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Abstract

--------------------------------------------------------------------------------------------------------------------------------------------------

Human languages are not just tools for transmitting cultural ideas, they are 

themselves culturally transmitted. This single observation has major implications 

for our understanding of how and why languages around the world are structured 

the way they are, and also for how scientists should be studying them. Accounting 

for the origins of what turns out to be such a uniquely human ability is, and should 

be, a priority for anyone interested in what makes us different from every other life-

form on Earth. 

The way the scientific community thinks about language has seen considerable 

changes over the years. In particular, we have witnessed movements away from a 

purely descriptive science of language, towards a more explanatory framework that 

is willing to embrace the difficult questions of not just how individual languages are 

currently structured and used, but also how and why they got to be that way in the 

first place. Seeing languages as historical entities is, of course, nothing new in 

linguistics. Seeing languages as complex adaptive systems, undergoing processes of 

evolution at multiple levels of interaction however, is.

Broadly speaking, this thesis explores some of the implications that this perspective 

on language has, and argues that in addition to furthering our understanding of the 

processes of biological evolution and the mechanisms of individual learning 

required specifically for language, we also need to be mindful of the less well-

understood cultural processes that mediate between the two. Human 

communication systems are not just direct expressions of our genes. Neither are 

ii



they independently acquired by learners anew at every generation. Instead, 

languages are transmitted culturally from one generation to another, creating an 

opportunity for a different kind of evolutionary channel to exist. It is a central aim 

of this thesis to explore some of the adaptive dynamics that such a cultural channel 

has, and investigate the extent to which certain structural and statistical properties 

of language can be directly explained as adaptations to the transmission process and 

the learning biases of speakers. 

In order to address this aim, this thesis takes an experimental approach. Building on 

a rich set of empirical results from various computational simulations and 

mathematical models, it presents a novel methodological framework for exploring 

one type of cultural transmission mechanism, iterated learning, in the laboratory 

using human participants. In these experiments, we observe the evolution of 

artificial languages as they are acquired and then transmitted to new learners. 

Although there is no communication involved in these studies, and participants are 

unaware that their learning efforts are being propagated to future learners, we find 

that many functional features of language emerge naturally from the different 

constraints imposed upon them during transmission.

These constraints can take a variety of forms, both internal and external to the 

learner. Taken collectively, the data presented here suggest several points: (i) that 

iterated language learning experiments can provide us with new insights about the 

emergence and evolution of language; (ii) that language-like structure can emerge as 

a result of cultural transmission alone; and (iii) that whilst structure in these systems 

has the appearance of design, and is in some sense ‘created’ by intentional beings, 

its emergence is in fact wholly the result of non-intentional processes. Put simply, 

cultural evolution plays a vital role in language. This work extends our framework 

for understanding it, and offers a new method for investigating it. 
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Chapter One

 Introduction
--------------------------------------------------------------------------------------------------------------------------------------------------

[I]t cannot fail to occur to us as an interesting question, by what 
gradual steps the transition has been made from the first simple 
efforts of uncultivated nature, to a state of things so wonderfully 
artificial and complicated. Whence has arisen that systematical 
beauty which we admire in the structure of a cultivated language; 
that analogy which runs through the mixture of languages spoken 
by the most remote and unconnected nations; and those 
peculiarities by which they are all distinguished from each other? 

! ! ! ! ! ! ! — Dugald Stewart (1858)

When we see structure in our surroundings, it is only natural to question the origins 

of that structure. In spite of its early date, the quote by Dugald Stewart (1753-1828) 

that begins this chapter anticipates many of the challenges still faced by modern 

linguists today. How do we explain the ’systematical beauty’ that we see in the 

structure of language?  How are we to reconcile both the similarities (’analogy’) and 

the surprising amount of variation (’peculiarities’) exhibited amongst the languages 

of the world? As one would expect, there have been many attempts at addressing 

Stewart’s questions1  over the intervening years, yet they still remain as open to 

debate today as they were 150 years ago.  This thesis focuses only on the question of 

the origins of structure in language. In short: why is language structured the way it 

1

1 The sentiments echoed in this quote are not just those of Dugald Stewart himself, but were 
also shared by his contemporary, the great economist Adam Smith (1723-1790), whose 
memoirs Stewart was collecting. 



is, and not some other way?  It turns out that the answer to this question might also 

shed light on the other features of language that puzzle us. 

1.1! Background

Although communication systems are abundant in nature, one of the things that 

makes humans different from other animals is that we use language for more than 

just communication (Dennett, 1995; Jackendoff, 1996; Tomasello, 1999; Lupyan et al., 

2007). Not only this, but language itself has some unique properties not found in 

other systems. In particular, human language is both open-ended (allowing infinite 

expression of an unlimited set of concepts) and highly variable (Hurford et al., 1998; 

Evans & Levinson, 2009; Fitch, 2010). If language is the trait that separates us from 

other animals, then in order to understand what makes us human, we need to 

understand language (Christiansen & Kirby, 2003). However, in order to fully 

comprehend a complex phenomenon like language we need to understand it from 

many different perspectives. It is not enough to simply know how it works, we also 

need to understand how it came to be that way. In other words, we need to 

understand how it evolved. 

This is not a trivial exercise. Language is both a behavioural skill rooted in human 

biology and a cultural entity. This means that when it comes to the topic of 

‘language evolution’, we could be referring to: (i) the evolution of the mechanisms 

responsible for language, or (ii) the evolution of languages themselves. In actual 

fact, we are concerned with both, all of the time. Although this thesis primarily 

concerns itself with trying to explain language evolution in the sense implied in (ii), 

I hope to argue that insights gained from this area can actually help us to identify 

where we should be focusing our attention on in terms of explaining (i). 

The actual study of human language has had a long history. As a result, the way that 

the scientific community thinks about language has undergone considerable 
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changes over the years. Explanations attributing language to the work of some 

divine creator have made way for accounts focusing on understanding language in 

functional, cognitive and behavioural terms. Of particular significance to the work 

presented here is the increasing movement within mainstream linguistics away 

from a purely descriptive science of language, towards a more explanatory 

framework that is willing to embrace the difficult questions of not just how 

individual languages are currently structured and used, but also how and why they 

got to be that way in the first place. From being a niche field a decade or two ago, 

evolutionary linguistics is now booming (Zuidema, 2005).

Part of the reason for this is because it is still easy to appreciate Dugald Stewart’s 

fascination with the mystery of language. The puzzle he sets out has not received a 

completely satisfying explanation since most theories tend to view language as a 

phenomenon entirely encapsulated within the individual speaker-hearer (e.g. 

Chomsky, 1975). Explaining how language evolved in this view amounts to 

explaining how the brain mechanisms that support language evolved (e.g. Pinker & 

Bloom, 1990). This underplays the important role of cultural and social interaction 

between populations of speaker-hearers. One important observation to be made is 

that languages are not just tools for transmitting cultural ideas, they are themselves 

culturally transmitted (Brighton et al., 2005). This fact has interesting implications; 

namely that the process of cultural transmission has an explanatory role to play in 

the emergence of key structural features of language (Anderson, 1973; Hurford, 

1990; Kirby, 1999).

1.2! Thesis Aims

This thesis takes seriously the idea that processes of cultural transmission can 

explain the emergence of some (perhaps all) of the key structural properties, such as 

compositionality, duality of patterning, systematicity and possibly recursion, that 

underlie the features of language like open-endedness and variability mentioned 
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earlier (see §2.1). One of the major contributions that it makes to the field lies in 

offering up a new experimental methodology to test claims made about the cultural 

transmission of language. To date, most of what we know about the cultural 

evolution of language has come from mathematical models and computer 

simulations (e.g. Hare & Elman, 1995; Batali, 1998; Kirby & Hurford, 2002; Steels, 

2003; Brighton et al., 2005; Griffiths & Kalish, 2007; Kirby et al., 2007). What makes 

the work presented here unique is that it involves obtaining empirical results from 

populations of human learners, via an experimental paradigm known as human 

iterated language learning. Here, artificial languages are transmitted between 

learners under controlled laboratory conditions, allowing researchers to track the 

changes that take place over time.

One of the central themes which runs throughout what follows is that it is time to 

start studying language evolution in the laboratory like this. However, this is not to 

say that there is no room for existing methods of investigation. On the contrary, if 

we want to make progress in understanding a phenomenon as complex as this, we 

actually need a greater degree of synthesis and communication between 

practitioners of different empirical approaches. One factor which is already  

apparent in the literature is that there seems to be a divide between computational/

mathematical models and other kinds of empirical research. This division does not 

solely exist within the relatively small field of language evolution. The same 

situation exists amongst researchers interested in cultural evolution more generally. 

In this quote from Barrett et al. (2002), we could easily replace the word ‘culture’ 

with ‘language’ to make this point:

“The last few decades have seen the development of two quite 
independent paradigms in the evolutionarily-informed study of 
culture. One of these has focused on building mathematical 
models of the process of cultural transmission (in effect studying 
inheritance mechanisms); the other has had a more empirical 
focus, being principally concerned with the adaptiveness of 
culture.” (p351-352) 

4



Barrett et al. (2002) suggest that the reason for this split is in part due to the fact that 

both strands pose very different research questions. However, they also attribute a 

degree of blame for the lack of integration to the fact that computational and 

mathematical modelling still remains mysterious and poorly understood outside of 

those practising it. Nevertheless, much can be gained by bringing these two 

different approaches closer together. The experimental framework presented in this 

thesis represents an explicit attempt to do just this. To describe them as experiments 

inspired by computational models of iterated learning is an understatement: they 

are more like actual simulations of iterated learning instantiated in humans, rather 

than artificial agents.

This makes the experiments themselves somewhat unusual when compared to the 

standard (i.e. non-iterated) experiments that we often see in psychology. Just to give 

one example, whereas in most experiments the performance of each individual 

participant on a given task is measured as a data point, here a data point 

corresponds to an individual language that has been passed between many 

participants. This makes these kinds of experiments relatively expensive to conduct: 

in order to demonstrate significance we must recruit many more participants per 

condition. Although I hope to show that this endeavour is worthwhile, and that 

human iterated language learning experiments are an invaluable method for 

gaining insight into how the very act of learning affects the structure of systems for 

future learners, I also hope that this work goes on to inspire more realistic 

computational and mathematical models of the process.

In short, the theory that I will be testing is that language adapts. More specifically, 

language adapts to suit the conditions under which it is transmitted. As with any 

kind of problem to be solved, there are often multiple solutions. Variation in 

language arises because there are many ways in which a language can be structured, 

all of which are equally well adapted to the task of being transmitted. The fact that 

languages are culturally evolving systems can thus explain why they are open-

ended and variable. Notice that so far we have not made any mention of 
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communication. This is deliberate. Although language gives all the appearance of 

having been designed for communication (e.g. Pinker, 2003), I will take the 

somewhat unusual approach of investigating the extent to which linguistic 

structures that are communicatively useful could have arisen without it. If it turns 

out that communication is not required in my experiments to get these structures to 

emerge, this does not prove that language evolution necessarily happened in that 

manner. However, it would require us to think more deeply about the possibility.

Another issue I will be exploring which tangentially relates to this concerns the 

nature of the mechanisms responsible for evolutionary change. Language, unlike 

the Scott Monument, was designed without a designer. Although in a sense it was 

created by intentional beings, it was not the intention of those beings to create it 

(Keller, 1994). Croft (2000) agrees, and makes a useful distinction between what he 

calls intentional changes (where a speaker has some other goal in language use in 

mind, and produces some unforeseen innovation along the way) and nonintentional 

changes (where a speaker has no goal in mind at all but introduces a change as a 

consequence of the act of production or comprehension itself). I will show some 

examples of empirical studies which, by this definition, explore the intentional 

design of communication systems in the laboratory (§3.2.4), but argue that we also 

need to investigate the possibility that structural features of language could also 

have emerged through more nonintentional processes.

To summarise, this work addresses the following questions:

1. Why is language structured the way it is and not some other way?

2. How does the process of cultural transmission give rise to language structure?

3. Can features of language structure which appear to be designed for 

communication evolve in the absence of a) actual communication, and b) 

intentional design?
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1.3! Experiments

The basic methodology of the experiments is based on an agent-based 

computational simulation of cultural transmission, known as the iterated learning 

model (Kirby & Hurford, 2002; Brighton et al., 2005), and involves the transmission 

of small artificial languages between human learners. Participants are recruited and 

told they must learn how to speak a newly discovered alien language. During 

training, they are shown images (meanings) of different coloured shapes engaged in 

some kind of motion, along with a written description (signals) showing how the 

alien would refer to that particular image. After training, their knowledge of the 

alien language is tested by showing them each meaning in turn and asking for the 

correct signal. Whatever is produced as output in this final test then becomes the 

new training data for the next participant. This process iterates to form a linear 

diffusion chain of learners, each of whom have unknowingly acquired their 

language from the previous participant.

The first experiment looks at what happens when learners are only given partial 

access to signals and meanings during learning, whereas the second experiment 

looks at what happens when this restriction is lifted. The third experiment explores 

what happens to the languages when we make an invisible modification to the 

process of transmission, such that only unambiguous signals get transmitted to 

future participants. The fourth study builds on this, and looks to see what effect 

increasing the amount of training has. The fifth study is somewhat different to the 

previous four in that it does not involve the transmission of meaning-signal pairs at 

all. In this final study, we try to get a better look at how sequence learning 

constraints may influence things, by focusing on how signals evolve in the absence 

of any meanings.

Each experiment can be seen to stand alone, operating to investigate its own 

particular hypotheses. However, they have also been designed with specific 
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contrasts in mind. Within the four main experiments, three conditions are examined. 

Experiments I and II differ only in terms of whether or not participants have access 

to the full language during learning; Experiments I and III differ only in terms of 

whether or not unambiguous signals get passed on to learners; and finally, 

Experiments III and IV differ only in terms of the amount of exposure to training 

items that learners receive.

 

1.4! Thesis Road-Map

In Chapter Two we take a closer look at language and the key approaches that have 

been taken to explain its emergence. In particular, it presents an account of iterated 

learning -- the process of cultural transmission at work in language -- and 

summarises the key findings to have emerged from computational and 

mathematical models of the process in language, and in different domains. It will 

then move on to explore some of the literature on cultural evolution more generally. 

In particular, it looks at some of the more influential theoretical accounts, the effect 

that the direction of cultural transmission has, and finally, reviews some of the 

experiments that have been done to explore the mechanisms and dynamics of 

cultural evolution in both humans and non-humans. 

Chapter Three also reviews literature, but this time focuses specifically on attempts 

to empirically investigate language origins in humans. Its main purpose is to 

motivate the design of the current methodology. It reviews the current approaches 

to explaining language emergence, both inside and outside of the laboratory, and 

argues that although language arises through the actions of intentional beings, it has 

not been intentionally designed or created in any way. In order to isolate and better 

understand this unintentional aspect of language emergence, we need an 

experiment design that does not involve intentional communication between 

participants. The details of this design are then laid out ahead of the actual 

experiments themselves.
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The first set of results are reported in Chapter Four. In this chapter we look in more 

detail at one of the key parameters from the iterated learning models discussed in 

Chapter 2 -- the transmission bottleneck. The first and second experiments test out 

predictions made by the computer simulations, and find that although the main 

findings associated with iterated learning studies -- that languages evolve to become 

easier to learn and more highly structured -- are replicated in human learners, there 

are some interesting differences.

These differences are further explored in Chapter Five, where we focus in on the 

natural tension that exists between learnability and expressivity. The third and 

fourth experiments are outlined here, showing that when we add in a pressure for 

greater expression of the meaning-space, we start to see signs of compositionality 

emerging in the languages. Techniques are introduced which allow us to precisely 

quantify the emergence of this compositional structure, and which enable us to see 

how cultural transmission amplifies local structural regularities in the input and 

allows them to accumulate over time.

Chapter Six takes a very different approach, and asks the question of whether we 

can try to isolate the effects of some of the learning biases that are at work in the 

minds of participants. It introduces several modifications to the experimental 

methodology designed to eliminate other biases, one of which entails the complete 

removal of meanings.  The results of this study show that even when there are no  

pressures upon signals to adapt to express structured meanings, signals 

nevertheless begin to show signs of structure as a result of the sequence memory 

constraints of the learners.

Finally, Chapter Seven returns to some of the key themes expressed throughout the 

thesis and attempts to link them to some of the wider issues within the field of 

evolutionary linguistics. It presents a brief summary of the major points emerging 

from the five studies, and contends that the key contribution of all this work lies not 
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just in the lessons we have learned from the various experimental manipulations 

that have been explored, but in the development of the experimental methodology 

itself. It stresses the significance of cultural transmission in the process of language 

evolution, and suggests that the next challenge facing the field lies in explaining 

where the mechanisms underlying iterated learning come from.
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--------------------------------------------------------------------------------------------------------------------------------------------------

Chapter Two 

Language and Cultural 

Evolution
--------------------------------------------------------------------------------------------------------------------------------------------------

The first chapter has set the scene for thinking about language as an evolving 

system in its own right, and given an overview of the general direction of the rest of 

this thesis. The rest of this chapter outlines in more detail some of the reasons we 

might be interested in studying language, and in particular, the origins of language, 

before moving on to explore some of the ways in which the topic of language 

evolution has been approached recently. It briefly introduces the reader to the 

iterated learning framework, which forms the theoretical backbone of the thesis, and 

then moves on to explore work undertaken in the field of cultural evolution more 

generally. It presents a very brief overview of the main theoretical approaches, 

before finally exploring some of the experimental work undertaken using both 

human and non-human participants.

2.1 Some Facts about Language

Language defines us as a species

Language is often credited with being the behavioural trait that defines us as a 

species. There are perhaps two main reasons for this assertion. The first is to do with 

the special role that it seems to play in our lives. We use language. A lot. And not 
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just for simple communication. We use it during cognition (Dennett, 1995; 

Jackendoff, 1996; Clark, 1998), for co-ordinating joint actions (Clark, 1996), when 

constructing a theory of mind about others (Tomasello, 1999), for maintaining social 

bonds (Dunbar, 1996), and for categorising objects in our world (Vygotsky, 1962; 

Lupyan et al., 2007), to name just a few. If other species are using their 

communication systems for all of these extra purposes, there is surprisingly little 

evidence for it.

The second reason for claiming our linguistic abilities separate us from other 

creatures relates to the properties of language itself. We are not just different from 

other animals in how we use our communication system, we differ in how that 

system itself works. If we focus on the features that all human languages share with 

one another, and then look to find correlates to those features in other 

communication systems in nature, we can identify the similarities and differences. 

Although many of these proposed ‘design features’ are shared with other species, 

some appear genuinely unique to humans (Hockett, 1958; Hockett & Altmann, 

1968). 

Language is open-ended and variable

Of all the features claimed to be universal and unique to language, two seem 

particularly striking: unlike other natural communication systems, human 

languages are, (a) open-ended, and (b) highly variable. It turns out that even 

explaining these two traits presents us with some interesting evolutionary problems. 

If we begin with the open-endedness of language, we can easily understand how a 

system which is capable of expressing an unlimited set of concepts might be useful. 

The ability to communicate a novel thought, in a novel context, perhaps to a novel 

interlocutor, using a novel packaging of signals, is not to be sniffed at. If I were to 

wish you ‘sweet elbowy lamb dreams’, you might think I was behaving strangely 

but you would nevertheless understand the basic message. This is in spite of the fact 
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that you could not possibly have heard that particular sentence before, may never 

have met me, and are entirely removed from the context of the utterance1. 

The open-endedness of human language is a result of the way that it is structured. 

In particular, all languages exhibit duality of patterning  (meaningful units are 

created by the reuse and recombination of smaller meaningless units), 

compositionality (more complex meanings are created by the structured ordering of 

meaningful units), systematicity (there is a structure-preserving relationship 

between signals and meanings), regularity (relationships between signals and 

meanings, and other structures at higher levels, are expressed reliably and 

unambiguously) and possibly recursion (rules of language can be self-referencing, 

allowing for complex embedding and hierarchical ordering of clauses)2. These 

structural properties are universal, perhaps even definitional, of language. Without 

the property of compositionality for instance, we could not interpret the meaning of 

novel sequential arrangements of words even if those words were familiar, and if 

the relationship between signals and meanings were unsystematic and irregular, we 

could not make generalisations over utterances and apply them to new situations. 

These structural properties are more than just a bag of neat linguistic tricks - they 

are integral to explaining how humans have managed to survive in almost every 

habitat on earth (Hurford et al., 1998; Fitch, 2010), and build the technology required 

to escape the confines of our planet (Kirby & Christiansen, 2003). In contrast, even 

though many animals are capable of complex thought and reasoning, they are still 

restricted to more limited domains of expression (Hurford, 2007; Fitch, 2010). So 

whilst Vervet monkeys can famously differentiate between different types of 

predators and make alarm calls accordingly (e.g. Cheney & Seyfarth, 1990), they 
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to do with falling asleep trying to count sheep who are jostling each other. 

2 The issue of whether recursion is present in all languages is a contentious one. See Everett 
(2005), Parker (2006), and Luuk & Luuk (2010) for the argument against, and Fitch et al. 
(2005), and Hauser et al. (2002) for the argument for.



cannot create novel alarm calls for new predators (even though they can perceive 

them), or use their existing calls for novel purposes (other than triggering a flight 

response). Given the obvious utility and adaptive value of a system capable of 

unlimited expression, why has this trait not evolved in species other than our own? 

Moving onto the inherent variation in language, we find that it goes beyond the fact 

that there are some 6,000 or so different languages existing in the world today3. 

Variation also exists within the same language community, both synchronically in 

the form of different dialects, and diachronically in the form of different historical 

variants. Even if we focus down to the level of an individual speaker, we find 

immense variation in the choice of particular words, phrases, intonation patterns 

and pronunciation of phonemes, based on any combination of social, contextual, 

emotional and articulatory factors operating at any given moment. In short, 

variation exists at all levels of organisation within language, across languages, and 

at both the population and individual level (Evans & Levinson, 2009). 

Again this presents us with a problem: having this much variation in language 

entails that language must be learnt, and biologically speaking, learning is a costly 

process. Indeed, we see that while many species have offspring who are capable of 

walking and catching themselves a good meal within minutes of being born, human 

infants are entirely dependent on their parents for survival, and do the majority of 

their development outside of the womb. Before they start learning how to walk, 

babies are learning how to talk, devoting the majority of their cognitive resources to 

this one task. Obviously, we know that learning, and social learning in particular, 

brings other benefits that must outweigh these costs (Barrett et al., 2002). However, it 
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communication systems,  which tend to be innate and therefore uniform across all members 
of the same species (Evans & Levinson, 2009). A rare exception to this pattern are the systems 
of some species of song-birds, seals and cetaceans who learn their songs culturally from 
conspecifics, which often results in geographical variation in the structures of songs sung by 
members of the same species (Marler & Tamura, 1962; Doupe & Kuhl, 1999; Rendell & 
Whitehead, 2005). 



has been suggested that humans are doing something special when it comes to 

learning language.

Language acquisition is automatic

Although language is an incredibly complex system, with many intricate context-

dependent rules and exceptions, infants seem to acquire it effortlessly. In fact, by the 

age of four, all healthy children will have mastered the basic structures of syntax 

(Bates et al., 2003), and all without taking advantage of any direct instruction or 

correction by their caregivers (Hirsh-Pasek et al., 1984). There are many well-attested 

developmental patterns within language (Pinker, 1994). For instance, it has been 

shown that the order that children acquire certain bound morphemes in English is 

the same across learners, and that this is unrelated to the frequency with which 

those morphemes appear in the speech of caregivers (Brown, 1973; Slobin, 1982). 

Similar findings are found in the development of phonological (Locke, 1983), 

syntactic (Ingram, 1989) and semantic (Johnston, 1985) aspects of language as well. 

This is interesting, and when combined with data from cross-linguistic studies, 

which indicate broadly uniform developmental sequences across different 

languages and cultures (Brown & Hanlon, 1970; Slobin, 1982), suggests that these 

patterns cannot be explained by the linguistic environment alone. However that is 

not to say that the linguistic environment is not important. There is strong evidence 

for a critical period in language acquisition -- a certain ‘window of opportunity’ 

where learning language is possible, thought to last between infancy and puberty 

(Lenneberg, 1967). If learners are deprived of input during this time period, they 

will not go on to develop full linguistic competence (Curtiss, 1977; Skuse, 1984).

These three facts combined -- that language acquisition proceeds reliably, exhibits 

universal developmental patterns, and that there is a critical period for it -- has led 

most, if not all, researchers to the conclusion that there is some innate component 

constraining the acquisition process, even if it is not specific to language (e.g. Elman 
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et al., 1996). Given the fact that attempts to teach human language to non-humans 

have all failed (Fitch, 2010), it also seems reasonable to conclude that this innate 

component must also be somehow specific to humans, even if it is more the result of 

quantitative rather than qualitative differences in cognition (Hauser & Fitch, 2003; 

Hurford, 2004). However, as the qualifications in the previous two sentences 

suggest, there is still scope for much disagreement as to what this innate 

contribution might be, what the role of learning is, and what kind of evolutionary 

mechanism(s) are responsible for it. 

2.2 Key Approaches to Language Evolution

Before we can explain how language evolves, we need to be able to explain what it 

is and how it works. Broadly speaking, two different approaches have been taken to 

explain language, and as a result, its evolution. Each differs to the extent that it sees 

language as being the end-product of specialised cognitive machinery, and also to 

the importance to which it ascribes processes of cultural transmission. This section 

explore these two stances in more detail.

2.2.1 The Direct Appeal to Biology

The first approach, taken by some to be the ‘standard’ or orthodox evolutionary 

view (e.g. Kirby et al., 2008b), is to suggest that the structure of human language can 

be explained by a direct appeal to biology. At its heart, this approach rests on the 

claims originating with the linguist Noam Chomsky concerning how children 

acquire language. According to Chomsky (1959; 1965; 1980), language learning is 

constrained by an innately-specified language acquisition device (LAD) which 

shapes the kinds of hypotheses the child is willing to entertain about language, and 

ultimately guides them to the correct grammar. As the LAD is as much a part of our 

biology as, for instance, the human eye, we can account for its evolution in the same 
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way: by treating it as an adaptation (in the case of language, for communicating 

propositional meanings), brought about via processes of natural selection (Pinker & 

Bloom, 1990; Pinker, 2003).  

The Nativist Position

This idea encapsulates a very specific notion of innateness. This is reflected in the 

terms used by theorists to describe what is going on. Humans, it is said, are in 

possession of an ‘innate module’ (Fodor, 1983), a ‘language instinct’ (Pinker, 1994) or 

a ‘faculty of language’ (Chomsky, 2002). What unites all subscribers to this kind of 

nativist view is a single shared tenet: that the primary determinant of language 

acquisition is a body of innate knowledge specifically pertaining to language4. 

Under this view, universal structural properties of language are seen as the direct 

expression of the genes - they appear in language because of constraints from our 

innate learning mechanisms (Fig 2.1). Whilst languages themselves may vary, the 

fundamental ways in which languages are organised do not, because they are 

genetically determined. Although nativists recognise the crucial role that linguistic 

input plays in triggering this process and interacting with the information held 

within the LAD, what ultimately causes language to exhibit the hallmark structural 

features that it does can only be explained by understanding what children are born 

with and bring to the task of learning. 

Why might we want to make such a strong (and as we shall see later, controversial) 

claim? The first reason is that an innate  LAD can help us explain the reliability, 

uniformity and universality of acquisition discussed earlier. Language seems to 
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4  Chomsky has recently clarified his position with regards to the faculty of language, 
distinguishing between the faculty of language in the broad sense (FLB), which contains 
cognitive mechanisms that are either not specific to humans or not specific to language, and 
the faculty of language in the narrow sense (FLN), which contains only cognitive 
mechanisms specific to both humans and language (Hauser, Chomsky & Fitch, 2002). I am 
only referring to FLN here, although it is important to remember that the contents of FLB 
can also be explained by a direct appeal to biology.



unfold in predictable stages, much as other instinctual behaviours in the animal 

kingdom do. The second is more technical, and relates to the argument from the 

poverty of stimulus (Chomsky, 1965; Wexler, 1991). Nativists have traditionally 

approached the issue of language learning as a problem of grammar induction: 

given a set of data, the child’s learning task amounts to reconstructing the grammar 

responsible for generating that data. The problem with this however, is that the 

stimulus data a child observes will underdetermine this grammar every time. In 

other words, there is not enough evidence in the primary linguistic data available to 

children to allow them to induce the correct grammar with any degree of certainty.

INDIVIDUAL 
COGNITIVE 

MACHINERY

UNIVERSAL 
PROPERTIES OF 

LINGUISTIC 
STRUCTURE

Fig 2.1: The nativist position with regards to explaining the appearance of universal properties of 

linguistic structure. It is claimed that there is a direct link between an individual’s cognitive 

machinery and structural patterns seen in the world’s languages. Based on Kirby, Smith & Cornish, 

(2008).

Pullum & Scholz (2002) surveyed the language acquisition literature and compiled a 

list of six frequent claims made by researchers concerning the properties of the 

child’s learning environment (see Fig 2.2 below). The basic facts here are not in 

dispute, however there are still significant disagreements as to how we should 

interpret them. The property of POSITIVITY has perhaps created the most debate. 

The data the child is exposed to is not only finite, idiosyncratic and incomplete, but 

it also consists only of positive examples of legitimate sentences. This makes it 

compatible with an infinite number of different hypothetical grammars, which in 

turn makes the task of converging upon the single correct grammar that produces 

that data, and only that data, akin to finding the needle in the proverbial haystack 

18



(Gold, 1967; Hendriks, 2000). Without evidence of what is ungrammatical in the 

language, how is the child supposed to discard incorrect hypotheses?

Obviously, if children can only entertain hypotheses about grammar that are 

licensed a priori by some innate and specialised language acquisition mechanism, 

then this problem is solved. In this way researchers can also address the continuity 

problem: not only can they account for how language is acquired (children are 

biologically constrained to only look for certain types of grammar), but also why it 

is that human languages occupy just a small subset of those that are logically 

possible (languages all have similar underlying structural properties because they 

are created by humans who all have the same set of biological constraints) (Crain & 

Pietrosky, 2001).

Figure 2.2: A list of claims frequently made by language acquisition researchers concerning the 

properties of the child’s learning environment. These claims are not disputed in themselves, but their 

interpretations are still the subject of much discussion. Taken from Pullum & Scholz (2002:13).

Language: a Naturally Selected Biological Adaptation

Pinker & Bloom (1990) have argued that we can explain the evolution of language in 

the same way we would explain the evolution of any organ in the body: as an 
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adaptation. They go on to argue that the evolutionary process responsible for this 

adaptation must be natural selection.

“Evolutionary theory offers clear criteria for when a trait 
should be attributed to natural selection: complex design for 
some function, and the absence of alternative processes 
capable of explaining such complexity. Human language 
meets these criteria.” (Pinker & Bloom, 1990:707)

Language undoubtedly holds the appearance of design. For Pinker & Bloom, this 

design clearly relates to the function of communicating propositions through a serial 

transmission channel. Obviously this process did not happen overnight, and neither 

did language as we know it spring out fully formed in one go. At some point we 

must explain how language arose out of non-language. According to Pinker & 

Bloom (1990), and later Pinker (2003), natural selection is a viable solution to this 

problem of emergence as long as any small ability to communicate was slightly 

advantageous. In the same way that the eye developed gradually -- at first just as a 

few cells capable of perceiving light and dark that might have allowed an organism 

to perceive when a predator was close-by, before later being able to differentiate 

separate frequencies of light, which may have helped an organism to avoid 

poisonous foods -- so too did language evolve. In increments.

 

This theory still contends that the proximate cause of the structural properties we 

see in languages in the world lies in specialised cognitive machinery, but adds to 

this the claim that what ultimately causes it is biological evolution under natural 

selection for communication. This yields the following set of relationships between 

language, learning, and evolution (Fig 2.3). As we can see, this modifies the picture 

in Fig 2.1 only slightly.
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They go on to argue that the evolutionary process responsible for this adaptation must be 

natural selection.

“Evolutionary theory offers clear criteria for when a trait should be 

attributed to natural selection: complex design for some function, 

and the absence of alternative processes capable of explaining such 

complexity. Human language meets these criteria.” (Pinker & Bloom, 

1990:707)

Language undoubtedly holds the appearance of design. For Pinker & Bloom, this design 

clearly relates to the function of communicating propositions through a serial transmission 

channel. Obviously this process did not happen overnight, and neither did language as we 

know it spring out fully formed in one go. At some point we must explain how language 

arose out of non-language. According to Pinker & Bloom (1990), and later Pinker (2003), 

natural selection is a viable solution to this problem of emergence as long as any small 

ability to communicate was slightly advantageous. In the same way that the eye 

developed gradually -- at first just as a few cells capable of perceiving light and dark that 

might have allowed an organism to perceive when a predator was close-by, before later 

being able to differentiate separate frequencies of light, which may have helped an 

organism to avoid poisonous foods -- so too did language evolve. In increments.

 

This theory still contends that the proximate cause of the structural properties we see in 

languages in the world lies in specialised cognitive machinery, but adds to this the claim 

that what ultimately causes it is biological evolution under natural selection for 

communication. This yields the following set of relationships between language, learning, 

and evolution (Fig 2.3). As we can see, this modifies the picture in Fig 2.1 only slightly.

Fig. 2.3: The orthodox evolutionary view in full. Universal properties of linguistic structure are directly 

caused by the nature of our individual cognitive machinery. This machinery in turn, is the result of 

biological evolution, which is under natural selection for enhanced communication. Re-drawn from Kirby, 

Smith & Cornish (2008). 
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Fig. 2.3: The orthodox evolutionary view in full. Universal properties of linguistic structure are 

directly caused by the nature of our individual cognitive machinery. This machinery in turn, is the 

result of biological evolution, which is under natural selection for enhanced communication. Re-

drawn from Kirby, Smith & Cornish (2008). 

There are basically three ways in which this idea has been challenged. The first is in 

terms of whether language really is an adaptation for communication or not. Dunbar 

(1996) and Miller (2000) both support the adaptationist stance, but disagree as to 

what the primary function of language was when it evolved. There are two options 

here. Either language evolved for something other than communication, and is still 

used for that other function, or it could in fact be an exaptation: an adaptation for 

something else that has since been ‘borrowed’ and further tweaked to suit a new 

purpose (Gould & Vrba, 1982).

What other purpose could language (or its precursor) have served? Dunbar (1996) 

sees language primarily as a method for instilling social bonds, what he refers to as 

‘social grooming’. The argument here is that as group sizes increased in our 

hominid ancestors, one-on-one manual grooming, a main-stay in primate social 

interactions, became impractical. Vocal gestures, unlike physical gestures, can 

proceed in a one-to-many fashion. As such, language might have evolved to replace 

manual grooming and maintain social contracts between individuals. Miller (2000) 

on the other hand, agrees that language is a biological adaptation, but disagrees 
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both with the function and the evolutionary mechanism responsible. For him, the 

pre-cursor to language was an integral part of the courtship process between early 

humans, and therefore language is at least partially the result of a process of sexual 

selection. Both of these accounts have been criticised individually5, but a common 

complaint with them both is that neither explains exactly why features of language 

seem so well designed for communication and not any of the other alternative 

functions proposed (e.g. Pinker, 2003). They do, however, serve to highlight the 

range of alternatives that could be considered even when we adhere to the simple 

idea that language need only be understood in biological and adaptationist terms6.

Another way that Pinker & Bloom’s idea has been challenged relates to the 

relationship between the innate learning mechanisms and the properties of 

language shown in Figs 2.1 and 2.3. The orthodox account assumes that the link 

between, on the one hand, the cognitive machinery in an individual learner’s brains, 

and on the other, the behaviour that that machinery manifests at the population 

level, is a direct and transparent one. But what if it is not?  Kirby (1999:19-20) refers 

to this issue as the problem of linkage:

“The innatist approach links universals to acquisition, so that 
constraints on cross-linguistic variation are the direct 

consequence of constraints on the acquisition (and mental 
representation) of language.[...]To be completely explicit, we 
can formulate the following problem: 
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5 Nakamura (2000) has called into question Dunbar’s (1996)  assertions that verbal grooming 
is inherently more efficient than manual alternatives, whereas Miller’s (2000) claims have 
been challenged on the grounds that it predicts elaborate but ultimately meaningless 
signalling displays - not compositional syntax (Pinker, 2003).

6 There have been non-adaptationist theories put forward to explain language evolution as 
well -- most famously Chomsky (1988), Piatelli-Palmarini (1989) and Piattelli-Palmarini & 
Uriagereka (2004). All of these theories adhere to the nativist position, but caution against 
assuming language was naturally selected ‘for’ anything. A full discussion of these other 
theories is outwith the scope of this review, although see Gould (1997) for a general 
discussion on the merits of non-adaptationist explanations for human evolution.



The problem of linkage. Given a set of observed constraints 
on cross-linguistic variation, and a corresponding pattern of 
functional preference, an explanation of this fit will solve the 
problem: how does the latter give rise to the 
former?” (emphasis original)

In other words, we need to be able to account for exactly how patterns of neural 

activity actually wind up as patterns of linguistic behaviour (Kirby, 1999; Kirby et 

al., 2004)7. 

The final criticism is also related to this. As Pinker & Bloom state themselves, the 

compulsion to accept an explanation involving natural selection holds only as long 

as there are not, in fact, ‘alternative processes’ that could explain the appearance of 

design. As Kirby (2000) claims, and indeed, the next section will discuss, there is an 

alternative process capable of explaining the appearance of design in language -- 

and it also has the added advantage of solving the problem of linkage for us.

2.2.2 Language as a Complex Adaptive System

The nativist explanation of language -- and more recently language origins -- has 

been the dominant approach in both linguistics and cognitive science for many 

years. However, it is not the only approach. The poverty of stimulus argument, 

which forms the cornerstone for acceptance or rejection of the proposal, has been 

increasingly under attack, with neither side managing to produce conclusive 

evidence for or against (Pullum & Scholz, 2002). Some claim that the poverty of 

stimulus argument is tautologous, and question whether we can view language 

learning as a strictly-rational process of grammar induction at all (e.g. Tomasello, 

1995; Hendriks, 2000; Tomasello, 2004), whilst others argue that nativists are over-

stating the paucity somewhat, or question the claims that general-purpose learning 
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rather than one levied specifically at Pinker & Bloom (1990).



mechanisms really do all that badly with sparse input data (Marcus, 1993; Elman et 

al., 1996; Cowie, 1999; Gomez & Gerken, 2000). 

Given that we might also have doubts concerning the problem of linkage between 

the structure of a language learner’s cognitive machinery and linguistic behaviour 

at the population level (§2.2.1), what are we left with? We must still account for the 

facts we have learnt about language acquisition, comparative studies of animal 

communication systems, and the underlying similarities between different 

languages. The alternative suggestion is to rethink what we mean by the term 

‘innate’ (c.f. Elman et al., 1996). 

Clearly there is something special about human biology. There is a good deal of 

evidence to suggest that we have undergone many physiological changes or pre-

adaptations for language, most notably our transition to bipedalism (which allowed 

for greater breath control), and alterations to our vocal tract and perceptual systems 

(Hurford, 2003). However, increasingly, and for the reasons specified above, 

researchers have been reconsidering whether the cognitive mechanisms that 

underlie language learning, processing, and use, really have to have been specially 

developed for language.

Many of those who subscribe to this belief take a complex adaptive systems (CAS) 

view of language. That is, rather than seeing language as the sole result of a 

psychological process ongoing within the individual, they see language as an 

emergent phenomenon, arising as the result of a series of many local interactions 

between speakers that give rise to more complex behaviours at higher levels (Gell-

Mann, 1992; Holland, 1995; Hashimoto, 2002; Brighton et al., 2005; Christiansen & 

Chater, 2008; Beckner et al., 2009). This approach tends to rely less on the notion of 

cognitive mechanisms specific to language, and recognises that languages 

themselves are adaptive systems capable of undergoing their own form of (cultural) 

evolution. This next section explains this position in more detail.
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Three Complex Adaptive Systems

The field of linguistics has long recognised that languages are historical entities that 

change over time. However, attempts to integrate diachronic linguistics with more 

synchronic approaches have not always been successful. One of the advantages of 

taking a CAS view of language, is that it can lead to a natural coming together of 

these two sides of the same coin. Essentially, we can see language as the result of the 

interactions between three different adaptive systems, each of which operates over a 

very different time-scale (Kirby & Hurford, 2002). Figure 2.4 shows some of the 

possible interactions between these different systems. 

Figure 2.4: Language is the result of three complex adaptive systems. According to this perspective, 

interactions between the different systems are important.  A few of these possible interactions are 

shown here. Biological evolution gives rise to phylogenetic changes which provide a platform for 

learning; this creates a set of learning biases which in turn largely influence what can be acquired 

ontogenetically; this in turn affects which features of languages persist culturally, and what kinds of 

glossogenetic changes occur; these emergent structural features finally feed back into biology, by 

influencing the selection pressures on the evolving speakers of that language. Taken from Kirby & 

Hurford (2002).

At one level, we have phylogeny, which relates to the biological evolution of the 

learning and processing mechanisms (general, or otherwise) used for language. This 

Phylogeny

Glossogeny

Ontogeny
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system operates over the time-scale of the evolution of the species, and provides 

learning biases which go on to interact with the next system, ontogeny. Ontogeny 

relates to the development of the capacity for language within an individual -- in 

other words, language acquisition. Learning is itself an adaptive process, with 

operates over the life-time of the individual learner. It is influenced by biological 

learning biases, but also goes on to influence our third system, dubbed glossogeny 

(Hurford, 1990). Glossogeny is a process relating to the way that languages 

themselves adapt and change over a historical time-scale, which we can think of as 

equivalent to the ‘lifetime’ of a specific language. Adaptive changes at this level are 

influenced as a result of learning undertaken not just by one individual, but by 

many. The resulting structures that emerge go on to further influence the evolution, 

by providing selection pressures for learning biases that better accommodate these 

emergent features of language.

Cultural Transmission: The Missing Link?

We learn language by observing the linguistic data produced by others. This alone is 

enough to make language a cultural system. The real question is not about whether 

this cultural system exists, but about whether it contributes anything to the process 

of linguistic emergence. In other words, does cultural transmission actually change 

the story presented in Fig. 2.3 in any significant way?  As Kirby et al. (2008b) 

acknowledge, it could well be the case that all cultural transmission does is act as a 

passive conduit, linking the cognitive learning biases in our heads to the linguistic 

structures in the world as a mere intermediary step. However, it could also be the 

case that processes of social interaction and cultural evolution actively generate 

structure, and provide us with a way to bridge the  gap between individual-level 

cognition and population-level behaviour and solve the problem of linkage once 

and for all (Kirby, 1999). 
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Figure 2.5: Solving the problem of linkage. DESCRIPTIVE BLURB REQUIRED. Redrawn from Kirby, 

Smith & Cornish (2008) with permission.

Fig. 2.5 shows how this fits in with our previous diagrams. EXPLANATION OF GRAPH. 

The next section poses the following question: what is the exact mechanism responsible for 

bridging this gap between individual minds and population behaviours?

2.3 Iterated Learning: A Mechanism of Cultural 

Transmission

There is something special about the way in which language is acquired. Language 

learning involves learners learning from other learners. More formally, this process has 

been referred to as iterated learning. 

“Iterated Learning is a process whereby somebody acquires a 

behaviour via observing someone performing that behaviour, who 

themselves acquired it the same way.” (FindREF)

It is important to note at this point that iterated learning is a domain-general process and 

not unique to language -- it can apply to other domains of learned behaviour (Brighton, 

THESIS), and is not a process which operates exclusively in humans (Feher et al., 2009). It 

also makes no specific claims about the particular population structure learners are 

configured in -- it applies equally to inter-generational and intra-generational interactions 

Figure 2.5: Solving the problem of linkage. Processes of social interaction and cultural evolution are 

thought to have a constructive role to play in explaining how we get from learning biases in 

individual brains, to linguistic behaviour in populations. Redrawn from Kirby, Smith & Cornish 

(2008) with permission.

Fig. 2.5 shows how this fits in with our previous diagrams. Here we see that the link 

between our cognitive learning biases and universal properties of linguistic 

structure are mediated by processes of social interaction and cultural evolution. By 

studying these processes in more detail we will gain insight as to what, if anything, 

they can contribute to our understanding of where structure in language comes 

from. One type of cultural transmission mechanism in particular is thought to be 

capable of bridging this gap between individual minds and the behaviour of 

populations. The next section examines this mechanism in more detail.
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2.3 Iterated Learning: A Mechanism of Cultural Transmission

There is something special about the way in which language is acquired. Language 

learning involves learners learning from other learners. More formally, this process 

has been referred to as iterated learning. 

“Iterated learning is a process in which an individual 
acquires a behavior by observing a similar behavior in 
another individual who acquired it in the same way” (Kirby, 
Cornish, & Smith, 2008: 10681)

It is important to note at this point that iterated learning is a domain-general process 

and not unique to language -- it can apply to other domains of learned behaviour 

(Brighton, 2003), and is not a process which operates exclusively in humans (Feher 

et al., 2009). It also makes no specific claims about the particular population 

structure learners are configured in -- it applies equally to inter-generational and 

intra-generational interactions between learners (see §2.4.3 and §3.4.1 for more 

details). Finally, it should be remembered that it is just one of just a number of 

mechanisms of cultural transmission, such as imitation or teaching8, albeit the one 

most relevant to language.

The fact that there is feedback or interaction between the learner and what is being 

learned does make it different from many other types of observational learning that 

we engage in however. We can think about this in the following way. Learning a 

language is not like learning how physical objects move in the world. This is 

because the properties of the aspect of the physical world that we learn about when 

we learn how objects move, have been entirely constrained by processes external to 
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or stimulus enhancement,  we will see over the course of this thesis that iterated learning is 
also capable of giving rise to cumulative cultural evolution. For more information on the 
differences between imitation, teaching, stimulus enhancement and emulation in more 
detail, see Tomasello (1999). See also §2.4.4 for more discussion on the cumulative nature of 
human culture.



our cognitive system.  The properties of language on the other hand, are actually 

determined by the learning efforts of previous learners -- which, to the extent that 

learners have similar learning biases, means that an initial intuition that a learner 

might have about how a particular linguistic structure works will most likely be 

correct (Christiansen & Chater, 2008). Interestingly, arguments of this type turn 

poverty of stimulus claims on their head. As Zuidema (2003:58) puts it: 

“[L]earners are only presented with targets that other 
learners have been able to learn. [...] The poverty of the 
stimulus is now no longer a problem; instead, the ancestors’ 
poverty is the solution to the child’s.”

This is just one of the interesting implications that studies of iterated learning as a 

cultural transmission mechanism reveal. The rest of this section focuses on the 

conceptual framework for understanding iterated language learning more 

specifically, and then explores some of the main findings to have emerged from 

research into iterated learning using computational and mathematical models. 

Iterated Language Learning

How does iterated learning apply to language? It was in fact Chomsky (1986) who 

argued that language exists in roughly two forms – E-Language ('external' language, 

represented in the world by actual utterances, and a property of populations of 

speakers/hearers) and I-Language ('internal' language, represented in the minds of 

speakers as a pattern of neural connections, and a property of an individual 

speaker/hearer). Language induction involves the transformation of E-Language 

into I-Language, as each learner induces their own mental representations of 

language on the basis of exposure to the ambient language surrounding them. On 

the other hand, language production involves the reverse mapping, as agents use 

their internal representations to create new utterances, which creates the external 

language for the next generation to learn from. 
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When this process of induction and production iterates across several learners, each 

learning from the output of the previous generation, it becomes an (iterated 

learning) model of language evolution (Hurford, 2000).  This process is schematised 

in Fig. 2.6 below. Because of the way that this framework attempts to explicitly 

understand the link between individual learners and properties of language, it 

directly speaks to the issue of the problem of linkage (Kirby et al., 2004). 

model of language evolution (Hurford, 2000).  This process is schematised in Fig. 2.6 

below. Because of the way that this framework attempts to explicitly understand the link 

between individual learners and properties of language, it directly speaks to the issue of 

the problem of linkage (Kirby et al., 2004). 

I-Language I- Language

E-Language E-Language

Induction Production Induction Production Induction

Figure 2.6: The transformation of I-Language into E-Language over successive generations or interactions. 

Each learner induces an internal mental representation of language (I-Language) by observing utterances 

that are publicly represented in the external world (E-Language). Learners then become speakers, and 

produce new utterances, possibly changing the content of E-Language in some way. When this process 

iterates it becomes an evolutionary system. Redrawn from REF(????).

In this account, the role of previous language users is crucial. The process of iterated 

learning is imperfect: as information is transformed between the different domains during 

induction and production, there is a chance that small linguistic changes will be 

introduced9. These changes are not simply errors that the next learner will ignore or 

correct. In most cases these errors will be indistinguishable from non-errors, and will go on 

to influence the linguistic system of future learners accordingly.  As Brighton (2003:35) 

puts it: “language reflects the accumulated residue of the effects of learning and 

production of preceding agents.”

The Iterated Learning Model: Some Examples

As stated in the previous chapter, the majority of work investigating the process of iterated 

learning, particularly in relation to language, has focused on building computational and 

mathematical models of it. Many of these computational simulations are agent-based 

models, which explicitly attempt to simulate both the cognitive processes of individual 

agents, as well as learning interactions between different agents. What differentiates these 

models from others investigating language evolution is the fact that there is no genetic 

9 See Hoeffler (THESIS) for an interesting discussion about loci for the introduction of changes in the 
transmission cycle in more detail.

Figure 2.6: The transformation of I-Language into E-Language over successive generations or 

interactions. Each learner induces an internal mental representation of language (I-Language) by 

observing utterances that are publicly represented in the external world (E-Language). Learners then 

become speakers, and produce new utterances, possibly changing the content of E-Language in some 

way. When this process iterates it becomes an evolutionary system. Redrawn from Kirby (2001) with 

permission.

In this account, the role of previous language users is crucial. The process of iterated 

learning is imperfect: as information is transformed between the different domains 

during induction and production, there is a chance that small linguistic changes will 

be introduced9. These changes are not simply errors that the next learner will ignore 

or correct. In most cases these errors will be indistinguishable from non-errors, and 

will go on to influence the linguistic system of future learners accordingly.  As 
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Brighton (2003:35) puts it: “language reflects the accumulated residue of the effects 

of learning and production of preceding agents.”

The Iterated Learning Model: Some Examples

As stated in the previous chapter, the majority of work investigating the process of 

iterated learning, particularly in relation to language, has focused on building 

computational and mathematical models of it. Many of these computational 

simulations are agent-based models, which explicitly attempt to simulate both the 

cognitive processes of individual agents, as well as learning interactions between 

different agents. What differentiates these models from others investigating 

language evolution is the fact that there is no genetic evolution involved, and agents 

are not rewarded in any way for successful communication.

A typical simulation consists of one or more learning agents, one or more teaching 

agents, a meaning space consisting of a shared set of concepts an agent can talk 

about (usually represented by a vector, real number, or a logical proposition), and a 

signal space which is initially empty. An agent is selected to be a teacher and 

randomly chooses a sub-set of meanings to express from the meaning space. If they 

do not already have a signal for a given meaning, the agent – who is equipped with 

the ability to produce a string at random – will create one. These signal-meaning 

pairs produced by the teacher are then given as training data to the next learner 

agent, which uses this to develop its own representation of the data using some kind 

of induction mechanism, and the cycle repeats. 

Over the years, various parameters have been explored: different types of 

production and induction mechanisms (Batali, 1998; Kirby, 2000; Brighton, 2002; 

Tonkes & Wiles, 2002), different structures and sizes of meaning-space (Batali, 1998; 

Kirby, 2002b; Teal & Taylor, 2000; Zuidema, 2003; Kirby, 2007), and different 

population structures (Batali, 1998; Livingstone & Fyfe, 1999;  Kirby, 2000; Batali, 

2002; Smith & Hurford, 2003; Vogt, 2007) to name just a few. One of the most robust 
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findings however, seen in every condition tested so far, is that the resulting 

languages created by the agents become easier to learn over time. The key 

parameter responsible for this result is known as the transmission bottleneck. 

Deacon (1997:110) was one of the first to put words to this phenomenon in recent 

literature: 

“Languages are social and cultural entities that have evolved 
with respect to the forces of selection imposed by human 
users. The structure of a language is under intense selection 
because in its reproduction from generation to generation, it 
must pass through a narrow bottleneck: children’s minds.” 

In order to survive to be present in the external pool of language – or in other words 

– in order to be transmitted and stand a chance of becoming part of I-Language in 

the future, it must be learnable (by humans or simulated agents). There are several 

ways in which this learnability can emerge in the models. In the simplest case, a 

signal can survive the transmission bottleneck by becoming more generalisable. One 

of the ways in which this can happen is by becoming compositional; structured in 

such a way that the total of the meaning of the phrase is a function of the individual 

meanings of its constituent parts and the formal way in which it is arranged. As 

already discussed in §2.1, this feature is a key hallmark of natural language, and one 

which is largely responsible for the kind of open-ended generativity lacking in 

animal communication systems. 

The way that generalisable utterances encourage their own survival lies in the fact 

that a compositional element can appear in multiple contexts, maximising its 

chances of being acquired (e.g., Kirby, 2000). When such a system emerges, it is not 

necessary to hear every possible utterance in the language, as the regular structure 

present in those utterances that were heard provides the learner with a method of 

reliably inferring the structure of those utterances that were not heard. For example, 

a child hearing ‘red lorry’, ‘yellow lorry’ and ‘red car’ could infer that there might 

be something called a ‘yellow car’ out there in the world on the basis of making a 

generalisation about the structural relationship between colour adjectives, vehicular 
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nouns and their respective referents. They do not need to hear ‘yellow car’ paired 

with an actual referent to use or understand it. 

 

A second way in which a signal can survive the bottleneck is by ensuring that it is 

used frequently enough to guarantee that the learner will hear it and need to acquire 

it. This insight is sufficient to explain another universal aspect of natural language 

structure: the presence of irregularity (Kirby, 2001). It is an interesting fact that in 

every language where there exist irregular forms, these forms tend to correlate with 

frequency of use in everyday speech. Thus for English, the top ten verbs are also all 

irregular (Francis & Kucera, 1982). In his model, Kirby (2001) manipulated the 

frequency with which certain meanings were sampled from the meaning-space, 

such that some were much more frequent, hence more likely to pass through the 

bottleneck, than others. What he found strongly mirrored the distributional patterns 

of irregulars in real languages: those meanings that were infrequent tended to be 

compositional, whereas those that were frequent were not. The message here is that 

we can learn idiosyncratic forms as long as they appear often enough in our input.

  

These models provide a proof of concept for the idea that language can adapt itself 

in response to the way in which it is culturally transmitted, and that some important 

structural features can emerge as a result of this dynamic. This perspective sees 

language itself as an evolving organism, capable of adapting to the environmental, 

social and cognitive pressures of its users. Whilst biological evolution has provided 

us with the necessary physiological pre-adaptations and much cognitive machinery 

for language (Hurford, 2003), it is not the sole adaptive mechanism at work. What 

gets acquired by one generation determines the data that future generations will use 

to construct their own language. 

This has the advantage of taking away some of the explanatory burden from 

biological evolution – helping to account for some of the discrepancies involved, 
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such as the incredible speed at which language is thought to have emerged10 – 

whilst simultaneously incorporating our intuitive understanding of language as a 

cultural process. The key message to take home (Kirby, 2002a:27) is that: “(b)efore 

seeking a biological or functional explanation for a particular feature of language, or 

appealing to direct coding in an innate acquisition device, we should be aware of 

what we might be getting 'for free'”...via the mechanisms of cultural evolution. 

In addition, one of the nice features of these models is that they do not commit us to 

any specific visions of how cultural evolution proceeds. So whether we view 

cultural evolution as a process whereby individual units of language get 

preferentially replicated (Blackmore, 1999; Croft, 2000; Aunger, 2002), or a process 

whereby the entire system is independently reconstructed anew at each generation 

(Sperber, 1996) is not important. Similarly, whether we choose to think of the 

learning biases as being language-specific or domain-general does not matter at this 

stage. The important thing is that iterated learning through generations can allow 

language to change, evolve and adapt culturally.

2.4 Cultural Evolution

Languages are undoubtedly culturally transmitted. The main aim of this thesis is to 

show exactly how this fact can actually explain why languages are structured the 

way that they are. We must start with the observation that language is not the only 

thing to be socially transmitted or evolve culturally in this way. Beliefs, skills, music, 

social attitudes, political systems, customs, architecture, religion, the rules of chess, 

fashion, mythologies, art and technology are also examples of things which arise 

and change over time as a result of cultural evolution. The diversity of behaviours, 
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and in some cases, material artefacts that get classified as being ‘cultural’, or indeed, 

as forming ‘culture’ itself, is bewildering. 

In a now famous survey, conducted in 1952, Kroeber & Kluckhohn examined the 

anthropological literature and found well over a hundred different definitions for 

culture alone. This has led to considerable divergence within the scientific 

community, with some studying culture-as-a-product (the customs, artefacts, 

behaviours and beliefs held by specific cultural groups), and others studying 

culture-as-a-process (the general mechanisms and adaptive dynamics that underlie 

this appearance of cultural products). Attempts have been made to bridge these two 

approaches. For instance, Richerson & Boyd (2005:5) define culture as follows:

“Culture is information capable of affecting individual’s 
behavior that they acquire from other members of their 
species through teaching, imitation, and other forms of social 
transmission.”

By defining culture simply as information affecting behaviour, and jointly specifying 

the process by which it is acquired, they manage to bring together many of the 

different phenomena we would like to label as culture or cultural. This definition 

will also be adopted for the rest of the discussion here. 

Obviously we know that language is not acquired through teaching or imitation. In 

fact, the previous section (§2.3) put forward the basic mechanism by which we see 

languages being culturally transmitted -- iterated learning. In this chapter I will be 

arguing that the fact that language is a relatively well-understood phenomenon 

makes it an ideal candidate for understanding processes of cultural transmission in 

general. However, that does not mean that researchers in language evolution should 

feel free to ignore the abundance of work undertaken by those investigating cultural 

evolution, thinking it only loosely relevant. On the contrary, even those studies that 

focus exclusively on teaching or imitation of non-linguistic behaviours in other 

species, can bring us closer to understanding what is essential for iterated learning, 
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or language, or both. In particular, we will find towards the end of this chapter that 

the methods used by researchers to test predictions made by various cultural 

evolutionary theories will be of direct use to us here. 

In some ways, linguists have been rather slow on the uptake. Research has been 

going on for a number of years investigating the relationship between language, 

culture and human cognition, but has largely gone unnoticed, perhaps because it 

has been deemed as fitting outside the bounds of proper linguistic enquiry. There 

are three main areas that have been explored: firstly, that complex language may 

have been a pre-requisite for complex culture; secondly, that evolving complex 

language may have actually enabled us to have more complex thoughts; and finally, 

the observation we have already noted concerning the fact that language itself arises 

as a result of a cultural process. The next section explores these three ideas in a little 

more detail.

2.4.1 The Relationship Between Language, Culture and Cognition

Language enables culture

Language is used to transmit cultural content in the form of ideas. Its capacity to do 

this has led evolutionary biologists John Maynard Smith & Eörs Szathmáry (1995; 

2000) to conclude that complex societies with language represents the latest in a 

series of eight major evolutionary transitions in the history of life11. Each of these 

transitions typically involves some kind of aggregation (smaller entities coming 

together to form larger entities), division of labour, a change in the replication 
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funghi; solitary individuals to colonies of individuals; before finally, the transition from 
primate society to human societies, which is heralded by the emergence of language 
(Maynard Smith & Szathmáry, 1999).



mechanism (after a transition, smaller entities that could once replicate 

independently can only do so as part of a larger whole), and the creation of new 

methods of information transference. The claim is that with the emergence of 

language, a whole new system of information transmission and replication 

appeared - one which, like DNA before it, supports unlimited heredity12, and that 

this is what marked the transition from primate societies to human societies 

(Maynard Smith & Szathmáry, 2000). Language can therefore be seen as a powerful 

new evolutionary force in the world, giving rise to culture.

This latter point has been echoed by primatologists: one of the reasons why we have 

complex culture and our nearest primate cousins do not, is because only we have 

complex language (Boesch & Tomasello, 1998). Being able to encode information 

linguistically has been argued to make social learning more accurate, which is a 

necessary precondition for the emergence of cumulative cultural evolution and 

stable traditions (Sperber, 1996; Cavalli-Sforza, 2000; Atran, 2001). However, it is 

clear that not every culturally transmitted skill requires language. Shennan & Steele 

(1999) have argued that the manual skills required to generate stone tool technology 

could have been acquired simply through observation and without language. 

Similarly, Gil (2008) has questioned the argument that we needed complex grammar 

in order to acquire complex skills, such as building a boat and sailing it. 

Language enables certain kinds of cognition 

Perhaps then the value of language does not lie directly in what culturally acquired 

information it can transmit, but in the way it helps augment human cognition? One 

suggestion is that language gives rise to second order cognitive dynamics which 

help us make inferences about the world and ourselves – basically, the ability to 

evaluate our thoughts and plan our actions (Clark, 1998; 2006). Language from this 
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perspective can be seen as a tool (part of our ’extended mind’), allowing us to freeze 

thoughts as objects which can then undergo scrutiny by the thinker, and more 

importantly, by other hearers. This has led some to argue that without language 

there are whole domains of abstract human concepts which could not exist, such as 

kinship relations, hypothetical situations, and ‘reasons’ for certain actions 

(Jackendoff, 1996). Similarly, the notion of a ’week’ (Pinker and Jackendoff, 2009), or 

even numbers (Hurford, 1987; Wiese, 2004) appear to rest upon language.

The claim is that simply having a mechanism by which we can transmit our 

thoughts and ideas to other people has fundamentally changed the way we think. 

Recent research has even shown that language can change the way our visual 

system works (Meteyard et al., 2007; Winawer et al., 2007; Lupyan, 2010), can 

influence our spatial reasoning abilities (Loewenstein & Gentner, 2005), and affects 

how we categorise novel objects (Vygotsky, 1962; Schyns et al., 1998; Lupyan et al., 

2007). Understanding the extra-communicative roles that language may play in 

cognition may go on to help constrain theories of language evolution in useful ways 

(Lupyan, 2010).

Language is a product of the cultural process 

This idea of language as a carrier, or vehicle for cultural information is not new. 

However, there is another sense in which we can see language and culture 

interacting; language conveys information about its own construction. That is to say, 

not only does language transmit culture, but it is itself also culturally transmitted 

(Brighton, Smith & Kirby, 2005; Kirby, Cornish & Smith, 2008). Children acquire 

language based on the previous output of the language learning of others, and this 

makes it a fairly unusual system (Zuidema, 2003). In a sense, it is equivalent to 

being able to infer the recipe and baking instructions of a cake, just by looking at it. 

Interestingly enough, language is not the only system to have this property. It seems 

indicative of any traits that are acquired via a process of iterated learning. For 
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instance, music and certain types of whalesong and birdsong also appear to cue 

their own construction in this way (Rendell & Whitehead, 2005; Feher et al., 2009). 

Given that language is relatively well understood phenomenon, and humans are 

easy to run experiments on, this means that language can provide an excellent 

testbed for theories of cultural evolution more generally. It is to these theories that 

we now turn. 

2.4.2 Theories of Cultural Evolution

Explicit parallels were drawn long ago between biological and cultural evolution 

(particularly, language evolution) by Darwin and his contemporaries: 

The formation of different languages and of distinct species 
… are curiously parallel … As Max Müller has well 
remarked : ‘ A struggle for life is constantly going on 
amongst the words and grammatical forms in each language. 
The better, the shorter, the easier forms are constantly 
gaining the upper hand, and they owe their success to their 
inherent virtue. ’ (Darwin 1871:91) 

Nevertheless, although we see the seeds of both disciplines emerging at the same 

time in history, the study of mechanisms of cultural evolution has lagged behind 

our understanding of the mechanisms of biological evolution by some magnitude 

(Mesoudi et al., 2006b). There are many reasons for this, not least the fact that the 

field most closely associated with the study of culture -- anthropology -- has been 

strongly divided over whether something so rich and complex can be reduced to 

simple processes of cause and effect. Whilst many biologists would disagree with 

the implicit assumption that evolutionary theorising amounts to a reductionist 

explanation of a complex phenomenon (many biological processes are clearly more 

than the sum of their parts), others point out that some degree of reductive logic is 

no bad thing. To use the analogy developed by Dennett (1995), scientific theories 

that posit an over-abundance of cranes tend to explain whatever phenomenon they 
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are attempting to explain, whereas theories resting on a single skyhook explain 

nothing.

Universal Darwinism

What are the parallels between biological and cultural evolution? For some, this is 

the wrong question to be asking. Instead, we should be concerning ourselves with 

understanding what general processes underly all forms of evolution. This quest to 

develop a general theory of evolution has been termed ‘Universal 

Darwinism’ (Dawkins, 1976; Dennett, 1995; Hull, 2001). In short, evolution is to be 

understood as involving three ingredients: variation, inheritance, and competition 

for survival. Any system where there is inherited variation of fitness is therefore an 

evolutionary one. Under this basic rubric, we can see that culture fulfills these 

criteria: we find variations between cultural traits, these cultural traits are passed on 

from person to person, and not all cultural traits can be expressed at once in an 

individual -- there is therefore competition between variants, not only within each 

individual, but between different population groups (Mesoudi et al., 2006b).

Conceptual work linking Darwinism to culture has also been done by Mesoudi et al. 

(2004). Working directly from the text of Darwin’s Origins of Species (1859), they 

suggest that a number of analogies can be found that go deeper than this. For 

instance, they point to shared features like convergent evolution, the presence of 

vestigial traits, the accumulation of modifications over time, the existence of 

adaptations and maladaptations, and similarities between the geographical 

distributions of species and the geographical distributions of certain cultural traits.

In spite of many similarities, there are differences to bear in mind. For instance, in 

some sense, any kind of cultural evolution is ultimately dependent on biology. This 

is true not only from the point of view of the mechanisms underlying cultural 

evolution requiring a biological explanation for their origins, but also from the point 

of view of cultural traits themselves. If a behaviour is maladaptive from the point of 
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view of biology, that behaviour will not survive very long (Boyd & Richerson, 2005). 

For instance, Stone et al. (2007) discuss the case of the Albigenses, a religious sect 

that existed in Southern France in the 12th and 13th century. They believed that in 

order to attain pure spirituality one must abstain from marriage and reproduction 

entirely, and that since their material body was merely a cage for their soul, those 

Albigenses that wanted to attain perfection encouraged starvation and suicidal 

practices amongst themselves. Clearly it is easy to understand why this sect no 

longer exists today. 

One particular issue that has received a lot of attention over the years is the units of 

selection debate: does culture consist of discrete units like memes (Dawkins, 1976; 

Blackmore, 1999), culturgens (Lumsden & Wilson, 1981), or linguemes (Croft, 2000) 

that get preferentially replicated in some way, or is cultural transmission more a 

process of complete reconstruction (Sperber, 1996; 2000; Atran, 2001)? If there are 

units of inheritance, at what level does selection operate?  On the units of inheritance 

themselves, or on the individual possessing that trait, or even at the level of the 

cultural group that shared a trait?  Although it is a divisive issue, which for some 

rules out any meaningful comparison between biological and cultural evolution 

(e.g. Bloch (2000) or Kupar (2000)), there is in fact little need for us to settle these 

issues immediately in order to develop testable theories. Whilst the general 

consensus seems to be that we should remain slightly cautious when making 

analogies with biological evolution, researchers have pointed out that Darwin 

himself was unaware of the precise mechanisms of inheritance when he developed 

his theory of natural selection (Aunger, 2000; Mesoudi et al., 2006b). 
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If it turns out that there is no such cultural equivalent to a phenotype or a genotype,  

or that some cultural traits are directed towards a specific goal13, then it is not a sign 

that culture is not ‘evolutionary’ (Mesoudi et al., 2004). The whole idea behind 

Universal Darwinism is that biological evolution is only one type of evolutionary 

process. We should in fact predict that cultural evolution will have major differences 

to biological evolution. To summarise, all evolution requires is heritable variation of 

fitness. That is not to say that our understanding of biology is not relevant to our 

understanding of culture. As we shall see, even if we were to completely ignore any 

parallels between the mechanisms of biological and cultural evolution, it turns out 

that most theories of cultural evolution can be divided along the lines of how closely 

the process itself actually interacts with biological evolution. That is, any 

mechanisms of cultural evolution are enabled by biology at some level (Richerson & 

Boyd, 2005). Therefore we need a rudimentary understanding of how genetic 

transmission works even for this14. 

Evolutionary Psychology

Commentators classify evolutionary psychology (EP) as a theory of cultural 

evolution because it attempts to explain human behaviour as the result of processes 

of evolution (e.g Barrett et al., 2002; Nettle, 2009). The EP approach links social and 

cultural behaviours tightly to biological underpinnings, with an emphasis on 

explaining variation in behaviours (“evoked culture”) as the result of evolved 
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McKay, 2006). 

14 Unfortunately understanding the mechanisms of biological evolution requires a book in its 
own right, so rather than try to condense something that complex into a few paragraphs 
here, I instead direct the reader to Nettle (2009) for an accessible treatment of the subject.  



psychological modules responding to different environmental inputs (Tooby & 

Cosmides, 1992). As such, it most closely parallels nativist explanations of language 

and language origins than accounts which give a more central role to cultural 

transmission. 

This theory ties current behaviour to that which was adaptive in our past: the 

environment of evolutionary adaptation (EEA) - thought to correspond to some 

point in the Pleistocene (Tooby & Cosmides, 2000; Barrett et al., 2002). The argument 

is that certain behavioural traits which would have been adaptive for our ancestors 

(for instance, fear and avoidance of snakes) could, over time, have become 

genetically assimilated, as those people who possessed them were more likely to 

survive and reproduce than those who did not. Even though many of us live in an 

environment which is substantially different to the hunter-gatherer lifestyle of the 

EEA, these evolved behaviours continue to shape our current behaviour. For 

instance, we like sweet sugary foodstuffs now because those things would have 

helped us to survive in the EEA. Consequently, if we want to understand over-

eating behaviour in current populations, we have to understand the role that such 

behaviour would have had in the past (Nesse & Williams, 1995). 

  

Dual-Inheritance Models

Dual-Inheritance models (often alternately referred to as theories of Gene-Culture 

co-evolution) place their emphasis on the interactions between genes and culture. 

Unlike the EP approach, these models see culture as being currently adaptive, and 

transmitted rather than evoked (Nettle, 2009). As such, they fit more in line with the 

approach to language origins being advocated here. The idea behind these models is 

that culture and biology represent two distinct forms of inheritance, that can be 

functionally independent (Boyd & Richerson, 1985). In spite of their relative 

independence, they can also interact with one another in interesting ways. Culture 

can affect genes directly, as for example, in the link between dairy farming and 

lactose tolerance (Durham, 1991). Conversely, genes can affect culture directly too., 
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as any cultural trait that is deleterious to the reproduction of the organism will be 

wiped out (remember the example of the Albigenses people in the previous section). 

However, beyond this, there is a whole raft of possible interactions between the two.

Richerson & Boyd (2005) in particular emphasise the importance of population 

effects. Cultural traits can spread because they affect an organism’s biological 

fitness, but they can also increase because they affect an individual’s cultural fitness. 

Ultimately for Richerson & Boyd, all tributaries lead to the sea: cultural fitness can 

act as a proxy for biological fitness as much as the elaborate Peacock’s tail (Zahavi & 

Zahavi, 1997). Nevertheless, within this cluster of theories there is greater emphasis 

placed on culture being free to evolve for culture’s own sake.

Niche Construction

Niche construction theories also deserve a brief mention. Sometimes referred to as 

‘trial-inheritance theories’, these can be seen as a kind of extension to the dual-

inheritance theories described earlier. As well as biological and cultural inheritance, 

proponents argue that there is also a third system of ecological inheritance (Odling-

Smee et al., 2003). Not only do organisms adapt to their environments, but they also 

adapt their environments (Stone et al, 2007). Classic examples of the basic principle 

include beaver dams or bird nests, which effectively change the environment in 

which an organism must survive. These changes tend to last longer than the 

organism itself, are sometimes literally inherited by their offspring, and may even 

impact upon different species altogether. Long-term changes in the ecological niche 

inhabited by an organism in turn effect the selection pressures operating on that 

organism - for instance, the presence of a beaver dam creates pressures for beavers 

with certain morphological features, like stronger teeth and flat tails (Laland & 

Odling-Smee, 2000). Our theory of language evolution fits in quite well with this 

model, as the actual language being transmitted is itself an environment of sorts, 

that goes on to affect future generations. 
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As Bullock & Noble (2000:150) note in a discussion of the relevance of Kirby & 

Hurford’s (1997) model of language evolution to niche construction:

“New-born organisms must learn a grammar from a set of 
utterances provided by the parental generation. Thus the 
ecological legacy is not the physical environment but the linguistic 
one: a new organism is born into a world of speakers.”

There is definitely something captured by the theory of niche construction that is 

shared with those theories of language evolution that stress the importance of 

iterated learning; namely the great emphasis that both theories place on interaction 

and selective pressures arising at many different levels. Work has already begun on 

making those parallels clearer (e.g.  Odling-Smee & Laland, 2009).

2.4.3 Modes of Cultural Transmission

Working from mathematical models of biological evolution, Cavalli-Sforza & 

Feldman (1981) identified three different directions that cultural transmission could 

proceed in: vertical, oblique or horizontal. Of all these, vertical transmission shares 

the closest parallels with biological evolution, as it relates to the way in which 

cultural information gets passed down from parents to their children. Similarly, 

oblique transmission also refers to information passed down from generation to 

generation, but rather than specifying a parental relationship, this refers to any 

interactions between adults and children, or where information passes from 

someone with experience, to someone with less experience15. Finally, horizontal 

transmission relates to information being passed between members of the same 

generation, and/or level of expertise. 
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Various claims have been made about the different properties that each of type of 

transmission has. For instance, vertical transmission has mostly been associated 

with conservation and stability of traits (Laland et al., 1993), with prime examples of 

this being language and hygiene practices which tend to correlate strongly with 

those held by the parental generation (Stone, et al., 2007). Empirical evidence for this 

also comes from studies of Iranian rug-making, which reveal how mother-daughter 

transmission results in extremely stable designs (Tehrani & Collard, 2002), and 

studies of Stanford grad-students showing certain cultural traits which do not tend 

to change over time, like voting preference, are acquired vertically (Richerson & 

Boyd, 2005). In contrast, horizontal transmission has been associated with the 

generation of innovations and variation, and the rapid spread of cultural 

information (Stone et al., 2007).

Even within these broad types of transmission identified by Cavalli-Sforza & 

Feldman (1981), there is additional recognition of some sub-types. For instance, 

within horizontal transmission Stone et al. (2007) differentiate one-to-one (the 

‘standard’ form of horizontal transmission as conceived by many researchers), 

many-to-one (a more powerful form of transmission where several people transmit 

the same information to just one individual -- commonly described by psychologists 

as ‘peer pressure’), and one-to-many (where a particularly prestigious individual -- 

for instance, a political leader or celebrity -- influences the spread of information on 

a large-scale). Each of these sub-types also have different effects, with many-to-one 

transmission being particularly hard to resist, and one-to-many being associated 

with very rapid cultural change. 

Despite a wide-spread belief that the majority of cultural transmission is horizontal, 

there is a surprising amount of anthropological evidence for vertical transmission. 

Researchers have used the fact that the different modes of transmission result in 

different distributional patterns in order to identify which direction is the more 

dominant. In spite of the fact that cultural evolution definitely allows a greater 
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scope for horizontal transmission than genetic evolution16, vertical transmission is 

often still the dominant mode in cultural evolution (Guglielmino et al., 1995). This 

was demonstrated by a study which analysed some 47 different cultural traits in 277 

African communities. Guglielmino et al. (1995) reasoned that if horizontal 

transmission is more dominant, we would expect that cultures would tend to share 

traits with those communities geographically adjacent to themselves, but if vertical 

transmission is stronger, we would expect groups to conserve the traits of the 

cultures they descend from. It was statistically shown that the majority of traits 

showed evidence of descent over generations17 – especially amongst those traits 

most closely connected to reproductive success. This study was later supported 

using a worldwide sample (Holden & Mace, 1999). Collectively results like this have 

been taken to show that:

“even under the influence of close geographical neighbours, 
cultures can remain stable and coherent units...cultural 
evolution is not a free-for-all in which all traits become 
equally available for adoption each generation.” (Pagel & 
Mace, 2004:277). 

In other words, the concepts of distinct lineages and restrictions on descent are 

strongly operative within cultural evolution. This finding also goes some way 

towards addressing the concerns described earlier about whether cultural evolution 

can ever be fully understood if there are no clearly identified, discrete ‘units’ of 

selection. 

In the end, what all of these ‘directional’ accounts boil down to is that differences in 

population structures can substantially affect the dynamics of transmission, even if 

the underlying mechanisms remain the same. Mesoudi (2007) and Mesoudi & 
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Whiten (2008) agree. In a review of different cultural evolution experiments (see 

$2.4.4) they identify three basic types of population structure: linear diffusion, 

closed groups and replacement. In the broad terms we have been using so far, these 

correspond to vertical, horizontal and vertical and horizontal combined. The 

advantage of adopting this terminology and thinking about the situation in terms of 

population structure rather than direction of transmission however is that we can 

avoid falling into the trap of thinking of vertical transmission as being more 

Darwinian and horizontal as being more Lamarckian. This is important, as we have 

no reason a priori to assume that the mechanisms underlying transmission differ 

when one is engaged in cultural exchange with someone from your parent’s 

generation, and someone from your own. The next section will look at some actual 

examples of cultural evolution experiments that implement these various methods 

in more detail.

2.4.4 (Non-Linguistic) Cultural Evolution Experiments

Experiments on cultural evolution have mostly focused on identifying the precise 

social learning mechanisms that enable the development and maintenance of 

cultural traditions, in both humans and non-human animals. Until fairly recently, 

the idea of animals having any kind of cultural tradition would have seemed very 

strange. This has changed however, as studies of animals in the wild have revealed 

that not only do many species have a rich cultural life (e.g. McGrew, 1992; Boesch, 

1996; Whiten et al., 1999; Watanabe, 2001), but that the ability to transmit simple 

traditions between conspecifics is not unique to primates. It has in fact 

independently evolved several times in other species (Laland & Williams, 1997; 

Rendell & Whitehead, 2005; Janik & Slater, 2003; Fitch, 2010). This tells us that social 

learning is adaptive, and supports models and experiments of the process which 

show under which circumstances social learning offers the clearest advantages over 

individual learning (Boyd & Richerson, 1995; Kameda & Nakanishi, 2002).
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One of the main focuses of interest lie in what types of social learning mechanisms 

support cumulative cultural evolution. One of the interesting differences between 

the types of cultural traditions that non-human animals have, and the types of 

cultural traditions that humans have, is that ours are said to involve the 

accumulation of innovations. Animal cultures, in contrast, are perhaps more 

fittingly described in the way that Boyd and Richerson view cultural inheritance “as 

a shortcut to individual learning” (Boyd & Richerson, 1985:14). Animals learn things 

socially that they could have discovered by themselves via trial and error individual 

learning. Humans on the other hand socially learn things that are too complex for 

them to have discovered independently (Boyd & Richerson, 1995). 

Tomasello (1999) attributes this difference in complexity to the ‘ratchet effect’: a 

combination not only of creative invention, but of social transmission that has a high 

degree of fidelity to prevent backward slippage and allow new innovations to be 

faithfully preserved and accumulate complexity over time. Consequently, focus on 

the mechanisms of cultural evolution has paid a great deal of attention to those 

which support high fidelity transmission, such as imitation and teaching, whereas 

those like stimulus enhancement, emulation and ontogenetic ritualisation have been 

argued to be insufficient for cumulative cultural evolution (for discussion of these 

terms in this context, see Tomasello et al., 1993).

Recently research has been less focused on identifying the precise mechanisms that 

support social learning in different species, and more on how any cultural trait, 

simple or cumulatively complex, gets transmitted through populations of individual 

learners. Whilst it has occasionally been possible to get close enough to observe 

populations of animals interacting socially in the wild (Biro et al., 2003), the greater 

experimental control of laboratory studies is often preferred (Whiten, 2005). Broadly 

speaking, there are three experimental methods that have been used by social and 

comparative psychologists to study cultural transmission (Mesoudi, 2007; Mesoudi 

& Whiten, 2008). Figure 2.7 shows these different methods. The rest of this section 

will explore some examples of each type of  experimental method.
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Figure 2.7: Three different experimental designs for cultural transmission experiments. Participants 

are represented by circles, and arrows indicate the direction of transmission either between 

generations (arrows cross vertical dotted lines), or between individual participants. In (a) we see the 

design for a typical transmission chain study, where information is passed along parallel chains 

(indicated by letter) of participants. In (b) we see the design of a typical replacement study, where four 

participants (A-D) interact together in some learning task. One participant gets replaced by a new 

learner at each generation. In (c) we see the design of a typical closed-group study. There are two 

conditions. In the upper, we see the social condition, where four participant (A-D) repeatedly engage 

in a learning task together. In the lower section we see an individual learning control condition, where 

participants engage in the same learning task, but are not allowed to interact with one another. 

Reproduced from Mesoudi (2007).

Linear transmission

In the linear transmission chain method, participants are organised into different 

chains, and information is passed along like in the game ‘Chinese Whispers’ or 

‘Broken Telephone’, with each learner learning from the previous. This corresponds 

to the broad definition of vertical transmission described in §2.4.3. This type of 

experiment has a long history of use in human social psychology, most prominently 

being used to explore how people’s recall of narrative descriptions change over time 

depending on their cultural expectations or pre-existing knowledge (Bartlett, 1932; 

Allport & Postman, 1947; Bangerter, 2000; Mesoudi & Whiten, 2004) or how prior 

cognitive processing biases impact upon information being transmitted (Kalish et al., 

2007; Griffiths et al., 2008). Often referred to as diffusion chains, this technique has 

also been used to explore how humans and non-humans can sustain different 

foraging traditions. 
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In one type of experiment, learners are given the task of opening a puzzle box 

containing a food reward. This is sometimes referred to  in the literature as an 

artificial fruit (Whiten et al,. 1996; Custance et al., 2001; Caldwell & Whiten, 2004). 

Typically, there will be multiple ways of manipulating the puzzle box in order to 

access the food, but learners will only be shown one method. These methods can be 

thought of as learned cultural variants. Traditionally, these studies have been used 

to isolate whether the species involved is capable of acquiring a cultural variant via 

observational learning, or whether the behaviour is learnt via individual learning 

techniques. However, by using a slight twist of the linear transmission method, 

known as open diffusion, researchers can use the artificial fruit task to examine how 

culturally acquired behaviours can actually be passed on through separate groups 

of primates (including human children). 

For instance, Whiten (2005) took three different groups of captive chimpanzees, and 

exposed them to a ‘pan-pipes’ device containing grapes. In two of the groups, a high 

ranking female was taught a technique for opening the device by a human 

demonstrator. The first technique involved using a stick to lift a catch, whilst the 

second involved using a stick to poke a release mechanism. In the third control 

group, neither technique was demonstrated. Once the chosen chimpanzee had 

acquired one of the two variants (lift or poke), the pan-pipes and the chimpanzee 

were returned to the group. Over the next few weeks, researchers noted the 

interactions between different chimps, and tracked how the modelled behaviour 

spread through the group.

One of the perhaps surprising results of studies such as these is that not only do 

chimpanzees and other primates show a strong bias towards conformity, preferring 

to adopt whichever technique is used by the group as a whole even if other 

techniques are independently discovered during experimentation (Whiten, 2005; 

Dindo et al., 2009), but that (chimpanzees at least) also prefer to copy the most 

prestigious model (Horner et al., 2010). This mirrors similar findings in human 

adults concerning conformity and prestige biases (see Richerson & Boyd (2005) for 
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discussion of these biases in general), suggesting that this could be a capacity shared 

with a common ancestor.

The more standard linear diffusion chain experiments have also been conducted on 

children using the artificial fruit method (Horner et al., 2006; Flynn & Whiten, 2008). 

These studies not only found the same conformity bias and faithful transmission of 

technique as in previous studies, but that there are both developmental and gender 

differences as well: older male children are better at faithfully imitating complicated 

behaviours than younger females. Interestingly, whilst studies involving dyadic 

transmission of behaviours from an adult to 3 year-olds have shown that children 

tend to over-imitate (i.e. copy even obviously redundant actions when trying to 

open a puzzle box or follow a recipe) (Horner & Whiten, 2005; Gergely & Csibra, 

2006), when interaction continues beyond the dyad and along a transmission chain 

of other children, this redundant information is rapidly parsed out (Flynn, 2008). 

This contrast between the behaviour of individuals engaged in a ‘one-shot’ learning 

task, versus the behaviour of multiple individuals engages in the same learning task 

over multiple generations, is a persistent finding in cultural transmission studies 

conducted in the laboratory, and something we will come back to in §3.2.3.

Replacement

In a somewhat different experimental set up involving just human participants, 

researchers have attempted to create ‘microsocieties’ in the laboratory18. This type of 

experiment typically involves the kind of replacement method illustrated in Fig. 2.7. 

In these studies, groups of participants interact with one another whilst performing 

some task. After a while, each group member is replaced one by one, with each 

replacement representing a new ‘generation’. Unlike linear transmission then, there 

is continuity of participants between generations. The combination of interaction, 
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and generational turnover means that this method can be seen as a combination of 

horizontal and vertical transmission.

The replacement method also has a fairly long history within social psychology, 

most often being used  to investigate group conformity and how long it takes for 

negotiated or experimentally induced social norms to break down (Gerrard et al., 

1956; Jacobs & Campbell, 1961). More recently, it has been used to show how 

interacting groups and chains of participants can develop optimal behaviours over 

time (Baum et al., 2004; Caldwell & Millen, 2008), or under what conditions 

participants rely more heavily on social rather than individual learning (Caldwell & 

Millen, 2010). In the set of studies conducted by Caldwell and Millen, groups of 

participants are given the task of either making a paper aeroplane that will fly the 

furthest, or building the tallest tower out of spaghetti and modelling clay. We will 

briefly look at some examples of these.

In the first spaghetti towers study (Caldwell & Millen, 2008) seemingly arbitrary 

designs were found to emerge over time in each transmission chain. At any one time  

during the study there are two participants building towers, and two participants 

observing them. When ‘builders’ have finished, they are replaced by new 

‘observers’, and the old observers become builders. This process continues along the 

transmission chain for a number of generations. The similarity between the resultant 

tower designs created at each generation was then rated by independent observers. 

This similarity was found to be greater within-chains, than across-chains. In other 

words, tower designs were being passed on by individuals within the chain. In 

addition to this, towers were seen to increase in height cumulatively, as learners 

selectively retained elements of good tower design from previous participants in the 

chain. 

In the second study (Caldwell & Millen, 2010), uncertainty is introduced by the 

additional requirement that, after construction, the tower must be placed next to a 

desk-fan for five minutes. As towers have a tendency to collapse not long after being 
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built, this creates a situation where participants are less certain as individuals about 

what constitutes a ‘good’ design. In this condition it was found that participants 

relied much more heavily on the design of the previous builders than before. 

Additionally, and unlike what was found in the previous study, there was no 

significant increase in the height of the towers over time. One possible explanation 

for this is that the greater reliance on social learning is in some way inhibiting 

individual innovation, which is necessary for cumulative cultural evolution.

Closed-Group

This method explores cultural transmission between learners where there is no 

generational turnover at all. It therefore most closely corresponds to what has been 

termed horizontal transmission. Again, these experiments are often referred to as 

microsociety studies. For instance, McElreath et al. (2005) and Mesoudi and O’Brien 

(2008) both investigate how individual learners modify their strategies based on 

observing how other individuals react in similar environments. These studies are 

microsocietal in that participants are making choices about how to perform some 

function as a group: in McElreath et al., (2005) participants are given the role of 

farmers trying to maximise crop yields, whereas in Mesoudi & O’Brien (2008), 

participants are designing the optimal arrowheads for hunting. 

In both of these studies, participants were given the chance to examine the 

behaviour of other members of the microsociety and modify their own behaviour in 

response. For instance, in McElreath et al. (2005) participants could view what crops 

other farmers had chosen to plant. Against the predictions of models, the study 

found that a large number of participants did not take advantage of cultural 

learning, even when it would have resulted in a greater crop-yield. Of those that did 

copy, they only chose to conform to the behaviour of others when the environment 

changed and they were no longer getting an optimal pay-off. This indicates not only 

that there is a substantial amount of individual variation in the willingness to 

conform, but also that models of when people are likely to switch social learning 
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strategies are not always accurate. Human participants do not always behave 

optimally.

2.5 Summary

This chapter began by looking at what features make language an interesting 

phenomenon to understand. It argued that in order to understand how languages 

are acquired with such reliability and ease, and why languages of the world all 

share similar structural properties, we need to understand how languages evolved. 

Two contrasting accounts for language evolution were presented. In the first, 

universal properties of linguistic structure were seen as the direct consequence of 

genetically determined language-specific learning biases. In the second, universal 

structural properties were held to be emergent, arising from the interactions 

between biological evolution, individual learning, and cultural transmission. 

The fact that languages are culturally transmitted has been argued to at least 

partially account for why they exhibit the structural properties that they do. 

Language is the result of a process of iterated learning. Iterated learning has been 

extensively studied using computational models. I discussed the two main findings 

to have emerged from these studies: that languages adapt to be easier to learn over 

time, and that they also adapt to convey structured meanings by becoming 

structured themselves. We then moved on to explore cultural evolution more 

generally.

We began by exploring three different relationships that language shares with 

culture and cognition, pointing out that not only is language the conveyer of 

cultural content, but is itself the product of cultural processes. Language may also 

have enabled higher-order cognitive functions by virtue of providing a mechanism 

to share thoughts with others. Next we briefly examined some of the parallels and 

divergences between biological and cultural evolution, noting that whilst there is 
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much disagreement about how cultural evolution is actually instantiated (for 

instance, whether it has discrete units of inheritance what the unit of selection is),  it  

is not necessary to understand the precise mechanisms of inheritance in order to get 

an understanding of how evolution might proceed. 

At this point, three different theories of cultural evolution were introduced: 

evolutionary psychology, dual-inheritance and niche construction. Each of these 

theories differs in the extent to which biology can be thought to dominate, and the 

extent to which human behaviour can be thought of as being currently adaptive. 

The evolutionary psychology approach, with its emphasis on evolved cognitive 

modules, was argued to be more compatible with explanations of language origins 

that make a direct appeal to biology. Both dual-inheritance and niche construction 

theories on the other hand emphasise the role of interactions between separate 

forms of inheritance: biological, cultural, and in the case of niche construction, also 

ecological. Language is a particularly good example of niche construction, as it is 

itself a kind of inherited environment that lasts a good deal longer than many of its 

speakers.

The next topic to come under scrutiny was the different modes of cultural 

transmission. Traditional definitions have focused on making distinctions between 

vertical (inter-generational) and horizontal (peer-to-peer) transmission. However, 

because of the long-standing assumption that vertical transmission is ‘like biology’ 

and horizontal is ‘like culture’, it was suggested that a better way of thinking about 

modes of transmission was in terms of the structure of populations rather than 

purely by direction. This is in part due to the fact that cultural transmission is not 

particularly dominated by horizontal exchange, and also because experimental 

psychologists studying cultural evolution in the laboratory have been using 

different terminology for a number of years.

Finally, this chapter reviewed some of the literature on a sample of those empirical 

investigations of cultural evolution in the laboratory. These studies have revealed 
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many interesting continuities and differences between species, and also shown 

under what conditions we can expect to see social learning strategies favoured by  

participants, and how cumulative cultural evolution can be investigated in our own 

species. However, none of them have examined the topic of linguistic transmission. 

This is the focus of the next chapter.
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--------------------------------------------------------------------------------------------------------------------------------------------------

Chapter Three

Empirically Investigating 

Language Evolution
--------------------------------------------------------------------------------------------------------------------------------------------------

It seems then that there are a number of ways in which the cultural transmission of 

information has been explored in humans, as well as non-humans1. However, none 

of the experiments we have examined so far have made language itself the empirical 

target. This chapter will introduce research that does just that. In reviewing the 

existing literature, it aims to motivate a new experimental methodology for 

studying language evolution in the laboratory. It first examines why laboratory 

based experiments have only really been developed over the past few years, and 

describes some of the problems with investigating the origins of language 

empirically. It then moves on to look at some of the current approaches that have 

been successful, including computational studies, observational studies of natural 

language emergence, artificial language learning studies, and finally, experiments 

involving the emergence of artificial systems of human communication. 

The question of intentional design in language will then be approached. I will argue 

that there is a potential issue with the way in which current laboratory experiments 

investigate the emergence of novel communication systems, which allows for the 

participants to intentionally design a communicative system. This is not a good 

model of language evolution for several reasons. I will then outline the general 
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methodology for an experimental framework that specifically rules out the 

possibility of learners intentionally creating systems designed for communication. 

Particular attention will be paid to the way in which results from this framework 

can be analysed, ahead of the experimental results which will appear in Chapters 

4-6.

3.1 What took you so long?

It may come as a surprise to researchers in other fields that the study of language 

origins has only recently started to collect data from laboratory experiments. Given 

the close relationship evolutionary linguistics shares with fields such as psychology, 

computer science, biology and developmental linguistics -- all fields associated with 

a high degree of empirical investigation -- it is more surprising still. However, 

evolutionary linguistics also has close ties with disciplines such as philosophy and 

cognitive science which, perhaps unfairly, have traditionally been associated with 

integrating empirical results from other fields in order to fashion out new theories, 

rather than generating empirical results on their own.

It is possible that, to some extent, we are still seeing the after-effects of history. Both 

prior to and immediately after the publication of The Origin of Species (Darwin, 1859) 

there was much interest in the evolutionary study of language. Due to the wildly 

speculative nature of the theories that emerged during this time period, 

unconstrained as they were by any firm knowledge of language acquisition, 

genetics and neurological processing which might have limited theorising to the 

realms of the more plausible, in 1866 the Société Linguistique de Paris enacted their 

famous ban on the study of origins and evolution of language (Christiansen & 

Kirby, 2003). This put a stop on this area of research for the next hundred years or 

so, and perhaps still affects the way evolutionary linguistics is viewed today.
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Whatever the cause, the sentiment that evolutionary linguists cannot employ 

traditional empirical methods has led at least one notable practitioner to recently 

conclude in a major linguistics journal that:

 “To enter [the field of language evolution] costs little: you can’t do 
experiments, so no expensive equipment is required...It’s still a pencil-
and-paper field” (Bickerton, 2007: 524). 

Lee et al. (2009: 32) have also made similar remarks concerning the impossibility of 

studying language evolution in the lab: “[I]t is not possible to use real human beings 

in experiments to see whether linguistic structures can emerge through simple 

interactions.” This idea that we cannot investigate language evolution using human 

participants is false, as the work that follows will show. However, the assumption 

still lingers, especially amongst researchers working just outside the field. Perhaps 

what is really at the heart of the problem is that language evolution presents a 

unique problem to science. How do we study the emergence of something so 

complex and rare that it has only happened once in the history of the world? How 

do we even begin to approach a problem that happened so long ago?

The Difficulty of Studying Language Evolution 

Linguists are well used to viewing language as a formal, idealised, and rule-

governed system. However, when we consider language as a complex adaptive 

system (CAS) things start to get decidedly non-linear. This is because in CASs (such 

as language) the total rarely equals the sum of its parts. Simple local interactions 

often give rise to complex emergent behaviour (Johnson, 2001). Furthermore, 

evolution is necessarily a historical process, which means that there may always be 

some element of randomness about it (de Boer, 2005). Historical accidents appearing 

early on in time can remain 'frozen' and constrain future development in 

fundamental ways, and even slight differences in the initial conditions can result in 

massively different outcomes in the final product (Gell-Mann, 1994). 
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These are just some of the difficulties that lie with any attempt to uncover the truth 

about language evolution. The sheer complexity of the phenomenon aside, efforts 

are also hampered because the object of study is not even visible to us – there is no 

way of going back in time or recreating the exact conditions that led to the 

emergence of language in our hominid ancestors (Christiansen & Kirby, 2003). Even 

if we could somehow go back in time with a team of researchers, we would have 

very little idea of what year we should return to. Even identifying roughly when the 

capacity for language evolved has proven a difficult challenge, let alone 

understanding how it evolved. We know that language must have been in place 

before anatomically modern humans left Africa, some 50,000 years ago, but tracing 

the capacity for language beyond this has proven problematic (Mellars, 2006).

Tracing Language(s) Through Time

One approach has been to examine the fossil record for clues to when language 

might have emerged. Unfortunately archaeological data cannot give us any direct 

clues, as language, being non-physical, leaves very little trace (Hauser & Fitch, 

2003). With that caveat in mind, some researchers have looked for clues in the skull 

structures of early hominids. One of the notable features of Homo sapiens is the brain 

size to body size ratio. An oft-quoted figure is that our brains are three times larger 

than we should expect for an ape of our size (Fitch, 2010). An increase in the size of 

our brains relative to our closest neighbours has long been associated with an 

increase in cognitive abilities, although this has been called into question (e.g. 

Macphail, 1982; Deacon, 1997). The message seems to be that bigger brains might 

have more processing power, but this might not correlate to more sophisticated 

behaviour or, more importantly, linguistic behaviour.

If we cannot learn anything about language evolution from the structure of the 

brain, what about other structures that are vital for language, such as the vocal 

tract?  Although fragile and not particularly well-preserved over time, the shape and 

positioning of the hyoid bone in certain specimens of Homo neanderthalensis has led 
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some researchers to conclude that Neanderthals probably had the same range of 

speech sounds as modern humans (Arensburg et al., 1989; Boë et al., 2002). However, 

this is contested (Lieberman, 2007), and in any case having the ability to make 

speech sounds is not the same as having the ability for language. After all, we know 

that chimpanzees are capable of making some of the gestures of sign language, but 

even after extensive training they still cannot fully acquire it (Gardner & Gardner, 

1969). Work investigating the vocal production in other species, such as dogs and 

deer, has also revealed that most mammals have a more dynamic vocal tract than 

previously thought which allows them to radically reconfigure their vocal anatomy 

when vocalising (Fitch, 2000). This once again urges us to be cautious in attempting 

to form conclusions based on fossilised evidence.

A different line of enquiry however has been to look at the archaeological record in 

terms of material culture. In other words, can we learn anything about language 

evolution by looking at the kinds of artefacts our ancestral hominids were making, 

or any evidence of their behaviours that they might have left behind? Judging from 

the discovery of accumulations of animal bones, and the analysis of stone tools, it 

seems reasonable to suggest that by 2 million years ago hominids were sharing food 

with one another and being sociable (Isaac, 1978; Plummer, 2004). We also know 

from fossilised footprints that hominids were bipedal at least 3.6 million years ago 

(Leakey & Hay, 1979). There is also archaeological evidence for what has been 

termed an ‘explosion’ in material culture 40-60 thousand years ago, heralding not 

only an increase in the number and designs of functional tools, but also the 

emergence of symbolic artefacts, such as art and decorative pieces (Deacon, 1997; 

Lewin, 2005). 

From all this indirect evidence, Barrett et al. (2002) present three possible scenarios 

of when language may have evolved: (a) in early Homo erectus, around 1.5 to 2 

million years ago (e.g. Deacon, 1997); (b) when Homo sapiens first appears around 

500 thousand years ago (e.g Falk, 1980; Aiello & Dunbar, 1993; Worden, 1998); or (c) 
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around the time of this material culture explosion, 40-60 thousand years ago (White, 

1982; Noble & Davidson, 1996). 

Rather than looking for historical evidence of biological hallmarks of language 

emergence, can we learn anything by examining how individual languages have 

formed over time?  The process of language reconstruction has a long and 

distinguished history within linguistics, although attempts to reconstruct earlier 

forms of language based on similarities between extant languages can only go back 

so far (Fox, 1995)2. Related to this, other approaches have looked at genetic data and 

the distribution of current languages, in conjunction with what is known about 

human migrations and population expansions throughout history (e.g. Cavalli-

Sforza, 2000)3. Although the goal of this work is to understand more about human 

history and evolution in general, the outcome of such studies does help to constrain 

theorising about the evolution of language as well.  

The main issue with both linguistic reconstruction and attempts to study human 

evolution over these shorter time-frames is that we run the risk of investigating 

language change, rather than language evolution. The difference between the two is 

subtle, but important. Whereas language change involves systems moving through 

the space of possible linguistic states, language evolution involves systems moving 

between spaces of possible linguistic states themselves. That is, it involves the 

transition from a state of no language to a state of language, rather than a transition 

from a state of language to a slightly different state of language (see Brighton (2003) 

for more discussion of this distinction). Whilst learning more about the ways in 
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which current languages change over time is relevant to our study, we must be 

careful to keep in mind that our original goal is to explain the emergence of 

‘language’, not specific languages.

Potential for Progress

One positive sign of progress comes from the comparative studies we explored in 

Chapter 2. Not only have the comparative studies of animal communication been 

useful for helping us identify which features of language are uniquely human, but 

we can also learn a lot from the degree to which our biological cognitive 

foundations for language are shared with other animals. For instance, determining 

whether the trait is homologous (i.e. related by descent) or analogous (i.e. arising 

independently in a separate lineage) can tell us whether that trait is present for 

functional or historical reasons (Fitch, 2010). In many cases, this alone is sufficient to 

tell us something about the evolutionary pressures driving selection, most 

obviously, whether or not that trait is an adaptive response to pressures arising from 

similar environments.

Another way in which comparative studies can inform research into language 

evolution is by telling us something about how culture evolves, or social learning 

behaviours in general (e.g. Boesch & Tomasello, 1998; Caldwell & Whiten, 2006; 

Whiten & Mesoudi, 2008). Although data from animal studies is definitely relevant 

to addressing questions about language evolution (and an interesting topic of study 

in its own right), it is still only indirectly related to the phenomenon we wish to 

understand. We cannot always assume there is a straightforward relationship 

between what we learn about animal communication and social learning 

mechanisms, and our own capabilities. However, one thing is certain: if we can get 

empirical data on how processes of cultural evolution work in non-humans, we 

should also be able to get empirical data on how processes of cultural evolution give 

rise to language in humans. Indeed, we have also seen several examples of this type 

of experiment in both animals and humans (§2.4.4). Although these did not involve 
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language, they still set a useful precedent for studying some of the mechanisms of 

cultural transmission that support linguistic transmission.

Perhaps the most important thing to bear in mind when thinking about ways in 

which we might progress our understanding is that we have the evolutionary end-

points of the process (i.e. modern languages) to hand. Even as you read this, 

languages are evolving4  -- although it is rare, we do have some limited access to 

natural cases of language emergence that are ongoing today (e.g. Nicaraguan Sign 

Language, creolisation). With greater constraints provided by our knowledge of 

neurology, language acquisition, language disorders, plus insights that can be 

gained from the analysis of computational simulations and formal modelling 

techniques, progress is being made in the field of language evolution. The next 

section explores some of these avenues.

3.2 Methods for Studying the Cultural Evolution of Language

Recall that the main aim of this thesis is to explore how language evolves as a result 

of being culturally acquired via iterated learning. Therefore our focus in this section 

will be on methods for understanding cultural evolution only.

3.2.1  Computational and Mathematical Studies of Language Emergence

As discussed in the previous chapter, over the last few decades the use of 

computational simulations and mathematical models to explore language evolution 

has rapidly increased. The advantage of this methodology stems from the fact that 

models allow us to check and refine our theories very rapidly. One of the key issues 

with studying CASs is that our intuitions do not always naturally match up with 
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reality (Hashimoto, 2002). Making our theoretical assumptions explicit in a formal 

model of the process allows us to rigourously test whether our predictions do in fact 

follow from our hypotheses. Of the various models out there, the most relevant to 

the current work are the ILMs discussed earlier (see §2.3), which focus on explaining 

the emergence of compositional structure in language in terms of cultural 

transmission (e.g. Kirby & Hurford, 2002; Smith et al., 2003; Brighton et al., 2005). 

However, there have also been a range of computer simulations which explore the 

emergence of innate signalling systems as a result of purely biological evolution5. In 

particular, these studies have focused on determining under which ecological 

conditions we can expect to see evolution by natural selection resulting in the 

emergence of simple communication systems (MacLennan & Burghardt, 1994; 

DiPaolo, 1997; Cangelosi & Parisi, 1998; Noble, 1999), or on understanding the 

origins of the communication channel itself (Quinn, 2001). There have also been 

models conducted which explore how both cultural learning and biological 

evolution can interact together (Hinton & Nowlan, 1987; Kirby & Hurford, 1997; 

Watanabe et al., 2008) -- therefore focusing on all three elements of complex adaptive 

system described in §2.2. This can give us valuable insight as to how iterated 

learning may fit into the bigger picture of language evolution as a whole.

Additionally, the problem of language emergence has also been investigated 

mathematically (e.g. Niyogi & Berwick, 1997; Nowak et al., 2002; Griffiths & Kalish, 

2005, 2007; Kirby et al., 2007; Griffiths et al., 2008; Ferdinand & Zuidema, 2009). 

Many of these more recent studies have focused explicitly on separating the 

respective contributions of the process of transmission and the pre-existing learning 

biases held by the agents. This has been achieved by modelling agents as Bayesian 

learners, who form hypotheses about the data they have seen based not only on the 

likelihood of that hypothesis actually having produced that data but also the prior 

probability of that hypothesis being entertained by the agent without having seen 
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any data (Griffiths & Kalish, 2005; Kirby et al., 2007; Smith & Kirby, 2008; Ferdinand 

& Zuidema, 2009; see also §5.3 for discussion of these models).

Despite the breadth and depth of this research method, it is not immune to criticism. 

Although it is always possible to find specific faults with individual models, there is  

one charge that has been made toward computational models in general: that they 

over-simplify their subject matter. In some sense this is what makes the models 

desirable – we use models when we want to grasp the underlying dynamics of 

complex phenomena, and to do this, we must abstract away from modelling every 

detail (Cooper, 2002). However, this has led to claims that models may not 

generalise to human populations, and that models of language evolution in 

particular often contain “unrealistic initial conditions” which limit the problem 

space in non-trivial ways (Bickerton, 2003:86). One of the central goals of this thesis 

is to examine whether this claim holds up by making explicit attempts to replicate 

computational results in human populations in order to assess their ecological 

validity.

3.2.2 Emergence of Natural Human Communication Systems

It is not every day that we get to witness the birth of a new language; the vast 

majority of us are born into a community with a fully fledged linguistic system 

firmly in place. The few exceptions to this rule are therefore invaluable, as they give 

us a unique opportunity to observe the natural emergence of a human 

communication system. There are two main loci for witnessing such an event: in the 

formation of pidgin and creole languages (Bickerton, 1981), and in the formation of 

home-sign (Goldin-Meadows & Mylander, 1998), and full sign languages in the deaf 

community (Kegl, 1994; Senghas & Coppola, 2001; Senghas et al., 2004; Sandler et al., 

2005). One thing that has been emphasised in both studies of protolanguage and 

emergent sign-languages is the key role that children appear to play in the process.
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For instance, Senghas & Coppola (2001) have explicitly focused on the different roles 

played by adults and children in the development of a relatively young sign 

language in Nicaragua (NSL). This is a language that has been emerging since the 

1970's, when schools were established to educate the country's deaf children, most 

of whom lived in small isolated communities. Prior to this time, there was no 

established sign language in Nicaragua, or even a deaf community to speak of. Since 

this time however several cohorts of deaf people have passed in and out of the 

school system every year, and a new language has been rapidly emerging. Initially 

composed of just a few basic signs that were rapidly converged upon, each 

successive cohort (or generation) of learners has elaborated and systematised the 

grammar of the emergent language. 

The schools contain a mix of children and adults, all of whom have hearing parents. 

Senghas & Coppola (2001) investigated where the internal structure of NSL was 

coming from, and found strong evidence to suggest that it was the younger deaf 

students, and not the adults, who were providing the creative force. They link this 

back to the fact that children are much better at acquiring language than adults, 

despite the fact that adults are much better at mastering other complex skills 

(Newport, 1990). Although Senghas & Coppola (2001) have interpreted this result as 

showing that there is a qualitative difference in the behaviour of adult and children 

learners, they do however go on to point out that the status of the evolving 

language itself also plays a role, stating: 

“Each generation leaves the distinctive mark of their learning 
process on the model they provide for their children. When 
children learn a mature language, the mark is a subtle one...Only in 
cases like this one, when the model is not a mature language, do 
these language-learning abilities show their transformational, 
creative capacity.” (p 328) 

In other words, we only tend to see these creative capacities of children when there 

is a sparseness of data in the linguistic environment. They do not show up 

ordinarily during first language acquisition when the linguistic target is already a 
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fully-fledged language. This shows nice parallels with the findings of the iterated 

learning models discussed earlier, which suggest that languages only adapt when 

they are culturally transmitted and there is some kind of sparsity in the input (Kirby, 

2002; Zuidema, 2003; Kirby et al., 2008b).

Although the data deriving from these case-studies tends to be both detailed and 

directly relevant to language evolution, they do have their limitations. The first has 

already been mentioned -- they are rare. This makes it difficult to extract robust 

generalisations. Just as any empirical study needs many data points in order to 

calculate the size of the effect, we find we need many case-studies in order to be 

sure we are detecting the common processes underlying the emergence of new 

languages in general, and not just facts idiosyncratic to the formation of specific 

languages. The second issue is one of control. Although scientists working on these 

cases can look at the data and develop hypotheses about what is responsible, they 

cannot easily go on to test their intuitions by manipulating any of the variables. In 

most cases, researchers must remain passive observers to the phenomenon at hand, 

recording what happens but not intervening. 

3.2.3 Artificial Language Learning

Another method which has come to the fore in recent years is artificial language 

learning (ALL). In ALL studies, participants are trained on an artificial language -- 

usually just a sequence of letter strings generated by a grammar -- exhibiting some 

set of features controlled by the experimenters (Reber, 1969; Knowlton & Squire, 

1994). After training, learners are tested to see what they have acquired, and 

whether they can recognise novel sequences produced by the same grammar. This 

has proven to be a powerful method for ascertaining what kinds of structures 

humans can acquire, and one which is not only useful for studying abilities in 
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adults, but also infants (Saffran et al., 1996; Gomez & Gerken, 2000), and even non-

human primates (Fitch & Hauser, 2004)6.

There have been several ALL studies conducted that have tried to shed light on 

issues relating to language evolution. Following on from some of the findings 

obtained from the sign language study described earlier, Hudson-Kam & Newport 

(2005) used an ALL task to address performance differences between adults and 

children in terms of how they impose structure by regularising inconsistent inputs. 

In one study they found that when an artificial language contained irregularity (i.e. 

a grammatical feature was either consistently present or only present 60% of the 

time) children were much more likely to impose their own systematic pattern when 

attempting to reproduce the data than adults were. Although this finding seems to 

largely support Senghas & Coppola’s (2001) claim that children’s learning behaviour 

is categorically different to adults, a follow up study by Hudson-Kam & Newport 

(2009) complicates the issue somewhat by discovering that there are in fact certain 

conditions in which adults will regularise and children will not. It seems there are 

many factors which determine when learners will generalise observed patterns to 

new data, and when they will not.

The situation becomes more complicated still when we consider a more recent study 

by Smith & Wonnacott (2010), who show that when adults are engaged in iterated 

version of Hudson-Kam & Newport’s original (2005) study, the languages all evolve 

to become regular. This study illustrates one of the key findings that comes from my 

own work in Chapters 4-6. Namely, that the performance of an individual at the 

beginning of a transmission chain is radically different to the performance of an 

individual at the end of a transmission chain. Participants in Hudson-Kam & 

Newport’s original study are equivalent to participants in the first generation of 

Smith & Wonnacott’s. What the latter study shows is that although one adult might 

not regularise, if we have a chain of adults learning from one another, they will 
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regularise. In other words, we cannot predict what the outcome of iterated learning 

will be on the basis of the performance of the first learner. The significance of this 

finding will hopefully become clearer after Chapter 4.

Another application of ALL lies in testing specific predictions generated by different 

language evolution theories (Christiansen, 2000; Ellefson & Christiansen, 2000). This 

has been used in conjunction with computational simulations (Christiansen & 

Devlin, 1997; Ellefson & Christiansen, 2000) to investigate whether the brain 

mechanisms governing the acquisition and processing of language are linguistic or 

more generally cognitive in nature. For instance, Ellefson & Christiansen (2000) 

investigate the phenomenon of subjacency. All languages place certain restrictions 

upon the ordering of words. Violation of any of these restrictions results in 

sentences which are ungrammatical. The principle of subjacency is an example of 

one type of restriction which operates on languages. It refers to the fact that when 

elements undergo movement (for instance, in the formation of wh-questions in 

English) there are only certain places that a given element is accessible and free to 

move from (Newmeyer, 1991). 

The appearance of seemingly arbitrary subjacency constraints on word movement 

has been used to motivate the idea that language must be the result of specialised 

cognitive equipment. In other words, that these restrictions only make sense from a 

linguistic perspective (Pinker & Bloom, 1990). Ellefson & Christiansen designed an 

ALL experiment where they presented subjects with grammars that fit either natural 

or unnatural subjacency patterns, and found that they acquired the natural 

grammars significantly better. On its own, this might be taken to show that human 

participants prefer the natural subjacency constraints because those are the ones 

endorsed by UG. However, they also performed a computational model, using the 

same data to train a simple recurrent network (see: Elman, 1990). Although the 

computational agent had no specialised linguistic processing machinery, its 

performance matched that of human learners. Ellefson & Christiansen (2000) 
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therefore conclude from this that subjacency constraints seen in human languages 

could have emerged from very general cognitive constraints on sequence learning. 

3.2.4 Emergence of Artificial Human Communication Systems

There has recently been renewed interest in studying the emergence and evolution 

of human communication systems experimentally (e.g. Galantucci, 2005; Garrod et 

al, 2007; Healey et al, 2007; Scott-Phillips et al, 2009; Selten & Warglien, 2007; Kirby et 

al, 2008a; Theisen et al., 2010). These studies differ from the many experiments 

investigating human communication that came before (e.g. Garrod & Anderson, 

1987; Garrod & Doherty, 1994; Christiansen, 2000; Pickering & Garrod, 2004; 

Hudson-Kam & Newport, 2005) by the emphasis placed on exploring the emergence 

of novel systems. In other words, these experiments do not start with a system 

(either natural or designed by the experimenter) in place initially, but let one evolve 

over the course of the experiment. This provides us with a direct route into 

understanding how such systems become established (Galantucci, 2005). 

It is clear that an experimental approach offers certain advantages over studying 

these phenomena indirectly via the use of computational and mathematical models, 

or via naturalistic observation (such as greater experimental manipulation, control, 

and replicability of results, etc.). Most of these newer experiments looking at the 

emergence of novel systems share the property of revolving around some kind of 

communication game. Participants (typically dyads) are given some shared goal or 

joint task that requires them to co-ordinate their actions in some way. The only way 

in which to do this is to interactively construct a communication system together, 

using whatever medium is provided. 

For instance, in Selten & Warglien (2007) pairs of participants are given a repertoire 

of available symbols, each with different sending costs, and instructed to converge 

upon a set of economical signals to identify different pictures. In Galantucci (2005) 
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pairs of participants must coordinate their actions in a 2D game-world by 

communicating with one another using a novel graphical medium, which prevents 

the use of common symbols or pictorial representations, forcing them to develop a 

new system of their own. In Healey et al (2007) pairs of participants (and later on, 

interacting groups) collaborate together using a virtual whiteboard, drawing images 

to identify different pieces of music. Similarly, Garrod et al (2007) encourage 

participants to depict various concepts (such as commonly known people, places, 

objects, and more abstract concepts such as ‘poverty’) using images in such a way 

that a fellow participant could identify them. In a slightly different twist, Scott-

Phillips et al. (2009) have an experimental set-up in which they do not even provide 

a dedicated channel for communication to take place in: given a task which requires 

two players to coordinate their actions, the only solution is to create one by using 

the movements of the players’ avatars in the game environment as signals. 

The fact that convergence does not come easily to participants in these experiments 

(most fail to agree on a system, and fewer still go on to develop one with structure) 

highlights the fact that the underlying processes responsible are not trivial. This is 

perhaps surprising given that we assume participants could easily invent a 

workable system on their own. In fact, Scott-Phillips et al (2009) find that reported 

reasons for failure often centre around an inability to convey a system to their 

partner rather than an inability to individually construct one in the first place. 

Conversely, Selten & Warglien (2007) showed that the chances of developing a 

successful system are massively increased when one player finds a way to take 

control and impose their invented system upon the other.  This raises the interesting 

question of what kind of design process we think is responsible for the emergence of 

structure in natural language -- is it one which is wholly reliant on the ingenuity and 

design skills of its users, or is there some other force at work? 

Although these studies all show that humans are adept at constructing novel 

communication systems, the next section argues that many linguistic changes are 
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not ‘designed’ by individuals in that manner. Rather, much of the structure present 

in human language is indicative of apparent design without a designer. 

3.3 Design without a designer

For centuries philosophers and linguists have debated the origins of linguistic 

structure and how languages change. One of the central mysteries involves 

identifying the source of those changes and innovations that lead to increasing 

structure. The intuitive answer is of course us, the speakers of language. Yet whilst 

languages change and evolve as a result of differential patterns of usage among 

speakers, they do not do so as a result of any intentional design on the part of an 

individual. As Keller (1994) points out, we cannot analyse a historical change like 

the shift in word ordering from Object-Verb to Verb-Object in Middle English, and 

come to the conclusion that it is an instance of human design.

Keller refers to events like this as phenomena of the third kind - grouping together 

things that are neither man-made (artefactual) nor entirely natural, but which are 

instead “the result of human actions but not the goal of their intentions” (Keller, 

1994:56). He argues that as most language changes are of this type, we need to 

invoke an ‘invisible hand’ explanation for language, adopting the metaphor 

proposed by the economist and philosopher Adam Smith to explain how locally 

self-serving actions of individual investors can unexpectedly lead to group-level 

prosperity. If this hypothesis is correct, it is only through developing an 

understanding of how apparent design emerges without a designer that we can hope 

to discover the origins of linguistic structure. 

Croft (2000) makes a similar three-way distinction between types of causal 

mechanisms involved in language change to that proposed by Keller (1994). On one 

hand, we have TELEOLOGICAL explanations, which are invoked “when a speaker is 
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claimed to innovate in order to alter the linguistic system in some way...the 

linguistic system is designed (by the speaker) to have the structure it does, and to 

change, as it does” Croft (2000:64). This corresponds with what Keller calls man-

made. Like Keller, Croft concludes that this is not a mechanism that operates in 

language change. Next we have INTENTIONAL explanations, where “the speaker is 

aiming towards some other goal in language use, and produces an innovation in the 

process” Croft (2000:64). This corresponds to Keller’s phenomenon of the third kind. 

We have seen evidence of this kind of mechanism at work in the experiments 

described in §3.2.4. The final kind of causal mechanism in language change involve 

NONINTENTIONAL explanations, where “[t]he language change is not even an 

intended means to achieve some other goal of the speaker. It is simply a change that 

just happens as a consequence of the act of production (and in some theories, also 

comprehension) of an utterance” (Croft, 2000:65)7. It is this kind of mechanism that I 

would like to investigate with the experiments in Chapters 4-6.

For Keller (1994), who views language change as a special instance of sociocultural 

change, explaining the properties of language inevitably requires seeing it as a 

product of cultural evolution. Although Keller primarily restricts his investigations 

to language alone, the invisible hand phenomenon is also at work in many other 

domains, for instance, in how crowds of people self-organise into the optimal spatial 

configuration for viewing performers. However, it is certainly not the case that every 

instance of cultural evolution requires an intentional or a nonintentional 

explanation. If we look outwith human communication, we find that many 

examples of culturally transmitted behaviours, such as tool-making and the kinds of 

incremental innovations we find in technological developments (Basalla, 1988; 

Petroski, 1992; Ziman, 2000), do seem to be directed and guided by human 
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intentions - they do require teleological explanations8. In that sense, we can see 

Croft’s (2000) three causal mechanisms as operating more generally within cultural 

evolution. 

For some commentators (e.g. Hallpike, 1986; Pinker, 1997; Benton, 2000; Bryant, 

2004), this teleological or goal-directed aspect is precisely what causes analogies 

between biological and cultural evolution to breakdown completely (Mesoudi, 

2008). Instead of perceiving this as an either-or debate (in which cultural evolution 

either proceeds via intelligent human design or some blind evolutionary process), 

Dennett & McKay (2006) encourage us to think of cultural change as: “a continuum 

from intelligent, mindful evolution through to oblivious, mindless evolution” (italics 

original). They go on to claim that: 

“in cultural evolution...there are undeniable cases of cultural 
features that evolve by Darwinian processes without any 
need to invoke authors, designers, or other intelligent 
creators. Most obviously, languages - words and 
pronunciation and grammatical features - evolve without 
any need  for grammarians, deliberate coiners, or other 
foresighted guardians of these cultural items.” (p. 353). 

So this brings us back to our central question - if some aspects of linguistic structure 

are led by this invisible hand, or are in fact completely nonintentional as Croft 

defines it, is it possible to capture this phenomenon and investigate it in the 

laboratory?  It could be argued that, in a sense, we have already seen the invisible 

hand at work in some of the studies discussed in §3.2.4. Whilst the interactions 

between participants do involve some degree of reasoning and purposeful design, 

participants’ intentions were to cooperate to solve the task. Although they were all 
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consciously aware that they needed to find a way to communicate with their 

partner, the negotiation process which allowed the basic communication systems 

used by different participants to become aligned with one another and become an 

established convention is also a complex dynamic system at work. As such, it has 

invisible hands of its very own; shaping, guiding and prompting structure into 

being. This notion would help to explain why the creation of a successful system is 

never guaranteed in these studies, in spite of the fact that an individual acting alone 

given explicit instructions to design a way to communicate, could easily invent a 

system fit for purpose.

However, if we genuinely want to explore the nonintentional end of the scale, we 

need to design an experiment where participants are not given the explicit task to 

communicate. Isolating exactly which elements arise through intentional design, 

and which through these more subtle and hidden forces, may well prove to be 

impossible in any experiment involving human participants. However, that should 

not prevent us from trying.

3.4 The Current Framework: The Human Iterated Learning Model

This section lays out the experimental framework that will be used for the rest of the 

thesis. It begins by clarifying a recent point of confusion amongst researchers about 

what iterated learning really consists of, before describing some early work that was 

done to investigate language change that bears many similarities with the suggested 

framework. Finally it looks in some detail at ways in which we can analyse the 

results of our experiments.
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3.4.1 Putting Iterated Learning in Context

There has been something implicit in all of the discussion so far that should be made 

explicit at this point. All the previous studies of language emergence in the laboratory are 

instances of iterated learning. What makes this experimental framework different to 

these other approaches is not that it involves iterated learning, and the others 

involve some other transmission mechanism. Instead, the difference lies in two 

factors: (1) population structure, and (2) the focus on nonintentional emergence of 

structure. This has caused some confusion in the literature of late, mostly as a result 

of the fact that the majority of researchers who have used the term ‘iterated 

learning’ before, in both linguistic and non-linguistic domains, have demonstrated it 

by using simulations (Kirby, 2000; Kirby, 2001; Kirby & Hurford, 2002; Zuidema, 

2003) or experiments (Kirby et al., 2008a; Griffiths et al., 2008; Smith & Wonnacott, 

2010) that involve linear transmission chains of learners. This has in turn led other 

researchers to attempt to make contrasts between approaches which, strictly 

speaking, should not be made.

For instance, in a recent paper Garrod et al. (2010:33) state that: “One influential 

model assumes an evolutionary principle analogous to iterated learning in which 

the language is transmitted vertically down generations of speakers”. Using this 

definition of iterated learning, Garrod et al. (2010)  go on to contrast two different 

experimental conditions: iterated learning and social coordination. The contrast that 

was actually being made here was between linear transmission vs. closed group 

population designs. Of course there is nothing wrong with researchers redefining 

terms as they see fit. However, this particular example is dangerous as it implies 

there is a difference between the two conditions in terms of the mechanisms of 

transmission at work, rather than a difference in population structure.
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3.4.2 General Methodological Framework

This section will outline the general methodology for conducting iterated learning 

experiments to investigate the nonintentional emergence of language. The idea is 

that learning something about the way in which artificial languages are culturally 

transmitted in the laboratory can tell us something about the way in which natural 

languages are culturally transmitted in real populations.

The general method involves each participant learning a small artificial (‘alien’) 

language composed of a finite set of meanings (pictures) that are paired with signals 

(strings of letters, or possibly sounds). These languages need not be particularly 

large. In the experiments described later on in chapters 4 and 5 there were just 27 

meaning-signal pairs in total. Once a participant has acquired the artificial language, 

they are tested and their answers used to provide the training input to the next 

participant, who forms another ‘generation’ in the chain. This process repeats until 

the desired number of generations is reached. Throughout, participants are asked 

only to reproduce the language as accurately as they can; the source of their training 

data is not revealed, and they have no way of knowing the experiment is 

investigating the emergence of language. 

Training, Testing and Transmission

There are three distinct phases involved: training, testing, and transmission. During 

the training phase, participants are shown a picture from the set, alongside the 

signal string it is paired with, and informed that this is the way in which the alien 

would describe that image in its own language. The task is to learn the descriptions 

associated with each image to the best of their abilities. Training occurs via a 

computer program, which randomises the order in which each signal-meaning pair 

is presented, ensures that all training items are seen, and controls the length of time 

each training item is shown. The key variables to consider here are the amount of  
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training each participant receives (i.e. the number of rounds of training they are 

given), whether this training occurs in one continuous session or in blocks, and 

whether training blocks are structured in some way or randomised. 

Following a series of pilot studies conducted during my MSc (Cornish, 2006) it was 

decided that training would be conducted over three blocks, with an obligatory 

practice test and an optional two-minute break in between. Each training item 

appeared twice during each block, so six times in total over the course of a learner’s 

training session. Training items were presented in two parts: first the signal would 

appear alone for 1000ms, then the meaning would be shown alongside it for a 

further 5000ms.

Once training is complete, we move onto the testing phase, where participants are 

shown each picture in turn and instructed to supply the missing description. The 

final test can be (and in the experiments presented later on in Chapters 4 and 5, in 

fact were) preceded by a series of practice tests in between training blocks, which 

introduces the possibility of some indirect feedback being provided to facilitate 

learning: participants were given a limited opportunity to correct themselves over 

the intervening practice tests, as well as giving them the chance to become familiar 

with the testing procedure ahead of the final test. In the experiments presented here, 

the practice tests involved participants being presented with just a subset of 14 of 

the meanings and being asked to provide the correct description9. Following the 

third and final block of training, the remaining 13 items were appended to this set of 

14, ensuring that descriptions were collected for all 27 meanings in the final test.

These responses from the last round of testing are then used to generate a new set of 

training stimuli for the next generation during the transmission phase. It is during 

this final stage, which happens ‘offline’ after the participant has left, that some of the 

most interesting parameters can be explored, including the transmission bottleneck. 
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One of the advantages of the iterated language learning methodology is that it 

allows us to test very specific hypotheses about what occurs during language 

transmission by giving us complete control over what gets passed on. It is this 

aspect that affords iterated language learning more simulation-like qualities than is 

typical in non-iterated artificial language experiments. 

For instance, if we wished to test the hypothesis that a preference for shorter strings 

led to compositional structure, during the transmission phase we could artificially 

select only those strings that met some (possibly dynamic) string-length threshold 

and ensure that only these items were propagated to the next generation10. By 

examining the resulting languages that arise from this process of artificial selection 

we can determine whether this hypothesis is valid. In this case we are running the 

procedure like a simulation. We build in a condition to see what the future outcome 

is, and can then refine our intuitions as a result. Alternatively, if we wish to test the 

hypothesis that human learners actually have a bias towards producing shorter 

strings, we can just run the experiment without any such manipulations and 

examine the average length of strings at the end of the chain. In this case, we are 

using the methodology to experimentally test whether such a bias currently exists or 

not. Both strategies can be useful depending on the questions one wants to answer. 

To summarise, the procedure implemented in most of the experiments described in 

Chapters 4 and 5 was as follows: (1) participants are given verbal and written 

instructions asking them to learn the alien descriptions for a series of images; (2) 

three blocks of training occur; (3) final responses are gathered in the last test; (4) 

participants were debriefed; (5) the recorded output from each participant was 

processed ready for transmission to the next learner. During every block of training, 
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each training item is seen twice. Participants are then tested on roughly half (14) of 

the items, and given an optional 2 minute break before the next block of training 

commences. This sequence is depicted in Figure 3.1.

Figure 3.1: The training-testing-transmission procedure for experiments I-IV. Training and 

testing occurs ‘online’ (when participants are in the laboratory) whilst transmission occurs 

‘offline’ (after participants have left). Each experiment involves three blocks of training and 

testing. Only the output from the final training cycle is processed ready for transmission to a 

new learner.

Generating Initial Languages

The experimental procedure is only one of the considerations that need to be kept in 

mind. One obvious factor we have yet to mention is how we begin this process. It is 

clear that the first participant needs a language to learn. There are several 
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manipulations we can make here, which are again dependent on the kinds of 

questions we are interested in. For instance, if we wish to know whether a particular 

structural system can be stably transmitted, then we should give that system to the 

first participant and monitor whether it changes as a result of iterated learning. If 

however, we are interested in learning something about how linguistic structure 

emerges, we cannot initialise the chains with a fully structured system. Instead, we 

can use randomly generated signals. A simple method for constructing these is by 

concatenating CV syllables (drawn from a large but finite set) to form longer strings. 

This produces a set of signal strings which, whilst containing some regularities 

owing to the fact that they are constructed from a finite syllable set, is still highly 

unstructured with regard to the meanings. 

The Meaning Space

Further consideration must be paid to the design of the meaning-space - or rather, 

the stimuli we use to depict the meaning-space. Meaning-spaces themselves can be 

structured or unstructured, reflecting regularities and co-occurrences in the real 

world, or a controlled and simplified world of our choosing. In all of the studies 

discussed later, the pictures come from a small and highly structured meaning space 

consisting of three different dimensions (motion11, colour and shape), each of which 

contains three different variables (e.g. bouncing, straight and spiralling; black, blue 

and red; circle, square and triangle). This 3x3x3 design yields a total of 27 different 

possible combinations. Some examples of these meanings are shown in Figure 3.2 

below.
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Figure 3.2: Examples of the images used to depict structured meanings in Experiments I-IV. Each 

meaning varies in terms of motion, shape and colour. These examples show a bouncing black circle, a 

horizontally moving triangle, and a spiralling blue square.

Population Structure

The population structure can be manipulated in a variety of different ways. Not 

only is it possible to control the size of the population, but also the network 

structure (i.e. who talks to who). Since there are so many possible configurations, it 

makes sense for us to look at the simplest possible population structure first: a linear 

transmission chain, with just one learner at every generation. It is important to 

remember however that we can also implement closed-group and replacement 

designs, or in fact, have one learner receiving their own input back in a disguised 

manner, as in Griffiths, Christian & Kalish’s (2008) exploration of category 

learning12 .

3.4.3 Measuring Structure and Learnability

The next chapter reports the results of the first two experiments. Before we begin, it 

is perhaps worth spending a moment considering how we are to analyse the data. 

Given our hypotheses, we need to know two things. Firstly, whether the languages 

are evolving to contain more structure, and secondly, whether they are becoming 

easier to learn. In simulations, modellers have free access to the grammars being 

constructed by agents over the course of each run, which makes it relatively 
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straightforward to describe and make comparisons of the systems at different stages 

in their evolution. If we want to know whether the language at the final generation 

is structured, we can simply inspect the internal representation of it in the ‘mind’ of 

the agent and find out13. Although our use of human participants rules out such a 

direct approach, we still have plenty of resources available to us, most notably the 

forms of the languages themselves, to enable us to objectively judge the matter.

The issue of learnability is relatively straightforward. In short, a language is learnable 

to the extent that it is transmitted faithfully without error. In order to measure error in 

transmission, we need only to find a way of calculating the amount of change 

between different languages. So what determines whether a language is structured 

or not? We should remember here that we are dealing with a simplified definition of 

what a language is. In these experiments, a language is simply a mapping between 

meanings and signals. With that in mind, a language can be said to be structured if 

that mapping between the different levels (meanings and signals) is itself structure-

preserving. In other words, a language is structured if similar signals get reliably mapped 

onto similar meanings14. We therefore need a measure that can tell us whether there is 

a correlation between items that are similar in one dimension (meanings), and items 

that are similar in another (signals). The rest of this section explores techniques that 

allow us to do that, starting by examining methods for quantifying the distance 

between signals and meanings.
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14  Obviously the origin of the structure in a language is going to come largely from the 
structure in the world. This is necessarily the case in these experiments given that we are 
providing our participants with a highly structured meaning-space. The final experiment in 
chapter 5 will address this issue in a different way, but for now we are simply interested in 
whether signals can come to reflect useful structure present in meanings.



Distance Metrics

How do we begin to go about measuring similarity in our language domains? One 

of the advantages of running experiments involving a fixed set of meanings is that it 

should make the task of constructing a simple measure of language structure much 

easier (Galantucci & Garrod, 2010). The fact that the meanings are predefined, and 

can be easily decomposed into features with different values means that they lend 

themselves nicely to being defined spatially.  As suggested by Brighton et al. (2005), 

we can view each meaning as a vector in some Euclidean space. Each vector is 

defined by two components: the feature of the meaning (in this case, colour, shape 

or motion) and the value of that feature (i.e. ‘blue’). These dimensions reflect and 

define the meaning space: so a 3x3x2 meaning space consists of 18 meanings 

varying along three features, the first two of which have three values, and the last 

having only two values; whereas a 5x5 meaning space consists of 25 meanings, that 

vary along five features and five values. 

Because the meanings in our experiment vary consistently in terms of the number of 

features and values, we can use Hamming Distance (HD) for the meaning-space 

(Brighton et al., 2005). This is a standard metric from information theory that looks 

at the number of substitutions required to convert one string into another (metrics 

like this are commonly referred to as edit distances, as they involve computing the 

number of changes required to get from state t to state t+1). In this case of our 

experiment, two meanings are compared against one another and for each feature 

value (motion, shape and colour) that differs between the two, a point is awarded. 

So for instance, a bouncing black square and a bouncing black triangle differ in a 

single feature, and therefore have an HD of 1, whereas a bouncing black square and 

a horizontal red circle differ in all features, so have an HD of 3. 

Given the precedent already set for using Hamming distance to measure similarity 

between meanings in this context (Brighton et al., 2005), there are no problems with 

adopting it for use in the experiments. However, there are alternative ways to 
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measure similarity between meanings, that we will briefly consider here. One of the 

reasons for adopting HD as a metric is that we know the exact features and values 

of our meanings in advance, and have a relatively simple semantic structure. When 

the exact semantic structure is unknown or high-dimensional, other techniques 

must be used. 

For instance, Shillcock et al. (2001) examined the level of systematicity between the 

forms and meanings of 1733 monosyllabic and monomorphemic English words, 

taken from the British National Corpus15. In order to measure the semantic distances 

between the different word meanings they first had to examine the lexical co-

occurrences of these words in the entire 100 million-word corpus. Using the vector-

space method presented by Lund & Burgess (1996), Shillcock et al. (2001) used this 

co-occurrence data to construct a semantic space containing some 500 dimensions. 

Each point in this high-dimensional vector-space represented a meaning, and the 

distance between any two points could be calculated using the angles between these 

vector points.

Lexical cooccurrence matrices are commonly used in the construction of semantic 

spaces in computational linguistics because being automatically induced, they avoid 

the problem of relying on the experimenter identifying the correct dimensions - a 

task which becomes exponentially more difficult to calculate as the number of 

meanings increases (Jurafsky & Martin, 2000). They also capture the intuitive idea 

that the meaning of a word is (at least somewhat) determined by the linguistic 

contexts in which it occurs (Tamariz, 2008). Lund & Burgess’ (1996) vector-space 

method is closely related to an approach known as Latent Semantic Analysis (LSA), 

developed by Landauer & Dumais (1997) as a more general solution to what has 
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come to be known as Plato’s problem: namely, how do we come to know so much, 

given so little experience?16 LSA works on the idea that:

“ some domains of knowledge contain vast numbers of weak 

interrelations that, if properly exploited, can greatly amplify 

learning by a process of inference....[T]he choice of the 
correct dimensionality in which to represent similarity 
between objects and events, can sometimes, in particular in 
learning about the similarity of the meanings of words, 
produce sufficient enhancement of knowledge to bridge the 
gap between the information available in local contiguity 
and what people know after large amounts of 
experience.” (Landauer & Dumais, 1997:211) 

By using the statistical properties of contextual co-occurrence, and very general 

induction mechanisms, Landauer & Dumais (1997) built a model which could 

acquire knowledge of English vocabulary from noisy internet chat forums at a 

similar rate to school children. This happened despite the fact that the model had no 

prior linguistic or perceptual similarity knowledge. The idea of measuring 

‘similarity’ may actually be more than a useful metric for our research purposes. 

Although we are only interested in calculating similarity between signals and 

meanings to determine whether the languages in our experiments are being 

faithfully acquired and more structured, it turns out that this could be something 

real learners are also tracking during acquisition.

Returning to the topic at hand however, just as we can consider using edit distance 

to compare meanings, so too can we use edit distance to compare signals. One 

potential complication with comparing edit distances for signal strings lies in the 

fact that the string lengths can vary. Instead of Hamming distance then, which relies 

on symmetrical lengths, a better metric is Levenshtein Distance (LD). This calculates 

not just the number of substitutions to turn one string into another, but also handles 
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poverty of stimulus arguments in language acquisition. However, the term should be 
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to language acquisition.



insertions and deletions as well (Levenshtein, 1966). For example if we wanted to 

compare the similarity between two strings, kopafilo and kapilo, we would 

calculate the most efficient way of turning one into the other: in this instance there is 

one substitution (o to a) and two deletions (a and f), resulting in a Levenshtein 

Distance of 3. This figure can be normalised to give a value between 0 and 1 by 

simply dividing the LD by the length of the longest string (Brighton et al., 2005) - in 

this case giving us a value of 0.375.

Once again we find that this is just one of many different ways in which we could 

measure distance between signals. Strictly speaking, if we were using spoken 

signals we should weigh the edit distances according to how frequently we observe 

that kind of edit (read: error) in a given phonetic environment. For instance, given 

the fact that unvoiced sounds have a greater tendency to become voiced if they 

appear intervocalically, we should perhaps give less weight to this kind of change as 

opposed to a more unusual one. In addition to the standard version of LD described 

here, Kessler (2005) reviews different techniques for measuring phonological 

similarity and describes versions of LD with different weights given to reflect the 

greater salience of certain types of edits. There are two reasons for not using any of 

these more sophisticated versions of LD in the present study however.

The first is that because the signals in the experiment were visual, and not 

phonetically transparent17, we have no idea if changes are likely to be the result of 

(a) typological mistakes, (b) phonological mis-parsings, or (c) combinations of both 

of these. Secondly, estimating these weightings relies upon native speaker 

judgments. There are no ‘universal’ patterns - everything is determined by the 

particular phonological structure of the language in question. As the signals used in 

these iterated language learning studies are artificially constructed, we have no 

native speakers. Even if we restrict our studies to only include monolingual English 
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speakers, and treat the alien signals as pseudo-words, there are further 

impracticalities that arise.

As an illustration, Tamariz (2008) measured systematicity between forms and 

meanings in the Spanish lexicon using a large corpus of transcribed spoken 

utterances. In order to generate a measure of phonological similarity, a previous 

empirical study was run (Tamariz, 2005) to collect similarity judgements from native 

speakers. Using these perceptual judgements, a set of parameters can be devised 

and applied when comparing two strings. However, in order to do this, not only did 

string length have to be controlled for, but the syllable structure as well. This meant 

restricting investigation of similarity only to words conforming to the following 

structures: CVCV, CVCCV, or CVCVCV. Given the fact that we cannot restrict the 

output that each participant produces after training in any way, generating 

perceptual weightings for string similarity would be an exhaustive task in its own 

right.

Detecting structure within a language - The Mantel Test

Once a suitable set of metrics has been found for determining signal distances and 

meaning distances, how do we use those to judge the amount of structure between 

them? Again, we find that a number of different approaches have been taken in the 

literature (Shillcock et al., 2001; Brighton et al., 2005; Ellison & Kirby, 2006; Tamariz, 

2005). Whilst on the surface all of these measures appear quite different, they are in 

fact all just variants of a test proposed by Mantel (1967), which has been used more 

commonly to explore patterns of correlations between different distance metrics 

within ecology (Sokal & Rohlf, 1995). The rest of this section will explain how this 

test works by using a toy example from that domain.

Essentially Mantel’s test assesses the correlation between two symmetrical matrices, 

each cell of which contains the distance between an object and every other object in 
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the set. Imagine we were interested in whether species with similar genes had 

similar geographical distributions. The first matrix would therefore contain all of the 

genetic distances between all possible species in the study, and the second would 

contain all geographical distances between those same species. This is illustrated 

using hypothetical data in example 3.1, where {a,b,c} are three different species, and 

numbers represent some notional distance in the relevant domain.

(3.1)! ! ! geographical distance! !       ! genetic distance

! ! ! ! a! b! c! ! ! a! b! c

! ! ! a! 0! 2        2.24! ! a! 0! 4! 3

! ! ! b! 2! 0! 1 ! ! b! 4! 0! 2

! ! ! c       2.24! 1! 0 ! ! c! 3! 2! 0

Typically when we are wanting to see whether two variables like this co-vary in an 

interesting way we can simply perform a statistical test to determine the strength 

and direction of any correlation, and the degree of confidence we have about that 

correlation being genuine. We cannot do this here however. The problem with 

making a straightforward correlation between the two matrices is that distances, by 

their very nature, are not independent from one another. In a matrix containing n 

objects, if you could imagine moving one of them slightly, n-1 distances would also 

change as a direct result. 

To illustrate this more clearly, consider Figure 3.3 below. The space on Fig. 3.3.left 

depicts the space represented in the original geographical distance matrix outlined 

in example 3.1. If we imagine moving datapoint b slightly (Fig 3.3.centre), from 

position [2,2] to [2,1], we have not only changed the matrix cells for that one object, 

but also all the distances from that object to all of the others (Fig 3.3.right). It has 

moved closer to a and further away from c.
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Figure 3.3: A pictorial representation of the geographical space depicted in example 3.1 (left) and the 

consequence of moving one of the elements (centre). This figure demonstrates the fact that distances 

are not independent of each other. Not only has the location of b changed (to b’) but all of the distances 

between b’ and every other location, as shown in the new geographical distance matrix (right).

This lack of independence means we cannot rely on standard parametric tests to 

show significance. Mantel’s (1967) solution was to perform a Monte-Carlo (or 

permutation) test on the two matrices in order to calculate significance that way. The 

way this works is as follows. First we go ahead and calculate the correlation 

anyway. The exact test we use depends on the nature of the data and the distance 

metrics we have decided to use. Given that we have adopted the same distance 

metrics used in Brighton et al. (2005) it makes sense to use the correlation measure 

that they use: Pearson’s product-moment coefficient.

Once we have this coefficient, this becomes our veridical score. Next we take one of 

the two datasets, and we shuffle the order of elements within it. This destroys the 

veridical mapping between our two distance measures but preserves the actual 

data, effectively asking the question of what would happen if the exact mapping 

between the two was unimportant. In terms of the matrix itself, it has the effect of 

randomly shuffling its rows and columns. Example 3.2 shows what this shuffling 

procedure looks like when applied to the genetic distance matrix. We then 

recalculate the correlation on this new randomly aligned data, and judge whether it 

it the same or greater than that observed in the veridical. 

aa b’

c cb

(3.1)! ! ! geographical distance! !       ! genetic distance

! ! ! ! a! b’! c! ! ! a! b! c

! ! ! a! 0! 1        2.24! ! a! 0! 4! 3

! ! ! b’! 1! 0        1.41! ! b! 4! 0! 2

! ! ! c       2.24     1.41! 0! ! c! 3! 2! 0
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(3.2)   ! ! ! geographical distance! !       genetic distance

! ! ! ! a! b! c! ! ! a! c! b

! ! ! a! 0! 2        2.24! ! b! 4! 2! 0

! ! ! b! 2! 0! 1 ! ! a! 0! 3! 4

! ! ! c       2.24! 1! 0 ! ! c! 2! 0! 1

Crucially we must reshuffle this matrix thousands of times to construct the 

frequency distribution of scores18. This gives us two things. Firstly we can now 

calculate a level of statistical significance (the p-value) in an intuitive and safe (in 

terms of our data violating the independence assumption) manner by simply 

counting the percentage of times a correlation is discovered that is equal-or-greater-

than the veridical. Secondly using the information derived from the frequency 

distribution (basically the mean and standard deviation) we can standardise the 

veridical score to derive a z-score. Importantly, the z-score, unlike the actual 

veridical correlation score, can be used to compare observations across different 

frequency distributions. This may not be important for our toy example but it will 

certainly be important for comparing our languages, as the data at each generation 

will have different distributional properties depending on the exact forms and 

mappings that it contains. 

Judging learnability across languages - Transmission Error

The Mantel test examines the structural properties of languages within generations, 

but we also need a measure to assess the similarity of languages across generations. 

For this, we can use a distance metric we have already encountered - the 

Levenshtein Distance. Whereas previously we used it to compare each signal to 

every other signal within a language, this time we will use it to derive one number 
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that tells us how similar a language is to another language. Taking each meaning, m, 

in turn, we calculate the normalised Levenshtein Distance (nLD) for the signals sm 

and sm‘ in the two languages we are comparing (Brighton et al., 2005). We then 

simply average this score over all 27 meanings, giving us a number that varies 

between 0 and 1 which tells us the average amount of transmission error that there 

is for each signal in the language. A figure of 0 means that there was no error at all 

during transmission. In other words, the language was perfectly learnable. A figure 

of 1 would imply that none of the signals were reproduced faithfully at all. In 

practice, hitting either extreme of this measure is difficult, as having a single 

misplaced letter detracts from the maximum score, and even chance 

correspondences produce scores greater than zero.

The measures for calculating transmission error and structure that have been 

described here and chosen to be the standard measures used for the rest of this 

thesis (i.e., nLD, and the Mantel test using HD and LD) have been selected for two 

reasons. Firstly, on the basis of their generality -- they both appear well suited to 

detecting all kinds of structure and similarity. Secondly, they have been selected 

because they are well-understood in the context of iterated language learning with 

simple meaning-spaces (Brighton et al., 2005). Note however that there are 

additional measures of structure and learnability available which tend to be better 

suited for measuring certain types of structure than others. We will see some of 

these more specialised measures in Chapter 5, and again in Chapter 6. 

3.5 Summary

This chapter began by exploring some of the reasons why language evolution has 

proven to be such a difficult subject to study. Although we have abundant 

evolutionary end-points of the process around us in the form of modern day 

languages, there are very few uncontroversial clues to be gained from the fossil 

record or archaeological data to support our theorising. Next we considered other 
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forms of evidence that could shed light specifically on the processes of cultural 

evolution. We then looked at some of the pros and cons of current empirical 

approaches. 

Starting with computational and mathematical studies of the origins of language, 

we noted that many of these models had been criticised in terms of their ecological 

validity, or for the kinds of simplifying assumptions they make. Next we explored 

the natural emergence of human communication systems, such as new sign 

languages. Whilst these case studies do provide us with a wealth of highly relevant 

data, they do suffer the downside of being very rare. In addition, although 

researchers can record and monitor the development of these new systems, they 

cannot intervene or manipulate the process of emergence in order to test specific 

hypotheses. The next empirical strand we focused on was artificial language 

learning. This technique has been used both to test specific hypotheses related to 

language evolution (for instance, to ascertain whether human performance matches  

the performance of computational models), as well as to study processes identified 

by researchers working with sign languages and creoles as being relevant.

The final set of empirical studies we examined concerned those which investigated 

the emergence of novel communication systems in the laboratory. This, as with the 

artificial language learning studies, has the advantage of providing us with 

complete experimental control. One thing that was noted about the majority of these 

studies is that the participants involved are always consciously aware that they need 

to communicate with a partner or group members, and in some cases, take 

deliberate steps to try to invent a system to allow them to do. This led us to consider 

what kind of process we think is responsible for the appearance of design in 

language. 

Here two complementary theoretical frameworks were presented, with which to 

think about language change. Both frameworks agreed that language was not the 

result of purposeful design on the part of individuals: it might emerge as a result of 
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human actions, but those actions were not deliberately intended. There were two 

ways in which language could end up having ‘design without a designer’ - either a 

language user could intend to achieve some kind of goal with their language use 

and inadvertently produce an innovation at the same time (this type of causal 

mechanism was defined as INTENTIONAL); or else a language user could have no 

higher goal in mind, but make a change as a consequence of the act of production or 

comprehension (this was referred to as NONINTENTIONAL). Whilst many studies 

have investigated intentional processes of language emergence, none were found to 

focus exclusively on nonintentional processes. This observation motivated the 

design of the experimental framework which was described in the rest of the 

chapter.
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--------------------------------------------------------------------------------------------------------------------------------------------------

Chapter Four

Language Adapts to be 

Learnable
--------------------------------------------------------------------------------------------------------------------------------------------------

4.1. Bottlenecks on Transmission

As discussed in the previous chapter, one of the most crucial parameters within the 

ILM is the size of the transmission bottleneck. Changing the size of this parameter 

changes the dynamics of iterated learning considerably. If learners are exposed to 

the entire set of meaning-signal pairs, the initially holistic system is able to be 

entirely learned by rote and never changes. If learners are only exposed to a tiny 

fraction of meaning-signal pairs, the system never becomes stable. It is only when 

the bottleneck is neither too large, nor too small, that we begin to see systems 

emerge that are compositionally structured and stable (Kirby, 2000). Given its 

relative importance in terms of explaining the emergence of language-like structure 

then, it is surprising that the bottleneck itself has not received that much theoretical 

scrutiny in the modelling literature. 

This chapter begins by exploring the notion of the bottleneck in more detail. It starts 

with the observation that simulations of iterated learning have tended to model the 

transmission bottleneck as somehow external to the agent, a distributional fact of 

the environment rather than anything to do with the way the agent processes the 
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training data internally.  It then goes on to present the results of two iterated 

language learning experiments that investigate what, if any, difference these 

bottlenecks make to the way in which languages emerge1. The first experiment 

follows the approach used in the simulations, investigating what happens when 

cultural evolution is driven by a pressure to generalise to novel stimuli present in 

the environment, whereas the second examines what occurs when pressure comes 

from a more naturalistic memory constraint internal to the learner. It will be shown 

that in both cases the languages are adapting under pressures for greater 

learnability, and consequently, become more structured over time. However, neither 

produces systems which are optimal for communication.

4.1.1 A Closer Look at the Bottleneck

The idea of a bottleneck in the transmission process is not controversial. One of the 

principal challenges facing any account of first language acquisition, or indeed, any 

general theory of linguistics, is to explain how it is that the child converges on the 

correct grammar for his or her language based on the highly variable and finite 

exposure to that language that they receive (see Fig 2.2 for characteristics of the 

linguistic input available to the child). We all arrive at the acquisition process having 

encountered only a small subset of the possible words and utterances in our 

language, and yet somehow we manage to negotiate the tricky path towards 

comprehending it in its entirety. 

Whilst the jury is still very much out on the issue of whether the quality of the 

linguistic input available to the learner is really so impoverished as to necessitate a 

helping hand in the form of innate linguistic knowledge or not (see §2.2.1 and §2.2.2 

for this debate), it is clear at least that language is still somehow being acquired 
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despite differences between individuals’ data-exposure histories (to use the 

terminology of Pullum & Scholz, 2002). So what causes these differences in data-

exposure, and just how much do they influence language?  To answer this question, 

we need to look in more detail at how the bottleneck is working to constrain the 

process. 

4.1.2 Different Types of Bottleneck

Within the simulations, transmission constraints have most typically been 

operationalised as the amount of training data given to each learner agent - what 

Hurford (2002) calls a semantic bottleneck. Given that the number of possible 

conveyable meanings in the models is usually large but finite2, this bottleneck can be 

more formally defined as the proportion of the total number of meaning-signal pairs 

seen by each learner agent. Note that this is a physical restriction on the meanings 

that a learner encounters in the world, and not a restriction on the signals that a speaker 

produces, or can accurately retrieve from memory. These distinctions will be 

important later. 

In many ways this is an entirely reasonable way to model the transmission 

bottleneck. The fact that this training subset is always selected anew at random for 

every learner is good because it effectively captures the idea that there is natural 

variation in exposure to meaning-signal pairs between individuals: each agent gets 

a unique sample of the language, paralleling the fact that no two natural language 

learners ever receive identical exposures to language. The fact that there remains a 

large proportion of novel (i.e. unseen) meaning-signal pairs that the learner agent 
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might have to convey is also quite realistic. Our immense productivity in language 

is one of the traits we most wish to understand, after all. 

However, leaving aside the discussion of semantic bottlenecks for a moment, it 

turns out that there are other ways in which modellers can conceptualise a 

bottleneck on language transmission. Hurford (2002) surveyed the ILM literature 

and identified at least two additional types of bottleneck to have been explicitly 

implemented in models: production bottlenecks and intake bottlenecks (Table 4.1).

type description

semantic learners encounter just a subset of possible 

meanings during acquisition

production speakers produce just a subset of possible 

utterances after acquisition

intake only a subset of meaning-signal pairs are actually 

taken in and used in acquisition

 Table 4.1: A summary of the definitions of three transmission bottlenecks discussed in Hurford 

(2002).

A production bottleneck appears as a result of choices made by the agent over 

which signal to produce in response to a given meaning. When speakers have 

acquired several different forms for a particular meaning, they must somehow 

decide which one to utter at any given moment, they cannot simply utter them all. 

An intake bottleneck on the other hand relates to the fact that not all of the 

meaning-signal pairs which are heard by a learner are actually used when it comes 

to the process of acquisition itself. Of the linguistic data to which a child is exposed, 

only a subset of it may trigger learning. We must therefore distinguish between 

input to a learner and what they take from that input (Hurford, 2002). 
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All of the models in Hurford’s review seem to actually implement these different 

types of bottleneck in parallel, albeit often only implicitly. For example, in Kirby 

(2001) there was explicit mention of how the semantic bottleneck was implemented. 

A careful reading of the text reveals however that if agents had more than one rule 

in their grammar for conveying a particular meaning, only one would be selected at 

random for production, and that any forms which already had a meaning assigned 

to them were ignored by the induction algorithm if they were seen in a different 

meaning context -- in other words, production and intake bottlenecks had also been 

incorporated implicitly into the model. 

In order to understand the individual contributions made by each type of 

transmission constraint, Hurford (2002) ran a series of simulations where 

bottlenecks were applied one at a time in a simple model of vocabulary evolution3. 

In these simulations, populations of agents learned names for a finite set of atomic 

meanings by observing other agents’ naming behaviour. If agents were prompted to 

name an unfamiliar meaning, they could invent a random signal for it, but if the 

meaning had already been encountered, they could use a remembered name. He 

discovered that when there was a semantic bottleneck but no production bottleneck 

the number of synonyms in the lexicon tended to increase. This is because at every 

round there was a fairly high chance that a novel meaning would be encountered 

for which the agent had no signal. In this situation, the agent will have to invent a 

new signal, thus increasing the number of signals associated with that meaning in 

the population as a whole. 
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In contrast, when there is only a production bottleneck, but no semantic bottleneck, 

the number of synonyms decreased until there was only one signal associated with 

every meaning in the population. This works irrespective of how the production 

bottleneck is implemented (e.g. whether the agent selects the form it has heard most 

frequently, the form it has heard most recently, or one chosen at random). Again, 

this is explained by the fact that there will inevitably be chance occasions where a 

particular form is not produced by a learner. Consequently, that form will not be 

present in that learner’s output to the next generation, and over time, will disappear 

from the population altogether.

These findings present us with several intriguing ideas. First and foremost, it has 

been shown that different types of transmission bottleneck may have different 

effects on the structure of language. Secondly, these different constraints can work 

orthogonal to one another. If there is tension and trade-offs between them it means 

that we cannot take it for granted that their combined effects will simply be 

additive. If one constraint is encouraging synonymy, and the other attenuating it, 

we cannot predict in advance what the eventual outcome will be. This in turn means 

that we need to be even more certain that we design models with the right features. 

So what is the ‘right’ bottleneck to model? Is there a reason that past iterated 

learning models have tended to implicitly incorporate multiple bottlenecks?  In 

order to answer these questions we need to look more closely at where these 

bottlenecks originate: in the transmission cycle itself.

4.1.3 Bottlenecks in the Transmission Cycle

In biology it has been noted that evolution can be seen as a series of transformations 

between different types of object - for instance, the transformation of genotypes into 

phenotypes (Lewontin, 1974). It is possible to view linguistic evolution as a series of 

transformations between different types of object as well (Kirby, 1999). In fact, I 

would like to argue that we can modify this idea slightly by thinking of these 
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transformations as bottlenecks operating within different domains - the external “E-

Language” domain where language is publicly represented, and the internal “I-

Language” domain where language is privately represented in the minds of 

speakers and hearers.

The transformations that were originally identified in Kirby (1999) have been 

reproduced in Figure 4.1. I have relabelled this diagram with the different kinds of 

bottlenecks that Hurford (2002) identifies. Here, one complete cycle of transmission 

is shown, starting with a fully competent language user producing a set of 

utterances, and ending up with another language learner developing full linguistic 

competence. 

Production

Processing

Intake

Competence
Competence

Trigger

Utterances (heard)

Utterances (spoken)

Semantic

I-Language Domain

E-Language Domain

Figure 4.1: Reproduction of a diagram showing the transformations within and between the I-

Language and E-Language domains of a speaker and a learner, taken from Kirby (1999). These 

transformations, which were originally just labelled T1, T2, T3 and T4, can actually be conceived of 
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as bottlenecks that appear through the cycle of transmission. In the I-Domain, language internalised 
in the mind of a speaker (competence) goes through a production bottleneck which determines which 
utterances get spoken and appear in the E-Domain.  This set of spoken utterances then encounters a 
semantic bottleneck, which reduces this set to just the utterances heard by a learner. These heard 
utterances then go through a processing bottleneck, which filters out any utterances that are not 
memorable/salient. Out of this information which has been spoken, heard, and remembered, only a 
subset is hypothesised to actually be used in the learning process (to develop competence in a new 
individual).

Starting with the competent language user, we find that the production bottleneck 

mediates which utterances get transferred from the I-Language domain, to the E-

Language domain. The process of production operates internally within a speaker. 

In contrast, as we have already mentioned, the semantic bottleneck is external to the 

agent. It determines which (out of a finite many) of the utterances that have been 

spoken by a language user, actually make it to the ears of a language learner. At this 

point we need to identify another kind of bottleneck, which I will call a processing 

bottleneck. This type of bottleneck covers the transformation from E-Language back 

to I-Language, whereby utterances that have actually made it to the ears of the 

learner get processed and parsed by the cognitive mechanisms that learner 

possesses4. Finally, a subset of whatever makes it through processing will eventually 

go on to trigger changes in the knowledge a learner has of language (intake). Both 

the processing and intake bottlenecks operate internally within the language learner. 

The result of all of this is the successful transmission of linguistic competence.

Of course, these bottlenecks are more than singular constraints. Instead, they are 

types of constraints. For instance, many factors influence which of the utterances that 

get spoken make it to the ears of the hearer; such as the presence or absence of noise,  

the structure of the environment (i.e. what there is to talk about), and even social   

dynamics between the speaker and hearer. Nevertheless, we can see all of these 

biases as a type of semantic bottleneck in virtue of which point it occurs at in the 

transmission cycle. Traditionally these constraints in transmission have all been 

considered to operate more or less simultaneously, as Figure. 4.2 shows.
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Figure 4.2: Traditional conceptualisation of the constraints operating during linguistic transmission.  

There are many different biases all acting at the moment of transmission. However, the cycle of 

transmission itself is composed of different moments. Understanding how these moments relate to one 

another can help us to design experiments to tease these factors apart. Taken from Kirby, Brighton & 

Smith (2004).

Although they undoubtedly do all make their influence felt at some point during 

transmission, we can perhaps be more specific about exactly when this occurs. This 

in turn allows us more control in designing experiments that investigate any of 

these specific topics. Whilst it is true that we cannot remove the internal bottlenecks 

from our participants5, we can at least manipulate those bottlenecks which are 

external to the learner, and ask what influence they have on the cultural 

transmission of language. The rest of this chapter looks at this.

4.2 Experiment I: Generalisation to Novel Stimuli

Following on from our discussion of the role of bottlenecks in cultural transmission 

it should be clear that our goal here can not be to understand every bias affecting 

language. Instead, we can learn a valuable lesson from the computational 

simulation approach: by stripping away the complexities of the problem and 
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starting the modelling process off on a small-scale, we can come to understand what 

the essential components are and how much of the behaviour can be explained by 

the little things. We have already begun this process by creating an experimental 

framework capable of observing the evolution of simple forms and structured 

meanings in the laboratory, and breaking down the process of transmission into 

distinct stages that we can exert some experimental control over. Now it is time to 

see whether anything useful comes from this. We will start by attempting to 

replicate a common finding of computational models of iterated learning: that 

compositional structure arises when agents are forced to generalise to novel stimuli. 

4.2.1 Method

An overview of the general methodology for the experiment can be found in §3.4.2. 

This section describes the particular design used to explore what effect being 

exposed to novel (i.e. unseen) stimuli has on the structure of the resulting 

languages. As always, the experiment is interested in how structure emerges from a 

state of non-structure, and it was important that participants were unaware that 

their data would be passed on to future learners.

Aims and Experimental Hypotheses

The basic aim of the first experiment was to try to replicate the computational 

findings concerning the semantic bottleneck in a small population of human 

learners. To reiterate, ILMs with linear transmission chains and a semantic 

bottleneck in place (e.g. Kirby, 2000) tend to result in systems which are both highly 

learnable, and highly structured. In particular, it has been found that compositional 

structure emerges from an initially holistic language. That is, agents converged on a 

solution to express complex meanings by using signals where the meaning of the 

whole was derived from the meanings of signal-parts and the way they were put 

together. 
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Following from this, our expectations were as follows. If human learners were 

actually  doing the same thing as simulated agents, we should first expect that the 

languages being transmitted between human agents should become easier to learn 

toward the end of the experiment: that is, transmission error scores between learners 

should decrease as the number of generations increase. The second result we expect 

is that this decrease in transmission error should correlate with an increase in the 

amount of structure in the languages. Finally, we might also expect to see 

compositional structure emerging. This leads to the following hypotheses: 

1. The Learnability Hypothesis: Languages will become easier to learn as a result 

of iterated learning. 

2. The Structure-Increase Hypothesis: Languages will become more structured as 

a result of iterated learning.

3. The Compositionality Hypothesis: Pressure to generalise to novel stimuli will 

result in languages evolving to become compositional.

Experimental Design

In order to test these hypotheses, a series of four transmission chains, each 

consisting of ten ‘generations’ of learners, were run6. Each chain was initialised with 

a different randomly generated initial language, and all used the same structured 

3!3!3 meaning-space, as described in §3.4.2. As we wanted to try to replicate the 

computer simulations, a 50% semantic bottleneck was also implemented. Given that 

there is an odd number of meanings, this meant that each participant was trained on 

exactly 14 out of the 27 items. These training items varied between generations, and 

were selected at random anew during the off-line transmission phase of the 

previous generation. 
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Three rounds of training were given, with each of the 14 seen items being presented 

twice within each block. In between training rounds, there was a test phase. The first 

two tests were short -- containing only 7 seen and 7 unseen items. The final test 

consisted of every single meaning. Training data for the next generation was drawn 

exclusively from this set of final responses. Figure 3.1 in §3.4.2 shows a graphical 

representation of this training-test schedule. The experiment itself was run using E-

Prime, and the statistics were analysed using R.

Participants

In total, 40 participants were recruited, primarily via an advertisement placed in the 

University of Edinburgh’s student employment service (age: M = 22.25, S.D = 2.43). 

There were 25 female participants, and 15 male participants, and each was assigned 

to a chain and a generation at random. Participants were not required to be 

monolingual English speakers, but were required to be fluent in English. In order to 

be eligible to take part, volunteers had to have normal or correct-to-normal vision, 

not be dyslexic, not have already taken part in an ‘alien language learning’ 

experiment before, and also not have formally studied linguistics. This latter 

requirement was added following piloting of the software used for presenting the 

experiment, which revealed that those with an extensive background in the formal 

analysis of linguistic systems tended to approach the task in a highly analytical way 

and were more likely to have come across the iterated learning models or have some 

idea of the research interests of the experimenter. 

Finally, participants were compensated with £5 for their time and travel costs. The 

study conformed to the ethics guidelines set by the University of Edinburgh’s 

College of Humanities and Social Science, and participants were fully briefed before 

taking part of their rights of withdrawal and anonymity.

Procedure
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Instructions were given both in writing (see Appendix A) and verbally. Participants 

were told that they would be shown a series of images and the way in which an 

alien would describe those images, and that after some time, they would be tested 

to see what they had learned. However, they were unaware that their output data 

would become training data for future learners. They were encouraged to always 

give a response, even if they were unsure “in order to maintain good relations with 

the aliens”. They were informed that there would be three rounds of training and 

testing, and that although the training items were automatically presented by the 

computer, they could pace themselves throughout all the testing phases. 

At the end of the language learning task, participants were given a short 

questionnaire to fill in detailing what they thought the experiment was about, how 

they approached the task of learning the language, how they thought the language 

worked, and at what point (if any) they became aware that they were being tested 

on items that they had not been trained on. Finally, once this data had been 

collected, participants were fully debriefed about the experimental aims of the 

study. All in all, each experiment lasted no more than 35 minutes, including the 

questionnaire and debrief. The experiment was run on E-prime, and the results were 

analysed using R.

4.2.2 Results of Experiment I

Structure and Learnability Increase

In order to address our first two hypotheses, the structure and error scores were 

calculated  for every generation of each chain and are plotted in Figure 4.3 below 

(see §3.4.3 for how these measures are calculated). The graph on the left shows the z-

scores calculated from running the Mantel Test with 10,000 randomisations. As we 

can see, structure increases in each chain. In particular, all languages were 
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significantly structured after generation 6 (the dotted line represents the 95% 

confidence interval - subsequently, any point above that line is significant to the 

p<0.05 level or greater). The graph on the right of Fig. 4.3 shows the learnability of 

the languages in each chain in terms of the average nLD error score between 

adjacent generations. This shows a clear decrease in transmission error over time, 

with half of the chains becoming stable in the final generations.

In order to determine whether there was a significant increase in structure and 

decrease in error over the course of the whole experiment, one-tailed paired t-tests 

were run on the beginning and ends of the chains7. From the results of these it was 

possible to confirm both predictions: the languages are adapting to become 

significantly more structured over time (as shown by a mean increase in structure of 

4.763, t(3) = 3.4296, P < 0.02) and significantly more learnable over time (as shown 

by a mean decrease in transmission error between first and final generations of 

0.638, t(3) = 8.656; P < 0.002). 
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every possible ordering being equally likely. The t-test for structure was therefore run using 
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Figure 4.3.  Graph showing the structure (left) and normalised error (right) scores by generation,  of 

four transmission chains where a 50% data bottleneck was present. These results indicate that 

languages are becoming significantly more structured and easier to learn over time. Points above the 

dotted line (left) represent significant structural regularities between meaning-signal mappings. This 

graph has been remade from Kirby, Cornish & Smith (2008) with 10,000 Monte-Carlo 

randomisations instead of 1,000. 

This begs the question of exactly how the languages are changing to do that. In 

computer simulations, the presence of a semantic bottleneck  encourages systems to 

arise that are compositional. Have the languages in the experiments evolved to 

become compositional as well? 

Reduction of Signal Types

If we examine the total number of distinct signals used at each generation, we find 

that this cannot be the case. Table 4.2 shows that this number decreases both rapidly 

and dramatically across all chains. If the languages were perfectly compositional, 

there would be 27 distinct signals for each of the 27 distinct meanings. However, 

although it is tempting to conclude that this decrease in the number of strings can 

explain the reduction in error seen earlier -- as having fewer strings to learn makes 

the process of recall easier -- the presence of the semantic bottleneck means this 

cannot be the case. Remember that participants are only being trained on half of the 
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meaning-signal pairs. In order to achieve perfect transmission (which some chains 

do), this entails that there is intergenerational agreement on the signals to be used 

on unseen meanings. Even if we only have a handful of distinct signals to 

remember, it is not obvious how this alone would help bypass the constraints 

imposed by our transmission bottleneck. 

generation 0 1 2 3 4 5 6 7 8 9 10

chain A 27 17 9 6 5 4 4 2 2 2 2

chain B 27 17 15 8 7 6 6 6 5 5 4

chain C 27 24 8 6 6 5 6 5 5 5 5

chain D 27 23 9 10 9 11 7 5 5 4 4

Table 4.2: Table showing the number of distinct signal strings found in the languages of each 

generation for four chains. This number decreases very quickly over time, resulting in just a handful 

of unique signals at the end of the experiment.

Systematic Underspecification: An Adaptation

In order to understand what is going on we need to move away from quantitative 

analyses of the languages, and start examining them qualitatively. Table 4.3 shows 

the final language from one of the chains resulting in a stable language. Each cell in 

the table shows the signal used for each individual meaning, with motion and shape 

features indicated in the corresponding row names, and the colour feature being 

represented by column. As we would expect given Table 4.2, instead of a one-to-one 

mapping between meanings and signals, we find ambiguity. However, the 

meanings are not just underspecified by the signals, they are systematically 

underspecified by them. In a way, systematic underspecification is a type of 

categorisation. Although there are just five signals, there is a regular pattern in the 

way those five signals get assigned to the meanings. In this particular case all 

spiralling objects are called ‘poi’, all horizontally moving objects are called ‘tuge’, 
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and there is a three way distinction between bouncing objects based on the shape of 

that object: squares are ‘tupim’, circles are ‘miniku’, and triangles are ‘tupin’.

Clearly the fact that this system persists completely unchanged for the final three 

generations indicates that it is well adapted to the problem of being faithfully 

transmitted. Rather than treating the ambiguity as in instance of homonymy or 

synonymy though, it is possible that the meaning-space itself is changing along with 

the language. Support for this theory comes directly from the post-test reports of 

learners exposed to this particular system. According to the participant at 

generation 9 of this chain: “the aliens don’t seem to care about colour”. For this 

learner, although he could clearly perceive that the meanings varied along three-

dimensions, the signals themselves forced him to reinterpret that assumption. By 

rationalising that the aliens were colour-blind, he realised that there were in fact, 

only two dimensions to keep track of.

Table 4.3: A table showing the final language from a stable system in Experiment I (Chain C). The 

meanings in this language are systematically underspecified by the signals. This system  easily 

survives the transmission bottleneck by effectively reducing the number of meanings to just five: 

things that move horizontally; things that spiral; bouncing squares; bouncing circles; and bouncing 

triangles.  Given that the bottleneck allows 14 items through, the odds of at least one item from each of 

tuge tuge tuge

tuge tuge tuge

tuge tuge tuge

tupim tupim tupim

miniku miniku miniku

tupin tupin tupin

poi poi poi

poi poi poi

poi poi poi
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the five emergent categories surviving are high. This table has been redrawn from Kirby,  Cornish & 

Smith (2008) with permission.

So how does this actually make the language easier to learn? By dropping a 

meaning feature like colour (and in the case of spiralling and horizontally moving 

objects, shape also) the system has not only decreased the number of salient features 

to be differentiated by name, it has also effectively increased the number of possible 

tokens of each ‘type’ or category of meaning. To explain, there is only one token of a 

horizontal black square, but there are three tokens of a horizontal square, and nine 

tokens of something horizontal. By increasing the number of tokens for a given 

meaning, you increase the frequency and likelihood of it passing through the 

semantic bottleneck to be reproduced by the next generation. Systematic 

underspecification therefore appears to be a powerful adaptation, perhaps 

explaining why it appears to some extent in all four chains. We will return to this 

notion in more detail later in the discussion, but for now, we can ask ourselves how 

it is exactly that systems like this come to arise. 

The Evolution of Signal Forms

One of the exciting things about iterated language learning experiments is that we 

are able to live the diachronic linguist’s fantasy: we have a continuous and complete 

record of the utterance acquisition and production history of every speaker in a 

language, and we can use this to find the early origins of synchronic features of the 

language. For instance, if we examine the history of the language shown in Table 4.3 

we can trace the changes each and every signal underwent over time. If we pick one 

of the signals in the final generation, for instance, ‘miniku’ (meaning ‘bouncing 

circles’) we can follow its ancestry right back to a variant in the original input: 

‘miniki’, meaning a horizontal blue square. This form was altered to ‘miniku’ by the 

very first learner, again to refer to a horizontal blue square. It wasn’t until 

generation 4 that this signal became associated exclusively with bouncing objects, 

but then it was mostly used for bouncing triangles. By generation 7 it was being 
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used for nearly all bouncing items, but at generation 8 it appeared in its current role, 

referring exclusively to bouncing circles (see Appendix B1). 

These historical changes over time can be more succinctly represented visually in a 

coalescent tree (Cornish, Tamariz & Kirby, 2009). These trees are used extensively in 

evolutionary biology to show relationships of descent amongst phylogenies (Barton, 

2007; Hein, Scherup & Wiuf, 2005). One potential issue is how we determine 

relationships of descent in this instance. The ‘miniku’ example was fairly trivial to 

analyse, as the signal itself underwent almost no changes and could be traced back 

to a variant in the initial signal-set by virtue of a common meaning. However, not 

every signal will be this free of noise. We have already seen that the mappings 

themselves, between signals and meanings, are adapting to transmission constraints 

and are therefore highly changeable. Given that our goal is only to trace the 

evolution of signal forms over time, and not the mappings, we need to factor out the 

mappings from our analysis entirely8.

How then are we to proceed? We need to start by making some simplifying 

assumptions. The first is that a learner’s representation of a particular form is 

potentially influenced by any of the forms that they have seen during training, and 

not just the target one. The second, is that in cases where we see exact replication of 

a signal, we can confidently assume a relationship of descent exists, and in cases 

where we see only similarity with other signals, we can only assume a possible 

relationship of descent. Although we can operationalise this similarity 

algorithmically (for instance, by only classifying signals that are above a certain nLD 

threshold as being in a possible relationship of descent), in this experiment the 

signal-sets are actually small enough to analyse by hand9. Figure 4.4 shows a 
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9 Multiple coders can be used, and measures of inter-rater reliability taken to control for any 
effects of coding bias. Given the fact that we are making similarity judgements with a 
maximum of just 14 strings, just one coder was used on this data.



coalescent tree generated for chain A from the first experiment. Undisputed 

relationships of descent are shown by solid lines, whereas possible relationships are 

indicated by dotted lines. Obviously only seen items (shown in bold) could 

influence the language of future generations10. 

From the tree we can see that there is initially a lot of variation and innovation going 

on, with very little faithful transmission, as evidenced by the number of dotted lines 

indicating possible relationships of descent. At this early stage in the history of the 

language, the transmission process seems to principally involve the generation of 

new signals out of recombinations of signal parts. Rather than witnessing the 

replication of whole signals, we see replication of bigrams and larger n-grams in 

new configurations. For example, in the first generation we find the signals ‘lepa’ 

and ‘pali’ arising. These signals were both present as substrings within a seen signal 

in the initial language: ‘lepali’. In addition to finding innovations resulting from the 

loss of signal elements, we also see innovations arising from blends. For instance, 

the appearance of ‘nepi’ in the third generation appears to be the result of a mixture 

of ‘nemi’ and ‘nepa’.

After this brief flurry of innovation, we quickly see a ‘core’ set of signals developing. 

This occurs from around generation three onwards. One thing that is particularly 

noticeable in this tree is the strong effect of ‘frozen accidents’ (Gell-Mann, 1994). A 

frozen accident is essentially a chance event which has far-reaching consequences 

for the future. We can see this when, for instance, the random selection of seen items 

causes signals to be completely lost from the system. Importantly, this occurs 

irrespective of whether those signals appeared particularly frequently in the 

populations before they were selected.
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Why is this important? Well, in this instance we can think of numerosity as a proxy 

for the fitness of each signal. Their suitability as signals has been tested by past 

learners, and their frequency has actually increased. If two signals are equally fit 

(frequent), and one gets selected and ends up heavily influencing the system in the 

future whilst the other does not, then we must conclude that this is an instance of a 

historical accident. It was not the case that one signal was better suited to be passed 

on, it was just a chance event that led one to propagate, and the other to become 

extinct. On the other hand, if two signals were not equally fit, and the fitter one 

went on to affect the future language, this would instead be an instance of cultural 

selection. We see examples of both processes at work here: for instance, the loss of 

‘lepa’ and the survival of ‘nemene’ in generation 2 appear to be the product of 

chance; whereas the relative success of ‘maho’ over ‘mapo’ in generation 1 might be 

better construed as cultural selection. Crucially, however it is the random 

application of the bottleneck that would seem to be most responsible for the steady 

loss of variation in signals. We will return to this idea in §4.4.
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4.2.3. Summary

In summary, we can accept both the learnability and the structure-increase 

hypotheses set forward earlier. We found that the transmission error between 

languages significantly decreased over time, and that this coincided with a 

significant increase in the amount of structure found in each language over time. 

However, both quantitative and qualitative examinations of the languages 

themselves revealed that unlike in computer simulations of iterated language 

learning, the systems did not evolve to become compositional. Instead, individual 

signals increased their chances of surviving the bottleneck by increasing their 

frequency in the languages. This came at the expense of expressing all 27 meanings, 

which meant that the meanings became underspecified by the signals. However, 

this underspecification was not indiscriminate: it was argued that a systematic 

relationship between signals and meanings still evolved, it just involved a 

reclassification of the meaning-space to describe fewer dimensions. We must 

therefore reject the compositionality hypothesis, and conclude that there is 

something slightly different going on in the human iterated language learning 

study, compared to the computational versions.

4.3 Experiment II: The Effect of Imperfect Learning

The first experiment has shown us that when there is a semantic bottleneck in place 

it creates a pressure for greater generalisation. Under such circumstances, systems 

will actually adapt to overcome the restrictions imposed by this bottleneck, and 

reorganise themselves in a systematic way. The fact that participants are being 

forced to describe novel stimuli during their final test however, makes it impossible 

for them to fully succeed at the task without some sort of structural relationship 

existing between meanings and signals. Even though the participants are not aware 

of it until the last minute (if at all), this simple experimental manipulation has made 
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a memorisation strategy completely useless. In some sense this is unfair: 

participants are being misled as to the parameters of the task they have been given, 

and the design of the experiment is such that some sort of change in the language is 

inevitable from the outset. Put another way, it is all well and good to show that 

participants generalise when faced with labelling novel stimuli, but can we be sure 

that this situation arises naturally without some reliable intervention?

In order to address this concern, a second experiment was run. This time, instead of 

only training participants on half of the language, they were exposed to all of it. This 

means that, in principle, it is now possible for a language to be memorised and 

transmitted holistically right from the beginning of the experiment. This has been 

tried before, in computational simulations of iterated learning. For instance, Smith 

(2003) clearly demonstrates that if an ILM is run with no semantic bottleneck in 

place, no cultural evolution occurs at all -- the randomly generated idiosyncratic 

signals created in the first generation are maintained throughout. This is because in 

this model, agents are perfect learners. They are capable of memorising even large 

numbers of meaning-signal pairs flawlessly. Given the fact that human memory is 

not that reliable, it is worth investigating whether this ‘memory bottleneck’ could 

play any significant role in the emergence of structure11.

4.3.1 Method

Aims and Experimental Hypotheses

Although our research question is different (instead of questioning whether the 

semantic bottleneck is capable of explaining the emergence of structure in language, 

we are now questioning whether natural human memory limitations can function in 
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the same way) our experimental hypotheses remain basically the same, with one 

exception. Given that in the last experiment, the languages evolved to be 

systematically underspecified instead of compositional, we will replace the 

compositionality hypothesis with one about systematic underspecification.

1. The Learnability Hypothesis: Languages will become easier to learn as a result 

of iterated learning. 

2. The Structure-Increase Hypothesis: Languages will become more structured as 

a result of iterated learning.

3. The Systematic-Underspecification Hypothesis: Pressure arising from natural 

memory constraints will result in languages evolving to become underspecified 

in a systematic way.

Throughout, we are looking for any similarities or differences in the kind of 

languages that emerge in the first and second experiments. Because the only 

experimental difference between them is the presence or absence of the semantic 

bottleneck, we can consider them to be two contrasting conditions.  Occasionally it 

will be more convenient to refer to the two studies by condition (i.e semantic 

bottleneck (SB) or no semantic bottleneck (nSB)) instead of by name. 

Experimental design

Once again four transmission chains were set-up with new sets of initial languages, 

randomly generated and paired with the structured 3!3!3 meaning-space. These 

chains were each run for ten generations of learners. Unlike the first experiment 

however, each participant was trained on all 27 meaning-signal pairs. Training and 

testing phases were held proportional to those in Experiment I; although there were 

more training items in total, each meaning-signal pair was seen the same number of 

times (i.e. six times - twice in each of three rounds) and for the same duration (six 

seconds total) as before. Following the final test, the entire set of meaning-signal 
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pairs was transmitted to the next participant. Again, this experiment was carried out 

using E-Prime, and the results were analysed using R.

Participants

A total of 40 new participants (age: M = 21.075, S.D = 2.63) were recruited via 

another advertisement in the University of Edinburgh’s student employment 

service. From this 40, there were 24 female and 16 male participants. Eligibility 

restrictions were the same: normal or corrected-to-normal vision, no dyslexia, 

participating in an ‘alien language learning‘ experiment for the first time, fluency in 

English, and not a linguistics student. These participants were paid £5 for their time 

and travel costs, were randomly assigned to one of the four language chains, and 

were given the exact same instructions as the previous participants. All participants 

were fully briefed before taking part of their rights of withdrawal and anonymity. 

This study fully conformed to the ethics guidelines set by the University of 

Edinburgh’s College of Humanities and Social Science.

Procedure

The experimental procedure was identical to that described in §4.2.1, with the only 

difference being that there was no semantic bottleneck in place. As the participants 

were being trained on more signal-meaning pairs however, Experiment II lasted a 

bit longer: including time for filling in the questionnaires and debriefing, 

participants spent around 50 minutes on the task. 

4.3.2 Results of Experiment II

Structure and Learnability Increase
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In spite of the changes we have made to the experiment design, our hypotheses 

concerning the languages becoming more structured and easier to learn remain the 

same. To determine whether they hold, the structure and error scores were 

calculated for each language chain, and are shown in Figure 4.5 below. Overall, we 

find a similar result to the first experiment, with all chains showing statistically 

significant increases in structure (mean increase of 7.39; t(3)=9.08, P<0.001) and 

decreases in error (mean decrease of 4.45; t(3) = 4.628, P<0.005) between the first and 

last generations, as shown by one-way paired t-tests. However, the systems that 

emerged do appear to be less stable than the ones from the previous experiment. 

Only one of the four languages was perfectly transmitted, and only for one 

generation. 

Figure 4.5: Graph showing the learnability and structure scores over generations in Experiment II. 

The graph on the left shows that structure increases steadily over time (points above the dotted line 

represent z-scores significantly different from what we would expect by chance). The graph on the 

right shows transmission error (measured as nLD) decreases over time. Both graphs have been remade 

from Cornish (2010), using 10,000 Monte-Carlo randomisations instead of 1,000.

Finding less stability in the systems is in some ways counter-intuitive, as we might 

expect that once some structure had emerged in the languages, having full access to 

the data should actually facilitate acquisition. Afterall, it should be easier to detect 

structural regularities when provided with more evidence than it is with less. Of 

course, a general point can be made here concerning the fact that we only have four 
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chains to base our observations upon. We cannot rule out the possibility that we 

have just been unlucky not to observe more stability in this particular instance. 

However, it could also be that there are features within the languages themselves 

which actively discourages stability from emerging. It is to this question we now 

turn.

No Change in Level of Difficulty of Task 

Perhaps the reason for instability is simply due to the fact that we are presenting the 

participants with a harder task. It is possible that even though we have kept the 

amount of training per item constant, by giving participants access to more 

meanings to learn from we have increased the cognitive load placed upon them. If 

this prevents useful structures emerging in the first place, then having extra training 

data could actually reinforce the idea that the system contains no order and slow 

down the whole process. In order to test this we can compare the learnability scores 

for the first generation of learners in the current experiment (shown in Fig.4.5.right) 

to the scores found for the first generation in the previous experiment (shown in Fig.

4.3.right). If participants are finding the task harder in the nSB condition, we would 

expect to see that reflected in their performance on the random initial languages.

For clarity, the error-scores of the first generation for the four chains in each 

condition are reproduced in Table 4.4 below. From this table we can see that there is 

not much difference between the performance of the first learner in either condition. 

Although on average we find recall to be slightly better in the nSB condition (mean 

error of 0.715 with the semantic bottleneck, and just 0.675 without), this difference 

was not found to be statistically significant (t = 0.9389, df = 3.974, p-value = 0.4012). 

This means that exposure to a greater number of meaning-signal pairs is not making 

the task more difficult for participants. 

Interestingly, the statistical test also indicates that seeing the entire language is not 

making the task of learning the system any easier either. This is surprising, as when 
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the bottleneck is in place the performance of the first participant is rigidly capped. 

In order to get error lower than the 0.5 mark, the participant would have to have 

access to the unseen meaning-signal pairs, which of course, they do not. Participants 

in the second experiment on the other hand, have no such restriction. There is 

nothing in the design of the experiment preventing them from doing much better 

than 0.5. Obviously whilst there are some talented individuals in the world who are 

capable of associating 27 randomly constructed signals with 27 unfamiliar meanings 

in the 16 minutes and 20 seconds of training time given, most individuals are not. It 

seems that no matter how many examples participants are given, on average only 

approximately 30% of it will be correctly recalled12.

Experiment I (SB) Experiment II (nSB)

0.7484568 0.7330247

0.7026749 0.7161817

0.7347884 0.6929012

0.6759259 0.5578483

Table 4.4:  Error-scores of the first learners in the semantic bottleneck (experiment 1, left) and no 

semantic bottleneck (experiment 2,  right) conditions. The differences in these scores are not 

statistically significant, indicating that the removal of the bottleneck has not made the task of learning 

the language any easier or harder.

Reduction of Signal Types

In order to determine whether languages were becoming underspecified as in 

Experiment I, we can examine the number of distinct strings again. As Table 4.5 
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signals and low levels of recall of parts of others.



shows, the number of distinct signal types once again decreased, but not quite to the 

same extent as previously found. In order to judge this, I ran another set of unpaired 

t-tests on these numbers, and those obtained from the first experiment (shown in 

Table 4.2) by generation. Although generations 1-8 showed no significant difference, 

in the final two generations the nSB condition had a statistically significant increase 

in the number of distinct words produced as compared to the SB condition: 

generation 9 (t(3) = 2.4804, p=0.05) and 10 (t(3) = 3.1623, p=0.02) have retained more 

signal types overall than what we witnessed in the previous experiment.

generation 0 1 2 3 4 5 6 7 8 9 10

chain A 27 23 20 14 13 13 10 9 10 7 7

chain B 27 21 14 10 8 8 11 9 9 9 6

chain C 27 20 15 14 8 6 6 5 6 6 7

chain D 27 25 10 8 5 5 5 5 5 5 5

Table 4.5: The number of distinct signal-types by generation for all chains in Experiment II. This table 

shows that there is a steady reduction in the total number of signals found in each language over time. 

However, there was a significant increase in the number of distinct signals in the final two 

generations when compared to the results of Experiment I. 

Overall we can confirm our two basic hypotheses about learning and structure-

increase, and so far have seen that removing the semantic bottleneck appears to be 

increasing the amount of variation in the systems, albeit at the expense of stability. 

Now we will look to see what a qualitative analysis of the languages in the nSB 

condition reveals.

Systematic Underspecification, Irregularity and Internal Structure

Table 4.6 shows the language which got the highest overall structure score, at 

generation 9 in chain A. From this, we can see that once again, a form of systematic 

underspecification has arisen. In the previous study, the appearance of this 
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phenomenon was explained in terms of the bottleneck on transmission encouraging 

a reduction in the size and structure of the meaning-space: this in turn increased the 

number of tokens of each meaning-type, which increased the chance of at least one 

token making it through the bottleneck. This is enough to allow the system to be 

reliably inferred by the next learner. Here it appears that the ‘memory bottleneck’ is 

doing something similar. Just as in the example shown in §4.2.3, we find that the 

colour dimension has been lost13. However, there are a number of interesting 

differences here as well.

The first thing to notice here is that the signal form used for bouncing objects 

contains a number of irregular variants -- specifically, ‘mucapo’ and ‘nukapo’. 

Although these signals all share roughly the same structure, they display variation 

in the first and second consonants. We do not find these kinds of irregulars in the 

semantic bottleneck condition (see raw data in Appendix B1). Furthermore, if we 

examine the signals associated with bouncing objects in the generations preceding 

this one, we find that this is not a one-off occurrence. The variation has actually 

persisted for some time (Table 4.7).  Even as far back as generation 4 we find the 

same basic pattern. By looking at Table 4.7 we can see that these irregulars are not 

stably associated with any specific meanings (i.e. colour or shape). To borrow an 

analogy from phonology, it appears that they are in free variation, and although 

many of these alternative variants eventually disappear over time, they do so only 

gradually.
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something special about colour which makes it more likely to be the dimension that gets 
ignored. Of the eight chains described so far, four could be described as motion:shape 
systems (where motion was most consistently encoded, and shape a secondary 
characteristic), two were colour:motion systems, one was a motion:colour system, and one 
was undetermined. The undetermined chain was the one shown in Fig. 4.3 which had just 
one word for ‘blue spiralling square’ and another for everything else.



Table 4.6: The language with the highest structure score in Experiment II (Chain A,  generation 9). 

Although this language is systematically underspecified, there are some signs of internal structure to 

the way signals are constructed. For instance, all bouncing objects share the suffix ‘-ini’, whereas all 

objects moving towards the right have the suffix ‘-apo’. There are also irregulars present (e.g. 

‘nukapo’, ‘mucapo’) which we did not see evidence for previously.  This table has been redrawn from 

Cornish (2010).

tuge tuge tuge

tuge tuge tuge

tuge tuge tuge

tupim tupim tupim

miniku miniku miniku

tupin tupin tupin

poi poi poi

poi poi poi

poi poi poi

hapo hapo hapo

hapo hapo hapo

hapo hapo hapo

nucapo mucapo mucapo

nucapo nucapo nucapo

nucapo nukapo mucapo

nuakini nuakini nuakini

wagini wagini wagini

waginini waginini waginini
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                       generation
meanings 4 5 6 7 8 9

black circle

blue circle

red circle

black square

blue square

red square

black triangle

blue triangle

red triangle

muhapo magini nucapo nucapo nukapo nucapo

nucapo mukapo mukapo mucapo mukapo nucapo

muhapo mucapo mucapo mucapo mucapo nucapo

mutapo nucapo nucapo nucapo nucapo nucapo

mukapo mugini mukapo mucapo nukapo mucapo

muckapo mucapo mukapo mukapo nucapo mucapo

mugeni mugenini nucapo nucapo nukapo nucapo

mukapo mucapo mukapo mukapo nucapo nukapo

muhapo nucapo mucapo mukapo nucapo mucapo

Table 4.7: Variation in signals associated with bouncing objects in chain A. Although there is a 

common underlying pattern here (a nasal consonant, followed by ‘u’,  followed by a non-nasal 

consonant, followed (mostly) by the sequence ‘apo’), there appears to be nothing conditioning exactly 

which variant gets used. Irregulars like these can only survive in the language when there is no 

semantic bottleneck in place.

 

The presence of irregular variants can potentially explain why there is less stability 

here than when there is a semantic bottleneck in place: having full access to the data 

allows these irregulars to survive, and complicates the learning process by making it 

necessary to memorise exceptions on a case by case basis. Although broad 

categories of signal-types may be stable over time as Table 4.7 shows, our measures 

of error are highly sensitive to even slight differences in form, obscuring the fact that 

there is actually quite a lot of continuity between generations (Cornish, 2010).

The second thing to notice about the language shown in Table 4.6 is that it appears 

there is a degree of internal structure to the signals used. Spiralling objects all 

contain the suffix ‘-ini’, whereas objects moving to the right all end in ‘-apo’. There 

also appears to be some local regularity associated with the shape of bouncing 
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items: the prefix ‘nuak-’ refers to squares, ‘wag-’ refers to circles, and ‘wagig-’ refers 

to triangles. This is exciting, as it looks as though we are starting to see evidence for 

some kind of compositionality, albeit as part of a language that is very 

underspecified. Unfortunately none of the participants from this chain reported 

being aware of any kind of prefixes or suffixes, and indeed, the language loses this 

clear structure by the next generation. 

Examining the other three chains in this condition (see Appendix B2) does not 

reveal any other cases of internal structure in regular alignment with particular 

meaning aspects, but all of the chains’ signals do show signs of being composed of 

subparts that get reused. For instance in the final generation of chain C we find the 

majority of the words have a common ending, ‘-laki’, and that the single exception 

to that pattern, ‘mano‘, is itself repeated in another signal, ‘manolaki’. We should be 

wary of getting too excited by this finding however, as the same thing occurs 

(although arguably to a lesser extent) in the languages created in the first 

experiment (Appendix B1)14. 

The Evolution of Signals

Two factors seem to differentiate the languages emerging in this condition: the 

signals contain more variation, and in addition to becoming more learnable via the 

underspecification route, at least one of the chains contains signals that have 

internal structure which unambiguously maps onto specific meaning aspects (like 

motion). We can examine how these features arise historically in the chains by 

creating another coalescent tree like in Figure 4.3. As both of these features are only 

found in one chain (A), we will continue our focused exploration of it here by 

examining the evolution of its signal forms. This coalescent tree is shown in Figure 

4.5.
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generations of chain B in Appendix B1 shows considerable reuse of signal parts: ‘ninalehe’, 
‘lehe’, ‘nina’, ‘wina’, and ‘winako’ being prime examples. 



One of the first things to notice if we compare the two coalescent trees is that 

although we appear to have more variation and innovation in the nSB condition 

overall, we again see that the trend in both is for more of this early on, rather than 

later. This is in spite of the fact that earlier we only found statistically significant 

differences in the number of distinct signals in the final two generations. How can 

we explain this? It seems to boil down to a simple case of numbers. The major 

difference between the two conditions is that when we have a semantic bottleneck 

in place, even easy to learn signal types are at risk of being removed from the 

language if they are infrequent. 

The kinds of mistakes learners make during recall fall neatly into three kinds: (i) the 

learner incorrectly applies a learned signal to a different meaning and produces a 

novel mapping between meaning and signal (this is why the language becomes 

underspecified in both conditions); (ii) the learner confuses parts of different signals 

and combines them to produce a novel signal (this frequently happens early on in 

both conditions); or (iii) the learner makes a typographical error and produces a 

novel signal (this can theoretically happen at any point, but does not typically occur 

at all if the number of distinct strings is very low). The latter two error types are, by 

their very nature, low frequency additions to the system. This means that if they 

occur in the semantic bottleneck condition, they are extremely likely to be removed 

from the system almost as soon as they are created. 

Of course, this is only half of the story however. We also only see participants 

making mistakes that result in the innovation of new signal forms when there are 

enough signal types in the system to cause difficulties in learning. In the nSB 

condition, signals are lost so quickly early on that it soon becomes unlikely to even 

make a mistake in the first place. This can be seen by examining the point at which 

new signals stop being created in the two coalescent trees (i.e. where we see the last 

relationship of possible descent). In Figure 4.6 we find new signals being created 

even in the final few generations in the nSB condition, whereas in the SB condition 

(Fig. 4.4) this ceases by the third generation. The same seems to hold true of the 
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other chains in both conditions: if we note at which point new signals stop being 

generated we find that this occurs between generations 5 and 10 in the nSB 

condition, whereas for the SB condition it occurs earlier, between generations 3 and 

7.
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4.3.3 Summary

We can summarise these results as follows. Firstly, just as in the previous study, we 

can confidently accept both the learnability and the structure-increase hypotheses 

on the basis of significant decreases in transmission error between languages, and 

significant increases in the amount of structure found in each language over time. 

Furthermore, we can also accept the systematic underspecification hypothesis, as 

languages in this experiment adapt to be learnable by encoding fewer dimensions of 

meaning. However, in spite of these similarities, there were also some differences 

between the languages constrained only by limitations in human memory, and those 

constrained by an external semantic bottleneck. First among these is the stronger 

persistence of variation -- both in terms of a greater number of distinct signal types, 

and also irregularity. Secondly, one of the chains evolved a language that was not 

only systematic in the way it was underspecified, but also had internal structure 

that was regularly aligned with some aspects of meaning. Suffixes regularly 

expressed different types of motion (spiralling vs. movement-to-the-right), and for 

some meanings, shape was locally encoded as a prefix. 

4.4 Discussion of Experiments I and II

This section discusses the implications of the results of the first two experiments in a 

little more detail. The key point to note is that we see structure emerging as an 

adaptive response to any kind of bottleneck on the process of transmission. These 

studies extend previous computational results by demonstrating that the presence 

of a semantic bottleneck is not essential in order for cultural transmission to become 

adaptive (Cornish, 2010). Instead, all that is required for adaptation is imperfect 

information. Whilst the actual source of that imperfect information (i.e. natural 

limitations on human memory, or restricted exposure to data encountered in the 
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world) is unimportant for the emergence of structure in general, it might play a role 

in shaping what that structure looks like. In other words, the dynamics of cultural 

transmission are as important as the mechanisms constraining it in accounting for 

the emergence of a specific system. 

As a case in point, we have seen how the loss of variation early on inhibits the 

generation of signal innovations. Whilst this does encourage more stability in the 

resultant languages, it also leads to features which seem less useful for the task of 

communication (i.e stability in this case comes at the expense of being able to 

unambiguously identify more of the meanings in the meaning-space). In short then, 

one of the main findings to emerge from these two studies is that the principle of 

linguistic adaptation holds true in a population of human learners. Structure is the 

inevitable result of transmission with constraints. Whatever emerges will be 

adapted to those constraints, but perhaps more tellingly, to those constraints only. 

Given that there was no explicit pressure on the systems to create unambiguous 

mappings between meanings and signals, we should perhaps not be too surprised 

to find that systems with those qualities do not naturally ‘fall out’ of the process. 

This is an issue we will be turning our attention to in the next chapter. 

The second point to note concerns the differences between the two experiments: 

although the languages in both studies are adapting to fit the learning biases of the 

human participants, the semantic bottleneck in the first experiment additionally 

inhibits the survival of signals at random. This has some interesting implications. In 

the second experiment, the only processes occurring during transmission are 

selective -- for greater salience, learnability, cohesion with other words, relationship 

to the meanings, etc. Whilst this kind of cultural selection of signals fitting these 

constraints is still present in the first experiment, the effect of the semantic 

bottleneck is subtly different. 

In some sense, the action of the semantic bottleneck equates to what biologists 

would call neutral selection without innovation. This process has been used in 
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biology to explain how traits in a population can rapidly change over time and 

fixate on one particular variant, without that variant being connected with any 

enhancement of fitness for the organism (Nettle, 1999). Rather than being about 

Herbert Spencer’s term, ‘survival of the fittest’, neutral drift is about ‘survival of the 

luckiest’ (Kimura, 1989). Models have shown that given a population of variants 

that are not under selection for any particular trait, and a random policy of removal 

of those variants steadily over time, taking this process to its logical extreme will 

result in one variant taking over entirely (Cavalli-Sforza, 2000; Nettle, 2009). In fact, 

this is very nearly what we found in one of our chains (A) in the first experiment. 

In sum, whilst there is there is a only a one stage process of cultural selection (for, 

amongst other things, signals that are more easily acquirable) in Experiment II, there 

is a two stage process in Experiment I. First the semantic bottleneck removes items 

at random, and then cultural selection prunes what is left. This explains the 

difference in the amount of variation in each condition.

 

How are we to interpret the findings here? In some sense it is disappointing that we 

did not find more evidence of compositional structure here. That is not to say, 

however, that the structure we did find is not in itself ‘language-like’. In fact, we 

find that underspecification is actually rife in natural language. As an example, we 

can consider the case of common nouns. Unlike proper nouns which pick out 

unique referent in the world, common nouns refer to entities of a general type. 

Something similar appears to be happening in the languages arising over the course 

of the transmission chains in these experiments. Rather than picking out every 

potential meaning to be distinguished, it seems that more general categories of 

meanings are forming. In a sense, the signals are acting as a cue to participants to 

lump together meanings with similar features15. This (re)categorisation of the 

meaning-space appears to be part of what gets transmitted to the next generation. 
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In order to explore how language and cultural transmission interacts with 

categorisation in more detail, Matthews (2009) (see also Matthews, Kirby & Cornish, 

2010) used this experimental framework to investigate how signals evolve in a 

world with continuous meanings. Instead of having discrete, finite meanings, this 

study explored what would happen if human participants were trained on signals 

paired with meanings whose features varied along continuous dimensions. Using 

morphing software, the dimensions of shape and orientation were manipulated to 

create a meaning-space where horizontal triangles mutated into vertical rectangles, 

and vertical triangles mutated into horizontal rectangles. This created 100 different 

meanings, each of which was only very slightly different to its neighbouring 

meanings.

Initial languages were randomly constructed, and participants were given a subset 

of training items to learn, drawn from the meaning-space at random. During the test 

phase, they were asked to provide signals for another subset of meanings, again 

drawn at random. These meanings were almost certainly not the same as those that 

they had seen in training, yet nevertheless, their output was recorded and 

transmitted to the next generation. Using a control set of items that participants 

were always asked to name after they had produced the new language for the next 

learner, Matthews (2009) demonstrated that the signals began to partition the 

meaning space up in different ways. The languages in this study were structured by 

categorising similar meanings with similar strings. Furthermore, there was 

interesting variation between transmission chains as to how this partitioning was 

achieved.  Not only were signals and category boundaries transmitted between 

generations, but the very notion of how ‘similarity’ was defined also got culturally 

transmitted. For instance, some chains were blind to the rotation of the objects, and 

would classify objects as similar if they were the same basic shape in a different 

orientation, whereas other chains classified objects in different orientations as being 

dissimilar.
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It is interesting that in Experiments I and II we find that structure also emerged via 

categorisation. As categorisation underlies linguistic properties like 

compositionality and recursion, this makes these initial results appear a little more 

encouraging. Taking another perspective, let us think for a moment about how well 

the systems that emerged would function in a communicative context. Participants 

at the beginning have very little chance of successfully communicating any of the 

meanings to another learner. Participants at the end would be able to convey quite a 

few meanings reliably, but certainly not all 27. Although we did not find robust 

signs of compositionality emerging like the simulations did, these results are at least 

suggestive of the idea that features of language that are useful for communication 

can emerge from transmission constraints alone.
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--------------------------------------------------------------------------------------------------------------------------------------------------

Chapter Five

Language Adapts to be 

Expressive
--------------------------------------------------------------------------------------------------------------------------------------------------

The first two experiments described in the previous chapter have shown that 

language adapts to all and only those constraints being placed upon them1. In these 

studies, the only pressure being put upon the systems is to be learnable. As a result, 

the languages adapt in ways that suit this outcome. However, some of the structural 

features that emerge from this process, such as the widespread underspecification of 

the meanings, although well attested in natural language, do not seem particularly 

suited for communication. A potential reason for this stems from the fact that there 

is no pressure constraining the languages to uniquely express all of the meanings. 

This raises an interesting question: if we build in a pressure for expressivity, will we 

find compositional structures better suited for communication emerging? This is 

what the experiments in this chapter aim to find out2. Before we begin, we should 

perhaps spend a moment thinking about what we mean by ‘expressivity’.

Expressivity relates to the ability of signals to differentiate meanings within a 

language. As such, it is also related to the amount of variation in a system, and also 
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(i.e the semantic bottleneck), but also those cognitive constraints internal to the learner. 

2 The results reported in this chapter have also appeared in several publications, including 
Cornish (2010), Cornish et al. (2009), Kirby et al. (2008a) and Kirby et al. (2008b).



to the number of distinct signals. It is different to the kinds of distinctiveness 

requirements hypothesised to drive song creativity in certain species of birds 

(Marler, 1957; Ptacek, 2000), because that implies that the signals themselves must 

be dissimilar from one another or from the signals produced by other vocalisers. 

This is not the case with an expressivity requirement: here, all signals must do is be 

able to express all of the meanings that a speaker wishes to convey in such a way 

that a hearer can easily recover those meanings. We might, therefore, expect a 

language which is fully expressive to have one-to-one mappings between signals 

and meanings, and contain little or no redundancy or ambiguity3.

In the case of natural language, the ability for signals to unambiguously differentiate 

between possible meanings comes directly from the pressures of communication 

itself.  Since one of our aims is to explicitly investigate whether we can observe the 

nonintentional emergence of language-like structures in humans, we will have to 

find some other way of encouraging expressivity in our experiments. The next 

section discusses ways we can possibly achieve this.

5.1 The Expressivity Requirement

If we take a closer look at various iterated learning models, it turns out that they all 

have an expressivity requirement built in somewhere4. Even in ILMs which purport 

to have no meaning-space at all (e.g. Teal & Taylor, 2000; Zuidema, 2003), the 

algorithms insist that agents must continue creating signals until they have satisfied 
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3  In reality, we know that human language is not nearly so perfect. Given that 
communication occurs over a noisy channel and involves making generalisation inferences 
over imperfect data, some degree of ambiguity and redundancy is actually hypothesised to 
be adaptive, and perhaps even the inevitable outcome of processes of iterated learning 
(Hoefler, 2006). Also, we should not underestimate the role of pragmatics and context as a 
disambiguator in real world communication. 

4 See Cornish (2005) for more discussion of this phenomenon, and an example of a small ILM 
study that shows how even initially highly structured and varied input degrades rapidly 
without the pressure to maintain a minimum degree of expressivity.



a minimum level of expressivity. If we take the model by Zuidema (2003:55) for 

instance, we find that this requirement is controlled by a parameter, E:

“To avoid insufficient expressiveness, we also extend the 
generalization step with a check if the number EG of different 
strings the grammar G can recognize is larger than or equal 
to E. If not, E-EG random new strings are generated and 
incorporated in the grammar.”

Examining the results, Zuidema (2003:56) further notes that “after an initial phase of 

over-generalisation, the expressiveness remains close to its minimally required 

level”. Let us contrast this for a moment with what was going on in Experiment I. 

Humans, unlike the computer agents, were given only one chance to produce a 

signal for a given meaning. They were not forced to continue to produce an output 

until they had produced 27 distinct signals. 

In some ways it is surprising that participants do not seem to do this naturally. 

Several studies have investigated the claim that humans have a one-to-one mapping 

bias, and found it to be rather robust (e.g Slobin, 1977; Haiman, 1980; Macnamara, 

1982). When children learn a new word, studies have revealed that they make 

several assumptions when trying to identify the correct referent from a context. In 

addition to preferences for whole, rather than parts of objects, attention goes 

initially towards those objects which are unnamed: children never instinctively 

assume that a referent has more than one name (Markman & Wachtel, 1988). 

In a discussion on learning biases implemented within the ILM, Smith (2003) makes 

explicit mention of one-to-one mapping biases: the models do not naively include 

an expressivity constraint by accident, it is there to model known human biases. The 

results of the experiments in Chapter 4 are therefore potentially of wider interest as 

they reveal that participants are happy to over-ride this learning bias given the right 

circumstances during cultural transmission.
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5.2 Experiment III: Adding an Expressivity Constraint

There are many ways we could go about introducing an expressivity constraint. One 

method that we have already discussed would be to force participants to keep 

producing utterances until they have produced 27 distinct ones (§5.1). There are 

several reasons why this is not an ideal way to enforce expressivity. The first is 

methodological. How do we decide which meanings to show to participants again? 

Do we show them all?  What if a participant responds to a given meaning differently 

each time we present it? How do we decide which of the signals to transmit to the 

next generation in this case? 

The second issue is one of preserving the integrity of participants belief in what the 

task is about. We want to make sure that participants are unaware that they are 

changing the language5. We would have to find some way of justifying why we 

were continuing to prompt learners for responses if we wanted to maintain this 

illusion. Of course, we could just tell participants that they had used the incorrect 

signal, but this leads to more methodological issues. If a participant makes a 

genuine mistake and uses the wrong signal for a meaning early in the test, when the 

real meaning appears later on and they try to use the signal that they know to be 

correct they will be (falsely) told that they are wrong. This would be both confusing 

and demoralising. Note we cannot just keep prompting them until they produce 

exactly the same responses as the previous generation, as (a) this would lead to no 

change in the system, and (b) they may only have seen half the data.

The effect that we are finding when there is no pressure for expressivity is that it 

leads to an increase in the number of homonyms in the language: signals become 
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what Croft (2000) describes as nonintentional mechanisms of change (§3.3). If participants 
believe the task is about anything other than reproducing the data they have been given as 
faithfully as possible, then we can no longer be sure we are seeing changes that : “happen as 
a consequence of the act of production” (Croft: 2000:65).



associated with more than one meaning, and this leads to ambiguity in the system. 

Although it turns out that this is exactly what we should predict given the 

transmission constraints imposed, if we want to model the emergence of an 

expressive language we need to find a way to handle the ambiguity that this 

introduces. We have actually already seen another way to handle the introduction of 

ambiguity in computational simulations of iterated language learning (§4.1.2). In 

Kirby (2001), ambiguity is prevented from accumulating in the system by the 

learning agents being programmed to ignore any signals for which they already 

have meanings for. If agents later see the same signal paired with another meaning, 

they are prevented from adding that mapping to their grammars. Obviously, we 

cannot prevent our human learners from associating signals with multiple meanings 

in this way.  We can, however, ignore repeated signals on our participants behalf by 

choosing to not select them during transmission (see §3.4.2). In other words, we 

cannot prevent learners from introducing ambiguity into their output, but we can 

prevent it from featuring in their input.

We can refer to this process as filtering (see Kirby, Cornish & Smith, 2008). What this 

amounts to is the idea that learners only learn from novel signals. Note that this is 

actually quite a realistic assumption: if a learner hears a signal that they think they 

already know the meaning for, they are unlikely to actually check to see whether the 

signal actually matches up with the meaning that they believe is intended. They will 

parse it and move on. If they hear a novel signal on the other hand, they will always 

check to see what it could possibly relate to in the world. Due to the way meanings 

and signals are always presented together, participants in the studies are always 

made aware of any underspecification of the meanings, therefore intervention to 

correct this is, I believe, justified6.
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framework. One manipulation we could explore might involve giving participants the 
choice of whether to ‘inspect’ a meaning or not. If they were also given either a time-limit or 
a limit on the number of inspections they could make over the course of learning, we would 
predict that learners would limit their choice of when to check up on the meaning of a signal 
to only those cases where they encounter a novel utterance. 



The way the filtering process was implemented was as follows. experiment 

proceeds as normal until the transmission phase. Recall that it is at this point that 

meaning-signal pairs are selected to be transmitted to the next generation. In the 

case where there is no semantic bottleneck in place, this phase involves no real 

selection or transformation of the data7 -- the entire output simply gets passed on 

from the previous learner. When there is a semantic bottleneck in place however, a 

subset of meaning-signal pairs are randomly chosen to be transmitted. It is after this 

selection procedure that the expressivity filter applies. If any training items contain 

homonymous signals, all but one (selected at random) is removed from the subset to 

be given to the next learner. 

The expressivity filter does create one issue; namely that the removal of homonyms 

after the semantic bottleneck has been applied means that participants are no longer 

guaranteed to receive 14 items in their training input. Two strategies were 

considered for ensuring that the number of training items remained constant, but 

ultimately, both were rejected. The problem is that they introduce selection biases 

into the experiment. For example, the first strategy that was considered involved 

removing homonyms from the language before the bottleneck applied. This plan was 

rejected for two reasons. Firstly, it would not work when learners had fewer than 14 

unique signals in their whole output. Of course, if this was the case, one suggestion 

might be to use this criterion (at least 14 unique signals) as a benchmark for rejecting 

that participant, and try training a new learner on the same data in hopes that they 

might recall more items. Note that this is equivalent to selecting learners with above 

average recall ability, which is something that we did not do in our previous 

experiments. 

The second reason for rejecting the strategy of applying filtering before the 

bottleneck relates to the effect it has on the selection of meanings. Currently 
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training-items, which ensures that the new learner receives them in a different order to that 
in which they were produced.



meanings are selected at random. This models the idea that we are motivated to 

communicate about things that just happen to be going on in the world around us. 

If we switch the order of the two processes (filtering and selection of meanings to 

convey) then the world is no longer our random guide. The world is suddenly 

under pressure to only present us with a subset of meanings that are related by the 

(fairly arbitrary) fact of having a unique signal. To clarify, when filtering follows the 

bottleneck, every meaning is equally likely to be selected to be transmitted. if 

filtering precedes the bottleneck however, some meanings are more likely to be 

selected than others simply because they are expressed with a novel signal. As 

appearing in a learner’s training input is highly correlated with being faithfully 

acquired (and therefore, with the preservation of the distinctiveness of the signals), 

these meanings are likely to be continually sampled again, and again, and again. 

Eventually we will just see the transmission of the same 14 meanings with just 

minor variations in their signals.

The second strategy that was considered does not fare much better. This idea 

involved actively replacing repeated signals with a novel one. Two options for 

implementing this were debated. The first was inspired by ILMs like Zuidema 

(2003), who had agents randomly construct novel signals when they had run out of 

unique learned signals. The first issue with this approach is that it is clearly not the 

natural response of our learners. It is therefore unclear what creating a random 

signal string corresponds to in real-life. The second issue relates to the fact that the 

signals in a given system at any point in time are there because they share a 

common history. They have evolved together and have the features that they do in 

virtue of this fact8. If we start introducing completely novel signals at later points, 

those signals will, (i) be recognisably different, and (ii) have a potentially disruptive 
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§4.3.2), which show how signals evolve over time as a result of descent with modification.



influence on the language9. It is as if we were undoing all of the evolution of that 

particular meaning-signal pair, and resetting it to generation zero. A less extreme 

alternative that was considered was to replace the signal that was filtered out with 

the last novel signal that a previous participant in the chain had produced10. In the 

worst case scenario this is equivalent to generating a new random signal as it might 

involve going back to the original form in the initial language. However, more often 

than not this might involve only stepping back a few generations. Whilst this would 

be less noticeably disruptive than random invention, it still has the problem of 

destroying lines of inheritance.

In summary, the two options that I considered for ensuring that participants always 

received 14 items in their training input were to either (a) apply the filtering process 

before the bottleneck, or (b) to replace those repeated signals that got removed with 

an alternative. Both of these strategies were found to introduce selection pressures 

not found in the previous experiments; for either learners with better recall, or for 

just a subset of meanings having distinct signals; or else they interrupted the 

evolution of signal forms themselves. Given this, it seems that the correct course of 

action is to accept that learners might sample from fewer meaning-signal pairs 

during training. Not only does this more closely replicate processes occurring in 

some ILMs (e.g. Kirby, 2001), but it also maintains greater continuity with the 

previous experiments. Both this and the fact that the filtering technique also has the 

added advantage of being invisible from the point of view of the learner, will be 

especially important for comparing this study to the studies in the previous chapter.

5.2.1 Method
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these issues will ‘wash out’ over time. However, given that we have practical limitations on 
the number of generations we can run, these concerns are important.

10 To clarify, we mean that the signal is novel with respect to the current generation, and not 
necessarily novel with respect to the generation of origin.



The same basic methodology described in §3.4 was used in this experiment, 

however, this time we added in a pressure to express meanings uniquely. Because 

the experiment with the semantic bottleneck was slightly more economical to run in 

terms of time, and most ILMs include a semantic bottleneck, we use one here as 

well.

Aims and Experimental Hypotheses 

We want to find out whether adding an expressivity constraint to the task 

encourages compositional structures to emerge. Our hypotheses are therefore 

almost identical to those in the first experiment (§4.2), but with one slight 

modification: instead of predicting that compositional structure will emerge as the 

result of pressure to generalise to novel stimuli, it is predicted that we also need a 

pressure for expressivity. The three hypotheses have been reproduced below.

1. The Learnability Hypothesis: Languages will become easier to learn as a result 

of iterated learning. 

2. The Structure-Increase Hypothesis: Languages will become more structured as 

a result of iterated learning.

3. The Compositionality Hypothesis: Pressure to generalise to novel stimuli 

combined with a pressure to uniquely express each meaning will result in languages 

evolving to become compositional.

Experimental Design

Four initial languages were randomly generated to seed each chain11. Each chain 

was run for ten generations, and had both a semantic bottleneck in place as well as 

filtering. This meant that participants were trained on around 50% of meaning-

signal pairs and all meaning-signal pairs represented a unique one-to-one 
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where this framework was piloted (Cornish, 2006).



mapping12 . The training and test procedures were identical to those outlined in 

Experiment I, with three rounds of training, each followed by a test round. Only the 

signals produced for meanings in the final test were transmitted to the next learner. 

The experiment was run using E-Prime software, and the results were analysed 

using R.

Participants

Another 40 participants were recruited via an advertisement at the University of 

Edinburgh’s student employment services to take part in this study, of which 18 

were male and 22 were female. They had an average age of 22.75 (S.D = 4.53), and 

were each offered £5 for their participation. Participants were assigned to a 

generation and chain at random, and had normal or corrected-to-normal vision, 

were fluent English speakers, not dyslexic, and had not participated in any of the 

previous studies or taken courses in linguistics before. The study conformed to the 

ethics guidelines set by the University of Edinburgh’s College of Humanities and 

Social Science, and participants were fully briefed before taking part of their rights 

to withdraw from the experiment at any time, and that their participation and 

results would remain anonymous.

Procedure

The training procedure was identical to that of the first experiment. Training items 

were displayed in a random sequence on a monitor for six seconds each. Every 

training item was seen six times over three rounds of training - twice per round. 

During testing phases participants were shown meanings and given an unlimited 

time to provide the correct signal associated with that meaning. No explicit 

feedback was given to participants during training or testing, and participants 

remained unaware of the true purpose of the study until after they had completed 
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training and testing, filled out a questionnaire about their experiences, and been 

debriefed about the true purpose of the experiment.

5.2.2 Results of Experiment III

Structure and Learnability Increase

We can apply our measures of structure and transmission error once more to get a 

general overview of what is happening to the languages over time. As Figure 5.1.left 

demonstrates, we find that all four chains show significant levels of structure by the 

second generation, and a general trend for these levels to increase over time 

thereafter, whilst Figure 5.1.right indicates a steady decrease in the amount of 

transmission error between learners over time. Paired t-tests on the structure scores 

obtained in the initial and final generations confirm that the increase was 

statistically significant (as shown by a mean increase in structure of 6.77, t(3) = 2.535, 

P<0.04), and examination of the transmission error scores reveals a similar story. 

Languages are significantly more learnable by the final generation than they are at 

the start (mean decrease in error of 0.43, t(3) = 8.056, P<0.002).

Figure 5.1: Structure and learnability increase over generations in all four transmission chains in the 

filtered condition. Languages become significantly more structured over time (left) , whilst 
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transmission error between adjacent generations significantly decreases (right). Redrawn from Kirby, 

Cornish & Smith (2008) using 10,000 randomisations instead of 1,000.

 

The language produced by the final generation of chain B is notably an exception to 

this general pattern. Not only are the levels of structure negligible for this learner, 

but examination of the error scores (Fig. 5.1.right) reveal a sharp spike, indicating 

that the language has undergone a lot of change. Visual inspection of the language 

in question suggests that a possible reason for this is a combination of the random 

application of the semantic bottleneck, which removed a few of the more key 

exemplars required for inferring the structure of horizontally moving objects in 

particular (see Appendix B3), and a slightly poorer than average recall of seen items 

by the individual learner in question. As an example, the learner at generation 10 

reproduced only two items perfectly, compared to the previous three learners who 

on average reproduced six items perfectly. Individual variation in recall ability is to 

be expected of course, although we should predict that as chains are run for longer, 

this should have less of a de-stabilising impact.  

Pressure for Expressivity Increases Signal Types

As mentioned in the introduction to this section, our pressure for greater 

expressivity is indirect and quite subtle. One thing we need to determine is therefore 

whether our manipulation has actually had any noticeable effects. In other words, 

does our filtering process actually encourage the preservation of more distinct 

signals?  In order to judge this, we can examine the number of distinct signal types, 

and compare them to those obtained in the unfiltered condition (Exp I). Figure 5.2 

shows this information in a box-plot. For ease of comparison, the data from the 

unfiltered condition has been reproduced in the same format13. 

From this we can see that although there is some initial loss in the filtered condition 

(Fig. 5.2.lower), the overall level remains fairly stable across all four chains. This 
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stands in strong contrast to the unfiltered condition (Fig. 5.2.upper), where the loss 

is both more severe, and increases cumulatively over time. In order to determine 

whether the differences between the number of signals in both conditions was 

significant, an unpaired one-directional t-test was performed at each generation. 

The levels of significance have also been indicated in Fig 5.2 (n.s = not significant, * 

= P<0.05, ** = P <0.005). These reveal that from the second generation onwards, the 

number of distinct signals in the filtered condition was indeed greater than that 

obtained in the same generation in the unfiltered condition. Therefore we can 

conclude that filtering is having the desired effect of encouraging more of the 

meaning space to be uniquely expressed with a single signal.
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Figure 5.2:  Box-plots contrasting the number of distinct signals found over generations across all four 

chains in the filtered (Exp III) and unfiltered (Exp I) conditions.  Horizontal lines indicate the median 

number of signals, boxes indicate the interquartile range,  and whiskers indicate maximum and 

minimum values found. Whereas the number of signal types in the unfiltered condition (upper) 

rapidly decreases over time, those in the filtered condition (lower) remain relatively stable and high. 
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Significant differences between the two conditions were found from generation 2 onwards. Taken 

together this shows that filtering is indeed encouraging greater expressivity in the languages.

Compositionality: an Adaptation

Looking at Fig 5.2.lower more closely, we find that at generation 9, at least one of the 

languages actually has 27 distinct signals. If we examine this language in more 

detail, we find that it is in fact, compositional. Table 5.1 shows what this system 

looks like. Each cell in the table contains the signal associated with each of the 27 

meanings, with columns corresponding to a colour (black, blue or red), whereas 

horizontal rows reflect motion and shape according to the symbols shown. We can 

see that signals in this language are composed of three segments, each of which 

conveys a different aspect of the meanings. The colour of the objects is regularly 

encoded in the first segment (which corresponds to the initial letter: n- for black; l- 

for blue; and r- for red) whereas motion is regularly encoded in the final segment (-

ki for horizontal; -plo for bouncing; and -pilu for spiralling). Shape is more 

unreliable, but is otherwise encoded in the middle segment (there is a general 

tendency for squares to contain -re-, -ne- or !; circles to contain -ho- or -he-; and 

triangles to contain -ki- or -ke-). 

The one exception to this pattern is the signal for a horizontal red square - renana - 

which appears to be an irregular. Examining the history of this chain we find that by 

chance, this meaning-signal pair was seen by every generation from generation 8 

onwards. This ties in nicely with the findings of Kirby (2001), which showed that 

irregularity could arise and be maintained in systems transmitted via iterated 

learning provided that some meanings appeared more frequently than others. 

Although this meaning certainly did not appear in participants training any more 

than any other, the fact that it reliably survived the bottleneck at a time when therest 

of the system was undergoing changes to become more regular and rule-based has 

allowed for it to retain its idiosyncratic structure. This is of course, just a single 
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anecdotal case and further investigation using this experimental framework, along 

the lines of the study conducted by Beqa et al. (2008), is required14.

Table 5.1: A fully compositional language arising from Experiment III (Chain A, generation 9). This 

language has 27 distinct signals for each of the meanings, and each signal is composed of three 

segments. The first segment represents the colour, the middle segment represents the shape, and the 

final segment represents the motion of the object. Reproduced from Kirby, Cornish & Smith (2008) 

with permission.

A similar compositional system to this also emerged in Chain D in this condition, 

between generations 4 and 7, although it was not nearly as perfect as the example 

shown in Table 5.1 (see Appendix B3). This is encouraging as it indicates that this is 

tuge tuge tuge

tuge tuge tuge

tuge tuge tuge

tupim tupim tupim

miniku miniku miniku

tupin tupin tupin

poi poi poi

poi poi poi

poi poi poi

nereki lereki renana

neheki lehoki reneki

nekeki lakeki raheki

nereplo laneplo replo

nehoplo lahoplo rehoplo

nekiplo lakiplo rahoplo

nepilu lanepilu repilu

nehopilu lahopilu rehopilu

nekipilu lakipilu rahopilu

Saturday, 18 September 2010
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regularity of initial variants (in the language given to the first learner, half the signals were 
regular, half were irregular), and the frequencies that certain meanings appear in during 
training (creating a set of high-frequency items, and a set of low-frequency items). It 
demonstrates that low-frequency items are much more likely to become regularised over 
time if they were originally irregular, than high-frequency items were. In effect, this study 
successfully replicates the Kirby (2001) findings but uses human learners instead of artificial 
agents.



not just a peculiarity of this chain alone. The fact that compositional systems, when 

they do arise, do not seem to be very stable is intriguing however. We will come 

back to this in Experiment IV.

The Evolution of Signal Segments in a Compositional Language

The fact that we can decompose the final few generations of this language into 

different signals segments (i.e. beginning, middle and end) is interesting. How 

might this segmentation structure have arisen historically over time? In order to 

address this question we can examine the relationships of descent between signals 

in a coalescent tree, like we did in the previous two experiments. Unlike in the 

previous two experiments where we analysed the signals as holistic units, and 

examined how forms changed and increased in frequency over time, this time we 

can analyse the signals by segments (Cornish, Tamariz & Kirby, 2009). 

We are primarily interested in quantitatively determining the extent to which the 

signals have adapted to the structure of the meaning space, and when that might 

have occurred. Cornish et al. (2009) implement a technique for doing this using this 

data15. The first step in this process relies upon us being able to make a 

parsimonious segmentation of the signal-strings in the language into elements that 

correspond to different aspects of meaning. We need to be able to examine the 

language in its final generation and formulate rules like “the beginnings of signals 

consistently encode colour” or “signal-final ‘-pilu’ reliably encodes the motion of 

spiralling”. If we do this to the language shown in Table 5.1, we end up with each 

string being divided up into three different sub-strings as described earlier. In order 

to allow for a consistent analysis, we then need to carry this segmentation pattern 

back to all previous generations. 
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several times in this chapter. To be clear:  H.C. and S.K. designed the study. H.C. collected 
and analysed the language data. M.T designed and performed the RegMap and coalescent 
tree analysis. H.C., M.T., and S.K. contributed to writing the paper in that order.



Before we begin, we need to introduce some terminology to enable us to describe 

what is going on. An analysis of the language consists of determining the following: 

(i) signal segments - the position within the string where different meanings are 

conveyed (in this case, the beginning, middle, or end of words); (ii) signal segment 

variants - actual tokens residing in a given segment position (e.g. ‘-pilu’, ‘n-’, or ‘-

aho-’); (iii) meaning elements - aspects of meanings (i.e. the features of the meaning 

space, like motion, shape and colour); and (iv) meaning element variants - actual 

instances of a given meaning (i.e. the values of particular features of the meaning 

space, like ‘black’, ‘bouncing’, or ‘triangle’) (Cornish et al., 2009). 

Fig 5.3 illustrates how such a segmentation process might occur using a toy example 

with signals associated with a meaning-space varying in two features (shape: circle 

or square) and three values (shape of insert: circle, cross, or star). Beginning with the 

most recent generation (4 in this case), the signals are analysed into two signal 

segments: the first indicating shape of object, the second indicating the shape of 

insert. We then look to the immediately preceding generation and do the same 

thing, keeping in mind both what the previous signal segment variants were (i.e. 

DO, RE, MI, FA, SO) and that we must always have two segments. We aim to 

always preserve signal variants from the more recent generation, unless a more 

parsimonious analysis presents itself. 
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DO.MI DO.MIR DO.MIR DO.MIR

DO.SO DO.LA TI.LA TI.X

DO.FA SO.FA RE.FA DO.FA

RE.MI RE.MI RE.MIR RE.MIR

RE.SO RE.SOR RE.SOR RE.SOR

RE.FA DO.FA DO.FA X.FA

Figure 5.3:  An example of the segmentation process at work.  Strings in the final generation (4) are 

segmented into two parts according to the most parsimonious alignment between meanings. This 

segmentation pattern is then carried back to earlier generations one at a time. Criteria for determining 

where segmentation boundaries are must take into account both (i) the segmentation patterns seen in 

the more recent generation,  and (ii) the most plausible segmentation within the current generation 

being processed. Segment locations are represented by a full stop, and null segments by X.

Applying this segmentation procedure to generation 2 results in the identification of 

two new signal variants (MIR and SOR). At generation 3 we are presented with the 

novel string ‘TILA’. Due to the fact that we treated ‘LA’ as a suffix in the previous 

generation, and all other prefixes in the signal space appear to be composed of two 

letters, we segment the string as ‘TI.LA’. It should be clear that at some point we will 

get to a situation where we have to posit a ‘null’ sub-string in place of one of our 

signal segments (in the example above this is represented by X). In the toy example, 

this happens twice at generation 1, where we find the signals ‘TI’ and ‘FA’. Do we 

posit a null signal variant in segment position one or two?  In this case, we must 

view each case on its own merits. Given both the segmentation suggested by the 

previous generation as well as the presence of ‘DO.FA’ in the current generation, it 

makes sense to posit the null variant before ‘FA’. In the case of ‘TI’, we have no 

evidence supporting it as being a prefix or a suffix in the current generation. 
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However, in the previous generation it was analysed as a suffix, so it is more 

parsimonious to do the same again here.

Cornish et al. (2009) applied this segmentation technique to the compositional 

language described earlier. Using this, they examined how the lineages of signal 

segment variants appearing in the final segment position changed over time16. 

Figure 5.4 is a reproduction of this coalescent tree17. From it, we can see a similar 

pattern of emergence to what we saw previously when examining whole signals. 

Early generations contain many low-frequency signal variants, which quickly 

reduce in number until just a few high-frequency signal variants remain. These 

variants which appear at each generation are not random, but are related to those 

that appear before. In some cases this involves direct and perfect replication of a 

variant (indicated by solid lines), but even where new signal variants appear, it is 

easy to determine possible relationships of descent between seen variants (indicated 

by dotted lines).

Often, many of the changes that occur to form new signal variants appear similar to 

those that are well attested in natural language change. For instance, Cornish et al. 

(2009) note that we find cases of phonological reduction (‘hona’ becomes ‘na’), 

metathesis (‘neki’ becomes ‘nike’), single segment replacements (‘pilu’ becomes 

‘pilo’; ‘nepi’ becomes ‘napi’) and blends (‘humo’ and ‘huna’ combine to form ‘homa’ 

and ‘hona’; ‘na’ and ‘ki’ merge to form ‘neki’). They also point out that the 

frequency of each signal variant, over time, comes to confirm what we already 

know: that the language is adapting to a meaning-space consisting of three 

elements. This can be seen most readily at generation 4, where we find just three 

variants (‘na’,‘neki’ and ‘pilu’) each appearing nine times , and again in generations 
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16 Note that we can also do the same for variants appearing in the initial and middle 
positions.

17 This coalescent tree differs from those shown in Chapter 4 in that frequency information is 
indicated in brackets. This is a purely cosmetic difference, making it easier to spot frequency 
patterns between generations.



9 and 10, where we find ‘plo’, ‘pilu’ and ‘ki’ (with the irregular ‘na’, being part of the 

renana example discussed earlier). 

From this, we can hypothesise that  signal endings came to perfectly encode one of 

the meaning elements in generation 4 (we do not know which at this point, as we 

have not been factoring meanings into our analysis), and again in the final two 

generations. This is interesting, as if we return to Fig 5.1.left, our measure of 

structure shows this chain at this generation to have only moderately high levels of 

structure. There is no sign in the Mantel test to indicate that we have a perfect 

structural mapping between parts of the signal and parts of the meanings. Of 

course, if we wish to see whether this occurs at other points in the chain we can also 

draw up coalescent trees for the remaining signal segments (i.e. the beginning and 

middle positions) in order to determine when other forms arose to encode meaning 

elements. However, it would be better if we could determine this statistically. 

Fortunately, the fact that an analysis of the frequencies of signal variants alone 

provides clues as to how meanings break-down into elements, is something that we 

can exploit if we wish to analyse the emergence of compositionality more 

quantitatively (Cornish et al., 2009).
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Quantifying the Emergence of Compositionality

Following on from the previous discussion, Cornish et al. (2009) present a method 

for directly quantifying the emergence of compositionality, based on an application 

of RegMap (see: Tamariz & Smith, 2008; Tamariz, in press). RegMap measures the 

regularity of the mappings between meanings and signals. It is different however to 

the Mantel test described in §3.4.3 in that rather than working at the level of whole 

signals and meanings, it instead looks at the correspondence between signal 

segments, signal variants, meaning elements, and meaning variants. RegMap is:

“...an information-theoretic metric that combines the 
conditional entropy of meanings given signals and of signals 
given meanings and normalises the result to make it 
comparable across systems of different sizes. Informally 
what RegMap (short for regularity of the mappings) does is 
return the degree of confidence that a signal element 
consistently predicts a meaning element (for instance, the 
degree to which we can be sure that the beginning of the 
signal encodes color).” (Cornish et al., 2009:196)

Whilst the Mantel test is a general measure of correlation between meanings and 

signals, it does not differentiate between compositionality and other types of 

structure that we have found such as underspecification. RegMap on the other hand 

is targeted at measuring this precise kind of structure. It can be formally defined by 

the following equation (taken from Cornish et al., 2009),

where H(S|M) is the conditional entropy of a signal segment given a meaning 

element (telling us how uncertain we are on average about predicting, for instance, 

what colour an object is if we hear the first segment of its signal) , H(M|S) is the 

conditional entropy of a meaning element given a signal segment (or how uncertain 

we are on average about what initial signal we should produce if we know the 
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quantify regularities in the mappings between signal and meaning elements in order to objectively 
confirm this.  

 

 

Quantifying the emergence of compositionality 
 

We now have an analysis of all the languages in terms of: signal segments - in this case, the word 
beginning, middle or end; signal segment variants, actual tokens residing in a segment position - 
such as pilu or ki. Similarly, we can define: meaning elements, aspects of meaning - motion, shape 
and colour; and meaning element variants, actual instances of a meaning element - for instance, 
‘blue’ or ‘circle’ or ‘bounce’.  

   Kirby, Cornish & Smith (2008) quantify the emergence of structure using pairwise distance corre-
lation (Shillcock et al., 2001). This measures the extent to which similar meanings are expressed 
using similar forms – or more precisely, whether there is a correlation between the structure of the 
meaning and signal spaces. Although this is valuable in showing that structure emerges, it does 
not allow us to track the evolution of the compositional structure of the languages directly: as a 
measurement, the pairwise distance correlation is very general and cannot distinguish between 
compositionality and other kinds of structure (such as underspecification). Here we apply a new 
method of analysis to one of the chains7 reported in Kirby, Cornish & Smith (2008) to tackle this 
problem. We use RegMap (Tamariz & Smith, 2008), an information-theoretical metric that combines 
the conditional entropy of meanings given signals and of signals given meanings and normalises 
the result to make it comparable across systems of different sizes. Informally, what RegMap (short 
for regularity of the mappings) does is return the degree of confidence that a signal element consis-
tently predicts a meaning element - for instance, the degree to which we can be sure that the be-
ginning of the signal encodes colour. 
 
   More formally, H(X|Y), the conditional entropy, is the Shannon entropy (Shannon, 1948) but re-
placing p(x) with p(x|y). The RegMap for a meaning element (M) and a signal segment (S) is given 
in Eqn. 1.  
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   H(S|M) is the conditional entropy of the signal segment given the meaning feature, or the uncer-
tainty about the meaning when we know the segment. This relates to comprehension. For example, 
for shape and first signal segment, H(S|M) quantifies how uncertain we are on average about 
what shape an object is if we hear the first segment of its corresponding signal. H(M|S) is the con-
ditional entropy of the meaning feature given the signal segment, or the uncertainty about the seg-
ment when we know the meaning. This relates to production. Still, in the case of shape and first 
signal segment, H(M|S) quantifies how uncertain we are on average about what first segment to 
produce if we know the shape of an object. The logs of nm and ns normalise the values between 0 
and 1; nm is the number of different meaning values (e.g. triangle, circle, square for shape); ns is the 
number of different segment variants in the relevant segment position. Subtracting the conditional 
entropies from 1 returns levels of confidence instead of uncertainty.  
 
   Figure 3 shows the RegMap values for all combinations of signal and meaning elements both with 
and without a bottleneck for the 10 generations.  The ‘input’ data shown in Figure 3 (upper) re-
flects the extent to which signals predict meanings in the sub-set of the language (taken from the 
previous generation) that was actually transmitted to the current generation, after the bottleneck 
was applied. The ‘output’ data shown in Figure 3 (lower) is obtained from the complete languages 
                                                        
7 Specifically, we examine chain 3 in experiment 2, but similar results can be obtained wherever composi-
tionality clearly emerges. 
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colour of an object), ns is the number of different signal variants in the relevant 

segment position, and nm is the number of different meaning variants that the 

particular meaning element can take. By taking the log of these last two values, we 

can normalise the values between 0 and 1, enabling us to compare across different 

systems, and by subtracting these normalised conditional entropies from 1, we 

return the levels of certainty instead of the levels of uncertainty. 

Figure 5.5 shows how RegMap quantifies the system that emerged in Chain A in the 

filtered condition. Each graph represents the RegMap values calculated for our three 

meaning elements (motion, shape and colour) in each of our signal segment 

positions (first, middle, and final). In order to establish statistical significance for 

these values, a Monte Carlo analysis involving 10,000 randomisations of the possible 

mappings between meanings and signals were performed (see §3.4.3 for a general 

description of Monte Carlo tests). The distributions of the values obtained by these 

randomisations are shown in box-plots: points above (or below) these distributions 

represent significant divergence from that which we would expect at random (more 

than two standard deviations away). Fig 5.5.upper shows this information for the 

subset of the language that is actually given as training input to learners (i.e. after 

the semantic bottleneck and filtering processes have been applied), whereas Fig 

5.4.lower shows this information for the whole language. 

If we begin by looking at these lower graphs, we can see that from initial levels that 

are indistinguishable from random, the RegMap values do increase to significant 

levels for each signal segment. However, this does not happen at the same rate for 

all segments, but appears to be a gradual process spread out over several 

generations. First of all motion becomes encoded by the final segment in generation 

three, then colour is encoded by the first segment in the fifth generation, before 

finally shape starts to become significantly encoded by the middle segment from the 

ninth generation onwards.
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that participants actually produced at a given generation, before the bottleneck was applied. The 
significance of the obtained RegMaps was established with a Monte-Carlo analysis involving 10,000 
randomisations of the correspondences between meanings and signals, and are shown as boxplots.  
 

 

 

Figure 3: Regularity of the associations between signal and meaning elements, measured as Reg-
Map, changes over time in the direction of maximising compositionality, whereby signal elements 
are consistently associated with distinct meaning elements. The continuous coloured lines repre-
sent RegMap values obtained with all nine segment-meaning feature pairs in the ten generations of 
a language family from Kirby, Cornish and Smith 2008, referred to in Example 3. The boxplots 
show the distributions of values obtained with 10,000 randomised languages. The upper graphs 
show RegMap values from the sub-set of language (taken from the previous generation) that was 
actually transmitted to the current generation, after the ‘bottleneck’ was applied. The lower graphs 
show RegMap values obtained from the complete languages that participants actually produced at 
a given generation, before the bottleneck was applied. 
 

   Focusing first on the bottom graphs, obtained from the participants’ output languages, we see 
that, starting off from values indistinguishable from random at generation 1, RegMap becomes 
massively increased to highly statistically significant levels; specifically, by the third generation, 
motion is consistently encoded by the final signal segment, by the fourth generation colour is en-
coded by the initial segment and by the ninth generation, shape is encoded by the middle segment 
(all p<0.001). 

 

   Second, a comparison of the input (upper) and output (lower) results in Figure 3, reveals the ef-
fect of the bottleneck. The RegMap values are, in the majority of cases, amplified by the bottleneck 
(the absolute value of RegMap increases). Moreover, the lower the input RegMap, the more likely it 
is to be amplified by the bottleneck. How is this happening? The answer is potentially counterin-
tuitive; randomly occurring patterns are more likely to be perceived the smaller the system is. At 
least in the early generations, a sub-set drawn from a language is more likely to accidentally con-
tain more regular patterns than the entire language. Implicit in this, and by the same token, a given 

Figure 5.5: The regularity of the mappings between signal and meaning elements changes over time. 

RegMap quantifies how in a compositional system (Chain A, Exp III), signal segments become 

consistently associated with distinct meaning elements. Each coloured line represents RegMap values 

for how reliably a given meaning element (shape, colour, or motion) is being encoded by a particular 

segment (initial, middle or final). Box-plots show the distributions of these values obtained with 

10,000 randomised languages as a control: any points above or below the whiskers therefore show 

significant differences to what we would expect to see by chance. Upper graphs show RegMap values 

of the subset of the language used in training for each generation,  after the semantic bottleneck and 

filtering occurred, whereas the lower graphs represent the RegMap values obtained in the language as 

a whole. Differences between the two therefore reveal the effect that these transmission pressures are 

exerting on the system. Taken from Cornish, Tamariz & Kirby (2009) with permission.

Competition between Meaning and Signal Variants

These RegMap calculations can not only tell us at what point in the history of the 

language that associations between meanings and signals arise, they can also tell us 

something about the way in which meaning elements and signal segments compete 

with one another. In order for a language to be compositional, it is important that 

the system evolve to avoid ambiguity. If we compare the upper and lower graphs in 
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tain more regular patterns than the entire language. Implicit in this, and by the same token, a given 
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Fig 5.5, we can find evidence for competition between meanings all vying for 

expression by the same signal segment. As an example, Cornish et al. (2009) point 

out that in the input to the third learner, the final segment equally encodes both 

motion and shape (Fig 5.5.upper). However, rather than reproduce this conflict in 

their own output, the learner resolves the issue by ignoring the association linking 

the final segment with shape, and instead amplifies the association with motion, 

which we see reflected in the RegMap scores in Fig 5.5.lower. 

Conversely, cases of signals all vying to express the same meaning also occur. If we 

look to the input to generation 5 we discover that the RegMap values for colour are 

similar in both the initial and the middle segment positions. If we look to the output 

graphs we find that the learner at this generation resolves this conflict by ignoring 

the association with the middle segment, and massively amplifying the strength of 

the association with the first segment only. This shows us that not only are 

individual signal elements coming to encode specific elements of meaning, but that 

the system as a whole is adapting to avoid ambiguity.

How Transmission Amplifies Structure

The RegMap analysis  has so far shown us when signals come to encode meanings, 

and also that the system resists ambiguous mappings. However, we have not yet 

discussed precisely how these two events come about. What exactly is going on 

during transmission to make this happen?  Making a comparison between the upper 

and lower graphs does reveal one striking fact, however: in most cases, the absolute 

values of RegMap are slightly higher in the input, as compared to the values in the 

output. More specifically, the lower the RegMap values are in the language as a 

whole, the more likely they are to be amplified in the subset of the language given 

as training. What does this mean?

In essence, when we compare the input languages to the output languages, we are 

seeing the effect that our transmission constraints (the joint action of the semantic 

bottleneck and the expressivity filter) are having on the system. What the difference 
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between the two graphs is telling us is that when we take a sub-set of the language 

and filter out homonyms, we are on average finding more structure in that sub-set 

than we do when we examine the language as a whole. This is potentially counter-

intuitive, as it suggests that the less data we encounter, the more regularity we 

perceive. Particularly early on in the chain when there is very little global structure, 

a small random sample of meaning-signal pairs taken from the whole language is 

more likely to contain some regular patterns by chance, than a more comprehensive 

sample of the language would do. At the very least, it is likely to contain less 

counter-evidence against such patterns existing.

Of course, it could well be the case that a subset of the language genuinely reveals 

no structural patterns at all. In this case, the language should be transmitted with 

just as little structure as it had before. The important point to note is that the illusion 

of structure only has to occur once for it to actually become a reality for the next 

learner. In this way, structural increase is inevitable as long as learning is done on 

incomplete data. As Cornish et al., (2009: 200) explain:

“The smaller subsets sampled as inputs to the next generation may 
locally contain more systematicity than the entire language. 
Iterating this learning process using these smaller samples 
therefore provides a platform that allows systematic patterns to be 
noticed, remembered, and replicated preferentially, thereby 
allowing them to gradually accumulate in the languages as a 
whole.”

Structural regularities in our languages therefore arise as a consequence of chance 

patterns that are observed locally being generalised to the language as a whole18. 
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18 It should be noted that this same process probably accounts for the increases in structure 
in all of the iterated language learning experiments described so far, even when there is no 
semantic bottleneck or filtering constraints in place (as was the case in Exp II). Even in this 
instance, we know that there are naturally occurring memory constraints operating that we 
have already seen effectively doing the same thing as the semantic bottleneck.



5.2.3 Summary

This study has investigated how languages evolve when there is both a semantic 

bottleneck and a pressure for expressivity present during transmission. Homonyms 

were filtered out of participants training input in order to encourage signals to 

uniquely express more of the meaning-space. As with the previous iterated 

language learning experiments, when the resulting languages were analysed, it was 

found that transmission error decreased over time as measures of structure actually 

increased (Fig 5.1). Comparisons between the current study (the filtered condition) 

with the first study (the unfiltered condition) indicated that our indirect pressure for 

greater expressivity was working: the number of distinct  signals in languages in the 

filtered condition were much higher, and maintained more stably over time (Fig. 

5.2).

Qualitative analysis of the languages themselves revealed that two of the four 

chains show signs of compositional structure. If we want to learn more about how 

compositional mappings between individual components of signals and individual 

components of meanings arise, there are two different methods. The first is indirect; 

by looking at how signal variants evolve over time in coalescent trees we can detect 

frequency patterns which suggest when signals start to reflect meaning structures 

(Fig. 5.4). The evolution of signal forms alone cannot tell us exactly which meaning 

element a given signal comes to encode. However, the second method can. 

Using a measure of structure known as RegMap (Tamariz & Smith, 2008; Tamariz, in 

press) we can precisely quantify not only when regular mappings emerge, but also  

chart the competition between signals and meanings vying to express one another, 

and also examine the way in which transmission amplifies structure within a 

language (Fig 5.5). It was argued that much of the structure-generating effects of the 

transmission process can be explained with reference to the fact that it involves 

participants only seeing a sub-set of the data: by chance, sub-sets may ‘accidentally’ 
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contain more structure locally than in the system as a whole. When this data is used 

as the basis for generating new data, weak structural relationships get amplified, 

increasing their influence in the future.

5.3 Discussion of Experiments I and III

Experiments I and III differ only in terms of the presence or absence of an 

expressivity constraint. Nevertheless, with this small change we find the emergence 

of languages exhibiting some very different structural features. This is interesting in 

four ways. 

Trade-off between learnability and expressivity

Firstly it confirms our intuitive understanding of the tension that might exist 

between learnability and expressivity. From a purely logical standpoint, it stands to 

reason that the most learnable systems should also be highly inexpressive. In the 

extreme example, the simplest kind of language to acquire should be one in which 

there is just one word for everything (or perhaps, even no words at all). Conversely, 

more expressive systems should tend to be harder to learn: the more meanings we 

have to differentiate, the further we get away from the ‘ideally learnable’ system of 

one word. 

Our experiments have confirmed both of these intuitions empirically. In the 

unfiltered condition where we have no pressure to be expressive we see the number 

of distinct strings fall to extremely low levels - to just two signals in chain B. 

However, whilst these languages may not be able to uniquely express more than a 

handful of meanings, they are highly learnable and stably transmitted. In the 

filtered condition on the other hand, where there is a subtle pressure to express 

more of the meaning-space, we find the opposite: we find highly structured systems 

that arise and convey a greater proportion of the total meanings, but these systems 

are not acquired as faithfully. We can therefore see such compositional systems as a 
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trade-off between the twin pressures of learnability and expressivity. This confirms 

previous simulation results of iterated language learning.

Non-intentional emergence of language-like structure

The second way in which the appearance of such radically different structures is 

interesting relates to our aim of exploring the potential explanatory power of 

nonintentional mechanisms of change operating within language evolution. The 

different outcomes prove that the languages really are created nonintentionally; we 

know this because the only difference between the two conditions was actually 

invisible to participants. This meant that participants in each experiment 

experienced identical learning conditions. The crucial experimental manipulation 

occurred off-line, meaning that there was no way for participants to be aware of 

which condition they were in, and therefore no way in which they could have 

known to alter their behaviour. Our conclusion must be that the differences between 

the languages in each condition did not arise because participants consciously 

designed them, or even because they intended to make any change at all. 

Participants in both conditions are doing exactly the same thing - attempting to 

replicate the languages exactly as given - yet very different  structures emerge as a 

result.

Cultural Transmission Adds Something to Iterated Learning

Related to this, the third point of interest is that the emergence of qualitatively 

different solutions to the task tells us that transmission really is capable of adding 

something to our understanding of where structure in language comes from. This 

may just seem like a restatement of the previous two observations, but it is a point 

currently worth emphasising because of the results of several recent mathematical 

models (Griffiths & Kalish, 2005, 2007; Kirby et al., 2007; Ferdinand & Zuidema, 

2009). These models are all Bayesian versions of the standard ILM (see §3.2.1), and 
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each present three different (potentially conflicting) accounts of the role of 

transmission in iterated learning.

Recall that in BILMs, agents’ inductive biases (what they bring to the task of 

learning) are explicitly encoded in the form of a prior distribution over hypotheses 

(P(h)). This distribution dictates how likely the agent is to assume a hypothesis is 

correct before it has even seen any data. These prior beliefs interact with the data 

being transmitted according to Bayes rule:

where P(d|h) is the likelihood of the data being explainable by a given hypothesis, 

and P(d) is the probability of observing the data averaged over all hypotheses (this 

acts to normalise the equation)19. Using these three pieces of information, the agent 

can calculate the posterior probability (P(h|d)) that a specific hypothesis could 

generate that data - in other words, the agent can choose which hypothesis to use in 

order to reproduce that data for the next learner.

In one of the very first applications of Bayesian iterated learning, Griffiths & Kalish 

(2005) found that the stationary distribution of transition matrix probabilities 

between all possible languages20  (in other words, the actual outcome of iterated 

learning) precisely matched the agents’ prior distributions. The implication from 

this is clear. It suggests that the learner’s prior biases alone determine the outcome 

of iterated learning: cultural transmission adds nothing to the process.

Figure 1: Graph of hypotheses [.6 .3
.1; .2 .6 .2; .1 .3 .6] and example
prior vector [.7 .2 .1]. Each hypoth-
esis’ shape is entirely determined by
the likelihoods it assigns to the data.
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Figure 2: Bayesian iterated learning,
in the monadic (black) and polyadic
(+green/grey) condition. When all pri-
ors are equal, the chain is called homo-
geneous, otherwise it is heterogeneous.

Figure 3: Hypothesis structure and priors
affect stationary distribution of monadic
maximizers. b=1; hypotheses [α (1−
α)/2) (1−α)/2); (1− x)/2 x (1− x)/2;
(1−α)/2) (1−α)/2) α], with x on hori-
zontal axis and α = .33 in curve (a), .4 in
(b), .6 in (c) and .8 in (d).

Hypotheses: agents are assumed to consider a fixed set of
hypotheses about the state of the world. Each of these hy-
potheses assigns different likelihoods to each of a fixed set
of possible observations (they are thus probability distri-
butions over data, P(d|h)). These hypotheses could repre-
sent, for instance, different languages that generate a set of
utterances, or different functions that describe a set of data
points. The exact nature of the hypotheses is left unspec-
ified, but the basic properties of the model should be gen-
eralizable to a variety of systems where information is cul-
turally transmitted (including not only language, but also,
e.g., music and bird song). In this paper, the hypotheses are
set at the beginning of each simulation and are the same for
all agents. In our examples, we will use a set of hypotheses
of size three: h ∈ H = {h1,h2,h3}.

Data: The observations that an agent can make about the
state of the world will be referred to as data points. Data
points are from a fixed set of possible values and in
our model we restrict the size of this set to three: D =
{d1,d2,d3}. In linguistic terms, a data point can be inter-
preted as any piece of evidence (a “trigger”) that the target
language has a particular property. Different hypotheses
assign different likelihoods to different data points. Mul-
tiple data points may be organized into a string, where the
likelihood of the string is the product of the likelihoods of
the points. Data in our model is any such string of length
b≥ 1: d ∈ Db.

Prior probability: The prior is a probability distribution
over hypotheses, defining the probability P(h) assigned to
each hypothesis before any data is seen. Thus, the prior
models the inductive bias of the learner. An example short-
hand we will use to note the prior is [.7 .2 .1], where the
prior probabilities for h1, h2 and h3 are .7, .2 and .1, re-
spectively1.

1Note that in Bayesian modelling the choice of priors is typi-
cally constrained by a set of principles that assure the outcome is
not trivially steered by the modeller (e.g., priors must be uninfor-
mative) and that calculations remain feasible (e.g., priors must be
conjugate to the likelihood function). In our model, we allow any
choice of prior over any set of hypotheses; this is ‘unorthodox’ yet

Agents perform inference by combining their prior beliefs
and observations of data using Bayes’ rule:

P(h|d) =
P(d|h)P(h)

P(d)
(1)

where P(h|d) denotes the posterior probability that a hypoth-
esis could have generated the data in question and P(d) =
∑h∈H P(h)P(d|h) is the probability of the data averaged over
all hypotheses.

Hypothesis choice: Once the posterior probabilities are cal-
culated, we still need a strategy to choose one particu-
lar hypothesis h, from which to generate the data. We
consider the same two strategies as in much earlier litera-
ture: (i) the maximizer simply chooses the hypothesis with
the maximum posterior probability (MAP) or, if there are
multiple maximums, a random one from the set of MAP-
hypotheses; (ii) the sampler chooses one hypothesis ran-
domly, but weighted by the posterior probabilities.

Data Production: Once a hypothesis is chosen, the next
step is to generate new data using that hypothesis. For
instance, assuming the agent has chosen h1, each data
point in the output string will be randomly generated, but
weighted according to the likelihood of each data point un-
der h1. The number of data points in this string defines
the “transmission bottleneck” b. A characteristic string
of size b = 10 under hypothesis h1 of figure 1 would be
< d1d1d1d2d1d2d2d1d3d1 >.

Population structure: Agents are organized into discrete
generations of one or more individuals (figure 2). If
the number of agents per generation is exactly 1, the
model resembles previous ILMs; we will call this condi-
tion monadic. We will also consider larger populations, a
condition labeled polyadic. Because each generation only
learns from the previous, the model can – regardless of

very relevant for some of our results, as one reviewer notes, but it is
consistent with our view that it is the reality of human biology that
ultimately determines which priors and hypotheses are appropriate
in linguistic modelling, and not the mathematical convenience for
the modeller.

1787

171

19 These two terms ( P(d|h) and P(d)) quantify the role of cultural transmission in the models.

20 The stationary distribution of transition probabilities basically tells us the final state that 
would result from running a simulation for as long as it takes to reach the stable equilibrium 
where no further change happens. Fortunately there are well understood mathematical 
techniques for extracting this stationary distribution without having to run each simulation 
for the (potentially) extremely large number of generations it would take to reach this point. 



Whilst this finding does leave some room for debate -- learning biases can of course 

be acquired via experience with the world and interaction with others, and are not 

necessarily biologically innate (Griffiths & Kalish, 2007) -- obviously this result 

suggests that the scenario presented in §2.2.2 and §2.3 which stresses the importance 

of cultural transmission as an evolutionary mechanism capable of explaining the 

appearance of design, could be wrong. 

In order to investigate this further, Kirby, Dowman & Griffiths (2007) performed 

another BILM with one difference: rather than agents sampling over posterior 

probabilities of the hypothesis (i.e. having the chances of a hypothesis being selected 

be proportional to its strength) as in Griffith & Kalish (2005), agents instead selected 

the maximum posterior probability. This change in the hypothesis selection strategy 

had an immediate effect. Rather than mirroring the prior biases of the learners, 

cultural transmission was shown to amplify them. Interestingly, they showed that 

the strength of initial biases had very little effect on the final outcome. Even weak 

biases got amplified.

Both of these studies only focused on properties of the agents, such as the strength 

of their initial biases and what strategies they use to select hypotheses. In a third 

study, Ferdinand & Zuidema (2009) extend this work by exploring social properties 

such as the size of the population (monadic or polyadic) and bias heterogeneity 

within agents (whether population consists of agents who all have the same or 

different biases). They too conclude that cultural transmission adds something to 

the explanation, and show that for  population sizes greater than one, or when there 

is heterogeneity within the population, even agents who sample their hypothesis 

from the posterior have stationary distributions that are different to their priors.

The results of Exp I and III adds support to this stance, as they show that an 

externally imposed cultural transmission constraint can generate a different 

outcome to iterated learning, despite all the learners possessing the same learning 

biases. This suggests that we should proceed with caution when using iterated 
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learning as a diagnostic tool for revealing the prior biases of learners, as is done for 

example in Kalish et al. (2007). In this experimental study, participants are given a 

function learning task to complete. During training, participants were shown a 

horizontal bar of varied lengths and had to adjust the height of a vertical bar until 

they were satisfied. At this point they were given feedback on where they should 

have located the bar, and the next training item appeared. During the test, 

participants were given the same task, but received no feedback. The data points 

collected from the test were transmitted to the next learner, until nine generations 

had completed the task.

The results from this study were shown to reflect known inductive biases of 

learners: over generations, participants tended to converge on the positive linear 

function, even when chains were initialised with negative linear functions or just 

random points. It could well be the case that cultural transmission in this instance is 

not contributing anything significantly different to the particular learning biases 

involved, but we cannot be sure. The fact that learning biases can be acquired 

(presumably culturally) is something that researchers need to carefully untangle 

when making modelling assumptions or interpreting experimental results21.

In any case, if we refer only to the data presented in this body of work, the fact that 

the constraints on cultural transmission were the only thing to change between the 

two conditions shows us that iterated learning is doing more than just revealing the 

prior biases of learners. 

It Does Not Matter That Participants Already Have Language

The fourth and final way in which the contrasting results of Experiment I and III are 

interesting concerns a possible criticism that could be levelled at all of the results 

described so far. Namely that as all of the experiments involve participants who 
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already have a linguistic system in place (perhaps even several linguistic systems), it 

could feasibly be the case that the structures we see emerging are simply the 

reflections of the native languages of the learners. If this is the case, what light can 

studies such as these really shed on our understanding of language evolution?

This is not a criticism to take lightly. Although similar accusations can be levelled at 

many of the other experimental paradigms that investigate the emergence of novel 

communication systems (e.g. Galantucci, 2005; Garrod et al, 2007; Healey et al, 2007; 

Theisen et al, 2009; Scott-Phillips et al, 2009), these studies do at least rely on a 

different communication medium, either using graphical means or physical 

movement to convey meanings. As such, they may not tap quite as directly into 

‘linguistic structure’ as studies like these.

Fortunately, there are two reasons for believing that this is not what is going on 

here. Firstly, our invisible modification appears to shape the properties of the 

emergent languages much more than any similarity to the languages of participants. 

Secondly, we find that these experimental results are backed up by the 

computational models already described. Agents in these models have no prior 

linguistic system in place or any language specific learning biases in place, but 

nevertheless go on to develop systems with the kinds of properties found here. The 

most parsimonious explanation is therefore that the structures we have seen 

appearing in the experiments arise from transmission constraints and the adaptive 

process of iterated learning, rather than being the product of underlying native 

language competences (Kirby et al., 2008a; Cornish et al., 2009).

There is a small caveat to this, as Cornish et al. (2009: 201) note:

“We fully expect that language evolution through iterated learning 
will involve adaptation to all aspects of the transmission 
bottleneck, and this will include the biases of language learners...
[P]articipants bring to bear a mixture of biologically basic biases 
and those that arise from their acquired cultural heritage. We can 
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see no principled way to separate these out. This means that our 
experiments should not be taken as a ‘discovery procedure’ for 
uncovering our evolutionary ancient learning biases but rather as 
a tool for understanding the fundamental adaptive dynamics of 
the cultural evolution of language by iterated learning.”

This means that although we might expect to find that the native languages of the 

learners do interact in the process at some level (for instance, certain forms might 

appear to be more salient than others based on similarities or consistency with 

existing language structures, and thus will be preferentially retained by learners), 

this does not mean that these interactions alone are responsible for the appearance 

of design. There are many biases at work, and transmission is key to understanding 

how these biases manifest themselves.

5.4 Experiment IV: Increasing Transmission Fidelity

The previous experiment has shown us that having a pressure for expressivity is a 

necessary requirement for compositional structures to emerge. Nevertheless, it does 

not seem to guarantee compositionality. It only appeared to emerge in two of our 

four chains, and even when it did appear, it was not stably transmitted to future 

generations. Perhaps one of the reasons for this is the fact that participants’ levels of 

recall are actually quite low throughout. 

As an example, if we take a look at the normalised Levenshtein Distance scores we 

have obtained from the first generation of learners in all three experiments so far 

(Fig 4.1.right, Fig 4.4.right, and Fig 5.1.right), we find that participants are struggling 

to accurately learn the items they are being exposed to during training. Of course 

the languages given to the first generation represent the hardest learnability 

challenge of all22. Nevertheless, it is striking that the measure of transmission error 

shows learners are only getting between 20-35 per cent of signals correct. This is 
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hardly surprising when we consider that they only see each training item six times 

in total. If the amount of exposure to each training item was increased, would it lead 

to the emergence of compositional languages that were more stable?  This is the 

question that Experiment IV seeks to address.

5.3.1 Method

Aims and Experimental Hypotheses

This experiment investigates the question of how important early transmission 

fidelity is. In order to investigate this, the number of exposures to training items was 

doubled from six, to twelve. There was both a semantic bottleneck, and an 

expressivity requirement in place, making it comparable to the previous experiment. 

Just like the previous experiment, it was hypothesised that learnability and structure 

scores would increase over time, and that compositionality would emerge due to 

pressure arising from the filtering constraint. It was additionally hypothesised that 

the increase in fidelity would help compositionality to be maintained over time. 

These hypotheses are reproduced below. 

1. The Learnability Hypothesis: Languages will become easier to learn as a result 

of iterated learning. 

2. The Structure-Increase Hypothesis: Languages will become more structured as 

a result of iterated learning.

3. The Compositionality Hypothesis: Pressure to generalise to novel stimuli 

combined with a pressure to uniquely express each meaning will result in 

languages evolving to become compositional.

4. The Stability Hypothesis: Increasing the fidelity of transmission will result in 

stable compositional languages.

Experimental Design
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Four chains were initialised with randomly constructed languages, containing 27 

meanings paired with 27 signals. Participants were trained on approximately half of 

the meaning-signal pairs, which were presented one at a time, in random order, 

twelve times each. An expressivity filter was also applied to ensure that every signal 

was unique. Training occurred over three distinct rounds, with each training item 

getting four exposures each time. After each training round, participants were given 

a practise test where they were shown a picture of a meaning, and asked to provide 

the correct signal. At the end of the final training round, this test was extended to 

include each of the 27 meanings, including the ones that participants had not seen in 

training. The output from this final test was collected and used to form the training 

input to the next generation. The experiment was run using E-Prime software, and 

the results were analysed using R.

Participants

A group of 40 participants were recruited via an advertisement in the University of 

Edinburgh’s student employment service. Of these, 17 were male and 23 were 

female, with an average age of 21.48 (S.D = 3.64). Participants were offered £5 to 

take part, and in order to be eligible had to meet the following requirements: be 

fluent in English, not be dyslexic, have normal or corrected-to-normal vision, have 

not taken part in any previous studies, and not have have formally studied 

linguistics. Each participant was assigned to one of the four transmission chains at 

random. The study conformed to the ethics guidelines set by the University of 

Edinburgh’s College of Humanities and Social Science, and participants were fully 

briefed before taking part of their rights of withdrawal and anonymity.

5.3.2 Results of Experiment IV

Learnability and Structure Increase
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In order to investigate the first two hypotheses, the structure and error scores were 

calculated for each generation of each chain. These values are shown in Figure 5.6. 

As we would expect, the error and structure scores in the first generation as 

compared to the last generation show significant differences. Paired one-tailed t-

tests indicate a mean decrease in error of 0.35 (t(3) = 11.079, P < 0.0008) and a mean 

increase in structure of 8.45 (t(3) = 5.767, P < 0.005). Examining Fig 5.5 in more 

detail, it appears that all languages are significantly structured after the third 

generation, and at least one chain is stably transmitted for several generations. This 

would seem to confirm hypotheses one and two.

Figure 5.6: Structure and transmission error scores over generations for chains in Exp IV.   These 

graphs show that the languages are becoming easier to learn, and more structured over time. 

Additionally, it appears that at least one chain is being transmitted faithfully over multiple 

generations. Transmission error (right) is measured using normalised Levenshtein Distance, whereas 

structure (left) is calculated using z-scores derived from a Monte-Carlo analysis of the correlation of 

the distances between meanings and signals. Points above the dotted line (left) indicate significant 

structural regularities between meaning-signal mappings. Re-drawn from Cornish (2010) using 

10,000 Monte-Carlo randomisations instead of 1,000.

Transmission Fidelity Increases

Before we continue, we must first examine whether or not increasing the amount of 

training has had the desired effect of increasing the fidelity of transmission. In other 
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words, has error decreased as a result of participants receiving more exposure to 

training items? To test this, we can compare the performance of learners on the 

initial randomly generated languages in both the single (Exp III) and double (Exp 

IV) training conditions. Although we predict that these languages are harder to 

learn on average than later ones, we cannot be sure that languages at later 

generations are comparable as they are likely to be differently structured. These 

transmission error scores are shown in Table 5.2 below.

Exp III (single) Exp IV (double)

0.7407407 0.4876543

0.7913139 0.50925926

0.7098765 0.6953263

0.6406526 0.54320988

Table 5.2: Transmission error scores found at generation one in the single and double training 

conditions. These scores indicate that increasing the amount of training is indeed increasing the 

fidelity of transmission.

If we run an unpaired one-tailed t-test on these scores we find that the difference 

between them is significant (t(3) = 2.8633, P < 0.01): recall in the double training 

condition was significantly higher (mean error 0.558) than in the single training 

condition (mean error 0.721). 

Compositionality is Not Stable

Our third hypothesis predicts that we will find compositional languages appearing 

in the chains as a result of the trade-off between learnability and expressivity 

pressures. Examining the raw data (Appendix B4), it appears that we find at least 

one instance of compositionality, arising at generation four of chain D. This system 

is reproduced in Table 5.3.
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tuge tuge tuge

tuge tuge tuge

tuge tuge tuge

tupim tupim tupim

miniku miniku miniku

tupin tupin tupin

poi poi poi

poi poi poi

poi poi poi

wakimo hunkimo pokimo

wakemo hunkemo pokemo

waknimo hunimo ponimo

wakiki hunkeki pokeki

wakeki hunkiki pokiki

wanikuko hunikuko ponikuko

wakikuko hunkikuko pokikuko

wakekuko hunkekuko pokekuko

wanikuki hunikuki ponikuki

Saturday, 18 September 2010

Table 5.3: An example of a compositional system arising at generation 4 in Chain D in the double 

training condition. This language has 27 distinct signals, and has a very similar structure to the 

system which emerged in the single training condition (Exp III). Signals in this system are composed 

of three morphemes: colour-shape-motion. Redrawn from Cornish (2010) with permission. 

This system bears a striking resemblance to the compositional language that 

emerged in the previous experiment. Every meaning has a unique signal, and there 

is a clear pattern to how signals are internally structured. The first segment 

represents colour: wa- for black; hu- for blue; and po- for red. The second segment 

represents the shape of the object: -ki- for square; -ke-  for circle; and -ni- for 

triangle. The final segment represents the motion of the object: -mo for horizontal; -

ki for bouncing; and -kuko for spiralling. There are some minor deviations from 

these general rules, but even these appear to only apply in a predictable context. For 

instance, bouncing triangles acquire the same suffix as spiralling squares and circles, 

whilst spiralling triangles acquire a suffix which appears to be a combination of the 

standard bouncing and spiralling suffixes.
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It is good to see another strong example of a compositional system arising in a chain 

that has an expressivity filter applying. However, the main aim of the double 

training condition was to see whether this encourages any compositional system 

that might arise to be more stably maintained. Has this occurred here? Examining 

the language at generation 10 of this chain reveals that this system does not last. Not 

all elements of this system have been lost, however. In fact, looking a little closer, we 

find something curious. Table 5.4 reproduces this language.

tuge tuge tuge

tuge tuge tuge

tuge tuge tuge

tupim tupim tupim

miniku miniku miniku

tupin tupin tupin

poi poi poi

poi poi poi

poi poi poi

wanimo henimo ponimo

wanimo henimo ponimo

wanimo hekiko ponimo

wakiko hekiko pokiko

wakiko pokiko pokiko

wakiko hekiko pokiko

wahikeko hehikeko pohikeko

wahikeko hehikeko pohikeko

wahikeko hehikeko pohikeko

Saturday, 18 September 2010

Table 5.4:  An example of a language at generation 10 that was previously compositional and is now 

underspecified. What is surprising about this structure is that it arises in a chain (D) involving both 

filtering and double training. Parts of the signals correspond to colour and motion features, however, 

shape is no longer explicitly encoded. 

In spite of the fact that the languages are still being filtered for homonyms at every 

generation, we nevertheless find that this system is underspecified. Signals can still 

be decomposed into compositional parts however, but instead of differentiating all 

three meaning elements like before, now signals are composed of just two parts: 

colour and motion. Examining the signal variants themselves , we find little change 

in those used to refer to colour.  We find wa- still corresponds to black, hu- has 

changed to he- to describe blue objects, and po-  is still used to describe red items. 
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However, it appears that the variant which previously meant triangle has merged 

with the old suffix for horizontal to form -nimo (indicating horizontal movement); 

there is a new suffix -kiko to describe bouncing items; and a new suffix -hikeko to 

describe spiralling items. Both of these latter suffixes are possibly related to the old 

motion suffixes combined with one of the old shape variants.

Compositional Underspecification: A Stable Compromise?

The mixed system shown in Table 5.4 is not a one-off. Recall that our examination of 

Fig 5.5 revealed that at least one of the chains resulted in a system that was stably 

transmitted for at least five generations in a row. An examination of the structure of 

this languages, taken at the mid-point of its stable run (generation 7) reveals that it 

too exhibits properties of both a compositional and underspecified system. It is 

shown below in Table 5.5. This system again settles upon a solution to the problem 

of transmission by only encoding the colour and motion features of the meaning-

space. Again, colour is represented by the first segment: [null] in the case of black 

items, pa- in the case of blue items, and me- in the case of red items. Suffixes encode 

motion: -linu for horizontal, -gahili  for bouncing items, and -wenu for spiralling 

items.
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tuge tuge tuge

tuge tuge tuge

tuge tuge tuge

tupim tupim tupim

miniku miniku miniku

tupin tupin tupin

poi poi poi

poi poi poi

poi poi poi

linu palinu melinu

linu palinu melinu

linu palinu melinu

gahili pagahili megahili

gahili pagahili megahili

gahili pagahili megahili

wenu pawenu mewenu

wenu pawenu mewenu

wenu pawenu mewenu

Saturday, 18 September 2010

Table 5.5: Another example of a language that is both underspecified and compositional 

arising in a chain involving both filtering and double training. This example comes from 

Chain B, generation 7. This language was stable for five generation.

The systems that emerge in Tables 5.4 and 5.5 are remarkable in that participants in 

these conditions never see any examples of homonyms in their training data. In 

order for underspecification to survive in languages that are being filtered, a delicate 

balancing act must be maintained. As long as homonyms are evenly distributed 

throughout the language (as they are here), and there is some degree of 

compositionality that allows participants the chance to reconstruct any form 

unlucky enough to not make it through the transmission bottleneck, the filtering 

process can be bypassed. This kind of system therefore represents an elegant, albeit 

unexpected, solution to the particular transmission constraints being applied here. 

The fact that it is transmitted more faithfully than any other that we have 

encountered so far is a testament to the fact that is is also highly adaptive.

5.3.3 Summary
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This study examined whether increasing the amount of exposure participants had to 

training items would increase the fidelity of transmission, and lead to the emergence 

of compositional systems that were stable. Four transmission chains were run with a 

semantic bottleneck and filtering, to encourage the emergence of compositional 

structure. In contrast to Exp III, participants also received double the training. A 

comparison of the levels of recall by the first generation of learners in the single and 

double training conditions revealed that the extra training was helping participants 

to acquire the signal-meaning pairs more faithfully. Qualitative analysis of the 

resulting languages however showed that only one instance of compositionality was 

recorded, and that this was not stably transmitted to future generations.

Instead, that particular system changed to incorporate features of both 

compositionality and underspecification. An almost identical system to this one was 

also found in another chain. In this particular case, that system was stably 

transmitted, over five generations. The fact that an underspecified system could 

emerge in a condition where homonyms were filtered out before transmission might 

at first appear surprising, but reflects the fact that there always was, in a sense, an 

optimal solution to bypassing the expressivity filter. Although this result was 

certainly not anticipated by the author in advance (and, I would argue, could not 

have been engineered consciously by participants, even if full disclosure was given 

of the fact that their data was being culturally transmitted to others), it is a reminder 

that cultural evolution is capable of adapting in surprising and unpredictable ways.

5.5 Discussion of Experiments III and IV

The fact that we did not find stable compositional languages in Experiment IV 

definitely adds weight to the idea that compositional systems are fundamentally 

harder to acquire than underspecified systems. Even though a perfectly 

compositional system was created early on in one of the chains, the increased 

training was still not enough for it to be faithfully acquired by later generations. 
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How then can we account for the fact that in computational simulations of iterated 

language learning, compositionality is not only consistently found in all runs, but 

also highly stable when it does emerge?  Perhaps the most significant difference 

between the ILMs and these transmission chain experiments lie in the number of 

generations of learners that they employ. Simulations of artificial agents are 

typically run for hundreds if not thousands of generations before stable 

compositional systems emerge. Therefore one explanation for our lack of success 

here is that perhaps the transmission chains need to be allowed to run for longer. 

The vast number of generations required in some ILMs has actually been used as a 

criticism against the ecological validity of such models. For instance de Beule & 

Bergen (2006) point to a number of studies which show that pidgins and creoles 

emerge with compositional languages in just a few generations, making the models 

appear unrealistic in comparison. The results of the studies presented here supports 

this idea that human learners are much faster at converging upon compositional 

systems - in both experiments III and IV we find cases of compositionality arising in 

as few as four generations. A more obvious difference between the cases of evolving 

pidgins and creoles, and the experiments here concerns the structure of the 

populations involved. One avenue of work which is currently being explored at the 

LEC in Edinburgh involves increasing the number of learners per generation. Early 

work suggests even adding just one more learner to each generation can result in 

the emergence of more stable compositional systems (Line, 2010; Winters, 2009).

Going back to the languages that we did find in the double training condition, the 

fact that two of them seemed to find the perfect structural balancing act between the 

two system types (compositional and underspecification) really is quite remarkable. 

Consider again that in spite of the fact that participants never see duplicate signals 

in their input, they  still end up being in perfect accord with previous generations in 

where to posit duplicate signals in their output. This was not a solution that any of 

the participants (or even the experimenter for that matter) could have anticipated in 

advance, and yet the nonintentional processes of cultural transmission delivered it.
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--------------------------------------------------------------------------------------------------------------------------------------------------

Chapter Six

Language Adapts to Sequence 

Learning Biases
--------------------------------------------------------------------------------------------------------------------------------------------------

The picture we have built of language so far is that over the course of its 

transmission from learner to learner, it encounters many different constraints which 

can (over time) impact upon its structure. Each of these constraints is a different 

kind of bias that the language is adapting to. Some of these biases are internal to the 

learner, and others are external. For instance, in chapter 4 we explored a kind of bias 

that was externally imposed - the semantic bottleneck - and contrasted it to the 

naturally occurring phenomenon of imperfect learning. In chapter 5 we looked at 

another externally imposed constraint in the form of the filtering process that 

removed homonyms from the input to learners and encouraged greater expressivity. 

The fact that the presence of these external biases can be shown to have such major 

impacts upon the resulting systems is a reminder that we must be careful when 

making claims that we can use iterated learning as a means to uncover those biases 

that are internal to learners. As Smith et al. (2008: 534) point out:

“mental properties cannot simply be read off from [properties of 

language], because the cultural process mediating between aspects 

of the mind and features of language distorts the underlying 

biases of human learners.”
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That being said, it is clear that at least some, or indeed the majority, of the kinds of 

adaptations that we have seen the languages in these experiments undergo clearly 

have been the result of learning and processing mechanisms that are internal to our 

human participants. Our most consistent finding is that languages change in ways 

that make them easier to learn by future learners. Whilst in some sense we have 

already seen the outcome of such cognitive constraints in the studies presented, 

their effects have been intertwined with those of many other biases. It would be nice 

if we could study these mechanisms and learning processes in isolation somehow.

One obstacle to achieving that goal with the current experimental framework is the 

presence of structured meanings. The meanings to be conveyed represent yet 

another external constraint to which language must adapt. Consider how in every 

experiment so far we have seen that the structure of signals comes to reflect the 

structure of the meanings in some systematic way - whether that involves the 

meanings themselves undergoing some kind of levelling of features leading to fewer 

distinct signals being required to express them, or signals becoming decomposable 

into segments which get mapped onto individual meaning elements. In fact, it could 

well be argued that given the presence of our fixed and easily decomposable 

meanings, we perhaps should not be so surprised that we get structured signals out; 

in a very real sense, it is meanings and our need to differentiate them which cause 

this structure to appear.

Given that we find ourselves in a position where the previous work has focused 

exclusively on the cultural transmission of meanings and signals - or rather, how the 

presence of structured meanings can give rise to language-like structures - we can 

ask ourselves another question. Can other types of cognitive constraints, in the 

absence of meanings, give rise to any interesting structural features?  In other words,  

what happens when the only things being culturally transmitted via iterated 

learning are signals?  This final experiment explores just this, by attempting to 

isolate the effect of sequence memory constraints on cultural transmission.
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6.1 Sequential Learning Constraints

Language, either spoken or signed, consists of a complex arrangement of signals 

that can be described in terms of statistical relations between different units 

(Conway et al., 2007). These signals are necessarily organised sequentially. This 

stems from the fact that the communication channel itself demands that 

transmission be serial. As such, we expect that the ability to encode and manipulate 

sequential patterns should be an important pre-requisite for using language 

(Lashley, 1951). This is indeed the case. Not only is there is a strong link between 

sequence memory, and both word learning and vocabulary development (Gupta & 

MacWhinney, 1997; Baddeley, 2003), but a number of psychological studies have 

also linked deficits in sequence learning with a range of different language disorders 

(Plante et al., 2002; Hoen et al., 2003; Christiansen et al., 2010). At the same time, 

artificial language learning (ALL) studies have shown that sequential learning is 

implicated in many aspects of normal language acquisition, from segmenting 

speech sounds (Saffran et al., 1996), to detecting long-distance dependencies 

between different words (Gomez, 2002; Onnis et al., 2003).

Taking this into consideration, it has been suggested that language has evolved to fit 

these sequential learning and processing mechanisms in the brain (Christiansen, 

1994; Christiansen & Chater, 2008). This approach stresses the fact that these 

cognitive mechanisms originally evolved for purposes other than language. 

Although sequence memory and sequential learning abilities are employed 

extensively in language, they are in fact domain-independent mechanisms, involved 

in motor control and planning, as well as working memory (Lashley, 1951; 

Christiansen & Ellefsen, 2002; Baddeley, 2007). We have already seen empirical 

investigations of this idea that universal properties of linguistic structure can be 

explained by these non-linguistic constraints on learning. For instance, Christiansen 

& Devlin (1997) show how word order patterns that match  observed typological 

distributions in the real world can be derived from models relying on very general 
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sequential learning mechanisms, whilst Ellefsen & Christiansen (2000) show how 

linguistic subjacency constraints could be derived from limitations on sequential 

learning using both connectionist models and ALL studies involving humans (see 

§3.2.3).

Whilst studies like these indicate that there is an apparent fit between universal 

properties of natural language structure and these general cognitive constraints, this 

relationship has only been shown in humans indirectly, via tests of comprehension. 

In other words, participants have been tested on different types of structure created 

by the experimenter and shown to only be able to acquire those structural patterns 

that are in some sense ‘naturally’ occurring (Ellefsen & Christiansen, 2000). When 

combined with computer simulations that replicate this same behaviour, this 

strongly implies that there is nothing specific to language about the mechanisms 

responsible. Nevertheless, the argument would be strengthened if we could not only 

observe these structural patterns being easily acquired by individuals in an ALL 

experiment, but also to witness them actually emerging culturally in a population of 

learners, from a starting point of no structure.

In the next study we will investigate whether these biases in participants’ ability to 

process and recall sequences can lead to the cultural evolution of structure. 

Importantly, we will change our framework slightly to try to remove any other 

biases that might be acting upon the signals, and we will initiate the transmission 

chains with signals that do not contain any structural regularity. 

6.2 Experiment V: Transmitting Signals With No Meanings

6.2.1 Method

Aims and Experimental Design
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In all of the previous experiments we have defined a language as a set of mappings 

between signals and meanings. The aim of this experiment is to investigate how 

sequence memory constraints affect the structure of signals when they are culturally 

transmitted without any meanings1. In short, we want to ascertain whether 

structural regularities appear when there is no externally imposed structure 

encouraging adaptation. Our working hypotheses will therefore be familiar: we are 

expecting signals to become easier to learn, and more structured over time.

1. The Learnability Hypothesis: Signal-strings will become easier to learn as a 

result of iterated learning.

2. The Structure-Increase Hypothesis: Signal-strings will become more structured 

as a result of iterated learning.

As there are no computational simulations of this particular experiment, we do not 

have any firm predictions about the precise nature of the structure that we might 

find.

Experimental Design

In order to address the hypotheses, a series of eight transmission chain experiments 

were run2. Participants were trained on a set of 15 signals via an implicit learning 

technique. During training participants were shown each signal very briefly on 

screen, before being given the opportunity to reproduce the signal they had just 

seen by typing it out. This only happened after a delay, which forced participants to 
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languages, implicit learning techniques, and also suggested quantitative methods to analyse 
the results.

2 This was done using a custom-built experimental platform created by Simon Kirby using 
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keep the item in their mind for a short while. Once the signal had been reproduced 

by the learner, the next signal appeared automatically. After six passes over all of the 

training data, participants were asked to recall all 15 items. They were not told in 

advance that they would be required to do this, and no feedback on their 

performance was offered until the very end of the experiment, when they were told 

how many items they had reproduced perfectly. Every unique signal that a 

participant entered during this recall round was accepted, regardless of whether it 

was correct or not. If participants entered a string that they had already submitted, 

they were notified of this, and asked to try again. The experiment continued until 

either all 15 strings had been provided, or participants withdrew themselves3. The 

data collected in the recall round became the new training data for the next learner, 

and the process iterated until ten ‘generations’ had passed.

Materials

The design of the initial stimuli was very carefully controlled in this study. Each 

“language” consisted of a set of fifteen letter-strings. These were initially 

constructed to ensure that the frequency of bigrams and unigrams was as uniform 

as possible. Each string-set was composed of six characters (a-f), each of which 

appeared exactly 10 times. The lengths of strings were also controlled so that some 

were not more frequent than others. Five of the strings were three characters in 

length, five were four characters in length, and five were five characters in length. 

Particular attention was paid to the beginnings and ends of strings: each character 

could only start or end a string a maximum of three times in order to ensure that the 

distribution of characters did not favour certain start or end sequences. For instance, 
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if #a  appeared three times, a# could only appear twice4. This meant that every 

initial language had the same approximate distribution of bigrams. This structure is 

shown in Figure 6.1 below. An example of one of the initial languages is also given 

in Table 6.1. This shows the language in its underlying form, and not the form given 

to participants. This distinction will be explained in the next section.
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Bigrams - Generation 0
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Figure 6.1: The frequency distribution of bigrams in the initial languages of Exp V. Each bar 

represents a particular bigram (for example ‘ac’, ‘#b’ or ‘ff’) and the frequency that that particular 

bigram appeared in the data.  As the figure shows, none of the bigrams appeared more than three times 

in total, and this only occurred at edge positions. The strings in each language were tightly 

constrained to have as flat a distribution as possible and avoid any patterns being present from the 

outset.
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initial language 

abd

bdc

cae

def

ecd

fcdb

adba

bfde

ceaa

dfed

efdac

fbfcf

aabee

bccfb

cebaf

Table 6.1: An example of one of the initial languages generated for experiment V. This shows the 

underlying form of the language presented to learners in chain B. These languages were generated 

with strict controls to ensure that they contained as little regularity or repeating patterns as possible.

Controlling Other Biases

Designing the initial languages in this way ensured that there were no strong 

regularities in the initial input to learners that could bias them in any particular 

direction. However, this is not the only type of bias we could imagine operating in 

this kind of study. Of additional concern was the fact that certain combinations of 

letters are easier to pronounce than others. Consider the example of PODDA versus  

LWRRT. Clearly the former would be much easier to remember than the latter. In 

order to address this we only used consonant letters to form strings.

There are two other kinds of bias that could potentially affect the learnability of 

strings, even of those composed entirely of consonant characters: the first concerns 

the possible introduction of acronyms into the data, while the second concerns the 

possible effect of the keyboard layout encouraging the emergence of certain typing 

patterns. In order to avoid both of these biases, at the end of every experiment the 

languages were remapped onto new consonant characters, and the output of this 
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remapping was visually inspected for acronyms before being given to the next 

learner. This remapping preserved the underlying structure of the languages, but 

destroyed the surface structures which might have been influenced by participants’ 

additions. Table 6.2 illustrates what this process looks like using a small example.

In this table we can see that the underlying (plain-text) form of the language in the 

first generation consisted of three strings <abc, ddbe, abdde>. These characters 

were mapped onto consonant letters, creating the training input given to the first 

learner: VTG, DDTR and VTDDR. After training, the first learner attempts to 

reproduce the strings that they were given. This reproduction is not perfect 

however, and two new strings have been created. The second one is of particular 

concern - DVDTV. Being as though this string contains salient acronyms, if we gave 

it to the next learner and it was successfully reproduced we could not be sure 

whether it was because there was something adaptive about its underlying 

structure, or whether it was just easily identified and remembered because of the 

associations caused by the acronym. In order to overcome this, we first ‘decode’ 

each string to reveal its plain-text identity, and then apply our remapping procedure 

again to create a new set of training data for generation two.

  

 GENERATION 1
GENERATION 1

INPUT

GENERATION 1 

OUTPUT
GENERATION 2

GENERATION 2 

INPUT

abc VTG VTG abc LHP

ddbe DDTR DVDTV dadba FLFHL

abdde VTDDR VTTGK abbcf LHHPX

Table 6.2: An example of the remapping procedure used in Experiment V to remove typing biases and 

the generation of acronyms. The underlying structure is maintained in plain-text form, visible only to 

the experimenter. The forms that participants actually see consist of capitalised consonant characters. 

After every generation,  these strings are decoded back into plain-text, and then re-encoded and 

checked for acronyms. If acronyms are present after the remapping, it is repeated with another set of 

characters until a solution is found.
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To recap, the characters a-f  were only used by the experimenter to keep track of  the 

underlying structure, and allow comparisons over generations. Participants actually 

received sequences like VTG, DDTR, and VTDDR. 

Participants

In total, 80 participants were recruited for the study, with the vast majority 

responding to an advertisement placed in the University of Edinburgh’s student 

employment service. Of this number 51 were female and 29 were male (age: M = 

21.72; S.D = 4.08). For this study it was decided that all participants should be 

monolingual speakers of English. In addition to this requirement, participants were 

only eligible if they had normal or corrected-to-normal vision, were not dyslexic, 

and had not taken part in any of the previous experiments. As the experiment lasted 

less than 15 minutes, participants received £2 and were offered a biscuit for taking 

part. This study met the ethical guidelines set by the University of Edinburgh’s 

College of Humanities and Social Science. 

Procedure

Participants were given both verbal and written instructions about the format of the 

experiment (See Appendix C). At no point was the experiment referred to as a 

language task: participants were told that the experiment was exploring their recall 

abilities, but they were not told how many letter strings there were, nor were they 

informed about the recall test at the end. Training was conducted using an implicit 

learning technique. Strings were selected at random and appeared one at a time on 

the screen for exactly 1000ms, before disappearing. At this point, there was a 3000ms 

delay where participants could not use the keyboard. If participants attempted to 

start typing before the 3000ms wait period was over, their string would not appear 

on the screen and a beep would sound letting them know that they had typed too 

soon. This delay was included to ensure that participants were implicitly forced to 
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commit the string to short-term memory. After the delay, participants were 

prompted to reproduce the string that they had just seen by the appearance of a 

flashing cursor.  This process repeated as soon as the learner had entered their 

response, and continued until each of the 15 strings had been seen exactly six times. 

On average, this took a little over six minutes. 

Once this training phase had been completed, more instructions appeared on the 

screen. Participants were now told that they had seen 15 different letter strings, and 

that they needed to try to reproduce all 15 of them as best they could. This part of 

the experiment was self-paced. A counter at the top of the screen let participants 

know how many guesses they had left, but they were not given any feedback as to 

whether their answers were right or wrong. If the same string was entered twice, an 

error message appeared to let the participant know, and encourage them to make 

another attempt. Once the final string had been entered, participants were 

immediately given their absolute score, were given a quick questionnaire to fill in 

detailing whether they noticed any patterns in the languages or not, and were then 

fully debriefed about the purpose of the experiment. 

6.2.2 Measuring Structure and Learnability

In order to test our hypotheses, we need to be able to measure both structure and 

learnability in our languages. Recall that in §3.4.3 we defined language as a 

mapping between meanings and signals, and stated that a language was structured 

if similar signals get mapped onto similar meanings. Since we have removed 

meanings from our definition of language (a language is now just a set of 15 

different letter-strings), our definition of structure must also change. Signals in our 

languages have no external referents, so there can be no relationship between parts 

of the signal and any units of semantic or propositional content. However, that does 

not mean that signals cannot be composed of parts. 

197



Here we can make a useful comparison to the way some animal communication 

systems work. For instance, the songs of some species of birds and cetaceans also 

convey no propositional content, yet nevertheless appear structured hierarchically, 

involving the re-use of smaller units to form larger units that get repeated (Payne & 

McVay, 1971; Nelson, 1973; Doupe & Kuhl, 1999; Rendell & Whitehead, 2005; 

Hurford, 2011). For instance, Brenowitz (1997) describes the hierarchical structure of 

birdsong in the following way: notes (or elements) combine to form syllables, which 

link together to form phrases (or motifs), which together constitute a given song type. 

Similar observations have been made concerning humpback whales (Payne & 

McVay, 1971), whose songs are generally composed of more than a dozen complex 

units organised into phrases, which get repeated to form a theme, which gets 

combined with other themes to form the song. Clearly, the structure of signals in 

these animals is combinatorial but not compositional. There is a syntax, even if there 

is no semantics.

We can use this insight then to help us describe what we expect the emergence of 

structure in our culturally transmitted signals to look like. In short, a language is 

structured if it contains reusable units which can be combined to form larger units. This is a 

fairly broad definition of structure, but it is good as long as we have a reliable way 

to measure whether signals contain units that are being reused. Fortunately, in the 

literature on artificial language learning, there is at least one technique that we can 

co-opt to do this: associative chunk strength (ACS) (Knowlton & Squire, 1994). 

According to Pothos & Bailey (2000:851):

“To compute the global associative chunk strength...we 
considered all the chunks that make up a given test item (i.e., 
all pairs or triplets of sequential symbols). The associative 
chunk strength of each chunk is defined as the number of 
times it appears in the training items. The chunk strength of 
a test item is calculated by averaging the associative 
strengths of all chunks in the item.”
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In other words, it tells us how often on average each chunk (i.e bigram or trigram) 

that makes up a given signal appears in the training data. We can illustrate it using 

an example. Let us imagine that a learner is given the following training items to 

learn from: abc, abd, and abcdef. Now let us imagine that during the test the learner 

produces the sequence abc. This signal is composed of three different chunks: ab, 

bc, and abc.  Examining the training input, we see that ab occurs three times, bc 

occurs twice, and abc also occurs twice. We calculate the ACS for this signal by 

adding these frequencies together (7) and dividing by the total number of chunks 

(3). This reveals that each chunk in this signal appeared on average 2.33 times in the 

training data. We can then calculate the average associative chunk strength (referred 

to as the global chunk strength) of all signals in our language by adding up the ACS 

score for each individual signal, and dividing this by fifteen. 

If global ACS is shown to increase over time, it means that fragments are being 

identified and re-used more often. This indicates two things: firstly that learners are 

grouping together individual characters in order to create these chunks, and 

secondly, that these chunks are being reproduced as independent units. In terms of 

determining whether those fragments themselves are going on and combining to 

form larger units above this level, this will have to be determined via qualitative 

analysis of the strings themselves5. Another way to think about ACS is to imagine its 

effect on the learner: in languages where ACS is high it makes items appear more 

familiar, independently of whether those items have been seen before or not6. This is 

because learners are effectively seeing ‘bits’ of signals that they have not seen, 

repeated or packaged up in the structures of signals that they have. Although we 

will not be using any kind of semantic bottleneck here and learners will see all of the 

data, increased global ACS should help facilitate acquisition in much the same way 
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6 Morten Christiansen (personal communication).



that compositionality does -- by increasing the number of tokens that can be 

generalised from.

It is worth noting that we are using ACS in a slightly unusual way here compared to 

the literature. Typically ACS is measured to ensure that novel grammatical and 

ungrammatical test stimuli given to participants has the same distributional 

structure. This is because items with high chunk strength tend to get rated by 

participants as being more grammatical (Knowlton & Squire, 1994). In other words, 

researchers want to be sure that participants are correctly identifying grammatical 

structures because of rules they have acquired through training, and not because 

there are noticeable structural differences between the two sets of stimuli. As such, 

ACS is a known proxy for indicating the amount of structure in test items (Pothos & 

Bailey, 2000). However, it is usually a factor to be controlled when generating 

stimuli, and not a dependent variable to be analysed over the course of 

experimentation.

If we move on to how we determine learnability however, we find that we do not 

need to redefine anything. Like in our previous studies, a language is learnable to the 

extent that it is transmitted faithfully without error. However, we do encounter one 

problem when it comes to calculating transmission error. In the previous studies we 

had a way to pair signals from one generation with signals from the other; we used 

the meanings as a stable link. When we calculated the normalised Levenshtein 

Distance (nLD) (§3.4.3), we were effectively asking: “how similar was the signal 

used by learner 3 to describe a bouncing black triangle, to the signal used by learner 

2 to describe the same object?” The assumption was that signals, even if poorly 

learnt, were always associated with the meaning the were trying to express. Now 

that we have no meanings, how can we be sure which signal the learner was trying 

to replicate in their output?

Again, there is a measurement used in AGL studies which can help us: Global 

Similarity (Vokey & Brooks, 1992; Conway & Christiansen, 2005). Typically this 
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measurement is used to give an idea of how similar training and test sets are to one 

another based on the number of fragments shared between signals in each set, by 

first identifying the best possible alignment of those signals7. To simplify the measure 

slightly and to keep it comparable to our previous analyses, instead of basing our 

calculation on the number of shared fragments between signals, we will base it on 

the nLD error values between signals. This is a purely cosmetic change, which 

ensures that the data, when graphed, shows error increasing or decreasing instead 

of similarity.

The way that this works is as follows: first we must find the number of elements by 

which a signal in generation n differs from its closest match in generation n-1. In 

other words, we calculate the nLD for all possible pairings of signals in the 

language, and then find the alignment between them that gives the lowest nLD 

score for each signal. This measure nicely captures our intuition that some 

particularly salient signals might be used more than once as the basis for 

generalisation in the recall round8. Once we have found this alignment, we can 

calculate the average nLD score for the whole language, as described in §3.4.3.  

6.2.3 Results of Experiment V
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sets with high global similarity is undesirable. By insisting on selecting the alignment that 
maximises global similarity, they are therefore being highly conservative.

8 This aspect does make the measure subtly different to that used in the previous studies, 
which assumed that each and every signal had to be used as the basis for generalisation for 
another signal once and once only. As a result, I also developed a slightly different metric to 
the standard global similarity measure described here,  which matched this requirement by 
using a hill-climbing algorithm to identify the optimal alignment of signals (the alignment 
which gave us the lowest average nLD score, given the constraint that there must be a bi-
unique mapping between signals).  However, the results of applying this slightly more 
stringent bi-unique mapping version of global similarity to the experimental data was 
almost identical to the one obtained using the more standard metric, so is not included here.



Learnability Increases

The transmission error (measured as Global Similarity - see §6.3.2 for the description 

and exact modifications used) was calculated for each generation, and is shown in 

Figure 6.2 overleaf. If we examine all eight chains we find that although there is a lot 

of variation, there is an observable trend showing that error decreases over time. 

This can be seen more clearly in Figure 6.2.lower, which shows this same 

information, but in the form of a box-plot. Although there are a few outliers over the 

first few generations (one in the first generation who had notably poorer recall than 

the other participants in this condition, and another two learners in generations two 

and five who have notably better levels of recall), we can still see that the difference 

between the first and last learners appears substantial. 

A one-way paired t-test was run on the first and final generations, which showed 

that error was significantly toward the end of the chains (mean decrease of 0.725; 

t(7) = 4.6305,  P < 0.002) as compared to the beginnings. This result allows us to 

confirm the learnability hypothesis: languages are indeed becoming easier to learn 

over time. But how does this occur? It is to this question that we now turn.
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Figure 6.2: Global Similarity (error) decreases over generations in Experiment V. The upper graph 

shows every datapoint, whereas the lower graph shows the spread and descriptive statistics of the data 
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in more detail. Thick horizontal bars indicate the median,  boxes show the inter-quartile ranges, and 

whiskers indicate the maximum and minimum values or 2 standard deviations away from the mean, 

whichever is smaller.  Points outside this range are considered to be outliers. Here we find we have 

three points like this, in generations one, two and five.

Associated Chunk Strength Increases

In order to understand whether languages are becoming more structured over time, 

we first look to the ACS values. These provide us with an idea of how much re-use 

of fragments there is over time. These values are shown in Figure 6.3. From this we 

can see that there is a steady increase over time. If we run a one-way paired t-test on 

the values found at the beginning and the ends of each chain we find that this 

increase is massively significant (mean increase in ACS of 1.412; t(7) = 6.203, P < 

0.0003). This tells us that the number of distinct fragments that appear and are 

repeated by learners has significantly increased over time. In the first generation, an 

average of just over 1 fragment per signal is repeated between generations; by the 

final generation, this has risen to nearly 3 fragments per signal. Given the fact that 

the average character length of signals is just 4.175 (a slight increase from the 

average of 4 in the initial input), this increase is substantial.

This indicates that at the very least, participants are combining individual characters 

in order to create chunks or fragments which seem to act like reusable units. 

Therefore, in some sense we can interpret the increase in ACS as an increase in 

structure as we defined it earlier. However, if we want to understand what this 

means in reality, we need to see what these languages actually look like.
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Figure 6.3: Associated Chunk Strength increases over generations in Experiment V. This tells us how 

many times on average the chunks (bigrams and trigrams) that form signals in the language appeared 

in the training data. The fact that this number increases over time indicates that these chunks are 

being treated as independent units by learners, and being reused in greater numbers as the experiment 

goes on.

Final Language Structures

Just as we did in Experiment I-IV, we can analyse the languages that emerge over 

time qualitatively by examining the signals we find in the final generation. Table 6.3 

shows what the language depicted in Table 6.1 transformed into after being 

acquired by ten learners in succession. As you can see, there are a number of 

patterns that stand out in this system. Generally we can categorise strings as falling 

into distinct pattern types. The most striking of these are the four signals consisting 

of repeating triplets of characters. Next we find a group of four that all conform to 
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the general pattern of fcXaX9.  Some of these members overlap with another group 

which have the general pattern of fcXXf, so we can perhaps more parsimoniously 

describe these strings as being a type all together, starting with fcXXX. Finally, there 

are three strings that all contain the bigram db10, and two short strings which 

appear to be unrelated to any of the others. 

final language B

ccc

bbb

ddd

aaa

fcbab

fcbad

fcbaf

fcdaf

fcdcf

fcbcf

fdbdf

dbdaf

dbfbd

fca

cbd

Table 6.3: An example of one of the more interesting languages found in the final generation of 

Experiment V. This language has a great deal of structure in it. We can identify four broad categories 

of strings emerging, each with minor variations: strings with three repeating characters; strings 

beginning with the bigram fc; strings containing the bigram db; and two irregulars. Crossing these 

boundaries is an additional pattern - that of palindromes. This feature was highly salient to learners, 

with four learners reporting it in their debriefing questionnaires. 

Another feature that is striking about this particular language is that many of the 

strings (53%) are palindromic (i.e. have the same structure forwards as they do 

backwards). Furthermore, this pattern seems to apply more globally across the 

language as a whole, rather than being a feature of any of the individual pattern 

types we have already identified. If we examine the raw data for this chain (Chain 2, 

206

9 The X’s indicate where variant characters can appear.

10  These share some similarities with some of the strings beginning fcXXX, but as the db 

combination does not appear anywhere else, it seems more parsimonious to analyse them as 
separate ‘types’. 



Appendix B5) we can see that this pattern emerges slowly, from no instances of 

palindromes in the initial language, to 2 in the first generation, 5 in generation five, 

7 in generation seven, etc., until we reach 8 in generation 10. Although this chain 

was not the most learnable, four of the participants were consciously aware that this 

pattern existed11. This was the only example of this type of ‘global pattern’ to arise 

in any chain however, and the majority of participants only reported spotting local 

similarities between strings.

A more representative example of the kinds of languages that emerged is shown in 

Table 6.4. This shows the language at both the initial and the final generations. Here 

you can see that strings again seem to form groups that pattern together, but this 

time do not seem to have any higher organisational patterns. There does appear to 

be some internal structure to the signals however: certain chunks only appear at the 

end of strings (e.g. -dad, -da, -ae), whilst others only appear initially (e.g. fec-, fce-, 

fed-). The fact that these latter languages were learned much more easily than the 

initial languages appears to indicate that participants are sensitive to these patterns, 

and that they facilitate acquisition.
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working by having palindromes however (gen9).  The remaining three reported this 
language as “having a rythym [sic.]” (gen7), “there is a pattern when you type - dum dum 
DUM dum dum” (gen10) and “you get lulled into the pattern on the keyboard...you need to 
leave your fingers on the keys so you can type quickly” (gen5).



initial language C final language C

abecd bac

acbf bfa

aec dde

bacdc eed

bce fcada

bfea fcdad

cab fceae

cbdae fceda

cead fcede

dbd fecad

ddde fecae

ebafb fecda

eff fecdad

fcfdf fedad

fefa fedae

Table 6.4: An example of one of the more typical languages found in the final generation of 

Experiment V. The distribution of fragments in the final language of chain C show many strong 

patterns. With the exception of the four three letter strings, there seem to be strong restrictions on 

which bigrams and trigrams start and end signals. As this final language was learned much more 

easily than the initial language, we can conclude that these patterns are aiding learners in their task.

6.2.4 Summary

This experiment was designed to try to isolate the effect of sequence memory 

constraints on cultural transmission. By modifying our previous experimental 

framework to remove as many biases as possible (including, most notably, the 

pressure being exerted upon signals to adapt to reflect the structure of the 

meanings) we attempted to answer the question of whether signals would still 

become more learnable and structured over time, even in the absence of any 

language-like task. To that end, initial languages consisting of  carefully constructed 

letter-strings that contained as few regularities as possible were passed along a 

series of eight transmission chains. 

Transmission error was calculated between each of the ten generations and found to 

decrease over time, indicating that the languages were becoming easier to learn. The 

change in distribution of bigrams and trigrams over time was investigated by 

measuring the associated chunk strength of fragments between generations. This 
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revealed that certain chunks began to form and be re-used more often than others. 

Analysing the emergent languages descriptively revealed the appearance of 

patterns, particularly at the beginnings and ends of signals, that participants 

appeared sensitive to. Given the design of the experiment, the only explanation for 

the appearance of these distributional patterns is that they arise from sequential 

learning biases of the learners being amplified by cultural transmission.

6.3 Discussion of Experiment V

Although participants in Experiments I-IV are all given a learning, rather than a 

communication task, in Experiment V we have almost removed every trace of 

language. What, therefore, can this experiment tell us about how linguistic 

communication evolved?  As the brief survey of the literature on sequence learning 

indicated (§6.1), several proponents have suggested that language has adapted to be 

learnable by domain-general, rather than language-specific, learning biases. In order 

to make this argument convincing, we require evidence not only that the domain-

general learning biases that humans possess can more easily process certain types of 

structure, but that those same domain-general learning biases can actually generate 

such structures. This experiment provides that evidence.

The first thing to note, therefore, is that in spite of the fact that little if anything is 

linguistic about this study, we find similar outcomes arising here as we do with the 

other more obviously linguistic experiments. This is interesting, as it indicates that 

the same underlying process is at work in both cases. We find cumulative 

adaptation resulting in better recall over time. The second point that can be made 

concerns the point at which we started the previous experiments. In constructing 

our initial languages for Experiments I-IV, we sampled from a set of pre-generated 

CV-syllables. The reason we did that was because we know that language is, in a 

sense, composed of these low-level units which have not been assigned with a 
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meaning12 . In order to create meaningful distinctions at higher levels of 

organisation, we require these ‘worker units’ to do the hard graft. But where do they 

come from?  How do they get their structure?  This experiment can perhaps speak to 

questions like these.

To recap, when we transmitted signals without any meanings, what we got out at 

the end was the appearance of small chunks that began to get reused with greater 

frequency amongst all the signals in the language. These chunks were seen to 

emerge because of domain-general constraints on sequence memory being 

amplified by the process of cultural transmission. Language is full of meaningless 

units such as these. An implication from this work then is that these constraints 

could have been an important factor which shaped linguistic structure. If this is the 

case, there is no reason to suspect that this process was limited only to a stage in 

language evolution where there were only meaningless signals. Sequence learning 

biases are likely still operating and exerting a subtle force on language today, but as 

with the case of the creative capacities of children only being evident in cases of new 

language formation, and not when acquiring a fully-fledged language (Senghas & 

Coppola, 2001; see §3.2.2), we may only witness these effects in unusual 

circumstances.
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syllable can sometimes be a whole word, or even convey an entire proposition. Duh. 



--------------------------------------------------------------------------------------------------------------------------------------------------

Chapter Seven

Conclusions
--------------------------------------------------------------------------------------------------------------------------------------------------

7.1 Looking Back: In Answer to Earlier Questions

We began this thesis with three questions in mind. Namely:

1. Why is language structured the way it is and not some other way?

2. How does the process of cultural transmission give rise to language structure?

3. Can features of language structure which appear to be designed for 

communication evolve in the absence of a) actual communication, and b) 

intentional design?

We should now be in a position to provide some answers. This section will tackle 

each of these questions in turn.

7.1.1 Why is language structured the way it is and not some other way? 

In Chapters 2 and 3  I reviewed literature which suggested a partial answer to the 

first question: language has the structural features it has because those are the 

features that emerge when initially unstructured systems get culturally transmitted 

via iterated learning. In other words, since language is a complex adaptive system in 

its own right, capable of evolving culturally, these processes of cultural transmission 

could have an explanatory role to play in understanding the emergence of structure. 
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Although this intuition had previously been verified as being logically sound in 

computer simulations and mathematical models, the experiments described in 

Chapters 4-6 demonstrate that the concept is applicable to human learners. These 

studies show that language-like structural relationships can emerge in initially 

unstructured artificial languages, when they are culturally acquired via iterated 

learning along linear chains of human participants. Importantly, we can 

demonstrate a direct link between specific constraints being placed on languages 

during transmission and the structures that emerge. In other words, we can account 

for why the artificial languages were structured the way they were and not some 

other way, by specifically identifying and manipulating these pressures to different 

effects.

In particular, Experiments I-IV show that the signals in a language always adapt to 

reflect the structure of the meanings that they express. However, the relationship 

between signals and meanings is not simple. In Experiments I and II when there 

were only pressures acting on systems to be learnable, we found that the meaning-

space became reorganised in response to this requirement. Meanings became 

underspecified by signals. Importantly, however, this underspecification was 

adaptive: rather than affecting meanings and signals at random, there was a kind of 

systematic levelling or recategorisation process at work which led to semantically 

related objects being given the same signal. This made these systems very easy to 

learn and reproduce in full, even when participants were only being trained on half 

of the data (Chapter 4). In Experiments III and IV on the other hand, when there 

were pressures being placed on the system to not only be learnable, but also 

expressive, a different kind of structure emerged. Here signals evolved to express 

meanings, or parts of meanings, compositionally.

In Experiment V there were no meanings for signals to adapt to. In this study 

(described in Chapter 6) many elements of the previous studies were stripped out, 

leaving a task that was not remotely language-like. The purpose was to investigate 

whether sequence memory biases could give rise to structure in signals. This was 
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indeed found to be the case. From an initial starting point of string-sets that 

contained very little regularity or repetition of sequences of characters, the systems 

evolved to have increasingly learnable distributional structures. 

In sum, the languages in our experiments came to have the structures that they did 

because they were adapting to pressures arising from transmission. Some of these 

pressures were external to the learners and imposed upon the language without 

their knowledge (e.g. the semantic bottleneck, filtering) and others were internal to 

the learners (e.g. biases on sequence learning). As Chapter 4 discussed, these 

pressures get exerted at different points in the transmission cycle, and only some of 

them are directly controllable by the experimenter. Therefore, it is important to 

remember that although we have focused our explanations on the three kinds of 

bottleneck named above, there are others at work also. For instance, we would 

predict that constraints on sequence memory would also be playing a role in 

shaping the languages in Experiments I and IV, even though we cannot directly 

detect it.

7.1.2 How does the process of cultural transmission give rise to language 

structure?

Turning to the question of exactly how processes of cultural transmission give rise to 

language structure, we can use the fact that we have the entire recorded histories of 

all of the languages in the chains to track the evolution of individual signal forms, or  

in the case of compositional languages, parts of signals, over time. This kind of 

analysis technique was demonstrated in Chapters 4 and 5, and revealed that there 

were clear lines of descent between signals. The amount of signal variants was 

found to decrease over time as a result of competition. In this way, the system 

slowly emerged.

One of the key findings of the mathematical models of iterated learning described in 

Chapters 3 and 5 suggests that cultural transmission works to amplify the prior 
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learning biases of agents, thus giving rise to structure. We saw in Experiment III 

how constraints on cultural transmission (in this particular case, a combination of 

the semantic bottleneck and filtering) increase the amount of regularity in the 

language as a whole, in virtue of the participants’ training data containing more 

structure locally. Generalisation based upon this locally more regular structure leads 

to increasing structure globally. 

These same mathematical models also make different predictions about the role of 

cultural transmission in processes of iterated learning. In one model (Griffiths & 

Kalish, 2005; 2007) the outcome of iterated learning has been shown to be just a 

reflection of the learning biases of the agents. In other words, cultural transmission 

is not adding anything to the process or leaving any mark on the resulting system 

that was not already, in a sense, present in the mind of the agents a priori. Other 

models show that by altering the way agents select between competing hypotheses 

about the data (Kirby et al., 2007), or by changing the population dynamics of the 

models (Ferdinand & Zuidema, 2009), the outcome of iterated learning is modified 

by cultural transmission. The experiments support this latter idea that transmission 

is adding something. As an example, the fact that we found a difference between the 

results of our first experiment (which had no requirement to be expressive) and our 

third experiment (which did have a requirement to be expressive) shows that it is 

the manipulation of the way languages were being transmitted which is responsible 

for the effect, and not just the learning biases of participants alone.

7.1.3 Can features of language structure which appear to be designed for 

communication evolve in the absence of a) actual communication, and b) 

intentional design?

None of the experiments contain any communicative element to them. Participants 

were not learning the languages in an interactive environment or using the 

languages ‘for’ anything. In Experiment V in particular, the stimuli was not even 

referred to as a language; participants were recruited on the understanding that they 
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were to take part in a recall experiment. Yet nevertheless all experiments show that 

the transmitted systems adapt over time and become structured. As participants are 

not actually using the language for communication, how can we be sure that the 

structure that appears is in fact of the type that is useful for communication? At least 

in Experiments I-IV, it is important to note that the types of structure that arise 

(underspecification and compositionality) are widely found in human language. 

Here we know that they underlie communication - compositionality, in allowing for 

greater productivity in language, and underspecification in allowing objects to be 

categorised together and assigned a common label (for example, the common noun 

‘chair’). The structures that arose in Experiment V are harder to interpret, as it is 

difficult to know what the letters in the signal strings correspond to in language. 

Nevertheless, the fact that learnability improves over time is an indicator that the 

signals at the end of the study would be better candidates to be used as labels if 

meanings were suddenly introduced than the signals at the beginning of the study.

In terms of the signals evolving in the absence of intentional design, again we can 

look to the contrast between the results found in Experiment I and Experiment III. 

The filtering condition was invisible to participants. Even if they had been making 

intentional changes to the language in the first experiment (for instance, by choosing 

to only try to memorise difficult signals, or ignore minor variations, or use 

mnemonic tricks for recall, or by having any goal other than straightforward 

reproduction of the signal-meaning pairs), they would have had no way of knowing 

to perform a different action in the third experiment. Therefore, we can safely 

conclude that the differences we saw between conditions were not the result of any 

goal directed behaviour by learners.

7.2 Implications for Language Evolution

As the review in Chapter 2 hopefully highlighted, the field of language evolution 

has a number of divisions within its ranks. This is a good sign of healthy debate. 

Broadly speaking, theories of language evolution can be separated along two main 
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lines: on the issue of language-specific learning biases, and on the role of cultural 

transmission. On the one hand there are researchers who hold that language must 

be reliant on innate knowledge specific to language (e.g. Chomsky, 1965; Pinker, 

1994), whereas others stress the importance of general cognitive mechanisms (e.g. 

Elman et al., 1996; Christiansen & Chater, 2008). Separately, there are also researchers 

divided over the importance of cultural transmission in explanations of language 

evolution, with some placing no emphasis on it (e.g. Pinker & Bloom, 1990) and 

others who contend that it actually does some work (e.g. Brighton et al., 2005). What, 

if anything, do these experiments contribute to our understanding of these issues?

The results of these studies on human learners do not, on their own, tell us anything 

about the nature of learning biases involved in language. It could be argued that the 

fact that we see language-like structures emerging here is simply a reflection of the 

underlying linguistic capabilities that is the biological legacy of Homo sapiens 

everywhere. If this is the conclusion that some readers draw from this work, then it 

is one I can just about live with. However, what cannot be in doubt is the fact that 

constraints on cultural transmission are actively ‘doing something’ here. The 

participants in different experimental conditions did not have different processing 

mechanisms: what shaped the different structural outcomes was the data that was 

being transmitted and how it was affected by the external manipulations we made. 

Therefore, one thing that these studies confirm without a doubt is that theories of 

language evolution need to take cultural evolution more seriously.

I said that I could live with the reader coming away with the conclusion that 

humans have language-specific learning biases. That is not to say that I think that is 

the right conclusion however. The point cannot be established based on these results 

alone, but needs to be understood in the wider empirical context. The starting point 

for all of these studies were findings coming from computer simulations of iterated 

learning. In these models, agents are not rewarded for successful communication. 

They have no pre-existing language. They have no language-specific learning biases.  

What they do have are general cognitive mechanisms that allow them to process 
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sequences, the ability to form categories and make generalisations, and the 

willingness to copy others. 

Given that the experiments with human learners essentially replicate the behaviour 

of these much simpler agents, it seems that the most parsimonious explanation is 

that universal structural properties of language do not require language-specific 

brain mechanisms.  If we follow this argument to its natural conclusion then, one 

implication that we can take away from these studies is that compositional language 

did not necessarily require much to get off the ground. As long as there is a basic 

desire to distinguish between different objects (a need for expressivity), and some 

desire to copy the vocalisations of others (a need for learnability), cultural evolution 

will deliver.

7.3 Key Contributions

The key findings of the five studies tell us a number of interesting things. Firstly, 

that it is possible to witness the cultural evolution of language in the laboratory; 

secondly, that results from computer simulations of the process can, to a large 

extent, be said to generalise to human learners; and thirdly, that language adapts to 

those pressures placed upon it during transmission. The importance of these three 

results should not be underestimated. 

Evolutionary linguistics is a field that has traditionally suffered (or at least been 

perceived to suffer) from a lack of data. These experiments provide a new way for 

us to extract information relevant to understanding the processes that underlie the 

emergence of language-like systems. It is hoped that the development of this 

experimental methodology will open the door for more research in this area. Indeed, 

the early signs give us reason for optimism. Several studies which acknowledge this 

framework have already been conducted, extending the work presented here by: 

exploring different population structures (Winters, 2009; Line, 2010); manipulating 

characteristics of the meaning-spaces (Beqa et al., 2008; Matthews et al, 2010); 
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investigating regularisation (Smith & Wonnacott, 2010); exploring different 

modalities (Tamariz, Brown & Murray 2010); and even attempting to compare the 

performance of adults and children (Flaherty & Kirby, 2008). The recent growth in 

this area has recently been charted in a Trends in Cognitive Science paper (Scott-

Phillips & Kirby, 2010).

That the results of these experiments also support computational simulations of the 

process enables us to not only respond to critics of the modelling approach and 

make our findings more accessible to researchers in other fields, but it also enables 

us to better understand the nature of the cognitive mechanisms responsible for the 

appearance of structure in these systems. Likewise, where results deviate from those 

predicted by simulations, it serves to highlight areas where our modelling 

assumptions are incorrect. Thus I hope to have demonstrated that both research 

methodologies are mutually supportive, and have a greater impact when their 

results are viewed together rather than individually.

Finally, the discovery that language does in fact adapt to constraints arising during 

transmission adds something concrete to our understanding of how language might 

have evolved in our species; namely, that biological evolution is not the only 

adaptive mechanism capable of generating linguistic structure. This should not be 

taken as suggesting that biological adaptations play an insignificant role in language 

emergence, however. One of the themes that recurs throughout the thesis is that 

cultural transmission works to amplify any biases present either in the learner, or 

arising from the transmission process itself. In some sense, the outcome of this work 

is the generation of more questions. Where do learning biases come from? And also: 

what neurological mechanisms support iterated learning in humans?  How did those 

mechanisms evolve?  These are unfortunately issues that must be left for future 

investigation.
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Raw data from 4 transmission chains in Experiment I



motion shape colour 0 1 2 3 4 5 6 7 8 9 10

bounce circle black hopa vulepami vulepami vulepami nepa nepa nepa nepa nepa nepa nepa

bounce circle blue manehowu nemine vulepami nepa vulepami nepa nepa nepa nepa nepa nepa

bounce circle red wuneho nemine lepa vulepami maho maho nepa nepa nepa nepa nepa

bounce square black pamamapo vulepami vulepami vulepami nemene nepa nepa nepa nepa nepa nepa

bounce square blue lemipo veneme lepa vulepami nepa nepa nepa nepa nepa nepa nepa

bounce square red howu nemine nemene maho maho maho nepa nepa nepa nepa nepa

bounce triangle black nehowu pamapapo vulepami nemene nemene nepa nepa nepa nepa nepa nepa

bounce triangle blue nemi mahole nemi vulepami nepa nepa nepa nepa nepa nepa nepa

bounce triangle red wunene pali nepa vulepami maho nepa nepa nepa nepa nepa nepa

horizontal circle black lipapo nepa nepa nepa maho nepa nepa nepa nepa nepa nepa

horizontal circle blue poliho vemine nemene nepa nepa nepa nepa nepa nepa nepa nepa

horizontal circle red maho maho maho maho maho maho maho nepa nepa nepa nepa

horizontal square black nehomami pamapapo pamapapo maho nepa nepa nepa nepa nepa nepa nepa

horizontal square blue powuma lemi maho maho nepa nepa nepa nepa nepa nepa nepa

horizontal square red wumaleli maho maho maho maho nepa nepa nepa nepa nepa nepa

horizontal triangle black lilema pamapapo pamapapo nepa nepa nepa nepa nepa nepa nepa nepa

horizontal triangle blue lemaho nemi nepa maho nepa nepa nepa nepa nepa nepa nepa

horizontal triangle red lemilipo maho nepa nemene maho nepa nepa nepa nepa nepa nepa

spiral circle black lepali mapo vulepami pamano pamano pamano pamano nepa nepa nepa nepa

spiral circle blue lemi nemene wulepami nemene nepa nepa nepa nepa nepa nepa nepa

spiral circle red nemine lepa nemine maho maho maho maho nepa nepa nepa nepa

spiral square black pohomali wulepami vulepami maho nepa nepa nepa nemene nemene nepa nepa

spiral square blue maholi waheme nemene pamano nemene nemene nemene nemene nemene nemene nemene

spiral square red wupa nemi maho maho maho nepa nepa nemene nemene nepa nepa

spiral triangle black wulepami wulepami maho nepi nemene nemene nepa nepa nepa nepa nepa

spiral triangle blue nepa nemu nepa nepi vulepami nepa nepa nepa nepa nepa nepa

spiral triangle red mahomine nemine lepa maho maho maho nepa nepa nepa nepa nepa

Table showing raw data for Chain A in Experiment I. Shaded cells indicate that this item was selected to be seen by the next 
generation during training.



motion shape colour 0 1 2 3 4 5 6 7 8 9 10

bounce circle black lema lehe lehe lehe lehe ninalehe ninalehe ninalehe ninalehe ninalehe ninalehe

bounce circle blue manane nawilehe nawilehe nawilehe ninalehe ninalehe ninalehe ninalehe ninalehe ninalehe ninalehe

bounce circle red lehe lehemu nawilehe nawilehe lehe lehe ninalehe ninalehe ninalehe ninalehe ninalehe

bounce square black ninamahe lehe lehe lehe lehe ninalehe ninalehe ninalehe ninalehe ninalehe ninalehe

bounce square blue nawipuko lehe nawilehe nawilehe ninalehe ninalehe ninalehe ninalehe ninalehe ninalehe ninalehe

bounce square red puneniko lehe nawilehe nawilehe lehe ninalehe ninalehe ninalehe ninalehe ninalehe ninalehe

bounce triangle black maheko lehe lehe lehe lehe ninalehe ninalehe ninalehe ninalehe ninalehe ninalehe

bounce triangle blue hena nawilehe nawilehe nawilehe ninalehe ninalehe ninalehe ninalehe ninalehe ninalehe ninalehe

bounce triangle red leheni lehe lehe lehe lehe lehe ninalehe ninalehe ninalehe ninalehe ninalehe

horizontal circle black konema nepomu koneko mopuno nina winako lehe nina lehe nina nina

horizontal circle blue nepunani manehe mopulau mopulau nina lehe lehe lehe lehe nina nina

horizontal circle red punema koneko mopunau mopulau ninakau mopulau mopulau mopulau nina nina nina

horizontal square black naniwi koneko koneko mopulau nina nina nina nina nina nina nina

horizontal square blue lemahene punawi koneko mopulau nina nina lehe lehe lehe lehe nina

horizontal square red koneko koneko nekolau mopulau mopulau lehe lehe lehe nina nina nina

horizontal triangle black puleni nepomu ninakoneko nina nina lehe lehe lehe nina nina nina

horizontal triangle blue helewina ninapomau ninapolau mopulau nina nina nina nina nina nina nina

horizontal triangle red koma konekowi ninakolau ninakau ninakau nina nina nina lehe nina nina

spiral circle black winako winako winako winako winako winako wina winako wina wina wina

spiral circle blue nawi nepomuni winapu wina wina wina wina wina wina wina wina

spiral circle red wina winamako wina wina wina wina wina wina wina wina wina

spiral square black wile makoko mopunu wina wina wina wina winako wina wina wina

spiral square blue punawi nepumehe mopuno wina wina wina wina wina wina wina wina

spiral square red lekopule makomu mopune wina wina wina wina wina wina wina wina

spiral triangle black makoko winako winako wina wina winako winako winako winako winako winako

spiral triangle blue malehewi nawikok wina wina wina wina wina wina wina wina winako

spiral triangle red makopu wina wina wina wina wina wina wina wina wina winako

Table showing raw data for Chain B in Experiment I. Shaded cells indicate that this item was selected to be seen by the next 
generation during training.



motion shape colour 0 1 2 3 4 5 6 7 8 9 10

bounce circle black kinimapi kimei hepini tuge tupim tupim minku miniku miniku miniku miniku

bounce circle blue wikuki miwn miniku tupim tupim tupim miniku miniku miniku miniku miniku

bounce circle red kikumi miheniw hepini tupim tupim tupim miniku miniku miniku miniku miniku

bounce square black miwiniku pemini nige miniku mihunu mihunu miniku miniku tupim tupim tupim

bounce square blue pinipi kupini tuge tuge tupim tupim tupin miniku tupim tupim tupim

bounce square red kihemiwi pon mihenu mihunu miniku tupim tupim tupim tupim tupim tupim

bounce triangle black miwimi poi poi poi poi miniku miniku miniku tupin tupin tupin

bounce triangle blue nipi mhip mpo tuge miniku tupim tupin tupin tupin tupin tupin

bounce triangle red wige kuwpi tupim miniku miniku miniku tupin miniku tupin tupin tupin

horizontal circle black nihepi mip nige tuge tuge tuge tuge tuge tuge tuge tuge

horizontal circle blue wigemi mpo nige tuge tuge tuge tuge tuge tuge tuge tuge

horizontal circle red mahekuki miniku tuge tuge tuge tuge tuge tuge tuge tuge tuge

horizontal square black wimaku nige nige mihenu tuge tuge tuge tuge tuge tuge tuge

horizontal square blue miniki miniku tuge tuge tuge tuge tuge tuge tuge tuge tuge

horizontal square red gepinini poh tuge tuge tuge tuge tuge tuge tuge tuge tuge

horizontal triangle black wikima tuge nige nige [null] tuge tuge tuge tuge tuge tuge

horizontal triangle blue nipikuge tuge tuge tuge tuge tuge tuge tuge tuge tuge tuge

horizontal triangle red hema weg mpo tuge tuge tuge tuge tuge tuge tuge tuge

spiral circle black pikuhemi kuhepi hepini tupim tupim tupim poi poi poi poi poi

spiral circle blue kimaki wige tupim tupim tupim tupim poi poi poi poi poi

spiral circle red pimikihe mie tupim tupim tupim tupim poi poi poi poi poi

spiral square black gepihemi hepinimi hepini mihenu tupim tupim poi poi poi poi poi

spiral square blue kunige himini miniku tupim tupim tupim tupin poi poi poi poi

spiral square red miki hipe tupim tupim tupim tupim tupim tupim poi poi poi

spiral triangle black mihe pobo nige poi poi poi poi poi poi poi poi

spiral triangle blue winige tupim tupim tupim tupim tupim tupin tupin poi poi poi

spiral triangle red kinimage hipe poi tupim tupim tupim tupim poi poi poi poi

Table showing raw data for Chain C in Experiment I. Shaded cells indicate that this item was selected to be seen by the next 
generation during training.



motion shape colour 0 1 2 3 4 5 6 7 8 9 10

bounce circle black keni wema wepa wepa wema wipe wema wema wepa wepa wikepi

bounce circle blue wumepihu wape wape hukela wema wawakipi wakepi wema wema wepa hidoku

bounce circle red nihulu nihulu niveli niveli niveli wepa hudulu wikepi wikepi wikepi wikepi

bounce square black pime piwe wepa wepa wipe wuwu wepa wepa wepa wepa wikepi

bounce square blue memelu hukile nihulu hekulu heduku hidulu wakepi wema wepa hidoku hidoku

bounce square red meluwa nihulu nihulu niveli wema wawkipi wema wema wikepi wikepi wikepi

bounce triangle black wawapike wawapike wawapike wipe wema wipe wema wema wepa wepa wikepi

bounce triangle blue wuhame huwe wipe hekulu hedulu nihulu wema wikepi wema hidoku hidoku

bounce triangle red wani pikewa wawakipe hekulu wepa wema wema wikepi wikepi wikepi wikepi

horizontal circle black wapiwu pime wipe wipe wipe wepa wipe wepa wepa wipe wipe

horizontal circle blue mehuniha niweli wema wema wepa nihulu wepa wepa wipe wepa wipe

horizontal circle red niluha peluma wepa nirulu wema nihulu wepa wepa wepa wepa wikepi

horizontal square black kemepi wume nihulu wipe wipe wipe wipe wipe wipe wipe wepa

horizontal square blue meni pewa hukela nirulu wema wawakipi wepa wepa wepa wepa wepa

horizontal square red kepihuwu wepamehu hukela nihulu wepa nihulu wepa wepa wepa wikepi wepa

horizontal triangle black piwu pime nihulu wipe wipe jiduku wipe wepa wepa wipe wipe

horizontal triangle blue wuke piwe wema wipe wepa wepa wepa wepa wepa wipe wipe

horizontal triangle red huhani humepa wawakipe wepa wema nihulu wepa wepa wepa wipe wikepi

spiral circle black nimepa piwe wepa wipe wepa wepa hudulu hidoku hidoku hidoku hidoku

spiral circle blue mepikelu wuhili huke;a wepa wepa wepa hidoku hidoku hidoku hidoku hidoku

spiral circle red nimeni lihuke wipe wipe niveli wepa wakepi wikepi wikepi hidoku hidoku

spiral square black lume luwema wepa wepa hedulu hiduku hudulu hidoku hidoku hidoku hidoku

spiral square blue kewaha hukela wema wakala nihulu wawakipe hudulu hidoku hidoku hidoku hidoku

spiral square red kewamewu meka hukela hekulu wawakipe wawakipi hudulu hidoku wikepi wikepi hidoku

spiral triangle black luwaha pehilu wawakipe wepa wepa hiduku hidoku hidoku hidoku hidoku hidoku

spiral triangle blue wapi pikelu wawakipe wawakipe nihulu wpie hidoku hidoku hidoku hidoku hidoku

spiral triangle red humeni nihuli wema wipe wakepi wipe nihulu wikepi wikepi wikepi hidoku

Table showing raw data for Chain D in Experiment I. Shaded cells indicate that this item was selected to be seen by the next 
generation during training.



--------------------------------------------------------------------------------------------------------------------------------------------------

Appendix B2

--------------------------------------------------------------------------------------------------------------------------------------------------

Raw data from 4 transmission chains in Experiment II



motion shape colour 0 1 2 3 4 5 6 7 8 9 10

bounce circle black huhunigu niguki wagukike mukoni muhapo magini nucapo nucapo nukapo nucapo nukapo

bounce circle blue kemuniwa kekoguni mugike mukoni nucapo mukapo mukapo mucapo mukapo nucapo nucapo

bounce circle red kihupo hugukiki nupokiki mukapo muhapo mucapo mucapo mucapo mucapo nucapo nucapo

bounce square black wakiki huwiku mugike mukoni mutapo nucapo nucapo nucapo nucapo nucapo nucapo

bounce square blue pokikehu nugukike nugikinu koni mukapo mugini mukapo mucapo nukapo mucapo nucapo

bounce square red waguhuki muguki wekike mukapo muckapo mucapo mukapo mukapo nucapo mucapo nukapo

bounce triangle black nihu wakiki koni koni mugeni mugenini nucapo nucapo nukapo nucapo nucapo

bounce triangle blue niguki wukeki koni koni mukapo mucapo mukapo mukapo nucapo nukapo nukapo

bounce triangle red koni koni mukoni mukoni muhapo nucapo mucapo mukapo nucapo mucapo nucapo

horizontal circle black muwapo muguki wapo kapo kapo hapo hapo hapo kapo hapo hapo

horizontal circle blue powa wapo nuha hapo hapo hapo hapo hapo kapo hapo hapo

horizontal circle red hukinimu niguki hapo kapo kapo kapo kapo kapo kapo hapo hapo

horizontal square black wako muwapo mukeki nugeki kapo hapo hapo hapo kapo hapo hapo

horizontal square blue hukeko waku kapo hapo hapo hapo hapo hapo hapo hapo hapo

horizontal square red pohumu gukike kapo huni hapo kapo kapo kapo kapo hapo hapo

horizontal triangle black muko nihu huni kapo kini hapo hapo hapo hapo hapo hapo

horizontal triangle blue kokeguke nihu koni koni hapo hapo hapo kapo hapo hapo hapo

horizontal triangle red kimu wakeke huni kapo kapo kapo kapo kapo kapo hapo hapo

spiral circle black kekewa wakeko nugeke kapo wakeke wunigni maginini waginini wagnini wagini waginini

spiral circle blue komuhuke wakigu huguni wakeke wakeke nugini wagini wagini wagini wagini waginini

spiral circle red kopo kopo nugoni nugikini nugikini mugingi nugikini nugokini nugakini wagini waginini

spiral square black huwa wakuki wakeke wakeki mugenini wagigini nugini wagini waginini waginini waginini

spiral square blue hukike huguni kapo noguni wakeke wagini wagini wagini waginini waginini wagini

spiral square red ponikiko nuguki mukapo wakeke nugikini mugini wagini wagini nugakini waginini waginini

spiral triangle black kowagu guni wakiki wakiki wakeni mugini magini waginini wagini nuakini macini

spiral triangle blue kokihuko muguni hapo nuguni mugeni mugini wagini wagini waginini nuakini waginini

spiral triangle red kiwanike nuguki wakeki nugeni wakeke wagini wagini nugakini nugokini nuakini nakaini

Table showing raw data for Chain A in Experiment II. Shaded cells indicate that this item was selected to be seen by the next 
generation during training.



motion shape colour 0 1 2 3 4 5 6 7 8 9 10

bounce circle black kuwo nahenko lugigipi gulo gulo naheku pulo pulo pulo pulo pulo

bounce circle blue wonagi huwo lugigipi legigipi legigipi lugipigi gulo neheku nahepu nehepu nepu

bounce circle red pelu gulo gulo gulo naheku naheku pulo pulo nagigipi nagigipi pili

bounce square black wogipena huko naheku lugigipi lugigipi naheku pulo pulo pulo pulo nagigihi

bounce square blue napena huko henko naheku legigipi legigipi naheki neheki naheki nehepu pulo

bounce square red penapiku penapiku naheku naheku naheku legigipi pili pili pili pili nepi

bounce triangle black gapinahe naheku gunko gunko nagigeki gunko pulo pulo pulo pulo nepi

bounce triangle blue hewoku luwenko naheku henko nageku legigipi pulo neheki naheki nehepi nepu

bounce triangle red giku giko naheku naheku nageku nekigeki pili pili pili pili pili

horizontal circle black lugigipi lugigipi pelu gulo gulo gulo naheku nagegepi pulo nepu pulo

horizontal circle blue naheku ligigipi gulo gulo gulo pilu nagegepi hepu nepu nepu pulo

horizontal circle red kuluwo naheku gulo gulo gulo pihu nagigipi pulo pili nepu pulo

horizontal square black wogiluku lugowo pelu pilu pilu pilu nagigipe pulo pulo nepu pili

horizontal square blue gikuna pihu pihu pihu pilu pihu pili nehepu nehi napu nepi

horizontal square red napeheku guko neku pihu pihu pihu gulo nagigipi pili pili pili

horizontal triangle black penalu giku pelu pilu pilu gulo hepu nepu nepu nepu nepi

horizontal triangle blue pihena pihu pihu pilu pilu pihu hipu nepu nepu nepu nepu

horizontal triangle red naku naku pilu pihu pihu pihu nagigipi pili pili pili pili

spiral circle black lugana galu nekigeki nekigeki lugigipi gulo nagigipi pulo pulo pulo pulo

spiral circle blue heku henku heki legigipi gulo nekigeki nagigipi nehepu nahepu naheki nepi

spiral circle red wonalupe lugibi legigipi naheku gulo legigipi nagigipi nagigipi nagegepi nagigipi pulo

spiral square black galukuna wugo gelu lugigipi lugigipi naheku naheku nagegepi pulo pulo pulo

spiral square blue napiwo naheku lugigipi legigipi legigipi naheku nahepu nagegepi nahepu nehepu nagighi

spiral square red lupiwo naheku lugigipi lugigipi lugigipi legigipi pili nagigipi nagigipi nagegepi pulo

spiral triangle black nahe pelu geki henko lugigipi legigipi naheku neheku pulo pulo pulo

spiral triangle blue pihe lungo naheku lugigipi legigipi legigipi pulo nehepu neheki nehepi nepi

spiral triangle red galu nahenko heki heku lugigipi lugigipi pulo nagigipi nagigipi nagegepi pulo

Table showing raw data for Chain B in Experiment II. Shaded cells indicate that this item was selected to be seen by the next 
generation during training.



motion shape colour 0 1 2 3 4 5 6 7 8 9 10

bounce circle black kalu humoneki humonpiki luneki manolaki trilaki manolaki manolaki manolaki manolaki manolaki 

bounce circle blue mola kahupiki kumopiki nane lunaki lunalaki lunalaki lunlaki lunolaki lunolaki lunolaki 

bounce circle red pihukimo nemalo nane humoneki lunaki trilaki manolaki manolaki humolaki humolaki humolaki 

bounce square black moki kunapiki humonpiki nano mano manolaki manolaki manolaki trilaki trilaki manolaki 

bounce square blue luneki kaneki humopiki nuleki manolaki manolaki manolaki humalaki manolaki manolaki lunalaki 

bounce square red lanepi lahupino kumonaki trileki trilaki manolaki manolaki humalaki humalaki humalaki humalaki 

bounce triangle black nane nane humoneki huleki mulaki trilaki trilaki trilaki trilaki trilaki trilaki 

bounce triangle blue kalakihu hokune humopiki trileki trilaki lunlaki lunlaki trilaki trilaki trilaki trilaki 

bounce triangle red mokihuna naki nane luneki trilaki trilaki trilaki trilaki trilaki trilaki trilaki 

horizontal circle black nelu maneki malo mano mano mano mano mano mano mano mano 

horizontal circle blue kanehu malo korane naleki lunaki manolaki manolaki mano mano mano mano 

horizontal circle red namopihu kuneki luneki luniki humalaki mano mano mano mano mano mano 

horizontal square black lumonamo huneki humano mano mano mano mano mano mano mano mano 

horizontal square blue kinehune humonamo nari maleki mulaki manolaki manolaki mano mano mano mano 

horizontal square red lahupine kahune kuneki naleki mano mano manolaki manolaki manolaki manolaki manolaki 

horizontal triangle black kapihu malo humona mano mano mano mano mano mano mano mano 

horizontal triangle blue humo humo humo keleki manolaki mano mano mano mano mano mano 

horizontal triangle red lahupiki luneki luneki muleki trilaki mano manolaki mano mano mano mano 

spiral circle black pilu malo kuneki naleki mano mano mano mano mano mano manolaki 

spiral circle blue neki kahune pilu luneki lunaki manolaki manolaki manolaki manolaki manolaki manolaki 

spiral circle red pinemohu luneki luneki nane humalaki manolaki manolaki humalaki manolaki manolaki manolaki 

spiral square black kilamo pilu pilu mano mano mano mano manolaki manolaki manolaki manolaki 

spiral square blue kahuki pilu pilu luneki humalki manolaki manolaki manolaki manolaki manolaki manolaki 

spiral square red neluka namupiku kuneki meneki mano humalaki humalaki humalaki manolaki manolaki manolaki 

spiral triangle black luki luneki kuneki mano mano mano manolaki manolaki manolaki manolaki manolaki 

spiral triangle blue namola kuneki pilu luneki trilaki manolaki manolaki manolaki manolaki manolaki trilaki 

spiral triangle red lumoka haneki luneki maleki kelaki humalaki humalaki manolaki manolaki manolaki manolaki 

Table showing raw data for Chain C in Experiment II. Shaded cells indicate that this item was selected to be seen by the next 
generation during training.



motion shape colour 0 1 2 3 4 5 6 7 8 9 10

bounce circle black melipa mawehika meme liga liga liga liga liga liga liga liga

bounce circle blue pamu pamu paweliga hinoliki hinoliki paweli paweli paweli paweli paweli paweli

bounce circle red mewega linuhiko memenu hinoliki meme meme meme meme meme meme meme 

bounce square black gamuwe maweliga liga liga liga liga liga liga liga liga liga

bounce square blue linuhiko luhiko hinoliki hinoliki hinoliki hinoliki hinoliki hinoliki paweli paweli paweli

bounce square red komehi hikomeli highili meme meme meme meme meme meme meme meme 

bounce triangle black hiko hiko hiko highili liga liga liga liga liga liga liga

bounce triangle blue palime palime pawemeli hinoliki hinoliki hinoliki hinoliki hinoliki paweli paweli paweli

bounce triangle red gawe gawe hiko meme meme meme meme meme meme meme meme 

horizontal circle black hiwenuko linu meme meme memenu liga liga liga liga liga liga

horizontal circle blue nuhiwenu liga meme menu paweli memenu memenu memenu menenu memenu memenu

horizontal circle red memenu memenu liga meme meme meme meme meme meme memenu memenu

horizontal square black paweko liga liga menu meme liga liga liga liga liga liga

horizontal square blue konulipa pawehiko meme liga memenu memenu memenu memenu honolike honolike memenu

horizontal square red linu menu menu meme meme meme meme meme meme meme meme 

horizontal triangle black mume meme hiko liga liga liga liga liga liga liga liga

horizontal triangle blue pawemeli mume liga menu paweli paweli paweli memenu menenu memenu memenu

horizontal triangle red liga liga menu paweliga meme meme meme meme meme meme meme 

spiral circle black melime melime meme hinoliki liga liga liga liga liga liga liga

spiral circle blue munuko pawemeli paweli meme paweli paweli paweli paweli paweli paweli paweli

spiral circle red komume hikoliga paweli paweli meme meme meme meme meme meme meme

spiral square black numekopa mumehiko liga meme paweli liga liga liga liga liga liga

spiral square blue wega notomeli paweliga paweli paweli paweli paweli paweli paweli paweli paweli

spiral square red higahili highili paweli meme meme meme meme meme meme meme meme 

spiral triangle black pawe pawemali hiko memenu liga liga liga liga liga liga liga

spiral triangle blue gahi paweliga paweli paweli paweli paweli paweli paweli honolike honolike honolike

spiral triangle red muwemeko pawe memenu memenu meme meme meme meme meme meme meme

Table showing raw data for Chain D in Experiment II. Shaded cells indicate that this item was selected to be seen by the next 
generation during training.



--------------------------------------------------------------------------------------------------------------------------------------------------

Appendix B3

--------------------------------------------------------------------------------------------------------------------------------------------------

Raw data from 4 transmission chains in Experiment III



motion shape colour 0 1 2 3 4 5 6 7 8 9 10

bounce circle black kalu lanapi keluupilu kahona kahona neki nekiplu nekinono nerena nehoplo reneplo
bounce circle blue mola kalu kanupilu lehona kahuna laneki lapipilu lapklu leneho lahoplo lareplo

bounce circle red pihukimo kalu napilu kahona kanana kanana kanana renana renana rehoplo reneplo

bounce square black moki lanapi lapilu kanupilu kahona kahopilu nekipilu nekeno nekeno nereplo nereplo

bounce square blue luneki lapalu lunahoma lehona lanuna lanpilu lanepilu lahoki kapilu laneplo laneplo

bounce square red lanepi kanepi luhona lanpilu kahuna kahepilu kaneki nekipilu renana replo reneplo

bounce triangle black nane kilahuna kahoma kanupilu lunona lanpilu nekinono nekiplu nekiplo nekiplo nekiplo

bounce triangle blue kalakihu lamuna kepihoma kanupilu kahuna nehoki lapiranana kanana lepilo lakiplo lakiplo

bounce triangle red mokihuna pinamula nepalu lapilu nanuna kahopilu kapilu kanana rekiplo rahoplo rekiplo

horizontal circle black nelu napilu pilu neki kahoneki nepilu nekepilu nekeno nereki neheki faneki

horizontal circle blue kanehu pilu pilu lanike kaneki lanepilu lahoki laneki laneki lahoki lareki

horizontal circle red namopihu pilu kanupilu kaneki kanneki kane kaponeki reneki renato reneki reneki

horizontal square black lumonamo pilu laneki neneki neki neki nepilu naneki nereki nereki nereki

horizontal square blue kinehune nahuna kaneki laneki laneki laneki laneki lanoki lanena lereki laneki

horizontal square red lahupine humo kaneki kaneki kaneki kaneki kaneki luni renana renana renana

horizontal triangle black kapihu kahumo neki neki luneki nekipilu nekeni keniko nekeki nekeki lakaki

horizontal triangle blue humo neki homa neki kaneki lanpilu lapineki laneki laneki lakeki lakiki

horizontal triangle red lahupiki pilu kaneki naneki naneki kenepilu kaphiki reneki raneki raheki rekiki

spiral circle black pilu kinepilu pilu pilu kahopilu nekopilu nepipilu nahokilu nepilu nehopilu renepilu

spiral circle blue neki kinepila lepilu lepilu kapilu lahopilu lahopilu lahopilu lehopilo lahopilu larepilu

spiral circle red pinemohu lamuna napilu kanpilu kanpilu kahopilu kapilu rehopilu rehopilu rehopilu rehepilu

spiral square black kilamo kahuna kahona kapilu kapilu nekilu nekpilu kekilu nehopilu nepilu nerepilu

spiral square blue kahuki luneki luneki lanpilu lanpilu lanepilu lanepilu lanpilu lanpilo lanepilu lanepilu

spiral square red neluka lanuka napilu kahona kapilu kahopilu kanepilu kanpilu rehopilu repilu renepilu

spiral triangle black luki kalu kinu lupilu lupilu nekipilu nepilu nepilu nepilu nekipilu lakipilu

spiral triangle blue namola neki nakemi lepilu kapilu lanepilu lapipilu lakipilu lakipilo lakipilu lakipilu

spiral triangle red lumoka napulu kaneki nepilu napilu kapilu kapipilu rekepilu rakipilu rahopilu rekipilu

Table showing raw data for Chain A in Experiment III. Shaded cells indicate that this item was selected to be seen by the next 
generation during training.



motion shape colour 0 1 2 3 4 5 6 7 8 9 10

bounce circle black melipa mewnihi mewena mewega menowa helahilhil meknowa meknowa mehnoa mehnoah mekoah
bounce circle blue pamu gamewe mowoga mewega menowa helhilhil menoah meknoa mehknoah meknoa mekhoah

bounce circle red mewega owumuga mewega pewega menowa meknowna meknoah meknoa mehknoah mekhnoah mehkoa

bounce square black gamuwe muwenega mowoga monowa menowa meena hilahillhil meknowa mehnoa mehnoah mehkoa

bounce square blue linuhiko mowoga mowoga monowa menowna menowa menahilhil meknoah meknoa mekhnoa mekoah

bounce square red komehi pawenego mowoga monowa menowna pewega menahilhil meknoah mehknoah mehnoa mehkoah

bounce triangle black hiko mowenghi mowoga kewona kenowa mena mehnoha mehnoha mehnoah mehnoah meknoah

bounce triangle blue palime palinia mowoga meena menowa meknowa meknowah meknoah meknoa meknoah meknoah

bounce triangle red gawe mewenega mewoga kewona menowa meena menaoh meknoa mehknoah meknoa mekhoa

horizontal circle black hiwenuko mewnahi lina mewega menowa pewega mena mena pega pega mekhoah

horizontal circle blue nuhiwenu menunana lina pewega pegewa pewega pega pega menu menu menu

horizontal circle red memenu liga pewega mewega menowna perega palin palim palim palim mekoa

horizontal square black paweko palin palin palin kenowa meena mena menu pega palim mekoa

horizontal square blue konulipa peenla palin palin pewega pegawa meknoa meknoa menu pega meknoah

horizontal square red linu lega palin palin palin palin palin palim pegu pega mekhoah

horizontal triangle black mume meewena meweena lina kenowna perega pegu pegu pegu pega mekoah

horizontal triangle blue pawemeli lina lina lina kenowna pewage mena pegu pega pega mehkoa

horizontal triangle red liga lega lina lina kenowna perega pegas pegas palim palim palim

spiral circle black melime memilhi meena helahilhil kenowna hellahilhil hellahillhill helahillhil hellahilhil helahillhil meknoa

spiral circle blue munuko memeena helhilhil helahilhil helahilhil helhilhil hellahillhill hellahillhill hellahilhil hellahillhil helihilhill

spiral circle red komume helhilhil helahilhil meena meena helhilhil helahilhil hellahilhil hellahilhil helahillhill helihillhil

spiral square black numekopa pawethi helhilhil helhilhil helahilhil hellahilhil hellahillhill helahilhil helahilhil helahillhill mekoah

spiral square blue wega helahilhil kewona helhilhil helhilhil knowna helahilhill helahilhill helahillhill hellahilhil mekhoah

spiral square red higahili kenowma helahilhil helhilhil meena hilhilhil helahilhil helahilhill helahilhill helahilhill helihillhill

spiral triangle black pamu hilihihi kenowna kenowna kenowna hellahillhill helahilhill hellahilhil hellahilhil helahilhill mekhoah

spiral triangle blue gahi peneka peneena kenowna helahilhil helhilhil helahillhill helahilhil helahilhil helahillhill mehkoa

spiral triangle red muwemeko pawena meena kenowna helahilhil hilhilhil hellahillhill hellahilhil meknoah meknoah mekhoa

Table showing raw data for Chain B in Experiment III. Shaded cells indicate that this item was selected to be seen by the next 
generation during training.



motion shape colour 0 1 2 3 4 5 6 7 8 9 10

bounce circle black kuwo wogilupu wogilopa wogipenal penalowgi wogipenal wogipenal wogininalgi wonilunalgi wolilunagi wolilunagi

bounce circle blue wonagi napiwo wogilupe wogipenal woginepal woginepal wogipenal wogipenalgi wonilunalgi wogilenani wolilunagi

bounce circle red pelu wogilupu wogilupa nepalwogi wogilugan wogiluna wogilunagi wogilunagi woginunagi wolilunani wonunali

bounce square black wogipena wogipena nepalwogi woginepal wogipenal wogipenalgi wogipenalgi penlunagi woninagi wolinunalgi wonunali

bounce square blue napena nape wogilope nepalwogi woginepal woginepal wogipenalgi wogipenalgi wolinalgi wolinunalgi wolinunagi

bounce square red penapiku heka penalogi wogiluna wogiluna wogilunowgi wogipenalgi penaninagi wogipenalgi wolinulalgi wolinunali

bounce triangle black gapinahe wogipena wogipenal wogipenal wogipenal wogipenal woginepalgi woginunagi wonalgi wolilenul wolilunali

bounce triangle blue hewoku heka wogilupe wogipenal nepalowgi wogineptunewoginepalgi nulagi wolinalgi wolinulagi wolinunali

bounce triangle red giku lugana wogipule wogipenal luganowgi wogilunagi woginepal nenalgi wogiwenagi wolinugi wolinunali

horizontal circle black lugigipi kuwo lugana wogiluna penalowgi penalgi nunagi wonagi wogilunagi penagi penali

horizontal circle blue naheku napena lugana penalike nepalowgi nunapagi nunagi woginalgi wolilunagi penagi penagi

horizontal circle red kuluwo heka lugana nepalowgi luganowgi lunagi lunagi woginal wogilunagi penalgi penalgi

horizontal square black wogiluku lugana lugana penalwogi penalowgi penalgow penalgi penalgi nulagi penalgi penagi

horizontal square blue gikuna napena lugana penalike lugana nepalgi penalgi penalgi wonalgi penalgi penagi

horizontal square red napeheku napiwo penalike lunawogi lugana lunagi penalgi penalgi penalgi penalgi penalgi

horizontal triangle black penalu lugana penalowgi penalowgi nepalike penalgi nepalgi nulagi nunalgi nulani penali

horizontal triangle blue pihena penaliku lugana lugana penalowgi neptungi nepalgi nunagi wonagi penal penal

horizontal triangle red naku giku lugana wogipenal lugana lungagi nepalgi nulagi wogalgi penul penali

spiral circle black lugana kuwo reki reki pike pike like wonagi wonagi wonagi wonalgi

spiral circle blue heku napena heki heki nepalike nike penal wonulgi wolilunagi wonagi wonagi

spiral circle red wonalupe heka heki heki like like wogiluna woginal nolunagi wolinagi wonalgi

spiral square black galukuna wogipena reki reki hike pike penal penal nenalgi wonalgi wonalgi

spiral square blue napiwo napena kibve neki nike nike penal penal wolinulagi wonalgi wonagi

spiral square red lupiwo wogilupe neki heki like like penal penal penal wonalgi wonalgi

spiral triangle black nahe kuwo kipe kipe pike pike nike nike nike wonali wonali

spiral triangle blue pihe giku neki kipe nepalike nike like nike wonalgi wolinag wonagi

spiral triangle red galu giku neki heki hike like nepal nike woninal wolinal wonalgi

Table showing raw data for Chain C in Experiment III. Shaded cells indicate that this item was selected to be seen by the next 
generation during training.



motion shape colour 0 1 2 3 4 5 6 7 8 9 10

bounce circle black huhunigu pikoku wikiko wikiko winekuki winekuki winikike winikiko wunkiko winikiko winikiko
bounce circle blue kemuniwa huniki hukiki kunkuki kunkuki hunekuki honekiko honekiko kunkike hunekiko hunekiko

bounce circle red kihupo piko pokiko ponekuki ponekuki ponekuki punekiko ponekiko punkiko punekiko punekiko

bounce square black wakiki wukiki winekiko winikiko winukuki winikuki winikeko winikiko winikiko winikiko winikiko

bounce square blue pokikehu ponuko kunikeko hunekuki hunekuki hunekuki kunekiko kunekiko ponekiko hunekiko hunekiko

bounce square red waguhuki poku ponekiko ponekuki punekuki punikuki ponekiko punekiko pinkiko punkiko hunekiko

bounce triangle black nihu kikiki kikiki winekiko wikekuki wanikuki winikiko winikiko winekiko winekiko punikiko

bounce triangle blue niguki hukeko hukiki kunekuki kunekuki kunikuki kunekiko kikekiko pinekiko ponikiko winikike

bounce triangle red koni koni ponekiko ponekiko ponekuki punekuki punekiko punikiko punkiko punkiko punkiko

horizontal circle black muwapo wuniki wineko wineko wineko wineke wineke wineke wuneke winekike punike

horizontal circle blue powa pinokiki huneko kuneko kuneko kunike honeke honeke kineke hunike wineke

horizontal circle red hukinimu kuniko ponukeko poneko poneko ponike punike ponike puneke punike winikike

horizontal square black wako wako wikeko wineko wuneko wanike wineke winike wineke winike puneke

horizontal square blue hukeko ponikio huniko huneko huneko hunike kuneke kuneke huneke ponike hunekike

horizontal square red pohumu hukeko ponekuko poneko puneko punike punike puneke puneke ponike punike

horizontal triangle black muko wakiki kineko wineki wikeko wineke wineke winike wunike winike wineke

horizontal triangle blue kokeguke piniko kuneko kuneko kuneko hunike kuneke punike honike huneke wineke

horizontal triangle red kimu koniki pokiko poneko poneko punike punikiko punike punike ponike wineke

spiral circle black kekewa wiki wiki wikiko winekiko winikike winikeke winekike winikike winike winekike

spiral circle blue komuhuke ponukiko huki kunekuki kunkiko kunikike honekiko honekike kinike ponike hunikike

spiral circle red kopo ponikiko poniki poneko pokiko punikike punekike ponikike poneike ponike punikiki

spiral square black huwa ponikiko wineko wikuki winekiko winekiko winikike winekike winike winikike winikike

spiral square blue hukike hukeke hunekiki hunekiko hunekiko kunike kunekike kunekike kinkike hunike punkike

spiral square red ponikiko ponikiko ponekuki poneki puniko punekiko punikike punekike punkike ponike punikike

spiral triangle black kowagu winiko wineki winuki wikiko wanikike winikike winkike winkeke winike winikike

spiral triangle blue kokihuko hukiki hunekiko hunekiko kunekiko kunekike kinekike kinekike honkike huneke winike

spiral triangle red kiwanike kuniko pokiko ponekuki pokiko punikike ponekiko ponekiko pinkike punike winikike

Table showing raw data for Chain D in Experiment III. Shaded cells indicate that this item was selected to be seen by the next 
generation during training.



--------------------------------------------------------------------------------------------------------------------------------------------------

Appendix B4

--------------------------------------------------------------------------------------------------------------------------------------------------

Raw data from 4 transmission chains in Experiment IV



motion shape colour 0 1 2 3 4 5 6 7 8 9 10

bounce circle black kalu kalu lineki lineki huheki huneki huneki huneti kaneki hineki heniki

bounce circle blue mola balu kineki piteki kiheki kiheki kineki haneki huneti heniki lineki

bounce circle red pihukimo capola capola kineki haneki haneki haneki kapeki kineki hiniki hiniki

bounce square black moki lumoneki mohuki huteki huteki huteki lineki kaneki kanitu kaneki haneki

bounce square blue luneki lineki pinemahu mahuki kiteki kiteki haneki kineti linetu kaneki kaneki

bounce square red lanepi lanepi huneki hakeki hateki hateki hapeki hapeki hanetu kanetu hineki

bounce triangle black nane kapola kapiki lineki lineki lineki lineki lineti lineki linitu leneki

bounce triangle blue kalakihu mahiku maheki kineki kineki kineki kiteki kapeki lineki leniki laniki

bounce triangle red mokihuna kapeki mahetu kapeki hapeki kapeki kapeki lineki linetu linitu leniki

horizontal circle black nelu lumonamo lumeno kihetu huniki huniki huniki huniki kiniki heniki heniki

horizontal circle blue kanehu humo lumono kakitu kipiki kihiki kihiki haniki hiniki hiniki haniki

horizontal circle red namopihu lanehu laneki pitetu haniki haniki haniki kiniki haniki heniki heniki

horizontal square black lumonamo lumonamo kinehune hutetu hutiki hutiki haniki kiniki huniki haneki heneki

horizontal square blue kinehune lunepi mahetu hatetu kiniki kitiki kitiki kiniki kaniki kaneki haneki

horizontal square red lahupine kinehune kinehune hatetu hatetu hatiki hatiki haneti kaniki kaneki haneki

horizontal triangle black kapihu kapihu kapetu kapetu liniki liniki liniki liniki liniki liniki liniki

horizontal triangle blue humo humo kakitu kakitu kiniki kiniki kiniki kapeki kiniki leniki laniki

horizontal triangle red lahupiki capeki pineku katetu hapiki kapiki katiki kiniki liniki liniki laneki

spiral circle black pilu pilu pilu pilu hutetu hunetu hunetu hunetu hanetu hinetu hinitu

spiral circle blue neki neki mahetu pilu kinetu kihetu kinetu hapetu hunetu henitu henitu

spiral circle red pinemohu pinemohu pineku pakiku hanetu hanetu hanetu hapetu kinetu hanetu henitu

spiral square black kilamo neluki hatuhi hatuhi hutetu hutetu linetu kanetu kanetu kanetu hanetu

spiral square blue kahuki kahuki mahuki lineku kitetu kitetu kapetu kinetu hunetu kanetu hinetu

spiral square red neluka neluko kineki hatuhi hatetu hatetu hapeku kapetu hanetu hanetu hanetu

spiral triangle black luki kahepi kahepi kapeti huhetu linetu linetu linetu linetu lenitu linitu

spiral triangle blue namola luneki luneki kaketi kinetu kinetu linetu kinetu linitu linetu lenitu

spiral triangle red lumoka neluki kahetu kapilu hanetu kapetu kapetu kinetu linetu lanitu lanitu

Table showing raw data for Chain A in Experiment IV. Shaded cells indicate that this item was selected to be seen by the next 
generation during training.



motion shape colour 0 1 2 3 4 5 6 7 8 9 10

bounce circle black melipa wenumeko mewenume gahili gahili gahili gahili gahili gahili gahili pagahilli

bounce circle blue pame pagahili pagahili pagahili pagahili pagahili pagahili pagahili pagahili pagahili pagahilli

bounce circle red mewega mewemeko mewemeko gahili megahili megahili megahili megahili megahili megahili megahilli

bounce square black gamuwe gamuho mewenume gahili gahili gahili gahili gahili megahili gahili gahilli

bounce square blue linuhiko pawegame pawegame pagahili pagahili pagahili pagahili pagahili pagahili pagahili pahilli

bounce square red komehi komehi pawelinu gahili megahili megahili megahili megahili megahili megahili megahilli

bounce triangle black hiko wemenuko mewehili pahili gahili gahili gahili gahili gahili gahili pagahilli

bounce triangle blue palime palime palihili pagahili pagahili pagahili pagahili pagahili pagahili pagahili pagahilli

bounce triangle red gawe palime paweganu gahili megahili megahili megahili megahili megahili megahili megahilli

horizontal circle black hiwenuko gamuho menuko galinu linu linu linu linu linu linu wenu

horizontal circle blue nuhiwenu wemenuko pagahili pawenu palinu palinu palinu palinu palinu palinu palinu

horizontal circle red memenu memenu memenu linu melinu melinu melinu melinu melinu melinu wenu

horizontal square black paweko paweno galinu linu linu linu linu linu linu linu galinu

horizontal square blue konulipa pawehili pawega linu palinu palinu palinu palinu palinu palinu melinu

horizontal square red linu linu linu linu melinu melinu melinu melinu melinu melinu malinu

horizontal triangle black mume pawehili pali linu linu linu linu linu linu linu galinu

horizontal triangle blue pawemeli pawehili lime palinu palinu palinu palinu palinu palinu palinu palinu

horizontal triangle red liga liga palinu linu melinu melinu melinu melinu melinu melinu malinu

spiral circle black melime wegahili mewenu gawemu wenu wenu wenu wenu wenu wenu wenu

spiral circle blue munuko himanuko himanuko pawenu pawenu pawenu pawenu pawenu pawenu pawenu palinu

spiral circle red komume memenuko memenuko gawemu gawemu mewenu mewenu mewenu mewenu mewenu mewenu

spiral square black numekopa mewuno wemenu wenu wenu wenu wenu wenu wenu wenu wenu

spiral square blue wega wega pawenu mewenu pawenu pawenu pawenu pawenu pawenu pawenu pamenu

spiral square red higahili hegahili pawenu mewenu mewenu mewenu mewenu mewenu mewenu mewenu mewenu

spiral triangle black pamu memenuko paweko wenu wenu wenu wenu wenu wenu wenu wenu

spiral triangle blue gahi paweko paweko pawenu pawenu pawenu pawenu pawenu pawenu pawenu palinu

spiral triangle red muwemeko weganu weganu pawenu mewenu mewenu mewenu mewenu mewenu mewenu mewenu

Table showing raw data for Chain B in Experiment IV. Shaded cells indicate that this item was selected to be seen by the next 
generation during training.



motion shape colour 0 1 2 3 4 5 6 7 8 9 10

bounce circle black kuwo lugana luxana lugana peloana logana lagana luxana lugana lugana ligana

bounce circle blue wonagi pela pela pelo luxana hegana lagana hana lugana lugana legena

bounce circle red pelu pela luxana napena geki nipana lagana h lugina lugena lizana

bounce square black wogipena hika hexigana hexana lugana luxigana luxana luzana luzana luzana ligana

bounce square blue napena napena hexigana peloana peloana luxana luxana luxana luxana luzana luzana

bounce square red penapiku hika luxana napena geki geki luxana luxana luzina luzina leguna

bounce triangle black gapinahe wociana lugana lugana lugana lagana lugana lugana lugana lugana legana

bounce triangle blue hewoku luciwo luciwo luxana luxana luxana lagana lagana lugena lugina legena

bounce triangle red giku gika gika geki geki geki geki geki lugina luzena lizana

horizontal circle black lugigipi lugiana hexigana hexigana hexigana hena hena hena hena hena nepana

horizontal circle blue naheku pela hexigana goana hena hena hena hena huna huna huna

horizontal circle red kuluwo luxana hena hena hena hena hena hena hina hina huna

horizontal square black wogiluku hexipena hexipena hexipena hexigana lagana hexigena hexigena hena nepana nepana

horizontal square blue gikuna hika hexigana hipena hexigana hexigana hexigana hexigana hexigana nepena nepena

horizontal square red napeheku gowo hena luxana hexigana hexigana hexigina hexigina hexigina hexigina nezana

horizontal triangle black penalu penipika higana hipena napena lagana nepena nepena hena nepana huna

horizontal triangle blue pihena hexigana hexigana napena napena napena napena nepena nepana nepana huna

horizontal triangle red naku hena hena hena napena napena nepena hepena nepina nepina huna

spiral circle black lugana lugana luxana lugana hexipena goana goana goana pena gouna gouna

spiral circle blue heku peloana peloana pelo goana goana goana goana guana guana guana

spiral circle red wonalupe wopelana luxana goana goana goana goana goana goana goana goana

spiral square black galukuna hika luxana luxana hexana hexpina hexigina lugana lagena nepa gouna

spiral square blue napiwo peloana peloana peloana peloana peloana peloana luxana lagana nepa guzana

spiral square red lupiwo napena napena hexana hexana hexana hexipena lagana lagana gona nepena

spiral triangle black nahe napena lugana hipena hipena hinepa hipena nepa nepa napa napa

spiral triangle blue pihe goana goana luxana heki nepa nepa nepa nupa nepa napa

spiral triangle red galu hika hika heki heki hinepa nepa nepa napa nepa nepa 

Table showing raw data for Chain C in Experiment IV. Shaded cells indicate that this item was selected to be seen by the next 
generation during training.



motion shape colour 0 1 2 3 4 5 6 7 8 9 10

bounce circle black huhunigu hokuhume kikeko wakeki wakeki wakeki wakeki wakike wakiko wakiko wakiko

bounce circle blue kemuniwa hukeko hukekuko hukikuko hunkeki hunkeki hukekuko hukiko hekiko hekiko pokiko

bounce circle red kihupo wagakiki pokekuko pokeki pokeki pokeki pokeki pokiko pokiko pokiko pokiko

bounce square black wakiki wakiki wakiki wakiki wakiki wakiki wakeki wakeki wakiko wakiko wakiko

bounce square blue pokikehu hokeko kukeko hukiki hunkiki hunkiki hukekuko hukeki hekiko hekiko hekiko

bounce square red waguhuki nihu ponikeko pokikuko pokiki pokiki pokekuko pokeki pokiko pokiko pokiko

bounce triangle black nihu nihu kekuko kekuko wanikuko wanikuko wakiko wakiko wakiko wakiko wakiko

bounce triangle blue niguki niguki nihu hunikuko hunikuko hunikuko hukikuko hukiko hekiko hekiko hekiko

bounce triangle red koni wagakiki ponihumo ponikuki ponikuko ponikuko pokike pokike pokiko ppokiko pokiko

horizontal circle black muwapo wakeko wakemo wakemi wakemo wakemo wakino wakino wanimo wanimo wanimo

horizontal circle blue powa hukoke hukemo hukemo hunkemo hunkemo hukimo hukimo hekino hekimo henimo

horizontal circle red hukinimu koni pokemo pokemo pokemo pokimo pokino pokimo ponimo ponimo ponimo

horizontal square black wako wako wakemo wakimo wakimo wakimo wakino wakimo wanimo wanimo wanimo

horizontal square blue hukeko hukeko hukimo hukimo hunkimo hunkimo wanimo hukino hekino hekino henimo

horizontal square red pohumu pohumo pohumo pokimo pokimo pokimo pokino pokino ponimo ponimo ponimo

horizontal triangle black muko nihu koni wanimo waknimo wanimo wanimo wanimo wanimo wanimo wanimo

horizontal triangle blue kokeguke wakiki hunimo hunimo hunimo hunimo hunimo hunimo hekimo hekimo hekiko

horizontal triangle red kimu koni pokoni ponimo ponimo ponimo ponimo ponimo ponimo ponimo ponimo

spiral circle black kekewa kekewa wakeke wakekuko wakekuko wakekuko wakekuko wakekuko wahekiko wakiheko wahikeko

spiral circle blue komuhuke hokehume hukeko hukekoku hunkekuko hunkekuko wakekuko hukekuko hekiheko hekiheko hehikeko

spiral circle red kopo ponikiko pokikuko pokikuko pokekuko pokekuko pokekuko pokekuko pohekiko pohiheko pohikeko

spiral square black huwa kikuko wakeke wakikuko wakikuko wakikuko wakikuko wakekiko wakiheko wahiheko wahikeko

spiral square blue hukike hokuhume hukekuko hukikuko hunkikuko hunkikuko hukekuko hukekiko hekiheko hekiheko hehikeko

spiral square red ponikiko ponikiko pokiko pokikuko pokikuko pokikuko pokekuko pokekiko pokiheko pokiheko pohikeko

spiral triangle black kowagu hokehume niwakewa wanikuko wanikuki wanikuki wakikuke wakikuko wakiheko wakiheko wahikeko

spiral triangle blue kokihuko hukoke hunikuko hunikuko hunikuki hunikuki hukikuko hukikuko hekiheko hekiheko hehikeko

spiral triangle red kiwanike ponikiko pohumeko pohikuko ponikuki ponikuki pokikuko ponikuko pokeheko pokiheko pohikeko

Table showing raw data for Chain D in Experiment IV. Shaded cells indicate that this item was selected to be seen by the next 
generation during training.



--------------------------------------------------------------------------------------------------------------------------------------------------

Appendix B5

--------------------------------------------------------------------------------------------------------------------------------------------------

Raw data from 8 transmission chains in Experiment V



chain 1 0 1 2 3 4 5 6 7 8 9 10

afa afa edd efda cda cbfaf edd aff ahf fca bfa

bac cee cbfaf efdb bcfaf bcfaf dee afaa afaa fhb afc

cde bcfad add aee edd edd aff bchc bchcf afaa ahc

dcf edd efcba bdd cbfaf dee bcfb bchcf fhc bchcf ahf

edd bcdd cbfa add add add bibf bhbf fah ahf fhc

fcfd fabee cda bcfaf fdb ebd bcafa bfcf fbhf bch fca

aefb cbfaf efda cbfaf efdb afbf ebd cbf bchc afc abff

bbce cbfa bdd cfaf eca cfbc haf chf fch ahc fbhf

caba cbaee bcfaf bfaf cfbd afaa fde fhc bch bfa bhcb

deaf cbd aee efaf dee aff bchcf hcf aaf bfc bch

edbcc efad efdb cda acfg fdbc hbc haf fca fhc bcbcf

feadb fdeba bcfa faf cba efbc afaa fha afbf ach bchbf

acbee cbfad cfaf cdb eda haf bcfcf fah hfc abff bchcf

bdfef ead efaf dee efaf bcfb cafbf hfbf bcf bhcb afaa

cbfad cda bfaf cfba cfaf bibf eac fbhf fbc fbhf fhb

Table showing raw data for Chain 1 in Experiment V. 

The data is shown in the order in which it was produced by participants.



chain 2 0 1 2 3 4 5 6 7 8 9 10

abd bdc aed aaa aaa ccc ccc ccc aaa ccc ccc

bdc ecd fbfcf ccc fbfdf dcf aaa aaa ccc dba bbb

cae aabee fcfbf aca fbfbd aaa dcf fcdcf fdbcf fca ddd

def fbfcf aabee aed aca fbfbd fdbdf facaf fcdfa aaa aaa

ecd adba ced fcfbf dfb fdbdf fdbfd fdbfa fcbdf fcbaf fcdaf

fcdb adb ccfdb fcfeb dfbfd fdacf fcdfd fcbdf fdadf fdbdf fcbcf

adba ccbfc aaa bbdc efb dca fdfdb daf fbdbf fcbdf fca

bfde ced ccc bed cdf fbdbf fcdbf caf fdbaf fcbcf fdbdf

ceaa fcfbf ccbdc feb cfbfd fcdbf dca fadbf fca fcdbf fcbaf

dfed ccbdc aca ccfbd dfa fdcdf fbfbd fdbdf dba fdcdf cbd

efdac ccc afa ced cac dfbdf fdafd fdadf fcadf fabaf dbfbd

fbfcf caf abf fdf dfacf fbd dfbdf fcadf fbcaf bbb fcbab

aabee aed bbdc bbcd dfc fdfbf fdcdf fbdbf fcacf fcbfa fcdcf

bccfb aaa bcf bedbb ccc fdfbd daf fca fbcbf fbdbf dbdaf

cebaf afd aec fcfdf fbddf fcbdf fdbcf fdbcf fcbaf ddd fcbad

Table showing raw data for Chain 2 in Experiment V. 

The data is shown in the order in which it was produced by participants.



chain 3 0 1 2 3 4 5 6 7 8 9 10

aec bce fdcdc feg bac bac fecac bac bac eed fecdad

bce fcfdf eed bac fdcdc fcg ddde eed fecac dde eed

cab ddde fecac fdcac fdede fecac dde dde dde bac dde

dbd fcfb fec fdcdc fdcac fedad eeed fecac eed fedad fecda

eff eef ddde fecdc facec fecad eed fedad fcedad fedcd fecae

fefa eca fecdc fdcec fedcd fedac fdcdc fecad fceae fedae bac

acbf feca bac ddde eeed edd fcdcd feada feeae fcedad fedad

bfea fecae feg eeed ddde dde feadc fedac fecad fed fecad

cead eed ebc eed dde ddde faedc fde fecda fecdad bfa

ddde dee decdc dde eed eeed bac fec fec fade fceae

ebafb cgdf fdcec fcede fcdad fadad fecad fadcd fedcd fceda fceda

fcfdf acbf fcd fcded fcg feaea fedad fdeae fdaec fecde fcada

abecd bef fdcac fdece fdced fdcdc fdaea fcedad feada fce fcede

bacdc fbcdc cac fcdcd fecac fcdcd fec dfeae fedad fcede fcdad

cbdae bfd dec fecac fcdac fadec fadcd fadec fcdad fecae fedae

Table showing raw data for Chain 3 in Experiment V. 

The data is shown in the order in which it was produced by participants.



chain 4 0 1 2 3 4 5 6 7 8 9 10

abc fccf adafb bae fceff eaf eaf cfcea baf cdcef baf

baf adafb cba eab adacb adacb fcfeg abf fba cdceg bad

cbd bafb dae adafc ebae adacf dadeg cdcfa efa fba cfde

dce fdeff fdecb fecff eaf fae baf ecbf cdceg baf decf

eea fade fdfcb eade eab ebce cfceg adaef dcdeg cdef cdcef

fccf fae caeb dae adacf fcfe adaeb dadeg fcdb fcde cecdg

abfa eadcb bae cfe ceaff adaeg fba cfceg fdce def dgef

becd cba fdeb adacb acd adaef fcfda fbce cdcef bad cfeg

cdfe fdecb bedfc fdcff fced caf fda ecfb cdef decg cdceg

dfac ecb efb bef ceab cea cfcea bfa dcdef decf cgde

ecbad adec edae caeb cfb fcea adaeg eaf cdcbf cfde decg

fdeff dafe cfe cfeb ceaf ebfe adafc fba ebf cdeg cdge

adafb ade cfeb fced fcea fafeb fceb fcdb cdfg cecdg gecd

bedae edbab fdeff cbae bca fafed cfcda fcb dcda cecdf efcdg

cebdb efba cdeff feaff fca bae aeb caf dadeg fdce cfedg

Table showing raw data for Chain 4 in Experiment V. 

The data is shown in the order in which it was produced by participants.



chain 5 0 1 2 3 4 5 6 7 8 9 10

daa daa daa daa bde bde fdfca fdfac fdfcb fdfbc add

ecd eaca bde bde daa daa daa daa baa cadbf fdfbc

feb bed ccafd dece dba dba dba fdfbc bda fdfcb fbdca

afc ccafd edcd bdfac dbac adfbd dfdca bda bcfad cadfb fdfba

bde fbdef dece ccbdf bdec fdfba bfcda fdbca bfdac fbcad fdfad

cbaf bde edca bdfca dfdac dfdca afdcb acdfb bfdca dbfca fbdac

dcec dabf fdebc acfdb afdcb bdec fafdc fdfca daa bdfca caa

eaca bdcf bdfac dfdbc fdfac dbc bcdfa dfb adcfb cbfda cafbd

fdbe dcec fbdfa fbca bdfac adfcb dfdac bafdf fdfbc add facbd

abfb cdbf bdc fdfca ccbda bdcfa bdfac bcfad bdfac caa afcbd

badfd dafc fbadc deca afdbc bdce cafda cbfad acdfb daa fcbad

cceda bad dab afdcb bdcfa bfdca dbfac bfdac acdbf cafbd faa

defac badcf dacbf dba bdcaf afdcb dafcb cdfad dfb fbdca cdd

efbcb cafbd fdcbf bdec afcdb dfdcb cdafb fdfcb cadfb fadcb adbfc

febdf bacf cbdaf dbac facbd bdea dfacb baa cadbf fdfca adbcf

Table showing raw data for Chain 5 in Experiment V. 

The data is shown in the order in which it was produced by participants.



chain 6 0 1 2 3 4 5 6 7 8 9 10

dba ebfaf dbda dce dce ecd ehc ehc ehc daba hdi

ecd cde ebea ebea dbda fdfb ceh fdabc ehcaba fdbc dcd

fab fade fbacb abaea ecd daea fdfb edc che fdcd fdcd

aef fbacb cdea edc fcde edbd adaba che dadb dhc hdaba

bdc fcdf cde fced dcda fdbh ecd fbaec fdcaba cdeaba faba

cefb cbade edc dbda adaea adab fadba edcba fdcd fdaba fcdaba

daed dce dce ecd ceg ceh edcd echaba daba hdaba fdaba

ebea fce cbae cfebc fdfb ehc fdaba fdaba fdaba fdec ecd

fcde fcdce abaea eaeb bedc abeda fbabh dbda edc dcaba ech

affc acede ecd fcea ebea dbda aeabc adab edcaba adab dcaba

bcbda ebea cabec dcea fcfab aeaba aeaba adbc fdbc fcdaba fabdcd

caddc fad dcea fecba edea edaba fdaeb abafd bdch hdi ceaba

dfece adc eaeb ced cde cded aced abach abad eab fhaba

ebfaf dbda fcad bcefb efc dcea ecdad fbda fbch feaba fedh

fbacb acde fced feabe aeaba adabe dbda fbdad edaba fheaba adcd

Table showing raw data for Chain 6 in Experiment V. 

The data is shown in the order in which it was produced by participants.



chain 7 0 1 2 3 4 5 6 7 8 9 10

dfb bfacc caedb dga faff dgc ghc gdc bfbb bfb aea

eea ceadb adb faff afaa faff ged ged babb abab bfb

fcd feb faee fabb dgb afaa gde babb fbf cefgd cefgd

abc bad cadea caedb egc egd fbff bfb fecgd cefdg cefdg

bde fde facc cadeb facbe facdg faff bfbb bba ceb cde

cefb cabde feb cabdc ebd bfaa bfaa bfaa bfb ced baba

dbef bbd bda ebd gde edg gdc ced bab bbf dcdeg

ecff afee fabb edb fabb fbff fcedg cedfg cedfg bfbf bfbf

fcba eff acde bec bfaa ghc bfbb abaa ced aea fde

afee fedc aff dec ceg ged babb gcegd ceb dgedc bab

bfacc fadb cadec afaa aedgc bfd abaa cdged cadb beb faf

caeda adb fad afbb dgc abaa afaa babf aedb cef cfe

dacbd fbdd dbe afbc egK bea faf bfbf aafb baba cdfgd

ebadc caeda faff cabec ceba gdc bfb gefdg ffab fea cgdfg

faddb efb dga fac babb abb fbf fbf baba cde cda

Table showing raw data for Chain 7 in Experiment V. 

The data is shown in the order in which it was produced by participants.



chain 8 0 1 2 3 4 5 6 7 8 9 10

bad efdf cbc caccf cfcca dfdfa bae dfdfa dfdfa abe abe

cbc bfdfa cac abe ebfb ebfb bfe fbe dfabc fbe fbe

eda eccdf dad bcea fbe dfdca bfa afb bfc dfdfc dcdcf

afb cbc fdcfa fbed eaf ebf dcdca bfa baebf dfabe dabcf

dbe cac bead efdfc eab dcdca dfdfa bae dcdcf bfc dcabe

febd caccf abe becd dfdfa efdca cacfb dcdca abf dcdcf dafbe

bbab dad caccf dfdfa dfdcf fbe fbe dcdfa afabe abc bfc

cecf eddfa dfefa fbea dfeb cfcca efd fab dcabf bcf dadcf

efdf dea dfcfa fcafc edfb bfa ebd cab fba dcdbf dcabf

acdd dfabe fbea befb efdcf efca fba dadfa abe dcbcf dcbcf

deabe bead fdfca fecfa efdca efbf afb baebf fbe dcabe dcf

fafcc fcbf edcdf dfdcf ecfe bae efdab bca dfdaf dfabc dfdcb

bfdfa efdfa bced efcfd edca ecfca cfdca dfabc dfb fbc dcfbe

caeea fded fbec edfb efba efcfa efbfd acdfb bae dabfc dcace

ecdcf bced dfec ebfb dcdcf fbae cfdea fda fab dcfbe dbdac

Table showing raw data for Chain 8 in Experiment V. 

The data is shown in the order in which it was produced by participants.
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Appendix C
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Instructions to participants in Experiment V

Thank you for agreeing to participate in this study.

During the experiment you will see a series of letter strings appear 

on the screen. We would like to see how well you can learn them. 

After each string appears, there will be a short delay before you 

are allowed to type in what you think you saw. Try to remember the 

strings as accurately as possible. You can use the backspace button 

if you make a mistake, and can press ENTER to see the next string.

Please press the track-pad button when you are ready to begin, and 

good luck.

Thank you! You just saw 15 different strings. 

We would like you to try to recall all of them now as best you can. 

Please keep going until you have tried to remember each one. We will 

give you an indication of how many you have left to enter. However, 

we won't tell you how many you got right until the end of the 

experiment.

Press the track-pad button to begin.

You have already entered this string.

Please try again.
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We introduce an experimental paradigm for studying the cumu-
lative cultural evolution of language. In doing so we provide the
first experimental validation for the idea that cultural transmission
can lead to the appearance of design without a designer. Our
experiments involve the iterated learning of artificial languages by
human participants. We show that languages transmitted cultur-
ally evolve in such a way as to maximize their own transmissibility:
over time, the languages in our experiments become easier to learn
and increasingly structured. Furthermore, this structure emerges
purely as a consequence of the transmission of language over
generations, without any intentional design on the part of indi-
vidual language learners. Previous computational and mathemat-
ical models suggest that iterated learning provides an explanation
for the structure of human language and link particular aspects of
linguistic structure with particular constraints acting on language
during its transmission. The experimental work presented here
shows that the predictions of these models, and models of cultural
evolution more generally, can be tested in the laboratory.

cultural transmission ! iterated learning ! language evolution

The emergence of human language has been cited by Maynard
Smith and Szathmary (1) as the most recent of a small number

of highly significant evolutionary transitions in the history of life on
earth. The reason they give for including language in this list is that
language enables an entirely new system for information transmis-
sion: human culture. Language is unique in being a system that
supports unlimited heredity of cultural information, allowing our
species to develop a unique kind of open-ended adaptability.

Although this feature of language as a carrier of cultural infor-
mation obviously is important, we have argued that there is a second
sense in which language is an evolutionary milestone: each utter-
ance has a dual purpose, carrying semantic content but also
conveying information about its own construction (2–5). Upon
hearing a sentence, a language learner uses the structure of that
sentence to make new inferences about the language that produced
it. This process allows learners to reverse-engineer the language of
their speech community from the utterances they hear. Language
thus is both a conveyer of cultural information (in Maynard Smith
and Szathmary’s sense) and is itself culturally transmitted. This
cultural transmission makes language an evolutionary system in its
own right (2–3), suggesting another approach to the explanation of
linguistic structure. Crucially, language also represents an excellent
test domain for theories of cultural evolution in general, because the
acquisition and processing of language are relatively well under-
stood, and because language has an interesting, nontrivial, but well
documented structure.§

During the past 10 years a wide range of computational and
mathematical models have looked at a particular kind of cultural
evolution termed ‘‘iterated learning’’ (4–13).

Iterated Learning. Iterated learning is a process in which an indi-
vidual acquires a behavior by observing a similar behavior in
another individual who acquired it in the same way.

Spoken (or signed) language is an outcome of iterated learning.
Although in some circumstances aspects of language may be
explicitly taught, acquired from a written form, or arise from
deliberate invention, almost all the features of the languages we
speak are the result of iterated learning. Models of this process
(4–13) demonstrate that, over repeated episodes of transmission,
behaviors transmitted by iterated learning tend to become 1) easier
to learn, and 2) increasingly structured. Note that this process is
cumulative and is not considered to arise from the explicit inten-
tions of the individuals involved. Rather, this type of cultural
evolution is an ‘‘invisible hand’’ process leading to phenomena that
are the result of human action but are not intentional artifacts (14).

Although these models are indicative of the power of cultural
evolution in explaining language structure, skepticism remains as to
how well computational models of learning match the abilities and
biases of real human learners. For example, responding to a
growing body of computational models of the emergence of mul-
tiword utterances from unstructured randomness (5, 8, 10, 11, 15),
Bickerton notes, ‘‘Powerful and potentially interesting although this
approach is, its failure to incorporate more realistic conditions
(perhaps because these would be more difficult to simulate) sharply
reduces any contribution it might make toward unraveling language
evolution. So far, it is a classic case of looking for your car-keys
where the street-lamps are’’ (16, p. 522).

What is needed, therefore, is an experimental paradigm for
studying the evolution of complex cultural adaptations using real
human participants. Ideally, this paradigm should mirror previous
computational and mathematical models and provide a test for the
claim that iterated learning leads to adaptively structured lan-
guages. It should demonstrate whether cumulative adaptive evolu-
tion without intention is possible purely by virtue of cultural
transmission.

In this paper, we implement such a paradigm and demonstrate
cumulative, adaptive, nonintentional cultural evolution of an arti-
ficial language in a laboratory population of human participants.

Diffusion Chains. Diffusion-chain studies provide the best example
of experimental treatments of iterated learning. In these experi-
ments a participant observes some target behavior (provided by the
experimenter) and then is required to replicate that behavior in
some way that can be observed by a second participant. This second
participant in turn attempts to replicate the first participant’s
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behavior for a third participant, and so on. (We refer to each
iteration of this cycle as ‘‘1 generation.’’) Using this procedure, we
can observe the diffusion of behavior through a chain of cultural
transmission. The first reported use of this methodology was by
Bartlett in 1932 (17), but only recently did researchers begin to apply
this approach systematically (18–24).

The most recent, and arguably the most significant, instance of
a diffusion-chain experiment is the work of Horner et al., which
explores the cultural transmission of tool-use strategies in popula-
tions of chimpanzees and children (24). Diffusion chains are set up
in which an experimenter demonstrates 1 of 2 possible techniques
for opening a puzzle box (‘‘artificial fruit’’) to a participant. Sub-
sequent participants observe their predecessor’s box-opening be-
havior and then in turn become the model for the next generation.
These experiments demonstrate clearly that both chimpanzees and
children are capable of high-fidelity cultural transmission: the
box-opening technique used by the last participant in the chains (of
up to 10 individuals) is the same as that demonstrated to the first
participant, with a chain of faithful transmission between the first
and last participants.

Although these experiments show that cultural transmission can
be studied empirically even in nonhumans, they do not support our
claim that culture leads to cumulative nonintentional adaptation
because the behavioral information that is being transmitted is
drawn from a limited set of possibilities. For example, in the
puzzle-box study, there are essentially 2 different strategies for
opening the box. The task is not complex enough to demonstrate
adaptation, let alone cumulative adaptation. In any case, both the
strategies seem to be equivalently ‘‘adaptive’’ in cultural and
environmental terms, in that both open the box and both are
transmittable.

To get around these problems and to allow us to make a direct
comparison with human language, we replicate the basic diffusion-
chain design with a more complex artificial-language learning task
of labeling visual stimuli with strings of written syllables (25, 26). To
make this task tractable, we use adult human participants and
observe the cultural evolution of the artificial language for 10
cultural generations.

This work bears some resemblance to a recent body of experi-
mental work on the shared construction of communication systems
(27–30). Of particular relevance is a recent paper by Selten and
Warglien (30) that demonstrates that pairs of participants some-
times can create structured and efficient communication systems
over the course of repeated interactions. The major difference
between the experiments described here and the work of Selten and
Warglien is the role of intentional design. In Selten and Warglien’s
experiments, as in those of Galantucci (27) and Garrodet al. (28,
29), participants interact repeatedly with the explicit goal of arriving
at a shared system for communication. Therefore the systems they
construct are the outcome of conscious design. Our diffusion-chain
experiment allows us to explore whether structured languages can
emerge without intentional design, as has been argued to be the
case for language (14).

Design of Experiment 1. Participants are asked to learn an ‘‘alien’’
language made up of written labels for visual stimuli. The stimuli are
pictures of colored objects in motion, and the labels are sequences
of lowercase letters (see Fig. 1 for an example and the Methods
section for more details).

For training purposes, the language to be learned (a set of
string–picture pairs) is divided randomly into 2 sets of approx-
imately equal size: the SEEN set and the UNSEEN set. A
participant is trained on the SEEN set, being presented repeat-
edly with each string–picture pair in random order (see Methods
for details). During subsequent testing, participants are pre-
sented with a picture and asked to produce the string they think
the alien would give for that picture. Participants are tested on
both the SEEN and UNSEEN sets in their entirety.

The initial set of labels in the language is generated and assigned
randomly, and the first participant in the experiment is trained on
this random language. Subsequent participants are trained on the
output of the final testing of the previous participant, which is
re-divided into new SEEN and UNSEEN sets. Note that the
experimental procedure is equivalent for all participants, despite
the different sources of training data: at no stage are participants
told that they are being trained on the output of another person, nor
did any participants guess that the transmission of an acquired
language was part of the experiment. Crucially, participants believe
they are copying the input language as best they can; a posttest
questionnaire revealed that many participants did not even realize
that they were being tested on stimuli they had not seen in training,
so that intentional design on the part of the participants is unlikely.
To put it another way, the participants’ goal is to reproduce the
language, not improve to it in some way. (We return to this point
in the Discussion section).

Our hypothesis is that we will observe cumulative adaptive
evolution of the language being transmitted in this experiment; that
is, we should see the emergence of adaptive structure in response
to the pressure on the language to be transmitted faithfully from
generation to generation. If this hypothesis is correct, we should see
2 things: 1) an increase in the learnability of the language over
generations (i.e., a decrease in transmission error), and 2) the
evolution of linguistic structure (i.e., an increase in predictability in
the mapping between meanings and signals).

We devised 2 measures to test this hypothesis. First, we used a
measure of string similarity to compare words in the languages of
participants at adjacent generations (seeMethods). The Levensh-
tein edit distance (31) between pairs of words (i.e., the smallest
number of character insertions, replacements, and deletions re-
quired to transform 1 word into the other) provides a reasonable
theory-neutral measure of distance. We normalized the edit dis-
tance for length of words so that identical strings have a distance of
0 and maximally distinct ones have a distance of 1. The mean
distance between all of the words in a participant’s output and the
corresponding words in the previous generation’s output gives a
straightforward measure of the error in transmission of the
language.

Second, we constructed a measure of linguistic structure based
on measures of compositionality used in some computational
models (12). Our aim was to quantify the degree to which the
mapping between meanings (visual scenes) and signals (character
strings) is systematic, an obvious hallmark of structure in human
language. A language is systematic if patterns of similarity and
dissimilarity in signals provide information about the relationship
between the meanings those signals map on to. Accordingly, we
calculated the correlation between all pairs of edit-distances in the
set of signals and the corresponding distances between meanings
(i.e., whether they differed in shape, color, and/or movement). By
using Monte-Carlo techniques, we can calculate the extent to which
this alignment between meaning and signal differs from the align-
ment we would expect to see by a random, unstructured assignment
of signals to meanings (see Methods for details).

kihemiwi

Fig. 1. An example string–picture pair.
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Results of Experiment 1. The results of our first experiment, involv-
ing 4 separate diffusion chains of 10 participants each, are shown in
Fig. 2. Each of these chains was initialized with a different random
language. There is a clear and statistically significant decrease in
transmission error between the initial and final generations (mean
decrease 0.748, SD! 0.147; t (3)! 8.656; P " 0.002). This decrease
confirms the first of our predictions: the language is adapting to
become increasingly transmissible from generation to generation.
Indeed, toward the end of some chains the language is transmitted
perfectly: these participants produced exactly the same strings for
every meaning as their predecessor, although they had not been
exposed to the strings associated with half of those meanings.

How is this adaptation possible? Is any structural evolution of the
language taking place as in the second of our 2 predictions? As
Table 1 shows, the number of distinct strings in each language
decreases rapidly. The initial random languages are completely
unambiguous: every meaning is expressed by a distinct signal. The
transmission process cumulatively introduces ambiguity as single
strings are re-used to express more and more meanings. In other
words, the languages gradually introduce underspecification of
meanings. Clearly, the reduction in the number of strings must
make a language easier for participants to learn, but the reduction
alone cannot account for the results we see. For example, the
reduction does not explain how, in some chains, participants are
able to produce the correct signal for every meaning, including
meanings drawn from the UNSEEN set.

The answer to this puzzle lies in the structure of the languages.
The initial random language is, by definition, unstructured: nothing
in the set of signals gives any systematic clue to the meanings being
conveyed. The only way to learn this language is by rote. Equally,
if a language is randomly underspecified, then rote learning is the
only way it can be acquired. For example, if the same signal is used
for a black spiraling triangle and a red bouncing square, then a
learner must see this signal used for both of these meanings to learn

it. Because we deliberately hold items back from the SEEN set, rote
learning for all meanings is impossible. For learners to be able to
generalize to unseen meanings successfully, there must be system-
atic underspecification.

We can observe exactly this kind of structure evolving by
examining a language as it develops in the experiment. For example,
by generation 4 in 1 of the diffusion chains, the stringtuge is used
exclusively for all pictures with an object moving horizontally. The
distribution of the other strings in the language is more idiosyncratic
and unpredictable at this stage. By generation 6,poi is used to refer
to most spiraling pictures, but there are exceptions for triangles and
squares. Blue spiraling triangles or squares are referred to astupin,
and red spiraling triangles or squares are tupim. In the following
generation, these exceptional cases are reduced to the blue spiraling
triangle and the red spiraling square. By generation 8 (shown in Fig.
3), and also for generations 9 and 10, the language has settled on
a simple system of regularities whereby everything that moves
horizontally is tuge, all spiraling objects are poi, and bouncing
objects are divided according to shape.

It is precisely because the language can be described by using this
simple set of generalizations that participants are able to label
correctly pictures that they have never previously seen. This gen-
eralization directly ensures the stable cultural transmission of the
language from generation to generation, even though each learner
of the language is exposed to incomplete training data.
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Fig. 2. Transmission error and a measure of structure by generation in 4 chains.a shows the increase in learnability (decrease in error) of languages over time.b shows
structure in the languages increasing. The dotted line inb gives the 95% confidence interval so that any result above this line demonstrates that there is a nonrandom
alignment of signals and meanings. In other words, structure in the set of signals reflects structure in the set of meanings. In 2 cases, this measure is not defined and
therefore is not plotted (seeMethods). The language discussed in the paper is circled.

Table 1. Number of distinct words by generation in the
first experiment

Generation 0 1 2 3 4 5 6 7 8 9 10

! Chain 1 27 17 9 6 5 4 4 2 2 2 2
" Chain 2 27 17 15 8 7 6 6 6 5 5 4
‚ Chain 3 27 24 8 6 6 5 6 5 5 5 5
# Chain 4 27 23 9 10 9 11 7 5 5 4 4

Symbols correspond to those in Fig. 2.

tuge tuge tuge
tuge tuge tuge
tuge tuge tuge
tupim tupim tupim
miniku miniku miniku
tupin tupin tupin
poi poi poi
poi poi poi
poi poi poi

Fig. 3. An example evolved language in the first experiment. This language
exhibits systematic underspecification, enabling learners to reproduce the whole
language from a fragment.
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Our structure measure confirms that the languages evolve to
become more structured. As can be seen in Fig. 2b, significantly
nonrandom structure in the mapping from meanings to signals
emerges rapidly. Furthermore, the languages produced by the final
generation are significantly more structured than the initial lan-
guages (mean increase 5.578, SD! 2.968, t (3) ! 3.7575, P " 0.02).

Languages in this experiment are evolving to be learnable, and
they are doing so by becoming structured. This development of
structure confirms our hypothesis regarding the cultural evolution
of language. However, we are interested in whether it would be
possible for a language to evolve that is learnable and structured but
also expressive, i.e., a language that would be able to label meanings
unambiguously. Such a language cannot rely on systematic under-
specification of meanings but instead must find some other means
of gaining structure.

Design of Experiment 2. Accordingly, in the second experiment we
made a single minor modification: we ‘‘filtered’’ the SEEN set
before each participant’s training. If any strings were assigned to
more than 1 meaning, all but 1 of those meanings (chosen at
random) was removed from the training data. This filtering effec-
tively removes the possibility of the language adapting to be
learnable by introducing underspecification: filtering ensures that
underspecification is an evolutionary dead-end. This process, al-
though artificial, is an analogue of a pressure to be expressive that
would come from communicative need in the case of real language
transmission.

Results of Experiment 2. As expected, under the modified regimen,
the overall number of words in participants’ output remains com-
paratively high throughout the experiment, as shown in Table 2. Fig.
4a shows how transmission error changes as the language evolves.
Once again, it is clear that the languages are becoming more
learnable over time (mean decrease 0.427, SD ! 0.106, t (3) !
8.0557, P " 0.002) although it is not possible to introduce the kind

of underspecification seen in Experiment 1. Furthermore, it is clear
from Fig. 4b that, as in Experiment 1, the languages are becoming
increasingly structured over time (mean increase, 6.805, SD !
5.390, t (3) ! 2.525, P " 0.05). Because filtering rules out the
generalizations that emerged in the previous experiment, a differ-
ent kind of structure that does not rely on underspecification must
be emerging.

If we examine the languages at particular stages in their cultural
evolution, we can see exactly what this structure is. For example,
Fig. 5 shows the language output by a participant at generation 9 in
1 of the diffusion chains. When one looks at this language, it
immediately becomes clear that there is structure within the signals.
We can analyze each signal as 3 morphemes expressing color, shape,
and movement, respectively, with 1 exceptional irregularity (renana
for a bouncing red circle). It turns out that this general structure
emerges by at least generation 6 and persists to the end of the
experiment, although the details change as some morphemes are
lost or are reanalyzed from generation to generation [seesupport-
ing information (SI) Tables S1–S8 for the complete set of
languages].

Discussion
What we have observed here under laboratory conditions is cu-
mulative cultural adaptation without intentional design. Just as

Table 2. Number of distinct words by generation in the
second experiment

Generation 0 1 2 3 4 5 6 7 8 9 10

! Chain 1 27 23 22 17 21 21 17 21 25 13 16
" Chain 2 27 26 13 10 10 16 16 12 12 13 12
‚ Chain 3 27 11 16 14 12 17 14 16 20 19 12
#Chain 4 27 19 19 17 19 17 22 23 21 27 23

Symbols correspond to those in Fig. 4.
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Fig. 4. Transmission error and structure by generation in the experiment in which ambiguous data were removed from the training set at each generation.a gives
error for the whole language;b gives structure. These results show that, despite the blocking of underspecification, structure still evolves that enables the languages
to become increasingly learnable. The language discussed in the paper is circled.

n-ere-ki l-ere-ki renana
n-ehe-ki l-aho-ki r-ene-ki
n-eke-ki l-ake-ki r-ahe-ki
n-ere-plo l-ane-plo r-e-plo
n-eho-plo l-aho-plo r-eho-plo
n-eki-plo l-aki-plo r-aho-plo
n-e-pilu l-ane-pilu r-e-pilu
n-eho-pilu l-aho-pilu r-eho-pilu
n-eki-pilu l-aki-pilu r-aho-pilu

Fig. 5. An example evolved language in the second experiment. The language
is structured: the string associated with a picture consists of substrings expressing
color, shape, and motion, respectively. The hyphens represent 1 way of analyzing
the substructure of these strings and are added purely for clarity; participants in
theexperimentalwaysproducedstringsofcharacterswithoutspacesoranyother
means of indicating substructure.
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previous computational models have predicted (4–13), the cultur-
ally evolving language has adapted in a way that ensures its
successful transmission from generation to generation, despite the
existence of a bottleneck on transmission imposed by the incom-
plete exposure of each participant to the language. Cultural adap-
tation results in languages that circumvent this transmission prob-
lem by exploiting structure in the set of meanings to be conveyed.
Note that this adaptation is cumulative with respect to learnability
and structure but not with respect to expressivity: cumulative
adaptation does not suggest that the languages necessarily become
more functional with respect to communication.

In all our experiments we have shown that languages, by virtue
of being culturally transmitted, become increasingly learnable and
increasingly structured. An obvious question is: to what extent does
the structure we see emerging resemble structures found in real
human languages?

In the first experiment, we saw underspecification introduced
into the language. This underspecification was not random but was
systematic, in that similar meanings were given the same label. The
form of the language reflected regularities in the visual scenes,
namely that they consisted of shape, color, and motion. Of course,
in the experiment this process ran unchecked and in some cases led
to languages in which almost every meaning was expressed by a
single signal.

The languages in our first experiment therefore could be seen as
being counter-functionally ambiguous. However, there is another
way of thinking about our results. Rather than seeing the emerging
language as ambiguous, some participants thought it revealed
something about the way the aliens saw the world. For example, in
posttest discussions, 1 participant noted that ‘‘color is not important
to these aliens.’’ This observation suggests that the participants did
not consider the language to be ambiguous, but instead thought that
it reflected the distinctions in meaning that the aliens were inter-
ested in communicating. The collapse of distinctions based on color
(which eventually occurred in all 4 replications of the first experi-
ment) in favor of distinctions based on shape and movement is
compatible with the literature on a shape bias, an expectation that
words will refer to shapes of objects rather than to properties such
as color or texture (32). It may be that, while adapting to become
more learnable by eliminating semantic distinctions, the languages
in the experiment retain the distinctions that seem most salient
and/or likely to be labeled linguistically.

Systematic underspecification similar to that found in the exper-
iments is an important feature of natural language. For example, in
the class of nouns only proper names refer to specific entities. Other
nouns are underspecified and typically correspond to natural
classes. However, systematic underspecification is not the only way
in which the structure of the set of meanings makes itself felt in
linguistic expressions. Most obviously, natural languages exhibit the
species-unique property of compositionality in syntax and morphol-
ogy.¶ The meaning of an expression normally is a function of the
meanings of subparts of that expression and of the way the subparts
are put together. It is precisely this property that we hypothesize
allows language to be both learnable and expressive.

Expressivity in human language is assumed to be a consequence
of the use of language for communication and also may be
attributable to predispositions of child language learners (33, 34).
In 1 computational model of iterated learning (8), an expressivity
requirement is enforced simply by filtering out ambiguous meaning-
strings from the data given to the learner, leaving a training set with
a unique 1-to-1 mapping between meanings and strings. Although
learners still are free to infer ambiguous strings, such ambiguity
would not be transmitted to the following generation.

We implemented exactly this filtering process in the second
experiment, to dramatic effect, even though for the participants the
conditions in this experiment were essentially identical to those in
the previous experiment. As in Experiment 1, after being presented
with string–picture pairs, the participants had to recall these pairs
and generalize to unseen pictures. Nevertheless, unlike in the
previous experiment, systematic compositional structure emerged.
Rules evolved for constructing signals out of a combination of
meaningful substrings, and these rules tended to be transmitted
from generation to generation once they had emerged (seeTables
S1–S8 for the full set of languages). The difference between these
2 experimental settings is simply that the second introduces a new
adaptive challenge for the evolving language. To be transmitted
faithfully from generation to generation, a language in this exper-
iment must be both learnable and unambiguous. The learnability
constraint is imposed by the participants in the experiment, and the
ambiguity constraint is imposed by our additional filter.

The result is the evolution of exactly the type of structure that
optimizes both these competing constraints: compositionality. The
evolution of this structure reveals a key feature of cultural trans-
mission: it gives rise to adaptive systems that respond to the
pressures imposed by the transmission bottleneck that exists be-
tween the producer and learner of behavior. Crucially, this adap-
tation by the language maximizes its own transmissibility, and the
adaptation can take place without intentional design on the part of
the individuals involved. Participants in the second experiment
could not be aware that ambiguous signals were being filtered, and
yet a completely different sort of structure emerged. This finding
demonstrates that adaptation can be independent of the intentions
of individuals.

Finally, the difference between the 2 experiments also shows that
the languages that emerge are not simply a reflection of the native
language of the participants. A participant’s first language may
influence the learnability of a particular artificial language and
therefore play a role in shaping the cultural evolution of those
languages in our experiments. However, this explanation cannot be
the whole story: if participants were merely stamping their own
linguistic knowledge onto the data that they were seeing, there
would be no reason we would find rampant structured underspeci-
fication in the first experiment and a system of morphological
concatenation in the second.

Conclusions
We have shown that it is possible to study cumulative cultural
adaptation in the laboratory. Using a diffusion-chain paradigm with
an artificial-language learning task, we provide empirical support
for computational and mathematical models of iterated learning
that show language to be an adaptive system in its own right. We
demonstrate the cumulative evolution of an adaptive structure
without intentional design on the part of the participants in the
experiment.

We can understand the linguistic structure emerging in these
experiments as an adaptive response by language to the problem of
being transmitted from generation to generation. In particular,
language faces the problem of being reproducible from a sub-
sample. In the first experiment, the language solves this problem by
introducing systematic underspecification in the meaning-signal
mapping. In the second experiment, the language faces the addi-
tional challenge of being transmitted despite filtering for ambiguity.
Compositional structure is a potential solution to this particular
transmission problem, and this structure emerges. It is important to
reiterate that participants in the experiment did not intentionally
design this solution; indeed, they were not even aware of the
problem. Participants believed they were reproducing as best they
could the language to which they were exposed. Just as biological
evolution can deliver the appearance of design without the exis-
tence of a designer, so too can cultural evolution.

¶Arguably, the dance of honey bees (35) and the calls of Campbell’s monkeys (36) are both
minimally compositional. However, there is no evidence (as yet) for culturally transmitted or
open-ended compositional communication outside our species.
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Methods
Eighty participants were recruited to participate in an ‘‘alien language’’ learning
study. Each had to learn a language made up of written labels for visual stimuli.
Participants were university students with no background in linguistics. The
female:male ratio was 46:34, the mean age was 22.5 years, the minimum age was
18 years, and the maximum age was 40 years. The experiment was conducted in
accordance with the ethics procedures of the Department of Linguistics and
English Language at the University of Edinburgh. Participants carried out the
experiment at a computer terminal and received written and verbal instructions
(see SI Text). During training, participants were presented with string–picture
pairs on the computer monitor. During testing, participants were presented with
pictures on the monitor and were prompted to enter strings using the keyboard,
with any sequence of alphanumeric characters being permissible.

Visual Stimuli. There were 27 possible stimuli to be labeled. Each was a colored
object with an arrow indicating motion. Each object feature (shape, color, mo-
tion) varied over 3 possible values: square, circle, or triangle; black, blue, or red;
horizontal motion, bouncing, or spiraling motion.

Labels. The set of labels in the initial language was generated and assigned
randomly and was constructed by concatenating between 2 and 4 syllables
(without spaces between) taken from a set of 9 simple consonant–vowel pairs.
Because participants were free to enter any sequence of characters they chose
during testing, subsequent labels were unconstrained.

Training and Testing Regimen. Each language (a set of 27 string–picture pairs, 1
string for each of 27 possible pictures) was divided randomly into 2 sets: the SEEN
set (14 string–picture pairs) and the UNSEEN set (13 string–picture pairs). Each
participant acquired the language in a single session comprising of 3 rounds of
training with an optional 2-minute break between rounds. A single round of
training consisted of 2 randomized exposures to the SEEN set, followed by a test.
In the first 2 rounds this test phase contained only half the SEEN and half the
UNSEEN items; the final test at the end of the third round (which was the only
source for the next generation’s language) consisted of all 27 pictures.

During each training pass through the SEEN set, participants were presented
with each pair in a random order, with the string being displayed for 1 second
followed by both string and picture being displayed for a further 5 seconds.
During testing, participants were presented with a picture and prompted to type
in the string they thought the alien would produce for that picture.

In the second experiment, the SEEN set was filtered before presentation to
participants. Specifically, if any string labeled more than 1 picture, all but 1 of
those string–picture pairs (chosen at random) was moved into the UNSEEN set. As

a result, the trainingdata seenbyparticipants in thesecondexperimentconsisted
of a purely 1-to-1 mapping from strings to pictures, even if the language of the
previous generation included 1-to-many mappings.

Diffusion-Chain Design. The first participant in the experiment was trained on a
language with randomly constructed labels. Subsequent participants were
trainedontheoutputof thefinal testingof thepreviousparticipant: theprevious
participant’s final testing output was randomly redivided into a new SEEN and
UNSEEN set.

Measure of Transmission Error. The mean distance between all the signals in a
participant’s output and the corresponding signals in the previous generation’s
output gives a measure of intergeneration transmission error, and is given by

E!i" !
1

|M| !
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m is thestringassociatedwithmeaningmbytheparticipantatgeneration

i, LD si
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m is the normalized Levenshtein distance (31) between stringssi
m and sj

m,
and the sum is over a set of meaningsM of magnitude !M!.

Measure of Structure. For a particular language, a measure of structure is
computed as follows. The distances between all pairs of strings in the language
are calculated using normalized Levenshtein distance. In addition, the distances
between all pairs of meanings also are calculated using a simple hamming
distance (so that meanings differing in 1 feature have a distance of 1, meanings
differing in 2 features have a distance of 2, and so forth). The Pearson’s product-
moment correlation between these 2 sets of distances then is calculated, giving
an indication of the extent to which similar meanings are expressed using similar
strings. To compare across different languages and to measure significance, it is
necessary to compute a Monte Carlo sample of this measure under permutations
of the strings over meanings. The graphs shown in the paper give thez score for
the veridical correlation based on 1,000 randomizations. The dotted line on the
graph therefore shows the 95% confidence interval that the observed mapping
could be obtained by random assignment of signals to meanings. This measure is
undefined when there is no variation in the Monte Carlo sample, for example
whenthe languagehasonly thesamestringforallmeaningsor forallbut1of the
meanings. In these cases, all possible reorderings are equally structured.
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Language, Learning and Cultural Evolution: how linguistic 
transmission leads to cumulative adaptation

Simon Kirby*1, Kenny Smith† & Hannah Cornish*

*Language Evolution and Computation Research Unit, University of Edinburgh
†Cognition and Communication Research Centre,Northumbria University

1. Introduction

An explanatory approach to language must, among other things, answer the question why lan-
guage is structured in the particular way it is and not some other way. In other words, we seek to 
account for the particular universal properties of linguistic structure. Attempts to tackle this chal-
lenge take many forms (Hawkins, 1988), but in this chapter we look at a particular type of explana-
tion, which we can term the adaptive systems approach.

This approach to an explanatory account for language focusses on its dynamical aspects, noting 
that the universal properties of language are actually the result of multiple complex dynamical sys-
tems operating on different time-scales each influencing the others. Specifically:

• Learning/use. The language produced by an individual is shaped in part by the cognitive 
mechanisms for learning and processing language. In other words, an individual’s language 
adapts on an ontogenetic time-scale through acquisition and use.

• Cultural2  evolution. The actual language spoken by any individual is also, obviously, a result 
of the language spoken by other individuals in the community and goes on to affect the lan-
guage of future generations of speakers. Language universals arise from the interaction of in-
dividuals with particular cognitive and usage-based constraints in populations who share 
language. To put it another way, language is transmitted through a repeated cycle of learning 
and use leading to a process of change and evolution on a cultural time-scale (e.g., Brighton et 
al, 2005).

• Biological evolution. Finally, the cognitive machinery that drives the cultural evolution of 
language is itself the result of biological evolution. This leads to the possibility that the uni-
versals that emerge through cultural evolution may alter the fitness landscape of the indi-
viduals that learn and use these languages, ultimately leading to the biological evolution of 
the mechanisms for learning and processing language (e.g., Briscoe, 2000). 

When we talk about these systems as being adaptive we mean that they result in the “appearance of 
design”. That is, there is a fit between the structure that is the result of the dynamical system and 
some function of that structure. Adaptation is most familiar in the context of biological evolution, 
where natural selection is often seen as an optimising process generating phenotypes that are fit 
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2 The use of the term culture is potentially problematic. Throughout this chapter we use it in a technical sense 
to mean any information that is transmitted through a population by means of production of behaviour by 
an individual and acquisition of similar behaviour by another individual through observation. Language is 
transmitted culturally in this sense, but this does not mean it is necessarily shaped by other aspects of the 
“culture” of the individuals that posses it.



for survival and reproduction, but our point is that this is only one example of possible adaptive 
mechanisms.

At the core of this multiple adaptive systems approach to language is the idea that a) much of 
language structure is adaptive and b) whilst appearing to be designed there is no actual designer 
involved. This chapter will look mainly at the latter claim with respect to cultural evolution in par-
ticular by reference to mathematical, computational and experimental models of the transmission 
of language. Briefly, we aim to show that the process of transmission of language through repeated 
acquisition and use leads to cumulative adaptations without the need for biological evolution or 
any intention to adapt language on the part of those that use it.

2. The orthodox evolutionary view

Figure 1: The orthodox evolutionary view. The universal properties of linguistic structure are deter-
mined by the nature of our individual cognitive machinery which is the result of biological evolution 

under natural selection for communication.

Faced with explaining the universal properties of linguistic structure, one influential approach has 
been a direct appeal to biology. In this view, language structure arises from our species-specific bio-
logical endowment – we have the types of languages that we do because we have an innately-
given language faculty with a particular structure that constrains the possible types of language 
(e.g., Hoekstra & Kooij, 1988). In particular, Chomsky (1975) suggests that it is a set of innate con-
straints on language acquisition that determines the nature of human language.

For many (e.g. Hurford, 1990) this is an unsatisfying explanation as it stands, since it appears 
simply to push the need for answers back but not dispel them. It transforms one puzzle “why do 
we have the particular language universals we do?” into another “why do we have the particular 
language faculty we do?”. In a landmark paper Pinker & Bloom (1990) set out a strategy for an-
swering this second question in order to support a broadly nativist approach to explanation. This 
strategy has become what might be called the orthodox evolutionary approach to language (see 
figure 1).

Pinker and Bloom (1990) argue that language structure has all the hallmarks of an adaptation. To 
them, many of the fundamental features of language appear to be tailored to communicating com-
plex propositions through a serial signalling medium. If Chomsky is right in arguing that these fea-
tures of language are the way they are because they arise from an innately given faculty for lan-
guage, then this makes language appear like many other features of our biology. The language fac-
ulty, like the heart or the liver, is an organ that appears adapted to a particular survival-relevant 
function – in this case communication.

INDIVIDUAL COGNITIVE 

MACHINERY

UNIVERSAL PROPERTIES 

OF LINGUISTIC 

STRUCTURE

BIOLOGICAL EVOLUTION 

BY NATURAL SELECTION
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If this is correct then the structure of the language faculty, like the structure of other organs, is 
best explained by appealing to biological evolution by natural selection. As they put it:

“Grammar is a complex mechanism tailored to the transmission of propositional struc-
tures through a serial interface... Evolutionary theory offers clear criteria for when a 
trait should be attributed to natural selection: complex design for some function, and 
the absence of alternative processes capable of explaining such complexity. Human 
language meets this criterion.” (Pinker & Bloom, 1990:707)

This biological/evolutionary approach to linguistic explanation is appealing since it neatly 
grounds out the explanation of linguistic structure in the well-established mechanism of natural 
selection. 

Despite its appeal, there are reasons to be cautious with this orthodox evolutionary approach as 
it stands. One problem with the view portrayed in figure 1 is the link between “individual cogni-
tive machinery” and “universal properties of linguistic structure”. The Chomskyan approach to 
explaining language universals rests on a tacit assumption that constraints/biases on language ac-
quisition will directly lead to equivalent constraints/biases on the distribution of possible human 
languages. But is this assumption justified?

A lesson can be learned from a different way of explaining language universals known as the 
functional/typological approach. Here, universals are explained by appealing not to innate character-
istics of our language acquisition machinery, but rather to properties of the uses language is put to. 
We will not be looking at this literature in any detail here, but one of the criticisms levelled at it is 
that it fails to solve what has been termed the problem of linkage: how exactly does a feature of lan-
guage use end up being reflected in the cross-linguistic distribution of language types (Kirby, 
1999)?  The point is not that this problem is insoluble, but rather it is an absolutely crucial part of 
any explanation. What is the mechanism that links the proposed explanans to the explanandum in 
question?

This linkage problem exists just as forcefully for the Chomskyan approach (see Kirby et al, 2004 
for discussion):

Problem of Linkage. Given a set of observed constraints on cross-linguistic variation, 
and a corresponding pattern of functional preference or language acquisition biases, an 
explanation of this fit will solve the problem: how does the latter give rise to the 
former? [Italic text added to the original definition from Kirby, 1999]

What is needed is a way of bridging the gap between an individual-level phenomenon (the struc-
ture of a language-learner’s cognitive machinery) and a population-level phenomenon (the distri-
bution of possible languages). As Kirby et al (2004) argue, the solution to this problem is to explic-
itly model the way in which individual behaviour leads to population effects over time. As noted 
in the introduction, language emerges out of a repeated cycle of language learning and language 
use, and it is by studying this socio-cultural process directly that we will see how properties of the 
individual leave their mark on the universal structure of language.
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Figure 2: The solution to the Problem of Linkage. The universal properties of language arise from the 
cultural evolution of language through generations of socially interacting individuals with particular 
cognitive machinery. Of central importance is the precise contribution of the cultural evolutionary 

process in determining language structure.

Of course, it may well be that when we examine this linking mechanism we will find that lan-
guage universals do indeed straightforwardly reflect language learning biases, for example. If this 
is the case, then the orthodox evolutionary explanation is a reasonable one. However if the extra 
box in figure 2 does some work for us, then this explanation cannot hold – at least in its present 
form. Indeed, we may find that the explanatory burden may be lifted to some extent from our in-
nate machinery, and hence from biological adaptation through natural selection.

3. Modelling cultural evolution

So far we have identified the importance of understanding cultural evolution as it applies to lan-
guage because it represents the solution to the problem of linkage in the orthodox explanation for 
linguistic structure. The difficulty is that we have a surprisingly poor understanding of exactly 
how cultural evolution actually works in general (although there is a growing literature, e.g. Boyd 
& Richerson, 1985, Mesoudi et al, 2006). Compared to our detailed empirical and theoretical un-
derstanding of language acquisition, for example, or the process of biological evolution by natural 
selection, we do not have a strong empirical base for cultural evolution or an accepted set of prin-
ciples for how individual biases lead to population-level phenomena.

There is, of course, an extensive literature on historical linguistics which appears relevant. It is 
important to note that our target is subtly different. When linguists study language change, they  
consider how a language at one point in time turns into a different language at a later point. How-
ever, we would expect both of these languages to fall within the boundaries described by our the-
ory of language universals. Normally, historical linguists are interested in how languages move 
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around the space of possible languages rather than in the origins of that space in the first place.3 
We will return to this distinction later in a more formal context.

In order to better understand how cultural evolution works in general, and how it operates in 
shaping language in particular, we have set out to model it in three different ways over the past 
decade or so (given here in the order they have been explored):

• Computational models. Our first approach was to build simulations of populations of indi-
viduals with particular language learning machinery and see what types of languages emerge. 
The goal here was to examine the extent to which the resulting language structure was deter-
mined by features of the cultural transmission process rather than being directly encoded in 
the learning mechanisms (e.g. Kirby, 1994, 1999; Kirby & Hurford, 2002; Smith, 2002; Smith et 
al 2003; )

• Mathematical models. Based on our experience of the computational models, we developed 
an idealised mathematical framework which enabled us to state precisely how much our in-
nate endowment determines the structure of language (e.g., Kirby, Dowman & Griffiths, 2007).

• Experimental models. Finally, to act as a check on the plausibility of the formal models and to 
see how closely human subjects behave like their computational idealisations, we developed a 
novel experimental paradigm for cultural evolution (e.g., Cornish, 2006).

All three of these are based on a framework for understanding cultural evolution we have called 
the iterated learning model (see figure 3). Iterated learning is the fundamental process underlying 
many forms of cultural evolution, including language. It is the process of the transmission of be-
haviour where that behaviour is acquired by an individual observing similar behaviour in another 
who acquired it in the same way. The model, based on Andersen’s (1973) and Hurford’s (1990) 
treats the transmission of language as a repeated transformation between some linguistic represen-
tation internal to an individual (or “agent” to use the modeller’s parlance) and utterances that are 
external to that individual and can be observed by another. It is through being repeatedly learned 
and used by agents in the model that language evolves culturally.

Because our aim here is not a theory of language change, we do not typically start the models off 
with something that falls within the space of possible human languages. Instead we are interested 
in how (and whether) such human-like languages emerge in the models when one is not present in 
the initial conditions (see Brighton, 2003, for a detailed discussion of the methodological issues this 
raises). By varying features of the way in which language is transmitted from agent to agent in the 
models, we can begin to build-up a picture of how cultural evolution might work.

For the remainder of this chapter, we will briefly review the main results so far from the three 
strands of modelling research listed above and discuss what they tell us about how we should ap-
proach linguistic explanation. Of particular interest will be the question: how much of language 
structure that appears to be designed for communication need not be explained in terms of the in-
tentions of communicating agents at all?

5 Simon Kirby, Kenny Smith & Hannah Cornish
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Figure 3: The Iterated Learning Model.  The first agent has knowledge of language represented by a 
hypothesis h1 . This hypothesis itself represents a language Lh1 . Some subset of this mapping, L’h1, is 

externalized as linguistic performance for the next agent to learn from. The process of learning results 
in a hypothesis h2. The process is then repeated, generation after generation.(Taken from Brighton, et 

al, 2005:185)

4. Computational models: language transmission is adaptive

Since the early nineties, there have been a variety of attempts by a number of researchers (e.g. 
Kirby, 1994; Batali, 1998; Kirby, 2002a; Teal & Taylor, 1999; Tonkes, 2001; K. Smith, 2002; Steels et al, 
2002; Brighton, 2003; Zuidema, 2003; de Boer, 2005; A. Smith 2005; Vogt, 2005; Oudeyer, 2006) to 
build simulation models of the cultural evolution of language (see, e.g. Kirby, 2002b; Steels, 2003, 
for review and Brighton et al, 2005, for a detailed account of one particular strand of research). 
Most of these models adopt a framework similar to the one outlined in figure 3: a population of 
agents produce language-like behaviour in response to observing similar behaviour in other mem-
bers of the population. They differ (often radically) in their assumptions about the nature of the 
population, their model of learning, and exactly what form the agents’ language takes.

For example, Batali (2002) has a model in which there is a relatively large but static population of 
agents throughout the simulation, whereas Kirby (2000) implements a model with purely vertical 
cultural transmission in a chain of “adults” and “children”. In the former, no-one is born and no-
one dies, but in the latter there is strict generational turnover with the children replacing the adults 

H. Brighton et al. / Physics of Life Reviews 2 (2005) 177–226 185

Fig. 1. The iterated learning model. The first agent has knowledge of language represented by a hypothesis h1. This hypothesis

itself represents a language Lh1 . Some subset of this mapping, L
′
h1
, is externalized as linguistic performance for the next agent

to learn from. The process of learning results in a hypothesis h2. The process is then repeated, generation after generation.

3.2. The language model

Before proceeding to a fully-specified Iterated LearningModel we must introduce our language model.

The particular model we introduce will figure in both models featured later in the paper. The discus-

sion surrounding the language model will also allow us to define the feature of language we will be

investigating throughout this article. This is a property of language—a linguistic universal—termed com-

positionality.

A model of language needs to capture the fact that a language is a particular relationship between

sounds and meaning. The level of abstraction we will aim for captures the property that language is map-

ping from a “characteristic kind of semantic or pragmatic function onto a characteristic kind of symbol

sequence” [73, p. 713]. When we refer to a model of language, we will be referring to a set of pos-

sible relationships between, on the one hand, entities representing meanings, and on the other, entities

representing signals. Throughout this article we will consider meanings as multi-dimensional feature

structures, and signals as sequences of symbols.

Meanings are defined as feature vectors representing points in a meaning space. Meaning spaces will

be defined by two parameters, F and V . The parameter F defines the dimensionality of the meaning
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each generation and a new set of children being introduced. In Batali (1998) agents are recurrent 
neural networks being trained using standard connectionist algorithms, whereas Brighton’s (2002) 
agents induce finite state machines using Minimum Description Length learning. In Kirby (2002a), 
agents communicate meanings represented as hierarchical symbolic propositions, whereas Vogt’s 
(2005) agents play communication games grounded in visual stimuli.

Despite the large range of different assumptions, methods and motivations across these models 
one broad conclusion seems warranted (cf. Christiansen, 1994; Deacon, 1997):

The Principle of Linguistic Adaptation: if a learner is given imperfect information 
about the language they are attempting to learn (e.g., if they are subject to noise, 
processing constraints, or they simply do not hear all the data), then cultural trans-
mission becomes an adaptive system. As a result, languages will emerge that appear 
to be optimised to the problem of being transmitted from individual to individual.

We can think of the transmission of the knowledge of language from one agent to another as pass-
ing through a narrow “bottleneck”. A large (or potentially infinite) language must be reconstructed 
by a learner despite the imperfect information imposed by the bottleneck.4 The very act of repeat-
edly squeezing language through this bottleneck causes language to change in such a way that its 
chance of being transmitted through the bottleneck with high fidelity is maximised.

The literature provides numerous examples of the principle of linguistic adaptation at work in 
simulations and shows how it can be used to cast light on specific linguistic problems. Here we 
provide three illustrations from our own work in this area. These summaries are necessarily brief, 
but nevertheless we hope they will give a flavour of the work in this area.

Hierarchical universals and competing motivations

Language universals of the sort discussed in the typological literature are often implicational in 
nature (e.g., Croft, 1990). That is, languages are predicted to have property Q if they also have 
property P, but not necessarily vice versa. In other words: P!Q. In some cases, researchers have 
uncovered whole chains of implications of the form P!Q & Q!R & R!S etc. These are often re-
written in the form of hierarchies of types: S>R>Q>P. Languages which exhibit a feature at some 
point in the hierarchy will also exhibit all the features higher in the hierarchy.

An influential typological study of relative clause formation provides a prototypical study of hi-
erarchical universals. Keenan & Comrie (1977) present evidence for the following hierarchy of ac-
cessibility to relative clause formation:

The Relative Clause Accessibility Hierarchy: 

Subject>Direct Object>Indirect Object>Oblique>Genitive>Object of Comparison
If a language can relativize any position on this hierarchy, they can relativise all 
higher positions in the hierarchy.

How might we explain a universal pattern such as this one? Kirby (1997) examines an explana-
tion due to Hawkins (1994) that appeals to asymmetries in the difficulty in processing different 
relative clauses. Simplifying somewhat, the idea is that the greater the structural distance between 
a head noun and the trace (or resumptive pronoun) in a relative clause, the greater the load there is 
on the working memory of the parser. However, this fails to explain why there should be a link 
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between processing load during parsing and the observed universal – what is the mechanism that 
links the two?

In order to solve the problem of linkage here, Kirby (1997) sets out to model, in a simple simula-
tion, how this parsing preference actually results in a hierarchical universal.5 The simulation con-
sists of a population of agents. Each agent has a grammar which either allows or disallows relative 
clauses for each point on the hierarchy. The population of agents is updated through a process of 
generational turnover whereby a new population of agents is created; each agent in the previous 
generation produces example relative clauses according to their grammar; and the new agents ac-
quire their grammars on the basis of the examples produced by the agents from the previous gen-
eration. The learning mechanism is set up in such a way that the probability that a learner acquires 
a particular relative clause type is dependent both on the number of examples the learner hears 
and the parsing difficulty associated with each clause type. This implements in a straightforward 
way a parsing-based bottleneck on the cultural transmission of language.

The results of this model immediately demonstrate a problem with the explanation for Keenan 
and Comrie’s (1977) hierarchy as it stands. No matter what the initial distribution of languages is 
in the population, the only stable end state is one where languages don’t allow any relative clauses 
at all. It is easy to see why this happens: language is simply adapting to the complexity of process-
ing relative clauses. The most adapted languages are those that avoid the problem of relative 
clause processing by rendering them ungrammatical.

Kirby (1997) shows that this is a general problem with any explanation for hierarchical universals 
that appeals to an asymmetry in processing difficulty. The solution, verified by the simulation 
model, is to seek a competing functional motivation favouring the structure in question. Interestingly, 
this competing motivation need not be asymmetrical with respect to the different types on the hi-
erarchy. So, all that is needed to derive the observed distribution of language types in the simula-
tion is a general speaker-driven least-effort principle that favours relative clauses of all types 
equally, for example because they avoid the need for circumlocution. With this pressure acting on 
speakers (and some assumptions about how the relative strengths of pressures may vary over 
time) the end result of the simulation is a distribution of languages that obeys the Keenan and 
Comrie hierarchy. All the language types at the start of the simulation that do not correspond to 
those found in the world today disappear.

What these results demonstrate is that languages can adapt to competing needs of speakers and 
hearers as they influence the bottleneck on linguistic transmission. The hierarchy is not built-in di-
rectly as a set of constraints on possible languages – nor do the agents in any way try and optimise 
the language they have. The universal emerges as a population-level effect from processing pres-
sures acting on individuals influencing the transmission of language through iterated learning.

Compositionality and morphological regularity

Whereas the early iterated learning models looked at specific language universals of the sort un-
covered by typological surveys, with steadily increasing computing power and interest in the evo-
lution of language there has been a desire among many researchers to simulate the emergence of 
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language out of a pre-existing a-lingual state. For example, could some of the fundamental features 
of syntax be shown to evolve from a largely non-syntactic protolanguage6 solely through cultural 
processes?

A particularly fundamental structural feature of language that sets it apart from almost all other 
communication systems in nature is compositionality. It is regular compositionality in the mapping 
between signals and meanings that, when recursively applied, gives language its completely open-
ended expressivity. Drawing on a variety of evidence, Wray (1998) proposes an earlier stage in the 
evolution of language where signals and meanings are not related compositionally, but rather 
whole signals correspond to whole meanings. This holistic protolanguage is in many ways closer to 
the communication systems of non-human primates, which are based on a fixed repertoire of ex-
pressions lacking generalisable internal structure.

The puzzle is what drives the transition from a holistic stage in language to a more syntactic sys-
tem of communication. Why and how does compositionality emerge? Can the principle of linguis-
tic adaptation help?

If we think about the difference between holistic and compositional mappings from the point of 
view of the transmission of language, it becomes obvious that the principle of linguistic adaptation 
does indeed predict that compositionality will emerge in most cases. Assuming that there is a 
larger range of meanings that an individual language learner could  be exposed to in their lifetime 
than the range of meanings that they actually are exposed to, then there is a bottleneck on linguistic 
transmission because a learner will never see the entire language. This means that a holistic ex-
pression for some meaning will only ever be learned if that exact expression is observed by a 
learner. On the other hand, in a compositional language, a sub-expression (e.g. a word or mor-
pheme) corresponding to a sub-part of a meaning has a much greater opportunity to be learned 
since evidence for it can be seen by a learner whenever any meaning in which it is involved is ex-
pressed. Hence, generalisable linguistic structure is better able to fit through the bottleneck on lin-
guistic transmission. Jim Hurford puts it succinctly in the title to his article: “social transmission 
favours linguistic generalisation” (Hurford 2000).

Kirby (2001) demonstrates the process at work in a computational simulation. Agents in this 
model acquire languages from observations of strings of characters being paired with a finite set of 
very simple structured meanings. Meanings are essentially pairs of features, each of which can 
take a range of values. The initial expressions in the simulation are random strings of characters 
paired with whole meanings. In other words, the initial language is holistic because there is no 
regularity in the mapping between meanings and signals.

Agents are prompted to produce signals for meanings at random and will do so using their in-
ternalised language if possible, otherwise they will “invent” a random novel string of characters if 
necessary. Learners store signal-meaning pairs that they hear in a list, but will also search for any 
generalisations they can make over the set of pairs that they store. Of course, given a purely holis-
tic language there are no generalisations that can be made, so the language remains holistic.

What happens in such a model?  It turns out that it depends critically on how much data learners 
see in their lifetime. As predicted, this learning bottleneck drives the cultural evolution of language 
as it is transmitted from generation to generation in the iterated learning model. When learners see 
large amounts of data, then the language typically is acquired perfectly each generation and there-
fore does not change. In this case, a completely holistic protolanguage is stable. However, if the 
number of meaning-signal pairs each learner is exposed to is reduced then the language becomes 
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rather unstable. This is simply because agents will be called upon to produce signals for meanings 
they have never encountered in their input. Because the language is holistic, their only option is to 
produce a novel random string. The particular meanings that are subject to this random innovation 
differ each generation in the simulation (because meanings are picked at random for agents to 
produce). The upshot of this is that the language can change from generation to generation.

If this were all that happened, it would not be a very interesting model. However, something 
rather striking occurs when there is a learning bottleneck such as this one: the initially unstable 
language transforms over time into one that is stable despite, or rather because of, the limited input 
to learners. This new stable language is compositional. Each feature ends up being expressed by 
some sub-part of the signal. So, for example, a complete meaning might be encoded by using a 
“morpheme” corresponding to the value of the first feature attached to a “morpheme” correspond-
ing to the value of the second feature.

This compositional coding system emerges piecemeal (but surprisingly rapidly) in this simula-
tion as speakers’ purely random and holistic innovations are incorrectly over-generalised by learn-
ers. The crucial point that arises from the iterated learning model is that these mistaken over-
generalisations are then correctly picked-up by learners in the next generation. Because generalisa-
tions are better able to get through the learning bottleneck, this process snowballs and the inevita-
ble end-result is the emergence of rampant compositionality.

It is important to realise that this result is not simply an artefact of particular features of this one 
simulation. As noted in the introduction to this section, the same basic behaviour can be seen in 
simulation models with radically different assumptions and architectures. Furthermore, this type 
of model can not only provide an explanation for the origins of compositional regularity, but also 
explain the cases where it does not occur. Whilst most simulation models make the simplifying as-
sumption that all meanings were equally frequent, Kirby (2001) implemented a non-uniform fre-
quency distribution in his model so that some combinations of feature-values were more likely to 
be expressed by speakers than others.

Figure 4: Simulation result showing a partially regular paradigm. Meanings involve two components, 
“a” and “b”. Frequency of these combinations increases to the upper left of the table. The signals are 
combinations of letters and exhibit regular compositional structure except for the most frequent mean-

ings. (Taken from Kirby 2001)

In this case, only infrequent meanings end up being expressed compositionally. Highly frequent 
meanings tended to remain with irregular holistic forms (see figure 4). This makes sense from the 
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Fig. 2. Evolution of the language in an ILM with pressures for short strings. In addition to coverage, communicative success and size of grammar mean string
length of utterances is also plotted.

Just as in the previous simulation, a clearly regular encoding

has evolved. This is not what we were looking for, however.

There is still no irregularity in this language. In later genera-

tions, some irregularity does emerge (shown in bold in this ex-

ample from generation 763).

These irregulars are not stable, however. They typically

only last one or two generations, being rapidly reregularized

by learners. So, although the performance pressures clearly

influence the evolution of the system (in that the string length

is much reduced), realistic irregulars have not emerged.

D. Nonuniform Frequency Distributions

What else might be needed to model both the emergence

of structure-preserving regularity and stable irregularity in lan-

guages? A clear indication of what is missing from the ILMs

presented so far is given if we look at where in real languages

irregulars appear most stable. For example, here are some of the

verbs in English that have an irregular past tense: be, have, do,

say, make, go, take, come, see, get, .

Strikingly, these verbs are also the ten most frequent verbs

in English usage [16]. In fact, it is recognized by linguists that

irregularity (i.e., noncompositionality) correlates closely with

frequency in natural language [17]. The frequency with which

meanings need to be expressed in the ILM (and, hence, indi-

rectly the frequency of use of particular strings) is uniform. In

contrast, the frequency of use of words in natural languages ap-

proximates a Zipfian distribution [18]; that is, the frequency of

use of a particular word is inversely proportional to its frequency

rank. While we cannot infer the frequency distribution of par-

ticular meanings in real languages from this directly, it strongly

suggests that a uniform distribution is an unrealistic idealization.

Consequently, the simulation in the previous section is

rerun with a nonuniform distribution over meanings (shown

in Fig. 3) based on a Zipfian surface. This means that when,

in the ILM, meanings are chosen at random for the adult

agent to produce strings, the probability of picking a particular

meaning is weighted so that the frequency of use of meanings

approximates the function shown in Fig. 3.

The results of a run with this distribution of meanings is

shown in Fig. 4. It is noticeable that the system appears far

less stable than others, suggesting that the process of language

change is ongoing throughout the simulation (as it is in real lan-

guage history). The most important result, however, can be seen

by looking at a snapshot of the language taken at one point in

time in the simulation (generation 256).

As before, there are some irregular forms (shown in bold), but

in contrastwith the previous result, they are highly stable. For ex-

ample, this particular cluster of irregulars appeared in generation

127 and lasts until generation 464, at which point is regular-

ized to . Indeed, the irregular appears constant throughout all

1000 generations of the simulation. Furthermore, just as in the

real case, the irregular forms are all highly frequent. It is also in-

teresting to note that length appears to correlate inversely with
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point of view of the principle of linguistic adaptation. If a meaning crops up with high frequency, 
then information about how that meaning is expressed is reliably provided to the learners. There is 
no pressure in this case for it to be regularised and become compositional. This result is suggestive 
in the light of the well-known relationship between frequency and regularity in the morphology of 
real languages. For example, the top ten verbs in English by frequency all have irregular past-
tenses (Francis & Kucera, 1982).

The adaptation of meanings through iterated learning

Both of the previous examples show how the form of language may adapt through a process of cul-
tural evolution. In the second example, the structure of strings in the language end up largely mir-
roring the pre-existing structure of the meanings in the model. In these simulations, the meaning 
structure is defined and fixed by the experimenter, leading some researchers to wonder if more 
flexible meanings can be modelled in simulation (e.g, Steels et al, 2002; A. Smith, 2005; Vogt, 2005).

Indeed, in a simple idealised computational model, Kirby (2007) suggests that semantics as well 
as syntax might adapt through a process of cultural evolution under pressure from a bottleneck on 
transmission. To model this, a distinction is made between the meanings that the agents associate 
with signals on the one hand, and their actual communicative goals on the other. So, for example, I 
as a speaker may wish to draw the attention of a hearer to a particular person in a room. I might 
choose to do this in a number of ways: from describing them in every detail, through simply not-
ing their distinctive features, to referring to them by name. In the computational model, each of 
these correspond to different “meanings” associated with the object of reference. In some sense, it 
is up to the speaker to choose which meaning they wish to convey, which in turn will affect the ac-
tual signal produced. Note that, at one extreme this corresponds to a holistic system of communi-
cation – in their simplest form, proper names are holistic. At the other extreme, we might imagine a 
deeply compositional (but highly inefficient!) form of communication where every discernible as-
pect of the object of reference is explicitly expressed.

For brevity, we will omit the details of the model here, but the key is that although agents are 
able to conceptualise every communicative goal in a large number of different ways, correspond-
ing to different meanings, they are only able to express those meanings if they have previously en-
countered similar expressions in their training data. More precisely, they are able to express a tar-
get meaning if they have previously heard a set of meanings within which all aspects of the target 
meaning appear at least once. To put it another way, just as in the previous model, compositional-
ity allows the learners to recombine sub-parts of other expressions to form novel ones as long as 
there is sufficient evidence in the input.

Agents are randomly given a particular communicative goal and a “context” of a number of 
other randomly chosen irrelevant goals. They then try and find a meaning corresponding to their 
communicative goal for which a suitable expression can be generated. If more than one meaning is 
possible, then agents pick one which best discriminates the target of communication from the con-
text. If no meanings are possible, then as in the previous model, agents invent a new expression.

The result of these modifications to the previous iterated learning models is that the kinds of 
meanings that agents use evolves culturally, rather than simply the signals that they associate with 
meanings. So far the analysis of the model is far from complete, but what is clear is that the lan-
guage once again shows evidence of adaptation. Where there is pressure from the learning bottle-
neck, meanings are preferred which allow for the most generalisable forms of compositional lan-
guage.

There are a number of flaws in this model, unfortunately. For example, although the use of mean-
ings can change over time the set of all possible meanings must still be provided somehow by the 
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experimenter. Work by robotics and artificial life researchers looking at the origins of communica-
tion may eventually provide the best way out of this issue by grounding communication in the real 
world (e.g. Steels, 2003) or some model of ecological relevance (e.g. Cangelosi et al, 2002). How-
ever, the important point here is to show that principle of linguistic adaptation may potentially 
have a very wide remit in helping explain many aspects of linguistic structure.7

5. A mathematical model: from weak innateness to strong universals

The computational models reviewed briefly in the previous section lend credence to the notion that  
language is an adaptive system in its own right. Features of the bottleneck on linguistic transmis-
sion end up influencing the structure of language as it adapts through a process of cultural evolu-
tion to the challenge of being repeatedly learned by generations of agents.

It is worth reviewing at this point the relevance of linguistic adaptation to the nativist argument 
outlined in section 2. We highlighted the importance of tackling the problem of linkage when con-
sidering nativist explanations. We proposed that cultural evolution is the mechanism that links 
properties of an individual’s language learning machinery with universal features of linguistic 
structure. If the result of cultural evolution is a straightforward expression of innate biases in cross-
linguistic distribution (i.e. if Universal Grammar gets expressed directly as language universals), 
then there is no particular problem with the orthodox evolutionary view. However, another possi-
bility is that the contribution of cultural evolution is more significant – that it distorts or transforms 
the innate biases in such a way that their explanatory significance is reduced.

It certainly seems likely that the latter is true given the results of the computational models. For 
example, it is clear that features such as the amount of training data and the frequency of meanings 
have significant (and even determining) influence on fundamental features of the structure of the 
languages that emerge. That said, there are problems with the simulation models as they stand. 

Most crucially, it is very difficult to say for any given computational model exactly what the con-
tribution of innate biases actually is, or even what those biases are in the model. The fact that simi-
lar results are achieved with hugely different architectures suggest that whatever prior biases the 
models have (and they surely have some since bias-free learning is impossible) their details might 
not have a strong bearing on the outcome. It would nevertheless be nice if we could know exactly 
what the relationship between innateness and universals is in general and it is hard to see how this 
kind of simulation model is going to be able to do that.

To tackle this question, we can use a general model of learning which makes prior bias explicit 
and embed this in a mathematical idealisation of the iterated learning model (Kirby, Dowman & 
Griffiths, 2007, building on Griffiths & Kalish, 2005). This model treats learning as a process of se-
lecting the best hypothesis (i.e. grammar) given a set of data (i.e. utterances) and a prior bias to-
wards some hypotheses over others (i.e. a model of innateness). Bayes’ law provides us with a neat 
mathematical characterisation of how these interact. We can use it to calculate the probability of a 
hypothesis given some data (which is what a learner would ideally like to know) from the prob-
ability of the data given that hypothesis (which can be estimated if we know how utterances are 
produced) and the prior probability of that hypothesis independent of any data seen (which is the 
innate contribution of the learner’s machinery):

p(h|d) ! p(d|h) p(h)

where h is the hypothesis under question and d is the set of data heard by the learner.
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If we assume that learners pick the best hypothesis they can – the one that maximises p(h|d) – 
then we can in principle construct a complete view of the dynamics of iterated learning for any 
model of hypothesis space, innate contribution and production model. We simply calculate for any 
pair of hypotheses (i.e. languages), hi and hj, the probability that a speaker with hypothesis hi will 
produce data that a learner will infer has actually been produced by hj.

This set of probabilities defines a transition matrix over languages (c.f. the Q-matrix of Nowak et 
al, 2002) showing how languages will change over time as they are repeatedly used and acquired. 
It turns out that there are straightforward mathematical techniques for transforming such a matrix 
into a probability distribution over languages corresponding to the predicted cross-linguistic dis-
tribution as an outcome of iterated learning.8

What this set of mathematical tools gives us is a way of plugging-in different assumptions about 
innateness and seeing exactly how they result in language universals. Kirby, Dowman & Griffiths 
(2007) use this to test whether the strength of innate biases is reflected in the resulting language 
universals. For example, are strong innate constraints required to explain big asymmetries in the 
distribution of language types? Equally, can the nature of innate biases be inferred straightfor-
wardly from observed language universals?

Firstly, the mathematical results back-up the computational models in showing that languages 
adapt to the nature of the transmission bottleneck. Frequency of meanings and the number of ex-
amples learners are exposed to fundamentally shape the language universals that emerge. This in 
itself acts to obscure the influence of the prior bias (see, for example, figure 5 which confirms that 
frequent meaning are far more likely to be irregular despite a prior bias with only a slight and 
equal preference for regularity across the board).

A more striking result of this model, however, is that for a wide range of values, the actual 
strength of the prior bias makes absolutely no difference to the universal distribution that emerges. 
Although the nature of the prior bias is clearly important, the degree to which any innate prefer-
ences are reflected in the languages that emerge is dependent on such things as the number of ex-
amples seen rather than the strength of those innate preferences themselves.  

13 Simon Kirby, Kenny Smith & Hannah Cornish

8 This distribution is called the stationary distribution and is the limiting distribution of the process of linguis-
tic transmission (given some plausible assumptions about the nature of the transition matrix). The distribu-
tion is stationary in the sense that the probabilities of any particular language being found do not change, but 
the particular languages in a population at any point in time may. It can be thought of informally as the time 
average of languages after the dynamics of iterated learning have settled down. The stationary distribution 
gives us a way of thinking about the differences between the study of language change and the study of (cul-
tural) language evolution mentioned in section 3. The former looks at how languages move within the sta-
tionary distribution. The latter looks at how the stationary distribution itself is formed.



Figure 5: The effect of cultural transmission on an innate bias. The graph shows the probability of a 
meanings in an abstract model of a language being irregular across meanings with decreasing fre-

quency. The top line shows the expectation of irregularity encoded in the learners’ prior learning bias. 
The lower line shows the actual probability of irregularity that emerges through cultural evolution. 

(See, Kirby, Dowman & Griffiths, 2007, for more details.)

6. An experimental model: cumulative adaptation without intention

As we have seen, the results from a wide range of formal models lend credence to the principle of 
linguistic adaptation. Language appears to spontaneously adapt to pressures affecting its own sur-
vival through cultural transmission. Of course, there has been some scepticism of the validity of 
modelling results applied to the evolution of language. For example, Bickerton (2007) complains: 

“Powerful and potentially interesting though this approach is, its failure to incorporate 
more realistic conditions (perhaps because these would be more difficult to simulate) 
sharply reduces any contribution it might make towards unravelling language evolu-
tion. So far, it is a classic case of looking for your car-keys where the street-lamps are.” 
(Bickerton, 2007:522)

A pressing question is therefore, can this kind of cultural adaptation be observed in real human 
subjects rather than simulated agents?

Previous experimental work has looked at the emergence of novel systems of communication in 
groups of experimental subjects. For example, in experiments reminiscent of the board game Pic-
tionary (Healey et al, 2002; Fay et al, 2004) show how subjects forced to communicate graphically 
(and disallowed from writing) can converge on a way of communicating meanings using graphical 
signals. A particularly fascinating result from this work is an observed transition from the use of 
icons to communicate in initial stages to a more symbolic mode of communication once shared 
conventions have been set up. In another experiment, Galantucci (2005) demonstrated that pairs of 
subjects could converge on a shared symbol system when trying to solve a cooperative computer 

Obtaining general results for the consequences of increasing r is
complicated, but if we place some constraints on the structure of
languages we can still determine the stationary distribution
analytically. Here, we constrain our languages such that P(d!h)
is either constant or zero across all hypotheses h for all data d.
This is not an overly restrictive constraint; for example, it is
satisfied by the set of deterministic languages, with a unique
signal for each meaning and an arbitrary distribution over
meanings. With a set of languages that satisfies this constraint,
the probability that a particular hypothesis h will be produced by
iterated learning is proportional to P(h)r (see Methods for proof).
The implications of this are clear: languages will be systemati-
cally overrepresented with respect to their prior probabilities for
values of r ! 1. That is, weak biases will produce strong universals
if learners choose hypotheses in a fashion that disproportionately
favors hypotheses with higher posterior probabilities.

Conclusion
Our analyses demonstrate that, by mediating between innate bias
and resulting behavior, culture may profoundly influence the
evolutionary process. We have shown that the strength of bias can
be completely obscured by iterated learning. Genes may code for
the strength of a learning bias, but fitness (and hence selection of
those genes) is determined by the extended phenotype: in this case,
the properties of languages that emerge in populations. Genes
controlling strength of bias could therefore be shielded from
selection, so culture may introduce neutrality to the fitness land-
scape of learners. This has potentially far reaching consequences.
For example, if strong learning biases must be maintained against
mutation pressure (28), the introduction of cultural transmission
may lead to a weakening of these innate biases.

The implications of our results are not restricted to human
language. They have relevance to any behavior that is passed
between generations through learning. For example, some bird
species produce songs that exhibit particular structural universals,
but they have nevertheless been shown to be capable of learning
artificially constructed songs that violate these universal constraints
(29). This is exactly the sort of result we would predict if a weak

learning bias is being amplified by cultural transmission through
iterated learning.

Language is therefore the result of nontrivial interactions
between three complex adaptive systems: learning, culture, and
evolution. As such, it is an extremely unusual natural phenom-
enon. Taking the role of culture into account provides alterna-
tive explanations for phenomena that might otherwise require an
explanation in terms of innate biases or biological evolution.
Ultimately, if we are to understand why language has the
universal structural properties that it does, we need to consider
how learning impacts on cultural transmission, and how this
affects the evolutionary trajectory of learners.

Methods
Meaning-Class Mapping Model. In this model, we assume that a
language consists of a mapping from a set of n meanings to a set
of k classes. The data observed (and produced) by each learner
consist of m pairs of meanings and classes. The probability of the
set of meaning-class pairs d being produced given that a learner
speaks the language corresponding to h is given by

PP"d!h# ! "
$xy% ! d

P"y!x, h#P"x#, [3]

where x is a meaning and y is a class that is produced in response
to that meaning. This equation assumes that the class produced
in response to each meaning is independent of the other
meanings for which that learner has produced classes. In the
initial study (Fig. 3), P(x) is equal for each x. Noise in the
linguistic transmission process is modeled by incorporating a
parameter " that corresponds to the probability that a different
class to the correct one will be chosen for each production. The
probability of producing a particular class in response to a given
meaning if a learner speaks language h is therefore

P"y!x, h# ! #1 # " if y is the class corresponding to x in h
"

k # 1
otherwise. [4]

The prior probability assigned to each language, h, is

P"h# !
&"k$#

&"$#k&"n % k$# "
j'1

k

&"nk % $#, [5]

where nj is the number of meanings expressed using class j. &(x)
is the generalized factorial function, with &(x) ' (x-1)! when x is
an integer. $ is a parameter that controls the strength of the
prior, with low values of $ creating a strong prior bias in favor
of regularity, and high values creating a relatively flat prior, in
which the probability assigned to the most regular languages is
only slightly greater than that assigned to the most irregular. This
prior is a special case of the Dirichlet-multinomial distribution
(30). Its use means that the Bayesian inference mechanism can
be seen as a form of minimum description length (31). This is
because the probability assigned to each language corresponds
to the amount of information needed to encode it in a minimally
redundant form if information theory (32) is used to relate
probability to entropy. In the cases considered in this paper,
there was a language with each possible mapping of meanings to
classes, given the number of meanings and classes available.

Proof of Weak Biases Producing Strong Universals. We now allow h
and d to correspond to any form of language, not just meaning-
class mappings, so long as the Markov chain on h is ergodic. By
definition, the stationary distribution & of a Markov chain
satisfies the expression
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Fig. 4. The emergence of an adaptive irregularity/frequency interaction.
Cultural transmission results in languages where the probability of a meaning
being irregular (i.e., not being assigned the majority class) is correlated with
its frequency; this is despite the fact that learners in this model have a prior
expectation that all meanings are equally likely to be irregular. This result
mirrors what is found in real languages and has the hallmarks of an adapta-
tion. This graph shows the probability of each meaning not being in a majority
class, and the frequency of each meaning is inversely proportional to its rank.
It was derived through simulation over a million iterations because the more
complex languages used in this simulation made calculation of the whole
transition matrix infeasible.

5244 ! www.pnas.org$cgi$doi$10.1073$pnas.0608222104 Kirby et al.
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game with only a graphical means of communication. Selten & Warglien (2007) demonstrate a 
similar process in a non-graphical paradigm.

These experiments focus on the role of interactive feedback in the creation of shared systems of 
communication. Participants attempt to construct a signalling system and modify it in response to 
feedback in the form of behaviour or further signalling by the other participant in the exchange. 
The systems that emerge are a product of a combination of deliberate design and interactive nego-
ciation between interlocutors.

But how good is this as a model of the emergence of linguistic structure?  While it cannot be de-
nied that humans are intentional agents who have the potential to design and construct communi-
cation systems – indeed these experiments demonstrate this admirably – it remains arguable that 
the universal structural properties of human languages are the result of such intentional design.

Keller (1994), for example, argues at length that much of human language is best seen as a result 
of an “invisible hand” process, echoing Smith’s (1776) use of the term as a metaphor of the way 
individuals influence market economics. Keller’s point is that language change, although being the 
result of actions of intentional agents, is not the goal of those agents’ intentions. To put it baldly, 
the shift from OV to VO order in the history of English arose from the actions of speakers of the 
language and may ultimately have a functional motivation (Hawkins, 1994), but it was surely not 
the result of individuals deciding to modify the language in such a way to improve its parsing effi-
ciency.

This kind of argument can be applied more broadly to cultural evolution. Many products of hu-
man behaviour are the result of intentional design, but some are non-intended consequences of 
many individuals’ actions. It is possible that these non-intended consequences may nevertheless be 
adaptive – they may show the appearance of design without actually having a designer. The paral-
lels here with biological evolution, where apparent design results not from an intentional Creator, 
but from the non-local consequence of local selection, has led some to propose studying cultural 
evolution in similar terms (e.g., Aunger, 2001).

Despite huge interest in these theories of cultural evolution, and their relevance to language evo-
lution, there has been as far as we know no previous experimental validation that culturally 
transmitted behaviour can actually adapt without intentional design. Cornish (2006) and Kirby, 
Cornish & Smith (2008) set out to rectify this by setting up an analog of the computational models 
of iterated learning using human subjects rather than simulated agents.

These experiments combine two experimental paradigms: diffusion chain studies and artificial 
language learning. The former have previously been used among other things (e.g., Mesoudi et al 
2006; Bartlett, 1932; Kalish et al, 2007) to look at whether chimpanzees are able to culturally trans-
mit information about how to open a puzzle box (Horner at al, 2006). A chain of experimental sub-
jects is set up in which each one observes the performance of the previous subject in the experi-
ment and then in turn produces behaviour that the next subject is able to observe. In this way, the 
task that a subject faces is in some sense outwith the experimenters control (excepting the initial 
participant in the experiment) because it is ultimately determined by the previous participants’ be-
haviours. The (perhaps surprising) result is that cultural transmission in chimpanzee populations 
has high fidelity – if a diffusion chain of chimpanzees is initialized with box opening behaviour A 
then that behaviour will be faithfully transmitted across a number of generations, without a switch 
to the equally functional opening behaviour B.

Artificial language learning experiments, on the other hand, examine the performance of indi-
viduals at learning a particular hand-constructed artificial language (e.g., Gomez & Gerken, 2000) 
with a goal of determining human language learning biases. We can think of this paradigm as mir-
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roring the behaviour of one individual agent in the iterated learning simulations, whereas the dif-
fusion chain experiments are akin to the population model where behaviours are repeatedly 
transmitted from “adults” to “children”.

The experiment

Subjects in our experiment are treated as if they were participating in a standard artificial language 
learning task. They are told they are going to be exposed to an “alien” language that they must try 
and learn. The experiment starts with a random, unstructured, holistic language which is pre-
sented to the first subject. After training on this language, the subject is tested and their output re-
corded. The innovation is the embedding of this task within a diffusion chain: the output of the 
first experimental subject forms the language that the second subject in the experiment will be 
trained on, and so on. In this way, we can track how the initially random language changes as it is 
repeatedly learned and produced by “generations” of participants in the experiment. Crucially, 
subjects are not aware of the cultural nature of the experiment. They are simply asked to give us 
back as best they can the language that we have presented to them. In other words, there is no 
sense that participants in the experiment are trying to improve the language in any way, for exam-
ple to score well in some collaborative game.

The hypothesis being tested is that there will be cumulative cultural adaptation of the language 
without intentional design by participants. Accordingly, we expect two things to happen in ex-
periments such as this one: 

• the language should become easier to learn; 

• and the language should become structured. 

If this happens, then insofar as we can say that this was not the result of intentional design on the 
part of the participants in the experiment, the hypothesis will have been confirmed.

In order to make this kind of iterated learning experiment work, we need to have some way of 
eliciting language data from subjects. We cannot, for example, simply test subjects recall of strings 
in the input language through a forced-choice task. This is because we need to generate training 
data for the next participant. To get round this problem, we trained subjects on stimuli that were a 
combination of strings of written syllables and simple schematic pictures (corresponding to signals 
and meanings respectively). In the testing phase, subjects were asked to produce the correct string 
of syllables corresponding to each picture in turn, thus providing us with a new training set for the 
next generation.

Each picture/meaning in the experiment is a coloured shape moving in one of three ways 
(bouncing, spiralling or sliding). There are three possible shapes (square, circle or triangle) and 
three colours (red, blue or black), yielding 27 different meanings. The original language is con-
structed by randomly concatenating, without spaces, 2 to 4 CV syllables from a set of a possible 9. 
For example, in the original language, a red bouncing square might be labelled “kihemiwi”. Al-
though the initial language has these constraints, subjects are free to type any combination of char-
acters they wish in their output at test.

At each generation (i.e., for each participant in the experiment), the input language is divided 
randomly into a SEEN and and UNSEEN set. Participants are trained a number of times on the 
SEEN set by being presented with each picture and string in turn on a computer screen. They are 
then tested on the entire SEEN + UNSEEN set of 27 pictures in order that we can gather a complete 
language. This new language is then divided (randomly again) into SEEN and UNSEEN sets for 
the next participant (see Cornish, 2006, for more details).
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Results

The complete results and analysis of this experiment are given in Cornish (2006), but we give a 
brief summary here. In all cases our hypothesis of cumulative adaptation is confirmed.

Firstly, to see if learnability increases, we measured the difference in the strings produced by a 
subject at generation n with a subject at generation n-1. In the initial stages, the difference was ex-
tremely high. This is not at all surprising. After all, we are not only presenting subjects with a ran-
dom set of strings, but we are asking them to respond with strings for pictures that they have 
never previously seen. For these unseen examples and the initial random language at least it is im-
possible to get these right (except by an overwhelming fluke!). Remarkably, however, as the ex-
periment progressed, later generations found it increasingly easy to get strings correct, or near cor-
rect. In fact, in some cases after 7 or 8 generations had passed, subjects were getting every string 
correct even those for pictures they had never seen in the training data. In other words, the lan-
guage evolves culturally to become more learnable.

How does it achieve this feat?  Recall we predict that adaptation of the language should lead to 
structure evolving. This is indeed what happens, but the type of structure depends on how we di-
vide up the data each generation into the SEEN and UNSEEN sets.

In our first experiment, the language was divided evenly into SEEN and UNSEEN, with 14 and 
13 pictures in each respectively. The result was quite surprising given previous computational 
models, but makes a lot of sense in retrospect. The language adapts to be learnable primarily by 
reducing the number of distinct words. To put it another way, strings become ambiguous with re-
spect to the pictures. The initial random language has 27 distinct words in it (one for each picture), 
but at the end of the experiment (which ran for 10 generations) the language only has 5 words. 
This alone does not capture everything that is going on, however, otherwise subjects would still 
not be able to get all UNSEEN pictures 100% correct as they do for the last three generations in the 
experiment. To do this, there must be some structure in the mapping from meanings to signals.

A statistical analysis of the language at each stage confirms that this structure exists. Basically, 
words end up being used for sets of pictures that tend to share features in common. The final lan-
guage (which is stable for three generations) shows this most clearly:

• miniku is used for all bouncing circles

• tupin is used for all bouncing triangles

• tupim is used for all bouncing squares

• poi is used for anything that spirals

• tuge is used for anything that slides

What has happened is that word-picture pairs have been generalised in such a way that the lan-
guage can pass through the learning bottleneck. Even if subjects do not see half of the pictures, 
they can nevertheless be reliably named.

This is not the kind of result familiar from the computational models reported earlier – structure 
in the signals themselves does not emerge. What seems to be missing here is any pressure on the 
language to be expressive. Languages with fewer words are clearly more learnable, so adaptation to 
learnability inevitably reduces the expressive power of the language by introducing what is essen-
tially rampant polysemy and a reduction in the discriminative power of the language. Once the 
number of words is low enough no further adaptation is necessary since the language passes easily 
through the learning bottleneck. 
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For our second experiment, we made a minimal change to the procedure to try and reduce the 
amount of polysemy that participants (unwittingly) introduce. To do this, we moved any duplicate 
words from the SEEN set into the UNSEEN set before training each participant. So, if a particular 
subject had introduced polysemy by using the same word for more than one picture, only one of 
those word-picture pairs would be provided as training for the next subject.

The result of this small modification is dramatic. Although subjects find the task much harder 
and perfect transmission is not achieved, the learnability of the language nevertheless increases. 
However, the type of structure that emerges to make the language learnable is quite different. The 
strings in the language start to gain internal structure and in some cases clear compositionality 
emerges with aspects of the meaning being expressed as regular prefixes or suffixes. So, for exam-
ple, in one of the languages that emerges, a black bouncing circle is named “winekuki” with the 
prefix “wi-” being largely consistently used to refer to black things, and the suffix “-kuki” being 
across the board to refer to anything bouncing. In this particular language, the shape is encoded by 
a complex set of semi-regularities governing the middle syllable and changes to the prefix (see 
Cornish, 2006, for the complete set of languages in the experiments).

It is important to reiterate that participants in this experiment are not deliberately constructing a 
structured system for encoding meanings (as they are in an experiment such as Selten & Warglien, 
2007). They are attempting as best they can to give us back the language that they were exposed to, 
idiosyncrasies and all. In fact, some subjects reported that they were not even aware that they were 
being exposed during the test phase to pictures that they had not seen in training. In addition, the 
adaptation that occurs is not instantaneous, but gradual and cumulative. The increase in the 
learnability of the language tends to proceed by small amounts each generation.

This is truly an invisible hand process. The linguistic structure that emerges, which enables the 
subjects to accurately report the labels for pictures they have never seen, appears to be designed 
for that purpose, and yet there is no intentional designer. Just as in the computational and mathe-
matical models, the mere fact that language must be passed through a transmission bottleneck 
causes it to adapt.

7. Conclusions

In this chapter, we have put forward the view that to explain the universal structural properties of 
language we need to look at language as a complex adaptive system – one in which biologically 
evolved innate biases on individual learning can be seen as challenges to which a culturally evolv-
ing language must adapt. Computational, mathematical and experimental models demonstrate 
that the process of linguistic evolution on a cultural time-scale is one that has significant explana-
tory power. 

This growing body of work points to a number of conclusions of relevance to linguistics and the 
study of cultural evolution more broadly:

• biological evolution by natural selection is not the only explanation for adaptive structure in 
language;

• statistically significant cross-linguistic universals do not necessarily imply strong innate con-
straints;

• the burden of explaining the constraints on linguistic variation is lifted from a putative bio-
logically evolved innate Universal Grammar;

• the structure of the human language faculty cannot be straightforwardly inferred from the ob-
served structure of human language;

18 Simon Kirby, Kenny Smith & Hannah Cornish



• the appearance of design in human behaviour, including language, does not necessarily re-
quire a designer if it is transmitted culturally.

In addition, we hope that we have made a case for attempting to model cultural evolution of lan-
guage either in simulation or in an experimental setting. For too long explanatory formal frame-
works for language structure have focussed on the individual and assumed that population effects 
are unimportant. It is now possible to move beyond these kinds of idealisations and explicitly ex-
amine what happens when populations of individuals interact. Work in this area is still in its in-
fancy, but we believe it has the potential to improve our fundamental understanding of why lan-
guage is structured the way it is.
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Introduction

The position paper in this issue (Beckner et al.) sets out a powerful motivating
picture of language as a complex adaptive system. It presents us with a way
of thinking not only about the dynamics of language as we know it now but
also the emergence of language in the first place. More specifically, in this
article, we suggest that the very fact that language persists through multiple
repeated instances of usage can explain the origins of key structural properties
that are universally present in language. Because of this, taking a complex
adaptive systems perspective on language lifts the burden of explanation for
these properties from a putative richly structured domain-specific substrate,
of the sort assumed by much of generative linguistics (e.g., Chomsky, 1965).
Ultimately, this alters our view of what biological evolution must provide in
order to get language off the ground.

Much of the work over the past 20 years or so in modeling the evolution
of language has taken this complex adaptive systems perspective (see, e.g.,
Brighton, Smith, & Kirby, 2005; Kirby, 2002b; Steels, 2003, for review). One
particular strand of work has focused on the adaptation of language through
a repeated cycle of learning and use within and across generations, where
adaptation is taken to mean a process of optimization or fitting of the structure
of language to the mechanisms of transmission (Kirby, 1999).1

A particular subset of models have looked extensively at the impact of re-
peated learning on the process of emergence. They investigate how a form of
cultural evolution known as iterated learning affects the structure of language
(e.g., Batali, 1998; Brighton, 2002; Griffiths & Kalish, 2007; Hurford, 2000;
Kirby, 1999; Kirby, Dowman, & Griffiths, 2007; Kirby & Hurford, 2002; A.
Smith, 2005; K. Smith, 2002; Vogt, 2005; Zuidema, 2003). In these models,
each agent (i.e., simulated individual) must acquire a set of (initially random)
mappings between meanings and signals by observing the behavior of agents
in the previous generation. Once this mapping is acquired, the learner becomes
a teacher, and the process repeats. Crucially there is a bottleneck in the trans-
mission process that puts pressure on the system to be generalizable (Deacon,
1997). This bottleneck models the data-sparsity present in real language ac-
quisition and is typically enforced in the simulations by the learner only being
exposed to signals for a subset of the total meanings during training.

Overall, two consistent conclusions have been drawn from this computa-
tional research: Over time, iterated learning ensures languages evolve to (a)
become easier to learn and (b) become more structured. These two facts are
not unrelated: One of the ways in which a language can evolve to become more
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learnable is by becoming structured. This is because there are only two ways
to survive the transmission bottleneck: be heard (and remembered) by the next
generation or be easily inferable from what is heard. This latter solution can
only occur when there is some kind of regularity to be exploited in the system.
The exact form this regularity takes can vary, which is something we explore
later.

The regularity that emerges gradually in the computational simulations jus-
tifies our use of the term “adaptive” in this case. This is because the kinds of
linguistic structures that evolve show the hallmarks of apparent design. For
example, in some models (e.g., Batali, 2002; Kirby, 2002a), recursive compo-
sitional syntax evolves that clearly enables the simulated agents to successfully
convey meanings in an open-ended way. This kind of adaptive structure in
language might lead researchers to conclude that it must reflect innate con-
straints that are the result of biological evolution by natural selection (e.g.,
Pinker & Bloom, 1990). However, this conclusion is not justified. In most of
these models, there is no biological evolution. Indeed, individuals are essen-
tially clones throughout. Rather, the adaptation arises purely from the iterated
learning process itself. Language transmission is a complex adaptive system.

Recently, we developed a method for studying this process of adaptive evo-
lution in the laboratory, extending experimental studies of iterated learning in
the nonlinguistic domain by Griffiths and Kalish (2007) and Kalish, Griffiths,
and Lewandowsky (2007). By combining two experimental techniques—
artificial language learning (e.g., Esper, 1925, 1966; Fitch & Hauser, 2004;
Gómez & Gerkin, 2000; Saffran, Aslin, & Newport, 1996) and diffusion chains
(e.g., Bangerter, 2000; Bartlett, 1932; Horner, Whiten, Flynn, & de Waal, 2006;
Mesoudi, Whiten, & Dunbar, 2006; Whiten, Horner, & de Waal, 2005)—we
were able to track the evolution of a miniature language over “generations” of
experimental participants from an initially random, unstructured state, to one
showing clear evidence of adaptive structure (Kirby, Cornish, & Smith, 2008).2

In this article, we provide a new analysis of the results of this study to examine
in more detail the way structure emerges as a result of competition between
linguistic variants.

Human Iterated Learning: An Overview

Before we move onto the details of the studies, it is necessary to familiarize
ourselves with the general methodology and key parameters of the experiments
that follow. A participant is trained on an “alien” language consisting of a set
of meanings (usually presented as pictures) paired with signals (a string of
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letters, or possibly sounds) drawn from a finite set. After being trained on some
proportion of these meanings, the participant is then presented with a series of
meanings without signals and asked to provide the correct description in the
alien language. These meanings and signals are recorded and become the new
set of training pairs for the next participant, who forms the next “generation”
of the chain. This procedure is repeated until the chain is complete (i.e., until
the desired number of generations has been reached).

Participants involved in the study are only asked to learn the language as best
they can: They are not told anything about the iterated nature of the study or that
their responses will be given to future participants. During each training round,
participants are shown a picture drawn at random from the set of meanings,
and below it, a string of letters that they are told represents how the alien would
describe that picture in its own language. Training occurs via a computer, and
each exposure is timed to ensure no training item (meaning-signal pair) is seen
for longer than any other and continues until all training items have been seen.
During the final test, the participant is shown each picture in the language
once, one after another, and asked to type in the missing descriptions. These
responses are then randomly sampled from to generate the new training items
for the next generation.

Clearly, this experimental setup represents a highly simplified idealization
of the real process of linguistic transmission. In particular, the population model
is the simplest that we could construct (in line with the other diffusion chain
experiments mentioned previously). Three parameters characterize possible
population models: direction of transmission (vertical or horizontal), the size
of the population, and who learns from whom (network structure). For the rest
of this article we focus on just one scenario: vertical transmission, involving
10 people, with each person learning from just 1 other person. However, it
is important to remember that there are many other scenarios that could be
explored within this framework.

Learnability, Expressivity, and Adaptation

As stated in the introduction, the main finding to have emerged over the past
decade or so of research into this area is that languages themselves adapt to
be better learnable and transmissible by us over time (see, e.g., Christiansen &
Chater, 2008, for a review). However, it should be recognized that this pressure
toward greater learnability must be tempered somewhat in order for structure
to emerge. The reason for this is simple: The most easily learnable language
might be one in which there is one word for everything (or possibly, no words
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at all). It is only when we also have a pressure for expressivity, for meanings
to actually be distinguished from one another, that we are likely to see the
emergence of structure.

The first application of this new experimental methodology set about inves-
tigating this tension between expressivity and learnability (Kirby et al., 2008).
In this study, the meaning space consisted of 27 pictures showing a scene
that varied along three features and three values: color of object (blue, black,
red), shape of object (circle, triangle, square), and a dotted line indicating the
movement of object (bouncing, spiralling, moving horizontally). Two different
experimental conditions were explored, with four chains of 10 people in each.
In one condition there was a “hidden” pressure for each of the meanings in
the meaning space to be expressed uniquely: Participants’ input was filtered in
such a way as to ensure they never perceived different meanings with the same
signal. In the other, there was no such pressure. Participants could not be aware
of the experimental condition in which they were included.

The chains in each condition both began with random initial languages,
and a transmission bottleneck was imposed by exposing each generation with
just half (14) of the meaning-signal pairs during training (the particular mean-
ings that they would be exposed to were chosen randomly each generation).
Example (1) shows a sample of the initial randomly generated language in one
of the chains to illustrate what is meant by the claim that they are unstructured
with respect to their meanings.3 In spite of the fact that these meanings in
the world are similar (triangles of every color that either move horizontally or
in a spiral), the signals used to describe them are all idiosyncratic, with no
consistently repeating subparts.

(1) a. kapihu b. luki
“black triangle horizontal” “black triangle spiral”

c. humo d. namola
“blue triangle horizontal” “blue triangle spiral”

e. lahupiki f. lumoka
“red triangle horizontal” “red triangle spiral”

After training, participants were tested on all 27 meanings, and it is from
this output set that the new training set is sampled for the participant in the next
generation.

The main findings can be summarized as follows (see Kirby et al., 2008, for
more details). First, by looking at the learning errors made between adjacent
generations, it was shown that the languages in both conditions were being
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acquired significantly more faithfully toward the end of the chains than they
were at the beginning. Second, this increase in learnability over time occurred
as a result of the languages becoming more structured over time.

What is interesting about this last fact, however, is that the way in which
the languages were structured differed markedly between the two experimental
conditions. In the first condition, for which there was no filtering of the partic-
ipants’ input, systems emerged that were characterized by underspecification.
This involved a reduction in the total number of distinct signals, introducing
ambiguity with respect to the meanings. However, this ambiguity was not com-
plete, as it did not affect all meaning dimensions. In one chain for instance, a
system emerged [of which a sample is reproduced as Example (2)] whereby
everything that moved horizontally was called tuge, everything that moved in a
spiral was named poi, and there was a three-way distinction of bouncing items
dependent on shape: for bouncing squares, tupim for bouncing triangles, tupin,
and for bouncing circles, miniku. This system proved to be highly adaptive
in the sense that, once it emerged, it was stable and faithfully acquired by
subsequent generations without error.4

(2) a. tuge b. poi
“black triangle horizontal” “black triangle spiral”

c. tuge d. poi
“blue triangle horizontal” “blue triangle spiral”

e. tuge f. poi
“red triangle horizontal” “red triangle spiral”

As Kirby et al. (2008) pointed out, underspecification is not an unusual fea-
ture of human languages, but taken to extremes, it would lead to an inexpressive
and communicatively disfunctional language (albeit one that would be easy to
learn). The second experimental condition, whereby items were removed from
a participant’s input if they should lead to the same string being assigned to
more than one meaning, was designed to introduce a hidden pressure against
underspecification. With this modification in place, the systems that emerged
appear much closer to what we might expect a communicatively useful system
to look like. These systems were characterized by compositionality, whereby
the meaning of a given string could be inferred by the meaning of subparts of
that string (morphemes) and the way they are put together. Example (3) again
shows a sample of this.5

(3) a. nekeki b. nekipilu
“black triangle horizontal” “black triangle spiral”
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c. lakeki d. lakipilu
“blue triangle horizontal” “blue triangle spiral”

e. raheki f. rahopilu
“red triangle horizontal” “red triangle spiral”

These results are very exciting, as they experimentally verify the main findings
to have emerged from computational models of iterated learning for the first
time: that languages adapt purely by virtue of transmission through iterated
learning. Moreover, the kind of adaptation is determined, in part, by constraints
placed on the transmission of the languages about which participants could
not be aware. However, although it has been shown that the languages in these
experiments do adapt, it has not yet been established how they adapt. It is to
this question that we now turn.

The Evolution of Signals During Iterated Learning
In this subsection we will focus on the utterances, leaving aside the meanings
for the moment, and construct phylogenies demonstrating the evolution of
linguistic forms over iterations. We used one of the languages [part of which
was reproduced in Example (2)], taken from Kirby et al. (2008) to construct the
coalescent tree shown in Figure 1. These trees are a standard way to represent
phylogenetic descent in evolutionary biology (Barton, 2007; Hein, Schierup, &
Wiuf, 2005), although here we have amended them to also include frequency
information in brackets. Bold lines show perfect replication of an utterance,
whereas other lines show possible relationships of descent between utterances
across generations.

As we can see in Figure 1, the number of different utterances decreases
over time as we start to observe perfect replication of select utterances, along
with a general tendency for utterances to become shorter. In the early history of
this language, the process of transmission is principally one of generating new
recombinations of signal substrings. We observe only one instance of replication
of a whole utterance but many replications of parts of the utterances, such as
unigrams or bigrams, and even larger n-grams. For example, the introduction
of the form miniku in generation 2 could be the result of a blend between miniki
and miweniku.6 There is still much variation in the language at this point. In the
final generations, however, the frequencies of the few remaining units stabilize
around multiples of 3, suggesting adaptation to a meaning space containing
three dimensions.

In the case of the language in Figure 1, given the nondecomposable utter-
ances that survived into the final stable system, it was appropriate to analyze
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Figure 1 Coalescent tree showing lineages of signals for all 27 items over generations
of one of the languages obtained by Kirby et al. (2008) exhibiting systematic underspec-
ification. Columns correspond to generations; horizontal bold lines indicate the perfect
replication of the whole signal; all other lines indicate some of the possible relationships
of descent between signals that share some features. Numbers shown in brackets indi-
cate the frequency with which variants were produced at each generation. The number
of variant types decreases over time, although the number of tokens remains fixed at
27 throughout. Among these surviving variants there are clear relationships of descent,
sometimes with modification. The frequency information is suggestive of the fact that
signal variants may be adapting to express a meaning space composed of multiples
of 3.

replication at the level of the whole utterance. However, in a compositional
system, the meaning of a complex utterance is a function of the meanings of
the elements of the utterance and the way they are arranged. The tree in Figure 1
illustrates adaptation of the whole signals to the structure of the meaning space;
in a compositional language, we expect the same phenomena to occur but this
time at the level of signal elements. We will now quantify compositionality
using a different language (part of which is shown in Example (3)] from Kirby
et al. (2008).

First, we need to segment the signals into element units. To do this, we first
examined the language of the final participant in the chain to find the most
parsimonious segmentation of the strings into elements that corresponded to
aspects of the meanings (e.g., “the signal endings reliably encode motion”
or “signal-initial ‘la’ consistently encodes colour blue”). This resulted in each
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Figure 2 Coalescent tree showing lineages of signal ending variants for all 27 items
over 10 generations of one of the languages obtained by Kirby et al. (2008), referred
to in (3). Numbers shown in brackets indicate the frequency with which variants were
produced at each generation. The number of variant types decreases over time, although
the number of tokens remains fixed at 27 throughout. Among these surviving variants
there are clear relationships of descent, sometimes with modification. The frequency
information is suggestive of the fact that signal variants may be adapting to express a
meaning space consisting of three meaning elements (see generations 4, 9, and 10).

string being divided into three substrings, and this segmentation pattern was car-
ried back to all previous generations in order to allow for a consistent analysis.
Figure 2 shows the coalescent tree for the word-final signal element (although
similar trees can be constructed for both initial and middle positions also).

As earlier, we observe a marked reduction in the number of variants over
time, as just a few become selected to be reused more often. Furthermore, we
can see that the variants that appear at each generation are not random; we
can trace the genealogy of the surviving variants back in time. Even over this
minute timescale, many of the changes observed appear to follow paths that
are well attested in cases of natural language change, such as single segment
replacements (nepi → napi; pilu → pilo), reductions (hona → na, neki → ki,
pilu → plu), metathesis (neki → nike), and blends (humo & huna → homa &
hona; na & ki → neki).

It is significant to notice that at generation 4 we have three variants (na,
neki, pilu), each with a frequency of 9 and that for the final two generations, this
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pattern repeats (now for variants ki, plo, pilu) broken only by a single instance
of na. This, again, suggests that these lineages are adapting to a three-element
meaning space. Obviously, we know that this is indeed the case; the interesting
thing is that the signals alone suggest it. In the next subsection, we show how we
can precisely quantify regularities in the mappings between signal and meaning
elements in order to objectively confirm this.

Quantifying the Emergence of Compositionality
We now have an analysis of all the languages in terms of the following: signal
segments—in this case, the word beginning, middle, or end; signal segment
variants—actual tokens residing in a segment position, such as pilu or ki.
Similarly, we can define the following: meaning elements—aspects of meaning,
such as motion, shape, and color; meaning element variants—actual instances
of a meaning element, for instance, “blue,” or “circle,” or “bounce.”

Kirby et al. (2008) quantified the emergence of structure using a pair-
wise distance correlation (Shillcock, Kirby, McDonald, & Brew, 2001). This
measures the extent to which similar meanings are expressed using similar
forms—or more precisely, whether there is a correlation between the structure
of the meaning and signal spaces. Although this is valuable in showing that
structure emerges, it does not allow us to track the evolution of the compo-
sitional structure of the languages directly: As a measurement, the pairwise
distance correlation is very general and cannot distinguish between composi-
tionality and other kinds of structures (such as underspecification). Here, we
apply a new method of analysis to one of the chains7 reported in Kirby et al.
(2008) to tackle this problem. We use RegMap (Tamariz & Smith, 2008), an
information-theoretic metric that combines the conditional entropy of mean-
ings given signals and of signals given meanings and normalizes the result to
make it comparable across systems of different sizes. Informally, what RegMap
(short for regularity of the mappings) does is return the degree of confidence
that a signal element consistently predicts a meaning element (for instance,
the degree to which we can be sure that the beginning of the signal encodes
color).

More formally, H(X | Y ), the conditional entropy, is the Shannon entropy
(Shannon, 1948) but replacing p(x) with p(x | y). The RegMap for a meaning
element (M) and a signal segment (S) is given by

RegMap =

√(
1 − H (S | M)

log(ns)

)
×

(
1 − H (M | S)

log(nm)

)
. (1)
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H(S | M) is the conditional entropy of the signal segment given the meaning
feature, or the uncertainty about the meaning when we know the segment. This
relates to comprehension. For example, for shape and first signal segment,
H(S | M) quantifies how uncertain we are on average about what shape an
object is if we hear the first segment of its corresponding signal. H(M | S) is
the conditional entropy of the meaning feature given the signal segment, or
the uncertainty about the segment when we know the meaning. This relates
to production. Still, in the case of shape and first signal segment, H(M | S)
quantifies how uncertain we are, on average, about what first segment to produce
if we know the shape of an object. The logs of nm and ns normalize the values
between 0 and 1; nm is the number of different meaning values (e.g., triangle,
circle, square for shape); ns is the number of different segment variants in the
relevant segment position. Subtracting the conditional entropies from Equation
1 returns levels of confidence instead of uncertainty.

Figure 3 shows the RegMap values for all combinations of signal and mean-
ing elements both with and without a bottleneck for the 10 generations. The
“input” data shown in Figure 3 (upper) reflects the extent to which signals pre-
dict meanings in the subset of the language (taken from the previous generation)
that was actually transmitted to the current generation, after the bottleneck was
applied. The “output” data shown in Figure 3 (lower) is obtained from the com-
plete languages that participants actually produced at a given generation, before
the bottleneck was applied. The significance of the obtained RegMaps was es-
tablished with a Monte Carlo analysis involving 10,000 randomizations of the
correspondences between meanings and signals and are shown as boxplots.

Focusing first on the bottom graphs of Figure 3, obtained from the partic-
ipants’ output languages, we see that, starting from values indistinguishable
from random at generation 1, RegMap becomes massively increased to highly
statistically significant levels; specifically, by the third generation, motion is
consistently encoded by the final signal segment; by the fourth generation,
color is encoded by the initial segment, and by the ninth generation, shape is
encoded by the middle segment (all p < .001).

Second, a comparison of the input (upper) and output (lower) results in
Figure 3 reveals the effect of the bottleneck. The RegMap values are, in the
majority of cases, amplified by the bottleneck (the absolute value of RegMap
increases). Moreover, the lower the input RegMap, the more likely it is to be
amplified by the bottleneck. How is this happening? The answer is potentially
counterintuitive; randomly occurring patterns are more likely to be perceived
the smaller the system is. At least in the early generations, a subset drawn from
a language is more likely to accidentally contain more regular patterns than the
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Figure 3 Regularity of the associations between signal and meaning elements, mea-
sured as RegMap, changes over time in the direction of maximizing compositionality,
whereby signal elements are consistently associated with distinct meaning elements.
The continuous colored lines represent RegMap values obtained with all nine segment-
meaning feature pairs in the 10 generations of a language family from the study by
Kirby et al. (2008), referred to in Example (3). The boxplots show the distributions of
values obtained with 10,000 randomized languages. The upper graphs show RegMap
values from the subset of language (taken from the previous generation) that was actu-
ally transmitted to the current generation, after the “bottleneck” was applied. The lower
graphs show RegMap values obtained from the complete languages that participants
actually produced at a given generation, before the bottleneck was applied.

entire language. Implicit in this, and by the same token, a given subset will also
tend to contain less counterevidence against such patterns. This explains why
we observe such a dramatic difference between the ranges shown in the boxplots
in the upper and lower graphs in Figure 3. The large range of RegMap values in
the input languages directly reflects the fact that participants are sensitive to this
reduced number of observations when they are inferring the mappings between
meanings and signals. Together, this accounts for the structure-generating effect
of the bottleneck on language: The input to each generation is only a fraction of
(and therefore tends to be more systematic than) the total output of the previous
generation.
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Third, the graphs show cases of competition between meanings all vying to
be expressed by the same signal element. For example, motion and shape are
both equally encoded in the final signal segment in the input to generation 3, but
generation 3 resolves this conflict by ignoring one of the associations (shape)
and amplifying the other (motion) to a significance level of p < .01. Conversely,
we also see cases of competition between signals vying to express the same
meaning: In the input of generation 5, color is equally encoded in the initial
and middle signal segments (similar absolute values and levels of significance);
in this case, the conflict is resolved by massively amplifying the association
with the initial segment to a significance level of p < .001 and reducing the
association with the middle one. These processes are adequately explained by
the standard evolutionary mechanisms of variation, replication, and selection
applied to the mappings between signals and meanings elements. Selection, in
this case, can be hypothesized to be guided by perceptual and attentional biases
such as higher salience of certain signal and meaning elements over others.
Unfortunately, a detailed discussion of these biases is outside the scope of the
present work.

Summary
Kirby et al. (2008) found that the languages that emerge through a repeated cycle
of learning and production in a laboratory setting show evidence of adaptation
to the bottleneck placed on their transmission. Making even minor changes
to the way in which language is culturally transmitted can produce radically
different types of structures. Given only a bottleneck on transmission preventing
a proportion of the language from being seen by the next generation, language
can adapt in such a way that ensures that it is stably transmitted to future
generations. However, this occurs at the expense of being able to uniquely refer
to every meaning. When they introduced the additional pressure of having to
use a unique signal for each meaning, the language once again adapted to cope
with these new transmission constraints, this time by becoming compositional.
Having a compositional system ensures that both signals and meanings survive
the bottleneck.

Because the participants could not know which condition they were in, it is
impossible that the resulting languages were intentionally designed as adaptive
solutions to the transmission bottleneck. Rather, the best explanation for the
result is that in these experiments, just as in the computational models, linguistic
adaptation is an inevitable consequence of the transmission of linguistic variants
under particular constraints on replication. The result is apparent design, but
without an intentional designer.
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Whereas Kirby et al. (2008) analyzed their results at the level of whole
signals and whole meanings, in this subsection we have developed new tech-
niques to analyze the same results in terms of the component parts of linguistic
signals. An analysis of how signal variants and their frequencies change over
time showed relationships of descent with modification among them. It also
suggested that signal variants are adapting to the structure of the meaning space.
This intuition was verified by the application of RegMap, a tool designed to
objectively measure compositionality. Using this method, we showed that indi-
vidual signal elements come to encode individual meaning elements, whereas
the whole system evolves to avoid ambiguity (i.e., more than one meaning
being encoded in the same signal element or vice versa). Moreover, we were
able to more precisely describe the role of the bottleneck in bringing about
compositionality: The smaller subsets sampled as inputs to the next generation
may locally contain more systematicity than the entire language. Iterating this
learning process using these smaller samples therefore provides a platform that
allows systematic patterns to be noticed, remembered, and replicated prefer-
entially, thereby allowing them to gradually accumulate in the language as a
whole.

It seems clear from all of this that, first, cultural transmission alone is
capable of explaining the emergence of languages that exhibit that appearance
of design and, second, experimental studies of the iterated learning of artificial
languages are a potentially useful methodological tool for those interested in
studying cultural evolution.

Conclusion

This article has extended previous work on iterated language learning exper-
iments by showing, using data obtained from an earlier study, exactly how
compositional structure emerges over time as a result of cultural transmission.
Using a recently developed analytical technique that calculates the regularity of
mapping between signal and meaning elements (Tamariz & Smith, 2008), we
were able to precisely quantify changes in the language’s ability to systemati-
cally encode such associations between meaning and signal components. From
this we were able to explain the amplification effect the bottleneck seems to
have on systematicity in language, arguing that the sampling of smaller subsets
of the language for training input to the next generation tends to make weaker
patterns that are not visible at the level of the entire language appear stronger
locally.
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One obvious criticism of the experimental work described here is that it
necessarily involves participants who already speak a language. As such, can
it tell us anything about the original evolution of language, as we are claim-
ing? The sceptical position might be that we are simply seeing the evolution
of structure that reflects the native language of the participants as opposed to
any adaptive logic of the iterated learning process itself. This criticism faces a
number of problems, however. Most importantly, the experimental results are
backed up by the computational simulations and mathematical models surveyed
in the introduction. In these models we can be sure that there is no influence
of prior language, as the models have none initially. Furthermore, the structure
that arises depends on aspects of the transmission bottleneck that are hidden
from our participants (given our two experimental conditions) and the particular
properties of the language appear more dramatically shaped by these than any
similarity to the language of the participants. The most parsimonious explana-
tion, then, is that we are seeing adaptation to the transmission bottleneck rather
than an emerging simple first language influence. However, a more subtle point
can be made: We fully expect that language evolution through iterated learning
will involve adaptation to all aspects of the transmission bottleneck, and this
will include the biases of language learners. In our experiment, participants
bring to bear a mixture of biologically basic biases and those that arise from
their acquired cultural heritage. We can see no principled way to separate these
out. This means that our experiments should not be taken to be a “discovery
procedure” for uncovering our evolutionary ancient learning biases but rather
as a tool for understanding the fundamental adaptive dynamics of the cultural
transmission of language by iterated learning.

We started this article by noting that a complex adaptive systems perspective
shifts the burden of explanation away from a richly structured domain-specific
innate substrate for language in our species. Although we have talked a great
deal about linguistic structure as an adaptation, this is adaptation by the lan-
guage itself rather than biological evolution of the faculty of language. The
relevant explanatory mechanisms relate to cultural as opposed to natural se-
lection. However, of course, this does not mean that biology is irrelevant to the
evolution of language.

Rather than seeking evolutionary explanations for innate constraints that
determine language structure, the work presented in this article strongly sug-
gests a different approach. The iterated learning models on which we base our
experiments start with agents who can (a) learn complex signals and (b) infer
complex meanings. Humans belong to an unusual set of species, called the
“vocal learners” (Jarvis, 2004), that can learn sequential signals (others include
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most notably the songbirds). We are also unusually adept in inferring intention-
ality (Tomasello, Carpenter, Call, Behne, & Moll, 2005). By taking into account
the power of language as a complex adaptive system to generate structure itself,
future work on the biological evolution of language in our species should focus
on how we came to have these two crucial preadaptations for language. Without
the combination of vocal learning and meaning inference, iterated learning of
the sort we are studying would not be possible at all (Okanoya, 2002). Once
they are in place, on the other hand, the emergence of structure is inevitable.

Revised version accepted 11 June 2009

Notes

1 Underlying this work is a typically unstated assumption that modern languages are
already optimized for transmission (i.e., all extant languages are both learnable by
children and meet the expressive needs of their users); thus, further change is driven
not so much by inherent properties of linguistic variants but rather sociolinguistic
factors (e.g., Croft, 2000). However, when looking at the origins of language, we
necessarily need to consider a different state of affairs, one in which language has
not yet reached equilibrium and the inherent structural properties of linguistic
variants are relevant. A related point is the likelihood that intergenerational
transmission is less important in ongoing language change than it is in language
emergence. Where social status, for example, is the primary driving force behind
selection of variants, the impact of learners’ innovations is likely to be lower than
where those innovations actually make language transmissible at all.

2 There are other experimental approaches to the origins of language, such as
Galantucci (2005) and Selten and Warglien (2007), but note that these rely on
participants intentionally and consciously designing a communicative system. Our
interest is in whether the adaptive structure of language can arise without intentional
design.

3 The glosses here are given as English words; recall that in the experiment, visual
stimuli were used. This example is taken from Chain 3 in Experiment 2 in the study
by Kirby et al. (2008).

4 This is not a trivial result considering the rather narrow bottleneck applied during
training meant that each generation was being trained on a (different) random subset
of half of the total language.

5 Taken from generation 9, chain 3, experiment 2 in the study by Kirby et al. (2008).
Note that whereas color and motion are consistently expressed (ne for black, la for
blue, ra for red, ki for horizontal, and pilu for spiral), shape is more haphazardly
encoded (ke when blue/black and horizontal, ki when blue/black and spiral, he when
red and horizontal, and ho when red and spiral).
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6 It is perhaps interesting to note that the investigation of this type of phenomenon,
historically referred to as analogical change, was what prompted the very first
application of this methodology by Esper in 1925.

7 Specifically, we examine chain 3 in experiment 2, but similar results can be obtained
wherever compositionality clearly emerges.
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Investigating how cultural transmission leads 
to the appearance of design without a designer 
in human communication systems

Hannah Cornish
University of Edinburgh

Recent work on the emergence and evolution of human communication has 
focused on getting novel systems to evolve from scratch in the laboratory. Many 
of these studies have adopted an interactive construction approach, whereby 
pairs of participants repeatedly interact with one another to gradually develop 
their own communication system whilst engaged in some shared task. !is paper 
describes four recent studies that take a di"erent approach, showing how adaptive 
structure can emerge purely as a result of cultural transmission through single 
chains of learners. By removing elements of interactive communication and 
focusing only on the way in which language is repeatedly acquired by learners, 
we hope to gain a better understanding of how useful structural properties of 
language could have emerged without being intentionally designed or innovated.

Keywords: iterated learning, cultural evolution, language emergence,  
linguistic transmission

 Introduction

!ere has recently been renewed interest in studying the emergence and evolution 
of human communication systems experimentally (e.g. Galantucci, 2005; Garrod 
et al., 2007; Healey et al., 2007; Scott-Phillips et al., 2009; Selten & Warglien, 2007; 
Kirby et al., 2008a). !ese studies di"er from the many experiments investigating 
human communication that went before (e.g. Garrod & Anderson, 1987; Garrod & 
Doherty, 1994; Christiansen, 2000; Pickering & Garrod, 2004; Hudson-Kam & 
Newport, 2005; Wonnacott & Newport, 2005) by the emphasis placed on explor-
ing the emergence of novel systems.1 In other words, these experiments do not 
start with a system (either natural or designed by the experimenter) in place 
initially, but lets one evolve over the course of the experiment. !is provides us 
with a direct route into understanding how such systems become established 
(Galantucci, 2005).
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Prior to this, researchers intent on understanding the complicated processes 
giving rise to systems of human communication were to some extent limited by a 
lack of data. !e simple fact is that natural languages do not emerge every day, and 
neither do they emerge overnight. !is le" two options: (1) exploring the few docu-
mented cases of large-scale natural language emergence, involving sign-languages 
(Senghas & Coppola, 2001; Sandler et al., 2005), and home-sign (Goldin-Meadow &  
Mylander, 1983) that are available, or (2) exploring the phenomenon more 
abstractly in computational simulations (Batali, 1998; de Boer, 2001; Kirby, 2001; 
Steels, 2003; Brighton et al., 2005; Oudeyer, 2005; Vogt, 2005) or mathematical 
models (Gri#ths & Kalish, 2007; Kirby et al., 2007).

It is clear that an experimental approach o$ers certain advantages over study-
ing these phenomena indirectly via the use of computational/mathematical models, 
or via naturalistic observation (such as greater experimental manipulation, con-
trol, and replicability of results, etc.). Most of these newer experiments looking at 
the emergence of novel systems share the property of revolving around some kind 
of communication game. Participants (typically dyads) are given some shared 
goal or joint task that requires them to co-ordinate their actions in some way. !e 
only way in which to do this is to interactively construct a communication system 
together, using whatever medium is provided.

For instance, in Selten & Warglien (2007), pairs of participants are given a 
repertoire of available symbols, each with di$erent sending costs, and instructed 
to converge upon a set of economical signals to identify di$erent pictures. In 
Galantucci (2005), pairs of participants must coordinate their actions in a 2D  
game-world by communicating with one another using a novel graphical medium, 
which prevents the use of common symbols or pictorial representations, forc-
ing them to develop a new system of their own. In Healey et al. (2007), pairs of 
participants (and later on, interacting groups) collaborate together using a vir-
tual whiteboard, drawing images to identify di$erent pieces of music. Similarly,  
Garrod et al. (2007) encourage participants to depict various concepts (such as  
commonly known people, places, objects, and more abstract concepts such as ‘pov-
erty’) using images in such a way that a fellow participant could identify them. In 
a slightly di$erent twist, Scott-Phillips et al. (2009) have an experimental set-up in 
which they do not even provide a dedicated channel for communication to take place 
in: given a task which requires two players to coordinate their actions, the only solu-
tion is to create one by using their movements in the game environment as signals.

!e fact that convergence does not come easily to participants in these exper-
iments (most fail to agree on a system, and fewer still go on to develop one with 
structure) highlights the fact that the underlying processes responsible are not 
trivial. !is is perhaps surprising given that we assume participants could easily 
invent a workable system on their own. In fact, Scott-Phillips et al. (2009) %nd that 
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reported reasons for failure o!en centre around an inability to convey a system 
to their partner rather than an inability to individually construct one in the "rst 
place. Conversely, Selten & Warglien (2007) showed that the chances of develop-
ing a successful system are massively increased when one player "nds a way to take 
control and impose their invented system upon the other. #is raises the interesting 
question of what kind of design process we think is responsible for the emergence 
of structure in natural language – is it one which is wholly reliant on the ingenuity 
and design skills of its users, or is there some other force at work?

#is paper argues that although humans are extremely adept at constructing 
novel communication systems, many linguistic changes are not ‘designed’ by indi-
viduals in that manner. Rather, much of the structure present in human language 
is indicative of apparent design without a designer. With that in mind, a di$erent 
experimental methodology is o$ered – one which explains the emergence of lin-
guistic structure as a result of cultural transmission, or iterated learning by multiple 
individuals.2 #e historical origins and theoretical viewpoints underpinning this 
approach are elaborated upon, and some recent experimental results obtained using 
this method are discussed. It shows that even in the absence of a communicative 
context, structural properties that are useful for communication can arise uninten-
tionally. Finally, some directions for future research in this area are outlined.

 Design without a designer

For centuries philosophers and linguists have debated the origins of linguistic 
structure and change in language. One of the central mysteries involves identify-
ing the source of those changes and innovations that lead to increasing structure. 
#e intuitive answer is of course us, the speakers of language. Yet whilst languages 
change and evolve as a result of di$erential patterns of usage among speakers, 
they do not do so as a result of any intentional design on an individuals’ part. As 
Keller (1994) points out, we cannot analyse a historical change like the shi! in 
word ordering from Object-Verb to Verb-Object in Middle English, and come to 
the conclusion that it is an instance of human design. He refers to events like this 
as ‘phenomena of the third kind’ – grouping together things that are neither man-
made nor entirely natural, but which are instead “the result of human actions 
but not the goal of their intentions” (p. 56). He argues that we need to invoke 
an ‘invisible-hand’ explanation for language, adopting the metaphor proposed by 
the economist and philosopher Adam Smith to explain how locally self-serving 
actions of individual investors can unexpectedly lead to group-level prosperity. 
If this thesis is correct, it is only through developing an understanding of how 
apparent design emerges without a designer that we can hope to discover the origins 
of linguistic structure.
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For Keller, who views language change as a special instance of sociocultural 
change, explaining this property of language means seeing it as a product of cul-
tural evolution. It is obvious that language and culture are linked, but what does 
it mean to claim that language is a product of cultural evolution? Although ideas 
concerning cultural evolution have been around for as long as biological evolution, 
signi!cantly less progress has been made in the former than the latter (Mesoudi 
et al., 2006). Whilst there is a good understanding of the origins and operations of 
many of the cognitive mechanisms underlying language that came about as a result 
of biological changes a"ecting our phylogeny, less is understood about the dynamics 
arising from language being culturally transmitted between individuals.

#is is not a problem with our understanding of language in particular; but 
appears endemic to any culturally transmitted behaviour. Furthermore, it is not the 
case that every instance of cultural evolution requires an invisible hand explanation. If 
we look outwith human communication, we !nd many examples of culturally trans-
mitted behaviours, such as tool-making and the kinds of incremental innovations 
we !nd in technological developments (Basalla, 1988; Petroski, 1992; Ziman, 2000), 
do seem to be directed and guided by human intentions, albeit that o$entimes the 
‘inventors’ themselves cannot anticipate the eventual usage of the object to which 
they contribute some design feature. For some commentators (e.g. Hallpike, 1986; 
Pinker, 1997; Benton, 2000; Bryant, 2004), this intentional aspect is precisely what 
causes analogies between natural selection and cultural evolution to breakdown 
completely (Mesoudi, 2008). Yet instead of perceiving this as an either-or debate 
(cultural evolution either proceeds via intelligent human design or some ‘blind’ 
evolutionary process) Dennett & McKay (2006) encourage us to think of cultural 
change as “a continuum from intelligent, mindful evolution through to oblivious, 
mindless evolution.” (italics original). #ey go on to claim that:

“in cultural evolution...there are undeniable cases of cultural features that evolve 
by Darwinian processes without any need to invoke authors, designers, or other 
intelligent creators. Most obviously, languages – words and pronunciation and 
grammatical features – evolve without any need for grammarians, deliberate 
coiners, or other foresighted guardians of these cultural items.” (p. 353).

So this brings us back to our central question – if some aspects of linguistic structure 
are led by this ‘invisible-hand’, is it possible to capture this phenomenon and inves-
tigate it in the laboratory? It could be argued that, in a sense, we have already seen 
the invisible-hand at work in some of the interactive construction studies discussed 
in the introduction.3 #is is complicated however, by the fact that there are many 
other processes at work which could arguably play a more signi!cant role in the 
eventual emergence of structure.4 Isolating exactly which elements arose through 
intentional design, and which through these more subtle and hidden forces may 
prove to be impossible in any experiment involving human participants. However, 
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if we wish to learn the extent to which useful structure can arise in the absence 
of any intention to create it, we could do worse than to start with a theory of how 
such a blind mechanistic process might occur in the !rst place.

 Iterated language learning

Almost everyone will agree that cultural evolution involves individuals within 
a group engaging in some kind of social learning with one another. One of the 
simplest and most general models of this kind of process is known as iterated 
learning (Kirby & Hurford, 2002). Put simply, iterated learning refers to the pro-
cess whereby someone learns a behaviour by observing someone else performing 
that behaviour. Crucially, the person being observed must also have acquired 
that behaviour in the same way. "is process is most commonly conceived of as a 
linear (vertical) transmission chain, with the output from each person’s learning 
becoming the input for the next ‘generation’, although other population structures 
involving horizontal transmission are possible (see Mesoudi & Whiten (2008) 
for a review of experiments exploring di#erent types of transmission chains in a 
non-linguistic setting).

Over the past decade or so, this iterated learning model has provided a frame-
work for understanding cultural evolution in general, and language evolution in 
particular. "e majority of this work has been undertaken using computational and 
mathematical models (e.g. see both Brighton et al. (2005), Kirby et al. (2008b), and 
references within) to explore what e#ect cultural transmission has on the structure 
of language. In spite of the many variations in the di#erent models, two robust 
!ndings appear to hold whenever iterated language learning is at work. Firstly, 
languages become easier to learn over time, and secondly, they do so by becoming 
more structured. In other words, languages are adapting. To understand why this 
is the case, we need to look at iterated language learning in more detail.

Most simulations begin with a small population of agents with no initial language. 
For instance, in Kirby (2001), there are only two agents in the model at any one 
time – an adult ‘speaker’ and a child ‘learner’. Learners acquire a set of mappings 
between strings of characters (signals) and pairs of features taking di#erent values 
(meanings) by observing the signal-meaning pairs produced by adults. Initially, as 
there is no language in place, the !rst adult generates random, unstructured (or 
holistic) signals when prompted with a meaning. "ese are heard by the learner, 
who uses this data to induce its own representation of the system, before becoming 
the adult. At this point, a new learner appears, and the process repeats.

Learners induce their representations by storing the signal-meanings in a list, 
and then searching for possible generalisations over that data. Crucially, learners 
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are only being trained on a sub-set of the total number of meanings in the lan-
guage. We can think of this as a kind of bottleneck on transmission, one which 
mimics an aspect of the so-called ‘poverty of the stimulus’ that we know applies 
to real language acquisition (Smith, 2003). Namely, how we acquire an in!nite 
language system on the basis of exposure to just a limited sub-set of the data. With 
this in mind, we will term this kind of transmission constraint a data bottleneck.

It transpires that this data bottleneck is of vital importance in explaining what 
happens to the languages over time. If this bottleneck is very wide (i.e. if learners 
are exposed to all, or nearly all, of the total meanings in the language) the lan-
guages do not change from their original random forms. On the other hand, if 
this bottleneck is very narrow (i.e. learners are exposed to just a few meanings) 
the languages become highly unstable. In the !rst case, signal-meaning pairs are 
just being memorised and passed along. In the second case, as only a few meaning-
signal pairs are being transmitted between adjacent generations, each learner is 
forced to reinvent huge swathes of the system anew each time and the language 
cannot stabilise. Neither of these situations resemble a good model of linguistic 
transmission as we know it. However, if the bottleneck is neither too narrow nor 
too wide, something interesting starts to happen. "e languages that were initially 
unstructured become compositional – the signals get decomposed into smaller 
units representing di#erent aspects of the meanings, then recombined in some 
principled way to signify the meaning as a whole.

"e emergence of compositionality is an adaptive response to the pressure of 
being transmitted through the data bottleneck. If meanings are encoded compo-
sitionally, they are far more likely to ‘survive’ transmission and be acquired by the 
next generation than if they are encoded holistically. "is is because they can be 
reconstructed on the basis of fewer examples – they are more generalisable. It is 
not essential to see each and every meaning-signal pair to know what the signals 
are, we can reliably infer them based on the structure in the pairs we do see.

"e presence of the data bottleneck triggers the principle of linguistic adap-
tation. This principle applies whenever language learners encounter imperfect 
information about the system they are trying to acquire. In such instances, cultural 
transmission becomes an adaptive process, causing languages to emerge that are 
seemingly optimised to the problem of being transmitted from person to person 
(Kirby et al., 2008b, pp. 89). It goes without saying that the adaptive solutions seen 
in the models do not come from intentional acts by agents. Put simply, agents are 
not equipped with reasoning or planning abilities, nor do they have the teleologi-
cal goal of creating an ‘optimal’ language programmed into them. Many do not 
even have language-speci!c learning mechanisms. Yet in spite of this, spontaneous 
order emerges. Iterated language learning therefore seems a likely starting point 
for exploring the unintentional emergence of linguistic structure.
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 General methodology

Inspired by the early work of Esper (1925), who explored analogical change by using 
miniature languages, and more recently the work of Gri!ths et al. (2008), who suc-
cessfully turned a model of iterated learning in a non-linguistic domain into an 
experiment, work was undertaken to establish whether or not humans act in the 
same way as the simulated agents, by constructing an experimental version of iter-
ated language learning (Kirby et al., 2008a). "e results of this study are reviewed 
later, but the remainder of this section explores the framework used in more detail.

"e general method involves each participant learning a small arti#cial (‘alien’) 
language composed of a #nite set of meanings (pictures) that are paired with signals 
(strings of letters, or possibly sounds). Once a participant has acquired this 
language, they are tested and their answers used to provide the training input to 
the next participant, who forms another ‘generation’ in the chain. "is process 
repeats until the desired number of generations is reached. "roughout, partici-
pants are asked only to reproduce the language as accurately as they can; the 
source of their training data is not revealed, and they have no way of knowing the 
experiment is investigating emergence.

"ere are three distinct phases involved: training, testing, and transmission. 
During the training phase, participants are shown a picture from the set, alongside 
the signal string it is paired with, and informed that this is the way in which the alien 
would describe that image in its own language. "e task is to learn the descriptions 
associated with each image to the best of their abilities. Training occurs via a com-
puter program, which randomises the order in which each signal-meaning pair is 
presented, ensures all training items are seen, and controls the length of time each 
training item is shown for. "e key variables to consider here are the amount of 
training each participant receives (i.e. the number of passes over the data they are 
given), whether this training occurs in one continuous session or in blocks, and 
whether training blocks are structured in some way or randomised.

Once training is complete, we move onto the testing phase, where participants 
are shown each picture in turn and instructed to supply the missing description. 
"e #nal test can be preceded by a series of practice tests in between training 
blocks, which introduces the possibility of feedback being provided to facilitate 
learning. "is option is le$ unexplored for now, but is a potential avenue for future 
work. "e #nal responses from the testing phase are then used to generate a new 
set of training stimuli for the next generation during the transmission phase. It 
is during this #nal stage, which happens ‘o%ine’ a$er the participant has le$, that 
some of the most interesting parameters can be explored, including the transmission 
bottleneck. One of the advantages of the iterated language learning methodology is 
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that it allows us to test very speci!c hypotheses about what occurs during language 
transmission by giving us complete control over what gets passed on. It is this 
aspect that a"ords iterated language learning more simulation-like qualities than 
is typical in non-iterated arti!cial language experiments.

For instance, if we wished to test the hypothesis that a preference for shorter 
strings led to compositional structure, during the transmission phase we could 
arti!cially select only those strings that met some (possibly dynamic) string-
length threshold and ensure that only these items were propagated to the next 
generation.5 By examining the resulting languages that arise from this process of 
arti!cial selection we can determine whether this hypothesis is valid. In this case 
we are running the procedure like a simulation. We build in a condition to see 
what the future outcome is, and can then re!ne our intuitions as a result. Alter-
natively, if we wish to test the hypothesis that human learners actually have a bias 
towards producing shorter strings, we can just run the experiment without any 
such manipulations and examine the average length of strings at the end of the 
chain. In this case, we are using the methodology to experimentally test whether 
such a bias currently exists or not. Both strategies can be useful depending on the 
questions one wants to answer.

#ese are not the only considerations that need to be kept in mind. One 
obvious factor we have yet to mention is how we begin this process. It is clear that 
the !rst participant needs a language to learn. #ere are several manipulations we 
can make here, which are again dependent on the kinds of questions we are inter-
ested in. For instance, if we wish to know whether a particular structural system 
can be stably transmitted, then we should give that system to the !rst participant 
and monitor whether it changes as a result of iterated learning. If however, we 
are interested in learning something about how linguistic structure emerges, 
we cannot initialise the chains with a fully structured system. Instead, we can 
use randomly generated signals. A simple method for constructing these is by 
concatenating CV syllables (drawn from a large but !nite set) to form longer 
strings. #is produces a set of signal strings, which whilst containing some regu-
larities (owing to the fact that they are constructed from a !nite syllable set) is 
still highly unstructured with regards to the meanings.

Further consideration must be paid to the design of the meaning-space – 
or rather, the stimuli we use to depict them. Meaning-spaces themselves can be 
structured or unstructured, re$ecting regularities and co-occurrences in the real 
world, or a controlled and simpli!ed world of our choosing. In all of the studies dis-
cussed later, the pictures come from a small and highly structured meaning space 
consisting of three di"erent dimensions (motion,6 colour and shape), each of which 
contains three di"erent variables (e.g. bouncing, straight and spiraling; black, blue 
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and red; circle, square and triangle). !is 3 × 3 × 3 design yields a total of 27 di#erent 
possible combinations.

Attention also needs to be given to how we analyse the data from the study. 
In simulations, modelers have free access to the grammars formed by the agents 
over the course of the run, making descriptions and comparisons of the systems 
at di#erent stages of their evolution relatively straightforward. Obviously this is not 
possible with human participants, and so alternatives must be found. At least two 
di#erent types of measurement are required. Firstly, a method of analysing the sim-
ilarity of languages across generations, and secondly a method of analysing the 
structural properties of languages within generations.

In order to calculate whether or not the languages are becoming easier to learn 
over time, there needs to be some measure of transmission error that compares 
adjacent generations and shows how much deviation there is between the two. If 
error is low, we infer the languages are being easily acquired. One way to do this is 
to calculate the mean edit distances of corresponding strings in each generation – 
that is, the number of substitutions, replacements and deletions required to turn 
string a into string a’ (Levenshtein, 1966). For instance, if we wanted to assess the 
similarity between the strings ‘wogi’ and ‘wong’ we could calculate the amount 
of e#ort it would take to turn one into the other. In this case, we would need one 
insertion (n) and one deletion (i), giving an edit distance of 2. !is $gure can be 
normalised for string length, and then calculated for a whole language, producing 
a single number between 0 and 1 re%ecting the degree of change between it and 
its predecessor.

!e within generations measure is more complicated and needs to quantify 
the amount of structure within the language at each point in time. One way to do 
this is to use the pairwise distance correlation,7 which calculates the extent to which 
similar signal-strings are used to express similar meanings. Just as we use edit 
distance to measure di#erences between signals, the same technique can be used 
for meanings. So whilst a ‘red bouncing square’ and a ‘blue bouncing square’ have 
an edit distance of 1, a ‘black spiraling circle’ and a ‘blue horizontal triangle’ have 
a distance of 3. !e idea is that if the mappings between signals and meanings is 
structure-preserving (as would be the case, for instance, if the language was com-
positional), we should see a large positive correlation between these two sets of 
distances. If the mappings between the two are largely idiosyncratic (as would be 
the case for the initial unstructured languages), we would expect no correlation 
between the two distances. In order to establish whether the correlation is sig-
ni$cant, and to compare our results across di#erent languages, we must compute 
the z-score for the veridical correlation, and compare it to a large Monte Carlo 
sample of the same string data with a randomised alignment of meanings. !is 
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allows us to check whether we could have observed the mapping as a result of a 
random assignment of our meanings with those particular signals or not. A full 
description of both PDC and the transmission error outlined above can be found 
in Kirby et al. (2008a).

 Recent studies

!is section explores some recent studies illustrating the way in which the experiments 
work, and how some of the parameters interact with one another in interesting ways. 
!ese studies have been selected to demonstrate the kinds of empirical questions the 
methodology can address, with each one focusing in greater detail on the notion 
of the transmission bottleneck. !ere have been few attempts to rigorously de"ne 
this concept in the literature, despite the fact that it is pressure to adapt to the 
constraints imposed on transmission that is the source of emergent structure in 
the model. !e fact that it is ‘constraints’ plural should also not be forgotten. !ere 
are many potential bottlenecks on language transmission, o#en working simulta-
neously and not always in the same direction (Kirby, 2001; Hurford, 2002). !is 
raises some interesting questions: are all constraints on transmission alike, and can 
we usefully study them in the laboratory?

!e "rst experiment implements a data bottleneck of the kind mentioned 
previously, and attempts to replicate the computational "ndings concerning learn-
ability and structure. !is is contrasted with a second experiment showing similar 
results can be obtained by relying solely on the natural memory constraints of our 
learners. !e third experiment explores what happens when we apply arti"cial 
selection for languages capable of expressing a larger proportion of the meaning-
space. !e fourth and "nal experiment extends the third by attempting to increase 
the early transmission "delity by doubling the training. It will be seen that in all 
four cases the languages adapt over time to become more learnable and structured, 
o#en in interesting and unexpected ways.

 !e data bottleneck

!e "rst experiment can be found in full in Kirby et al., (2008a). !ey attempted 
to replicate the computational "nding that iterated learning leads to adaptation. 
!e initial languages were randomly generated and used the same structured 
3 × 3 × 3 meaning-space described earlier. In addition, a bottleneck was placed on 
the amount of data each participant was trained on. Instead of having full access 
to all 27 meaning-signal during training, each participant was trained on exactly 
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14 of them, selected at random during the transmission phase at each generation. 
!ere were three blocks of training, during which each item was seen twice, for 
six seconds. 40 participants were recruited and o"ered £5 to take part. !ey were 
randomly assigned to one of four di"erent language chains, each of which ran for 
ten generations.

!e transmission error and structure scores are reproduced here in Figure 1. 
From these it is possible to con#rm both predictions: the languages are adapting 
to become signi#cantly more learnable and structured over time (as shown by a 
mean decrease in transmission error between #rst and #nal generations of 0.638, 
SD = 0.147; t(3) = 8.656; P < 0.002, and a mean increase in structure of 5.578, 
SD = 2.968, t(3) = 3.7575, P < 0.02).
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Figure 1. Graphs showing the normalised error (le$) and pairwise distance correlation 
(right) scores by generation, of four transmission chains when a data bottleneck was  
present. !ese results show that the systems are all evolving to become more learnable 
and more structured over time. Points above the dotted line in Fig 1 (right) represent  
signi#cant structural regularities between signal-meaning mappings. Re-drawn from 
Kirby et al. (2008a) with permission

When analysing the languages qualitatively, Kirby et al. (2008a) made an 
interesting discovery. Whilst the languages that arose in this condition in the com-
putational models were all compositional in structure, the languages in the experi-
mental version were not. Instead, every chain showed a massive decrease in the 
number of distinct strings being used, introducing widespread underspeci#cation. 
Reduction in the number of words to remember could not account for the low 
error values alone. To get any #gure below 50% there must be inter-generational 
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agreement on those items that were not seen during training, and this could only 
happen if the signals were structured. Table 1 shows the language from the chain 
with the highest score8 at generation 10. From this we can see that although certain 
meanings are now underspeci!ed, there is still a systematic relationship between 
meanings and signals. For instance, all horizontally moving shapes are called ‘tuge’, 
regardless of shape or colour.

Table 1. Table showing the language with the highest structure score at generation 10 in 
the data bottleneck condition. Signals are located in cells corresponding to their meaning 
features. Columns align with colours, whilst motion and shape features inhabit rows. "is 
particular language exhibits systematic underspeci!cation, which is a successful strategy 
enabling learners to reproduce the whole language from just a fragment. Re-drawn from 
Kirby et al. (2008a) with permission

black blue red

miniku miniku miniku circle
bounce tupim tupim tupim square

tupin tupin tupin triangle

tuge tuge tuge circle
horizontal tuge tuge tuge square

tuge tuge tuge triangle

poi poi poi circle
spiral poi poi poi square

poi poi poi triangle

Clearly this is a somewhat unexpected result. Nevertheless, it tells us two impor-
tant things: (1) the dynamics of cultural transmission certainly give rise to adaptive 
structure in a laboratory setting, and (2) something more than a pressure for easy 
transmission must be required to explain the emergence of compositionality. "is 
second idea will be explored later, but before that we should discuss the data bottle-
neck in more detail. "e data bottleneck works by forcing perceived structural pat-
terns in previously encountered stimuli to be generalised to novel stimuli. Even if 
these perceived patterns occurred only through chance sampling of the data, the 
data bottleneck works to massively amplify their e#ect throughout the whole lan-
guage (Cornish et al., submitted). What was previously just an inference of structure 
before learning, is now a bona !de instance of it a$er learning. "is is particularly 
the case in earlier generations when there is more variation in the system.

"e next experiment explores what happens when we remove the data bottleneck 
completely.
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 !e memory bottleneck

!e idea of removing the data bottleneck may seem strange given the computa-
tional "ndings. For instance, Smith (2003) clearly shows that running an iterated 
learning model with no data bottleneck results in no cultural evolution taking place 
at all. Yet there is an important di#erence between idealised computational agents 
and human participants: the agents in many of these models are perfect learn-
ers. !ey memorise meaning-signal pairs $awlessly. Given the fact that human 
memory is not this reliable, it might be worth investigating whether this ‘memory 
bottleneck’ could play a role on the emergence of linguistic structure.

!is memory bottleneck was also at work during Kirby et al.’s (2008a) study. 
A problem arises in that there is a potential confound between the two types of 
bottleneck. According to the principle of linguistic adaptation discussed earlier, 
cultural transmission only becomes adaptive when the learner is presented with 
imperfect information. In order to assess what, if anything, imperfect learning has 
contributed to the overall result in the earlier study, it is necessary to "rst remove 
this confound by eradicating the e#ect of the imperfect data. With that in mind the 
experiment was re-run, this time with participants given full access to all 27 mean-
ings during training. !e training and testing phases were held proportional to the 
previous experiment; although there were more training items, each was seen the 
same number of times and for the same duration as before.

!e results of this experiment are shown in Figure 2. As before, the transmis-
sion error signi"cantly decreases over the course of the experiment indicating that 
the language is becoming easier to learn (mean decrease of 0.446, SD = 0.193, 
t(3) = 4.628, p < 0.009). Interestingly, comparing the initial error values with those 
in the data bottleneck condition in Figure 1 we "nd that there is no signi"cant 
di#erence between the two. !is suggests that removing the data bottleneck has 
not made the task any easier or harder for the participants. Looking at the struc-
ture scores, we also "nd that they signi"cantly increase over time as well (mean 
increase of 7.396, SD = 1.629, t(3) = 9.079, p < 0.001).

In fact, if we compare Figures 1 and 2 there do not appear to be any real dif-
ferences in development patterns of the languages at all.9 !is is in fact surprising, 
as we might expect that once some structure had emerged in the systems, having 
full access to the data may actually facilitate acquisition and lead to more overall 
stability. !is is inferred on the basis that it is easier to detect structural regulari-
ties when provided with more evidence than it is with less. !e fact that we only 
have four chains means that we cannot rule out the possibility that we have just 
been unlucky not to observe more stability in this instance. However, it could also 
be the case that there are features within the language itself which prevents such 
stability emerging.
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Figure 2. Graphs showing the normalised error (le!) and pairwise distance correlation 
(right) scores by generation, of four transmission chains when no data bottleneck was 
present. "ese results show that imperfect learning of data achieves the same result as  
exposure to novel stimuli. "e systems are all evolving to become more learnable and 
more structured over time. Points above the dotted line in Fig 2 (right) represent  
signi#cant structural regularities between signal-meaning mappings

We can analyse the languages qualitatively to get a better impression of what 
is going on. Table 2 shows the language from the chain with the highest struc-
ture score at generation 9. We can see that this language also exhibits systematic 
underspeci#cation. Unlike the previous example however, there appears to be 
tentative evidence for some internal structure – that is, some of the signals begin 
to look like they are decomposable into sub-units. For instance, signals used 
for spiraling objects can be broken up into a pre#x (wag-, nuak- or wagin-) 
which represents the shape, and a su$x (-ini) which we could gloss as mean-
ing ‘spiraling’. However, these pre#xes only seem to apply locally. "ey are not 
used elsewhere.

"ere also seem to be several irregulars present – for instance, ‘mucapo’ and 
‘nukapo’. Examining the generations immediately before and a!er, it is apparent that 
these forms have persisted a while, but are not stably associated with speci#c mean-
ings. To borrow an analogy from phonology, they seem to be in free variation. It seems 
that these alternating variants do disappear eventually, but only gradually. "eir pres-
ence could explain why we do not see as much stability here as in the data bottleneck 
condition however: having full access to the data allows irregulars to survive, but com-
plicates the acquisition process by making it necessary to memorise these exceptions 
on a case by case bases.
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Table 2. Table showing the language with the highest structure score at generation 9 
in the no data bottleneck condition. Signals are located in cells corresponding to their 
meaning features. Columns align with colours, whilst motion and shape features inhabit 
rows. !is language also exhibits systematic underspeci"cation, although there appear to 
be signs of internal structure indicating shape and motion amongst spiraling objects, and 
irregulars (e.g. ‘mucapo’ and ‘nukapo’)

black blue red

nucapo nucapo nucapo circle
bounce nucapo mucapo mucapo square

nucapo nukapo mucapo triangle
hapo hapo hapo circle

horizontal hapo hapo hapo square
hapo hapo hapo triangle
wagini wagini wagini circle

spiral nuakini nuakini nuakini square
waginini waginini waginini triangle

!e results of these two experiments show us two important things. Firstly, 
adaptive systems that could be used for communication can emerge in an experi-
mental setting, without a designer. It is worth stressing this point again – the par-
ticipants involved are not ‘solving’ these transmission ‘problems’. In fact, they are 
not even aware that there are transmission problems. Secondly, the results of our 
second experiment extend previous work by showing that the presence of a data 
bottleneck is not essential for cultural transmission to become adaptive. Instead, 
the key is imperfect information. !e source of that imperfect information (lack of 
exposure to data, human memory limitations) appears irrelevant.

Next we move onto exploring a topic that was hinted at earlier – the emer-
gence of compositionality.

 Another kind of bottleneck: Forcing expressivity

One of the reasons why underspeci"cation is so prevalent in the previous experiments 
is that the presence of homonyms creates a snowball e#ect: once one appears in 
the system it sends a strong signal to later learners, encouraging more to emerge. 
Given the fact that the only bottlenecks we have explored so far demand nothing 
more than the system be learnable, it could well be the case that this represents the 
ideal solution for the language; a$er all, the most learnable system is one in which 
there is just one name for everything.10 However, what would happen if the task 
were to change slightly, requiring that the language not only be learnable, but also 
expressive (i.e. be capable of uniquely expressing more of the meanings)?
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In the simulation literature, expressivity is enforced as a matter of course. 
Although never explicitly addressed or discussed as a type of bottleneck, every 
model has an expressivity requirement built into it somewhere. In most cases it is 
implicit in the learning or production mechanisms of the agents, built in to model 
the known one-to-one mapping bias humans possess (Smith, 2003). Fortunately 
however, this means there are well-understood techniques for enforcing expressiv-
ity that can be borrowed from the models. !e simplest of these involves "ltering 
out repeated instances of the same signal being attached to multiple meanings. !e 
"rst novel signal-meaning pair produced by generation n-1 is propagated into the 
training input to generation n. !erea#er any repeats of those signals are removed. 
!is ensures that the input to generation n only ever contains one-to-one mappings 
between signals and meanings.

Kirby et al. (2008a) ran an iterated language learning experiment using just 
such a "ltering method. As before they used four randomly generated languages to  
initialise four distinct chains. Once the results of the "nal test were collected, 14 new 
items were sampled at random for the next generation to train upon and homonyms 
were removed. !e error and structure scores are reproduced in Figure 3. !ese show 
that once again, the language is adapting to become signi"cantly more learnable 
(shown by a mean decrease in transmission error between "rst and "nal generations 
of 0.427, SD = 0.106; t(3) = 8.0557; P < 0.002), and more highly structured over time 
(shown by a mean increase in structure of 6.805, SD = 5.390, t(3) = 2.525, P < 0.05).
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Figure 3. Graphs showing the normalised error (le#) and pairwise distance  
correlation (right) scores by generation, of four transmission chains when both a data 
bottleneck and a homonym "lter was present. !ese results show that despite the  
blocking of underspeci"cation, structure is still emerging leading to the language to  
become increasingly learnable. Points above the dotted line in Fig 3 (right) represent  
signi"cant structural regularities between signal-meaning mappings. Re-drawn from  
Kirby et al. (2008a) with permission
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Table 3 shows the language with the highest structure score at generation 9. 
From this it appears we have found a compositional system at last. Although not 
perfectly regular, each signal seems to be composed of three morphemes, each 
corresponding to a di!erent feature of meaning. For instance, the "rst letter 
corresponds to colour, and there are regular su#xes indicating motion. Shape 
is the most irregular, and seems to be encoded by remaining letters. It should 
be noted that the occurrence of this degree of compositionality is both rare and 
$eeting – it features in just two of the four chains, and does not appear to be 
stable.11 Nevertheless, the fact that it emerges at all is encouraging, and also 
serves to drive home the point once and for all that the appearance of struc-
ture in these studies is an invisible-hand process. As Kirby et al. (2008a) are at 
pains to point out, as far as participants are concerned, the "ltering bottleneck 
is an invisible modi"cation. %e individuals involved would have had no way 
of knowing which condition they were in, and yet the kind of languages they 
produced di!ered radically.

Table 3. Table showing the language with the highest structure score at generation 9 in 
the "ltering condition. Signals are located in cells corresponding to their meaning features. 
Columns align with colours, whilst motion and shape features inhabit rows. %is particular 
language exhibits signs of compositionality, with signals being composed of three morphemes 
representing colour, shape and motion respectively. Of these, only colour and motion are con-
sistent. Note also the presence of an irregular, ‘renana’. Re-drawn from Kirby et al. (2008a) 
with permission

black blue red

nehoplo lahoplo rehoplo circle
bounce nereplo laneplo replo square

nekiplo lakiplo rahoplo triangle
neheki lahoki reneki circle

horizontal nereki lereki renana square
nekeki lakeki raheki triangle
nehopilu lahopilu repilu circle

spiral nepilu lanepilu repilu square
nekipilu lakipilu rahopilu triangle

Perhaps one of the reasons why compositionality does not stabilise a&er it 
emerges is due to the comparatively extreme learning conditions imposed upon 
participants. We can see by looking at the transmission error levels obtained by the 
"rst generation in all three studies so far that participants are struggling to accurately 
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learn the items they are trained on. In most cases they are only learning between 
20–35 per cent of all meaning-signal pairs, translating to a 40–70 per cent accuracy 
on seen items. !is is hardly surprising given that they see each item only six 
times in total. !is begs the question of how important early transmission "delity 
is. Would increasing the amount of exposure to each training item lead to a more 
stable compositional language? !is is the question posed in our "nal study.

 Increasing early transmission "delity

!is study followed the same outline of the "ltering condition, but with one slight 
alteration; each training item appeared twice as o#en. !e main aim of this double 
training condition was to see whether or not a compositional system could be sta-
bly transmitted once it emerged. Figure 4 shows the error and structure scores of 
the resulting chains. As we would expect, transmission error and structure are both 
signi"cant (mean decrease in error of 0.35, SD = 0.063; t(3) = 11.079, p < 0.0008 
and mean increase in structure of 9.83, SD = 2.639; t(3) = 7.449, p < 0.003). Again, 
as we would expect, comparing Figures 3 and 4 the transmission error scores of 
the "rst generation are much lower in the double training condition. Furthermore, 
it appears at least one of the chains results in a language that remains relatively 
stable for at least "ve generations.
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Figure 4. Graphs showing the normalised error (le#) and pairwise distance correlation 
(right) scores by generation, of four transmission chains in the double training condition. 
!ese results show that once more the systems are adapting to become more learnable 
and more structured over time. Periods of high stability were also observed. Points  
above the dotted line in Fig 4 (right) represent signi"cant structural regularities between 
signal-meaning mappings
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Table 4 shows the structure of this stable chain, taken at the mid-point in 
generation 7. Interestingly enough, this system seems to combine clear elements 
of a compositional and an underspeci!ed system. Each signal is composed of 
two parts – a pre!x describing the colour, and a su"x describing the motion 
(black objects are referenced by a null morpheme). How is this possible, when 
the languages are still being !ltered for homonyms? #e answer is deceptive. 
As long as homonyms are evenly distributed throughout the language, and as 
long as there is a very small amount of compositionality allowing the chance to 
reconstruct a form if it is unlucky enough to not be selected for transmission, 
the !ltering process can be easily bypassed. In this case, the language has per-
fectly adapted to !nd this delicate equilibrium, resulting in an unexpected but 
highly elegant solution.

Table 4. Table showing a stable language, taken at generation 7 in the double training 
condition. Signals are located in cells corresponding to their meaning features. Col-
umns align with colours, whilst motion and shape features inhabit rows. #is particular 
language exhibits properties of both systematically underspeci!ed systems and compo-
sitional ones. Colours and motions are signi!ed using distinct morphemes – although 
black objects are signi!ed with a null morpheme – whilst the shape dimension remains 
underspeci!ed. #is system appears in spite of !ltering to remove homonyms

black blue red

gahili pagahili megahili circle
bounce gahili pagahili megahili square

gahili pagahili megahili triangle
linu palinu melinu circle

horizontal linu palinu melinu square
linu palinu melinu triangle
wenu pawenu mewenu circle

spiral wenu pawenu mewenu square
wenu pawenu mewenu triangle

As if that were not impressive enough, the same solution was found again, 
only this time it emerged in a chain that was previously fully compositional. #e 
two instances are shown in Tables 5 and 6, and refer to the chain with the highest 
structure in generation 4. As ever we cannot make any strong claims about the 
emergence of a particular structure given that we only have four data points as 
a baseline, but this is suggestive of the fact that fully compositional systems are 
perhaps still too di"cult to maintain even with extra training. Further study is 
required here to fully assess the di"culty of the task.
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Table 5. Table showing the language with the highest structure at generation 4 in the 
double training condition. Signals are located in cells corresponding to their meaning 
features. Columns align with colours, whilst motion and shape features inhabit rows. !is 
language is fully compositional, with each meaning feature being consistently encoded 
using a distinct morpheme

black blue red

wakeki hunkeki pokeki circle
bounce wakiki hunkiki pokiki square

wanikuko hunikuko ponikuko triangle
wakemo hunkemo pokemo circle

horizontal wakimo hunkimo pokimo square
waknimo hunimo ponimo triangle
wakekuko hunkekuko pokekuko circle

spiral wakikuko hunkikuko pokikuko square
wanikuki hunikuki ponikuki triangle

Table 6. Table showing the same language as Table 5 at generation 10. Signals are located 
in cells corresponding to their meaning features. Columns align with colours, whilst 
motion and shape features inhabit rows. !e language that was previously fully compsi-
tional has become mixed – incorporating features of both systematic underspeci"cation 
and compositionality. Colours and motions are signi"ed using distinct morphemes whilst 
the shape dimension remains underspeci"ed

black blue red

wakiko pokiko pokiko circle
bounce wakiko hekiko pokiko square

wakiko hekiko pokiko triangle
wanimo henimo ponimo circle

horizontal wanimo henimo ponimo square
wanimo hekiko ponimo triangle
wahikeko hehikeko pohikeko circle

spiral wahikeko hehikeko pohikeko square
wahikeko hehikeko pohikeko triangle

!is section began by asking a question about whether all constraints on 
transmission were alike, and whether they could be usefully studied in the labo-
ratory. From the data we have seen it appears that the answer to the "rst part is 
no. While it seems that the data and the memory bottlenecks can be function-
ally classi"ed as the same kind of constraint – one which forces languages to be 
learnable – the "ltering bottleneck described in the third experiment appears to 
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play a di!erent kind of role, by forcing the system to also be minimally expres-
sive. "e results of the #nal experiment are harder to interpret, but do suggest 
more work needs to be undertaken to explore the di!erent kinds of adaptations 
that emerge in experiments like these. Certainly it acts as a reminder of the 
many surprising, and o$en unintuitive, ways in which the system can evolve 
during transmission. Given the fact that we are in a position to answer the 
#rst part of our question a$er performing these studies, logic suggests that the 
answer to the second part must be yes. However, we should not feel too content. 
"ere is work to be done.

 Future directions

"is paper has touched upon several di!erent ideas. "e #rst is that structural 
changes and innovations in natural language are typically not the result of inten-
tional actions designed to bring about that goal. It is important to remember this if 
we want to develop a full picture of how linguistic structure emerges. "e second 
idea is a suggestion to help handle the #rst. By taking a cultural evolutionary 
perspective on language, we can develop new methods that allow us to investigate 
the appearance of apparent design without a designer. One such method is the 
iterated language learning framework, which has been recently developed into an 
experimental methodology revolving around the repeated cultural transmission 
of simple ‘alien’ languages through the minds of participants.

Work in this area is still in its infancy. "is paper outlined four recent stud-
ies that looked a little closer at the notion of transmission bottlenecks, but there 
remain many avenues still le$ unexplored. "ese include:

1.  the design of the meaning space: the emerging linguistic structures are obvi-
ously highly dependent on the structure of the meaning spaces that they are 
evolving to express, and as such, having a more realistic model of the world 
is an obvious area for improvement. Some of the groundwork has already 
been covered mathematically in simulations (Kirby, 2007), and to some extent 
explored in robotic agents who evolve their own meaning spaces over time 
(Steels, 2003), but as yet this area still represents ongoing work in our research 
lab and others.

2. di!erent population structures: possible population structures can be de#ned 
by three di!erent parameters – the size of the population, the direction 
of transmission (vertical, horizontal or mixed) and the network structure 
dictating who learns from whom. In this paper we have only examined 
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the simplest population structure imaginable – a single vertically transmitted 
chain – although work expanding this is ongoing.

3.  iterated language learning in children: one obvious extension is to explore this 
process in children, as they have long been implicated in the emergence of lan-
guage. Work in this area would contrast nicely with the recent non-linguistic 
di!usion chain work being undertaken with children (Flynn, 2008).

4. di!erent modalities: another area which could be interesting is to use spoken 
or gestural signals rather than written. Some work has recently been under-
taken exploring the iterated learning of musical tones (Brown & Tamariz, 
submitted) in musicians vs. non-musicians, with scope for extending this 
work further.

"e rise in the number of studies exploring the emergence of human communica-
tion experimentally is deeply encouraging. It is important that this work continues, 
but that in future it focuses on all edges of the cultural evolutionary continuum: 
on the emergence of systems that arise through intentional human design, on sys-
tems that arise unintentionally through vertical and horizontal transmission, and 
systems that arise through combinations of the two.

Notes

 Also implicit in each of these experiments is the notion that much of the character of these 
systems arise from social interactions between individuals, and do not just emerge directly 
from the underlying cognitive systems of those who possess them – hence why there is a need 
to study this aspect of the process in the first place.

 Strictly speaking, we are not witnessing the evolution of communication systems in these 
studies, but the evolution of signs. !is is because there is no actual communication taking 
place between participants; the task is all about learning a system, and not about using it for 
anything. !e distinction is important because, as we will see later, although we find structural 
features emerging that are useful for communication, we sometimes find these systems devel-
oping in ways we would not expect if they were being used communicatively.

 !e author would like to thank both Bruno Galantucci and Simon Garrod for making 
this point clear. While interactions between participants may involve some reasoning and 
purposeful design, the negotiation process is also a complex dynamic system at work. As such, 
it has invisible-hands of its very own; shaping, guiding and prompting structure into being. 
!is idea would help explain why the creation of a successful system is never guaranteed in 
these studies.

 !is is not intended as a criticism of the interactive construction methodology. We should 
be mindful of Dennett & McKay’s continuum of cultural evolution here, and the need to 
explore all lengths of it.
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 It should be remembered that studying processes of artificial selection (e.g Mendel’s peas, 
the selective breeding programs employed by farmers, etc.) were what led to the breakthroughs 
in understanding how biological evolution worked. One of the points being arguing for here is 
that similar tactics of studying artificial selection in language and other culturally transmitted 
behaviours can lead to similar advances in understanding cultural evolution. !is is consistent 
with the agenda laid out in Mesoudi et al. (2006).

 Motion was represented using a directional arrow, although real movement could be 
achieved using video instead of static images.

 !is is the measure of structure used in Kirby et al. (2008a), although it is not named as 
such. !e main advantage of the PDC method is that it is detects all kinds of structure – not 
just compositionality. However, there are other methods for assessing structure within gen-
erations that may be more suited for analysing the emergence of compositionality, such as 
RegMap (Tamariz & Smith, 2008; Cornish et al., 2009).

 It should be noted that these examples are not always representative of the range of results 
found in each condition and should be treated in the spirit with which they are offered – as 
individual case-studies. !e complete data for every study is available on request: hannah@
ling.ed.ac.uk

 It should be noted that the striking peaks in transmission error seen at generation 6 in 
different chains in Figs. 1 and 2 appear coincidental, and simply an unfortunate reminder of 
how fragile single transmission chains are to individual variations in recall ability.

 Obviously this system would not be at all useful for communication.

 In this regard at least, iterated language learning shares similarities with the communica-
tion game experiments described in the Introduction. Whilst compositionality is a ubiquitous 
feature of human language, it emerges rarely in experiments investigating the novel emer-
gence of communication systems.
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