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Abstract 

Tropospheric Carbon Monoxide:  

Satellite Observations and Their Applications 

 

Carbon monoxide (CO) is present in the troposphere as a product of fossil fuel 

combustion, biomass burning and the oxidation of volatile hydrocarbons. It is the 

principal sink of the hydroxyl radical (OH), thereby affecting the concentrations of 

greenhouse gases such as CH4 and O3. Consequently, CO has an atmospheric 

lifetime of 1-3 months, making it a good tracer for studying the long range transport 

of pollution.  

 

Satellite observations present a valuable tool to investigate tropospheric CO. The 

Atmospheric InfraRed Sounder (AIRS), onboard the Aqua satellite, is sensitive to 

tropospheric CO in ~50 of its 2378 channels. This sensitivity to CO, combined with 

the daily global coverage provided by AIRS, makes AIRS a potentially useful 

instrument for observing CO sources and transport. 

 

An optimal estimation retrieval scheme has been developed for AIRS, to provide CO 

profiles from near-surface altitudes to 150 hPa. Through a validation study, using CO 

profiles from in-situ aircraft measurements, this retrieval scheme has been shown to 

provide CO observations with strong correlations to in situ measurements. Compared 

to the operational AIRS v4 CO product this retrieval scheme is shown to provide 

total column CO retrievals with a reduced bias relative to the in situ measurements (~ 

-10% to ~ -1%). In addition, the optimal estimation retrieval is shown to provide 

improved estimation and characterization of the retrieval errors. 

 

Further validation work has been carried out through comparison with the established 

CO observations from the MOPITT instrument, onboard the Terra satellite. Good 

agreement (correlation coefficient > 0.9, and bias < 1.0 ppbv) between the 

instruments is observed in the mid-troposphere. At this level, the optimal estimation 

scheme is shown to remove a positive bias of ~10 ppbv, relative to MOPITT, that is 

present in the AIRS v4 CO product.  The AIRS instrument is also shown to be less 



x 

 

sensitive to CO in the lower troposphere than MOPITT. AIRS is also demonstrated 

to provide fewer pieces of independent information about the vertical structure of CO 

at tropical latitudes, where higher thermal contrast increases the sensitivity of 

MOPITT. 

 

Through time series analysis, the capability of AIRS to detect seasonal trends in CO 

is demonstrated. The potential of AIRS to be used to track, both horizontal and 

vertical, CO transport is explored. AIRS is shown to be capable of tracking 

horizontal transport, and to have potential to track vertical transport when combined 

with another satellite sensor. 

 

 



Chapter 1  Introduction 

1 

 

Chapter 1. Introduction 

1.1. Carbon Monoxide in the Atmosphere 

Carbon monoxide (CO) is an important pollutant in the atmosphere. CO abundances 

range from about ~40 parts per billion (ppb), in regions far from CO sources (e.g. the 

remote southern hemisphere), to concentrations > 500 ppb in areas of regional scale 

pollution. In the urban environment or local areas of biomass burning, CO levels can 

exceed one part per million (ppm) [Novelli, 1999]. The principal direct sources of 

tropospheric CO are biomass burning and wildfires [Andreae and Merlet, 2001], and 

anthropogenic emissions from technological sources (e.g. vehicle exhausts and 

industry) [Olivier et al., 1999]. Biofuels are another significant source of 

anthropogenic CO emissions. Combined, these sources account for approximately 

1350 Tg yr
-1

 (~50%) of the total global CO emissions [Intergovernmental Panel on 

Climate Change, 2001]. This high level of contribution from human activities results 

in CO concentrations in the Northern hemisphere being about twice those in the 

Southern hemisphere. There are also natural primary sources of CO in the boundary 

layer, with emissions from the oceans (~50 Tg yr
-1

) and vegetation (~150 Tg yr
-1

). 

Strong emission patterns coupled with a lifetime of 1-3 months [Intergovernmental 

Panel on Climate Change, 2001] result in large CO gradients in the atmosphere and 

distinct regional patterns of variability. As there are such significant and (particularly 

for the case of biomass burning) highly variable CO sources at the surface, the 

highest and most variable CO concentrations occur in the boundary layer.  

 

In the troposphere there are also significant secondary sources of CO in the form of 

the oxidation of volatile organic compounds by the hydroxyl radical, OH (~1350 Tg 

yr
-1

). This is principally through the oxidation of methane, ~690 Tg yr
-1

, with a 

significant contribution from isoprene, ~330 Tg yr
-1

[Pfister et al., 2008]. The 

chemical reactions governing CO production through the oxidation of methane (CH4) 

via formaldehyde (HCHO) are presented in Eqs. 1.1 to 1.4.  
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 CH4 + OH (+O2) → CH3O2 + H2O (1.1) 

 CH3O2 + NO → CH3O + NO2 (1.2a) 

 CH3O2 + HO2 → CH3OOH + O2 (1.2b) 

 CH3OOH + hν → CH3O + OH (1.2c) 

   

 CH3O + O2 → HCHO + HO2 (1.3) 

   

 HCHO + hν → H2 + CO (1.4a) 

 HCHO + hν → H + HCO (1.4b) 

 HCO + O2 → CO + HO2 (1.4c) 

 

 

Because CH4 is well distributed, due to its long lifetime of ~8 years, there is little 

regional and seasonal variation in its contribution to CO. Granier et al. [2000] 

illustrate that what variation there is occurs between continental and ocean regions, 

with lower contributions from CH4 observed over the continents. This is a result of 

strong chemical loss of OH through higher emissions of isoprene and other VOCs. 

 

The importance of CO in the troposphere lies in its role in affecting the oxidizing 

capacity of the atmosphere through reaction with OH. CO is the principal sink of OH 

in the troposphere, accounting for about 50% (1500-2700 Tg yr
-1

) of the OH sink and 

may account for about 40-60% of the hydro-peroxy (HO2) radical production 

[Kanakidou and Crutzen, 1999]. As a result CO indirectly influences the 

concentration of greenhouse gases, such as O3 and CH4. Kanakidou and Crutzen 

[1999] demonstrate that a 50% decrease in industrial CO emissions would increase 

OH by ~3.5%, which would reduce CH4 concentrations through enhanced 

photochemical loss. The effect of CO concentrations on O3 concentrations is strongly 

dependent on the relative concentration of nitrogen oxides, NOx. In clean 

environments, where NOx concentrations are low, the oxidation of CO by OH 

reduces O3 concentrations through reactions with HOx (Eqns. 1.5 to 1.10). 
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 CO + OH → H + CO2 (1.5) 

 H + O2 + M → HO2 + M (1.6) 

 HO2 + O3 → OH + 2O2 (1.7) 

 CO + OH → CO2 + H (1.8) 

 H + O2 + M → HO2 + M (1.9) 

 2CO + O3 + OH → 2CO2 + H2O (1.10) 

 

However, in regions where NOx concentrations are high (industrial regions and areas 

of biomass burning) CO is a precursor to the formation of O3. This occurs through 

NOx catalysed reactions with HO2 (the concentration of which is enhanced by CO).  

These reactions are detailed in Eqns. 1.5, 1.6, and 1.11 to 1.14. 

 

 CO + OH → H + CO2 (1.5) 

 H + O2 + M → HO2 + M (1.6) 

 HO2 + NO → NO2 + OH (1.11) 

 NO2 + hν → NO + O (1.12) 

 O + O2 + M → O3 + M (1.13) 

 CO + 2O2  → O3 + CO2 (1.14) 

 

Although the chemical reactions of CO leading to production and destruction of O3 

both result in the net production of CO2 (Eqns. 1.10 and 1.14), the contribution of 

this in situ source is small relative to the total source of CO2.  The net formation (or 

destruction) of O3 is very important, as in addition to being a greenhouse gas, 

tropospheric O3 is also a harmful pollutant that can cause crop damage and human 

health problems [Intergovernmental Panel on Climate Change, 2007]. As the 

interaction of CO with OH has such a significant influence on the chemical 

composition of the atmosphere, with potential impacts on climate and living matter, 

it is important that tropospheric CO is well understood.  

 

Although the global CO burden is strongly affected by the CO sources described 

previously, seasonal trends in CO are dominated by variations in the concentration of 
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OH. During the summer months in each hemisphere, high levels of solar illumination 

causes an increase in O3 photolysis which, through subsequent reaction with H2O 

(Eqns. 1.15 and 1.16), raises the OH concentrations and the oxidizing potential of the 

atmosphere [Edwards et al., 2004].  

 

 O3 + hν → O(1D) + O2 (1.15) 

 O(1D) + H2O →  2OH (1.16) 

 

This natural increase in OH allows more CO to be removed from the atmosphere, 

reducing CO concentrations during the summer months. As the oxidizing potential of 

the atmosphere exhibits natural seasonal variations, the relative timing of CO 

emission events becomes important. Edwards et al. [2004] show that winter time 

emissions are relatively more important, as the lifetime of CO is considerably longer 

during the winter months. 

 

The lifetime of CO (~1-3) months enables CO from major emission events, such as 

large scale biomass burning, to be transported across large distances around the 

globe. Therefore, strong CO emission regions can cause significant increases in CO 

concentrations in areas far from the source, and can consequently impact on air 

quality and health in these areas. The advent of satellite retrievals of CO offers 

tremendous opportunity for using CO as a tracer for investigating pollution transport, 

and also the variability of CO sources. 

 

1.2. CO Observations 

1.2.1. Historical Observations 

The first measurements of atmospheric CO were made in the late 1940s using 

spectroscopic techniques [Migeotte, 1949]. In the late 1960s the importance CO to 

the oxidizing capacity of the atmosphere was realized [McConnell et al., 1971]. This 

period also saw the development of gas chromatic methods for CO measurements 

and work using these techniques illustrated variations in CO concentrations with 
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latitude, season, and the degree of pollution in the air mass. Details of the 

spectroscopic and gas chromatographic techniques for CO measurement are 

described in detail in Novelli [1999].  

 

Until the end of the 20th century, observations of atmospheric CO were largely 

limited to those from surface sites and airborne measurement campaigns. However, 

there were two short-lived space-borne measurement campaigns. The first of these 

was the Measurement of Air Pollution from Satellites (MAPS) experiment. This 

nadir viewing gas filter radiometer was flown onboard the Space Shuttle for brief 

periods in 1981, 1984 and 1994 [Reichle et al., 1999]. MAPS provided the first set of 

coherent global observations of the distribution of CO in the troposphere and thus 

gave an insight into the potential of satellite observations of CO.  The potential to 

observe long-range transport of pollution was demonstrated using by Chan et al. 

[2000] and Newell et al. [1999]. Connors et al. [1999] highlighted the potential of 

such observations for looking at seasonal variability of CO sources, while Lamarque 

et al. [1999] showed that chemical transport models could be improved through the 

assimilation of MAPS CO observations. 

 

The second space-borne instrument was the Interferometric Monitor for Greenhouse 

gases (IMG). It was a high spectral resolution Fourier transform interferometer, 

flown onboard the ADEOS satellite [Clerbaux et al., 1999]. Unfortunately this 

instrument was short-lived, providing only nine months of data over 1996 and 1997. 

Despite its short lifetime, IMG provided an insight into the potential of space-borne 

high spectral resolution sounders (such as AIRS) for the retrieval of trace gases 

[Clerbaux et al., 2003].  The retrieval of meteorological parameters (such as 

temperature and humidity profiles) from IMG spectra was demonstrated by Lubrano 

et al. [2000]. As highlighted by Clerbaux et al. [1999] accurate estimates of such 

parameters is necessary for accurate retrievals of CO. Although both the MAPS and 

IMG instruments were short-lived, they successfully illustrated the potential of 

satellite observations to provide a picture of the global distribution and variability of 

CO.   
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1.2.2. Current Observations 

Since 2000 a number of satellite instruments capable of observing tropospheric CO 

have become operational. These can be broadly split into four categories, defined by 

the spectral characteristics (thermal infra-red, short-wave infra-red, and microwave), 

and the viewing geometries (nadir and limb) of the instruments. Table 1.1 provides a 

comparison of some of the basic properties of the instruments in each of these 

categories. From Table 1.1 it is clear that there is a wide range of different operating 

characteristics in the current satellite instruments. These differences give rise to a 

variety of CO products, providing information about CO across different altitude 

ranges.   

 

The first of current satellite instruments to begin operational observations of CO was 

the Measurements of Pollution in the Troposphere (MOPITT) satellite instrument, 

launched onboard the TERRA satellite in 1999 [Deeter et al., 2003]. This is a nadir 

viewing instrument that uses similar technology to the earlier MAPS instrument.  

MOPITT brought advances in CO observations, with improvements in global 

coverage and accuracy compared to the earlier space-borne instruments (MAPS and 

IMG). Continuous observations of CO by MOPITT enabled more extensive 

investigations into seasonal cycles and interannual variability [Edwards et al., 2004], 

and improved observations of pollution transport [Heald et al., 2003]. Kar et al. 

[2004] demonstrated that MOPITT retrievals contained information about the 

vertical structure of CO in the troposphere and proposed that MOPITT could be used 

in the study of the vertical transport of CO. MOPITT observations of CO have also 

been used in inverse modeling studies to investigate the variability of CO sources 

[Heald et al., 2004]. Further details about MOPITT and its CO observations are 

given in the MOPITT comparison work (Chapter 5). As MOPITT is a well 

established and extensively validated instrument [Emmons et al., 2004] instrument, it 

is often used as a benchmark for other satellite instruments, as in this study (Chapter 

5).  

 

In addition to MOPITT there are a number of other currently operational satellite 

instruments that are capable of observing CO. The ENVISAT payload carries two of 
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these instruments: the SCanning Imaging Absorption spectroMeter for Atmospheric 

CHartographY (SCIAMACHY) [Buchwitz et al., 2005] and the Michelson 

Interferometer for Passive Atmospheric Sounding (MIPAS) [Belotti et al., 2006]. 

These are two quite distinct instruments. SCIAMACHY is a nadir viewing 

instrument measuring scattered, reflected and transmitted solar radiation in the Near 

Infra-Red (NIR). Its main advantage over MOPITT and other IR sounding 

instruments is its greater sensitivity to CO in the lower troposphere and boundary 

layer. SCIAMACHY also operates in a limb-viewing mode but retrievals from such 

observations are not provided as a routine data product. MIPAS is a limb viewing IR 

sounder and is only sensitive to CO at altitudes above about 6 km. The NASA Aura 

satellite also houses two CO sensitive instruments:  the Microwave Limb Sounder 

(MLS) [Filipiak et al., 2005] and the Tropospheric Emission Spectrometer (TES) 

[Beer, 2006]. As for SCIAMACHY and MIPAS, the two Aura instruments are very 

different and provide CO information at different levels in the atmosphere. TES is a 

nadir viewing IR Fourier transform spectrometer, providing CO observations in the 

troposphere, while MLS operates as its name describes and provides CO 

measurement in the stratosphere and upper troposphere. TES can also operate in a 

limb-viewing mode but routine limb-view measurements were discontinued in April 

2005 [Rinsland et al., 2006]. 

 

We shall consider the Atmospheric Infra-Red Sounder (AIRS). This nadir viewing 

IR sounding instrument and was launched on board the Aqua satellite in 2002 

[Aumann et al., 2003]. Like the other nadir-viewing IR instruments, AIRS is most 

sensitive to CO in the mid-troposphere [McMillan et al., 2005]. Although it shares 

similar sensitivity with some of the other instruments, it does offer one distinct 

advantage, that is, considerably greater global coverage on a daily basis. As CO 

retrievals from AIRS are the main focus of this work, further details about the 

instrument are given in §1.2.3.  
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Instrument 

Type 

Nadir IR Nadir SWIR Limb 

Microwave 

Limb IR 

Operational 

Example 

AIRS, 

MOPITT, 

and TES 

SCIAMACHY MLS MIPAS 

λ ~ 4.7 µm 2265–2380 nm 1.2-1.3 mm 4.1-5.5µm 

Altitude 

Sensitivity 

MT-UT 

Low sensitivity 

in LT 

Equal 

sensitivity 

from LT to UT 

UT and lower 

stratosphere 

MT-UT  

(> ~6km) 

Day/Night 

Operation 

Both Day Both Both 

Table 1.1 Intercomparison of the types of CO observing instruments currently operational on satellite 

platforms.  LT, MT, and UT represent lower, mid, and upper-troposphere respectively. 

 

In this brief introduction to CO observations there are two main points to be noted. 

The first of these is the relatively short period over which global observations of CO 

have been available from satellite instruments. These new observations provide a 

means of improving our understanding of CO and consequently, improve our ability 

to model the chemical, physical and climatological properties of the atmosphere. The 

second key point to note is the large variety in the satellite instruments, both in terms 

of the methods they use and the form of the CO observation they provide. Such 

diversity presents us with potentially vast amounts of information about CO. 

However, at the same time it poses new problems in deciphering the true picture of 

CO from such different types of observations, and in maximizing the information 

through combinations of these instruments. 

 

1.2.3. The Atmospheric Infra-Red Sounder (AIRS) 

The AIRS instrument, launched onboard NASA’s Aqua satellite in 2002, is a cross-

track scanning grating spectrometer with 2378 high spectral resolution channels 

covering a spectral range of ~3.7 to ~16μm [Aumann et al., 2003] . Aqua operates in 

a sun-synchronous, near-polar orbit, at an altitude of 705.3 km. Some further 

characteristics of the Aqua satellite are given in Table 1.2. 
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Launch Date May 4, 2002 

Equatorial 

Crossing 

1:30 p.m., ascending node 

Altitude 705.3 km  

Inclination  98° 

Period  99 minutes  

Eccentricity  0.0015 

Instrument 

Payload 

Atmospheric Infra-Red Sounder (AIRS) 

Advanced Microwave Sounding Unit (AMSU) 

Humidity Sounder for Brazil (HSB) 

Advanced Microwave Scanning Radiometer for EOS (AMSR-E) 

Moderate-Resolution Imaging Spectroradiometer (MODIS) 

Clouds and the Earth’s Radiant Energy System (CERES) 

Table 1.2 General information about the Aqua satellite, including details of orbit characteristics and 

the payload. 

 

AIRS measures the outgoing infra-red radiation at the top of the atmosphere at high 

spectral resolution (λ\Δλ = 1200) in three non-contiguous wavelength bands (given in 

Table 1.3). An example AIRS spectrum for a cloud-free ocean footprint is shown in 

Figure 1.1. The AIRS scan geometry and characteristics (detailed in Figure 1.2 and 

Table 1.3) give AIRS nearly full global coverage twice daily (day and night). This 

excellent spatial and temporal coverage is one of the key advantages of the AIRS 

instrument, as will be discussed in later chapters. 
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Spectral Coverage 3.74 - 4.61 µm 

6.20 - 8.22 µm 

8.80 - 15.4 µm 

Spectral Resolution λ\Δλ = 1200 

Instrument Field of View 1.1° 

Scan Angle ±48.95 

Ground Footprint 90 per scan, 22 ms per footprint 

Swath width 1650  km 

Radiometric Calibration ± 3% absolute error 

Table 1.3 Characteristics of the Atmospheric Infra-Red Sounder (AIRS). 
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Figure 1.1 Example of the full AIRS spectrum, taken from Aumann et al. [2003]. This spectrum is 

from a single cloud-free ocean footprint.  

 

AIRS operates in synchronous with another of Aqua’s instruments, the Advanced 

Microwave Sounding Unit (AMSU), in a system designed to provide new and 

improved measurements of cloud properties, atmospheric temperature and humidity, 

and surface temperatures. The scan geometries of the two instruments are shown in 

Figure 1.2. AIRS has a spatial resolution of 13.5 km at nadir, while AMSU provides 

coverage at a resolution of 40 km at nadir. The two instruments operate such that 

each AMSU footprint is collocated with a set of 3x3 AIRS footprints, as shown in 
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Figure 1.2. These sets of 3x3 AIRS observations are used to determine the AIRS 

“cloud cleared radiance” product (described in §3.6.1), used in the CO retrieval 

scheme developed in this project (Chapter 3). Among the measurement 

improvements offered by AIRS is the ability to obtain atmospheric temperature and 

humidity profiles with accuracy equivalent to radiosondes: temperature profiles with 

1K accuracy in 1 km vertical layers, and humidity profiles accurate to 10% in 2 km 

layers. Such an improvement in satellite retrievals meets the level of accuracy and 

the global coverage required for improvements in numerical weather prediction 

(NWP), one of the main objectives of the AIRS instrument suite. 

 

Figure 1.2 AIRS scan geometry and typical one-day scan pattern. Image taken from  

http://www-airs.jpl.nasa.gov/ 

 

The ability of the AIRS/AMSU system to measure the key elements of the 

atmospheric state to high accuracy and precision is not only useful for NWP, but also 

benefits retrievals of other atmospheric constituents such as CO. Improvements in 

such retrievals should follow from better characterization of the atmospheric state, as 

uncertainties in the retrieval scheme are reduced. 

 

For CO retrievals, only ~50 of the 2378 channels are sensitive to CO (Chapter 3), 

and are used in the retrieval scheme. Although not used directly for CO retrievals, 

many of the other AIRS channels are involved in the CO retrieval through their 

http://www-airs.jpl.nasa.gov/
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contribution to the retrievals of temperature and water vapour. The channels used for 

CO retrievals lie at the edge of the 3.74 - 4.61 μm AIRS measurement band, close to 

the 1.0 vibration-rotation CO fundamental at 4.67 μm [Goody and Yung, 1995]. 

Utilising cloud-cleared radiances [Chahine, 1974] in this spectral region enables CO 

retrievals to be made using AIRS even in the presence of significant cloud cover 

[Susskind et al., 2003]. It is the high density global coverage that makes AIRS a 

particularly useful instrument for observing CO. 

1.2.4. Development of a New CO Retrieval Scheme for AIRS 

The AIRS CO product (v4), the operational product through the time period of this 

study
1
, uses a retrieval scheme based on the singular value decomposition (SVD) of a 

set of empirically determined, vertically overlapping representation functions 

[McMillan et al., 2005]. The CO retrieval methodology (described in more detail in 

Chapter 3) follows that outlined by Susskind et al. [2003] for AIRS O3 retrievals and 

uses the forward radiative transfer model described by Strow et al. [2003]. McMillan 

et al. [2005] demonstrated that AIRS CO retrievals were accurate to ~10% in the 

northern hemisphere and highlighted the potential of AIRS to provide insights into 

an aspect of the global carbon cycle. 

 

Although the success of the AIRS v4 CO product has been demonstrated by 

McMillan et al. [2005] an alternative retrieval scheme, based on optimal estimation 

techniques [Rodgers, 2000], is developed here. This is done in order to provide an 

independent assessment of the use of AIRS for CO observation using a more optimal 

and theoretically sound method (e.g. as used for the MOPITT [Deeter et al., 2003] 

and TES [Bowman et al., 2006] instruments). As well as providing an independent 

validation of the AIRS CO product, it is thought that the optimal estimation method 

may offer improvements in the quality of the retrieval error information, a key 

feature of any retrieval product if it is to be used in quantitative analysis [Luo et al., 

2007]. 

 

                                                 
1
 On 25

th
 July 2007 a new AIRS CO product (v5) was launched by the AIRS science team. Further 

details of this are given in Appendix A. 
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1.3. Objectives of This Study 

The first objective of this study is to develop an alternative CO retrieval scheme for 

the AIRS instrument. Due to its unique ability to provide near-global coverage on a 

daily basis AIRS has great potential for monitoring global CO. Use of optimal 

estimation methods [Rodgers, 2000] should offer improvements over the AIRS v4 

CO product, particularly in the quality of the error estimates and in understanding the 

informational aspects of CO retrieval. As such, the techniques of Rodgers [2000] are 

applied to the problem of CO retrievals from AIRS. 

 

Following from the development of an optimal estimation retrieval scheme for CO, 

this study shall validate the new CO product and explore its performance. This is 

done through comparisons with in-situ aircraft measurements and the well 

established MOPITT CO product. 

 

Finally, some of the potential of this new CO product for the analysis of global CO is 

demonstrated. This is achieved through analysis of an annual CO data set, 

investigating global and regional variations in CO and exploring the potential of 

AIRS for tracking the transport of pollution. 

 

A brief description of each chapter is as follows: 

 

Chapter 2. An introduction to the theory of the optimal estimation retrieval methods 

used in this study, and alternative retrieval methods, including that used in the 

operational AIRS CO retrieval algorithm. 

 

Chapter 3. The application of the theory of chapter 2 to the specific task of 

measuring atmospheric CO concentrations from AIRS. This chapter outlines the 

development of the retrieval scheme and describes in more detail the AIRS retrieval 

algorithm. 

 

Chapter 4. Validation of the new retrieval scheme with in-situ aircraft measurements. 
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Chapter 5. A global comparison study of the new AIRS CO retrieval with the AIRS 

v4 and MOPITT CO products. The relative performance of the new CO product is 

explored. 

 

Chapter 6. Seasonal trends in global and regional CO in the mid-troposphere. The 

potential of AIRS for showing source variability and CO transport is demonstrated 

through time series analysis. 

 

Chapter 7. A case study looking at CO emissions from biomass burning in Indonesia 

in October 2006. 

 

Chapter 8. Summary and future work. 
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Chapter 2. Retrieval Theory 

2.1. Fundamentals of Inverse Theory 

The inverse problem refers to the challenge of inferring something about the 

atmospheric state from indirect instrument measurements (e.g. the CO concentration 

from a satellite instrument’s radiances). In order to solve the inverse problem, it is 

necessary to understand the process of measurement. This will be expressed by a 

forward model, which describes the physics of the measurement process. For the 

case where the instrument response is linear with changing atmospheric state, the 

measurement process can be expressed as: 

  .εKxεxFy   2.1 

Here, the instrument measurements are represented by y, the measurement vector, 

with dimension m. The atmospheric state is defined by the n-dimensional state 

vector, x (e.g. a vertical profile of CO concentrations). The relationship between state 

and measurement vectors is described by the forward model, F(x), which is an 

approximation to the detailed physics of the atmosphere. It is also necessary to 

include an estimate of the measurement and forward modelling error, ε. 

 

If the forward model, F(x), is linear within the error bounds of the retrieval, it can be 

represented by the m × n weighting function matrix, K.  Each element of K is the 

partial derivative of a forward model element with respect to a state vector element, 

i.e. 
 

j

i
ij

x

F
K






x
. These weighting functions describe the sensitivity of the instrument 

measurements to different elements of the state vector, e.g. the sensitivity of channel 

radiances to temperature at different altitudes in the atmosphere, as shown in Figure 

2.1. Defining the forward model in this way reduces the problem to that of solving a 

set of linear equations. If m < n, there are fewer measurements than unknowns, the 

problem is under-constrained. If m > n the equations may be over-constrained if the 

m channels are highly independent. It is possible for there to be more measurements 

than unknowns (m > n) and for the set of equations to be under-constrained. This 

occurs when each measurement contains essentially the same information about the 
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state, x, as is the case for CO retrievals using AIRS (Chapter 3). Weighting functions 

of this form are frequently available as an output product from radiative transfer 

models that may be used as the forward model. Alternatively they can be obtained by 

brute force methods, running the forward model for different perturbations of the 

state. 

 

 

Figure 2.1 A set of synthetic weighting functions representing a typical nadir sounder measuring 

thermal emission. The vertical coordinate is –ln(p/p0), where p is pressure and p0 is surface pressure.  

Taken from Rodgers [2000].  

 

2.2. The Maximum a Posteriori Solution (MAP) 

2.2.1. Bayes’ Theorem 

When measurement error is considered, a range of values of x exist such that F(x) 

agrees with y to within ε. It is therefore necessary to describe the uncertainty in the 

measurements and the resulting uncertainty in the retrievals. Rodgers [2000] (§2.3 

and §4.1) derives a method for doing this based on Bayes’ theorem of probability. 

Bayes’ theorem defines the probability density function (pdf) of the state vector, x 

given the measurement vector, y. This is known as the posterior pdf, given by: 

 
   

 
,

y

xxy
yx

P

P|P
|P   

2.2 

where: 
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P(x) is the prior pdf of the state x, meaning P(x)dx is the probability before 

measurement that x lies within the range (x, x + dx).  

P(y) is the prior pdf of the measurement, y. In practice this is only a normalising 

factor and can often be ignored.  

P(y|x) is the conditional pdf of y given x. This is the pdf describing the probability of 

y for a particular value of x. 

 

2.2.2. Prior Information and Covariance Matrices 

Considering the inverse problem in this way introduces the concept of having prior 

information about both the state and measurement vectors, including information 

about their errors. It is common in retrieval schemes to start with some initial 

estimate of the state vector. In optimal estimation methods, such as MAP, this is 

referred to as the a priori, xa. This could be as basic as a fixed value of the parameter 

of interest at all levels in the atmosphere, but is typically determined from sources 

such as climatology or model output. Accompanying the a priori is the prior 

covariance matrix, Sa, equivalent to P(x) in Bayes’ theorem. Sa is a square matrix of 

dimension n, with diagonal elements equal to the variances of the elements of xa. 

Along with this measure of the uncertainty of the xa, the off-diagonal elements of Sa 

represent the prior knowledge of correlations between different elements of xa, 

typically correlations between different atmospheric levels. As with the a priori, the 

covariance matrix Sa can be derived from sources such as climatology, model output, 

or a training set of in situ data. This prior information acts as both a starting point for 

the retrieval and as a constraint for cases where the information about x contained 

with the measurements is limited. If there is little information about x in the 

measurements or the noise levels are high, the retrieval and its associated error 

covariance matrix will tend to those of the prior. 

 

Prior knowledge of the experimental error is also represented by a covariance matrix, 

Sε. In its most basic form the observational error covariance matrix will contain the 

estimated instrumental noise in the measurements, y, in the form of variances held in 

its diagonal elements. Further to this the off-diagonal elements may contain 
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information about any inter-channel correlations. As shall be outlined, errors in the 

forward model are also incorporated into Sε.  

 

The instrument measurement and its uncertainty (and therefore that of the forward 

model) may be affected by a number of parameters defining the atmospheric state. It 

is not necessary to include these in the state vector x and perform retrievals of them. 

Instead, it is possible to consider the problem as a retrieval of x, and incorporate the 

uncertainty in the other forward model parameters b in the error covariance matrix, 

Sε. This method allows retrievals of x to be made using model parameters, b, from 

independent retrievals (or other sources such as climatology), while still accounting 

for the effect of their uncertainty in the retrieval of x, using the substitution: 

.T

bbb KSKSS    2.3 

Here Kb and Sb represent the weighting functions and the error covariance matrix for 

the model parameters, b.  

 

2.2.3. MAP 

Bayes’ theorem provides a framework for introducing prior knowledge of the 

instrument characteristics and the parameter we are attempting to measure, along 

with information about uncertainties in both. This framework can be developed to 

find the profile, ,x̂  for which P(x|y) has the highest value. Rodgers [2000] defines 

this solution as the Maximum A Posteriori (MAP) method and describes it in detail. 

A brief summary follows. 

 

Errors in real measurements are usually represented by Gaussian statistics, so the 

pdfs can be assumed to take the form of a Gaussian distribution of the form: 

 
 

    ,
2

1
exp

2

1 1

2

1

2









 

vvSvv

S

v
T

n

π

P  
2.4 

where v is a random vector with mean v  and covariance matrix S. 

Taking the natural logarithm of this equation, the terms of Eq. 2.2 can be written as: 
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      1

1ln cP aa

T

a  
xxSxxx  2.5 

and 

      ,|ln 2

1 cP
T

 
KxySKxyxy   2.6 

where c1 and c2 are constants.  

Substituting Eqs. 2.5 and 2.6 into Eq. 2.2 and assuming a Gaussian distribution for 

the posterior pdf, with expected value x̂  and covariance Ŝ , Rodgers [2000] shows 

that the MAP solution for x̂  can be written as: 

   ,ˆ 1111

a

T

a

T

a KxySKSKSKxx  

  
2.7 

with covariance: 

  .
111   a

T
SKSKS 


 

2.8 

The retrieved state, x̂  (Eq. 2.7), is the most probable state, given the measurements 

and prior knowledge of the state and the forward model. Eq. 2.8 returns the 

covariance matrix of the retrieved state, providing information about the uncertainty 

in the retrieval and the sources of this uncertainty (see §2.2.5). Through comparison 

of Ŝ  and Sa the relative contribution of xa to the retrieval can be determined.  

 

2.2.4. The Gain Matrix and the Averaging Kernels 

The gain matrix G can be described as a generalised inverse of K. It is a measure of 

the sensitivity of the retrieval to the measurements, which is the same as the 

sensitivity to measurement error. It can be expressed as: 

  .1111    SKSKSKG
T

a

T
 2.9 

The averaging kernel matrix, A, provides a measure of the sensitivity of the retrieved 

state to the true state. It is the product of the gain matrix and the weighting function 

matrix. 

.
ˆ

GK
x

x
A 




  2.10 

 

 

 



Chapter 2  Retrieval Theory 

20 

 

This is an extremely useful quantity as it provides information about the source of 

the retrieved values, ,x̂  in terms of contributions from different elements of the true 

state vector, x. For example, in a retrieval of a profile of CO, A can reveal whether 

the retrieved CO amount at a given altitude is truly a measure of CO at that altitude 

or if it contains strong contributions from CO at other altitudes. The rows of A 

represent the relative contribution of the true state, x, to the retrieved state, x̂ , for 

each level in the profile. In the ideal case A would be a unit matrix. In reality, the 

rows of A are generally peaked functions, as in Figure 2.2. The level at which they 

peak indicates which level of x is dominating the value of  at the level 

corresponding to the given row of A. Ideally the rows of A would peak at the level of 

 that they correspond to. However, this may not always be the case and it is 

possible for x̂  at a given level to be dominated by the true state at a different level. 

 

In the example of the CO profile retrieval, another useful piece of information that 

can be derived from the rows of A is the vertical resolution of the profile. An 

optimistic estimation of this is the full width at half maximum (FWHM) of the rows 

of A. Any profile features smaller than this will be smoothed out in the retrieved 

profile. 

 

The number of independent pieces of information about x contained in the 

measurement can be estimated as the number of degrees of freedom for signal 

(DOFS). Considering the general case of measuring a vector y with m degrees of 

freedom and assuming Gaussian statistics, the most probable state is the one which 

minimises 

    ,112  
  SxxSxx

T

aa

T

a  2.11 

where Kxy  . From Eqs. 2.7 and 2.9 the minimum of this function occurs at 

    .ˆ εxxKGKxyGxx  aaa  2.12 

At this minimum the expected value of χ
2
 is equal to the number of degrees of 

freedom, which is equal to the number of measurements, m. This value can be split 

into a contribution from the signal (ds) and the degrees of freedom for noise (dn).  

x̂

x̂
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    aa

T

asd xxSxx   ˆˆ 1
 2.13 

 

  
ˆˆ 1 S

T

nd  2.14 

Rodgers [2000] shows that this measure of the information content can be calculated 

from the averaging kernel matrix, defining it as the trace of A: 

 .Atrd s   2.15 

A visual estimation of the number of degrees of freedom of the signal can be made 

by looking at the averaging kernels. Roughly speaking, each distinct peak at unity on 

different levels corresponds to one degree of freedom of the signal. As the degree of 

overlap between averaging kernels increases, the number of degrees of freedom of 

the signal will decrease. 

 

Figure 2.2 Averaging kernels for the simulated nadir temperature sounding case, from Rodgers 

[2000]. The vertical coordinate is –ln(p/p0), where p is pressure and p0 is surface pressure. The dotted 

line represents the total integrated area under the averaging kernels. 

 

2.2.5. Retrieval Errors 

In some cases where the problem is slightly non-linear, a solution can be found by 

linearizing the forward model about some reference state. Taking the reference state 

to be the prior state (not essential but often convenient) x = xa and b = b̂ , where b̂ is 

the best estimate of the forward model parameters,  the retrieved state can be written 

as: 



Chapter 2  Retrieval Theory 

22 

 

  ,ˆ
yaa GxxAxx   2.16 

where , and represents the total error relative of the measurement 

and forward model.  

The total error can be considered to be the difference between the true state and the 

retrieved state and can be written as: 

    .ˆˆ bbGKGxxIAxx  ba   2.17 

This can be decomposed into three terms each representing a different source of 

contribution to the total error in the retrieval.  

1. The smoothing error, (A-I)(x-xa), is the error associated with the smoothing 

of the true state by the averaging kernels. Its covariance matrix is given by: 

    .
T

as IASIAS   2.18 

2. The measurement error, Gε, is the error due to instrumental noise and has a 

covariance matrix of: 

.T

m GGSS   2.19 

3. The model parameters error, , represents the error in the retrieval 

due to uncertainty in the model parameters. Its covariance matrix is given by: 

  .
T

bbbp GKSGKS   2.20 

Combining these error covariance matrices gives the total error covariance matrix.  

.pmsT SSSS   2.21 

This is identical to the a posteriori error covariance matrix given by Eq. 2.8. The 

ability to break down the total error into these components is a useful diagnostic tool 

for evaluating the performance of a retrieval scheme.  

 

2.2.6. The Non-Linear Case 

In the previous sections the methodology for solving linear or nearly linear problems 

(where linearization around a prior state is adequate) has been defined. For 

moderately non-linear problems the linearization about a prior state is still sufficient 

for error analysis, but is no longer suitable for finding a solution. To find the optimal 

    bbK ˆ
by

 bbGK ˆb
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solution for a moderately non-linear problem, further numerical and iterative 

methods must be employed. 

 

One possible approach to solving the moderately non-linear case is the Gauss-

Newton iterative method. From the Bayesian solution for the linear problem Rodgers 

[2000] shows that the maximum probability state x̂  can be obtained by finding the 

zero of the gradient of the cost function: 

            ,|ln2 11 cP aa

T

a

T
 

xxSxxxFySxFyyx   2.22 

where c is a constant. At each iteration, i, to find the zero gradient of the cost 

function, the retrieved state can be expressed as: 

      ,111

1 aiii

T

ii

T

iaai xxKxFySKKSKSxx  

   2.23 

where xi is the most recent retrieved state and Ki = K(xi).  

 

The cost function for a moderately non-linear problem may be seriously non-

quadratic away from the solution. In such a case, the Gauss-Newton may unsuitable, 

resulting in slow convergence or convergence to a solution that may even increase 

rather than decrease the residual. For problems of this nature, an alternative iterative 

scheme, such as the Levenberg-Marquardt method, is required. The Levenberg-

Marquardt method introduces a parameter, γ, that is used to control the step size at 

each iteration. Rodgers [2000] describes an example of this method in more detail 

and defines the retrieved state at the ith iteration of the Levenberg-Marquardt method 

to be: 

        ,1 11111

1 aiai

T

ii

T

iaiii xxSxFySKKSKSxx  

   2.24 

where γi is the step size parameter at the ith iteration. At each step in the iteration, the 

value of γi is updated based on the change in the cost function, controlling both the 

direction of descent and the step size. There are numerous potential methods that 

may be used to select a value for γi at each step in the iteration, and also a number of 

variants of the method described in Rodgers [2000]. As the Levenberg-Marquardt 

method tends to be more computationally expensive, the simpler Gauss-Newton 

method was preferred for use in the retrieval scheme developed in this project. Using 
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the Gauss-Newton method convergence to a solution was typically achieved in a 

small number of iterations, indicating that this method is suitable for this project. 

 

In any iterative scheme, some test for convergence is required. The aim of such a test 

is to allow enough iterations to return a solution close to the true maximum 

probability state, say an order of magnitude smaller than the error of the solution. At 

the same time the scheme must avoid unnecessary iterations that would be required 

to result in no change in the solution at machine precision. There are three different 

kinds of tests for convergence that can be applied at each iteration. Checks can be 

made on the size of (a) the reduction of the cost function, (b) the gradient of the cost 

function, or (c) the step size (in state or measurement space).  One possible test is to 

look at the size of the radiance residuals, y – F(xi), at each iteration. These will tend 

to zero with successful convergence. For retrievals of CO using AIRS, the 

measurement vector, and therefore the vector of residuals, consists of over 50 

elements (Chapter 3). To simplify the decision making process for convergence an 

alternative single-value test was sought. Rodgers [2000] defines such a test for cases 

where n ≤ m as: 

    nd ii

T

iii  



 1

1

1

2
xxSxx


 2.25 

This is an inexpensive test to carry out as 1S


 is already calculated as part of the 

iteration, Eqs. 2.8 and 2.23. As this test is straightforward to implement and requires 

minimal additional computation, it was selected for use in the retrieval scheme 

developed during this project. 

 

2.3. Alternative Retrieval Methods 

2.3.1. Introduction 

Rodgers [2000] states that in “most circumstances the maximum amount of 

information will be extracted from a set of measurements when we use a full non-

linear retrieval which minimises a cost function based on all of the data and an 

appropriate a priori”. Such methods (i.e. MAP) are described as optimal estimation 

techniques. There are a variety of other methods of solving the inverse problem, 
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outlined in depth by Rodgers [2000]. Some of these will be briefly described here to 

give an introduction to alternative methods. 

 

2.3.2. Representation Functions and the Constrained Exact 

Solution 

In this method a set of continuous functions, such as sines and cosines, or 

polynomials are defined to represent the profile. These representation functions W 

are combined with the weighting functions K, reducing the problem to that of 

solving a set of simultaneous equations, given by C=KW. The solution is given by: 

  .ˆ
1

GyyKWWx 


 2.26 

If suitable representation functions are used then this method performs well in the 

absence of noise. However, even small levels of noise can result in the very poor 

retrievals. The gain matrix, G, is equivalent to that of 2.9, and provides a measure of 

the sensitivity to measurement error. If the matrix C=KW is ill-conditioned then the 

sensitivity to measurement error, through G, may be large. This can be a particular 

problem for instruments with significant overlap between influence functions, where 

K is nearly singular. In such cases, differences arising from noise are wrongly 

interpreted as reflecting subtle information about the state and can result in extremely 

inaccurate retrievals. A better choice of representation functions can improve the 

retrievals but the determination of the optimal representations can be somewhat of an 

ad-hoc process. There are two other important points to be taken from this. The first 

is that the measurements cannot provide all the information about the profile. The 

second is that it is an unreasonable expectation to be able to find an exact solution. A 

solution within the bounds of experimental error is a more sensible target.  

 

As is shown in §3.3, there is significant overlap in the influence functions for CO 

retrievals using the AIRS instrument. Consequently, a representation function 

solution may not be suitable for such retrievals. However, the addition of some 

constraints to the representation function solution can limit the inherent problems 

with noise. This is known as the constrained exact solution and a form of this is used 

in the operational AIRS CO retrieval algorithm, developed by the AIRS science 
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team. Their method applies singular value decomposition to the matrix of 

simultaneous equations, C. This enables eigenvalues that contribute more to the error 

term than the profile to be dropped, thus constraining the retrieval. The method used 

in the operational AIRS CO retrieval algorithm is described in more detail in §3.7.  

 

2.3.3. Least Squares Solution 

This method minimises the sum of the squares of the differences between the actual 

measurements and those calculated from the forward model. For the non-linear case, 

linearization about some estimate of the solution results in equations similar to those 

from optimal methods. In essence it is the optimal estimation solution with no a 

priori information. 

 

2.3.4. Twomey-Tikhonov 

This method was the first to tackle the issues of error sensitivity and constraints in 

the retrieval problem. It is based on the minimisation of a cost function that includes 

departures of the solution from both the measurements and an a priori. The balance 

of this trade off is achieved through subjective tuning of a weighting parameter, an 

obvious disadvantage over optimal methods.  

 

2.4. Summary 

The theory of the optimal estimation techniques [Rodgers, 2000] used in this study 

has been described along with a brief introduction to alternative retrieval methods, 

including the method used in the algorithm for operational AIRS CO retrievals. All 

these alternative methods offer the benefit of not requiring a priori covariance 

matrices, and in some cases an a priori profile is also not necessary. In some 

situations the construction of a suitable a priori covariance matrix may be very 

difficult, giving non optimal methods the advantage. However, when prior 

knowledge is available it would seem advantageous not to discard such information.  
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The key advantage of optimal estimation over these other techniques is the robust 

error information intrinsic to the retrieval. As was illustrated in §2.2.5, not only does 

it provide an estimate of the total error in the retrieved profile, but this error can be 

attributed to different contributors/components. If retrievals of atmospheric 

properties are to be used in quantitative analysis or incorporated into meteorological 

or chemical models, robust error estimates of this sort are essential. 
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Chapter 3. Development of the AIRS CO Retrieval 

3.1. Introduction 

In this chapter, the simulation work carried out to develop a new AIRS CO retrieval 

scheme is described. From here on, this retrieval scheme developed at the University 

of Edinburgh (and its components) will be referred to as the “UoE” retrieval. A full 

radiative transfer model is used to determine the AIRS channels sensitive to CO and 

illustrate the varying sensitivity with altitude. The work done in the development of 

the prior covariance is also detailed. Finally, a line-by-line (LBL) radiative transfer 

model is used to simulate AIRS CO retrievals and demonstrate the potential of the 

new retrieval scheme. 

3.2. AIRS Sensitivity to CO 

Of the 2378 high spectral resolution channels of the AIRS instrument, only those at 

the edge of the 3.74 to 4.61 μm band, close to the 1.0 vibration-rotation fundamental 

centred at 4.67 μm [Goody and Yung, 1995], would be expected to have any 

significant sensitivity to CO. In order to ascertain which channels may be useful for 

use in a CO retrieval scheme, some simulation work was carried out. This was done 

using the LBL radiative transfer model, Reference Forward Model (RFM)  version 

4.25 [Dudhia, 2005]. RFM was developed at Oxford University and is based on 

GENLN2 [Edwards et al., 1992]. It operates in conjunction with the HITRAN 2000 

database [Rothman et al., 2003], enabling high resolution radiance simulations, 

taking account of the effect of a large number of absorbing molecules. RFM outputs 

radiances at fixed wavenumber intervals. AIRS channel radiances were simulated by 

convolving the RFM output with the spectral response functions for the AIRS 

channels [Hannon et al., 2006].  

 

Using the Air Force Geophysics Laboratory (AFGL) US standard profiles [Anderson 

et al., 1986] as input to RFM, the sensitivity of the AIRS band-3 channel radiances to 

CO was investigated. Simulating the AIRS channel radiances for different scalings of 

the US standard CO profile revealed that only 113 of the band-3 channels were 

affected by CO.  Of these, only the 53 channels closest to the CO fundamental at 
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4.67 μm were found to be significantly affected, with observed radiance changes 

larger than the instrument noise level, for a 10 times scaling in the US standard CO 

profile (Figure 3.6b). Here the instrument noise level is defined as the radiance 

corresponding to the Noise Equivalent Differential Temperature (NEDT) at 250 K, 

obtained from the AIRS channel properties file. Figure 3.1 shows the effect of CO 

concentration on the AIRS channel radiances, for those channels sensitive to CO. 

Similar analysis using alternative AFGL profiles (not shown) revealed differences in 

the sensitivity of the AIRS channels to CO, compared to those from the analysis 

using the US standard profile. As the sensitivity to CO is dependent upon the 

atmospheric conditions, it was deemed appropriate to retain the potentially optimistic 

estimate of the CO sensitive channels (from the US standard profiles), in the interest 

of not discarding potentially useful information 

 

 

Figure 3.1 Percentage radiance difference between simulations of a scaled version (10x) of, and the 

unadjusted US standard CO profile. Only channels where the radiance difference is above instrument 

noise levels are shown. 

 

3.3. Weighting functions 

The sensitivity to CO of the set of 53 AIRS channels selected in §3.2 was further 

investigated, using RFM to generate the weighting functions for each channel with 

respect to CO, KCO. RFM calculates KCO for a 1% CO perturbation, applied as a 
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triangular function with altitude (i.e. a 1% perturbation is applied at a given altitude, 

with 0.67% and 0.33% perturbations applied to adjacent levels). These weighting 

functions are shown in Figure 3.2. Unlike the synthetic weighting functions from the 

example of Rodgers [2000] (Figure 2.1), where the weighting functions are 

consistent in magnitude and  peak at a different altitudes, the peaks of KCO vary 

considerably in magnitude and occur over a small range of altitudes. This suggests 

that all of the 53 AIRS channels are most sensitive to CO in the mid-troposphere, 

between about 400 and 600 hPa, with some channels being considerably more 

sensitive than others, as can also be seen in Figure 3.1. The high degree of overlap 

between the weighting functions suggests that the AIRS radiances do not contain any 

more than one piece of independent information about CO.  Some subtle distinctions 

in shape are present in the weighting functions, which may give rise to an increase in 

the number of pieces of independent information about CO, when instrument noise is 

considered. This possibility is addressed in §3.5. 

 

Figure 3.2 CO weighting functions for the 53 AIRS channels sensitive to CO, from RFM simulation 

of the US standard atmosphere. 

 

Weighting functions for temperature, KT and water vapour, KH2O (with perturbations 

on each profile level of 1K and 1% respectively), were also generated for the set of 

53 channels, Figure 3.3. These show that some of the channels that look to be most 

sensitive to CO also have a dependence on the temperature and water vapour in the 

lower troposphere. Although the temperature and water vapour profiles are not 
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included as retrieval products, their influence on the channel radiances necessitates 

their inclusion as forward model parameters, b. It is also necessary to incorporate 

error estimates for these parameters into the retrieval scheme in some robust way. 

  

Figure 3.3 Weighting functions for (a) temperature (KT) and (b) water vapour (KH2O) for the 53 AIRS 

channels sensitive to CO. KT and KH2O were calculated from RFM simulations of the US standard 

atmosphere. 

 

3.4. Prior Information 

As outlined in §2.2.2 key components of the MAP retrieval method are an initial 

estimate of the state, xa, and its covariance matrix, Sa. Also of importance is the 

observational error covariance matrix, Sε. The development and selection of each of 

these for MAP retrievals of CO using the AIRS instrument is discussed in the 

following sections. 

 

3.4.1. The Observational Error Covariance Matrix, Sε 

In the absence of any information about the correlations between AIRS channels, Sε 

was initialised as a square matrix of dimension, m = 53, with diagonal elements equal 

to the variance associated with the instrument noise (defined as in §3.2). This simple 

representation of Sε was used for preliminary work, looking at a simplified linear 

retrieval with (model parameter) noise free simulations. Simulation work was also 

carried out with forward model parameter errors included (in Sε using Eq. 2.3) and 

with the inclusion of cloud cleared radiance estimates in Sε. 

 

(a) (b) 
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3.4.2. The a priori Profile, xa 

The AFGL US standard CO profile (shown in Figure 3.6) was selected for xa, for 

consistency with the “first guess” CO profile used in the AIRS v4 retrieval scheme, 

[McMillan et al., 2005]. This CO profile is more representative of northern 

hemisphere regions near CO sources than it is of clean southern hemisphere regions 

far from CO sources. Using this profile as a global prior may introduce a positive 

bias in retrievals over areas with low CO concentrations. However, as discussed in 

Chapter 2, the MAP retrieval scheme provides an estimate of the contribution from 

the prior, thus providing some insight into any such bias. 

 

3.4.3. The Prior Covariance Matrix 

Selecting a suitable covariance matrix, Sa, is not a trivial task. A simple diagonal 

matrix, with diagonal elements equal to the variance for an estimated uncertainty of 

50% at each level in the profile, was taken as the starting point in developing a 

suitable Sa. This enabled a preliminary assessment of a simple linear MAP retrieval, 

using simulated AIRS data.  

 

Using a simple diagonal covariance matrix does not make full use of the prior 

information that may be available. It is reasonable to assume that there is some 

degree of correlation between CO at different altitudes and if such information is 

available it can be incorporated into Sa. One potential source of data for generating 

Sa is in situ data from radiosondes or aircraft measurements. Due to the relatively 

sparse global coverage and lack of coherency between different measurement 

campaigns, constructing Sa from such data was not pursued in depth. The aircraft 

data set that was considered as a source for Sa, was earmarked for use in a validation 

study of the UoE retrieval scheme, thus making it unsuitable as the source data for 

Sa. Instead, output from a chemical transport model was investigated as a potential 

source of data.  

 

Output from the 3-D Lagrangian chemical transport model, STOCHEM [Collins et 

al., 1997], was used to generate Sa. Twelve months of monthly mean CO profiles on 
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nine evenly spaced pressure levels (950 to 150 hPa) and a 5°x5° longitude/latitude 

grid were used. Some basic statistics of the STOCHEM data are shown in Figure 3.4 

(a) and the resultant prior covariance matrix in Figure 3.4 (b). The STOCHEM data 

has a mean profile considerably lower than the AFGL US standard profile used as 

the a priori. As mentioned in §3.4.2 the US standard profile is more representative of 

northern hemisphere regions, so is probably higher than the true global mean. 

Shindell et al. [2006] illustrated that CTMs typically estimate lower CO 

concentrations than observations, which could be another factor contributing to the 

large difference between the mean STOCHEM profile and the US standard profile. 

 

The prior covariance matrix from the STOCHEM data shows the highest variances 

and covariances at the lowest levels in the atmosphere. This is a sensible result as the 

highest variability would be expected closest to the main CO source (the surface). Sa 

from the STOCHEM data also contains relatively high covariances between levels 

near the surface and levels near the top of the atmosphere, higher than those between 

more closely spaced levels in the upper-troposphere. To investigate whether these 

high covariances between lower and upper-troposphere levels were a result of using 

monthly mean CO profiles, Sa was calculated using a small sample of CTM data on 

regular and closely spaced time steps. This data was obtained from the REanalysis of 

the TROpospheric chemical composition over the past 40 years (RETRO) project. 

The data consisted of output from the MOZECH (ECHAM5-MOZ) CTM [Auvray et 

al., 2007]; CO profiles on 31 pressure levels, on a 3-hourly time step over a 7 day 

period. Profiles were interpolated onto the STOCHEM pressure levels before the 

basic statistics of the data set and the covariance matrix were generated as for the 

STOCHEM data (Figure 3.5). Data from MOZECH covers a larger range of values 

than the STOCHEM data but has similar mean and standard deviation in the lower to 

mid-troposphere. At higher altitudes the mean MOZECH values are considerably 

higher than those from STOCHEM and US standard CO profile. The covariance 

matrices are broadly similar in terms of values and structures, with both exhibiting 

the highest variances and covariances at the near surface levels. There is some 

reduction in the covariances between lower and upper troposphere levels and also a 

reduction in covariances between middle and upper troposphere levels, in the 
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MOZECH Sa. As the covariance matrices generated from the output of the two 

models were similar, the effect of averaging the CO profiles in the STOCHEM case 

was not deemed to be important in the construction of Sa.  

 

  

Figure 3.4 (a) Global mean, minimum, and maximum CO profiles from 12 months of STOCHEM 

data on 5°x5° longitude/latitude grid. (b) Covariance matrix, Sa, calculated from the STOCHEM data 

described in (a). X-axis represents profile levels from 950 hPa to 150 hPa (left to right). 

 

  

Figure 3.5 (a) Global mean, minimum, and maximum CO profiles from 7 days of MOZECH data on 

5°x5° longitude/latitude grid. (b) Covariance matrix, Sa, calculated from the MOZECH data described 

in (a). X-axis represents profile levels from 950 hPa to 150 hPa (left to right).  

 

(a) (b) 

(a) (b) 
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Although Sa from the two models were similar, there were still concerns about the 

high covariance values between lower and upper troposphere levels. Consequently an 

alternative covariance matrix was constructed using Sa from STOCHEM as a starting 

point, with covariances at these levels adjusted to lower values, decreasing with 

increasing separation between levels. The magnitudes of these manually adjusted 

values are based on the equivalent values from a covariance matrix calculated from a 

set of aircraft profiles, described in §4.2. As this set of aircraft profiles was 

assembled for use in a validation study of the retrieval scheme, it was inappropriate 

to use Sa from the aircraft profiles in the retrieval scheme. The resulting Sa 

(generated from STOCHEM data with a manual adjustment based on Sa from aircraft 

profiles)  is shown in Figure 3.6 and is the alternative to the diagonal assumption in 

§3.5.  

  

Figure 3.6 Prior information used in UoE retrievals. (a) Sa from STOCHEM data with a manual 

gradient applied to some off-diagonal elements. (b) xa from AFGL US standard atmosphere with 

associated errors from Sa. 

  

In order to use the prior information illustrated in Figure 3.6 in the retrieval scheme, 

the CO profiles (xa, xi, and x̂ )  are all defined relative to the mean STOCHEM 

profile (i.e., xa = xUS Std / xSTOCHEM). This effectively applies the STOCHEM 

distribution around a new mean (US standard profile), which may bias the 

distribution of the retrievals. Maximum retrieved CO values are not expected to be 

adversely affected by this, but it is possible that retrievals of low CO values may be 

positively biased. As the observation of CO sources is a key motivation for 

(a) (b) 
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developing the retrieval scheme, the risk of biases in low CO values was deemed 

acceptable. Results in Chapter 5 and Chapter 6 suggest that any such biases in low 

CO values are small. 

3.5. Simulated Retrievals 

Using the covariance matrices and a priori information described in §3.4 the MAP 

retrieval scheme was tested using RFM-simulated AIRS data. Results using the 

diagonal Sa and Sa from STOCHEM data with the manual gradient applied (Figure 

3.6), are shown in the following sections. 

 

3.5.1. CO Retrieval 

The performance of the retrieval scheme in terms of the accuracy of the retrieval was 

investigated by attempting retrievals of the US standard CO profile scaled by a factor 

of 1.2, and using the AFGL tropical profiles as the atmospheric state.  Figure 3.7 

shows the retrieved profiles from the iterative retrieval scheme of Eq. 2.23 for the 

two versions of Sa, for “noise free” simulations. These “noise free” simulations do 

not include errors from model parameters (such as the temperature profile) or errors 

in the channel radiances. They do however contain the baseline estimate of 

instrument noise, as defined in §3.2. This is necessary to ensure stability of the 

retrieval scheme. Figure 3.7 illustrates the effect on x̂  of the prior information about 

inter-level CO correlations, held in Sa. Assuming no inter-level correlation, x̂  tends 

strongly to xa at low and high altitudes. In this example the introduction of the off-

diagonal covariances improves the accuracy of x̂ considerably at these levels.  
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Figure 3.7 Noise-free simulated retrievals of the US standard CO profile scaled by a factor of 1.2. (a) 

Diagonal Sa. (b) Sa from STOCHEM with adjustment of off-diagonal elements. Horizontal error bars 

represent prior (black) and retrieval (red) error estimates. 

 

In addition to the “noise free” simulations, retrievals were also carried out with full 

error characterisation. Estimates of the various errors incorporated in the retrieval 

scheme were derived from the AIRS level-2 data products. Mean values of the errors 

were calculated over one day (24/10/06) for the tropics region (latitude bounds of 

±30°). The resulting error estimates used in this simulation work are given in Table 

3.1. 

 

Parameter Temperature H2O Surface T Emissivity Radiance 

Error 0.62 K 14.4 % 1.17 K 0.05 1.31 % 

Table 3.1 Daily mean error estimates of AIRS L2 products used in the retrieval scheme, for the 

latitude region ±30°. Errors for temperature and H2O represent the mean errors on STOCHEM profile 

levels. These error estimates are used throughout the simulation work of Chapter 3. 

 

Including noise in the retrieval scheme significantly degrades the performance of the 

retrieval. This is illustrated in Figure 3.8b, where 𝐱  now lies approximately midway 

between the prior estimate, xa, and the true profile x, at all levels (for the case using 

the UoE version of Sa). Although the accuracy of the retrieval is reduced, the need to 

include information about inter-level correlations in Sa is again highlighted by the 

fact  𝐱  obtained using the diagonal Sa tends strongly to xa at the top and bottom of the 

profile Figure 3.8b.  

   

(a) (b) 
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Figure 3.8 Simulated retrievals with noise added for the US standard CO profile scaled by a factor of 

1.2. (a) Diagonal Sa. (b) Sa from STOCHEM with adjustment of off-diagonal elements. Horizontal 

error bars represent prior (black) and retrieval (red) error estimates. 

 

The results from the simulated retrievals with noise (Figure 3.8) highlight some 

potential issues with the UoE retrieval scheme. The most obvious of these is the 

sensitivity of the UoE retrieval to noise. A possible reason for what appears to be a 

high sensitivity to noise is potential double counting of errors within the retrieval 

scheme. In this example, estimates of both the errors in channel radiances and the 

errors in model parameters (defining the atmospheric state) are included. Although 

the cloud cleared radiance errors do not have the errors in the AIRS L2 products used 

to define the atmospheric state incorporated into them directly, they do however 

contain a contribution from errors associated with the atmospheric state. In the 

determination of the cloud cleared radiances, AMSU observations are used to define 

the atmospheric state for clear sky simulations, and errors in these observations are 

propagated through the cloud clearing method and contribute to the final radiance 

error estimates (§3.6.1). Consequently, including the cloud cleared radiance errors 

and the model parameter errors in the UoE retrieval is likely to provide an overall 

overestimate of the errors in the retrieval scheme, by effectively including two 

contributions from errors in defining the atmospheric state. It may be possible to 

reduce the effect of this double counting of errors if a full error covariance matrix 

were available for the AIRS cloud cleared radiances, rather than the diagonal matrix 

of variances available for this study. If the cloud cleared radiance errors do have 

significant contributions from errors in the atmospheric state, then the off-diagonal 

elements are likely to share some of the structure of Sε calculated from the model 

(a) (b) 
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parameter errors (Eq. 2.3). Increasing the information content about the measurement 

errors in this way is likely to damp the contribution from Sa, and increase the 

information content of the retrieval.  

 

In an effort to demonstrate the possible impact of this potential double counting of 

errors, further simulations were carried out including only the cloud cleared 

radiances estimates in the retrieval (no model parameter errors were included). The 

results from these simulations are shown in Figure 3.9. Here the UoE scheme Figure 

3.9b provides a significantly more accurate retrieval than for the case where model 

parameter errors are also included (Figure 3.8b). Although the retrieval is 

considerably improved by the exclusion of the model parameter errors, it was 

deemed important to include them, due the uncertainty in the degree to which such 

errors are incorporated in the cloud cleared radiance error estimates. 

  

Figure 3.9 Simulated retrievals with only channel radiance noise estimates  added (no model 

parameter noise included) for the US standard CO profile scaled by a factor of 1.2. (a) Diagonal Sa. 

(b) Sa from STOCHEM with adjustment of off-diagonal elements. Horizontal error bars represent 

prior (black) and retrieval (red) error estimates. 

 

3.5.2. Retrieval Error 

Incorporating some inter-level correlations of CO into the retrieval scheme also 

significantly improves the retrieval error, as shown in Figure 3.10. Without the inter-

level correlations, there is negligible difference between the prior and posterior error 

estimates at the extremes of the profile, and only a relatively small improvement in 

the error estimate at mid-troposphere levels. When Sa includes information about 

inter-level correlations there is a much greater improvement in the error estimate at 

(a) (b) 
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mid-troposphere levels, along with significant improvements in the lower and upper 

levels.  

  

Figure 3.10 Retrieval errors for noise free simulated retrievals of the US standard CO profile scaled 

by a factor of 1.2. (a) Diagonal Sa. (b) Sa from STOCHEM with manual adjustment (§3.4.3). Each 

colour represents a retrieval using the number of channels indicated in the legend. 

 

The retrieval errors for simulations with noise included are shown in Figure 3.11 for 

retrievals using the UoE Sa only. These show the retrieval errors for the case of full 

error characterisation and the case where only the channel radiance errors are 

included (Figure 3.11 (a) and (b) respectively). It is clear that including noise in the 

retrieval significantly increases the error in the retrieval (relative to the noise-free 

case, Figure 3.10b). However there is still considerable reduction in the error (~5% at 

550 hPa) relative to the prior.  

 

Figure 3.11 also shows the effect the number of channels used in the retrieval has on 

the retrieval error. Retrieval errors are plotted for retrievals with increasing numbers 

of channels used in the retrieval, with channels added in order of highest to lowest 

contribution to the number of degrees of freedom of the signal. For the case where 

only the channel radiance errors are included, there is very little change in the 

retrieval error between the 10 and 53 channel cases. Although this suggests a large 

number of superfluous channels are used, when the model parameter errors are also 

included a larger number of channels are required to provide retrieval errors close to 

those of the 53 channel case. This is because the sensitivity of each channel to CO 

varies for different atmospheric conditions (as mentioned in §3.2). Having redundant 

channels can help average out noise and ensures that the best channels for different 

(a) (b) 
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conditions are always present. Consequently all 53 CO sensitive channels are 

retained in the retrieval scheme. 

 

  

Figure 3.11 Retrieval errors for simulated retrievals of the US standard CO profile scaled by a factor 

of 1.2, with noise included. (a) Errors in channel radiances and model parameter errors included. (b) 

Only channel radiance errors included. For both (a) and (b) Sa from STOCHEM with manual 

adjustment has been used. Each colour represents a retrieval using the number of channels indicated in 

the legend. 

 

Some additional error analysis was carried out to try to gain a better understanding of 

the relative contributions of the different error sources to the total retrieval error. 

Using Eqns. 2.18 to 2.21 the total retrieval error was split into its components 

(smoothing, measurement and model parameter error). These error components are 

shown in Figure 3.12, for the case of full error characterisation and the case where 

only the channel radiance errors are included (Figure 3.12 (a) and (b) respectively). 

In Figure 3.12a, the smoothing error provides the dominant contribution to the total 

retrieval error. Given the averaging kernels (Figure 3.14a) this is not a surprising 

result, as they indicate there is a very limited amount of information about the 

vertical structure of the CO profile contained within the AIRS observations. The 

consequence of this lack of vertical structure information is significant smoothing of 

the true CO profile, and therefore the introduction of significant errors in the 

retrieval. 

 

Errors from measurement noise are the next largest contributor to the total retrieval 

error. This suggests that the retrieval is very sensitive to the errors in the cloud 

cleared radiances, so it is likely that the retrieval performance will be degraded in 

(a) (b) 
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situations where the cloud clearing algorithm returns high error values (e.g. where 

there is large uncertainty in the atmospheric state or in regions where there is large 

variance in cloud cover across the AIRS scene).  

Only a small contribution from the model parameter errors is observed Figure 3.12a. 

However the inclusion of these errors also affects the smoothing error contribution 

(see Eqns.2.9, 2.10, and 2.18). Comparison with the errors from the case with model 

parameter errors excluded (Figure 3.12b) reveals that it is this additional contribution 

to the smoothing error that is main reason for the increase in retrieval error between 

the two cases. 

 

  

Figure 3.12 Components of the retrieval error for simulated retrievals of the US standard CO profile 

scaled by a factor of 1.2, with noise included. (a) Errors in channel radiances and model parameter 

errors included. (b) Only channel radiance errors included. 

 

In addition to looking at the contributions to the total retrieval derived from Eq. 2.21, 

retrievals were carried out with the input errors (Table 3.1) considered individually.  

The resulting total retrieval errors at 550 hPa for each of the input errors are given in 

Table 3.2. As the addition of model parameter errors to the retrieval (Eq. 2.3) 

introduces correlations between instrument channels to the observational error 

covariance matrix, Sε, these results only give a general idea of the relative 

contributions of the different sources of input error. Table 3.2 suggests that errors in 

the cloud cleared radiance estimates and the surface temperature will typically be the 

largest contributors to the total retrieval error. As the errors in both of these 

parameters are generally larger over land surfaces, the retrieval scheme is expected to 

perform better over ocean regions than over land (a result observed in Chapter 5). 

(a) (b) 
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Table 3.2 also illustrates the effect of including non-zero off-diagonal elements in the 

observational covariance matrix, Sε. Comparison of the retrieval error between the 

model parameter free case (NEDT) and the cases with model parameters included 

(e.g. NEDT + T) shows that the addition of some model parameter errors can reduce 

the retrieval error. This is a consequence of information about inter-channel 

correlations being introduced through non-zero off-diagonal elements in Sε (through 

Eq. 2.3). 

 

Input Error Source Retrieval Error (%) 

NEDT 5.8 

AIRS 13.6 

NEDT + T 3.8 

NEDT + H2O 4.0 

NEDT + Tsurf 11.0 

NEDT + ε 3.4 

NEDT + all 4.1 

AIRS + all 19.2 

Table 3.2 Retrieval errors for retrievals with input errors considered individually. 

 

There are some other potential sources of error that have not been included in the 

retrieval scheme, as their impact on the retrievals was deemed insignificant relative 

to contributions from the error sources previously discussed. Aumann et al. [2006] 

demonstrate the absolute calibration accuracy at 2616 cm
-1

 to be < 0.2 K, with better 

than 16 mK/yr stability.  This is small relative to typical errors in the cloud cleared 

radiances.  Another possible source of error is the spectral response functions 

(SRFs), characterised by the spectral centroid, width, and shape. The accuracy 

requirements for this are discussed by Aumann and Strow [2001] and shown to be 

met. Errors in the SRFs (in terms of location of the centroids, width and shape) are 

small and their potential contribution to errors in CO retrievals considered negligible. 

Finally, errors in the forward model used to simulate the AIRS channel radiances 

may have a potential impact on the CO retrievals. Errors in the forward model arise 

through uncertainties in the spectroscopic data (the HITRAN database) and also 
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through the parameterisations used to describe the physical and chemical state of the 

atmosphere. Again, estimates of the errors in the forward model were not 

incorporated in the retrieval scheme as they were thought to be small relative to the 

errors in the cloud cleared radiances, and because there was thought to be a degree of 

double counting of the model parameter errors in the retrieval scheme (§3.5.1). 

3.5.3. Averaging Kernels 

In addition to the simulated retrievals using the AFGL tropical atmosphere as the 

atmospheric state, equivalent simulations were also carried out using the AFGL US 

standard atmosphere. The averaging kernels, A, calculated for the AFGL US 

standard and Tropical atmospheres are shown in Figure 3.13. These are from noise-

free retrievals using the UoE Sa. For the case of the US standard atmosphere, all of 

the averaging kernels share a similar shape and peak at mid-troposphere levels. This 

informs us that the AIRS instrument is predominantly sensitive to CO in the mid-

troposphere and that each level of the retrieved CO profile will contain a significant 

contribution from CO in the mid-troposphere. The broad shape of the averaging 

kernels indicates that the vertical resolution of x̂  will be poor, with profile features 

smaller than about 6 km smoothed out. As outlined in §2.2.4 an estimate of the 

number of degrees of freedom of the signal, ds, can be obtained through visual 

inspection of the averaging kernels. If there is minimal overlap between the 

averaging kernels, then each distinct peak represents one degree of freedom. 

Comparison of the averaging kernels for the two different atmospheres reveals that 

the AIRS observations for the tropical atmosphere contain more independent pieces 

of information than those for the US standard atmosphere. From Figure 3.13 ds for 

the US standard atmosphere would be estimated to be about 1.0, while ds for the 

tropical atmosphere lies between 1.0 and 2.0, as there is more distinction between the 

averaging kernels at different levels. This is the expected result due to the higher 

thermal contrast between surface and atmosphere, and between altitude levels, for the 

tropical atmosphere. From this we may expect the retrieval scheme to perform better 

in the tropics than at mid-latitudes, and for retrievals of more limited quality to be 

obtained in high latitude regions.  
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Figure 3.13 Averaging kernels calculated from noise free simulations of the AFGL atmospheres using 

the UoE Sa. (a) US standard atmosphere. (b) Tropical atmosphere. 

 

Averaging kernels are also shown for simulations with noise included in the retrieval, 

for the tropical atmosphere only (Figure 3.14). The addition of noise to the retrieval 

scheme has a significant effect on the averaging kernels calculated for the tropical 

atmosphere. This is illustrated in Figure 3.14, where the averaging kernels for 

simulations with noise included in the retrieval are shown for the tropical 

atmosphere. Distinctions between the averaging kernels of different levels that were 

present in the noise free case (Figure 3.13b) are not present when noise is included in 

the retrieval, with the averaging kernels for the tropical atmosphere now showing 

more resemblance to those calculated for the noise free US standard atmosphere. 

Figure 3.14 suggests that even in the tropics the AIRS observations will provide no 

more than one piece of independent information about the CO profile. However, in 

cases where there are low levels of uncertainty in the cloud cleared radiances and 

model parameters, some of the potential information about vertical structure, 

illustrated in Figure 3.13, may be present. 

  

(a) (b) 
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Figure 3.14 Averaging kernels calculated from simulations of the AFGL tropical atmosphere with 

noise included in the retrieval, and using the UoE Sa. (a)  Errors in channel radiances and model 

parameter errors included. (b) Only channel radiance errors included. 

 

3.5.4. Degrees of Freedom of Signal, ds 

Following on from the estimations of ds from visual analysis of the averaging kernels 

(Figure 3.13), ds was calculated using Eq. 2.15. This was carried out for the AFGL 

US standard and tropical atmospheres, using the UoE Sa. The effect on ds of the 

number of channels used in the retrieval scheme was investigated, with channels 

added in order of the size of their contribution to ds. This was done for simulations 

using channel noise estimates from the AIRS channel properties file (§3.2) and using 

the daily mean values from AIRS L2 data (Figure 3.15 and Figure 3.16 respectively). 

As we would expect, ds decreases when model parameter error is included and also 

when the daily mean channel radiance error is used. As estimated in §3.5.3, ds is 

larger for the Tropical atmosphere than the US standard atmosphere, with  ds ≈ 1.0 

and 1.15 respectively for the noise free case, when the maximum number of channels 

are used (ds ≈ 0.3 and 0.4 when daily mean radiance errors are included). Figure 3.15 

and Figure 3.16 also show that only a small number of channels are required to 

produce ds close to the maximum value (obtained when all channels are used). 

However, the ordering of the channels in terms of their contribution to ds is not the 

same for the two different atmospheres. Figure 3.15 and Figure 3.16 also show that 

the channel ordering is not the same between the cases with and without model 

parameter error included, illustrated by the fact that more channels are required to 

give ds close to the maximum, when the channel ordering for the “no Sb” case is 

applied to retrievals with model parameter errors included.  This behaviour is a 

(a) (b) 
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consequence of the contribution of individual channels being dependent on the 

atmospheric state and the errors in the retrieval scheme. As there may be 

considerable variations in both the atmospheric state and the errors incorporated into 

the retrieval scheme, this result supports the decision to retain all 53 potentially 

sensitive channels in the retrieval scheme. 

 

  

Figure 3.15 Number of degrees of freedom of signal, ds, with increasing number of channels used in 

retrieval (added in order of largest contribution to ds) for US standard (a) and  tropical (b) AFGL 

atmospheres. Each line represents ds calculated from retrievals using different channel ordering as 

follows:  no model parameter errors included (No Sb), model parameter errors included (Sb inc), and 

retrievals for the case with model parameters included but using the channel ordering of the “No Sb” 

case (Sb (no Sb)). These plots are for simulations with the channel radiance error taken from the AIRS 

channel properties file (§3.2) rather than the mean value from AIRS data.  

 

  

Figure 3.16 Number of degrees of freedom of signal, ds, with increasing number of channels used in 

retrieval (added in order of largest contribution to ds) for US standard (a) and  tropical (b) AFGL 

atmospheres. Each line represents ds calculated from retrievals using different channel ordering as 

follows:  no model parameter errors included (No Sb), model parameter errors included (Sb inc), and 

retrievals for the case with model parameters included but using the channel ordering of the “No Sb” 

case (Sb (no Sb)). These plots are for simulations with the channel radiance error taken to be the daily 

mean value from AIRS data.  

 

(a) (b) 

(a) (b) 
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3.6. Application to AIRS data 

3.6.1. Inputs to the Retrieval Scheme 

The retrieval scheme outlined in Chapter 2 and earlier sections of this chapter was 

applied to radiances from the AIRS instrument. Table 3.3 lists the AIRS level-2 (L2) 

data products that are used, and where they are incorporated into the retrieval 

scheme.  

AIRS L2 Product Variables Corresponding Symbol 

Cloud cleared radiances y 

Error in cloud cleared radiances Sε 

Temperature profile xb 

H2O profile xb 

Surface temperature xb 

Surface emissivity xb 

Errors in above profiles and surface values Sb 

Table 3.3 AIRS level-2 data products used in the UoE retrieval scheme and where they are 

incorporated. 

 

In all retrievals the AIRS L2 cloud cleared radiances, for the 53 CO sensitive 

channels, are used to represent the measurement vector, y. The AIRS cloud clearing 

method [Chahine, 1974] uses observations from a number of adjacent field of views 

(FOVs) to infer what the radiances in the clear portions of the scene would be. This 

method does not require accurate modelling of cloud properties, but instead relies on 

two key assumptions: only the relative amount of each cloud type varies across 

FOVs (the radiative properties are identical), and that the FOVs have the same 

characteristics in the clear portions of their scenes. Using these assumptions the 

cloud cleared radiances, 𝑅 𝑖 , for each channel, i, are calculated from sets of 3x3 AIRS 

pixels using Eq. 3.1 [Susskind et al., 2003]: 

𝑅 𝑖 = 𝑅𝑖,𝐴𝑉𝐺 +  𝜂𝑘 𝑅𝑖,𝐴𝑉𝐺 − 𝑅𝑖,𝑘 ,

𝐾

𝑘=1

 3.1 
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where Ri,k and Ri,AVG are the radiances for the kth pixel and the average radiance over 

the set of 9 pixels respectively. The parameter ηk is determined for each of the 9 

FOVs, using observations from a set of I (=76) cloud filtering channels, lying 

primarily in between  lines of the 15 µm and 4.2 µm CO2 bands, with some 

additional channels in the window regions. Estimates of 𝑅 𝑖  from simulations are 

substituted into Eq. 3.1 and ηk determined using a weighted least squares solution.  

The estimates of 𝑅 𝑖  are recalculated in a four stage iterative scheme, using the 

current best estimate of the surface and atmospheric properties that are consistent 

with observations from the AMSU-A instrument. New estimates of ηk are obtained 

from this iterative scheme, along with a noise covariance matrix, containing 

estimates of the errors in these cloud cleared radiances. These error estimates contain 

an estimate of the instrumental noise along with contributions from errors in the 

estimated values of parameters such as the surface skin temperature, surface 

emissivity, and profiles of temperature and water vapour. 

 

The cloud cleared product is output on the spatial resolution of the AMSU footprints 

(i.e. 1 footprint per set of 3x3 AIRS pixels). Susskind et al. [2003] propose that the 

use of this cloud clearing method enables retrievals of various physical parameters to 

be made in the presence of substantial cloudiness, up to 80%. These cloud cleared 

radiances are accompanied by error estimates, which are incorporated into the 

retrieval scheme in the form of the variances along the diagonal of Sε. In some cases 

these error estimates are lower than the instrumental noise from the channel 

properties file. For such cases the noise estimates from the channel properties file 

were incorporated into Sε in place of the estimates from the L2 product. This was 

done to maintain a conservative error estimate and to maintain stability in the 

retrieval scheme. 

 

The profile and surface parameters listed in Table 3.3 are not included directly in the 

retrieval scheme itself but are used an input to the forward model. As described in 

§2.2.2 the error estimates for these forward model parameters are incorporated into 

the retrieval scheme through Sε (Eq. 2.3). 
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3.6.2. The Forward Model 

If retrievals are to be made from the satellite data in real time, then it is necessary to 

use a much faster forward model than that used (RFM) in the simulation work of 

§3.5. For application to AIRS data the line-by-line radiative transfer model, RFM, 

was replaced by the fast forward model RTTOV (Radiative Transfer for TOVS) 

[Matricardi et al., 2001]. This model was developed by the EUMETSAT NWP 

satellite application facility. While RFM uses a LBL approach (where the absorption 

and emission of radiation by each molecular transition is considered in turn over the 

spectral range of interest), RTTOV operates using a fast model of the transmittances 

of the atmospheric gases. This fast model is derived from accurate LBL 

transmittances, calculated for a set of diverse atmospheric profiles. The 

monochromatic transmittances are convolved with the AIRS spectral response 

functions and, using a set of predictors, are used to calculate channel-specific 

regression coefficients. This set of regression coefficients allows RTTOV to compute 

transmittances for any input profile. It is this method of parameterization of the 

transmittances that gives rise to the increased computational efficiency over LBL 

models. 

 

As discussed by Matricardi et al. [2001], RTTOV radiances exhibit a degree of 

accuracy such that errors from the fast transmittance algorithm do not add 

significantly to the errors that are likely to be present in the LBL model. An 

extensive inter-model comparison study is described by Saunders et al. [2007], with 

specific focus on simulating AIRS radiances. Saunders et al. [2007] demonstrate 

good agreement between RTTOV and RFM, both in terms of radiances and 

Jacobians, with the standard deviation of the differences between the models being 

less than the instrumental noise levels of AIRS. 

 

The AIRS L2 products listed in Table 3.3 were used to run this model to estimate the 

AIRS radiances and the weighting functions (F(xi) and Ki respectively, in Eq. 2.23) 

at each iteration. As previously, the AFGL standard was used as the a priori, xa, and 

as the initial linearization point for the retrieval. At each iteration the most recent 
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estimate of the CO profile, xi, was used as input to RTTOV, while all other model 

parameters were held constant, as they are not part of the retrieval product. 

 

3.7. AIRS v4 Retrieval Algorithm 

The UoE and AIRS v4 retrieval schemes operate by attempting to minimize the 

weighted difference between the observed radiances and those calculated using a 

forward model, by varying the geophysical state.  While the UoE retrieval constrains 

the solution using prior knowledge of the state (in the form of Sa) the aim of the 

AIRS science team is to use an algorithm that “relies exclusively on the signal to 

noise of the observations to indicate the degree to which the information contained in 

the radiances should be believed, and does not involve use of an estimate of the 

accuracy of the background field” [Susskind et al., 2003]. To this end the AIRS v4 

algorithm was developed using a form of the constrained exact solution (§2.3.2) with 

the solution constrained using singular value decomposition (SVD).  

 

In the AIRS v4 algorithm, the tropospheric CO profile is represented by a set of four 

vertically overlapping trapezoidal functions, empirically derived from simulations 

[McMillan et al., 2005]. As highlighted in §2.3.2, representation function solutions 

can be badly affected by even low levels of noise. Consequently the AIRS v4 

algorithm includes a constraint matrix, H, in the notation of Susskind et al. [2003].  

This is analogous to the prior covariance matrix, Sa, in the UoE retrieval, but rather 

than using a fixed constraint matrix, the AIRS v4 algorithm calculates H at each 

iterative step in the retrieval. In the method of Susskind et al. [2003] H is calculated 

from the information content of (K
T
Sε

-1
K) by singular value decomposition (Eq. 

3.2). 

𝚲 = 𝑼𝑇 𝑲𝑇𝑺𝜺
−1𝑲 𝑼 3.2 

 

Where U is the eigenvector matrix of (K
T
Sε

-1
K), K is the Jacobian matrix, and Sε is 

the noise covariance matrix. The resultant matrix, Λ, is a diagonal matrix with 

elements equal to the eigenvalues, λ. To constrain the solution, the least significant 
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eigenvectors are damped proportional to their eigenvalue, giving the constraint 

matrix: 

𝑯 = 𝑼Δ𝚲𝑼 3.3 

Where ΔΛ represents the damped eigenvectors. 

 

The AIRS science team view this method of constraint to be more robust than using a 

static prior covariance matrix, Sa [Barnet, 2005], on the basis that a poorly estimated 

Sa has the potential to introduce biases to the retrieval, making it suboptimal. 

Although this is true, the use of a suitable static prior covariance matrix and optimal 

estimation techniques allows the retrieval scheme to take advantage of all the 

available information. As the MAP retrieval has inherent information about the 

contribution from the prior, it should be possible to detect and characterise any biases 

introduced by Sa. Although the AIRS v4 algorithm does not use prior covariance 

matrix, it is still influenced by the “first guess” profile [Warner et al., 2007]. 

 

In addition, the representation functions and SVD introduce their own potential to 

return suboptimal retrievals. As the representation functions are determined 

empirically from simulations, they indirectly introduce prior information to the 

retrieval, and as noted by Susskind et al. [2003] a “judicious choice” of these 

functions is required. The calculation of the constraint matrix, H, at each iteration 

using SVD requires a choice of parameters for applying the damping. Again a poor 

choice of these parameters has potential to make the retrieval suboptimal. Due to 

these required choices, the AIRS v4 retrieval scheme may be considered no less 

arbitrary than the UoE scheme (which requires choices of xa and Sa). As is shown in 

Chapter 4 and Chapter 5, the AIRS v4 algorithm is more biased relative to aircraft 

and MOPITT observations, and does not have the benefit of a well developed theory 

of errors. 
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Chapter 4. Validation Study 

4.1. Introduction 

Having demonstrated the potential of the UoE retrieval scheme through simulations 

(Chapter 3) the UoE method was further tested by means of a validation study. The 

purpose of this validation study was two-fold: to provide a simple demonstration of 

the operation of the retrieval scheme when applied to AIRS data, and to gain an 

understanding of the value of these retrievals. In order to do this a set of in situ 

profiles from aircraft was used as the “truth” data for validation. Aircraft data were 

chosen over other potential sources (e.g. data from ground based Fourier Transform 

Spectrometers) to avoid difficulties involved in comparing retrievals from two 

different remote sensing instruments [Rodgers and Connor, 2003].  The range of 

geographical locations and altitudes covered by aircraft measurement campaigns, and 

their relative ease of availability also support the use of such data in validation work. 

As such, in situ aircraft data have frequently been used in the validation of retrievals 

of different atmospheric parameters from satellite instruments (e.g. Emmons et al. 

[2004] and Gettelman et al. [2004]).  

 

Although commonly used in the validation of satellite retrievals, aircraft data also 

has its limitations for such work. The key limitation when considering the 

comparison of in situ aircraft profiles with satellite data is the difference in 

geographical measurement scales. Aircraft profiles consist of point measurement, 

whereas satellite observations cover relatively large spatial scales (both horizontally 

and vertically). It is also the case that aircraft measurements may not be coincident in 

time with satellite overpasses. Even in targeted aircraft campaigns, where temporal 

coincidence is good, the time taken to record the aircraft profile will result in some 

discrepancy between aircraft measurement and satellite observation times. These 

differences in spatial and temporal sampling give rise to the potential for aircraft and 

satellite to observe very different atmospheric conditions (e.g. if the aircraft were to 

fly through a localised CO plume). As a result of these limitations, care must be 

taken when collating aircraft data for validation and when analysing the results. 
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4.2. Validation Data Set 

4.2.1. In Situ Data 

As discussed in §4.1, validation of the UoE retrieval scheme was carried out using a 

data set of in situ aircraft profiles, constructed specifically for this study.  This data 

set consisted of over 132 profiles, collated from three independent measurement 

campaigns, covering a range of locations around Central and North America, and 

around the UK (Figure 4.1). As is usual with such an exercise, considerable effort 

was required to standardise the aircraft measurements between campaigns, and to 

apply consistent quality control across the data set, details of which are outlined in 

§4.2.5. 

 

Figure 4.1 Locations of the in situ aircraft CO profiles used in the validation study. Numbers in 

parenthesis indicate the number of profiles from each aircraft campaign/station (detailed in §4.2.2 to 

§4.2.4). Aircraft data covers three measurement campaigns: NOAA CMDL (CAR, ESP, HAA, HFM, 

LEF, PFA), the Aura Validation Experiment (Pre AVE, AVE 0410, AVE 0506), and EAQUATE 

(EAQUATE). 

 

4.2.2. NOAA CMDL 

Over half of the in situ profiles were taken from six measurement stations in the 

NOAA CMDL (Climate Monitoring and Diagnostics Laboratory) data set [ERSL, 

2007]. These cover a range of locations across North America (including Alaska) and 

over the Pacific Ocean, near Hawaii. The altitude range covered by the profiles 

varies over the range of ~0.5 km to ~13 km, with most profiles covering a range of 
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~1 km to ~8 km. Only data points which passed all CMDL quality checks were used. 

The number of CMDL profiles available for use in this validation study was limited 

by the relatively poor coincidence between the in situ measurements and the AIRS 

overpass times for many of the CMDL recording stations. NOAA CMDL use an 

automated flask sampling method that collects whole air samples at different 

altitudes during the flight. CO concentrations are then determined from these 

samples in the laboratory, using gas chromatography and HgO reduction techniques 

[Novelli et al., 1998]. All measurements are referenced to the CMDL/WMO CO 

scale and have typical errors of ~3 ppb [Novelli et al., 2003].  

4.2.3. Aura Validation Experiment (AVE) 

The other main source of in situ data was NASA’s Aura Validation Experiment 

[Gaunce, 2007], with flight paths originating from Houston, Texas, and San Jose, 

Costa Rica. As the objective of this campaign was to provide validation data for 

instruments on NASA’s Aura satellite, part of the A-train, the measurement times 

closely match those of the AIRS overpasses. Some instruments onboard the Aura 

satellite, such as the Microwave Limb Sounder (MLS), focus more on measurements 

in the stratosphere. As a result this data set contains more measurements at higher 

altitudes than the CMDL campaign, with profiles covering altitude ranges of ~0 km 

to ~20km. The AVE aircraft campaign measures CO using a tuneable diode laser 

absorption spectrometer (TDLAS), Argus, flown onboard WB-57F aircraft. This 

instrument operates at 2111.5 cm
-1

, detecting the CO P(8) absorption line. It is a fully 

autonomous instrument and is capable of making measurements of CO every 2 

seconds. Calibration is carried out both pre-flight and during flight, using the NOAA 

CMDL standards as reference. CO measurements from Argus are accurate to ~3% 

[Lopez et al., 2008]. 

 

4.2.4. European AQUA Thermodynamic Experiment (EAQUATE) 

Some in situ profiles were also obtained from the EAQUATE campaign [Taylor, 

2005], operated by the Facility for Airborne Atmospheric Measurements (FAAM). 

These flights provided CO profiles in locations around the coast of the U.K.. As for 

the AVE campaign, the coincidence with AIRS overpasses is good for the 
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EAQUATE data. The altitude range covered by the profiles is ~0 km to ~11 km. CO 

measurements are made using the Aero-Laser Gmbh AL5002 Fast Carbon Monoxide 

(CO) Monitor. This is a resonance fluorescence instrument that provides 

measurement speed and accuracy comparable with the TDLAS instrument used in 

the AVE campaign [Gerbig et al., 1999]. 

 

4.2.5. Constructing the Data Set 

Having identified suitable aircraft measurement campaigns, some additional work 

was required to extract and format data from these campaigns into a coherent data 

set, appropriate for comparison with the AIRS CO retrievals. This process involved 

both the processing of the in situ aircraft data and the selection and processing of 

coincident AIRS data.  As the format of the in situ aircraft data differed across the 

measurement campaigns (e.g. different profile levels and mixtures of profiles and 

flight path measurements) it was necessary to process this data into a single profile 

format across all measurement campaigns.  

 

The CMDL campaign consisted of only profile data, but both AVE and EAQUATE 

contained a mixture of profile and fixed-altitude flight path data. Ascending and 

descending profiles were extracted from the data for each flight and were treated as 

independent CO profiles. Only profiles with measurements at altitudes within the 

range of levels used in the a priori profile, xa, were used. Treating the data in this 

way helped to limit the spatial and temporal variations present in the measurements 

of each profile, allowing more accurate collocation with the AIRS observations. 

Some of the aircraft data also contained in-flight calibration measurements. Where 

such measurements were present in a profile, linear interpolation using the 

measurements at the surrounding levels were used to replace the CO calibration 

values. 

 

It was also necessary to apply some quality control measures in the construction of 

the in situ data set. Quality control flags present in the aircraft data sets were used to 

filter out poor quality measurements. Where possible, data flagged to be of low 
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quality was replaced by linearly interpolation from measurements at surrounding 

levels. Care was taken not to perform such interpolation over large altitude ranges, 

with profiles suffering from low quality measurements over significant altitude 

ranges either truncated or removed from the data set. Having performed the 

processing steps discussed above, the aircraft profiles were then interpolated onto the 

STOCHEM pressure levels, within the pressure range of the in situ profiles, to 

provide a coherent set of in situ profiles. No extrapolation or substitution of a 

reference profile was carried out for levels beyond this range.  

 

Having assembled the data set of in situ profiles, a data set of collocated AIRS data 

was collated using the following criteria: within ±6 hours and ±1° latitude and 

longitude from the mean observation time and location of the in situ profile. Before 

comparisons with aircraft data were made the UoE CO retrievals meeting the 

coincidence criteria were averaged for each in situ measurement.  

 

4.3. Methods of Comparison 

4.3.1. Percentage a priori 

An important consideration when trying to analyse the effectiveness of an optimal 

estimation retrieval is the degree of contribution from the a priori. There is little use 

in comparing retrievals that are dominated by the a priori with in situ measurements, 

as this only really shows that there is little information available in the 

measurements, while revealing how close the a priori is to the true state. A more 

useful analysis of the performance of the retrieval can be made by filtering the data 

using the percentage a priori statistic. This is defined as the ratio of the diagonal 

elements of Sa and Ŝ  (Eq. 4.1):   
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By only considering retrievals where PP < 50%, a clearer picture of the accuracy of 

the retrieval can be obtained. Due to the lack of sensitivity of the AIRS instrument to 
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CO near the surface and in the upper-troposphere (illustrated by the averaging 

kernels in Figure 3.13 and Figure 3.14), the percentage a priori figure is unlikely to 

fall below 50% at these levels. Instead of rejecting such data, the entire profile is 

considered to have passed the percentage a priori test if PP < 50% for levels at 350, 

550 and 750 hPa. As the AIRS v4 CO retrieval does not employ optimal estimation 

techniques, equivalent information is not available in the AIRS L2 product. The 

AIRS v4 retrievals are excluded from the analysis on the basis of the QUAL_CO flag 

(in the AIRS L2 data), set when the retrieval is replaced by “first guess” profile. Only 

data where this flag is not set is considered in the validation study. 

4.3.2. Averaging Kernel Transformation 

Direct comparison of the CO retrieval with in situ observations (or other remote 

sounding observations) provides a useful insight into the performance of the retrieval 

scheme. Although it is very useful for understanding and illustrating some features of 

the retrieval, such as the resolution, it is perhaps not the most appropriate method of 

comparing CO observations from independent sources. This is due to the 

fundamental nature of the inverse problem, where the retrieval is the best estimate of 

the state given the measurements and prior knowledge, rather than a simple direct 

measurement of the actual state.  Rodgers and Connor [2003] propose some 

techniques to enable more appropriate comparisons to be made. One of these 

techniques is to apply the averaging kernels, A, from the retrieval to the in situ 

profiles using the transformation: 

 ,ahas xxAxx   4.2 

where xh is the in situ profile, or a profile from an alternative remote sounding 

instrument or retrieval method. 

 

The effect of this transformation is to give xh the theoretical properties of the UoE 

retrieval. The resultant smoothed profile, xs, is the profile that would be retrieved by 

the UoE method in the absence of retrieval error (i.e. noise and forward model error) 

if xh were the true state. Comparison of x̂  with xs rather than xa eliminates the 

smoothing effects  
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4.4. Profile Retrievals 

A number of features of the retrieval scheme can be illustrated by looking at some 

examples of the retrieved profiles, Figure 4.2.  The lack of sensitivity of the retrieval 

scheme to CO near the surface and in the upper troposphere is shown in Figure 4.2a. 

In this example the in situ data contains high and low CO concentrations in the lower 

and upper troposphere respectively. The extremes of this range are not present in the 

retrieved profile, as the lack of sensitivity to CO at these levels results in x̂  being 

dominated by xa and the covariances of Sa. This point is further highlighted by the 

averaging kernels shown in Figure 4.2b, all of which peak at mid-troposphere levels. 

  

Figure 4.2 (a) An example from the validation data set, of the CO profile retrieved from the UoE 

scheme compared to in situ data and the AIRS v4 CO product. (b) The corresponding averaging 

kernels from the UoE retrieval. 

 

The smoothing effect of the averaging kernels is also demonstrated in Figure 4.2a. 

Here the finer scale features of the present in the aircraft profile are replaced by a 

smoothed curve, resembling the shape of xa, in the retrieved profile, x̂ . The 

smoothing effect in the retrieval is also clearly visible in xs, the aircraft profile with 

the averaging kernel transformation (Eq. 4.2) applied. In this example the UoE 

retrieval x̂  is in very good agreement with the smoothed aircraft profile xs, and 

differs from the prior by more than one sigma in the mid-troposphere, suggesting a 

degree of success for this particular retrieval. 

 

(a) (b) 
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4.5. CO At Different Altitudes 

The CO retrievals were compared to the in situ measurements in the validation data 

set at each profile level. Results of this comparison at the 550 hPa level, where AIRS 

is expected to be most sensitive to CO (as discussed in §3.2), are presented in Figure 

4.3. For this comparison the UoE retrievals have been filtered to exclude data where 

the percentage a priori > 50% at the 550 hPa level.  

  

Figure 4.3 Direct comparison of CO concentrations at 550 hPa. (a) in situ vs UoE CO . (b) in situ vs 

AIRS v4 CO. Only retrievals with percentage a priori < 50% are considered. 

 

There is fairly high correlation (R > 0.8) between both retrieval methods and the in 

situ observations. However, neither retrieval scheme is able to match the dynamic 

range of the in situ data. This is illustrated by positive and negative biases when the 

in situ CO concentration is low and high respectively.  In the case of the UoE scheme 

this may be a result of error contributions to the retrieval scheme forcing x̂  towards 

xa, thus applying a constraint on the range of CO values. Another interesting feature 

in Figure 4.3 is the difference in the error estimates between the two retrievals. At 

550 hPa the error estimates from the UoE system are significantly less than those 

from the AIRS v4 retrieval. The mean UoE retrieval error is ~12% compared to 

~21% for the AIRS v4 retrievals. From equivalent analysis at different altitudes, the 

UoE error estimate is seen to increase away from the mid-troposphere, as might be 

expected given our knowledge of the instrument’s varying sensitivity to CO 

throughout the troposphere. The same behaviour is not observed in the AIRS v4 error 

estimate, which returns similar values at all levels in the profile, a somewhat 

unrealistic result. This more realistic representation of the retrieval errors on altitude 

levels suggests an advantage in using the optimal estimation technique. 

(a) (b) 
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The inability of the retrieval scheme to fully capture the range of CO concentrations 

observed in the in situ data is further emphasised when the averaging kernel 

transformation is applied (Figure 4.4). Although the degree of correlation is 

increased the range of xs is significantly lower than that of the original in situ 

profiles, xh. 

 

Correlation between in situ observations and the UoE retrieval decreases as the 

altitude level approaches the lower and upper-troposphere levels. Away from the 

mid-troposphere levels, it is also observed that fewer cases meet the percentage a 

priori sampling criteria. This is the expected result from knowledge of the averaging 

kernels and the behaviour of the MAP algorithm. At profile levels where AIRS is 

less sensitive to CO the UoE retrieval will tend towards xa, with an accompanying 

increase in the retrieval error estimate, contained in Ŝ . This information, intrinsic to 

the optimal estimation technique, provides an accurate picture of whether the values 

in x̂  are a measure of the true state, x, or a dependence on xa.   

 

 

Figure 4.4 Comparison of CO concentrations at 550 hPa for the UoE retrieval, x̂ , and the in situ 

measurements  smoothed by the averaging kernel transformation of Eq. 4.2, xs.  

 

4.6. Total Column CO 

As the averaging kernels (§3.5.3) indicated that the AIRS radiances may typically 

only provide one independent piece of information about the CO profile, the total 

column CO is perhaps the most appropriate value to investigate. The in situ profiles 
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cover different altitude ranges so total column CO values were calculated only across 

the levels, common in both aircraft and AIRS profiles, for each in situ profile. Figure 

4.5a and Figure 4.5b show comparisons of the Total Common Column (TCC) CO 

between the in situ data and the UoE and AIRS retrievals (TCCIS, TCCUoE, and 

TCCAIRS). The total column values for the in situ and AIRS data are based on the 

original profiles, without the averaging kernel transformation (Eq. 4.2) applied. 

Results from the smoothed profiles will be referred to as TCCISS and TCCAIRSS.  

  

Figure 4.5 Direct comparisons of Total Common Column (TCC) CO retrievals with TCC CO from in 

situ measurements for the validation data set. (a) in situ vs UoE CO. (b) in situ vs AIRS v4 CO 

 

Figure 4.5 shows that both retrieval schemes show good agreement with the in situ 

measurements for TCC CO, with R > 0.9. The error estimates from the retrieval 

schemes are also similar, with mean errors (relative to the mean in situ profile) of 

~18% and ~23%, for TCCUoE and TCCAIRS respectively. From the results of §4.5 this 

similarity in TCC CO error estimates is a result of the AIRS v4 retrieval 

underestimating the errors in regions of low CO sensitivity and overestimating the 

error in regions of high CO sensitivity, relative to the UoE retrievals. There is a small 

negative bias (<1%) relative to the in situ profiles in the UoE retrievals. The bias in 

the AIRS retrievals is positive and considerably larger (~13%). This fairly large bias 

may be due to the AIRS v4 retrieval returning profiles close to their “first guess” 

which is higher than the mean of the aircraft profiles. Unlike the UoE retrievals there 

is no diagnostic available to allow data to be excluded on the basis of contribution 

from the a priori or “first guess”. 

 

(a) (b) 
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The results of applying (Eq. 4.2) to the in situ profiles are shown in Figure 4.6. 

Applying the averaging kernel transformation improves the correlation (R=0.97) and 

significantly reduces the standard deviation of the distribution from ~14% to ~8% of 

the mean TCCISS value. Along with these improvements, the averaging kernel 

transformation also introduces a significant negative bias (~7%), approximately a 

factor of 10 increase. The negative bias introduced by the averaging kernel 

transformation is potentially a consequence of the use of truncated profiles in the in 

situ data set, and therefore applying truncated versions of the averaging kernels in the 

transformation. Using these truncated versions of A will result in a somewhat 

different smoothing being applied to the in situ profiles, than the UoE retrieval 

scheme applies to the true atmospheric state, and may be the cause of the bias 

observed in Figure 4.6. 

 

 

Figure 4.6 Comparison of total column CO from the UoE retrieval (TCCUoE) with that from the in situ 

data with the averaging kernel transformation (Eq. 4.2) applied (TCCISS). 

 

Direct comparisons between the UoE and AIRS v4 retrievals were also made (Figure 

4.7). These total column values are for the full profiles, as the profiles from both 

retrievals cover the same altitude range. As the two retrieval schemes give 

comparable results when evaluated against the in situ data, it is no surprise that a 

high degree of correlation is observed when the two methods are compared directly. 

Although there is very good correlation there is also quite a significant bias, with the 

UoE retrieval typically about 10% lower than that from the AIRS v4 product. The 

likely reason for this bias could be that there is a larger dynamic range in the UoE 

retrievals. As the mean in situ profile is lower than the a priori (and “first guess”), a 
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less constrained retrieval scheme could result in typically lower TC CO values over 

this data set. 

 

 

Figure 4.7 Comparison of total column CO retrievals from UoE and AIRS v4 retrieval schemes for 

the validation data set. 

 

4.7. Summary 

In this chapter, the details of a validation study for the UoE retrieval and its results 

are presented. A set of over 100 in situ aircraft measurements of CO profiles was 

collated and a corresponding set of AIRS data (matched spatially and temporally) 

was assembled. The UoE retrieval scheme was implemented using the AIRS L2 

products as input to the fast forward model RTTOV, and the resulting CO profiles 

compared to the in situ measurements, and the AIRS v4 CO product. 

 

Comparisons of total common column (TCC) CO revealed the UoE CO product to be 

well correlated with the in situ measurements. The AIRS v4 CO product was also 

shown to be similarly well correlated to the in situ data but was significantly more 

biased than the UoE product. Error estimates for both AIRS TCC CO products were 

similar, with mean values of ~20%.   

 

CO concentrations on individual profile levels were also compared. High correlations 

between AIRS retrievals and the in situ measurements were observed in the mid-

troposphere. At this level, the mean UoE retrieval error was shown to be 

considerably less than that from the AIRS v4 product (~12% compared to 21%). It 

was noted that away from the mid-troposphere levels, correlations between the UoE 
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CO product and in situ measurements decreased and the UoE retrieval error 

increased. This is due to decreasing sensitivity to CO at these levels and a subsequent 

increase in the influence of the prior on the retrieval. Similar behaviour was also 

noted in the AIRS v4 CO product but only in terms of correlations with in situ 

observations. Retrieval errors from the AIRS v4 product showed little variation with 

altitude, an unrealistic result that suggests the optimal estimation retrieval provides 

better characterisation of the retrieval errors. 

 

Although the UoE CO product was shown to be well correlated with in situ 

measurements, it was also shown to have some limitations. In addition to the lack of 

sensitivity in the lower and upper troposphere, it was demonstrated that the UoE 

retrieval was also unable to capture the dynamic range observed in the in situ 

measurements. This is partly due to the fundamental differences between the 

measurement techniques. While the in situ data consists of localised point 

measurements, AIRS observes the CO over a considerable spatial area. 

Consequently, even at levels where AIRS is most sensitive to CO, it will not be able 

to detect the extreme concentrations that can be measured in situ. 
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Chapter 5. Comparison with MOPITT 

5.1. MOPITT CO 

5.1.1. Instrument details 

The Measurements of Pollution in the Troposphere (MOPITT) instrument was 

launched aboard the EOS Terra satellite in December 1999, and has provided 

operational CO retrievals since March 2000. It is a nadir sounding instrument with 

spatial resolution of 22 km at the nadir. CO retrievals are performed using 

measurements of thermal IR emission in a band centred on 4.62 μm and gas 

correlation radiometry techniques (outlined below and described in more detail by 

Deeter et al. [2003] and Niu et al. [2004]). 

 

Modulation cells in the MOPITT instrument contain CO and act as high spectral 

resolution optical filters. The filtering characteristics of the cells are varied 

dynamically, through modulation of the cell pressure or the optical path length, 

giving rise to Pressure-Modulated Cells (PMC) or Length-Modulated Cells (LMC) 

respectively. By averaging or differencing the transmitted optical intensity in the 

modulation cell states of minimum and maximum absorption, information about 

different spectral regions can be obtained.  The average “A” signals are primarily 

sensitive to the spectral regions between the CO absorption lines, where variability in 

the radiances is dominated by surface temperature.  In contrast, the difference “D” 

signals are highest close to the CO absorption lines, making the “D” signals 

relatively much more sensitive to CO concentrations than the “A” signals. As the 

spectral position of the maximum of the “D” signal response is dependent on the 

characteristics of the modulation cell, it is possible to look at different parts of the 

line wings by modulating the cell. Thus, because of atmospheric pressure 

broadening, MOPITT is able to obtain CO information at different altitudes. 

   

The current MOPITT CO retrieval algorithm, v3 [Emmons et al., 2004], uses “A” 

and “D” signals from an LMC and the “D” signal from a PMC. These combine to 

provide sensitivity to CO over a range of altitudes, with the LMC having sensitivity 
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across a broad range from the lower to upper troposphere while the PMC enhances 

the sensitivity of MOPITT in the upper troposphere. As with the AIRS channels used 

in the UoE retrieval scheme (Chapter 3) MOPITT is sensitive to both tropospheric 

CO and other geophysical parameters such as temperature and water vapour. 

5.1.2. Retrieval Scheme 

The MOPITT retrieval algorithm shares the same basis as the UoE algorithm for 

AIRS, using the maximum a posteriori (MAP) solution [Rodgers, 2000] and 

employing it in a Newtonian iteration scheme. As for the UoE method the MOPITT 

retrieval uses a fixed global prior xa and associated covariance matrix Sa. Both of 

these are determined from a set of in situ aircraft profiles with monthly climatology 

values from the CTM “MOZART” [Hauglustaine et al., 1998] used at high altitudes, 

described in more detail by Deeter et al. [2003]. The a priori profile, xa, and its 

uncertainty are shown in Figure 5.1. This prior information is on a set of 32 fixed 

pressure levels. Retrievals of CO at such high vertical resolution are not possible and 

the final retrieved CO product is returned on a set of up to 6 fixed pressure levels 

(850, 700, 500, 350, 250, and 150 hPa) with a further “floating” surface level [Deeter 

et al., 2003]. The a priori profile used in the MOPITT retrievals is considerably 

lower than the AFGL US standard profile used in the UoE retrieval scheme for AIRS 

(Figure 3.6). This has potential to introduce biases between the two retrievals. 

However, as both retrievals use the same optimal estimation techniques, the degree 

of contribution from the prior can be determined, allowing any such biases to be 

better characterised. 

 

Figure 5.1 MOPITT a priori and associated error from MOPITT Sa. 
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5.1.3. Retrieval Performance 

As MOPITT has been operational since 2000 and CO is one of its core products, 

extensive validation and analysis of its CO product has been carried out (Deeter et al. 

[2004] and Emmons et al. [2004]). Deeter et al. [2004] investigated the information 

content of the MOPITT CO profiles, showing the number of degrees of freedom, ds, 

to typically lie between ~0.5 and 1.7. They also observed the general trend of 

decreasing ds from the tropics to the poles and diurnal variations in ds over the land.  

 

Analysis of the averaging kernels by Deeter et al. [2003] showed MOPITT to have 

limited sensitivity to CO in the boundary layer, with retrievals at the surface and 850 

hPa levels dominated by CO at higher altitudes and by the prior. Figure 5.2 shows an 

example of MOPITT averaging kernels, taken from Deeter et al. [2003]. These are 

typical MOPITT averaging kernels for night time retrievals over the central Pacific. 

They illustrate the lack of sensitivity to CO near the surface, with both the surface 

and 850 hPa averaging kernels peaking at 500 hPa. When compared to the averaging 

kernels from simulations of the UoE retrieval scheme for the AFGL tropical 

atmosphere (Figure 3.14), the MOPITT averaging kernels can be seen to offer 

greater distinction between CO at different altitudes, with clear differences in the 

shape and peak altitude of the averaging kernels in the lower and upper troposphere. 

Deeter et al. [2003] proposed that MOPITT has the potential to distinguish between 

CO in the upper (350 to 150 hPa) and lower (surface to 700 hPa) troposphere.  
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Figure 5.2 Mean MOPITT averaging kernels for night time retrievals over the central Pacific ocean 

(region defined by 10°S, 10°N, 180°W, and 150°W) on March 14, 200. Taken from Deeter et al. 

[2003]. 

Deeter et al. [2003] also demonstrate diurnal variability in the MOPITT averaging 

kernels, through the analysis of the mean daytime and night time averaging kernels 

over western Australia. The mean averaging kernels calculated by Deeter et al. 

[2003] are shown in Figure 5.3. These illustrate the effect of diurnal surface 

temperature variations on the MOPITT retrievals. Higher daytime surface 

temperatures result in the peaks of the lower troposphere levels being shifted closer 

to the surface, indicating that the sensitivity of MOPITT to CO is higher under these 

conditions. The reverse is true for night time retrievals and the averaging kernels for 

different altitude levels become less distinguishable.  

 

In addition to the work of Deeter et al. [2003], Emmons et al. [2004] also conducted 

an extensive validation study with in situ aircraft measurements, and observed a 

small negative bias (~2-3%) in the MOPITT retrievals at all profile levels. Although 

the overall bias observed was small, large variations in the bias were observed 

between different regions, with the largest biases observed in clean CO regions.  
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Figure 5.3 Mean MOPITT averaging kernels for (a) daytime and (b) night time retrievals over 

western Australia (region defined by 30°S, 15°S, 120°E, and 140°E) on November 1, 2000. Taken 

from Deeter et al. [2003].  

 

5.2. MOPITT vs AIRS 

5.2.1. Introduction 

As MOPITT is an established and well documented satellite instrument for global 

CO observations, it can be regarded as a useful benchmark for observations from 

other instruments. As such, an extensive comparison study was carried out, between 

CO from MOPITT, AIRS (v4) and the UoE retrieval scheme. AIRS data covering a 

full year (2006) was obtained and processed using the UoE method. Daily averages 

were then calculated for the same 1° by 1° (longitude by latitude) grid used for the 

MOPITT level 3 (L3) CO product. In the calculation of the daily averages, the filters 

used to produce the MOPITT L3 product [Emmons, 2002] were applied to the UoE 

observations for consistency. These filters are shown in Table 5.1.  

 

  

(a) (b) 
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Filter Method 

Land/Water A land/water mask is used to determine the surface type for each 

grid box. Only pixels for this surface type are included in the 

average. This prevents inhomogeneous data from being averaged 

together. 

Day/Night Day and night pixels are averaged and reported separately. Pixels 

with solar zenith angle greater than 80° are classed as night.  

This filtering strategy is included because MOPITT exhibits 

considerably different sensitivity between day and night over land.  

Table 5.1 Filters used in MOPITT L3 data and to produce daily averages from UoE retrievals. 

 

5.2.2. Daily Averaged CO 

The day and night time averages for CO at 500 hPa, for a sample day (24/10/2006), 

selected as it includes a region of strongly elevated CO, are shown in Figure 5.4. 

These plots compare the basic MOPITT L3 CO product with the equivalent UoE 

product. In this comparison no filtering of the data, based on the percentage prior or 

any other factor, has been carried out. The most striking feature of Figure 5.4 is the 

significantly higher coverage of the AIRS instrument. Considering both day and 

night data, AIRS provides coverage of ~70% of the globe compared to only 30% 

from MOPITT. This greatly improved coverage gives AIRS an obvious advantage 

over MOPITT, enabling a clearer picture of the global CO distribution to be obtained 

on a daily basis.  

 

Figure 5.4 also shows reasonable agreement in the distribution of CO between the 

UoE and MOPITT products, with the high and low CO values being observed in the 

same regions. Both products show low CO values over the South Pacific and 

elevated CO over the Indian Ocean and Southern Africa. The correlation coefficients 

for these examples are ~0.45, with grid box match ups for approximately 10% of the 

globe. As the UoE and MOPITT retrievals use different prior profiles, and the daily 

averages may be dominated by these, a higher degree of correlation could be 

expected if some form of filtering based on the contribution from the prior is 

performed. The relatively low number of match ups between AIRS and MOPITT 
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limits the usefulness of such comparisons of daily averages. Although a basic picture 

of the agreement can be formed, analysis over a longer time period is required to 

obtain a more meaningful result. Consequently, more in depth analysis was carried 

out looking at monthly averaged CO (§5.2.3 to §5.2.7). 
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Figure 5.4 Daily average CO at 500 hPa for 24/10/2006, calculated on a 1° latitude by 1° longitude grid. (a) and (c) UoE day and night. (b) and (d) MOPITT day and 

night. 

(a) 

(b) 

(c) 

(d) 
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5.2.3. Monthly Averaged CO - Spatial Coverage and Data Filtering 

The monthly average daytime CO was calculated from the daily products for 

MOPITT, AIRS v4 and UoE. Examples of these monthly averages for October 2006 

are shown in Figure 5.5. October 2006 was selected because of the elevated CO 

observed over Indonesia and surrounding area during this month. When the raw CO 

product, with no filtering, is considered the AIRS instrument is again seen to provide 

improved spatial coverage compared to MOPITT. Although both instruments 

provide good coverage on a monthly timescale, more grid boxes contain no valid 

data in the MOPITT data. The poorer daily coverage of MOPITT makes it more 

susceptible to data loss due to cloud cover. This problem is reduced further by AIRS 

through the use of cloud cleared radiances, allowing retrievals to be performed in the 

presence of significant cloud cover [Susskind et al., 2003]. It is likely that the gaps in 

MOPITT coverage are largely due to persistent cloud cover. It is also possible that 

the MOPITT cloud clearing algorithm may falsely flag smoke from extensive 

biomass burning as cloud. This may contribute to the relatively poor MOPITT 

coverage over Indonesia (Figure 5.5b). 

 

Although the spatial coverage of the raw products from AIRS and UoE is somewhat 

better than for MOPITT, any potential benefit of this is limited by the quality of the 

CO product. In the UoE and AIRS products, elevated CO values are observed over 

Antarctica, a region where low concentrations of CO are expected. The same is true 

for MOPITT, with higher CO observed over Antarctica than the surrounding 

Southern Ocean. In all cases the values over Antarctica are essentially the prior 

(MOPITT and UoE) or first guess (AIRS).  This is confirmed when the daily CO 

data is filtered to remove all data with % prior greater than 50% at 500 hPa from the 

monthly average (Figure 5.6). Excluding the data dominated by the prior, for the 

most part, results in the removal of the dubiously high values over regions like 

Antarctica from the monthly average UoE and MOPITT products. The lack of 

information about the quality of the retrieval in the AIRS product makes equivalent 

data filtering impossible, and therefore the elevated CO values remain present in the 

AIRS product.  
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Another point to note about the effect of filtering the data is the reduction in CO 

values between the raw and filtered UoE products. This suggests that the daily 

average for some grid boxes is dominated by the prior for a considerable number of 

days over the course of a month. The same effect is not observed in the MOPITT 

product, suggesting that, when conditions allow a MOPITT retrieval to be made, it is 

usually dominated by the CO signal rather than the prior. One potential explanation 

for this difference between the instruments is the fact that the UoE retrieval utilises 

cloud cleared radiances. This allows retrievals to be performed for scenes with high 

levels of cloud cover that would be flagged as cloudy by MOPITT. Although CO 

retrievals can be made for such scenes, it is possible that the quality of the UoE 

retrievals is degraded by increased errors, introduced by clouds, in retrieval 

parameters derived from the AIRS L2 products.  

 

For the purpose of inter-instrument comparisons and in general, it is desirable to 

filter the data in some way to limit the degree of contribution from the prior in the 

CO products. In an ideal retrieval where there is independent information in the 

measurements about each profile level, a filter based on 50 % prior at each level 

could be used. As both MOPITT and AIRS are relatively insensitive to CO in the 

lower and upper troposphere, and rely on prior knowledge of the inter-level 

correlations at these altitudes, such a filtering method would result in severely 

limited set of successful retrievals. A number of filtering thresholds, using different 

numbers of levels were investigated, before the simple rule requiring <50% prior at 

500 hPa was selected for use in the remainder of this study. Only the 500 hPa level 

was used as this is typically the level where both AIRS and MOPITT have their 

highest sensitivity to CO. It was felt that putting additional constraints on other levels 

could result in useful upper troposphere retrievals being rejected due to a lack of 

information in the lower troposphere, and vice versa. It was also observed that using 

only the 500 hPa threshold test provided monthly products with very good global 

coverage. The application of this threshold test improves the correlation between the 

UoE and MOPITT retrievals from ~0.65 to 0.90, as a result of the reduction in the 

contribution from the different prior CO profile. 
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Figure 5.5 Monthly average daytime CO at 500 hPa for October 2006, using all data. (a) UoE, (b) 

MOPITT, and (c) AIRS v4. 

(a) 

(b) 

(c) 
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Figure 5.6 Monthly average daytime CO at 500 hPa for October 2006, filtering data with % prior > 

50% at 500 hPa.  (a) UoE, (b) MOPITT, and (c) AIRS v4.  

(a) 

(b) 

(c) 
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5.2.4. Monthly Averaged CO - CO Profiles 

The CO concentrations from the three methods (UoE, AIRS v4, and MOPITT) were 

compared at each individual pressure level in UoE and MOPITT profiles. As 

outlined in §5.2.3 the UoE and MOPITT products were filtered to exclude profiles 

with a contribution from the prior of more than 50% at 500 hPa. This comparison of 

the retrieval schemes was carried out for all 12 months and all profile levels for both 

daytime and night-time data. Global maps of daytime CO for the month of October 

2006 and the levels, 700, 500 and 350 hPa, are presented in Figure 5.7, Figure 5.8, 

and Figure 5.9 respectively. In the calculation of these monthly averages only grid 

boxes containing valid retrievals from all three systems were included, so the 

coverage is less than for each data set individually. The coefficients of correlation 

between the three retrievals are given in Table 5.2, along with the biases relative to 

MOPITT (and AIRS for the UoE vs AIRS case). Correlation of CO from the two 

AIRS retrieval algorithms with MOPITT CO is plotted in Figure 5.10. Finally the 

distribution of inter-instrument CO differences are shown in Figure 5.11. 

 

Comparison of the CO maps by eye suggests good agreement between the three 

measurement systems, particularly at 500 and 350 hPa. This is supported by the high 

correlation coefficients between all systems (Table 5.2). At 700 hPa MOPITT sees 

larger areas of elevated CO and also higher peak values than either of the AIRS-

based retrievals (Figure 5.7). This is reflected in the lower correlation coefficients at 

this level and is a sign that MOPITT is more sensitive than AIRS to CO in the lower 

troposphere (as suggested by the UoE and MOPITT averaging kernels shown in 

Figure 3.14 and Figure 5.2 respectively). The lower sensitivity of AIRS at this level 

is further emphasised in the correlation plots Figure 5.10 (a) and (d). Here the UoE 

retrieval fails to capture most of the high CO concentrations observed by MOPITT, 

with the UoE CO tending toward xa. A similar result is seen in the AIRS v4 data but 

here the trend is more pronounced and occurs at both high and low CO 

concentrations, as seen by MOPITT. Again this is an indication that AIRS has a lack 

of sensitivity at this level and that there is considerable contribution from the “first 

guess” in the AIRS v4 product. 
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At 500 hPa, both AIRS and MOPITT are expected to have good sensitivity to CO. 

The more comparable sensitivity yields a higher degree of correlation between the 

instruments at this level (Table 5.2), also show by the similarities in the global maps 

(Figure 5.8). In Figure 5.10b the trend of UoE towards the prior at high MOPITT 

values is largely removed. The trends at low and high MOPITT CO values for AIRS 

v4 CO (Figure 5.10d) are also removed, with good agreement now observed between 

the instruments across the full range of CO values. Similar results are observed at 

350 hPa but with slightly lower correlations than at 500 hPa and a less significant 

form of the trends seen at 700 hPa. 

 

Although the correlation of the two AIRS CO products to MOPITT CO is similar, 

analysis of the global maps suggest the magnitude of the CO can differ considerably. 

Looking at 500 hPa (Figure 5.8) the AIRS v4 algorithm CO concentrations are 

generally higher than those from UoE and MOPITT. This is highlighted in Figure 

5.11b where the histogram of the AIRS-MOPITT differences is seen to peak at +10 

ppbv, while the UoE-MOPITT distribution is centred on zero. Table 5.2 illustrates 

this numerically with biases in UoE and AIRS v4 CO relative to MOPITT of 0.8 

ppbv and 10.8 ppbv respectively. A reduced but positive bias is also present in the 

AIRS retrieval at 350 and 700 hPa. At these levels UoE CO exhibits a negative bias 

relative to MOPITT of similar magnitude to that of AIRS (~4-9 ppbv). Figure 5.10c 

suggests that this bias is caused by an underestimation of elevated CO by the UoE 

system relative to MOPITT. This may be a result of increased contribution from the 

prior at these levels in the UoE product. Filtering the data using a % prior threshold 

at these levels may reduce or remove this bias. 

 

One final point to note about the histograms of CO differences is the significantly 

wider distribution at 700 hPa compared to 500 and 350 hPa. This is a combination of 

two factors; the greater sensitivity of MOPITT in the lower troposphere, and the 

higher variance of CO at lower altitudes.  
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Figure 5.7 Monthly average daytime CO concentration at 700 hPa for October 2006. (a) UoE, (b) 

MOPITT, and (c) AIRS v4.  

(a) 

(b) 

(c) 
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Figure 5.8 Monthly average daytime CO concentration at 500 hPa for October 2006. (a) UoE, (b) 

MOPITT, and (c) AIRS v4.  

 

(a) 

(b) 

(c) 
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Figure 5.9 Monthly average daytime CO concentration at 350 hPa for October 2006. (a) UoE, (b) 

MOPITT, and (c) AIRS v4.  

(a) 

(b) 

(c) 
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Figure 5.10 Correlation of CO between observing systems for October 2006. (a) to (c) UoE vs 

MOPITT at 700, 500 and 350 hPa. (d) to (f) AIRS v4 vs MOPITT at 700, 500 and 350 hPa. 

 

Pressure Level 

(hPa) 

UoE vs  

MOPITT 

UoE vs  

AIRS v4 

AIRS v4 vs 

MOPITT 

R Bias R Bias R Bias 

350 0.89 -3.9 0.89 -11.5 0.90 7.7 

500 0.91 0.8 0.93 -10.0 0.91 10.8 

700 0.75 -8.5 0.92 -14.7 0.74 6.2 

Table 5.2 Correlation coefficients and bias (ppbv) calculated for monthly mean CO for October 2006. 

(f) 

(b) 

(c) 

(a) (d) 

(e) 
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Figure 5.11 Distribution of CO differences between observing systems at (a) 700 hPa, (b) 500 hPa, 

and (c) 350 hPa. The histograms were calculated using a bin size of 5ppbv for October 2006. 

 

In the comparison of UoE and MOPITT retrievals (Figure 5.10a to Figure 5.10c) 

some divergence in the distributions is apparent for high CO concentrations. This is 

most obvious for CO retrievals at 500 hPa (Figure 5.10b), where two tails are 

observed in the scatter plot for CO above ~140 ppbv.  It was thought that this was 

most likely a result of higher than average errors in the input parameters causing an 

increase in the influence of the a priori in the UoE retrieval. This was investigated 

further by looking at the equivalent correlation plots for retrievals over ocean and 

land surfaces separately (Figure 5.12). As retrievals of the AIRS L2 parameters are 

more challenging over land surfaces, the errors over land are likely to be higher and 

the UoE retrieval more influenced by the a priori. Consequently it is reasonable to 

expect that the tail of the distribution below the 1:1 equivalence line at high CO 

concentrations is largely due to higher errors in retrievals over land. Comparison of 

Figure 5.12b and Figure 5.12d illustrates this point quite clearly, with distinct 

distributions in the ocean and land surface retrievals. Although divergence in the 

(a) 

(b) 

(c) 
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distributions are not so apparent at the 700 hPa (Figure 5.10a) and 350 hPa (Figure 

5.10c), distinct distributions are observed when retrievals over ocean and land 

surfaces are considered separately (Figure 5.12a, c, d, and f). At all altitudes the 

correlation between the UoE and MOPITT retrievals is higher for ocean regions than 

for land areas (given numerically in Table 5.3), with the UoE retrievals tending away 

from the MOPITT retrievals and towards the a priori when MOPITT CO 

concentrations are high. This departure from the 1:1 equivalence line is most 

apparent at the 700 hPa level for retrievals over land, where the degree of correlation 

between the two instruments is only 0.66.  At this level the sensitivity of AIRS to CO 

is lower, resulting in a stronger dependence on the prior and (CO at other levels) than 

at the 500 and 350 hPa levels. This is further illustrated by the mean UoE and 

MOPITT averaging kernels for the ocean and land regions (Figure 5.13) where the 

UoE averaging kernel at 700 hPa has significantly different shape and peaks at a 

higher altitude than the equivalent MOPITT averaging kernel.  
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Figure 5.12 Correlation of CO observations between UoE and MOPITT retrievals with ocean (a-c) 

and land (d-f) regions considered separately. CO retrievals are compared for October 2006 at pressure 

levels of 700 hPa (a,d), 500 hPa (b,e), and 350 hPa (c,f). 

 

Pressure Level 

(hPa) 

UoE vs MOPITT 

All Surfaces 

UoE vs MOPITT 

Ocean 

UoE vs MOPITT 

Land 

R Bias R Bias R Bias 

350 0.89 -3.9 0.91 -4.0 0.83 -4.1 

500 0.91 0.8 0.93 1.4 0.85 -2.3 

700 0.75 -8.5 0.79 -5.1 0.66 -22.1 

Table 5.3 Correlation coefficients and biases (ppbv) for comparisons of UoE and MOPITT for 

retrievals over ocean and land surfaces. Coefficients and biases calculated for monthly mean CO 

concentrations over the full globe for October 2006. 

(a) 

(b) 

(d) 

(e) 

(c) (f) 
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Figure 5.13 Mean averaging kernels from UoE and MOPITT retrievals over ocean and land regions 

for October 2006. (a) UoE ocean. (b) MOPITT ocean. (c) UoE land. (d) MOPITT land. 

 

Deeter et al. [2003] demonstrated the diurnal variability of the MOPITT averaging 

kernels (Figure 5.3), with the lower troposphere averaging kernels peaking at higher 

altitudes for (lower surface temperature) night time retrievals. As the lower 

troposphere averaging kernels from the UoE daytime retrievals are observed to peak 

at higher altitudes than the equivalent MOPITT averaging kernels (Figure 5.13), it 

was thought that the MOPITT and UoE averaging kernels (and CO observations) 

may be more closely related for night time retrievals. The mean UoE and MOPITT 

averaging kernels from day time and night time retrievals over land are presented in 

Figure 5.14. These averaging kernels were calculated for October 2006 using only 

retrievals where the percentage prior contribution (Eq. 4.2) was < 50%. Some diurnal 

variation is observed in the UoE retrievals, with all the averaging kernels from night 

time retrievals exhibiting a more distinct peak at higher altitudes and smaller 

contributions at lower altitudes. A similar effect is also seen in the MOPITT 

averaging kernel at 700 hPa, which follows the behaviour demonstrated by Deeter et 

(d) 

(c) 

(b) 

(a) 
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al. [2003] (Figure 5.3). In terms of the shape of the averaging kernels and the altitude 

at which they peak, the two instruments are more similar in their sensitivity to CO at 

700 hPa for night time retrievals. At 350 and 500 hPa there is little relative difference 

between the averaging kernels for daytime and night time retrievals.    

 

  

Figure 5.14 Comparison of UoE and MOPITT averaging kernels at 700, 500 and 350 hPa, for (a) 

daytime and (b) night time retrievals over land.  

 

Direct comparisons of the CO concentrations from the two instruments, for night 

time retrievals, are shown in Figure 5.15. These are equivalent to the results of 

Figure 5.12 for day time retrievals. The correlation coefficients corresponding to 

both day time and night time retrievals are given in Table 5.4, and indicate little 

difference in the level of agreement between day and night time retrievals at 500 and 

350 hPa. However, there is considerable improvement in the correlation (and bias) 

between the instruments at 700 hPa, for the night time retrievals (Table 5.4). This 

agrees with the expectations from Figure 5.14, where the 700 hPa averaging kernels 

are shown to be more similar for night time retrievals. Another point to note is that 

the relationship between UoE and MOPITT CO observations is closer to a 1:1 

agreement at all levels, for the night time retrievals (Figure 5.15).  At 700 hPa this is 

due to the reduction in sensitivity of MOPITT to CO at this level, giving it sensitivity 

closer to that of AIRS (Figure 5.14). However, at 500 and 350 hPa, where there is 

less relative difference between the averaging kernels for day and night time 

retrievals, this improvement in agreement may be due to lower errors in the AIRS L2 

products used in the UoE retrieval at night, resulting in less dependence on the prior. 

 

(a) (b) 
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Figure 5.15 Correlation of UoE and MOPITT CO retrievals on profile levels for night time retrievals 

over land. CO retrievals are compared for October 2006 at pressure levels of (a) 700 hPa (b), 500 hPa, 

and (c) 350 hPa. 

Pressure Level 

(hPa) 

UoE vs MOPITT 

Land - Day 

UoE vs MOPITT 

Land - Night 

R Bias R Bias 

350 0.83 -4.3 0.86 0.3 

500 0.85 -2.3 0.83 8.9 

700 0.66 -22.1 0.76 3.2 

Table 5.4  Correlation coefficients and biases (ppbv) for comparisons of UoE and MOPITT CO 

observations for daytime and night time retrievals over land. CO retrievals are compared for October 

2006 at pressure levels. These values correspond to the results presented in Figure 5.12 and Figure 

5.15.  

(a) 

(b) 

(c) 
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5.2.5. Monthly Averaged CO - CO Errors 

As discussed in Chapter 2 an important feature of the MAP retrieval scheme is its 

inherent information about retrieval errors. The UoE retrieval errors, derived from 

the diagonal elements of the posterior covariance matrix, Ŝ  (Eq. 2.8), were 

calculated and averaged for each month as for the CO concentrations (Figure 5.16). 

These were compared to the retrieval errors from the AIRS v4 product (Figure 5.17).   

In the AIRS v4 product, there is little variation in the retrieval error across profile 

levels, with typical errors of about 20% at all levels. As AIRS is not equally sensitive 

to CO at all altitudes, with decreasing sensitivity away from the mid-troposphere, the 

retrieval errors would be expected to reflect this and show more variation through the 

profile. Such behaviour is observed in the UoE retrieval with error estimates ranging 

from ~20% at 700 hPa to ~10% at 500 hPa, where the AIRS channels are more 

sensitive to CO. At 350 hPa, where the sensitivity of AIRS lies somewhere between 

that at 700 and 500 hPa, the retrieval errors also lie between those at 700 and 500 

hPa. From this comparison it can be seen that the optimal estimation techniques used 

in the UoE retrieval provide a more plausible representation of the errors than the 

AIRS v4 algorithm.  

 

Looking more closely at the UoE retrievals at 500 hPa Figure 5.16b reveals some 

trends in the spatial distribution of the errors. Although higher information content is 

expected in the retrievals over land, larger errors are observed over land regions. The 

most probable reason for this is larger errors in the AIRS L2 products used in the 

UoE retrieval. Any increase in these errors will be propagated through the retrieval 

scheme resulting on an increased contribution from the prior and higher error 

estimates. The second feature to note is higher retrieval errors over sea regions in the 

mid-latitudes than in the tropics. As higher information content is expected in the 

tropics, it is reasonable to expect retrievals errors to be lower in the tropics than in 

mid-latitude regions. 
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Figure 5.16  UoE retrieval errors for monthly average daytime CO concentration for October 2006. 

(a) 700 hPa, (b) 500 hPa, and (c) 350 hPa.  

 

(a) 

(b) 

(c) 
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Figure 5.17 AIRS v4 retrieval errors for monthly average daytime CO concentration for October 

2006. (a) 700 hPa, (b) 500 hPa, and (c) 350 hPa.  

 

(c) 

(b) 

(a) 
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5.2.6. Monthly Averaged CO - Total Column CO 

Total column CO (TCCO) values were derived from the retrieved profiles from the 

UoE and AIRS v4 methods, and were compared to those from MOPITT. Correlation 

coefficients for both AIRS methods are high (~0.85) but global maps of TCCO 

(Figure 5.18) show that MOPITT provides significantly higher estimates of the total 

column than either of the AIRS methods. As suggested in §5.2.4 this is due the 

greater sensitivity of MOPITT to CO in the lower troposphere, where higher CO 

concentrations and variability can be expected as a consequence of closer proximity 

to the CO sources.  Figure 5.19a highlights this point, showing that the UoE and 

MOPITT TCCO retrievals diverge as TCCO increases. As MOPITT is more 

sensitive at lower levels, increases in the CO concentration in the lower troposphere 

will be better captured by MOPITT. Also contributing to the divergence is the 

increased influence from the prior in the UoE retrieval as the altitude drops. 

 

The AIRS v4 product displays similar behaviour for high values of TCCO but also 

appears to overestimate TCCO relative to MOPITT for low CO concentrations 

(Figure 5.19b). These two features suggest the AIRS v4 algorithm probably suffers 

from significant influence from the “first guess” profile. Similar distributions are 

observed for UoE-MOPITT and AIRS-MOPITT TCCO differences in Figure 5.19c. 

From the results of §5.2.4 the UoE-MOPITT distribution is as expected. However the 

distribution for AIRS-MOPITT is the opposite of that observed in §5.2.4. This is 

because the total column values are dominated by the CO concentrations in the 

lowest levels of the profiles (<700 hPa) and at these levels the AIRS CO is generally 

lower than the MOPITT CO.  
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Figure 5.18 Monthly average daytime total column CO concentration for October 2006. (a) UoE,  (b) 

MOPITT, and (c) AIRS v4. UoE and MOPITT data has been filtered to exclude data with % prior > 

50 % at 500 hPa 

(a) 

(b) 

(c) 
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Figure 5.19 Correlation and distribution of total column CO across observing systems. (a) UoE vs 

MOPITT, (b) AIRS v4 vs MOPITT, and (c) distribution of total column CO differences between 

observing systems. The histogram in (c) was calculated using a bin size of 5 ppbv.  

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 

(c) 
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5.2.7. Monthly Averaged CO - Degrees of Freedom of Signal 

The number of degrees of freedom of the signal, ds, was calculated for the UoE 

retrievals using Eq. 2.15 and compared to that from the MOPITT product. No 

equivalent data product or the means to produce such a diagnostic is provided in the 

AIRS v4 product. Maps of ds are shown for daytime and night-time retrievals for 

UoE (Figure 5.20) and MOPITT (Figure 5.21). It is quite clear from these maps that 

there are generally more pieces of independent information about the CO profile 

contained in the MOPITT measurements than those from AIRS. The mean values of 

ds for each map are given in Table 5.5. This additional information present in the 

MOPITT observations is probably largely due to its higher sensitivity at lower 

altitudes, illustrated by the averaging kernels in Figure 5.13. 

 UoE MOPITT 

Day 0.86 1.28 

Night 0.83 1.17 

Table 5.5 Monthly mean (for October 2006) number of degrees of freedom of signal calculated for 

the UoE and MOPITT CO retrievals. 

 

As well as typically providing higher ds, MOPITT also returns a larger range of ds 

values, shown clearly in the histograms of ds in Figure 5.22. There is also 

considerably diurnal variation in the MOPITT ds over land that is not present in the 

UoE data. Both of these features support the case that MOPITT is more strongly 

influenced by conditions at lower troposphere and surface levels than AIRS, as the 

conditions at these levels are more variable than at higher altitudes. The lack of 

diurnal variation over land in the UoE retrieval, and the lower values of ds over land 

than ocean during the daytime, is in disagreement with the expected result (higher 

values are expected with higher thermal contrast between surface and atmosphere). 

The reasons for this have not been fully investigated but it is thought that it is due to 

increased noise in the retrieval, arising from higher errors in the AIRS L2 products 

used in the retrievals.  

 

The global maps in Figure 5.21 also show quite a clear trend in ds with latitude, with 

ds decreasing towards the poles. Such a trend is not so obvious in ds from UoE but is 
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present to some degree over the oceans. Again this difference is probably due to 

AIRS being less sensitive to conditions at lower altitudes. 

   

 

 

Figure 5.20 Monthly average number of degrees of freedom of signal from UoE retrievals for October 

2006, (a) day,  (b) night.  

 

 

(b) 

(a) 
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Figure 5.21 Monthly average number of degrees of freedom of signal from MOPITT retrievals for 

October 2006, (a) day,  (b) night.  

  

Figure 5.22 Distribution of the number of degrees of freedom of signal for (a) UoE, and (b) MOPITT. 

Histograms were calculated from the monthly mean data for October 2006, using a bin size of 1.0 

degrees of freedom. 

(a) 

(b) 

(a) (b) 
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5.3. Summary 

In this chapter, results from a comprehensive comparison of the UoE, AIRS v4, and 

MOPITT CO products have been presented. This work has improved our 

understanding of the UoE CO product and highlighted a number of differences 

between the UoE product and those of MOPITT and the AIRS v4 algorithm.  

 

An important advantage of the AIRS CO products over that from MOPITT, is 

superior spatial coverage. AIRS provides near-global coverage on a daily basis, 

while MOPITT requires about three days for global coverage. AIRS is also able to 

perform retrievals in the presence of significant amounts of cloud cover, which 

further contributes to its higher coverage, relative to MOPITT. The superior coverage 

of the AIRS instrument is a benefit for studies of CO transport and source variability. 

 

Another important contrast between AIRS and MOPITT, highlighted in this chapter, 

is their differing sensitivity to CO at different altitudes. The two instruments are 

shown to share similar sensitivity to CO in the mid-troposphere, and are well 

correlated at this level. However, in the lower troposphere, inter-instrument 

correlations are lower and MOPITT observes higher CO concentrations. This is due 

to MOPITT being more sensitive than AIRS at lower levels. The effect of this is 

particularly marked when total column CO concentrations are considered, with large 

differences observed between AIRS and MOPITT. As a large proportion of CO 

sources are at the surface, a lack of sensitivity to CO in the lower troposphere will 

result in an underestimation of total column CO. Such an underestimation is seen in 

the AIRS data relative to MOPITT and suggests that AIRS is not well suited to 

studies of CO in the lower troposphere. 

 

As well as being more sensitive to CO in the lower troposphere, MOPITT is also 

able to better distinguish between CO at different altitudes. This is illustrated in the 

analysis of the number of degrees of freedom of signal, ds. where MOPITT is shown 

to provide ~1.3 pieces of independent information compared to 0.85 from AIRS. 

This indicates that MOPITT has greater potential for looking at the vertical structure 

of CO in the atmosphere. Another point of note from the analysis of ds, is the fact 
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that AIRS has lower values over land than over ocean regions for daytime retrievals, 

and that there is no clear diurnal variation over land. This does not agree with 

expectations and is thought to be due to higher errors in the AIRS L2 products over 

land resulting in an increased contribution from the prior. 

 

Some differences between the UoE and AIRS v4 products are also shown in this 

chapter. The first is a positive bias relative to both the MOPITT and UoE retrievals, 

which is thought to be partially due to the influence of the “first guess” CO profile on 

the AIRS v4 retrieval. Secondly, the AIRS v4 error estimates are shown to have little 

variation with altitude, whereas the UoE error estimates vary with altitude according 

to the sensitivity of CO. This more plausible representation of the retrieval errors is 

an important advantage offered by the UoE optimal estimation retrieval. 
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Chapter 6. Time Series Analysis 

6.1. Introduction 

The work of Chapter 5 demonstrated good agreement between the UoE and MOPITT 

monthly average CO products at mid-troposphere levels. In order to further 

understand the behaviour of the retrieval products, analysis of the annual time series 

was carried out. Time series for 2006 were calculated from daily averages for 

latitude bands and a number of regions of interest (Table 6.1). Each time series was 

then smoothed using a 3-day moving average to remove some of the noise from the 

signal. This smoothing was applied primarily to remove noise from the MOPITT 

time series, as the better spatial coverage of AIRS results in more consistent inter-

day CO retrievals for each region. The results are outlined in the following sections. 

 

6.2. Latitudinal Effects 

Time series were generated for six latitude bands, covering the high (±90 to ±66.5), 

middle (±66.5 to ±23.5), and tropical (±23.5 to 0) latitudes, for each hemisphere. The 

time series of CO at 500 hPa for each of these latitude regions are shown in Figure 

6.1. Very good agreement between UoE and MOPITT is observed for tropical 

latitudes, in terms of both trends and the magnitude of CO. The AIRS v4 CO product 

also captures the same CO trends but consistently estimates the CO concentration to 

be ~10-15 ppbv higher than that observed by MOPITT and UoE. A similar result is 

seen in the mid-latitudes, with a reduction in the positive bias in the AIRS 

observations of ~5 ppbv. For the case of the high Northern latitude region, there is 

broad agreement in terms of the trends in CO but somewhat more variability in the 

magnitude of differences in CO concentrations. In the equivalent Southern 

hemisphere region there is less agreement between MOPITT and the two AIRS 

retrievals, with significantly different trends over the first 100 days of the time series. 

This poorer agreement in the Southern high latitudes is most likely due to a 

combination of the low CO concentrations and the low temperatures and lack of 

thermal contrast reducing the quality of the retrievals. Although the surface and 
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atmospheric conditions may be similar in both hemispheres, the significantly lower 

CO concentrations in the Southern hemisphere make the retrieval more difficult. 

 

Seasonal trends in CO can be seen in the different latitude bands in Figure 6.1. In the 

Northern hemisphere mid-latitudes, CO concentrations are observed to peak in the 

early spring before falling over the summer months. This is due to a combination of 

increased winter time emissions from industrial/urban emissions followed by an 

increase in OH concentrations, resulting from higher levels of solar illumination 

during the summer months. In the Southern hemisphere mid-latitude region, CO 

concentrations are considerably lower, due to the lower industrial/urban emissions. 

The peak in CO around September/October is largely due to CO transport from 

biomass burning in South America, South Africa, Indonesia and Northern Australia. 

 

To further investigate the relative behaviour of the three retrieval schemes with 

latitude, time series were calculated for 10° latitude bins from 90° N to 90° S. The 

coefficients of correlation between the time series from the three retrievals were 

calculated and the results presented in Figure 6.2. As suggested by Figure 6.1 

excellent correlation between UoE and MOPITT is observed in tropical and mid-

latitude regions, with correlation reducing at high latitudes, particularly in the 

Southern hemisphere. The correlation between AIRS and MOPITT is also very high 

for much of the tropical and mid-latitude region, but is somewhat lower in the 

Southern mid-latitudes. From the work of Chapter 5 this is probably because the 

AIRS v4 retrieval does not perform so well in regions of low CO concentrations
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Figure 6.1 Time series of CO at 500 hPa for latitude regions. (a) 90° N to 66.5° N. (b) 66.5° N to 

23.5° N. (c) 23.5° N to 0°. (d) 90° S to 66.5° S. (e) 66.5° S to 23.5° S. (f) 23.5° S to 0°. 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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Figure 6.2 Correlation between retrieval methods for different latitudes. 

 

6.3. Time Series on Profile Levels 

The Northern hemisphere tropical latitude region was used to investigate the time 

series of CO at different profile levels, to try to illustrate further the relative 

behaviour of the three retrieval schemes. These time series are shown in Figure 6.3 

along with the correlation between instruments across the profile levels. The best 

agreement in terms of the magnitude of CO is observed at 500 hPa, where high 

correlation between the retrievals is also observed. Correlation is high in the mid to 

upper troposphere but decreases towards the lower troposphere. The cause of this 

decrease in correlation is clearly illustrated in the time series of CO at 850 hPa 

(Figure 6.3a). At this level a much larger range of CO concentrations is observed by 

MOPITT due to its greater sensitivity to CO at lower levels of the atmosphere 

(§5.2.4). This results in far more pronounced trends in the CO concentration from 

MOPITT over the course of the year. Comparison of the time series at 850 hPa 

(Figure 6.3a) and 500 hPa (Figure 6.3c) reveals that the trends in CO concentration 

from UoE at 850 hPa are weaker versions of those at the 500 hPa level, where the 

UoE retrieval is more sensitive to CO. As highlighted in §5.2.4, AIRS retrievals in 

the lower troposphere are dominated by CO concentrations at higher altitudes and a 

contribution from the prior.   It is this increased dependence on the mid-troposphere 

CO concentration in the AIRS instrument that results in the poorer agreement with 

MOPITT at lower troposphere levels. 
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Figure 6.3 Time series of CO at different altitudes for the Northern hemisphere tropics region (23.5° 

N to 0°). (a) CO at 850 hPa. (b) CO at 700 hPa. (c) CO at 500 hPa. (d) CO at 350 hPa. (e) CO at 150 

hPa. (f) Correlation between retrievals across profile levels. 

 

In order to better illustrate the performance of the UoE and MOPITT retrievals at 

different altitudes the degree of contribution from the a priori was investigated.  

Annual mean values of the percentage contribution from the a priori at each level, 

were calculated at each profile level, for the Northern hemisphere latitude regions of 

§6.2. Profiles of this percentage a priori contribution are shown in Figure 6.4 and 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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highlight a number of things about the retrieval schemes. The first point to note is 

that the dependence on the a priori decreases as latitude moves towards the equator. 

This is true for both retrieval schemes and is a consequence of higher thermal 

contrasts in the atmosphere in equatorial regions than at the poles.  

 

Although changes in dependence on the a priori with latitude are observed for both 

instruments, the changes for MOPITT are far more pronounced. While the shape of 

the a priori contribution profile remains fairly constant across latitude for UoE 

retrievals, there is significant change in the equivalent profile for MOPITT. In the 

high and mid-latitude regions the lowest percentage contribution from the a priori 

occurs at 350 hPa, while in the tropics the minimum occurs at 700 hPa, with a 

secondary minimum at 350 hPa. This suggests that MOPITT is more sensitive to the 

atmospheric state than AIRS, with sensitivity to CO at lower altitudes increasing for 

more tropical atmospheres. This change in sensitivity with latitude was also shown in 

the analysis of the number of degrees of freedom of the signal in §5.2.7.    

 

Another observation to make about Figure 6.4 is the relative contribution from the a 

priori between the two retrievals. In all cases UoE has less dependence on the a 

priori than MOPITT at the mid-troposphere levels. This is most apparent at higher 

latitudes and indicates that AIRS may provide more useful mid-troposphere 

retrievals in these regions. MOPITT however relies less on the a priori at both lower 

and upper troposphere levels, particularly in tropical regions where MOPITT’s 

dependence on the a priori is consistently low across a large range of altitudes (850 

to 250 hPa). 

 

As the UoE and MOPITT retrieval schemes use different prior covariance matrices, 

the significance of these results, comparing the percentage contribution from the 

prior, is somewhat less clear. The results in Figure 6.4 imply that AIRS is more 

sensitive at mid-troposphere levels than MOPITT and that AIRS is less sensitive in 

the lower troposphere. If this is the case then it is reasonable to expect to see higher 

variability in the UoE time series (relative to MOPITT) at 500 hPa, and lower 

variability at lower levels. Higher variability is observed in the MOPITT time series 
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for the lower troposphere (Figure 6.3a) but the time series at 500 hPa are very similar 

(Figure 6.3c). As higher CO variability is expected in the lower troposphere and the 

difference in the percentage prior contribution between instruments is larger at these 

levels, it is reasonable that the inter-instrument differences are larger in the lower 

troposphere. Although the relative sensitivity of the instruments at 500 hPa is less 

clear, there is confidence in the varying sensitivity with latitude, of the individual 

instruments.  

 

  

 

 

Figure 6.4 Annual mean profiles of percentage contribution from the a priori for the latitude regions 

(a) 90° N to 66.5° N, (b) 66.5° N to 23.5° N, and (c) 23.5° N to 0°. 

 

(a) 

(b) 

(c) 
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6.4. Case Study Regions 

6.4.1. Selection of Regions 

Time series were investigated for a number of regions of interest, selected to 

demonstrate the ability of the UoE retrieval to detect seasonal trends in CO 

concentrations. The regions selected are illustrated in Figure 6.5 and their latitude 

and longitude bounds given in Table 6.1. 

 

Figure 6.5 Locations of regions of interest for time series analysis. (1) SPC, (2) CAF, (3) SAF, (4) 

IND, (5) CHI, (6) NPC1, (7) NPC2, (8) NPC3. The latitude and longitude bounds of these regions are 

given in Table 6.1. 

 

Number 1 2 3 4 5 6 7 8 

Name SPC CAF SAF IND CHI NPC1 NPC2 NPC3 

Min. Lon. -150 -15 10 90 110 150 -180 -150 

Max. Lon. -120 40 40 140 130 180 -150 -120 

Min. Lat. -30 0 -30 -10 20 20 20 20 

Max. Lat. 0 20 0 10 45 45 45 45 

Table 6.1 Longitude and latitude bounds of the numbered regions of interest shown in Figure 6.5 

 

6.4.2. South Pacific 

A region of the South Pacific ocean (SPC) was selected to show the annual CO for 

an area with no direct CO source from biomass burning or industry, where CO 

concentrations are expected to be low. The time series for CO at 500 hPa for this 

region is shown in Figure 6.1. CO is observed to be fairly constant at ~70 ppbv for 

1 

2 

3 
4 

5 6 7 8 
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the first 7 months of the year, before a gradual increase is observed from around 

August to November, peaking at ~95 ppbv. This increase coincides with the main 

period of biomass burning in a number of Southern hemisphere regions, such as 

South Africa, South America and Indonesia [Edwards et al., 2004]. During the 

southern hemisphere summer, higher levels of solar illumination result in increased 

concentrations of OH. This allows more CO to be removed from the atmosphere and 

will contribute to the decrease in CO concentrations after the November maximum.  

 

Figure 6.6 Time series of daily mean CO at 500 hPa for the SPC region (with bounds of 30°S, 0°N, 

150°W, and 120°W) illustrated in Figure 6.5, for 2006.  

 

6.4.3. Central and Southern Africa 

Two regions (CAF and SAF) were selected over Africa to demonstrate the ability of 

the UoE retrieval to detect seasonal signals in CO from biomass burning. The time 

series for these regions are shown in Figure 6.7. For the CAF region the peak CO 

concentrations are observed between December and February, corresponding to the 

dry season in the region and increased biomass burning [Edwards et al., 2004]. In the 

SAF region CO peaks during September and October, again coinciding with the dry 

season in the region and an increase in biomass burning activity.   

 

At 500 hPa all the retrieval schemes capture similar amounts of variability in CO 

concentration. The same is not true at the 700 hPa level, where the higher sensitivity 

of MOPITT results in it seeing a considerably larger range of CO than either of the 

AIRS systems. Although the UoE CO product does not capture such an extensive 
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range of CO concentrations as MOPITT, it does appear to record a somewhat larger 

range of CO concentrations than the AIRS v4 CO product.  

  

  

Figure 6.7 Time series of daily mean CO at 700 hPa and 500 hPa CO for the CAF and SAF regions 

illustrated in Figure 6.5, for 2006. The CAF region is bounded by the box, 0°N, 20°N, 15°W, and 

40°E. The SAF region is bounded by the box, 30°S, 0°N, 10°E, and 40°E. (a) CO at 700 hPa for CAF, 

(b) CO at 500 hPa for CAF, (c) CO at 700 hPa for SAF, and (d) CO at 500 hPa for SAF. 

 

6.4.4. Indonesia 

Observation of the maps of monthly mean CO revealed a large CO emission event 

over Indonesia during October and November. The time series for a region covering 

this event (IND) is shown in Figure 6.8. This illustrates quite clearly the significance 

of this event, relative to typical concentrations of CO for the other months of the 

year. At 500 hPa the CO concentration is observed to increase sharply by ~60 ppbv, 

a very significant increase when compared to the relatively small CO fluctuations 

seen in the preceding months.  

Another point to note is that the range of CO fluctuations in the UoE CO at 700 hPa 

is noticeably closer to that of MOPITT, compared to earlier observations for the two 

(a) 

(b) 

(c) 

(d) 
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African regions Figure 6.7. This is probably due to two factors. The first is the 

tendency for the UoE retrieval to perform better over ocean areas than over land, 

with higher correlations observed between UoE and MOPITT retrievals for ocean 

regions (Figure 5.12). As the IND region contains a far greater proportion of ocean 

pixels than the CAF or SAF region, it is likely that this factor contributes to the better 

agreement between the two retrievals observed in Figure 6.8.  The second potential 

factor is the influence of CO concentrations at higher altitudes on the UoE retrieval 

at 700 hPa. The peak CO concentration observed by the UoE system in the IND 

region at 500 hPa is considerably higher than that from MOPITT. As UoE retrieval at 

700 hPa is heavily influenced by CO at 500 hPa and above (while the equivalent 

MOPITT retrievals are dominated by CO between 700 and 500 hPa)  it is possible 

that the similar range observed at 700 hPa is partly a consequence of the differing 

altitude sensitivities of the two instruments.  

  

Figure 6.8 Time series of daily mean CO for the IND region (with bounds of 10°S, 10°N, 90°E, and 

140°E) illustrated in Figure 6.5, for 2006. (a) CO at 700 hPa. (b) CO at 500 hPa.  

 

6.4.5. China, and the North Pacific 

A region covering Eastern China, and three regions over the North Pacific were 

selected to try to demonstrate the potential of the UoE CO retrieval scheme for 

monitoring the global transport of CO. The time series for these regions are shown in 

Figure 6.9. In the CO time series for the CHI region there is some increase in CO 

during the first few months for the year. This is followed by a decrease with a 

minimum around July, before CO concentrations rise again. These trends are most 

apparent in the MOPITT time series at 700 hPa but can also be seen in the 500 hPa 

(a) (b) 
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time series. Similar trends are also observed in the time series over the regions in the 

North Pacific. Emissions from the CHI region have relatively small seasonal 

variation [Edwards et al., 2004], so any trend observed is likely to be dominated by 

seasonal variations in OH concentration. It is this seasonal variation in OH that 

dominates the trends in CO over the North Pacific regions, with the trends being 

more marked in these regions as there is no direct contribution to CO from industrial 

sources or biomass burning.  

 

As there are no direct CO sources in these regions and seasonal variations in OH 

affect all the regions, it was thought that it may be possible to demonstrate that CO 

concentrations in North Pacific regions are affected by CO transported from Eastern 

Asia. In order to try to establish if any correlation exists between the CHI and North 

Pacific regions, the cross correlations between the UoE time series at 500 hPa were 

calculated (Figure 6.9c). The lag time to peak correlation is observed to increase for 

each NPC region, moving eastward, with lag times of approximately 5, 10 and 15 

days. Although much more rigorous analysis using meteorological data would be 

required to fully characterise CO transport events, this simple correlation analysis 

suggests that the UoE CO product has the potential to be used in such an application.  
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Figure 6.9 (a,b) Time series of daily mean CO at 700 and 500 hPa for CHI region (with bounds of 

20°N, 45°N, 110°E, and 130°E), for 2006. (c) Cross correlation of CO at 500 hPa between CHI and 

NPC regions. (d-f) Time series of daily mean CO at 500 hPa for NPC1, NPC2 and NPC3 regions. The 

bounds of these regions are as follows: NPC1 (20°S, 45°N, 150°E, and 180°E), NPC2 (20°S, 45°N, 

180°W, and 150°W), and NPC3 (20°S, 45°N, 150°W, and 120°W). All regions are illustrated in 

Figure 6.5. 

 

 

(a) 

(b) 

(c) 

(c) 

(d) 

(f) 
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6.5. Vertical Transport 

As the UoE retrieval scheme performs well in the mid-troposphere there is clearly 

potential (as shown in §6.4.5) for it to be used in studies of global CO transport. 

However, the strong dependence on mid-tropospheric CO in the retrievals in the 

lower and upper troposphere suggests that the UoE product is not suitable for 

investigating vertical transport of CO on its own. In an effort to support this 

proposal, the cross correlations between the time series of CO at 700 and 250 hPa 

were calculated for two of the regions of interest (SAF and IND). The cross 

correlations for all three retrieval schemes are shown in Figure 6.10. For the case of 

UoE and AIRS the peak correlations occur at a lag period of zero days, confirming 

that the CO retrievals at 700 and 250 hPa are share a strong common dependency (on 

CO at ~500 hPa). The results for MOPITT are somewhat different, with the peak 

correlation occurring for a time lag of ~10-20 days, between CO at 700 hPa and CO 

at 250 hPa. This indicates that the lower and upper troposphere CO retrievals from 

MOPITT are more independent than they are for UoE. This is supported by the 

typically higher number of degrees of freedom of signal observed in the MOPITT 

data (§5.2.7).  

 

It is clear from this analysis that the strong dependency of the UoE retrieval on CO at 

500 hPa makes it unsuitable to investigate the vertical transport of CO. However, 

there is still potential for AIRS to be used in vertical transport studies, by combining 

its robust observations in the mid-troposphere with lower or upper troposphere 

observations from other satellite sensors. This possibility is explored further in 

Chapter 7. 
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Figure 6.10 Cross correlations of daily mean CO time series between CO at 700 and 250 hPa for (a) 

SAF and (b) IND regions. The bounds of these regions are as follows: SAF (30°S, 0°N, 10°E, and 

40°E),  and IND (10°S, 10°N, 90°E, and 140°E). 

 

6.6. Summary 

Through the analysis of time series of CO concentrations over different regions, the 

work of this chapter has demonstrated the potential of the AIRS instrument for 

observing seasonal CO cycles. As AIRS has now been operational for over 5 years, 

there is clearly potential to use AIRS CO observations to investigate inter-annual CO 

variability, and in the future (with longer time series), look at long term trends. 

 

Some further insight into the relative performance of the UoE and MOPITT CO 

retrievals has also been gained from this work. The higher sensitivity of MOPITT to 

CO in the lower troposphere has been demonstrated, through the increased range in 

CO concentrations in the time series at these levels, and through analysis of the 

percentage contribution from the prior.  

 

Finally, the results of some preliminary work into using AIRS in CO transport 

studies were presented. These revealed that AIRS is unsuitable (on its own) for 

tracking vertical transport of CO but does have potential for tracking horizontal 

transport.  The potential of AIRS for studying horizontal CO transport and the 

possibility of combining AIRS with another satellite instrument to detect the vertical 

transport of CO are investigated further in Chapter 7. 

 

  

(a) (b) 



Chapter 6  Time Series Analysis 

120 

 



Chapter 7  CO Case Study 

121 

 

Chapter 7. CO Case Study 

7.1. Introduction 

In Chapter 6 the potential of the UoE CO product for tracking the horizontal 

transport of CO was briefly demonstrated. This potential application is further 

explored in this chapter, through closer analysis of a case study. Although Chapter 6 

revealed that the AIRS was unsuitable for tracking the vertical transport of CO, there 

is still potential for AIRS to be used in conjunction with another satellite instrument 

for this purpose. This potential is investigated in this chapter through comparison of 

the UoE CO product with upper tropospheric CO measurements from the Microwave 

Limb Sounder (MLS). 

 

Observation of the UoE CO data set for 2006 revealed a significant CO event for a 

region over (and to the west of) Indonesia during October and November. This area 

was selected as a case study to further investigate CO transport (both horizontally 

and vertically).  

 

Biomass burning is used as a method of land clearing for agriculture in Indonesia. 

This biomass burning follows a seasonal cycle governed by the prevailing weather 

conditions, namely the seasonal variations in rainfall. From May to September, the 

southeast monsoon dominates the weather conditions and Indonesia experiences a 

dry season. October and November form a transition period between dry and wet 

seasons, before the northwest monsoon brings about the wet season, from December 

to March. Biomass burning practices follow this seasonal variation in rainfall, with 

the number of fires peaking in the later part of the dry season. The “slash and burn” 

clearing methods used in cultivation can often result in uncontrolled wildfires 

developing. The land clearing methods employed result in the build up of peat 

deposits [Bettwy, 2007] which are vulnerable to wildfires. As discussed by Andreae 

and Merlet [2001] these smouldering fires can release large quantities of smoke and 

CO into the atmosphere.  
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These emissions frequently result in significant problems of haze affecting 

surrounding areas. In 2006 there was a moderate El Ninõ event, where positive sea 

surface temperature anomalies in the eastern tropical Pacific affected weather 

conditions over Indonesia.  This resulted in Indonesia seeing lower than normal 

levels of rainfall during the last three months of 2006 and also reduced convection 

over the region [Logan et al., 2008]. Consequently the land in this region became 

exceptionally dry, enabling wildfires to spread more easily and extending the period 

of biomass burning (normally brought to an end during the transitional period 

between the southeast and northwest monsoons). The combination of the increase in 

the number of fires and the reduced convection in the region resulted in an intense 

haze that had a considerable impact on the region for a number of weeks (Aglionby 

[2006] and Reuters [2006]).  

 

7.2. Fire Counts 

Fire count data were obtained from the ATSR World Fire Atlas, from the Data User 

Element of the European Space Agency [Arino and Plummer, 2001]. The ATSR 

active fire algorithm uses the instrument’s 3.7 μm channel brightness temperature 

(BT3.7) to determine the locations of fires. Pixels (at 1 km resolution) with BT3.7 > 

308 K at night time are flagged as containing an active fire. The ATSR active fire 

algorithm only considers night time observation in order to avoid problems with 

solar reflection. As only night time data are used, this product provides an 

underestimate of the fire counts. Like any IR sounding satellite instrument, ATSR 

also suffers data loss through cloud cover (and potentially as a result of the haze 

associated with the biomass burning event in Indonesia). A further limitation of this 

data is the lack of information about the intensity of the fires detected. In order to 

fully understand the evolution of CO from biomass burning events, information 

about the radiative power of the fire would be required. Although fire count data 

have some limitations it is a useful starting point for investigating the transport of 

CO from biomass burning events. 
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Daily ATSR fire count data were totalled over a region centred on Indonesia (lon. 

[90,140] and lat. [-10, 10]) and the time series calculated for 2006 (Figure 7.1a). 

Aside from two small peaks around February and March, the number of fire counts is 

very low for the first half of the year. Around late July, ATSR begins to consistently 

detect more fires in the region, until a sharp peak in the number of fire counts is 

observed around the beginning of October. High fire counts then persist into 

November, coinciding with the arrival of the North monsoon rains to the region. 

 

  

Figure 7.1 (a) ATSR fire counts for the IND2 region (longitude [90,140], latitude [-10,10]). (b) CO at 

the CMDL ground station, Bukit Kototabang, Indonesia (BKT). BKT is located at the coordinates 

[100.32, -0.20], and 864 m above sea level. 

 

In addition to the fire count data, CO observations from the CMDL monitoring 

station at Bukit Kototabang (BKT), Indonesia were obtained. This ground level 

station is located 864m above sea level at the coordinates, lon. 100.32°, lat. -0.20°. 

The time series of the weekly observations are shown in Figure 7.1b and shows good 

agreement with the fire count time series (Figure 7.1b), with a large peak in CO 

around October.  

 

7.3. Horizontal Transport 

The monthly mean UoE CO product at 500 hPa is shown for October and November 

2006, in Figure 7.2. Strongly elevated CO concentrations are observed directly over 

Indonesia in October, with high levels of CO also seen over an extensive surrounding 

region. In November the peak CO concentration is lower and the elevated region of 

CO has shifted westward, across the Indian Ocean. This apparent long-range 

(a) (b) 
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transport of CO from the Indonesian biomass burning is in agreement with the 

prevailing wind-direction for the region and time (Figure 7.3). In an effort to confirm 

that the elevated CO over the Indian Ocean is a consequence of the biomass burning 

in Indonesia, further analysis of the UoE CO and fire count time series is carried out. 

 

 

 

Figure 7.2  Monthly mean UoE CO at 500 hPa for (a) October and (b) November 2006. 

(a) 

(b) 
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Figure 7.3 Mean u-wind speed at 500 hPa for October 2006 from NOAA NCEP reanalysis data. 

Image obtained from http://www.cdc.noaa.gov/. 

 

CO time series were calculated from the UoE daily product, over the Indonesian 

(IND) source region ([90,140] and lat. [-10, 10]) and for 5° latitude by 10°longitude 

grid boxes across the globe. As commented on in Chapter 6, the excellent coverage 

of the AIRS instrument removes any requirement to smooth the time series for such 

regions, in order to extract the signal from synoptic variability. However, when 

performing cross correlation analysis on a global scale it is necessary to remove the 

effect of naturally occurring background correlations between regions. Such 

correlations are primarily due to the seasonal variations in OH concentration 

(discussed in Chapter 1), and are removed by performing the correlation analysis on 

differenced time series. A 60 day moving average was applied to the time series and 

then subtracted from the daily time series, before the correlation analysis was carried 

out. Cross correlations between time series for the IND source region and each grid 

box were calculated, and maps of the peak correlations and corresponding lag times 

were generated (Figure 7.4 b and e). Equivalent maps are also shown for the 

correlations and lag times to the first and last instances of correlations passing a 0.1% 

significance test (Figure 7.4 a, c, d and f). An example of the cross correlation time 

series is shown in Figure 7.5. 

http://www.cdc.noaa.gov/
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Figure 7.4 Maps of lag times for correlations between IND region and 10° longitude by 5° latitude, 

for UoE CO at 500 hPa. . (a, d) Lag time and correlation for first significant correlation. (b, e) Lag 

time and correlation for peak correlation. (c, f) Lag time and correlation to last significant correlation. 

 

 

Figure 7.5  Example of cross correlation time series showing correlation with lag time between CO in 

the grid box with longitude and latitude bounds of [70,80] and [0,5], and CO in the IND region.  

 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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In Figure 7.4b the lag time (to peak correlation) is seen to increase directly westward 

of the source region (IND), with lag times ranging from 0 days over the source 

region to 20-25 days near the east coast of Africa. This corresponds to wind speeds 

of approximately 2 to 6 ms
-1

, consistent with monthly mean wind speed data for 

October shown in Figure 7.3. The degree of correlation is also observed to decrease 

away from the source region, an expected result as the CO disperses away from the 

source. This result is further supported by the maps of lag time (and corresponding 

correlation) to the earliest and latest occurrences of significant correlation between 

grid boxes and source. Some correlation is typically observed up to ten days prior to 

and ten days after the peak correlation. Considering the meteorology and the 

generality of this correlation study this is a reasonable result.  

 

Similar analysis was carried out looking at the correlations between the ATSR fire 

count time series and the UoE CO product at 500 hPa. Maps of correlations and lag 

times, equivalent to those in Figure 7.4, are shown in Figure 7.6. For this analysis, 

cross correlations were calculated between the ATSR fire count data, with a 3-day 

moving average applied, and the unsmoothed UoE CO time series. Differenced time 

series were not used as there is no seasonal background trend in the fire count data. 

Unlike the analysis of correlations of CO between regions, the analysis of fire count 

to CO correlations did not yield robust results globally. Consequently, this analysis 

was limited to a localised region around the source. 

 

The lag time to the peak correlation (Figure 7.6b) is typically in the range of 10 to 15 

days. As the CO emissions are likely to be heavily influenced by smouldering peat 

land fires (rather than more intense fires in the flaming stage [Edwards et al., 2004]) 

it is reasonable to expect such a delay in the transport of CO from the surface to 500 

hPa. Comparison of Figure 7.6b with the equivalent plot for CO correlations Figure 

7.4b shows additional time lags of this length to be present at the western edge of the 

transport region. This illustrates that CO emissions from large biomass burning 

events can affect an extensive region for considerable periods of time.  
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Figure 7.6 Maps of lag times for correlations between ATSR fire counts in IND region and UoE CO 

at 500 hPa in grid boxes of 10° longitude by 5° latitude. (a, d) Lag time and correlation for first 

significant correlation. (b, e) Lag time and correlation for peak correlation. (c, f) Lag time and 

correlation to last significant correlation. 

 

7.4. Vertical Transport 

In Chapter 6 AIRS was shown to be unsuitable for making observations of the 

vertical transport of CO. Although this is the case, there is still potential for AIRS to 

be used in conjunction with another instrument, to track the vertical transport of CO. 

The MLS instrument, onboard the Aura satellite, is one such instrument. MLS 

measures CO, predominantly in the stratosphere, but also in the upper troposphere, 

down to 215 hPa [Filipiak et al., 2005]. Typical averaging kernels for MLS CO 

retrievals are shown in Figure 7.7 (taken from Livesey et al. [2008]). These 

averaging kernels are for CO retrievals in the tropics but are representative of all 

atmospheric conditions, as orbital and seasonal variations in the averaging kernels 

are small [Livesey et al., 2008]. MLS averaging kernels are more sharply peaked and 

contain more distinction between levels than either the UoE or MOPITT averaging 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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kernels (Figure 5.13). The MLS averaging kernels also peak at the profile levels 

which they represent, except for the case of 316 hPa averaging kernel which peaks 

around 215 hPa. As a result, the MLS retrievals at each pressure level (down to 215 

hPa) are actually dominated by CO concentrations at these levels, unlike AIRS and 

MOPITT in many cases. 

 

 

Figure 7.7 Typical vertical MLS averaging kernels for CO retrievals in the tropics.  Coloured lines 

represent the averaging kernels for each retrieval level (denoted by the plus signs). The dashed black 

line indicates the vertical resolution, derived from the full width at half maximum (FWHM) of the 

averaging kernels. The solid black line represented the total integrated area under each kernel. Taken 

from Livesey et al. [2008]. 

 

As both AIRS and MLS are housed onboard NASA’s A-train satellites, the time 

difference between AIRS and MLS observations is small. This combination of 

similar measurement times and very different altitude sensitivity to CO makes the 

MLS instrument a suitable candidate for use with AIRS to investigate vertical CO 

transport. 

 

Monthly mean maps of the MLS CO product at 147 hPa for October and November 

are shown in Figure 7.8. Comparison with the equivalent UoE 500 hPa CO product 

(Figure 7.2) shows broad agreement in the CO distributions, with elevated values 

over the Indonesian region, Southern Africa, and South America.  One important 

point to note about the MLS CO product is its sparse coverage relative to AIRS, and 

indeed MOPITT. This is because MLS is a limb-viewing instrument, while both 

AIRS and MOPITT are nadir-viewing instruments that also employ cross-track 

scanning. Coverage is sparser towards the poles, as the MLS CO product degrades at 
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high latitudes. In the tropics, MLS CO retrievals in the upper troposphere are 

accurate to ~30 ppbv. 

 

 

Figure 7.8 Monthly mean MLS CO at 147 hPa for (a) October and (b) November 2006. 

 

In order to try and show the vertical transport of CO from the Indonesian biomass 

burning event, time series of the mean CO retrievals for the region (bounded by 

10°S, 10°N, 90°E, and 140°E) were analysed. The time series of the MLS 147 hPa 

CO product was compared to time series of lower, middle and upper tropospheric 

CO from both the UoE and MOPITT retrievals. A 3-day moving average was applied 

to all time series before analysis. This was done in order to reduce the effects inter-

day variations in the regions viewed by the satellite instruments, and also the effects 

(a) 

(b) 
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of variations in atmospheric conditions on the retrievals.  The time series and plots of 

cross correlation between UoE (and MOPITT) and MLS are shown in Figure 7.9.  

 

In Figure 7.9c MLS CO at 147 hPa is compared directly to UoE and MOPITT 

retrievals at 150 hPa. At this level MLS sees significantly higher concentrations of 

CO than UoE. This large bias is primarily due to the lack of sensitivity of the UoE 

retrieval in the upper troposphere (and subsequent dependence on the prior and CO 

concentrations at lower altitude). This can be illustrated further by comparison of the 

UoE averaging kernels for the Indonesia region (Figure 7.10a) and the typical MLS 

averaging kernels (Figure 7.7).  The UoE retrieval at 150 hPa is observed to have its 

peak contribution from CO at 350 hPa, while the MLS retrieval at 147 hPa has very 

little contribution from CO below 200 hPa. As the retrievals from the two 

instruments at this level are dominated by CO at different altitudes, it is not 

surprising that there is a significant bias between the two.  

 

MOPITT retrievals at 150 hPa are seen to provide better agreement with MLS 

(Figure 7.9), with a considerable reduction in the bias observed between MLS and 

UoE retrievals. This is due to MOPITT being more sensitive to CO at this altitude 

than AIRS, illustrated by the MOPITT averaging kernels shown in Figure 7.10b. 

Although MOPITT retrievals at 150 hPa are influenced by CO at lower altitudes, the 

peak contribution does come from CO at 150 hPa, as is the case for MLS retrievals. 

Another potential contribution to the bias between MLS and the other two 

instruments is the possibility of MLS overestimating CO at this altitude [Filipiak et 

al., 2005].  

 

As well as the bias, a considerable difference in the variability is also observed, with 

MLS exhibiting a higher degree of variance. This may be partly due to MLS being 

more sensitive than AIRS to CO at this altitude, but is likely to be a result of the 

sparse coverage of the MLS instrument. Although there are significant differences in 

the CO products, all three instruments capture a peak in CO through October and 

November. Inspection of this time series cross correlation between instruments at 

this level (Figure 7.9f) indicates that MLS and MOPITT see CO at this altitude at the 
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same time, while retrievals from AIRS see elevated CO levels around 10 days earlier. 

This difference between AIRS and the other two instruments is a result of their 

differing sensitivity to CO with altitude, illustrated in the averaging kernels of Figure 

7.7 and Figure 7.10. AIRS CO retrievals at 150 hPa are dominated by CO at lower 

altitudes, compared to MLS and MOPITT, the retrievals at 150 hPa from both of 

which are dominated by CO at this level. 

 

Further comparisons of the MLS 147 hPa CO time series with those of 500 and 700 

hPa CO from UoE and MOPITT are show in Figure 7.9 (a, b, d and e). Again, good 

agreement is seen between the different CO measurements. As for the 150 hPa case, 

the UoE 500 and 700 hPa CO time series lead that of MLS 147 hPa CO by about 10 

days. A similar lag between MLS and MOPITT is also observed at these levels. 

These results are a good indication that there is significant vertical transport of CO 

into the upper troposphere from the biomass burning in Indonesia. 
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Figure 7.9  (a to c) CO time series at 700, 500, and 150 hPa (from UoE and MOPITT) compared to 

MLS CO at 147 hPa. (d-f) Inter-instrument cross correlation for the time series presented in (a to c). 

Resulted presented are based on daily mean CO concentrations for the Indonesian region, bounded by 

10°S, 10°N, 90°E, and 140°E.  

 

(a) (d) 

(b) (e) 

(f) (c) 
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Figure 7.10 Mean averaging kernels for the Indonesia region (bounded by 10°S, 10°N, 90°E, and 

140°E) for October 2006. (a) UoE averaging kernels. (b) MOPITT averaging kernels. 

 

7.5. Summary 

Large biomass burning events have the potential to spread pollution across large 

geographic regions, affecting local air quality in regions far from the emission 

source. The biomass burning in Indonesia in late-2006 is a good example of such an 

event, with the resultant pollution severely affecting air quality over a large area.  

 

Using a combination of the UoE CO product and ATSR fire count data, the potential 

of the AIRS instrument for tracking the global transport of CO (and by proxy, 

pollution) has been demonstrated. Correlation analysis of regional CO time series 

have shown transport of CO from Indonesian fires, on timescales consistent with the 

prevailing meteorology and fire type.  

 

Comparison of the UoE and MOPITT observations with MLS measurements 

revealed significant vertical transport of CO, from the Indonesian fires into the 

upper-troposphere. A lag time of about 10 days was observed between CO at 500 

hPa and CO at 150 hPa. Although it has been possible to demonstrate vertical 

transport into the upper troposphere using a combination of AIRS and MLS, an 

improved CO retrieval through the synthesis of these instruments does not look 

promising. This is due to a combination of the limited coverage of MLS and the 

small degree of overlap in the vertical sensitivity of the two instruments. 

(a) (b) 
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Chapter 8. Summary and Future Work 

As the principal sink of the hydroxyl radical (OH) in the troposphere, carbon 

monoxide plays an important role in atmospheric chemistry. Although CO itself is 

not a greenhouse gas, its strong influence on the oxidising capacity of the atmosphere 

affects the concentrations of greenhouse gases such as CH4 and O3. As well as this 

indirect influence on the climate, CO also indirectly affects air quality through its 

role as a precursor to O3 in the presence of NOx. The potential impacts on human 

health and agricultural economy through increased O3 are exacerbated by the fact 

that enhanced CO and NOx concentrations are associated with human activity 

(industrial and biomass burning).  

 

The influence of CO concentrations on climate and air quality makes CO an 

extremely important constituent of the atmosphere. As such there is a need for good 

understanding of its behaviour, from accurate estimates of emissions through to its 

chemical interactions in the atmosphere. Satellite observations of CO on a global 

scale offer one potential means by which our understanding of atmospheric CO can 

be improved. Since the beginning of the 21
st
 century a number of different satellite 

instruments capable of measuring tropospheric CO have become operational. Each of 

these offer somewhat different information about CO. Combined, they have 

tremendous potential to enhance our understanding of CO in the troposphere. 

 

One satellite instrument that has the potential to add to our knowledge of CO is the 

Atmospheric Infra-Red Sounder (AIRS), onboard NASA’s Aqua satellite. This high 

spectral resolution IR sounder is mainly sensitive to CO in the mid-troposphere and 

offers one distinct advantage over other CO sensitive satellite instruments. That is 

greatly improved spatial coverage. This comes through the application of cloud 

clearing techniques which enable AIRS to provide near-global coverage on a daily 

basis. As CO has a lifetime of 1-3 months it can be transported over large distances 

by favourable meteorological conditions. The excellent daily coverage of AIRS 

makes it potentially the most suitable instrument for observations of CO transport. 
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The capability of AIRS for making CO observations was demonstrated by McMillan 

et al. [2005], showing CO retrievals from the AIRS v4 algorithm to be accurate to 

~10% in the northern hemisphere. Although the AIRS v4 algorithm was shown to 

provide retrievals of a reasonable quality, it was thought that these measurements 

could be improved upon through the use of more optimal retrieval techniques. This 

study set out to develop an alternative retrieval scheme based on the optimal 

estimation of Rodgers [2000] in an effort to provide improved CO retrievals from 

AIRS and as a means of independently assessing the quality of the AIRS v4 product.  

Optimal estimation methods were expected to offer improvements to the AIRS CO 

retrieval, particularly in terms of error estimation and characterisation. These are key 

features if any quantitative analysis is to be carried out using the CO observations. 

 

In this study an alternative retrieval scheme, based on the maximum a posteriori 

(MAP) solution of Rodgers [2000], was successfully developed for AIRS CO 

retrievals. This was achieved through simulation work using the Reference Forward 

Model (RFM), which yielded valuable information about the sensitivity of AIRS to 

CO. It was observed through the influence functions, K, and the averaging kernels, 

A, that only ~50 from over 2000 AIRS channels exhibited sensitivity to CO, above 

instrument noise levels. This sensitivity was shown to peak in the mid-troposphere 

for all channels, with very little sensitivity at near-surface and upper-troposphere 

altitudes. Consequently, the developed retrieval scheme was expected to perform 

best in the mid-troposphere, with degradation in performance towards the surface 

and upper-troposphere.  

 

In the development stage the importance of the prior information incorporated into 

the retrieval scheme was also illustrated. As the sensitivity of AIRS to CO decreases 

away from the mid-troposphere, the prior information becomes increasingly 

important. It is therefore necessary that the prior provides a realistic representation of 

the true state of the atmosphere. In this case, a realistic representation of a typical CO 

profile and the covariances between levels. This study used a prior covariance matrix 

based on the output of the chemical transport model (CTM), STOCHEM, with some 

damping applied to covariances between widely separated levels. As the covariance 
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matrix is based on monthly mean model output, it potentially underestimates the 

variances, leading to a retrieval that may be overly constrained by the prior. It may 

be possible to improve upon this representation by generating the covariance matrix 

from an extensive set of globally representative in situ data or from a larger set of 

CTM data on a short time-step. However, the prior covariance matrix employed does 

have its basis in our knowledge of the chemical and physical dynamics of the 

atmosphere, and a measure of its influence on the retrieval is an inherent property of 

the optimal estimation technique. 

 

The performance of the optimal estimation retrieval scheme, developed in this study 

was assessed through comparison with an extensive set of in situ aircraft 

measurements of CO. In terms of total common column CO the UoE retrievals were 

observed to be well correlated with both the in situ measurements and the AIRS v4 

retrievals. The UoE CO product was also observed to be considerably less biased, 

relative to the in situ measurements, than the AIRS v4 product. Although good 

agreement was shown for total column CO, the degree of correlation was shown to 

be lower when CO concentrations on individual profile levels where considered. This 

is due to the varying sensitivity of AIRS to CO with altitude and subsequent 

variation in the contribution of the prior to the retrieval. Another feature of the AIRS 

CO products highlighted in the in situ validation study is the lower dynamic range of 

CO concentrations observed, relative to the range of CO concentrations present in the 

in situ data. This is likely to be a result of a combination of the influence of the prior 

on the retrievals and the fact that the AIRS observations are made at a much lower 

spatial resolution than the in situ data. In most cases the AIRS CO data, for each 

match-up with in situ data, is also the average of a number of retrievals and will 

reduce the range of CO concentrations. 

 

Comparison with in situ observations is an important step in validating and 

understanding the performance of the retrieval. However, the sparsity of such in situ 

observations prevents us from obtaining a true understanding of the performance of 

the retrieval scheme on a global scale. Having demonstrated the accuracy of the UoE 

CO product through validation with in situ data, the performance of the UoE retrieval 
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was further investigated through comparisons with the MOPITT CO product. 

MOPITT is the longest running CO observing satellite instrument and has undergone 

extensive validation [Emmons et al., 2004]. Consequently its CO product is well 

understood and is often used as a benchmark for other CO observations [Buchwitz et 

al., 2007] and [Luo et al.,2007], making it an ideal candidate to be used to 

investigate the UoE CO product. 

 

Through comprehensive comparisons of the UoE and AIRS v4 CO products with 

MOPITT CO, considerable insight into the performance of all three retrievals was 

obtained. A great deal of work focussed on retrievals at 500 hPa, where AIRS was 

demonstrated to exhibit peak sensitivity to CO. At this level, excellent agreement 

between the UoE and MOPITT products was observed, both in terms of magnitude 

and variability. The AIRS v4 CO product was also shown to match the variability of 

MOPITT and UoE, but a significant positive bias in the magnitude of the CO 

concentrations was observed. This positive bias is due in part to the AIRS v4 CO 

product containing extremely limited information about the quality of the retrieval. 

As shown in Chapter 5 the AIRS v4 algorithm returns what is essentially the “first 

guess” profile in some cases where significantly lower CO concentrations are 

expected (e.g. over Antarctica and Greenland).  In these cases the surface and 

atmospheric conditions make CO retrievals more difficult, and the UoE and 

MOPITT retrievals are also dominated by the prior. However, the additional 

information about the source of the retrieved values, inherent in the optimal 

estimation algorithms, allows the UoE and MOPITT products to be filtered to 

exclude such cases. This improved characterisation of the CO product enables 

flexibility in filtering methods, allowing the user to filter the data by means most 

suitable for their applications (e.g. a low % prior threshold could be used where 

accuracy is paramount, while a high % prior threshold could be used where 

maximum coverage is required).  

 

As well as improving the bias, relative to MOPITT, and allowing the CO product to 

be filtered in terms of the contribution from the prior, the UoE retrieval also offers 

improvements in the estimates of retrieval error, over those from the AIRS v4 
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product. The advantage of the optimal estimation algorithm is illustrated in Chapter 5 

through comparison of the retrieval errors at different levels in the profile. 

Unrealistic minimal variation in the AIRS v4 retrieval error is observed across the 

profile levels, with error estimates of ~20% at all levels. Much more realistic error 

estimates are given by the UoE retrieval, with errors ranging from ~10% in the mid-

troposphere (where the sensitivity of AIRS to CO is highest) to values approaching 

the prior error estimate towards the surface and upper troposphere (where sensitivity 

to CO is low). As highlighted by Luo et al. [2007], CO retrievals must be 

accompanied by accurate error estimates if they are to be used in any quantitative 

analysis. Therefore, considering retrieval errors alone, the UoE CO product offers a 

significant improvement over the AIRS v4 product. 

 

In addition to demonstrating the advantages of the UoE retrieval over the AIRS v4 

algorithm, the work of Chapter 5 and Chapter 6 also provided an insight into the 

performance of AIRS CO retrievals relative to those from MOPITT. Although 

excellent agreement was shown between UoE and MOPITT at 500 hPa, significant 

differences were observed at other altitudes, and consequently in the total column 

CO. Deeter et al. [2003] proposed that MOPITT has the potential to distinguish 

between CO in the upper (350 to 150 hPa) and the lower (surface to 700 hPa) 

troposphere. This is supported by the analysis of the percentage contribution of the 

prior to the retrieved CO, in Chapter 6, particularly for the case of tropical latitudes. 

In this analysis AIRS was shown to essentially return information about CO in the 

mid-troposphere, with retrievals in the upper and lower troposphere heavily 

influenced by the prior. Consequently AIRS does not capture the range and 

variability of CO that is seen by MOPITT at these levels. This is particularly true in 

the lower troposphere, in regions with strong CO sources from biomass burning. In 

these regions significantly enhanced and highly variable CO concentrations are 

expected, and are observed in the MOPITT CO product. The UoE retrieval does not 

return such elevated values of CO and sees considerably lower levels of variability in 

lower tropospheric CO. Although the UoE CO product performs relatively poorly 

when compared to MOPITT in the lower troposphere, it does succeed in capturing 

more of the variability than the AIRS v4 product.  
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The lack of sensitivity of AIRS to CO in the lower and upper troposphere makes it 

unsuitable for looking at the vertical transport of CO (as outlined in Chapter 7).  

MOPITT has some potential to be used in this form of application, but is also limited 

by a lack of information content about the vertical structure of the CO profile. 

Although it is not possible to analyse vertical transport of CO using only the AIRS 

instrument, there is potential for making such observations using a combination of 

AIRS and other satellite instruments. This was demonstrated in Chapter 7, where the 

UoE and MLS CO products were used to show CO transport from the mid to upper 

troposphere. As AIRS lacks significant sensitivity to CO in the lower troposphere, 

there is also potential to combine AIRS with an instrument with higher sensitivity at 

these levels (e.g. SCIAMACHY) to investigate CO transport from the lower to mid-

troposphere. In addition, the lack of sensitivity in the lower troposphere coupled with 

the knowledge about this, inherent to the optimal estimation retrieval, offers potential 

information about the intensity of biomass burning events. As AIRS CO retrievals 

are dominated by mid-tropospheric CO when elevated concentrations are observed 

there is high confidence that they are due to real CO enhancements at this level. 

Therefore sharp peaks in mid-tropospheric CO with time could be seen as a proxy for 

intense biomass burning events, with high CO injection altitudes. 

 

Although MOPITT has been shown to provide superior information about the 

vertical structure of CO, AIRS offers the benefit of increased spatial coverage. AIRS 

provides near-global coverage on a daily basis, while MOPITT requires 3 days. This 

improved coverage makes AIRS more suitable for looking at the horizontal transport 

of CO in the mid-troposphere. It also offers an advantage for analysis of inter-day 

and long term variations in regional CO concentrations (as shown in Chapter 6). 

AIRS is also able to make CO retrievals in the presence of significant cloud cover. 

As well as improving the coverage in general, this also has potential advantages 

specific to CO retrievals. CO emissions, particularly from biomass burning, are 

associated with emissions of aerosols and smoke [Edwards et al., 2004]. In some 

cases, this smoke may be flagged as cloud by cloud detection algorithms, resulting in 

loss of information close to the CO source. The cloud clearing method used by AIRS 

minimises this data loss.   



Chapter 8  Summary and Future Work 

141 

 

 

As demonstrated by Crawford et al. [2003], CO concentrations over marine regions 

downstream of continental emissions can be affected by clouds. This is due to the 

changes in photochemical oxidation rates as a result of the radiative impact of 

clouds.  Crawford et al. [2003] propose that satellite observations using only clear-

sky data may result in an underestimate of CO concentrations by as much as 15-30 

%. Therefore the ability of AIRS to perform CO retrievals in the presence of 

significant cloud cover may result in improved estimates of CO in such regions. 

 

In this study the potential of AIRS for monitoring CO globally was demonstrated. 

Despite its relative insensitivity to CO in the lower troposphere, seasonal trends in 

CO associated with biomass burning were observed. With AIRS observations now 

spanning a period of over five years, there is great capacity for AIRS data to be used 

in the analysis of seasonal and inter-annual trends in CO. The Infrared Atmospheric 

Sounding Interferometer (IASI), launched on board the Metop-A in October 2006, 

offers high spectral resolution measurements of the outgoing thermal infra-red 

radiation, similar to those of AIRS. This sensor is the natural successor to AIRS and 

is to be carried on a series of European Metop satellites over a period of 15 years 

[Turquety et al., 2004]. As such, IASI is expected to provide a coherent long-term 

data record, enabling analysis of longer term trends in trace gases such as CO.  

 

The excellent spatial coverage of AIRS also gives it tremendous potential to be used 

to investigate the horizontal transport of CO in the mid-troposphere. This was 

demonstrated in Chapter 7, where elevated CO concentrations observed across the 

Indian Ocean were attributed to extensive biomass burning in Indonesia. In order to 

further characterise both the horizontal and vertical transport of CO and more 

accurately attribute it to CO sources, additional work is required. The analysis of 

Chapter 7, attributes the elevated CO observed over Indonesia to be from biomass 

burning, based on fire count data and on knowledge of events in the region at the 

time. Fire counts alone do not provide information about fire intensity, the amount 

and type of fuel burned, or the emission species. Therefore, further analysis looking 
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at other biomass burning tracers is required to better characterise the source of the 

elevated CO concentrations.  

 

A great deal of research has been focussed on characterising emissions from biomass 

burning, a summary of the literature is given by Andreae and Merlet [2001]. As 

emissions are dependent on the combustion temperature and the fuel composition, 

analysis of the relative concentrations of multiple emission species can yield 

information about source of emissions. There are a number of potential emission 

species that could be used in conjunction with CO that would allow the source of 

elevated CO concentrations to be confirmed. Some of these, such as CH4, HCN, and 

aerosols are routinely observed by satellite instruments and are therefore suitable 

candidates for use in such work. Edwards et al. [2006] demonstrate that satellite 

observations of CO from MOPITT combined with aerosol optical depth (AOD) and 

fire count measurements from the Moderate-Resolution Imaging Spectroradiometer 

(MODIS), can be used to characterise CO sources. In their study Edwards et al. 

[2006] see good correspondence between the timing of peaks in fire counts, CO 

concentrations and AOD over source regions. High levels of correlation are also 

observed between enhancements of CO and AOD for distinct biomass burning 

plumes, a result of direct emissions of CO and carbonaceous aerosol from common 

sources. Edwards et al. [2006] also demonstrate that a combination of measurements 

(such as CO, AOD, and fire counts) can be used in conjunction with chemical 

transport models to examine the transport and seasonal variability of pollution from 

biomass burning. The AIRS CO retrievals are well suited to work of this nature as, 

like the Terra satellite that houses MOPITT and MODIS, the Aqua payload includes 

a MODIS sensor alongside AIRS, thus providing a set of coincident and 

complementary observations.  

 

There is also the potential to use AIRS CO observations in conjunction with 

retrievals of other emission species to characterise CO sources, by analysis of 

emission ratios [Andreae and Merlet, 2001]. As the AIRS science team provide a 

CH4 (total column) data product, this is one potential emission species that could be 

used. Although it is not yet an operational product, the AIRS instrument has also 
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been shown to be capable of making observations of tropospheric CO2 

concentrations [Crevoisier et al., 2004]. This gives AIRS the potential to use 

correlations between CO2 and CO in the characterisation of emissions. As well as 

this potential for characterising emissions, the combination of CO2 and CO 

observations may also have potential to improve CO2 surface flux estimates through 

CO2:CO correlations, as shown by Palmer et al. [2006] using aircraft observations. 

 

The emergence of AIRS and other satellite instruments (e.g. MOPITT, 

SCIAMACHY, and MLS) since 2000 has generated a wealth of new information 

about CO in the atmosphere. As the instruments have distinct characteristics and 

employ different retrieval schemes, they each have something different to add to the 

knowledge of CO, and are best suited to different applications. In order to maximise 

the information from these different sources it is necessary to understand well their 

relative behaviour. This will allow measurements to be combined, or may even allow 

instruments to be used in synthesis, to improve our knowledge of CO in the 

atmosphere. 
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Appendix A – The AIRS v5 CO Product 

On 25
th

 July 2007 a new AIRS CO product (v5) was launched by the AIRS science 

team. Although officially launched in July 2007, the reprocessing of data from earlier 

years was not completed until December 2007. As the v5 data were not available 

until such a late stage in the project, all analysis was carried out using the v4 data. 

Due to the limited time available, the performance of the v5 retrieval was not 

investigated. Warner et al. [2007] compare an intermediate version of the AIRS 

retrieval scheme with MOPITT retrievals, but do not provide any comparisons with 

the v4 retrieval. Warner et al. [2007] do not offer any insight into any potential 

improvements in the error estimates from the (intermediate) v5 algorithm. However, 

they do suggest the magnitude of the CO retrievals is broadly similar to those from 

v4 and that the new algorithm does not enhance CO retrievals in the lower 

troposphere. This is shown by the positive bias (10-20 ppbv) in the AIRS 500 hPa 

CO relative to MOPITT and by the negative bias in total column retrievals over 

Northern hemisphere land. 

 

Full details of the differences between the v4 and v5 CO retrieval algorithms are 

given by Olsen et al. [2007]. The fundamental methods of the algorithm remain the 

same but there are significant changes to its implementation. The main changes are 

in the representation functions and the “first guess” profile. In the v5 algorithm, the 

CO profile is now represented by nine trapezoids (instead of four), chosen to match 

the MOPITT vertical levels. The AFGL US standard CO profile used as the “first 

guess” in v4 has also been replaced, with v5 using the MOPITT a priori profile. As 

well as updating the CO retrieval, changes have also been made to retrievals of other 

parameters, such as water vapour and surface emissivity. As the UoE CO retrieval 

uses these level-2 products, any potential improvements in these products may 

benefit the UoE retrieval. 
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