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ABSTRACT 

Correlation function implementation methods are reviewed and 

their performance under non-stationary signal condition described. 

Transit time measurement techniques based on methods for detecting 

the most significant peak position of a cross-correlation function 

are described and dynamic performance, defined by the sample data 

nature of the output indication is noted as a major deficiency. 

Simple analogue, negative feedback, time delay tracking loops 

offer an acceptable dynamic performance, but In practice these may 

track spurious peaks. 

Improvements have been made to the basic tracking circuit 

which results in the most significant peak always being tracked 

and hence a reliable transit time measurement system is formed, 

with a good dynamic- performance, which is suitable for use in 

industrial correlation flow meters. Flow measurement is noted as 

an important application area for this work. 

Parameters affecting the performance of this correlation based 

measurement system , in particular under non-stationary signal 

conditions, have been reviewed. 	A detailed analysis of the 

performance of the tracking loop is presented. Transfer function 

analysis of the loop has shown it to be a first order system. 

Experimental results have closely confirmed predictions derived 

from the linear transfer -function. 

A flow noise simulator was designed and constructed to 

investigate the performance of the improved circuit. Performance 

of the improved tracking circuit under changing signal conditions 

was investigated and the results obtained indicates that It can be 

designed to offer industrially acceptable performance. 
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CHAPTER 1 	INTRODUCTION 

1-1 Correlation Based Measurement Systems 

Correlation based measurement systems are potentially 

useful in a wide range of applications in measurement, 

telecommunications, and control systems. 	Due to the growing 

advances in micro-electronic technology the practical 

implementation of the correlation function and its applications 

have been reported by several authors, for example -Bendat and 

Piersol (1980). The range of problems which can be solved using 

correlation measuring techniques are extremely wide. 

The major measurement applications for correlation have 

been, and will probably continue to be found, in correlation 

flow-meters. The correlation flow-meter is based on measuring the 

transit time of naturally occurring flow disturbances between two 

points, a known distance apart, in the direction of flow. 	It 

should be noted that careful transducer design is required to 

ensure that the correlation function relating transducer outputs 

has a significant amplitude and symmetrical shape. Different 

types of transducers for example, hot-wire, capacitive, ultrasonic 

and optical have been reported to monitor the flow noise 

disturbances for flow measurement applications. 

Velocity measurement using correlation techniques have 

been reported by several investigators, for example, Townsend 

(1947), Batterfield, Brigand and Downing (1961), Fisher and Davies 
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(1963) and Komiya (1966). Other measurement situations are being 

investigated where noise signals are inherently generated that are 

suitable for correlation analysis. 	For example, water and gas 

leaks generate acoustic noise, this noise can be monitored by 

positioning receiving transducers at a number of points and the 

cross-correlations obtained relating the transducers outputs. The 

geometry of the receiving transducers and peak positions of the 

measured cross-correlation functions are then used to locate the 

position of the leak. 

Other application of the transit time measurement using 

correlation techniques are described by several investigators, for 

example, distance measurement - Spilker and Magill (1961), gas 

chromatography - Godfrey and Derenish (1968), system 

identification - Sheppard (1973), bio-medical engineering - 

Tompkins, Monti and Intaglietta (1974), communication and radar - 

Forrest and Price (1978), and sonar - Adams, Kuhn, Whyland (1980). 

A survey of possible application areas for correlation function 

based measurement systems has been given by Massen (1982). 

1-2 Correlation Flow Measurement 

The majority of industrial flow, systems are highly 

turbulent so that the flow may be regarded as consisting of a 

large number of naturally occurring disturbances moving with the 

flow. 	Important factors appearing in a flow measurement system 

specification can be listed as, accuracy, reliability, response 

time, range, and cost. An obviously desirable feature of any type 

of flow-meter is that it should offer little or no obstruction to 



the flow stream. 

Industrial correlation flow metering can be applied to 

fluids, gasses and particles in suspended flow. This is often 

combined with density measurement in order to achieve a mass per 

unit time in volumetric applications. 	The open channel flow 

measurement application of the correlation based measurement 

systems has been described by Kaghazchi and Beck (1977). 

Despite recent advances in low cost micro-electronic 

circuits the correlation flow— meter has not achieved a 

commercially attractive selling price. In addition a long 

measurement time is required to achieve statistically acceptable 

results but this leads to a display which jumps in discreet steps 

from reading to reading under changing signal conditions. This is 

generally thought to be a bad feature for industrial applications. 

Correlation function theory is generally only valid for 

stationary signal conditions. 	Experimentally however it can be 

observed that the function peak height is reduced and its width 

increases if the flow noise signal is changed during the 

integration period. Very little work has been reported on the 

accuracy of correlation based measurement systems under changing 

signal conditions. 

Due to the relatively low cost of implementation, coarsely 

quantised time delay axis based measurement systems have been 

developed by several investigators for flow measurement 

3. 
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applications. Reported, commercially developed, correlation 

flow-meters are based on the above technique. 	The Endress and 

Hauser Co. (1982), have developed a commercially available 

correlation based measurement system for flow measurement 

applications. 	In addition the commercially developed correlator 

have been successfully employed for the location of the position 

of water and gas leaks. Other reported developments are the 

prototype KPC multichannel correlation signal processor developed 

by Kent Instruments Ltd., Keech (1982), and the prototype 

correlation flow-meter developed by Taylor Instruments Ltd. 

(1976). 

Under changing, i.e. non-stationary flow noise signal 

conditions it is likely that the tracking correlators will perform 

better than coarsely quantised time delay axis based correlation 

flow-meters. In addition tracking correlators are not complex and 

expensive to implement. But they do not have a good reputation 

for industrial applications. Major obstacles for industrial 

application, and in particular for flow measurement applications, 

is the possibility of tracking spurious peak which could lead to 

inaccurate estimation of transit time. 

Consequently the major part of this thesis is concerned 

with the development of a peak tracking system for industrial flow 

measurement applications. An improved constrained peak tracking 

ICPT correlator has been designed and constructed to give reliable 

and accurate estimation of flow velocity with a fast response 

time. 	The performance of the ICPT correlator was investigated 



under changing signal conditions, and the results obtained 

indicates that the ICPT correlator can be designed to offer an 

industrially acceptable performance. 

1-3 The Programme of the Research 

The primary objective of the research programme was to 

investigate methods for improving the accuracy and dynamic 

performance of correlation based measurement systems, particularly 

under changing signal conditions. 	This part of the research 

programme has resulted in the design and construction of the 

improved constrained peak tracking (ICPT) correlator, and its 

performance was optimised for flow measurement applications. 

The improved constrained peak tracking correlator is 

comprised of three correlators operating in parallel. A micro-

computer based coarse correlator was designed to constrain the 

tracking loop to track the most significant peak of the 

correlation function. The variance of the peak position estimate 

of the micro-computer based correlator is poor and can set the 

delay shift register length of the loop through a coarse position 

latch. 	The tracking loop is free to track the most significant 

peak of the correlation function within its linear lock range. 	A 

window comparator is used to control the coarse position latch 

through a logic control, and Is enabled once the tracking loops 

error voltage is beyond its linear lock range. 'A single bit 

polarity serial correlator is used to indicate the out of lock 

mode of the tracking correlator. 



A secondary objective of the research programme was to 

design and construct a programmable flow noise simulator, which 

could be used to evaluate the performance of the prototype ICPT 

correlator. The designed and constructed flow noise simulator has 

characteristic very similar to flow generated noise signals. 

An IEEE bus interface circuit was designed and constructed 

for the flow noise simulator and the ICPT correlator. The 

experimental measurement system was controlled through the IEEE 

bus by an HP-85 computer. This computer controlled arrangement 

was proved to be invaluable for the large number of long term, 

statistical, experiments carried out to evaluate the performance 

of the experimental system. 

Adetailed experimental study of the performance of the 

tracking loop revealed that for linear and reliable operation of 

the ICPT correlator additional circuits such as the window 

comparator and coarse position latch were required. The prototype 

model of the tracking system was found to operate exactly as 

predicted by its first order transfer function. The experimental 

results obtained for the performance of the ICPT correlator 

indicate that the ICPT correlator can be considered as one 

approach to the future realisation of industrially acceptable 

correlation flow-meters. 

1-4 Thesis Format 

Chapter 2 gives the theoretical and practical background 

necessary to understand and implement correlation based 



measurement systems. A review of published works on the 

performance of correlators and some of the techniques available to 

estimate the correlation function under non—stationary signal 

conditions is also presented. 

Design of the micro—computer based flow noise simulator is 

described in chapter 3. The second part of this chapter describes 

the performance of the flow noise simulator. 

Chapter 4 describes design of the prototype ICPT 

correlator. 	The design of the TRW TDC1004J based coarse 

correlator and the micro—computer based coarse correlator are also 

presented in this chapter. 

The detailed investigation of the performance of the 

tracking correlator is given in the first part of chapter 5. The 

second part of chapter 5 is devoted to an assessment of the 

overall performance of the ICPT correlator. 

Chapter 6 summarises the conclusions of the thesis and 

suggsts some extensions to the research programme. 



CHAPTER 2 CORRELATION: THEORY AND IMPLEMENTATION 

2-1 The Correlation Function 

The correlation function relating two random 

variables describes the dependence of one random signal on the 

other one as a function of the time delay between the two signals. 

The cross-correlation between two random signals, x(t) and y(t), 

can be described by the mathematical expectation:- 

R4 (t,') = E [ y(t) . x(t-') ] 	 (2-1) 

where Rd(t,'t)  is the cross-correlation function between x(t) and 

y(t) with a time difference' , and E is the ensemble average. 

For a stationary random process this average will only depend on 

the time difference between two signals and the cross-correlation 

function can be expressed as:- 

(r 

Rdx(1t) = Lim _LJ y(t) . x(t-t) dt 	 (2-2) 
T40d 

The correlation function integral can be implemented as shown in 

figure 2-1. 

The normalised correlation function<(r),  is given by:- 

RdX ('t) 
E: (t) = --------------------------- (2-3) 

1(0) . Rd, () 



Where Rz() and 	(t) are the auto-correlation functions of 

x(t) and y(t). 	The auto-correlation function of the random 

processes x(t) and y(t) are given by:- 

() = __ f x(t) . x(t- 	dt 	 (2-4) 

and 

() 	__jy(t)  . y(t-) dt 	 (2-5) 

with R(0) = mean square value of x, 

and R(0) = mean square value of y. 

In recent years correlators have been widely used in 

flow measurement applications. 	A schematic diagram of a 

correlation flow-meter is shown in figure 2-2. 	Two transducers 

are clamped to the pipe wall at a distance L apart, and generates 

electrical noise signals which are related to flow turbulence and 

conveyed particles. The signal at the down-stream transducer y(t) 

will be, approximately,a delayed version of the signal, x(t), 

being monitored by the up-stream transducer. The time delay 

between up-stream and down-stream signals is found from the 

position of the peak of the correlation function estimate. 



Therefore flow velocity within the pipe is given by:- 

L 
V = -i-- 	 (2-6) 

Time domain estimation of the correlation function 

integral can be performed using one of the three methods given 

below:- 

1) Direct correlation methods: the direct correlation 

function is estimated with both.signals in their analogue 

form. 

ii) Stieltjes correlation methods: 	where one input signal 

is quantised and the other input signal to the correlator is 

analogue, Watts,(1962). The simplest form in this 

classification is known as the relay correlator, where one 

input signal is quantised to two levels. 

(iii) Digital correlation methods: The digital correlation 

function is estimated with both signals quantised. In the 

most extreme case both signals are quantised to two levels 

and is referred to as polarity correlation. 

Significant improvements in the cost of estimation of the 

correlation function can be achieved using digital algorithms. 

Due to the growing capability and the availability of low cost and 

fast digital integrated circuits, digital techniques to estimate 

correlation functions have been extensively investigated. 

10. 
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2-1-1 Digital Correlation Algorithms 

If the digital techniques are used to estimate the 

correlation function, input signals must first be sampled and 

quantised. The digital sampled-data correlation function, 

algorithm is given by:- 

R0 (j) = 	y . 	 j0,1,2 ...... M 	(2-7)

kzi 

Where xK  and yK  are the quantised values of the x(t) and y(t) 

sampled at intervals of L'r and the correlation function is 

estimated at N equally spaced lag values with measurement time of 

NA?. 

To avoid loss of information the sampling rate of the 

input signals should not be less than the Nyquist sampling rate, 

which requires a minimum sampling rate of twice the highest 

frequency component of the input signals. The effect of 

quantisation of the input signals to be correlated have been 

considered by several authors, for example Watts (1962), Widrow 

(1956), (1961). It has been shown that the quantisation operation 

is equivalent to adding random unwanted noise to the signal with 

the mean value of the noise depending on the quantisation level. 

Therefore the variance of the correlation function estimate will 

increase if the input signals to the correlator are quantised. 

Finne (1965) has investigated the effect of quantisation on the 

variance of the correlation function estimate and he has shown 

that the variance of the correlation function estimate will 
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increases by a small factor, even for fairly coarse quantisation 

levels. 

A significant reduction in implementation cost is 

achieved if quantisation is carried out to the extreme, resulting 

in two level signals, namely polarity signals. 	The polarity 

correlation algorithm is given by:- 

Rpx(J) = 	Sgn (y) . Sgn (xK_) 	j=1,2 ...... M 	(2-8) N L 	j 
Where Sgn(x) and Sgn(y) are the polarity samples of x(t) and 

y(t) taken at intervals of 	and Rp x  is the polarity 

correlation function estimate. 

Van Vleck (1966) has shown that for a Gaussian random 

signal with zero mean the polarity correlation function 
IQ Ps is 

related to the normalised direct correlation function, 	, by the 

expression: - 

- S1;' 	 (2-9) 

Therefore the variance of the polarity correlation function will 

be increased compared with the variance of the direct function, 

but the peaks of the functions will coincide, as shown in figure 

2-3. Hence the polarity correlation algorithm is ideal for 

applications such as correlation flow measurement, where the 

position of the peak of the correlation function is of great 



13. 

x 

d (D) 

Fig.2-1 IMPLEMENTATION OF THE CORRELATION FUNCTION INTEGRAL. 

DIRECTION OF FLOW, 

I 

UP-STREAM _____j4  L-'l_____ DOWN-STREAM 
TRANSDUCER 	 TRANSDUCER 

x (4.) ), (4.) 

* 

'P 

PdT 

Rd(-) 

Fig. 2-2 CORRELATION FLOW MEASUREMENT. 

Lii 

I- 
-I 

-j a-x 

TIME DELAY 

Fi9.2-3 POLARITY & DIRECT CORRELATION FUNCTIONS. 



importance. 

To further reduce the cost of the estimation of the 

polarity correlation function. Kam, Shore and Feher (1975) have 

described the slow sampling algorithm given by:- 

Rp5(J) = 	Sgn() . Sgn(x) 	j1,2 ...... M 	(2-10) 
N E 

k', t1+, 2.M+( 

The up-stream signal is slow sampled with a period of AT and the 

down-stream signal is sampled at a period of Alt, determined from 

the resolution required rather than the bandwidth of the signals 

being correlated, and N is given by:- 

(2-11) 
AIr 

Experimental results given by Thorn (1979) indicates 	that this 

simplification 	will have little effect on the accuracy of the 

correlation function estimate, however more work Is required to 

investigate the variance of the correlation function estimate 

using the slow sampling technique. 

2-2 Implementation of Correlators 

In general the correlation function between two signals 

can be estimated using one of the three techniques given below:- 

14. 

1) Hardware correlation using commercially available 



digital circuits. 

Customised single chip integrated circuit correlation. 

Micro-computer based correlation. 

2-2-1 Serial Correlator 

The serial correlator has the simplest structure. 	It 

estimates the correlation function for a series of values of time 

delay taken in turn Korn (1966), Hayes and Musgrave (1973). 	This 

method is slow and is not suitable for real time operations and in 

particular it is not suitable for on line flow measurement 

applications. 

2-2-2 Parallel Correlator 

Due to the fast response of the parallel implementation 

method, shown in figure 2-4, this method can be used for real time 

estimation of the correlation function, Korn (1966), Hayes and 

Musgrave (1973). 	But it is not practical for industrial use due 

to its high cost and the complexity involved. 

2-2-3 Serial Parallel Correlator 

To reduce the complexity of the parallel correlators, 

the serial-parallel correlators shown in figure 2-5 can be used, 

Finne (1965), Korn (1970), Hayes and Musgrave (1973). 	This 

correlator still is relatively expensive to implement for 

industrial applications. Both the Hewlett-Packard HP3721A (1968), 

and the Honeywell Saicor (1970) correlators are based on the 

15. 
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serial-parallel technique. Hewlett-Packard correlator quantises 

one channel to three bits and the other channel is quantised to 

seven bits. This quantisation technique is described by Finne 

(1965). 

To find the position of the peak of the correlation 

function estimate Hayes and Musgrave (1973) have described a 

method where each value of the coefficient of the correlation 

function is compared with the highest already found value and the 

largest of the two is stored with the corresponding delay value. 

Therefore once the measurement time is completed the position of 

the peak of the correlation function is indicated by the stored 

delayed value. 

2-2-4 Overloading Counter Correlator 

A novel method for estimating the polarity correlation 

function and locating Its peak position has been described by 

Jordan (1973). The overloading counter correlator is essentially 

a parallel correlator with both signals quantised to a single bit. 

The overloading counters that count the coincidences between up-

stream and down-stream signals are arranged to indicate the 

position of the peak when a certain pre-set count is reached. 

Therefore the first counter to overload indicates the position of 

the peak of the polarity correlation function and hence no 

additional circuits are required. 

The response time of the overloading counter correlators 

used for a flow measurement applications is not constant and 
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directly dependent on the input signal bandwidth (Taylor 

Instrument Ltd. 1976). 	Hayes (1975)' developed an overloading 

counter correlator using standard available LSICs. 	To maintain 

the complexity of the system to a reasonable limit he had to 

accept time delay resolution of +1.7%. The method described by 

Jordan is implemented on a single chip and is described in section 

2-2-2. The single chip implementation of the overloading counters 

reduces the complexity involved with its hardware implementation. 

Thorn (1979) developed a correlator with the available 

LSICs using Jordan's method of peak detection. The correlator 

described by Thorn quantises both input signals to a single bit 

and the correlation function is estimated using the slow sampling 

technique. Using Jordan's method of peak detection and the slow 

sampling technique to estimate the correlation function, the 

complexity of the implementation of the correlator described by 

Thorn (1979) has been reduced significantly. To further reduce 

the cost and the complexity of the implementation of the 

correlators Browne , Deloughry, Green and Thorn (1982) have 

described a correlator based on Jordan's peak detection method 

where the polarity correlation function is estimated using a ROM 

as a sequence controller. 

2-2-5 Tracking Correlators 

In many applications of position measurement such as 

target tracking, radar, sonar, air and space navigation, it is 

necessary to measure the delay difference between two versions of 

the same signal, for example, the transmitted signal and the 
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returned signal reflected from the target. 	Spilker and Magill 

(1961) have described a method of determining the time difference 

between two signals using the delay lock discriminator as an 

optimum tracking device. Figure 2-6 describes the block diagram 

of the delay lock discriminator given by Spilker and Magill 

(1961). 	The delay lock discriminator is a non-linear feedback 

system comprising a multiplier, linear filter, and a controllable 

delay line. 	The error function of the delay lock discriminator 

can be defined as:- 

A 

e(t) = 'p (t) -'1'p (t) 	 (2-12) 

A 
Where 'Cp (t) is the actual input signal time delay and "up (t) is 

the estimated time delay. 

The expected value of the multipliers output, e(t), shown in 

figure 2-6 is given by:- 

dx(t-p(t)) 
E[e(t)] c.(E[ y(t) . - J = 

dt 

dg.jj x Ctp -p) 

dt" 

Where KD is the slope of the differentiated correlation function 

in the region of the peak of the correlation function. 
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The delay-lock discriminator operates on a first order 

differentiation of the correlation function. The necessary 

condition to track the peak position of the cross -correlation 

function is given by: 

[ 1(t)  ] I 	= 0 	 (2-14) 

Therefore the differentiated correlation function must have a zero 

value at the peak position of the correlation function. Spilker 

and Magill (1961) have shown that the delay-lock discriminator 

will act as a negative feedback loop and can track time delay 

changes between two input signals. 

One of the major problems associated with the tracking 

correlator described by Spilker and Magill (1961) is the 

possibility of tracking a spurious peak. For linear operation of 

the delay lock discriminator, a search operation should be 

performed by manually or automatically sweeping the delay line 

bias control to lock on to the target before the target can be 

tracked. 

The operation and the model of the tracking correlators, 

as a negative feedback loop is similar to the model of the phase-

locked loops, Gupta (1975). However, the tracking correlators 

error function ,e(t), is not periodical, whereas the phase-locked 

loops error function is expected to be periodical. 
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Different tracking correlators based on the tracking 

correlator described by Spilker and Magill (1961) and Spilker 

(1963) are reported by several authors for different applications. 

Haykim and Thorsteinson (1968) have described quantised tracking 

correlators to measure distance and velocity of the target in air 

and space navigation systems. Me.sch, Fritsche and Kipphan (1974) 

have reported peak tracking correlators for flow measurement 

applications. Cernuschi-Frias and Rocha (1981) and Rocha (1982) 

have described a delay lock period estimator for the estimation of 

the time delay between two periodic signals. Fog (1982) has 

described coincidence tracker for wind-speed measurement systems. 

Non-contact speed measurement application of the peak tracking 

correlators have been described by Meyr (1976) and Bohmann, Meyr 

and Spies (1982). 

The possibility that the peak tracking correlator could 

track a spurious peak has been considered by Meyr (1976) and the 

additional arrangement shown in figure 2-7 is suggested to 

indicate the Out of lock condition of the peak tracking 

correlator, i.e. the condition where the peak tracking correlator 

is tracking a spurious peak. The serial correlator shown in figure 

2-7 will indicate the out of lock condition if its output is below 

some pre-set value. Therefore when the Out of lock condition is 

detected, the tracking correlator should be brought within the 

tracking region by sweeping the electronic delay line over a 

possible range of delays. Experimental results given in chapter 5 

indicates that the output of the serial correlator can only be 

used to indicate the out of lock mode of the tracking correlator 
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and its output can not be used to ensure the linear operation of 

the tracking loop. 

Jordan and Manook (1981) and Manook (1981) have 

described the constrained peak tracking correlator based on the 

tracking correlator described by Spilker and Magill (1961) for 

flow measurement applications. The tracking correlator is. 

constrained to track the peak of the correlation function and its 

delay shift register length is set by the peak position estimate 

of the overloading counter correlator. A block diagram of the 

constrained peak tracking correlator described by Jordan and 

Manook (1981) and Manook (1981) is shown in figure 2-8.- 

Manook (1981) has reported that due to the quantised 

time delay axis of the overloading counter correlator the output 

response of the constrained peak tracking correlator. is jittery. 

In addition since the delay shift register length of the loop is 

continuously being set by the peak position estimate of the 

overloading counter correlator, the accuracy of the tracking loop 

is directly dependent on the variance of the overloading counter 

correlators peak position estimate. Due to the problems mentioned 

above Manook (1981) has concluded that the system is not 

attractive for Industrial flow measurement applications. 

Another class of peak tracking correlators used to 

estimate time delays between two input signals is the "two point 

difference correlator". These have been described by several 

authors, for example Kashiwagi (1968), Hayes and Musgrave (1973), 
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Tompkins, Monti and Intaglietta (1974), Hayes (1975), Battye 

(1976) and Leitner (1979). 	The block diagram of two point 

difference correlators is shown in figure 2-9. 	The two point 

difference correlator estimates the correlation functions RP ,(( 

Ir,) and Rpx( t) at two different delay values TI  and t. ri  and 't1 

can be moved to the balance position automatically by the control 

loop if the correlation function is symmetrical. 

At the balance position the output of the voltage 

controlled oscillator is inversely proportional to the input 

signal time delay and in flow measurement application the output 

of the voltage controlled oscillator is proportional to the flow 

rate. Battye (1976) has used the two point difference correlator 

for flow measurement applications. 	Leitner (1979),(1980) has 

described a two point difference correlator for slurry flow 

measurement applications. 	To increase the tracking range of the 

two point difference correlator an additional micro-computer based 

correlator was used by Leitner. The microcomputer evaluates a 

coarse estimation of the correlation function peak position and an 

accurate estimate of the peak position is given by the two point 

difference correlator. Leitner has reported satisfactory results 

using the above arrangement for slurry flow measurement 

applications over a 6 to 1 time delay range. 

The peak tracking correlators described in this section 

are not complex and expensive to implement and theoretically the 

input signal time delay can be estimated with infinite resolution. 

But the major obstacle for industrial application, and in 
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particular for flow measurement applications is the possibility of 

tracking a spurious peak, which could lead to inaccurate 

estimation of time delays. 

In this thesis a detailed investigation of the 

performance of an improved constrained peak tracking correlator is 

presented and solutions to the problems noted by Manook are given. 

The improved constrained peak tracking correlator described in 

chapter 4 is suitable for industrial applications and it can be 

designed to track the peak of the correlation function linearly 

with 0.6% resolution over a 32 to 1 time delay range. 

2-2-6 Single Chip Customised Correlators 

Recent advances in micro-electronic technology has lead 

to a dramatic improvement in the design of customised LSICs. 

Correlator design on a single LSIC has lead to a significant 

improvement in the speed, power and reliability of correlation 

function estimation • The development of the single chip 

overloading counter correlator described by Jordan (1973) and 

Jordan and Kelly (1976) can be considered as the first serious 

attempt to implement the complex correlator circuit on a single 

customised chip. Each overloading counter correlator chip 

contains 12 channels of complete polarity coincidence detectors, 

integrating counters and the capability to indicate the overload 

pattern. 	The ease with which these correlator chips can be 

connected together to form a correlator with large time delay 

range being a particularly important feature. Taylor Instruments 
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Ltd. (1976) obtained a licence to use the 12 channel overloading 

counter correlators for flow measurement applications. They have 

developed a correlation flow-meter based on these chips which uses 

12 chips connected in series to achieve the required delay range. 

The original integrated circuit design for the 

overloading counter correlator is now ten years old. Fabrication 

technology and computer aided design has made significant advances 

during this period. 	Jordan and Blackley (1983) have indicated 

that the overloading counter correlator still is the most 

attractive circuit for use in measurement applications in 

comparison to a wide range, of correlator circuits, available. 

Initial study of CMOS circuit techniques has shown that a 512 

stage overloading counter correlator can be realised on a single 

chip. 	Therefore a lower number of chips will be required for the 

large delay range and only one chip will be sufficient to provide 

the coarse peak position indication of the correlation function to 

the tracking correlator described in chapter 4. 

Other reported developments,  are TRW's 64 stage 

correlator, Eldon (1981), which are commercially available. The 

TDC1004J will provide analogue output and the TDC1023J will 

provide digital output of the correlation function estimate. The 

block diagram of the TDC1004J is shown in figure 2-10 which 

provides current output proportional to the number of the 

correlated bits. The TDC1004J can be connected in series to cover 

a wide range of time delays. For applications where the position 

of the peak of the correlation function is of interest, additional 
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analogue to digital convertors and a peak detection circuit are 

required. Using the correlators designed by TRW a correlation 

function can only be estimated when the shift register B used to 

sample the polarity reference signal is filled with data. 	Note 

that the shift register A is continuously sampling the polarity 

delayed input signal. 

To reduce the variance of the correlation function 

estimate of the single chip TRW TDC1004J correlators, Bendall 

(1980) has used a recirculating shift—store interface circuit 

described by Jordan (1979) for acoustic emission applications. 

The all digital TRW TDC1023J correlator is similar in 

operation to the TDC1004J, where the correlation function is 

output as a serial sequence of digital words. Therefore if this 

version of the correlator is required to be connected in series, 

the correlation function estimate of each chip must be added 

digitally and hence this will create a great complexity due to the 

implementation of the digital adders. 

Reticon (1978) have produced two versions of a 32 stage 

single chip correlators, the R5401 operates as a relay correlator 

and the R5403 performs direct estimation of the correlation 

function. 

The currently SERC financed 256 stage relay correlator 

designed by Jordan at the Edinburgh University is directed towards 

investigating CCD relay correlator circuits for measurement system 
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applications. 	The 256 stage correlator offers short measurement 

time, easy to connect in series, and the estimated correlation 

function output can be readily displayed on an oscilloscope. 

2-2-7 Micro-computer Based Correlators 

Availability of 8 and 16 bit low cost micro-processors 

has lead to implementation of the correlation function algorithm 

on a micro-computer by several investigators. Micro-computer like 

any other single processor computer is a sequential device and can 

only execute one instruction at a time. Therefore unlike hardware 

and single chip correlators, sampling, multiplication and 

averaging can not be performed in parallel. 	Instruction cycle 

time of the majority of the commonly used micro-processors is of 

order of few secs. Due to the sequential operation, the micro-

computer based correlator will have a slower response than the 

hardware and LSIC correlators. 

To improve the efficiency and the response time of the 

micro-computer based correlator Henry and A].chalabi (1979) and 

Aichalabi (1980) have described the zero crossing algorithm to 

estimate the polarity correlation function. Where the zero 

crossing times of the polarity signals are read Into the micro-

computer and hence no redundant data are collected. A Z-80 based 

NASCOM II micro-computer used by Henry (1979) to implement the 

zero crossing algorithm for correlation flow measurement 

applications Is capable of capturing data from two signal channels 

up to a maximum signal bandwidth of 3 KHz. It is important to 
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note that the measurement time of the zero crossing algorithm 

depends on the flow signal bandwidth. Therefore if the flow noise 

signal bandwidth is low, more time is required to capture the zero 

crossing data compared to the situation where the flow noise 

signal bandwidth is high. 

Leitner (1979), (1980) has described a micro-computer 

based correlator using the SDK-80 evaluation kit based on the 

INTEL 8080A micro-processor. The micro-computer based polarity 

correlator described by Leitner is designed to operate in a 

serial- parallel mode, with a measurement time of a few seconds. 

The resolution of the correlation function estimate is poor and is 

used to indicate approximate peak position of the correlation 

function to the two point difference correlator described in 

section 2-2-5. Leitner has suggested that the micro-computer 

correlator is capable of estimating the correlation function 

within the delay range of 5 to 500 msecs. The polarity signals to 

the micro-computer are sampled at a frequency of 200 Hz, but no 

result to indicate the performance of the micro-computer 

correlator over the above range is given. 

Fell (1982) has described the skip algorithm based on 

the slow sampling technique described by Kam, Shore and Feher 

(1975), for computing the correlation function using a micro- 

computer. 	Two different sampling frequencies are used for input 

signals, one being determined by the required time delay 

resolution and the other by the signal bandwidth. The reference 

signal sampling rate, should not be less than the Nyquist sampling 



33. 

rate, otherwise some information will be lost and longer 

measurement time will be required. To estimate the correlation 

function over a delay range of 0 to K.6T, K samples of the 

reference signal with the sampling period of Nt , should be 

correlated with N samples of the delay signal with the sampling 

period of 	where N is given by equation 2-11. 

Figure 2-11 describes the sampling scheme used for a 

micro-computer to estimate the cross-correlation function over a 

time delay range of 0 to K. T. From figure 2-11 it will be seen 

that only one sample of the down-stream signal, y(t), will result 

in K estimates of the cross-correlation coefficients and 

correlation function coefficients over a delay range of 0 to K. 

T are estimated by M samples of the down-stream signal. 

The skip algorithm can be used to compute direct, relay 

and polarity correlation functions, and a fast response time is 

obtained using polarity signals since the polarity multiplication 

operation is equivalent to the logical exclusive-NOR operation. A 

single exclusive-NOR instruction for an 8-bit micro-processor can 

evaluate 8 multiplications, if 8 samples of the up-stream signal 

are stored in one byte of the memory and one sample of the down-

stream signal is packed in another byte. Using the polarity 

signal to compute the correlation function, Fell has reported the 

worst case multiply-add-store time of 6)lsecs on a 2 MHz NCS 6502 

micro-processor. 
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This review of the micro-processor based correlators, 

indicates that any micro-computer used to compute the correlation 

function, must be capable of performing logical operations and 

capable of recognising more than one interrupt signal from 

external devices for synchronous operations. For example due to 

the sampling scheme of the algorithm described by Fell the micro-

processor must have at least two hardware interrupts for efficient 

estimation of the correlation function. 

2-3 Performance of The Correlators 

From the discussion of application areas given in 

chapter 1, it can be concluded that a correlation based 

measurement system is required to be capable of determining the 

position and magnitude of the most significant peak of the 

correlation function. In a flow measurement applications the 

position of the peak of the correlation function is of great 

importance. Theoretically transit time can be derived from the 

peak position of the cross-correlation function of two flow noise 

signals, here flow noise signals are supplied by two transducers 

monitoring the flow noise at two points distance L apart in the 

flow stream. 

Extreme care must be taken to ensure that the 

measurement method itself does not introduce any large errors. 

Due to fundamental and economic limitation imposed by the 

correlation function implementation, the problem requires greater 

care to achieve the possible accuracy from the data available. 

Although the performance of the correlation flow-meters under 
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static signal conditions have been carefully examined, Hayes 

(1975), Sykes (1975), Gray (1979) and Taylor Instrument Ltd. 

(1976), there is a second type of problem that has not received 

the same degree of attention. This second problem results from 

the assumption made in correlation function analysis that the data 

being analysed are generated by stationary processes. But not all 

the processes can be justified as stationary processes. Hence it 

can be expected that the above assumption will lead to inaccurate 

estimate of time delay, when the flow velocity is changing. 

The variance of time delay estimates derived from the 

correlation function estimates under the assumption of stationary 

signal conditions have been discussed by several authors, for 

example Beck (1969), Jordan (1973), Hayes (1975), Sykes (1975), 

Taylor Instrument Ltd. (1976), Gray (1979), Manook (1981), and 

their general conclusion is the same and Is given by:- 

K 
Variance of the time delay estimate----------(2-15) 

B3. T .SIN 

Where K is constant and different values of K based on data 

provided by Hayes (1975) and experiments carried out by Taylor 

Instrument Ltd. (1976) are given below:- 

Kp = .066, 	Kr = .028, 	Kd = .026 



where Kp = constant value for polarity correlation function. 

Kr = constant value for relay correlation function. 

Kd = constant value for direct correlation function. 

and 	T = Integration time, 

B = 3dB input signal bandwidth. 

S = Signal mean square value. 

N = Noise mean square value. 

SIN = Signal to noise ratio. 

Basically there are three major sources of errors which 

influences the accuracy of the correlation flow-meter. These 

sources of error are due to:- 

The practical realisation of correlation flow-meter. 

The physical nature of flow noise signal. 

The transducer system. 

The following sections will consider the above sources of errors 

individually. 	Since the study of the transducer system was not 

required in this research programme, the sources of errors due to 

the transducer system were not considered. 
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2-3-1 Errors Due to Practical Realization of the 

Correlation Flow-meter 

The first group of errors are due to the constraints 

imposed by practical implementation of the correlation function, 

and are discussed under the following headings:- 

Resolution 

Range 

Integration time 

Quantisation error 

a) Resolution 

The sampled data, correlation based measurement system 

employs a coarsely quantised time delay axis. The quantisation of 

the time delay axis leads to an inaccurate estimation of time 

delay which becomes more serious the larger the range required. 

If the peak of the function is situated between two adjacent time 

delay increments, the estimated correlation function peak position 

	

can be in error by 0 < IEI <A 	, where At is the sample clock 

period and E is the error in the position of the peak. It should 

be noted that if the correlation function is symmetrical the worst 

case error will be ± E/2. Therefore percentage reading error is 

be given by: 

	

% READING ERROR = + (1/2) . - 	
%00

----- X 100 = + 	 (2-16) - 2  

Where n is quantised channel number andis the sampling period. 
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The sampling frequency is determined by the minimum time 

delay range, desired accuracy and response time. To achieve ±1% 

accuracy over a time delay range of 32 to I, the number of delay 

stages required for a correlation flow-meter can be obtained using 

equation 2-16,,  and is equal to 1600 (50X32). 	Therefore the 

correlation flow-meter should have 1600 delay stages in order to 

operate over an input signal time delay of 50V to 1600C seconds, 

with ±1%  resolution. 

To reduce the cost and complexity of an implementation, 

Taylor Instrument Ltd.(1976) have used the variable frequency 

technique described by Jordan and Manook(1981A), Using the above 

method the resolution of the peak position estimate along the time 

delay axis is maintained approximately constant by reducing the 

clock frequency for the higher time delay segments of the delaying 

shift register. 	The prototype correlator designed by Taylor 

Instrument Ltd. uses 168 stages and has an accuracy of ±1% over a 

10 to 1 range. To further improve the resolution of the above 

correlator , Taylor Instruments Ltd. (1976), have used the 

interpolated moment peak detection technique described by Jordan 

and Manook (1981A) and Manook (1981). It is important to note 

that the variance of the time delay measured using the 

interpolated moment is directly related to the variance of the 

correlation function estimate. 

) Range 

This is defined as a ratio of the highest flow-rate to 



the lowest flow-rate measured and is given by:- 

fastest flow-rate to be measured 
Range ratio - ------------------------------------ . 	(2-17) 

slowest flow-rate to be measured 

The improved constrained peak tracking correlator described in 

chapter 4 is capable of tracking the peak of the correlation 

function with a resolution of 	0.6% over an input signal 

bandwidth of 50 to 500 Hz and the time delay range of 32 to 1. 

c) Integration Time 

The finite integration time of the practical correlation 

function leads to uncertainty about the true value of a measured 

function. For a flow noise signal a sampling rate larger than the 

Nyquist rate is often required which is approximately 5 to 10 

times larger than the flow noise signal bandwidth. Bandwidth of 

the flow noise signal can be related to the rate of transfer of 

information to the correlation flow-meter. 	Reduction of the 

bandwidth of the flow noise signal can be recovered by increase in 

the integration time and hence increase in the response time. 

Therefore response time of the correlation flow-meter is directly 

related to the integration time and the bandwidth of flow noise 

signal. 	Since the bandwidth of the flow noise signal is related 

to the response time of the correlation flow-meter, further 

discussion on the nature of the flow noise signal is given in the 

section 2-3-2. 

40. 
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d) Quantisation 

Amplitude quantisation of the flow noise signal leads to 

a reduction in the cost and simpler implementation of the 

correlation flow-meter. In addition the effect of the 

quantisation is equivalent to a reduction of the information 

available to the correlation flow-meter ,Widrow (1956). 	The two 

attractive cases of quantisation, polar and relay, are widely used 

for different applications and in particular for correlation flow 

measurement. The polarity correlator has received much attention, 

see for example Van Vleck (1966), Widrow (1956), (1961), Watts 

(1961), Korn (1966), and is the simplest form of the correlator to 

implement. The relay correlator is a compromise between simple 

polarity correlation and the complicated direct correlation. The 

relay correlator has been studied by several investigators for 

example Watts (1961), Veselova and Gribanov (1969), Greaves 

(1970), but more experimental work is required to describe the 

variance of the correlation function estimate using a relay 

correlator. 

From the results given by Taylor Instrument Ltd. (1976) 

(using their own data and data given by Hayes (1975)) it has been 

shown that polarity correlator requires approximately 2.5 times 

longer integration time than direct correlation, whereas relay 

correlator requires approximately 1.7 times longer integration 

time, Jordan (1973). 	Since polarity correlation greatly 

simplifies the implementation of the correlation based measurement 

system, the penalty of an increased integration time can be 

acceptable. 
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2-3-2 Errors Due to the Physical Nature of the Flow Noise Signal 

The second group of errors arises from the nature of the 

flow noise signal which is outside the influence of correlator 

design. This group of errors are divided into the following sub-

groups:- 

flow noise signal bandwidth 

signal to noise ratio. 

non-stationary signal condition. 

a) Flow Noise Signal Bandwidth 

From equation 2-15 it is clear that the bandwidth of the 

flow noise signal is one of the important parameters contributing 

to the error variance of the time delay estimate derived from the 

correlation function. Generally a flow noise signal is generated 

by the effect of both turbulent eddies and particles which are 

swept around by eddies, 	Hinze (1972), Ito (1977). In a fully 

developed flow there are a wide spectrum of eddies which generates 

different frequencies according to their size, Hinze (1972). In 

addition the eddy size is inversely proportional to the bandwidth 

of flow noise signal, the small eddies dissipate rapidly and large 

eddies persist, Hinze (1972), Ong (1975), Ito (1977). 

Experiments carried out by Taylor Instrument Ltd. 

(1976), indicate that velocities in the range of 2 to 9 ft/sec 

(.61 to 2.74 meter/sec) generates flow noise signals which contain 

high frequencies up to 1000 Hz and low frequencies of about 5 Hz, 

(using 6 inch diameter pipe). This is due to the presence of 
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different eddy sizes where large low frequency eddies are 

generated near the centre of the pipe, and small high frequency 

eddies are generated near the pipe wall. In addition the 

bandwidth of the flow noise signal is proportional to the flow 

rate for a given pipe diameter, Manook (1981). Therefore the flow 

noise signal must be sampled in such a way that all the 

correlatable bandwidths within the flow range can be captured 

while maintaining the response time of the correlation flow-meter 

as small as possible. 

b) Signal to Noise Ratio 

The normalised cross-correlation function has a value of 

unity when the delay is zero and decreases as the transit time 

between upstream and down-stream transducers increases, Clinch 

(1969), Komiya (1966). Magnitude of the signal to noise ratio can 

be obtained using the relationship given by Boonstoppel, Veltman 

and Vergouwen (1968). 

2 

S / N = 	 (2-18) 
(1- 

Where(''p)is the peak value of the normalised correlation function 

and 	is the time delay of the peak position estimate. 

Using Ongs (1975) data on 1 inch diameter pipe and data 

collected by Taylor Instrument Ltd.(1976), with 30 mm transducer 

spacing, it has been shown that the normalised correlation 
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function peak amplitude is directly related to the flow velocity, 

and is given by:- 

-9.5104 ,'p 
exp { -------------} 	(2-19) 

.8540 
(D/30) 

Where D is the pipe diameter in cm, and 	is in seconds. 

c) Nonstationary Signal Condition 

Implementation of the correlation function integral is 

generally valid for stationary signal conditions. The term 

stationary refers to the class of signals having statistical 

properties which do not change with time, that is:- 

f(Xl,X2,...Xn;tl,t2,...,tn) = f(Xl,X2,...,Xn;t1+(,...tn+) 

in particular:- 

f(X,t) = f(X,t+j) 	 (2-21) 

Since a stationary process is independent of time it can be 

assumed that:- 

f(X,t) = f(X) 	 (2-22) 

Therefore if the process is stationary the correlation function 

integral will allow an accurate estimation to be made, for 
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example, system time delay. Unfortunately not all processes are 

stationary and the conventional stationary estimation theory does 

not apply to the class of signals which have statistics which are 

changing with time, i.e. non-stationary signals. 

A typical non-stationary flow noise signal is obtained 

from two phase flow (gas and liquid, two liquids with different 

viscosity, particles and liquid), where the bandwidth of the flow 

noise signal changes with time. It has been observed that under 

single phase flow situations it is also possible to obtain non-

stationary signals (private communication Taylor Instrument Ltd. 

1982). If the correlation function integral is used to analyse a 

non-stationary signal the function peak amplitude will be reduced 

and its width increases, compared with the function shape obtained 

under stationary signal conditions. 	In other words the non- 

stationary chracteristic of the input signals will be "smeared 

out" and this will lead to inaccurate time delay 'estimations. 

The correlation and spectrum analysis of non-stationary 

signals is a' topic of interest in different research areas, i.e. 

flow measurements, Leavell and Shahrokhi (1976), vibration 

analysis, Wirewille (1965), system identification, Sheppard and 

Mix, (1973). Unfortunately very few experimental results have 

been published to indicate the effect of non-stationary signals on 

the shape of correlation function integrals. 

To obtain the power spectrum of non-stationary signals 

Page (1951) has introduced the term "instantaneous power spectrum" 
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It 

in which a signal is divided into sections where the statistics of 

the signal within each section is considered to be stationary. 

Therefore the average power spectrum of all individual sections 

yields the estimate of the power spectrum of non-stationary 

signals. His technique is valid if each individual section of 

signal contains enough information, to estimate the power 

spectrum. Wirewille (1963) has discussed this method and he has 

indicated that the individual sections may not be of sufficient 

length to yield an accurate spectral information. 

An approach to the spectral analysis of non-stationary 

processes based on an evolutionary power spectrum, has been given 

by Priestly (1965A, 1965B, 1970, 1971), where the evolutionary 

power spectrum is time dependent and describes the local power-

frequency distribution at each instant of time. Hammond (1973) 

has used the evolutionary power spectrum method for vibration 

applications and satisfactory results are reported. 

Papoulis (1965) introduced functions called average 

correlation and average spectrum functions, that is:- 

rJ 
= Lim _!__ Rd,x(tx) dt 	(2-23) 
T- T) 

and 

S (w) = F { R(t) } 	 (2-24) 

ereg{R()} is the Fourier transform of the average correlation 



function. 

Use of Papoulis definition allows these signals to be 

treated as stationary functions. 	Papoulis states that these 

average functions have all the properties of the correlation or 

spectrum functions of the stationary process. Average correlation 

functions have been applied by Sheppard (1973) and, Nix and 

Sheppard (1973) for on line testing of linear electronic system 

and system identifications. Results obtained Indicate that the 

average correlation function provides the information needed and 

confirms the validity of the Papoulis method. Note that the 

average correlation function has a smoothing effect on the 

correlation function this effect can be expected from the 

definition of the correlation function i.e.:- 

RcJL(t') = E [ y (t) . x(t-?) 

Berndt (1963) and Berndt and Cooper (1965), (1966) have 

discussed multiplication of the integrand of a correlation 

function by a weighting function in order to approximate the best 

weighted time average of the correlation function. Approximation 

of optimum weighting coefficients from weighting function is 

complex and prior knowledge of the correlation function is 

required in order to obtain optimum weighting coefficients. 

47. 

In an attempt to follow the variation of the correlation 

function with time, Wierwille (1965) has developed a method which 
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separates time smoothing for variation of delay from time 

smoothing for reducing variance of the correlation function, i.e. 

smoothing of R(t,) with respect to t and It. This is given by:- 

r 00ç

00 (t,) =f 1 h(,) 	) y(t-A) x(t--A-?) ddA 	(2-25) 
dLyc. 	jJ 00 

Where h(4) and () are impulse responses of two one dimensional 

filters, and the correlation can be estimated accurately by the 

proper choice of the filters impulse response. 

Larrowe (1966) reviews the method given by Wirewille 

(1965) and states that the analyser design is optimum only in 

terms of its response to signals having correlation function of 

the form used in specifying the filters impulse response. 

Therefore for other forms of time varying correlation functions 

other filter designs should be used. 

Geranin and Kozlov and Shlyaktsu (1973) have reviewed 

methods suggested by Berndt (1963) and Wierwille (1965) and they 

agree with Larrowes (1966) assessment. Wierwille and Knight 

(1968),(1969) describes off-line correlation analysis of non-

stationary signals based on the method given by Wierwille (1965). 

Discreet data non-stationary correlation function theory based on 

the non-stationary correlation function theory described by 

Wierwille (1965) is discussed by Greaves (1970). 

Leavell and Shahrokhi (1977) have discussed tracking 
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non-stationary velocities in a two phase flow by an adaptive 

cross-correlation algorithm. Details of the adaptive algorithm is 

not given but briefly, the idea is based on the use of a variable 

integration time to track non-stationary delays. 

Among other techniques which can be considered for the 

correlation function estimation of the non-stationary signal is 

the generalised cross-correlation approach described by 

Scarbrough, Ahmed and Carter (1981), Hassab and Boucher (1979), 

Knapp and Carter (1976), where:- 

,..4.00 
I 	 J21TPt 

Rd.(v) =JW(f) Gyx(f)  e 	df  

00 

Where R'(?-)  is the generalised correlation function and Gpc(f) 

is the cross power spectra and W(f) is the weighting function. It 

is important to note that due to the finite observation time, only 

an estimate of G(f)  can be obtained. A block diagram 

representation of an implementation of the generalised cross-

correlation function is shown in figure 2-12. The generalised 

correlation function is used for time delay estimation in boiling 

water reactor by Kostic (1981) and she has concluded that this 

method is more effective in producing well defined time delay 

estimation. 

In this section, some of the approaches to the problems 

that arises under the non-stationary signal conditions and 

described by several investigators are high lighted, and it seems 

evident that averaged short term estimate of the correlation 
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function can yield more accurate information .under changing signal 

conditions. 	But the above technique can not be applied if only 

one sample record of the correlation function is available, and 

the prior knowledge about the characteristic of the signal is 

required , in order to be able to multiply the correlation 

function integral by an optimum window function. The problems 

involved with the non-stationary signal analysis and in 

particular, correlation function estimation under the non-

stationary signal conditions requires more research. 



CHAPTER 3: THE NOISE SIMULATOR 

3-1 Introduction 

Noise simulation has been the subject of great interest by 

several investigators for different applications for example, 

radar (Wolf, 1963), telemetry (Spilker, 1965), system impulse 

response testing (Beck, 1974), vibration testing (Kramer 1965), 

navigation (Mitchell and McPherson 1981), system identification 

(Sheppard, 1973), communication (Schobi, 1981) and flow 

measurement (Elias, 1980). If experimentally derived noise is 

used as a test signal, the result of an experiment will be 

different each time it is repeated. Therefore a test signal Is 

required which has the properties of a random noise and give 

reproducible and repeatable results when used in experimental 

Investigations i.e. it should be random but its properties should 

be deterministic. 

One method of generating an artificial random noise Is to 

amplify the random emission of the electrons in a natural noise 

source such as a thyratron or a zenor diode, Korn (1966), Bell 

(1960). 	The disadvantage of a natural noise source is that the 

statistical characteristic of the signal generated Is difficult to 

control and hold stable and is not reproducible. 

An alternative method of generating artificial random 

noise is based on a digital waveform generator which produces a 
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binary signal which switches randomly between two output levels 
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and is referred to as a pseudo random binary noise "PRBN" signal, 

Golomb (1964), and Korn (1965). The spectrum of the PRBN signals 

is related to the clock frequency used to generate the signal and 

is controllable, Newland (1976). However, the PRBN signals 

amplitude distribution is just a two level function and is very 

different from the Gaussian distribution common in naturally 

occurring environments. 

A multilevel or continuous waveform with a Gaussian 

amplitude distribution can be generated by smoothing the two level 

digital PRBN signal through an analogue low-pass filter, Roberts 

and Davis (1966). 	A more attractive approach is to replace the 

analogue low-pass filter with a finite impulse response FIR 

filter. 

The basic idea is to use an analogue tapped delay line 

filter Antoniou (1978) as a low-pass filter for the PRBN signal to 

obtain Gaussian amplitude distribution. 	The properties of the 

signals generated using the above method have been considered by 

Cumming (1967) and Davies (1971). The spectrum of the multilevel 

signals generated can be controlled by the clock frequency to the 

FIR filter. The Hewlett-Packard HP 3722A (1967) noise generator 

is based on this technique. 

The two channel programmable flow noise simulator 

described in this chapter is based on the use of a PRBN generator 

and FIR filter to generate an analogue noise signal having 

characteristics similar to the flow generated noise signals. 
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Experimental results given in this chapter indicates that the 

characteristic of the signals generated by the flow noise 

simulator is very close to the flow generated noise signals. 	In 

addition the programmability of the noise generator has lead to an 

accurate evaluation of the performance of the improved constrained 

peak tracking (ICPT) correlator described in chapter 4 and 5. 

3-2 The Flow Noise Simulator 

Flow noise signals are characterised by random 

disturbances in the flow which are produced naturally by the 

fluid. To investigate the performance of a device which measures 

the correlation of these random disturbances requires that they 

can be simulated in a test laboratory. If a test rig is used to 

investigate the performance, of a prototype correlator the 

experiments will not be reproducible and it will be difficult to 

optimise the design of the correlation flow measurement system. 

The block diagram of the flow noise simulator used to 

investigate the performance of the improved constrained peak 

tracking correlator is shown, in figure 3-1. 	The basic noise 

source of the flow noise simulator is a programmable PRBN signal 

generator. A FIR digital filter converts the output of the PRBN 

generator to a multilevel signal having characteristic very 

similar to the flow noise signal. A delayed version of the PRBN 

signal is generated using a programmable modulo-2 addition circuit 

and an FIR digital filter identical to the one used for the up—

stream channel converts the delayed version of the PRBN signal to 

a multilevel signal. 
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The significance of the correlation function between the 

up-stream and down-stream signals is controlled by mixing a 

multilevel uncorrelated noise signal with the multilevel delayed 

output. The bandwidth of the up-stream and the down-stream 

signals are controlled by the output of the programmable frequency 

counter to the FIR filters and the PRBN generator. 

3-2-1 Programmable PRBN Signal Generator 

The PRBN signal is generated by means of a cascade of n-

shift register stages connected in a feedback loop via an 

exclusive-OR gate, Hoffman (1971). The PRBN signals consist of 

completely defined patterns of selectable length and their 

statistics are controllable Korn (1967). 	In addition the PRBN 

sequences have an auto-correlation function which is constant for 

all defined points in one period, except at one point where it is 

unity, Korn (1967). Many different PRBN signals have been 

described in various mathematical treaties, for example Golomb 

(1967), Jordan and David (1973), Maritsas (1973A, 1973B), White 

(1967), and Lempel and Eastman (1971). The PRBN signals of most 

practical interest are those which can easily be generated with a 

small amount of electronic hardware. 

The implementation of the programmable PRBN signal 

generator used as a basic noise source of the flow noise simulator 

is based on the method described by Greenshield and Jordan (1980). 

The block diagram of the programmable PRBN generator is shown in 

figure 3-2. The complete set of the feedback functions required 

to generate PRBN signals over a sequence length of (2 
55  
-1) to 
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(2 -1) bits have been computed by means of a software routine 

written in PASCAL and are stored in two EPROMS shown in figure 3-

2. Each output bit of the EPROMS corresponds to a complete 

feedback function of a particular sequence. A 6809 based micro-

computer was used to select different sequences through 4 control 

lines as shown in figure 3-2. The EPROMS are addressed through 

the output stages of the shift register shown in figure 3-2. 	The 

address bus connections of each EPROMS to the output stages of the 

PRBN generators shift register are shown in table 3-1 and the 

functions implemented by each EPROM are given in table 3-2. 

ROM address Shift Register Stages 
line EPROM 1 	EPROM 2 

A0 1 2 

Al 2 11 

A2 3 12 

A3 4 13 

A4 5 14 

AS 7 15 

A6 8 16 

Al 10 17 

A8 11 18 

A9 12 19 

AlO 24 20 

Table 3-1 ROM Shift Register Connections. 
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ROM Output Functions Implemented 
Line EPROM 1 EPROM 2 
Do - - 
Dl l27&24 1720 

D2 35 1 41 7@18@19: 

D3 2'lO911&12 1118 

D4 211 1417 

D5 3e10 111314I16 

D6 37 141915 

D7 2348 2&12e13e14 

Table 3-2 Functions Implemented for the EPROMS 

Since the 8-stage shift register packages used in PRBN 

generators, are most conveniently designed to be reset to the all 

zero state, it is necessary to consider the use of exclusive -NOR 

feedback since the all zero state is the forbidden state for 

generators using exclusive-OR feedback. 	Therefore the feedback 

Input .to the shift register is inverted using a spare exclusive 

-OR gate shown in figure 3-2 in order to Implement exclusive-NOR 

feedback. 	This allows the use of the reset line on the shift 

register to start and stop the sequence. The above arrangement to 

generate the PRBN sequences has been found to operate successfully 

under the control of the 6809 based micro-computer and Is used as 

a basic noise source for the flow noise simulator. 

3-2-2 Programmable Delayed PRBN Generator 

The delayed version of the basic PRBN sequence is required 

to simulate the down-stream flow noise signal. Delayed version of 

the basic sequence can be generated using shift registers but this 
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approach would require large numbers of integrated circuit 

packages and is not practical. Therefore other methods described 

by several authors to generate delayed sequences from the PRBN 

signals using exclusive-OR feedback connections were considered, 

for example Gardiner (1965), Ireland and Marshall (1968A), 

(1968B), Douce (1968), and Hughes (1968). 	The matrix method 

described by Ireland and Marshall was found to be most suitable 

for implementation and requires a small amount of electronic 

hardware. 

Therefore the method described by Ireland and Marshall was 

extended, Jordan and Kiani-Shabestari (1983), (see Appendix 1) to 

cover the case when the PRBN sequences are generated by 

exclusive-NOR feedback. 	The prototype micro-computer controlled 

delayed sequence generator has been constructed using available 

components and is used to generate the delayed version of the PRBN 

signals to simulate the down-stream flow noise channel. 

3-2-3 The Digital Non-recursive FIR Filter 

A multilevel Gaussian signal with the properties of random 

waveforms can be generated by low pass filtering of PRBN 

sequences, Roberts and Davies (1966). Since the signals to be 

smoothed are digital and single bit, a finite impulse response 

non-recursive filter, Antoniou (1978), offers the most convenient 

way to implement the low pass smoothing function. Statistical 

properties of the waveforms generated using FIR filters are 

described by Davies (1971). 
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A ROM based FIR filter, Jordan and Kiani-Shabestari 

(1982), (see Appendix 2) was used to generate a multilevel signal 

with a bell shaped amplitude distribution similar to the Gaussian 

amplitude distribution of flow generated noise signals. The 

Kaiser window was used to reduce the Gibbs oscillations caused by 

the truncation of the Fourier Series, Antoniou (1978). A design 

criteria for the window function was to find a window whose 

Fourier transform has relatively small side lobes with most of the 

energy concentrated in the centre lobe. 

The FIR filter was designed such that the first null of 

the FIR filter impulse response occurred at nine clock periods 

i.e. cut off frequency was set to 1/18 of the clock frequency to 

the filter. 	It should be noted that the clock frequency applied 

to the ROM based filters and the PRBN generator are identical. 

A 12-bit variable modulos counter was used to set the 

clock frequency to the PRBN generator as well as the ROM based FIR 

filters. It should be noted that the bandwidth of the simulated 

flow noise signal is determined by the design of the FIR filter as 

well as its clock frequency. Consequently time delay and 

bandwidth cannot be independently controlled. The method used to 

set the required time delay and the bandwidth of the simulated 

flow noise signal is described in section 3-3-2. 
p 

3-2-4 Uncorrelated Noise Generator 

A practical flow noise signal has a normalised correlation 

function peak amplitude of unity when the input signal time delay 
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is zero and decreases as the transit time between the up-stream 

and down-stream transducers increases, Clinch (1969). In addition 

in a fully developed flow because the energy of the turbulent 

motion is constant, the auto-correlation function of the up-stream 

and down-stream signals are approximately equal (Taylor Instrument 

Ltd. 1976). 

The significance of the correlation function can be 

controlled by performing a modulo-2 addition between the PRBN 

generators basic sequence and an uncorrelated binary sequence, 

Taylor Instrument Ltd. (1976), Manook (1981). Using this 

arrangement, the significance of the correlation function Is 

controlled by the clock frequency applied to the uncorrelated PRBN 

- generators shift register. Note that, the -3dB cut-off frequency 

of the PRBN sequences are equal to 0.45 x fs, Korn 1968, where, 

fs, is the clock frequency applied to the PRBN generator. 	Since 

the clock frequency to the uncorrelated PRBN generator Is expected 

to be different from the basic sequence PRBN generators clock 

frequency, the -3dB cut-off frequency of the signals derived by 

mixing the basic sequence with the uncorrelated sequence is 

expected to be different from the -3dB cut-off frequency of the 

delayed basic sequences. Therefore the correlation function 

estimate Is expected to be unsymmetrical. Massen (1982), has 

observed that the above approach is crude and will lead to 

unsymmetrical correlation function estimates. 

To eliminate the above problem, the significance of the 

correlation function between two output signals of the flow noise 
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simulator was controlled by mixing an uncorrelated multilevel 

noise signal with the delayed multilevel noise signal. Initially 

the sequence length of the PRBN generator was set to (215_i)  bits, 

and this became a basic noise source for the flow noise generator 

to drive multilevel up-stream and down-stream signals. 	In 

addition a long delayed version of the basic sequence was derived 

by modulo-2 addition of the appropriate shift register output 

stages of the PRBN generator. The time delay between the basic 

sequence of the PRBN generator and its long delayed version was 

set to:- 

Time delay=20000 x clock period of the PRBN generator 

Note that the above time delay is well beyond the operating range 

of the ICPT correlator over the required input signal bandwidth of 

50 to 500 Hz. The long time delayed version of the basic sequence 

is referred to as uncorrelated noise signal. 

A ROM based FIR filter with identical characteristics to 

the ones used to generate a multilevel up-stream and its delayed 

signals was used to generate an uncorrelated multilevel signal. 

The block diagram of the arrangement used to control the 

significance of the correlation function by mixing a multilevel 

uncorrelated noise signal with a multilevel delayed output of the 

PRBN generator is shown in figure 3-3. 

The output of the digital to analogue converter ,V,, shown 

in figure 3-3 is used to control the significance of the 
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correlation function relating the up-stream and down-stream 

signals derived from the flow noise simulator, through the 6809 

based micro-computer. The summed output of the analogue 

multipliers, (AD534), shown in figure 3-3 is given by:- 

y(t) = { z(t).[1-9] } + { d(t).[ ] } 	(3-1) 

and 

10 

Where: - 

z(t) = Uncorrelated multilevel noise signal. 

d(t) = Delayed multilevel noise signal. 

y(t) = Down-stream signal derived from the flow noise 

simulator. 

Using equation3-1, the down-stream signal derived from 

the noise simulator, for Q equal to, 0 and 1 is given by:- 

y(t) = z(t) 	{ for Q =0 } 

and, 

y(t) = d(t) 	{ for 0 =1 } 

Therefore, for e=0,  the significance of the cross-correlation 

function relating the signals derived from the noise simulator is 

equal to 0, and for 0 = 1, the normalised peak amplitude will be 

equal to 1. 	In addition from equation 3-1 it is clear that, as 

the magnitude of, 9 , decreases the ratio of the uncorrelated 

multilevel signal, z(t), to the delayed multilevel signal, d(t), 
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increases and hence the significance of the correlation function 

between the signals derived from the noise simulator decreases. 

It is important to note that, since the clock frequency to 

the FIR filters are identical, the -3dB cut-off frequency of the 

signals derived from the noise generator are expected to be of the 

same value regardless of the correlation function peak amplitude. 

In addition the auto-correlation functions of the up-stream and 

down-stream signals derived from the noise simulator are expected 

to be approximately equal, and independent of their normalised 

correlation function peak amplitude. 

3-3 Flow Noise Simulation 

To simulate the flow noise signals the following 

parameters of the noise simulator was set by the HP-85 computer 

through the IEEE bus interface circuit:- 

Bandwidth of signals derived from the noise simulator. 

Time delay difference between the signals derived. 

Normalised correlation function peak amplitude. 

3-3-1 Bandwidth of the simulated flow noise signal 

The bandwidth of the signals derived from the flow noise 

simulator was set by the output clock frequency of the 12 bit 

variable modulus counter (VMC) which was supplied to the FIR 

filters as shown in figure 3-1. The bandwidth of the noise 



signals is given by:- 

fs 
Bandwidth = BW =----- 	(3-2) 

18 

where fs is equal to the output clock frequency of the VMC. 

The output clock frequency of the VMC can be set through 

the IEEE bus interface by the HP-85 computer used as an experiment 

controller. The Input clock frequency to the VMC is set to be 

equal to 1.2 MHz, and this can be divided by an integei number 

between 2 to 4096. Therefore the flow noise signal bandwidth can 

be set to vary over a range of 16 Hz to 33.5 KHz. Note that the 

above range is well beyond the flow noise signal bandwidth defined 

by Taylor Instrument Ltd. (1976). 

A typical multilevel signals generated by the output of 

the FIR filters are shown in figure 3-4. An HP 3721A correlation 

computer (1968) were used to measure the probability density 

function of the multilevel signals derived from the flow noise 

simulator and is shown in figure 3-5. From figure 3-5 it will be 

seen that the amplitude distribution of the simulated flow noise 

signal is similar to the bell shaped Gaussian amplitude 

distribution of the signals derived from the real flow streams. 

The auto-correlation function of the simulated flow noise 

signal with different bandwidths were measured using an HP 3721A 

correlation computer and are shown in figure 3-6. From figure 3-6 
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it will be seen that as the bandwidth of the simulated flow noise 
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signal increases, the width of the auto-correlation function 

decreases. Note that it has been shown that the first zero of the 

auto-correlation function is expected to occur at It = 1/2BW , 

Lange (1967), where t is equal to time delay. 

3-3-2 Time Delay Setting 

The simulated time delay of the flow noise signal is given 

by: - 

Time delay = ns • 'ts 	 (33) 

where: - 

ns = the selected delay number using a modulo-2 addition of 

the appropriate output stages of the PRBN generators shift 

register. 

and 

ts = 1/fs = the clock period to the PRBN generator and the 

FIR filters. 

The bandwidth of the simulated flow noise signal is 

determined by the clock period applied to the FIR filters shown in 

figure 3-1 and is given by equation 3-2. Therefore the time delay 

and bandwidth of the signals derived from the flow noise simulator 

can not be controlled independently. Hence the following 

procedure is taken to set the time delay and the bandwidth of the 

signals derived from the flow noise simulator. 

Consider a practical time delay of 6 msecs with a flow 
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noise signal bandwidth of 250 Hz arising from a flow velocity of 5 

m/secs with a transducer spacing of 30 mm. To simulate the flow 

noise signals with the above characteristics, the required clock 

frequency to the FIR filters shown in figure 3-1 is estimated 

using equation 3-2 and is given by:- 

fs = 18 x 250 = 4500 Hz. 

Equation 3-3 is used to calculate the required delay setting, and 

is given by:- 

Time delay 	6xl0'  
ns----------------------=27 

l/fs 	1/4500 

Hence the delay setting of 27 is required to simulate the flow 

noise signals with 250 Hz bandwidth and time delay of 6 msecs. 

In addition we have:- 

	

ns.t 2 = (ns + 1). -t 1 	(3-4) 

where ' 1 and 't 2 are the clock periods to the FIR filters shift 

register. 



Hence 
'2 	ns+1 

ns 
(3-5) 
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Or 

fl 	BW1 	ns+1 

(3-6)  
f2 	BW2 	ns 

Therefore from equation 3-6 it is clear that a small change by the 

clock frequency will enable the flow noise signals time delay to 

be set between the discrete settings of the delay generator, 

without changing the bandwidth by a large amount.' 

For example to simulate flow noise signal with 250 Hz 

bandwidth and time delay of 6.05 msecs the following steps are 

taken:- 

Time delay = ns.'t 	(from equation 3-3) 

ns = 6.05 x 10 	x 4500 = 27.225 

Note that the flow noise signal time delay can only be set in 

discrete steps, therefore ns is required to be equal to 27. 

To simulate flow noise signals with time delay of 6.05 msecs 

and bandwidth of 250 Hz, the actual bandwidth of the noise 

signal is estimated using equation 3-6 and is given by:- 

BW1 x ns 
	

250 x 27 
BW2 ----------- 	 - 247.93 Hz 

ns+1 
	

27.225 

Therefore to simulate time delay of 6.05 msecs, the actual 
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bandwidth of the flow noise signal is required to be 

approximately equal to 248 Hz. 

3) The required setting for the 12-bit VMC is given by:- 

input clock frequency to 'INC 
VMC setting 

required clock frequency to FIR filters 

6 
1.2 x 10 = ---------- = 268.8 
248 x 18 

Note that since the clock frequency to the VMC can only be 

divided by an integer number between 2 to 4096, the input clock 

frequency is divided by 268. 

Therefore the actual flow noise signal bandwidth and time 

delay with the above settings are given by:- 

input clock frequency to VMC 
fs= ------------------------------ 

VMC setting 

6 
1.2 x 10 

fs= - 	 --4460.9Hz 
268 

and 

fs 
BW ------ --247.8Hz 

18 

and 

27 
Time dela-  - ---------- = 6.052 msecs 

4460.9 
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Therefore from above it is clear that the noise generator can be 

used to simulate the flow noise signal bandwidth and time delay 

very accurately between the discrete steps of the delay setting, 

without changing the bandwidth by a large amount. In addition 

the small difference between the required, and actual time delay 

and bandwidth of the signals derived from the noise simulator 

are computed by the HP-85 computer used as a experiment 

controller. It should be noted that the above procedure used to 

estimate the required time delay and bandwidth settings of the 

flow noise simulator are carried Out and set by the HP-85 

computer through the IEEE bus interface. 

3-3-3 Correlation Function Significance 

The significance of the correlation function relating 

the up-stream and down-stream signals can be changed by mixing 

an uncorrelated multilevel noise signal with the multilevel 

delayed signal. Figure 3-7 shows the probability density 

function of the multilevel uncorrelated noise signal, the 

probability density function of the multilevel delayed signal 

before mixing with an uncorrelated multilevel signal and the 

probability density function of the delayed signal mixed with 

the uncorrelated signal to yield a normalised correlation 

function peak amplitude of .5. From figure 3-7 it will be seen 

that, the bell shaped probability density function of the 

uncorrelated noise signal is similar to the probability density 

function of the delayed multilevel output signal. 	In addition 

from figure 3-7 it will be seen that the amplitude distribution 

of the mixed delayed signal is similar to the flow generated 
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noise signals with the Gaussian amplitude distribution, but its 

standard deviation has decreased by approximately by factor of 

in comparison to the amplitude distribution of the multilevel 

delayed signal shown in figure 3-7. Mathematical derivation to 

estimate the standard deviation of the two mixed uncorrelated 

signals with a common mean and Gaussian amplitude distribution 

is given by Weatherburn (1952) and the experimental results 

shown in figure 3-7 confirms his mathematical prediction. 	It 

should be noted that an approximately identical probability 

density function to the up-stream channel can be obtained by 

adjusting the rms voltage amplitude of the uncorrelated 

multilevel signal before mixing with the delayed multilevel 

signal. 

The auto-correlation function of the signals derived 

from the flow noise simulator over a simulated flow noise signal 

bandwidth of 50 to 250 Hz range with a normalised correlation 

function peak amplitude of 1,.5 and .2 is shown in figure 3-8. 

From figure 3-8 it will be seen that the amplitude of the auto-

correlation function of the signals derived from the noise 

simulator at zero time delay are approximately equal. Note that 

a slight difference on the amplitude of the auto-correlation 

functions of the up-stream and down-stream signals at time delay 

of zero are due to the poor level adjustments of the HP 3721A 

correlation computer to capture multiple exposure photograph of 

the functions. 
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TIME DELAY (100,SECS/CM) 

Fig. 3-8 THE AUTO-CORRELATION FUNCTIONS OF THE UP-STREAM 
AND DOWN-STREAM SIGNALS OVER A 50 TO 250 Hz 
BANDWIDTH. 
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Bandwidth = 250 Hz. 
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Bandwidth = 50 Hz. 
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3-4 Calibration of the Flow Noise Simulator 

The flow noise generator was calibrated to simulate the 

characteristic of the noise signals derived from the pipe size 

of 1 inch diameter using a pair of identical ultrasonic 

transducers with 30 mm spacing. The experimental data provided 

by Taylor Instrument Ltd. (1976) were used to simulate the flow 

noise signals bandwidth and time delay over a flow velocity 

range of 32 to 1. The flow noise signal bandwidth was 

calibrated to vary over a range of 50 to 500 Hz. The normalised 

peak amplitude of the correlation function was calculated using 

equation 2-19 of chapter 2, and is expected to vary between 0.2 

and 0.9, over an input signal time delay range of 32 to 1. 	The 

typical flow generated noise signal bandwidth and its normalised 

correlation function peak amplitude over the time delay range of 

interest is given in table 3-3. 

Time Delay Bandwidth Peak Amplitude 
msecs Hz Normalised 
1.433 500 0.9 

6.143 400 0.82 

15.564 340 0.61 

20.279 300 0.53 

24.984 270 0.46 

29.694 250 0.39 

34.405 180 0.34 

39.115 120 0.29 

43.825 75 0.25 

52.48 	 50 	 0.21 

Table 3-3 Typical characteristics of the practical flow noise 
signals. 
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Data given In table 3-3 was used to simulate the signals 

derived from the flow noise generator and their typical 

correlation function estimates are shown in figure 3-9. Note 

that the 6809 based correlator was used to estimate the 

correlation functions shown In figure 3-9. From figure 3-9 it 

will be seen that the significance of the correlation function 

relating the signals derived from the noise simulator decreases 

along the time delay axis and the width of the correlation 

function around its peak position increases. The results given 

in this chapter indicates that the characteristics of the 

signals derived from the flow noise generator is similar to flow 

generated noise signals. Therefore the flow noise simulator can 

be used to realistically investigate the performance of the ICPT 

correlator. 

3-5 Experimental system 

The block diagram of the flow noise simulator used to 

investigate the performance of the ICPT correlator Is shown In 

figure 3-1. The simulated flow noise signals bandwidth, 

sequence length, time delay and the correlation function peak 

amplitude were controlled by the 6809 based micro-computer board 

Installed with the noise simulator circuits through the IEEE bus 

interface by the HP-85 computer. An RS232 interface circuit was 

designed to down load the software developed for the 6809 based 

micro-computer from a DEC11/60 main frame computer to the 6809 

based micro-computer of the noise simulator. The final version 

of the software was stored in an EPROM. 
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An IEEE bus interface circuit has been designed and 

installed with the noise simulators 6809 based micro-computer to 

enable an HP-85 computer to act as an overall experiment 

controller. 	The IEEE bus implementation and the experimental 

system has lead to the collection of consistent results over 

long period of time. The software developed for the 6809 based 

micro-computer was designed in such a way that it can be 

expanded for further experimental investigations. 



CHAPTER 4 IMPROVED CONSTRAINED PEAK TRACKING CORRELATOR 

4-1 Introduction 

The basic principle of the peak tracking correlators and 

their possible application areas have been described in Chapter 2. 

The improved constrained peak tracking ICPT correlator is most 

suitable for flow measurement applications, since it is simple to 

implement and reliably tracks the peak of the correlation function 

with high resolution defined by an analogue control loop. Jordan 

and Manook (1981B) and Manook (1981) have used the overloading 

counter correlator to constrain the tracking loop to track the 

peak of the function. 	No results are given to indicate the 

tracking performance of the peak tracking correlator on its own. 

The overloading counter correlator used to set the tracking loop 

can not by definition, give a steady indication of the peak 

position, typically deviations of ±1Z about a peak- position will 

be observed. 	Manook (1981) noticed that this leads to the 

tracking loop having an uncertain "jittery" response which leads 

to a flow rate display which jumps in discrete steps. 

The ICPT correlator eliminates the possibility of losing 

the peak of the correlation function and tracking a spurious peak. 

The following sections describes techniques which can be used to 

solve the problem of the tracking loop jitter and optimise the 

performance of the constrained peak tracker. 	A detailed 

experimental investigation of the performance of the optimised 

tracking correlator has indicated that for flow measurement 
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applications a coarse correlator with approximate resolution of 

+12.5% and measurement time of one second is sufficient to 

constrain the tracking correlator to track the peak of a 

correlation function over an input signal bandwidth of 50 to 500 

Hz. 	It will be shown that only a small addition to the previous 

circuit is required to ensure that the improved constrained peak 

tracking correlator always tracks the peak of the correlation 

function linearly without output response jitter. A TRW TDC1004J 

based correlator and an on-line 6809 based correlator have been 

considered for coarse estimation of the peak position of the 

correlation function. 

4-2 Improved Constrained Peak Tracking Correlator 

The simplified block diagram of the improved constrained 

peak tracking (ICPT) correlator is shown in figure 4-1. 

Essentially it is comprised of three correlators operating in 

parallel:- 

1) A digital correlator, providing a coarse indication of 

the peak position (this will be referred to as the coarse 

correlator). 

A peak tracking correlator, which is free to track the 

peak of the correlation function, once its delay shift 

register is set by the coarse correlators peak position 

estimate. 

A serial correlator, which is used to indicate the out 

of lock mode of the peak tracking correlator. 	- 

The basic principle of the ICPT correlator is similar to 
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the constrained peak tracking correlator described by Jordan and 

Manook (1981B) and Manook (1981) and is shown in figure 4-2. 	The 

tracking côrrelator is a negative feedback loop operating on a 

first order differentiation of the correlation function. 	For 

linear operation, the tracking correlator is constrained to track 

the peak of the correlation function by a coarse correlator, 

setting the length of its time delay shift register by a coarse 

estimation of the peak position. The resolution of the coarse 

correlator is poor and approximately is of order of ±12.5%. 	The 

theoretical resolution of the tracking correlator is infinite and 

in practice is defined by the analogue negative feedback loop 

circuit. The time delay range and the sample clock period of the 

coarse correlator is defined from the required flow velocity range 

to be measured by the ICPT correlator. 

For accurate estimation of time delays the tracking 

correlator must be capable of tracking the peak of the correlation 

function with high resolution at least within the sample clock 

period of the coarse correlator. Hence the minimum tracking range 

of the negative feedback loop is defined by the resolution of the 

coarse correlator. 

When the negative feedback loop is open its voltage 

controlled oscillator (VCO) operates at a pre-set frequency called 

the free-running frequency, fr. The choice of the free-running 

frequency,fr, depends on the required time delay range and the 

bandwidth of the signals to be correlated. To constrain the peak 

tracking correlator to track the peak of thecorrelation function 
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within the required time delay range, the coarse correlator and 

the tracking correlators time delay range must be identical. The 

free-running frequency of the tracking loop can be related to the 

sampling frequency of the coarse correlator and is given by:- 

Np 
fr - ------ x fs 	 (4-1) 

Nc 

Where: - 

Np= The maximum length of the delay shift register of the 

tracking correlator. 

Nc= The maximum delay range of the coarse correlator. 

fs= Sampling frequency of the coarse correlator, and is 

derived from the required time delay range to be measured. 

Hence, for example, if the maximum length of the delay shift 

register of the peak tracking correlator is equal to the coarse 

correlators maximum delay range, the free-running frequency of the 

tracking loop must be equal to the sampling period of the coarse 

correlator. 

When the tracking loop is closed and the input signals 

are applied to the tracking system, the error signal Ve(t), shown 

in figure 4-2, will be generated on the output of the multiplier, 

and this is related to the multipliers input signals time delay 

difference. If the up-stream and down-stream input polarity 

signals are used, the required multiplication operation is 

equivalent to the exclusive-NOR operation. 	The error signal, 
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Ve(t) , together with, Vref, the free—running frequency reference 

voltage is filtered and applied to the input control terminal of 

the VCO. Due to the negative feedback action of the tracking 

loop, the output voltage of the smoothing filter, Vd(t), forces 

the VCOs output frequency to change the delay shift registers 

time delay in such a direction, as to reduce the time delay 

difference between the two input signals of the multiplier. If 

the input signals time delay difference is sufficiently small the 

tracking correlator will track the peak of the correlation 

function. The tracking condition is defined by:— 

d 
Rpj() I = 0 	(4-2) 

Wheret'pis the position of the peak of the correlation function 

and it is given by:—• 	 . 

np 

fc 

Where: - 

np = Length of the delay shift register set by the coarse 

correlator. 

fc = Output frequency of the VCO. 

The flow velocity, V, Is given by:— 

L 
V (4 



Therefore:- 

fc 
V =L (-----) 	 (4-4) 

np 

Hence the output frequency of the variable modulus counter shown 

in figure 4-2, having modulus set by the coarse correlators peak 

position estimate, np, and input frequency, fc, is proportional to 

the flow velocity. 

The tracking correlator is a non-linear feedback system 

and it can be linearised by small signal analysis techniques. The 

tracking loop can be approximated as a linear system when the loop 

is in the lock mode and is tracking the peak of the correlation 

function. The simplified linearised model of the tracking loop as 

a negative feedback system Is shown In figure 4-3. 

Where:- 

Kd is proportional to the slope of the differentiated 

correlation function, volt s/secs. 

Ko is the gain of the voltage controlled oscillator, Hz/volts. 

Ka is the amplifier gain, volts/volts. 

Kp refers to the gain control potentiometer settings 

,volt s/volts. 

np is the delay shift register length set by a coarse 

correlator. 

fc is the output frequency of the VCO, when the loop is in the 

look mode, Hz. 

fc is small change in frequency, Hz. 
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td is the input signal time delay change, secs. 

tdo is the estimated input signal time delay change, secs. 

The small change in input signal time delay estimate, tdo, can 

be approximated byLtp, where:- 

np ct_p  
fc 

and, 

dt'p 	 -1 
=np( ----- 

dfc 	 fc 

Hence small input signal time delay estimate is approximated 
by : - 

-1 
tdo = 	np.(------ .Lfc 	(45) 

fc 

F(S) is the transfer function of the tracking loops smoothing 

filter and is given by:- 

1 
F(S)= ------------ 

1 + Set- 

Where is the smoothing filters time constant. 

The closed loop transfer function of the tracking loop, H(s), is 

given by:- 

-10 • Ko 

H(S) = -------------------------- (4-6) 
fc2+ KD.Ko.np 

S+(---------------) 2. 
fc. 
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Where:- 	KD = Ka.Kd.Kp 	volts/secs. 

An experimental system has demonstrated the expected first order 

response to the step changes. 

The impulse response characteristic of the tracking 

loop, h(t), is derived by taking the inverse Laplace transform of 

the equation 4-6, and is given by:- 

-KD.Ko 	fct+ KD.Ko.np 
h(t) = --f---. exp {-(--------) t } 	(4-7) 

From equation (4-6) and (4-7) it is clear that, if the length of 

the delay shift register of the tracking correlator, np ,for a 

given KD,Ko and't is increased, the time constant of the tracking 

correlator will be decreased. 	Therefore if the length of the 

delay shift register is large, the transient response of the 

tracking correlator to a step change is fast relative to the 

situation, when the length of the delay shift register is small. 

Hence the position of the peak of the correlation function can be 

tracked with a faster response for longer time delays. Under 

changing signal conditions, this is of great importance, since the 

statistics of the input signals are changing with time, and a 

correlation functions peak position can be estimated more 

accurately if the closed loop time constant of the tracking 

correlator is small. 

The range over which the negative feedback loop can 
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track the peak of the correlation function linearly and stay in 

the lock mode, regardless of the direction of the input signal 

time delay change, is called the linear lock range of the tracking 

correlator. This range is a function of the input signal 

bandwidth, and is less than the tracking range of the loop. It is 

important to note that the linear lock range refers to the range 

over which the negative feedback loop can track the peak of the 

correlation function linearly with a fixed delay shift register 

length, np. 

The tracking range of the negative feedback loop with a 

fixed delay shift register length, input signal bandwidth, and 

signal to noise ratio, is directly dependent on the direction of 

the input signal time delay change. This can be explained with 

reference to figure 4-4, where the delay shift register length 

,np, is set to be equal to N, and the input signal bandwidth 

,signal to noise ratio are independent of the input signal time 

delay change. Initially the input signal time delay is set to its 

maximum value and gradually swept backward and forward. The 

response of the error voltage ,Vd(t), to a decreasing input signal 

time delay is shown in figure 4-4(a). From figure 4-4(a) it will 

be seen that the loop does not respond to the input signal time 

delay change until Its input signal time delay difference is equal 

to 	. 	At 't ,the loop suddenly locks on to the peak of the 

correlation function, as the output voltage of the tracking loops 

filter Vd(t), jumps to the value of Vdl(t) shown in figure 4-4(a). 

The loop continues to track the peak of the correlation function, 

until the input signal time delay is equal to ?j, shown in figure 
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4-4(a). Then the tracking loop loses the peak and remains in the 

Out of lock mode. 	If the input signal time delay is increased 

slowly, the loop re-captures the peak Of the correlation function, 

at 	, and stays in the lock mode down to r4, as shown in figure 

4-4(b). The linear lock range of the tracking loop is shown in 

figure 4-4(c). 	Experimentally it has been found that this range 

is smaller than the tracking range of the loop, and the peak of 

the correlation function can only be tracked linearly within this 

range, regardless of direction of the input signal time delay 

change. 

The tracking loop operates by adjusting the delay shift 

register clock frequency to satisfy the condition given by:- 

dRp ('•) 
-o 

d' 

When the tracking correlator is in the lock mode the output of the 

serial correlator shown in figure 4-2 is expected to indicate the 

amplitude of the peak of the correlation function. Hence the 

output of the serial correlator may be used as a test point to 

indicate the out of lock mode of the tracking correlator. In flow 

measurement situations the normalised peak amplitude of the 

correlation function is expected to reduce from 1 to .2 as the 

input signal time delay increases (Taylor Instrument Ltd. 1976). 

Therefore once the normalised output of the serial correlator is 

below .2, the tracking correlator is likely to be tracking a 

spurious peak, or indicating the no-flow situation. 
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If the length of the delay shift register of the 

tracking correlator is continuously being up-dated by the coarse 

correlators peak position estimates, the output of the tracking 

correlator is expected to exhibit a random fluctuation or jitter. 

This jitter will be exacerbated by the poor resolution of the 

coarse correlator. 	The output response jitter can be avoided by 

setting the length of the delay shift register through a coarse 

position latch operated by the logic control as shown in figure 

4-2. The coarse position latch is disabled once the tracking 

correlator is in the lock mode and is tracking the peak of the 

correlation function. The coarse position latch is expected to be 

enabled only if the input signal time delay change is beyond the 

linear lock range of the negative feedback loop, and is large 

enough to cause the tracking loop to track a spurious peak, or to 

track the peak of the correlation function inaccurately. 

The output of the serial correlator, shown in figure 4-

2, may be used to control the coarse position latch, for example 

the coarse position latch can be enabled only if the output of the 

serial correlator is below some pre-set value. In flow 

measurement situations the output of the serial correlator is 

compared with the minimum expected normalised amplitude of the 

correlation function, e.g. if its normalised output is below .2 

the coarse position latch is expected to be enabled. The block 

diagram of this arrangement is shown in figure 4-5. 

To reduce the variance of the correlation function 

estimate by the serial correlator over an input signal bandwidth 

11 
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of 50 to 500 Hz, its smoothing filters time constant is set to be 

equal to 10 seconds. 	The out of lock mode of the tracking 

correlator can be detected by the serial correlator after ts 

seconds. 	In the case of the simple exponential smoothing this 

time will be equal to 5 time constants if a settling bound of ±1% 

of the steady state value is accepted. Therefore if the serial 

correlator is used to control the coarse position latch its 

smoothing filters time constant will increase the total response 

time of the ICPT correlator. In the worst case an additional time 

must be allowed for the coarse correlator to find the new peak 

position. 

Since the tracking and the linear lock range of the loop 

are not identical it is possible that the serial correlator used 

to control the coarse position latch could give a false indication 

of the amplitude of the correlation function being tracked by the 

negative feedback loop. Consider the situation when the negative 

feedback loop is tracking the peak of the correlation function at 

position 	with a linear lock range of 'rA  to 	, as shown in 

figure 4-6. If the input signal time delay is increased at a rate 

slower than the transient response of the tracking correlator, the 

peak of the correlation function will jump to the positions T11, 

273 and ,',from position ,', as shown in figure 4-6. 	As the 

correlation function peak position changes from 'C, to ?, the 

normalised output of the serial correlator is expected to be above 

.2. 	For the situation described above and illustrated by figure 

4-6 the coarse position latch will remain disabled and the 

tracking correlator will continue to track the peak of the 
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correlation function. 

For the linear operation of the ICPT correlator the 

coarse position latch is expected to be enabled if the peak of the 

correlation function jumps from position ? to' , i.e. where j 

shown in figure 4-6 is beyond the linear lock range of the 

negative feedback loop. But from figure 4-6 it is clear that when 

the position of the peak of the correlation function jumps fromt 

to, the normalised output of the serial correlator will be 

above .2. Therefore the coarse position latch will remain 

disabled and the tracking correlators time delay estimate will be 

inaccurate. 

Two serious problems associated with the use of the 

serial correlator to control the coarse position latch are 

summarised as below:- 

The coarse position latch can not be controlled 

accurately by the serial correlators output. 

The smoothing time constant of the serial correlator 

will increase the total response time of the ICPT 

correlator. 

Therefore the penalty of using the output of the serial correlator 

to control the coarse position latch is high and this could lead 

to inaccurate estimation of time delays by the tracking 

correlator. Note that, the output of the serial correlator can be 
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used to indicate the Out of lock mode of the negative feedback 

loop. In addition the serial correlators output can be used to 

indicate no-flow conditions. 

The output of the window comparator shown in figure 4-2, 

has been used to control the coarse position latch, and 

experimentally it has been shown that this approach will eliminate 

the problems associated with the use of the output of the serial 

correlator for the same purpose. For the linear operation of the 

tracking loop over an input signal bandwidth of 50 to 500 Hz, the 

output voltage of its smoothing filter ,Vd(t), can only vary 

within a certain range, and this range is directly proportional to 

the linear lock range of the negative feedback loop. The upper 

and lower voltage limits of the window comparator ,Vh and Vl, are 

set to be equal to the maximum and minimum output voltage swing of 

the tracking loops smoothing filter,Vd(t), within its linear lock 

range, over arl input signal bandwidth of 50 to 500 Hz. 	Therefore 

once the output of the tracking correlators smoothing 

filter,Vd(t), is beyond the given limits, the coarse position 

latch is expected to be enabled. The window comparators upper and 

lower limits, which is equal to the linear lock range of the loop 

is found experimentally in chapter 5. In addition, it has been 

shown that the upper and the lower limits of the window comparator 

can be predicted using the first order transfer function of the 

loop given by equation 4-6. Note that the upper and lower limits 

of the window comparator must be set in such a way that the 

tracking correlator can track at least the position of the peak of 

the correlation function, within the sample clock period of the 



coarse correlator. 

The performance of the ICPT correlator when the input 

signal time delay suddenly changes beyond the linear lock range of 

the loop, with the window comparator used to control the coarse 

position latch is explained with reference to figure 4-7. 

Consider the situation that the tracking correlator is tracking 

the peak of the correlation function at position, shown in 

figure 4-7 with a linear lock range of (?— Ze ) over an input 

signal bandwidth of 50 to 500 Hz, and 	is given by:- 

(4-8) 

If the position of the peak of the correlation function suddenly 

changes to 	due to the negative feedback action of the loop, 

the smoothing filters output ,Vd(t), will be reduced in order to 

increase the delay line shift registers time delay, and to track 

the peak of the correlation function at ,?j, shown in figure 4-7. 

But, when the output of the tracking loops smoothing filter,Vd(t), 

Is beyond the lower limit of the window comparator, which 

corresponds to '4 shown in figure 4-7, the coarse position latch 
will be enabled and the new peak estimate of the correlation 

function will re-adjust the length of the time delay shift 

register. Therefore while the tracking correlator was increasing 

its delay line shift registers time delay, the new shift register 

length, will increases the input signal time delay of the tracking 

correlators multiplier further than the actual input signal time 

delay of the loop. The Input signal time delay difference to the 
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multiplier of the loop will be equal to ,?, as shown in figure 

4-7. Hence due to the negative feedback action of the loop, the 

output of its smoothing filter ,Vd(t), will be increased, as shown 

in figure 4-7, in order to track the peak of the correlation 

function at ,tj. 

If the input signal time delay suddenly changes within a 

large range (say larger than 10 to 1 range), the error voltage may 

remain within the upper and lower limits of the window comparator. 

Hence the coarse position latch will remain disabled and the loop 

will track a spurious peak. To avoid the above problem the output 

of the serial correlator shown in figure 4-2 is compared with a 

reference value equal to the normalised correlation function peak 

amplitude of .2, and if the normalised output of the serial 

correlator is below .2, the coarse position latch will be enabled. 

The block diagram of the arrangement used, is shown in figure 4-8. 

Note that when the tracking loop is tracking a spurious peak the 

normalised output of the serial correlator is below .2,and the 

coarse position latch can only be enabled by the output of the 

serial correlators comparator if the serial correlators output is 

below .2. 

Therefore to avoid any possibility of tracking a 

spurious peak and to estimate the position of the peak of the 

correlation function linearly, the output of the window comparator 

together with the output of the serial correlators comparator are 

used to control the coarse position latch through a logic control 

shown in figure 4-8. The truth table of the logic control shown in 
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figure 4-8 is given in table 4-1. From table 4-1 it will be seen 

that the output of the serial correlators comparator can only 

enable the coarse position latch if the tracking loop is tracking 

a spurious peak. 

WINDOW COMPARATORS SERIAL CORRELATDR ENABLE PULSE TO THE 
OUTPUT 	 COMPARATORS OUTPUT COARSE POSITION LATCH 

1 (lock mode) 

O (beyond its 
linear lock range) 

1 (within its 
linear lock range) 

1 (above .2) 

1 (above .2) 

0 (below .2) 

O (disabled) 

1 (enabled) 

1 (enabled) 

O (beyond its 	0 (below .2) 	 1 (enabled) 
linear lock range) 

Table 4-1 The truth table of the logic control. 

It should be noted that the upper and lower limits of 

the window comparator is required to be set only once for a given 

flow velocity range,and the 6809 based coarse correlator can be 

programmed to estimate and to set the upper and lower limits of 

the window comparator for a range of flow rates to be measured 

using the first order transfer function of the loop given by 

equation. 4-6. In addition the 6809 micro-processor based 

correlator can be programmed to enable the coarse position latch 

if a large input signal time delay change is 'detected, and this 

approach will eliminate the use of the serial correlators 

comparator output to control the coarse position latch. 
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4-3 ICPT Correlators Circuit Design 

The circuit diagram of the peak tracking correlator is 

shown in figure 4-9. 	To obtain a first order differentiated 

correlation function with respect to delay time, the down-stream 

input signal to the tracking correlator is differentiated with 

respect to time, t. The coupling networks shown in figure 4-9, 

suggested by Jordan (1973), is used to obtain a first order 

differentiated correlation function with respect to delay time. 

The coupling networks shown in figure 4-9 are essentially formed 

from a high-pass and a low-pass filters with a transfer functions 

of Hd and Hu respectively and given by:- 

st;: 
Hd 	 (4-9) 

1 + S F 

and 

1 
H- - ------------- - (4-10) 

1 + St 

Where 4 is the time constant of the high-pass and low-pass 

filters. 	Symmetrical differentiated correlation function with 

respect to delay time is obtained, if the coupling networks cut-

off frequencies are set to be equal. 

Experimentally the optimum performance of the tracking 

correlator over an input signal bandwidth of 50 to 500 Hz was 

obtained when the -3dB cut-off frequency of both filters are set 

to 49.7 Hz, with a buffer amplifier bandwidth of 100 KHz. An HP 
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3721A correlation computer (1968) was used to measure the first 

order differentiated correlation function shown in figure 4-10. 

If the time constants of the coupling networks are not identical, 

the differentiated correlation function will be unsymmetrical as 

shown in figure 4-11. 	The 3dB cut-off frequency of the AC- 

coupling unity gain amplifiers Al,A1, shown in figure 4-9, are 

set to be equal to 1 Hz. 

A 256 stage digital shift register is used as a 

controllable delay line for the up-stream input signal channel. 

The length of the variable delay shift register shown in figure 

4-9 can be varied from 0 to 255 by eight control lines. 

The TTL logic levels of the exclusive-NOR gate are 

converted to ±2 volts using the level shifter shown in figure 4-9. 

The gain control potentiometer shown in figure 4-9 is used to 

control the voltage levels of the error signal, Ve(t). The output 

of the gain control potentiometer with the reference voltage, 

Vref, used to set the free-running frequency of the VCO, is fed 

into the input terminal of the smoothing filter shown in figure 

4-9. 

The output of the VCO shown in figure 4-9 is calibrated 

to operate over a frequency range of .1 to 25 KHz, with a full 

scale input voltage of 0 to 10 volts. Since the operating input 

voltage of the VCO is within 0 to 10 volts the smoothing filters 

output is limited to operated over a range of -.7 to + 9.8 volts 

,using a zener diode shown in figure 4-9 across the capacitor Cl. 
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Therefore once the ICPT correlator is switched on the output of 

the smoothing filter will not rise to a large negative voltage. 

The free-running VCO frequency can be adjusted through 

the potentiometer, K2, shown in figure 4-9. The reference 

voltage, Vref, is set to be equal to approximately -2 volts, with 

the free-running frequency of 4882 Hz. Therefore the smoothing 

filters output, Vd(t), can swing the output frequency of the VCO 

over a 5 to 1 range in either direction, with reference to the 

free-running frequency. It is important to note that, the free-

running frequency of the VCO was estimated using equation 4-1, and 

the sampling frequency of the coarse correlators are determined 

from the required time delay range of the ICPT correlator, (i.e 

1.64 to 52.48 msecs). 

An 8 bit variable modulus counter shown in figure 4-9 is 

used to divide the output frequency of the VCO by the tracking 

correlators delay shift register length, np. The output frequency 

of the variable modulus counter is proportional to the flow 

velocity, and was converted to an equivalent voltage by using the 

frequency to voltage convertor shown in figure 4-9. A smoothing 

filter of 2 seconds time constant is used on the output of the 

frequency to voltage convertor shown in figure 4-9. 

The circuit diagram of the serial correlator together 

with the window comparator and the logic control, described in 

section 4-2 are shown in figure 4-12. Note that the output of the 

tracking loops smoothing filter, Vd(t), is fed to the input 
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terminal of the window comparator. The upper and lower limits of 

the window comparator are set to be equal to the linear lock range 

of the tracking correlator over an input signal bandwidth of 50 to 

500 Hz, and experimentally , they have been found to be equal to 

2.50 and 1.75 volts respectively. 

4-4 Coarse Correlators 

A digital correlator which provides a coarse estimate of 

the peak position to constrain the tracking loop to track the peak 

of the correlation function will be referred to as a coarse 

correlator. 	The resolution of the coarse correlator is poor and 

its sample clock period must be equal or less than the linear lock 

range of the tracking correlator over a specified input signal 

bandwidth range. Although the resolution of the coarse correlator 

is poor, the variance of its peak position estimate is required to 

be low. 

Two digital coarse correlators have been considered for 

use with the tracking correlator described in section 4-2. The 

coarse correlators considered are:— 

A TRW TDC1004J based polarity correlator. 	(The TRW 

device is a 64 stage polarity correlator). 

A 6809 based polarity correlator. 



A single chip TDC1004J based correlator requires 

additional peak finding circuitry and an analogue to digital 

convertor. Four TRW TDC1004J correlators were connected in series 

in order to estimate 256 correlation coefficients over an input 

signal time delay range of 32 to 1, with +6.25% resolution. 	From 

the required time delay range to be measured by the ICPT 

correlator, (i.e. 1.64 to 52.48 msecs), the sampling frequency of 

the TDC1004J based coarse correlator was set to 4882 Hz. When the 

normalised peak amplitude of the correlation function is about .2, 

with the input signal bandwidth of 50 Hz the percentage 

repeatability of the peak position estimate is approximately equal 

to 1007.. Hence due to its short measurement time (52.4 ms) the 

variance of the peak position estimate is high. 

The micro-computer based correlator can estimate 128 

correlation coefficients to cover a 32 to 1 time delay range with 

a worst case resolution of ±12.5%, over an input signal bandwidth 

of 50 to 500 Hz. From the required time delay range to be 

measured by the ICPT correlator the sampling frequency of the 

micro-computer correlator was set to be equal to 2441 Hz. The 

variance of the peak position estimate can be reduced by 

increasing its measurement time. 	The maximum percentage 

repeatability of the micro-computer based correlator with 

measurement time of one second is approximately equal to 30% 

4-4-1 The TRW TDC1004J Based Correlator 

The basic principle of operation of the TRW TDC1004J 
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correlator is described In section 2-2-6 of chapter 2. When the 

polarity input signals are serially shifted into the two 

independently clocked shift registers A and B, the current output 

of the TDC1004J correlator is proportional to the estimate of the 

correlation function coefficients. 	The block diagram of the 

coarse correlator based on the single chip TDC1004J correlator is 

shown in figure 4-13. To achieve ±6.25% resolution over a 32 to 1 

range, four TDC1004J correlators are connected in series and their 

current outputs are summed together. 

The method chosen to achieve the necessary delay is to 

periodically stop the shift register B while data is continuously 

being clocked to the shift register A. With register B stopped 

the sum of the current outputs of the four serially connected 

correlators with each successive clock pulses to register A 

represents the degree of correlation between the down-stream 

signal 7(t) and the increasingly delayed up-stream signal x(t-t') 

held in register B. for example with register B stopped the first 

clock pulse to register A estimates the degree of correlation 

between x(t-1) and y(t). 

Since the correlation function can only be estimated 

when the register B is filled with the polarity up-stream data, 

another four packages of the TDC1004J correlators are connected in 

series to estimate the correlation function while the register B 

of the other correlators are being filled. 	The analogue 

multiplexer shown in figure 4-13 is used to select the summed 

output of the correlators which are estimating the coefficients of 
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the correlation function. The timing diagram of the TRW TDC1004J 

based coarse correlator is shown in Figure 4-14. 	From the 

requiered time delay range to be measured by the ICPT correlator, 

(1.64 to 52.48 msecs), the sampling frequency of the TDC1004J 

based correlator is set to 4882 Hz. 

The block diagram of the peak finding circuitry based on 

the method described by Hayes and Musgrave (1973) is shown in 

figure 4-15. Each 8-bit digital value of the correlation function 

coefficients is compared with the highest already found value in 

buffer-store A, shown in figure 4-15, and the largest of two is 

stored in buffer-store A. At the same time the corresponding 

delay value is read into the buffer-store B shown in figure 4-15. 

To synchronise the peak finding circuit with the sample clock 

period of the correlators an "end of conversion" pulse generated 

by the analogue to digital convertor together with the comparator 

output are used to enable the buffer-stores A and B, shown in 

figure 4-15. The "read time delay" pulse shown in figure 4-14 is 

used to transfer the content of the buffer-store B into the 

buffer-store C. 	An 8-bit digital word stored in buffer-store C 

represents the position of the peak of the correlation function. 

The read time delay pulse is followed by the "counter clear" 

pulse, shown in figure 4-14, was used to clear the content of the 

counter for the next estimate of the correlation function peak 

position. 

The output of the buffer-store C which represents the 

position of the peak of the correlation function is used to set 
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the length of the delay shift register of the tracking correlator 

through the coarse position latch. 

4-4-2 Micro-computer Based Correlator 

A block diagram of the 6809 micro-computer based 

correlator is shown in figure 4-16. The polarity correlation 

function is computed, using the skip algorithm described by Fell 

(1982), over a 32 to 1 time delay range with ±12.5% resolution and 

with a maximum measurement time of 1 second. The main function of 

the micro-computer is the computation of the correlation function 

coefficients using equation 2-10 of chapter 2, and indication of 

the peak position of the correlation function. 

Additional hardware used for the micro-computer based 

coarse correlator are, two packages of 8 stage shift register, two 

packages of mono-stables, one package of 4-bit binary counter and 

one package of D Type flip-flop. The polarity signals generated 

for the TRW TDC1004J based correlator are used for the 6809 based 

correlator. 	The delayed version of the up-stream input signal is 

obtained using a 16 stage serial input, parallel output shift 

register shown in figure 4-16. To synchronise the micro-computers 

computation cycle with the polarity input signals sampling rate, 

two hardware interrupts of the 6809 micro-processor, IRQ and FIRQ 

are used. The mono-stables shown in figure 4-16 are used to 

generate interrupt pulses IRQ and FIRQ, and are triggered by the 

sampling clock period of the up-stream and down-stream input 

signals respectively. Using the above arrangement the polarity of 

the down-stream signal is read into the micro-computer at its 
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sampling rate, and the content of the 16 stage shift register is 

read by the 6809 micro-computer at the sampling rate of the up-

stream signal to the shift register. 

The time delay range over which the correlation function 

coefficients are estimated is given by:- 

.0 	Time delay range \< KT 	(4-11) 

where:- 

K is equal to the length of the shift register stages used, 

i.e. 16. 

and 

AT is the sample clock period of the up-stream polarity 

signal. 

AT is related to the sample clock period of the down-stream signal 

6M, and is given by:- 

4T = MAt 	(4-12) 

WhereA'C'is set to be equal to the down-stream input signal 

sampling rate, and from the required time delay range, M 

determines the ratio of the input signals sampling periods. 

Substituting equation 4-12 into the equation 4-11 we have:- 

0 	Time delay range .< K.M.N 	(4-13) 
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To compute 128 correlation function coefficients with K equal to 

16, from equation 4-13, N is found to be equal to 8. Hence 128 

lagged values of the correlation function coefficients are 

computed by multiplying 8 samples of the polarity down-stream 

input signal with the 16 samples of the up-stream input signal. 

Since the coarse estimate of the correlation function 

peak position was used to set the delay shift register length of 

the tracking correlator, from the required time delay range of the 

ICPT correlator, ( i.e. 1.64 to 52.48 msecs), the sampling period 

of the down stream signal At,, was set to be equal to 2441 Hz. 

The flowchart of the program developed to compute 128 coefficients 

of the correlation function is shown in figure 4-17. 	It is 

important to note that, regardless of the normalised correlation 

function peak amplitude the correlation function coefficients are 

estimated over a 256 coincidences, and each coefficient is stored 

in an 8-bit RAN. The maximum measurement time of the 6809 based 

coarse correlator with the above settings is found to be equal to 

.85 seconds. 

The peak estimate of the micro-computer correlator is 

multiplied by 2 to allow the delay shift register length of the 

tracking correlator to be set with any even number between 2 to 

256. 	The worst case computation time to find the peak of the 

correlation function and multiply by 2 is equal to .05 seconds. 

Hence the maximum total measurement time of the 6809 based 

correlator is equal to .90 seconds. An assembled listing of the 

program used to estimate and find the peak of the correlation 
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function is given in Appendix 3. Since the measurement time and 

the variance of the correlation function estimate was found to be 

adequate for coarse indication of the peak position to the 

tracking correlator, the program was not opt imised any further. 

4-5 Experimental System 

The block diagram of the experimental system designed to 

explore the performance of the ICPT correlator and the coarse 

correlators is shown in figure 4-18. 	The 6809 based micro- 

computer with 8 K-byte of RAN and 16 K-byte of ROM is used to 

compute a coarse estimation of the correlation function as well as 

controlling the communication of the experimental system through 

the IEEE bus interface with the experiment controller (HP-85 

computer) . The IEEE bus interface circuit design is based on the 

MC68488 general purpose adapter. 

2 K-byte of software In machine code was- developed to 

perform all the required communications through the IEEE bus 

Interface between the HP-85 computer and the experimental system. 

Therefore all the parameters of the coarse correlators for 

example, sampling rate, integration time are set by a HP-85 

computer. 	In addition the estimated correlation function 

coefficients by the coarse correlators are sent by the 

experimental system through the IEEE bus interface to the HP-85 

computer for further investigations. Note that additional 1K byte 

of RAM shown in figure 4-18 was used as a buffer to store the 

estimated correlation function coefficients of the TRW TDC1004J 
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based coarse correlator at its sample clock period before sending 

them to the HP-85 computer. 

The assembled software developed for the 6809 based 

micro-computer is down loaded from the main frame DEC 11 computer 

through the RS232 interface circuit shown in figure 4-18. 	The 

final version of the software was stored in an EPROM. 



CHAPTER 5: PERFORMANCE OF THE "ICPT" CORRELATOR. 

5-1 Introduction 

The performance of the ICPT correlator was investigated 

using signals derived from the flow noise simulator described in 

Chapter 3. The major sources of errors which influences the 

accuracy of the correlation flow-meter have been discussed in 

Section 2-3 and the experimental performance of the ICPT 

correlator is described In this chapter. Since the flow noise 

simulator was used to investigate the performance of the ICPT 

correlator the errors due to flow noise transducer systems will 

not be considered. 

Experiments to illustrate the performance of the ICPT 

correlator have been divided Into two categories:- 

I) Dynamic tests 

ii) Static tests 

The dynamic tests, for example small signal step response and 

linear lock range, were carried out over an input signal bandwidth 

of 50 to 500 Hz, and a time delay range of 32 to 1. 	Industrial 

experience (Taylor Instrument Ltd. 1976), has shown that in order 

to achieve ±1%  accuracy the measurement time of the coarsely 

quantised time delay axis correlation flow-meters, is required to 

be of the order of 2 to 20 seconds over an input signal bandwidth 

of 50 to 500 Hz. 
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The dynamic performance of the correlation flow-meter 

under changing (i.e. non-stationary) signal condition is of great 

importance and although this is one of the major factors which 

affects the accuracy of the correlation flow-meter it has received 

very little attention. A detailed experimental investigation of 

the performance of the improved constrained peak tracking 

correlator under changing input signal conditions indicates that 

this correlator can be designed to offer an industrially 

acceptable performance. 

The repeatability and the resolution of the ICPT 

correlator has been obtained under static signal conditions. The 

scatter of the measurements around an average value is described 

by the repeatability function and is given by:- 

2)( Standard Deviation 
% Repeatability --------------------------- X 100 (5-1) 

Mean Value 

The ICPT correlator described in chapter 4 and shown in 

block diagram from in figure 5-1, is essentially made up of three 

correlators operating in parallel:- 

A digital correlator, providing a coarse indication of 

the peak position (this will be referred to as the coarse 

correlator). 

and 

A peak tracking correlator, which is free to track the 

peak of the correlation function, once its delay shift 

register length is being set by the coarse correlators peak 
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position estimate. 

c) A serial correlator, which is used to indicate the Out of 

lock mode of the tracking loop. 

In addition to the overall performance of the ICPT correlator, the 

performance of the tracking correlator as well as the coarse 

correlators are given individually. 

A simplified block diagram of the experimental set-up is 

shown in figure 5-2. 	The majority of the equipment used is 

connected through the IEEE bus interface to an HP-85 computer, 

which operates as the master experiment controller. Extensive 

software in BASIC (i.e for the HP-85 computer) and in assembly 

language for the 6809 based micro-computer of the noise simulator 

and the correlators has been developed to enable the experiments 

to be operated under the control of the HP-85 computer. Heice 

different parameters of the noise simulator, and coarse 

correlators are set through the IEEE bus interface by the HP-85 

computer. In addition results from the correlators, transient 

recorder, digital voltmeters and the logic analyser shown in 

figure 5-2 are collected and stored in magnetic tape by the HP-85 

computer. 	It should be noted that the programmability of the 

noise simulator has lead to the collection of repeatable results, 

and in addition repetitive and time consuming experiments have 

been carried out automatically and accurately under the complete 

control of the HP-85 computer. 
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5-2 Performance of the Tracking Correlator 

The principle of operation and detailed circuit diagram of 

the tracking correlator has been given in chapter 4. To determine 

the performance of the tracking loop, tests have been carried out 

using simulated noise signals with a symmetrical Gaussian shaped 

correlation function over a input signal bandwidth of 50 to 500 

Hz. The coarse position latch shown in figure 5-1 is permanently 

disabled and the length of the delay shift register is set 

manually. To ensure the accurate setting of the delay shift 

register length, the logic analyser shown in figure 5-2 is used to 

read the delay shift register length of the tracking correlator at 

the sample clock period of the tracking correlator. 

A block diagram of the tracking correlator and the test 

points used to monitor the dynamic and the static performance of 

the tracking correlator is shown in figure 5-3(a). A Burr-Brown 

VFC-32 voltage to frequency convertor is used in the tracking 

loop. The calibrated operating range of the VCO is shown in 

figure 5-3(b). 	The output of the serial correlator described in 

chapter 4 is used as an additional test point and its performance 

when the negative feedback loop is in the lock and un-lock mode is 

given. 

N 

To optimise the dynamic performance of the tracking loop 

experiments have been carried out to indicate its linear lock 

range over an input signal bandwidth of 50 to 500 Hz, with 

different negative feedback loop parameters. In addition static 

tests have been carried out to indicate the resolution of the 
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tracking correlator. 

5-2-1 Dynamic Performance of the Tracking Correlator 

Various measurement techniques have been used to monitor 

the dynamic performance of the negative feedback loop controlling 

the tracking error. This is achieved by monitoring the output of 

the smoothing filter, Vd(t), shown in figure 5-3(a). Note that 

the output of the smoothing filter, Vd(t) (error voltage), is 

directly proportional to the output frequency of the VCO. 

To determine the optimum performance of the tracking 

correlator, experiments have been designed to illustrate the 

effect of constraints imposed by the practical realisation of the 

tracking correlator as well as the physical nature of the flow 

noise signal. It should be remembered that the delay shift 

register length is kept constant during' the tracking loop 

experiments. 

The experimental programme is divided into three parts. 

First the step response characteristic of the tracking loop as 

defined by its first order transfer function and given by the 

equation 4-6 is considered. Second the computed and recorded step 

response characteristic of the loop to input signal time delay 

change is compared. Finally , the dynamic performance of the loop 

under changing signal condition is described by sweeping the input 

signal time delay beyond the linear lock range of the tracking 

136. 
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From the closed loop transfer function, H(s), of the 

tracking correlator described in chapter 4 and given by the 

equation 4-6 , it is clear that the closed loop time constant of 

the tracking correlator to an input signal step change, is 

inversely proportional to the slope of the differentiated 

correlation function (polarity), Kd, overall gain of the tracking 

correlator, the delay shift register length, np, and is directly 

proportional to the time constant of the smoothing filter, -c. 

A Hewlett-Packard HP-3721A correlation computer (1968), 

was used to investigate the slope of the differentiated 

correlation function (polarity) around the operating region of the 

loop, by cross-correlating the output signals taken from test 

points 1 and 2 shown in figure 5-3(a). The input signal bandwidth 

was set to be equal to 250 Hz with the normalised correlation 

function peak amplitude of 1. Figure 5-4 describes how the slope 

of the differentiated correlation function (polarity) changes with 

different, coupling networks cut-off frequencies. From figure 5-4 

it will be seen that as the coupling networks cut-off frequency 

reduces, the slope of the differentiated correlation function 

(polarity) decreases. 	From the equation 4-6 of chapter 4 the 

closed loop time constant of the tracking loop is inversely 

proportional to the slope of the differentiated correlation 

function (polarity), lCd. Therefore the closed loop time constant 

of the tracking correlator is expected to increase as the coupling 

network cut-off frequency decreases. 

On the other hand for a coupling networks cut-off 
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frequency of 49.7 Hz, the slope of the differentiated correlation 

function (polarity) decreases as the input signal bandwidth 

decreases as shown in figure 5-5. Hence from equation 4-6 of 

chapter 4 the closed loop time constant of the tracking correlator 

is expected to increase as the input signal bandwidth decreases. 

Additional experiments have been designed to investigate 

the step response characteristic of the tracking correlator over 

an input signal bandwidth of 50 to 500 Hz with different slopes of 

the differentiated correlation function (polarity), Kd, as well as 

different delay shift register length, np, and gain control 

potentiometer settings, Kp. To indicate the effect of the above 

parameters on the performance of the tracking correlator the 

switch S2 is closed and a external square wave signal is applied 

to the input terminal of the smoothing filter through a test point 

4 shown in figure 5-3(a). Since the output frequency of the VCO 

is directly proportional to the flow-velocity, the effect of the 

square wave signal applied to the test point 4 when the loop is in 

the lock mode, is equivalent to perturbing the error voltage, 

Vd(t), or the flow velocity over a certain range, i.e. this forces 

the loop away from its lock mode. Therefore the negative feedback 

loop will track the peak of the correlation function only if it is 

capable of cancelling the effect of the external voltage applied 

to it by the voltage levels of the perturbing square wave signal. 

The period of the perturbing square wave signal is chosen to be 

above the time that Is required by the tracking correlator to 

settle within the tolerance band of ±1%, and its amplitude is set 

to perturbe the error voltage, Vd(t), within its linear lock 
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range. The two channel transient recorder with 4K byte memory 

space shown In figure 5-2 was used to sample and store the output 

of the error voltage, Vd(t), together with the perturbing square 

wave signal at a sample clock period of 50 msecs, to give a 

sampling window of 50x2048 (102.4) seconds for each channel. Note 

that for the results shown in this section, the amplitude of the 

perturbing square wave signal is not scaled. 

The simplified linearised model of the tracking loop with 

the external perturbing square wave signal is shown in figure 5-6. 

The system shown in figure 5-6 is considered to be linear, when 

the tracking loop is in the lock mode, the amplitude of the 

external signal ,Dl, is small and is perturbing the error voltage 

Vd(t) within its linear lock range. Therefore with the above 

assumptions the transfer function of the system between the 

external perturbing signal ,Dl, and the output of the smoothing 

filter, and the transfer function of the system between the Input 

signal time delay and the smoothing filters output was derived. 

From figure 5-6, we have:- 

E1(S)=td(S) +Vd(S).(Ko.np/fc2) 	 (5-2) 

Where El=The error signal, and &Vd is equal to small error 

voltage change. 

and, 

Vd(s)= - F(S).E2(S) 
	

(5-3) 

Where: - 

vd(s) = - F(S) [ KD.E1(s) + Di(S) ] 	(5-4) 
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Where:— 

KD = Kd.Ka.Kp 	volts/secs 	 (5-5) 

Therefore: - 

Vd(S) .Ko.np 
AVd(S) = -F(S) { KD [td(S) - ------------] + D1(S)} (5-6) 

fc 

Hence: - 

	

-F(S).KD.td(S) 	F(S).D1(S) 
Vd(S) = ------------------ - ------------------- (5-7) 

	

F(S).KD.Ko.np 	F(S).KD.Ko.np 
1+-------------1+ --------------- 

fc2 	 fc2  

From equation 5-7 the transfer function of the system ,H(S), 

between the external perturbing square wave signal ,D1, and the 

output of the smoothing filter, AVd, Is given by:- 

	

AVd(S) 	 -F(s) 
H(S) = -------- - ------------------------ (5-8) 

	

Di(S) 	 F(S).KD.Ko.np 
1+ --------------- 

fc1  

By applying the final value theorem for the case when the Input is 

unit step function, steady state error is given by:- 

-fc2. Dl 
Steady state error = Limt AVd(t) = --------------------- (5-9) 

fc2  + KD.Ko.np 

Where Dl is equal to the peak to peak voltage amplitude of the 

perturbing square wave signal. 
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Equation (5-8) and (5-9) are used to compute the step response 

characteristic of the loop as well as the output voltage 

variation, (i.e. steady state error), of the smoothing filter. 

The computed results are compared with the experimental results, 

when the external perturbing square wave signal is applied to the 

tracking loop shown in figure 5-6. The peak to peak amplitude of 

the perturbing square wave signal is set to 1.5 volts,with the 

signal amplitude of +1 to -.5 volts. The magnitude of the KD term 

around the operating point of the tracking correlator was found 

from the open loop slope of the differentiated correlation 

function (polarity) at the output of the smoothing filter for a 

given input signal bandwidth and coupling networks cut-off 

frequency. The gain of the VCO ,Ko, is estimated from the slope of 

the VCO within its operating range shown in figure 3(b), and fe is 

is equal to the output frequency of the VCO when the loop is in 

the lock mode. 

To plot and estimate the open loop slope of the 

differentiated correlation function (polarity) shown in figure 

5-7 and 5-8, the switch, S2, shown in figure 5-2 is opened and the 

clock frequency of the delay shift register is set to be equal to 

the free-running frequency of the VCO (i.e. 4882 Hz) using an 

external clock generator, with a fixed delay shift register 

length, np. The HP-85 computer is programmed to increment the 

input signal time delay to the tracking correlator at equal steps. 

After each time delay increment the output of the smoothing filter 

is taken from the digital voltmeter (DVM) by the HP-85 computer 

and is plotted against the time delay increments of the noise 
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simulator. Time interval between each increment was equal to 120 

seconds. For the results shown in figure 5-7 and 5-8, the 

smoothing filters time constant is 11.4 seconds, and the error 

signal Ve(t) amplitude is set by the gain control potentiometer to 

its maximum value (i.e. ±2  volts). 	Figure 5-7 describes the 

differentiated correlation function (polarity) with coupling 

networks cut-off frequencies of 49.7 and 10 Hz, and input signal 

bandwidth of 250 Hz. The differentiated correlation function 

(polarity) with input signal bandwidth of 50 and 500 Hz, and 

coupling networks cut-off frequency of 49.7 Hz is shown in figure 

5-8. From figure 5-7 and 5-8 the slopes of the differentiated 

correlation function (polarity) around the operating point of the 

tracking loop is computed using the auto-regression standard 

package of the HP-85 computer (1981) and the results are given in 

table 5-1. 

Slope Input signal Coupling networks From 
V/secs bandwidth,Hz cut-off frequency,Hz figure 

-7837.86 500 49.7 5-8(a) 

-4929.63 250 49.7 5-7(b) 

-3388.47 250 10.0 5-7(a) 

-2118.04 50 49.7 5-8(b) 

Table 5-1: The slope of the differentiated correlation function 

(polarity) with different input signal bandwidth. 

To plot the output of the serial correlator, shown in 

figure 5-9, the above procedure is repeated but instead the output 

of the serial correlator with a time constant of 10 seconds is 

monitored and plotted by the HP-85 computer. 
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To investigate the performance of the tracking loop with 

different slops of the differentiated correlation function 

(polarity), two sets of experiments were carried Out by applying 

the perturbing square wave signal to the tracking loop. The length 

of the delay shift register, np, held at a constant value of 20, 

smoothing filter time constant of 11.4 seconds, a free running VCO 

frequency of 4882 Hz, and the error signal, Ve(t), amplitude is 

set by the gain control potentiometer to its maximum value. 

First, the step response of the tracking correlator to a 

perturbing square wave signal, with an input signal bandwidth of 

250 Hz and normalised correlation function amplitude of 1, with 

different coupling networks cut-off frequencies, together with 

their computed step response characteristics are shown in figure 

5-10. 	It is important to note that the input signal time delay 

derived from the noise simulator was to be equal to the tracking 

correlators delay shift registers time delay, (i.e. 4.09 msecs ) 

at its open loop mode. Figure 5-10 shows that the closed loop 

time constant of the tracking correlator increases as the slope of 

the differentiated correlation function (polarity) is decreased by 

reducing the coupling networks cut-off frequency. From figure 5-10 

the closed loop time constant of the tracking loop with the 

coupling networks cut-off frequency of 10 and 49.7 Hz is found to 

be of order of 1.25 and 1 seconds respectively. 

Second, the step response characteristic of the tracking 

correlator to the perturbing square wave signal having the same 

settings as above, but with a coupling networks cut-off frequency 

of 49.7 Hz and different input signal bandwidth was investigated. 
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The recorded and the computed step response characteristic of the 

loop with the input signal bandwidth of 50 and 500 Hz is shown in 

figure 5-11. It is important to note that, the time delay of the 

input signal with normalised correlation function peak amplitude 

of 1, was kept equal to 4.09 msecs, over an input signal bandwidth 

of 50 to 500 Hz. From figure 5-11 it will be seen that the closed 

loop time constant of the tracking correlator increases as the 

slope of,  the differentiated correlation function (polarity) 

decreases. The closed loop time constant of the tracking 

correlator with the input signal bandwidth of 50 and 500Hz shown 

in figure 5-11 is found to be of order of 2.3 and .8 seconds 

respectively. 

The step response of the tracking correlator to the 

perturbing square wave signal with a different setting of the gain 

control potentiometer,Kp, together with their computed step 

response characteristics are shown in figure 5-12. The input 

signal bandwidth is 250 Hz, normalised correlation function 

amplitude is 1, VCO free running frequency is 4882 Hz, delay shift 

register length is 20, and the coupling networks cut-off frequency 

is set to 49.7 Hz'. 	From figure 5-12 it will be seen that the 

closed loop time constant of the tracking correlator increases as 

the peak to peak amplitude of the error signal, Ve(t), is reduced 

by reducing the percentage setting of the gain control 

potentiometer. The closed loop time constant of the tracking loop 

with different settings of the gain control potentiometer is given 

in table 5-2. 
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POTENT I OMETER SETTINGS. 



% setting of the gain Error signal Time constant From 
control potentiometer Ve(t),Volts Seconds figure 

100% +2 1 10(a) 

50% +1 1.6  

25% ±•5  2.5  

Table 5-2: The closed loop time constant of the tracking loop with 

different setting of the gain control potentiometer. 

The step response characteristic of the tracking loop with 

a different delay shift register length,np, were investigated by 

applying the perturbing square wave signal through the test point 

4 shown in figure 5-3(a). The input signal bandwidth was set to 

250 Hz with the normalised correlation function peak amplitude of 

1, coupling networks cut-off frequency of 49.7 Hz, and with the 

gain control potentiometer at 100% of its maximum setting (i.e. 

Ve(t) = ±2 volts  ). For simplicity the clock frequency to the 

PRBN generator and the FIR filters of the noise simulator is set 

to be equal to the free-running frequency of the VCO, (i.e. 4882 

Hz). Therefore if the input signal time delay is set to be equal 

to ns/4882 seconds the tracking correlator will track the peak of 

the correlation function if its delay shift register length, np, 

is equal to the noise simulators delay setting, ns. 

The step response of the tracking correlator to the 

perturbing square wave signal together with its computed step 

response characteristic, for a different delay shift register 

length,np, is shown in figure 5-13. From figure 5-13 it will be 
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seen that the closed loop time constant of the tracking correlator 

increases as the delay shift register length,np, decreases. The 

closed loop time constant of the tracking loop with different 

delay shift register length is given in table 5-3. 

Delay shift register 	Time constant 	From 
length ,np, 	 Seconds 	figure 

8 	 2.35 	 13(a) 

	

50 	 .9 	 13(b) 

	

100 	 - 	.5 	 13(c) 

Table 5-3: Closed loop time constant of the tracking loop with 

different delay shift register length, np. 

The expected output voltage variation of the tracking 

loops smoothing filter,Vd(t), (steady state error), due to the 

perturbing square wave signal is calculated using the equation 5- 

9. 	The calculated output voltage variation of the smoothing 

filter with different slope of the differentiated correlation 

function (polarity) are compared with the experimental results 

obtained from figure 5-10,5-11,5-12,5-13 and is given in table 5- 

4. 	From comparison of the results given in table 5-4, it will be 

seen that, the first order transfer function of the system can be 

used to predict the output voltage variation ,(steady state 

error), of the smoothing filter when the external perturbing 

square wave signal is applied to the loop. In addition the 

computed and the recorded step response characteristic of the loop 
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shown in figure 5-10,5-11,5-12 and 5-13 indicates that the first 

order transfer function of the system can be used to predict the 

step response characteristic of the loop. 

Slop 	% gain control Operating npt Steady state lerrorl From 
setting frequency computed recorded figure 

V/sees fc,Hz Volts Volts 

-3388.47 100% 4931 20 .187 .19 5-10(b) 

-4929.63 100% 5100 20 .142 .15 5-10(a) 

-7837.86 100% 5120 20 .093 .08 5-11(a) 

-2118.03 100% 4996 20 .284 .25 5-11(b) 

-2464.8 50% 5030 20 .245 .21 5-12(a) 

-1232.4 25% 5015 20 .432 .37 5-12(b) 

-4929.63 100% 5075 8 .309 .26 5-13(a) 

-4929.63 100% 5100 50 .060 .07 5-13(b) 

-4929.63 100% 5100 100 .031 .04 5-13(c) 

Table 5-4: The comparison of the computed and recorded output 

voltage variation of the smoothing filter ,Vd(t). 

* Slopes derived from table 5-1 

t np = delay shift register length. 

Two sets of experiments were carried out to investigate 

the step response characteristic of the tracking loop to the 

simulated flow noise signal time delay change. 	First the step 

response characteristic of the loop to the input signal time delay 

change with the normalised correlation function peak amplitude of 
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.82 and bandwidth of 400 Hz was recorded. The input signal time 

delay was initially set to 6.11 msecs, and the step response of 

the loop to the time delay change from 6.11 msecs to 6.49 msecs, 

and back to 6.11 msecs was recorded. FIgure 5-14(a) describes the 

computed and the recorded step response characteristic of the 

tracking loop. Note that equation 5-7 was used to compute the 

step response characteristic of the loop, and the slope of the 

differentiated correlation function (polarity) around the 

operating region of the loop is estimated from figure 5-15(a). 

Second, the step response of the loop to the input signal 

time delay change with the normalised correlation function peak 

amplitude of .32 and bandwidth of 180 Hz was recorded. The input 

signal time delay was initially set to 34.40 msecs, and the step 

response characteristic of the loop to time delay change from 

34.40 msecs to 37.68 msecs and back to 34.40 msec was recorded. 

The computed and the recorded step response of the loop is shown 

in figure 5-14(b). 	The slope of the differentiated correlation 

function (polarity) is estimated from figure 5-15(b). 

For the above two experiments the expected output voltage 

variation of the smoothing filter, (steady state error), as well 

as the time constant of the loop was estimated using the first 

order transfer function of the loop given by the equation 5-7. 

The equations used to estimate the output voltage variation, 

(steady state error), AVd(t), and the closed loop time constant of 

the tracking correlator 
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(due to the input signal time delay change) are given by:- 

-fc2.KD.td  
Steady State Error = Limt AVd(t) = ----------(5-10) 

t-+°o 	 fc + KD.Ko.np 

and 

Tracking loops time constant -------------------(5-11) 
KD.Ko .np 

1+ ----------- 
fc 

The recorded results from figure 5-14 are compared with 

the computed results in table 5-5. From the results given in 

table 5-5 it will be seen that for small simulated flow noise 

signal time delay change the first order transfer function of the 

loop can be used to predict the closed loop time constant of loop 

as well as the smoothing filters output voltage variation, (steady 

state error). 

Slope 	Time constant Time constant Steady state lerrorl From 
computed recorded computed recorded figure 

V/secs seconds seconds volts volts 

-6240.12 .58 .50 .11 .11 5-14(a) 

-2627.10 .27 .22 .18 .18 5-14(b) 

Table 5-5: Computed and recorded time constant and output voltage 

variation of the loop. 

* Slopes are estimated from figure 5-15. 

Further experiments were carried out to investigate the 

linear lock range of the tracking correlator over an input signal 

162. 
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bandwidth of 50 to 500 Hz. This was achieved by sweeping the flow 

noise signal over a 25-1 range with the length of the delay shift 

register set to give a time delay of 10.24 msecs, (np=50 and 

fr=4882 Hz). 	This time delay was chosen so that a 5 to 1 range 

from either side of this delay is equivalent to the 25 to 1 sweep 

range set by the noise simulator. Since the error voltage, Vd(t), 

to the input terminal of the VCO is directly proportional to the 

flow velocity, the HP-85 computer was programmed to sweep the 

input signal time delay at 100 equally spaced flow rates over a 25 

to 1 range, with the approximately constant input signal 

bandwidth. Due to the constraints imposed on developing the 

software to sweep the input signal time delay over a 25 to 1 range 

it was necessary to allow the clock frequency to the PRBN 

generator and the FIR filters of the noise simulator to vary by a 

small factor in order to simulate 100 equally spaced flow 

velocities. 	The input signal time delay was swept over a 25 to 1 

range at different rates, bandwidths and normalised correlation 

function amplitudes. In addition these experiments were repeated 

for different coupling networks cut-off frequencies, smoothing 

filter time constant, and different gain control potentiometer 

settings. 

Initially the smoothing filter time constant was set to 50 

seconds, the coupling networks cut-off frequency to 49.7 Hz, and 

the gain control potentiometer was set to 25% of its maximum 

setting (i.e. Ve(t)--+.5 volts). To determine the minimum sweep 

time which will allow the tracking correlator to stay in its lock 

mode, regardless of the direction of the flow velocity change the 
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input signal time delay was swept over a 25 to 1 range in both 

directions with an input signal bandwidth of 250 Hz and normalised 

correlation function amplitude of 1. After each time delay 

setting, the error voltage Vd(t), is read and stored through a DVM 

by the HP-85 computer. The response of the error voltage, Vd(t), 

to the input signal time delay being swept at 100 equally spaced 

points within 707 seconds in each direction is shown in figure 5- 

16(a). 	Since the flow velocity is being swept at a much faster 

rate than the closed loop time constant of the tracking loop the 

error voltage, Vd(t), response curves shown in figure 5-16(a) for 

increasing and decreasing time delays do not overlap. This error 

is eliminated by increasing the sweep time to 1900 seconds, with 

the result shown in figure 5-16(b). 

From figure 5-16(b) it will be seen that the tracking 

region of the negative feedback loop as described in chapter 4, 

depends on the direction of the, input signal time delay sweep and 

this is not linear over a 25 to 1 sweep range. In addition from 

figure 5-16(b) It will be seen that the linear lock range of the 

tracking correlator ( i.e. 	the tracking region over which the 

loop can track the peak of the correlation function linearly 

regardless of direction of time delay sweep ) is less than its 

tracking range. Therefore for linear operation of the ICPT 

correlator the upper and lower limits of the window comparator is 

required to be equal to the linear lock range of the negative 

feedback loop. 

To investigate the effect of the overall gain of the 
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negative feedback loop on its tracking range, the gain control 

potentiometer is set to 100% of its maximum value, , (i.e. Ve(t)= 

±2 volts) and the above experiment is repeated. The response of 

the error voltage to an input signal time delay sweep in each 

direction, with a sweep time of 707 and 1900 seconds is shown in 

figure 5-17. These results indicates that when the overall gain 

of the loop is increased the negative feedback action of the loop 

can swing the error voltage, Vd(t), further and this will increase 

the tracking and its linear lock range. 

The tracking performance of the negative feedback loop may 

be studied using the output of the serial correlator described in 

chapter 4. The output of the serial correlator is expected to be 

proportional to the peak amplitude of the correlation function 

when the tracking correlator is in the lock mode. 	The output 

response of the serial correlator to the input signal time delay 

sweep of the tracking correlator is shown in figure 5-18. 	The 

output response of the serial correlator shown in figure 5-18 

corresponds to the tracking loops error voltage response given in 

figure 5-17(b). 

For the linear operation of the ICPT correlator, the 

coarse position latch is required to be disabled only within the 

linear lock range of the tracking correlator. Therefore, if the 

output of the serial correlators comparator is used to control the 

coarse position latch on its own, in addition to the problems 

described in chapter 4, from figure 5-18 it is clear that the 

output of the serial correlator can not be used to indicate 
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significantly the difference between the linear lock and tracking 

range of the negative feedback loop, and its output stays 

approximately the same value within the tracking range of the 

loop. Hence if only the output of the serial correlators 

comparator is used to control the coarse position latch, the ICPT 

correlator may not be tracking the peak of the correlation 

function linearly. 

To reduce the variance of the error signal, Ve(t), the 

time constant of the smoothing filter was initially set to 50 

seconds. To decrease the closed loop time constant of the 

tracking correlator, the smoothing filters time constant was 

reduced to 11.4 seconds and the gain control potentiometer setting 

was maintained at 100% of its maximum setting (i.e. Ve(t)2 volts 

). To investigate the performance of the tracking loop with the 

smoothing filter time constant of 11.4 seconds, the input signal 

time delay was swept over a 25 to 1 range within 707 seconds In 

each direction. The error voltage, Vd(t), response with the above 

settings and the input signal bandwidth of 250 Hz is shown in 

figure 5-19. From figure 5-19 it will be seen that the variance of 

the error voltage is not affected significantly by decreasing the 

closed loop time constant of the negative feedback loop in 

comparison to the situation shown in figure 5-17. 

In flow measurement situations the normalised peak 

amplitude of the correlation function is expected to vary over a 

.2 to 1 range ( Taylor Inétrument Ltd. 1976 ). 	Therefore the 

above experiment was repeated, with the normalised peak amplitude 
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of .2 and the response of the error voltage is shown in figure 5- 

20(a). 	From figure 5-20(a) it will be seen that the variance of 

the error voltage has not been significantly affected by this 

change. 	For the purpose of comparison figure 5-20(b) has been 

Included to show the response of the error voltage when the time 

constant of the smoothing filter was set to 50 seconds. 

The results given in figure 5-16 to 5-20 are summarised as 

below:- 

I) As the overall gain of the tracking correlator 

increases, the tracking and the linear lock range of the 

loop increases. 

If the tracking loops smoothing filters time constant 

Is reduced from 50 seconds to 11.4 seconds, the transient 

response of the tracking correlator will become faster and 

the variance of the error signal Ve(t) will remain low for 

normalised correlation function peak amplitudes of 1 and .2. 

The tracking region of the negative feedback loop 

depends on the direction of the input signal time delay 

change as well as the peak amplitude of the correlation 

function. 

The linear lock range of the tracking correlator is 

independent of the direction of the input signal time delay 

change and is less than its tracking range. 

One of the major factors controlling the response 

characteristic of the tracking loop is the slope of the 
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differentiated correlation function (polarity), Kd. 	This slope, 

Kd, is being determined by the coupling networks cut-off frequency 

as well as the input signal bandwidth. The performance of the 

tracking loop with different slopes was investigated by sweeping 

the input signal time delay over a 25 to 1 range with sweep time 

of 707 seconds in either direction. Since figure 5-19 and 5-20 

describes the response of the error voltage, Vd(t), with the 

coupling networks cut off frequency of 49.7 Hz, for the purpose of 

comparison the performance of the tracking loop with the coupling 

networks cut-off frequency of 10 Hz was investigated and is given 

in figure 5-21. 

From figure 5-21 it will be seen that the tracking 

correlator with the coupling networks cut-off frequency of 10 Hz 

is capable of tracking the peak of the correlation function within 

its linear lock range accurately. In addition from figure 5-21 it 

is clear that the tracking range of the loop is reduced in 

comparison to the situation shown in figure 5-19 and 5-20(a), 

where the coupling networks cut-off frequency was set to 49.7 Hz. 

Therefore for a given input signal bandwidth, the tracking range 

of the loop decreases as the coupling networks cut-off frequency 

reduces. 

Since the flow noise signal is expected to vary over a 50 

to 500 Hz bandwidth range, the performance of the loop at the top 

and the bottom of this range, with the coupling networks cut-off 

frequency of 49.7 Hz was investigated. The response of the error 

voltage to the input signal time delay sweep with the bandwidth of 
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500 Hz and the normalised correlation function peak amplitude of 1 

is shown in figure 5-22. From figure 5-22 it will be seen that 

the loop is capable of tracking the peak of the correlation 

function within its linear lock range. The response of the error 

voltage to the input signal time delay sweep of 50 Hz bandwidth 

and the normalised correlation function peak amplitude of 1 and .2 

is shown in figure 5-23. From the results shown in figure 5-23(b) 

it will be seen that the loop is capable of tracking the peak even 

under the worst case input signal condition, (i.e. when the input 

signal bandwidth is approximately equal to 50 Hz with the 

normalised correlation function peak amplitude is .2). 

Under the worst case input signal condition, the error 

voltage response to the input signal time delay sweep, shown in 

figure 5-23(b), is fluctuating about its mean value within its 

tracking range. An additional experiment was performed to 

investigate the performance of the tracking loop, with the 

coupling networks cut-off frequency of 49.7 Hz, but the smoothing 

filters time constant was increased to 20 seconds. 	From the 

results given in figure 5-24 it will be seen that although the 

time constant of the smoothing filter has increased to 20 seconds, 

the variance of the error signal has not been improved 

significantly and the error signal is still fluctuating about its 

mean value. 

It has been found that an additional external smoothing 

filter having a time constant of 2 seconds, will reduce the error 

voltage, Vd(t), fluctuations, and the closed loop time constant of 
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the tracking loops smoothing filter can be maintained at 11.4 

seconds. Figure 5-25 describes the response of the error voltage 

to the input signal time delay sweep with the external smoothing 

filter time constant of 2 seconds. Note that the error voltage, 

Vd(t), is directly proportional to the output frequency of the VCO 

as well as the output voltage of the frequency to voltage 

convertor of the ICPT correlator shown in figure 5-1. Therefore 

the external smoothing filter used to reduce the error voltage 

fluctuations can be placed at the output terminal of the frequency 

to voltage convertor. 	From figure 5-25 it will be seen that 

although the error voltage fluctuation is reduced, the tracking 

loops linear lock range is poor. 

Industrial experience has shown that the input signal 

bandwidth and its correlation function peak amplitude reduces as 

the flow velocity reduces, and the worst case situation is likely 

to happen when the input signal time delay is large ( Taylor 

Instrument Ltd. 1976). Since the tracking loops overall gain 

increases as its delay shift register length increases, the gain 

of the loop is expected to be high at the worst case input signal 

condition (i.e. input signal bandwidth of 50 Hz and the normalised 

correlation function amplitude of .2). Therefore to observe the 

linear lock range of the tracking correlator the shift register 

length, np, is increased from 50 to 167 ( i.e 	34.21 msecs) and 

the input signal time delay is being swept over a range of 28.60 

to 42.55 msecs, corresponding to 15 equally spaced flow 

velocities. 	The response of the error voltage, Vd(t), to input 

signal time delay sweep in both directions is shown in figure 5-26. 
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From figure 5-26 it will be seen that since the input signal 

time delay is being swept over a small range with the shift 

register length of 167, and the external smoothing filter time 

constant of 2 seconds, the error voltage fluctuation is reduced 

and its linear lock range is observable. 

Leitner (1979) has suggested that in order to maintain the 

two point difference correlator in the lock mode, the micro-

computer based correlator can be programmed in such a way that if 

a change in the peak position is detected, the two point 

difference correlator is required to be set by the micro-computers 

new peak position estimate. 	To observe the performance of the 

tracking correlator with the suggestion made by Leitner the coarse 

position latch is permanently enabled and the micro-computer 

correlator is programmed as suggested, and the above experiment 

with the worst case input signal condition is repeated. Figure 

5-27 describes the response of the tracking correlator to input 

signal time delay sweep in both directions. Note that since the 

coarse position latch is permanently enabled the output of the 

frequency to voltage convertor with the external smoothing filter 

time constant of 2 seconds, is plotted against the flow-rate 

sweep. From figure 5-27 it will be seen that at the worst case 

input signal condition, due to the high percentage repeatability 

of the 6809 based coarse correlator (i.e. approximately 30% ) the 

output response of the tracking correlator is jittery. 	Therefore 

by comparison of the results given in figure 5-26 and 5-27 it is 

clear that even at the worst case input signal condition, the 

tracking correlator can track the peak of the correlation function 
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more linearly when the coarse position latch is maintained 

disabled within its linear lock range. 

From the experimental results obtained in this section the 

optimum settings for the tracking correlator, over an input signal 

bandwidth of 50 Hz to 500 Hz, with the normalised correlation 

function of 1 to .2 is given below:- 

1) Coupling networks cut-off frequency = 49.7 Hz. 

Tracking correlators smoothing filters time constant = 

11.4 seconds. 

Percentage setting of the gain control potentiometer = 

100 % (i.e. Ve(t)= ± 2 volts.). 

Shift register length = 256. 

Free-running frequency of the VCO = 4882 Hz, (from the 

required time delay range to be measured by the ICPT 

correlator). 

External smoothing filter time constant at the output 

of the frequency to voltage convertor = 2 seconds. 

For linear operation of the ICPT correlator the upper and 

lower limits of the window comparator is required to be equal to 

the linear lock range of the tracking loop over an input signal 

bandwidth of 50 to 500 Hz. The results given in figure 5-19, 5-

20(a), 5-22, and 5-26 are used by the HP-85 auto-regression 

package (1981) to estimate the linear lock range of the tracking 

correlator, over an input signal bandwidth of 50 Hz to 500 Hz. 

Note that the upper and the lower limits of the linear curves 

refers to the upper and lower limits of the window comparator. In 
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addition the expected output voltage variation of the tracking 

correlators smoothing filter (error voltage) within its linear 

lock range is computed using the equation (5-10), by setting the 

input signal time delay variation, td , to be equal to the 

tracking loops time delay swing within its linear lock range. The 

computed and experimental results are compared in table 5-6. 	The 

slope of the differentiated correlation function (polarity) around 

the operating region of the tracking loop with the input signal 

bandwidth of 50 and 250 Hz, normalised correlation function peak 

amplitude of .2 are estimated from figure 5-28. 
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INPUT SIGNAL 
BANDWIDTH 500 250 250 50 

Hz 

NORMALISED PEAK 1 1 0.2 0.2 
AMPLITUDE 

SLOPE —7837.86 -4929.63 -1998.12 -833.77 
V/SECS (Fig.5-8) (Fig-5-7) (Fig.5-28) (Fig.5-28) 

OPERATING 5082 5050 5010 4950 
FREQUENCY,Hz 

RECORDED UPPER 3.0 2.95 2.50 2.53 
LIMIT, VOLTS 

RECORDED LOWER 1.45 1.6 1.70 1.75 
LIMIT, VOLTS 

RECORDED 
WINDOW VOLTAGE 1.55 1.39 0.8 0.78 

VOLTS 

FROM 5-22 5-19 5-20(a) 5-26 
FIGURE 

COMPUTED 
WINDOW VOLTAGE 1.57 1.33 0.76 0.75 

VOLTS 

Table 5-6: The comparison of the recorded and computed window 

voltage over a input signal bandwidth of 50 to 500 

Hz. 

From comparison of the results given in table 5-6 it will be seen 

that, for a given slope of the differentiated correlation function 

(polarity), the upper and lower limits of the window comparator 

can be computed using equation (5-10). For example the upper and 
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the lower limits of the window comparator with the input signal 

bandwidth of 50 Hz, normalised correlation function peak amplitude 

of .2, and the linear lock range shown in figure 5-26 is computed 

as follows:- 

1) The time delay difference,tDl and tDh, between the delay 

shift register time delay ( at its operating point ,i.e tD = 

167/4950 sees, fc = 4950 Hz, Vd(t)=2.16 volts) and the highest 

and the lowest time delay swing of the loop within its linear 

lock range is estimated from figure 5-26, and is given by:- 

tDl=(1/23.5 - 167/4882) = 8.34 msecs 

and, 

tDh=(167/4881 - 1/34.8) = 5.47 msecs 

ii) The error voltage variation ,Vd(t), Is computed by 

substituting,td, of equation (5-10) with tDh and tDl 

respectively. Therefore the modulus of the highest error voltage 

difference with reference to the error voltage at the operating 

point of the loop is computed to be equal to .298 volts, and 

replacing td with tDl the modulus of the lowest error voltage 

difference is computed to be equal to .459 volts. Hence:- 

Upper limit of the window comparator = 2.16+.298 = 2.458 volts 

Lower limit of the window comparator = 2.16-.459 = 1.701 volts 
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Note that the computed upper and lower limits of the window 

comparator under the worst case input signal condition are in 

agreement with the experimental results given in table 5-6. 

For linear operation of the ICPT correlator over an input 

signal bandwidth of 50 to 500 Hz from the results given in table 

5-6, the upper and lower limits of the window comparator are set 

to be equal to 2.50 and 1.75 volts respectively. The performance 

of the ICPT correlator with the above window comparator settings 

is given in section 5-4. 

5-2-2 Static Performance of the Tracking Correlator 

The static performance of the tracking correlator with its 

optimum settings and a fixed delay shift register length was 

investigated using signals derived from the flow noise simulator 

described In chapter 3. 	The percentage repeatability of the 

tracking loops output was computed using equation 5-1 and taking 

200 readings at each flow rate settings. Note that the percentage 

repeatability of the loop depends upon the bandwidth and signal to 

noise ratio of the input signal as well as the overall gain and 

the smoothing filter time constant of the tracking correlator. In 

addition the percentage output error of the tracking loop (Taylor 

Instrument Ltd. 1976) was computed using :- 

%out put - %input 
%output error ------------------- 	(5-12) 

7.input 
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Two set of experiments were carried out to investigate the 

static performance of the tracking loop within its linear lock 

range, over an input signal bandwidth of 50 to 500 Hz. 	It is 

important to note that initially, the length of the delay shift 

register ,np, was set by the peak position estimate of the 6809 

based coarse correlator and the coarse position latch was disabled 

during the experiments. 

First the static performance of the tracking loop over an 

input signal time delay range of 1.896 to 1.638 msecs was 

recorded. The above time delay range is approximately equal to 

the smallest time delay required to be measured by the ICPT 

correlator. The HP-85 micro-computer was programmed to divide the 

above time delay range to 21 equally spaced flow velocities, and 

the output of the frequency to voltage convertor of the tracking 

loop with the smoothing filter time constant of 2 seconds was 

recorded after each time delay settings. The measurement time by 

the HP-85 computer for each setting was set to be equal to 30 

seconds. 

Figure 5-29 describes the linear relationship between the 

input signal time delay and the output of the tracking loops 

frequency to voltage convertor at 21 equally spaced flow 

velocities. The time delay range shown in figure 5-29 is 

approximately equal to one sample clock period of the micro-

computer based correlator. From figure 5-29 it will be seen that 

the smallest time delay range to be measured by the tracking loop 

is equal to 12.28j  sees. 
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The percentage output error of the tracking loop over the 

above input signal time delay range is shown in figure 5-30, and 

approximately is of order of ±1.1%. 	Figure 5-31 describes the 

tracking loops percentage repeatability over an input signal time 

delay range of 1.896 to 1.638 msecs and is found to be of order of 

0.3%. 

The static performance of the tracking loop over an Input 

signal time delay range of 51.153 to 43.371 msecs was 

investigated using the flow noise signal with bandwidth of 50 Hz 

and normalised correlation function amplitude of .2. The above 

time delay range is approximately equal to the largest time delay 

required to be measured by the ICPT correlator over an input 

signal time delay range of 32 to 1. 	The HP-85 computer was 

programmed to divide the above time delay range to 47 equally 

spaced flow velocities and the required settings for the flow 

noise simulator was computed. The measurement time between each - 

input signal time delay setting was equal to 30 seconds. 	Figure 

5-32 describes the linear relationship between the input signal 

time delay of the tracking loop and its frequency to voltage 

convertors output with the smoothing filter time constant of 2 

seconds. 

From figure 5-32 it will be seen that the tracking loop Is 

capable of tracking the input signal time delay change with high 

resolution at the worst case input signal condition. The smallest 

time delay range being measured by the loop is equal to .17 msecs. 

The percentage output error of the tracking loop over the above 
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input signal time delay range is found to be less than -0.85% and 

is shown in figure 5-33. In addition the percentage repeatability 

of the tracking loops output shown in figure 5-34, is 

approximately of order of +1.7% 

From the results given in this section the resolution of 

the tracking loop with its optimum settings over an input signal 

time delay range of 32 to 1 was found to be equal to .6%. 	In 

addition the tracking loop is capable of tracking the input signal 

time delay with approximately ±1%  output reading error and maximum 

repatability of 1.7%. 

5-3 Performance of the Coarse Correlators 

The performance of the coarse correlators was investigated 

using the noise signals derived from the flow noise simulator 

described in chapter 3. Equation 5-1 was used to compute the 

percentage repeatability of the coarse correlators time delay 

estimate over an input signal bandwidth of 50 to 500 Hz at 10 

different settings. 	The percentage repeatability of the coarse 

correlators was computed by taking 200 readings from each input 

signal time delay settings. 

The percentage repeatability function of the TRW TDC 1004J 

based coarse correlator with sampling clock frequency of 4882 Hz 

was computed using equation 5-1. To investigate the effect of 

averaging on the repeatability of the correlation function peak 

position estimate, the HP-85 computer was programmed to average 2, 
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3 and 4 estimates of the correlation function before computing 

their percentage repeatability. 

Figure 5-35 describes how the percentage repeatability of 

the TRW TDC1004J based coarse correlator varies over an input 

signal bandwidth of 50 to 500 Hz, and time delay range of 32 to 1. 

From figure 5-35 it will be seen that the percentage repeatability 

of the TRW TDC1004J based coarse correlator reduces as the number 

of the averaged correlation function estimates increases. In 

addition from the results given in figure 5-35 it will be seen 

that when the input signal bandwidth and its normalised 

correlation function peak amplitude is relatively low, due to its 

short measurement time, the percentage repeatability the TRW 

TDC1004J based coarse correlator is too high to be used as a 

coarse correlator. 	Therefore the TRW TDC 1004J based coarse 

correlator cannot be used to constrain the tracking loop to track 

the peak of the correlation function within its linear lock range 

over an input signal bandwidth of 50 to 500 Hz. 

The above experiment was repeated to investigate the 

percentage repeatability of the micro-computer based coarse 

correlator with a measurement time of 1 second. 	The percentage 

repeatability of the micro-computer based coarse correlator with a 

sampling clock period of 2441 Hz is shown in figure 5-36. 	From 

figure 5-36 it will be seen that the maximum percentage 

repeatability of the micro-computer based coarse correlator is of 

the order of 30% and hence the position of the peak of the 

correlation function can be estimated more accurately using the 
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micro-computer based coarse correlator. 

5-4 Performance of the ICPT Correlator 

The performance of the ICPT correlator over an input 

signal time delay range of 32 to 1, was investigated using the 

simulated flow noise signals derived from the noise simulator 

described in chapter 3. 	The 6809 based coarse correlator with 

maximum response time of 1 second was used to constrain the 

tracking loop to track the peak of the correlation function. From 

the results given in table 5-6, the upper and lower limits of the 

window comparator were set to be equal to the linear lock range of 

the tracking correlator over an input signal bandwidth of 50 to 

500 Hz, (i.e. Vh = 2.50 volts, Vl = 1.75 volts). Therefore the 

coarse position latch is expected to be enabled only if the 

tracking loops error voltage is beyond the linear lock range of 

the tracking correlator. 

The experimental programme to investigate the performance 

of the ICPT correlator was divided into two parts: - 
Dynamic performance 

Static performance 

The dynamic performance, for example the step response 

characteristic of the tracking loop when the shift register length 

is re-set by the new peak position estimate as well as the 

performance of the ICPT correlator under changing signal 

conditions are given. 	The percentage output error and 

repeatability of the ICPT correlator over an input signal time 



delay range of 32 to 1 are given under static signal conditions. 

5-4-1 Dynamic Performance of the ICPT Correlator 

The output of the frequency to voltage convertor of the 

tracking correlator with 2 seconds smoothing filter time constant 

together with the error voltage, Vd(t), of the tracking loop was 

used to monitor the dynamic performance of the ICPT correlator. 

Note that the output of the window comparator together with the 

serial correlators comparator output was used to control the 

coarse position latch through the logic control with a truth table 

given in table 4-1 of chapter 4. The micro-computer based coarse 

correlator was used to estimate the peak of the correlation 

function continuously and the coarse position latch is expected to 

be enabled when the tracking loop is beyond its linear lock range. 

The step response characteristic of the tracking loop when. 

the error voltage is beyond its linear lock range was recorded 

using the two channel transient recorder shown in figure 5-2. The 

sample clock period of the transient recorder was set to 10 msecs 

and the output of the serial correlator together with the tracking 

loops smoothing filter output, Vd(t), were recorded. Initially 

the tracking loop was tracking the peak of the correlation 

function within its linear lock range with the delay shift 

register length of 14, and the input signal time delay of 3.07 

msecs. 	The response characteristic of the error voltage, Vd(t), 

together with the output of the serial correlator when the input 

signal time delay suddenly changes to 4.6 msecs is shown in figure 

5-37. Note that the above time delay change is beyond the 

201. 



tracking loops linear lock range. 

From figure 5-37 it will be seen that as the input signal 

time delay suddenly changes to 4.6 msecs the negative feedback 

action of the loop reduces the error voltage, Vd(t), in order to 

track the new peak of the correlation function. But the input 

signal time delay change is beyond the tracking loops linear lock 

range. Therefore once the error voltage is beyond the lower limit 

of the window comparator the output of the window comparator 

enables the coarse position latch and the delay shift register 

length is set by a new peak position estimate of the coarse 

correlator. 	The new delay shift register length of the loop 

increases, the input signal time delay of the tracking correlators 

multiplier further than the actual input signal time delay of the 

loop. Hence, as described in chapter 4, the negative feedback 

action of the loop increases the error voltage, Vd(t) in order to 

track the peak of the correlation function within its linear lock 

range as shown in figure 5-37. 

From figure 5-37 the total transient response time of the 

loop to settle within the tolerance band of ±1%,  when the input 

signal time delay change is beyond its linear lock range is 

approximately equal to 1.57 seconds. The experimental results 

shown in figure 5-40 indicates thatthe step response of the loop 

to the sudden change of the delay shift register length is not 

significant on the output of the frequency to voltage convertor 

when a smoothing filter time constant of 2 seconds is used. Note 

that the above step response characteristic of the loop on the 
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output of the frequency to voltage convertor can be eliminated by 

programming the 6809 based coarse correlator to disable the output 

of the frequency to voltage convertor once the delay shift 

register length is up-dated and instead its coarse peak estimate 

can be used for a period of approximately 2 seconds. 

In addition from figure 5-37 it will be seen that for a 

given input signal time delay change the output of the serial 

correlator with a time constant of 10 seconds was not changed 

significantly. Hence the serial correlators output can not be 

used to indicate the situations when the loop is tracking the peak 

of the function inaccurately. 

From the truth table of the logic control given in chapter 

4 , table -4-1, it will be seen that the serial correlators 

comparator output can only enable the coarse position latch if the 

input signal time delay suddenly changes over a large range. 

Figure 5-38 describes the output of the serial correlator together 

with the error voltage, Vd(t), when the input signal time delay 

suddenly changes over a 32 to 1 range. 	Initially the tracking 

loop was in the lock mode with input signal time delay of 1.433 

msecs and the input signal time delay suddenly has changed to 51.2 

msecs. From figure 5-38 it will be seen that the negative 

feedback action of the loop is forcing the error voltage to move 

away from the peak position of the correlation function. 

Therefore the output of the serial correlator falls below a 

normalised correlation function peak amplitude of .2 as shown in 

figure 5-38, and the coarse position latch will be enabled. From 

P1 
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figure 5-38 the total transient response time of the loop to 

settle within the tolerance band of ±1%  is equal to 4.9 seconds. 

The performance of the tracking correlator under changing 

signal conditions was investigated by sweeping the input signal 

time delay over a 24 to 1 range in both directions, at a different 

rates. 	The input signal time delay settings was computed to 

correspond to 100 equally spaced flow rates over an input signal 

bandwidth of 50 to 400 Hz. Therefore by sweeping the 100 equally 

spaced flow noise signal settings in both directions the output of 

the ICPT correlator (flow velocity) is expected to vary as a ramp 

function. 

The expected normalised peak amplitude of the correlation 

function at 100 equally spaced flow velocities was computed using 

the equation 2-19 given in section 2-3-2 of chapter 2. 	Therefore 

the normalised peak amplitude and the input signal bandwidth is 

expected to reduce as the input signal time delay is increasing. 

Figure 5-39 describes how the normalised peak amplitude 

and the bandwidth of the correlation function changes along the 

time delay axis. For simplicity only 8 different settings for 

each direction are shown. 

The computed settings for the noise simulator were stored 

in an EPROM and were used as a look-up table by the 6809 based 

micro-computer of the noise simulator. The internal timer of the 

noise simulators micro-computer ( Rockwell 6522 (VIA) ) were used 
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to estimate accurately the period of input signal time delay 

change. The 2 channel transient recorder shown in figure 5-2 with 

a sample clock period of 50 msecs were used to sample and store 

the output response of the ICPT correlator (output of the 

frequency to voltage convertor with smoothing filter time constant 

of 2 seconds). 

Since the memory space of the transient recorder for each 

channel is limited to 2048. locations with a maximum sample clock 

period of 50 msecs, the complete output response of the ICPT 

correlator cannot be captured by the transient recorder if the 

period, of the input signal time delay change exceeds 1 second. 

Therefore the HP-85 computer was used to sweep the input signal 

time delay backward and forward at a period slower than 1 second 

and the output of the ICPT correlator was recorded through a 

digital voltmeter by the HP-85 computer after each time delay 

setting. 	The internal timer of the HP-85 computer was used to 

estimate the period of the input signal time delay change. 

Initially the period of the input signal time delay change 

was set to 90 msecs and was swept backward and forward over a 24 

to 1 range. The above experiment was repeated by decreasing the 

period of the input ' signal time delay change to 227, 454, 673 

msecs and finally 30 seconds. Figure 5-40 describes the output 

response of the ICPT correlator recorded by the transient recorder 

and the HP-85 computer at the above different periods. Note that 

when the period of the input signal time delay change is equal to 

30 seconds the ICPT correlator tracks very closely the input 
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signal time delay change. From figure 5-40 it will be seen that 

as the period of the input signal time delay change increases the 

ICPT correlator tracks the peak of the correlation function more 

accurately, and its response approaches the case when the input 

signal time delay was changed with a 30 seconds period. In 

addition the output response of the ICPT correlator approximately 

follows the direction of the input signal time delay change and 

its output is a ramp function. 

5-4-2 Static performance of the ICPT correlator 

The static performance of the ICPT correlator was 

investigated using signals derived from the flow noise simulator 

over an input signal bandwidth of 50 to 500 Hz and 32 to 1 time 

delay range, (1.64 to 52.48 msecs). The percentage repeatability 

of the ICPT correlator was computed using equation 5-1 and taking 

200 readings at each flow rate settings. The input signal time 

delay over a 32 to 1 range was divided to correspond to 24 equally 

spaced flow velocities. The measurement time between each input 

signal time delay settings was equal to 50 seconds. 

Figure 5-41 describes the linear relationship between the 

input signal time delay settings and the tracking loops frequency 

to voltage convertors output with smoothing filter time constant 

of 2 seconds. 	From figure 5-41 it will be seen that the ICPT 

correlator can track the peak of the correlation function linearly 

over an input signal time delay range of 32 to 1. The percentage 

output reading error of the ICPT correlator over the above time 

delay range is shown in figure 5-42, and approximately is of order 



6P129 oc 

in 
1.9 099V u 

s8 .sip 

Eø'S86 

C., 
-4 Ed 
I— ix 

BE 60EUi cn 8 
>- I- 

CL 

SL el? 21 LL 

68 8081 z 

IT  SøI,I LL 
LU 
CL 

82,88 	'-4 

'1• 
U, 

it 	th 
.54 

LL 

	

S 	 S 	 S 	 a 	 S 	 S 

	

CO 	U, 	 C') 	 '.4 

S110A lfldiflO SIO1V13O3 .1431 

210. 



of ±1.5%. 

The percentage repeatability of the ICPT correlator over 

the above input signal time delay range is shown in figure 5-43. 

From figure 5-43 it will be seen that the percentage repeatability 

of the ICPT correlator is approximately of order of +1.8%, and 

increases as the input signal bandwidth decreases. From the 

experimental results given in this section and section 5-2-2 the 

performance of the tracking loop under static signal conditions 

can be suminerised as below:- 

Input signal time delay range 32 to 1 

Input signal bandwidth range 50 to 500 Hz. 

Percentage resolution = 0.6 % 

Percentage output reading error = ± 1.5 % 

Percentage repeatability = +1.8 % 
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CHAPTER 6 CONCLUSIONS and RECOMMENDATIONS 

The primary objective of the programme of research 

described in this thesis was to investigate methods for improving 

the accuracy and dynamic performance of correlation based time 

delay measurement system, particularly under changing signal 

conditions. As a result, the improved constrained peak tracking 

,ICPT, correlator was designed and constructed and its performance 

was evaluated. The performance of the ICPT correlator under 

changing signal conditions was found to offer an Industrially 

acceptable performance, when tested with signals derived from a 

flow noise simulator. 

In broad terms, the work described in this thesis can be 

divided into three parts. First a review of significant 

parameters affecting the performance of the correlation based 

measurement systems, as well as necessary theoretical and 

practical background are presented. The second and major part of 

this thesis is concerned with the development and evaluation of 

the ICPT correlator, Intended for flow measurement applications. 

Finally the third part of the thesis describes a programmable flow 

noise simulator which was designed, constructed, and used to 

evaluate the performance of the ICPT correlator. 

Published works related to the algorithms available to 

estimate correlation function, both theoretical and practical were 

reviewed. It has been found that for applications where the 
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position of the peak of the correlation function is of great 

importance, i.e. correlation flow-meter, the digital polarity 

algorithms and in particular slow sampling technique described by 

Kam, Shore, and Feher (1975), will simplify the implementation and 

the cost of the correlator. The review of the reported single 

chip correlators has revealed that, the current running project by 

Jordan and Blackly (1983), to implement 512 stage overloading 

counter correlator on a single chip is of great importance. 	Such 

a device will find a large application area and hence its cost 

will probably be acceptably low. Some of the reported algorithms 

for implementation on an 8-bit micro-computer were reviewed. The 

implementation of the correlation function algorithm on a micro-

computer reduces the cost and complexity compared with the 

available hardware techniques. A micro-computer correlator is 

suitable for applications where the speed of the correlation 

function estimate is not of prime importance. 

The sources of errors which influences the accuracy and 

dynamic performance of the correlation based measurement systems, 

and in particular the correlation flow-meters were reviewed in 

chapter 2. 	Since the study of the transducer system was not 

required in this research programme, the sources of errors due to 

the transducer system were not considered. Some of the major 

problems experienced with the correlation measurements, results 

from the assumption made in correlation function analysis that the 

data being analysed are generated by the stationary processes. 	A 

review of the published work describing the performance of 

correlation based measurement systems under non-stationary signal 
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conditions has been included. The performance of the correlation 

based measurement systems under non-stationary signal conditions 

requi'r,s further investigations. 

The measurement time of the coarsely quantised time delay 

axis based correlation flow-meter is requiered to be of order of 2 

to 20 seconds, over an Input signal bandwidth of 50 to 500 Hz, 

(Taylor Instrument Ltd., 1976). Such a measurement time will lead 

to a display which jumps in discrete steps. 	The review of 

tracking correlators presented In chapter 2, has Indicated that 

under non-stationary signal conditions these correlators may 

perform better than coarsely quantised correlators using summation 

operation to implement the required integration operation. 

Consequently the major part of this thesis was concerned with the 

development and evaluation of the performance of the ICPT 

correlator to the point where the feasibility of this method was 

established. 	 - 

The ICPT correlator described in this thesis is most 

suitable for flow' measurement applications, simple to implement 

and can reliably track the most significant peak of the 

correlation function. The ICPT correlator is constrained to track 

the most significant peak of the correlation function by a peak 

position estimate obtained from a 6809 based coarse correlator. 

0 
To design,  highly reliable and accurate tracking system, 

the detailed circuit diagram of the negative feedback loop was 

considered with great care. 	The required number of discrete 



components was reduced and its performance was maintained. 

The previously reported possibility of losing the most 

significant peak of the correlation function and tracking spurious 

peak, as well as the tracking loops output response jitter are 

eliminated by the ICPT correlator. The negative feedback loop of 

the ICPT correlator is free to track the most significant peak of 

the correlation function with high resolution defined with its 

components. The delay shift register of the tracking loop is set 

by the peak position estimate of the 6809 based coarse correlator 

through a coarse position latch. The coarse position latch is 

enabled by the output of a window comparator, through a logic 

control, once the tracking loops error voltage is beyond its 

linear lock range. This arrangement has eliminated the previously 

reported, Nanook 1981, output response jitter of the loop as well 

as the possibility of tracking spurious peak or tracking the peak 

of the function inaccurately. 	It should be noted that the 

performance of the loop is not affected by the poor percentage 

repeatability of the peak position estimate of the 6809 based 

coarse correlator. 

The output of an additional serial correlator was used to 

detect no flow conditions ( i.e. low significance peaks ) and the 

out of lock mode when the input signal time delay suddenly changes 

over a large range. 	This situation is not very common in 

industrial flow measurement applications, since the rate of change 

of the flow velocity is determined by the valves and the pumping 

system used in flow stream, (Taylor Instrument Ltd. 1982). 

216. 



217. 

The small signal analysis method was used to derive the 

first order transfer function of the tracking loop, and is given 

by equation 4-6 of chapter 4. This transfer function was used to 

predict the dynamic chracteristic of the loop, and was achieved by 

applying a perturbing square wave signal to the input terminal of 

the tracking loops smoothing filter. The predicted results 

derived from the transfer function of the loop were clearly 

verified. 	The prototype model of the loop was found to operate 

exactly as predicted by its first order transfer function. 	The 

results obtained indicated that the first order transfer function 

of the loop can be used to predict the tracking loops time 

constant as well as the output voltage variation of the tracking 

loops smoothing filter, (error voltage), within its linear lock 

range. 

The dynamic response of the loop to the simulated flow 

noise signal time delay change,(withln its linear lock range), was 

investigated. The results obtained were compared with the 

estimated results derived from the first order transfer function 

of the loop, and found to be identical. 	Therefore once again, 

these results indicate that the dynamic characteristic of the loop 

can be predicted by its first order transfer function. 

It has been shown that the closed loop time constant of 

the tracking correlator is inversely proportional to its delay 

shift register length, percentage setting of the gain control 

potentiometer, slope of the differentiated correlation function 

(polarity), and is proportional to the time constant of the 
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tracking loops smoothing filter. The closed loop time constant of 

the loop with relatively small and large delay shift register 

length over an input signal bandwidth of 50 to 500 Hz was 

approximately equal to .5 and .2 seconds respectively. 

The performance of the tracking loop under changing signal 

conditions was investigated by sweeping the input signal time 

delay at different rates in both directions. The results obtained 

indicated that the tracking range of the loop is directly 

dependent on the direction of the input signal time delay sweep. 

In addition it has been found that, regardless of the direction of 

the input signal time delay sweep, the loop can track the peak of 

the correlation function linearly within a range smaller than its 

tracking range and this was called the linear lock range of the 

loop. 

Under changing signal conditions the first order transfer 

function of the loop was used to estimate the outputvoltage swing 

of the tracking correlators error voltage within its linear lock 

range. The predicted results derived from the first order 

transfer function of the loop were verified clearly by the 

experimental results obtained. 	Therefore it has been concluded 

that the first order transfer function of the loop can be used to 

predict the linear lock range of the tracking correlator under 

changing signal conditions. 

The performance of the serial correlator was investigated 

and from the results obtained it was concluded that, the output of 
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the serial correlator can not be used to indicate the linear lock 

range of the loop. The output of the serial correlator can only 

be used to indicate tracking and out of lock mode of the negative 

feedback loop. 

The tracking performance of the ICPT correlator under 

static signal conditions over a simulated flow noise signal time 

delay range of 32 to 1 was investigated. The percentage 

repeatability and output error of the ICPT correlator over the 

above time delay range and an input signal band width of 50 to 500 

Hz, was found to be equal to 1.8% and ±1.5% respectively. It has 

been shown that the percentage repeatability of the ICPT 

correlator is inversely proportional to the bandwidth of the 

simulated flow noise signal over an input signal bandwidth of 50 

to 500 Hz. 

A large number of experiments have been carried out to 

investigate the dynamic performance of the system. Additional 

improvements made to the basic tracking loop, has indicated that 

these correlators can be designed to offer a reliable 

performances, with high accuracy and low cost. 	The results 

obtained indicate( that. the ICPT correlator is suitable for 

correlation flow measurement applications, and can be designed to 

offer industrially acceptable performances. The performance of 

the ICPT correlator over a simulated flow noise signal bandwidth 

of 50 to 500 Hz, and time delay range of 32 to 1 is summerised 



as below:- 

i)The closed loop time constant of the tracking correlator 

to input signal time delay change within its linear lock 

range is approximately .2 to .5 seconds. 

ii)The response time of the loop to settle within a 

tolerance bandwidth of ±1%  when the input signal time delay 

change is beyond its linear lock range is approximately 1.5 

seconds. 

iii)The percentage output error of the-ICPT correlator is of 

order of ±1.5%. 

iv)The percentage repeatability of the ICPT correlator Is of 

order of 1.8%. 

To Investigate the performance of the prototype model of 

the ICPT correlator a noise generator which simulates very closely 

the flow generated noise signals was required. 	The reported 

publications relevant to noise simulation were reviewed. The flow 

noise simulator described in chapter 3 was designed and 

constructed in such a way that It can be programmed to satisfy the 

non-stationary signal requirements of the research programme. The 

following parameters of the signals derived from the flow noise 

simulator can be adjusted through the HP-85 computer:- 

Time delay 

Bandwidth 

Significance of the correlation function relating the 

signals derived from the noise simulator. 
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The results presented in chapter 3 has indicated that the 

signals derived fromA  flow noise simulator have characteristics 

very close to practical flow noise signals. In addition the flow 

noise simulator can be calibrated to simulate a flow noise signals 

with the required characteristics. Further programmability and 
C-1- 

flexibility was introduced by interfacing the flow noise simulator 

through the IEEE bus to the HP-85 computer used as a experiment 

controller. 

The programmability of the noise simulator and the 

interface of the measurement system through the IEEE bus to the 

HP-85 computer has' lead to collection of repeatable, reliable and 

consistent results. The measurement system has operated reliably 

over the past two years. 

The programme of the work on the ICPT correlator is 

continuing with the main effort being concentrated on the 

implementation of the hardware Involved on a single chip, using 

Nicrofabrication Facility of the Edinburgh University. This will 

lead to a single board correlation system complete with a single 

chip micro-processor capable of reliably covering a very wide 

delay range. 

Replacement of the tracking loops analogue VCO with an all 

digital VCO will be a major step towards all digital 

implementation of the ICPT correlator. 	This will improve the 

accuracy and reliability of the tracking 'correlator. 
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A review of the published works describing the performance 

of correlation based measurement systems has indicated that very 

little work has been reported. It would be of great theoretical 

and practical importance to be able to predict how the slope of 

the estimated correlation function and its differentiated function 

is affected by non—stationary signal conditions. 
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)eriving delayed sequences from pseudo-random- 
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Indexing terms: Circuit theory and design, Computer applications, Noise and interference. 

Abstract: The generation of delayed sequences from pseudo-random-noise generators, using exclusive-OR 
feedback, is briefly reviewed. A method for obtaining delayed sequences from circuits using exclusive-NOR 
feedback is presented. A microcomputer-controlled implementation of a delayed-sequence generator is 
described. 

Introduction 

veral methods have been devised for generating delayed 
iuences from pseudo-random-noise generators using exclu-
e-OR feedback connections [1, 2, 4, 51. In this paper, the 

thod of Ireland and Marshall [2, 3, 71 is reviewed and cx-
ided to cover the case when exclusive-NOR feedback is used. 

prototype microcomputer-controlled delayed sequence 
rierator has been constructed using available components 
d has been successfully evaluated. The prototype circuit has 
en designed to produce test signals for investigating the 
tcking performance of correlators used in correlation-based 
easurement systems. 

Theory 

)nsider a pseudo -random-noise generator having an n-stage 
lit register and exclusive-OR feedback defined by 

X(t +l)=T-X(t) 	 (1) 

here mod-2 arithmetic is used and the transition matrix 7' 
defined by 

Cl 	C2  .........C,, 

1 	 0 	..........0 

0 	 1 	0 .....0 
T= 

............ i o 

nd X(t) = [x1 . . . , x,,] tr  is the state of the register at time 
and C1 . . . , C,, defines the feedback connections. After P 

hifts, 

X(t + F) = TP  - X(t) 	 . 	(2) 

The product of the first row of T" with X(t) gives the 
ralue of x1  after F shifts, i.e. x1 (t+P), or, equivalently, it 
s the value of x1, delayed by (L —F) shifts, i.e. x 1(t—(L - 

where L = 2 - 1. The position of the ones in the first 
ow of 7'?  indicates the shift register outputs that must be 
nod-2 added to give an output-sequence phase advanced by 
' shifts (or delayed by (L —F) shifts) with respect to the 
mtput x 

Eqn. 2 can be rewritten to show the sequence of events 
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resulting from shifting the register a further n - 1 terms 

after the pth shift; i.e. 

X(t + F) 	 = T"X(r) 

	

X(t + P + 1) 	= 	T"X(t + 1) 

X(t +P+n—l) = 	T"X(t+n—l) 

Let column vectors X(t +1') to X(t + P + n —1) be repre-

sented by an n x n matrix Ø, and the column vectors X(t) 
to X(t + n - 1) be represented by an  x n matrix 00 . Then 

op = T-Oo  

and 

	

= 0p-,&1 	 (3) 

where 

x 1 (t) 	x 1(t + 1) 	x1 (t + n —1) 

x 1(t-1) 	x 1(t) 	x 1(t+n-2) 
00 

x1 (t—n+l) x1 (t—n+2) xi(t) 

By defining the initial condition to be X(r) = [100. . . 01 
tr 

Ireland and Marshall [3] used the following recursion relation 
to derive the matrix Ø : 

From eqn. I, 

x 1(t+ 1) = C1 x1 (t)oC2x2(t) ... eC,,x,,(t) 

But C,, is always 1, hence 

X,,  (t) = x 1(t+ 1)eC1x 1(t)BC2x 2(t). ..oC,,_ 1x,,_ 1(t) 

Replacing t by t - 1 and rewriting the above equation in 
terms ofx1  gives: 

x 1(t—n) = x 1(t) o C1x1 (t —1) . . . o C,,_1 x1 (t —n + 1) 

(4) 

Similarly 

x1 (t—n+1) = x1 (t+1)oC j x1(t)... 

eC,,_1 x1 (t—n +2) 
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C. - 
cit -2 	

•ø0 
	 Also, the matrix 	becomes 

I 1 C1  C2  C3  

0 1 C, J 
0 0 1 CL  

00 0 1 

cit_I 1 0 0 1 
C2 	. 	. 	. 	C1. 0 1 0 0 
C1 	. 	. 	. 	(5) 	

= 0 0 1 0 

00 0 1 

238. 

If the initial condition is Xtr = [1 0 0 0 . . .1 then x1  (t -n) 
= 1, and 

[100...] = [1 C1  C2  ... C_1]0 

Eqn. 4 may be rearranged to give 

x 1(t —n) C_ 1 x 1 (t —n '+ 1) 	x 1(t)e C1 x 1(t —1).. 

C,1 ... 2x 1(t—n+2) 

Hence, 

x 1(t—1—n)eC_ 1 X 1(tfl) = x 1(t—l)C j X i(t2) 

..C_2x 1(t—n+1) 

Hence, 

[0 1 0 0...] = [0 1 C1  C2  ... C,_ 2 ]ø 0  

This process is repeated to give 

1 C1  C2  

0 1 C1  
1= 

where I is the identity matrix. 
Therefore, 

1 C1  C2  

0 1• C1  

= 0 0 1 

L .... 	.........J 

The first row of T' defines the connections required to 
achieve a sequence, phase advanced by P shifts. This is ob-
tained by taking the first row of D, and multiplying by (Do-'-
The 

o•
The first row of ø, is the content after P + n - 1 shifts, 
written in reverse order. 

Consider a 4-stage shift register with mod-2, exclusive-OR, 
feedback from stages 3 and 4. The transition matrix for 
this connection is 

CI 	c2 	c3 	CR 

1 	0 	0 	0 

0 	1 	0 	0 

0 	0 	1 	0 

0 0 1 1 

_1 0 0 0 

1 0 0 

0 0 1 0 

Table la shows the shift-register sequence for this feedback 
arrangement. 

Table 1: State sequences for 4-stage shift register with Ex-OR feedback 
and Ex-NOR feedback from sages three and four 

a Ex-OR feedback. b Ex-NOR feedback 

a 	 b 

72X(t) 	 T1'X(t) XN(t + P —1) 	First row of 

P 	x1  x x3  x4 	x x2  x3  x4 	1 2 3 4 

0 1 000 1 000 1000 

1 0 1 00 1 1 00 00 11' 

2 00 1 0 1 1 1 0 01 10.  

3 1 00 1 0 1 1 1 11 00 

4 1 1 0 0 1 0 1 1 01 01 

5 0 1 1 0 1 1 0 1 01 01 

6 1 0 1 1 0 1 1 0 10 10 

7 0 1 0 1 00 1 1 01 11 

8 1 0 1 0 1 00 1 11 10 

9 1 1 0 1 0 1 00 11 11' 

10 1 1 1 0 1 0 1 0 11 01 

11 1 1 1 1 0 1 0 1 1001.  

12 0 1 1 1 0,0 1 0' 0001 
13 00 1 1 000 1 00 10 

14 000 1 0000 01 00 

15 1 000 1 000 1000 

Then, for example, for P = 7, the first row of D, = 0 1 1 1 
and the first row of 

T1 =[01 1 ] 1 	0 0 1 

0100 

0010 

0001 

and therefore the first row of T1  is 0 111. Hence, x1  (r + 7) 
is obtained from 

x1 (t + 7) = x2(t) x3(t) x4(t) 

The connections required to generate x1  (t - d) are obtained 
by evaluating the first row of T' - d For example, when 
d = 3, L.-d= 12 and the first row of T'2  = [0 0 0 11 . 

	= 

0 0 0 1. Therefore, x1  (t - 3) = x4(t), as expected. Table lb 
shows the first row of T' for 1F 15. 

A look-up table is an attractive way to achieve a program-
mable delayed ouput. However, for long sequences, a lookup 
table storing all delay connections will be excessively long. 
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is generated by masking appropriate shift-register stage outputs 
and addressing the exclusive-OR gates with only the stage 
outputs which are required to be modulo-2 added to form 
the desired delayed output. The details of the programmable 
sequence length control will not be given. 

An on-line routine to calculate the settings for a particular 
delay could be based directly on the Ireland and Marshall [2] 
method. A software implementation of eqn. I is required, 
with the equivalent register set initially to X = [1 0 . . . , 01 tr 

After P + n - 1 shifts, the resulting state vector X(P + n - 1) 
is written in reverse order as a row vector and postmultiplied 
by ø& . The resulting row vector has a nonzero element 
corresponding to each stage to be added modulo-2 to generate 
the basic sequence, phase advanced by P shifts. This is a time-
consuming operation. 

system clock 

24-bit shift register 
(part of pseudorandom noise generator)[ 	

reset 

4 from 

microcomputer 

masking gates 

exclusive-OR gates 

polarity 	L 	from 
select 	I 	micrc 

delayed 
output 

Fig. 1 Block diagram of circuit used to generate delayed outputs 

In the prototype system, the full range of delay settings 
for each sequence length was divided by an appropriately large 
number and the selected delay settings stored to form a coarse 
delay setting lookup table. The coarse calculations can be 
carried out off-line and the results stored in ROM or initial 
calculations can be carried out on-line and the result stored in 
RAM. 

Intermediate delays are derived by interpolating from the 
nearest point in the coarse-delay table. Ireland and Marshall's 
method [2] requires the knowledge of an n x n matrix, 	1, 

and to obtain the full range of delay settings for a particular 
sequence length, the contents of the shift register should 
be reversed and multiplied by the ø'  matrix after each shift. 
An interpolation routine has been devised to considerably 
increase the speed of calculation of delay settings. The inter-
polation routine is based on eqn. 6, i.e. if [r 1 , r 2  .. . r,] are 
the delay connections derived from T", then the delay con-
nections required for T°  are defined by 

(r 1 C1  9r1), (r 1 C2  or 3) . . .(r 1 C)  

next phase-advanced setting is defined by 

r,r 3,r 4,(r 1  0r 5 ),r6 ,r 7,r 8,r j  

Hence, the algorithm for generating the next phase-advanced 
setting is 

Rotate to the right the previous setting by one position. 
New position 4 equals new position 9 exclusive-OR'ed 

with position-4 value after the rotate operation. 

An algorithm to generate the next delayed setting can be 
derived by considering: 

First row of TP = r 1 , r2, r3, r4 , . . . ,r9  

and 

First row ofT"' 1  = r 2,r 3,r 4 ,(r 1  +r 5 ),r 6,r 7,r 8,r 9 ,r1  

First row of T" is obtained from first row of T" 1  by: 

Making the position 4 of the first row of T" +1  equal to 
the modulo-2 addition of position 4 with position 9. 

Then rotate to left the result by one position. 

When Ex-NOR feedback is used, an additional inversion will 
be required if the first row of 1"' contains an odd number of 
ones. 

If coarse delay settings are selected, so that they are separ-
ated by 50 delay steps, the maximum delay setting time for 
the 6809-based prototype circuit was approximately 0. 15 ms 
when the sequence length was set to 224 - 1. In this case, 
the maximum setting time corresponds to phase advancing 
or delaying by 25 steps, and 3 bytes of memory are required 
to store each delay setting. Sequences of less than 216 - 1 
and less than 28 - 1 will require, for each delay, setting 
2 bytes and 1 byte of memory, respectively, and hence a 
shorter delay setting time is obtained. 

Coarse delay settings have been calculated, using the extra-
polation algorithm for generating the next phase-advanced 
delay setting; For the prototype system, these calculations 
were carried out off-line and the results stored in an EPROM. 
A 2K byte EPROM can, for example, store 682 coarse delay 
settings for a 224 - 1 sequence. An on-line routine could 
be used as part of a power-on initialisation procedure. For 
the 224 - 1 sequence, the calculation time to establish 682 
coarse delay settings covering a delay range of 34 100 (i.e. 
682 x 50) steps is approximately 200 ns. 

4 Conclusions 

Shift registers used in pseudo-random-noise generators are 
most conveniently designed to be reset to the all zero state. 
It is necessary, therefore, to consider the use of exclusive-NOR 
feedback, since the all-zero state is the forbidden state for 
generators using exclusive-OR feedback. Ireland and Marshall's 
method for deriving delay sequences from pseudo-random-
noise generators has been extended to apply to circuits using 
exclusive-NOR feedback connections. Algorithms have been 
derived defining the connections necessary to obtain inter-
mediate delay settings from a table of connections defining 
a range of coarse delay settings. A prototype noise generator, 
using exclusive-NOR feedback, with programmable delayed 
outputs, has been constructed and successfully controlled by 
a 6809 microcomputer. 
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240. 

It will be more convenient to store a smaller number selected 
at regular steps throughout the complete table and then to 
derive intermediate values by extrapolating, using 

T° T 	 - 

where only the first row of T" needs to be multiplied by T 
to generate the first row of T''. 
Let the first row of T°  be r1  . . . , r,. Then, 

C1  C2 	.....C,1  

1 0 	......0 

o i o. 

1 0 

Hence, first row ofT' t  = (r1  C1  r2 ),(r 1 C2 9  r 3), 

(r1 C_ 1  er,1),r1 C,1 . 	(6) 

When the exclusive-NOR feedback connection is used, the 
operation of the circuit is described by: 

X1 (t+1)=T'X(t) 

where 

[ 1 ,x 2.....j tr  

and 

X = [x1,x2 .... 

and where the exclusive-NOR function is defined by the 
complement of the exclusive-OR function. 
But 

X(t +l) = Xt(t+1)eNtT 

where 

N=[l000 .... OJ 

Therefore, 

X(t + 1) = TX(t) 

and 

X(r+2) = T 2 X(t)eTNereNtT 

In general, 

X(t + F) = T" X(t) T" Nt? .. - TNtr  9 N 

or 

X(t +F) = T"X(t)8Xw(t+F—l) 	 (7) 

lEE PROC., Vol. 130, Pr. G, No. 31  JUNE 1983  

where 

XN(r+P—l) = T P -'Ntr  9 	TNfr9NtT 	(8) 

Eqn. 7 differs from the equation for the exclusive-OR 
circuit (eqn 2) by the exclusive-OR'ed term X(t +P—J). 
This term will be a column vector, but only the first element 
is of interest. 

From eqn. 7, it follows that, to obtain advanced isequences 
from pseudo-random-noise generators using exclusive-NOR 
feedback, the first row of T' will.be  used as before, but an 
inversion will be reqisired if the first element ofXN(t + F— 1) 
is 1. Note that XN(t +P— 1) is the content of the register 
after F - 1 clock pulses, assuming that the initial state was 
[100...O]. 

For commonly used exclusive-NOR feedback connections, 
the outputs requiring inversion are identified by the parity of 
the word formed from the first row of T", i.e. from the word 
defining the register outputs that must be combined to form 
the required delayed output. This may be explained as follows. 

Consider two shift registers, one with exclusive-OR feed-
back, and the other with exclusive-NOR feedback and initial 
conditions having complementary bit values. When feedback 
is derived from an even number .of stages, with each generator, 
using the same feedback connections, the sequences generated 
will be complementary. since, for any, even number of variables 
a 1  9 a2. ED . . . a, = a 1  ED a 2  - - - 	Pseudo -rand om-noise gen- 
erators, using exclusive-NOR, feedback over an even number 
of stages, will generate a complementary sequence having the 
same general character as the;sequence generated by exclusive-
OR feedback. The, major difference is that the all-ones state 
will never occur and a run of tV - 1 ones and iV zeros will 
occur (the opposite conditions are obtained from noise gener-
ators, using exclusive-OR feedback). 

Consider now the generation of delayed outputs from 
pseudo-random-noise generators, using exclusive-NOR feed-
back, derived from two stages (i.e. an even number of stages) 
of the shift register. Complementary sequences will be gen-
erated and, therefore, if an even number of outputs is com-
bined to form a delayed output, an unwanted inversion willbe 
obtained, since a ED b = a e  S. Hence, in this case, when the 
first row of T" is used to define the connections for a par-
ticular delay, an additional inversion is required if the word 
forming the first row of TP  has even parity, If the first row of 
T" has odd parity, then, for example, ae.  b 9 c = a 9. 9 9 c and 
therefore an additional inversion is not required. Application 
of the parity condition or eqn.' 7 will show that, for the 
example illustrated by Table lb, the outputs that must be 
inverted are indicated by an asterisk. 

3 	Implementation 

A prototype noise generator using exclusive-NOR feedback 
has been constructed. The circuit has been designed to be 
controlled by a 6809 microcomputer and allows sequences 
of length up to 224_.  1 to be generated with full range of 
delayed outputs. The noise generator is being used to investi-
gate the performance of cross-correlators under varying time 
delay conditions. Very fine control of the peak position of 
the cross-correlation function is possible when the longer 
sequence lengths are selected. 

The pseudo-random-noise generator was based on three 
8-stage shift registers. In common with other available shift 
registers, it was only possible to simultaneously reset all stages 
to zero. Consequently, exclusive-NOR feedback was selected, 
since the all zero state would then be a permitted state in the 
generated sequences. Fig. 1 shows a block diagram of the 
delayed output generator. Delayed pseudorandom noise 
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APPENDIX 2 

A FIR Filter For Generating Multilevel 

Signals From Single Bit Noise Sequences." 

22. 
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FIR FILTER FOR GENERATING MULTI-
LEVEL SIGNALS FROM SINGLE-BIT 
NOISE SEQUENCES 

Indexing terms: Circuit theory and design, Finite-impulse-
response filters 

A ROM-based circuit is described for the implementation of 
finite-impulse-response (FIR) filters used to generate multi-
level Gaussian noise signals from pseudorandom binary 
noise signals. A particular advantage of the circuit is that it 
can be constructed from readily available, standard compo- 
nents. 

Introduction: Gaussian noise signals can be obtained by 
smoothing maximal-length linear binary sequences.' Since the 
signal to be smoothed is digital, single-bit, the FIR 2.3 filter 
offers the most convenient way to implement the lowpass 
smoothing function. A number of commercial noise generators 
have been produced using this technique (for example, see the 
Hewlett-Packard HP3722 pseudorandom noise generator*). 
In this letter an implementation method for FIR filters is de-
scribed which uses standard, low-cost, components. 

Implementation: The block diagram of a conventional FIR 
filter for single-bit data sequences is shown in Fig. 1. The 
impulse response of the filter is obtained when a single logic 1 

single-bit 

ed-data 
output 

Fig. 1 Conventional FIR filter 

243. 
is clocked along the shift register. Hence each stage of the shift 
register will correspond with an analogue voltage output level. 
Consequently, resistor values R,.....R must be chosen to 
give the required impulse response, and therefore a wide range 
of, probably nonstandard, values is required. 

V2 ------- 
V 	-- - - 71 	"\ impulse response 

single-bit 
data se& 

ROM 
look -up table 

sampled-data 
DAC 	

output 

Contents of 
register 

ROM address Filter output ROM output 

0 	0 	0 0=0 0 0 	0 
0 	0 	1 Vt _-Vt  0 0 	1 
010 V=2V, 010 
0 	1 	1 V+V2 =3V 0 1 	1 
1 	0 	0 V, -V1  0 0 	1 
I 	0 	1 2V1 =2V 0 1 	0 
1 	1 	0 V+P=3 V, 0 1 	1 
1 	1 	1 2V,+V2 =4V1  0 0 	0 

Fig. 2 3-stage FIR filter using table-look-up output generation 

Fig. 2 shows the simplified block diagram of an alternative 
implementation using readily available low-cost EPROMs 
and DACs (digital/analogue convertors) which eliminates the 
requirement for an array of nonstandard resistors. A practical 
realisation will require several EPROMs, with each EPROM 
addressed by a part of the shift register. The EPROMs are 
programmed to output a word proportional to the analogue 
voltage defined by the address bit pattern and the required 
shape of the impulse response. 

A prototype FIR filter has been constructed using a 32-bit 
shift register, three 2 k-byte EPROMs and three DACs. A 
block diagram of the circuit is shown in Fig. 3. The ROMs 
were addressed by shift register Stages 1 to 11, 12 to 21 (where 
only 1 k-byte of the ROM is used) and 22 to 32. A computer 
program was developed to relate the ROM addresses to the 

single-bit I 

data sequencet..._..__32 -stage shift register 

2716 	1 1 2716 	2716 
EPROM 	EPROM2 	EPROM 3 

DAC I 	I I 	DAC 2 	1 1 	DAC 3 

weighted sum 

sampled -data 
I 	filtered output 

* 'Operating and service manual' (Hewlett-Packard Co., 1967) 	 Fig. 3 FIR filter using EPROMs and DACs 
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analogue values of a desired impulse response. This is illus-
trated by the Table shown in Fig. 2. All computed values are 
offset by a positive constant to remove negative values in the 
look-up table due to the impulse response side lobes. The 
main (significant) part of the impulse response is stored in 
ROM 2, while ROMs 1 and 3 mainly store the lower valued, 
sidelobe information. To improve the use of ROMs 1 and 3 a 
scaling factor was used to increase the magnitude of the stored 
words. A weighted-summing circuit was used as an output 
stage to remove the scale factor and the offset voltage. 

Results: A prototype circuit was designed such that the first 
null of the FIR filter impulse response occurred at nine clock 

impulse response 

impulses 

Fig. 4 Impulse response of prototype circuit 

- 	
-9-93-151 

Fig. S Output from filter with PRBS input 

Fig. 6 Probability distribution of FIR-filtered pseudorandom digital 
signal 

periods, i.e. the cutoff frequency was 1/18 of the clock fre-
quency. This is shown in Fig. 4, where the width of the centre 
lobe of the impulse response of the filter is approximately 
equal to 1/18 of the clock frequency applied to the filter. Fig. 5 
shows the output of the FIR filter when a pseudorandom 
binary sequence (PRBS) is used as an input to the filter, and 
Fig. 6 shows the typically bell-shaped Gaussian probability 
distribution of the multilevel signal obtained when the PRBS 
was passed through the FIR filter. The lowpdss action of the 
FIR filter can be observed by comparing the autocorrelation 
function of a PRBS before and after filtering. Figs. 7 and 8 
show typical results. (A Hewlett Packard correlation computer 
was used to obtain the probability distributions and corre-
lation functions.) 

Fig. 8 Autocorrelazion of PRBS filtered by prototype FIR filter 

Same time base as Fig. 7 

Conclusions: The prototype circuit performed as expected and 
demonstrated that the ROM-based, table-look-up method of 
generating. multilevel Gaussian noise from pseudorandom 
binary noise is easy to implement. Commercially available 
shift registers, EPROMs and DACs were used and allowed a 
maximum clock rate of 2 MHz to give a maximum noise-
bandwidth of approximately 200 kHz. The number of DACs 
used can be reduced by the use of digital adders to combine 
the EPROM outputs. 
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EFFICIENT WAVEGUIDE BRAGG-
DEFLECTION GRATING ON LINb03  

Indexing terms: Integrated optics, Diffraction grating, Proton 
exchange 

An efficient Bragg-deflection grating on x-cut LiNb031  using 
proton exchange in benzoic acid through an aluminium grat-
ing mask, has been demonstrated. A deflection efficiency of 
90% has been measured. 

Periodic structures play an important role in the field of inte-
grated optics.' Such structures have been realised on LiNb03  
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APPENDIX 3. 

"An assembled listing of the program used 

to estimate and find the peak of the 

correlation function using 6809 based 

micro—computer." 

Note that extensive software has been written for this project but 

for reason of space limitation only this routine has been included 

in this thesis. A separate report has been produced to document 

the software developed. 
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Program developed to estimate 128 coefficients of the 
correlation function. 

3800 org x3800 
0100 pointer equ 	xOlOO 
0110 first equ 	x0110 
0111 second equ 	x0111 
0120 mdata equ 	x0120 

3800 1A 50 initi: orcc %x50 ;mask IRQ & FIRQ 
3802 4F clra 
3803 87 5F62 sta x5f62 ;port A input down-stream signal 
3806 B7 5F63 sta x5f63 ;port B input down-strean signal 
3809 B7 5F53 sta x5f53 ;port A Input upstream 
380c 86 FF ida %xff 
380E 87 5F52 sta x5f52 ;port B, peak position 

3811 8E 2000 starti: ldx %x2000 ;clear 128 locations 

3814 4F start2: cira 
3815 Al 84 sta 0,x 
3817 30 01 leax 1,x 
3819 8C 2080 cmpx %x2080 
381C 26 F6 bne start2 

381E 4F cira 
381F 87 0101 sta pointer+1 ;this location will be compared 

;with the measurement time 

3822 1A 50 orcc %x50 ;mask IRQ and FIRQ 
3824 8E 2000 start3: lax 7.x2000 

3827 1A 40 orcc %x40 ;enable IRQ only 
3829 3C EF cwai Zxef ;wait for IRQ 

;and goto sync mode 
382B 32 6C leas 12,s ;clear stack pointer 

382D B6 5F61 ida x5f61 ; content of the port A 
first 8 samples of up-stream 
signal 

3830 B7 0110 sta first 
3833 86 5F60 lda x5f60 ; content of port B 

last 8 samples of up-stream 
signal 

3836 B7 0111 sta second 

;at this stage 16 samples of 
;up-stream data are taken 

3839 7E 3840 imp modi ; sample down stream signal 

383C 3C SF start: cwai %xbf ; wait for FIRQ 
383E 326C leas 12,s ;clear stack pointer 

3840 B6 0110 modi: ida first 
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3843 "-'5F51 eora x'5f51 ;up—stream signal 
;result stored in accumulator A 

3846 F6 0111 1db second 
3849 F8 5F51 .eorb x5f51 ;result stored in accumulator B 

384C 1A 50 orcc %x50 ;mask IRQ and FIRQ 
;check coincidence 

384E 1C 50 nexti: andcc %x50 ;clear carry 
3850 44 lsra ;check first bit 
3851 25 02 bcs next2 
3853 6C 84 inc 0,x 

;2 
3855 1C 50 next2: andcc %x50 
3857 44 lsra 
3858 25 02 bcs next3 
385A 6C 08 inc 8,x 

385C 1C 50 next3: andcc %x'50 
385E 44 lsra ; 
385F 25 03 bcs next4 
3861 6C 8810 inc 16,x 

;4 
3864 1C 50 next4: andcc %x'50 
3866 44 lsra 
3867 25 03 bcs next5 
3869 6C 8818 inc 24,x 

386C IC 50 next5: andcc %x'50 
386E 44 lsra 
386F 25 03 bcs next6 
3871 6C 8820 inc 32,x 

;6 
3874 1C 50 next6: andcc %x50 
3876 44 lsra 
3877 25 03 bcs next7 
3879 6C 8828 inc 40,x 

;7 
387c ic 50 next7: andcc %x50 
387E 44 lsra 
387F 25 03 bcs next8 
3881 6C 8830 inc 48,x 

;8 
3884 1C 50 next8: andcc %x50 
3886 44 lsra 
3887 25 03 bcs next9 
3889 6C 8838 inc 56,x 

;at this stage all 8—bit content 
;of accumulator A is checked 
;ACCUMULATOR B 

388C 1C 50 next9: andcc %x50 
388E 54 lsrb ; 
388F 25 03 bcs nextl0 ;first bit of accumulator B 
3891 6c 8840 inc 64,x 

;10 

3894 1C 50 nexti0: andcc Zx'50 
3896 54 lsrb 
3897 25 03 bcs nextil 
3899 6c 8848 inc 72,x 

; 11 
389C 1C 50 nextil: andcc %x50 
389E 54 lsrb 
389F 25 03 bcs next12 
38A1 6C 8850 inc 80,x 
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;12 
38A4 1C 50 nextl2: andcc %x50 
38A6 54 lsrb 
38A7 25 03 bcs next13 
38A9 6C 8858 inc 88,x 

;13 
38AC 1C 50 nextl3: andcc Zx50 
38AE 54 lsrb 
38AF 25 03 bcs next14 
3881 6C 8860 inc 96,x 

;14 
38B4 1C 50 nextl4: andcc %x50 
38B6 54 lsrb 
38B7 25 03 bcs next15 
3889 6C 8868 inc 104,x 

15 
38BC 1C 50 nextl5: andcc %x50 
38BE 54 lsrb 
38BF 25 03 bcs next16 
38C1 6C 8870 inc 112,x 

;16 
38C4 Ic 50 nextl6: andcc %x50 
38C6 54 lsrb 
38C7 25 03 bcs here 
38c9 6C 8878 inc 120,x 

38Cq 30 01 here: leax i,x 
38CE 7C 0100 inc pointer 
38D1 B6 0100 Ida pointer 
38D4 81 08 cmpa %08 ;8 samples of down-stream 

;data taken? 
38D6 10 26FF62 ibne start 
38DA 4F cira 
38DB 87 0100 eta pointer 

38DE 7C 0101 inc pointer+1 
38E1 86 0101 Ida pointer+1 
38E4 B1 0123 cmpa mdata+3 ;measurement time completed 
38E7 10 26FF39 ibne start3 
38EB 8E 2000 ldx %x2000 ;routine to find peak 

;position of the function 
38EE A6 80 Ida 0,x+ 
38F0 Al 80 back: cmpa 0,x+ 
38F2 22 05 bhi forwd 
38F4 A6 IF Ida -1,x 
38F6 BF 0000 Stx x0000 

38F9 8C 2080 forwd: cmpx %x2080 
38Fc 26 F2 bne back 
38FE 7A 0001 dec x0001 
3901 74 0001 isr x0001 ;multiply by two 
3904 B6 0001 Ida x0001 
3907 B7 5F50 sta x5f50 ;port B output peak position 
390A 7E 3811 imp starti ;start again 

pointe 0100 first 0110 second 0111 mdata 	0120 
initj 3800 starti 3811 start2 3814 start3 	3824 
modi 3840 start 383C nexti 384E next2 	3855 
next3 385C next4 3864 next5 386C next6 	3874 
next7 387c next8 3884 next9 388c nextl0 	3894 
nextil 389C next12 38A4 next13 38AC next14 	38B4 
next15 38Bc next16 38C4 here 38cc back 	38F0 
forwd 38F9 
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