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Abstract
Auto-regressive sequence models can estimate the distribution of any type of sequen-

tial data. To study sequence models, we consider the problem of language modeling,

which entails predicting probability distributions over sequences of text. This thesis

improves on previous language modeling approaches by giving models additional flexi-

bility to adapt to their inputs. In particular, we focus on multiplicative LSTM (mLSTM),

which has added flexibility to change its recurrent transition function depending on its

input as compared with traditional LSTM, and dynamic evaluation, which helps LSTM

(or other sequence models) adapt to the recent sequence history to exploit re-occurring

patterns within a sequence. We find that using these adaptive approaches for language

modeling improves their predictions by helping them recover from surprising tokens

and sequences.

mLSTM is a hybrid of a multiplicative recurrent neural network (mRNN) and an

LSTM. mLSTM is characterized by its ability to have recurrent transition functions

that can vary more for each possible input token, and makes better predictions as

compared with LSTM after viewing unexpected inputs in our experiments. mLSTM

also outperformed all previous neural architectures at character level language modeling.

Dynamic evaluation is a method for adapting sequence models to the recent sequence

history at inference time using gradient descent, assigning higher probabilities to re-

occurring sequential patterns. While dynamic evaluation was often previously viewed

as a way of using additional training data, this thesis argues that dynamic evaluation is

better thought of as a way of adapting probability distributions to their own predictions.

We also explore and develop dynamic evaluation methods with the goals of achieving

the best prediction performance and computational/memory efficiency, as well as

understanding why these methods work. Different variants of dynamic evaluation are

applied to a number of different architectures, resulting in improvements to language

modeling over a longer contexts, as well as polyphonic music prediction. Dynamically

evaluated models are also able to generate conditional samples that repeat patterns from

the conditioning text, and achieve improved generalization in modeling out of domain

sequences. The added flexibility that dynamic evaluation gives models allows them to

recover faster when predicting unexpected sequences.

The proposed approaches improve on previous language models by giving them

additional flexibility to adapt to their inputs. mLSTM and dynamic evaluation both

contributed to improvements to the state of the art in language modeling, and have

potential applications to a wider range of sequence modeling problems.
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Chapter 1

Introduction

Models that can use information from sequential data are of great interest in machine

learning. Probabilistic sequence models can be used compress, generate, or estimate

the log-likelihood of sequences. To study sequence modeling, this thesis considers the

specific case of language modeling, which entails predicting a probability distribution

over the next word or symbol, conditioned on the previous words or symbols. Starting

by predicting the first word, and then predicting each next word conditioned on the

previous words, language models can assign probabilities to sequences of text. Many

sequence modeling problems can be posed as language modeling, including modeling

of continuous sequences by discretizing values into bins, as is often done for audio

generation (Oord et al., 2016). Although we mainly focus on textual language modeling,

we develop methods that are general enough that they could, in theory, be applied to

other sequence modeling problems outside of the text domain (as opposed to approaches

that use linguistic features).

Language models in this thesis are mainly evaluated by the negative log-likelihood

(or cross entropy) that the model assigns to text sequences held out from the training set.

This metric directly measures how well a language model theoretically could compress

text. Beyond compression capability, language models can also be evaluated by the

quality of the text that they generate, however this is not the main focus of this thesis.

While not guaranteed, language prediction ability often strongly relates to generation

quality. For instance, deep learning based machine translation systems are usually

trained as conditional language models with a cross entropy objective (Sutskever et al.,

2014), even though they are evaluated by generation quality. Language models can

also be used to re-score outputs of a speech recognition systems, often leading to

better transcriptions (Mikolov et al., 2010). Further more, strong language models can

1



2 Chapter 1. Introduction

sometimes perform other text generation tasks without any additional training, including

summarization, machine translation, and question answering (Radford et al., 2019).

Models pretrained with language modeling and related objective functions can achieve

strong results when finetuned to downstream text classification tasks (Radford et al.,

2018; Devlin et al., 2018; Yang et al., 2019). Language modeling can also be used to

study the ability of sequence modeling architectures in using long sequential contexts to

help make predictions, which is a challenging problem in general sequence modeling.

Early approaches to language modeling, such as n-grams (Shannon, 1951; Brown

et al., 1992a), used the simplifying assumption that only the recent sequence history

matters, ignoring long range statistical dependencies in sequences. Recurrent neural

networks (Elman, 1990, RNNs) addressed the limitations of previous approaches by

using a hidden state to summarize the sequence history. An RNN processes a sequence

of inputs, which could be words or characters for instance, one input at a time. An

RNN’s hidden state at given time step in a sequence is a function of the input at the

current time step, and the hidden state at the previous time step. If the task is language

modeling, the model then uses a function of the hidden state at the current timestep to

predict the token at the next time step. By using a hidden state recursively in this way,

RNNs can use inputs from farther in the past to help predict the next token, as compared

with a model that uses a fixed context to make predictions. Early approaches to RNNs

proved difficult to train (Robinson, 1994), but improvements to RNNs such as the long

short-term memory (Hochreiter and Schmidhuber, 1997, LSTM) architecture allowed

them to achieve widespread success at sequence modeling. Long-short term memory

uses a series of gates to preserve information from previous hidden states better than a

traditional RNN. LSTMs have achieved widespread success, outperforming previous

approaches at language modeling (Zaremba et al., 2014), speech recognition (Graves

et al., 2013), and handwriting generation (Graves, 2013), among other tasks.

Concurrently with this thesis, the more recently proposed Transformer (Vaswani

et al., 2017) architecture has demonstrated an even stronger ability to use long contexts

to help make predictions. Like an RNN, a Transformer has a hidden state associated

with every time step in the input sequence. Unlike an RNN, a Transformer continues

to store and use all previous hidden states within some fixed context window as it

processes a sequence. It uses a mechanism called “self-attention” that allows it to

look up previous hidden states within that context window. The ability to go back and

remember previous hidden states makes the Transformer especially strong for using

large amounts of context to make predictions, and as a result, this architecture has
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achieved strong results in language modeling (Radford et al., 2019) and other natural

language processing tasks (Devlin et al., 2018). Due to the timeline of this thesis, the

majority of experiments use LSTM as a baseline, as it was considered state-of-the-art in

language modeling at the time that most of the work was carried out. However, some of

the later experiments consider Transformers as a baseline to show that the principles in

this thesis can still give improvements to stronger architectures.

In the language modeling setting considered in this thesis, language models are

trained to minimize cross entropy on training data and evaluated on cross entropy in

held out data. When making predictions on held out sequences, language models will

generally encounter tokens and sequences that they were not expecting, and will fail to

correctly predict. When such a situation occurs, the model must adapt, meaning it needs

to reinterpret the current state as a function of the unexpected input, the sequence history,

and the data it was trained on. Otherwise, it will continue to make wrong predictions on

later parts of the sequence. To illustrate this, consider the following text, taken from the

WikiText-2 corpus:

The Gambia won the first match 3 - 0 in Banjul , the Gambia ’s capital . The return

match was delayed in for 24 hours and played in Makeni. The Gambia beat Sierra Leone

4 - 3 to qualify for the final round. The Gambia then beat Tunisia 1 - 0 at home and

won 2 - 1 in Tunisia .

The names of African countries are common words in the context of this sequence,

but rare words in the context of the entire distribution. This sequence also repeatedly

uses words that pertain to sports and competition. We refer to these repetitions as

“re-occurring sequential patterns”, a term we use to refer to both the direct repetition of

words like “Gambia” and “Tunisia”, as well as the repeated use of words that relate to

sports and competition. When the model encounters the first instance of one of these

patterns, it will likely struggle no matter what, since the patterns specific to this sequence

are rare in the context of the training data. However, a model that correctly adapts to the

early parts of the sequence should be able to better predict words that relate to African

countries or competition later on in the sequence. It is evident that some language

models struggle to adapt to their inputs; for instance, Grave et al. (2017b) found that

augmenting an LSTM language model with a simple unigram cache could improve
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its prediction performance. This indicates that adapting to the unigram distribution of

recent text, while relatively simple in principle, is a challenging problem for LSTM

language models. Studying approaches to make language models more adaptive is

therefore well motivated for improving their predictions.

In this thesis, we improve language models by giving them added flexibility to

adapt to their inputs. This is done by allowing models to make larger changes to their

representation as a result of text they observe. We consider adaptation at two levels;

adapting to individual tokens and adapting to sequences of many tokens. Models that

are more adaptive at the token level are able to reinterpret their context and make large

changes to their predictions as a result of different tokens they observe. For instance, an

RNN that is able to make large changes to its hidden-to-hidden transition function, and

thus large changes to its predictions, as a result of an input token, would be considered

more adaptive at the token level. For adapting to longer sequences, a model may need to

be able to make larger changes to its representation to fully adapt to the whole context.

For instance, a model that is able to change all of its weights as a function of the

sequence history would likely be more adaptive than a model that can only represent

the sequence history with a hidden state vector of limited size.

For adapting to language at the token level, we consider the case of recurrent neural

networks, where the hidden state is expressed as a function of the previous hidden state

and the current input. The vanilla RNN is able to modify its hidden state somewhat

as a function of each token it observes by having a different bias for each possible

input token, given by the model’s embedding matrix. However, a vanilla RNN cannot

make very large changes to its hidden state without erasing information from the past,

giving it a somewhat limited token level adaptation ability. Architectural enhancements

in RNNs such as LSTM (Hochreiter and Schmidhuber, 1997) allow them to be more

adaptive to their inputs by having gates, which partially depend on connections from the

input, to control information flow in the network. This thesis considers multiplicative

LSTM (mLSTM) to make LSTMs even more adaptive, by allowing them to effectively

have a different recurrent transition matrix for each possible input.

In order to achieve broader adaptation at the level of entire sequences, we consider

using dynamic evaluation to adapt models to the recent sequence history, a method

first proposed by Mikolov et al. (2010) and greatly extended in this thesis. In spite of

its name, which implies that it is an evaluation metric, this thesis argues that dynamic

evaluation is actually an architectural enhancement that adapts sequence models to

their own predictions. Dynamic evaluation uses gradient descent updates on the loss of
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the recent sequence predictions to update the parameters of the model, thus giving the

model the ability to adapt to its inputs.

The principle claim in this thesis is that giving language models additional flexibil-
ity to adapt to their inputs can improve their predictions by helping them recover
from surprising tokens or sequences. Specifically, by adaptation, we mean the ability

for a language model to modify its prediction distribution over future sequences as a

result of its input, and by recovering from surprise, we mean the ability to accurately

model tokens or continuing sequences immediately after a token or sequence that was

not expected by the model. We show that multiplicative LSTM (mLSTM) language

models, which are more adaptive at the token level, recover more quickly from sur-

prising tokens than regular LSTMs. While mLSTMs have the ability to recover from

a surprising token, they still struggle to adapt to surprising sequences. For instance,

mLSTMs struggle when evaluated on sequences from a language that is different from

the training language. We show that applying dynamic evaluation to mLSTM and

other models (including Transformers), which allows them to be more adaptive at the

sequence level, results in models that are more robust to surprising sequences. For

instance, dynamic evaluation can give large improvements in the case when the testing

sequence is in a different language from the training sequences. Dynamic evaluation

is also often able to give large improvements in general language modeling due to its

ability to adapt to re-occurring sequential patterns that are unique to every sequence.

The work on mLSTM is motivated by the concept of “flexible input dependent

transitions” for RNNs, which means the ability to have a very different hidden to hidden

transition function for each possible input token, thus giving them the ability to adapt to

the token. We empirically show that mLSTM gives improvements in language modeling

compared with LSTM and other architectures, and suggest its adaptability is the reason

for this improvement. We also show that mLSTM’s advantage over LSTM is larger after

a surprising token than it is in general, suggesting that mLSTM’s ability to adapt its

hidden representation when encountering a surprising input at least partially explains

its advantage.

We use dynamic evaluation to adapt language models to the sequence history. We

show that dynamic evaluation can give large improvements to language modeling, which

we hypothesize is due to its ability to adapt to unexpected re-occurring sequential pat-

terns. Supporting this hypothesis is the ability of dynamic evaluation augmented models

to predict repeating words, generate samples that repeat patterns in the conditioning text,

and predict text that is in a different language from the training text. We also show that
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dynamic evaluation augmented models are able to use very long contexts to improve

their predictions, which is necessary for fully adapting to longer sequences. Lastly, we

observe large performance gains applying dynamic evaluation to polyphonic musical

note prediction, suggesting that adapting to surprising re-occurring sequential patterns

may be useful for other modes of sequential data besides text.

The experiments in this thesis were performed during a time when the field was

rapidly changing. Some of the LSTM baselines used in experiments early in this thesis

that were state-of-the-art at the time were superseded by stronger Transformer-based

methods used as baselines later in the thesis. However, studying sequence modeling

in RNN based models is still of interest, since recurrence is a necessary feature for

models to utilize longer than fixed length contexts using a fixed amount of memory.

Our experiments show that dynamic evaluation can help improve both RNNs and

Transformers, showing a greater generality of the method. Even as methods continue to

improve, studying models with the flexibility to adapt to their inputs remains useful for

interpreting recent architectural improvements as well as developing new ones.



Chapter 2

Background

This background chapter covers previous and concurrent approaches that are necessary

to understand the adaptive methods considered in this thesis, as well as the context under

which these methods were developed. First, we define the problem of language modeling,

the main benchmark task used to evaluate our proposed methods, in Section 2.1. Section

2.2 considers previous approaches to make language models adaptive at the sequence

level. Section 2.3 reviews RNNs, including vanilla RNNs, backpropagation through

time, LSTMs. LSTMs are the backbone for many of the architectural modifications in

the thesis, and back propagation through time is important for understanding dynamic

evaluation. Next, Section 2.4 reviews other sequence modeling architectures that are

important for understanding the context of this thesis, including architectural ideas that

we build off of, and other architectures that have similar motivations to approaches in

this thesis. Section 2.5 reviews optimizers that we use throughout this thesis, both for

training models from scratch as well as for dynamic evaluation of trained models at test

time. Lastly, Section 2.6 covers high dimensional sequence modeling, which is later

used for polyphonic music prediction, a secondary sequence modeling task considered

in this thesis.

2.1 Language modeling

Language modeling is the task of modeling a probability distribution over sequences of

language. While there are many ways to model probability distributions, for language

this is usually done with models that predict the next word or character of text, given the

history of text. These models start by predicting the first word and iteratively predict the

next word conditioned on the previous words in a sequence one at a time, which makes

7
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it possible to model a probability distribution over all possible sequences of text allowed

by the vocabulary. Traditionally, n-gram models that assume the Markov property in

language were used for probabilistic text modeling (Shannon, 1951; Brown et al., 1992a).

Neural network based models in place of n-gram models were considered by Bengio

et al. (2003). Since then, RNNs have been applied to language modeling (Mikolov et al.,

2010), allowing language models to use longer range statistical dependencies and avoid

assuming the Markov property. Language modeling at the word and character level are

the two main benchmarks considered in this thesis.

2.1.1 Auto-regressive sequence modeling

Language modeling and relies on an auto-regressive factorization to perform density

estimation and generation of data. Auto-regressive sequence models assign a probability

to a sequence x1:T = {x1, . . . ,xT} by factorizing it using the chain rule as

P(x1:T ) = P(x1)
T

∏
t=2

P(xt |x1:t−1). (2.1)

Auto-regressive sequence modeling is illustrated in Figure 2.1. In auto-regressive

sequence modeling, models condition on inputs after predicting them. When evaluating

the probability of a sequence of text, the model conditions on the ground truth tokens

of that sequence. Even though this means the model will view test time tokens, this is

a valid way to measure probability, because the auto-regressive factorization ensures

that the sum of probabilities assigned to all possible sequences will sum to 1. When

sampling from the model, the model conditions on inputs that were generated by the

model at the previous timesteps. Since auto-regressive models condition on the same

tokens they predict, it is possible perform the adaptation methods that fit to the sequence

history considered in Section 2.2 and throughout this thesis.

2.1.2 Language model evaluation

Language models can be trained using a cross entropy error objective, where the loss

for each sequence element xt at time step t occurring in the context of the sequence

history up to t, x1:t−1, is given by

−logP(xt |x1:t−1) (2.2)

and the overall training loss is given by the average cross entropy error on the

training set. In this thesis, language models are evaluated by applying the same cross
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x1 x2 x3

P(x2|x1) P(x3|x2,x1) P(x4|x3,x2,x1)

hidden 
state

hidden 
statemodel(x2) model(x3)model(x1)

Figure 2.1: A neural auto-regressive sequence model. The model repeatedly predicts a

probability distribution over the next symbol conditioned on all previous symbols, using a

hidden state to summarize information about the past.
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entropy loss on held out sequences. The sum on all the cross entropy errors on held out

sequences is equivalent to the theoretical compression limit that the model could achieve

encoding the test dataset (Shannon, 1948). In practice, it is possible to actually achieve

compression to a number of bits within a small constant of the theoretical compression

limit using a language model, for instance with arithmetic coding (Witten et al., 1987).

Language models can also be evaluated for their text generation ability. Language

models can generate text by feeding tokens output by the model back into the model as

inputs. It is possible to sample directly from the probability distribution given by the

model in this way. To attempt to find the most likely sequences or conditional sequences

under the model, greedy decoding (always outputting the most likely token) or beam

search can be used. Conditional language models that are trained with a cross-entropy

objective can be used for generation tasks such as summarization (Nallapati et al.,

2016) or machine translation (Sutskever et al., 2014). Evaluating language models for

generation is somewhat more difficult, and often uses imperfect n-gram matching based

measures such as BLEU score (Papineni et al., 2002) or ROUGE score (Lin and Och,

2004), or expensive human evaluation. The main difference between evaluation by

generation and evaluation by cross-entropy, is that when evaluating by cross entropy,

the model only ever sees ground truth tokens as input, whereas when evaluating by

generation quality, the model sees tokens that it output itself at previous timesteps.

There is no guarantee that a strong cross entropy model will be a strong generation

model or visa versa, but in practice the two are usually correlated. In this thesis, we

consider almost exclusively cross-entropy evaluation.

2.1.3 Language model tokenization

In order to perform language modeling, text needs to be mapped to a sequence of tokens,

through a process called “tokenization”. There are many different ways to tokenize

text–two of the most straightforward ways considered in this thesis are as a sequence of

characters, or as a sequence of words. Neural network based language models typically

have a fixed vocabulary size, due to the need to have a fixed number of input and output

units, where each input/output unit corresponds to a single word in the vocabulary. The

choice of tokenization can restrict the range of sequences that a language model can

assign a probability to. For instance, a word level language model with a predefined

vocabulary cannot model words from outside of that vocabulary; it would have no way

of predicting, for instance, a misspelled word or a word from another language. In



2.1. Language modeling 11

exchange for sacrificing this flexibility, word level language models have the advantage

that each token generally corresponds to a unit of meaning, and sequences are shorter,

making them faster to process and making it potentially easier to model statistical

dependencies across larger gaps of text.

Character-level tokenization for language models gives them added flexibility to

model any possible words that can be composed with the predefined character alphabet.

A case insensitive character level tokenization for the English language might include a

vocabulary of 27 for the letters a-z plus spaces. More characters can be included in the

vocabulary to give the model even more flexibility to predict upper case, punctuation, or

non-English characters. In order to achieve even greater flexibility, some experiments in

this thesis use a UTF-8 byte tokenization, where text is modeled using a vocabulary of

256 possible bytes. Many types of text files in many languages are stored using UTF-8

bytes, So using this byte-level tokenization gives a language model the flexibility to

model almost any kind of text sequence. Character level language modeling requires

using longer contexts to make predictions as compared with word level language

modeling, making it a challenging problem, but also an interesting benchmark for

neural sequence modeling architectures.

For a trade off between word and character level tokenization, other kinds of subword

tokenizations are sometimes used. In this thesis, we have experiments using a byte-pair

encoding (Sennrich et al., 2015), which starts at the character or byte-level, and replaces

common sub-sequences of tokens with a single new token, and does this iteratively to

reduce the length of text datasets to a smaller number of tokens. Subword tokenizations

allow tokens to be more meaningful than individual characters, while also allowing the

flexibility to model out of vocabulary words.

Typically, language models are compared with each other using the same tokeniza-

tion. The average negative log-likelihood per token (which can be exponentiated to

get perplexity, which is also sometimes used) can be used to compare the prediction

ability two language models that use the same tokenization. Two language models with

different tokenizations can be comparable if the tokenization is invertable, meaning that

the original text can be recovered exactly from the tokenized text. In this case, both

models can be used to assign negative log-likelihoods to the entire dataset of text by

summing the negative log-likelihoods of each prediction under each model’s respective

tokenization. The negative log-likelihood of the dataset is then a comparable metric of

how well each model would be able to compress that dataset.
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2.2 Adaptive language modeling

As this thesis focuses on making language models more adaptive, we describe previous

approaches that adapt language models to the sequence history. Adaptive language

modeling was first considered for n-grams, adapting to recent history via caching (Kuhn,

1988; Jelinek et al., 1991; Kuhn and De Mori, 1992), and other methods (Bellegarda,

2004). Since, methods aimed at adapting neural language models have been developed,

such as the neural cache (Grave et al., 2017b), the closely related pointer-sentinel RNN

(Merity et al., 2017), and dynamic evaluation (Mikolov et al., 2010).

2.2.1 Neural cache

The neural cache model learns a non-parametric output layer on the fly at test time,

enabling the network to adapt to recent observations. Each past hidden state hi is paired

with the next input xi+1, and stored as a tuple (hi,xi+1). When a new hidden state ht is

observed, the output probabilities are adjusted to give a higher weight to words that

coincide with past hidden states, with a large inner product (h>t hi):

Pcache(xt+1|x1:t ,h1:t) ∝

t−1

∑
i=1

e(xi+1) exp(ωh>t hi), (2.3)

where e(xi+1) is a one hot encoding of token xi+1 (meaning the resulting vector has

a value of 1 at the index of the token, and 0 for the rest of the vocabulary), and ω

is a scale parameter. Since Pcache(xt+1|x1:t ,h1:t) is composed of a weighted sum of

one-hot vector encoding of previously occurring tokens, Pcache(xt+1|x1:t ,h1:t) = 0 for

all tokens that have not previously occurred in the sequence. The neural cache could

also be thought of as a type of attention (see Section 2.4.5.1), where the query is the

current hidden state ht , the keys are the previous hidden states, and the values are the

one hot encodings of the labels. Test time adaptation is carried out by interpolating the

cache probabilities with the base network probabilities.

Another closely related method, the pointer-sentinel RNN (Merity et al., 2018b),

uses a similar non-parametric adaptation mechanism to the neural cache. The main

difference is that the pointer-sentinel RNN has this adaptation mechanism built in during

training, whereas the neural cache trains the model normally, and only adds this during

evaluation time.

The neural cache is not able to change the hidden representation used to encode

sequences–this remains fixed at test time. This capability is critical for adapting to
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sequences in which each element has very little independent meaning, e.g. character

level language modeling. Additionally, the neural cache can only raise the probability

of symbols it has previously seen in a test sequence, which could limit its generalization

ability in word-level language modeling.

2.2.2 Dynamic evaluation

Mikolov et al. (2010) proposed dynamic evaluation of neural language models at test

time, with stochastic gradient descent (SGD) updates at every time step, computing

the gradient with fully truncated backpropagation through time. Dynamic evaluation

has since been applied to character and word-level language models (Graves, 2013;

Ororbia II et al., 2017; Fortunato et al., 2017) (and by Krause et al. (2016) in work that is

a precursor to Chapter 3 on mLSTMs). Previous work on dynamic evaluation applied it

as additional updates at test time, and did not study dynamic evaluation methodology or

explore why dynamic evaluation could work. Dynamic evaluation was often understood

as a way of using the test data as extra training data, where as this thesis takes the

perspective that dynamic evaluation is an additional way for a probabilistic sequence

model to condition on the sequence history. Dynamic evaluation is studied in Chapters

4, 5, and 6.

Both dynamic evaluation and the neural cache can be used to adapt a base model

at test time. The main difference is the mechanism used to fit to recent history: the

neural cache uses a non-parametric, nearest neighbors-like method, whereas dynamic

evaluation uses gradient descent. Both methods rely on an autoregressive factorization,

as they depend on observing sequence elements after they are predicted in order to

perform adaptation. Dynamic evaluation and neural caching methods are therefore both

applicable to sequence prediction and generation tasks, but not directly to more general

supervised learning tasks.

Dynamic evaluation as applied at test time, could be considered a form of fast

weights (Schmidhuber, 1992; Ba et al., 2016a) – recurrent architectures with dynami-

cally changing weight matrices as a function of recent sequence history. In traditional

fast weights, the network learns to control changes to the weights during training time,

allowing it to be applied to more general sequence problems including sequence label-

ing. In dynamic evaluation, the procedure to change the weights is automated at test

time via gradient descent, making it only directly applicable to autoregressive sequence

modeling. As dynamic evaluation leverages gradient descent, it has the potential to



14 Chapter 2. Background

generalize better to previously unseen pattern repetitions at test time.

2.3 Recurrent neural networks

Recurrent neural networks (RNNs) are a class of neural network architecture designed

to model sequential data by using a hidden state to summarize the history of inputs.

Recurrent neural networks were of historical interest as they were recognized to be

powerful function approximators theoretically capable of representing any algorithm

that can be run on a computer (Siegelmann and Sontag, 1995). The majority of the

experiments in this thesis attempt to make recurrent neural networks more adaptive,

so understanding them is important to understanding the context of this work. This

section first walks through the vanilla RNN, which was used in the earliest RNN based

approaches to language modeling (for instance in Mikolov et al. (2010)). We then cover

the backpropogation through time algorithm, which is used to compute the gradient of

RNNs. Gradients are typically used to train models, in dynamic evaluation, gradients

are also used during test time. Therefore, at test time, the backpropagation through time

algorithm is inherently built into a dynamic evaluated RNN. Lastly, we cover the LSTM

architecture, an improved RNN that is the baseline for the majority of the experiments

in this thesis.

2.3.1 Vanilla RNN

A vanilla RNN takes in an input sequence x1:T = {x1, . . . ,xT}, and maps it to an output

sequence y1:T = {y1, . . . ,yT} (or in some cases just a single output y at the end of the

input sequence). The hidden state vector of an RNN at time t, ht , is a function of the

previous hidden state ht−1 and the new input xt . In a vanilla RNN, this function is given

by

ĥt =Whxxt +Whhht−1 +bh (2.4)

and

ht = tanh(ĥt), (2.5)

where Whx and Whh are the input-to-hidden and hidden-to-hidden weight matrices

respectively, bh is a bias vector, ĥt is the unsquashed hidden state vector, and tanh is the

hyperbolic tangent function (which squashes the hidden state to be in the range [−1,1]).
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Figure 2.2: A vanilla RNN. Edges represent multiplication by a weight matrix, and nodes

represent state vectors. A non-linear function, such as a tanh, is typically applied at the

hidden state.

The unnormalized output ŷt is then given by

ŷt =Wyhht +by. (2.6)

If real valued outputs are desired, yt = ŷt can be used, whereas if probabilistic outputs

are desired, yt = softmax(ŷt) can be used (where softmax(zi) =
exp(zi)

∑ j exp(z j)
(Bridle, 1990)).

An RNN is represented graphically in Figure 2.2.

2.3.2 Backpropagation through time

Neural networks are generally trained and evaluated using a loss L representing how

close the outputs of the network y are to the desired outputs or targets γ (where for

language modeling, γ will be a one hot vector with a 1 at the index of the target word, and

a zero everywhere else). Backpropagation (Rumelhart et al., 1986) can be used to find

derivatives of the loss with respect to the parameters of the network (gradients),which

allow the parameters of the network to be updated in ways that reduce the loss (see

Section 2.5 on optimization). Backpropagation through time (Werbos, 1990) specifically
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refers to backpropagation of RNNs, where applying backpropagation involves unfolding

the RNN in time.

For recurrent neural networks modeling categorical probabilistic outputs, the loss at

each time step is typically given by the cross entropy error between the RNNs outputs

at time t, yt , and the target outputs at time t, γt .

Lt =−γ
>
t log(yt) (2.7)

The total loss L is the sum of the losses over time (L = ∑
T
t=1 Lt).

The partial derivatives of the cross entropy error L with respect to the parameters

of the network θ, ∂L
∂θ

, also known as the gradient or direction of steepest descent, can

be computed using the chain rule with the back propagation through time algorithm,

which is given for a standard RNN with a softmax output layer and cross entropy loss

with the following equations below.

∂L
∂ŷt

= yt− γt (2.8)

∂L
∂Wyh

=
T

∑
t=1

∂L
∂ŷt

h>t (2.9)

∂L
∂by

=
T

∑
t=1

∂L
∂ŷt

(2.10)

∂L
∂ht

=W>yh
∂L
∂ŷt

+W>hh
∂L

∂ĥt+1
(2.11)

∂L
∂ĥt

=
∂L
∂ht
� (1−ht�ht) (2.12)

∂L
∂Whh

=
T

∑
t=2

∂L
∂ĥt

h>t−1 (2.13)

∂L
∂Whi

=
T

∑
t=1

∂L
∂ĥt

x>t (2.14)

∂L
∂bh

=
T

∑
t=1

∂L
∂ĥt

(2.15)

Note that the � operator is the Hadamard product for element-wise matrix multi-

plication. RNNs can then be trained using gradient-based update schemes, such as the

ones given in Section 2.5.
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In the experiments in this thesis, the training sequences are often too long to

efficiently compute backpropagation through time over full sequences. In this case,

truncated backpropagation through time (Williams and Peng, 1990) is used, where the

gradient is computed on shorter sequence segments and used to update the network

before progressing to the next sequence segment. In this case, the hidden state from

the end of the previous sequence segment can be used to initialize the hidden state on

the next sequence segment (Graves, 2013). This variant of truncated backpropagation

through time, we use both for training RNNs as well as for dynamic evaluation, is given

in Algorithm 1.

t← 1 ;

h0← zeros ;

while t ≤ T do
yt:t+τ−1,ht+τ−1← RNN(xt:t+τ−1,ht:t+τ−1) ;

compute L = ∑Lt:t+τ−1 using outputs yt:t+τ−1 and γt:t+τ−1 ;

compute gradients ∇L(θ) ;

apply update rule ;

t← t + τ ;

end

Algorithm 1: Truncated backpropagation through time with a reused hidden state.

Backpropagation through time is computed over sequence segments of length τ, and

gradients are used to update the network before progressing to the next sequence

segment. The final hidden state from a sequence segment is used as the initial hidden

state in the next sequence segment. Note that the subscript notation i : j specifies

the range of vectors associated with timestep i through timestep j inclusive.

Training RNNs can result in a training difficulty known as the vanishing/exploding

gradient problem (Bengio et al., 1994a; Hochreiter et al., 2001), where the gradient

tends to decay or explode exponentially as it is back-propagated through time. It can

be seen why this problem arises by considering the matrix of derivatives of the hidden

states at a given time point with respect to hidden states n time steps in the past ∂ht
∂ht−n

.

∂ht

∂ht−n
=

n−1

∏
k=0

W T
hh diag(1−ht−k�ht−k) (2.16)

For a large n, this matrix of derivatives will tend to either explode or decay expo-



18 Chapter 2. Background

nentially because it is the product of many matrices. This result makes it difficult for

RNNs to learn to use long contexts in their predictions. When the gradient vanishes, the

updates to the weights will not help with learning statistical dependencies over long

time lags because this contribution to the gradient will be exponentially small, and

when the gradient explodes learning becomes unstable. For this reason, more advanced

architectures and/or learning algorithms are usually needed to train RNNs on difficult

problems. One way of addressing the exploding gradient (but not vanishing gradient)

problem is to apply gradient norm clipping (Pascanu et al., 2013b), where the norm of

the gradient ||∇L(θ)|| is reduced when it exceeds the norm threshold λ.

if ||∇L(θ)||> λ then
∇L(θ)← λ∇L(θ)

||∇L(θ)||

end
Algorithm 2: Gradient norm clipping

Some RNN architectures are designed to partially address exploding and vanishing

gradients, including the long short-term memory (LSTM) architecture, which is covered

next.

2.3.3 Long short-term memory

LSTM is a commonly used RNN architecture that uses multiplicative gates to control

how information flows in and out of internal states of the network (Hochreiter and

Schmidhuber, 1997). We use LSTM as one of the main baseline architectures for

methods in this thesis. Each LSTM unit has a gated memory cell which allows the

network to preserve or overwrite the state of each unit. The ability to preserve the value

of memory cells gives LSTMs the ability to retain information over longer time periods.

Like a standard RNN, the LSTM hidden state receives inputs from the input layer xt

and the previous hidden state ht−1:

ĥt =Whxxt +Whhht−1. (2.17)

The LSTM network also has 3 gating units – input gate i, output gate o, and forget

gate f (introduced in Gers et al. (2000)) – that have both recurrent and feed-forward
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connections:

it = σ(Wixxt +Wihht−1) (2.18)

ot = σ(Woxxt +Wohht−1) (2.19)

ft = σ(Wf xxt +Wf hht−1), (2.20)

where σ is the logistic sigmoid function. The input gate controls how much of the input

to each hidden unit is written to the memory cell vector ct , and the forget gate determines

how much of the previous memory cell vector ct−1 is preserved. This combination of

write and forget gates allows the network to control what information should be stored

and overwritten across each time-step. The memory cell vector is updated by

ct = ft� ct−1 + it� tanh(ĥt). (2.21)

The output gate controls how much of each unit’s activation is preserved. It allows

the LSTM cell to keep information that is not relevant to the current output, but may be

relevant later. The final output of the hidden state is given by

ht = tanh(ct)�ot . (2.22)

LSTM was derived to address the vanishing/exploding gradients in RNNs, as the

LSTM’s memory cells make it possible to pass information forward or pass gradients

backward undisturbed more easily. LSTM has proven useful in practice, achieving

strong results in many sequence modeling tasks (Graves et al., 2013; Graves, 2013;

Zaremba et al., 2014).

2.4 Sequence modeling architectures

We review sequence modeling architectures that are either directly used or helped

motivate approaches in this thesis. For instance, we use architectural features from

the multiplicative RNN (Sutskever et al., 2011) to make LSTMs more adaptive at the

token level in our work with multiplicative LSTM in Chapter 3. The use of depth and

recurrent depth are competing approaches to make RNNs more adaptive, and thus are

important to the context of the field. Multiplicative integration RNNs (Wu et al., 2016)

also closely relate to the multiplicative LSTM approach. Normalization methods are

used as an architectural feature throughout this thesis, and are thus important for having

a full understanding of the architectures we use. Transformers (Vaswani et al., 2017)
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are a stronger and more recent architecture that is used as a baseline in Chapter 6. Tied

embedding matrices (Press and Wolf, 2017; Inan et al., 2017) are a useful architectural

feature for language modeling used in several experiments, and considered in analysis

of how dynamic evaluation can generalize to words with similar embeddings in Section

5.3. Lastly, we describe the importance of having strong baselines when making claims

about architectural improvements, a principle used for experiments in this thesis.

2.4.1 Multiplicative RNN

The multiplicative RNN (Sutskever et al., 2011, mRNN) is an architecture designed

specifically to allow flexible input-dependent transitions. mRNNs are a precursor to

multiplicative LSTMs, which are the focus of Chapter 3. mRNN’s formulation was

inspired by the tensor RNN, an RNN architecture that allows for a different transition

matrix for each possible input. The tensor RNN features a 3-way tensor W 1:N
hh , which

contains a separately learned transition matrix Whh for each input dimension. The 3-way

tensor can be stored as an array of matrices

W (1:N)
hh = {W (1)

hh , ...,W (N)
hh }, (2.23)

where superscript is used to denote the index in the array, and N is the dimensionality of

xt . The specific hidden-to-hidden weight matrix W (xt)
hh used for a given input xt is then

W (xt)
hh =

N

∑
n=1

W (n)
hh x(n)t . (2.24)

For sequence modeling problems where xt is one-hot (such as language modeling 2.1),

and W (xt)
hh will be the matrix in W (1:N)

hh corresponding to that unit. Hidden-to-hidden

propagation in the tensor RNN is then given by

ĥ(t) =W (xt)
hh ht−1 +Whxxt . (2.25)

The large number of parameters in the tensor RNN make it impractical for most

problems. mRNNs can be thought of as a shared-parameter approximation to the tensor

RNN that use a factorized hidden-to-hidden transition matrix in place of the normal

RNN hidden-to-hidden matrix Whh, with an input-dependent intermediate diagonal

matrix diag(Wmxxt). The input-dependent hidden-to-hidden weight matrix, W (xt)
hh is then

W (xt)
hh =Whmdiag(Wmxxt)Wmh. (2.26)
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Figure 2.3: A multiplicative RNN. Inputs to the elliptical nodes are added, and inputs to

the rectangular nodes are multiplied.

An mRNN is thus equivalent to a tensor RNN using the above form for W (xt)
hh . For

readability, an mRNN can also be described using intermediate state mt as follows:

mt = (Wmxxt)� (Wmhht−1) (2.27)

ĥt =Whmmt +Whxxt . (2.28)

mRNNS are illustrated graphically in Figure 2.3.

mRNNs have improved on vanilla RNNs at character level language modeling tasks

(Sutskever et al., 2011; Mikolov et al., 2012a), but have fallen short of the more popular

LSTM architecture, for instance as shown with LSTM baselines from (Cooijmans et al.,

2017). The standard RNN units in an mRNN do not provide an easy way for information

to bypass its complex transitions, resulting in the potential for difficulty in retaining

long term information.

2.4.2 Depth and recurrent depth

In deep learning, depth is the concept stacking multiple non-linear functions. While

traditional RNNs are already deep in the sense that they repeatedly apply non-linear

layers over time, various methods have been developed to make RNNs deeper (Pascanu
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Figure 2.4: A 2-layer stacked RNN. The second RNN takes the hidden state of the first

RNN as its input.

et al., 2013a; Graves, 2013; Hermans and Schrauwen, 2013). Adding depth to an

RNN can making it more adaptive by giving it the ability to model a greater range of

functions. All RNN language models combine the input from the previous hidden state,

and from the current token, to create a new hidden state. A “shallow RNN” is limited to

combining these inputs using a linear combination of them, with single non-linearity

applied. Increasing the depth means that a greater range of functions can be learned to

combine the contributions from the previous hidden state and the current input. This

could make it easier for a model with greater depth to make large changes to its hidden

state as a result of a new input. While adding depth makes a model more adaptive, it

also makes it more expensive, because computation over successive layers cannot be

paralellized (since the output from one layer is the input to the next layer). This thesis

seeks a simpler method to make RNNs more adaptive without adding extra depth.

One of the most common ways of making an RNN deep is to use a stacked RNN

(Graves, 2013), where the hidden state ht of one RNN becomes the input xt of another

RNN, as illustrated in Figure 2.4.
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Many recently proposed RNN architectures use recurrent depth, which is depth

between recurrent steps, as illustrated in Figure 2.5. Recurrent depth allows more non-

linearity in the combination of inputs and previous hidden states from every time step.

Recurrent depth has been found to perform better than other kinds of non-recurrent

depth for some sequence modeling problems (Zhang et al., 2016).

Recurrent highway networks (Zilly et al., 2017, RHNs) use a more sophisticated

recurrent depth that carefully controls propagation through layers using gating units.

Fast-slow recurrent neural networks (Mujika et al., 2017) combined the ideas of having

RNNs at different scales, with recurrent depth. Overall, the ability to have complex

transitions between timesteps seems to help RNNs.

2.4.3 Multiplicative integration RNNs

Multiplicative integration RNNs (Wu et al., 2016, MI-RNNs) use Hadamard products

instead of addition when combining contributions from input and hidden units. This

allows the hidden states to be modified by the input token to a greater degree, thus

making MI-RNNs more adaptive at the token level. In the case of vanilla MI-RNNs,
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Equation 2.17 for the input to the RNN hidden state becomes

ĥt =Whxxt�Whhht−1. (2.29)

This modification can also be extended to LSTMs. Like recurrent depth, this multi-

plicative interaction allows for more complex transitions between timesteps, but unlike

recurrent depth, it does not require additional sequential computation between timesteps.

MI-RNNs relate closely to mRNNs, with the differences being that mRNNS apply an

additional matrix multiplication in the transition between timesteps, and mRNNs still

use addition when combining contributions from input and hidden units.

2.4.4 Normalization methods

Normalization methods are an architectural feature aimed at improving both regu-

larization and optimization in RNNs and other sequence models. A number of the

architectures used in experiments in this thesis use normalization methods to improve

performance. Normalizing the hidden state and/or weights of RNNs can make them

more robust to vanishing and exploding gradients, and thus more stable. In feed for-

ward neural networks, batch normalization (Ioffe and Szegedy, 2015) is an effective

approach. Batch normalization normalizes across the hidden states of dimensionality d

in a minibatch of dimensionality n so that they always have the same mean and variance,

by applying the equation

h =
ĥ−µ(ĥ)√
σ2(ĥ)+ ε

(2.30)

where ĥ ∈ Rn,d is the mini-batch of pre-normalized hidden states, h ∈ Rn,d is the

mini-batch of final hidden states, µ(ĥ) and σ2(ĥ) are vectors of the mini batch means

and variances of each hidden unit, and ε is used for stability. The values of µ(ĥ) and

σ2(ĥ) depend on the minibatch sampled and therefore add noise to the network. At

test time, µ(ĥ) and σ2(ĥ) are set to the means and variances across the entire training

set. Applying batch normalization naively to RNNs results in instability because the

hidden state will have different means and variances near the beginning of a sequence.

Recurrent batch normalization (Cooijmans et al., 2017) attempts to address this by only

normalizing across hidden states with the same amount of context (So for instance,

when normalizing the 5th hidden state in a sequence, recurrent batch normalization only

uses statistics from other hidden states that are also 5th in their respective sequences).
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Recurrent batch normalization also separately normalizes hidden-to-hidden and input-

to-hidden contributions to the hidden state. While recurrent batch normalization can

help in practice, it adds extra steps to the normalization process, requiring more design

decisions, hyper parameters, and overall effort to implement.

Other normalization approaches are more straightforward to implement in RNNs.

Layer normalization (Ba et al., 2016b) normalizes hidden states across a layer rather

than across a batch. Layer normalization introduces additional bias and gain parameters

b and g.

ht =
g
σt
� (ĥt−µt)+b (2.31)

where µt and σt are the mean and variance across unnormalized hidden layer ĥt .

Another approach known as weight normalization (Salimans and Kingma, 2016)

does not directly modify the model, and simply reparameterizes the weight matrices.

Weight normalization is applied separately to the weights of each unit in a layer (as

opposed to the entire weight matrix of a layer). Each unit has as associated unnormalized

weight vector ŵ, and a scalar parameter v. The weights w of a unit are then given as

w← v
ŵ
||ŵ||2

. (2.32)

The w for a particular unit corresponds to a row of the overall weight matrix in the layer.

In weight normalization, ŵ and v are treated as learnable parameters, whereas standard

models would just learn w directly. This reparameterization allows for the weights of

a unit to be rescaled quickly, which can improve the stability of training and result in

better generalization.

2.4.5 Attention and Transformers

The ability to use long contexts to make predictions is important for adaptation; it is

impossible for a model to adapt to inputs that it cannot remember. Architectures based

on attention, including the Transformer (Vaswani et al., 2017), are designed to better

use long contexts to make predictions. Transformers have been shown to effectively use

longer range dependencies than RNNs (Dai et al., 2019) and have achieved recent state

of the art in language modeling and a number of sequence modeling and classification

tasks (Vaswani et al., 2017; Radford et al., 2018; Devlin et al., 2018; Dai et al., 2019).

Much of the work on Transformers is concurrent with or after the work done in this

thesis. For instance, Transformers first achieved strong results on common language
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modeling benchmarks in work by (Al-Rfou et al., 2018), which was after work in

chapters 3, 4, and 5 was published. Chapter 6 shows that adaptive methods developed

in this thesis can also improve Transformer baselines.

2.4.5.1 Attention

Attention is a generally useful architectural feature in sequence modeling that helps

models use context to make predictions. In content based attention, the model stores key

vectors K = k1, ...,kt , ..,kdt , and value vectors V = v1, ...,vt , ..,vdt associated with each

timestep as it processes a sequence, where K ∈ Rdt ,dh , V ∈ Rdt ,dh , dh is the embedding

size, and dt is the sequence length over which attention is applied (note that the second

dimension size for K and V can be different, but are typically set to be the same, so for

simplicity we assume they are both dh). The model then can query the stored keys with

query vector q ∈ Rdh (the dimensionality of q must match the second dimension of K).

The model effectively “attends” to each position in a sequence based on a similarity

metric between q and kt at each time step t. The unnormalized attention score for time t

could for instance be given by the inner product q>kt . These attention scores are them

normalized with a softmax applied over the temporal dimension, resulting normalized

attention score a

a = so f tmax(q>K>) (2.33)

The normalized attention scores can be interpreted as the weight at which the model

attends to each time step. The output of the attention operation is then a weighted sum

of the values vectors, weighted by the normalized attention scores at each timestep.

y =V>a> (2.34)

There are many different variants of attention, including different ways of computing

scores between key and query vectors, and ways of encoding positional information.

Neural attention mechanisms have been generally useful for sequence modeling tasks,

including question answering (Sukhbaatar et al., 2015), neural programming (Graves

et al., 2014), and machine translation (Bahdanau et al., 2015).

2.4.5.2 Transformers

Transformers use stacked layers (see Section 2.4.2 on stacked RNNs) composed of self-

attention (where each position in the sequence has attention over every previous position

in the sequence) and position-wise feed forward operations to model sequences (Vaswani
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et al., 2017). Transformers are largely motivated by direct paths for information to travel

across time via attention, and the ability to process sequences in parallel. Some of the

design decisions of a Transformer vary slightly from paper to paper and depending

on the application. The description of a Transformer given here is for Transformers

as used in language modeling, which only use uni-directional attention, meaning each

position only has attention over previous positions. The original Transformer (Vaswani

et al., 2017) used an encoder and decoder, and required separate attention to allow

interactions between the encoder and decoder, in addition to bi-directional attention

within the encoder.

The input to Transformer layer l is a sequence of vectors representing the state at

each timestep, stored in matrix Xl ∈ Rdt ,dx , where dx is the dimension of the embedding

vector (and typically also the dimension of every layer in the model), and dt is the

sequence length over which the Transformer operates. Since Transformers only use

attention to model the past context, positional encodings are needed to use information

about the order of the sequence history. Transformers from Vaswani et al. (2017) used a

positional encoding matrix U ∈ Rdt ,dx , given by

U(t,2n) = sin
(

t

10000
2n
dx

)
(2.35)

U(t,2n+1) = cos
(

t

10000
2n
dx

)
(2.36)

where the 10000 term could be seen as a constant that controls the rate of wavelength

progression in the positional encoding. For each embedding dimension, the position is

encoded by the value of a sine or cosine wave. The sine and cosine waves run at different

frequencies at each embedding dimension so that each embedding dimension contains

unique information. Positional encodings are added to Xl , to result in positionally

encoded inputs Xp

Xp = Xl +U (2.37)

Attention in Transformers is typically multi-headed, meaning that multiple instances of

attention with different parameters are applied simultaneously. This allows the model to

attend to several different places in the sequence history. The following equations are

applied in parallel for each attention head i.

Qi = Xp(W i
qx)
> (2.38)

Ki = Xp(W i
kx)
> (2.39)
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V i = Xp(W i
vx)
> (2.40)

Where W i
qx ∈Rdh,dx ,W i

kx ∈R
dh,dx ,W i

vx ∈Rdh,dx are learnable parameters, Qi ∈Rdt ,dh ,Ki ∈

Rdt ,dh ,V i ∈ Rdt ,dh , are the query, key, and value vectors for each attention head, and dh

is the dimensionality of each attention head. Typically, dh is set to dx
NumHeads . Attention

scores are then computed using a softmax over a similarity metric between keys and

values.

Ai = softmax(
Qi(Ki)>√

dh
) (2.41)

Where Ai ∈ Rdt ,dt , and the softmax is applied over the second dimension of the

attention scores. The
√

dh term in the denominator helps normalize the attention values

so that the softmax does not become too sharply peaked for models with a larger dh.

In a Transformer used for language modeling, the model at timestep t is not allowed

to have access to any information at timesteps n > t, since this would allow the model

to “cheat” by seeing the future. For this reason, masked softmax is applied instead of a

normal softmax. A masked softmax enforces that Ai
t,n≥t = 0. In practice, this is done by

adding large negative numbers to the pre-softmax attention scores at the indices that

need to be 0. The attention values for each head, Hi ∈ Rdt ,dh , are computed by

H i = AiV i (2.42)

The outputs of all the attention heads are concatenated together, run through a linear

layer with learnable parameters Wzh ∈ Rdh,dh . This result is added to the initial input to

the layer Xl , making the Transformer layer a type of residual layer (He et al., 2016),

making it easier for a Transformer to retain information propagated through many layers.

A learnable layer normalization function (Section 2.4.4) is then applied to help prevent

layer activations/gradients from blowing up.

Z = LayerNorm(Xl + concat(H1, ..,H i, ..,Hn)>Wzh) (2.43)

The result is then run through a position-wise feed forward network with one hidden

layer.

X̂l+1 = relu(Z>Wyz1 +bz1)
>Wyz2 +bz2 (2.44)
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Where Wyz1, Wyz2, bz1, and bz2 are learnable parameters. Finally, another residual and

layer normalization operation are applied to get the output of the layer.

Xl+1 = LayerNorm(X̂l+1 +Z) (2.45)

Transformers are composed of many stacked Transformer layers, where the out-

put of Transformer layer l, Xl+1, is then the input to Transformer layer l + 1. We

define the series of equations described above that maps Xl to Xl+1 as the function

Trans f ormerLayerl(Xl). The full Transformer architecture uses stacked Transformer

layers to map a sequence of inputs to a sequence of output probabilities. While this is

trivial, for completeness, this process is given in Algorithm 3.

Apply input layer across the sequence to obtain initial embeddings for X1 ;

#Apply L layers of Transformer ;

for l=1...L do
Xl+1← Trans f ormerLayerl(Xl) ;

end
Apply output layer and softmax to XL+1 ;

Algorithm 3: Transformer decoder. Each Transformer layer is applied to a sequence

of embeddings to create a new sequence of embeddings. The final embeddings are

then fed into a softmax output layer applied in parallel across the sequence to obtain

token probabilities at each time step.

2.4.6 Tied embedding matrices

A useful architectural modification to language models often used in this thesis that

can improve performance is to tie input and output word embeddings (Press and Wolf,

2017; Inan et al., 2017). Language models have input and output word embedding

matrices, which are the input and output weights of the network. If the vanilla RNN

from Section 2.3 was applied directly to language modeling, then Whx would be the

input word embedding matrix, and Wyh would be the output word embedding matrix.

Each row/column of the input/output embedding matrix is a vector associated with

a corresponding word in the vocabulary of possible words. Tying input and output

embedding matrices in this case means setting Whx =W>yh , and treating the input and

output embedding matrices and one parameter matrix, and updating them together
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during training. This case of tied embeddings is illustrated graphically in Figure 2.6.

Often language models will have a separate linear embedding layer, instead of

directly connecting the input layer to the RNN hidden state. In this case, Whx is factorized

into the product of embedding to hidden matrix Whe and input embedding matrix Wex.

With tied embeddings, Wex =W>yh , forcing the last hidden layer dimensionality to match

the embedding layer dimensionality. So generally, if a model has an embedding layer et

(which could be recurrent or non-recurrent), then

et =Wexxt (2.46)

Then in the output layer,

ŷt = (Wex)
>ht (2.47)

where ŷt are the unnormalized probabilities for P(xt+1). Tying the input and output word

embeddings gives an advantage on several standard language modeling benchmarks.

Constraining models to have the same input and output embedding representation for

words likely has a regularization effect and gives these weights a stronger learning

signal, since gradients in the input layer can affect the output layer and visa versa.

2.4.7 Importance of strong baselines

This thesis explores whether more adaptive methods can improve language models,

but a fair comparison between different model architectures can be difficult, since

performance on a task can largely depend on the hyper-parameter tuning of the model.

Factors such as the regularization in each layer and the optimization method can

have a large impact on performance, and the optimal settings can be different for

different models. Melis et al. (2018) showed that LSTM can sometimes match other

more complex RNNs on common benchmarks if appropriately tuned. For this reason,

this thesis seeks to have strong baselines when justifying architectural modifications.

Without this, it can be difficult to know if improvements are due to better hyper-

parameter tuning, or if improvements would wash away if other stronger baselines were

used.

2.5 Optimization

This thesis considers optimization algorithms in two contexts; training neural networks

from a random initialization, and adapting neural networks from a trained initialization.
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Whh Whh
     h2      h3     h1

(Whx)
T

Whx Whx Whx

x1
x2 x3

(Whx)
T (Whx)

T

P(x3|x2,x1)P(x2|x1) P(x4|x3,x2,x1)

Figure 2.6: When using tied embeddings, the output weights of the RNN are set to be the

transpose of the input weights to the RNN. This figure shows tied embedding matrices

for a 1-layer RNN, however, in many cases a separate non-recurrent linear embedding

layer will be used, and multiple RNNs may be stacked. In this case, the dimensionality of

the embedding layer and last RNN layer must be equivalent for tied embedding matrices

to be used.
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In addition to being important for understanding general deep learning, optimization

is especially important to understanding this thesis, because dynamic evaluation uses

on-the-fly optimization to adapt to the sequence history. This thesis explores optimizers

commonly used in training for dynamic evaluation, and proposes novel optimization

algorithms that are especially useful in this setting. The optimization algorithms pre-

sented in this section are necessary to understand work in this thesis on optimization in

a dynamic evaluation setting.

Most optimization algorithms used for training neural networks use derivatives to

optimize an objective function. These methods are derived from gradient descent, where

the derivatives of a training loss function L(θ) with respect to the model parameters, θ,
∂L(θ)

∂θ
, are used to train the network. L(θ) is decreased by taking steps in the direction

of the negative gradient with sufficiently small step sizes. The hope is that this will also

result on a lower loss when encountering new data points outside the training set.

2.5.1 Stochastic gradient descent

Gradient descent is slow to run in practice because it requires computing the gradient

across the whole training set. It is often more efficient to estimate the gradient using

a subset of the training set (Robbins and Monro, 1951). At each iteration, stochastic

gradient descent (SGD) uses a single training example, rather than the entire training

set, to estimate the training loss and training gradient of the model. This requires much

less computation per update than full gradient descent. The gradient estimate on a single

training example is often a reasonable enough approximation of the true gradient for

SGD to converge with much less computation compared with gradient descent.

In practice, it is often more efficient to use a minibatch of several training examples

to estimate the gradient, as opposed to a single training example as in pure SGD. Since

the computation for each training example can be done independently, the use of a

minibatch allows for more efficient use of hardware designed for parallel computation.

This allows for a more accurate gradient estimate at a limited extra cost. In minibatch

SGD, at each training iteration i, a minibatch is sampled from the training set, and the

gradient with respect to the loss on that minibatch, ∇L(θi), is computed, and used to

update the weights of the network before proceeding to the next minibatch. The update

rule for each training iteration is given by

θi+1 = θi−η∇L(θi) (2.48)
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where η is the learning rate, or step size in the direction of the negative gradient.

Typically training is either carried out for some fixed number of iterations, or until the

loss on a held out validation set stops improving. The learning rate may be decayed

as training continues, as smaller step sizes are generally required later in training to

continue reducing the loss. The use of smaller minibatches in SGD as compared with

large batch SGD or full batch gradient descent sometimes leads to better generalization

(Keskar et al., 2016).

2.5.2 SGD with momentum

SGD can be modified to include momentum, which has the effect of delaying how

gradients update the weights of the network, instead allowing the gradients to accumu-

late. Classical momentum (Polyak, 1964) keeps track of a running average of the mean

gradient vi (scaled by the negative learning rate η) as follows

vi = µvi−1−η∇L(θi), (2.49)

where µ is the momentum constant for the running average. The update to the weights

is then given by

θi+1 = θi + vi. (2.50)

Momentum can improve training convergence speed for deep and recurrent neural

networks (Rumelhart et al., 1986; Sutskever et al., 2013).

2.5.3 RMSprop

RMSprop (Tieleman and Hinton, 2012) is an optimization algorithm that reduces

learning rates on weights that have higher average gradients, and increases learning

rates on weights that have lower average gradients. RMSprop can be thought of as the

minibatch version of Rprop (Riedmiller and Braun, 1993), a method that steps in the

direction of the sign of the gradient. RMSprop is also partially inspired by inspired by

Adagrad (Duchi et al., 2011), another method for reducing the learning rate of weights

that have had high past gradients.

Weights that have higher gradients may also have higher 2nd order derivatives,

and setting the learning rates for each weight proportional to the inverse curvature can

help convergence. RMSprop using a running averaging of the recent squared gradients
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(weighted by averaging coefficient α), MS, which is updated at each training iteration

using

MSi = αMSi−1 +(1−α)(∇L(θi))
2. (2.51)

The gradients for each update are then divided by the square root of the running average

of the mean squared gradients, before updating the weights of the network, using

θi+1 = θi−η
∇L(θi)√
MSi + ε

, (2.52)

where ε is a hyper parameter needed for numerical stability in case the running average

of the squared gradient for a particular weight is close to 0.

2.5.4 Adam

Adam (Kingma and Ba, 2014) combines RMSprop like updates with momentum, and is

one of the most popular deep learning optimizers due to its fast convergence in a large

variety of deep learning settings. Like SGD with momentum, Adam stores a running

average of the recent gradients using

vi = µvi−1−η∇L(θi). (2.53)

Like RMSprop, Adam stores a running average of the squared gradients using

MSi = αMSi−1 +(1−α)(∇L(θi))
2. (2.54)

Near the beginning of training, the running average for the mean and mean squared

gradients will be too low if computed naively (since they are averaged with 0 at the first

time step), so Adam applies a bias correction step to fix this.

v̂i =
vi

1−µi (2.55)

M̂Si =
MSi

1−αi (2.56)

Adam then combines the momentum and RMSprop update rules, to yield the update

equation

θi+1 = θi +
v̂i√

M̂Si + ε

. (2.57)
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2.6 High-dimensional sequence modeling

While this thesis mainly considers the task of textual language modeling, we also apply

dynamic evaluation to polyphonic music prediction to show that adaptive approaches

can also help with non-textual sequences. Language modeling can be applied directly to

model monophonic music, where the data are sequences of musical notes, with one note

per timestep, making the notes analogous to words or tokens. Modeling polyphonic

music is slightly more complicated, because each timestep can contain multiple musical

notes. In this case, a softmax output layer applied at each time step is no longer sufficient

for density estimation of sequences.

Polyphonic music can be represented as a “high dimensional sequence”, or sequence

of binary vectors, x1:N
1:T , where each x1:N

t is a binary vector representing which notes out

of N possible notes are on or off at timestep t. Since these sequences have a temporal

and non-temporal component, they require different models to most suitably capture

the structure of the data. We would like to avoid making an unnecessary independence

assumptions; we could for instance have a sigmoid unit for each musical note predict

whether that note was on or off, but this would assume that the musical notes within a

timestep are conditionally independent given the sequence history. We describe a model

used for our baseline that avoids making this independence assumption.

2.6.1 NADEs

For language modeling problems, the position of the elements in the sequence is

important for making predictions. However, for density estimators of arbitrary sets of

variables with no implicit order, positional information is not important, and ideally, we

would want a model to treat the variables as permutation invariant. RNNs are highly

sensitive to the permutation of the variables they model, making them they are less

suited as density estimators of joint distributions of permutation invariant variables.

Neural auto-regressive distribution estimators (Larochelle and Murray, 2011, NADEs)

are an efficient method suited for density estimation in these cases.

A NADE uses a 1-layer neural network to predict a set of variables one-by-one.

NADEs use a similar auto-regressive factorization to sequence models to predict a

distribution over variables P(x1:N), however unlike sequence models, the ordering of

x1:N is arbitrary in the sense that any ordering can be used as long as it is fixed for
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training and test time.

P(x1:N) = P(x1)
T

∏
n=2

P(xn|n1:n−1). (2.58)

A NADE can be described by the following series of equations. The probability distri-

bution over the first variable x1 is a function of the first output bias b1
y .

P(x1) = σ(b1
y) (2.59)

For the additional variables in x1:N , a hidden state hn is used to summarize inputs

x1:n to estimate P(xn+1|x1:n). The hidden state preactivation vector ĥn can be calculated

as a sum of the rows of the hidden weights, where Whxm denotes the column of weights

connecting xm to the hidden state.

ĥn = bh +
n

∑
m=1

(Whxmxm). (2.60)

The hidden state preactivation can also be calculated as a function of the previous

hidden state preactivation with

ĥn = ĥn−1 +(Whxnxn). (2.61)

The activation function, which could for instance be a rectified linear (relu) function,

is then applied to the hidden state.

hn = relu(ĥn) (2.62)

The inner product of the column of output weights Wyhn is taken with hidden state hn to

determine the output probabilities for xn+1.

P(xn+1|x1:n) = σ((Wyhn)
>hn +bn+1

y ) (2.63)

A NADE is illustrated graphically in Figure 2.7.

2.6.2 RNN-NADEs

When dealing with sequences of high dimensional vectors, x1:N
1:T , a naive application

of a standard RNN assumes each variable in x1:N
t is conditionally independent given

the sequence history, as an RNN is unable to utilize x1:n−1
t ), when predicting p(xn

t ).

By hybridizing an RNN and a NADE, as first done in Boulanger-Lewandowski et al.
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Figure 2.7: A NADE iterating through a high dimensional vector. The model iteratively

predicts a distribution over the next symbol, and then conditions on the ground truth

value of that symbol.

(2012), it is possible to drop this conditional independence assumption, and predict

p(xn
t |x1:N

1:t−1,x
1:n−1
t ). In an RNN-NADE, the NADE’s biases at each time step bt

h and bt
y

are modified as a function of the RNN’s hidden state, and weight matrices W h
bh and W y

bh

as follows

bh
t = bh +W h

bhht (2.64)

by
t = by +W y

bhht . (2.65)

The modified biases bh
t and by

t are then plugged into the NADE to model P(x1:N). An

RNN-NADE is illustrated in Figure 2.8.

2.7 Conclusion

Moving forward, this thesis combines and expands on a number of ideas from this

background section, with the goal of making them more adaptive. For instance, mul-

tiplicative LSTM (Chapter 3) uses ideas from the mRNN from Section 2.4.1 to make

LSTMs 2.3.3 more adaptive at the token level. Dynamic evaluation methods presented

in Chapters 4, 5, and 6 incorporate optimizers (Section 2.5) into Transformer (Section

2.4.5.2) and LSTM-based language modeling architectures to allow them to better adapt



38 Chapter 2. Background

x1
1:N

x2
1:N

P(x1
1:N) P(x2

1:N)

RNN

P(x3
1:N)

NADE NADE NADE

RNN

x3
1:N

hidden 
state

bh
t bh

t

by
t by

t

Figure 2.8: An RNN-NADE acts as a probabilistic model of sequences of high dimen-

sional vectors. A NADE is used to model each high dimensional vector x1:N
t , where the

NADE receives contextual information about x1:N
1:t−1 from the RNN in the form of hidden

biases bh
t and output biases by

t .
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to sequences. Chapter 4.8 applies high dimensional sequence modeling (Section 2.6)

and dynamic evaluation to improve adaptability in music prediction.





Chapter 3

Multiplicative LSTM for sequence

modeling

This chapter studies multiplicative LSTM (mLSTM), a recurrent neural network archi-

tecture for sequence modeling that combines the long short-term memory (LSTM) and

multiplicative recurrent neural network architectures. mLSTM is characterized by its

ability to have different recurrent transition functions for each possible input, making

it more adaptive to the input token than a regular LSTM. We demonstrate empirically

that mLSTM outperforms standard LSTM and its deep variants for a range of character

level language modeling tasks. We also show that mLSTM’s advantage over LSTM was

greater after a surprising input than it was in general, supporting the claim that language

models that can adapt to their inputs are better equipped to recover from surprising

tokens.

This ability to adapt to surprising tokens helped mLSTM outperform previous

approaches to character level language modeling. A regularized mLSTM achieves 1.27

bits/char on text8 and 1.24 bits/char on enwik8, which were state of the art results

at the time the work was done. We also apply an mLSTM on the WikiText-2 dataset

to achieve a character level entropy of 1.26 bits/char, corresponding to a word level

perplexity of 88.8, which is comparable to word level LSTMs regularized in similar

ways on the same task. Work that appears in this chapter is published in two partially

overlapping works on mLSTM (Krause et al., 2016, 2017b). It should be noted that

multiplicative LSTM was first proposed in a master’s thesis by Krause (2015), however

experiments and results were very preliminary (for instance, the mLSTM from Krause

(2015) achieved 1.69 bits/char on enwik8 vs. 1.24 bits/char in the present chapter), and

the main focus of that thesis was to explore Hessian-free optimization (Martens, 2010)

41
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in LSTMs.

3.1 Introduction

RNNs (Section 2.3) can model sequences using a hidden state to summarize past

inputs. In a more general formulation of an RNN, the hidden state vector ht is updated

recursively using the previous hidden state vector ht−1 and the current input xt as

ht = F (ht−1,xt), (3.1)

where F is a differentiable function with learnable parameters. In a vanilla RNN, F
multiplies its inputs by a matrix and squashes the result with a non-linear function such

as a hyperbolic tangent (tanh). The updated hidden state vector is then used to predict a

probability distribution over the next sequence element, using function G . In the case

where x1:T consists of mutually exclusive discrete outcomes, G may apply a matrix

multiplication followed by a softmax function:

P(xt+1) = G(ht). (3.2)

Auto-regressive RNNs can evaluate log-likelihoods of sequences exactly, and their

parameters are differentiable with respect to these log-likelihoods. As noted in Section

2.3, RNNs can be difficult to train due to the vanishing gradient problem (Bengio et al.,

1994b), but advances such as the LSTM architecture (Hochreiter and Schmidhuber,

1997; Gers et al., 2000, 2.3.3) have allowed RNNs to be consistently successful. Despite

their success, generative RNNs (as well as other conditional generative models) are

known to have problems with recovering from mistakes during generation (Graves,

2013), meaning that if the model generates something wrong, and then has to make

future preictions based on a wrong input, it can become unstable. While we study

language modeling on ground truth text only, models could still have trouble recovering

from a surprising input. Each time the recursive function of the RNN is applied and

the hidden state is updated, the RNN must decide which information from the previous

hidden state to store, due to its limited capacity. If the RNN’s hidden representation

overwrites important information, which may be especially likely when encountering

an unexpected input, it may take many time-steps to recover.

We argue that RNN architectures with hidden-to-hidden transition functions that are

input-dependent are better suited to recover from surprising inputs, meaning that the

model will make better predictions after encountering an input that it was not expecting.
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Our approach to generative RNNs combines LSTM units with multiplicative RNN

(mRNN) factorized hidden weights, allowing flexible input-dependent transitions that

are easier to control due to the gating units of LSTM . We compare this multiplicative

LSTM hybrid architecture with other variants of LSTM on a range of character level

language modeling tasks. We find that multiplicative LSTM is able to improve overall

prediction performance, and this improvement is especially strong after a surprising

input, supporting our hypothesis that RNNs with transition functions that are input-

dependent are better able to predict text after a surprising input.

3.2 Input-dependent transition functions

RNNs learn a mapping from previous hidden state ht−1 and input xt to hidden state ht .

Let ĥt denote the input to the next hidden state before any non-linear operation:

ĥ(t) =Whhht−1 +Whxxt , (3.3)

where Whh is the hidden-to-hidden weight matrix, and Whx is the input-to-hidden weight

matrix. For problems such as language modeling, xt is a one-hot vector, meaning that

the output of Whxxt is a column in Whx, corresponding to the unit element in xt .

The possible future hidden states in an RNN with one-hot input data can be viewed

as a tree structure, as shown in Figure 3.1. For an alphabet of N inputs and a fixed ht−1,

there will be N possible transition functions between ht−1 and ĥt . The relative magnitude

of Whhht−1 to Whxxt will need to be large for the RNN to be able to use long range

dependencies, and the resulting possible hidden state vectors will therefore be highly

correlated across the possible inputs, limiting the effective width of the tree and making

it harder for the RNN to form distinct hidden representations for different sequences

of inputs. However, if the RNN has flexible input-dependent transition functions, the

tree will be able to grow wider more quickly, giving the RNN the flexibility to represent

more probability distributions.

In a vanilla RNN, if the contribution to the new hidden states from the inputs is

large, the old hidden state will be mostly erased. This makes it difficult to allow inputs

to greatly affect the hidden state vector without erasing information. An RNN with

the ability to have very different transition functions mappings ht ← ht−1 for different

inputs would allow the relative values of ht to vary more with each possible input

xt , without overwriting the contribution from the previous hidden state, allowing for

more long term information to be stored. This ability to adjust to new inputs quickly
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Figure 3.1: Diagram of hidden states of a generative RNN as a tree, where x(n)t denotes

which of N possible inputs is encountered at timestep t. Given ht , the starting node of

the tree, there will be a different possible ht+1 for every x(n)t+1. Similarly, for every ht+1

that can be reached from ht , there is a different possible ht+2 for each x(n)t+2, and so on.

while limiting the overwriting of information should make an RNN more robust in its

predictions after it encounters surprising inputs, as the hidden vector is less likely to get

trapped in a bad numerical state for making future predictions.

An mRNN has the ability to have a very different transition function for each

possible input. The effective hidden-to-hidden weight matrix for a particular input,

W (xt)
hh , is given by

W (xt)
hh =Whmdiag(Wmxxt)Wmh (3.4)

in an mRNN. This architectural feature of an mRNN is a well motivated approach

towards building models that are more adaptive to the input token.

3.3 Multiplicative LSTM

The LSTM (Section 2.3.3) and mRNN (Section 2.4.1) architectures both feature multi-

plicative units, but these units serve different purposes. An LSTM’s gates are designed

to give the network the ability to preserve information, whereas an mRNN’s multiplica-

tive units are designed to allow transition functions to vary across inputs. LSTM gates

receive input from both the input units and hidden units, allowing multiplicative inter-

actions between hidden units, but also potentially limiting the extent of input-hidden

multiplicative interaction. LSTM gates are also squashed with a sigmoid, forcing them

to take values between 0 and 1, which makes them easier to control, but gives them

less power to scale hidden states as compared with mRNN’s multiplicative units, which
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can take any value. For language modeling problems, an mRNN’s multiplicative units

do not need to be controlled by the network because they are explicitly learned for

each input. They are also placed in between a product of 2 dense matrices, giving more

flexibility to the possible values of the final product of matrices.

Since the LSTM and mRNN architectures are complimentary, we propose the

multiplicative LSTM (mLSTM), a hybrid architecture that combines the factorized

hidden-to-hidden transition of mRNNs with the gating framework from LSTMs. The

mRNN and LSTM architectures can be combined by adding connections from the

mRNN’s intermediate state mt (which is redefined below for convenience) to each

gating units in the LSTM, resulting in the following system:

mt = (Wmxxt)� (Wmhht−1) (3.5)

ĥt =Whxxt +Whmmt (3.6)

it = σ(Wixxt +Wimmt) (3.7)

ot = σ(Woxxt +Wommt) (3.8)

ft = σ(Wf xxt +Wf mmt). (3.9)

An mLSTM substitutes mt in place of ht−1 in a normal LSTM. We set the dimen-

sionality of mt and ht equal for all our experiments. We also chose to share mt across all

LSTM unit types, resulting in a model with 1.25 times the number of recurrent weights

as LSTM for the same number of hidden units.

The goal of this architecture is to combine the flexible input-dependent transitions

of mRNNs with the long time lag and information control of LSTMs. The gated units

of LSTMs could make it easier to control (or bypass) the complex transitions that result

from the factorized hidden weight matrix. The additional sigmoid input and forget gates

featured in LSTM units allow even more flexible input-dependent transition functions

than in regular mRNNs.

3.4 Related approaches

Many recently proposed RNN architectures use recurrent depth (Section 2.4.2), which

is depth between recurrent steps. Recurrent depth allows more non-linearity in the

combination of inputs and previous hidden states from every time step, which in turn

allows for more flexible input-dependent transitions. Recurrent depth has been found to

perform better than other kinds of non-recurrent depth for sequence modeling (Zhang
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et al., 2016; Zilly et al., 2017). One problem with recurrent depth is it that it must

be processed sequentially, making larger recurrent depths slower to run on a GPU.

While adding recurrent depth could improve our model, we believe that maximizing the

input-dependent flexibility of the transition function is more important for expressive

sequence modeling. Recurrent depth can do this through non-linear layers combining

hidden and input contributions, but mLSTM can do this independently of non-linear

depth.

Another approach, multiplicative integration LSTMs (Wu et al., 2016, MI-LSTMs,

Section 2.4.3), use Hadamard products instead of addition when combining contribu-

tions from input and hidden units. The hidden-to-hidden transition in MI-LSTM is given

by the following equations

ĥt =Whxxt +Whmht (3.10)

it = σ(Wixxt +Wimht) (3.11)

ot = σ(Woxxt +Womht) (3.12)

ft = σ(Wf xxt +Wf mht). (3.13)

Similarly to MI-LSTM, mLSTM also applies a Hadamard product between a con-

tribution between the inputs and the previous hidden states, but this occurs between

the multiplication of two matrices. In the case of LSTM, this allows for transition

functions to vary more across inputs, without significantly increasing the size of the

model. mLSTM also has normal additive connections from the input layer, which could

improve its stability relative to MI-LSTM. mLSTM also has the representational power

to model an LSTM exactly; for any LSTM it is possible to mathematically write an

mLSTM will make equivalent predictions. This could for instance be done by setting

Wmx to all ones, Wmh to the identity matrix, and weights Whm,Wim,Wom and Wf m in the

mLSTM to weights Whh,Wih,Woh and Wf h in the LSTM, and setting all other weights

equivalent. There is however no mathematical transformation to directly translate an

LSTM into an MI-LSTM. The ability for an mLSTM to represent an LSTM may help

mLSTM retain LSTM’s advantages.
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3.5 Experiments

3.5.1 System Setup

Our experiments measure the performance of mLSTM for character-level language

modeling tasks of varying complexity1. Our initial experiments were mainly designed to

compare the convergence and final performance of mLSTM vs LSTM and its deep vari-

ants. Our follow up experiments explored training and regularization of mLSTM in more

detail, with goal of comparing more directly with the most competitive architectures in

the literature.

Our initial and follow up experiments used slightly different set ups; initial experi-

ments used a variant of RMSprop, (Tieleman and Hinton, 2012, Section 2.5.3), with

normalized updates in place of a learning rate. All unnormalized update directions

v∗, computed by RMSprop, were normalized to have length `, where ` was decayed

exponentially over training:

v← `√
v>∗ v∗

v∗. (3.14)

This update rule would be equivalent to applying gradient norm clipping (Pascanu

et al., 2013b, Section 2.3.2), with a learning rate that approaches infinity balanced out

by a gradient norm threshold that approaches zero. The initial experiments also used

a slightly non-standard version of LSTM (and mLSTM) with the output gate inside

of the final tanh of the LSTM cell. This gave us slightly better results in preliminary

experiments with very small models, although we later changed the gate order to

match what is traditionally used in LSTMs. We use LSTM (RMSprop) and mLSTM

(RMSprop) in tables to distinguish results obtained by these initial set of experiments.

For our follow up experiments, we use more standard methodology to be more

comparable to the literature. We used Adam (Kingma and Ba, 2014, Section 2.5.4),

always starting with an initial learning rate of 0.001 and decaying this linearly to

a minimum learning rate (which was always in the range 0.00005 to 0.0001). The

mLSTMs used the standard LSTM cell with the output gate outside the tanh. These

mLSTMs also used scaled orthogonal initialization (Saxe et al., 2013) for the hidden

weights, an initial forget gate bias of 3, and truncated backpropagation lengths from

200 to 250.

We compared mLSTM to previously reported regular LSTM, stacked LSTM, and

1Code to replicate our experiments on the enwik8 dataset is available at https://github.com/
benkrause/mLSTM.

https://github.com/benkrause/mLSTM
https://github.com/benkrause/mLSTM
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RNN character-level language models. We run detailed experiments on the text8 and

enwik8 datasets (Hutter, 2012) to test medium scale character-level language modeling.

We test our best model from these experiments on the WikiText-2 dataset (Merity et al.,

2017) to measure performance on smaller scale character level language modeling, and

to compare with word level models.

3.5.2 Enwik8

We performed experiments using the enwik8 dataset, also known as the Hutter Prize

dataset, originally used for the Hutter Prize compression benchmark (Hutter, 2012).

This dataset consists mostly of English language text and mark-up language text, but

also contains text in other languages, including non-Latin languages. The dataset is

modelled using a UTF-8 encoding, and contains 205 unique bytes.

In our initial experiments, we compared mLSTMs and 2-layer stacked LSTMs for

varying network sizes, ranging from about 3–20 million parameters. These results all

used RMSprop with normalized updates, stopping after 4 epochs on the first 95 million

characters, with test performance measured on the last 5 million bytes. Hyperparameters

for each mLSTM and stacked LSTM were kept constant across all sizes. The results,

shown in Figure 3.2, show that mLSTM gives an improvement across all network sizes.

We hypothesized that mLSTM’s superior performance over stacked LSTM was

in part due to its ability to recover from surprising inputs. To test this hypothesis, we

looked at each network’s performance after viewing inputs in the test set that were

surprising to the model. We considered a set of the 10% characters with the largest

average loss taken by mLSTM and stacked LSTM, and examined losses immediately

after these characters. Both networks perform roughly equally on this set of surprising

characters, with mLSTM and stacked LSTM taking losses of 6.27 bits/character and

6.29 bits/character respectively. However, stacked LSTM tended to take larger losses

than mLSTM in the timesteps immediately following surprising inputs. One to four time-

steps after a surprising input occurred, mLSTM and stacked LSTM took average losses

of (2.26, 2.04, 1.61, 1.51) and (2.48, 2.25, 1.79, 1.67) bits per character respectively,

as shown in Figure 3.3. mLSTM’s overall advantage over stacked LSTM was 1.42

bits/char to 1.53 bits/char; mLSTM’s advantage over stacked LSTM was greater after a

surprising input than it is in general.

We also explore more standard training methodology and regularization methods

on this dataset. These experiments all used ADAM, and the standard 90-5-5 training
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Figure 3.2: enwik8 validation performance in bits/char plotted against number of network

parameters for mLSTM and stacked LSTM.

validation test split on this dataset. We firstly consider a standard unregularized mLSTM

trained with this methodology. We then experiment with an mLSTM with a linear

embedding layer and weight normalization (Salimans and Kingma, 2016) on recurrent

weights (mLSTM +emb +WN), which is similar to the mLSTM architecture used in

(Radford et al., 2017), which was built off our initial work. We also consider regulariza-

tion of the later model with variational dropout (Gal and Ghahramani, 2016), which we

refer to as mLSTM +emb +WN +VD.

The standard unregularized LSTM used 1900 hidden units and 20 million parameters.

The weight normalized mLSTM used 1900 hidden units, and a linear embedding layer

of 400, giving it 22 million parameters. The large embedding layer was used because

it was found to work well with dropout. Since this embedding layer is linear, it could

potentially be removed during test time by multiplying its incoming and outgoing weight

matrices to reduce the number of parameters (however we report parameter numbers

with the embedding layer). For the regularized weight normalized mLSTM, we apply a

variational dropout of 0.2 to the hidden state and to the embedding layer (dropout masks
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Figure 3.3: Cross entropy loss for mLSTM and stacked LSTM immediately after a

surprising input

for both the hidden state and embedding layer were shared across a sequence). We also

consider a larger version of the weight normalized mLSTM with 2800 hidden units and

46 million parameters. We increased the dropout in the embedding layer to 0.5 on this

model. All results without variational dropout used early stopping on the validation

error to reduce overfitting. The results for these experiments are given in Table 3.1.

Interestingly, adding weight normalization and an embedding layer hurt performance

in the absence of regularization. However, when combined with variational dropout, this

model outperformed all previous static single model neural network results on enwik8.

It is worth noting that the LSTM from Melis et al. (2018) used similar regularization

and very extensive and methodical hyper-parameter tuning, making it a strong LSTM

baseline, which mLSTM is able to improve on.

We also tested an MI-LSTM (Wu et al., 2016, 2.4.3), mLSTM’s nearest neighbor,

with a slightly larger size (22M parameters) and a very similar hyperparameter con-

figuration and initialization scheme2 (compared with unregularized mLSTM with no

2The only difference in settings was the scale for the orthogonally initialized hidden weights; mLSTM
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architecture # of parameters test set error

stacked LSTM (7-layer) (Graves, 2013) 21M 1.67

stacked LSTM (7-layer) + dynamic eval (Graves, 2013) 21M 1.33

MI-LSTM (Wu et al., 2016) 17M 1.44

recurrent memory array structures (Rocki, 2016a) 1.40

feedback LSTM + zoneout (Rocki, 2016b) 1.37

hyperLSTM (Ha et al., 2017) 27 M 1.34

hierarchical multiscale LSTM (Chung et al., 2017) 1.32

bytenet decoder (Kalchbrenner et al., 2016) 1.31

LSTM (4 layer) + VD + BB tuning (Melis et al., 2018) 46M 1.30
RHN (rec depth 10) + VD (Zilly et al., 2017) 46M 1.27

Fast-slow LSTM (rec depth 4) + zoneout (Mujika et al., 2017) 47M 1.25

unregularized mLSTM (RMS prop, 4 epoch) 20M 1.42

unregularized mLSTM 20M 1.40

mLSTM +emb +WN 22M 1.44

mLSTM +emb +WN +VD 22M 1.28

large mLSTM +emb +WN +VD 46M 1.24

Table 3.1: enwik8 dataset test error in bits/char. emb indicates the use of a linear

embedding layer, WN indicates weight normalization, and VD indicates variational

dropout.

WN). MI-LSTM achieved a relatively poor test set performance of 1.53 bits/char, as

compared with 1.40 bits/char for mLSTM under the same settings. The MI-LSTM also

converged more slowly, although eventually did require early stopping like the mLSTM.

While this particular experiment cannot conclusively prove anything about the relative

utility of mLSTM vs. MI-LSTM on this task, it does show that the two architectures are

sufficiently different to obtain very different results under the same hyper-parameter

settings.

used 0.7 and MI-LSTM used 0.5. We believed this was justified because mLSTM uses a product of two
matrices, resulting in a spectral radius of 0.49 for this product. Additionally, reducing the scale to 0.5
improved MI-LSTM’s initial convergence rate. Downscaling the orthogonal initializations was necessary
in general because an initial forget gate bias of 3 was used.
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3.5.3 Text8

Text8 contains 100 million characters of English text taken from Wikipedia in 2006,

consisting of just the 26 characters of the English alphabet plus spaces. This dataset can

be found at http://mattmahoney.net/dc/textdata. This corpus has been widely

used to benchmark RNN character level language models, with the first 90 million

characters used for training, the next 5 million used for validation, and the final 5 million

used for testing. The results of these experiments are shown in Table 3.2.

The first set of experiments we performed were designed to be comparable to those

of Zhang et al. (2016), who benchmarked several types of deep LSTMs against shallow

LSTMs on this dataset. The shallow LSTM had a hidden state dimensionality of 512,

and the deep versions had reduced dimensionality to give them roughly the same number

of parameters. Our experiment used an mLSTM with a hidden dimensionality of 450,

giving it slightly fewer parameters than the past work, and our own LSTM baseline

with hidden dimensionality 512. mLSTM showed an improvement over our baseline

and the previously reported best deep LSTM variant.

We also ran experiments to compare a large mLSTM with other reported experi-

ments. We trained an mLSTM with hidden dimensionality of 1900 on the text8 dataset.

Unregularized mLSTM was able to fit the training data well and achieved a competitive

performance; however it was outperformed by other architectures that are less prone to

over-fitting.

We later considered our best training setup from the enwik8 dataset, reusing the

exact same architecture and hyper-parameters from this task, with the only difference

being the number of input characters (27 for text8), which reduces the number of

parameters to around 45 million. This well regularized mLSTM was able to achieve a

much stronger performance on text8, tying recurrent highway networks (RHNs) with a

recurrent depth of 10 for the best result on this dataset.

3.5.4 WikiText-2

The WikiText-2 dataset (Merity et al., 2017) has been a common benchmark for very re-

cent advances in word-level language modeling. This dataset contains 2 million training

tokens and a vocab size of 33k. Documents are given in non-shuffled order, causing the

data to contain more long-range dependencies. We use this dataset to benchmark how

our advances in character-level language modeling stack up against word level language

models. Character language models generally perform worse than word-level language

http://mattmahoney.net/dc/textdata
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architecture test set error

mRNN (Mikolov et al., 2012a) 1.54

MI-LSTM (Wu et al., 2016) 1.44

LSTM (Cooijmans et al., 2017) 1.43

batch normalized LSTM (Cooijmans et al., 2017) 1.36
layer-norm hierarchical multiscale LSTM (Chung et al., 2017) 1.29

Recurrent highway networks, rec. depth 10 +VD (Zilly et al., 2017) 1.27

small LSTM (Zhang et al., 2016) 1.65

small deep LSTM (best) (Zhang et al., 2016) 1.63

small LSTM (RMSprop) 1.64
small mLSTM (RMSprop) 1.59

unregularized mLSTM (RMSprop) 1.40

large mLSTM +emb +WN +VD 1.27

Table 3.2: Text8 dataset test set error in bits/char. Architectures labeled with small used

a highly restrictive hidden dimensionality (512 for LSTM, 450 for mLSTM).

models on standard word-level English text benchmarks with limited vocabulary sets.

One reason for this is word level language models know in advance that every word

in the test set will come from a limited vocabulary, whereas character level models

model a distribution over all possible words, including out of vocabulary words, making

the task inherently more difficult from character level view. Furthermore, very rare

words, which character level models are more equipped to handle than word level

models, are mapped to an unknown token, making the task artificially biased in a way

that benefits word-level language models. From the perspective of training, character

level language models must model longer range dependencies, and must learn a more

complex non-linear fit to capture joint dependencies between characters. Character

level models do have an inherent advantage of being able to capture subword language

information, motivating their use on traditionally word-level tasks.

Character level language models can be compared with word level language models

by converting bits per character to perplexity. In this case, we model the data in the

WikiText-2 train, validation, and test files as raw UTF-8 bytes. The bits per word can be



54 Chapter 3. Multiplicative LSTM for sequence modeling

computed as

bits/word = bits/symbol× symbols/ f ile
words/ f ile

(3.15)

where in this case, symbols are UTF-8 bytes. The perplexity is then 2bits/word . The

WikiText-2 test set is 245,569 words long, and 1,256,449 bytes long, so each word is

on average 5.12 UTF-8 bytes long. A character level model can also assign word level

probabilities directly by taking the product of the probabilities of the characters in a

word, including the probability of the character ending the word (either a space or a

newline). A byte level model is likely at a slight disadvantage compared with word-level

because it must predict some information that gets removed during tokenization (such

as spaces vs. newlines), but the perplexity given by the conversion above could at least

be seen as an upper bound of the word level perplexity such a model could achieve

predicting byte by byte. This is because the entropy of the file after tokenization (which

word level models measure) will always be less than or equal to the entropy of the file

before tokenization (which byte level models measure).

We trained the best mLSTM configuration from the enwik8 dataset, using an em-

bedding layer, weight normalization, and a variational dropout of 0.5 in both the hidden

and embedding layer, to model WikiText-2 at the byte level. This model contained 46

million parameters, which is larger than most word level models that use tied input and

output embeddings (Press and Wolf, 2017; Inan et al., 2017) to share parameters, but

similar in size to untied word level models on this dataset. The results are given in Table

3.3.

architecture valid test

LSTM (Grave et al., 2017b) 104.2 99.3

LSTM + VD (untied)(Inan et al., 2017) 98.8 93.1
LSTM + VD (tied)(Inan et al., 2017) 91.5 87.0
Pointer Sentinel LSTM (Merity et al., 2017) 84.8 80.8

LSTM (tied) + VD + BB tuning (Melis et al., 2018) 69.1 65.9

AWD-LSTM (tied) (Merity et al., 2018b) 68.6 65.8

byte mLSTM +emb +WN +VD 92.8 88.8

Table 3.3: WikiText-2 perplexity. The mLSTM operates on UTF-8 bytes, and all previous

results are word-level.
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Byte mLSTM achieves a byte-level test set cross entropy of 1.2649 bits/char, corre-

sponding to a perplexity of 88.8. Despite all the disadvantages faced by character level

models, byte level mLSTM achieves similar word level perplexity to previous word-

level LSTM baselines that also use variational dropout for regularization. Byte mLSTM

does not perform as well as word-level models that use adaptive add-on methods or

recent advances in regularization/hyper-parameter tuning by Merity et al. (2018b) and

Melis et al. (2018), however it could likely benefit from these advances as well.

3.6 Conclusion

This chapter developed a new variant of LSTM meant to be more adaptive at the token

level, by combining LSTM with mRNN’s factorized hidden weights. This mLSTM

architecture was motivated by its ability to have both controlled and flexible input-

dependent transitions, allowing it to make larger changes to its predictions as a function

of a new input.

mLSTM’s adaptive ability helped it make better predictions immediately after a

surprising input and improved its overall character-level language modeling perfor-

mance. In a series of character-level language modeling experiments, mLSTM showed

improvements over LSTM and its deep variants. mLSTM regularized with variational

dropout performed favorably compared with baselines in the literature, outperforming

all previous neural models on enwik8 and tying the best previous result on text8. Byte-

level mLSTM was also able to perform competitively with word-level language models

on WikiText-2. Experiments showed that mLSTM’s advantage vs. LSTM was greater

after a surprising input.

Unlike many previous architectures for character level language modeling, mLSTM

does not use non-linear recurrent depth. All mLSTMs considered in this work only

had 2 linear recurrent transition matrices, whereas comparable works such as recurrent

highway networks use a recurrent depth of up to 10 to achieve best results. This makes

mLSTM more easily parallelizable than these approaches, since far less sequential

computation is required per timestep. Additionally, our work suggests that a large depth

is not necessary to achieve competitive results on character level language modeling.

We hypothesize that mLSTM’s ability to have very different transition functions for

each possible input, and thus adapt to each input, is what makes it successful at this

task. While recurrent depth can accomplish this too, mLSTM can achieve this more

efficiently. Our work motivates exploration of adaptive sequence modeling architectures
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that use multiplicative interaction and flexible input-dependent transition functions, and

suggests application of mLSTM to language generation tasks.



Chapter 4

Dynamic evaluation of recurrent

neural networks

This chapter explores dynamic evaluation as a way of making models more adaptive at

the sequence level. Dynamic evaluation adapts auto-regressive sequence models to their

own predictions using gradient descent. We show that this gives large log-likelihood

improvements to language modeling and polyphonic music modeling. Dynamic evalua-

tion is motivated by its ability to assign higher probabilities to re-occurring sequential

patterns, making it more robust to surprising patterns that occur in test sequences.

Dynamic evaluation’s ability to improve LSTMs and mLSTMs supports our claim

that language models that can adapt to their inputs can make better predictions (and

follow up work in Chapter 5 supports that improvements largely comes from the ability

to recover from surprising sequences). The present chapter motivates and develops

dynamic evaluation methods that can improve predictions on language modeling and

music modeling benchmarks, whereas Chapter 5 analyzes in more depth why these

methods work well. Much of the work in this chapter was published in Krause et al.

(2018).

4.1 Introduction

Sequence generation and prediction tasks span many modes of data, ranging from

audio and language modeling, to more general timeseries prediction tasks. Applications

of such models include speech recognition, machine translation, dialogue generation,

speech synthesis, forecasting, and music generation. Neural networks can be applied to

these tasks by predicting sequence elements one-by-one, conditioning on the history,

57
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thus forming an autoregressive model. RNNs and LSTMs in particular achieved many

successes at these tasks. However, in their basic form, these models have a limited

ability to adapt to recently observed parts of a sequence.

Many sequences contain repetition; once a pattern occurs in a sequence it is more

likely to occur again (Kuhn, 1988; Jelinek et al., 1991; Kuhn and De Mori, 1992). In text,

a particular document may tend to repeat certain words, and may contain a particular

style associated with the author and topic of the document. In other domains, a sequence

of handwriting will generally stay in the same handwriting style and a sequence of

speech will generally stay in the same voice, and a sequence of music will tend to

have repeating patterns associated with melodies or rhythms. Although RNNs have a

hidden state that can summarize the recent past, they have been shown to have problems

learning to reproduce sequence elements (Marcus, 2001; Prickett, 2017). In the case of

RNN language modeling, augmenting a model with a simple unigram cache improves

perplexity (Grave et al., 2017b), demonstrating that RNNs have difficulty using the

recent frequency of words in a sequence. Models such as pointer networks (Vinyals

et al., 2015), copy nets (Gu et al., 2016), pointer-sentinel RNNs (Merity et al., 2017)

and the neural cache method (Grave et al., 2017b) allows models to “point” to inputs in

the sequence history use them directly as outputs, thus enabling them to more naturally

handle “direct repetitions” in a sequence, where a symbol repeats itself. However, such

approaches do not model “indirect repetitions”, when a synonym, inflectional variant,

or word otherwise related to a recently-occurring word appears. More broadly, it is

desirable for an adaptive model to be able to capture deeper regularities such as topic or

style.

This chapter examines dynamic evaluation (Mikolov et al., 2010; Mikolov, 2012;

Graves, 2013), which adapts models to recent sequences using gradient descent, as a

way to model re-occurring sequential patterns. Previous work using dynamic evaluation

did not explore or describe its methodology in depth, and had mixed results. In contrast,

our work develops a method and tuning procedure to consistently obtain strong results

(Section 4.5), and uses this approach to outperform previously reported results in word

and character-level language modeling (Section 4.7). Furthermore, we design a method

to dramatically reduce the number of adaptation parameters in dynamic evaluation,

making it practical in a wider range of settings (Section 4.6). We also show dynamic

evaluation has a scope beyond text, applying it to improve music prediction (Section

4.8).
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4.2 Motivation

As reviewed in Section 2.1.1, generative models can assign a probability to a sequence

x1:T = {x1, . . . ,xT} by factorizing it as

P(x1:T ) = P(x1)
T

∏
t=2

P(xt |x1:t−1). (4.1)

Methods that apply this factorization either use a fixed context when predicting P(xt |x1:t−1),

or use a recurrent hidden state to summarize the context, as in an RNN. However, for

longer sequences, the history x1:t−1 often contains re-occurring patterns that are difficult

to capture using static models with fixed parameters. RNNs have a memory capacity

that is limited by their hidden state, which can make remembering these regularities

difficult. Furthermore, RNNs have no inherent inductive bias that patterns in sequences

tend to re-occur; for instance, randomly initialized RNN would not be able to predict

even very repetitive sequences. The ability to model re-occurring sequential patterns

would need to learned from using re-occurring sequential patterns in training to help

reduce the training loss. This could be difficult to generalize to unseen data, and the

re-occurring sequential patterns in held out sequences will not always have occurred in

the training set.

In a dataset of sequences {x1
1:T ,x

2
1:T , ...,x

M
1:T}, each sequence xi

1:T could be viewed

as being generated from a slightly different local distribution P(xi
1:T ). At any point in

time t, the history of a sequence xi
1:t−1 contains useful information about the generating

distribution for that specific sequence. Ideally, we would like to assign higher proba-

bilities to sequences that have a consistent local distribution, and lower probabilities

to sequences that do not. Therefore we aim to adapt the global model parameters θg

learned during training, by inferring a set of local model parameters θl from xi
1:t−1 that

will better approximate P(xi
t |xi

1:t−1).

The generating distribution may change continuously across a single sequence; for

instance, a text excerpt may change topic. Furthermore, many sequence modeling prob-

lems do not distinguish between sequence boundaries, and concatenate all sequences

into one continuous sequence. Thus, many sequence modeling tasks can be viewed as

having a local distribution Pl(x) as well as a global distribution Pg(x) :=
∫

P(l)Pl(x)dl.

When training, the goal is to find the best fixed model possible for Pg(x). However,

at evaluation, a model that can infer the current Pl(x) from the recent history has an

advantage.
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s1=x1:n s2=xn+1:2n s3=x2n+1:3n
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Figure 4.1: Illustration of dynamic evaluation. The model evaluates the probability of

sequence segments si. The gradient ∇L(si) with respect to the log probability of si is

used to update the model parameters θ
i−1
l to θi

l before the model progresses to the next

sequence segment. Dashed edges are what distinguish dynamic evaluation from static

(normal) evaluation.

4.3 Dynamic evaluation

Dynamic evaluation is a test time modification to auto-regressive sequence models

adapts the model parameters learned at training time, θg, to the models predictions.

When assigning probabilities to sequences, the model is adapted to the recent sequence

history. The goal is to learn adapted parameters θl that provide a better model of the

local sequence distribution, Pl(x). In this work, we apply dynamic evaluation by splitting

a long test sequence x1:T into a sequence, s1:M, of shorter sequence segments si of length

n:

s1:M = {s1=x1:n, s2=xn+1:2n, ..., sM}. (4.2)

The initial adapted parameters θ0
l are set to θg, and used to compute the probability of the

first segment, P(s1|θ0
l ). This probability gives a cross entropy loss L(s1), with gradient

∇L(s1), which is computed using the truncated back-propagation through time (we
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use the variant in Algorithm 1 which reuses the hidden state from previous segments).

The gradient ∇L(s1) is used to update the model, resulting in adapted parameters θ1
l ,

before evaluating P(s2|θ1
l ). The same procedure is then repeated for s2, and for each si

(Figure 4.1). Gradients for each loss L(si) are only backpropagated to the beginning

of si, so the computation is linear in the sequence length. Each update applies one

maximum likelihood training step to approximate the current local distribution Pl(x).

The computational cost of dynamic evaluation is thus one forward pass and one gradient

computation through the data, with an additional small overhead to apply the update

rule for every sequence segment.

As in all autoregressive models, dynamic evaluation only conditions on sequence

elements that it has already predicted, and so evaluates a valid log-probability for each

sequence. Dynamic evaluation will assign higher probabilities to sequences where

adapting to the sequences history helps, and lower probabilities to sequences where it

does not help, but the sum of probabilities over all sequences will always sum to one.

Dynamic evaluation can also be used while generating sequences (which we explore in

a preliminary way in the next chapter). In this case, the model generates each sequence

segment si using fixed weights, and performs a gradient descent based update step on

L(si). Applying dynamic evaluation for sequence generation could result in generated

sequences with more consistent regularities, meaning that patterns that occur in the

generated sequence are more likely to occur again.

4.4 Background

Prior to this work, adaptive n-grams, neural cache methods, and earlier versions of

dynamic evaluation had been considered for adaptive language modeling (see Section

2.2 for a review). At the time of publication of this work, the neural cache as applied

by Merity et al. (2018b) to AWD-LSTMs was the state of the art method for adaptive

language models. As mentioned in Section 2.2.2, dynamic evaluation was proposed by

Mikolov et al. (2010), but had been only been considered as an aside and not explored

in depth prior to this work.

4.5 Dynamic evaluation methodology

We propose several changes to Mikolov et al. (2010)’s dynamic evaluation update rule

with SGD and fully truncated backpropagation, which we refer to as traditional dynamic
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evaluation. The first modification reduces the update frequency, so that gradients are

backpropagated over more timesteps. This change provides more accurate gradient

information, and also improves the computational efficiency of dynamic evaluation,

since the update rule is applied much less often. We use sequence segments of length

n = 5 for word-level tasks and n = 20 for character-level tasks (see Equation 4.2),

whereas the method of Mikolov et al. (2010) was equivalent to always setting n = 1.

Next, we add a decay prior to bias the model towards the parameters θg learned

during training. Our motivation for dynamic evaluation assumes that the local generating

distribution Pl(x) is constantly changing, so it is potentially desirable to weight recent

sequence history higher in adaptation. Adding a decay prior accomplishes this by

causing previous adaptation updates to decay exponentially over time. The use of a

decay prior for dynamic evaluation relates to an update rule used for fast weights (Ba

et al., 2016a), which decayed fast weights towards zero. For SGD with a decay prior,

learning rate η, and decay rate λ we form the update rule

θ
i
l ← θ

i−1
l −η∇L(si)+λ(θg−θ

i−1
l ). (4.3)

We then consider using an update rule related to RMSprop (Tieleman and Hinton, 2012,

Section 2.5.3) in place of SGD. RMSprop uses a moving average of recent squared

gradients to scale learning rates for each weight. In our proposed dynamic evaluation

update rule, we collect mean squared gradients, MSg, on the training data rather than on

recent test data (for a justification of why we do this, see Section 5.4). We refer to this

approach as global RMS to distinguish it from RMSprop. MSg
1 is given by

MSg =
1

Nb

Nb

∑
k=1

(∇Lk)
2, (4.4)

where Nb is the number of training batches and ∇Lk is the gradient on the kth training

batch. The mini-batch size for this computation becomes a hyper-parameter, as larger

mini-batches will result in smaller mean squared gradients. The update rule, which we

call global RMS with a decay prior in our experiments, is then

θ
i
l ← θ

i−1
l −η

∇L(si)√
MSg + ε

+λ(θg−θ
i−1
l ), (4.5)

where ε is a stabilization parameter. For the decay step of our update rule, we also scale

the decay rate for each parameter proportionally to
√

MSg, since parameters with a high

1The exact scaling of MSg (for instance, whether it is a sum or average) affects the hyperparameters but
do not change the optimizer in principle. Some publicly available dynamic evaluation implementations
scale MSg differently from Equation 4.4
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RMS gradient affect the dynamics of the network more. RMSnorm is
√

MSg divided by

its mean, resulting in a normalized version of
√

MSg with a mean of 1:

RMSnorm =

√
MSg

avg(
√

MSg)
. (4.6)

We clip the values of RMSnorm to be no greater than 1/λ to ensure that the decay rate

does not exceed 1 for any parameter. Combining the learning component and the

regularization component results in the final update equation, which we refer to as

global RMS with an RMS decay prior

θ
i
l ← θ

i−1
l −η

∇L(si)√
MSg + ε

+λ(θg−θ
i−1
l )�RMSnorm. (4.7)

This chapter contains experiments with each of the proposed modifications to the update

rule, whereas Chapter 5 (Section 5.4) presents more rigorous experimental justifications

for some of the design choices for the optimizer presented here, in comparison with

more general deep learning optimizers such as RMSprop and Adam (Kingma and Ba,

2014, Section 2.5.4).

Hyper-parameter tuning: Regardless of update rule, we found it was important to

properly tune the hyper-parameters of dynamic evaluation. As in the neural cache

model, this hyper-parameter tuning procedure applied a post training step in which the

model was dynamically evaluated over different hyper-parameter settings. We found

tuning the learning rate was by far the most important, however we also found a small

benefit to tuning the decay parameter. Hyper-parameter tuning for dynamic evaluation

is much faster than hyper-parameter tuning for general training, because it requires

a single pass through the validation set per setting. We also found that it is possible

to use a small subset of the validation set to tune hyper-parameters and achieve a

similar performance. We suspect that poor hyper-parameter tuning is why past dynamic

evaluation results have been mixed. For instance, Sprechmann et al. (2018) reported

using dynamic evaluation with optimization parameters obtained during training, and

achieved minimal test time improvements.

4.6 Sparse dynamic evaluation

Mini-batching over sequences is desirable for some test-time applications because it

allows faster processing of multiple sequences in parallel. Dynamic evaluation has a

high memory cost for mini-batching because it is necessary to store a different set
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of parameters for each sequence in the mini-batch. Therefore, we consider a sparse

dynamic evaluation variant that updates a smaller number of parameters. We introduce

a new adaptation matrix M which is initialized to zeros. M multiplies hidden state

vector ht of an RNN at every time-step to get a new hidden state h′t , via

h′t = ht +M ht . (4.8)

h′t then replaces ht and is propagated throughout the network via both recurrent and feed-

forward connections. In a stacked RNN, this formulation could be applied to every layer

or just one layer. Applying dynamic evaluation to M avoids the need to apply dynamic

evaluation to the original parameters of the network, reduces the number of adaptation

parameters, and makes mini-batching less memory intensive. We reduce the number

of adaptation parameters further by only using M to transform an arbitrary subset

of H hidden units. This results in M being an H×H matrix with d = H2 adaptation

parameters. If H is chosen to be much smaller than the number of hidden units, this

reduces the number of adaptation parameters dramatically.

4.7 Language modeling experiments

We applied dynamic evaluation to word- and character-level language modeling2. After

training the base model, we tune hyper-parameters for dynamic evaluation on the

validation set, and evaluate both the static and dynamic versions of the model on the

test set. We also analyze the sequence lengths for which dynamic evaluation is useful,

and investigate how dynamic evaluation can generalize to related words.

4.7.1 Small scale word-level language modeling

We performed word-level language modeling experiments on the Penn Treebank (PTB,

Marcus et al., 1993) and WikiText-2 (Merity et al., 2017) datasets. These experiments

compared the performance of static and dynamic evaluation, different dynamic evalua-

tion variants, and the neural cache.

The PTB language modeling dataset, which is derived from Wall Street Journal

articles, contains 929k training tokens with a vocabulary limited to 10k words. WikiText-

2 is roughly twice the size of PTB, with 2 million training tokens and a vocabulary size

2code available at https://github.com/benkrause/dynamic-evaluation

https://github.com/benkrause/dynamic-evaluation
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model parameters valid test

RNN+LDA+kN-5+cache (Mikolov and Zweig, 2012) 92.0

CharCNN (Kim et al., 2016) 19M 78.9

LSTM (Zaremba et al., 2014) 66M 82.2 78.4

Variational LSTM (Gal and Ghahramani, 2016) 66M 73.4

Pointer sentinel-LSTM (Merity et al., 2017) 21M 72.4 70.9

Variational LSTM + augmented loss (Inan et al., 2017) 51M 71.1 68.5

Variational RHN (Zilly et al., 2017) 23M 67.9 65.4

NAS cell (Zoph and Le, 2017) 54M 62.4

Variational LSTM + gradual learning (Aharoni et al., 2017) 105M 61.7

LSTM + BB tuning (Melis et al., 2018) 24M 60.9 58.3

LSTM (Grave et al., 2017b) 86.9 82.3

LSTM + neural cache (Grave et al., 2017b) 74.6 72.1

AWD-LSTM (Merity et al., 2018b) 24M 60.0 57.3

AWD-LSTM + neural cache (Merity et al., 2018b) 24M 53.9 52.8
AWD-LSTM (rerun) 24M 59.8 57.7
AWD-LSTM + traditional dynamic eval (sgd, bptt=1) 24M 54.9 53.5

AWD-LSTM + dynamic eval (sgd, bptt=5) 24M 54.7 53.3

AWD-LSTM + dynamic eval (sgd, bptt=5, decay) 24M 54.0 52.4

AWD-LSTM + dynamic eval (global RMS, bptt=5, decay) 24M 52.7 52.0

AWD-LSTM + dynamic eval (global RMS, bptt=5, RMS decay) 24M 51.6 51.1
AWD-QRNN (rerun) 24M 59.2 56.7
AWD-QRNN + dynamic eval (global RMS, bptt=20, RMS decay) 24M 51.4 50.5

Table 4.1: Penn Treebank perplexities. bptt refers to sequence segment lengths. The bold

lines show that dynamic evaluation gives a large improvement over a state-of-the-art

static model. Each of our other contributions leads to further improvements.
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of 33k. It features articles in a non-shuffled order, with dependencies across articles that

adaptive methods should be able to exploit.

For our baseline model, we use the previous state-of-the-art averaged SGD (ASGD)

weight-dropped LSTM (AWD-LSTM, Merity et al., 2018b). We wanted to ensure

a strong starting baseline to increase the likelihood that any improvements given by

dynamic evaluation would generalize to other models. Furthermore, Merity et al. (2018b)

implemented the neural cache on top of their approach, making it easy for us to compare

dynamic evaluation with the neural cache using the same starting settings. The AWD-

LSTM is a vanilla LSTM that combines the use of drop-connect (Wan et al., 2013)

on recurrent weights for regularization, and a variant of ASGD (Polyak and Juditsky,

1992) for optimization. Our model used 3 layers and tied input and output embeddings

(Press and Wolf, 2017; Inan et al., 2017, Section 2.4.6), and was intended to be a direct

replication of AWD-LSTM. Merity et al. (2018b) later added results using an AWD

quasi-recurrent neural network (AWD-QRNN, Bradbury et al., 2017), so we (later)

applied dynamic evaluation to this model as well to demonstrate that dynamic evaluation

could work using a different starting model.

We experiment with traditional dynamic evaluation, as well as each modification we

make building up to our final update rule as described in Section 4.5. We also apply our

proposed hyper-parameter tuning scheme to all dynamic evaluation methods. Results

for PTB are given in Table 4.1, and results for WikiText-2 are given in Table 4.2. As our

final update rule (global RMS + RMS decay, Equation 4.7) worked best, we use this

for future experiments and use “dynamic eval” by default to refer to this update rule in

tables.

All dynamic evaluation variants give large improvements to both datasets. We

demonstrate much larger improvements on PTB even with traditional dynamic evalua-

tion than some past work (Mikolov, 2012), highlighting the importance of using our pro-

posed hyper-parameter tuning scheme. Our most advanced dynamic evaluation variant

achieves better final results than the neural cache, improving the state-of-the-art on PTB

and WikiText-2. This improvement is especially pronounced on WikiText-2, suggesting

that dynamic evaluation is exploiting the rich vocabulary or the non-shuffled order of

documents. Since publishing our code, the state-of-the-art on PTB and WikiText-2 has

been further improved by applying our dynamic evaluation implementation on top of an

AWD-LSTM with a mixture of softmaxes output layer (Yang et al., 2018).
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model parameters valid test

Byte mLSTM (Chapter 3) 46M 92.8 88.8

Variational LSTM (Inan et al., 2017) 28M 91.5 87.0

Pointer sentinel-LSTM (Merity et al., 2017) 84.8 80.8

LSTM + BB tuning (Melis et al., 2018) 24M 69.1 65.9

LSTM (Grave et al., 2017b) 104.2 99.3

LSTM + neural cache (Grave et al., 2017b) 72.1 68.9

AWD-LSTM (Merity et al., 2018b) 33M 68.6 65.8

AWD-LSTM + neural cache (Merity et al., 2018b) 33M 53.8 52.0
AWD-LSTM (rerun) 33M 68.9 66.1
AWD-LSTM + traditional dynamic eval (sgd, bptt=1) 33M 51.6 49.0

AWD-LSTM + dynamic eval (sgd, bptt=5) 33M 51.5 48.8

AWD-LSTM + dynamic eval (sgd, bptt=5, decay) 33M 49.8 47.4

AWD-LSTM + dynamic eval (global RMS, bptt=5, decay) 33M 46.9 44.7

AWD-LSTM + dynamic eval (global RMS, bptt=5, RMS decay) 33M 46.4 44.3
AWD-QRNN (rerun) 33M 68.3 66.0
AWD-QRNN + dynamic eval (global RMS, bptt=20, RMS decay) 33M 45.9 44.0

Table 4.2: WikiText-2 perplexities.

4.7.2 Medium scale word-level language modeling

We benchmarked the performance of dynamic evaluation against static evaluation and

the neural cache on the larger word-level text8 dataset. Text8 is often used as a character-

level language modeling benchmark (as it is throughout this thesis). A word-level

version of the dataset was introduced by Mikolov et al. (2014), who preprocessed the

data by mapping rare words to an “unknown” token, resulting in a vocabulary of 44k and

17M training tokens. We use the same test set as in Mikolov et al. (2014), but also hold

out the final 100k training tokens as a validation set to allow for fair hyper-parameter

tuning (the original task did not have a validation set). We trained an AWD-LSTM with

52M parameters using the implementation from Merity et al. (2018b), and compared

the performance of static evaluation, dynamic evaluation, and neural caching at test

time.

We used the hyper-parameter settings for dynamic evaluation found on PTB, and

only tuned the learning rate (to 2 significant figures). The neural cache uses 3 hyper-

parameters: the cache length, a mixing parameter and a flatness parameter. Starting

from a cache size of 3000, we used a series of grid searches to find optimal values for
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the mixing parameter and flatness parameter (to 2 significant figures). We found that

the affect of varying the cache size in the range 2000–4000 was negligible, so we kept

the cache size at 3000. Results are given in Table 4.3, with the results from Grave et al.

(2017b) that used the same test set given for context.

model valid test

LSTM (Grave et al., 2017b) 121.8

LSTM + neural cache (Grave et al., 2017b) - 99.9

AWD-LSTM 80.0 87.5
AWD-LSTM + neural cache 67.5 75.1
AWD-LSTM + dynamic eval 63.3 70.3

Table 4.3: text8 (word-level) perplexities

Dynamic evaluation soundly outperforms static evaluation and the neural cache

method, demonstrating that the benefits of dynamic evaluation are maintained when

using a stronger model with more training data.

4.7.3 Character-level language modeling

We consider dynamic evaluation for character-level language modeling using the

(character-level) text8 and enwik8 data sets. Both of these datasets are 100M char-

acters long, with a 90:5:5 split for training, validation, and testing. enwik8 is comprised

of raw Wikipedia and contains XML and special characters, whereas text8 contains

preprocessed Wikipedia that is lowercased and limited to 26 characters of English text

plus spaces. We used the mLSTM from Chapter 3 as our base model for both datasets,

as it was the strongest baseline on these datasets at the time of writing. More details

about the base model and data sets can be found in Chapter 3. As in the word level

experiments, we tune the hyperparameters of dynamic evaluation on the validation set

before evaluating on the test set.

We also used sparse dynamic evaluation (Section 4.6) on the enwik8 dataset. In this

case, we adapted a subset of 500 hidden units, resulting in a 500×500 adaptation matrix

and 250k adaptation parameters. Our mLSTM only contained one recurrent layer, so

only one adaptation matrix was needed. All of our dynamic evaluation results in this

section use the final update rule given in Section 4.5. Results for enwik8 are given in

Table 4.4, and results for text8 are given in Table 4.5.
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model parameters test

Stacked LSTM (Graves, 2013) 21M 1.67

Stacked LSTM + traditional dynamic eval (Graves, 2013) 21M 1.33

Multiplicative integration LSTM (Wu et al., 2016) 17M 1.44

HyperLSTM (Ha et al., 2017) 27M 1.34

Hierarchical multiscale LSTM (Chung et al., 2017) 1.32

Bytenet decoder (Kalchbrenner et al., 2016) 1.31

LSTM + BB tuning (Melis et al., 2018) 46M 1.30

Recurrent highway networks (Zilly et al., 2017) 46M 1.27

Fast-slow LSTM (Mujika et al., 2017) 47M 1.25

mLSTM (Section 3.5.2) 46M 1.24
mLSTM + sparse dynamic eval (d = 250k) 46M 1.13

mLSTM + dynamic eval 46M 1.08

Table 4.4: enwik8 test set error in bits/char.

Dynamic evaluation achieves large improvements to our base models and state-of-

the-art results on both datasets. Sparse dynamic evaluation also achieves significant

improvements on enwik8 using only 0.5% of the adaptation parameters of regular

dynamic evaluation.

4.8 Music modeling experiments

Our next set of experiments examine dynamic evaluation in the setting of probabilis-

tic models of polyphonic music. While evaulatue our models exclusively using log-

likelihood, on these models can be applied to music generation, where the model

generates sequences of musical notes, and polyphonic transcription, where the model

can act as a symbolic prior for a system that transcribes musical notation from audio.

Data are represented as 88 dimensional binary vectors at each timestep, with one el-

ement for each possible piano note from A0 to C8. This task can be framed as high

dimensional sequence modeling (Section 4.8), since multiple notes can be present in a

single timestep. Our task and evaluation followed Boulanger-Lewandowski et al. (2012),
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model parameters test

Multiplicative RNN (Mikolov et al., 2012b) 5M 1.54

Multiplicative integration LSTM (Wu et al., 2016) 4M 1.44

LSTM (Cooijmans et al., 2017) 1.43

Batch normalized LSTM (Cooijmans et al., 2017) 1.36

Hierarchical multiscale LSTM (Chung et al., 2017) 1.29

Recurrent highway networks (Zilly et al., 2017) 45M 1.27

mLSTM (Section 3.5.3) 45M 1.27
mLSTM + dynamic eval 45M 1.19

Table 4.5: text8 (char-level) test set error in bits/char.

evaluating on the preprocessed versions of four MIDI datasets3:

• Piano-midi.de is a classical piano MIDI archive that was split according to Poliner

and Ellis (2006)

• Nottingham is a collection of 1200 folk tunes with chords instantiated from the

ABC format.

• MuseData is an electronic library of orchestral and piano classical music from

CCARH4.

• JSB chorales is a corpus of 382 fourpart harmonized chorales by J. S. Bach with

the split of Allan and Williams (2005).

Our experiments are designed to compare our baseline model with static evaluation

vs. dynamic evaluation on the 4 music datasets. All experiments use an LSTM-NADE

hybrid as the baseline model. RNN-NADEs are described in Chapter 2.6.2, and an

LSTM-NADE substitutes LSTMs for vanilla RNNs in this architecture. SGD with

gradient norm clipping was used for optimization on the training sets. Recurrent dropout

in the style of Zaremba et al. (2014) was applied in the LSTM layers, and dropout

was also applied to NADE units separately at each timestep. Our network for all tasks

consisted of a linear embedding layer, 2 stacked layers of 650 LSTM units, and a NADE

3http://www-etud.iro.umontreal.ca/˜boulanni/icml2012

http://www-etud.iro.umontreal.ca/~boulanni/icml2012
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of 400 units. This resulted in a network with 7.2M total parameters. Hyperparameters

for training were tuned to give the best validation performance on each task.

After the baseline models were trained, dynamic evaluation was applied. We ap-

plied SGD dynamic evaluation, as well as the global RMS dynamic evaluation variant

presented in Equation 4.7. Unlike in language modeling, where the validation and test

sets are made up of groups of articles concatenated together, the songs in the validation

and test sets of these music corpora contain discrete boundaries. Therefore, the weights

of dynamic evaluation (and hidden states of the model) were reset at the end of each

song. Since we would expect local dependencies present in a song to generally be

present throughout the song, we set the decay rate to zero for these experiments. Other

hyperparameters for dynamic evaluation are tuned on the validation set. The results of

the baseline models with static evaluation, SGD dynamic evaluation, and global RMS

dynamic evaluation are given in Table 4.6.

model Piano-midi Nottingham Muse Data JSB Chorales

NADE (1 frame only) (Boulanger-Lewandowski et al., 2012) -10.28 -5.48 -10.06 -7.19

RNN (HF) (Boulanger-Lewandowski et al., 2012) -7.66 -3.89 -7.19 -8.58

RNN-NADE (HF) (Boulanger-Lewandowski et al., 2012) -7.05 -2.31 -5.60 -5.56

RNN-RBM (HF) (Boulanger-Lewandowski et al., 2012) -7.09 -2.39 -6.01 -6.27

LSTM-NADE (Johnson, 2017) -7.39 -2.06 -5.03 -6.10

TP-LSTM-NADE (Johnson, 2017) -5.49 -1.64 -4.34 -5.92

BA-LSTM (Johnson, 2017) -5.00 -1.62 -4.41 -5.86

LSTM-NADE -6.84 -1.96 -5.35 -5.28
LSTM-NADE + dynamic eval (SGD) -5.57 -1.30 -4.58 -5.14

LSTM-NADE + dynamic eval (global RMS) -5.47 -1.27 -4.48 -5.11

Table 4.6: Performance of models in log-likelihood per frame on four music prediction

tasks.

Overall, dynamic evaluation gave large improvements on three out of four datasets.

The sequences in JSB Chorales were shorter than in the other three datasets, meaning

that dynamic evaluation had less data to adapt to, which may partially explain why it did

not perform as well. Dynamic evaluation performed especially well on the Nottingham

dataset, which contains sequences with many repeating motifs. The biaxial LSTM

(BA-LSTM) and tied-parallel LSTM-NADE (TP LSTM-NADE) of Johnson (2017) are

designed to give the model inductive biases to allow them to better capture the relative

relationships between musical notes. Our models do not have these inductive biases,

and still perform better on some datasets. Dynamic evaluation could be applied directly
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to the BA-LSTM and TP LSTM-NADE as well, potentially resulting in larger gains in

performance.

4.9 Conclusion

This chapter motivates dynamic evaluation as way of adapting auto-regressive sequence

models to their own predictions to assign higher probabilities to sequences with re-

occurring sequential patterns, thus allowing models to adapt to longer sequences. We

develop a novel dynamic evaluation approach, and perform experiments showing that

the proposed approach gives large test time improvements across character and word

level language modeling, as well as polyphonic music prediction. This chapter shows

how making strong RNN language modeling baselines more adaptive at the sequence

level can improve their predictions. The following chapter explores in more depth

how and why dynamic evaluation works well, and provides evidence that dynamically

evaluated models achieve better recovery from surprising sequences.



Chapter 5

Understanding the generalization

ability of adaptive language models

The previous chapter presented an approach to dynamic evaluation, motivated by its

ability to adapt to the recent sequence history, that could give large improvements

to language modeling. This chapter explores why this adaptation works well, and in

what context it gains an advantage. Supporting our thesis claim, we find evidence that

the adaptation ability of dynamic evaluation makes it especially robust to surprising

sequences. For instance, Section 5.1 shows that dynamic evaluation is able to gain a

large advantage when the test sequence is in a different language from the training

data by exploiting re-occurring statistical patterns in the language. Further analysis

in Section 5.2 that draws conditional samples using dynamic evaluation shows that it

allows models to generate text with statistical regularities present in the conditioning

text, supporting the hypothesis the dynamic evaluation can better model surprising

patterns after being exposed to them earlier in the sequence. Section 5.3 further explores

what kinds of repeating patterns dynamic evaluation can exploit, and demonstrates a

mechanism for how this could be occurring. Section 5.4 gives a more detailed look at

optimizers in a dynamic evaluation setting, and justifies many of the design decisions

made in the dynamic evaluation optimizer from Equation 4.7 in the previous chapter.

Lastly, Section 5.5 benchmarks how well the models developed by advances from

chapters 3 and 4 compare with humans at the task of text prediction, and finds that a

dynamically evaluated mLSTM can perform text prediction on par with the best human

predictors, but still worse than an ensemble of human predictors, leaving room for

improvement. Some of the work in Sections 5.1, 5.2, and 5.3 was published in Krause

et al. (2018).

73
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Figure 5.1: Average losses in nats/word of dynamic evaluation, the neural cache, and

static evaluation plotted against number of words processed; on sequences from the

WikiText-2 test set, averaged over 122 trials for each.

5.1 Time-scales of adaptive sequence modeling

We examined the timescales at which dynamic evaluation gains an advantage over

static evaluation at language modeling. To observe this effect for word level-language

modeling, we plotted the performance of static vs. dynamic evaluation vs. neural cache

against the number of words processed on sequences from the WikiText-2 test set (using

the settings from Section 4.7.1). We divided up the WikiText-2 test set up into 122

sequences of length 2000, and measured the average performance vs. number of words

processed. Losses were averaged across these 122 sequences to obtain average losses at

each time step. The results are given in Figure 5.1.

We also measured the time-scales at which dynamic evaluation is useful for character

level language modeling. For these experiments, we also considered a domain adaptation

scenario where the test sequences came from a different distribution from the training

sequences. We plotted the performance of static and dynamic evaluation against the

number of characters processed on sequences from the enwik8 test set, and sequences



5.1. Time-scales of adaptive sequence modeling 75

number of characters
0 2000 4000 6000 8000 10000

b
its

 p
e

r 
ch

a
ra

ct
e

r
1

1.1

1.2

1.3

1.4

1.5

1.6
static
dynamic

(a) enwik8 data

number of characters
0 2000 4000 6000 8000 10000

b
its

 p
e

r 
ch

a
ra

ct
e

r

2

2.2

2.4

2.6

2.8

3

3.2
static
dynamic

(b) Spanish data

Figure 5.2: Average losses in bits/char of dynamic and static evaluation plotted against

number of characters processed; on sequences from the enwik8 test set (left) and

European Parliament dataset in Spanish (right), averaged over 500 trials for each.

Losses at each data point are averaged over sequence segments of length 100, and are

not cumulative. Note the different y-axis scales in the two plots.

in Spanish from the European Parliament dataset (Koehn, 2005).

The enwik8 data experiments show the timescales at which dynamic evaluation

gained the advantage observed in Table 4.4 from the previous chapter. We divided the

enwik8 test set into 500 sequences of length 10000, and applied static and dynamic

evaluation to these sequences using the same model and methodology used to obtain

results in Table 4.4. Losses were averaged across these 500 sequences to obtain average

losses at each time step. Plots of the average cross-entropy errors against the number of

enwik8 characters sequenced are given in Figure 5.2a.

The Spanish experiments measure how dynamic evaluation handles large distribution

shifts between training and test time, as enwik8 contains very little Spanish. This setting

can be seen as similar to “finetuning”, where pretrained models are adapted to new

datasets. The main difference is that the model is evaluated online, where the model is

evaluated on every prediction, as would be the case if a language model where to be

used for compression in out-of-domain data. We used the first 5 million characters of the

Spanish European Parliament data for this experiment. The Spanish experiments used

the same base model and dynamic evaluation settings as the enwik8 experiments. Plots

of the average cross-entropy errors against the number of Spanish characters sequenced

are given in Figure 5.2b.

Dynamic evaluation gave a very noticeable advantage after a few hundred characters.

For Spanish, this advantage continued to grow as more of the sequence was processed.
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For enwik8, this advantage was maximized after viewing around 2–3k characters,

demonstrating that the adaptation effect was local rather than global. The ability to use

thousands of characters to improve its predictions on enwik8 also demonstrates that

dynamic evaluation can use very long-range statistical dependencies in its predictions.

This means that dynamic evaluation is able to adapt on the scale of very long sequences,

since tokens from thousands of timesteps back are influencing the model’s predictions

enough to improve its performance.

5.2 Conditional samples with dynamic evaluation

Following up on the previous section, we drew 300 character conditional samples

from the static and dynamic models after viewing 10k characters of Spanish. For the

dynamic model, we continued to apply dynamic evaluation during sampling as well. The

static samples quickly switched to English that resembled enwik8 data. The dynamic

model generated data with some Spanish words and a number of made up words with

characteristics of Spanish words for the entirety of the sample.

Below we present 300 character samples generated from the static and dynamic

versions of the model trained on enwik8, conditioned on 10k of Spanish characters. The

final sentence fragment of the 10k conditioning characters is given to the reader, with

the generated text given in bold.

STATIC:

Tiene importancia este compromiso en la medida en que la Comisión es un organismo

que tiene el monde,
&lt;br&gt;There is a secret act in the world except Cape Town, seen in now flat
comalo and ball market and has seen the closure of the eagle as imprints in a dal-
las within the country.&quot; Is a topic for an increasingly small contract saying
Allan Roth acquired the government in [[1916]].

===

DYNAMIC:

Tiene importancia este compromiso en la medida en que la Comisión es un organismo

que tiene el montembre tas procedı́ns la conscriptione se ha Tesalo del Pómienda
que et hanemos que Pe la Siemina.
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De la Pedrera Orden es Señora Presidente civil, Orden de siemin presente rele-
vante frónmida que esculdad pludiore e formidad President de la Presidenta An-
tidorne Adamirmidad i ciemano de el 200’. Fo

These samples illustrate the kinds of features that dynamic evaluation was able to

learn to model on the fly. For instance, the model was able to repeat real Spanish words

and phrases it had never seen in training from the conditioning text. The model also

made up some words with Spanish-like features. While this is an over generalization

in this case, the ability to predict to unseen or out-of-vocabulary words with related

features to the conditioning text could help with language prediction, especially when

the language is out-of-domain.

5.3 Generalizing to unseen words

Mikolov et al. (2010) hypothesized that dynamic evaluation updates generalize not only

to the direct re-occurrence of words, but also to the re-occurrence of related words. For

an example of this consider the following sequence:

The Gambia won the first match 3 - 0 in Banjul , the Gambia ’s capital . The return

match was delayed in for 24 hours and played in Makeni. The Gambia beat Sierra Leone

4 - 3 to qualify for the final round. The Gambia then beat Tunisia 1 - 0 at home and

won 2 - 1 in Tunisia .

This sequence has certain words, such as the highlighted names of African countries,

that repeat themselves, and should be more predictable by their second occurrence.

However, it also contains re-occurrences of related words; all the words highlighted

in blue relate to competition. Observing some words that relate to competition should

make words later in the sequence that relate to competition more predictable. The neural

cache method can only increase the probability of words that it has previously seen

in a sequence. As a result, the neural cache can never improve on unseen words. In

Table 5.1, we breakdown the performance of static eval vs. dynamic eval vs. neural

cache on words that have already occurred at least once in a sequence (seen words)

vs. words occurring for the first time in a sequence (unseen words). We measure this
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model seen words (nats/word) unseen words (nats/word)

static eval 3.24 6.92

dynamic eval 2.78 6.99
neural cache 2.91 7.06

Table 5.1: Negative log-likelihood loss on words that have previously occurred in the

sequence (seen words) and words occurring for the first time in a sequence (unseen

words) of static evaluation vs. dynamic evaluation vs. neural cache on WikiText-2.

in the second half of held out WikiText-2 sequences of length 2000, with the first

1000 tokens only used as conditioning text. As would be expected, dynamic evaluation

and the neural cache are both much more effective than static evaluation at predicting

words that re-occur in a sequence. Dynamic evaluation gains its advantage over the

neural cache on both seen and unseen words. Static evaluation performs better than both

methods on previously unseen words. We also measured the ratio of how often dynamic

evaluation and the neural cache outperform static evaluation on unseen words. Dynamic

evaluation achieves a lower prediction error than static evaluation on 42.6% of unseen

words, as opposed to the neural cache, which as expected, always performs worse than

static evaluation on unseen words. This means that unlike the neural cache, dynamic

evaluation is capable of generalizing to words that have not previously occurred in the

sequence.

We attempt to analyze the mechanism by which dynamic evaluation can generalize

to unseen words. The change to probabilities of symbols other than the observed

symbols can be measured by doing a second forward pass after each dynamic evaluation

update. We generally found that dynamic evaluation can increase the probability of

related words, and we demonstrate this for a specific point in the WikiText-2 test set.

We analyze the output log probabilities before and after applying dynamic evaluation to

the word “production”, which occurred in the following context:

“He appeared on a 2006 episode of the television series , Doctors, followed by a

role in the 2007 theatre production”

After applying a dynamic evaluation update to the sequence segment containing the

word “production”, we recomputed the output probabilities at this time step with the

updated network weights. We measure the change in log probabilities to words with

a similar word embedding to “production”. The results of this experiment is given in



5.3. Generalizing to unseen words 79

Word emb. cos distance ∆ log prob

“production” 1.00 +2.42

“development” 0.55 +1.14

“construction” 0.53 +1.29

“filming” 0.52 +0.80

“recording” 0.50 +1.27

“photography” 0.46 +0.15

“release” 0.45 +1.25

“performance” 0.45 +1.01

“design” 0.44 +0.90

“work” 0.44 +1.23

“productions” 0.44 +0.50

median – 0.02 – 0.66

Table 5.2: Effect of dynamic evaluation on probabilities of related words. We measure

how updating on the target word “production” changes the probabilities of words most

related to production, measured by cosine distance of word embeddings learned during

training time (note that input and output embeddings are tied). The median values across

the entire vocabulary are given in the bottom entry.

Table 5.2.

Updating on the observation of the word “production” also increases the log proba-

bility of words with similar word embeddings. This experiment is meant to simulate

the situation where the model sees the exact same context twice. If the same context

were to occur again in sequence, the model would likely assign a higher probability to

the word “production” as well the related words in Table 5.2. It is more likely that the

model would need to predict these words in similar but slightly different context, but

this generalization to related words could still apply in a slightly different context.

To analyze this effect, we consider the more general case where a model with

parameters θ conditions on a sequence x1:t to predict a distribution over the sequence

token at position t +1, p(xt+1|x1:t ,θ). After predicting, the model performs a gradient

descent update with learning rate η using

∆θ = η∇θ log p(xt+1|x1:t ,θ) (5.1)

(to avoid double negatives in some of our equations, we write gradients as being with
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respect to positive log likelihoods and assume we are updating in the direction of

the positive gradient), resulting in adapted parameters θ+∆θ. This corresponds to a

dynamic evaluation update with a simple SGD optimizer. Then, the updated model

predicts p(xt+1|x1:t ,θ+∆θ) again to see how the distribution over xt+1 changed as a

result of the update. We would obviously expect the token observed at x+1 to have

a higher probability after the update, but if our model is generalizing well, we might

also expect words related to the observed word to have a higher probability after the

update. We consider the scenario where there are two words i and j, which we will

assume are semantically similar words with similar word embeddings (if we are using

tied embeddings, we do not need to worry about if they are input or output embeddings).

We are interested in the effect that updating on word i has on the probability predicted

for word j after the update in the above scenario. For an infinitesimally small learning

rate, the change in log probability of word j (given as a log ratio of probabilities for

compactness) as a function of an update ∆θ is given by a first order Taylor series

approximation

log
(

p(xt+1 = j|x1:t ,θ+∆θ)

p(xt+1 = j|x1:t ,θ)

)
≈ (∇θ log p(xt+1 = j|x1:t ,θ))

>
∆θ. (5.2)

Under the condition that

(∇θ log p(xt+1 = j|x1:t ,θ))
>(∇θ log p(xt+1 = i|x1:t ,θ))> 0, (5.3)

an update in the direction of the gradient that results from observing word i will increase

the probability of word j under the approximation. We make the argument that word

embeddings contribute significantly to the gradient that results from observing a word,

so words with similar word embeddings will often have respective gradients with

positive inner products.

Given embedding matrix Wyh ∈ Rdh,dy , where dy is the vocab size, and dh is the

hidden state size, we denote the word embedding vector for word i as W i
yh, and the

word embedding vector for word j as W j
yh. We are assuming that the inner product

(W i
yh)
>(W j

yh)> 0. The gradients of the pre-softmax output activation ŷt are given by the

difference between a one hot encoding of the target token i, ei, and the post-softmax

output probabilities yt .

∂ log p(xt+1 = i|x1:t ,θ)

∂ŷt
= ei− yt (5.4)

For language modeling dy is normally large (it is 33k for WikiText-2 for instance).

Unless the model confidently predicts the correct answer, a large portion of the mass in



5.3. Generalizing to unseen words 81

∂ log p(xt+1=i|x1:t ,θ)
∂ŷt

will be in the index corresponding to the observed target token i. This

portion of the gradient is equal to the scalar 1− yi
t , where yi

t is the output probability

predicted for word i. yi
t will usually be closer to 0 than to 1 for most predictions

from most word-level language models. If we approximate the hidden state gradient
∂ log p(xt+1=i|x1:t ,θ)

∂ht
by ignoring contributions from output units other than i , we would

get
∂ log p(xt+1 = i|x1:t ,θ)

∂ht
≈ ∂ log p(xt+1 = i|x1:t ,θ)

∂ŷi
t

∂ŷi
t

∂ht
, (5.5)

which simplifies to

∂ log p(xt+1 = i|x1:t ,θ)

∂ht
≈ (W i

yh)(1− yi
t). (5.6)

If we were to use the same approximation for the hidden state gradient with respect to

log p(xt+1 = j|x1:t ,θ), we would get

∂ log p(xt+1 = j|x1:t ,θ)

∂ht
≈ (W j

yh)(1− y j
t ). (5.7)

Based on the above approximations, the hidden state gradients that result from observing

i and j will have an inner product (Equation 5.3) given by

(1− yi
t)(1− y j

t )(W
j

yh)
>(W i

yh). (5.8)

Since the (1− yi
t) and (1− y j

t ) terms are always positive and generally close to 1, the

second term, which is the inner product of the word embeddings, is proportional to

the inner product of the hidden state gradients under our approximation. While this

approximation accounts for a significant portion of the hidden state gradient for most

language model predictions, it does ignore the derivatives with respect to output units

other than the target output unit. Furthermore, even when the gradients of the hidden

states have positive inner products, the gradients of the weights will not always have

positive inner products. Even if the gradients of the weights have positive inner products,

for a non-infinitesimal step size, it is still possible for a gradient descent update on

word i to decrease the probability of observing word j. However, this analysis does

demonstrate a mechanism by which dynamic evaluation updates could and might be

expected to generalize to words with similar word embeddings.

We examined this effect at the level of individual token updates, but in general

dynamic evaluation is likely to be effective at generalizing to sequences with similar

gradients. We would expect applying dynamic evaluation with a small enough learning

rate applied to sequence x1:t to help with predicting sequence y1:t when

(∇θ log p(x1:t |θ))>(∇θ log p(y1:t |θ))> 0. (5.9)
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We observed that test sequences on WikiText-2 that occur in close proximity do tend

to have gradients under the static model with higher inner products with each other

than random test sequences in general. It seems from our analysis in this section at the

token level that during training the model learns a representation where stylistically

similar sequences result in similar gradients. While this is easier to analyze at the level

of individual tokens, it could potentially apply more broadly to stylistic regularities.

The exploration of gradients under a language model as a similarity metric between

sequences could be interesting future work.

5.4 Optimizers for dynamic evaluation

The previous chapter on dynamic evaluation presented an optimizer that worked particu-

larly well in an online setting. This optimizer had a number of unique features, including

the use of RMS gradients from the training data (or source task, as opposed to the target

task as in normal RMSprop (Tieleman and Hinton, 2012, Section 2.5.3)) for inverse

learning rates, and the use of a decay prior towards the initially learned parameters.

While this optimizer gave strong results relative to past approaches, only a small space

of potential optimizers was considered. This section explores a number of commonly

used deep learning optimizers as additional baselines, and tests design decisions such

as momentum and adaptive learning rates in a dynamic evaluation setting. We find that

features of optimizers that work well for training do not always work well in a dynamic

evaluation setting, further justifying the optimizer presented in the previous chapter.

5.4.1 Incorporating momentum

Momentum (Polyak, 1964; Nesterov, 1983; Sutskever et al., 2013, Section 2.5.2) is a

modification to gradient descent that is commonly used to help with convergence in

deep learning. Momentum delays the effect of gradient based updates on the weights of

the network, potentially giving the optimizer a chance to correct for mistakes before

stepping too far. While this is often helpful in the traditional optimization setting where

there is a separate training and testing phase, it could be undesirable in an online setting

where the network is penalized for every mistake.

This subsection explores the introduction of a momentum parameter in a dynamic

evaluation optimizer with SGD. The dynamic evaluation update rule is then given by
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momentum PTB validation perplexity

Static 59.7

0.0 54.7
0.5 54.8

0.75 55.0

0.875 55.3

0.9375 55.7

0.96875 56.2

0.984375 56.7

Table 5.3: Effect of momentum in dynamic evaluation on PTB perplexity

this series of equations using the notation from the previous chapter:

vi← µvi−1−η∇L(si) (5.10)

θ
i
l ← θ

i−1
l + vi. (5.11)

The µ parameter sets the momentum, with µ = 0 equivalent to plain SGD. We

ran experiments to measure the effect of momentum in dynamic evaluation on PTB

validation loss, using the same setup and base model as in Section 4.7.1 in the previous

chapter. We varied µ values from the series 1− 1
2n , so starting from µ = 0 and increasing

towards one. For each µ value, we found the optimal learning rate by starting with

a sufficiently low value for η, and repeatedly increasing η by 20% until validation

performance peaked. It is important to tune the learning rate separately for each µ value,

because larger µ values result in more aggressive momentum and thus require smaller

learning rates. The results are given in Table 5.3. Increasing momentum always hurt

dynamic evaluation performance, with µ = 0 (vanilla SGD) giving the best validation

error.

5.4.2 Adaptive learning rates

One might consider applying optimizers that work well for training neural networks

from scratch in a dynamic evaluation settings. In this section, we consider applying

adaptive learning rate optimizers RMSprop (Tieleman and Hinton, 2012, Section 2.5.3)
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model PTB validation perplexity

Static 59.7

RMSprop (α = 0.9) 59.1

RMSprop (α = 0.99 (default in PyTorch)) 58.6

RMSprop (α = 0.999) 58.1
Adam (α = 0.999, µ = 0.9 (default in PyTorch)) 58.1

Adam (α = 0.999, µ = 0.0 ) 58.0
SGD 54.7

Table 5.4: Dynamic evaluation PTB perplexity using RMSprop and Adam optimizers

and Adam (Kingma and Ba, 2014, Section 2.5.4). The global RMS (Equation 4.7)

optimizer presented in the previous chapter is related to RMSprop, but uses RMS

gradients on the training data rather than recent test data. This allows the global RMS

optimizer to use larger batch sizes to compute gradient statistics, and also results in

fixed learning rates for each weight rather than adaptive learning rates. This subsection

explores the differences in performance of using RMSprop vs. RMS training gradients. It

also re-examines the effect of momentum by applying an ADAM optimizer directly in a

dynamic evaluations setting, following up on the previous subsection which showed that

momentum hurt performance in a vanilla SGD dynamic evaluation. Adam, RMSprop,

and SGD with momentum traditionally use different variable names for very similar

hyperparameters, so to make things consistent, we use µ as momentum (used in SGD

with momentum), and Adam, and α as the weighted averaging parameter for RMS

gradients (as in Section 2.5).

We initially considered RMSprop and ADAM style dynamic evaluation using the

default settings for PyTorch (Paszke et al., 2017), only tuning the learning rate. We

the considered varying the α parameter for RMSprop and ADAM, and ran ADAM

with and without momentum. Learning rates for all experiment were found by starting

with a sufficiently low value, and repeatedly increasing the learning rate by 20% until

validation performance peaked. The results are given in Table 5.4, with SGD from the

previous experiment included as a baseline.

These experiments showed that momentum still hurt performance with adaptive

learning rates, and that the bias correction of Adam helped slightly (Adam without mo-

mentum could be seen as bias corrected RMSprop). The most important overall finding



5.4. Optimizers for dynamic evaluation 85

from these experiments is that RMSprop and Adam perform much worse than even

vanilla SGD in a dynamic evaluation setting. This could be seen as surprising, because

the optimizer originally presented for dynamic evaluation that worked noticeably better

than SGD had an update rule similar to RMSprop.

5.4.3 Hybridizing RMSprop and SGD

Following from the previous subsection, we explore why RMSprop as implemented in

deep learning frameworks performs so poorly on dynamic evaluation. We found that

this could be largely attributed to the ε parameter in RMSprop that controls numerical

stability. The update rule for RMSprop is given by

θ
i
l ← θ

i−1
l −η

∇L(si)√
MS+ ε

(5.12)

Where MS is the running average of the mean squared gradients. The ε parameter is

generally set to be very small and is mainly for numerical stability purposes (10−8 is

the default setting in many frameworks, and was used for Adam and RMSprop in the

previous experiments). In word-level language modeling, the running average for MS

can be near zero for weights associated with rare words. In this case, ε can have a large

effect on the update magnitude the first time a new word occurs. As a result, dynamic

evaluation in word level language modeling is very sensitive to the ε parameter. Another

view of the ε parameter is to determine how SGD-like the optimizer is. As ε→ ∞,

the optimizer becomes equivalent to SGD under a transformation of the learning rate

(this transformation would involve scaling the learning rate by 1/ε so that the update

does go to zero). For very small ε values, the optimizer can behave very differently

from SGD, and acts more like RMSprop in its intended form, with ε only used for

numerical stability. We measured dynamic evaluation performance of an RMSprop

optimizer on PTB with varying ε values (with the learning rate tuned to each ε value).

For comparison, we also include the dynamic evaluation optimizer used in the previous

chapter that uses RMS gradient statistics from the training data (equation 4.7), which

we refer to as “global RMS”, but leave out the decay prior for a fairer comparison with

RMSprop. The results are in Table 5.5.

The performance of RMSprop peaked at slightly better than SGD for an ε value

of 0.01, suggesting that there was a slight benefit to using adaptive learning rates if

carefully hybridized with SGD. As expected, RMSprop behaved identically to SGD as

the value of ε become very large. While these experiments show that if carefully tuned,
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model PTB validation perplexity

Static 59.7

RMSprop ε = 0.000001 57.5

RMSprop ε = 0.00001 56.3

RMSprop ε = 0.0001 55.2

RMSprop ε = 0.001 54.6

RMSprop ε = 0.01 54.4

RMSprop ε = 0.1 54.6

RMSprop ε = 1.0 54.7

RMSprop ε = 10 54.7

RMSprop best, ε = 0.005 54.4
SGD 54.7

Global RMS 52.7

Table 5.5: Dynamic evaluation PTB perplexity for varying ε values for RMSprop

RMSprop can gain a very slight advantage over SGD, the gains relative to SGD are

much smaller than achieved by the global RMS optimizer.

5.4.4 Global RMS vs. RMSprop

We perform follow up experiments to investigate why standard RMSprop performs

worse than using a Global RMS optimizer.

5.4.4.1 Amount of data for gradient statics

One hypothesis is that since the global RMS optimizer is able to use the entire training

set to compute gradient statistics, the gradient statistics should be more accurate, and

this could help the optimizer take better step sizes. A standard RMSprop optimizer can

only use the sequence history to compute gradient statistics, so it will have leverage

less data to compute RMS gradients than a global RMS optimizer. To test the theory

that this could be having some effect on performance, we ran a global RMS optimizer

using smaller portions of the training data (10% and 1%) to collect gradient statistics,

and measured performance vs. the global RMS optimizer that uses all of the training

data to collect gradient statistics in Table 5.6.
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model PTB validation perplexity

Static 59.7

RMSprop (with ε = 0.01) 54.4

Global RMS (1% for gradient statistics) 52.5
Global RMS (10% for gradient statistics) 52.5

Global RMS (100% for gradient statistics) 52.7

Table 5.6: Dynamic evaluation PTB perplexity using RMSprop and Adam optimizers

Using smaller portions of the training data to collect gradient statistics had a negli-

gible effect on performance, which contradicts the hypothesis that the amount of data

used for gradient statistics could explain the performance difference between RMSprop

and global RMS.

5.4.4.2 Local vs. global gradient statistics

Another hypothesis for why global RMS may work better than RMSprop is that there is

an advantage to collecting gradient statistics from sequences from the global distribution

of text rather than the local, sequence specific, distribution of text. We have observed

that gradients of static neural language models are locally correlated, meaning that the

gradients of sub-sequences in close proximity to each other tend to have higher inner

products with each other than random sub-sequences in general. So we would expect

updating on the gradients of these sub-sequences earlier in a long sequence to reduce

the loss on predictions later in the sequence, which is likely why dynamic evaluation

works (see Section 5.3). Collecting gradient statistics from the recent history would

have the effect of dampening update directions that have been occurring locally, even if

these update directions are rare globally. So for instance, if a rare word occurs multiple

times in a sequence, the learning rates for the weights associated with this rare word

would get smaller after each occurrence with RMSprop, but would stay constant (and

likely large, since the word is rare) for global RMS. Since being able to model rare

words well is important for dynamic evaluation, it may be undesirable to dampen the

updates for these rare words, as RMSprop would do.

To test this hypothesis, we ran a version of RMSprop that we refer to as “non-local

RMSprop”, that collected gradient statistics from a source independent of the evaluation

sequence. This procedure involved running two versions of the model in parallel, one
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model PTB validation perplexity

Static 59.7

RMSprop (with ε = 0.01) 54.4

Global RMS 52.7
Non-local RMSprop 52.6

Table 5.7: Dynamic evaluation PTB perplexity using RMSprop and ADAM optimizers

which was used for evaluation purposes, and one which was used to collect gradient

statistics for RMSprop. The setup was exactly like dynamic evaluation with RMSprop,

except that the sequence used for the recency weighted RMS gradients was different

from the evaluation sequence. The results of non-local RMSprop along with the relevant

baselines are given in Table 5.7. Non-local RMSprop achieved results on par with the

Global RMS optimizer from the previous chapter. This result supports the hypothesis

that using local gradient statistics for RMSprop has an undesirable effect for dynamic

evaluation.

5.5 Comparing state of the art character models with

human predictors

Measuring the entropy of the English language has long been of interest to information

theorists (Shannon, 1951; Cover and King, 1978; Brown et al., 1992b). The true entropy

of text is given by the generating distribution of the human writing the text. The entropy

of a particular sample of English text can be upper bounded by the entropy of that text

under a particular model, where model could be a human or a probabilistic algorithm. In

the past, it was generally assumed that humans could evaluate the entropy of text better

than other probabilistic models existing at the time; language is generated by humans

after all. However, measuring the entropy of text under a human’s language model is

non-trivial, as humans do not just output probability distributions. A couple of well

known past works have used text predictions from human subjects to yield estimates

for the entropy of English that are widely cited today (Shannon, 1951; Cover and King,

1978).
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The (binary) entropy of a discrete random variable is given by

H(X) =−∑
i

p(xi) log2 p(xi). (5.13)

The entropy of English text generally refers to the conditional entropy of a character of

text, measured in bits/character, given the history of text. The entropy of a distribution

p can be upper bounded by using distribution q as an approximation to distribution p.

The cross entropy of p approximated by q is given by

H(X) =−∑
i

p(xi) log2 q(xi) (5.14)

While exactly measuring the entropy of English text is impossible without the generating

process of the human writing the text, a tighter upper bound can be established with

a better approximating distribution. In this section, we compare how well approaches

developed in this thesis can upper bound the entropy of English text versus human

subjects in past work.

Shannon (1951) attempted to measure the entropy of the English language using

what is now known as the “Shannon game”. Human subjects repeatedly guessed the next

letter of text (limited to be 26 characters plus spaces) until they guessed correctly, and

then moved onto the next letter. Shannon (1951) used the number of guesses for each

symbol to estimate bounds to the human-level entropy of text prediction. If the model

(or human) guesses the next symbol in descending order of probability, the entropy of

the data under the model can be upper bounded using the entropy of the distribution

over the number of guesses it takes the model to predict the next symbol. qN
i is the

frequency that the model playing the Shannon game guesses the symbol correctly on

the ith guess. The entropy of this distribution, which is the upper bound for the entropy

of the generating distribution of the data, is given by:

H(X)≤−
27

∑
i=1

qN
i log2 qN

i (5.15)

This upper bound is achievable because the model could always assign probability qN
i to

its ith guess and it would achieve this entropy. However, doing this would not allow the

model to update the relative confidence of its guesses depending on its context, which

makes this a relatively loose upper bound. Shannon (1951) measured the entropy on

several segments of text and estimated the upper bound of human prediction to be 1.3

bits/character.
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The main drawback of the Shannon game is that models have no way to specify how

confident they are in their predictions. Cover and King (1978) devised a more precise

way to measure the human-level entropy of text, where subjects played a modified

version of the Shannon game where they also waged bets on how confident they were

in their guesses. Cover and King (1978) showed that an ideal gambler’s wagers are

proportional to the probability of the next symbol on their next bet, and thus established

a direct relationship between the return of the gambler and the entropy of the data under

the gambler’s model. Cover and King (1978) also provided the exact excerpt of text they

used, making direct comparison with future work possible. Cover and King (1978) used

12 human subjects to measure the entropy from an excerpt taken from the book Jefferson

the Virginian (Malone, 1948) (which was the same book but a different excerpt from

what was used by Shannon (1951)). The subjects predicted the 75 characters of bold

text (given below) excluding the comma and case insensitive, and were given access

to the entire book up to this excerpt to allow them to adjust to the author’s style. The

human predictors, made up of students and professors at Stanford, were apparently very

dedicated to achieving the best performance possible, spending an average of 5 hours

each to make predictions on just 75 characters of text.

The text excerpt is given here, with the evaluation text given in bold:

She was not only a “pretty lady” but an accomplished one in the customary ways,

and her love for music was a special bond with him. She played on the harpsichord and

the pianoforte, as he did on the violin and the cello. The tradition is that music provided

the accompaniment for his successful suit: his rivals are said to have departed in admit-

ted defeat after hearing him play and sing with her . In later years he had the cheerful

habit of singing and humming to himself as he went about his plantation. This is not

proof in itself that he was a pleasing vocal performer, but with Martha in the parlor it

We apply the advances in character level language modeling developed in the ear-

lier chapters of this thesis to compare with the human prediction results from Cover

and King (1978). We use the mLSTM model on text8 from Section 3.5.3 with dynamic

evaluation applied using the same settings as in Table 4.5.

The distribution of the training set and test set are noticeably different, as text8 is

taken from modern Wikipedia, whereas the excerpt is from a book written in 1948.

To partially make up for this, we give the entire book up until the test sequence as

conditioning text to allow the model to adapt to the author’s style. Perhaps better results
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model evaluation error (bits/char)

Human (avg subject) 1.59

Human (based on avg gambling return) 1.34

Human (best subject out of 12) 1.29
Human (ensemble of 12) 1.25

text8 mLSTM 1.44

text8 mLSTM + dynamic eval 1.31

Table 5.8: Performance of mLSTM vs humans on predicting text from Jefferson the

Virginian

could be achieved with a full retraining on a dataset of text from this author or time-

period. The results, in comparison to the human level results given by Cover and King

(1978), are presented in Table 5.8.

The mLSTM trained on text8 with dynamic evaluation applied performs on par with

the best human text predictors. It is likely that deep learning models and human models

make different kinds of errors. For instance, humans are much better at understanding

the higher level structure and logic of the text. Deep learning models may be able

to more accurately know their own confidence, and may capture certain statistical

regularities that humans fail to capture. As these two types of models likely make

different kinds of errors, the true entropy of the given sample of English text is probably

lower than either model alone could achieve.

Other evaluation methods in this thesis compare one model with another, which is

useful for comparing architectural features. These human experiments help put some

of the model comparison experiments into context, and give a sense of how well these

algorithms are actually doing at language prediction, since human performance is a

strong baseline. From these results we can say that RNN based language models can

achieve text prediction on par with the best human predictors, and that mLSTM and

dynamic evaluation help close this gap. However, given that an ensemble of humans

can still perform better, and that humans are likely still non-optimal, it seems likely that

there is still plenty of room for improvement in text prediction.
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5.6 Conclusion

This chapter aimed to better understand why dynamic evaluation improves the prediction

ability of strong baseline language models. We demonstrated that dynamic evaluation

was able to use about two thousand characters of context to improve its predictions on

enwik8, meaning that it is able to exploit long range statistical dependencies between

tokens on this task–an ability critical for achieving adaptation to long sequences. We

demonstrate how this adaptive ability helps dynamic evaluation recover from surprising

sequences by modeling re-occurring sequential patterns. We also explore optimization

for dynamic evaluation, and show how using gradient statistics for RMSprop from the

training data (instead of the adaptation data) can be beneficial in an adaptive setting.

Future work could apply this to other adaptation settings as well, such as normal

finetuning.



Chapter 6

Dynamic evaluation of Transformer

language models

In the time frame of this thesis, major advances were made to the field of language

modeling. The largest advance, was the introduction of transformer language models,

which have replaced LSTM language models for most–but not all text applications

at the time of writing of this thesis. As compared with LSTMs, Transformers are

able to use much longer range statistical dependencies, potentially making them more

adaptive at the sequence level. In this chapter, we explore the extension of dynamic

evaluation to Transformers. Gains resulting from dynamic evaluation are smaller than

gains observed in LSTMs in the previous chapters, suggesting that Transformers may

have more inherent adaptation ability, and this may partially explain their advantage.

While the improvements were smaller than in LSTMs, dynamic evaluation does still lead

to significantly better language modeling results both in and out-of-domain, indicating

that the improved adaptation ability from using dynamic evaluation is still useful for

Transformers. These results suggest that, despite the Transfomer’s ability to use long

range statistical dependencies, they are not fully able to adapt to recently seen text.

This further supports our thesis motivation of developing more adaptive methods for

language modeling, showing that it is applicable to different models. Some of the work

in this chapter is published in Krause et al. (2019).

6.1 Introduction

The previous two chapters focused on applying dynamic evaluation to LSTM and similar

recurrent neural network architectures, which were the state of the art for language

93
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modeling at the time that work was done. LSTMs conventionally used for language

modeling have been shown to use relatively short contexts to make predictions. For

instance, Khandelwal et al. (2018) showed that LSTMs trained on WikiText-2 and Penn

Treebank can use up to about 200 tokens of context to make predictions, and that the

token order only matters for the most recent 20 or so tokens. Dynamic evaluation helps

LSTM based language models better exploit long range dependencies, as demonstrated

in Section 5.1. A more recently proposed neural architecture, the Transformer (Vaswani

et al., 2017, Section 2.4.5.2), has been shown to be able to use longer range dependencies

in its predictions compared with LSTMs (Dai et al., 2019). Dynamic evaluation can be

applied to any language model at test time, but to our knowledge, no previous work has

applied dynamic evaluation to Transformers.

Transformers use a combination of a self-attention mechanism and positional embed-

dings to encode information about the sequence history (Vaswani et al., 2017, Section

2.4.5.2). The use of self-attention provides shorter paths for information to travel, which

is conjectured to be one of the main reasons that Transformers achieve better results on

common language modeling benchmarks, when compared to other models (Dai et al.,

2019). Moreover, Transformers trained on very large datasets can generalize to other

NLP tasks (Devlin et al., 2018; Radford et al., 2018, 2019), and generate samples over

long time frames that are sometimes realistic enough to trick humans into thinking they

are human generated (Radford et al., 2019; Zellers et al., 2019).

Dynamic evaluation adapts models to the recent sequence history via gradient

descent in order to exploit re-occurring sequential patterns. Natural language tends to

have long range dependencies associated with the style and word usage of particular

passages of texts; and dynamic evaluation can exploit these dependencies via online

model adaptation. Transformers with a large memory cache also potentially have the

capability of adapting to the style of the recent sequence history. The self-attention

mechanism could potentially learn to represent a similar algorithm to non-parametric

adaptation methods such as the neural cache (Grave et al., 2017b) or pointer sentinel

RNN (Merity et al., 2017). While Transformers in theory have this adaptive capability,

although it is unclear to what extent they learn to do this in practice. An untrained

Transformer has no inductive bias towards predicting repeating patterns in sequences,

and would have to learn this capability from training data. Applying dynamic evaluation

ensures that this ability will be present whether the model has learned to do this from

training or not. Transformers also require memory that scales linearly with the context

length used, whereas dynamic evaluation does not have this computational requirement.
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Dynamic evaluation and Transformers have each shown their respective capabilities

to over a thousand of timesteps of context to improve predictions (as demonstrated for

dynamic evaluation in Section 5.1, where we showed that using up to two thousand

characters of conditioning text continued to reduce prediction errors on Wikipedia data,

and for Transformers by Dai et al. (2019)), but it is unclear how much overlap there is

between the type of long-range dependencies exploited by Transformers and dynamic

evaluation. If Transformers are able to fully adapt to the style of the recent sequence

history, there should be little to no advantage of using dynamic evaluation. Therefore,

in this work, we explore the utility of applying dynamic evaluation to Transformers.

6.2 In-domain language modeling

These experiments apply dynamic evaluation to Transformers on standard language

modeling benchmarks, where the training and test set come from the same domain.

A number of variants of Transformers have been suggested for language modeling

(Al-Rfou et al., 2018; Liu et al., 2018; Baevski and Auli, 2019; Radford et al., 2018),

but in this section, we focus on the Transformer-XL architecture of Dai et al. (2019),

which has recently improved state-of-the-art results on a number of common language

modeling benchmarks.

6.2.1 Transformer-XL

The Transformer-XL is a modified version of the vanilla Transformer presented in

Section 2.4.5.2. The main differences are the use of relative positional encodings and a

segment-level attention recurrence.

When evaluating a vanilla Transformer to language modeling over long sequences,

the model uses some fixed context window based on its attention length. When evaluat-

ing the perplexity of sequences longer than the model’s attention length, the sequence

can be broken up and evaluated in segments. Using the series of equations presented

in Section 2.4.5.2, Transformer decoders map an input sequence of length N x1:N to

an output sequence y1:N , where y1:N is used to make predictions about x2:N+1 (as re-

viewed in Section 2.4.5.2, masked attention to prevent the model from having access

to xt+1:N when predicting yt). In the case where we evaluate a longer sequence using

non-overlapping segments of length N (meaning we are using a context length of N

and evaluation length of also N), then when predicting the first segment element y1, the
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model only has 1 token of context, resulting in a poor prediction. The other extreme

would be to (after evaluating the first sequence segment) only predict the last segment

element yN conditioned on x1:N , discarding the predictions y1:N−1. This method can

only predict 1 token at a time, making it very slow to evaluate the whole sequence.

Transformer-XL works around the problem of fixed length attention by using a

segment level attention recurrence. Hidden states after processing a sequence segment

are cached into a memory of length M, where typically M≥N, and are maintained when

processing subsequent sequence segments. This way, even when making predictions at

the beginning of a sequence segment, the model will have at least M tokens of context

to make predictions.

Applying the idea of segment level attention recurrence naively to a vanilla Trans-

former would lead to problems distinguishing positional information between hidden

states in the current sequence segment and hidden states in the previously cached hidden

sequence segment. For instance, when applying attention over the current sequence

segment and the previously cached sequence segment, the positional encoding (given by

Section 2.4.5.2, Equations 2.35 and 2.36) at position n in the current sequence segment

and the previously cached sequence segment would be the same. As a result, the model

would not be able to distinguish between the position of these previous states, resulting

in a performance loss. To address this, Transformer-XL uses relative positional encod-

ings in place of the absolute positional encodings used in the vanilla Transformer. In

vanilla Transformers, when computing attention between position t and earlier position

n, the tth and nth rows of the positional embedding matrix U are used to compute

positional encodings used for the computation (Section 2.4.5.2, Equations 2.37, 2.38,

and 2.39). In relative positional encodings used in Transformer-XL, the (t−n)th row of

U is used to compute positional encodings that contribute to the attention score between

t and n. Dai et al. (2019) shows that the unnormalized attention scores Â in Transformers

between the tth and nth position (for a given attention head) can be decomposed as

Ât,n = X>t W>qxWkxXn +X>t W>qxWkxUn +U>t W>qxWkxXn +U>t W>qxWkxUn (6.1)

where Xt and Xn are vectors correspond to the tth and nth rows of the matrix of

embedding across the sequence X (this notation is slightly different from in Section

2.4.5.2, which used subscript to denote layer), Ut and Un are vectors correspond to the

tth and nth rows of positional encoding matrix U , and (as in Section 2.4.5.2), Wqx and

Wkx are the learnable weight matrices for the queries and keys of the self attention. This

equation can be derived from the equations in Section 2.4.5.2. Transformer-XL replaces
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the absolute positional encodings Un with relative positional encodings Ut−n. It also

introduces two learnable parameter vectors u ∈ Rdx and v ∈ Rdx , which replace the two

instances of Ut . This results in a new equation for unnormalized attention scores.

Ât,n = X>t W>qxWkxXn +X>t W>qxWkxUt−n +u>W>qxWkxXn + v>W>qxWkxUt−n (6.2)

This relative encoding scheme gives the model the prior that only relative positional

information should matter, which is desirable for language modeling. Furthermore,

it allows the segment level attention recurrence to distinguish between positions in

different cached sequence segments and the sequence segment it is currently processing.

The relative encodings in Transformer-XL have also been shown to be able to generalize

to longer sequence lengths than seen during training (Dai et al., 2019), allowing for

more efficient training with shorter sequence segments to be an effective strategy.

6.2.2 Experimental set-up

We apply dynamic evaluation to pretrained Transformer-XL models from Dai et al.

(2019) on two character-level datasets and one word-level dataset. We chose these 3

datasets because they all contain long-range dependencies that span across sentences

and paragraphs, since they feature articles in unshuffled order. Details of the model

training can be found in Dai et al. (2019), and we downloaded models using their code1.

Following the work in Chapter 4, which applies dynamic evaluation to RNNs at the

sequence segment level, we apply dynamic evaluation to Transformer-XL models at

the sequence segment level. As noted in Section 6.2.1, Transformer-XL uses a segment

level attention recurrence, proccesing sequences in segments of length N and storing the

resulting embeddings in memory cache of length M. We align the sequence segments

of length N used for Transformer-XL with the sequence segments used to compute

the gradient for dynamic evaluation. The gradient is computed once for each sequence

segment (after taking a loss on the segment), and backpropagation is truncated to be

contained within a single sequence segment.

We measured the performance of two types of dynamic evaluation; one which

used the best optimizer from Chapter 4, which we refer to as “global RMS dynamic

eval + RMS decay” (update rule given in Equation 4.7), and one that used stochastic

gradient descent, which we refer to as “SGD dynamic eval”. Following the approach

1https://github.com/kimiyoung/transformer-xl

https://github.com/kimiyoung/transformer-xl
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from Chapter 4, we tuned hyperparameters for dynamic evaluation on the validation

sets before evaluating on the test sets.

6.2.3 Character-level experiments

As with RNNs in Chapter 4, we use the enwik8 (Hutter Prize) and text8 datasets

to benchmark dynamically evaluated Transformer-XL on character level language

modeling. In addition to applying dynamic evaluation to the largest pretrained models

by Dai et al. (2019), we also re-train a smaller Transformer-XL on enwik8 with 42M

parameters using code and hyperparameter settings from Dai et al. (2019). This model

size is more comparable to results elsewhere on enwik8 for this thesis. We noticed a

slight anomaly in the preprocessing of enwik8 in the code released by Dai et al. (2019)

that ignored a very rarely occurring token, causing it to have 204 unique tokens (rather

than the standard 205 tokens used in most results, for instance in Graves (2013)), and

caused the datasets to be shorter by a nearly negligible amount. Our results also contain

this anomaly since we use their implementation. Following Dai et al. (2019), we used

sequence segments of 128 and a memory cache of length 3800 for evaluation for the

large models on both datasets. For the smaller model on enwik8, we used sequence

segments of 128 and a memory cache of length 3800 for evaluation (also following

Dai et al. (2019)). Results for enwik8 and text8 are reported in Table 6.1 and Table

6.2 respectively. Applying Dynamic evaluation improves the Transformer-XL by a

noticeable margin, achieving state of the art on both of these character-level datasets.

6.2.4 Word-level experiments

We evaluate dynamic evaluation on word-level Transformer-XL using the WikiText-103

dataset (Merity et al., 2017), which is derived from the same Wikipedia data source

as WikiText-2 (first used in Section 4.7.1), but has a larger training set and vocabulary.

WikiText-103 contains 103 million training tokens, and a vocabulary size of 268k.

Given the large vocabulary size, the pretrained model we re-evaluate from Dai et al.

(2019) used an adaptive softmax output layer (Grave et al., 2017a) to make training

faster. Results for WikiText-103 are reported in Table 6.3. There was no noticeable

validation advantage to using a decay rate, so we refer to the dynamic evaluation

optimizer for this experiment as “global RMS dynamic eval”, since the decay rate was

set to zero. Dynamic evaluation gave a 9% perplexity improvement to Transformer-XL

on WikiText-103.
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Model # of params test bpc

Hyper LSTM (Ha et al., 2017) 25M 1.34

HM-LSTM (Chung et al., 2017) 35M 1.32

Recurrent highway networks (Zilly et al., 2017) 46M 1.27

FS-LSTM (Mujika et al., 2017) 47M 1.25

AWD-LSTM (Merity et al., 2018a) 47M 1.23

Transformer + aux losses (Al-Rfou et al., 2018) 235M 1.06

Multiplicative LSTM (Section 3.5.2) 46M 1.24

Multiplicative LSTM + dynamic eval (Section 4.7.3) 46M 1.08

Transformer-XL ∗ (Dai et al., 2019) 42M 1.053

Transformer-XL + global RMS dynamic eval + RMS decay 42M 1.012

Transformer-XL (Dai et al., 2019) 277M 0.993
Transformer-XL + dynamic eval (SGD) 277M 0.946

Transformer-XL + dynamic eval (global RMS, RMS decay) 277M 0.940

Table 6.1: Character-level cross-entropy (bits/char) on enwik8. As noted in Section 6.2.3,

there is a slight difference in the data used in Transformer-XL results and previous work.
∗This result was from retraining this model from a new random initialization rather than

using the exact pretrained model from (Dai et al., 2019).

The results on WikiText-103 are the first to apply dynamic evaluation with an

adaptive softmax output layer, to our knowledge. Adaptive softmax reduces the compu-

tational expense of the output layer at the cost of giving the model less expressiveness

at modeling rare words. When training a network from scratch, such a trade-off is

sensible, since it is difficult to learn a good representation of rare words. However, when

dynamically adapting to the recent sequence history, the adaptive softmax layer may

make adapting to recent rare words more challenging. There is potential for future work

improving the combination of dynamic evaluation and adaptive softmax, for instance

by hybridizing it with the neural cache method (Grave et al., 2017b). The neural cache

learns a non-parametric output layer that is independent of the network’s output layer,

which may potentially allow for more expressive adaptation to rare words in models

with an adaptive softmax.
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Model # of params test bpc

HM-LSTM (Chung et al., 2017) 35M 1.29

Recurrent highway networks (Zilly et al., 2017) 45M 1.27

Transformer + aux losses (Al-Rfou et al., 2018) 235M 1.13

Multiplicative LSTM (Section 3.5.3) 45M 1.27

Multiplicative LSTM + dynamic eval (Section 4.7.3) 45M 1.19

Transformer-XL (Dai et al., 2019) 277M 1.085
Transformer-XL + dynamic eval (SGD) 277M 1.042

Transformer-XL + dynamic eval (global RMS, RMS decay) 277M 1.038

Table 6.2: Character-level cross-entropy (bits/char) on text8.

6.2.5 Discussion

Dynamic evaluation was able to give moderate improvements to strong Transformer

network baselines, and improves the state of the art on all three datasets evaluated.

These results demonstrate that the types of long range dependencies used by dynamic

evaluation and Transformers are somewhat different, as applying dynamic evaluation

to Transformers leads to further improvements. These improvements are not nearly

as large in terms of cross-entropy reduction as when dynamic evaluation has been

applied to weaker models, suggesting that Transformers are more capable of capturing

and modeling re-occurring patterns in sequences than past architectures. However,

Transformers still struggle to fully exploit these repetitions, even in these experiments

where training and testing data came from the same domain.

6.3 Out-of-domain language modeling

These experiments apply dynamic evaluation to Transformers that are trained and

evaluated on datasets from different domains. The ability to generalize to data from a

distribution that is different from what was observed during training is important for

many real word tasks where training on data from the true testing distribution may

be impossible. The capability of dynamic evaluation to generalize out of domain was

briefly explored in Section 5.1, and in this section we extend it to a much stronger

baseline that already has some out of domain generalization capability to start with.
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Model # of params valid test

LSTM+ neural cache (Grave et al., 2017b) - - 40.8

GCNN-14 (Dauphin et al., 2017) - - 37.2

QRNN (Merity et al., 2018a) 151M 32.0 33.0

LSTM + hebbian + cache (Rae et al., 2018) - 29.7 29.9

Transformer + adaptive input (Baevski and Auli, 2019) 247M 19.8 20.5

Transformer-XL∗ (Dai et al., 2019) 257M 17.3 18.1
Transformer-XL + dynamic eval (SGD) 257M 16.3 17.0

Transformer-XL + dynamic eval (global RMS) 257M 15.8 16.4

Table 6.3: Word-level perplexity on WikiText-103. ∗We report our results using the

pretrained model from (Dai et al., 2019) using a batch size of 1, and achieved a slightly

lower perplexity than in the original paper (18.1 vs 18.3).

6.3.1 Background

There has recently been an interest in high capacity language models trained on much

larger data sets than standard language modeling benchmarks (Radford et al., 2018,

2019; Devlin et al., 2018). These models have been shown to be able to generalize to a

wide variety of NLP and language prediction tasks. Radford et al. (2019) specifically

looked at the task of out-of-domain language modeling, where a language model trained

on a large dataset is evaluated on text datasets from domains it has previously not seen.

The training set used for their GPT-2 model consisted of 40 GB of text crawled from

the web, with all wikipedia text excluded. Their model was then evaluated on common

Wikipedia based language modeling test sets, including enwik8, text8, and WikiText-2.

The largest GPT-2 variant, with 1.5B parameters, could outperform state of the art

language models on some Wikipedia based tasks, despite having never seen Wikipedia

data in its training set. GPT-2 seems to be able model re-occurring patterns to an extent,

as evidenced by the conditional samples that GPT-2 can generate that repeat patterns in

the conditioning text. This may partially explain why GPT-2 is able to perform so well

on text data that it has never seen before; it is able to learn to model patterns on the fly

from conditioning text. However, GPT-2 is limited by its fixed length memory window

of 1024 tokens (GPT-2 uses byte pair encoding tokens (Sennrich et al., 2015), which is

a type of subword unit).
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6.3.2 Experiments

In this section, we experiment with augmenting GPT-2 with dynamic evaluation in the

task of out-of-domain language modeling. Since the largest version of GPT-2 was not

released at the time of writing, we use a smaller version of GPT-2 with 345M parame-

ters2. This version of GPT-2 still obtained results on out-of-domain language modeling

that were comparable to previous state of the art models trained in domain. Unlike

the previous section, which uses Transformer-XL, GPT-2 uses a vanilla Transformer,

meaning that segment level attention recurrence cannot be used. Near the beginning of

the context, GPT-2 has very little context to make predictions, and therefore performs

much worse. It is possible to only evaluate the last token of the sequence segment and

discard the other predictions, making predictions one-by-one, using the full context

window. This is very slow however, because the model re-processes a long context each

time just to predict one token. As a compromise between these two extremes, when

applying both static and dynamic evaluation, we used a context window length of 1024

tokens and evaluated on segments of the last 32 tokens of the context. This way, the

model gets access to at least 992 tokens of context to make each prediction (except for

on the start of the test set, when it starts predicting form the beginning), but it is 32

times faster than predicting one token at a time.

When applying dynamic evaluation, we tune the hyper-parameters for dynamic

evaluation on held out webtext data3, and evaluate on each task with the same hyper-

parameters. This preserves the out-of-domain nature of the tasks (as opposed to tuning

dynamic evaluation hyper-parameters separately for each task). Both for perplexity

and memory efficiency reasons, we only applied dynamic evaluation to a subset of the

parameters of the network. We found that applying dynamic evaluation to the input-

output tied embedding matrix of GPT-2 required a much smaller learning rate and

resulted in a worse perplexity overall than only adapting other parameters. Furthermore,

adapting all the parameters of the network would not fit in memory on a single 11

GB GPU. Therefore, we only apply dynamic evaluation to the later layers in the

network, although not the tied input-output layer. This requires less computation and

memory because gradients do not need to back propagated as far. As in the section on

Transformer-XL, we evaluate our model using SGD and global RMS style dynamic

evaluation. The global RMS style dynamic evaluation did not include a decay rate, as

this did not help performance. Bits per character and perplexities are calculated by

2GPT-2 345M is publicly available here https://github.com/openai/gpt-2
3This subset was released here: https://github.com/openai/gpt-2-output-dataset

https://github.com/openai/gpt-2
https://github.com/openai/gpt-2-output-dataset
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Model enwik8 bpc text8 bpc WikiText-103 ppl

GPT-2 345M 1.017 1.066 26.6
GPT-2 345M + dynamic eval (SGD) 0.893 1.017 23.0

GPT-2 345M + dynamic eval (global RMS) 0.869 1.003 21.9

Table 6.4: Out-of-domain language modeling

computing the entropy of the full test file under GPT-2’s tokenization, and dividing this

by the number of tokens used in the benchmark, to give numbers comparable to other

models tokenized and trained directly on these data sets. The results are given in Table

6.4.

Dynamic evaluation improves GPT-2 by a significant margin on all tasks, especially

enwik8, which contains a mix of markup and text. The result of 0.87 bits/char on enwik8

is also significantly better than the largest GPT-2 (GPT-2 1.5B), which achieved 0.93

bits/char without dynamic evaluation (Radford et al., 2019).

6.3.3 Discussion

These experiments show that dynamic evaluation’s capability to help even very strong

and multi-modal language models perform well on out of domain tasks. The GPT-2

baseline model was pretrained across many different data domains and can achieve a

competitive performance on out of domain data when statically evaluated. However,

applying dynamic evaluation to this model still greatly improves performance. This

may be partially due to the limited context window in the self-attention; GPT-2 has

access to the previous 1024 tokens when making predictions, but the test sequence on

some tasks is over a million tokens long. GPT-2 may be able to adapt to the sequence

within its context window, but dynamic evaluation allows the model to adapt to the

entire sequence history, which contains much more information. Some recent work has

focused on extending the context windows of Transformers by having more efficient

memory. For instance Child et al. (2019) proposed a sparse attention mechanism that

is O(n
√

n) computation in the length of the sequence, as opposed to standard self

attention, which is O(n2). However, like standard self-attention, this approach is still

O(n) memory in the length of the sequence, which would be a problem for generalizing

to very long sequences. Furthermore, explicitly learning the ability to use very long

range dependencies in predictions would likely be difficult even for a model with a very
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long attention window. Dynamic evaluation has the advantage of being able use very

long range dependencies implicitly without being explicitly trained to do so; even a

completely untrained model with dynamic evaluation would be able to benefit from

long contexts due to the gradient descent updates.

6.4 Conclusion

This chapter applied dynamic evaluation to Transformer language models in two set-

tings; the conventional language modeling setting, where the model is trained on

evaluated on the same data, and out-of-domain language modeling, where an especially

strong pretrained model is evaluated on data from a different distribution from what it

saw during training. Transformers are able to use longer range statistical dependencies

than the models from previous chapters, and may to some extent learn to adapt to what

they have seen recently. Therefore, it was well motivated to examine whether dynamic

evaluation could still be helpful in this setting. Dynamic evaluation gave significant

improvements in both the in domain and out-of-domain language modeling. Thus, the

work in this chapter further highlights the importance of adaptation ability in achieving

robustness to surprise and better overall language modeling results.
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Conclusion

This thesis supports the claim that giving language models additional flexibility to
adapt to their inputs can improve their predictions by helping them recover from
surprising tokens or sequences. Multiplicative LSTM made LSTMs more adaptive

at the token level by allowing them to have a different hidden-to-hidden transition

function for each possible input token. Dynamic evaluation enabled models to adapt

more effectively to sequences by using gradient descent to fit to the recent sequence

history. Both of these adaptive methods led to improvements in language modeling, and

in both cases, these improvements were at least partially explained by the ability to

recover from surprising inputs. These results highlight the importance of adaptability in

language modeling.

7.1 Thesis contributions

The main contributions of this thesis are:

• presenting multiplicative LSTM as an architectural enhancement to LSTMs for

language modeling that allow them to have a different recurrent transition function

for each possible input token. The improved adaptation ability resulting from

this modification gave empirical improvements to language modeling in our

experiments, which showed

– mLSTM could outperform well tuned LSTMs and previously existing neural

architectures at character level language modeling, using significantly less

depth (Section 3.5.2). While depth can give models a greater ability to adapt

to their inputs by making the model more complex, mLSTM can do this in

105
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a simpler way, requiring fewer sequential computation steps (thus allowing

faster computation via parallelization), and achieving better overall results.

– a byte-level mLSTM could match perplexities of similarly trained word-level

LSTMs (Section 3.5.4). Word level language models are unable to model

out-of-vocabulary words, which is a major drawback for language prediction

tasks that require this ability. Showing that a byte-level mLSTM with the

flexibility to model almost any type of text can perform competitively with

a word-level LSTM in a limited vocabulary setting is another demonstration

of the advantage of mLSTM vs. LSTM. Showing that a byte-level model

can achieve strong results also motivates using benchmarks and models with

broader tokenizations to be able to model open vocabulary more effectively.

– experiments showing mLSTM can make better predictions vs. LSTM im-

mediately after an unexpected token (Section 3.5.2). This contributes to the

understanding that adaptation ability helps models recover from surprise.

• exploring dynamic evaluation, a previously existing but not well understood and

sparingly used method, as a way of adapting auto-regressive sequence models

to their predictions. We found that through this adaptation, dynamic evaluation

could give large improvements to language modeling to many different neural

architectures in several different settings. The specific contributions to dynamic

evaluation include:

– developing a dynamic evaluation method to improve a variety of state of

the art models at character and word-level language modeling (Sections 4.5

4.7 and 6.2). These results present evidence that adaptation ability helps

language models make better predictions.

– demonstration of dynamic evaluation’s ability to generalize to out of domain

text prediction (Sections 5.1 and 6.3). These results show that dynamic eval-

uation’s adaptation ability make it especially robust to surprising sequences.

Normal models struggle when evaluated on sequences from a different

language from the training language, whereas dynamic evaluation greatly

improves both LSTM and Transformer language models in this scenario.

– showing the qualitative ability of dynamic evaluation to generate samples

that repeat patterns in the conditioning text (Section 5.2). The ability to

model repeating patterns gives a mechanism by which dynamic evaluation
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can make models more robust to surprising sequences. If the model observes

text with statistical regularities it was not expecting, it will always fail at

predicting it the first time. However, if it is able to adapt, if it sees text with

the same statistical regularities later in the sequence, it will be able to predict

it better.

– analysis demonstrating that dynamic evaluation gains a large advantage

on repeating words, and can also generalize from related words (Section

5.3). This analysis gives further evidence that dynamic evaluation gains

its advantage from adapting to re-occurring patterns in sequences. We also

hypothesized a specific mechanism by which dynamic evaluation generalizes

to related words; related words tend to occur in similar contexts, and as a

result, learn similar output embeddings during training. This means that

prediction errors on related words will result in similar gradient signals,

meaning that for a small enough learning rate, an update to one word will

generalize to words with similar word embeddings.

– in depth exploration of dynamic evaluation optimizers (Section 5.4), and

development of novel optimization algorithms that improve performance in

a dynamic evaluation setting, and may have applications to other adaptation

settings. We introduce a decay prior to prevent parameters from straying

too far from what they learned during training. We also develop a new

RMSprop-like method for dynamic evaluation that benefits from using

gradient statistics from the training set rather than from the adaptation data.

– dynamic evaluation methods that are more computationally and memory

efficient (Section 4.6). Applying dynamic evaluation to update all of a

model’s parameters uses a large amount of memory when combined with test

time mini-batching, giving it some computational disadvantages compared

to other models. Achieving strong adaptation by only adapting a small

subset of the weights of the model makes dynamic evaluation practical to

settings that require mini-batching.

– analysis of the sequence lengths at which dynamic evaluation gains its

advantage (Section 5.1). The ability to exploit long range statistical depen-

dencies is important for fully adapting to long sequences, and of general

interest to researchers working on language modeling and sequence mod-

eling problems. We show that dynamic evaluation can use long contexts
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especially well.

– comparison of language models that use dynamic evaluation (and mLSTM)

with human language predictors (Section 5.5), showing that they could

perform on par with the best human predictors, but worse than an ensemble

of human predictors. This result helps put other results in this thesis into

context, as humans would be expected to be a strong baseline.

– application of dynamic evaluation to polyphonic music prediction (Section

4.8). While this thesis mainly focuses on text language modeling, other types

of sequences contain re-occurring patterns too. We show in these results

that making music sequence models more adaptive with dynamic evaluation

can also improve their predictions.

7.2 Future work

Two main categories of future work that could extend the claim in this thesis are:

1. directly applying the methods proposed in this thesis to other sequence prediction

and generation problems. This thesis demonstrated that dynamic evaluation and

multiplicative LSTM give improvements to next token prediction in text. However,

improvements to language modeling often generalize to text generation, and other

more general problems in NLP and sequence modeling.

2. developing new neural architectures that are flexible and adaptive. This thesis

highlights the utility of neural architectures in language modeling with greater

flexibility to adapt to their inputs. This principle may be extendable to create

better architectures for language modeling or other problems in deep learning.

Applying mLSTM and dynamic evaluation directly to other problems is the most

straightforward way for this work to be extended. Fortunately, at the time of writing of

this thesis, many extensions of mLSTM to other problems have already been carried out

in other work. mLSTM has found applications to problems that require text generation

rather than just ground truth prediction, including machine translation (Pinnis and

Kalnins, 2018), conversational AI (Krause et al., 2017a), and abstractive summarization

(Chu and Liu, 2018). Work by Radford et al. (2017) demonstrated that large mLSTMs

pretrained as language models could learn strong representations for sentiment, and

used these representations to achieve state of the art sentiment analysis results. Outside
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of text modeling, mLSTM was also found to learn useful representations for proteins

by modeling them as strings of amino acids (Alley et al., 2019).

Dynamic evaluation’s most direct applications are to settings where ground truth

is available. This includes predictive keyboard and predictive search engine, where

dynamic evaluation could be used to adapt to recent data. Dynamic evaluation demon-

strated the ability to generate samples that repeated patterns from the conditioning text

in Chapter 5, which could be useful for conditional sequence generation. Dynamic

evaluation could be applied to conditional language and music generation, where the

ground truth of the conditioning text is available. This is the case in dialogue generation

for instance.

Dynamic evaluation may also have applications to abstractive summarization, where

the ground truth source sequence is available. Summarization entails mapping a longer

passage of text to a shorter summary. The distribution of text in the passage and the

summary are not exactly the same, but are closely related as they will cover the same

topics. The distributions are related enough that pure language models (which use the

same parameters to process source text and generate target text) have had success at

this task (Radford et al., 2019; Liu et al., 2018). In summarization models that use a

language model (with a shared encoder and decoder), dynamic evaluation could be

applied to fit the model to the passage before generating the summary. This would bias

the model towards words and topics found in the passage, which could be especially

useful for summarizing longer passages, when it may be difficult for standard models to

utilize the full context.

While dynamic evaluation has clearer benefits to tasks such as language modeling

where the ground truth is available, future work will be required to determine how these

improvements generalize to tasks that would require fitting to generated tokens. Dy-

namic evaluation could potentially be beneficial to tasks such as speech recognition and

machine translation over longer contexts, as similarly motivated adaptation approaches

have given improvements in these settings. For instance, in past work adaptive n-grams

have been used to improve speech recognition (Jelinek et al., 1991) and neural caching

has been used to improve machine translation (Tu et al., 2017; Kuang et al., 2017).

Dynamic evaluation would likely assign a higher probability to correct transcriptions

for these tasks, since it would be able to capture repeating patterns and style. However,

there are potential problems with decoding dynamically evaluated models, since they

may assign higher probabilities to incorrect transcriptions that repeat incorrect words

many times. This problem could result from fitting models to repeat patterns from
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incorrect transcriptions from earlier in the sequence. One conservative approach to

address this might be to use dynamic evaluation to re-weight an n-best list generated by

another model, as constraining dynamic evaluation to limited options would prevent

it from repeating the same tokens over and over. The success of dynamic evaluation

for language modeling indicates that the architectures used for speech recognition and

machine translation systems struggle to correctly predict repeating patterns over long

contexts, and approaches that use dynamic evaluation or other related methods to do

this are well motivated.

Dynamic evaluation also appears to applications outside of text modeling. This

thesis demonstrated that dynamic evaluation could help with music prediction, and there

may be applications of dynamic evaluation in other auto-regressive sequence modeling

tasks such as video prediction. Furthermore, dynamic evaluation and approaches that

extend on dynamic evaluation with online meta-learning have proven useful in model

based reinforcement learning in a dynamically changing environment (Nagabandi et al.,

2019).

Beyond direct applications to tasks, this thesis suggests future work in developing

new models with added flexibility to adapt to their inputs. The architectural enhance-

ments in mLSTM and dynamic evaluation could both be useful starting points for

achieving this. The input dependent hidden-to-hidden transition matrix in mLSTM

could be used in other architectures; for instance, in Transformers, the weight matrices

in the feed forward layers could use a similar input dependent factorization.

Dynamic evaluation builds gradients into the architecture in a way that could

potentially be extended to other adaptive methods. Gradient descent is typically used as

a method for learning global information about a distribution i.e. by training a neural

network. However, the idea of using gradient descent as a memory that can exploit

local information is still under-explored, and may have applications beyond dynamic

evaluation. It is clear that gradient descent is capable of encoding knowledge that can be

useful for tasks like question answering. For instance, the GPT-2 model from Radford

et al. (2019) was able to answer questions that never occurred in the training data such

as “who wrote the book the origin of the species?” purely as a function of the learned

weights of the network, without any context. Presumably, at some point during training

the network encountered a passage about Charles Darwin and learned to associate

him with the “origin of the species” via a gradient descent update on a language

modeling objective function. While the non-parametric memory found in Transformers

is powerful for encoding memories for relatively short contexts, gradient descent could
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potentially encode memories over entire data sets, as it appears to successfully do in

the above Charles Darwin example. The high level idea of exploring language models

with gradient descent built into the model, which could be trained via meta-learning

approaches such as MAML (Finn et al., 2017), is an interesting future direction.
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