 

ABCG2 substrate specificity. 

 

 The electronic environment of the C2 extremity would therefore impact on 

the potential interaction with the transporter:  Nitrogen, negatively charged in SG-

2897, was considered to be associated with greater substrate specificity for the 

transporter.  Therefore, arbitrary values of 1 and 2 were attributed for a nitrogen or 

an oxygen atom, respectively, which are negatively charged at the C2 extremity (in 

addition to the values (arbitrary values of (N+O) previously described).  The 

potential interaction of the PBD derivatives with ABCG2 would follow the equation 

(1): 

 

[(n (1/2N+O) molecule + n (1/2N-+O-) extremity]    (1) 

 

 However, this equation can not be applied to all PBD-monomers as some of 

them have a similar number of [(N+O) atoms] and [(N+O) atoms negatively charged] 

at the C2 extremity and demonstrated a different ratio.  For instance, SG-2820 has a 
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ratio between the IC50 (- /+ FTC) in MCF7-MX cells of ~3.23 despite having the 

same potential as SG-2897 as described by the equation (1) (ratio SG-2897 ~4.2).  

The major difference between the 2 compounds is the presence of a quinoline 

substituent in the chemical structure of SG-2897 (Figure 74). 
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Figure 74.  Chemical structure of two PBD-monomers SG-2820 (A) and SG-2897 (B).  Atoms 
involved in ABCG2 interaction are represented in red (defined by a negative partial charge as 
determined by the extended Hückel calculation).  The π orbitals of the quinoline substituent of SG-
2897 have been represented and may participate in the overall interaction to the transporter. 
 

 

 In an aromatic system, by definition, the electrons are organised in π orbitals.  

Electrons of the quinoline substituent may be shared with the electrons of a 

surrounding planar group, thus inducing a greater interaction.  This phenomenon 

represents the π-π stacking interaction.  It can be argued that such interaction can also 

be found in benzene rings such as the one found in SG-2820 and other PBD-

monomers.  However, the presence of benzene only, was shown not to demonstrate 

any greater interaction with ABCG2.  Two hypotheses can be proposed:  
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• The presence of shared π orbitals between two or more aromatic rings would 

be associated with greater interaction with a surrounding aromatic ring. 

• The presence of an electronegative group within the ring may be the 

prerequisite for an enhanced interaction with the transporter.   

 The latter parameter has been incorporated into an equation trying to define 

the potential interaction with the transporter. 

 

ABCG2 potential interaction=  

 

[(n (1/2N+O) molecule + n (1/2N-+O-) C2-aryl extremity +  n (1/2N-+O-) aromatic ring] (2) 

 

 The relationship between ABCG2 potential interaction as defined by equation 

(2) and the ratio between the IC50s (-/+ FTC in MCF7-MX cells) demonstrated a 

significant correlation (r2 = 0.991; P value < 0.0001) (Figure 75).   
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Figure 75.  Relationship between the ratio (– FTC versus + FTC in MCF7-MX cells) for all PBDs and 
the number of arbitrary values given for (oxygen and nitrogen) atoms as determined by the equation 
(2).  The ratio Results are means ± SEM of n = 3 experiments performed in triplicate.   
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 These results support the hypothesis that the interaction between ABCG2 and 

the PBDs is driven by electrostatic forces and π-π interactions.  The PBDs, with a 

greater electronegative potential, are more likely to interact with the transporter and 

to be transported out of the cell.  It could be suggested that the interaction between 

the negatively charged atoms of the PBDs and ABCG2 is therefore likely to be due 

to the presence of electropositive residues within the binding pocket of the 

transporter. 

 

4.2.2.4  Impact of ABCG2 polymorphism on substrate specificity of the PBDs 

 To date, three major variants of ABCG2 have been documented on the basis 

of changes in the amino acid moiety at position 482: the wild type form has arginine 

at that position (Allikmets, Schriml et al. 1998; Allen, Jackson et al. 2002), whereas 

the mutated forms have glycine or threonine (Doyle, Yang et al. 1998).  It was shown 

that a mutation at position 482 can alter substrate specificity of a wide range of 

compounds such as rhodamine 123 (Honjo, Hrycyna et al. 2001), anthracyclines and 

mitoxantrone (Robey, Honjo et al. 2003). 

In this study, the impact of the mutation at position 482 on the substrate 

specificity of the PBDs was evaluated in breast cancer cell lines MDA-MB-231 

transfected with vector control (V8 cell line), plasmid containing the cDNA of 

ABCG2 wild type sequence at position 482 (R12 cell line) or the sequence mutated 

at position 482 (T3 cell line) (Kindly provided by Nakanishi T, University of 

Maryland, Baltimore). 
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4.2.2.4.1  Expression of ABCG2 in different isogenic MDA-MB-231 cell lines 

The level of ABCG2 protein expression was confirmed by western blot.  R12 

and T3 cells express similar levels of ABCG2.  In contrast, the V8 cells do not 

express the transporter (Figure 76). 

 

 

 

 

 

 

Figure 76.  ABCG2 protein expression in the different MDA-MB-231 cell lines transfected with 
plasmid containing a wild type (R482) or mutated (T482) ABCG- cDNA with the appropriate vector 
control.  R12 cell line expresses the wild type form of ABCG2 at position 482 (arginine).  T3 cell line 
expresses the mutated form of the transporter at the position 484 (threonine).  V8 cells have been 
transfected with the vector control.  ABCG2 protein migrated at ~72 kDa. 
  

4.2.2.4.2 Growth inhibition Assay of PBDs in MDA-MB-231 expressing 

ABCG2 with different amino acid at position 482  

 Initially, the cytotoxic effect (IC50) of 2 PBD derivatives, one PBD-dimer 

DRG-16 and one PBD-monomer SG-2781 was determined using MDA-MB-231 

cells expressing ABCG2 with different genotype at position 482 (Figure 77).  DRG-

16 induced a lower cytotoxic effect against the MDA-MB-231 / R12 cells transfected 

with wild type form of ABCG2 (R482) (IC50 = 0.13 nM [95% CI = 0.11 - 0.16 nM]) 

compared to MDA-MB-231 / V8 cells transfected with the empty vector (IC50 = 

55 pM [44 – 67 pM]) e.g. ~2.4-fold decrease in sensitivity in the cell line expressing 

the transporter (Figure 77.A).  A further decrease in sensitivity was seen in MDA-

GAPDH

ABCG2

V8R12 T3

GAPDH

ABCG2

V8R12 T3



 169

MB-231 / T3 cells expressing the mutated form of ABCG2 (T482) (IC50 = 0.47 nM 

[0.22 - 0.99 nM]).  This equals to a ~8.5-fold decrease in sensitivity compared to the 

MDA-MB-231 / V8 cells.  The PBD-monomer SG-2781 induced a similar growth 

inhibition against MDA-MB-231 / V8 cells (IC50 = 14 nM [10-20 nM]), MDA-MB-

231 / R12 cells (IC50 = 15 nM [11-21 nM]), and MDA-MB-231 / T3 cells (IC50 = 

17 nM [5 - 56 nM]) (Figure 77.B).   
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Figure 77.  Impact of ABCG2 polymorphism on the cytotoxic effect of DRG-16 (A) and SG-2901 (B) 
as determined by the SRB assay using MDA-MB-231 / R12 cells expressing the wild type (R482) 
transporter (▼) or MDA-MB-231/ T3 cells expressing the mutated form (T482) (▲).  MDA-MB-231 / 
V8 cells transfected with an empty vector have also been represented (■).  Results are means ± SEM 
of triplicate. 
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Overall, the PBD dimers demonstrate greater potency in MDA-MB-231 cells 

than the PBD-monomers (Table 14).  The most active compounds were DRG-16 and 

SJG-136 with an IC50 of 0.05 nM [± 0.01 nM] and 0.76 nM [± 0.18 nM], 

respectively.  The least active compounds were SG-2825 and SJG-244 (990 nM [± 

180 nM] and 380 nM [± 120 nM], respectively). 

  V8  R12  T3 
             
  IC50 (nM) SD IC50 (nM) SD  IC50 (nM) SD 
             
SG-2781  15 1.4  22 0.1  22 1.0 
SG-2819  15 0.0  18 1.3  21 1.5 
SG-2820  15 1.2  23 0.3  32 5.1 
SG-2823  6.8 1.3  13 0.8  20 4.4 
SG-2825  990 180  1200 140  1400 150 
SG-2897  1.1 0.2  1.8 0.2  2.1 0.3 
SG-2900  210 63  240 35  290 64 
SG-2901  350 36  370 24  420 68 
SJG-244  380 120  530 76  880 66 
          
SJG-136  0.76 0.18  3.1 0.24  4.2 0.04 
DSB-120  47 20  71 12  130 40 
DRG-16  0.05 0.01  0.2 0.01  0.2 0.04 
         
Vinblastine 1.4 0.2  1.2 0.08  n.d. n.d. 
Mitoxantrone 8.4 1.3  81 18  340 110 

Table 14.  Pyrrolobenzodiazepine derivatives IC50s for MDA-MB-231 breast cancer cell lines 
expressing different genotypes of ABCG2.  Results are means ± SD of n = 3 experiments performed 
in triplicate. N.d. not determined. 

 

 In order to evaluate the differential impact of the genetic polymorphism of 

ABCG2 among the PBDs, the ratio of the IC50s between R12 and V8 as well as the 

ratio between T3 and V8 were calculated. PBD-dimers showed the highest R12/V8 

ratios: 4.1, 3.6 and 3.4-fold for SJG-136, DRG-16 and DSB-120, respectively (Table 

15).  Among the PBD-monomers, only SG-2823 had a ratio of 2, suggesting a low 

affinity for ABCG2 for this compound.  The rest of the PBD-monomers had similar 
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IC50s in the 2 cell lines ranging from 1.1 for SG-2901 up to 1.6 for SG-2820 and SG-

2897 considering PBD-monomers, apart from SG-2823, as being non substrate of the 

transporter. 

  Ratio R12 / V8  Ratio T3 / V8  Ratio T3 / R12 
            
  Ratio SD  Ratio SD  Ratio SD 
             
SG-2781  1.4 0.1  1.5 0.0  1.0 0.1 
SG-2819  1.2 0.1  1.5 0.1  1.2 0.2 
SG-2820  1.6 0.1  2.2 0.2  1.4 0.3 
SG-2823  2.0 0.1  2.9 0.3  1.4 0.3 
SG-2825  1.2 0.2  1.4 0.1  1.2 0.4 
SG-2897  1.6 0.0  1.9 0.1  1.2 0.1 
SG-2900  1.4 0.0  1.2 0.1  1.2 0.1 
SG-2901  1.1 0.1  1.2 0.3  1.2 0.4 
SJG-244  1.4 0.1  2.4 0.4  1.7 0.2 
          
SJG-136  4.1 1.7  5.6 0.4  1.4 0.8 
DSB-120  3.4 0.7  3.5 0.8  1.4 0.2 
DRG-16  3.6 0.3  4.9 1.1  1.4 0.5 
          
Vinblastine  0.9 0.1  n.d. n.d.  n.d. n.d. 
Mitoxantrone  9.7 1.4  40 7.4  4.3 1.3 

Table 15.  Pyrrolobenzodiazepine derivatives IC50s ratios for MDA-MB-231 breast cancer cell lines 
expressing different genotypes of ABCG2.  Results are means of ratios ± SD of n = 3 experiments 
performed in triplicate. 

 

When considering the ratio T3 / V8, the PBD-dimers had again the highest 

ratios: 5.6-, 4.9- and 3.5-fold for SJG-136, DRG-16 and DSB-120, respectively, 

suggesting that the PBD-dimers are also substrates of the mutated form of ABCG2.  

The PBD-monomers, SG-2823, SJG-244 and SG-2820 were also affected with ratios 

of 2.9, 2.4 and 2.2, respectively.  Among the other PBD-monomers, the ratios were 

ranging from 1.2 for SG-2901 up to 1.9 for SG-2897.  These results show that 3 

PBD-monomers could be substrates of the mutated form of ABCG2. 



 172

 Taken together, these data suggest a differential impact of the mutated form 

of ABCG2 on the growth inhibitory effect of the PBD-monomers.  SJG-244 has a 

minimal number of (oxygen and nitrogen) atoms and is predicted to be associated 

with minimal interaction with ABCG2 according to the equation (2).  However, the 

ratio for SJG-244 between the IC50 in MDA-MB-231 / T3 cells and the IC50 in 

MDA-MB-231/ R12 cells was the highest among the PBDs (~1.7-fold) (Table 14).  

The presence of an aromatic ring with π orbitals, at the C8 extremity, appears to 

impact on the substrate specificity of the mutated form of ABCG2 (Figure 78). 
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Figure 78.  Chemical structure of PBD-monomer, SJG-244.  The π orbitals have been represented at 
the C8 extremity which may participate in the overall affinity for ABCG2. 

 

 Overall, these results provide evidence that the PBD-dimers are substrates of 

ABCG2 for both the wild type and the mutated form.  The latter seems to increase 

the resistance of this class of compounds.  Similar increase in resistance was seen for 

most of the PBD-monomers.  These results have been compared to well-known 

ABCG2 substrate: mitoxantrone.  The impact of ABCG2 polymorphism on the 

growth inhibitory effect of mitoxantrone has been a matter of debate.  In our hands, 

MDA-MB-231/ V8 cells were 9.7-fold more sensitive to mitoxantrone than MDA-
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MB-231/ R12 cells confirming ABCG2 substrate specificity of this compound.  In 

addition, MDA-MB-231/ V8 cells were 40.1-fold more sensitive to mitoxantrone 

than MDA-MB-231/ T3 cells representing a ~4.3-fold increase in resistance between 

the wild type and the mutated form the transporter.  Also, it is noteworthy that the 

impact of the mutated form of ABCG2 on the sensitivity to mitoxantrone was ~10-

fold greater than the impact on the sensitivity of the PBD-dimers suggesting that the 

former is associated with a higher affinity to the transporter. 

 Overall, these data suggest that the mutation at position 482 (threonine) 

increases ABCG2 efflux compared to the wild type form for compounds with a 

greater number of electrophilic atoms and aromatic rings. 

 

4.2.2.4.3  Comparative study between the 2 models investigated: MCF7-MX 

cells and MDA-MB-231 cell lines. 

 Data in MCF7-MX cells suggested that all the PBD-dimers and some PBD-

monomers (SG-2781, SG-2797, SG-2820, SG-2823, SG-2897 and SJG-244) might 

be substrates of ABCG2.  ABCG2 substrate specificity of the PBD-dimers was 

confirmed using the MDA-MB-231 cells.  In contrast to mitoxantrone, the PBD-

dimers were associated with a low affinity to ABCG2.  Only one PBD monomer, 

SG-2823, was suggested as low affinity substrate (ratio between the IC50 in cell line 

expressing the transporter and the IC50 in the cell line expressing no transporter > 2).  

The 2 cellular models MCF7-MX and MDA-MB-231/ABCG2 differ by multiple 

aspects but especially by the level of expression of the protein ABCG2. MCF7-MX 
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cells express higher levels than MDA-MB-231/ABCG2 and might therefore be more 

amenable to detect differences between the compounds.   

 

 A relationship between the ratios (-/+ FTC) in MCF7-MX cells and the ratios 

in the R12/V8 (described previously, section. 4.2.2.1.c) was plotted for all PBDs.  

The correlation was highly significant (r2 = 0.96; P value < 0.0001) (Figure 79). The 

relationship was less significant when considering the ratios in the T3/V8 (r2 = 0.87; 

P value < 0.0001).  This is probably related to the expression of the wild type (arginine 

at position 482) transporter in MCF7-MX cells (Honjo, Hrycyna et al. 2001). 

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 79.  Relationship between the ratio (– FTC / + FTC in MCF7-MX cells) for all the PBDs and 
the ratio for MDA-MB-231 cell lines expressing different genotypes of ABCG2.  The ratio between 
the IC50 in MDA-MB-231/ R12 cells expressing the wild type (R482) transporter and the IC50 in MB-
231/ V8 cells (transfected with an empty vector) is represented in green.  The ratio between the IC50s 
in MDA-MB-231/ T3 cells expressing the mutated form (T482) of ABCG2 and the IC50s in MB-231/ 
V8 cells is represented in red.  Results are means ± SEM of n = 3 experiments performed in triplicate.   
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 These results provide evidence that the factors related to substrate specificity 

of the PBD derivatives to ABCG2 (defined in MCF7-MX cells) can be applied to 

other cell lines expressing the wild type transporter such as the MDA-MB-231 cells 

transfected with plasmid containing a wild type (R482) ABCG2-cDNA.   

  

4.3  Discussion 

 The experiments presented in this chapter evaluated the impact of the 

expression of 2 different ABC transporters, on the growth inhibitory effect of the 

PBD derivatives evaluated.   

 All PBD-dimers but only one PBD-monomer, SG-2823 were demonstrated to 

be substrates of MRP1 (ABCC1).  This was shown using a cell line expressing the 

transporter highly (the lung cancer cell line A549) and, by pre-incubation with an 

optimal concentration of MK-571, a specific inhibitor of the transporter.  The 

coupling of SG-2823 to glutathione by glutathione-S-transferase (GST) was also 

identified using inhibitors of both the synthesis of glutathione (BSO) and the 

enzymatic coupling (dicumarol).  In both cases, the resistance to this particular 

compound was completely abrogated.  These results provide evidence of a 

complimentary role of GSH / GST in the relative resistance mediated by MRP1 to 

the PBD-monomer SG-2823.   

 However, coupling to glutathione by GST was not involved in the mechanism 

of efflux of the PBD-dimer, DSB-120, as the treatment with dicumarol, did not 

sensitise the A549 cells significantly.  The inhibition of the synthesis of glutathione 

by BSO affected the growth inhibitory effect of PBD-monomers differentially.  
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PBDs with a greater electrophilic potential at the C2 extremity, such as SG-2823, 

were more subject to the impact of glutathione.  Similarly, the growth inhibitory 

effect of PBD-dimer, DSB-120 was affected by the concentration of GSH. 

 The reaction of the PBDs with glutathione was shown to occur spontaneously 

and / or by conjugation with GST depending on the electrophilicity at the C2 

extremity.  The fact that DSB-120 did not include an electrophilic extremity 

suggested that another entity within the structure is responsible for the coupling to 

GSH.  These results were confirmed using a LC/MS method.  The spontaneous 

formation of the conjugate GSH-PBD-monomer was demonstrated.  Compounds 

with a greater electrophilic characteristic formed the conjugate more rapidly.   

 Indeed, the chemical structure of SG-2823 seems likely to play a major role 

in the ability of this compound to conjugate to GSH.  SG-2823 has a carbonyl moiety 

at its extremity in contrast to SG-2819; the latter not being extruded by MRP1.  GSH 

has a -SH moiety which is characterised as being a strong nucleophile.  By 

definition, it may attack a surrounding compound at its electrophilic centre.  Two 

models could be proposed.  First, the carbonyl-carbon of SG-2823 is an electrophile 

and therefore may undergo nucleophile addition (Figure 80). 
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Figure 80.  Proposed model of the conjugation of SG-2823 to GSH; a nucleophilic addition. 

 

 The nucleophilic addition may lead to the spontaneous formation of the GS-

SG-2823 conjugate.  Its hypothetical structure is represented in Figure 81. 

 

 

 

 

Figure 81.  Proposed structure of the GS-SG-2823 conjugate. 
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 However, hence formed, the SG moiety is very close to the phenol group 

which does not allow the former to remain attached; thus, the conjugated form is 

highly unstable.   

 SG-2823 also has an electrophilic centre at its C11 position.  It may 

interconvert into the imine form and enable SG-2823 to alkylate the SH moiety of 

GSH (Figure 82). 
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Figure 82: Hypothetical mechanism of SG-2823 binding to GSH: the N10-C11 imine / carbinolamine 
moiety of SG-2823 may bind to the SH moiety of GSH.  The dashed line represents the primary 
attraction of GSH to SG-2823 by electrostatic interactions.  The phenol group is negatively charged 
and may undergo a close contact interaction.   
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 According to the hypothesis, the phenol group of SG-2823 is indirectly 

involved in the coupling: 

• It may induce a delocalisation of the electrons, thus enhancing a greater 

electrophilicity of the C11.   

• It may attract GSH at the carbonyl without creating any bond.  This induced 

proximity (between GSH and SH-28230) may allow the SH group to interact 

with C11 of SG-2823 and create a covalent bond. 

 In both cases, GS-SG-2823 conjugate has a molecular weight of 669.7g/mol.  

The mass spectrometry analysis as described in Figure 61 identifies the intermediate 

compound with a molecular weight of 671.5 g/mol which corresponds to [M+H]+ of 

the 2 proposed structures.  Further NMR studies may be carried out in order to 

identify the unique structure / model. 

 According to the latter model, presence of a strong electrophilic group, i.e. a 

carbonyl moiety at the extremity of SG-2823 allowed a primary attraction to GSH in 

a cell free system.  This entity was shown not to be absolutely necessary for the 

conjugation to occur as SG-2819 was associated with a minimal coupling with GSH 

although this did not translate into any biological difference (in presence or absence 

of dicoumarol).  The PBDs, dimers and monomers, contain highly reactive imines in 

the diazepinone portions of the molecule.  Cheung and colleagues have demonstrated 

that water or alcohol adds readily to the imino moiety of the PBD-dimer SJG-136, to 

form the corresponding carbinolamine or its alkyl ether, respectively (Cheung, 

Struble et al. 2005).  Similar results have been demonstrated with the PBD-

monomers by Antonow and colleagues (non published data).  The imine of the PBDs 

reacts differentially with GSH, thus decreasing the potential for the entity to react 
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with the N2 of the guanine in the minor groove of the DNA.  It is noteworthy that the 

PBD-dimers have two electrophilic centres (C11) which “doubly” enhance their 

affinity for GSH.   

 Using a series of various GST substrates, Satah has shown that the non 

enzymatic conjugation rate is influenced by the concentration of both GSH and its 

substrate, the pH and the temperature (Satoh 1995).  Here, the kinetics of the 

coupling observed using the mass spectrometry analysis may overestimate the 

kinetics in normal physiological conditions since the PBDs were tested at a 

concentration of 10μM in a cell free assay, which represents, a 250-1000-fold 

increase in the concentration used (SG-2823) to determine the IC50 in A549 cells.  

The level of GSH has been shown to be relatively high in these cells and would not 

be considered as a limiting factor (Russo, DeGraff et al. 1986).  Therefore, at 

relatively low concentration (nM), the conjugation of PBD-monomers, such as SG-

2819, to GSH was considered as being not significant in A549 cells.   

 The impact of GST on the growth inhibitory effect of the PBDs was only 

demonstrated with SG-2823.  The major characteristic of this particular PBD is the 

presence of a carbonyl moiety at the extremity which seems to be required for GST 

substrate specificity.  Similarly, the chemical structure of GSH has a carbonyl group 

which has been suggested to be involved in GSH-GST binding (Jeppesen, Ortiz et al. 

2003).  GST may “recognise” the carbonyl functional groups of both GSH and SG-

2823 and catalyse the conjugation. 

 GSTπ has been found to be the most predominant isoenzyme in a variety of 

tumours cell lines of the NCI60 panel, including A549 (O'Brien and Tew 1996) 

suggesting a substrate specificity of SG-2823 for GSTπ.  However, the pre-
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incubation of dicumarol inhibits not only GSTπ but other GST isoenzymes as well.  

Therefore, further studies are needed to elucidate the role of other isoenzymes in the 

conjugation of PBDs such as SG-2823.   

 MRP1 has been shown to require GSH as a cofactor in order to extrude drug 

substrates out of the cell.  In some cases, the compounds need to be conjugated to 

GSH in order to be recognised by the transporter.  In this study, only one PBD-

monomer, SG-2823 was identified to be conjugated to GSH prior to its extrusion by 

MRP1.  Its chemical structure differs from other PBDs by the presence of a carbonyl 

group which therefore, may interact with the transporter.  GSH has also been shown 

to interact with the transporter but, from the literature, it is unclear which physico-

chemical properties are involved in MRP1 binding.  Although, it has been 

established that the sulfhydryl of the cysteine residue in GSH is not required for its 

MRP1 stimulatory activity (Loe, Deeley et al. 1998; Leslie, Mao et al. 2001; Qian, 

Song et al. 2001; Leslie, Deeley et al. 2003; Conseil, Deeley et al. 2005).  The 

chemical structure of GSH has many carbonyl groups at the extremities and this may 

explain the affinity of GSH for the transporter.  In addition, glutathione disulfide 

(GSSG), which has twice as many carbonyl groups has a 50- to 100-fold greater 

affinity for the transporter (Cole and Deeley 2006).  Therefore, the presence of an 

additional carbonyl group at the extremity of the conjugate formed by SG-2823 and 

GSH may enhance significantly the binding affinity for MRP1. 

  The electrophilic centre of the PBDs at the C11 position allows these 

molecules to bind to DNA and exert their anti-tumour activity, thus limiting the 

electrophilic characteristic at the C2 extremity would appear to be the best strategy to 

limit the detoxification process mediated by GSH, GST and MRP1.   
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 ABCG2 substrate specificity of the PBDs was also investigated.  The PBDs 

with a greater number of electrophilic atoms were shown to have a greater affinity 

for the transporter.  This was demonstrated using cell lines over-expressing the 

transporter; the breast cancer cell lines MCF7-MX and its parental counterpart and 

the breast cancer cell line MDA-MB-231 transfected with plasmid containing 

ABCG2-cDNA.  ABCG2 substrate specificity of the PBDs was confirmed using 

fumitremorgin C, a specific inhibitor of the transporter, in MCF7-MX cells and in a 

Caco-2 transwell assay.  In addition, a mutation at position 482 was shown to alter 

ABCG2 substrate specificity of PBDs.  This was demonstrated using different 

MDA-MB-231 cell lines transfected with plasmid containing mutated (T482) or 

wild type form (R482) ABCG2-cDNA. 

 The activity of the PBDs was evaluated using mitoxantrone resistant breast 

cancer cell line MCF7-MX and its parental counterpart.  The relative resistance for 

some of the PBDs could not be completely reversed using the specific ABCG2 

inhibitor, FTC.  The MCF7-MX cell line was obtained by stepwise incubation with 

mitoxantrone.  It can be argued that other factors could contribute to the differential 

growth inhibition observed, not only for mitoxantrone but also for the PBD 

derivatives (Su, Lee et al. 2006).  Mitoxantrone (MX) was shown to be conjugated 

by GSH and extruded out of the cell by MRP1 (Morrow, Peklak-Scott et al. 2006).  

The level of expression of both GSH and GSTs may be increased in this particular 

cell line contributing to the multidrug resistance phenotype.  However, Morrow and 

colleagues have shown that the transport of MX by ABCG2 was independent of 

GSH.  In addition, the structure affinity relationship for the PBDs has demonstrated 

that the carbonyl moiety, responsible for GSH coupling could not account for the 
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differential growth inhibition observed between the MCF7 and its MX resistant cell 

line.  Further studies using BSO and dicumarol could confirm the lack of dependency 

of PBDs to GSH and GST in this particular cell line.  The level of other members of 

the ABC family may be up-regulated in MCF7-MX cell line, apart from P-gp which 

has not been found (Nakagawa, Schneider et al. 1992) 

 A Caco-2 model of permeability was used to confirm the transport of the 

PBDs via ABCG2:  reduced secretion was shown for the PBD-dimers, SJG-136 and 

DRG-16 following pre-incubation with FTC in contrast to the PBD-monomer SG-

2897.  However, the SG-2897 was associated with a ratio between the IC50 – FTC 

versus + FTC in MCF7-MX cells greater than 2, suggesting some substrate 

specificity towards ABCG2.  MCF-7-MX over-expresses the transporter and 

therefore, any difference in ABCG2 substrate specificity should be apparent.  Caco-2 

cells express ABCG2 at more physiological levels.  The impact of the transporter 

would therefore only be shown for high affinity substrates in the transwell assay.  A 

similar statement could be made regarding the MDA-MB-231 cells transfected with 

plasmid containing ABCG2-cDNA.  In summary, all the PBD-dimers were 

associated with a greater affinity for the transporter than the PBD-monomers.  The 

PBD-monomers were differentially affected by ABCG2 expression. 

 The PBDs with a greater number of oxygen and nitrogen atoms that are 

negatively charged were shown to be associated with greater substrate specificity for 

ABCG2.  This suggests that the PBDs bind to a positively charged binding pocket of 

ABCG2, thus enhancing electrostatic interactions.  Similar findings have been 

reported for a series of camptothecin analogues (Nakagawa, Saito et al. 2006).   
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 ABCG2 is a “half transporter” which needs to homo-dimerise in order to be 

fully activated.  Studies have shown that ABCG2 has at least 2 symmetrical binding 

pockets (Clark, Kerr et al. 2006).  PBD-dimers are high affinity substrates of the 

transporter with an arbitrary potential ABCG2 affinity value of 16 for all of them.  

Some PBD-monomers, without (N + O) atoms at the C2 extremity, and being 

considered as the mono-functional counterpart of PBD-dimers for this property, have 

an arbitrary potential ABCG2 affinity value of 8, half of the potential of PBD-

dimers.  These data suggest that PBD-dimers may bind to the 2 symmetrical binding 

pockets of ABCG2.   

 Physico-chemical properties, involved in ABCG2 substrate specificity, were 

extended to the known substrate, mitoxantrone and non substrate, vinblastine.  

Mitoxantrone has in its chemical structure a great number of oxygen and nitrogen 

atoms negatively charged at extremities, (potential ABCG2 affinity of 24 as defined 

by equation 2) which potentially could interact with the transporter.  In addition, the 

chemical structure is relatively symmetrical suggesting its ability to bind to at least 

two binding pockets.  It was associated with a maximal ratio between the different 

MDA-MB-231 cells transfected with plasmid ABCG2-cDNA.   

 In contrast, the chemical structure of vinblastine is relatively bulky without 

any planar groups with apparent π orbitals.  No electrophilic atoms were found at 

extremities (Figure 83).   
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Figure 83.  Chemical structures of known ABCG2 substrate, mitoxantrone (A) and known ABCG2 
non substrate, vinblastine (B).  Atoms with negative partial charge are represented in red.  Atoms with 
positive partial charge are represented in blue.  Dashes lines represent the predicted π stacking 
interactions involved in ABCG2 binding affinity.  Circular lines represent the predicted electrostatic 
interactions involved in ABCG2 binding affinity. 
 

 These findings provide evidence that the chemical properties involved in 

ABCG2 substrate specificity to PBDs can also be applied to other classes of 

compounds. 

 The impact of a mutation at position 482 was also investigated.  The mutated 

form of the transporter (threonine at position 482) was associated with a greater 

affinity for some PBDs, when compared to the wild type form of the transporter 

(arginine at the same position).  No gain of affinity was shown with SG-2781, which 

has positive charged nitrogen at its C2 extremity which suggests that only the PBDs 

with positively charged atoms might be affected by this particular mutation among 

the C2 aryl derivatives.  This neutral condition allowed a lower repulsion, thus a 

greater interaction with the transporter (Figure 84).   

  

A. B.
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Figure 84.  Hypothetical model of the impact of ABCG2 polymorphism on the substrate specificity of 
the PBDs.  Atoms with negative partial charge are represented in red.  Atoms with positive partial 
charge are represented in blue.  Dashes lines represent the predicted π stacking interactions involved 
in ABCG2 binding affinity.  Circular lines represent the predicted electrostatic interactions involved in 
ABCG2 binding affinity. 

 
 
  

In addition, the mutated form of the transporter was associated with a similar 

“gain of function” with the PBD-dimers, high affinity substrates of the transporter, 

than the PBD-monomers, low affinity substrates of the transporter, despite having a 

greater number of electrophilic atoms, suggesting that other forces tend to participate 

in the overall affinity for the transporter.  

The mutated form of the transporter was associated with a maximal “gain of 

function” with the PBD-monomer, SJG-244.  SJG-244 has a minimal number of 

electrophilic atoms.  However the presence of an aromatic ring with π orbitals at the 

C8 extremity seems to allow this particular compound to enhance substrate 

specificity to the mutated form of the transporter.  The “gain of function” has been 
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maximal with mitoxantrone (~4.3-fold) which may be due to the presence in its 

chemical structure of 3 aromatic rings with conjugated π orbitals (Figure 83).   

 Overall, the interaction with ABCG2 is mainly driven by interaction forces 

due to the presence of charged amino acid in its binding pocket.  When a particular 

mutation changes the amino acid sequence to an uncharged amino-acid, other close 

contact interactions such as the π-π interactions tend to participate in the overall 

binding affinity to the transporter. 

 
 In summary, all 4 PBD-dimers were identified to be substrates of MRP1 but 

only one PBD-monomer (SG-2823).  The presence of a carbonyl moiety at the 

extremity of the PBD-monomer substrate was found sufficient to allow conjugation 

to GSH and further extrusion by the transporter.  ABCG2 substrate specificity was 

also investigated.  When compared to mitoxantrone, low affinities for ABCG2 were 

associated with all 4 PBD-dimers and, to a lesser extent for some PBD-monomers.  

The number of oxygen and nitrogen atoms, negatively charged, and the number of 

planar structures were identified as determinants of ABCG2 substrate specificity. 

The impact of ABCG2 polymorphism was also investigated. The T482 SNP was 

associated with a “gain of function”.  

Consideration of these factors may allow the rational design of new 

PBD analogues with minimal interaction with MRP1 and ABCG2 transporters and 

this may enhance even more their anti-tumour activity. 
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5 Chapter 5: ACTIVITY OF THE PBD-MONOMERS 

5.1  Introduction  

 The pyrrolo[2,1-c][1,4]benzodiazepines (PBDs) are molecules which interact 

covalently within the minor groove of the DNA (Gregson, Howard et al. 2001).  The 

PBD-monomers span 3 base pairs with preferential binding to Pu-G-Pu sequences.  

The PBD-dimers are interstrand cross-linkings (ICL) agents.  They span a greater 

number of base pairs (6-7) with preferential binding to 5’-Pu-GA(G/A)TC-Py-3’ 

sequences.  Upon binding to their specific sequence, PBDs exert their anti-tumour 

activity by inducing stalled replication forks and blocking transcription by inhibiting 

RNA polymerase (Puvvada, Hartley et al. 1993; Puvvada, Forrow et al. 1997).  

 SJG-136, a PBD-dimer, has shown a broad spectrum of growth inhibition 

across the NCI60 cell line panel, and is highly potent in a number of xenograft 

models (Alley, Hollingshead et al. 2004; Pepper, Hambly et al. 2004).  Other PBD-

dimers have been synthesised and some have shown enhanced anti-tumour activity.  

However, their growth inhibitory effect is reduced in cells expressing high levels of 

the ABC transporters, P-glycoprotein, MRP1 and ABCG2 (chapter 3 and 4).  Key 

physico-chemical properties have been defined as the determinants of the substrate 

specificity for the different transporters.   

The anti-tumour activity of most of the PBD-monomers was shown not to be 

influenced by the expression of the ABC transporters.  However, the PBD-

monomers do not cross-link DNA and span only a minimum number of base pairs, it 

might be anticipated that the PBD-monomers would be less potent than the PBD-

dimers. 
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The anti-tumour activity was evaluated in a wide range of cancer cell lines 

and some PBD-monomers were, surprisingly, highly cytotoxic, such as SG-2897 

(chapter 3 and 4).  In this chapter, data will be presented investigating the physico-

chemical structures involved in the anti-tumour activity of the PBD-monomers, 

hence defining a structure activity relationship.  

 The ability of the cell to repair DNA damage is a critical factor determining 

growth inhibition.  Mechanistic studies have revealed a unique interaction of the 

PBDs with the DNA repair machinery.  The nucleotide excision repair (NER) 

pathway (XPF-ERCC1) and the homologous recombination (HR) repair pathway 

(Rad51 paralogues) were shown to be involved in the repair of ICLs (De Silva, 

McHugh et al. 2000).  The PBD-monomers do not to produce ICLs in contrast to the 

PBD-dimers.  However, a similar DNA repair pathway has been reported to be 

involved following exposure to the mono-functional counterpart of SJG-136, mmy-

SJG (Clingen, De Silva et al. 2005).  In this study, the impact of other proteins 

involved in the HR pathway, such as BRCA2 on the growth inhibitory effect of the 

PBD-monomers was evaluated.  

 

 Based on the biological evaluation of the PBD-monomers, new compounds 

with features leading to non recognition by the ABC transporters and with predicted 

enhanced anti-tumour activity were designed and tested in silico.  
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5.2 Results 

5.2.1 Structure activity relationship of the PBD-monomers 

Differential substrate specificity of the PBD-monomers towards ABC 

transporters was demonstrated using a range of cancer cell lines (chapter 3 and 4).  

Some PBD-monomers were highly cytotoxic (SG-2897) whereas some others were 

associated with a low anti-tumour activity (SJG-244).  The physico-chemical 

structures involved in the anti-tumour activity of the PBD-monomers were evaluated 

in order to define a structure activity relationship (SAR). 

There are major differences between cell lines: differences in membrane 

permeability, expression of ABC transporters, intracellular detoxification systems 

and many others.  All these factors influence drug pharmacodynamics, limiting the 

desired cytotoxic effect.  For this reason, a variety of cancer cell lines were used 

(human colon cancer cell line HCT-116, ovarian cancer cell line A2780, lung cancer 

cell line A549, leukemia cancer cell line K562, breast cancer cell line MCF7 and, 

mouse immortalised fibroblasts 3T3) in order to define a rational SAR for the PBD-

monomers.   

 

5.2.1.1  Thermal denaturation data  

 The PBD-monomers exert their anti-tumour activity by covalently binding to 

the Pu-G-Pu sequences in the minor groove of DNA.  Therefore, the interaction with 

DNA may be the major determinant of the anti-tumour activity of this class of 

compounds.  Reactivity towards double-stranded DNA was assessed by measuring 
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their effect on the melting behaviour (Tm) of calf thymus DNA (Antonow and 

coworkers, personal communication, Table 15). 

 

  ∆Tm (ºC) 
   
C2 sibiromycin-aglycone analogues SG-2825 2.4 
 SG-2900 4.1 
 SG-2901 2.5 
 SG-2902 4.4 
   
C2 aryl analogues SG-2781 8 
 SG-2796 9.2 
 SG-2797 11.9 
 SG-2819 6.9 
 SG-2820 11 
 SG-2823 10.8 
   
C2 quinoline analogue SG-2897 20.5 

 

Table 15.  Thermal denaturation data for the PBD-monomers.  For CT-DNA alone, ∆Tm = 67.82 ± 
0.07°C.  All ∆Tm are ± 0.1-0.2°C after 18h post-incubation (No ∆Tm data is available for SJG-244). 
 

 

 The sibiromycin-aglycone analogues (SAG) SG-2825, SG-2901, SG-2900 

and SG-2902 showed the lowest stabilisation of the PBD-monomers with the DNA.  

These compounds differ in the length of the C2-E-alkenyl tail.  Within this group, the 

PBD-monomer, with the shorter tail, SG-2902 appeared to generate the most stable 

complex with DNA as represented by a ∆Tm at 18h = 4.4°C. 

 The C2 aryl substituent analogues seem to induce a greater stabilisation of the 

DNA: the thermal denaturation data (∆Tm at 18h) range from 6.9°C for SG-2819 to 

11.9°C for SG-2797.  Within the C2 aryl group, compounds with electron-

withdrawing groups at the C2 extremity appear to outperform electron-donators.  For 

example, SG-2797 (4-CF3, ∆Tm = 11.9°C) and SG-2820 (4-CN, ∆Tm = 11°C) 
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confer greater DNA stabilisation than SG-2781 (4-N(CH3)2, ∆Tm = 8°C) compared 

to SAG analogues. 

 Finally, the fused 6-membered aromatic system provide the greatest degree of 

stabilisation, with 6-quinolinyl (SG-2897) stabilising the double helix by 20.5°C.  

This high value is normally associated with the PBD-dimers such as DSB-120 

(15°C) and SJG-136 (33°C), forming an ICL.   

 SJG-244 was not included in the structure activity relationship as no ∆Tm 

was available for this compound and also because it is the only PBD-monomer 

derivative with a C8 substituent.  

 

5.2.1.2  Relationship between ∆Tm and the growth inhibitory effect of the 

PBD-monomers  

 The thermal denaturation data have been compared with the growth inhibition 

data among 6 different types of cancer cell lines. 

5.2.1.2.1  Colon cancer cell line model 

The PBD-monomers were tested against the colon cancer cell lines HCT-15 

and HCT 116 and the IC50 were shown to be similar in activity in both cell lines 

(IC50 ratios close to 1) for all the PBD-monomers despite the differential expression 

of ABC transporters.  Therefore, the data will be presented for only one cell line. 

 The PBD-monomers have shown a wide range of activity against HCT 116 

cells ranging from 1.1 nM for SG-2897 to 260 nM for SJG-244 (Table 4).  
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 The biological activity of the PBD-monomers correlated with the melting 

point temperature of the DNA (∆Tm as determined previously at 18h) with r2 = 0.85 

and P value < 0.0001, for n = 11 (Figure 85).  Therefore, the activity seems to be 

dependent upon the affinity for DNA.  In addition, three classes of compounds 

among the PBD-monomers could be identified: the least cytotoxic compounds, 

corresponding to the sibiromycin analogues, with 1 aromatic ring in their structures.  

C2-aryls analogues were associated with an intermediate growth inhibitory effect and 

have 2 aromatic rings.  Finally, the most cytotoxic PBD-monomer, SG-2897, 

contains the greatest number of aromatic rings 
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Figure 85.  Relationship between the growth inhibitory effect of the PBD-monomers in colon cancer 
cells HCT 116 and the affinity for the DNA as determined by the ∆Tm at 18h.  The Log (IC50) values 
are means ± SEM of n = 3 experiments performed in triplicate. 

 
 
 
 

 These data provide evidence that aromaticity has a major impact on the ∆Tm 

and hence the biological activity of the PBD-monomers. 
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5.2.1.2.2 Ovarian cancer cell line model 

The PBD-monomers have been tested against the ovarian cancer cell lines 

A2780 and A2780AD and the IC50 were similar in both cell lines (IC50 ratios close to 

1) for all the PBD-monomers, despite the differential expression of ABC 

transporters.  Only one cell line will be considered.  

 The PBD-monomers were associated with a broad spectrum of activity 

against the A2780 cell line ranging from 1.2 nM for SG-2897 to 300 nM for SJG-244 

(Table 5).  The relationship between the affinity for DNA as represented by ∆Tm (at 

18h) and the growth inhibitory effect of the PBD-monomers was evaluated and 

shown a good correlation (r2 = 0.88 and P value < 0.0001) for n = 10 (Figure 86).  

These results confirm that the activity of the PBD-monomers is mainly mediated by 

the affinity with the DNA. 

 Similarly, the number of aromatic rings correlated with the biological activity 

of the PBD-monomers (P value < 0.0001). 

In addition, the surface activity parameter, as determined previously seems to 

have an impact on the growth inhibitory effect of the PBD-monomers.  Indeed, the 

non surface active PBD-monomers appear to be associated with the greatest 

interaction with the DNA and induced  growth inhibition in contrast to the surface 

active ones (Figure 86).   
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Figure 86.  Relationship between the growth inhibitory effect of the PBD-monomers in ovarian 
cancer cells A2780 and the affinity for the DNA as determined by the ∆Tm at 18h.  The Log (IC50) 
values are means of n = 3 experiments performed in triplicate.  The SEM has not been reported in this 
graph for reasons of clarity.  The surface active PBD-monomers are represented in dashed square. 
 

5.2.1.2.3 Other cell lines models 

 The growth inhibitory effect of the PBD-monomers was evaluated in 6 

different cancer cell lines.  Overall, there was a correlation between the affinity for 

DNA and the biological activity of the PBD-monomers for all the cell lines tested 

which confirm the impact of the interaction with DNA on the biological activity of 

the PBD-monomers (Table 16).  The growth inhibitory effect of SG-2823 in A549 

has not been taken in account as the compound is a substrate of MRP1 reducing its 

anti-tumour activity.  The growth inhibition in K562 was determined by Antonow 

and colleagues (personal communication).  
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  correlation with ∆Tm 
    
  R2 P value 
    
HCT 116  0.85 < 0.0001 
A2780  0.88 < 0.0001 
MCF7  0.78 < 0.0005 
A549  0.85 < 0.0005 
K562  0.83 < 0.0001 
3T3  0.8 < 0.0001 

 
 

Table 16.  Relationship between the growth inhibitory effect of the PBD-monomers, in a panel of 
cancer cells, and the affinity for DNA, as determined by ∆Tm at 18h.  The Log (IC50) values are 
means of n = 3 experiments performed in triplicate. 
 

5.2.1.3  Physico-chemical properties involved in drug DNA binding and 

induced biological activity 

 Previously, the affinity for DNA has been shown to be a major factor 

involved in the biological activity of the PBD-monomers based on their aromaticity 

and surface activity. 

 The related physico-chemical parameters which may be involved in the PBD-

DNA affinity were investigated using a computer based approach (Chem3D) (Table 

17).  

 ∆Tm (ºC)  LogP  Critical volume (Å3)  SASA (Å2)
        
SG-2781 8  2.494  1058.5  674.2 
SG-2796 9.2  2.844  1021.5  647.1 
SG-2797 11.9  3.13  1027.5  642.7 
SG-2819 6.9  3.443  1090.5  681.8 
SG-2820 11  2.242  1010.5  629.3 
SG-2823 10.8  1.956  1001.5  627.6 
SG-2825 2.4  2.788  1016.5  665.5 
SG-2897 20.5  2.292  1067.5  660.9 
SG-2900 4.1  3.205  1072.5  692.7 
SG-2901 2.5  3.622  1128.5  726.1 
SG-2902 4.4  2.753  1005.5  644.8 

 
Table 17.  Physico-chemical properties of the PBD-monomers which may be involved in PBD-DNA 
affinity. SASA: Solvent accessible surface area. 
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5.2.1.3.1 Solvent accessible surface area  

The solvent accessible surface area (SASA) is the surface area of a molecule 

that is accessible to a solvent.  It has been defined as a way of quantifying the 

hydrophobic burial of a molecule (Lee and Richards 1971).   

 When considering 1 particular group of the PBD-monomers, the C2-

sibiromycin-aglycone analogues (SAG) (SG-2825, SG-2901, SG-2900 and SG-

2902), the SASA parameter has shown a highly significant correlation with the 

biological activity in A2780 cell line (r2 = 0.95, P value = 0.02) (Figure 87). 

  

 

 

 

 

 

 

 

 

 

 
Figure 87.  Relationship between the growth inhibitory effect of the C2-sibiromycin-aglycone 
analogues in A2780 cells and the solvent accessible surface area (SASA). The Log (IC50) values are 
means of n = 3 experiments performed in triplicate.  The SEM has not been reported in this graph for 
reasons of clarity. 
 

  

The relationship between the growth inhibitory effect of the C2- sibiromycin-

aglycone analogues against a panel of cell lines and SASA parameter has been 

evaluated and shown good correlations in 6/6 cell lines tested (Table 18).  
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  correlation with SASA 
    
  r2 P value 
    
HCT 116  0.85 > 0,1 
A2780  0.95 < 0.05 
MCF7  0.81 > 0.1 
A549  0.7 > 0.1 
K562  0.89 = 0.05 
3T3  0.5 > 0,1 

 
Table 18.  Relationship between the growth inhibitory effect of the C2-sibiromycin-aglycone 
analogues, in a panel of cancer cell lines and the solvent accessible surface area (SASA). The Log 
(IC50) values are means of n = 3 experiments performed in triplicate. 
   

 In addition, the structure-activity-relationship was incorporated within the 

library of the PBD-monomers supplied by Antonow and colleagues.  The biological 

activity (in K562 cells) of 6 C2-sibiromycin-aglycone analogues correlated with the 

SASA parameter (r2 = 0.95, P value = 0.0008).   

 The number of C2-sibiromycin-aglycone in our library did not allow us to 

define any other significant correlations between the biological activity towards the 

panel of cell lines and other physicochemical properties.  When a greater number of 

C2-sibiromycin-aglycone analogues (6) were considered, 2 other parameters showed 

a significant impact: LogP correlated with the log scale of the IC50s in K562 (r2 = 

0.90, P value = 0.0042).  Finally, the critical volume correlated with the biological 

activity of the C2-sibiromycin-aglycone analogues (r2 = 0.91, P value = 0.0032).  These 

features seem to drive the growth inhibitory effect of this class of PBD-monomers 

independently of the interaction with DNA as no correlation could be shown with 

∆Tm. 
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5.2.1.3.2 π-π stacking interactions 

π-π stacking is a popular chemistry concept describing how aromatic 

molecules are stabilized when oriented face-to-face as in a stack of coins.  This 

phenomenon occurs when 2 surrounding aromatic rings have overlapping π orbitals 

and allows a strong close contact interaction.  

Previously, the growth inhibitory effect (in the colon cancer cell line HCT 

116) of the PBD-monomers was shown to be dependent on the number of aromatic 

rings (Cf. 5.2.1.2.a).  In this study, this relationship was evaluated in 4 other cell 

lines (3T3, A549, MCF7, A2780 cells).  The number of aromatic rings correlated 

with the growth inhibitory in the 5/5 cell lines tested (Table 19).  It is noteworthy 

that SJG-244, the only PBD-monomer with an aromatic ring at the C8 extremity in 

contrast to the C2-aryl derivatives, did not show any correlation with the aromaticity.  

These data suggests that the aromaticity correlates with the growth inhibitory effect 

of the C2-aryl derivatives only.   

 

 Correlation with n aromatic rings
  
 r2 P value 
   
3T3 0.92 < 0.0001 
A2780 0.93 < 0.0001 
HCT 116 0.92 < 0.0001 
A549 0.90 < 0.0001 
MCF7 0.92 < 0.0001 

 

Table 19.  Relationship between the growth inhibitory effect of the PBD-monomers and the number 
of aromatic rings, in a panel of cancer cell lines.  The IC50 values are means of n = 3 experiments 
performed in triplicate. 
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The chemical structure of SG-2897 contains a quinoline based substituent at 

the C2 extremity, equivalent to a 6 member ring.  The carbons of the ring are 

associated with conjugated π orbitals which theoretically, induce a greater 

stabilisation of the structure and also a greater interaction to other planar structures 

found in DNA as represented in Figure 88. 

 

Figure 88.  Hypothetical model of the π-π stacking interactions involved in PBD-monomers-DNA 
affinity.   The PBD-monomer, SG-2897 has been represented in red.  Guanines bases have 
represented in black.  All the π orbitals involved in PBD-DNA interaction have been represented, and 
for reasons of clarity are not overlapping in the figure.  The π-π stacking interactions are represented 
in green. 

 

5.2.1.3.3 Hydrogen bonding  

 The electrostatic forces impact on close contact interactions between 

intermolecular complexes.  Previously, the PBD-monomers, with a greater 
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electrostatic potential, were shown to be associated with a greater interaction to 

proteins such as ABCG2 (Cf. Section 4.2.2.).  In this section, the impact of the 

electrostatic forces on the overall affinity for DNA associated with the biological 

activity of the PBD-monomers was evaluated.  Using a series of PBD-monomers 

with C2-aryl substituent, i.e. with a similar aromaticity, the impact of the 

electrophilicity was determined on the interaction with DNA and also on the 

biological activity.  The 3 PBD-monomers of interest have been chosen because of 

the presence of electron-withdrawing groups at the C2-aryl extremity (SG-28.  The 

nitrogen atom at the extremity of SG-2781 was shown previously to be positively 

charged in contrast to the nitrogen at the extremity of SG-2820 (Figure 89). 

 

 

 

 

Figure 89: Chemical structure of the PBD-monomers with different C2-aryl substituent.   
 

The biological activity of the 3 PBD-monomers was evaluated in 5 cell lines 

(3T3, A549, HCT 116, MCF7, A2780 cells).  As expected, the presence of a nitrogen 
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(no nitrogen at C2) stabilises the helix by 6.9 ○C whereas SG-2781 stabilises the 

DNA by 8○C (Figure 90). The presence of nitrogen, in the chemical structure of SG-

2820, with a negative partial charge, (electron withdrawing group) stabilises the 

DNA (∆Tm of 11 ○C) even further.  This is in accordance with the physico-chemical 

parameters involved in PBD-“protein” interaction.   

However, SG-2820, being associated with the greatest affinity for DNA, has 

shown the lowest growth inhibitory effect among the 5 different cell lines tested 

(3T3, A549, HCT 116, MCF7, A2780 cells) with a mean IC50 = 22 nM [SD ± 6.7 

nM]).  The difference between the growth inhibitory effect of SG-2781 and SG-2820 

is statistically significant (paired t-test, Pvalue = 0.03).  No significant difference could 

have been seen between the growth inhibitory effect of SG-2819 (mean IC50 = 15 nM 

[SD ± 4.3 nM] and the growth inhibitory effect of SG-2781 (mean IC50 = 14 nM [SD 

± 4.1 nM].   

 

 
 

 

 

 

 

 

 
 

Figure 90.  Impact of the electrophilicity on the biological activity of the C2 aryl derivatives. Results 
are expressed as relationship between the affinity for DNA as determined by ΔTm (at 18h) and the 
biological activity for SG-2819 (■), SG-2781 (▲) and SG-2820 (▼) in a range of cancer cell lines 
(A549, HCT 116, MCF7, A2780 cells). The Log (IC50) values are means ± SEM of at least n = 5 
experiments performed in triplicate. 
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 The position of the electron-withdrawing groups was also investigated.  One PBD-

monomer (SG-2896) was synthesised by Antonow and colleagues with similar 

physico-chemical properties to SG-2897 (SASA, aromaticity, number of nitrogen 

and oxygen atoms, similar electrostatic potential) (Figure 91).   

 

Figure 91.  Chemical structure of SG-2896 (A) compared to the chemical structure of SG-2897 (B).   
  

However, SG-2896 was associated with a lesser interaction with DNA (∆Tm = 18.6 

○C) and has showed a ~6 fold decrease in anti-tumour activity (IC50 = 8.5 nM) 

towards K562 cell line (Antonow and colleagues, personal communication) 

compared to SG-2897 (∆Tm = 20.5 ○C, IC50 = 1.4 nM).  Therefore, the position of 

the nitrogen atom appears to enhance close contact interactions with DNA.   

 A molecular modelling approach was used to evaluate the impact of the 

position of the nitrogen atom on close contact interactions with DNA.  By definition, 

a hydrogen bond could be formed, when the spatial distance between an electron 

donor group and an electron acceptor group is lower than ~3.5 Ǻ.  The spatial 

distances between the nitrogen of the 6 member ring of SG-2897 and the surrounding 

hydrogen of the adenine and the hydrogen of a deoxyribose base are 2.9 Ǻ and 2.6 Ǻ, 

respectively (Figure 92.B).  These data confirm the close contact interactions 
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generated by the presence of nitrogen within the 6 member ring of SG-2897.  In 

contrast, the distance between the nitrogen of the 6 member ring of SG-2896 and any 

surrounding hydrogen is never lower than 3.5 Ǻ which suggests limited hydrogen 

bonding (Figure 94.C). 

 

 

 
Figure 92.  Close contact interactions of two PBD-monomers, SG-2897 and SG-2896, with DNA.  A.  
Molecular modelling of the interaction of a quinoline based PBD-monomer (red) within DNA (green). 
B.  Close contact interactions of SG-2897 (red) with DNA.  The nitrogen of the 6 member ring is 
represented in blue C.  Close contact interactions of SG-2896 (red) with DNA.    
 

 

These data provide evidence that SG-2897 can interact, through the nitrogen 

of its 6 member ring, with both strands of DNA with a preferential interaction for the 

opposite strand, where the covalent bound is formed with guanine (Figure 93). 
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Figure 93.  Hypothetical model of the interaction of SG-2897 with the 2 strands of DNA.  The 
carbolamine interacts covalently with guanine.  The nitrogen of the 6 member ring interacts with the 
hydrogen of the backbone of the opposite strand of DNA.  The same nitrogen interacts also with 
hydrogen of adenine. 
 

  

5.2.1.4  Structure activity relationship of the PBD-monomers in a larger 

library of PBD monomers  

The structure activity relationship study was extended to the library 

synthesised by Antonow et al,. The growth inhibitory effect of 82 compounds was 

evaluated in the K562 cell line and showed a wide range of activity ranging from < 

0.1 nM to 920 nM (Antonow and colleagues, personal communication).  ∆Tm 

associated with the affinity for DNA showed only a poor correlation (r2 = 0.33, P value 

= 0.0014) due to a very large heterogeneity of the structures.  This correlation was 

increased considering molecules with similar PSA (r2 = 0.49, P value = 0.0012).  This 
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correlation was slightly improved with LogP parameter (r2 = 0.51, P value = 0.0018); 

an increase of the lipophilicity decreasing the growth inhibitory effect.  Finally (with 

similar PSA), the growth inhibitory effect correlates significantly and inversely with 

SASA (r2 = 0.81, P value < 0.0001).  

 Furthermore, the position of the C2-phenyl substituent appears to have a 

major impact on the growth inhibitory effect.  The para-substituted C2-phenyl 

derivatives have a greater cytotoxic effect than the meta-substituted counterparts 

(Pvalue = 0.04).   

 

5.2.2 Anti-tumour activity of the most potent PBD-monomer, SG-2897 

Previously, PBD-monomers were shown to be associated with a low affinity 

to ABC transporters (Chapter 3 and 4). Among the PBD-monomers, SG-2897 was 

also associated with a maximal growth inhibition similar to the PBD-dimer SJG-136 

(nM range), substrate of the ABC transporters. SG-2897, as a lead compound, was 

chosen for further biological evaluation. 

 

5.2.2.1  Cell line screening of SG-2897 

The anti-tumour activity of the most potent PBD-monomer, SG-2897 was 

evaluated in a series of colon cancer cell lines to allow further comparison with SJG-

136 (Guichard, Macpherson et al. 2005).  Overall, SG-2897 was associated with 

similar growth inhibition among the different cell lines tested (Table 20).  The most 

sensitive cell line was HCT 116 with an IC50 of 1.2 nM in contrast to the least 
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sensitive cell line, the Caco-2 with an IC50 of 3.4 nM.  The former was chosen for 

further evaluation of SG-2897 in vivo. 

 

  IC50 (nM) SD 

    

HCT-116  1.2 0.3 

HCT-15  1.6 0.3 

HT-29  1.9 0.1 

HCT-8  2.5 0.3 

Caco-2  3.4 0.9 

Colo-205  1.9 0.7 

SW-480  1.7 0.6 

SW-620  1.8 0.5 

Table 20.  SG-2897 IC50s for a panel of colon cancer cell lines.  Results are means ± SD of n = 3 
experiments performed in triplicate. 

 

5.2.2.2 In vivo antitumor activity of SG-2897, HCT 116 xenograft model 

The HCT 116 cell line was chosen as the xenograft model among the panel 

of colon cancer cell lines because of its high sensitivity to SG-2897 in vitro.  Its anti-

tumour activity was tested using 2 schedules of administration as in previous studies 

with SJG-136: a single i.v. injection and 5 daily i.v. injections.   

The specific growth delay (SGD) of 0.68 for animals treated with 

120 μg/kg/d for 5 days could not confirm the anti-tumour activity of SG-2897 in this 

particular model (Figure 94).  In addition, the tumour regression (T/C%) was ranging 

from 55% at day 4 up to 62% at day 9 when the animals were treated with 120 
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μg/kg/d for 5 days, never achieving the significant 42% threshold (Bissery and 

Chabot 1991; Plowman J 1997; Mohammad, Dugan et al. 1998; Johnson, Decker et 

al. 2001).  The bolus injection was associated with a T/C ranging from 82% at day 9 

up to 88% at day 2.  

These results were compared with the data obtained with the PBD-dimer 

SJG-136 (Guichard and colleagues, personal communication). Similarly, the anti-

tumour activity of SJG-136 was associated with a SGD < 1 at the dose of 120 

μg/kg/d.  In addition, the tumour regression (T/C%) was ranging from 70% at day 2 

up to 80% at day 7 when the animals were treated with 120 μg/kg/d for 5 days, never 

achieving the significant 42% threshold.  The bolus injection was associated with a 

T/C ranging from 93% at day 2 up to 104% at day 11.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 94.  Results of the In vivo study with SG-2897 compared to SJG-136 towards animals bearing 
HCT 116 xenograft.  
 

Taken together, the anti-tumour activity of SG-2897 was not demonstrated in 

this model where SJG-136 was not active either. 
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5.2.3 Activity of the PBD derivatives in cell lines deficient in DNA repair 

machinery: VC8 Chinese hamster cells (CHO) compared to the 

proficient V-79 CHO cells 

 DSB can be repaired by two pathways, homologous recombination repair 

(HR) and non-homologous end joining (NHEJ).  It has been shown that the growth 

inhibitory effect of the PBD-dimer, SJG-136 and the growth inhibitory effect of its 

mono-functional (PBD-monomer) counterpart, mmy-SJG were dependent on HR 

factors such as the Rad51 paralogues (Clingen, De Silva et al. 2005).  DSB are also 

detected by ATM, which triggers a downstream signal to the BRCA proteins 

allowing the Rad51 complex to arrange a nucleo-filament around the damaged 

strands in order for DNA to be repaired.  

5.2.3.1 Growth inhibition studies 

 In this experiment, the impact of BRCA2 deficiency on the sensitivity of the 

PBDs was investigated using a cell line deficient in BRCA2 (VC-8) and its parental 

counterpart (V-79).  The growth inhibitory effect of the PBD-dimer (SJG-136) and 

the PBD-monomer (SG-2897) in the 2 cell lines were evaluated.  SJG-136 induced a 

greater cytotoxic effect against the VC-8, BRCA2 deficient cell line (IC50 = 52 pM 

[95% confidence interval = 46 – 49 pM]) compared to parental cells (IC50 = 1.3 nM 

[1 – 1.7 nM]) representing a ~25 fold increase in sensitivity (Figure 95.A).  

Similarly, the PBD-monomer SG-2897 induced a greater cytotoxic effect against the 

VC-8 (IC50 = 72 pM [95% confidence interval = 60 – 86 pM]) compared to parental 

cells (IC50 = 3 nM [2.4- 3.8 nM]) representing a ~42 fold increase in sensitivity 

(Figure 95.B.). 
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Figure 95.  Impact of BRCA2 on the cytotoxic effect of SJG-136 (A) and SG-2897 (B) on VC-8 cells, 
deficient in BRCA2 (▼) and, on V-79 parental cell line (■).  Results are means ± SEM of triplicate. 
 

 The ratio between the 2 cell lines for SJG-136 and SG-2897 was determined 

from 3 independent experiments.  Overall, VC-8 cells were ~50 fold more sensitive 

to the PBD-monomer SG-2897, than to the parental cell line V-79 (Figure 96).  The 

differential growth inhibitory effect was significantly lower for the PBD-dimer, SJG-

136 (unpaired t test, P value = 0.042).  VC-8 cells were on average ~20 fold, more 

sensitive than the parental cell line to SJG-136. 
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Figure 96.  Ratio between the IC50 in VC-8 (BRCA2 deficient) cells and the IC50 in the parental cell 
line V-79.  Results are means ± SEM of n = 3 experiments performed in triplicate. 

 

 These data provide additional evidence that the growth inhibitory effect of the 

PBD derivatives is dependent on HR proteins such as BRCA2.  The higher ratio 

associated with SG-2897 suggests that the impact of this protein may be more 

important in the repair of the damage caused by the PBD-monomers than the PBD-

dimers although further confirmation studies are required.   

5.2.3.2 H2AX phosphorylation (γH2AX)  

 Previously, γH2AX foci formation was shown to be a surrogate marker of 

DNA damage caused by the PBDs (Cf. section 3.2.2).  As BRCA2 is involved in the 

repair of the damage caused by this class of molecules, γH2AX foci might be 

increased in BRCA2 deficient cells.   

 The CHO cell lines, VC-8 and V-79, were treated with the PBD-monomer, 

SG-2897, for 24h and stained for γH2AX foci.  The number of V-79 cells (Figure 97-

A), as represented by their nuclei (colored in blue by DAPI) is greater than the 
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number of VC-8 cells deficient in BRCA2 (Figure 97-A) after treatment with the 

same concentration of SG-2897.   

 In addition, there are almost no γH2AX foci in V-79 cells (Figure 97-A).  

Only few sporadic spots can be seen and represent the spontaneous formation of 

γH2AX foci.  Conversely, there are a greater proportion (~5-fold) of the VC-8 cells 

with γH2AX foci (Figure 97-B and C) (Pvalue = 0.0002).   
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Figure 97.  γH2AX foci formation observed in response to SG-2897 in V-C8, BRCA2 deficient cells 
(A) and in V-79, BRCA2 proficient cells (B). CHO cells were exposed to SG-2897 for 24h at 0.1 nM. 
A and B:  representative pictures of γH2AX foci (represented in green).  Counter-stain with DAPI 
(blue) confirms the nuclear localisation of γH2AX foci.  C: γH2AX foci formation as expressed by 
staining intensity. Results are means ± SEM of 20 cells.  
 
 
  These results confirm the importance of BRCA2 in the repair of DNA 

damage caused by the PBD-monomers. 

V-79 (BRCA2 WT) VC-8 (BRCA2 deficient)

A. B. 

C. 
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5.2.4 Computer based approach to design new PBD derivatives with enhanced 

growth inhibitory effect 

The DNA/drug interaction was shown previously to be the dominant feature 

related to the growth inhibitory effect of the PBD-monomers (Section 5.2.1.2). In 

this section, a computer-based approach was used to assess the molecular docking of 

the different PBD-monomers within the DNA. The different parameters defining 

“the optimal fit” were compared to the experimental data (∆Tm) and a predictive 

model was developed.  This strategy may allow to the design of new PBD 

derivatives with enhanced growth inhibitory effect. 

It has been shown previously that SJG-136 spans 6bp and preferentially binds 

to Pu-GATC-Py sequences (Hartley, Spanswick et al. 2004).  The PBD-monomers 

span 3bp and bind to Pu-G-Pu sequences (Hurley, Reck et al. 1988).  Therefore, a 

specific sequence (TATAGATCTATA) was used in this experiment (Figure 98). 
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Figure 98.  Mechanism of interstrand cross-linking of DNA by the PBD-dimer SJG-136 (A) and 
mono-alkylating of DNA by the PBD-monomer SG-2897 (B).  The sequence selectivity of the PBD-
dimer is due to (1) the covalent bound between the C11 of the PBD moieties and the N2 groups of the 
Guanine on opposite strands and (2) hydrogen bonds formed between the proton of the dimer moieties 
and the ring acceptor of the Adenine.  The same sequence has been used for the monomer in order to 
normalize the data. 
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A set of PBD-monomers were chosen for the in silico approach, to achieve a 

wide range of physicochemical properties (number of aromatic rings, number of 

nitrogen and oxygen atoms, electrostatic potential) and growth inhibition in vitro. 

Minimisation of DNA/Drug complex led to an optimal conformation defined 

by several parameters: the van-der-waals energy, the electrostatic forces and the sum 

of the bonded forces (Table 21). 

 

  VdW EELS 
∑ bonded 

forces 
      
DNA alone  -442.6 3111.51 574.87 
     
SG-2781  -507.6 3426.62 626.78 
SG-2819  -504.9 3398.22 621.91 
SG-2820  -505.1 3417.61 624.86 
SG-2825  -502.8 3409.13 628.85 
SG-2897  -510.6 3418.86 624.42 

 
 
Table 21.  Physical Parameters generated in silico by the optimisation of the complex drug-DNA for 
5 PBD-monomers: the van-der-waals energy (VdW), the electrostatic forces (EELS) and the sum of 
the bonded forced (the torsion and the dihedral angles). 

 
 

5.2.4.1 The van-der-waals energy 

The van-der-waals (VdW) energy is a close contact interaction.  When 2 

atoms or molecules are separated by a distance r they exert a close contact 

interaction (Figure 99).  This attractive force increases inversely with the distance 

until reaching a limit when the force becomes repulsive.   
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Figure 99.  Representation of the van-der-waals energy. 

 

 

SG-2897 was associated with the lowest VdW energy (-510.6) in contrast to 

SG-2819 (-502.8) (Table 21).  These data suggest that SG-2897 has generated 

greater close contact interactions than SG-2819.   

The interaction with DNA was measured physically previously by ∆Tm.  In 

order to investigate whether the VdW forces participate in the overall drug-DNA 

affinity, the relationship between the VdW and ∆Tm was evaluated.  The VdW 

interactions correlate with the melting point (ΔTm) value (r2 = 0.8, P value = 0.04) 

(Figure 100).  SG-2897 was associated with the highest ΔTm (20.8) and has 

generated the lowest VdW energy (-510.6).  In contrast, SG-2825 was associated 

with the lowest ΔTm (2.4) and has generated the greatest VdW energy (-502.8).  

However, 2 PBD-monomers deviate from the linear correlation (SG-2781 and SG-

2819).  This deviation may be explained by the impact of other forces in the overall 

affinity. 

 

r
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Figure 100.  Relationship between the van-der-waals energy as determined by a computer based 
approach after minimization of the complex DNA-drug. 

 

5.2.4.2  The electrostatic forces 

Electrostatic forces (EELS) are generated between 2 charged atoms or 

molecules.  Repulsion will occur between 2 atoms or molecules that are similarly 

charged.  In contrast, 2 atoms or molecules with opposite charges will be attracted to 

each other.   

 SG-2819 and SG-2820 have shown similar VdW energies, (-504.9 and -

505.1, respectively) (Table 21).  However, SG-2820 was associated with a greater 

affinity for DNA as measured by the ΔTm (11) than SG-2819 (6.9).  SG-2820 

generated greater EELS forces (3417) than SG-2819 (3398), inducing greater close 

contact interactions with DNA.  This is accordance with the fact that SG-2820 has a 
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negatively charged nitrogen atom at the extremity in contrast to SG-2819 (Figure 

101). 

 

SG-2820 SG-2819 

 

Figure 101.  chemical structure of 2 PBD-monomers SG-2820 and SG-2819 

 

Conversely, SG-2781 was associated with a lower ΔTm (8) despite having 

generated a relatively low VdW energy (-507.6).  SG-2781 has a nitrogen atom at 

the extremity (Figure 102).  However it is surrounded by other carbons.  It has been 

shown, by the extended Hückel calculation that this nitrogen is predicted to be 

positively charged. 
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Figure 102.  Chemical structure of SG-2781 
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5.2.4.3  The bonded forces 

The bonded forces are generated by PBD-DNA complex and represent the 

mechanical distortions induced by the minimisation (spatial optimisation) of the 

complex.  The components are the bond stretching, bond bending, bond torsion and 

chirality of the bond.  The minimisation of the complex should lead to a minimal 

distortion.  In other words, PBDs with a better fit within DNA would induce a lower 

distortion. 

The sums of the different bonded forces have been determined for the PBD-

monomers of interest (Table 21).  As a result, SG-2819 was associated with the 

lowest distortion of the PBD-DNA complex with a sum of bonded forces of 621 in 

contrast to SG-2825 which was associated with the greatest distortion (628.5).   

The latter was associated with a low affinity for DNA (ΔTm = 2.4).  SG-2825 

has a chemical structure with a long tail of unsaturated carbons at the C2 extremity 

(Figure 103).  The bulkiness of its structure might explain the low affinity for DNA 

and the maximal distortion induced in silico. 
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Figure 103.  Chemical structure of SG-2825. 
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5.2.4.4  Design of new PBD derivatives with greater affinity for DNA 

The growth inhibitory effect of the PBDs was shown to be mainly related to 

their interaction with DNA.  However, the expression of ABC transporters may also 

affect their anti-tumour activity.  Therefore, the consideration of both the factors 

related to PBD-DNA binding and to substrate specificity to ABC transporters should 

allow the rational design of new PBD derivatives with enhanced anti-tumour 

activity.   

Two strategies were investigated: One was to increase the length of the C2 

substituent in the PBD-monomers; the other was to decrease the second moiety of 

the PBD-dimers in C8. Suggested potential structures are shown in Figure 104. 

All the new PBD derivatives are predicted to be associated with a limited 

interaction with the ABC transporters.  In order to be P-gp non substrate, they have a 

molecular weight lower than 500, a number of (nitrogen + oxygen) atoms lower than 

8, a log P ranging from 1.387 to 3.225, a number of hydrogen bonding energy lower 

than 10.  In order to be non substrate of MRP1, none of the new derivatives have a 

carbonyl group at the C2 extremity.  Finally, all new PBDs have a limited number of 

(N+O) atoms, negatively charged as determined by the Hückel calculation, in order 

to prevent ABCG2 substrate specificity. 
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Figure 104.  Proposed structures of new PBD derivatives anticipated to be non-substrates for neither 
P-gp nor MRP1 and associated with a low affinity to ABCG2.   
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In order to test whether the new PBD derivatives would be associated with a 

greater interaction with DNA, 2 were tested using the molecular modelling approach 

(104.A. and 104.B).  The modelling of SG-2819 was reported for comparison.  All 

three molecules appear to fit well in the minor groove of DNA (Figure 105).  The C8 

substituent of 104.A. allows the molecule to span a greater length of DNA than SG-

2819 thus, increasing the close contact interactions.  In addition, the specific layout 

of the C8 moiety of 104.B. allows the molecule to fit perfectly in the minor groove 

of DNA limiting the distortion of the helix.   

 

 

 SG-2819 104.A. 104.B. 

 
 
Figure 105.  Molecular modelling of the new PBD derivatives with DNA.  The new PBD derivatives 
(red), 104.A. (middle picture) and 104.B. (right picture), are predicted to be non substrates for any of 
the ABC transporters (P-gp, MRP1 nor ABCG2).  The molecular modelling of SG-2819 (green) 
within DNA has been shown for comparison (left picture). 
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The general parameters defining the minimisation of the complex such as the 

van-der-waals energy was evaluated for the 2 new derivatives.  104.A. was 

associated with the lowest VdW energy (-526.7) followed by 104.B. (-515.5) (Figure 

106).  Since the VdW energy has been shown to be a major factor involved in the 

drug-DNA interaction, 104.A. and 104.B. are predicted be associated with a 

maximal interaction with DNA (predicted ∆Tm of 61.3 and 33.7, respectively).   

 For comparison, SG-2897 is associated with a ∆Tm of 20.8 which 

represents a ~3 fold lower affinity for DNA.  This particular compound has been 

shown to be the most cytotoxic PBD-monomer among a panel of cell lines.  Since, 

the interaction with DNA has been shown to be a major factor in the PBD-monomers 

driven growth inhibitory effect, the new derivatives (especially 104.B.) are predicted 

to be associated with maximal anti-tumour activity. 

SJG-136, a PBD-dimer has shown a ∆Tm of 31 which represents a ~2 fold 

lower affinity for DNA.  In addition, its growth inhibitory effect has been shown to 

be reduced by the expression of the ABC transporters.   In contrast, 

104.B. would have a greater affinity for DNA and a limited interaction with the ABC 

transporters, thus associated with a maximal anti-tumour activity. 
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Figure 106.  Prediction of the interaction with DNA of the 2 PBD-new derivatives.  The interaction 
with DNA is represented as ∆Tm.  The VdW energies for 104.A. and 104.B. have been evaluated by 
molecular modelling after minimisation of the PBD-DNA complex.  Predicted ∆Tm of the PBD new 
derivatives have been determined according to the linearity defined previously for a range of PBD-
monomers.  ∆Tm for SJG-136 has been reported for comparison (∆Tm = 31).   

 
 
 
 

5.3 Discussion 

 Interstrand cross-linking (ICL) agents have shown utility in the treatment of 

many cancers.  A novel ICL agent, SJG-136, a PBD-dimer, has been shown to be 

active in vitro and in vivo and is in clinical development.  However its growth 

inhibitory effect can be decreased by the expression of many ABC transporters.   

 The PBD-monomers may not be considered to be the best candidates for 

further development as they do not cross-link DNA and are generally less potent that 

the PBD-dimers.  However, the PBD-monomers only demonstrate a limited 
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interaction with ABC transporters and one of them has shown a level of growth 

inhibitory effect similar to SJG-136.  In this chapter, physico-chemical properties 

involved in the biological activity of the PBD-monomers were defined, hence 

defining a structure activity relationship.  The interaction with DNA, as measured by 

∆Tm and the growth inhibitory effect of the PBD-monomers has been shown to be 

highly correlated in a panel of cancer cell lines.   

 It is well known that that due to its phosphate group, DNA is negatively 

charged.  Moreover, the electrostatic potential is more negative for the deep, narrow 

minor groove than for the major groove of B-form DNA (Pullman, Lavery et al. 

1982; Nelson, Finch et al. 1987). 

 PBD-monomers are positively charged at physiological pH and it appears that 

long-range electrostatic attractions allow an initial approach of the PBDs to DNA. 

 The surface buried in the minor groove of DNA has been shown to be 

fundamentally hydrophobic.  As a consequence, molecules with a greater 

hydrophobicity are predicted to generate a greater affinity within the binding pocket 

of DNA.  The PBD-monomers are all hydrophobic as determined by their Log P 

ranging from 1.9 to 3.7.  This property allows them to fit within DNA. 

 In addition, the presence of the imine form containing the C11-electrophilic 

carbon is ubiquitous among the PBD-monomers. The imine allows the PBD-

monomers to form a covalent bond with DNA.  Other physico-chemical parameters 

may also impact on the drug-DNA affinity.  When bound to one strand of DNA, the 

lipophilicity as represented by the surface activity, the solvent accessible surface area 

and log P were negative determinants for additional interaction with DNA and the 

induced growth inhibition.  This phenomenon could be explained by the fact that 
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when 2 entities are hydrophobic, they attract one another.  However, a repulsive 

force tends to appear once the 2 entities get too close (when they are inside each 

others VdW radii).  

  In contrast, the molecular aromaticity (number of 6 menber rings) was 

identified as a positive determinant for the interaction of the PBDs to DNA.  The 

molecular aromaticity has been further analysed and the role of the stacking 

interactions between the C2 moiety of the PBD-monomers and the different bases of 

DNA was revealed.  The stacking interactions represent the most important close 

contact interactions which allow the 2 strands of DNA to be held together.  The 

strength of the base stacking interactions depends on the bases.  It is strongest for 

stacks of G/C base pairs and weakest for stacks of A/T base pairs, which explains 

why it is easier to melt A/T rich DNA at high temperature.  The PBD-monomers of 

our library may generate a greater interaction with DNA when surrounded by GC 

sequences.  By minimising the PBD-monomer-DNA complex in silico, the spatial 

arrangement of the C2-aryl substituent did not allow the molecule to fit in between 

the nucleotides and undergo the optimal stacking interaction.  However, during 

replication, DNA is subject to relaxation.  The modified spatial arrangement of the 

nucleotides may allow the aromatic ring to become available for an optimal stacking 

interaction with the PBD-monomers.  Further studies will be needed to confirm this 

hypothesis.  For example, the denaturation data (∆Tm) may be re-evaluated using 

G/C-rich sequences (Ha-ras oncogene) or A/T-rich (estrogen receptor (ER)) 

amplified by Polymerase chain reaction (PCR).  

 The aromaticity, of SJG-244 should have predicted potent growth inhibitory 

effect.  However, the latter has an aromatic ring at the C8 extremity and has shown 
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the lowest growth inhibitory effect among the panel of cell lines tested.  When the 

complex between SJG-244 was modelled in silico the C8 extremity was found 

pointing towards the outer surface of DNA (data not shown) preventing a good fit 

within the minor groove of the double helix.  SJG-244-DNA adducts may be 

recognised and removed more readily by DNA repair machinery, thus limiting its 

anti-tumour activity. 

 In addition, electrophicity was shown to be a major determinant of the 

interaction of the PBD-monomers with DNA.  SG-2820 has, at its C2 extremity, a 

nitrogen atom with a negative partial charge in contrast to SG-2781.  It may form 

hydrogen bonds, more readily, with DNA, thus enhancing a greater interaction with 

the double helix.  However, the anti-tumour activity of SG-2820 did not correlate 

with the interaction with DNA as determined by the thermal denaturation data.  

Therefore, other cellular factors may influence the biological activity of the C2-aryl 

substituent derivatives. Compounds with a greater electrophilic potential may be 

associated with a greater interaction with cellular proteins or may be detoxified more 

easily by conjugation therefore, reaching DNA less readily, resulting in a reduced 

anti-tumour activity.  Consideration of these factors may allow a rational design of 

new PBDs with enhanced anti-tumour activity.  PBD-electrophilic-site, involved in 

PBD-DNA interaction may be hidden by the addition of chemical groups.  The pro-

drug may be easily recognised by nuclear lytic enzymes which could release the 

active form more readily, preventing detoxification processes.  Such strategy has 

already been tested with the PBD derivatives.  For instance, “N10 protected” PBD 

molecules pro-drugs were associated with a limited anti-tumour activity in contrast to 
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the active form, obtained by the lytic activity of the nitroreductase enzyme (Sagnou, 

Howard et al. 2000). 

 The position of the electrophilic atom has also been shown to be of 

importance in PBD-DNA complex formation and in the related activity of the PBD-

monomers.  Indeed, SG-2897 is associated with a greater interaction with DNA and 

greater anti-tumour activity than its 6 member ring counterpart SG-2896.  The 

nitrogen, with a particular spatial arrangement, may interact with both strands of 

DNA, thus increasing PBD-DNA interaction.  These results provide evidence that the 

PBD-monomer, SG-2897, which does not cross-link DNA, may generate 

significantly close contact interactions which could “mimic” the cross-link, induced 

by the PBD-dimers. 

 The anti-tumour activity of SG-2897 has also been tested in vivo and 

compared to the anti-tumour activity of SJG-136 using Nu/Nu mice.  The choice of 

the doses for SG-2897 was based on the maximum tolerated dose (MTD) that was 

determined previously for SJG-136 (0.6 mg/kg).  The drug was given i.v. in a single 

(0.3 mg/kg) or 0.12 mg/kg in a Qdx5 schedule.  The single administration schedule 

was less effective, but the total dose administered with the Qdx5 schedule is twice 

the single dose (0.3 mg/kg).  A specific growth delay < 1 and a tumour regression 

(T/C) > 42% suggested that the inhibition of the tumour growth with SG-2897 was 

not significant.  However, the activity of SJG-136 was also not significant in this 

particular model.  The potency of SG-2897 is similar to SJG-136, in vitro and it can 

be argued that further investigations of the anti-tumour activity in more appropriate 

models may lead to more convincing results.  The NCI60 screen has identified the 

melanoma SK-Mel 5 cell line as being the most sensitive cell line model to SG-2897. 
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Experiments were carried out in order to determine the MTD for this particular 

compound using CD-1 nude mice. A 0.25 mg/kg dose in a Qdx5 schedule was not 

tolerated and the mice had to be culled after 3 days of treatment. When the mice were 

treated back with 0.12 mg/kg dose in a Qdx5 schedule, a body weight loss was first 

observed; suggesting toxicity, followed by death after 5 days. The necroscopy 

revealed hepatitis. These results suggest a hypersensitivity reaction rather than a true 

toxic effect which may be strain related.  Therefore, evaluation of the MTD using the 

Nu/Nu mouse strain, originally tested, would be the next step. 

 The recognition and the repair of the DSB generated by the PBD derivatives 

have been shown to involve the recruitment of proteins of the homologous 

recombination (HR) repair pathway such as XRCC2 and XRCC3.  In this chapter, 

the impact of another protein in the HR pathway, BRCA2 was investigated.  A cell 

line deficient for BRCA2, was more sensitive to the PBD-dimer, SJG-136 and to the 

PBD-monomer SG-2897.  The ratio between the IC50s in the proficient cell line V-79 

and the IC50 in the deficient cell line was > 20 for SJG-136 and > 50 for SG-2897.  

These results demonstrate the impact of BRCA2 in DNA repair machinery associated 

with PBDs.  When these results are compared to the study by Clingen and 

colleagues, the ratio between the IC50 in XRCC3 and XRCC2 proficient and deficient 

cell lines was 7.5 and 3.5, respectively, demonstrating a limited impact of these 

factors on DNA repair in contrast to BRCA2 (Clingen, De Silva et al. 2005).  

Moreover, the growth inhibitory effect of SG-2897 was more enhanced by the 

deletion of BRCA2 than the growth inhibitory effect of SJG-136.  In vivo 

experiments were carried out to confirm the impact of BRCA2 but since the CD-1 

nude mice used were hypersensitive, no conclusive result could be obtained. 
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 Other studies have also reported differential impact of the proteins of the HR 

pathway in the repair of the damage induced by cytotoxic agents.  The HR induced 

by ET-743, has been shown to be mediated mostly by XRCC3 in contrast to XRCC2 

(Soares, Escargueil et al. 2007).  In contrast, XRCC2 and XRCC3 were both 

recruited after treatment with melphalan, Mitomycin C and tirapazamine (Cui, 

Brenneman et al. 1999; Clingen, De Silva et al. 2005; Evans, Chernikova et al. 

2008).   

 Taken together, the different HR proteins may be acting as in an equilibrium 

model to trigger efficiently the signal for the repair of damaged DNA.   

 There are a great number of cancers associated with mutations of proteins of 

the HR pathway.  For instance, 50% of all breast cancers are associated with loss of 

HR(Venkitaraman 2002).  Targeting the HR-defective tumours with specific 

chemotherapeutics such as the PBDs appears to be a realistic clinical strategy, 

underlying the concept of “synthetic lethality”.  Recently, Bryant and colleagues 

have demonstrated the relevance of this strategy using inhibitors of poly(ADP-

ribose) polymerase 1 in the killing of BRCA2 deficient tumours (Bryant, Schultz et 

al. 2005). Similarly, a benefit in cisplatin based chemotherapy was seen among 

patients with ERCC1 negative tumours (Olaussen, Dunant et al. 2006).  

 The PBD-monomer, SG-2897 was associated with a significant anti-tumour 

activity in vitro without being able to reproduce similar potency in vivo.  The rational 

design of new PBD-monomers that are not substrates for ABC transporters and with 

enhanced anti-tumour activity may generate PBD derivatives associated with 

sufficient in vivo anti-tumour activity to merit their preclinical evaluation. To 

facilitate the design of new molecules, a computer based approach has been used to 
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evaluate the potential potency of new derivatives.  Minimisation of the PBD-

monomer-DNA complex has identified the van-der-waals energy and the 

electrostatic forces as determinants of the interaction with DNA.  Compounds that 

have generated the greatest VdW energy, by minimisation of the complex were 

associated with the greatest affinity for DNA.  This is in accordance with the findings 

from Bielawski and colleagues who analysed a series of carbocyclic analogues of 

netropsin which are also minor-groove binders (Bielawski, Bielawska et al. 2000).  

Some might argue that VdW interactions could also generate repulsive forces.  In 

this case, a greater value of VdW would be associated with greater steric constraints 

and more bonded forces after optimisation of the complex.  SG-2897 was associated 

with the greatest VdW energy but with limited bonded forces.   

 Many PBD-derivatives have been synthesised in order to improve their 

affinity for DNA and related growth inhibitory effect (Kamal, Babu et al. 2005; 

Kamal, Reddy et al. 2006; Wang, Shen et al. 2006).  These studies have focussed on 

modification of the C8 subsituents.  For instance, a series of PBD-polypyrrole 

conjugates reported by Baraldi and Lown (Damayanthi, Praveen Reddy et al. 1999) 

and modified by Wells and colleagues have been associated with a significant 

interaction with DNA and growth inhibition in the nanomolar range against K562 

cell line (Wells, Martin et al. 2006).  However, all of these analogues share the 

physico-chemical features for recognition by the ABC transporters: the number of 

(N+O) atoms > 10, a logP > -1, a PSA > 75 Ǻ2 and the presence of carbonyl at the 

extremity.  Therefore, their anti-tumour activity is predicted to be reduced in cell 

lines expressing different ABC transporters.  In addition, the presence of an carbonyl 

moiety may lead to a greater detoxification through the conjugation to glutathione by 
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glutathione-S-transferase for example, limiting even further their anti-tumour 

activity. 

 Another strategy has been investigated by Antonow and colleagues. They 

have synthesised a series of PBD-derivatives, with modifications at the C2 

substituent.  A few were associated with a high affinity for DNA as determined by 

∆Tm thus, inducing a greater cytotoxic effect.  Similarly, though some of these PBD 

derivatives are predicted to be ABC transporter and GST substrates.  

 In this chapter, 2 strategies were combined: new PBD derivatives were 

designed by modifying the substituent at position C2 and C8 based on their ability to 

interact with DNA and simultaneously limited potential interaction with the ABC 

transporters.  

 Unfortunately, it became apparent that the chemical synthesis of the new 

analogues with combined modifications at C2 and C8 is challenging chemistry as 

novel synthetic pathways will have to be developed.  Therefore, synthesis of new 

analogues was not achieved within the time scale of the project. 
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6 Chapter 6: CONCLUSIONS 

 

The aims of the work presented in this thesis were to identify the structural 

factors responsible for ABC transporter (P-gp, MRP1 and ABCG2) dependency of 

the pyrrolo [2, 1-c][1,4]benzodiazepines (PBDs), to evaluate the impact of ABCB1 

and ABCG2 polymorphisms and to determine the structural features associated with 

PBD activity.  Using this information, new PBD entities would be designed with 

potentially enhanced anti-tumour activity. 

 

6.1 Features involved in ABC transporters substrate specificity of the PBD 

derivatives 

6.1.1 P-gp (ABCB1) 

 Molecular weight (MW), the polar surface activity (PSA), the number of 

(N+O) atoms and the hydrogen bonding energy were associated with P-gp substrate 

specificity of the PBDs (Table 22).  When the PBD-dimers were considered 

independently, LogP and MW correlated with P-gp dependency and therefore could 

be used to further minimise the impact of P-gp over-expression.  However, all PBD-

dimers have a MW > 532.5 and no approach is feasible to diminish their size without 

losing “the dimer property”. The PBD-monomers were only shown to be low affinity 

substrates in supraphysiological conditions. In a clinical context, optimising their 

structures is therefore not required. 
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6.1.2 MRP1 (ABCC1) 

 The presence of a carbonyl moiety at the C2 extremity of the PBD derivatives 

(SG-2823) was shown to be required for a spontaneous and enzymatic (glutathione-

S-transferase) coupling to glutathione, prior to the extrusion by MRP1, out of the cell 

(Table 22).  The spontaneous conjugation of GSH to the PBDs was suggested to 

occur at the carbinolamine moiety ubiquitous among the PBDs.  This detoxification 

process (conjugation to glutathione) is, as well as the expression of the ABC 

transporters, involved in MDR.  Consideration of the factors involved in the GSH / 

coupling such as the electrophilicity of the PBDs should be taken in account in the 

rational design of new entities.  The specific impact of the different members of the 

GST family on the detoxification process mediated by MRP1 may be the basis for 

further work.   

6.1.3 ABCG2 (BCRP) 

 It has been shown that ABCG2 substrates share a common set of properties 

such as high polarity and a large number of hydrophilic groups which can be seen 

among both the PBD-dimers and PBD-monomers.  The work presented in this thesis 

demonstrated that PBDs with a greater number of aromatic rings and (nitrogen and 

oxygen) negatively charged atoms were shown to be associated with greater substrate 

specificity to ABCG2 (Table 22).  Minimising these features should allow the design 

of new PBD derivatives with minimal interaction for the transporter.  
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6.2 Impact of the major ABC transporters polymorphisms 

 Inter-individual differences as described by ABC transporters polymorphism 

may also alter the specificity of PBDs for the transporters. The work presented in this 

thesis evaluated the impact of the major mutations on the substrate specificity of the 

PBDs to ABC transporters. 

6.2.1 ABCB1 polymorphism  

 An enhanced efflux transport ability associated with the 2677 (G/T) variant 

(Ser 893), i.e. “gain of function” mutation for the PBD-dimers, high affinity 

substrates of the transporter was demonstrated.  When a mutation in position 3435 

was associated with a mutation in position 2677 (G/T), the former abrogated the 

“gain of function” identified in the efflux of the PBD-dimers.  The anti-tumour 

activity of the PBD-monomers, low affinity substrates, would be less subject to inter-

individual variability of the transporter than the PBD-dimers.  A phase one trial is 

being conducted with SJG-136 and preliminary data have demonstrated an impact of 

ABCB1 polymorphism (personal communication).  

6.2.2 MRP1 polymorphism 

 Functional single nucleotide polymorphisms of MRP1 have not yet been 

reported and further studies are needed to evaluate the impact of inter-individual 

variability on PBD efflux mediated by MRP1.  In addition, the role of glutathione-S-

transferase polymorphism on clinical outcome has been reported recently and in light 

of the data presented in this thesis it may be appropriate to investigate the impact of 
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the different variants on PBD susceptibility to detoxification (Moradi, 

Mojtahedzadeh et al. 2008).   

6.2.3 ABCG2 polymorphism 

 A “gain of function” was associated with the presence of a threonine as 

supposed to an arginine.  PBDs, with a greater number of aromatic rings and electron 

withdrawing groups were more affected by this particular mutation.  These 

preclinical data may guide further evaluations of the PBD-monomers and PBD-

dimers and establish a link with the clinical impact of the 482 SNP. 

 

6.3  PBD-monomer related activity 

  The PBD-monomers do not appear to be high affinity substrates of P-gp or 

MRP1 (apart from SG-2823) and have shown a minimal interaction with ABCG2 in 

contrast to the PBD-dimers.  It can be argued that the PBD-monomers might be 

associated with a minimal interaction for the ABC transporters, but as they do not 

cross-link DNA, they would be less potent than the PBD-dimers.   

 These studies demonstrate that the PBD-monomer, SG-2897 is as active as 

the PBD-dimer, SJG-136 in vitro. To study this further, the physico-chemical 

properties involved in the PBD-monomer/DNA binding affinity and to the related 

anti-tumour activity were investigated.  The number of aromatic rings correlated with 

the anti-tumour activity of the PBD-monomers. The number of electrophilic atoms 

and the lipophilicity as represented by the surface accessible solvent area and logP, 

inversely correlated with the anti-tumour activity.  In addition, the fitting of the 



 236

PBDs (preventing bulkiness) within DNA was shown to be a critical factor for the 

activity of the PBD-monomers as well as the position of the electrophilic atoms at 

the C2 extremity, thus enhancing greater close contact interactions (Table 22).   

 Overall, the results presented in this thesis allowed the rational design of a 

new PBD derivative (104.B.) based on the features associated with the affinity for 

the different ABC transporters and on the features involved in the anti-tumour 

activity of the PBDs (Table 22).  Few parameters such as the aromaticity were 

optimised in order to prevent ABCG2 substrate specificity but also to allow a 

sufficient anti-tumour activity.  Parameters such as Log P and the number of (N+O), 

negatively charged were decreased in order to promote the anti-tumour activity of the 

PBDs.  

  
P-gp 

  
MRP1 

  
ABCG2 

  
Anti-tumour 

activity 
Features          
          
PSA   +     
MW   +     
Log P  +   -  
HBE  +     
(N+O)  +  +   
(N+O)-    + -  
(N+O)+       
Aromatic rings   + +  
Surface activity   -  
bulkiness     -  
SASA     -  
C=O at 
extremity  +    

 
 
 
Table 22.  Features involved in the anti-tumour activity of the PBDs and the features involved in ABC 
transporters dependency. PSA: Polar surface area, MW: Molecular weight, HBE: Hydrogen bonding 
energy, (N+O), (N+O)- and (N+O)+: number of oxygen and nitrogen atom, negatively charged and 
positively charged, respectively. SASA: Solvent accessible surface area.  (+) show a positive 
contribution of the features to PBD dependency to ABC transporters. (-) show a negative contribution 
to the anti-tumour activity of the PBDs. (+) show a positive contribution to the anti-tumour activity of 
the PBDs. 
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 Further work is needed to confirm the relevance of the different features, i.e. 

optimised structure on drug absorption, distribution, metabolism and elimination, 

hence defining the pharmacokinetics of the PBD-monomers.  The PBDs, due to their 

high electrophilic characteristic (C11), may potentially undergo a high metabolism 

and a significant protein binding preventing the molecule to reach the tumour site.  

Alternative deliver strategies, such as prodrugs with “hidden electrophilic moiety” 

should be undertaken in order to allow a significant in vivo anti-tumour activity.  

Such strategy may only be applied to the PBD-monomers as the addition of the 

“hiding groups” would increase the molecular weight of the derivatives associated 

with P-gp substrate specificity. 

 H2AX foci formation correlated with activity of the PBD-monomers.  

Therefore, the formation of γH2AX foci may be used to evaluate the efficacy of the 

drug treatment.  The DNA repair machinery following the treatment with the PBD-

monomers was also investigated and BRCA2 was identified as a predictive 

biomarker.  Therefore, the potential anti-tumour activity of the PBDs may be 

enhanced in tumours mutated or deficient in this particular protein.   

 

 To conclude, in the work presented in this thesis, I have identified the 

chemical features involved in ABC transporter dependency of the PBDs.  I have 

also been able to link structural features of the PBD monomers to activity and 

this has allowed me to design a novel PBD derivative, predicted to show enhanced 

anti-tumour activity.   Unfortunately, the complexity of the synthesis of 

this chemical entity did not allow it to be synthesised within the time scale of this 

project 
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