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Abstract

The thesis begins with a general introduction to population genetics in chapter 1. I review the

fundamental processes of evolution – mutation, recombination, selection, gene flow and genetic

drift – and give an overview of Bayesian inference in statistical population genetics. Later, I

introduce the studied species, Alpine ibex (Capra ibex ), and its recent history. This history

is intimately linked to the structured population in the Swiss Alps that provides the source of

genetic data for this thesis.

A particular focus is devoted to approximate Bayesian computation (ABC) in chapter 2,

a method of inference that has become important over the last 15 years and is convenient for

complex problems of inference.

In chapter 3, the biological focus is on estimating the distribution of mutation rates across

neutral genetic variation (microsatellites), and on inferring the proportion of male ibex that

obtain access to matings each breeding season. The latter is an important determinant of genetic

drift. Methodologically, I compare different methods for the choice of summary statistics in

ABC. One of the approaches proposed by collaborators and me and based on boosting (a

technique developed in machine learning) is found to perform best in this case. Applying that

method to microsatellite data from Alpine ibex, I estimate the scaled ancestral mutation rate

(θanc = 4Neu) to about 1.288, and find that most of the variation across loci of the ancestral

mutation rate u is between 7.7 · 10−4 and 3.5 · 10−3. The proportion of males with access to

matings per breeding season is estimated to about 21%.

Chapter 4 is devoted to the estimation of migration rates between a large number of pairs of

populations. Again, I use ABC for inference. Estimating all rates jointly comes with substantial

methodological problems. Therefore, I assess if, by dividing the whole problem into smaller

ones and assuming that those are approximately independent, more accuracy may be achieved

overall. The net accuracy of the second approach increases with the number of migration

rates. Applying that approach to microsatellite data from Alpine ibex, and accounting for the

possibility that a model without migration could also explain the data, I find no evidence for

substantial gene flow via migration, except for one pair of demes in one direction.

While chapters 3 and 4 deal with neutral variation, in chapter 5 I investigate if an allele

of the Major Histocompatibility Complex (MHC) has been under selection over the last ten

generations. Short- and medium-term methods for detecting signals of selection are combined.

vii
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For the medium-term analysis, I adapt a matrix iteration approach that allows for joint esti-

mation of the initial allele frequency, the dominance coefficient, and the strength of selection.

The focal MHC allele is shared with domestic goat, and an interesting side issue is if this re-

flects an ancestral polymorphism or is due to recent introgression via hybridization. I find most

evidence for asymmetric overdominance (selection coefficient s: 0.974; equilibrium frequency:

0.125) or directional selection against the ‘goat’ allele (s: 0.5) with partial recessivity. Both

scenarios suggest a disadvantage of the ‘goat’ homozygote, but differ in the relative fitness of

the heterozygotes.

Overall, two aspects play a dominating role in this thesis: the biological questions and the

process of inference. They are linked, yet while the proximate motivation for the biological

component is given by a specific system – the structured population of Alpine ibex in the Swiss

Alps – the methods used and advanced here are fairly general and may well be applied in

different contexts.
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Chapter 1

Introduction

1.1 What duck ponds tell us about evolution

When I look out of the window of our office at the Institute of Science and Technology (IST)

Austria, I see a pond with ducks. They belong to the species called mallard (Anas plathyrhyn-

chos). It is July now, and the males are in molt. At that time, they look pale, similar to the

females, and you need to look twice to tell them apart. Yet, there is one duck that is very

different. It is white, taller and has an orange beak. It must belong to a domestic breed. I

have been observing these ducks for a while now, so I know that this white one is a male. And

if you look closely, you will find that some other ducks have white feathers at positions where

mallards normally do not. These are the offspring of the white duck and a female mallard from

the previous year. That story reminds me of another duck pond with mallards, the one on the

Irchel life science campus of the University of Zurich. There was one duck which was taller and

of a different color than the others. Its body shape was reminiscent of that of an Indian Runner

duck, but more bulky. My colleagues and me used to call it Max. Max must also have been a

hybrid between a mallard and a domestic duck. Some years later, when I returned to visit my

former group, I could not find Max anymore. I was not sure whether to feel sorry for Max or

to be glad that – at least for a certain time – ‘nature’ had been restored at the Irchel pond.

What do these duck stories tell us? Most domestic duck breeds descend from A. plathyrhyn-

chos. Their appearance has diverged from that of the mallard, both as a direct consequence as

well as a side effect of artificial selection during the process of domestication. Artificial selection

may be rather strong – just think of the difference between a wolf and a Pekinese dog. Yet, in

the case of ducks, this divergence has not gone as far as to prevent successful intercrossing and

cause what is known as reproductive isolation. The latter would define them as two separate

species. The duck example implies that the processes leading to reproductive isolation may

be gradual. Where do we draw the line? Moreover, if hybridization between domestic and

wild ducks occurs every now and then at duck ponds, why do we not see more hybrids out

there in nature? Is there a limit to their spread? Do they have disadvantages in the wild?

Another question comes up if I think of the white feathers of the hybrid ducks at the IST.

Why are these not found all over the place, but only at specific positions? Why do the hybrids

look similar? Is there a mechanism controlling how characteristics inherited from parents are

distributed, arranged and expressed in the offspring? How are these characteristics transferred

1



2 CHAPTER 1. INTRODUCTION

at all from generation to generation? And: is there maybe more variation than we can see by

eye? What is the importance of such hidden variation? These are questions that lead to the

heart of evolutionary genetics. They are not exclusive to ducks or any organism, but concern

life in general. In this introduction, I would like to mention the most important evolutionary

processes and questions in population genetics, the subfield of evolutionary genetics to which

this thesis may be assigned. I will give an overview on some of this ‘hidden’ variation mentioned

above; on how it is stored and organized, on the way it is transmitted across generations, and

on how it can be detected. I will then introduce Alpine ibex, the species that provides the

biological motivation for this thesis and from which genetic data were used to understand the

recent evolutionary past of a population in Switzerland. I hope to provide the broad context of

this thesis and the questions that will be addressed in later chapters. Each chapter will have a

more specific introduction of its own, where more details and references to relevant literature

are given.

1.2 Evolution, inheritance and genetic variation

When Charles Darwin and Alfred R. Wallace formulated their theories on evolution in the mid-

dle of the 19th century (Darwin 1859; Provine 1971), they did not know about the details of the

underlying mechanisms. Yet, their observations of the diversity of life, both contemporary and

as reflected in historical records, the apparent changes over time, the geographic distribution,

the common patterns and shapes led them to postulate the principle processes of evolution.

They regarded evolution as a gradual process by which new variants develop from existing ones

and, going back in time, by which all living organisms go back to a common origin. At about

the same time, the Austrian/Czech scientist and monk Gregor Mendel conducted experiments

on plants. He crossed different varieties of the Bean (Phaseolus spp.) and the Pea (Pisum

sativum), and observed the color of flowers and the shape and color of the fruits in the offspring

generations. By back-crossing and other variations of the breeding scheme, he postulated fun-

damental rules according to which characteristics of the parent generation are inherited by the

offspring. His experiments suggested that discrete units were transmitted in certain propor-

tions. Mendel also found that novel types could appear, but these did not lose the capability to

re-establish the original types in their offspring. While the hypotheses by Darwin and Wallace

were broadly received and discussed, Mendel’s discoveries were much underappreciated. The

second half of the 19th century brought a heated debate between proponents of different theories

– I am tempted to say speculations – about the kind and mechanism of evolution (see Provine

1971). The debate was essentially about whether evolution happened in discrete steps as the

Mendelians proposed, or gradually as the Biometricians argued.

In 1900, Hugo de Vries, Carl Correns and Erich von Tschermak rediscovered Mendel’s laws

of heredity. This, together with a crucial insight by the British mathematician and statistician

George U. Yule that Mendelism was not necessarily associated with discontinuous evolution,

and that Mendelian factors might themselves be variable in small but discontinuous steps (Yule

1902), anticipated what is nowadays called the evolutionary synthesis (Provine 1971). The

evolutionary synthesis reconciled many of the opposing arguments that were building up at the

turn of the century. It stated that natural selection and gradual evolution were not incompatible
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with Mendelian inheritance in discrete (but potentially small) steps. The evolutionary synthesis

was brought about in the 1930s and 40s by experimental evidence as well as mathematical

theory. Important figures were, among others, Theodosius Dobzhansky, Ronald A. Fisher,

John B. S. Haldane, Julian Huxley and Sewall Wright.

What Mendel had observed as discrete units and what Yule referred to as Mendelian factors

are today called genes. The term goes back to a publication in 1909 by the Danish botanist

Wilhelm Johannsen (Provine 1971). A gene is a unit of heredity. Going back to Mendel, the

concept of a gene had been postulated about fifty years before the physical carriers of the genes

in the nucleus of the cell, the chromosomes, were discovered in 1915 by Thomas H. Morgan

(Provine 1971). It was not until 1952 that the deoxyribonucleic acid (DNA) was identified as

the chemical substance that stores the genetic information (Hershey and Chase 1952). DNA

as a molecule had been discovered much earlier, in 1869, by Friedrich Miescher, who called it

“nuclein” (Dahm 2008). DNA has the structure of a double helix, as discovered by Watson

and Crick (1953) and Rosalind Franklin. The DNA consists of units called nucleotides, each

of which is made up of a sugar, a phosphate and one out of four base molecules (called bases)

– adenine (A), cytosine (C), guanine (G), or thymine (T). The genetic information is stored

in this four-letter alphabet on the DNA. The two strands of a DNA helix run in opposite

directions, and the bases of the two strands are paired according to the rule that A binds

with T, and G with C. They complement each other, and the information is therefore stored

redundantly. This redundancy is crucial, because before cell division, the information has to

be copied (replicated) and redistributed to the two daughter cells so that each of them has the

same information. During replication, the two strands of the DNA helix are forced apart, an

enzyme complex (including the DNA polymerase) walks along the fork between the strands and

synthesizes a complementary strand to both of them. As a result, the double helix is copied

and the two helices can be passed on to each of the daughter cells. Most mammals are diploid,

meaning that each of their cells has two sets of chromosomes. In sexually reproducing organisms,

one set comes from one parent, the other from the second. The chromosomes that correspond

to each other are called homologues. For reproduction, diploid organisms produce a particular

type of cells, the gametes. These have only one set of chromosomes and are therefore haploid.

They are built by a special type of cell division, during which the homologue chromosomes are

separated, such that each gamete contains only half the genetic information of the cell it was

built from. When two gametes meet and fuse during fertilization, the resulting zygote has again

two full sets of chromosomes; now, one set originates from one parent, and the other from the

second parent. This is the mechanism underlying Mendelian inheritance. The fact that, during

sexual reproduction, the combination of chromosomes is to some extent re-shuffled, is called

recombination. These two mechanisms determine how genes are passed on from one generation

to the next, and how statistical associations among genes are broken up.

DNA may be separated into coding and non-coding parts. The coding DNA is read by

enzymes, transcribed to an intermediate molecule – the ribonucleic acid (RNA) – which is then

translated by a macromolecule called ribosome into sequences of amino acids. This last step

is accomplished according to the genetic code that maps to every possible triple of bases one

or several amino acids. Amino acids are the building blocks of proteins. The proteins serve as

enzymes in biochemical reactions or as structural units of the cells. They are therefore directly
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linked to the function and development of different parts of an organism. This cascade of events

from DNA to function reflects the way genes are expressed. It also links the genotype – the

genetic constitution of an organism – to its phenotype – the set of characteristics and traits by

which an organism interacts with its environment. The phenotype itself may be affected by

the environment, not only by the genes. Understanding exactly how a genotype translates into

a phenotype, accounting for the effects of the environment, is of great interest, but a difficult

task. The non-coding DNA does not code for proteins, but may nevertheless have a function.

For example, it may contain particular nucleotide sequences to which proteins bind. This way,

non-coding DNA sequences can act as regulators of gene expression, enhancers, or promoters.

Moreover, they may play a structural role in determining how far particular genes are from

each other, which can again effect the expression of genes in the coding DNA. The ensemble of

coding and non-coding DNA in an organism is called the genome.

Above, I have introduced the gene as the unit of heredity. To be more precise, a gene is a

region on the DNA that is associated with some function (Pearson 2006). An obvious function is

coding for a protein, but the function may also be to serve as a binding site where proteins bind

and from which they regulate processes in the cell nucleus (see above). The order, arrangement

and number of genes on the DNA varies greatly between species. A more general term than

gene is locus. A locus refers to a particular position on the genome, be it part of a coding or

non-coding region. Locus is often used to denote a gene or some non-functional DNA that is

of particular interest. So, locus is a more general term than gene.

DNA is subject to processes that alter its chemical composition and rearrange parts of

it. This is called mutation. Mutations may be caused by errors during replication, radiation,

mutagenic chemicals, viruses or other pieces of DNA that can transpose themselves from one

DNA molecule to another one. Mutations can affect single base pairs (point mutations), but also

result in insertion, deletion or inversion of whole sections of DNA. Both coding and non-coding

DNA can be affected by mutation. If mutations occur in protein-coding parts of the DNA,

they may or may not be reflected in the protein, depending on the genetic code. The code is

redundant, associating several triplets of bases to a given amino acid. Therefore, it is resistant

to some mutations. Mutations that are reflected in the protein are called non-synonymous.

Those that are not are called synonymous. Similarly, mutations in non-coding regions of the

DNA may or may not have an effect, depending on whether they occur at functional or non-

functional positions. Mutation is the process by which new genetic variation is caused. In

contrast, recombination (see above) is the process by which existing variation is re-arranged

during reproduction.

Due to mutations, organisms of the same species may differ at particular positions in their

genome. Loci may occur in different variations, some of which are reflected in variation that is

visible to the environment. Different variants of a locus are called alleles. In diploid organisms,

the genotype at a particular locus for a given individual is made up of the two alleles it received

from its parents. If the two alleles are identical, then the individual is homozygous for that

locus, otherwise it is heterozygous. The two alleles do not necessarily contribute equally to the

corresponding phenotype. The asymmetry in this contribution is called dominance. There is

no dominance if the two alleles contribute equally. An allele that overrides the other to some

degree is called dominant ; the other allele is then called recessive.
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The first molecular data became available in the form of allozymes (Hubby and Lewontin

1966). These are variants of a given protein that differ in their electric charge, and that are

coded by different alleles of the gene that codes for that protein. When put onto a gel across

which an electrical potential is established, allozymes move at a speed that depends on their

electrical charge and on their size. Relative differences can then be detected. This process

is called allozyme electrophoresis. It provided insight into levels of molecular diversity and

allowed first comparisons between theoretical predictions and data. About ten years later, it

became possible to sequence, i.e. read, RNA and DNA directly. In 1983, the polymerase chain

reaction (PCR), was invented. It allowed for amplification of specific sections of DNA and

made it possible to study variation at the DNA level. Before molecular and genetic data of

this kind were available, only variation that was visible to the human eye could be detected.

Genetic data revealed much more, previously hidden variation. Loci that are used to detect

this variation are called genetic markers. One type of markers are the so called microsatellites,

also known as short tandem repeats (STRs). These consist of a specific motif of one to six

base pairs of length, which is repeated a certain number of times. The number of times the

motif is repeated defines the different alleles. Microsatellites have a relatively high mutation

rate compared to other types of loci; in mammals it is estimated to 10−4 to 10−2 per locus

and generation (Di Rienzo et al. 1998; Estoup and Angers 1998). The predominant cause

for mutations in microsatellites is slippage of the protein complex responsible for replication,

resulting in additional motifs being added, or in motifs being lost. The resulting mutation

process can be modelled by the stepwise model of mutation that also applies to allozymes

(Kimura and Ohta 1978). Microsatellites mainly occur in non-coding DNA and have been used

extensively as markers in studies on genetic variation in mammals. In chapter 3, 4 and 5,

microsatellite data are used to indirectly estimate different evolutionary parameters of interest

(see below). There are other types of markers, with corresponding models of mutation, and

other methods for obtaining genetic data. Covering these would be beyond the scope of this

introduction, however. Next, I will focus on the evolutionary processes and the questions that

are of interest in population genetics.

1.3 Evolutionary processes and questions in population genetics

Organisms can be categorized into species. One definition of a species is that it comprises all

organisms that are capable of interbreeding and producing fertile offspring. Within a species,

however, organisms may be organized in further units. An important unit is that of a population.

A population is made up of organisms that belong to the same species and live in the same

area so that every individual can in principle mate with any other to produce offspring. More

precisely, individuals within a population are considered more likely to mate with each other

than are two individuals from two different populations. Both the species and population

concept are vague (e.g. Barton et al. 2007). Going into details here would lead us too far

off track, however. Population genetics is the study of the change in time and space of allele

frequencies in populations. There are five fundamental evolutionary processes that cause such

change. We have already encountered two – mutation and recombination. The others are

selection, gene flow and genetic drift.
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To understand selection, it is helpful to introduce the concept of fitness. Fitness can be

defined with respect to a phenotype or a genotype. For simplicity, we assume here that the

genotype translates directly into a phenotype. As mentioned above, this is in general not

the case, but it simplifies the explanation. Fitness then describes the ability of a genotype to

survive and produce viable offspring. If different genotypes have different fitnesses, the genotype

frequencies will change from generation to generation. Because the genotypes are made up of

alleles, allele frequencies are in general also affected by selection. The fitness of an allele (the

so called marginal fitness) is defined as the mean fitness of all the genotypes that contain this

allele, weighted by the probability that the allele occurs in the respective genotype. The change

in allele frequencies due to fitness differences is called selection. Selection may be due to fitness

differences felt in the natural environment, or due to fitness differences artificially imposed by

humans (e.g. in a laboratory or during domestication), and is then called natural selection or

artificial selection, respectively. A locus or gene that is not under selection is called neutral.

Gene flow describes the change in allele frequencies due to the displacement of genes in

space. In most organisms, gene flow occurs via the physical movement of individuals, seeds

or gametes between the place of birth (or the place where gametes were built) and the place

of reproduction (or fertilization). This physical movement is called migration or dispersal.

Strictly speaking, gene flow can also refer to the movement of genes between different genomic

backgrounds within an organism, or the exchange of genetic material from cell to cell in bacteria,

for example. Here, we focus on gene flow via migration or dispersal. The concept of gene flow

implies a notion of space. Indeed, the natural environment of populations enforces some spatial

organisation. For example, islands on the ocean constrain the spatial distribution of land

animals and plants. Mountains may limit the spread of organisms that cannot pass them.

Populations are therefore often subdivided into smaller units – subpopulations or demes. The

rate at which demes exchange migrants is called migration rate. It is a demographic parameter

with a direct impact on the strength of gene flow.

Genetic drift describes the random changes in allele frequencies from generation to genera-

tion. These changes are a consequence of the finite number of individuals in real populations.

At reproduction, the genetic composition of the offspring generation is sampled from the gene

pool (the ensemble of gametes) produced by the parental generation. Because the offspring

generation is again finite, some alleles may be lost, others may increase in frequency just by

chance. Genetic drift does not change the expected allele frequency in the next generation,

but it increases the variance of the allele frequency. The effect of this random sampling de-

creases with increasing size of the population. For large enough populations, genetic drift has

a negligible effect.

The genetic composition of natural populations is affected by a combination of these evo-

lutionary forces. Population genetic theory studies the evolutionary processes individually, as

well as jointly. Examples of questions that are addressed are the following:

1. How and when is genetic diversity maintained?

2. What level of gene flow is necessary to prevent two demes from diverging from each other?

3. How quickly is genetic diversity lost as a consequence of genetic drift?
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4. What strength of selection is necessary to overcome the random effects of drift?

5. What is the effect of demography on genetic diversity?

Population genetic theory uses mathematics and statistics to answer these questions. Math-

ematical models play an important role in this process. They are used to formalize the evo-

lutionary forces, but also the demography of populations. Models provide some abstraction

and simplification of the real problem, while still capturing the features of interest. Building

a model implies making assumptions. To study the model analytically, it is often necessary

to make additional assumptions. For example, a rather simplistic model of a population could

include the following assumptions:

- Individuals are diploid

- Inheritance occurs according to Mendel’s laws

- There is sexual reproduction with random mating

- There is no mutation, no selection and no gene flow

- The population is infinitely large

- There is one locus with two alleles, A1 and A2

Denoting the frequency of the A1 allele by p and that of the A2 allele by q = 1 − p, we could

then ask about the change of p from one generation to the next. Let us denote the frequency

of the three possible genotypes, A1A1, A1A2 and A2A2 by P11, P12 and P22, respectively.

Further, assume that the adults in the current generation contribute equally to an infinitely

large pool of gametes, and that these gametes then unite randomly to form the zygotes of the

next generation. Denoting the genotype frequencies in the next generation with a prime, we

have

P ′11 = p2

P ′12 = 2pq (1.1)

P ′22 = q2.

What is the allele frequency p′ in the zygotes? Because A1A1 has two A1 alleles, and A1A2 has

one A1 allele, and using (1.1) we obtain

p′ = (2P ′11 + P ′12)/2 = (2p2 + 2pq)/2 = p2 + pq = p(p+ q) = p. (1.2)

We have just shown that the allele frequency does not change. Moreover, because the allele fre-

quencies do not change, the genotype frequencies in further generations will also not be changed.

Both will remain constant as long as the assumptions above hold. This is known as the Hardy-

Weinberg principle (Halliburton 2004), and the proportions in (1.1) are the Hardy-Weinberg

proportions. Any violation to the assumptions may cause this to break down. Obviously, this

model is not very realistic. Moreover, if we go out, sample some genetic data and find that

(1.1) holds, does this mean that all the assumptions apply to the population? No. We cannot

exclude that a particular combination of evolutionary forces led to genotype and allele frequen-

cies in accordance with the Hardy-Weinberg proportions. The only valid conclusion we could

draw from this considerations is the following: If we do find deviations from Hardy-Weinberg
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proportions in a sample, then at least one assumption must be violated. Overall, we cannot

infer very much from this simple model. But the example illustrates the idea of using a model,

of stating assumptions, and of using the model to obtain the answer to a question. This is

the principle that goes throughout population genetic theory. Usually, the models are more

complicated, sometimes the assumptions are more realistic.

The early mathematical treatment of population genetics was strongly influenced by the

work of Fisher (1930), Haldane (1932) and Wright (1931). They laid the groundwork for the

quantitative study of mutation, selection, gene flow and genetic drift. Wright and Fisher for-

mulated a model of an idealized population, later called the Wright-Fisher model, to describe

the effects of genetic drift under a set of assumptions (Fisher 1922a; Wright 1931). The Wright-

Fisher model has since played a crucial role in theoretical studies. Wright (1931) introduced

the effective population size, Ne, as the size of a Wright-Fisher population that would expe-

rience the same amount of genetic drift as the population under consideration. This concept

became important, because it allowed to map a large number of more complicated models to

the Wright-Fisher model, such that results obtained for the Wright-Fisher model could be gen-

eralized for these other models. In chapters 3, 4, and especially 5, I make use of this principle.

Wright (1931, 1943, 1951) also studied the effects of inbreeding and population structure on

genetic diversity. Fisher and Haldane focussed more on the theory of selection. Fisher had a

strong influence on quantitative genetics and first applied the diffusion equations to approx-

imate the distribution of allele frequencies among populations (Fisher 1922a). The diffusion

approximation was later also applied by Wright (1937, 1945). Haldane analyzed selection in the

context of various dominance schemes, modes of inheritance, mating patterns, mutation, mul-

tiple loci, non-overlapping generations or competition. His work showed that natural selection

was a plausible mechanism for evolution (Haldane 1932), a question that had been strongly

debated before (Provine 1971). Later important contributions to population genetic theory

include the work by Motoo Kimura, Tomoko Ohta and Gustave Malécot. Kimura and Ohta

extensively used the diffusion approximation, most importantly to study fixation times and

fixation probabilities of mutations under a variety of conditions (Kimura and Ohta 1969; Ohta

and Kimura 1972; Kimura and Ohta 1974). Fixation means that an allele reaches frequency

p = 1, so that all other alleles at that locus are lost. Variation at that locus can only be

re-established by mutation or gene flow into the population. Ohta and Kimura also postulated

the (nearly) neutral theory of evolution as an attempt to reconcile theory with observed levels

of genetic diversity (Kimura 1984). That theory was much debated; its opponents believed

that natural selection played a much more important role in shaping genetic diversity than did

Ohta and Kimura. Malécot, on the other hand, developed the concept of identity by descent

(Malécot 1969), extending earlier, related work by Wright on inbreeding coefficients and genetic

drift. Kimura and his collaborators, as well as Malécot, also had a strong focus on spatially

structured populations (Kimura and Ohta 1978; Nagylaki 1989). Moreover, Malécot’s work

anticipated a shift in population genetic modelling from a forward to a retrospective view: In

the early 80s, Kingman (1982) established a stochastic theory for the ancestral relationship of

genes, the coalescent theory. The coalescent models genetic drift, as one follows the history of a

sample of genes back into the past. This ancestry is reflected in a genealogy, a bifurcating tree.

All lineages ultimately coalesce in the most recent common ancestor. The coalescent theory
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provides information about the length of the tree and the distribution of coalescent times, and

it allows for much more efficient simulation of populations compared to the forward perspective.

Many classical results can be re-interpreted and rediscovered in the coalescent framework. The

coalescent theory has been extended to incorporate spatial structure, population growth, al-

ternative models of reproduction, and – to some extent – recombination and selection (Kaplan

et al. 1988; Hudson and Kaplan 1988; Hein et al. 2005; Wakeley 2009).

1.4 Statistical population genetics

Within the field of population genetics, there is one branch which is concerned with the es-

timation of evolutionary or demographic parameters, given observed data. That branch may

be called statistical population genetics. Some questions of interest in statistical population

genetics are:

- What is the relative strength of evolutionary processes in shaping genetic diversity?

- What are the relative time scales over which the evolutionary forces act?

- What is the rate at which genes mutate?

- What is the migration rate between two or several demes?

- What is the extent of inbreeding in a population?

- What strength and mode of selection is compatible with an observed genetic composition?

Statistical population genetics uses general methods and principles of inference to answer such

questions. Inference is the process of drawing conclusions about unobserved quantities of a

system of interest, given some observed quantities. The unobserved quantities are often the

parameters of a process in the system. The observed quantities may correspond to random

variables or, more generally, to what we call the data. Inference is tightly linked to the concept

of probability. Throughout this thesis, I am mainly taking a Bayesian viewpoint of inference.

In Bayesian statistics, probabilities quantify a ‘belief’ in some fact, e.g. that a quantity of

interest has a certain value, given some assumptions or previous knowledge (e.g. MacKay 2003).

Another way of looking at it is to say that, in Bayesian statistics, probabilities are used to

quantify uncertainty. In essence, Bayesian inference tries to estimate a probability distribution

across all potential values of the parameter(s) of interest, given what is called prior knowledge

or belief. A probability distribution is a function that assigns a probability to each value of its

argument. Bayesian statistics goes back to Bayes’ theorem, which expresses the probability of

an event A given another event B in terms of the inverse conditional probability (Gelman et al.

2004):

P (A | B) =
P (B | A)P (A)

P (B)
, (1.3)

where P (A | B) means ‘the probability of A conditioning on B’ or ‘. . . given B’. In Bayesian

statistics, as opposed to the frequentists’ interpretation, a probability may not only be assigned

to an observable quantity, but also to an unobservable parameter.

To make things concrete, suppose we have a ‘system’ – a population of ducks, say – and we

want to know ‘something‘ about that system we cannot observe directly. We might be interested
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in the mutation rate at a certain locus. What are the steps to get to an answer? Mutations

leave traces in the DNA, so we would first collect samples (blood, tissue, meat), extract DNA

and amplify it at that locus, to then determine the sequences (or alleles) for every sampled

individual. For this, we would need a lab. Suppose we do or we have a collaborator who does,

and that we have obtained our raw data; from now on, we need paper, pencil and, perhaps, a

computer. Second, we need a model that links the process of interest – mutation – with the

observed data. That model must be probabilistic, meaning that it should provide a probability

distribution of both the observed data and the parameter – in our case the mutation rate. The

model also needs to make assumptions about demography and, potentially, other processes

that affected the past of our duck population. In example 2 of chapter 2 we will encounter one

model that might be appropriate in this case. Third, we need a methodology to condition on the

observed data and compute the posterior distribution. Since we do Bayesian statistics, we also

have to chose a prior distribution. That choice can be more or less informative. If we do have

prior knowledge on the mutation rate, we should incorporate it; otherwise, it is common practice

to choose a prior that covers the range of possible parameter values uniformly on an appropriate

scale. The choice of the prior distribution can have a strong effect on the result, in particular

if the data are not informative. With respect to (1.3), A corresponds to the mutation rate and

B to the observed data. P (A | B) is called the posterior distribution, P (B | A) the likelihood,

P (A) the prior distribution and P (B) is the total probability of the data, also called the

marginal likelihood (see chapter 2). Having found the posterior distribution, we may compute

point or interval estimates of the mutation rate. The appealing property of Bayesian inference

is that its result, the posterior distribution, reveals intuitively the uncertainty attributed to our

inference. As a fourth step, we want to evaluate our inference. Does the model fit the observed

data? Is the result plausible? Evaluation is often an iterative process; we may have to go back,

adjust our model, and re-calculate the posterior distribution (Gelman et al. 2004).

The above example illustrates a process that is common to many studies in statistical

population genetics. It will appear in all the following chapters of this thesis. Steps two and

three are probably the most demanding ones. In chapter 2, I will introduce an approximate

method for step 3 – the computation of the posterior distribution – called approximate Bayesian

computation (ABC). In chapters 3 and 4, ABC will be used to estimate evolutionary and

demographic parameters in Alpine ibex (see below). In chapter 5, an exact method is used for

inference about the mode and strength of selection on a particular gene in Alpine ibex.

1.5 Alpine ibex (Capra ibex) and its history

At the end of an undergraduate course at the University of Zurich, I had the chance to partici-

pate in a birdwatching trip across Scotland. On the coast near Aberdeen, Lukas Keller told me

about his plans to engage in a research project on molecular ecology and population genetics of

Alpine ibex. A few months later, I joined his group and started working in that project. That

was the beginning of a process that led to this thesis – and the reason why birds will not play

a role in it anymore from now on.

Alpine ibex (Capra ibex ) is a wild goat species (genus Capra), belonging to the bovids

(family Bovidae), and therefore to the even-toed ungulates (order Artiodactyla). Alpine ibex
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are one of several ibex species occuring in Europe, Asia and northern Africa. The contemporary

distribution of Alpine ibex is restricted to the European Alps, in the alpine zone at altitudes

of 1,800 to 3,000 meters. Alpine ibex was almost extinct by the beginning of the 18th century,

most likely as a consequence of over-hunting since the 16th century (Stuwe and Nievergelt

1991). It is speculated that climatic changes also played a role. Only one population of 100 to

300 individuals was left in the Gran Paradiso Mountains in the Italian Alps. After protection

in 1858 by the Italian King, the Gran Paradiso population increased to approximately 3,000

individuals by the beginning of the 20th century (Stuwe and Scribner 1989). Between 1906

and 1942, roughly 100 ibex captured in the Gran Paradiso population were brought to two

zoos in Switzerland, where a breeding program was started (Stuwe and Scribner 1989). Since

1911, several former populations have been stocked with founders from these captive breeding

program. Some of these re-established wild populations were later used as a reservoir for further

translocations. Alpine ibex were also re-introduced to other countries along the European Alps.

The efforts were successful; by 2005, the total ibex population in Switzerland was estimated

as 14,000, and in Europe as 40,000 (Biebach and Keller 2009). The population in the Swiss

Alps can be divided into more or less discrete colonies, called demes in the rest of this thesis.

The re-introduction of ibex into the Swiss Alps has been documented in great detail by game

keepers and hunters. For a large number of demes, census sizes have been recorded, and the

number and sex of individuals transferred between demes have been listed. This information,

although spread over different sources, could be gathered and the complete history reconstructed

(Aeschbacher 2007; Biebach and Keller 2009).

Different ibex demes vary in the number of founder events and bottlenecks they experienced.

They also differ in their dynamics and the number of generation since re-introduction. Moreover,

some demes were affected by environmental effects such as diseases, avalanches and climate

(Sæther et al. 2002; Grøtan et al. 2008, see also chapters 4 and 5 of this thesis). Since 1977,

hunting has been imposed on the majority of demes in Switzerland to control population density.

Annual culling rates range from 6 to 12% (Stuwe and Nievergelt 1991). Some demes declined

in size at the end of the 1990s, and it was not clear for what reasons. After 2000, the Swiss

Federal Office for the Environment (FOEN) initiated a research project to investigate potential

causes, and to evaluate and improve the existing management strategy. This project had

several modules, one on population demography and dynamics, one on diseases, another on

(behavioral) ecology, and one on molecular ecology and population genetics. My thesis has its

roots in the last module. Its central theme is to infer demographic and evolutionary parameters

from genetic data, conditioning on the demographic information available. Along these lines, it

became necessary to tailor, and further develop, existing methods of inference for that specific

setting. That is the reason why, apart from the biological motivation from Alpine ibex, this

thesis has a strong methodological focus. A more detailed outline is given in the following

section.

1.6 Outline of thesis

In chapter 2, I give an introduction to approximate Bayesian computation (ABC), the method

of inference used in two of the following chapters. Chapter 3 is concerned with the choice of
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summary statistics in ABC. Since statistics are in most cases not sufficient (for a definition,

see next chapter, section 2.2), that choice involves a trade-off between loss of information

and reduction of dimensionality. The latter may increase the efficiency of ABC. Me and my

collaborators propose a novel approach for choosing summary statistics basen on boosting, a

technique developed in the machine learning literature. Different types of boosting are proposed

and compared to partial least squares regression (PLS) as an alternative method. To mitigate

the lack of sufficiency, we also propose an approach for choosing summary statistics locally, in

the putative neighborhood of parameter values inferred from the observed data. We study a

demographic model motivated by the re-introduction of Alpine ibex (Capra ibex ) into the Swiss

Alps. The parameters of interest are the mean and standard deviation across microsatellites

of the scaled ancestral mutation rate (θanc = 4Neu), and the proportion of males obtaining

access to matings per breeding season (ω). In a simulation study, we assess the accuracy and

coverage properties of the various methods. We find that ABC with summary statistics chosen

locally via boosting with the L2-loss function performs best. Applying that method to the ibex

data, we estimate θ̂anc ≈ 1.288, and find that most of the variation across loci of the ancestral

mutation rate u is between 7.7 · 10−4 and 3.5 · 10−3. The proportion of males with access to

matings per breeding season is estimated to ω̂ ≈ 0.21, which is in good agreement with recent

independent estimates.

In chapter 4, my collaborators and I propose a two-step procedure for estimating multi-

ple migration rates in the ABC framework, accounting for global nuisance parameters. We

condition on a known, but complex demographic model of a spatially subdivided population,

motivated by the re-introduction of Alpine ibex into Switzerland. In a first step, the global

parameters ancestral mutation rate and male mating skew have been estimated for the whole

population in chapter 3. In chapter 4, we estimate the migration rates independently for clus-

ters of demes putatively connected by migration. For large clusters (many migration rates),

ABC runs into the curse of dimensionality. We therefore assess by simulation if estimation per

pair of demes is a valid alternative. We find that the trade-off between reduced dimensionality

for the pairwise estimation on the one hand, and lower accuracy due to the assumption of

pairwise independence on the other, depends on the number of migration rates to be inferred.

The net accuracy of the pairwise approach increases with the number of migration rates. To

distinguish between low and zero migration, we perform an ABC-type model comparison proce-

dure between a model with migration and an alternative model without migration. We further

confirm boosting as a valid method for choosing summary statistics in ABC. Applying the

approach to microsatellite data from Alpine ibex, we find no evidence for substantial gene flow

via migration, except for one pair of demes in one direction.

Chapter 5 is devoted to a gene of the Major Histocompatibility Complex (MHC), and to

the question whether this gene has recently been under selection in Alpine ibex. MHC is likely

to be under parasite-mediated balancing selection in many vertebrate taxa. However, empirical

studies have not provided a univocal answer regarding the underlying mechanism (overdomi-

nance, spatio-temporally varying selection) and the strength of selection. My collaborators and

I combine short- and medium-term evidence to infer the evolutionary fate of an MHC allele in

a structured population of Alpine ibex in the Swiss Alps. The allele is shared with domestic

goat. As a short-term signal of selection, we find a negative correlation between heterozygos-
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ity and age at sampling, suggesting viability selection with underdominance or intermediate

dominance. For the medium-term, we focus on the observed allele frequency distribution. Low

variance across demes implies spatially homogeneous selection. To estimate the selection coeffi-

cient (s) we employ a drift-selection-migration model and develop a matrix iteration approach

to compute likelihoods. We find most evidence for asymmetric overdominance (s: 0.974; equi-

librium frequency: 0.125) or directional selection against the ‘goat’ allele (s: 0.5) with partial

recessivity. Both scenarios suggest a disadvantage of the ‘goat’ homozygote, but differ in the

relative fitness of the heterozygotes. We relate our results to MHC function and hypotheses on

its evolution, and discuss the disparity between short- and medium-term evidence.

Chapters 3 and 4 are closely related, and it is best to read them one after another in that

order. Chapter 5, on the other hand, may also be read separately.

1.7 Format, use of language and electronic resources

Chapters 3 to 5 have been written as journal papers. Subject to editorial changes, they will

be submitted shortly after submission of this thesis. Since co-authors were involved as stated

at the beginning of each chapter, I use ‘we’ throughout these chapters. Nevertheless, I have

written the whole text as it appears in this thesis myself. Each of these chapters has its own

introduction. In addition, appendices and supporting information are given at the end of each

chapter. A website with electronic resources such as the simulation program SPoCS written by

me and used in chapters 3 to 5, scripts for analysis and for parallelizing ABC on a cluster, and

tables with additional information that could not be included in the main text can be accessed

via http://pub.ist.ac.at/~saeschbacher/phd_e-sources/.

http://pub.ist.ac.at/~saeschbacher/phd_e-sources/




Chapter 2

Approximate Bayesian Computation

2.1 Introduction

Approximate Bayesian computation (ABC) is a collective term for a family of inference methods

in Bayesian statistics (Beaumont 2010). ABC uses Monte Carlo simulations and a rejection

algorithm to condition on observed data. It does not depend on explicit calculation of the

likelihood, and is therefore most often applied in contexts where computation of the likelihood

is impossible or prohibitive. ABC was invented in a series of papers in evolutionary and

population genetics in the late 1990s. It has since been further developed and applied in

many studies, also in other fields than evolutionary genetics. In this chapter, I give a short

introduction to ABC. I will explain the principle of ABC, discuss some of its advantages and

limitations, and present strategies to overcome the latter. I will also illustrate ABC with two

examples and give some hints for using ABC in practice. This introduction is not intended to

be exhaustive, since excellent reviews already exist (see end of this chapter). Rather, I would

like to introduce the concept and some notation. I hope to prepare the reader for chapters 3

and 4, in which ABC is used to infer mutation rates, male mating skew and migration rates in

Alpine ibex, and where a methodological contribution to ABC is proposed.

2.2 The principle of ABC

In Bayesian statistics, the desired quantity is the posterior distribution of the parameter of

interest, φ, given some observed data, D. Here, φ is actually a vector of parameters, the

components of which I denote by φ(k) (k = 1, . . . ,K). Let the data D also be multidimensional.

For instance, they may represent the full allele frequency distribution or the joint site-frequency

distribution from one or several populations, sampled at a certain number of loci. According to

the Bayesian paradigm, the posterior distribution is proportional to the probability of the data

given a certain parameter value, times the unconditional probability of that parameter value.

The former is called the likelihood of the parameter, the latter is the prior distribution. More

formally, we have

π(φ | D) ∝ P (D | φ)π(φ), (2.1)

where π(φ | D) is the posterior distribution, P (D | φ) the likeilihood, and π(φ) the prior

distribution. The posterior is only proportional to the right-hand side of (2.1), because the latter

15
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is not a proper probability density. To have equality, the right-hand side must be normalized

by the total probability of the data, P (D) =
∫

Φ
P (D | φ)π(φ) dφ, so that

π(φ | D) =
P (D | φ)π(φ)

P (D)
. (2.2)

P (D) is also called the marginal likelihood, because the parameter(s) are marginalized over by

integration. It is further referred to as the prior predictive distribution, emphasizing that no

conditioning on the observed data has occurred yet. P (D) is independent of the parameter

value, and therefore a constant for a given prior range Φ.

For reasonably complex models – and therefore for most practical applications in evolu-

tionary genetics – computation of P (D) is challenging, because it involves that potentially

complicated integration over the whole parameter space with prior support. In some situa-

tions, it is possible to compute P (D | φ) for a given value of φ, but just the integration is

prohibitive. Then, Markov chain Monte Carlo (MCMC) or importance sampling (IM) tech-

niques may be used to approximate the posterior distribution (see e.g. MacKay 2003). For

these methods, the proportionality in (2.1) suffices, which is why P (D) is not needed. MCMC

and IS are well studied and established in the context of likelihood-based inference. However,

they have a number of pitfalls and their application requires careful tuning (Marjoram and

Tavaré 2006; Sisson et al. 2007; Kuhner 2009; Bertorelle et al. 2010). In cases where even

computing P (D | φ) is prohibitive, alternative approaches are needed. ABC offers one by di-

rectly targeting the posterior distribution. Because it avoids calculation of the likelihood, ABC

is sometimes referred to as a likelihood-free method of inference (Ratmann et al. 2007; Bazin

et al. 2010; Sisson and Fan 2010). However, this is slightly misleading, since the likelihood does

not disappear – it is just not explicitly calculated. The step of conditioning on the data – the

conceptual meaning of a likelihood – is implicitly present in ABC, as will be seen below.

The central principle of ABC is that a large number of Monte Carlo simulations are per-

formed under a model that is believed to explain how the observed data were generated. Each

of the simulations takes as input a sample of parameter values φ′ from the prior distribution –

one value for each of the components of φ – and yields as output the simulated data D′ with

the same dimensionality as the observed data, D. The simulated data are then compared to

the observed data, and those simulations that resulted in a close match between D′ and D are

accepted, the others rejected. The meaning of close in the previous sentence will be specified

later. The parameter values associated with accepted simulations represent a direct sample

from the posterior distribution of interest (Marjoram et al. 2003). The sample may be visual-

ized in a histogram, or a continuous approximation to π(φ | D) can be obtained via any density

estimation method (e.g. Loader 1996). Point estimates such as the mode, mean or median are

readily obtained, and credible intervals such as 95% highest posterior density (HPD) intervals

can be calculated (Gelman et al. 2004). The choice and justification of the model under which

simulations are performed is an interesting topic of its own, but beyond the scope of this text

(see e.g. Gelman et al. 2004). We assume that the model is well chosen.
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A generic rejection algorithm formalizing the above description is:

Generic rejection algorithm:

A.1 For t = 1 to t = N :

i Sample φ′t from π(φ).

ii Simulate D′t from P (D | φ′t).
iii Accept φ′t if D′t = D.

A.2 Estimate the posterior density π(φ | D) from the accepted points.

In principle, this algorithm approximates the posterior distribution arbitrarily well for large

enough N . It is further straightforward to parallelize it on a cluster computer, because the

iterations are independent. This advantage carries over without limitation to some, but not all

ABC algorithms (see below). However, the rejection algorithm above has limitations in practice.

First, simulation under step A.1.ii may take some time, depending on the complexity of the

model and the implementation. Therefore, there is a constraint on N and the approximation

cannot be deliberately precise. Second, if D is high-dimensional, there is little chance for any

simulations to be accepted in step A.1.iii. This renders posterior density estimation in A.2

problematic. To alleviate that second limitation, one may replace the rejection condition in

step A.1.iii by:

A.1.iii’ Accept φ′t if ρ(D′t, D) ≤ δε,

where ρ(·) is some distance metric, and δε a threshold defined on the same space as ρ(·) (see be-

low). The threshold δε is usually chosen implicitly such that a proportion ε of the N simulations

is accepted. This adjustment implies a potential reduction of the dimensionality – ρ(·) may be

lower-dimensional than D – and it allows for a control over the acceptance rate. Together, ρ(·)
and δε formalize what was meant by ‘close’ in the previous paragraph: a simulation is close

to the observed target, if the distance as measured with the metric ρ(·) between the two is

smaller than δε. The result of this altered algorithm is a sample of independent and identically

distributed observations from π(φ | ρ(D′t, D) ≤ δε), and hence an approximation to π(φ | D)

(Marjoram et al. 2003).

When D is high-dimensional or continuous, the above adjustment may still be inefficient.

Therefore, the full dataD are usually projected to a lower-dimensional set of summary statistics,

S(D). Let S have p dimensions. This yields what is commonly referred to as the basic ABC

rejection algorithm:

ABC rejection algorithm:

B.1 Compute s = S(D).

B.2 For t = 1 to t = N :

i Sample φ′t from π(φ).

ii Simulate D′t from P (D | φ′t), and compute the corresponding statistics s′ = S(D′).
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iii Accept φ′t if ρ(s′, s) ≤ δε.

B.3 Estimate the posterior density π(φ | D) from the accepted points.

This algorithm samples independent and identically distributed realisations of π(φ | ρ(s′, s) ≤
δε). If N were increased to infinity and δε reduced to zero, the ABC rejection algorithm should

converge to the generic rejection algorithm above, if the summary statistics are sufficient. A

statistic is called sufficient, if the likelihood of the parameter of interest given the full data is the

same as the likelihood of the parameter given the summary statistic. In other words, a summary

statistic is sufficient, if it extracts all information that can be extracted from the full data on

the parameter. However, in population genetics, hardly any commonly used summary statistic

is sufficient. In practice, one therefore tries to choose an optimal combination of statistics.

This choice is one of the main challenges in ABC (see below). Another choice that must be

made is the one of the metric ρ(·). The Euclidean distance or a weighted version of it, e.g. the

Mahalanobis distance (Mahalanobis 1936), is often used (Beaumont et al. 2002; Hamilton et al.

2005; Beaumont 2010). The rejection kernel – a function that assigns to each data point a weight

according to which the point is considered for posterior estimation – may then be uniform as

in Pritchard et al. (1999) or Blum and Tran (2010), or a Gaussian or an Epanechnikov kernel

(Wilkinson 2008) (see example 1 below). These are all somewhat arbitrary ad hoc choices, and

so far no explicit strategy for an optimal choice of ρ(·) has been suggested (but see Wilkinson

2008, for some guidance on this topic). In most applications, the summary statistics are scaled,

for instance to have zero mean and unit variance (Beaumont 2010), prior to the computation

of the metric. An alternative is to perform a principal component analysis to rotate and

de-correlate the summary statistics (Leuenberger and Wegmann 2010). If the Mahalanobis

distance is chosen, the scaling by the covariances is implicit. Such scaling makes the rejection

condition less stringent along those summary statistics which are not very informative about

the parameter, and more focussed on those that are. This makes sense, because the former

mainly contribute noise that causes unjustified rejections and decreases the efficiency of the

algorithm (see example 2 below). A third choice is that of the acceptance rate ε. This is the

main tuning parameter, with a potentially strong influence on the accuracy of the posterior

estimate. If ε is increased, more points are accepted, but these will on average be further away

from the underlying truth and may introduce an error. If ε is chosen too small, few points will

be accepted, such that the posterior estimate is affected by a large sampling variance.

To summarize, the ABC rejection algorithm is characterized by the following properties:

1. A finite number N of Monte Carlo simulations is performed and combined with a rejection

step conditioning on the data to directly sample from the posterior distribution.

2. The full data D are projected to a lower-dimensional set of summary statistics S that are

in most cases not sufficient.

3. Conditioning on the data is done with some rejection tolerance δε.

These properties also represent the three approximations that coin the name of ABC. According

to Beaumont (2010), the first rejection algorithm for Bayesian inference of population genetic

parameters was proposed by Tavaré et al. (1997). Tavaré et al. (1997) also replaced the full
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data by a summary statistic, but still relied on the likelihood being available analytically. Fu

and Li (1997) and Weiss and von Haeseler (1998) replaced explicit calculation of likelihoods

by a simulation step for one and multiple summary statistics, respectively. They sampled the

parameters for their simulations from a grid of values, not from a prior distribution. The first

‘real’ ABC rejection algorithm was used in Pritchard et al. (1999) to study the demographic

history of the human Y chromosome. As Marjoram et al. (2003) and Beaumont (2010) point

out, some aspects that are now part of the ABC framework, such as the use of summary

statistics instead of the full data, or the fitting of simulations to an observation, trace further

back to Diggle and Gratton (1984) or Rubin (1984).

2.3 Three strategies to improve ABC

A limitation of the basic ABC rejection algorithm introduced in the previous section is its low

efficiency: A large number of simulations must be performed, while only a small proportion can

be accepted without substantial loss of precision. This tension increases with the number of

summary statistics in S, which is known as the curse of dimensionality (e.g. Blum and François

2010; Beaumont 2010). The curse of dimensionality describes the following phenomenon. Sup-

pose we have performed N = 105 simulations, and that S1 has only p = 1 dimension. For the

rejection step, we may then require that the one percent of simulations closest to the observed

data are accepted, i.e. ε0 = 0.01. This results in 1’000 accepted simulations, enough for stable

estimation of the posterior density. However, assume a different set of summary statistics, S4,

with p = 4 dimensions. If we now apply the same rejection criterion as before to each of the

four statistics individually, the overall acceptance rate drops to εp0 = 0.014, or 10−6 percent. On

average, no simulation will be accepted. The example is extreme, because usually, the statistics

are not fully uncorrelated, and a less stringent rejection criterion is applied (see Pritchard et al.

1999; Beaumont 2010). Nevertheless, it reveals the need for some strategy to reduce the curse

of dimensionality and improve the efficiency of ABC. Three strategies have been suggested, and

I will discuss them in the following.

2.3.1 Post-rejection adjustment via regression

The first goes back to Beaumont et al. (2002), who proposed fitting a linear regression between

the accepted parameter values and the corresponding summary statistics. The accepted pa-

rameter values are treated as response, and the corresponding values of the summary statistics

as explanatory variables. Instead of estimating the posterior distribution from the accepted

parameter values directly, one then estimates the posterior distribution from the values pre-

dicted by the linear regression, given the respective values of the summary statistics. The idea

is that a linear relationship might hold at least in the vicinity of the observed data. To stress

this, Beaumont et al. (2002) weighted the accepted points according to their distance from the

observed data, using an Epanechnikov kernel (Fan and Gijbels 1996). The effect of the weighted

local-linear regression is that accepted parameter values are projected along the line of the lin-

ear fit, which may compensate for the error introduced by accepting with some tolerance δε > 0

(see example 2 below). Beaumont et al. (2002) were able to show this effect, suggesting that

δε may be substantially increased, and hence the acceptance rate improved, compared to the
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basic ABC rejection algorithm. Increased acceptance rate is of interest because the posterior

estimate becomes more robust as more points are available. Overall, this reduces the Monte

Carlo error inherent to ABC (see Fearnhead and Prangle 2011). Beaumont et al. (2002) intro-

duced their idea in a univariate context, but multivariate linear regressions can of course be fit

if there is more than one parameter. A potential limitation of the approach by Beaumont et al.

(2002) is that it assumes a linear relation and that the variance of the parameters is constant

as the summary statistics change. Blum and François (2010) relaxed both assumptions, using

a feed-forward neural network and showing improved performance compared to the original

method by Beaumont et al. (2002). Leuenberger and Wegmann (2010) criticised the somewhat

unnatural approach of regressing the parameters onto the summary statistics. Instead, they

suggested fitting a general linear model with summary statistics as explanatory variables and

parameters as response. The advantage is that this perspective allows for an approximation

of the marginal likelihood, and hence for model comparison. Toghether, these approaches are

often referred to as post-rejection adjustment, and ABC combined with them is called ABC

regression, as opposed to ABC rejection (Beaumont 2010).

2.3.2 More efficient sampling in the ABC algorithm

The second strategy addresses the inefficiency of the proposal mechanism in the ABC rejection

algorithm. There, in every iteration candidate parameter values φ′ are independently chosen

from the prior distribution. If the prior distribution is broad compared to the (unknown)

posterior distribution, this mechanism is very inefficient, because most of the time it proposes

φ′ not anywhere near the range of acceptance (Beaumont 2010). It would be more efficient

to adjust the proposal mechanism as – with an increasing number of iterations – more and

more about the putative truth is being revealed. Two approaches have been devised. The first

introduces a Metropolis-Hastings type MCMC step to ABC (Marjoram et al. 2003), the second

enhances ABC with an adaptive sequential Monte Carlo (SMC) scheme (Sisson et al. 2007,

2009; Beaumont et al. 2009). I will briefly describe the two in turn. In the Metropolis-Hastings

algorithm (Metropolis et al. 1953; Hastings 1970), a new candidate value φ∗ is proposed in

every iteration according to a distribution that assigns a probability to the move from φ′t−1 to

φ∗. This distribution is called proposal distribution and often denoted by q(φ′t−1 → φ∗) (e.g.

Marjoram et al. 2003). The proposed value φ∗ is then accepted according to the Metropolis-

Hastings probability,

h = min

[
1,

P (D | φ∗)π(φ∗) q(φ∗ → φ′t−1)

P (D | φ′t−1)π(φ′t−1) q(φ′t−1 → φ∗)

]
. (2.3)

If accepted, φ′t is set to φ∗, otherwise φ′t = φ′t−1. In general, q(φ′t−1 → φ∗) is a function of

φ′t−1 and vice versa, which explains why consecutive values of φ′ are no longer independent –

they form a Markov chain (MacKay 2003). In the context of ABC, the likelihoods in (2.3) are

not available, and h cannot be computed. Hovewer, Marjoram et al. (2003) have devised an

MCMC algorithm without the need of computing likelihoods, which has since become known

as MCMC-ABC :
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MCMC-ABC algorithm:

C.1 Compute s = S(D).

C.2 Sample an initial value φ′0 from π(φ).

C.3 For t = 1 to t = NMCMC:

i Propose φ∗ according to q(φ′t−1 → φ∗).

ii Simulate D′t from P (D | φ∗), and compute the corresponding statistics s′ = S(D′).

iii If ρ(s′, s) ≤ δε, go to C.3.iv, otherwise set φ′t = φ′t−1 and return to C.3.i.

iv Calculate

hABC = min

[
1,

π(φ∗) q(φ∗ → φ′t−1)

π(φ′t−1) q(φ′t−1 → φ∗)

]
.

v Accept φ∗ with probability hABC and set φ′t = φ∗; otherwise set φ′t = φ′t−1 and

return to C.3.i.

C.4 Discard the first nb accepted φ∗ values and estimate the posterior density π(φ | D) from

the remaining accepted φ∗.

In step C.4, the first accepted values are discarded to account for the so-called burn-in period,

during which the trajectory of parameter values has not yet reached the stationary distribution.

Overall, the hope is that the MCMC-ABC algorithm makes more efficient use of the available

computation time, because it tends to suggest parameter values more likely to be accepted,

compared to ABC rejection, where suggested parameter values are not correlated. Sacrificing

uncorrelated sampling comes at a price, however: The MCMC-ABC algorithm is prone to

the same issues as conventional MCMC. First, its mixing behavior can be bad, such that the

chain becomes stuck in a region of low posterior probability, or the chain may move up to a

local maximum of the posterior, but not to the global one (Sisson et al. 2007). Second, it is

not obvious when the chain has converged and the algorithm can be stopped. A number of

improvements have been suggested to address these issues (see Ratmann et al. 2007; Wegmann

et al. 2009a).

As an alternative to MCMC-ABC, Sisson et al. (2007) proposed an adaptive version of ABC,

embedding the rejection algorithm into a sequential Monte Carlo (SMC) framework. Their

original version was biased, but has been corrected by Sisson et al. (2009) and Beaumont et al.

(2009). The idea of this approach is twofold: Instead of having a fixed threshold δε, one defines

a sequence of decreasing tolerance thresholds δ(1), . . . , δ(T ) (τ = 1, . . . , T ). At each iteration,

one chooses the next lower δ(τ) and re-samples φ′ from a weighted sample of parameters already

accepted in the previous iteration. In the first iteration, parameter values are drawn from the

prior, but in successive iterations, the posterior of the preceding iteration is used. Importance

weights are used to correct for the fact that the values are no longer sampled from the prior.

Because the rejection tolerance is reduced at every step, the weighted sets of parameters yield a

gradually improved approximation to the posterior. Details and the full algorithm are given in

Beaumont et al. (2009), Sisson et al. (2009) or Beaumont (2010), for instance. The advantage

of SMC-ABC over MCMC-ABC is that it does not get stuck in a region of low acceptance

probability. Compared to ABC rejection and ABC regression, SMC-ABC is more efficient,

because it avoids drawing parameter values from regions with low posterior probability. This

effect may be substantial, if the data are informative (Beaumont 2010).
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2.3.3 Optimizing the choice of summary statistics

The third strategy to reduce the curse of dimensionality in ABC is to optimize the choice of

summary statistics. Here, the goal is to select a set that is optimal in the sense that as much

information is extracted from the original data as possible, with as few summary statistics

as possible. The problem of summarizing large data sets is not unique to ABC (Nunes and

Balding 2010) and commonly known as variable selection in statistics, or feature selection in

machine learning (Hastie et al. 2011). As mentioned above, most summary statistics used by

population geneticists are not sufficient. The number of different alleles observed under the

infinite-alleles model of mutation (Kimura and Crow 1964) is a rare example of a sufficient

statistic for the scaled mutation rate θ = 4Neu. Here, Ne is the effective population size

and u the mutation rate per locus and generation (Ewens 1972). In this case, no additional

information about a sample is needed to esimate θ (see example 2 below). In most other cases,

however, the likelihood of the parameter given the full data is different from the likelihood given

just a summary statistic. In principle, this hampers ABC completely, because the true posterior

distribution is only approximated by the ABC-posterior if the statistics S are sufficient (e.g.

Sisson and Fan 2010). In practice, however, this problem is not quite as drastic. Although not

sufficient, most summary statistics have a theoretical justification; it can be shown that they

are sensitive to the parameter of interest. Such statistics are good candidates for ABC, and

empirical results seem to confirm this. A systematic approach for choosing summary statistics

in ABC has long been missing, and statistics were usually chosen based on theory for simpler

models, and on the researcher’s intuition.

The first systematic approach was proposed by Joyce and Marjoram (2008). The authors

used a sequential scheme and employed the concept of approximate sufficiency. The idea is

to start with a set of candidate statistics S = (S(1), . . . , S(p)), and to ask if adding a further

candidate statistic, S(p+1), has an effect on the posterior that is larger than some threshold. If

the effect is smaller than the threshold, adding S(p+1) is not needed; S is approximately suffi-

cient. Otherwise, S(p+1) is added, and the procedure is repeated with a new candidate S(p+2).

While the theoretical results motivating this procedure are straightforward, the implementation

is somewhat tricky (see Appendix of Joyce and Marjoram 2008). One issue is that the result

may depend on the order in which candidate statistics are added to S. If the total number

of statistics is large, testing all possible configurations is too expensive. Joyce and Marjoram

(2008) suggested a forward-backward heuristic to tackle this; some belief is needed that this

simpler strategy does not miss out on a relevant combination of statistics.

It is worth noting a point that was first brought to my attention by Andreas Futschik:

Sufficiency is a global concept, whereas in practice a summary statistic may be informative

in some part of the parameter space, but uninformative in the region of the parameter space

that matters for the actual estimation problem. Therefore, rather than choosing statistics

with respect to the whole prior range, one could imagine focussing the choice on the (putative)

neighbourhood of the true value. The truth is of course not known in advance. In chapter 3, my

collaborators and I propose a solution to this. Along the same lines, Nunes and Balding (2010)

proposed the following two-step procedure: They first used a minimum-entropy algorithm to

identify simulated data sets close to the observed ones. Then, they successively regarded these
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simulated sets as observed data sets, computed the error for all possible sets of summary

statistics, and then chose the set which minimized the mean error across the data sets. A

potential limitation of this approach is that, as was the case for the approach by Joyce and

Marjoram (2008), assessing all combinations of candidate statistics is expensive if there are

many. Another, similar approach was proposed recently by Fearnhead and Prangle (2011).

The authors first proved that, given a certain criterion by which the discrepancy between the

true and inferred value is measured, an optimal summary statistic can be defined. For instance,

if the criterion is the quadratic loss function, the optimal statistic is the posterior mean; if the

criterion is the absolute error, the optimal statistic is the posterior median. In practice, these

quantities are of course not known. Therefore, Fearnhead and Prangle (2011) devised a heuristic

multi-step procedure, in which a pilot ABC study is used to define the putative vicinity of the

true parameter value, a number of training data sets are simulated with known true values,

and a linear regression is fit to these training data. For each parameter, one linear predictor is

obtained from a set of candidate statistics, by regressing the parameter values linearly against

a function of the candidate summary statistics. These predictors are then used as the summary

statistics in the final ABC analysis. Fearnhead and Prangle (2011) call their approach semi-

automatic, because the choice of summary statistics is based on simulations. However, there

are still choices to be made by the user with respect to the set of candidate statistics, potential

scaling of them, and the type of regression used.

As an alternative, Wegmann et al. (2009a) proposed performing a partial least squares

(PLS) regression of the parameters on the summary statistics. PLS regression is similar to

principal component analysis (PCA) in which the explanatory variables (summary statistics

in this case) are de-correlated. In addition, however, PLS also takes into account the relation

with the response variables (parameters in this case), therefore jointly optimizing both criteria.

A leave-one-out cross-validation was then used by Wegmann et al. (2009a) to find the optimal

number of PLS components to keep, based on the root mean squared error. Since PLS assumes

a linear relationship between summary statistics and parameters, Wegmann et al. (2009a)

applied a Box-Cox transformation (Box and Cox 1964) to the summary statistics, prior to PLS

regression. The hope is that PLS results in a reduced, less correlated set of summary statistics

compared to the original set of candidate statistics.

To summarize, the following three strategies have been proposed to reduce the curse of

dimensionality and increase the efficiency of the basic ABC rejection algorithm:

1. Improved density estimation, allowing for larger rejection tolerance

2. Correlated sampling of parameter values to improve the acceptance rate

3. Optimal choice of summary statistics

2.4 Examples

In the following, I will show two examples that illustrate different aspects of ABC. The first is to

show the error introduced by having a rejection tolerance δε > 0. The second will illustrate the

effect of non-sufficient statistics and the post-rejection adjustment with a local-linear regression

as proposed by (Beaumont et al. 2002).
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2.4.1 Example 1: Estimating the mean of a Gaussian distribution

I have borrowed this example from a draft for a book chapter by Sisson and Fan (2010). We

will use ABC to infer the mean µ of a univariate Gaussian distribution with known variance

σ2 = 1, which I denote by N(µ, 1). To better distinguish between observed and simulated data,

I will use y instead of D for the observed data, and x instead of D′ for the simulated data.

Since there is only one parameter, there is no need to use the bold-face symbol denoting a

vector, so we have φ = µ. Moreover, for the mean of a Gaussian distribution, the observations

x are sufficient summary statistics. We can therefore set S(x) = x. Notice that we are dealing

with one single observation from a univariate Gaussian distribution. The goal of this example

is to illustrate the error introduced in ABC when rejection is performed with some tolerance

δε > 0. For this, it is helpful to consider the following formalization of the marginal posterior

distribution obtained with ABC (Sisson and Fan 2010):

πABC(φ | y) ∝ π(φ)

∫
Y
P (y | x, φ)P (x | φ) dx, (2.4)

where P (y | x, φ) is the error introduced by ABC in addition to the Monte Carlo error (see

Fearnhead and Prangle 2011). P (y | x, φ) is determined by the rejection kernel and the tolerance

δε – two choices that have to be made when implementing ABC. A common choice for P (y | x, φ)

is the uniform kernel density, such that

Pε(y | x, φ) ∝

{
1 if ρ

(
S(x), S(y)

)
≤ δε

0 otherwise,
(2.5)

where the subscript to P should emphasize the dependence on ε. Further, we will use the

Euclidean distance for ρ(·). Recalling S(x) = x, we then have ρ
(
S(x), S(y)

)
= ||x − y|| =√

(x− y)2. Going back to our specific example, let us assume that the true posterior π(µ | y)

is the univariate standard Gaussian, N(0, 1), i.e. that µ = 0. For the univariate Gaussian

distribution, the likelihood P (x | µ) is available analytically and simply specified by x ∼ N(µ, 1).

We further set the observed data point y = 0 and choose a uniform prior π(µ) ∝ 1. With the

rejection kernel given in (2.5), one can show that the ABC-posterior is

πABC(µ | y) ∝ Φ(ε− µ)− Φ(−ε− µ)

2ε
, (2.6)

where Φ(·) is the standard Gaussian cumulative distribution function (Sisson and Fan 2010).

One can further show that πABC(µ | y) → N(0, 1) as ε → 0, as we would expect. Figure

2.1 shows the effect of δε on the quality of the approximation πABC(µ | y) to π(µ | y). The

smaller δε, the closer the ABC posterior is to the true posterior. In this case, N = 105 ABC

simulations were performed. Even with the smallest tolerance, δε =
√

3/10, about 4, 400 points

were accepted – enough for robust posterior density estimation.

2.4.2 Example 2: Estimating the parameter of the Ewens sampling formula

This example is motivated by Joyce and Marjoram (2008) who used it to give a proof of

concept for their method for choosing summary statistics. As mentioned earlier, the number

of different alleles observed in a sample is a sufficient statistic for the scaled mutation rate θ
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Figure 2.1: Effect of the rejection tolerance δε on the posterior variance of ABC when estimating the
mean µ of a univariate Gaussian as discussed in example 1. The thick line is the true posterior, a standard
Gaussian distribution N(0, 1). The histogram represents the distribution of µ values accepted with ABC,
and the dashed line is the fit of a continuous density to this distribution. (A)–(C) correspond to δε values
of
√

3,
√

3/2 and
√

3/10, with about 44, 000, 22, 000 and 4, 400 accepted points, respectively.

under the infinite-alleles model of mutation (Kimura and Crow 1964). This goes back to the

Ewens sampling formula (Ewens 1972), which gives the probability that a sample of n gene

copies contains k allele types and that in this sample, there are a1, a2, . . . , an alleles present

1, 2, . . . , n times:

P{k, a1, a2, . . . , an} =
n!

θ(n)

n∏
j=1

(
θ

j

)aj 1

aj !
, (2.7)

where θ(n) = θ(θ + 1) · · · (θ + n− 1) (Hein et al. 2005; Wakeley 2009). Note that
∑n
j=1 aj = k

and that (2.7) holds only for sampling configurations that satisfy
∑n
j=1 j aj = n. Notice that

the term θaj in the product in (2.7) may be replaced by θk outside the product, because

n∏
j=1

θaj = θ
∑n
i=1 aj = θk. (2.8)

This makes the dependence of the probability in (2.7) on k explicit. The crucial property

of the Ewens sampling formula is that conditional on some k, the probability of a sampling

configuration does not depend on θ:

P{a1, a2, . . . , an | k} =
n!

skn

n∏
j=1

1

jaj aj !
, (2.9)

where skn is the Sterling number of the first kind (Wakeley 2009). Therefore, k is a sufficient

statistic for θ. In the following, we will infer θ using ABC, where k is an obvious choice for a

summary statistic, S(1) = k. To illustrate the effect of using non-sufficient statistics, we will

add two more statistics. First, let us add the number of singletons S(2) = a1, i.e. the number

of alleles that occur only once in the sample. This statistic is expected to contain at least some

information about θ. Second, we will add as a third statistic S(3) random number drawn from

a uniform distribution between 0 and 25. So, we have S = (S(1), S(2), S(3)). For ABC, we

perform N = 105 simulations with θ drawn from a uniform prior between 0 and 10. Figure 2.2

shows the summary statistics as a function of θ. As expected, S(1) and S(2) depend on θ, while

S(3) shows no correlation.
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Figure 2.2: Summary statistics from example 2 as a function of the parameter, the scaled mutation rate θ.
Notice that the summary statistics S(1) and S(2) only take discrete values, which is why the points appear
on a grid along the y-axis (cf. Figure 2.3).

Let us assume that the true parameter was θ = 4. A draw from the Ewens sampling

formula then resulted in S(1) = 7, S(2) = 3 and S(3) = 1.539; this is our observation. For

rejection, we then use the Euclidean distance as metric ρ(·) and a uniform rejection kernel with

δε = 0.4. Moreover, to compare the effect of the number of dimensions and the non-sufficient

statistics, we first condition on all three statistics, and then repeat rejection conditioning only

on the sufficient statistic S(1). In both cases, we perform a weighted local-linear multivariate

regression after rejection (see above). Figure 2.3 illustrates both the rejection and the regression

step. The grey points represent all simulations, the blue ones are those which were accepted.

Green and white arrows show the effect of regression for a set of points chosen at random. The

arrows lead from the original position of the points to the position after the projection along

the regression line. Figures 2.3A–2.3C show this for the case where we conditioned on all three

statistics; Figure 2.3D applies to the case where we only used the sufficient statistic. The effect

of more dimensions is that the accepted points are on average further apart from the observed

value. This is because we conditioned on δεN points being accepted. The hope is that the post-

rejection adjustment via the local-linear regression would to some degree correct for the error

introduced by the large rejection tolerance. Figures 2.3A and 2.3B show that this was actually

the case: accepted points relatively far away from the observed summary statistic are projected

closer to the known true value. Figure 2.3B suggests that the effect of the random summary

statistic S(3) was to add noise, since points really far from the observed statistic got accepted.

These points were far from the observation only in that dimension; they were probably very

close to the observation in the direction of S(1) and S(2). Otherwise, they would not have had

a Euclidean distance from the observation small enough to be accepted. In Figure 2.4, the

posterior distributions obtained with ABC are compared to the true posterior computed from

equation (2.9). The posteriors from ABC without regression are further from the true posterior

than those with regression. With regression, it did not make a big difference whether all or only

the sufficient statistic was used. This confirms that the post-rejection adjustment did a good

job in correcting for both the higher number of dimensions and the presence of non-sufficient

summary statistics. It is worth pointing out that for three summary statistics, the curse of

dimensionality is not yet that strong. In chapters 3 and 4 we will encounter cases where this is

not necessarily the case, and where it becomes crucial to chose summary statistics well.
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2.5 ABC in practice

In practice, the three strategies to increase the efficiency of ABC – post-rejection adjustment,

correlated sampling, and optimization of the choice of summary statistics – may be combined

in various ways. Therefore, one will find a variety of ABC subtypes in applied studies. In

general, it is not obvious in advance what combination is optimal, and one should perform a

simulation study in which the accuracy of alternative combinations is compared. Various mea-

sures of accuracy may be employed, such as the absolute, relative or root mean squared error of

Figure 2.3: Illustration of the rejection and regression step in ABC. Grey points are ABC simulations, blue
points are the accepted simulations. The vertical red line is the observed statistic, and green or white arrows
show how accepted points were projected by the weighted local-linear regression. (A)–(C) ABC with all
three summary statistics. One plot is shown for each dimension. (D) ABC with only the sufficient statistic.
Notice that the summary statistics S(1) and S(2) only take discrete values, which is why the points in (A),
(B) and (D) appear on a grid along the x-axis.
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Figure 2.4: Posterior distributions inferred in example 2. The vertical red line denotes the true value, and
the red dotted line is the true posterior (see text).

the posterior point estimate. Moreover, it is advisable to assess the coverage properties of the

posterior distribution. This may be done by simulating a set of test data sets with known true

parameter values sampled from the prior distribution, and to then compute the estimated pos-

terior probabilities of the true values. By definition, for a proper probability density function,

these probabilites should be uniformly distributed (Cook et al. 2006). This also holds for ABC

posteriors (Wegmann et al. 2009a). The uniformity can be tested with a Kolmogorov-Smirnov

test (Sokal and Rohlf 1981). Moreover, a histogram of the posterior probabilities reveals the

kind of deviation from uniformity. For instance, a left-skewed distribution of probabilities, i.e.

one with a long tail on the left and most of its mass on the right side, implies that the true pa-

rameter was on average underestimated, and vice versa (cf. Wegmann et al. (2009a) or chapter

3).

The possibility to combine alternative methods for the various steps in ABC is one reason

for its versatility and certainly an advantage when it comes to tailoring ABC to a particular

application. From the point of view of introducing new approaches for one of the ABC steps,

the downside is that there is so far no ‘standard’ ABC procedure against which innovations are

being compared. Moreover, defining a standard ABC procedure would not be enough, because

the performance of a given strategy is likely to depend also on the model studied. In principle,

one would therefore need a standard ABC setting – defining both the ABC steps and the model

– as a reference. While this is desirable for comparison of alternative approaches to individual

ABC steps, it contradicts the common practice and the ad hoc character of applied ABC.

It is also worth checking whether the model used to simulate the data is plausible, in

other words, if it is possible at all to obtain S(D′) in the range of the observed summary

statistics S(D). This can be assessed by plotting the prior predictive distribution, i.e. the joint

distribution of the summary statistics, together with the point S(D). If the cloud of simulated

points S(D′t), (t = 1, . . . , N) covers S(D) well, the model is well specified. In practice, it is

hard to visualize this in more than two, perhaps three, dimensions. Then, pairs of components

of S should at least be plotted. If any of the p(p − 1)/2 pairwise plots reveals that S is not

well covered by the simulated point cloud, one should be sceptical. Unfortunately, the inverse
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conclusion is not justified: if everything is fine with the pairwise prior predictive plots, there is

no guarantee that the same holds for triples, for instance.

Several software packages facilitating inference with ABC are available. For instance, DIYABC

(Cornuet et al. 2008) is a user-friendly program with a graphical interface that allows for

inference under a great variety of demographic models. A collection of simulation programs

and scripts for various steps of the ABC workflow is offered by ABCtoolbox (Wegmann et al.

2010). The advantage of ABCtoolbox is its versatility; the user can design combinations of

existing programs with her own code, or adjust previous versions to the particular needs of a

project. In comparison to DIYABC, ABCtoolbox requires some familiarity with command line

environments and coding. Further, the abc package (Csilléry et al. 2011) for R (R Development

Core Team 2011) implements various methods for rejection and density estimation, once data

have been simulated.

2.6 Further reading

The principles, history and different flavors of ABC are described in much more detail in an

excellent and exhaustive review by Beaumont (2010). That review also includes a summary on

where ABC has been applied so far. Csilléry et al. (2011) review some practical aspects and

applications of ABC, while Bertorelle et al. (2010) describe its flexibility and discuss advantages

and limitations. Moreover, Bertorelle et al. (2010) give a nicely illustrated step-by-step descrip-

tion of the workflow in a typical ABC project. Some more details, hints and pitfalls relevant for

application of ABC may be found in the manual for ABCtoolbox (see above) by Wegmann et al.

(2009b). ABC and its relation to other Bayesian methods of inference in genetics are reviewed

by Beaumont and Rannala (2004). A broader review on modern computational approaches

for analysis of genetic data, including short descriptions of the coalescent theory, importance

sampling, Markov chain Monte Carlo, ABC as well as examples of application has been given

by Marjoram and Tavaré (2006).





Chapter 3

Choice of summary statistics in ABC via

boosting and application to the estimation

of mutation rates and mating skew in

Alpine ibex (Capra ibex)

The work presented in this chapter was influenced by discussions with Andreas Futschik and

Mark Beaumont. Andreas has suggested to use boosting for the choice of summary statistics.

The chapter is intended for publication in Genetics, as a companion paper to the one resulting

from chapter 4 of this thesis, with Andreas and Mark as co-authors.

3.1 Introduction

Understanding the mechanisms leading to observed patterns of genetic diversity has been a cen-

tral objective since the beginnings of population genetics (Fisher 1922b; Haldane 1932; Wright

1951; Charlesworth and Charlesworth 2010). Three recent trends keep advancing this under-

taking: i) molecular data are becoming available at an ever higher pace (Rosenberg et al. 2002;

Frazer et al. 2007); ii) new theory is being developed (Griffiths and Tavaré 1994a; Wakeley 2004,

2009); and iii) increased computational power allows solution of problems that were intractable

just a few years ago. In parallel, the focus has shifted to inference under complex models (e.g.

Fagundes et al. 2007; Blum and Jakobsson 2011), and to the joint estimation of parameters

(e.g. Williamson et al. 2005). Usually, these models are stochastic. The increasing complex-

ity of models is justified by the underlying processes: inheritance, mutation, chromosomes,

modes of reproduction and spatial structure. On the other hand, complex models are often not

amenable to inference based on exact analytical results. Instead, approximate methods such

as Markov chain Monte Carlo (MCMC, Gelman et al. 2004) or approximate Bayesian com-

putation (ABC, Beaumont and Rannala 2004) are used. A significant part of research in the

field is currently devoted to the refinement and development of such methods (Wakeley 2004;

Marjoram and Tavaré 2006). ABC (Fu and Li 1997; Tavaré et al. 1997; Weiss and von Hae-

seler 1998; Pritchard et al. 1999; Beaumont et al. 2002) is a Monte Carlo method of inference

that emerged from the confrontation with models for which the evaluation of the likelihood is

31
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computationally prohibitive or impossible. It may be viewed as a class of rejection algorithms

(Marjoram et al. 2003; Marjoram and Tavaré 2006). The principle is to first simulate data

under the model of interest, and to then accept simulations that produced data close to the

observation. Parameter values belonging to accepted simulations yield an approximation to

the posterior distribution, without the need to explicitly calculate the likelihood. The full data

are usually compressed to summary statistics in order to reduce the number of dimensions.

Formally, the posterior distribution of interest is given by

π(φ | D) =
P (D | φ) π(φ)

P (D)
=

P (D | φ) π(φ)∫
Φ
P (D | φ) π(φ) dφ

, (3.1)

where φ is a vector of parameters living in space Φ, D denotes the observed data, π(φ) the

prior distribution, and P (D | φ) the likelihood. With ABC, (3.1) is approximated by

π(φ | s) ∝ P
(
ρ(s′, s) ≤ δε | φ

)
π(φ), (3.2)

where s and s′ are abbreviations for realisations of S(D) and S(D′), respectively, and S is a

function generating a q-dimensional vector of summary statistics calculated from the full data.

The prime denotes simulated points, in contrast to the summary statistics of the observed

data. Further, ρ(·) is a distance metric and δε the rejection tolerance in that metric space,

such that a proportion ε of all simulated points is accepted. ABC, its position in the ensemble

of model-based inference methods, and its application in evolutionary genetics are reviewed in

Marjoram et al. (2003), Beaumont and Rannala (2004), Marjoram and Tavaré (2006), Beaumont

(2010), Bertorelle et al. (2010) and Csilléry et al. (2010). Although the origin of ABC is

generally assigned to Fu and Li (1997) and Tavaré et al. (1997), some aspects, such as the

summary description of the full data, inference for implicit stochastic models and algorithms

directly sampling from the posterior distribution trace further back (e.g. Diggle 1979; Diggle

and Gratton 1984; Rubin 1984).

A fundamental issue with the basic ABC rejection algorithm (e.g. Marjoram et al. 2003)

is its inefficiency: a large number of simulations is needed to obtain a satisfactory number of

accepted runs. This problem becomes worse as the number of summary statistics increases and

is known as the curse of dimensionality. Three solutions have been proposed: i) more efficient

algorithms combining ABC with principles of MCMC (e.g. Marjoram et al. 2003; Wegmann

et al. 2009a) or sequential Monte Carlo (e.g. Sisson et al. 2007; Beaumont et al. 2009; Sisson et al.

2009; Toni et al. 2009); ii) fitting a statistical model to describe the relationship of parameters

and summary statistics after the rejection step, allowing for a larger tolerance δε (Beaumont

et al. 2002; Blum and François 2010; Leuenberger and Wegmann 2010); and iii) reduction

of dimensions by sophisticated choice of summary statistics (e.g. Joyce and Marjoram 2008;

Wegmann et al. 2009a). Point iii) is related to two further issues. First, most summary statistics

in evolutionary genetics are not sufficient. A summary statistic is sufficient for a parameter, if

the likelihood of that parameter given the summary statistic is proportional to the likelihood

of the parameter given the full data. Second, the choice of summary statistics implies the

choice of a suitable metric ρ(·) to measure the ‘closeness’ of simulations to observation. The

Euclidean distance (or a weighted version, e.g. Hamilton et al. 2005) has been used in most

applications, but it is not obvious why this should be optimal. The Euclidean distance is a
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scale-dependent measure of distance – changing the scale of measurement changes the results.

Since this scale is determined by the summary statistics, the choice of summary statistics is

linked to the choice of the metric. For these reasons, the choice of summary statistics should

not only aim at reducing the dimensions, but at extracting (combinations of) statistics that

contain the essential information about the parameters of interest. Moreover, the choice of the

metric should be considered. The first two problems are reminiscent of the classical problem of

variable selection in statistics and machine learning (e.g. Hastie et al. 2011).

The choice of summary statistics in ABC has become a focus of research only recently.

Joyce and Marjoram (2008) proposed a sequential scheme based on the principle of approximate

sufficiency. Statistics are included if their effect on the posterior distribution is larger than some

threshold. Their approach seems demanding to implement in practice, and it is not obvious

how to define an optimal threshold. Wegmann et al. (2009a) used partial least squares (PLS)

regression to choose summary statistics. In this context, PLS regression can be used to seek

linear combinations of the original summary statistics that are maximally decorrelated and, at

the same time, have high correlation with the parameters (Hastie et al. 2011). A reduction in

dimensions is achieved by choosing only the first n PLS components. This choice is based on

cross-validation. PLS is one out of several approaches for variable selection (Hastie et al. 2011),

but it is an open question how it compares to alternative methods in any specific ABC setting.

Moreover, the optimal choice of summary statistics may depend on the location of the true

(but unknown) parameter values. By definition, this is to be expected whenever the summary

statistics are not sufficient. Therefore, it is not obvious why methods that assess the relation

between statistics and parameters on a global scale should be optimal. Instead, focussing

on the correlation only in the (supposed) neighborhood of the true parameter values might be

preferable. The problem is of course that this neighborhood is not known in advance – otherwise

we would not need ABC. However, the neighborhood may be established approximately, as

we will argue later. The idea of focussing the choice of summary statistics on some local

optimization has recently also been followed in two papers by Nunes and Balding (2010) and

Fearnhead and Prangle (2011). Nunes and Balding (2010) proposed to use a minimum-entropy

algorithm to identify the neighborhood of the true value, and then chose the set of summary

statistics that minimized the mean squared error across a test data set. Fearnhead and Prangle

(2011), on the other hand, first proved that, for a given loss function, an optimal summary

statistic may be defined; for the quadratic loss, the optimal summary statistic is the posterior

mean. Since this is not available a priori, the authors devised a heuristic to estimate it, and

were able to show good performance of their approach. The choice of the optimization criterion

may include a more local or a global focus on the parameter range. Different criteria will

lead to different optimal summary statistics. The approaches by Nunes and Balding (2010)

and Fearnhead and Prangle (2011), and the one we will take here, have in common that they

employ a two-step procedure, first defining ‘locality’, and then using standard methods from

statistics or machine learning to select summary statistics in this restricted range. They differ

in the details of these two steps.

Here, we propose a novel approach for choosing summary statistics in ABC. It is based

on boosting, a method developed in machine learning to establish the relationship between

predictors and response variables in complex models (Freund 1995; Freund and Schapire 1996,
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1999; Schapire 1990). It has been argued that boosting is relatively robust to overfitting (Fried-

man et al. 2000), which would be an advantage with regard to high-dimensional problems as

encountered in ABC. Different flavors of boosting exist, depending on assumptions about the

error distribution, the loss function and the learning procedure. In a simulation study, we com-

pare the performance of ABC with three types of boosting to ABC with summary statistics

choosen via PLS, and to ABC with all candidate statistics. We further suggest an approach for

choosing summary statistics locally, and compare the local variants of the various methods to

their global versions. Throughout, we study a model that is motivated by the re-introduction

of Alpine ibex (Capra ibex ) into the Swiss Alps. The parameters of interest are the mean and

standard deviation across microsatellites of the scaled ancestral mutation rate, and the propor-

tion of males that obtain access to matings per breeding season. This model is used first in the

simulation study for inference on synthetic data and assessment of accuracy. Later, we apply

the best method to infer posterior distributions given genetic data from Alpine ibex.

3.2 Model and parameters

We study a neutral model of a spatially structured population with genetic drift, mutation

and migration. The demography includes admixture, subdivision and changes in population

size. This model is motivated by the recent history of Alpine ibex and their re-introduction

into the Swiss Alps (Figures 3.1 and 3.2). By the end of the 18th century, Alpine ibex had

been extinct except for about 100 individuals in the Gran Paradiso area in Northern Italy

(Figure 3.1). At the beginning of the 20th century, a schedule was set up to re-establish former

demes in Switzerland (Couturier 1962; Stuwe and Nievergelt 1991; Scribner and Stuwe 1994;

Maudet et al. 2002). The re-introduction has been documented in great detail by game keepers

and authorities. We could therefore reconstruct for 35 demes their census sizes between 1906

and 2006 (Supporting File 3.6 census sizes) and the number of females and males transferred

between them, as well as the times of these founder/admixture events (Supporting File 3.7

transfers). Inference on mutation and migration can therefore be done conditional on this

information. The signal for this inference comes from the distribution of allele frequencies

across loci and across demes.

We constructed a forwards in time model starting with an ancestral gene pool danc of

unknown effective size, Ne, representing the Gran Paradiso ibex deme. At times t1 and t2,

two demes, d1 and d2, are derived from the ancestral gene pool. They represent the breeding

stocks that were established in two zoological gardens in Switzerland in 1906 and 1911 (Figure

3.1; Stuwe and Nievergelt 1991). Further demes are then derived from these. In general, we

let ti be the time at which deme di is established. Once a derived deme has been established,

it may contribute to the foundation of additional demes. The sizes of derived demes follow the

observed census size trajectories (Supporting File 3.6 census sizes). We interpolated missing

values linearly, if the gap was only one year, or exponentially, if values for two or more successive

years were missing. Derived demes may exchange migrants if they are connected. This depends

on information obtained from game keepers and on geography (Figure 3.1). Given a pair of

connected demes di and dj , we define the forward migration rates, m̃i,j and m̃j,i. More precisely,

m̃i,j is the proportion of potential emigrants (see Supporting Information (SI)) in deme di that
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Figure 3.1: Location of Alpine ibex demes in the Swiss Alps. The dark shaded parts represent areas
inhabited by ibex. The ancestral deme is located in the Gran Paradiso area in Northern Italy, close to the
Swiss border. The two demes in the zoological gardens 33 and 34 were first established from the ancestral
one. Further demes, including the two in zoological gardens 32 and 35, were derived from demes 33 and 34.
Putative connections indicate the pairs of demes for which migration is considered possible. For a detailed
record of the demography and the genealogy of demes see Figure 3.7 and Supporting File transfers. For
deme names see Table 3.5. Map obtained via the Swiss Federal Office for the Environment (FOEN) and
modified with permission.

migrate to deme dj per year. We assume that m̃i,j is constant over time and the same for

females and males. Migration is included in the model, although we do not estimate migration

rates in this paper, but in a companion paper (see Aeschbacher et al. 2011b, or chapter 4). A

schematic representation of the model is given in Figure 3.2.

Population history is split into two phases. The first started at some unknown point in

the past and ended at t1 = 1906, when the first ibex were brought from Gran Paradiso (danc)

to d1. For this ancestral phase, we assume constant, but unknown effective size Ne, and

mutation following the single stepwise model (Ohta and Kimura 1973) at a rate u per locus

and generation. Accordingly, we define the scaled mutation rate in the ancestral deme as

θanc = 4Neu. Mutation rates may vary among microsatellites for several reasons (Estoup and

Cornuet 1999). To account for this, we use a hierarchical model (cf. Bazin et al. 2010), assuming

that θanc is normally distributed across loci on the log10-scale, with mean µθanc and standard

deviation σθanc . In our case, µθanc and σθanc are the hyperparameters (Gelman et al. 2004)

of interest. Here, we make the implicit assumption that Ne is the same for all loci, so that

variance in θanc may be attributed to u exclusively. In principle, however, variation in diversity

across loci could also be due to selection at linked genes (Maynard Smith and Haigh 1974;

Charlesworth et al. 1993; Barton 2000), rather than variable mutation rates. Most likely, we



36 CHAPTER 3. CHOICE OF SUMMARY STATISTICS IN ABC VIA BOOSTING

t1

tg

recent phase
no mutation

ancestral phase
with mutation

ω

ω

ω ω ω
d4 d5 d3 d7d1 d2

danc

θanc

m4,5

m5,4

m3,7

m7,3ω
d6

ω ω

t4

t2

t3

t5

t6
t7

~
~

~
~

Figure 3.2: Schematic representation of the demographic model motivated by the re-introduction of Alpine
ibex into the Swiss Alps. Gray shapes represent demes, indexed by di, and the width of the shapes reflects
the census size. Time goes forward from top to bottom, and the point in time when deme di is established
is shown as ti; tg is the time of genetic sampling. The total time is split by t1 into an ancestral phase
with mutation and a recent phase for which mutation is ignored (see text for details). Solid horizontal
arrows represent founder/admixture events and dashed arrows migration. The parameters are i) the scaled
mutation rate in the ancestral deme, θanc = 4Neu; ii) the proportion of males getting access to matings,
ω; and iii) forward migration rates between putatively connected demes, m̃i,j (see text for details). The
actual model considered in the study contains 35 derived demes (Figure 3.1 and Table 3.5). The exact
demography is reported in Figure 3.7 and Supporting File 3.7 transfers.

cannot distinguish these alternatives with our data. The second, recent phase started at time

t1 and went up to the time of genetic sampling, tg = 2006. During this phase, the number

of males and females transferred at founder/admixture events and census population sizes are

known and accounted for. Mutation is neglected in the recent phase, since, in the case of

ibex, the phase spans only about eleven generations at most (Stuwe and Grodinsky 1987).

At the transition from the ancestral to the recent phase, genotypes of the founder individuals

introduced to demes d1 and d2 are sampled at random from the ancestral deme, danc. At the

end of the recent phase (tg), genetic samples are taken according to the sampling scheme under

which the real data were obtained. Out of the total 35 demes, 31 were sampled (Table 3.5).

In Alpine ibex, male reproductive success is highly skewed towards dominant males. Dom-

inance is correlated with age (Willisch et al. 2011), and ranks are established during summer.

Only a small proportion of males obtain access to matings during the rut in winter (Aeschbacher

1978; Stuwe and Grodinsky 1987; Scribner and Stuwe 1994; Willisch and Neuhaus 2009; Willisch

et al. 2011). To take this into account, we introduce the proportion of males obtaining access

to matings, ω, as a parameter. It is defined relative to the number of potentially reproducing

males (and therefore conditional on age; see SI), and has an impact on the strength of genetic

drift. We assume that ω is the same in all demes and independent of deme size.
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In principle, we would like to infer the joint posterior distribution π(α, m̃ | D), where

α = (µθanc , σθanc , ω) and m̃ = {m̃i,j : i 6= j, i ∈ Jm, j ∈ Jm}, with Jm denoting the set of all

demes connected via migration to at least one other deme (Figure 3.1). This is a complex

problem, mainly because there are so many parameters and even more candidate summary

statistics; the curse of dimensionality is severe. Targeting the joint posterior with ABC näıvely

would give a result, but it would be hard to assess its validity. It is more promising to address

intermediate steps and assess them one by one. A first step is to focus on a subset of parameters

and marginalize over the others. By marginalizing we formally mean that the joint posterior

distribution is integrated with respect to the parameters that are not of interest. In this case,

we integrate over the prior of the migration rates given in Table 3.1. In practice, marginal

posteriors may be targeted directly with ABC (see below). A second step is to clarify what

summary statistics should be chosen for the subset of focal parameters. A third one is to deal

with the curse of dimensionality related to estimating m̃. In this paper, we deal with steps one

and two: We aim at estimating α marginally to m̃, and we seek a good method for choosing

summary statistics with respect to α. The third step – estimating m̃ – is treated in chapter

4. Notice that this division implies the assumption that priors of the migration rates and male

mating success are independent. We make this assumption partly for convenience, and partly

because we are not aware of any study that has shown a relation between the two in Alpine

ibex.

3.3 Methods

The joint posterior distribution of our model may be factored as

π(m̃, α | D) = π(m̃ | α, D)π(α | D). (3.3)

As mentioned, here we only target the marginal posterior of α on the right hand side. Formally,

this is obtained as

π(α | D) =

∫
M
π(m̃, α | D) dm̃, (3.4)

whereM is the domain of possible values for m̃. By the nature of our problem, π(m̃, α | D) is

not available. However, with ABC we may target (3.4) directly by sampling from π
(
α | sα =

Sα(D)
)
, where we assume that Sα is a subset of summary statistics approximately sufficient for

estimating α. Notice that Sα may not be sufficient to estimate the joint posterior (3.3), however

(Raiffa and Schlaifer 1968). The following standard ABC algorithm provides an approximation

to π
(
α | sα) (e.g. Marjoram et al. 2003):

Algorithm A:

A.1 Calculate summary statistics sα = Sα(D) from observed data.

A.2 For t = 1 to t = N :

i Sample (α′t, m̃
′
t) from π(α, m̃) = π(α)π(m̃).

ii Simulate data D′t (at all loci and for all demes) from P (D | α′t, m̃′t).
iii Calculate s′α,t = Sα(D′t) from simulated data.
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A.3 Scale sα and s′α appropriately.

A.4 For each t, accept α′t if ρ(s′α,t, sα) ≤ δε, using scaled summary statistics from A.3.

A.5 Estimate the posterior density π(α | sα) from the εN accepted points 〈s′α,t, α′t〉.

Step A.2 may be easily parallelized on a cluster computer. In doing so, one needs to store

〈s′α,t, α′t〉. Step A.5 may include post-rejection adjustment via regression (Beaumont et al.

2002; Blum and François 2010; Leuenberger and Wegmann 2010) and scaling of parameters.

In general, the set of summary statistics Sα is not known in advance. Therefore, we propose

algorithm B – a modified version of algorithm A – that includes an additional step for the

empirical choice of summary statistics Sα informative on α given a set of candidate statistics,

S (for similar approaches, see Hamilton et al. 2005; Wegmann et al. 2009a):

Algorithm B:

B.1 Calculate candidate summary statistics s = S(D) from observed data.

B.2 For t = 1 to t = N :

i Sample (α′t, m̃
′
t) from π(α, m̃) = π(α)π(m̃).

ii Simulate data D′t (at all loci and for all demes) from P (D | α′t, m̃′t).
iii Calculate candidate summary statistics s′t = S(D′t) from simulated data.

B.3 Sample without replacement n ≤ N simulated pairs 〈s′t, α′t〉 and use them as a training

data set to choose informative statistics Sα.

B.4 According to B.3, obtain sα from s; for t = 1 to t = N , obtain s′α,t from s′t.

B.5 Scale sα and s′α appropriately.

B.6 For each t, accept α̃′t if ρ(s′α,t, sα) ≤ δε, using scaled summary statistics from B.5.

B.7 Estimate the posterior density π(α | sα) from the εN accepted points 〈s′α,t, α′t〉.

Notice that Sα in steps B.3 and B.4 may either be a subset of S or some function (e.g. a linear

combination) of S (details of implementation given below). In the following, we describe a

novel approach based on boosting and recently proposed by Lin et al. (2011) for the choice of

Sα in B.3.

3.3.1 Choice of summary statistics via boosting

Boosting is a collective term for meta-algorithms originally developed for supervised learning

in classification problems (Schapire 1990; Freund 1995). Later, versions for regression (Fried-

man et al. 2000) and other contexts have been developed (Bühlmann and Hothorn 2007, and

references therein). Assume a set of n observations indexed by i and associated with a one-

dimensional response Yi. For (binary) classification, Yi ∈ {0, 1}, but in a regression context,

Yi may be continuous in R. Further, each observation is associated with a vector of q predic-

tors Xi = (X
(1)
i , . . . , X

(q)
i ). Given a training data set {〈X1, Y1〉, . . . , 〈Xn, Yn〉}, the task of a

boosting algorithm is to learn a function F (X) that predicts Y . Boosting was invented to deal

with cases where the relationship between predictors and response is potentially complex, for
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example non-linear (Schapire 1990; Freund 1995; Freund and Schapire 1996, 1999). Establish-

ing the relationship between predictors and response, and weighting predictors according to

their importance, directly relates to the problem of choosing summary statistics in ABC: Given

candidate statistics S, we want to find a subset or combination of statistics Sα(i) informative

for a particular α(i). Taking the set of simulated pairs 〈s′t, f(α′t)〉 from step B.3 of algorithm

B as a training data set, this may be achieved by boosting. For this purpose, we interpret the

summary statistics S as predictors X and the parameters α as the response Y . Notice that we

use f(α′t) to be generic in the sense that the response might actually be a function – such as a

discretisation step (see below) – of α′t.

The principle of boosting is to iteratively apply a weak learner to the training data, and

then combine the ensemble of weak learners to construct a strong learner. While the weak

learner predicts only slightly better than random guessing, the strong learner will usually be

well correlated with the true Y . This is because the training data are re-weighted after each step

according to the current error, such that the next weak learner will focus on those observations

that were particularly hard to assign. However, too strong a correlation will lead to overfitting,

so that in practice one defines an upper limit for the number of iterations (see below). The

behavior of the weak learner is described by the base procedure ĝ(·), a real valued function.

The final result (strong learner) is the desired function estimate F̂ (·). Given a loss function

L(·, ·) that quantifies the disagreement between Y and F (X), we want to estimate the function

that minimizes the expected loss,

F ∗(·) = arg minF (·) E
[
L
(
Y, F (X)

)]
. (3.5)

This can be done by considering the empirical risk n−1
∑n
i=1 L

(
Yi, F (Xi)

)
and pursuing iter-

ative steepest descent in function space (Friedman 2001; Bühlmann and Hothorn 2007). The

corresponding algorithm is given in the Appendix. The generic boosting estimator obtained

from this algorithm is a sum of base procedure estimates

F̂ (·) = ν

mstop∑
m=1

ĝ[m](·). (3.6)

Both ν and mstop are tuning parameters that essentially control the overfitting behavior of the

algorithm. Bühlmann and Hothorn (2007) argue that the learning rate ν is of minor importance

as long as ν ≤ 0.1. The number of iterations, mstop, however, should be chosen specifically in

any application via cross-validation, bootstrapping or some information criterion (e.g. AIC).

Base procedure

Different versions of boosting are obtained depending on the base procedure ĝ(·) and the loss

function L(·, ·). Here, we let ĝ(·) be a simple component-wise linear regression (Bühlmann

and Hothorn 2007, see Appendix). With this choice, the boosting algorithm selects in every

iteration only one predictor, namely the one that is most useful in reducing the current loss.

After each step, F̂ (·) is updated linearly according to

F̂ [m](x) = F̂ [m−1](x) + νλ̂(ζ̂m)x(ζ̂m), (3.7)
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where ζ̂m denotes the index of the predictor variable selected in iteration m. Accordingly, in

iteration m only the ζ̂th component of the coefficient estimate λ̂[m] is updated. As m goes to

infinity, F̂ (·) converges to a least squares solution. In practice, we stop at mstop, and we denote

the final vector of estimated coefficients as λ̂ = λ̂[mstop].

Loss functions

We employed boosting with three loss functions. The first two, L1-loss and L2-loss, are appro-

priate for a regression context with a continuous response Y ∈ R. In this case, the parameters

α′t are directly interpreted as yi (i.e. f(α′t) = α′t). The L1-loss is given by

LL1
(y, F ) = |y − F | , (3.8)

and results in L1Boosting. The L2-loss is given by

LL2(y, F ) =
1

2
|y − F |2 , (3.9)

and results in L2Boosting. The scaling factor 1/2 in (3.9) ensures that the negative gradi-

ent vector U in the FGD algorithm (Appendix and SI) equals the residuals (Bühlmann and

Hothorn 2007). L1- and L2Boosting result in a fit of a linear regression, similarly to ordinary

regression using the least absolute deviation (L1 norm) or the least squares criterion (L2 norm),

respectively. The difference, and a potential advantage of boosting, is that residuals are fitted

multiple times depending on the importance of the components of X. Moreover, boosting is

less prone to overfitting than ordinary L1 or L2 fitting (Bühlmann and Hothorn 2007). In gen-

eral, the L1-loss is more robust to outliers, but it may produce multiple, potentially unstable

solutions. Using L1- and L2Boosting to choose summary statistics means assuming a linear

relationship between summary statistics and parameters. This is a strong assumption, and

most likely not globally true. However, the advantage is that the resulting linear combination

(and hence Sα) has only one dimension, such that the curse of dimensionality in ABC may

be strongly reduced. Moreover, the approach results in one linear combination per parameter.

These linear combinations may end up being correlated across parameters, especially if param-

eters cannot be well separated. To motivate the third loss function, we propose to consider

the choice of summary statistics as a classification problem. Imagine two classes of parameter

values – say, high values in one class, and low values in the other. We may ask what summary

statistics are important to assign simulations to one of these two classes. With Y ∈ {0, 1}
as the class label and p(x) := Pr[Y = 1 | X = x], a natural choice is the negative binomial

log-likelihood loss

Llog-lik(y, p) = −
[
y log(p) + (1− y) log(1− p)

]
, (3.10)

omitting the argument of p for ease of notation. If we parametrize p = eF /(1 + eF ) so that we

obtain F = log [p/(1− p)] corresponding to the logit-transformation, the loss in (3.10) becomes

Llog-lik(y, F ) = log
[
1 + e−(2y−1)F

]
. (3.11)

The corresponding boosting algorithm is called LogitBoost (or Binomial Boosting; Bühlmann

and Hothorn 2007). An advantage is that it does not assume a linear relationship between

summary statistics and parameters, as is the case for the L1- and L2Boosting versions used
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here. Instead, LogitBoost fits a logistic regression model, which might be more appropriate. On

the other hand, it requires choosing a discretization procedure f(·) to map αt ∈ R to y ∈ {0, 1}
(see below). Since such a choice is arbitrary, it would be problematic to use the resulting fit

(a linear combination on the logit-scale) directly as Sα(i) . In practice, we instead assigned a

candidate statistic S(j) (j = 1, . . . , q) to Sα(i) if the corresponding boosted coefficient λ̂(j) (cf.

equation (3.7)) was different from zero, and omitted it otherwise. Therefore, compared L1- and

L2Boosting, the reduction in dimensionality was on average lower, but the strong assumption

of a linear α(i) and Sα(i) was avoided. Notice that, in principle, non-linear relationships may

be fitted with the L1- and L2-loss, too (Friedman et al. 2000). In the SI we provide explicit ex-

pressions for the population minimizers (3.5) and some more insight on the boosting algorithms

under the three loss functions used here.

Partial Least Squares regression

Recently, Wegmann et al. (2009a) proposed to choose summary statistics in ABC via Partial

Least Squares (PLS) regression (e.g. Hastie et al. 2011, and references therein). PLS is related

to Principal Component regression. But in addition to maximizing the variance of the predictors

X, at the same time, it maximizes the correlation of X with the response Y. Applied to the

choice of summary statistics, it therefore not only decorrelates the summary statistics, but

also chooses them according to their relation to α. Hastie et al. (2011) argue that the first

aspect dominates over the latter, however. The number k of PLS components to keep is usually

determined based on some cross-validation procedure (see below). In the context of ABC,

the k components are multiplied by the corresponding statistics S(j) (j ≤ k) to obtain Sα(i)

(Wegmann et al. 2009a).

3.3.2 Global versus local choice

We have so far suggested that Sα is close to sufficient for estimating α. This will hardly be the

case in practice. By definition, the optimal choice of Sα then depends on the unknown true

parameter value. Ideally, we would therefore like to focus the choice of Sα on the neighborhood

of the truth. The latter is not known in practice. As a workaround, we propose to use the n

simulated pairs 〈s′t, α′t〉 from step B.3 in algorithm B and the observed summary statistics s to

approximately establish this neighborhood as follows:

Local choice of summary statistics in B.3:

1. Consider the n pairs 〈s′t∗ , α′t∗〉 from step B.3 in algorithm B.

2. Mean center each component s′(j) (j = 1, . . . , q) and scale it to have unit variance.

3. Rotate s′ using Principal Component Analysis (PCA).

4. Apply the scaling from steps 2 and 3 to the observed summary statistics s.

5. Mean center the PCA-scaled summary statistics obtained in step 3, and scale them to

have unit variance. Do the same for the PCA-scaled observed statistics obtained in step

4. Denote the results by ṡ′ and ṡ, respectively.

6. For each t∗ ∈ n, compute the Euclidean distance δt∗ = ‖ṡ′t∗ − ṡt∗‖.
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7. Keep the n′ pairs 〈s′t∗ , α′t∗〉 for which δt∗ ≤ z, where z is some threshold.

8. Use the n′ points accepted in step 7 as a training set to choose statistics Sα with the

desired method.

9. Continue with step B.4 in algorithm B.

In step 2 above, the original summary statistics are brought to the same scale. Otherwise,

summary statistics with a high variance would on average contribute relatively more to the

Euclidean distance than summary statistics with a low variance. However, whether a simulated

data point is far or close to the target (s) in multidimensional space may not only depend on

the distance along the dimension of each statistic, but also on the correlation among statistics.

This can be accounted for by decorrelating the statistics, as is done by PCA in step 3. In

combination with the Euclidean distance in step 6, the procedure above essentially uses the

Mahalanobis distance as metric (Mahalanobis 1936). Although we cannot prove the optimality

of this approach, it seems to work well in our simulations. Notice that in steps 8 and 9, the

summary statistics are used on their original scale again. This is because we want our method

for choosing parameter-specific combinations of statistics to use the information comprised in

the difference in scale among the original statistics – even in the vicinity of s. The PCA-scaling

in step 5 is only used temporarily to determine δt∗ in step 6. Figure 3.8 visualizes the different

scales and the effect of determining an approximate neighborhood around s.

The scheme just described may be combined with any of the methods for choosing summary

statistics described above. In our case, we considered ABC with global and local versions of

PLS (called pls.glob and pls.loc in the following), LogitBoosting (lgb.glob, lgb.loc), L1-

Boosting (l1b.glob, l1b.loc), and L2Boosting (l2b.glob, l2b.loc). Moreover, we performed

ABC with all candidate statistics S (all) as a reference.

Candidate summary statistics

Our set S of candidate summary statistics consisted of the mean and standard devation across

loci of the following statistics: the average within-deme variance of allele length, the average

within-deme gene diversity (H1), the average between-deme gene diversity (H2), the total FIS,

the total FST, the total within-deme mean squared difference (MSD) in allele length (S1), the

total between-deme MSD in allele length (S2), the total RST, and the number of allele types in

the total population. This amounts to a total of 18 summary statistics. We computed H1, H2,

FIS and FST according to Nei and Chesser (1983), and S1, S2 and RST according to Slatkin

(1995). Notice that all summary statistics are symmetrical with respect to the order of the loci,

which is consistent with our hierarchical parametrization of the ancestral mutation rate.

Implementation

Throughout, we used the prior distributions given in Table 3.1. In algorithm B, we performed

N = 106 simulations and in B.2i we assumed that π(α, m̃) = π(α)π(m̃). In B.3, we used

n = 104 simulations for the choice of summary statistics (both in the global and local versions).

Moreover, we first chose sets of summary statistics for each parameter separately, and then

took the union of the sets, i.e. Sα =
⋃
i Sα(i) , where each Sα(i) is chosen according to one
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Table 3.1: Parameters and prior distributions

Parameter Description Prior distribution

θanc, l Scaled ancestral mutation rate at locus l, 4Neu log10(θanc,l) ∼ N
(
µθanc , σ

2
θanc

)a
µθanc Mean across loci of θanc,l (on log10-scale) µθanc ∼ N (0.5, 1)

σθanc Standard deviation across loci of θanc,l (on log10-scale) σθanc ∼ log10 -uniform [0.01, 1]

ω Proportion of mature males with access to matings ω ∼ log10 -uniform [0.01, 1]

m̃ a
i,j Forward migration rate per year from deme i to deme j m̃i,j ∼ log10 -uniform

[
10−3.5, 10−0.5

]
aN

(
µ, σ2

)
, normal distribution with mean µ and variance σ2.

bAlthough migration rates are not estimated here, they are drawn from the prior in all simulations (see main
text).

of the methods proposed. This also applies to step 8 in the procedure for the local choice of

summary statistics (see above). For the local choice, we kept the n′ = 1000 pairs closest to the

observation s, and we used the pcrcomp function in R version 2.11 (R Development Core Team

2011) for PCA. In B.5, we mean-centered the summary statistics and scaled them to have unit

variance. In B.6, we chose the Euclidean distance as metric ρ(·). In B.7 we did post-rejection

adjustment with a weighted local-linear regression with weights from an Epanechnikov kernel

(Beaumont et al. 2002), without additional scaling of parameters. For steps B.6 and B.7 we

used the abc package (Csilléry et al. 2011) for R.

For the PLS method, we used the pls package (Mevik and Wehrens 2007) for R and followed

Wegmann et al. (2009a) and Wegmann et al. (2010). Specifically, we performed a Box-Cox

transformation of the summary statistics prior to the PLS regression, and we chose the number

of components to keep based on a plot of the root mean squared prediction error. We kept 10

components, both for pls.glob and pls.loc (Figure 3.9). For all methods based on boosting,

we mean-centered the summary statistics before boosting and used the glmboost function of the

mboost package (Bühlmann and Hothorn 2007; Hothorn et al. 2011) for R. For the LogitBoost

methods, we chose the first and third quartile of the sample of α drawn in step B.3 of algorithm

B.3 as the centers of the two classes of parameter values. For lgb.glob, we then assigned the

500 α-values closest to the first quartile to the first class (y = 0) and the 500 values closest to

the third quartile to the second class (y = 1). For lgb.loc, we analogously assigned the 100 α-

values closest to the two quartiles to the two classes. For both lgb.glob and lgb.loc, we chose

the optimal mstop based on the Akaike information criterion (AIC, Akaike 1974; Bühlmann and

Hothorn 2007), but set an upper limit for mstop of 500 iterations. For l1b.glob and l1b.loc,

we chose mstop via 10-fold cross-validation with the cvrisk function of the mboost package,

setting an upper limit of 100. Last, for l2b.glob and l2b.loc, we chose mstop based on the

AIC, with an upper limit of 100. Figures 3.10 to 3.12 further illustrate the booting procedure.

3.3.3 Simulation study and application to data

To assess the performance of the different methods for choosing summary statistics and to

study the influence of the rejection tolerance ε, we carried out a simulation study. For each ε ∈
{0.001, 0.01, 0.1}, we simulated 500 test data sets with parameter values sampled from the prior

distributions and then inferred the posterior distribution for each set. Similar to Wegmann et al.
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(2009a), we used as a measure of accuracy of the marginal posterior distributions the root mean

integrated squared error (RMISE), defined as RMISEk =
√∫

Φ(k)(φ(k) − µk)2 π(φ(k) | s) dφ(k),

where µk is the true value of the kth component of the parameter vector φ and π(φ(k) | s) is the

corresponding estimated marginal posterior density. Recall that φ = α = (µθanc , σθanc , ω) in

our case. From this, we obtained the relative absolute RMISE (RARMISE) as RARMISEk =

RMISEk/|µk|. We also computed the absolute difference (AEk) between three marginal pos-

terior point estimates (mode, mean and median) and µk. Dividing by |µk|, we obtained the

relative absolute error (RAEk). To directly compare the various methods to ABC with all sum-

mary statistics, we computed standardized variants of the RMISE and AE as follows: If aallk is

the measure of accuracy for ABC with all summary statistics, and a∗k the one for ABC with the

method of interest, the standardized measure was obtained as a∗k/a
all
k . As a further criterion,

we assessed the coverage property of the inferred posterior distributions. For this, we checked

if the posterior probabilities of the true parameter values across the 500 test data sets were

uniformly distributed in [0, 1]. This approach has been motivated by Cook et al. (2006) and

applied in previous ABC studies (e.g. Wegmann et al. 2009a). However, notice that Cook et al.

(2006) called these posterior probabilities ‘posterior quantiles’, which is somewhat misleading.

We tested for a uniform distribution of the posterior probabilities using a Kolmogorov-Smirnov

test (Sokal and Rohlf 1981).

For the application to Alpine ibex, we used microsatellite allele frequencies and repeat

lengths as described in Biebach and Keller (2009) (see Figure 3.1 and Table 3.5). The data

were provided to us by the authors. ABC simulations and inference were identical to those

in the simulation study (see also SI). The program called SPoCS that we wrote and used for

simulation of the ibex scenario, and a collection of R and shell scripts used for inference are

available on the website http://pub.ist.ac.at/~saeschbacher/phd_e-sources/.

3.4 Results and discussion

3.4.1 Comparison of methods for choice of summary statistics

We have suggested boosting with component-wise linear regression as a base procedure for

choosing summary statistics in ABC. Three loss functions were considered: the L1-, and L2-

loss, and the negative binomial log-likelihood. We have compared the performance of ABC with

summary statistics chosen via boosting to ABC with statistics chosen via partial least squares

(PLS, Wegmann et al. 2009a), and to ABC with all candidate summary statistics (Table 3.2).

The relative absolute error (RAE) behaved similarly for the three point estimates (mode, mean,

median), but the mode was less reliable in cases were the posterior distributions did not have a

unique mode (Figure 3.13). We decided to focus on the median. For assessment of the methods,

we sought a low RARMISE and a low RAE of the median (RAEmedian in the following), and we

required that the distribution of posterior probabilities of the true value did not deviate from

uniformity for any parameter.

ABC with all summary statistics (all) and ABC with LogitBoosting (lgb.glob) performed

well in terms of RARMISE and RAEmedian, especially when estimating µθanc and ω (Figure

3.3A and 3.3B). However, the posteriors of µθanc inferred with all and lgb.glob were biased

http://pub.ist.ac.at/~saeschbacher/phd_e-sources/
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Figure 3.3: Accuracy of different methods for choosing summary statistics as a function of the acceptance
rate (ε). (A) and (B) show results for different methods when applied to the whole parameter range
(global choice). In (C) and (D), the methods were applied only in the neighborhood of the (supposed) true
value (local choice). The performance resulting from using all candidate summary statistics is shown for
comparison in both rows. (A) and (C) show the root mean integrated squared error (RMISE), relative to
the absolute true value. (B) and (D) give the absolute error of the posterior median, relative to the absolute
true value. Plotted are the medians across n = 500 independent test estimations with true values drawn
from the prior (error bars denote the median±MAD/

√
n, where MAD is the median absolute deviation).

(coverage p-value in Table 3.2). Figure 3.14 implies that all yielded too narrow a posterior

on average (U-shaped distribution of posterior probabilities of the true value), while lgb.glob

tended to underestimate µθanc
(left-skewed distribution of posterior probabilities). This made

us disfavor the two methods. Throughout, ABC with L1- and L2Boosting on the global scale

(l1b.glob and l2b.glob) performed very similarly in terms of RARMISE and RAEmedian (Fig-

ure 3.3A and 3.3B). Because the L2-loss is in general more sensitive to outliers, similarity in

performance of l1b.glob and l2b.glob suggests that there were no problems with outliers, i.e.

no simulations producing extreme combinations of parameters and summary statistics. The

accuracy of the pls.glob method was intermediate, except for the RAEmedian of µθanc and

ω, where pls.glob performed worst (Figure 3.3B). For all methods, the RARMISE and the

RAEmedian were considerably lower for µθanc than for σθanc and ω. This implies that the latter

two are more difficult to estimate with the data and model given here (see Figure 3.13). For an

idea of how the data drive the parameter estimates, it is instructive to consider the correlation

of individual summary statistics with the parameters (see Figures 3.17 to 3.19).

The accuracy of estimation is expected to depend on the acceptance rate ε in a way deter-

mined by a trade-off between bias and variance (e.g. Beaumont et al. 2002). While the RAE

only measures the error of the point estimator, the RARMISE is a joint measure of bias and

variance across the whole posterior distribution. The variance may be assigned to different

sources. A first component – call it simulation variance – is a consequence of the finite number
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Table 3.2: Accuracy of different methods for choosing summary statistics on a global scale

Method ε Parameter RARMISEa RAEb mode RAE mean RAE median Cov. pc

all 0.001 µθanc 0.143 (0.147) 0.062 (0.074) 0.065 (0.075) 0.062 (0.075) 0.011*
σθanc 0.452 (0.231) 0.269 (0.213) 0.269 (0.222) 0.265 (0.218) 0.61
ω 0.446 (0.272) 0.221 (0.225) 0.215 (0.218) 0.219 (0.22) 0.859

0.01 µθanc 0.141 (0.145) 0.061 (0.072) 0.064 (0.074) 0.065 (0.075) 0.003*
σθanc 0.466 (0.257) 0.299 (0.21) 0.286 (0.225) 0.282 (0.226) 0.992
ω 0.432 (0.259) 0.233 (0.232) 0.226 (0.23) 0.232 (0.232) 0.88

0.1 µθanc 0.140 (0.134) 0.065 (0.075) 0.067 (0.078) 0.067 (0.075) 0.003*
σθanc 0.463 (0.272) 0.324 (0.238) 0.306 (0.248) 0.296 (0.243) 0.677
ω 0.431 (0.263) 0.234 (0.229) 0.228 (0.22) 0.226 (0.223) 0.482

pls.glob 0.001 µθanc 0.171 (0.16) 0.077 (0.087) 0.083 (0.089) 0.081 (0.088) 0.466
σθanc 0.488 (0.276) 0.291 (0.223) 0.289 (0.252) 0.276 (0.228) 0.936
ω 0.451 (0.275) 0.238 (0.221) 0.234 (0.224) 0.237 (0.227) 0.969

0.01 µθanc 0.166 (0.152) 0.080 (0.09) 0.079 (0.09) 0.079 (0.089) 0.562
σθanc 0.480 (0.291) 0.307 (0.223) 0.295 (0.268) 0.293 (0.242) 0.473
ω 0.441 (0.262) 0.241 (0.234) 0.230 (0.225) 0.229 (0.226) 0.562

0.1 µθanc 0.171 (0.146) 0.083 (0.091) 0.086 (0.097) 0.087 (0.094) 0.497
σθanc 0.469 (0.283) 0.319 (0.237) 0.307 (0.286) 0.310 (0.276) 0.089
ω 0.433 (0.265) 0.240 (0.226) 0.234 (0.224) 0.234 (0.23) 0.178

lgb.glob 0.001 µθanc 0.149 (0.152) 0.064 (0.074) 0.065 (0.076) 0.064 (0.074) 0.002*
σθanc 0.435 (0.204) 0.270 (0.231) 0.261 (0.214) 0.247 (0.205) 0.466
ω 0.456 (0.275) 0.235 (0.23) 0.230 (0.237) 0.232 (0.224) 0.913

0.01 µθanc 0.145 (0.15) 0.066 (0.076) 0.066 (0.078) 0.066 (0.076) <0.001*
σθanc 0.450 (0.223) 0.281 (0.215) 0.269 (0.217) 0.258 (0.209) 0.238
ω 0.436 (0.27) 0.235 (0.234) 0.222 (0.223) 0.225 (0.228) 0.916

0.1 µθanc 0.147 (0.142) 0.068 (0.079) 0.067 (0.078) 0.069 (0.079) <0.001*
σθanc 0.471 (0.284) 0.288 (0.209) 0.301 (0.249) 0.271 (0.233) 0.103
ω 0.427 (0.259) 0.232 (0.222) 0.225 (0.216) 0.228 (0.22) 0.329

l1b.glob 0.001 µθanc 0.188 (0.178) 0.075 (0.087) 0.074 (0.087) 0.076 (0.088) 0.573
σθanc 0.445 (0.202) 0.271 (0.236) 0.261 (0.232) 0.256 (0.216) 0.954
ω 0.487 (0.297) 0.251 (0.259) 0.226 (0.227) 0.232 (0.226) 0.723

0.01 µθanc 0.178 (0.17) 0.075 (0.087) 0.075 (0.088) 0.075 (0.085) 0.711
σθanc 0.463 (0.217) 0.288 (0.24) 0.271 (0.238) 0.259 (0.221) 0.805
ω 0.468 (0.288) 0.255 (0.262) 0.228 (0.222) 0.235 (0.233) 0.595

0.1 µθanc 0.177 (0.173) 0.078 (0.092) 0.078 (0.094) 0.079 (0.094) 0.311
σθanc 0.508 (0.299) 0.307 (0.21) 0.304 (0.269) 0.290 (0.248) 0.144
ω 0.449 (0.272) 0.238 (0.241) 0.237 (0.222) 0.239 (0.227) 0.716

l2b.glob 0.001 µθanc 0.183 (0.173) 0.075 (0.087) 0.074 (0.085) 0.074 (0.086) 0.794
σθanc 0.441 (0.202) 0.273 (0.229) 0.257 (0.228) 0.254 (0.212) 0.828
ω 0.487 (0.296) 0.251 (0.257) 0.231 (0.226) 0.234 (0.229) 0.648

0.01 µθanc 0.180 (0.173) 0.077 (0.087) 0.077 (0.088) 0.076 (0.087) 0.766
σθanc 0.459 (0.213) 0.278 (0.242) 0.262 (0.235) 0.259 (0.214) 0.815
ω 0.470 (0.288) 0.253 (0.26) 0.231 (0.221) 0.237 (0.229) 0.497

0.1 µθanc 0.176 (0.171) 0.080 (0.092) 0.080 (0.096) 0.080 (0.093) 0.365
σθanc 0.503 (0.281) 0.300 (0.213) 0.297 (0.249) 0.283 (0.253) 0.139
ω 0.445 (0.267) 0.240 (0.24) 0.239 (0.227) 0.236 (0.225) 0.755

RARMISE and RAE (see below) are given as the median across 500 independent estimations with true values
drawn from the prior (median absolute deviation in parentheses). σθanc and ω were estimated on the log10
scale.
aRelative absolute root mean integrated squared error (see text) with respect to the true value.
bRelative absolute error with respect to the true value.
cP-value from a Kolmogorov-Smirnov test for the uniformity of posterior probabilities (∗: p < 0.05; cf. Figure
3.14).

N of simulations. The lower ε, the fewer points are accepted in the rejection step (B.6 of al-

gorithm B, see above). Posterior densities estimated from fewer points will be less stable than

those inferred from more points. A second variance component – the sampling variance – is
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due to the loss of information caused by using non-sufficient summary statistics. To illustrate

the trade-off between simulation and sampling variance, assume ε fixed. If a large number of

summary statistics is chosen, these may extract most of the information and thus limit the

sampling variance. However, more summary statistics means more dimensions, and therefore a

lower chance of accepting the same number of simulations than with fewer summary statistics,

hence a higher simulation variance. In addition, accepting with δε > 0 – which is characteristic

of ABC – will introduce a systematic bias if the multi-dimensional density is not symmetric on

the chosen metric with respect to the observation s. On the other hand, increasing δε reduces

the simulation variance. Hence, there are in fact multiple trade-offs. It is not obvious in advance

which one will dominate, and it is hard to make a prediction. This is reflected in our results:

We found no uniform pattern for the dependence on ε of the RARMISE and the RAEmedian.

For instance, with l2b.glob the RARMISE increased as a function of ε for σθanc , but decreased

for ω (Figure 3.3A). Moreover, and typically for a trade-off, the relationship between accuracy

and ε need not be monotonic (Figure 3.3; cf. Beaumont et al. 2002).

Attempting to mitigate the lack of sufficiency, we have proposed to choose summary statis-

tics locally – in the putative neighborhood of the true parameter values – rather than globally

over the whole prior range. As expected, the local choice led to different combinations of

statistics, and it had an effect on the scaling of the statistics for pls.loc, l1b.loc and l2b.loc

(Figure 3.20). However, the local versions of the different methods performed similarly to their

global counterparts in terms of RARMISE and RAEmedian (Table 3.3 and Figure 3.3). Only

with pls.loc the estimation error for µθanc increased more strongly with ε than for pls.glob.

More importantly, however, the coverage properties of the posteriors for µθanc deteriorated for

pls.loc, l1b.loc and l2b.loc (Table 3.3), compared to their global versions (Table 3.2). The

effect was weakest for l2b.loc, and in general increased as a function of ε. Method pls.loc

tended to overestimate µθanc
, while lgb.loc, l1b.loc and l2b.loc tended to underestimate it

(Figure 3.15).

For direct comparison of methods, before averaging across test sets, we standardized the

measures of accuracy relative to those obtained with all summary statistics (Figure 3.4). The

only local method that, for all parameters, led to lower RARMISE and RAEmedian than its

global version was l2b.loc. In contrast, lgb.glob and lgb.loc performed very similarly;

pls.loc did worse than pls.glob for µθanc , but better than pls.glob for σθanc and ω. Overall,

we chose l2b.loc with ε = 0.01 as our favored method. This configuration provided good cov-

erage for all parameters (Table 3.3). At the same time, it had lower RARMISE and RAEmedian

than pls.glob, the method that would also have had good coverage properties for µθanc . We

disfavored all, lgb.glob and lgb.loc due to their weak coverage properties. Notice that all

methods compared in Figure 3.4 performed worse in terms of RARMISE and RAEmedian than

all when estimating µθanc . This might be due to the loss of information caused by leaving out

some summary statistics. Apparently, this loss is not fully compensated in our setting by the

potential gain from reducing the dimensions. In models with many more dimensions, this may

be different.

It is worth recalling some of the characteristics of the methods compared here. The pls

method is the only one that involves de-correlation of the statistics. Apparently, this did

not lead to a net improvement compared to the other methods. One explanation is that
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Table 3.3: Accuracy of different methods for choosing summary statistics on a local scale

Method ε Parameter RARMISE RAE mode RAE mean RAE median Cov. p

pls.loc 0.001 µθanc 0.168 (0.136) 0.081 (0.091) 0.088 (0.095) 0.086 (0.091) 0.314
σθanc 0.490 (0.262) 0.283 (0.229) 0.277 (0.234) 0.271 (0.226) 0.314
ω 0.450 (0.278) 0.232 (0.234) 0.225 (0.228) 0.225 (0.228) 0.723

0.01 µθanc 0.175 (0.126) 0.088 (0.094) 0.098 (0.103) 0.094 (0.099) 0.023*
σθanc 0.485 (0.274) 0.287 (0.222) 0.287 (0.243) 0.280 (0.223) 0.232
ω 0.434 (0.259) 0.240 (0.238) 0.235 (0.224) 0.236 (0.227) 0.655

0.1 µθanc 0.220 (0.147) 0.101 (0.103) 0.113 (0.108) 0.106 (0.104) 0.001*
σθanc 0.489 (0.282) 0.294 (0.216) 0.275 (0.243) 0.288 (0.231) 0.078
ω 0.429 (0.259) 0.239 (0.226) 0.239 (0.227) 0.234 (0.223) 0.273

lgb.loc 0.001 µθanc 0.149 (0.151) 0.061 (0.074) 0.067 (0.081) 0.064 (0.077) 0.006*
σθanc 0.440 (0.213) 0.271 (0.213) 0.259 (0.209) 0.253 (0.209) 0.5
ω 0.450 (0.283) 0.229 (0.231) 0.223 (0.219) 0.223 (0.217) 0.794

0.01 µθanc 0.144 (0.147) 0.065 (0.074) 0.068 (0.078) 0.066 (0.077) 0.001*
σθanc 0.456 (0.237) 0.292 (0.209) 0.277 (0.223) 0.268 (0.213) 0.576
ω 0.439 (0.27) 0.235 (0.229) 0.228 (0.225) 0.230 (0.225) 0.862

0.1 µθanc 0.140 (0.133) 0.068 (0.077) 0.069 (0.078) 0.068 (0.078) <0.001*
σθanc 0.467 (0.275) 0.315 (0.233) 0.298 (0.24) 0.288 (0.234) 0.991
ω 0.431 (0.264) 0.232 (0.22) 0.226 (0.219) 0.227 (0.222) 0.423

l1b.loc 0.001 µθanc 0.184 (0.183) 0.070 (0.081) 0.070 (0.083) 0.071 (0.082) 0.062
σθanc 0.449 (0.215) 0.263 (0.234) 0.254 (0.219) 0.256 (0.218) 0.61
ω 0.484 (0.281) 0.246 (0.253) 0.232 (0.218) 0.240 (0.233) 0.61

0.01 µθanc 0.176 (0.18) 0.072 (0.081) 0.070 (0.083) 0.070 (0.082) 0.012*
σθanc 0.450 (0.218) 0.268 (0.25) 0.263 (0.23) 0.257 (0.221) 0.651
ω 0.466 (0.279) 0.255 (0.265) 0.234 (0.22) 0.241 (0.234) 0.791

0.1 µθanc 0.175 (0.181) 0.076 (0.092) 0.072 (0.084) 0.071 (0.085) <0.001*
σθanc 0.504 (0.276) 0.277 (0.234) 0.291 (0.251) 0.261 (0.227) 0.257
ω 0.444 (0.267) 0.238 (0.236) 0.237 (0.227) 0.231 (0.225) 0.694

l2b.loc 0.001 µθanc 0.180 (0.18) 0.071 (0.08) 0.074 (0.084) 0.070 (0.081) 0.314
σθanc 0.436 (0.207) 0.249 (0.222) 0.251 (0.215) 0.253 (0.213) 0.759
ω 0.479 (0.275) 0.257 (0.261) 0.233 (0.226) 0.244 (0.235) 0.5

0.01 µθanc 0.172 (0.173) 0.075 (0.085) 0.077 (0.087) 0.076 (0.087) 0.084
σθanc 0.444 (0.211) 0.258 (0.246) 0.264 (0.225) 0.257 (0.215) 0.651
ω 0.459 (0.276) 0.256 (0.276) 0.234 (0.228) 0.244 (0.236) 0.532

0.1 µθanc 0.168 (0.169) 0.077 (0.091) 0.076 (0.09) 0.077 (0.091) <0.001*
σθanc 0.496 (0.266) 0.277 (0.235) 0.289 (0.241) 0.264 (0.23) 0.284
ω 0.446 (0.271) 0.239 (0.242) 0.237 (0.23) 0.236 (0.233) 0.579

Details as in Table 3.2 (cf. Figure 3.15).

there was not much correlation to start with. Another one is that this correlation did not

substantially reduce the efficiency. Figure 3.16 implies that the latter was the case. The

reduction of dimensions is strongest with the l1b and l2b methods, since they result in one

linear predictor per parameter. On the other hand, these methods assume a linear relationship

between parameters and statistics. Since the latter was clearly not the case (e.g. Figure 3.17),

it seems that the reduction of dimensions compensated for that assumption. This effect might

be more pronounced in problems with many more statistics.
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Figure 3.4: Standardized accuracy of different methods for choosing summary statistics as a function
of the acceptance rate (ε). 1Standaridized means that, before averaging across test sets, we divided the
measures of accuracy for the respective method by the measure of accuracy obtained with all candidate
summary statistics. (A) Root mean integrated squared error (RMISE), relative to the RMISE obtained with
all summary statistics. (B) Absolute error of the posterior median, relative to the one obtained with all
summary statistics. Further details as in Figure 3.3.

3.4.2 Application to Alpine ibex

Posterior distributions inferred for the ibex data with the various methods and ε = 0.01

are shown in Figure 3.5. Point estimates and 95% highest posterior density (HPD) inter-

vals for the method that performed best in the simulation study, l2b.loc, are given in Table

3.4. Recall that µθanc
and σθanc

are hyperparameters of the distribution of θanc,l across loci:

log10(θanc,l) ∼ N
(
µθanc

, σ2
θanc

)
(cf. Table 3.1). Inserting the estimates from Table 3.4, we ob-

tained log10(θanc,l) ∼ N(0.110, 0.1632), which implies a mean θ̂anc across loci of 1.288. The

limits of the interval defined by µ̂θanc ± 2σ̂θanc translate into (0.607, 2.735) on the scale of θanc.

Recall that θanc = 4Neu; it measures the total genetic diversity present in the ancestral deme at

time t1 = 1906 (Figure 3.2), i.e. at the start of the reintroduction phase. Although we were able

to estimate θanc with relatively high precision, that does not immediately tell us about Ne or u

without knowing one of the two. However, given some rough, independent estimates of Ne and

u, we may assess if our estimate θ̂anc ≈ 1.288 is plausible. On the one hand, historical records

of the census size of the ancestral Gran Paradiso deme are available. In combination with an

estimate of the ratio of effective to census size, we may therefore obtain a rough estimate of

Ne. Specifically, the census size of the Gran Paradiso deme (Figure 3.1) was estimated as less

than 100 for the early 19th century (Scribner and Stuwe 1994; Stuwe and Nievergelt 1991),

as 3,000 for the early 20th century (Stuwe and Scribner 1989), and as 4,000 for the year 1913

(Maudet et al. 2002). In addition, Scribner and Stuwe (1994) estimated for eight ibex demes

in the Swiss Alps the effective population size from census estimates of the numbers of adult

males and females. Their estimates of Ne were about one third of the respective total census

estimates. Together, these figures suggest that a realistic range for the ancestral effective size

Ne might be between 30 and 1,300. On the other hand, estimates of the mutation rate u for

microsatellites range from 10−4 to 10−2 per locus and generation (Di Rienzo et al. 1998; Estoup

and Angers 1998). Combining these two ranges results in θanc ranging from 1.2 · 10−2 ≈ 10−2

to 5.2 · 10 ≈ 102, suggesting that our estimate θ̂anc ≈ 1.288 is plausible. Perhaps more in-

terestingly, we may ask about the range across loci of u that is compatible with the range of

θ̂anc corresponding to µ̂θanc
± 2σ̂θanc , (0.607, 2.735). The underlying assumption is that Ne is

roughly the same for all loci, so that variation in θ̂anc is exclusively due to variation of u across
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loci. Taking the geometric mean of the extremes from above, N̂e = (30 · 1300)1/2 ≈ 197, as

a typical value, the corresponding interval for û across loci is (7.7 · 10−4, 3.5 · 10−3). In other

words, most of the variation in u across loci spans less than one order of magnitude.

Table 3.4: Posterior estimates for Alpine ibex data from ABC with summary statistics chosen locally via
L2Boosting and acceptance rate ε = 0.01

Parameter Mode Mean Median 95% HPDa interval

µθanc 0.1089 0.1081 0.1101 (−0.0391, 0.2545)

log10(σθanc) −0.6453 −0.8928 −0.7867 (−1.7615, −0.2613)

log10(ω) −0.6159 −0.6933 −0.6824 (−1.33, −0.0294)

aHighest posterior density.
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Figure 3.5: Marginal posterior distributions inferred from the Alpine ibex data. Posteriors obtained with
tolerance ε = 0.01 and various methods for choosing summary statistics are compared. The dotdashed
red line corresponds to the method that performed best in the simulation study (l2b.loc; Tables 3.2 and
3.3, and Figures 3.3 and 3.4). Thin blue lines give the prior distribution (cf. Table 3.1). For pairwise joint
posterior distributions, see Figure 3.6. Point estimates and 95% HPD intervals are given in Table 3.4.

The estimates for log10(ω) from Table 3.4 imply a proportion of males obtaining access

to matings of ω̂ ≈ 0.208, or about 21%. The 95% HPD interval for ω is (0.047, 0.934). An

observational study in a free-ranging ibex deme suggested that roughly 10% of males reproduced

(Aeschbacher 1978). More recently, Willisch et al. (2011) conducted a behavioral and genetic

study and reported paternity scores for males of different age classes. The weighted mean

across age classes from this study is about 14% successful males. Given the many factors that

influence such estimates, our result of 21% seems in good agreement with these values, and

our 95% HPD interval includes them. Two points are worth noting. First, our 95% HPD

interval for ω seems large, which reflects the uncertainty involved in this parameter. Second,

when estimating ω, we are essentially estimating the ratio of recent effective population size to

census population size, N
(i)
e /N , where N

(i)
e is the effective size of a derived deme di. This ratio

may be smaller than one for many reasons – not just male mating access. Thus, we have strictly

speaking estimated the strength of genetic drift due to deviations in reproduction from that in

an idealized population. Nevertheless, the good agreement with the independent estimates of

male mating access is striking.

In Figure 3.6, we report pairwise joint posterior distributions for l2b.loc and ε = 0.01. The

pairwise joint modes are close to the marginal point estimates in Table 3.4. Moreover, Figure

3.6 suggests no strong correlation among parameters.
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3.4.3 Conclusion

We have suggested three variants of boosting for the choice of summary statistics in ABC,

and compared them to partial least squares (PLS) regression and to ABC with all candidate

summary statistics. Moreover, we proposed to choose summary statistics locally, in the putative

neighborhood of the observed data. Overall, the mean of the ancestral mutation rate µθanc

seemed easier to estimate than its standard deviation σθanc and the male mating access rate ω.

In our context, ABC with summary statistics chosen locally via boosting with component-wise

linear regression as base procedure and the L2-loss performed best in terms of accuracy and

posterior coverage. However, the difference between the methods was moderate. If the main

interest had been in accurate point estimates, but less in good overall posterior properties at the

same time, boosting with the negative binomial log-likelihood loss would have been preferable.

The performance of the PLS method was intermediate when estimating σθanc and ω, but worst

when estimating µθanc . In general, choosing summary statistics locally slightly improved the

accuracy compared to the global choice, but it led to worse posterior coverage for µθanc . The

local version of L2Boosting with acceptance rate ε = 0.01 coped best with this trade-off.

Applying that method to Alpine ibex data, we estimated the mean across loci of the scaled

ancestral mutation rate as θ̂anc ≈ 1.288. The estimates for σθanc implied that most of the

variation across loci of the mutation rate u was between 7.7·10−4 and 3.5·10−3. The proportion

of males obtaining access to matings per breeding season was estimated to ω̂ ≈ 0.21, which

is in good agreement with recent independent estimates. This result suggests that the strong

dominance hierarchy in Alpine ibex is reflected in overall genetic diversity, and should therefore

be considered an important factor determining the strength of genetic drift.

It should be noted that the results we reported here about the choice of summary statistics

are specific to the model and the data. Another method may perform better under a different

setting. We think that this is a general aspect of inference with ABC. For the various points

where some choice must be made – summary statistics, metric, algorithm, post-rejection ad-

justment – by nature, no single strategy is best in every case. Rather, the focus should be on
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choosing the best strategy for a specific problem. In practice, this implies comparing alterna-

tives and assessing performance in a simulation study. Along these lines, there is still scope for

new ideas concerning the various choices in ABC (see Beaumont et al. 2010). In particular,

the choice of the metric makes ABC a scale-dependent method. This applies both to the ABC

algorithm in general, as well as to our suggestion of choosing summary statistics in the putative

neighborhood of the truth. Even using the Mahalanobis distance is based on an assumption

that is not necessarily appropriate (multivariate normal distribution of variables). In a specific

application, a given metric may do better than another one, but it may not be obvious why.

Overall, this poses an open problem and motivates future research (Wilkinson 2008).

As more data become available and more complex models are justifiable, it will be necessary

that methods of inference keep pace. In principle, ABC is scalable and able to face this challenge.

The problems arise in practice, and the combination of approaches devised to tackle them is

itself becoming intricate. Researchers may be interested in a single program that implements

these approaches and allows for inference with limited effort needed for tuning, simulation

and cross-validation. However, such software runs the risk of being treated as a black box.

This problem is not unique to ABC, but equally applies to other sophisticated approaches of

inference, such as coalescent-based genealogy samplers (Kuhner 2009). In the context of ABC,

rather than having a single piece of software, we find it more promising to combine separate

pieces of software that each implement a specific step. The appropriate combination must be

chosen specifically for any application. It will always be necessary to evaluate the statistical

behaviour of any ABC method through simulation-based studies. Such a modular approach

has recently been fostered by the developers of ABCtoolbox (Wegmann et al. 2010) or the abc

package for R (Csilléry et al. 2011). Here, we contribute to this by providing a flexible simulation

program that readily integrates into any ABC procedure.

At the same time as this study was carried out, Fearnhead and Prangle (2011) suggested

an interesting related approach for choosing summary statistics in the vicinity of the supposed

truth. They proved that, with the L2-loss, the posterior mean is the optimal summary statistic.

Since this is not available in advance, they proposed to first run a pilot ABC study to determine

the region of high posterior mass. For this region, they then drew parameters and simulated

data to obtain a training data sets. These were then used in a third step to fit a linear regression

with the parameters as responses and a vector-valued function of the original summary statistics

as explanatory variables. The linear fits were used as summary statistics for the corresponding

parameter. A final ABC run was then performed, with a prior restricted to the range established

in the first step, and summary statistics as chosen in the third step. Fearnhead and Prangle

(2011) claim this to be semi-automatic and independent of the choice of statistics, but of course

it does depend on the initial choice of candidate statistics and on the choice of the vector-valued

function. Moreover, if the (transposed) candidate statistics are uncorrelated, we suspect that

their method would be equivalent to using the first component in a univariate PLS regression.

In any case, a direct comparison between all the recently proposed methods for the choice of

statistics in ABC seems due.
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3.5 Appendix

3.5.1 Functional gradient descent boosting algorithm

The general functional gradient descent (FGD) algorithm for boosting, as given by Friedman

(2001) and modified by Bühlmann and Hothorn (2007), is:

FGD algorithm:

1. Initialize F̂ [0](·) ≡ arg minc n
−1
∑n
i=1 L(Yi, c),

set m = 0.

2. Increase m by 1. Compute the negative gradient and evaluate at F̂ [m−1](Xi):

Ui = − ∂

∂F
L(Yi, F )|F=F̂ [m−1](Xi)

.

3. Fit the negative gradient vector (U1, . . . , Un) to (X1, . . . , Xn) by the base procedure:

(Xi, Ui)
n
i=1 −→ ĝ[m].

4. Update F̂ [m](·) = F̂ [m−1](·) + νĝ[m](·), where ν is a step-length factor.

5. Iterate steps 2 to 4 until m = mstop.

Here, ν and mstop are tuning parameters discussed in the main text. The result of this algorithm

is a linear combination F̂ (·) of base procedure estimates, as shown in equation (3.6) of the main

text. In any specific version of boosting, the form of the initial function F̂ [0](·) in step 1, and

the negative gradient Ui in step 2 may be expressed explicitly according to the loss function

L(·, ·) (see SI).

3.5.2 Base procedure: component-wise linear regression

We write the jth component of a vector v as v(j). The following base procedure performs simple

component-wise linear regression:

ĝ(X) = λ̂(ζ̂)X(ζ̂),

λ̂(j) =

n∑
i=1

X(j)Ui

/ n∑
i=1

(
X

(j)
i

)2

,

ζ̂ = arg min1≤j≤p

n∑
i=1

(
Ui − λ̂(j)X

(j)
i

)2

,

(3.12)

where ĝ(·), X and Ui are as in the FGD algorithm above. This base procedure selects the best

variable in a simple linear model in the sense of ordinary least squares fitting (Bühlmann and

Hothorn 2007). To see this, note that λ̂(j) in (3.12) is the ordinary least squares solution of a

linear regression Ui = X
(j)
i λ(j), in matrix form λ̂(j) =

(
X

(j)T
i X

(j)
i

)−1
X

(j)T
i Ui. The choice of

the loss functions enters indirectly via Ui (see SI).
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3.6 Supporting information: Additional tables

Table 3.5: Deme names, deme numbers and sampling sizes in the Alpine ibex data set

Genetic sample sizec

Deme name Deme no.a Short name Internal numberb Males Females Total

Adula Vial 1 AdulaVial 100 21 16 37
Albris 2 Albris 101 28 33 61
Alpstein 3 Alpstein 102 12 18 30
Bire-Oeschinen 4 BireOesch 103 16 2 18
Brienzer Rothorn 5 BrRothorn 104 21 18 39
Calanda 6 Calanda 105 15 16 31
Churfirsten 7 Churfirsten 106 11 13 24
Crap da Flem 8 CrapFlem 107 16 11 27
Fluebrig 9 Fluebrig 108 17 15 32
Flüela 10 Flüela 109 37 38 75
Foostock 11 Foostock 110 9 18 27
Gastern 12 Gastern 111 5 6 11
Graue Hörner 13 GrHörner 112 21 26 47
Gross Lohner 14 GrLohner 113 15 7 22
Hochwang 15 Hochwang 114 14 14 28
Julier Nord 16 Julier N 115 12 11 23
Julier Süd 17 Julier S 116 12 11 23
Justistal 18 Justistal 117 15 4 19
Macun 19 Macun 118 12 10 22
Oberalp-Frisal 20 Oberalp 134 25 19 44
Oberbauenstock 21 Oberbauen 119 18 12 30
Pilatus 22 Pilatus 120 15 2 17
Mont Pleureur 23 Pleureur 121 22 7 29
Safien-Rheinwald 24 Rheinwald 122 22 13 35
Rothorn-Weissfluh 25 RothWeissfl 123 16 13 29
Schwarzmönch 26 SchwMönch 124 15 17 32
Umbrail 27 Umbrail 125 15 14 29
Val Bever 28 ValBever 126 20 12 32
Wetterhorn 29 Wetterhorn 127 9 10 19
Wittenberg 30 Wittenberg 128 15 6 21
Pierreuse-Gummfluh 31 Pierreuse 133 20 21 41
Wildpark Dählhölzli 32 WPDH 129 0 0 0
Wildpark Interlaken 33 WPIH 130 0 0 0
Wildpark St. Gallen 34 WPPP 131 0 0 0
Wildpark Seiler 35 WPSE 132 0 0 0

aAs used in main text and Figure 3.1.
bAs used in scripts and Supporting Files 3.6 and 3.7.
cThe number of individuals from which genetic samples were taken, both in reality and in the simu-
lations.
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3.7 Supporting information: Additional figures
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Figure 3.8: Continued on next page
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Figure 3.8: Continued on next page
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Figure 3.8: Continued on next page
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Figure 3.8: Continued on next page
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Figure 3.8: Continued on next page
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Figure 3.8: Continued on next page
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Figure 3.8: Continued on next page
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Figure 3.8: Continued from previous page. Pairwise prior predictive distribution of PC-rotated summary
statistics. Gray points represent N = 1, 000 simulations with parameter values drawn from the prior. The
true value from the ibex data set is shown as a red dot. The fact that it is always embedded in the cloud
of gray points means that the model and prior distributions are well specified. The n′ = 100 points with
smallest Euclidean distance from the observation are shown in blue. Those represent simulations used as
training data sets for the local choice of summary statistics (see main text). In the main study, we used
N = 106 and n′ = 1, 000; smaller numbers are used here for illustration of the principle.
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Figure 3.9: Root mean squared error of prediction (RMSEP) for PLS regression as a function of the
number of PLS components used. As suggested by (Wegmann et al. 2009a), we chose the number of
PLS components to be kept as summary statistics based on these plots. The RMSEP was obtained via
leave-one-out cross-validation. (A) Global and (B) local choice of summary statistics via PLS (see main
text). In (B), the observation from the ibex data set was used as the center. In both cases, we decided to
keep the first ten components as summary statistics.
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Figure 3.10: Choice of summary statistics via LogitBoost for the three parameters µθanc (A), σθanc (B) and
ω (C). Left column: Boosted coefficients λ[m] as a function of the number of iterations m. Middle column:
Binary parameter class variable (Y , black) and logistic fit to the probability Pr[Y = 1 | X = x] (red), as a
function of the linear predictor. Right column: Quality of fit in terms of AIC as a function of the number
of iterations m. The thick black line marks the mstop chosen. In the cases shown here, no minimum AIC
was found for m < 500.
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Figure 3.11: Choice of summary statistics via L1Boosting for the three parameters µθanc (A), σθanc (B)
and ω (C). Left column: Boosted coefficients λ[m] as a function of the number of iterations m. Right
column: Quality of fit in terms of the bootstrapping error, as a function of the number of iterations m.
The dashed vertical line marks the mstop chosen. In the cases shown here, no minimum absolute error was
found for m < 100.
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Figure 3.12: Choice of summary statistics via L2Boosting for the three parameters µθanc (A), σθanc (B) and
ω (C). Left column: Boosted coefficients λ[m] as a function of the number of iterations m. Right column:
Quality of fit in terms of the corrected AIC as a function of the number of iterations m. The thick black
line marks the mstop chosen. In the cases shown here, no minimum absolute error was found for m < 100.
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Figure 3.13: Posterior distributions inferred for six random test data sets with acceptance rate ε = 0.01.
Methods are as described in the main text. True values are given by a dashed vertical line, prior distributions
in blue (cf. Table 3.1).
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Figure 3.14: Coverage property of posterior distributions inferred with different choices of summary statis-
tics on a global scale. Histograms show the distribution across 500 independent test estimations of the
posterior probabilities of the true parameter values. The distribution is expected to be uniform (Wegmann
et al. 2009a). Left-skewed or right-skewed distributions indicate that the parameter is on average over- or
underestimated, respectively. Peaked or U-shaped distributions result from posterior distributions that are
too wide or too narrow, respectively. Non-uniform distributions of posterior probabilities are shaded in gray
(p-values from Kolmogorov-Smirnov test as explained in the text).
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Figure 3.15: Coverage property of posterior distributions inferred with different choices of summary statistics
on a local scale. Non-uniform distributions of posterior probabilities of the true parameter are shaded gray
(p-values from Kolmogorov-Smirnov test as explained in the text). Note that the first row here corresponds
to the first row in Figure 3.14. Further details as in Figure 3.14.
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Figure 3.16: Pairwise prior predictive distribution of summary statistics on original scale. Only summary
statistics chosen with the lgb.glob method are shown. Gray points represent N = 1, 000 simulations with
parameter values drawn from the prior. The true value from the ibex data set is shown as a blue cross; aol,
average over loci; sd, standard deviation over loci.
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Figure 3.17: Relation between µθanc and the candidate summary statistics. The summary statistics are
on the y-axis; aol, average over loci; sd, standard deviation over loci. Gray points represent N = 1, 000
simulations, the red dashed line corresponds to the observation for Alpine ibex. Blue points represent the
n′ = 100 simulations closest to the observation, where ‘closeness’ was defined as described in the main text
(cf. Figure 3.8).
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Figure 3.18: Relation between σθanc and the candidate summary statistics. Details as in Figure 3.17.
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Figure 3.19: Relation between ω and the candidate summary statistics. Details as in Figure 3.17.



3.7. SUPPORTING INFORMATION: ADDITIONAL FIGURES 75

2 1 0 1 2 3

1
0

1
2

3

x

2 1 0 1 2 3

2
0

1
2

3

x

1 0 1 2 3

2
0

1
2

3

x

50 30 10 0 10

0
10

0
30

0

Linear predictor for μθanc Linear predictor for μθanc 

x

50 30 10 0 10

4
2

0
2

4
6

x

0 100 200 300 400

4
2

0
2

4
6

x

Linear predictor for μθanc Linear predictor for μθanc Linear predictor for σθanc 

Linear predictor for σθanc 

Li
ne

ar
 p

re
di

ct
or

 fo
r σ

θ a
nc

 
Li

ne
ar

 p
re

di
ct

or
 fo

r σ
θ a

nc
 

Li
ne

ar
 p

re
di

ct
or

 fo
r ω

 

Li
ne

ar
 p

re
di

ct
or

 fo
r ω

 

Li
ne

ar
 p

re
di

ct
or

 fo
r ω

 

Li
ne

ar
 p

re
di

ct
or

 fo
r ω

 

A

B

Figure 3.20: Effect of local choice on scale of summary statistics. Summary statistics were chosen with
L2Boosting as explained in the main text. For each parameter, one linear combination of the original
statistics is used as the new summary statistic. These linear combinations are plotted against each other.
(A) Global choice of summary statistics. (B) Local choice of summary statistics. Gray points represent
N = 1, 000 simulations and the blue cross marks the value observed for Alpine ibex. The local choice of
statistics leads to a rescaling compared to the global choice.



76 CHAPTER 3. CHOICE OF SUMMARY STATISTICS IN ABC VIA BOOSTING

3.8 Supporting information: Additional methods

3.8.1 Demography and life cycle in simulations

In the following, we give additional details of the demographic model and the ibex-specific

settings used in the simulations. All of this is implemented in the program SPoCS (Simulate

Populations under Complex Scenarios) written in JavaTM and available on the website http:

//pub.ist.ac.at/~saeschbacher/phd_e-sources/.

Life cycle

Alpine ibex is a long-lived, middle-sized ungulate species (Töıgo et al. 2002, 2007). We divide the

life cycle into years and a year into discrete events, some of which are further described below.

We set the maximum age of females and males to 22 and 17 years, respectively (Nievergelt 1966;

Töıgo et al. 2007). Females and males reach sexual maturity at an age of 3 years (Nievergelt

1966; Stuwe and Grodinsky 1987; Töıgo et al. 2002), and the expected age of first reproduction

for females and males is 4 and 9 years, respectively (Loison et al. 2002; Töıgo et al. 2002). In our

simulations, females and males stop reproducing when older than 20 and 15 years, respectively.

Founder/admixture events

A new deme is established by founder individuals taken from previously existing demes. The

minimum and maximum age of a founder is 1 and 7 years, respectively, independently of

sex. Existing demes may receive further individuals from other demes at later points in time

(as specified in Supporting File 3.7 transfers). The range of ages allowed for these admixing

individuals is the same as for founders. Founder/admixture events take place at the beginning

of the year, before the regulating deaths (see below).

Reproduction

Females reproduce according to a baseline fertility parameter f . It gives the probability that,

for a given year, a particular female will reproduce. If the female reproduces, she mates with

a male randomly chosen from the set of males with access to matings in that year (see below).

Given a particular female reproduces, it may have one or two offspring. This is controlled

by the twin rate parameter z := Pr[twins | female reproduces]. We set f = 0.4 (Nievergelt

1966; Stuwe and Grodinsky 1987) and z = 0.08 (Töıgo et al. 2002). Males can get access to

matings if they reached the expected age of first reproduction (9 years) and are then counted

as potentially reproducing. If, in a deme, no males older than 9 years are available, all males

older than the age of sexual maturity (3 years) are considered potentially reproducing. The

proportion of these potentially reproducing males that actually get access to matings is defined

as ω (see main text). It is one of the parameters to be estimated in this study.

Deme size control

If the number of offspring required to reach the deme size of the next year cannot be produced by

the female baseline fertility f (see above), additional females are allowed to reproduce: Rather

than allowing only females to reproduce who reached the expected age of first reproduction (4

http://pub.ist.ac.at/~saeschbacher/phd_e-sources/
http://pub.ist.ac.at/~saeschbacher/phd_e-sources/
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years), all females who reached the age of sexual maturity (3 years) may reproduce in this case.

If, on the other hand, baseline reproduction results in more individuals than needed to reach

the census size of the next year, surplus individuals are removed. These regulating deaths are

irrespective of age and sex, and additional to the natural deaths of senescence. In any case, we

limit the proportion by which the reproductive need may be overshot per year to 0.2.

Migration

We simulate migration after the regulating deaths, but before reproduction. Females and males

must have reached the age of 3 years before they emigrate (they are then ‘potential emigrants’).

For a given source deme, the total of individuals to be sent to all connected demes (see main

text) are put into an emigrant pool. Emigrants are then randomly distributed to the receiver

demes in proportions corresponding to the emigration rates.

3.8.2 Explicit forms of minimum expected loss and negative gradient

The FGD algorithm given in the Appendix of the main text is generic. It is instructive to

study the explicit form of expressions in step 1 and 2 of this algorithm for the specific loss

functions used here. To this purpose, we follow Friedman et al. (2000), Friedman (2001) and

Bühlmann and Hothorn (2007).

Population minimizer of expected loss

We first give explicit forms of the population minimizer (3.5) for the three loss functions in equa-

tions (3.8), (3.9) and (3.11). These are obtained by minimizing the expectation of the joint

distribution of X and Y , EX,Y [L(Y, F )], where L(·, ·) is the generic loss function and F = F (X).

In our context, it is enough to take the expectation conditional on X = x, EY [L(Y, F ) | x].

For the L1-loss in (3.8), F ∗(·) from (3.5) is obtained as the F (·) that minimizes EY [|Y −F | |
x]. By the definition of the median, the population minimizer is (Friedman 2001; Bühlmann

and Hothorn 2007)

F ∗(x) = median(Y | x). (3.13)

For the L2-loss in (3.9), the expected loss is EY [(Y − F )2/2 | x], and F ∗(·) is obtained by

setting the derivative with respect to F to zero:

∂

∂F
EY
[

1

2
(Y − F )

2

∣∣∣∣x] =
1

2

∂EY [Y 2 | x]

∂F
− ∂EY [Y F | x]

∂F
+

1

2

∂EY [F 2 | x]

∂F

= 0− EY [Y | x] + F (x) = 0,

(3.14)

from which the familiar result

F ∗(x) = EY [Y | x] (3.15)

follows (Friedman 2001; Bühlmann and Hothorn 2007).

Friedman et al. (2000) show how to derive the population minimizer of the negative binomial

log-likelihood in equation (3.11). For notational convenience, we encode the response by Ỹ =

2Y − 1 ∈ {−1, 1}. The likelihood in (3.11) can then be written as

L(Ỹ , F ) = log
(
1 + e−Ỹ F

)
. (3.16)
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In analogy to our previous definition, we set p(x) := Pr[Ỹ = 1 | X = x], and hence 1− p(x) :=

Pr[Ỹ = −1 | X = x]. Dropping the arguments, we have

EỸ [L | x] = EỸ
[

log (1 + eỸ F )
∣∣x]

= p log (1 + e−F ) + (1− p) log (1 + eF ).
(3.17)

The partial derivative with respect to F is

EỸ
[

log (1 + eỸ F )
∣∣x] = −p e−F

1 + e−F
+ (1− p) eF

1 + eF
. (3.18)

Setting to zero and solving for F , we obtain the population minimizer

F ∗(x) = log

[
p(x)

1− p(x)

]
. (3.19)

Notice that Friedman et al. (2000) and Bühlmann and Hothorn (2007) use a slightly different

parameterization, namely setting F equal to one half of the logit-transform, such as to have

the population minimizer equal to the one for the exponential loss criterion. The population

minimizers in (3.13), (3.15) and (3.19) imply that the initial function estimates in step 1 of the

FGD algorithm (Appendix) must be set to F ∗(·) ≡ median(Y ) for the L1-loss, to F ∗(·) ≡ Ȳ

for the L2-loss, and to F ∗(·) ≡ log[p̂/(1− p̂)] for the negative binomial log-likelihood loss.

Negative gradient

To calculate the negative gradient vector (U1, . . . , Un) in step 2 of the FGD algorithm (Appendix),

we need the partial derivative of the loss function with respect to the target function F . Any

element Ui is obtained as this partial derivative evaluated at the previous function estimate

F̂ [m−1](xi). Formally,

Ui = − ∂

∂F
L(Yi, F )

∣∣∣∣
F=F̂ [m−1](Xi)

. (3.20)

For the L1-loss in (3.8), we have

− ∂

∂F

[
|Yi − F |

]
=

Yi − F
|Yi − F |

= sgn(Yi − F ), (3.21)

which implies the negative gradient component

Ui = sgn
[
Yi − F̂ [m−1](Xi)

]
(3.22)

in step 2 of the FGD algorithm (cf. Friedman 2001).

For the L2-loss in (3.9),

− ∂

∂F

[
1

2
(Yi − F )

2

]
= Yi − F, (3.23)

which amounts to

Ui = Yi − F̂ [m−1](Xi) (3.24)
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in step 2 of the FGD algorithm (cf. Friedman 2001; Bühlmann and Hothorn 2007).

Last, for the negative binomial log-likelihood we again use Ỹ = 2Y − 1 ∈ {−1, 1} and find

− ∂

∂F
L(Ỹi, F ) = − ∂

∂F
log
(

1 + e−Ỹi F
)

=
Ỹi e
−Ỹi F

1 + e−Ỹi F
. (3.25)

This leads to the negative gradient component

Ui =
Ỹi e
−Ỹi F̂ [m−1](Xi)

1 + e−Ỹi F̂ [m−1](Xi)
(3.26)

in step 2 of the FGD algorithm.
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Table 3.6: (The table is intended as an online Supporting File (census sizes) and therefore not displayed
here. It is available on the website http://pub.ist.ac.at/~saeschbacher/phd_e-sources/.

Census population sizes of Alpine ibex demes in the Swiss Alps

Table 3.7: (The table is intended as an online Supporting File (transfers) and therefore not displayed here.
It is available on the website http://pub.ist.ac.at/~saeschbacher/phd_e-sources/.

Numbers of Alpine ibex transferred between demes by humans

http://pub.ist.ac.at/~saeschbacher/phd_e-sources/
http://pub.ist.ac.at/~saeschbacher/phd_e-sources/


Chapter 4

Inferring recent migration rates in a

complex model with ABC:

Joint versus pairwise estimation

The work presented in this chapter was influenced by discussions with Andreas Futschik and

Mark Beaumont. They had a strong impact on the design of the study. The chapter is

intended for publication in Genetics, as a companion paper to the one resulting

from chapter 3 of this thesis, with Andreas and Mark as co-authors.

4.1 Introduction

Gene flow via migration or dispersal is of interest for several reasons. First, it is a modulator

of speciation and has an impact on species range (Kirkpatrick and Ravigné 2002; Lenormand

2002). Its absence is a requirement for the early phase of allopatric speciation, while some

secondary contact is needed to complete speciation via reinforcement (Barton and Hewitt 1985;

Servedio and Noor 2003). Theory and recent empirical findings suggest that speciation is

possible in the permanent presence of gene flow, although the parameter range may be small

(Endler 1977; Gavrilets 2003; Nosil 2008; Barton 2010). Gene flow may swamp locally favoured

alleles and therefore limit local adaptation (Morjan and Rieseberg 2004; Nagylaki and Lou

2008). Second, gene flow is one aspect of population history, which is of interest on its own,

for instance in the case of human expansion (Rosenberg et al. 2002; Currat and Excoffier

2005). More generally, it is essential for the interpretation of observed patterns of genetic

diversity (Charlesworth et al. 2003). Third, gene flow plays a role in the maintenance of genetic

diversity, and is therefore of importance in conservation biology. It may reduce the risk of

inbreeding depression and fixation of deleterious alleles (Keller and Waller 2002) and has an

impact on the definition of management units (Waples and Gaggiotti 2006; Palsboll et al.

2007). Moreover, gene flow is associated with the spread of diseases (Biek and Real 2010), drug

resistance (Webster et al. 2008) or genetically modified organisms (Chapman and Burke 2006).

Inferring rates of migration from genetic data has advantages compared to direct observation

(Neigel 1997), but it is a formidable challenge under realistic models. We devise an approach for

estimating multiple migration rates in an approximate Bayesian framework. It uses summary

81
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statistics and conditions on independent demographic information (cf. Estoup et al. 2004).

We show that when we split the full estimation problem into sub-problems, the net accuracy

increases with the number of parameters to be estimated, relative to the accuracy reached

when the full problem is analyzed at once. Our setting is motivated by recent studies of genetic

diversity in a re-introduced and spatially subdivided population of Alpine ibex (Capra ibex ) in

Switzerland. Although the species has successfully recovered from near extinction, it remains

of conservation concern. Genetic diversity within demes is low and differentiation among demes

relatively strong (Stuwe and Scribner 1989; Scribner and Stuwe 1994; Biebach and Keller 2009,

2010). Occasional local outbreaks of diseases such as foot rot (Belloy et al. 2007) or infectious

keratoconjunctivitis (Tschopp et al. 2005; Ryser-Degiorgis et al. 2009) raise worries that the

respective pathogens (e.g. Dichelobacter nodosus, Mycoplasma conjunctivae) could spread via

migration. Estimating rates and direction of migration are therefore of twofold interest.

In principle, population differentiation is a continuum: the degree of connectivity of demes

may vary from panmixia to complete isolation (Figure 1 in Waples and Gaggiotti 2006). In

practice, gene flow is often studied from one of two extreme perspectives, either asking about

deviations from the null model of panmixia (e.g. Bowen et al. 2005; Waples and Gaggiotti 2006),

or starting from previously defined demes and asking about their degree of isolation (e.g. Lucas

et al. 2009). In the case of Alpine ibex, geography and spatial distribution clearly suggest the

latter perspective. Nowadays, Alpine ibex live in altitudes of 1,800 to 3,000 meters. Their

ranges are restricted to mountain ridges and, usually, deep valleys, bigger roads and rivers

are not crossed. Discrete demes can be defined according to the Swiss Federal Office for the

Environment (FOEN) and game keepers (Biebach and Keller 2009).

The mathematical treatment of gene flow goes back to Wright (1931) and Haldane (1932).

When the first allozyme samples became available (Hubby and Lewontin 1966), the theory was

applied to data, essentially using the relationship between migration rate and FST (Wright

1922; Cockerham and Weir 1993) derived for the island model at equilibrium (Wright 1943).

A plethora of studies have since used FST or modifications of it (Nei 1973; Hudson et al. 1992;

Slatkin 1995; Rousset 1996) under this approach. Great effort has been spent on obtaining

valid estimates of FST from genetic data (Nei and Chesser 1983; Weir and Cockerham 1984;

Weir and Hill 2002). However, strong – and in most cases unrealistic – assumptions such as

symmetric migration rates, constant and equal deme sizes, infinitely many demes and drift-

migration equilibrium are made. Violations may result in misleading FST-based estimates

(Whitlock and McCauley 1999; Balloux and Lugon-Moulin 2002, but see Barton and Slatkin

1986). Alternative methods have been proposed, such as maximum-likelihood estimation under

the diffusion approximation (Slatkin and Barton 1989), the study of rare alleles (Slatkin 1985;

Slatkin and Barton 1989), or cladistic measures of gene flow that compare a gene tree with

sampling locations (Slatkin and Maddison 1989; Hey and Machado 2003). Essentially, all

these approaches use the island model of migration and assume drift-migration equilibrium.

In parallel, attempts were made to either relax the assumption of drift-migration equilibrium

under the island model (Latter 1973; Takahata and Slatkin 1990; Takahata 1995), or to relax

the island-model assumptions of symmetric migration rates (Tufto et al. 1996) and equal deme

sizes (Gaggiotti and Excoffier 2000), but keeping the assumption of drift-migration equilibrium.
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Coalescent theory (Kingman 1982) and increasing computational power then boosted the

development of likelihood-based methods of inference. These use Felsenstein’s (1988) equation

for the likelihood of parameters that influence the genealogy given observed data, and employ

importance sampling (IS; Griffiths and Tavaré 1994a,b; Beerli and Felsenstein 1999) or Markov

chain Monte Carlo (MCMC; Kuhner et al. 1995) to explore the large space of potential genealo-

gies. These approaches have later been improved (Stephens and Donnelly 2000; Hey and Nielsen

2007) and implemented in software packages (Bahlo and Griffiths 2000; Beerli and Felsenstein

2001; Kuhner 2006). Wakeley (1996b,a) introduced the isolation with migration (IM) model,

in which two demes split at some time in the past and then continue exchanging migrants.

He showed that the variance of the number of pairwise differences in DNA sequences from the

two demes can be used to distinguish between recent divergence with complete isolation and

long-term drift-migration equilibrium (Takahata and Slatkin 1990). Hey and Nielsen (2004)

extended the IM model to multiple loci and Hey and Nielsen (2007) devised a more efficient

way of integrating Felsenstein’s (1988) equation. More recently, Hey (2010) extended inference

under the IM model to multiple demes.

Recent development in the context of the IM model marks the state of the art of full-

likelihood methods. However, they require that at least parts of the likelihood can be computed

analytically. Moreover, correct tuning of MCMC methods may be demanding and time con-

suming (Kuhner 2009). Incorporation of recombination, more complex population histories or

selection pose a challenge to likelihood-based MCMC approaches. In these cases, methods based

on summary statistics offer an alternative (Hey and Machado 2003). Summaries of the joint

site-frequency spectrum (Wakeley and Hey 1997) have been used in conjunction with MCMC

to jointly infer parameters of an IM model accounting for intra-locus recombination (Becquet

and Przeworski 2007, 2009; Tellier et al. 2011; Naduvilezhath et al. 2011). A limitation of the

IM model is that it assumes constant effective deme sizes, which is not justified in the case we

will study here.

A more flexible, but less rigorous framework for inference under complex models without the

need of explicitly computing likelihoods is offered by approximate Bayesian computation (ABC;

Beaumont 2010). ABC methods i) combine Monte Carlo simulations with a rejection algorithm

(Tavaré et al. 1997), ii) allow for some tolerance when rejecting (Fu and Li 1997; Weiss and von

Haeseler 1998), and iii) use summary statistics to reduce the number of dimensions (Pritchard

et al. 1999, but see Sousa et al. 2009). Various extensions have been proposed to improve the

efficiency of the basic ABC algorithm (Marjoram et al. 2003; Wegmann et al. 2009a; Sisson

et al. 2007, 2009), to choose summary statistics well (Joyce and Marjoram 2008; Wegmann

et al. 2009a; Nunes and Balding 2010; Aeschbacher et al. 2011a, or chapter 3) and to improve

posterior density estimation (Beaumont et al. 2002; Blum and François 2010; Leuenberger and

Wegmann 2010). One of the main challenges in ABC is the so called curse of dimensionality,

which results from the fact that a limited number of simulations is used for rejection in a high-

dimensional space (Beaumont 2010). The problem arises when there are many parameters to

be estimated jointly, and hence many summary statistics on which to condition. The challenges

of inference in problems with high dimensionality are not specific to ABC, however (e.g. Hey

2010). ABC has, for instance, been used to compare models of human expansion (Fagundes

et al. 2007; Blum and Jakobsson 2011), to infer sex-specific migration in rodents (Hamilton et al.
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2005; Wegmann et al. 2010) and to show unidirectional gene flow in chimpanzees (Wegmann

and Excoffier 2010).

Models in evolutionary genetics often include sets of parameters for different processes

or units of the system, and have a hierarchical structure. If the data reflect this hierarchy,

hierarchical Bayes models (HBM) provide an obvious choice (Gelman et al. 2004). In HBM,

the distributions of parameters associated with statistical units on a given level are specified in

terms of hyperparameters on a higher statistical level. A key feature of HBM is that statistical

‘strength’ is borrowed across units, which means that estimation of unit-specific parameters is

improved by using the same data multiple times. The efficiency of rejection sampling methods

can therefore be substantially improved. HBM provide a compromise between either assuming

that all statistical units are the same or estimating separate sets of parameters for each unit.

In practice, the former may fit the data poorly, while the latter is prone to overfitting.

Recently, Bazin et al. (2010) have proposed an approach for inference with ABC under HBM.

They suggested estimating the hyperparameters in a first step, marginal to the parameters on

the lower level, and to then infer the remaining parameters conditional on the hyperparameters

in a second step. Inference is conditioned on data on the respective levels. The advantage of this

two-step procedure is that less memory is needed for storing intermediate values of summary

statistics. Yet, as the authors pointed out, it introduces an approximation to the true posterior

that goes beyond the usual approximation inherent to ABC. The model we study here is not

truly a HBM, because the parameters on the top level (ancestral mutation rate, male mating

skew) are not hyperparameters of those on the lower level (migration rates). Nevertheless, the

two-step procedure of Bazin et al. (2010) has inspired the approach we are taking here and in

chapter 3. In the latter, we have estimated the scaled mutation rate in the ancestral population

and the extent of male mating skew as two global parameters. In the current paper, we focus

on estimating the strength and direction of migration conditional on the previously inferred

global parameters.

An immediate question is what biological entities should be chosen as statistically indepen-

dent units. One extreme is to consider pairs of demes as basal units (Hoelzel et al. 2007; Lucas

et al. 2009). But these pairs are not necessarily independent with respect to migration. On the

other extreme, it may be necessary to consider the whole set of demes (and migration rates)

jointly. From a statistical perspective, having more, but smaller units, is preferable. From a

biological perspective, the optimal choice will often be somewhere between, depending on the

connectivity of demes. We compare two alternative choices: a) clusters of demes and b) pairs of

demes. The first is justified based on the putative connectivity of the ibex demes, but it suffers

from the curse of dimensionality when deme clusters are large. Choice b) reduces the curse

of dimensionality, but makes the potentially wrong assumption of pairwise independence. Our

results suggest that the error introduced by this assumption is compensated by the reduction of

the curse of dimensionality, if the total number of migration rates to be estimated is large. We

further confirm that boosting is a valid method for choosing summary statistics and reducing

the number of dimensions in ABC, as was proposed in chapter 3.
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4.2 Model and parameters

We study a neutral model of a spatially structured population with genetic drift, mutation and

migration. The demography includes admixture, subdivision and changes in population size.

This model is motivated by the re-introduction of Alpine ibex into the Swiss Alps, which was

initiated in 1906. It is described in detail in chapter 3. Here, we only give a brief summary to

capture the most relevant aspects. The re-introduction has been documented by game keepers

and authorities, such that deme sizes could be reconstructed between 1906 and 2006, and the

numbers of founder individuals transferred between demes are known (Couturier 1962; Stuwe

and Nievergelt 1991; Scribner and Stuwe 1994; Maudet et al. 2002; Aeschbacher et al. 2011a,

or chapter 3).
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Figure 4.1: Clusters of Alpine ibex demes in the Swiss Alps that are connected by migration. The dark
shaded parts represent areas inhabited by ibex. The ancestral deme is located in the Gran Paradiso area
in Northern Italy, close to the Swiss border. The two demes in the zoological gardens 33 and 34 were first
established from the ancestral one. Further demes, including the two in zoological gardens 32 and 35, were
derived from demes 33 and 34. Putative connections indicate the pairs of demes for which migration is
considered possible. Sets of demes connected by migration are assigned to clusters. Cluster 3 is used for
testing alternative methods for choosing summary statistics. Clusters 2, 3 and 5 are used to assess the
approximate, pairwise inference scheme described in the text. For deme names see Table 4.6. Map obtained
via the Swiss Federal Office for the Environment (FOEN) and modified with permission.

We constructed a model that simulates genetic changes forwards in time, starting with an

ancestral deme danc of unknown effective size, Ne. At times ti (i = 1, . . . , I) further demes di

are derived from danc or from demes established in the meantime. In our case, t1 = 1906 is the

year when the first deme was established in Switzerland with individuals from the ancestral

deme danc in Northern Italy (Figure 4.1). From t1 onward, the sizes of derived demes follow the
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observed census size trajectories. Derived demes may exchange migrants if they are connected.

Whether demes are connected depends on information obtained from FOEN, game keepers

and on geography (Figure 4.1). For any pair of connected demes di and dj , we define the

forward migration rates m̃i,j and m̃j,i as the proportion of potential emigrants in deme di

that migrate to deme dj per year, and vice versa. We assume that m̃i,j is constant over

time and the same for females and males. Migration in Alpine ibex could be sex specific

or density dependent, but so far, we do not know of any evidence for this. Since m̃i,j is a

proportion, the actual number of emigrants from deme di may change over time, depending on

the size of deme di. We use the forward definition because it is straightforward to implement

in an individual-based forward simulation with overlapping generations. However, backward

migration rates – more commonly found in a theoretical context – can easily be calculated from

forward rates assuming that no migrants are lost. We denote the set of all migration rates

by m̃ = {m̃i,j : i 6= j, i ∈ Jm, j ∈ Jm}, where Jm denotes the set of all demes connected via

migration to at least one other deme (Figure 4.1).

A further parameter is the scaled ancestral mutation rate θanc = 4Neu, where Ne is the

long-term effective size of danc up to t1 and u is the mutation rate per generation and locus.

Since we will later consider microsatellite data, we assume the stepwise model of mutation

(Ohta and Kimura 1973). In contrast to the time before t1, we assume no mutation between

t1 and the time of genetic sampling, tg, because this period represents only 100 years, or about

twelve ibex generations. Since u may vary across loci, we employ a hierarchical model, assuming

that θanc is normally distributed across loci with the hyperparameters mean µθanc and standard

deviation σθanc
(see Aeschbacher et al. 2011a, or chapter 3). Last, the proportion of males

obtaining access to matings per season is denoted by ω. This parameter is motivated by the

high mating skew towards dominant males observed in Alpine ibex (Aeschbacher 1978; Stuwe

and Grodinsky 1987; Scribner and Stuwe 1994; Willisch and Neuhaus 2009; Willisch et al. 2011).

As explained later, for ABC we will use summary statistics to infer the migration rates

m̃i,j . Population genetic theory suggests that genetic diversity within and differentiation among

demes are affected by gene flow (Wright 1931, 1943, 1951; Weir and Cockerham 1984; Cocker-

ham and Weir 1987; Slatkin and Barton 1989; Nath and Griffiths 1996; Neigel 1997). Statistics

like gene diversity within demes (expected heterozygosity H
(i)

1 for deme di), or the standard-

ized variance of allele frequencies among demes (fixation indices F
(i)

ST for deme di, pairwise

F
(i,j)

ST for demes di and dj) may be used to measure these aspects as functions of the allele

frequency distribution within and across demes (but see Whitlock and McCauley (1999) for

a word of caution). Figure 4.2 illustrates how these statistics change jointly over time as a

function of the strength and direction of gene flow and in the absence of current mutation.

Without further information on demography or temporal samples, similar patterns of genetic

composition observed at a given point in time may have arisen under rather different scenarios

(Nielsen and Wakeley 2001; Hey and Nielsen 2004; Hey 2010; Strasburg and Rieseberg 2010). If,

as in our case, historical information such as divergence times and deme genealogies are known,

these can be used to condition the inference and discriminate between alternative explanations

that would otherwise be hard to distinguish. Moreover, in this setting it is not necessary to

assume drift-migration equilibrium.
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1Figure 4.2: Information contained in summary statistics on strength and direction of gene flow. For
simplicity, we assume three demes and two alleles, and that demes are large enough for random genetic drift
to be ignored. The frequency of the first allele in deme i is pi, with the degree of shading proportional to
pi. Dashed arrows mark potential paths of migration, solid arrows denote actual migration in each of the
examples. The expected change in relevant summary statistics (see text and Table 4.1) as a function of
gene flow is shown by arrows pointing up or down. (A) Constant rate of migration from deme 1 to deme
3. (B) Constant rate of migration from deme 3 to deme 1. (C) Constant and symmetric rates of migration
between deme 1 and deme 3. (D) Constant, but asymmetric rates of migration between demes 1 and 3.
For the numerical example, the rate from deme 1 to deme 3 is ten times the rate in the opposite direction.

4.3 Methods

4.3.1 Reducing the curse of dimensionality

We denote the joint posterior distribution of our model by π(α, m̃ | D), where D represents

the data, and α = (µθanc
, σθanc

, ω). As pointed out in chapter 3, inferring this distribution

is a complex problem due to the large number of parameters that causes a severe curse of

dimensionality (Beaumont 2010). Targeting the joint posterior with ABC directly would in

principle give a result, but it would be hard to assess its validity. We find it more promising to

address intermediate steps and assess them one by one. For this purpose, we realize that the

joint posterior may be factorized as

π(m̃, α | D) = π(m̃ | α, D)π(α | D). (4.1)

In practice, the two factors on the right hand side of (4.1) are individually of interest at least as

much as is their product. In chapter 3, we have addressed the direct inference of π(α | D) via
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ABC, marginalizing implicitly over the prior of m̃. For this problem, the curse of dimensionality

was moderate, because α comprises only three parameters. There, we have also proposed an

approach for obtaining per parameter one linear combination of the original summary statistics,

which reduced the number of dimensions to a minimum. These linear combinations were used

as new summary statistics when doing ABC. In the current paper, we target the second part of

equation (4.1): inferring migration rates conditional on D and previous knowledge of α. Here,

the curse of dimensionality is still severe: m̃ contains 56 migration rates, requiring at least the

same number of summary statistics. For illustration, we may assume one summary statistic

per parameter and use the – admittedly stringent – product kernel for rejection (e.g. Blum

and Tran 2010). Accepting the ten percent closest simulations in each direction, the expected

total acceptance rate would be ε = 0.156, which is ridiculously low. In other words, to obtain

a reasonable overall acceptance rate – say ε = 0.1 – we would need to accept 56
√
ε ≈ 96% of

simulations in each direction, which comes close to not conditioning on any individual statistic

at all. This example is hypothetical: on the one hand, there may well be more than just one

summary statistic per parameter; on the other hand, a less stringent rejection kernel would

alleviate the problem. Overall, it reveals the need for a strategy to avoid too severe a curse of

dimensionality.

From a statistical perspective, a potential solution is to split the full system into (approxi-

mately) independent units and analyze them one by one. Such a ‘divide and conquer’ strategy

may indeed also be justified biologically, because the degree to which the genetic composition

of individual demes is correlated can vary strongly. In general, such correlations arise from

common ancestry of demes, exchange of migrants, and direct or indirect effects of selection.

In our case, we ignore selection, but all demes share a common ancestry, and the degree of

relatedness and genetic differentiation varies according to the history of re-introduction (Stuwe

and Scribner 1989; Scribner and Stuwe 1994; Biebach and Keller 2009, 2010). Defining in-

dependent units with respect to the degree of shared ancestry would nevertheless be tricky,

because the genealogy of the demes is so intricate (e.g. Biebach and Keller 2009; Aeschbacher

et al. 2011a, or chapter 3). However, based on geography and knowledge of game keepers, it

is relatively straightforward to define subsets of demes that are independent with respect to

migration. Since we are interested in migration rates, and since – if present – migration has

a more immediate effect on current diversity than shared ancestry, grouping demes according

to connectivity seems justified. We call these putatively independent sets of connected demes

deme clusters and denote them by Cκ (κ = 1, . . . ,K), where K is the number of deme clus-

ters (see Figure 4.1). Further, we assemble all migration rates associated with cluster Cκ into

m̃κ = {m̃i,j : i 6= j, i ∈ JCκ , j ∈ JCκ}, where JCκ is the set of demes belonging to deme cluster

Cκ.

The above assumption of independence of deme clusters implies that the joint likelihood

can be factorized accordingly. If we further assume that the priors of m̃κ conditional on α,

π(m̃κ | α), are mutually independent, we can therefore also factorize the posterior distribution

(for details, see Bazin et al. 2010). Specifically, the first term on the right hand side of (4.1)

may be written as

π(m̃ | α, D) =

K∏
κ=1

π(m̃κ | α, Dκ), (4.2)
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where Dκ is the data relevant for deme cluster Cκ. In the context of ABC, this factorization

means that the same simulations can be used multiple times for the different deme clusters,

which increases overall efficiency. Moreover, the curse of dimensionality is potentially reduced,

because fewer parameters need to be estimated jointly in every single step. Inserting (4.2) into

(4.1), we have

π(m̃, α | D) =

[
K∏
κ=1

π(m̃κ | α, Dκ)

]
π(α | D), (4.3)

which focuses our interest on obtaining π(m̃κ | α, Dκ), with α drawn from π(α | D). Marginal-

izing over α, we obtain the posterior of the migration rates for any given cluster Cκ as

π(m̃κ | D) =

∫
A
π(m̃κ | α, Dκ)π(α | D) dα, (4.4)

with Dκ ⊂ D, and A the domain of α with non-zero prior support. These are the quantities of

our principal interest, and the left hand side of (4.4) may be targeted directly using ABC (see

below).

If the number of demes in a cluster is large, the curse of dimensionality may still hamper

inference of π(m̃κ | α, Dκ). For instance, cluster 6 (Figure 4.1) consists of eleven demes and

comprises 28 migration rates – possibly too many for joint estimation. For this reason, we

consider as a further level of hierarchy pairs of demes. Clearly, the assumption of pairwise

independence of demes with respect to migration is not justified, considering the pattern of

connectivity in Figure 4.1. Yet, if the error caused by assuming pairwise independence is

compensated by a gain in accuracy due to a reduced curse of dimensionality, such an assumption

seems justified in practice. Whether this is the case must be established by a direct comparison

of the accuracy achieved with the two approaches.

To formalize this idea, we denote pairs of demes by Pψ (ψ = 1, ..., P ), where P is the number

of pairs. In analogy to m̃κ, we introduce m̃ψ = {m̃i,j : i 6= j, i ∈ JPψ , j ∈ JPψ}, where JPψ is

the set consisting of the two demes belonging to Pψ. Therefore, for any ψ, m̃ψ comprises just

the two rates of migration in the opposite direction along the path connecting a specific deme

pair. The marginal posterior for any deme pair – analogous to (4.4) for any deme cluster – is

then

π(m̃ψ | D) =

∫
A
π(m̃ψ | α, Dκ: Pψ∈Cκ)π(α | D) dα, (4.5)

where Dκ: Pψ∈Cκ denotes the data specific to the deme cluster that contains deme pair Pψ. The

formal equivalent to (4.4) on the level of a given deme cluster Cκ, as obtained with the pairwise

method, is

πpw(m̃κ | D) =
∏

ψ: Pψ∈Cκ

π(m̃ψ | D), (4.6)

where the product is over all deme pairs Pψ ∈ Cκ, and we again assume conditional independence

of all priors. The main question of interest is how results obtained from empirical estimates of

(4.4) and (4.6) compare. The answer is likely to depend on the number of migration rates in a

cluster. For a fixed number of simulations, the more parameters are to be estimated, the better

we expect the pairwise method to perform relative to the joint method. To investigate this,

we compared joint versus pairwise inference for three clusters with varying number of demes:

clusters 2, 3 and 5 with 4, 6 and 14 migration rates, respectively (Figure 4.1).
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4.3.2 ABC procedure

In the formal description above, we have conditioned on the data D on the original scale.

However, in ABC the data are usually compressed to summary statistics in order to increase

the acceptance rate (Pritchard et al. 1999; Marjoram et al. 2003; Sisson et al. 2007). Ideally,

summary statistics should be chosen to be Bayes sufficient, meaning that they satisfy

π(φ | D) = π(φ | S(D)) (4.7)

for all values taken by the parameter φ and all priors π(φ), where S(D) denotes a vector of

summary statistics computed from the full data (e.g. Gelman et al. 2004; Bazin et al. 2010).

In many population genetic applications, no sufficient statistics are known and the choice of

statistics is therefore a crucial step (Joyce and Marjoram 2008; Wegmann et al. 2009a; Beaumont

2010; Nunes and Balding 2010; Aeschbacher et al. 2011a, or chapter 3). Moreover, as was

pointed out by Bazin et al. (2010) in a similar context, equations (4.4) and (4.5) suggest that,

given the hierarchical structure of our model, we should use two distinct types of summary

statistics: (i) summary statistics that are symmetric with respect to the deme clusters (or pairs

of demes) and functions of all demes together (e.g. means or variances across deme clusters),

and (ii) summary statistics that are specific to individual units (deme clusters, or pairs of demes

in our case). As a consequence, the requirement for sufficiency stated in equation (4.7) can

be relaxed (for details, see Bazin et al. 2010). In the following, we use s = S(D) to denote

summary statistics that are computed from data D on the level of the whole population, and

u = U(Dunit) for summary statistics computed from data specific to a given unit (deme cluster,

or pair of deme). Recall that we have inferred the posterior of α given D before in chapter

3. Here, we focus on inferring the posterior of the m̃κ marginal to α, π(m̃κ | D), for each

κ. To obtain an ABC approximation to these posteriors with unit-specific candidate statistics

U(Dunit), we employed algorithm A below. The algorithm also includes a step for choosing

informative summary statistics from the candidate statistics. Throughout, a prime denotes a

simulated instance of a parameter or statistic.

Algorithm A:

A.1 For each deme cluster Cκ (κ = 1, ...,K): Calculate candidate summary statistics uκ =

U(Dκ) from observed data.

A.2 For t = 1 to t = N :

i Sample α′t from π(α | D) obtained in a previous step.

ii For κ = 1 to κ = K: Sample m̃′κ,t from the conditional prior π(m̃κ | α = α′t).

iii Simulate data D′t (for all demes, irrespective of deme cluster), conditioning on α′t

and m̃′t = {m̃′κ,t : κ = 1, ...,K}.
iv For κ = 1 to κ = K: Calculate candidate summary statistics u′κ,t = U(D′κ,t) from

data simulated in A.2.iii.

A.3 Sample without replacement n ≤ N simulated data points 〈u′1,t, ..., u′κ,t, α′t, m̃′1,t, ..., m̃′κ,t〉
and use them as a training data set to choose informative sets of summary statistics, Um̃κ ,

one set for each κ.
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A.4 For κ = 1 to κ = K:

i According to A.3, obtain um̃κ
from uκ.

ii For t = 1 to t = N : According to A.3, obtain u′m̃κ,t
from u′κ,t.

iii Scale um̃κ and u′m̃κ
appropriately.

iv For t = 1 to t = N : Accept (m̃′κ,t, α
′
t) if ρ(u′m̃κ,t

,um̃κ) ≤ δε, using scaled summary

statistics from A.4.iii

v Estimate the posterior density π(m̃κ,α | D) ≈ π(m̃κ | α, D)π(α | D) from the εN

accepted points 〈u′m̃κ,t
, α′t, m̃

′
κ,t〉.

The quantities of interest – the posteriors of m̃κ marginal to α for any κ as shown in (4.4) –

are then approximated by simply discarding α in the results obtained in step A.4.v. Notice

the difference between uκ = U(Dκ) and um̃κ
= Um̃κ

(Dκ): the former denotes values of

candidate summary statistics computed from data of deme cluster Cκ; the latter refers to values

of summary statistics chosen to be informative about m̃κ – either as a subset of U or some

function of its components – also computed from data of Cκ. For step A.2 we performed N = 106

simulations. In A.2.i, we sampled from the posterior distribution π(α | sα) ≈ π(α | D) inferred

in chapter 3, where sα = Sα(D) were chosen to be informative about α. These statistics

were chosen from a set of candidate statistics S via L2-Boosting in the putative vicinity of the

observation s = S(D), as described in chapter 3. Further, the conditional prior in step A2.ii

was assumed to be equal to the unconditional one, that is π(m̃κ | α) = π(m̃κ) =
∏
i,j π(m̃i,j),

where the product is over all i, j such that i 6= j, i ∈ JCκ and j ∈ JCκ . Figure 4.7 suggests that

this assumption is justified: It shows that the distribution of m̃i,j values belonging to simulated

data points that were accepted in chapter 3 when inferring α does not deviate from the original

log10 uniform prior of the migration rates. This means that the summary statistics sα used for

inferring α in chapter 3 were not informative about the m̃i,j . For the choice of statistics in A.3,

we compared a set of methods described in chapter 3 in terms of their accuracy. We restricted

this comparison to deme set 3 (Figure 4.1). The methods compared are partial least squares

(PLS) regression as suggested by Wegmann et al. (2009a), and three versions of boosting with

different loss functions (L1-, L2- and logistic loss). For all methods, both a global (focussing

on the whole prior range) and a local (focussing on the putative vicinity of the true value only)

version was employed. For details and references to alternative approaches, see chapter 3. In

A.4.iii, we mean-centered the summary statistics and scaled them to have unit variance, and

in A.4.iv, we chose the Euclidean distance as metric ρ(·) (Beaumont et al. 2002). There, δε is

the threshold chosen such that a proportion of ε of the N simulations is accepted. In A.4.v, we

performed post-rejection adjustment with a weighted local-linear regression using weights from

an Epanechnikov kernel (Beaumont et al. 2002), without additional scaling of parameters. For

step A.4 we used the abc package (Csilléry et al. 2011) for R (R Development Core Team 2011).

Similarly, to obtain an approximation of (4.5) for each deme pair, we used algorithm B (see

Appendix), which is essentially obtained from algorithm A by replacing deme cluster Cκ by

deme pair Pψ, κ by ψ, and m̃κ by m̃ψ everywhere except for one subtle difference: In step B.1,

even though iteration is over pairs of demes, we computed, for each pair, summary statistics

from data of the whole respective cluster of demes, uκ = U(Dκ: Pψ∈Cκ). The notation is that κ

identifies the deme cluster that contains deme pair Pψ. Accordingly, in B.3 informative statistics
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Um̃ψ were chosen from the candidate statistics U. Therefore, while migration rates were

estimated independently in pairs, data from the whole corresponding deme cluster were used

for each pair. This is important, because demes other than those connected by a given path of

migration may also convey information on the rate along that path, while focussing exclusively

on data from a pair of demes may be misleading (Figure 4.2; Slatkin 1993; Whitlock and

McCauley 1999). Further details mentioned above, following algorithm A, apply analogously

to the procedure for pairs of demes.

The results from algorithms A and B represent approximations to π(m̃κ | α, Dκ)π(α |
D) = π(m̃κ,α | D) and π(m̃ψ | α, Dκ: Pψ∈Cκ)π(α | D) = π(m̃ψ,α | D) that go beyond the

usual approximation inherent to ABC. The exact explanation is somewhat subtle and we refer

to Bazin et al. (2010) for details. The essence is that we are conditioning twice on the data

Dκ associated with deme cluster Cκ (or deme pair Pψ): once when inferring α conditioning on

Sα(D) – as done in chapter 3 – and a second time when conditioning on Um̃κ(Dκ) in algorithm

A and Um̃ψ (Dκ: Pψ∈Cκ) in algorithm B, respectively. The deviation is expected to be small if

the number of independent units (deme clusters in the case of algorithm A; pairs of demes in

algorithm B) is large, such that the effect of any single unit on the total data is negligible.

It is important to notice that even in the case of joint estimation of all migration rates within

a cluster, we focused mainly on marginal posterior distributions with respect to the other

migration rates. Therefore, when later we report point and interval estimates and coverage

properties, these are marginal with respect to the other migration rates.

The set U of candidate summary statistics we used is given in Table 4.1. For the migration

rates, we chose a uniform prior on the log10 scale: m̃i,j ∼ log10 -uniform in
[
10−3.5, 10−0.5

]
.

On the untransformed scale, the limits correspond to about 3.2 · 10−4 and 0.32, respectively,

and therefore range from essentially zero migration to a rate that seems very high for Alpine

ibex. This choice of prior imposes a strong belief in low migration rates; a substantial increase

in the likelihood is needed to raise an estimate from 10−3.5 to 10−0.5. Such a choice nevertheless

seems justified, given the potentially high degree of isolation imposed by geographic barriers

such as deep valleys, rivers and roads. Notice, however, that m̃i,j = 0 is not included in our

prior distribution.

Table 4.1: Candidate summary statistics U

Symbol Description Number Reference

H
(i)

1 MALa of within-deme gene diversity in deme di 31 NC1983c

F
(i)

IS MAL of FIS in deme di 31 NC1983

F
(i)

ST MAL of FST in deme di 31 NC1983

S
(i,j)

2 MAL of between-deme MSDb in allele length for deme pair (i, j) 465 S1995d

F
(i,j)

ST MAL of pairwise FST for deme pair (i, j) 465 NC1983

The column ‘Number’ refers to the number of times this statistic occurs in the whole data set.
aMean across loci.
bMean squared difference.
cNei and Chesser (1983).
dSlatkin (1995).
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4.3.3 Simulation study and assessment of performance

To assess different methods for choosing summary statistics and compare the joint with the pair-

wise estimation procedure, we carried out a simulation study. For each ε ∈ {0.001, 0.01, 0.1},
we simulated 500 test data sets with m̃ sampled from the prior distribution and α drawn

from π(α | D) inferred previously in chapter 3. We then estimated marginal posterior dis-

tributions for each migration rate and computed measures of accuracy. Similar to Weg-

mann et al. (2009a), we used the root mean integrated squared error (RMISE), defined as

RMISEk =
√∫

Φ(k)(φ(k) − µk)2 π(φ(k) | s) dφ(k), where µk is the true value of the kth com-

ponent of the parameter vector φ and π(φ(k) | s) is the corresponding estimated marginal

posterior density. Recall that φ = m̃ in our case. From this, we obtained the relative absolute

RMISE (RARMISE) as RARMISEk = RMISEk/|µk|. We also computed the absolute differ-

ence (AEk) between three marginal posterior point estimates (mode, mean and median) and

µk. Dividing by |µk|, we obtained the relative absolute error (RAEk). To directly compare the

various methods to ABC with all summary statistics, we computed standardized variants of

the RMISE and AE as follows: If aallk is the measure of accuracy for ABC with all summary

statistics, and a∗k the one for ABC with the method of interest, the standardized measure was

obtained as a∗k/a
all
k . As a further criterion, we assessed the coverage property of the inferred

posterior distributions. For this, we checked if the posterior probabilities of the true parameter

values across the 500 test data sets were uniformly distributed in [0, 1] (cf. Wegmann et al.

2009a; Cook et al. 2006). We assessed the uniformity with a Kolmogorov-Smirnov test (Sokal

and Rohlf 1981).

4.3.4 Application to Alpine ibex

For the application to Alpine ibex, we used microsatellite allele frequencies and repeat lengths

as published in Biebach and Keller (2009) (see Figure 4.1 and Table 4.6). ABC simulations

and inference were identical to those in the simulation study and implemented in a program

called SPoCS that we wrote for this purpose. In these simulations, migration occurred between

population regulation and reproduction. Females and males must have reached the age of three

years before they may emigrate. For a given source deme, the total of individuals to be sent to

all connected demes were put into an emigrant pool. Emigrants were then randomly distributed

to the receiver demes in proportions corresponding to the emigration rates. Further details are

described in the supporting information (SI) of chapter 3. SPoCS and a collection of scripts

used for inference are available on the website http://pub.ist.ac.at/~saeschbacher/phd_

e-sources/. We restricted the application to real data to deme clusters 2, 3 and 5 (Figure 4.1),

because the main focus of this paper is to compare the joint and pairwise estimation procedure.

For a complete analysis of all demes, see chapter 3.

To assess how much our results were influenced by the data as opposed to the prior as-

sumptions, we calculated the Kullback-Leibler divergence DKL (Kullback and Leibler 1951) of

the marginal posterior from the corresponding prior, using the flexmix package (Leisch 2004;

Grün and Leisch 2007, 2008) for R. DKL is large if the posterior differs strongly from the prior,

which is an indicator for how much the posterior is driven by the data as opposed to the prior.

We have also computed the Manhattan and Euclidean distances between prior and posterior

http://pub.ist.ac.at/~saeschbacher/phd_e-sources/
http://pub.ist.ac.at/~saeschbacher/phd_e-sources/


94 CHAPTER 4. JOINT VERSUS PAIRWISE ESTIMATION OF MIGRATION RATES

distributions, but the general pattern was very similar to the one obtained for DKL (data not

shown).

4.3.5 Comparison to a model without migration

So far, we have considered a model with migration and we have chosen prior distributions for

m̃i,j with no support for m̃i,j = 0. However, it is of interest whether the Alpine ibex data – at

least for some deme pairs – are also compatible with a model without migration, and how the

two models compare. ABC cannot only be used for estimating parameters of a given model,

but has also been employed for model choice (e.g. Pritchard et al. 1999; Estoup et al. 2004;

Fagundes et al. 2007; Cornuet et al. 2008; Verdu et al. 2009). Bayesian model choice proceeds

via the comparison of marginal likelihoods

Pk(D) =

∫
Θk

P (D | φk)πk(φk) dφk, (4.8)

where k is a discrete model index and φk and πk(·) are parameters and priors for model k,

respectively. This suggests the ratio of the marginal likelihoods as a criterion for model choice.

That ratio is called the Bayes factor. For example,

B12(D) =
P1(D)

P2(D)
(4.9)

is the Bayes factor in favor of modelM = 1 compared to the alternative modelM = 2 (Robert

et al. 2011, and references therein). By Bayes’ rule, the posterior probability of a certain model

l is given by

π(M = l | D) =
Pl(D)π(M = l)∑
k Pk(D)π(M = k)

, (4.10)

where π(M = k) is the prior probability assigned to model k. In the case where π(M = k) is

the same for all k, it cancels from (4.10), and we see that the ratio of the marginal likelihoods –

and hence the Bayes factor – is equal to the ratio of the corresponding posterior probabilities.

Here is where ABC comes in naturally, because the average ABC acceptance rate associated

with a given model is proportional to the posterior probability corresponding to that model. A

necessary condition for this is that identical summary statistics, metric ρ and tolerance ε are

used across all models. Hence, in practice, an estimate of the Bayes factor is given by the ratio

of observed acceptance rates (Robert et al. 2011, and references therein). However, Robert

et al. (2011) have shown that the ABC-type Bayes factor does in general not converge to the

true Bayes factor when the number of simulations goes to infinity, except for some very special

cases. In general, they differ by a factor that is equal to the ratio of two quantities that depend

on the models compared. The reason is that, even if the summary statistics are sufficient

for each of the models separately, in general they are not jointly sufficient with respect to the

marginal likelihood and the model index. Conclusions drawn from ABC-type Bayes factors and

those drawn from the exact Bayes factor will therefore in general not agree, and the correction

factor is unknown except for a few special cases (for details, see Robert et al. 2011). Therefore,

we consider ABC-type Bayes factors more an explorative tool for model comparison, rather

than a robust criterion for model choice. We also performed a simulation study with known
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model indices to test the power of the ABC model comparison approach in our setting. For

our ABC model comparison procedure, we followed Fagundes et al. (2007). Details are given

in the Appendix.

4.4 Results

4.4.1 Comparison of methods for choice of summary statistics

In the following, we summarize results from a comparison of different approaches for choosing

summary statistics, obtained in a simulation study with known parameter values. For deme

cluster 3 (Figure 4.1) we compared four methods for the choice of summary statistics, each

in a global and a local version. Throughout, the point estimators mode, mean and median

performed similarly in terms of the standardized absolute error (SAE), but the median was

slightly more accurate on average (Table 4.2). The partial least squares (PLS) regression

performed significantly worse in terms of the standardized absolute root mean integrated error

(SARMISE) than the methods based on boosting. The latter performed similarly amongst

each other, with logistic boosting (lgb) being most accurate. Interestingly, and in contrast to

the results for mutation rate and mating skew in chapter 3, the local versions of the methods

resulted in higher SARMISE compared to the global versions (Figure 4.3A).

The same trends applied to the SAE of the median, but to a lesser degree (Figure 4.3B).

There was no uniform pattern across methods for the dependence of accuracy on the acceptance

rate ε. Yet, for the methods based on boosting, the SARMISE tended to be lowest for the

intermediate rate ε = 0.01 (Figure 4.3). Notice that the differences in accuracy between the

methods were small. The median values for SARMISE and SAE in table 4.2 are all very close

to one, which means that their performance was similar to ABC with all summary statistics.

These values do not reveal anything about absolute accuracy. Nevertheless, the error bars in

figure 4.3 suggest that significant differences between methods do exist. Although the global

version of logistic boosting (lgb.glob) resulted in most accurate point estimates on average, the

corresponding coverage properties were unsatisfactory for ε ≥ 0.01 (rightmost column in Table

4.2). For all methods, the distribution of posterior probabilities of the true value deviated

more from a uniform distribution with increasing ε. The effect was stronger for the local

versions than for the global ones, except for PLS (Table 4.2). Distributions deviating from

uniformity were generally left-skewed (data not shown). This means that the true value was

found in the lower part of the inferred posterior distribution more often than expected and

implies that these methods would overestimate migration rates. The method resulting in the

best compromise between accurate point estimation and good posterior coverage was the global

version of boosting with the L2-loss (l2b.glob, Table 4.2). For further analyses, we therefore

used l2b.glob for choosing summary statistics.

4.4.2 Joint versus pairwise estimation of migration rates

We have compared the joint and pairwise estimation procedure for three deme clusters of

different size. The accuracy of the pairwise estimation method in terms of the SARMISE and

the SAE clearly increased with the size of the deme cluster and the number of migration rates
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to be inferred, relative to the joint method (Table 4.3). For the smallest cluster – cluster

3 with four migration rates (Figure 4.1) – pairwise estimation resulted in higher SARMISE

and SAE than joint estimation. For the intermediate cluster – cluster 2 with six migration

parameters – the two methods performed about equally well. For the largest cluster – cluster 5,

for which 14 migration rates were to be inferred – the pairwise procedure started outcompeting

the joint estimation. In addition, the pairwise estimation method resulted in much better

posterior coverage than the joint method. For the latter, posterior probabilities of the true

value deviated strongly from uniformity in most cases. In general, posterior coverage became

worse with increasing size of the deme cluster (two rightmost columns in Table 4.3).

Table 4.2: Accuracy of different methods for choosing summary statistics, relative to ABC with all candidate
summary statistics

Methoda ε SARMISEb SAEc mode SAE mean SAE median Cov. pd

pls.glob 0.001 1.043 (0.074) 1.067 (0.483) 1.037 (0.387) 1.041 (0.365) 0.241
0.01 1.042 (0.068) 1.075 (0.48) 1.037 (0.298) 1.034 (0.356) 0.093
0.1 1.039 (0.062) 1.035 (0.443) 1.034 (0.329) 1.037 (0.354) 0.027*

lgb.glob 0.001 0.999 (0.014) 0.998 (0.157) 1.006 (0.086) 1.006 (0.095) 0.062
0.01 0.998 (0.005) 1.001 (0.083) 1.001 (0.03) 0.999 (0.031) <0.001*
0.1 0.999 (0.004) 1.002 (0.039) 0.999 (0.017) 0.998 (0.019) <0.001*

l1b.glob 0.001 1.005 (0.061) 1.012 (0.493) 1.039 (0.277) 0.998 (0.299) 0.723
0.01 1.007 (0.056) 1.028 (0.401) 1.010 (0.238) 0.994 (0.293) 0.486
0.1 1.009 (0.045) 1.012 (0.33) 1.009 (0.258) 0.985 (0.247) 0.102

l2b.glob 0.001 1.007 (0.059) 1.024 (0.479) 1.023 (0.272) 0.989 (0.268) 0.648
0.01 1.005 (0.052) 1.007 (0.388) 1.006 (0.232) 0.991 (0.27) 0.413
0.1 1.005 (0.046) 1.005 (0.349) 1.005 (0.236) 0.978 (0.237) 0.137

pls.loc 0.001 1.064 (0.087) 1.091 (0.517) 1.083 (0.394) 1.075 (0.442) 0.4
0.01 1.059 (0.078) 1.109 (0.49) 1.074 (0.35) 1.082 (0.382) 0.263
0.1 1.054 (0.071) 1.092 (0.403) 1.083 (0.349) 1.067 (0.413) 0.132

lgb.loc 0.001 1.000 (0.009) 1.000 (0.101) 1.000 (0.058) 1.000 (0.056) 0.043*
0.01 1.000 (0.005) 1.000 (0.064) 1.000 (0.027) 1.000 (0.028) <0.001*
0.1 1.000 (0.003) 1.000 (0.035) 1.000 (0.016) 1.000 (0.017) <0.001*

l1b.loc 0.001 1.022 (0.068) 1.004 (0.456) 1.044 (0.314) 1.028 (0.341) 0.078
0.01 1.020 (0.053) 1.067 (0.445) 1.037 (0.269) 1.011 (0.263) 0.031*
0.1 1.019 (0.046) 1.054 (0.367) 1.021 (0.252) 1.027 (0.264) 0.002*

l2b.loc 0.001 1.017 (0.062) 1.037 (0.463) 1.046 (0.306) 1.035 (0.317) 0.078
0.01 1.015 (0.051) 1.047 (0.396) 1.030 (0.259) 1.021 (0.259) 0.087
0.1 1.018 (0.044) 1.043 (0.362) 1.027 (0.24) 1.012 (0.258) 0.005*

The table shows results for rates of migration between demes of cluster 3 (Figure 4.1). SARMISE
and SAE (see below) are given as the median across 500 independent estimations with true values
drawn from the prior (median absolute deviation in parentheses). For each test set, we computed the
geometric mean of the measures of accuracy across parameters before averaging across test sets (cf.
Tables 4.7 and 4.8). Migration rates were estimated on the log10 scale.
apls, partial least squares regression (PLS) with the first five comonents used as statistics; lgb,
logistic boosting; l1b, boosting with L1 loss; l2b, boosting with L2 loss; glob, global version; loc,
local version (for details, see text and Aeschbacher et al. 2011a).
bStandardized absolute root mean integrated squared error.
cStandardized absolute error with respect to the true value.
dP-value from a Kolmogorov-Smirnov test for the uniformity of the posterior probabilities of the true
values (∗: p < 0.05).
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Figure 4.3: Standardized accuracy of different methods for choosing summary statistics as a function of
the acceptance rate (ε) for deme cluster 3. 1Standaridized means that, before averaging across test sets,
we divided the measures of accuracy for the respective method by the measure of accuracy obtained with
all candidate summary statistics. (A) Root mean integrated squared error (RMISE), relative to the RMISE
obtained with all summary statistics. (B) Absolute error of the posterior median, relative to the one obtained
with all summary statistics. Plotted are the medians across n = 500 independent test estimations with true
values drawn from the prior (error bars denote the median±MAD/

√
n, where MAD is the median absolute

deviation). For typical values (geometric means) across parameters, see Table 4.2.

The above results originate from a relative comparison of two approaches, but they do not

reveal in an intuitive way how accurate the inferred migration rates really were. For this, we

plotted the distribution of the ratio of point estimates (posterior median) to true values (Figure

4.4 for deme cluster 3 and Figures 4.8 and 4.9 for culsters 2 and 5). The rates were brought to

the raw scale before the ratio was computed. As expected, the distribution is centered around

a ratio of 1:1 in all cases, implying that on average the estimates were unbiased. However,

the tails of the distribution reach to hundredfold under- or overestimation, with a slight skew

towards overestimation (e.g. Figure 4.4). Comparing the joint and the pairwise estimation

method, we found a slight tendency for the ratio to be closer to 1 for the pairwise method with

increasing size of the deme cluster (compare Figures 4.4, 4.8 and 4.9).

The accuracy of point estimates also depended on the true value. The relation between

estimated and true value was approximately linear with an expected slope of 1 only in the

center of the prior distribution. True values in the lower range of the prior distribution were

often overestimated, while true values in the upper range were underestimated (Figure 4.5 for

deme cluster 3 and Figures 4.10 and 4.11 for culsters 2 and 5). This may be an effect of the
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Table 4.3: Accuracy of pairwise estimation of migration rates relative to joint estimation per cluster, for
deme clusters of different

Clustera ε SARMISEb SAEc mode SAE mean SAE median Cov. p d
j Cov. p e

pw

3 [4] 0.001 1.193 (0.195) 1.271 (0.749) 1.230 (0.612) 1.239 (0.619) 0.2 0.759
3 [4] 0.01 1.186 (0.173) 1.253 (0.77) 1.228 (0.591) 1.222 (0.609) 0.134 0.64
3 [4] 0.1 1.158 (0.152) 1.286 (0.755) 1.172 (0.597) 1.206 (0.619) 0.002* 0.199

2 [6] 0.001 1.088 (0.19) 1.090 (0.747) 1.041 (0.641) 1.028 (0.64) 0.018* 0.453
2 [6] 0.01 1.074 (0.171) 1.032 (0.697) 1.039 (0.599) 1.021 (0.646) 0.034* 0.418
2 [6] 0.1 1.048 (0.158) 0.983 (0.673) 1.024 (0.606) 0.987 (0.609) <0.001* 0.159

5 [14] 0.001 0.934 (0.175) 0.804 (0.513) 0.780 (0.441) 0.784 (0.442) 0.021* 0.122
5 [14] 0.01 0.928 (0.161) 0.794 (0.58) 0.826 (0.452) 0.797 (0.427) <0.001* 0.08
5 [14] 0.1 0.926 (0.154) 0.786 (0.569) 0.826 (0.459) 0.806 (0.444) <0.001* 0.004*

SARMISE and SAE (see below) are given as the median across 500 independent estimations with true values
drawn from the prior (median absolute deviation in parentheses). For each test set, we computed the geometric
mean of the measures of accuracy accros parameters before averaging across test sets. Migration rates were
estimated on the log10 scale, summary statistics chosen with the l2b.glob method, and ε = 0.01. For parameter-
specific values see Tables 4.9 to 4.11.
aID of deme cluster as shown in Figure 4.1; the corresponding number of migration rates given is in brackets.
bStandardized absolute root mean integrated squared error with respect to the joint estimate.
cStandardized absolute error of the pairwise estimate with respect to the joint estimate.
dP-value from a Kolmogorov-Smirnov test for the uniformity of posterior probabilities of the true values (∗:
p < 0.05), for the joint estimation procedure.
eAs in d, but for the pairwise estimation procedure.

log-uniform prior in combination with the non-zero rejection tolerance of the ABC algorithm,

causing biased point estimates to pile up at the sharp boundaries of the prior. Moreover, even

in cases where the observed slope was close to 1 over the whole prior range (e.g. for m̃5,18 in

Figure 4.5), only about a fraction of R2 ≈ 0.72 ≈ 0.5 of the total variance was explained (R is

the Pearson product-moment correlation coefficient). There was no obvious difference in these

patterns between the joint and pairwise estimation method.

4.4.3 Estimates for Alpine ibex and comparison to model without migration

Results from the simulation study above suggest that – for the model and set of methods con-

sidered here – summary statistics are best chosen via boosting with the L2-loss, the preferable

●

●

●

●
●
●
●
●

●

●

●

●
●
●

●●

●

● ●

●
●

●
●

●

●
●

●

●●

●●

●

●
●

●

joint pairwise

m~5,18

R
at

io
 (

es
tim

at
e/

tr
ue

)

1:
10

0
1:

10
1:

1
10

:1
10

0:
1

joint pairwise

m~18,5

1:
10

0
1:

10
1:

1
10

:1
10

0:
1

●

●●
●
●

●

●

●
●

●

●
●

●

●
●

●

●
●

joint pairwise

m~5,22

1:
10

0
1:

10
1:

1
10

:1
10

0:
1

joint pairwise

m~22,5

1:
10

0
1:

10
1:

1
10

:1
10

0:
1

Figure 4.4: Ratio of posterior point estimate (median) to true value for the joint and pairwise estimation
method. Box plots summarize data from 500 test data sets with true values sampled from the prior. Boxes
show the interquartile range and whiskers extend to the most extreme data point which is no more than 1.5
times the interquartile range from the box. Note the logarithmic scale. As an example, the four parameters
belonging to cluster 3 are shown (see Figures 4.8 and 4.9 for clusters 2 and 5).
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Figure 4.5: Correlation of posterior point estimate and true value for the joint (red circles) and pairwise
(blue crosses) estimation method across 500 test data sets. The black line shows the expected ratio of
1:1 and R is the Pearson product-moment correlation coefficient. Plots are shown for the four parameters
belonging to cluster 3 (see Figures 4.10 and 4.11 for clusters 2 and 5).

acceptance rate is ε = 0.01, and pairwise estimation of migration rates outcompetes joint esti-

mation as the total number of migration rates to be estimated increases. Applying this to the

Alpine ibex data from deme clusters 2, 3 and 5 (Figure 4.1), we obtained posterior distributions

of migration rates that are summarized in Table 4.4. For comparison, we also give the results

from the joint estimation procedure. Before interpreting these estimates, we first wanted to

know for which pairs of demes the model with migration (mig) has decisively more support

than a model without migration (nomig). The probability that mig is the true model given the

data and given the power of the ABC model comparison procedure, P [mig | pmig], was high

(> 0.95) for three pairs of demes, (12, 14), (8, 11) and (8, 13), and marginally higher than 0.5 in

the case of deme pair (6, 13). In addition, the ABC-type Bayes factor suggested weak support

for mig for deme pairs (4, 12) and (11, 13), but given the conceptual difficulties that come with

the ABC-type Bayes factor (see Methods), we give more importance to P [mig | pmig]. A more

detailed record of the model comparison procedure is provided in Figures 4.12 and 4.13.

Referring to Table 4.6 for the deme names, we conclude that there is evidence for migration

for deme pairs (Gastern, Gross Lohner), (Crap da Flem, Foostock) and (Crap da Flem, Graue

Hörner). For these deme pairs, the parameter estimates obtained with the pairwise estimation

approach and given on the log10 scale in Table 4.4 translate into the following values on the

untransformed scale: ˆ̃m12,14 ≈ 0.086 with a highest posterior density (HPD) interval of (0.015,

0.489); ˆ̃m14,12 ≈ 0.005 (< 0.001, 0.124); ˆ̃m8,11 ≈ 0.003 (<0.001, 0.040); ˆ̃m11,8 ≈ 0.009 (< 0.001,

0.229); ˆ̃m8,13 ≈ 0.004 (< 0.001, 0.053); and ˆ̃m13,8 ≈ 0.005 (< 0.001, 0.142). Recall that m̃i,j

is the annual emigration rate from deme i to deme j. The point estimates above seem very

low, except for m̃12,14, and the HPD intervals are large for m̃12,14 and very large for the other

rates. This impression is confirmed by the Kullback-Leibler divergences DKL of the posterior

distributions from their corresponding priors (Table 4.4). Among migration rates that belong

to deme pairs for which the migration model is justified, DKL associated with m̃12,14 is clearly

the largest. Figure 4.6 illustrates this and also gives the joint posterior distributions for the

migration rates connecting the two demes in a pair. Overall, there is support for a model with

migration for three deme pairs, but only one of the migration rates (m̃12,14) is associated with

a posterior distribution that clearly differs from the prior distribution. There is evidence for

an annual rate of migration from deme Gastern to deme Gross Lohner of about 0.09, but little
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support by the data for migration in the opposite direction, as suggested by a posterior of

m̃14,12 that is very close to its prior.

4.5 Discussion

In the context of multiple populations, a central question is whether the full data are needed for

accurate estimation of parameters or if subsets of the data, even pairs of demes, provide enough

information (Hoelzel et al. 2007; Lucas et al. 2009; Hey 2010). The main goal of this study was

to assess if estimating migration rates independently for subsets of demes is a valid strategy

when multiple migration rates are to be estimated, and when discrete demes can be defined a

priori. We have compared joint estimation per deme cluster to separate estimation for each

pair of demes, using an approximate Bayesian computation (ABC) approach. The intuition

was that pairwise estimation would reduce the curse of dimensionality and therefore increase

the efficiency of ABC. At the same time, it was not obvious to what extent the assumption of

pairwise independence would counteract this potential gain by decreasing the accuracy. We had

speculated that the trade-off would depend on the number of migration rates to be estimated

jointly, and hence on the size of a deme cluster.

Table 4.4: Point and interval estimates of migration rates for Alpine ibex data

Joint estimation Pairwise estimation

Cluster Param. Mediana 95% HPDIb D c
KL Median 95% HPDI DKL

3 m̃5,18 −2.670 (−3.755, −1.519) 0.805 −2.933 (−3.517, −2.201) 0.843
m̃18,5 −1.804 (−3.379, −0.641) 0.220 −2.075 (−3.507, −0.798) 0.137

m̃5,22 −3.197 (−3.609, −2.648) 1.526 −3.100 (−3.513, −2.556) 1.414
m̃22,5 −2.499 (−3.478, −1.449) 0.349 −2.526 (−3.474, −1.473) 0.369

2 m̃4,12 −1.727 (−3.095, −0.739) 0.322 −1.853 (−3.302, −0.68) 0.261
m̃12,4 −2.361 (−3.659, −1.168) 0.497 −2.545 (−3.525, −1.405) 0.330

m̃4,26 −2.782 (−3.504, −1.947) 0.674 −2.852 (−3.503, −2.074) 0.762
m̃26,4 −2.949 (−3.534, −2.278) 0.980 −2.882 (−3.518, −2.067) 0.703

m̃12,14 −1 .008 (−2.358, −0.137) 1.198 −1 .063 (−1.82, −0.311) 0.996
m̃14,12 −1 .963 (−3.44, −0.729) 0.190 −2 .265 (−3.555, −0.907) 0.194

5 m̃6,8 −2.083 (−3.589, −0.833) 0.312 −2.321 (−3.484, −0.836) 0.160
m̃8,6 −2.546 (−3.831, −1.352) 0.857 −2.781 (−3.522, −1.992) 0.674

m̃6,13 −1.541 (−3.233, −0.419) 0.331 −2.125 (−3.481, −0.916) 0.149
m̃13,6 −2.394 (−3.496, −1.262) 0.528 −2.859 (−3.52, −2.181) 0.796

m̃8,11 −2 .190 (−3.609, −0.949) 0.384 −2 .505 (−3.541, −1.402) 0.330
m̃11,8 −1 .995 (−3.571, −0.762) 0.311 −2 .031 (−3.445, −0.641) 0.120

m̃8,13 −2 .000 (−3.636, −0.791) 0.334 −2 .436 (−3.542, −1.273) 0.276
m̃13,8 −2 .408 (−3.969, −1.28) 0.774 −2 .328 (−3.489, −0.848) 0.184

m̃8,20 −2.589 (−3.561, −1.557) 0.465 −2.496 (−3.541, −1.261) 0.300
m̃20,8 −2.936 (−3.911, −1.818) 1.418 −2.923 (−3.566, −1.915) 0.740

m̃11,13 −1.888 (−3.54, −0.718) 0.299 −2.210 (−3.541, −1.064) 0.180
m̃13,11 −2.423 (−3.677, −1.277) 0.598 −2.563 (−3.539, −1.518) 0.398

m̃11,20 −2.482 (−3.417, −1.456) 0.360 −2.107 (−3.422, −0.743) 0.215
m̃20,11 −2.795 (−3.615, −1.953) 0.730 −2.990 (−3.573, −2.273) 0.863

aPosterior median on log10 scale; italic if the migration model had strong support for the respective pair of
demes (cf. Table 4.5).
bHighest posterior density interval.
cKullback-Leibler divergence of posterior distribution from prior distribution.
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Table 4.5: Comparison between the model with migration, M = mig, and the one without, M = nomig

Cluster Parameter pair p a
mig B̂ b

ABC β c
mig β d

nomig P[mig | pmig]e

3 m̃5,18, m̃18,5 0.216 0.275 0.797 0.942 0.212
m̃5,22, m̃22,5 0.072 0.078 0.927 0.981 0.026

2 m̃4,12, m̃12,4 0.549 1.217 · 0.700 0.901 0.458
m̃4,26, m̃26,4 0.155 0.183 0.816 0.956 0.068
m̃12,14, m̃14,12 0.999 1053.136 **** 0.724 0.921 0.999 ***

5 m̃6,8, m̃8,6 0.408 0.690 0.886 0.959 0.333
m̃6,13, m̃13,6 0.704 2.379 · 0.883 0.963 0.687 ·
m̃8,11, m̃11,8 1.000 ∞ **** 0.983 0.984 1.000 ***
m̃8,13, m̃13,8 0.996 266.391 **** 0.939 0.974 0.999 ***
m̃8,20, m̃20,8 0.038 0.040 0.884 0.960 0.069
m̃11,13, m̃13,11 0.905 9.511 * 0.869 0.967 0.357
m̃11,20, m̃20,11 0.375 0.599 0.927 0.975 0.352

aABC approximation to posterior probability of M = mig given the data, pmig = πABC(M = mig | um̃ψ )
bABC-type Bayes factor in favor of M = mig; classification code for B̂ABC according to Jeffreys (1961): ‘ ’
(M = nomig supported) 1 ‘·’ (barely worth mentioning) 101/2 ‘*’ (substantial) 10 ‘**’ (strong) 103/2 ‘***’
(very strong) 100 ‘****’ (decisive support for M = mig).
cFraction of 1000 simulations performed under the mig model for whichM = mig was correctly inferred as the
true model
dFraction of 1000 simulations performed under the nomig model for which M = nomig was correctly inferred
as the true model
eProbability that M = mig is the true model, given the observed value of pmig and given the power of the
ABC model comparison procedure to correctly distinguish the two models (see text for details); classification
code for P[mig | pmig]: ‘ ’ 0.5 ‘·’ 0.8 ‘*’ 0.9 ‘**’ 0.95 ‘***’.

4.5.1 Pairwise estimation of migration rates more accurate for many parameters

Our main result is that the accuracy of the pairwise estimation method increased relative to

that of joint estimation as the number of parameters increased. This supports our previous

intuition. We found evidence that the curse of dimensionality annihilated the initial advantage

of the joint estimation method for small numbers of parameters. Applying the method to data

from Alpine ibex demes, we have inferred posterior distributions for migration rates between

pairs of potentially connected demes that belong to deme clusters 2, 3 and 5 (Figure 4.1).

However, when comparing the model with migration to one without migration, we found strong

support for the migration model for only three deme pairs. The posterior distributions of the

corresponding migration rates had a very wide highest posterior density interval and were close

to their prior, except for m̃12,14, the annual rate of emigration from deme Gastern to deme

Gross Lohner. This is the only case for which we conclude strong support for gene flow via

migration. In this study, we have only analyzed a subset of all possible demes, namely those

from clusters of a moderate size (Figure 4.1). At least for the model studied here, our results

about better performance of the pairwise method compared to the joint method encourage the

extension of the analysis to the remaining migration rates, some of which belong to a large

cluster of connected demes, including 28 migration rates (Figure 4.1). Such a study is currently

in progress.

Moreover, we found that boosting of a linear regression with the L2 loss function performed

best for the choice of summary statistics. This confirms the conclusion from chapter 3. However,

in the current paper, we found that choosing summary statistics on the global scale – over the

whole range of prior support – yielded slightly more accurate results than focussing the choice

on the putative neighborhood of the true parameter value. The opposite was found in chapter 3,
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Figure 4.6: Posterior distributions of migration rates for three pairs of Alpine ibex demes, inferred with the
joint (dotdashed line) and pairwise (solid line) estimation method. Each row belongs to one of the three
deme pairs for which the migration model had very strong support (cf. Table 4.4). The first and second plot
in a row give the marginal posterior for the annual emigration rates m̃i,j from deme i to deme j and vice
versa, respectively. The third plot in a row shows the joint posterior distribution of m̃i,j and m̃j,i obtained
with the pairwise method. (A) Deme pair (12, 14). (B) Deme pair (8, 11). (C) Deme pair (8, 13). See
Figure 4.1 for the geographic location of the demes.

where the mean and standard deviation of the scaled mutation rate in the ancestral population

and the extent of male mating skew were the parameters of interest. It is possible that whether

the global or local choice of statistics is preferable depends on the parameter, its scale and the

prior distribution. This needs to be explored further. In the current study, the local choice

of statistics did not only result in less accurate point estimates, but also led to unsatisfactory

posterior coverage, with migration rates being overestimated in general. The global methods

suffered less from this.

4.5.2 Stepwise analysis of a hierarchical model

The essence of our approach was to divide the problem into (approximately) independent units,

and analyse each of them separately, conditioning on previously estimated global parameters.

The units in our case were sets of demes – either clusters or pairs. The global parameters on

which we conditioned were the scaled ancestral mutation rate and the extent of male mating

skew. This setting is reminiscent of a recent study by Bazin et al. (2010), where the units were
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the different loci, and the interest was in inferring locus-specific mutation rates and selection

coefficients. An important difference to Bazin et al. (2010) is that the global parameters in

their case were the hyperparameters of the distribution of the locus-specific parameters. In our

case, the global parameters referred to other processes (mutation, drift) than the unit-specific

ones do (migration). Hence, while the setting of Bazin et al. (2010) was truly hierarchically

Bayesian, ours was not. In principle, we could have introduced a hyperprior for the unit-specific

migration rates. We have chosen not to do so, because it was not obvious in advance what

would be the appropriate statistical units. Nevertheless, subject to some modifications, the

idea of the two-step procedure proposed by Bazin et al. (2010) was relevant in our context.

Specifically, in chapter 3 we had estimated the global parameters – the scaled mutation rate in

the ancestral deme and the extent of male mating skew – conditioning on summary statistics

computed from data across all demes, and marginal to all other parameters. For the second

step, we focussed in this paper on the unit-specific parameters – the migration rates.

A crucial assumption was that the statistical units (deme clusters or pairs of demes) were

independent with respect to migration. This was justified for the deme clusters simply by our

definition of a cluster. Taking deme clusters as local units, for large clusters we ran into the

problem of having to perform ABC with many migration rates at the same time, which was

prone to the curse of dimensionality. We therefore zoomed in on a lower level, pairs of demes

connected by migration. While statistical independence was now also violated with respect to

migration, the number of parameters for which ABC rejection had to bee performed jointly

was reduced to two. This reduced the number of summary statistics and hence dimensions.

4.5.3 Advantages and limitations

We have used uniform priors on the log10 scale, which has the advantage of equal probability

for all values on the corresponding scale. The sharp boundaries allowed limiting the range

at some threshold of choice. However, setting this range is somewhat arbitrary. Moreover,

the discrete boundaries may amplify undesired effects, such as piling up of posterior mass

close to the boundary, or projection of posterior density out of the prior support. With a

log-uniform prior, the value m̃i,j = 0 was not included. We therefore employed an ABC-type

model comparison procedure to compare the migration model to an alternative model without

migration. Although straightforward to implement, ABC-type model comparison comes with

a conceptual hitch, because the summary statistics used in the compared models are in general

not sufficient for model comparison. This issue remains open for further research (Robert et al.

2011).

Some highest posterior density (HPD) intervals in Table 4.4 reach beyond the prior limits.

This could be an effect of the local linear regression projecting simulated parameter values out

of the prior range, a problem observed and discussed before (e.g. Beaumont et al. 2002; Estoup

et al. 2004; Leuenberger and Wegmann 2010; Beaumont 2010). One ad hoc solution would be

to scale the parameter values prior to regression; an alternative is to discard points outside

the bounded prior (Beaumont 2010). The effect might further be attenuated by using priors

without sharp boundaries.

The temporal scale on which gene flow affects the genetic composition of populations is

co-determined by the rates of mutation and genetic drift (Felsenstein 1982; Neigel 1997). As a
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consequence, migration rates are usually scaled by either of the two (Wakeley and Hey 1997;

Beerli and Felsenstein 2001; Nielsen and Wakeley 2001; Hey and Nielsen 2004). In our context,

we studied migration on a very short time scale for which mutation could be ignored, and

for which deme genealogy and deme sizes were known. Since we conditioned the inference

of migration rates on known population history and on the previously estimated ancestral

mutation rate (see chapter 3), there was no further need for scaling.

We have used individual-based simulations to accurately fit population history, in particular

the founder events, to detailed historical records. Moreover, biological details regarding mating

and reproduction, as well as overlapping generations, could be incorporated in a straightforward

manner. A conceptual issue, however, arose when implementing migration. We had defined

m̃i,j as the proportion of potential emigrants in deme di that migrate to deme dj per year. If

di is connected to more than one – say K – demes, the sum of emigrant proportions attracted

by each of the receiving demes may exceed 1. Since the number of emigrants in di is a finite

number, we had to normalize the original proportions such that they summed to 1. Therefore,

a given value of m̃i,j may result in a varying number of emigrants, depending on the rates

m̃i,k, where k 6= j and k, j ∈ {1, . . . ,K}. An alternative to normalizing the emigration rates

would have been to define joint prior distributions that account for this constraint, leading

to conditional dependence of individual priors. A related issue is that interpretation of our

emigration rates is not straightforward. A given value of m̃i,j does not immediately translate

into a number of emigrants, unless the total number of emigrants in di and the emigration

rates into other connected demes are known. In practice, we therefore suggest running a set of

simulations a posteriori, with migration rates equal to previously obtained point estimates or

drawn from posterior distributions, and keeping track of migrant numbers. Moreover, we have

ignored the effect of non-sampled demes. These exist, but to our knowledge none is likely to

be connected via migration to any of the sampled demes.

The model for which our findings apply is rather specific, tailored to fit the ibex scenario.

The flipside is that generalizations for other models cannot be made from our results without

further investigation. However, the procedure by which we obtained our results is not restricted

to this particular setting. This flexibility reflects an advantage of ABC over alternative meth-

ods. In any case, simulations and analyses need to be carried out to validate any particular

application of ABC.

4.5.4 General perspective

The precision and accuracy with which parameters can be estimated depend on the information

that the data contain about these, on the approach used to extract that information, and on the

uncertainty about the underlying model(s). In our case, the demographic model was known.

No degrees of freedom had to be sacrificed to compare alternative models. This is not usually

the case (e.g. Takahata 1995; Fagundes et al. 2007; Blum and Jakobsson 2011). In a similar

situation, Estoup et al. (2004) used demographic and geographic information on the spread of

cane toad (Bufo marinus) to condition inference from genetic data. However, demography was

not fully known, so that a set of compatible demographic models had to be compared. The

indirect estimates of demographic parameters such as effective deme sizes and effective founder
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sizes were reliable, while precise estimation of migration rates was problematic (Estoup et al.

2004). A similar pattern applies to recent results by Hey (2010) for the IM model with multiple

demes.

In general, demography and migration have potentially confounding effects on the genetic

composition of populations. Although theory by Wakeley (1996b,a) shows that for certain

models (e.g. the IM model), DNA sequence data reveal information for differentiation, it is not

obvious how this scales to more complex models. We suspect that in our case, conditioning on a

known demographic model was essential. Even then, the shape of some posterior distributions

implied considerable uncertainty. We do not know to what degree this was due to the lack of

information in the data as opposed to the insufficiency of our ABC approach to extract it. This

point raises the general question as to what extent it is possible to infer gene flow via migration

at all in realistic settings. This opens perspectives for future theoretical work that will hopefully

soon be verifiable with DNA sequence data from large samples in a spatial context.
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4.6 Appendix

4.6.1 ABC algorithm with choice of summary statistics for pairwise method

The following algorithm was used for the pairwise estimation procedure described in the main

text.

Algorithm B:

B.1 For each deme pair Pψ (ψ = 1, ..., P ): Calculate candidate summary statistics uκ =

U(Dκ: Pψ∈Cκ) from observed data, where κ identifies the deme cluster that contains deme

pair Pψ.

B.2 For t = 1 to t = N :

i Sample α′t from π(α | D) obtained in a previous step.

ii For ψ = 1 to ψ = P : Sample m̃′ψ,t from the conditional prior π(m̃ψ | α = α′t).

iii Simulate data D′t (for all demes, irrespective of deme cluster or deme pair), condi-

tioning on α′t and m̃′t = {m̃′ψ,t : ψ = 1, ..., P}.

iv For ψ = 1 to ψ = P : Calculate candidate summary statistics u′κ,t = U(D′κ: Pψ∈Cκ, t)

from data simulated in B.2.iii.

B.3 Sample without replacement n ≤ N simulated data points 〈u′1,t, ..., u′κ,t, α′t, m̃′1,t, ..., m̃′ψ,t〉
and use them as a training data set to choose informative sets of summary statistics, Um̃ψ ,

one set for each ψ.

B.4 For ψ = 1 to ψ = P :

i According to B.3, obtain um̃ψ from uκ.

ii For t = 1 to t = N : According to B.3, obtain u′m̃ψ,t from u′κ,t.

iii Scale um̃ψ and u′m̃ψ appropriately.

iv For t = 1 to t = N : Accept (m̃′ψ,t, α
′
t) if ρ(u′m̃ψ,t,um̃ψ ) ≤ δε, using scaled summary

statistics from B.4.iii

v Estimate the posterior density π(m̃ψ,α | D) ≈ π(m̃ψ | α, D)π(α | D) from the εN

accepted points 〈u′m̃ψ,t
, α′t, m̃

′
ψ,t〉.

Further details are as given in the main text after algorithm A, with ψ and Pψ replaced by κ

and Cκ, respectively. In particular, we again assume that the conditional prior in step B.2.ii is

equal to the unconditional one, i.e. that π(m̃ψ | α = α′t) = π(m̃ψ). Figure 4.7 shows that this

assumption is justified.

4.6.2 Details of ABC model comparison procedure

Proceeding essentially as proposed by Fagundes et al. (2007), we performed 106 simula-

tions under both the migration (mig) and the no-migration (nomig) model, and then cal-

culated the ABC-type Bayes factor, B̂ABC, and the posterior probability of the mig model,

pmig = πABC(M = mig | um̃ψ ), from the acceptance rates. We did so for each deme pair inde-

pendently, using the same summary statistics um̃ψ as for parameter estimation under the mig
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model (see Methods). To assess the power of this procedure in recovering the true model, we

simulated 1000 test data sets under each model and performed ABC model comparison for each

test data set. We then calculated the proportion of times the correct model was chosen, βmig =

P [M = mig inferred | M = mig true], and βnomig = P [M = nomig inferred | M = nomig true],

where we considered a model as ‘inferred’ when its posterior probability was pk > 0.5, where

k ∈ {mig,nomig}. Recall that pmig = πABC(M = mig | um̃ψ ) and, accordingly, pnomig =

1 − pmig. These considerations allowed us to compute the probability that M = mig is the

true model, given our estimate of pmig from the real data and given the power of the model

comparison procedure

P [M = mig true | pmig]

=
P [pmig | M = mig true] P [M = mig true]∑

k∈{mig,nomig} P [pmig | M = k true] P [M = k true]
(4.11)

=
P [pmig | M = mig true]∑

k∈{mig,nomig} P [pmig | M = k true]
,

where the last equality holds if P [M = mig true] = P [M = nomig true], which is the case if

we perform the same number of test simulations under each model, as we do. The probabilities

P [pmig | M = k true] are obtained from the empirical distribution of posterior model probabil-

ities pmig resulting from 1000 test simulations under each model (see Methods and Figure 4.13).

We used a rejection tolerance of ε = 0.05 and applied a logistic regression correction step to

estimate the posterior model probabilities from the empirical acceptance rates (e.g. Fagundes

et al. 2007). Throughout, we used the abc package (Csilléry et al. 2011) for R.
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4.7 Supporting information: Additional tables

Table 4.6: Deme names, deme numbers and sampling sizes in the Alpine ibex data set

Genetic sample sizec

Deme name Deme no.a Short name Internal numberb Males Females Total

Adula Vial 1 AdulaVial 100 21 16 37
Albris 2 Albris 101 28 33 61
Alpstein 3 Alpstein 102 12 18 30
Bire-Oeschinen 4 BireOesch 103 16 2 18
Brienzer Rothorn 5 BrRothorn 104 21 18 39
Calanda 6 Calanda 105 15 16 31
Churfirsten 7 Churfirsten 106 11 13 24
Crap da Flem 8 CrapFlem 107 16 11 27
Fluebrig 9 Fluebrig 108 17 15 32
Flüela 10 Flüela 109 37 38 75
Foostock 11 Foostock 110 9 18 27
Gastern 12 Gastern 111 5 6 11
Graue Hörner 13 GrHörner 112 21 26 47
Gross Lohner 14 GrLohner 113 15 7 22
Hochwang 15 Hochwang 114 14 14 28
Julier Nord 16 Julier N 115 12 11 23
Julier Süd 17 Julier S 116 12 11 23
Justistal 18 Justistal 117 15 4 19
Macun 19 Macun 118 12 10 22
Oberalp-Frisal 20 Oberalp 134 25 19 44
Oberbauenstock 21 Oberbauen 119 18 12 30
Pilatus 22 Pilatus 120 15 2 17
Mont Pleureur 23 Pleureur 121 22 7 29
Safien-Rheinwald 24 Rheinwald 122 22 13 35
Rothorn-Weissfluh 25 RothWeissfl 123 16 13 29
Schwarzmönch 26 SchwMönch 124 15 17 32
Umbrail 27 Umbrail 125 15 14 29
Val Bever 28 ValBever 126 20 12 32
Wetterhorn 29 Wetterhorn 127 9 10 19
Wittenberg 30 Wittenberg 128 15 6 21
Pierreuse-Gummfluh 31 Pierreuse 133 20 21 41
Wildpark Dählhölzli 32 WPDH 129 0 0 0
Wildpark Interlaken 33 WPIH 130 0 0 0
Wildpark St. Gallen 34 WPPP 131 0 0 0
Wildpark Seiler 35 WPSE 132 0 0 0

aAs used in main text and Figure 4.1.
bAs used in scripts.
cThe number of individuals from which genetic samples were taken, both in reality and in the simu-
lations.
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Table 4.7: Accuracy of different methods for choosing summary statistics on a global scale

Method ε Param. RARMISEa RAEb mode RAE mean RAE median Cov. pc

all 0.001 m̃5,18 0.426 (0.262) 0.208 (0.207) 0.185 (0.178) 0.187 (0.186) 0.61
m̃5,22 0.415 (0.213) 0.225 (0.191) 0.216 (0.195) 0.214 (0.192) 0.017*
m̃18,5 0.496 (0.216) 0.336 (0.265) 0.302 (0.245) 0.298 (0.232) 0.685
m̃22,5 0.491 (0.183) 0.355 (0.284) 0.298 (0.255) 0.305 (0.258) 0.121

0.01 m̃5,18 0.414 (0.238) 0.210 (0.198) 0.185 (0.173) 0.198 (0.186) 0.02*
m̃5,22 0.409 (0.207) 0.239 (0.193) 0.212 (0.202) 0.230 (0.199) <0.001*
m̃18,5 0.484 (0.189) 0.368 (0.268) 0.310 (0.238) 0.302 (0.228) 0.58
m̃22,5 0.475 (0.168) 0.380 (0.274) 0.299 (0.257) 0.301 (0.244) 0.091

0.1 m̃5,18 0.414 (0.219) 0.216 (0.191) 0.193 (0.176) 0.201 (0.184) <0.001*
m̃5,22 0.412 (0.193) 0.241 (0.193) 0.226 (0.206) 0.230 (0.192) <0.001*
m̃18,5 0.483 (0.186) 0.386 (0.251) 0.314 (0.247) 0.307 (0.234) 0.381
m̃22,5 0.475 (0.161) 0.404 (0.252) 0.300 (0.249) 0.314 (0.254) 0.205

pls.glob 0.001 m̃5,18 0.447 (0.261) 0.213 (0.207) 0.199 (0.205) 0.195 (0.197) 0.61
m̃5,22 0.437 (0.228) 0.231 (0.219) 0.217 (0.202) 0.212 (0.193) 0.078
m̃18,5 0.502 (0.193) 0.362 (0.318) 0.303 (0.243) 0.321 (0.241) 0.573
m̃22,5 0.490 (0.148) 0.376 (0.309) 0.320 (0.25) 0.323 (0.244) 0.241

0.01 m̃5,18 0.440 (0.254) 0.209 (0.203) 0.199 (0.203) 0.197 (0.202) 0.319
m̃5,22 0.420 (0.222) 0.240 (0.2) 0.214 (0.203) 0.219 (0.197) 0.03*
m̃18,5 0.494 (0.178) 0.387 (0.327) 0.307 (0.24) 0.313 (0.243) 0.617
m̃22,5 0.479 (0.143) 0.408 (0.315) 0.320 (0.258) 0.320 (0.255) 0.404

0.1 m̃5,18 0.433 (0.238) 0.217 (0.207) 0.204 (0.21) 0.214 (0.208) 0.117
m̃5,22 0.416 (0.204) 0.245 (0.199) 0.223 (0.206) 0.228 (0.197) 0.005*
m̃18,5 0.491 (0.172) 0.397 (0.308) 0.306 (0.242) 0.308 (0.232) 0.351
m̃22,5 0.474 (0.136) 0.419 (0.319) 0.319 (0.253) 0.319 (0.253) 0.564

lgb.glob 0.001 m̃5,18 0.423 (0.256) 0.206 (0.202) 0.182 (0.179) 0.194 (0.188) 0.61
m̃5,22 0.417 (0.219) 0.228 (0.194) 0.211 (0.195) 0.215 (0.187) 0.015*
m̃18,5 0.493 (0.212) 0.331 (0.284) 0.308 (0.256) 0.304 (0.235) 0.648
m̃22,5 0.495 (0.192) 0.375 (0.289) 0.302 (0.26) 0.312 (0.256) 0.164

0.01 m̃5,18 0.414 (0.24) 0.206 (0.193) 0.184 (0.174) 0.196 (0.184) 0.032*
m̃5,22 0.406 (0.21) 0.238 (0.187) 0.213 (0.2) 0.228 (0.195) <0.001*
m̃18,5 0.483 (0.192) 0.364 (0.263) 0.312 (0.244) 0.303 (0.227) 0.629
m̃22,5 0.478 (0.171) 0.381 (0.281) 0.299 (0.255) 0.301 (0.247) 0.121

0.1 m̃5,18 0.416 (0.222) 0.215 (0.184) 0.192 (0.175) 0.199 (0.184) 0.001*
m̃5,22 0.411 (0.195) 0.241 (0.192) 0.222 (0.207) 0.228 (0.189) <0.001*
m̃18,5 0.483 (0.19) 0.382 (0.252) 0.312 (0.245) 0.307 (0.231) 0.357
m̃22,5 0.475 (0.16) 0.409 (0.258) 0.298 (0.251) 0.313 (0.252) 0.192

l1b.glob 0.001 m̃5,18 0.440 (0.296) 0.192 (0.176) 0.179 (0.19) 0.175 (0.178) 0.5
m̃5,22 0.439 (0.247) 0.233 (0.207) 0.215 (0.201) 0.206 (0.192) 0.263
m̃18,5 0.506 (0.214) 0.366 (0.306) 0.305 (0.256) 0.320 (0.263) 0.685
m̃22,5 0.500 (0.178) 0.363 (0.315) 0.311 (0.255) 0.314 (0.254) 0.466

0.01 m̃5,18 0.435 (0.289) 0.206 (0.185) 0.176 (0.186) 0.174 (0.179) 0.554
m̃5,22 0.426 (0.233) 0.235 (0.22) 0.212 (0.199) 0.208 (0.195) 0.158
m̃18,5 0.496 (0.206) 0.386 (0.309) 0.309 (0.253) 0.314 (0.265) 0.828
m̃22,5 0.489 (0.171) 0.382 (0.322) 0.306 (0.259) 0.310 (0.252) 0.293

0.1 m̃5,18 0.423 (0.255) 0.208 (0.171) 0.185 (0.19) 0.184 (0.176) 0.353
m̃5,22 0.421 (0.213) 0.236 (0.207) 0.217 (0.2) 0.217 (0.195) 0.084
m̃18,5 0.495 (0.193) 0.392 (0.301) 0.309 (0.254) 0.315 (0.257) 0.42
m̃22,5 0.488 (0.166) 0.394 (0.288) 0.302 (0.253) 0.309 (0.245) 0.233

continued on next page
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Table 4.7: Continued from previous page

Method ε Param. RARMISEa RAEb mode RAE mean RAE median Cov. pc

l2b.glob 0.001 m̃5,18 0.446 (0.301) 0.188 (0.173) 0.176 (0.188) 0.174 (0.178) 0.4
m̃5,22 0.434 (0.245) 0.225 (0.204) 0.207 (0.201) 0.209 (0.194) 0.314
m̃18,5 0.505 (0.218) 0.371 (0.297) 0.309 (0.263) 0.308 (0.256) 0.859
m̃22,5 0.496 (0.184) 0.336 (0.316) 0.302 (0.244) 0.300 (0.242) 0.536

0.01 m̃5,18 0.438 (0.293) 0.200 (0.186) 0.184 (0.19) 0.176 (0.178) 0.35
m̃5,22 0.425 (0.232) 0.236 (0.213) 0.213 (0.2) 0.215 (0.189) 0.245
m̃18,5 0.496 (0.21) 0.380 (0.314) 0.307 (0.26) 0.312 (0.26) 0.666
m̃22,5 0.488 (0.177) 0.368 (0.313) 0.298 (0.249) 0.291 (0.244) 0.525

0.1 m̃5,18 0.430 (0.265) 0.211 (0.183) 0.184 (0.196) 0.186 (0.175) 0.632
m̃5,22 0.417 (0.219) 0.237 (0.207) 0.215 (0.202) 0.218 (0.195) 0.075
m̃18,5 0.493 (0.2) 0.392 (0.304) 0.309 (0.25) 0.317 (0.256) 0.468
m̃22,5 0.485 (0.172) 0.388 (0.295) 0.299 (0.248) 0.303 (0.24) 0.487

The table shows results for rates of migration between demes of cluster 3 (Figure 4.1). RARMISE and
RAE (see below) are given as the median across 500 independent estimations with true values drawn
from the prior (median absolute deviation in parentheses). The parameters were estimated on the log10

scale. The indices (i, j) to the migration rates (m̃i,j) refer to deme numbers given in Figure 4.1 and
Table 4.6.
aRelative absolute root mean integrated squared error (see text) with respect to the true value.
bRelative absolute error with respect to the true value.
cP-value from a Kolmogorov-Smirnov test for the unifiormity of the posterior probabilities of the true
values (∗: p < 0.05).
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Table 4.8: Accuracy of different methods for choosing summary statistics on a local scale

Method ε Param RARMISE RAE mode RAE mean RAE median Cov. p

pls.loc 0.001 m̃5,18 0.430 (0.244) 0.208 (0.195) 0.199 (0.197) 0.203 (0.195) 0.828
m̃5,22 0.445 (0.24) 0.237 (0.206) 0.221 (0.209) 0.229 (0.205) 0.148
m̃18,5 0.503 (0.159) 0.384 (0.312) 0.321 (0.257) 0.326 (0.256) 0.828
m̃22,5 0.488 (0.134) 0.410 (0.318) 0.330 (0.264) 0.334 (0.259) 0.241

0.01 m̃5,18 0.424 (0.225) 0.214 (0.21) 0.203 (0.199) 0.203 (0.193) 0.723
m̃5,22 0.431 (0.225) 0.250 (0.211) 0.227 (0.215) 0.234 (0.206) 0.09
m̃18,5 0.490 (0.156) 0.407 (0.314) 0.323 (0.256) 0.323 (0.266) 0.573
m̃22,5 0.476 (0.128) 0.438 (0.309) 0.327 (0.263) 0.334 (0.265) 0.3

0.1 m̃5,18 0.414 (0.199) 0.214 (0.195) 0.212 (0.202) 0.219 (0.204) 0.567
m̃5,22 0.422 (0.199) 0.252 (0.199) 0.236 (0.218) 0.241 (0.209) 0.041*
m̃18,5 0.483 (0.147) 0.442 (0.294) 0.324 (0.255) 0.330 (0.261) 0.509
m̃22,5 0.470 (0.126) 0.471 (0.267) 0.325 (0.263) 0.329 (0.263) 0.393

lgb.loc 0.001 m̃5,18 0.424 (0.26) 0.205 (0.198) 0.188 (0.182) 0.187 (0.182) 0.859
m̃5,22 0.417 (0.217) 0.226 (0.193) 0.215 (0.195) 0.213 (0.184) 0.013*
m̃18,5 0.499 (0.222) 0.324 (0.27) 0.305 (0.25) 0.305 (0.234) 0.61
m̃22,5 0.495 (0.189) 0.373 (0.285) 0.303 (0.26) 0.303 (0.263) 0.164

0.01 m̃5,18 0.417 (0.242) 0.214 (0.201) 0.187 (0.179) 0.195 (0.182) 0.059
m̃5,22 0.408 (0.207) 0.239 (0.187) 0.212 (0.198) 0.228 (0.194) <0.001*
m̃18,5 0.488 (0.195) 0.368 (0.274) 0.313 (0.242) 0.302 (0.23) 0.518
m̃22,5 0.478 (0.168) 0.387 (0.287) 0.303 (0.255) 0.296 (0.249) 0.164

0.1 m̃5,18 0.417 (0.222) 0.215 (0.191) 0.193 (0.179) 0.198 (0.187) 0.002*
m̃5,22 0.411 (0.194) 0.246 (0.197) 0.222 (0.205) 0.227 (0.191) <0.001*
m̃18,5 0.485 (0.188) 0.380 (0.26) 0.316 (0.251) 0.311 (0.233) 0.178
m̃22,5 0.478 (0.162) 0.405 (0.261) 0.300 (0.25) 0.314 (0.254) 0.363

l1b.loc 0.001 m̃5,18 0.443 (0.272) 0.189 (0.176) 0.183 (0.177) 0.188 (0.184) 0.121
m̃5,22 0.435 (0.217) 0.234 (0.197) 0.215 (0.188) 0.213 (0.183) 0.001*
m̃18,5 0.507 (0.196) 0.369 (0.314) 0.318 (0.263) 0.320 (0.266) 0.37
m̃22,5 0.489 (0.163) 0.372 (0.308) 0.307 (0.242) 0.307 (0.257) 0.288

0.01 m̃5,18 0.437 (0.257) 0.201 (0.178) 0.190 (0.184) 0.184 (0.179) 0.124
m̃5,22 0.431 (0.215) 0.241 (0.2) 0.208 (0.184) 0.213 (0.181) 0.001*
m̃18,5 0.497 (0.195) 0.397 (0.318) 0.318 (0.255) 0.318 (0.253) 0.452
m̃22,5 0.476 (0.158) 0.417 (0.313) 0.312 (0.246) 0.302 (0.245) 0.674

0.1 m̃5,18 0.432 (0.244) 0.212 (0.191) 0.190 (0.175) 0.195 (0.174) 0.01*
m̃5,22 0.424 (0.198) 0.255 (0.204) 0.215 (0.19) 0.218 (0.178) <0.001*
m̃18,5 0.496 (0.189) 0.406 (0.281) 0.317 (0.252) 0.319 (0.252) 0.317
m̃22,5 0.472 (0.145) 0.424 (0.301) 0.312 (0.247) 0.308 (0.244) 0.767

l2b.loc 0.001 m̃5,18 0.440 (0.269) 0.197 (0.167) 0.184 (0.179) 0.189 (0.181) 0.219
m̃5,22 0.428 (0.212) 0.234 (0.202) 0.218 (0.188) 0.216 (0.181) 0.003*
m̃18,5 0.508 (0.216) 0.356 (0.301) 0.321 (0.258) 0.315 (0.256) 0.241
m̃22,5 0.487 (0.169) 0.367 (0.305) 0.311 (0.252) 0.313 (0.245) 0.536

0.01 m̃5,18 0.436 (0.275) 0.202 (0.178) 0.187 (0.172) 0.191 (0.179) 0.126
m̃5,22 0.428 (0.212) 0.237 (0.194) 0.216 (0.184) 0.222 (0.186) 0.004*
m̃18,5 0.499 (0.201) 0.373 (0.324) 0.324 (0.262) 0.323 (0.256) 0.429
m̃22,5 0.477 (0.164) 0.392 (0.312) 0.305 (0.25) 0.310 (0.254) 0.719

0.1 m̃5,18 0.428 (0.243) 0.215 (0.18) 0.190 (0.175) 0.196 (0.179) 0.028*
m̃5,22 0.424 (0.198) 0.249 (0.198) 0.223 (0.202) 0.227 (0.189) <0.001*
m̃18,5 0.493 (0.191) 0.392 (0.293) 0.327 (0.273) 0.324 (0.25) 0.398
m̃22,5 0.473 (0.15) 0.427 (0.291) 0.309 (0.254) 0.311 (0.25) 0.608

Details as in Table 4.7.
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Table 4.9: Accuracy of pairwise estimation of migration rate compared to fully joint estimation for deme
cluster 3

ε Param. SARMISEa SAEb mode SAE mean SAE median Cov. p c
j Cov. p d

pw

0.001 m̃5,18 1.013 (0.093) 1.037 (0.477) 1.016 (0.289) 1.018 (0.282) 0.4 0.573
m̃18,5 1.398 (0.577) 1.596 (1.897) 1.524 (1.617) 1.575 (1.694) 0.314 0.723

m̃5,22 1.042 (0.445) 1.068 (1.199) 1.129 (1.198) 1.085 (1.217) 0.4 0.181
m̃22,5 1.402 (0.532) 1.778 (2.082) 1.517 (1.516) 1.632 (1.653) 0.314 0.5

0.01 m̃5,18 1.003 (0.079) 1.029 (0.33) 1.007 (0.259) 1.010 (0.264) 0.35 0.61
m̃18,5 1.374 (0.565) 1.700 (1.989) 1.541 (1.594) 1.572 (1.673) 0.245 0.587

m̃5,22 1.017 (0.406) 1.023 (1.179) 1.082 (1.128) 1.087 (1.189) 0.35 0.207
m̃22,5 1.399 (0.521) 1.795 (2.223) 1.533 (1.553) 1.596 (1.632) 0.245 0.565

0.1 m̃5,18 0.987 (0.08) 1.022 (0.329) 0.997 (0.302) 0.996 (0.28) 0.632 0.759
m̃18,5 1.333 (0.533) 1.660 (1.945) 1.486 (1.536) 1.554 (1.615) 0.075 0.576

m̃5,22 1.011 (0.368) 1.042 (1.164) 1.064 (1.146) 1.049 (1.173) 0.632 0.132
m̃22,5 1.380 (0.459) 1.799 (2.302) 1.527 (1.539) 1.630 (1.686) 0.075 0.295

The table shows results for rates of migration between demes of cluster 3 (Figure 4.1). SARMISE and
SAE (see below) are given as the median across 500 independent estimations with true values drawn
from the prior (median absolute deviation in parentheses). Migration rates were estimated on the log10

scale.
aStandardized absolute root mean integrated squared error. Standardized means that before averaging
across test sets, we divided the measure of accuracy obtained with the pairwise estimation approach
by the one obtained with the joint estimation approach (see text for details).
bStandardized absolute error of the pairwise estimate with respect to the joint estimate.
cP-value from a Kolmogorov-Smirnov test for the uniformity of the posterior probabilities of the true
values (∗: p < 0.05), for the joint estimation procedure.
dAs in c, but for the pairwise estimation procedure.
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Table 4.10: Accuracy of pairwise estimation of migration rate compared to fully joint estimation for deme
cluster 2

ε Param. SARMISEa SAEb mode SAE mean SAE median Cov. p c
j Cov. p d

pw

0.001 m̃4,12 1.087 (0.176) 1.078 (0.68) 1.066 (0.469) 1.064 (0.507) 0.888 0.219
m̃12,4 1.173 (0.46) 1.377 (1.596) 1.228 (1.264) 1.193 (1.281) 0.134 0.148

m̃4,26 1.185 (0.707) 1.287 (1.564) 1.163 (1.279) 1.146 (1.285) 0.888 0.219
m̃26,4 0.854 (0.365) 0.949 (1.195) 0.899 (0.987) 0.931 (1.08) 0.134 0.954

m̃12,14 1.111 (0.453) 0.990 (1.192) 1.161 (1.207) 1.112 (1.16) 0.888 0.888
m̃14,12 1.151 (0.469) 1.341 (1.636) 1.246 (1.284) 1.289 (1.414) 0.134 0.466

0.01 m̃4,12 1.079 (0.157) 1.131 (0.698) 1.071 (0.444) 1.072 (0.495) 0.871 0.261
m̃12,4 1.156 (0.416) 1.352 (1.58) 1.214 (1.298) 1.146 (1.215) 0.139 0.107

m̃4,26 1.165 (0.678) 1.325 (1.65) 1.169 (1.291) 1.171 (1.263) 0.871 0.241
m̃26,4 0.833 (0.337) 0.982 (1.227) 0.904 (0.981) 0.913 (1.037) 0.139 0.984

m̃12,14 1.077 (0.438) 1.022 (1.192) 1.150 (1.186) 1.071 (1.129) 0.871 0.704
m̃14,12 1.103 (0.42) 1.439 (1.702) 1.234 (1.255) 1.242 (1.368) 0.139 0.327

0.1 m̃4,12 1.052 (0.147) 1.049 (0.674) 1.072 (0.449) 1.034 (0.472) 0.146 0.531
m̃12,4 1.133 (0.387) 1.229 (1.36) 1.168 (1.233) 1.176 (1.231) 0.173 0.172

m̃4,26 1.156 (0.588) 1.169 (1.48) 1.145 (1.234) 1.180 (1.29) 0.146 0.46
m̃26,4 0.827 (0.296) 0.873 (1.059) 0.899 (0.986) 0.905 (1.002) 0.173 0.771

m̃12,14 1.040 (0.379) 0.909 (1.051) 1.108 (1.128) 1.041 (1.073) 0.146 0.399
m̃14,12 1.101 (0.406) 1.336 (1.521) 1.207 (1.211) 1.232 (1.331) 0.173 0.523

The table shows results for rates of migration between demes of cluster 2 (Figure 4.1). Further details
as in Table 4.9.
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Table 4.11: Accuracy of pairwise estimation of migration rate compared to fully joint estimation for deme
cluster 5

ε Param. SARMISE SAE mode SAE mean SAE median Cov. pj Cov. ppw

0.001 m̃6,8 1.019 (0.099) 1.059 (0.786) 1.034 (0.358) 1.053 (0.405) 0.4 0.573
m̃8,6 0.930 (0.298) 0.793 (0.857) 0.917 (0.831) 0.853 (0.86) 0.648 0.954

m̃6,13 1.033 (0.356) 1.119 (1.251) 1.068 (1.01) 1.101 (1.126) 0.4 0.888
m̃13,6 0.723 (0.263) 0.701 (0.808) 0.638 (0.674) 0.609 (0.652) 0.648 0.988

m̃8,11 1.061 (0.373) 1.229 (1.543) 1.099 (1.067) 1.165 (1.09) 0.4 0.5
m̃11,8 0.976 (0.365) 0.898 (1.064) 0.979 (0.945) 0.953 (0.983) 0.648 0.98

m̃8,13 1.055 (0.369) 1.105 (1.306) 1.052 (0.989) 1.096 (1.04) 0.4 0.432
m̃13,8 0.890 (0.308) 0.705 (0.805) 0.856 (0.817) 0.754 (0.768) 0.648 0.241

m̃8,20 0.995 (0.358) 1.036 (1.261) 0.982 (0.929) 0.946 (0.963) 0.4 0.013*
m̃20,8 0.876 (0.334) 0.824 (0.917) 0.818 (0.832) 0.780 (0.822) 0.648 0.288

m̃11,13 0.992 (0.355) 1.132 (1.361) 0.975 (0.918) 1.037 (1.021) 0.4 0.759
m̃13,11 0.862 (0.334) 0.824 (0.916) 0.812 (0.852) 0.807 (0.865) 0.648 0.432

m̃11,20 0.905 (0.354) 0.910 (1.105) 0.839 (0.82) 0.834 (0.826) 0.4 0.062
m̃20,11 0.854 (0.331) 0.796 (0.875) 0.752 (0.783) 0.746 (0.767) 0.648 0.5

0.01 m̃6,8 1.017 (0.087) 1.043 (0.524) 1.039 (0.272) 1.044 (0.351) 0.543 0.49
m̃8,6 0.917 (0.303) 0.827 (0.922) 0.902 (0.812) 0.850 (0.844) 0.696 0.931

m̃6,13 1.030 (0.344) 1.171 (1.402) 1.056 (0.984) 1.069 (1.084) 0.543 0.763
m̃13,6 0.718 (0.273) 0.672 (0.81) 0.646 (0.667) 0.627 (0.676) 0.696 0.975

m̃8,11 1.048 (0.356) 1.264 (1.489) 1.073 (1.038) 1.156 (1.172) 0.543 0.573
m̃11,8 0.974 (0.368) 0.892 (1.06) 0.982 (0.938) 0.938 (0.919) 0.696 0.993

m̃8,13 1.049 (0.363) 1.117 (1.308) 1.030 (0.993) 1.105 (1.066) 0.543 0.295
m̃13,8 0.885 (0.307) 0.694 (0.842) 0.841 (0.779) 0.796 (0.811) 0.696 0.252

m̃8,20 0.992 (0.351) 0.973 (1.198) 1.026 (0.962) 0.938 (0.905) 0.543 0.013*
m̃20,8 0.868 (0.323) 0.737 (0.834) 0.815 (0.838) 0.796 (0.855) 0.696 0.137

m̃11,13 1.005 (0.346) 1.084 (1.267) 0.984 (0.899) 1.018 (1.017) 0.543 0.479
m̃13,11 0.844 (0.327) 0.779 (0.923) 0.810 (0.846) 0.804 (0.857) 0.696 0.436

m̃11,20 0.902 (0.352) 0.843 (1.056) 0.847 (0.864) 0.867 (0.848) 0.543 0.031*
m̃20,11 0.859 (0.326) 0.783 (0.861) 0.735 (0.773) 0.713 (0.766) 0.696 0.285

0.1 m̃6,8 1.016 (0.079) 1.047 (0.477) 1.043 (0.256) 1.042 (0.309) 0.475 0.515
m̃8,6 0.905 (0.289) 0.755 (0.858) 0.881 (0.812) 0.838 (0.813) 0.547 0.701

m̃6,13 1.025 (0.322) 1.157 (1.411) 1.036 (0.934) 1.066 (1.016) 0.475 0.762
m̃13,6 0.719 (0.255) 0.674 (0.772) 0.655 (0.697) 0.639 (0.705) 0.547 0.481

m̃8,11 1.029 (0.333) 1.221 (1.425) 1.058 (1.024) 1.103 (1.089) 0.475 0.543
m̃11,8 0.964 (0.337) 0.910 (1.092) 0.985 (0.938) 0.958 (0.927) 0.547 0.909

m̃8,13 1.031 (0.352) 1.028 (1.229) 1.016 (0.986) 1.059 (1.03) 0.475 0.354
m̃13,8 0.877 (0.291) 0.634 (0.759) 0.840 (0.775) 0.796 (0.805) 0.547 0.261

m̃8,20 0.976 (0.345) 1.011 (1.226) 1.006 (0.94) 0.940 (0.899) 0.475 0.01*
m̃20,8 0.866 (0.298) 0.705 (0.794) 0.836 (0.868) 0.798 (0.856) 0.547 0.056

m̃11,13 0.985 (0.321) 1.012 (1.165) 0.982 (0.889) 1.010 (0.971) 0.475 0.209
m̃13,11 0.840 (0.313) 0.683 (0.809) 0.791 (0.823) 0.806 (0.862) 0.547 0.234

m̃11,20 0.899 (0.326) 0.893 (1.108) 0.872 (0.864) 0.866 (0.885) 0.475 0.01*
m̃20,11 0.836 (0.301) 0.683 (0.759) 0.725 (0.8) 0.731 (0.779) 0.547 0.309

The table shows results for rates of migration between demes of cluster 5 (Figure 4.1). Further details
as in Table 4.9.
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4.8 Supporting information: Additional figures

Figure 4.7: Values of m̃j,i that belong to data points accepted when inferring α with ABC in chapter 3,
plotted against corresponding values of m̃i,j . There is no deviation from the log10 uniform prior distribution,
and no obvious correlation between m̃j,i and m̃i,j . This suggests that the summary statistics sα used to
infer α in chapter 3 were not informative about the migration rates, and that the assumption that the prior
of the migration rates conditional on α is equal to the unconditional prior is justified. Notice that both axes
are on the log10 scale.
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Figure 4.8: Ratio of posterior point estimate (median) to true value for the joint and pairwise estimation
method. Box plots summarize data from 500 test data sets with true values sampled from the prior. Boxes
show the interquartile range and whiskers extend to the most extreme data point which is no more than
1.5 times the interquartile range from the box. Note the logarithmic scale. The six parameters belonging
to cluster 2 are shown (see Figure 4.4 for cluster 3 and Figure 4.9 for cluster 5).
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Figure 4.9: Ratio of posterior point estimate (median) to true value for the joint and pairwise estimation
method for cluster 5. Further details as in Figure 4.8.
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R = 0.655
R = 0.571
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Figure 4.10: Correlation of posterior point estimate and true value for the joint (red circles) and pairwise
(blue crosses) estimation method across 500 test data sets. The black line shows the expected ratio of
1:1 and R is the Pearson product-moment correlation coefficient. Plots are shown for the six parameters
belonging to cluster 2 (see Figure 4.5 for cluster 3 and Figure 4.11 for cluster 5).
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R = 0.389
R = 0.356
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Figure 4.11: Correlation of posterior point estimate and true value for the joint (red circles) and pairwise
(blue crosses) estimation for cluster 5. Further details as in Figure 4.10.
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Figure 4.12: Probability density fitted to the empirical distribution of relative probabilities of the mig (solid
line) and the nomig (dashed line) model when they are the true model. Empirical distributions were obtained
by simulating 1000 data sets under the mig (with migration rates drawn from the prior) and nomig model
(migration rates set to zero). The relative model probabilities were then estimated according to the ABC
model comparison procedure explained in the text. The area under the curve to the right of the vertical
line gives the proportion of times the true model was correctly recovered (pmig > 0.5). These proportions
are given as percentages by the two numbers in the plot, or as βmig and βnomig in Table 4.5. The rejection
tolerance was ε = 0.05.
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Figure 4.13: Probability density fitted to the empirical distribution of relative probabilities of the mig model
when the mig (solid line) and the nomig (dasheded line) model are the true models. Empirical distributions
were obtained by simulating 1000 data sets under the mig (with migration rates drawn from the prior)
and nomig model (migration rates set to zero). The density estimates of the two models at the posterior
probability of the mig model, pmig, were used to compute the probability that mig is the correct model
given pmig (vertical line; cf. Table 4.5). This probability is given by the number in the corner of the plots.
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Figure 4.14: Posterior distributions of migration rates for deme cluster 3 obtained in eight independent
test runs with true values drawn from the prior. Thin blue line for the prior; dotdashed black line for
the posterior inferred with the joint estimation method; solid black line for the posterior inferred with the
pairwise estimation method; red vertical line for the true value. One row corresponds to one test data set,
and the Kullback-Leibler divergence of the posterior from the prior is given in gray and black print for the
joint and pairwise method, respectively.



Chapter 5

The fate in the wild of an MHC allele

shared with a domesticated species:

Combining short- and long-term

evidence for selection

This chapter is the result of a collaboration with Lukas Keller, Christine Grossen, Iris Biebach

and Nick Barton. Lukas, Christine and Iris provided genetic data and helped designing the

study. Nick suggested the matrix iteration approach, helped with the parameterization of

fitness and provided tips for efficient implementation. A version of this chapter – with

shortened introduction and discussion – is intended for publication in Evolution,

with Lukas, Christine, Iris and Nick as co-authors.

5.1 Introduction

The Major Histocompatibility Complex (MHC) is a family of genes involved in immune re-

sponse in vertebrates. Out of three classes, MHC class II genes code for proteins on the surface

of antigen-presenting cells (macrophages, B cells and dendritic cells). The surface proteins bind

extracellular pathogen-derived peptides and present them to T-helper cells, thus triggering the

adaptive immune response. MHC has also been shown to play a role in mate choice (e.g. Rad-

wan et al. 2008), kin-recognition and pre-natal survival (Edwards and Hedrick 1998). In most

vertebrates, MHC genes are highly diverse, especially in regions that code for the peptide-

binding parts of the molecule (Garrigan and Hedrick 2003; Radwan et al. 2010). Balancing

selection, negative-assortative mating and maternal-fetal interactions have been proposed as

evolutionary explanations for the maintenance of this diversity (Hedrick 1994). Although ef-

fects on mate choice (e.g. Thoß et al. 2011) and pre-natal survival (e.g. Knapp et al. 1996; Ober

et al. 1998) have been reported, they do not seem to be the rule. There is increasing evidence

for parasite pressure to be the main source of selection on MHC (Bernatchez and Landry 2003;

Garrigan and Hedrick 2003; Piertney and Oliver 2006; Radwan et al. 2010). Overdominance

or selection varying in time or space are the most likely underlying mechanisms (Hedrick et al.

1976; Garrigan and Hedrick 2003, but see van Oosterhout (2009) for a complementary hy-

pothesis). The overdominance hypothesis states that heterozygotes have an advantage because

123
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they can recognize a broader range of pathogens. This is based on the fact that both proteins

are expressed on the cell surface. This assumes that MHC alleles are expressed codominantly.

Selection varying in time may be due to negative-frequency dependence (e.g. Borghans et al.

2004), where rare MHC mutations are favored because parasites have not yet developed re-

sistance against them. As the frequency of these alleles increases, parasites coevolve and the

advantage disappears. Local adaptation to spatially heterogeneous parasite communities is an

example of spatially varying selection (Bernatchez and Landry 2003). Evidence for both over-

dominance and selection varying in time or space has been reported in free-living vertebrates

and under laboratory conditions (e.g. Paterson et al. 1998; Miller et al. 2001; Charbonnel and

Pemberton 2005; Meyer-Lucht and Sommer 2005; Piertney and Oliver 2006; Mona et al. 2008;

Fraser et al. 2010, see Sommer (2005) for an extensive review). In addition, there is growing

evidence for the association of specific MHC genotypes or individual alleles with susceptibility

to infection (Arkush et al. 2002; Sommer 2005; Radwan et al. 2010).

MHC diversity may be of conservation concern. Bottlenecks or spatial subdivision reduce

genetic diversity and increase the chance of matings among relatives. This may lead to inbreed-

ing depression (e.g. Keller and Waller 2002) and reduced immune response (Reid et al. 2003,

2007). It has been suggested that reduced diversity at MHC causes higher susceptibility to

infectious disease and population decline (O’Brien and Evermann 1988; Coltman et al. 1999a;

Arkush et al. 2002). This has been challenged by Gutierrez-Espeleta et al. (2001) who found

high MHC diversity in bighorn sheep (Ovis canadensis) in spite of a strong population decline

(see also Aguilar et al. 2004). Moreover, it is difficult to separate MHC-specific effects on fitness

from effects of inbreeding in general (Sommer 2005; Hansson and Westerberg 2008; Radwan

et al. 2010), and from selection acting elsewhere on the genome (Santucci et al. 2007; Thoß et al.

2011). Comparing MHC diversity to neutral diversity may give further insight. For natural

populations such comparisons do not yield consistent results across studies. Some have re-

ported higher spatial differentiation at MHC compared to neutral loci (e.g. Miller et al. (2001)

in sockeye salmon (Oncorhynchus nerka)), others found a more uniform spatial distribution

at MHC compared to neutral markers (e.g. Mona et al. (2008) in Alpine chamois (Rupicapra

rupicapra), Santucci et al. (2007) in mouflon (Ovis orientalis musimon)), and in Soay sheep

(Ovis aries) the result depended on the period considered (Charbonnel and Pemberton 2005).

Lukas et al. (2004) observed high MHC diversity in two gorilla populations of very different

effective size, whereas Mona et al. (2008) found patterns of MHC diversity in Alpine chamois

populations that could be explained by demography alone. In humans, it seems that selection

has not fully removed the traces of demography at MHC (Currat et al. 2010, and references

therein). Thus, while differences in patterns of diversity at MHC versus neutral variation may

be a signature of selection, does their absence mean that there is no selection? Not necessarily,

since demography may overwhelm selection in shaping diversity at MHC, and tests for selection

might mislead. It is therefore important to disentangle the effects of demography and selec-

tion in empirical studies of MHC diversity. This may be challenging, because demography is

complex, including changes in population size (bottlenecks), population genealogy (geographic

origin, founder events, admixture) and migration.

Empirical studies in which the impacts on MHC variation of genetic drift, migration and

selection can be well separated are still rare. Overall, there are several lines of evidence for
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selection on MHC. However, not much is known about its strength. Here, we study genetic

variation at exon 2 of the MHC class IIa gene DRB in a spatially structured population of Alpine

ibex (Capra ibex ibex ) in the Swiss Alps. We use the distribution of observed allele frequencies

across ibex colonies for inference on the strength of selection and its mode of dominance.

Thereby, we take into account demography and migration. This study profits from the fact

that population history has been well documented over the time scale of interest (1906 till

2006).

Alpine ibex were almost extinct by the beginning of the 18th century (Stuwe and Scribner

1989). One population survived in the Gran Paradiso area, Northern Italy. At the end of

the 19th century, first attempts were made to re-establish former populations in the Swiss

Alps. Since pure bred Alpine ibex were hard to obtain, hybrids between ibex and domestic

goat were used. None of these hybrid releases was successful. From 1906 on, pure Alpine

ibex were brought from the Gran Paradiso population to two zoos in St. Gall and Interlaken,

Switzerland, and bred there in captivity. Starting from 1911, a first set of former colonies were

re-established with pure ibex bred in captivity. These colonies were used as a reservoir for

further transfers. The re-introduction has been documented in great detail (Couturier 1962;

Nievergelt 1966; Stuwe and Nievergelt 1991; Scribner and Stuwe 1994; Maudet et al. 2002;

Biebach and Keller 2009). This provides the opportunity to condition genetic inference on

information that would otherwise have to be inferred from genetic data first (e.g. Mona et al.

2008). In the following, we use the term ‘deme’ (Gilmour and Gregor 1939) for the spatially

separated colonies (subpopulations).

Alpine ibex is a protected species, but in some demes in the Swiss Alps annual culls have

been carried out since 1978 to prevent damage to forests. Relatively low genetic diversity within,

and moderate to strong differentiation between demes at 37 neutral microsatellites has been

reported by Biebach and Keller (2009). Overall, the re-introduction history is well reflected

in today’s genetic composition. Grossen (2005) found that there are only two haplotypes of

exon 2 at DRB (Figure 5.1) present in the whole population. One is specific to Alpine ibex,

the other one is shared with domestic goat (C. aegagrus hircus). The two haplotypes differ

in 29 out of 198 base pairs (14.6%). There are three hypothetical explanations for this trans-

species polymorphism (TSP): i) a shared ancestral polymorphism (SAP), ii) introgression via

hybridisation, and iii) convergent evolution (homoplasy). The phylogenetics of the genus Capra

has not been fully resolved (but see Mannen et al. 2001; Kazanskaya et al. 2007). It has been

estimated that the lines of Alpine ibex and domestic goat split from their most recent common

ancestor about 6 million years ago (L. Keller, personal communication). Although an observed

sequence divergence of 14.6% between the haplotypes seems large, we currently do not have

enough information on polymorphism in domestic goat to argue for or against homoplasy. On

the other hand, TSPs at MHC genes have been reported in various vertebrate taxa (Rodentia:

Cutrera and Lacey (2007); Felidae: Wei et al. (2010); Mustelidae: Becker et al. (2009); Ursi-

dae: Goda et al. (2010); Spenicus penguins: Kikkawa et al. (2009); Primates: Garrigan and

Hedrick (2003)), and for ruminants in particular (Gutierrez-Espeleta et al. 2001; Worley et al.

2006; Ballingall et al. 2010). These TSPs are usually interpreted as being SAPs maintained

by balancing selection (Takahata and Nei 1990; Takahata 1990; Garrigan and Hedrick 2003).

Introgression via hybridisation could also lead to TSPs and create genealogies similar to bal-
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ancing selection. In case of Alpine ibex, this alternative hypothesis is justified. Hybridisation

with domestic goat has repeatedly been observed in nature, and hybrid offspring are viable

and fertile (Giacometti et al. 2004). Backcrosses of hybrids with pure ibex could potentially

establish and integrate in natural colonies if environmental conditions are not too harsh. One

case has been documented in the Swiss Alps, but those hybrids were culled (Giacometti et al.

2004). For the analyses and result in this study, it is not directly relevant if the TSP is a SAP

or due to introgression, because we focus on the most recent ten generations, for which the

data suggest that the goat haplotype has already been present in ibex. However, under some

assumptions, our results may render one or the other explanation for the TSP more likely.

Grossen (2005) reported two potential signals of selection at the ibex MHC: i) higher spatial

differentiation (FST) for MHC-linked markers compared to neutral ones, ii) a (non-significant)

trend for increasing number of nematode (Strongylida) egg counts in feces with increasing

frequency of the ‘goat’ haplotype (Grossen 2005, p. 29). Recently, Ch. Grossen also pointed

out a correlation between heterozygosity and age at sampling (personal communication).

Here, we study a larger and different set of demes compared to Grossen (2005). We assess

whether the observed genetic variation within and between demes at exon 2 of DRB has been

shaped by demography only, or if signals of selection are present. We combine short- and

medium-term evidence (see below) and set up a drift-selection-migration model to estimate

the strength of selection (s). Thereby, we account for the history of re-introduction, explore

different modes of dominance and investigate the influence of gene flow via migration. We also

aim at confirming the suggested correlation between age at sampling and heterozygosity. In

particular, we use this information to learn about dominance and to condition the estimation

of s.

Selection may be classified according to the time scale on which it occurs (Black and Hedrick

1997; Garrigan and Hedrick 2003), and tests have been developed for different time scales and

types of data (Nielsen 2001; Garrigan and Hedrick 2003; Nielsen 2005). Following Garrigan and

Hedrick (2003), we distinguish between selection in the current generation (short-term), selec-

tion over several generations in the same species (microevolutionary time scale, medium-term),

} } }I III IIa

DRB exon 2

OLADRB1

OLADRB2

OMHC1BM1818 BM1815

10.3cMa) 3.5cMb) 0.9cMb) 17.5cMb)

Sheep: chr 20a,b)

Goat: chr 23b)

Figure 5.1: Part of the sheep (Ovis aries) chromosome 20 with the MHC class I, III and IIa regions, including
linked microsatellites. The corresponding chromosome in goat (Capra) is chromosome 23 (Vaiman et al.
1996). DRB exon 2 is closely linked to the microsatellites OLADRB1 and OLADRB2. The OLADRB2 allele
with repeat length 277 (A1 in the main text) is diagnostic for the DRB exon 2 allele that is shared between
Alpine ibex and domestic goat. Details and genetic distances from a)Paterson et al. (1998) and b)Maddox
et al. (2001).
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and selection over the history of species (macroevolutionary time scale, long-term). Examples

of signals of selection in the current generation are deviation from Hardy-Weinberg proportions

(HWE) or correlations between genotype and traits influencing fitness. Examples of signals

(and tests) over several generations are deviations of population genetic diversity from neu-

tral expectation (e.g. Ewens-Watterson test, Watterson 1978) or a geographical distribution of

genetic variation that is incongruent with neutrality (e.g. Lewontin-Krakauer test and related

approaches, Lewontin and Krakauer 1973; Beaumont and Nichols 1996). Finally, signals of

selection over the history of species may be found in ratios of nonsynonymous to synonymous

diversity within and between species (e.g. McDonald Kreitman test, McDonald and Kreitman

1991) or by comparison of observed site frequency spectra to the neutral expectation (e.g.

Tajima’s D test, Tajima 1989). Trans-species polymorphisms (TSPs) are also a signal of selec-

tion on that scale. Clear separation between the medium- and long-term signals is not always

possible. For example, tests that are based on the site frequency spectrum may apply to both

time scales. Garrigan and Hedrick (2003) also pointed out an important problem for inference:

long-term signals generally take a long time to establish. Once present, however, it also takes

a long time for them to disappear, even in the absence of selection. Therefore, if the TSP

(trans-species polymorphism) at MHC between Alpine ibex and domestic goat were a SAP

(shared ancestral polymorphism), this cannot be taken as evidence for selection still acting on

the microevolutionary time scale that is of interest in our study. Another issue is that most

tests for selection – or ‘neutrality tests’ – can at most reject the null model of neutral evolution

for a given model. In general, they do not provide a direct estimate of the strength of selection,

or even the mode of dominance. For this, a specific model and assumptions about selection

(and dominance) are needed.

To overcome some of these problems, we use a combination of short- and medium-term anal-

yses. In particular, we first investigate the correlation between genotype and age at sampling,

both for a diagnostic microsatellite linked to DRB (OLADRB2) and 37 neutral markers. This

short-term signal may reveal information about dominance. For the medium-term analysis, we

use a modification of a method by Beaumont and Nichols (1996) to infer the spatial configura-

tion of selection. This method uses the variation of observed allele frequencies across demes as

information. We then set up a drift-selection-migration model and develop a matrix iteration

approach that allows for likelihood-based inference on the strength of selection, the dominance

coefficient and the initial allele frequency. This method is also part of the medium-term analysis

and makes use of the full observed distribution of allele frequencies. Similar approaches have

been used before by Keightley and Eyre-Walker (2007) and Zeng and Charlesworth (2009).

Last, we assess the influence of gene flow via migration on the estimated selection coefficient.

5.2 Model and parameters

We model the change in time of allele frequencies in a spatial context and under the influence of

demography (drift), selection and migration. We consider diploid monoecious individuals and

one locus with two alleles, where allele A1 is the allele shared with goat (‘goat’ allele) and A2

is the allele found only in ibex. We let time be discrete in units of one generation and assume,

for the moment, that generations are non-overlapping. We will later account for the presence
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of two sexes, overlapping generations and other complications that apply to Alpine ibex by

calculating an appropriate effective deme size.

5.2.1 Demography and spatial structure

We denote by t the time in generations. Forward in time, we start at time t0 with one ancestral

deme d0, and an initial allele frequency of pinit. After some generations, further demes are

derived from the ancestral deme (Figure 5.2). We denote these derived demes by dα, where

α ∈ {1, 2, . . . ,Γ}, and the corresponding times when they were founded by tα. In our case,

Γ = 13. All derived demes do not need to be founded from the ancestral deme at the same

point in time, but the time at which the first one is founded is given by tf := t1. Notice that

the indices i to the times ti do not reflect a temporal order, except that t1 refers to the deme

established first. We assume that the allele frequency in the ancestral deme (p0) is constant

between tf and the time when the last derived deme is founded, tΓ.

The demography of a derived deme dα is determined by a sequence of values of its deme

size N (α),
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Figure 5.2: Schematic representation of the founding history and genealogy of Alpine ibex demes in the
Swiss Alps. Only a relevant subset of demes is shown. This includes the two zoo populations in St. Gall
and Interlaken, where ibex were bred in captivity. The question marks mean that we do not know via direct
observation if the ‘goat’ allele, A1, was present in these two demes. We indirectly inferred its presence
or absence via observations in the respective set of derived demes. The estimate of the frequency of A1

in the root deme, p̂(root), is from year 2007, not from before 1900. Time in years is given on the right,
time in generations on the left, where tα is the time when deme α was founded and ts the time of genetic
sampling. Percentages along the arrows leading to d0 refer to the proportions of founders originating from
the two zoos. These numbers limit the range of pinit, the initial allele frequency of A1 in d0. The topology
of founder events for the derived demes is only schematic (cf. Table 5.5, and Figure 5.12 in SI for details).
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N (α) :=
(
N

(α)
tα , N

(α)
tα+1, . . . , N

(α)
ts−1, N

(α)
ts

)
. (5.1)

We call N (α) the deme size trajectory of deme dα. The first value of a trajectory, N
(α)
tα ,

corresponds to the number of founders that is drawn from the ancestral deme d0 to establish

deme dα. The last value of the trajectory, N
(α)
ts , corresponds to the deme size of deme dα at the

time of genetic sampling ts (Figure 5.2). For the deme size trajectory of the ancestral deme,

replace α by 0 in (5.1). Derived demes experience immigration of individuals from a common

migrant pool at a rate m per generation. We assume that the immigrant is large enough so

that its genetic composition changes deterministically over time.

Genetic sampling of derived demes takes place at time ts, before migration and selection.

In reality, not all individuals belonging to a deme were sampled. We model this by drawing

without replacement the corresponding number of alleles from the deme. This number follows

a hypergeometric distribution.

5.2.2 Migration, selection and genetic drift

Our model assumes the following life cycle. We start with zygotes in generation t and assume

that they reach the adult stage immediately. Young adults experience viability selection be-

fore they become older adults. We assume soft selection, which means that selection does not

change the relative deme sizes. After selection, a proportion m of adults is replaced by immi-

grants from a common immigrant pool according to the continent-island model (Wright 1931).

Reproduction and deme size regulation follow migration and lead to zygotes of generation t+1.

We denote the fitnesses of the two homozygote genotypes A1A1 and A2A2 by w11 and w22,

and we assume that there is no position effect, such that the heterozygotes A1A2 and A2A1

have the same fitness w12. We further assume that the fitnesses are the same in all demes. The

marginal fitnesses of alleles A1 and A2 in deme dα are

w1,α(t) := w11pα(t) + w12(1− pα(t)), w2,α(t) := w12pα(t) + w22(1− pα(t)), (5.2)

respectively, where pα(t) is the frequency of allele A1 in deme dα at time t. The mean fitness

in deme dα at time t is then given by

w̄α = w1,αpα + w2,α(1− pα), (5.3)

where we have omitted the explicit notation of time for simplicity. The allele frequency p∗α after

selection is

p∗α = pα
w1,α

w̄α
. (5.4)

Notice that this holds for all demes, including the ancestral deme for which α must be replaced

by 0 in (5.4). For the derived demes (α ∈ {1, 2 . . . ,Γ}), the initial frequency is pα(tα) and

determined by the sampling of founders from the ancestral deme d0. For the ancestral deme

(indicated by α = 0), the initial frequency p0(t0) is equal to pinit. Equation (5.4) also holds

analogously for the immigrant pool, for which we assumed that the allele frequency changes

deterministically. In generation t the frequency p∗I of allele A1 after selection in the immigrant

pool is given by

p∗I = pI
w1,I

w̄I
, (5.5)
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where w1,I and w̄I are defined analogously to (5.2) and (5.3). The initial value, pI(tf ), is

assumed to be equal to the frequency of A1 in the ancestral deme at the time when the first

derived deme was founded, i.e. pI(tf ) = p0(tf ).

We consider two alternative fitness parameterizations, one for over- and underdominance, and

one for intermediate dominance (directional selection). In the former, the fitnesses are defined

as

w11 := 1− s(1− φ), w12 := 1, w22 := 1− sφ, (5.6)

where s is the selection coefficient and φ (0 ≤ φ ≤ 1) is the frequency that allele A1 reaches at the

internal equilibrium (stable for overdominance, unstable for underdominance). Alternatively,

φ may be interpreted as a dominance coefficient. There is overdominance whenever s > 0 and

0 < φ < 1, and underdominance whenever s < 0 and 0 < φ < 1, whereby φ specifies the degree

of asymmetry ‘in favor’ of the A1A1 genotype. The closer φ is to 1, the closer is the fitness of

A1A2 to the fitness of A1A1. In the second parameterization, we define

w11 := 1− s, w12 := 1− hs, w22 := 1, (5.7)

where s is again the selection coefficient and h is the dominance coefficient. Notice that the

special cases of h = 0 (full recessivity of A1) and h = 1 (full dominance of A1) are covered by

the φ-notation, if φ = 0 for the former case, and if φ = 1 and s is re-defined as −s/(1 − s)
for the latter case. Therefore, to omit redundancy, we constrain h such that 0 < h < 1.

For parametrization (5.7), if s > 0 there is directional selection against A1, if s < 0 there is

directional selection in favour of A1. Overall, we require that wij ≥ 0 ∀i, j.

In the derived demes, migration follows after selection. The allele frequency in deme dα in

generation t after migration is given by

p∗∗α = p∗α +m(p∗I − p∗α), (5.8)

where p∗α and p∗I are given by (5.4) and (5.5), respectively.

To model the effect of genetic drift we assume that reproduction and deme size regulation

in each deme follow the Wright-Fisher model (Fisher 1930; Wright 1931). This implies random

mating with selfing and random union of gametes. With these assumptions, the number j of

copies of allele A1 in a derived deme dα in generation t + 1 follows a binomial distribution

with 2N
(α)
t+1 trials and probability of success equal to the allele frequency after selection and

migration in the previous generation, p∗∗α (t).

5.2.3 Parameters

We briefly recall the four parameters of the model: pinit is the initial frequency of the ‘goat’ allele

(A1) in the ancestral deme d0 at time t0; φ is the allele frequency that would be reached at the

deterministic internal equilibrium of the selection dynamics in the case of overdominance, i.e. for

w12 > w11 and w12 > w22 (otherwise it is unstable); alternatively, h is the dominance coefficient

for intermediate dominance schemes; s is the selection coefficient; and m is the proportion of

genes contributed by immigrants from the migrant pool each generation. Recall further that

φ may be interpreted as a dominance parameter, with symmetric over- or underdominance if

φ = 0.5. For an overview of parameters and symbols used, see Table 5.1.
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Table 5.1: List of parameters and symbols used in the main text.

Symbol Description

A1, A2 Two alleles, A1 shared with domestic goat
d0 Ancestral deme
dα, α ∈ {1, 2, . . . ,Γ} Derived deme
Γ Number of derived demes (13 in this case)
t Time in generations
t0, tα Time of foundation of d0 and dα, respectively
tf , tΓ Time of first and last founder event

N (α) = (N
(α)
tα

, . . . , N
(α)
ts

) Deme size trajectory of dα (α = 0 for d0)
pinit Initial frequency of A1 in d0

p0 Constant frequency of A1 in d0 between tf and tΓ
p

(α)
ts

Frequency of A1 in dα at the time of sampling
pα, p

∗
α, p

∗∗
α Frequency of A1 in dα before and after selection,

and after migration
pI , p

∗
I , p
∗∗
I Frequency of A1 in the immigrant pool before and

after selection, and after migration
wij Relative fitness of genotype AiAj
wi,α, w̄α Marginal fitness of Ai in dα, mean fitness in dα
s Selection coefficient
φ Dominance coefficient for over- or underdominance
h Dominance coefficient for directional selection
m Immigration rate from migrant pool to derived demes
p̂ = (p̂1, p̂1, . . . , p̂Γ)T Vector of frequencies of A1 observed at time ts
Q

(α)

t→t′ Matrix of transition probabilities q
(α)
ij (t) between times

t and t′ (α = 0 for ancestral deme d0)

F(α) Vector of transition probabilities f
(α)
kl for the founder

event of dα

5.3 Data and methods

5.3.1 Data

Demographic data

Census sizes of ibex populations in the Swiss Alps have been recorded since 1911, and the num-

bers of males and females transferred between populations in the process of re-introduction

have been documented. These data were available from the literature (Couturier 1962; Niev-

ergelt 1966) or provided by the Swiss Federal Office for the Environment (FOEN), the cantons,

and the Swiss National Park. For some periods and populations, no census data were avail-

able. We interpolated missing values linearly, if the gap of missing data was only one year, or

exponentially, if values for two or more successive years were missing.

Phenotypic and genetic data

We obtained tissue samples of Alpine ibex culled between 2005 and 2007, and blood or tissue

samples collected during the same period from a small number of additional individuals (Biebach

and Keller 2009). The age of individuals at the time of sampling and the sex were determined.

A total of 421 individuals were genotyped at three microsatellites linked to the MHC complex

on chromosome 23: OLADRB1, OLADRB2 and OMHC1 (Figure 5.1; Vaiman et al. 1996;

Paterson et al. 1998; Maddox et al. 2001; Grossen 2005; Biebach and Keller 2009). Individuals
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were also genotyped at 37 putatively neutral microsatellites as described in Biebach and Keller

(2009).

Data sets and standard tests for neutrality and linkage

The model described in the previous section applies to a subset of 14 demes that have in common

a relatively simple genealogy: one deme is ancestral to 13 derived demes (Figure 5.2). We built

a first data set, data mhc 14, with all samples from these 14 demes for which age, deme, sex

and the OLADRB2 genotype are known. A total of 307 samples (138 females, 169 males)

fulfilled these criteria (Table 5.5). We used this data set for both the matrix iteration approach

(medium-term signals) and the analysis of genotype versus age at sampling (short-term). While

the matrix iteration approach is a very general approach, our specific implementation is justified

only for data set data mhc 14, because the demographic model applies only to these 14 demes.

The requirements with respect to demography are less stringent for the remaining analyses,

and samples from nine additional demes could be used for those. This extended data set,

data mhc 23, contains a total of 421 samples (189 females, 232 males). Genotypes, deme

names and further details of the samples in both data sets are provided in Tables 5.6 and 5.9

in the Supporting Information (SI).

Marker BM1225 was monomorphic for data mhc 14 and therefore excluded from this data

set. The frequency of the ‘goat’ allele (A1) did not differ between females and males in both data

sets (Mantel-Haenszel chi-squared test: χ2
1 = 1.607, p = 0.205 for data mhc 14, and χ2

1 = 0.724,

p = 0.395 for data mhc 23). We tested for deviations from HWE and for linkage disequilibrium

(LD) using Genepop vesion 4.0.9 (Raymond and Rousset 1995; Rousset 2008). For data mhc 14,

none of the neutral markers showed significant deviation from HWE. We found a marginally

significant heterozygote deficit at OLADRB1 (p = 0.049) and OMHC1 (p = 0.037) in deme

Julier Süd for data mhc 14. For data mhc 23, we additionally observed significant heterozygote

excess for OLADRB1 in Cape Moine (p = 0.018) and marginally significant excess in Flüela

(p = 0.054). We observed no deviation from HWE at OLADRB2 (but see below for differences

between age classes). No correction for multiple testing was applied for results on HWE. Not

surprisingly, we found highly significant pairwise LD between the three MHC-linked markers

OLADRB1, OLADRB2 and OMHC1 (p < 10−4; significant after correction by Holm (1979))

both for data mhc 14 and data mhc 23 when samples were pooled across demes. When samples

were not pooled, we observed significant LD in some but not all demes. We found no significant

LD between any pair of neutral markers, although some share a chromosome. In the following,

we denote the vector of allele frequency estimates by p̂ = (p̂1, p̂2, . . . , p̂Γ)T , where p̂α is the

observed frequency of A1 in deme dα.

5.3.2 Detecting medium-term signals of selection

Matrix iteration approach based on the full allele frequency distribution

For parameter estimation we set up a framework that represents evolution in each deme as

a Markov chain and allows inference via matrix iteration (Ewens 1979; Keightley and Eyre-

Walker 2007; Zeng and Charlesworth 2009). For a given derived deme dα, there is a transition

matrix Q(α) that contains the probabilities q
(α)
ij of going from a state with i copies of allele



5.3. DATA AND METHODS 133

A1 in generation t (with deme size N
(α)
t ) to a state with j copies in generation t + 1 (with

deme size N
(α)
t+1): Q

(α)
t→t+1 =

{
q

(α)
ij (t)

}
, i ∈ 0, 1, . . . , 2N

(α)
t and j ∈ 0, 1, . . . , 2N

(α)
t+1. Since

deme sizes may change from generation to generation, the resulting Markov chain is time-

inhomogeneous. For the ancestral deme, d0, the corresponding transition matrix is Q
(0)
t→t+1 ={

q
(0)
ij (t)

}
. The transition probabilities qij can be obtained by combining equations (5.8), (5.5)

and (5.4). For the derived demes, they account for viability selection, migration and drift,

while for the ancestral deme we do not need to consider migration (details in the Appendix).

Multiplying the transition matrices Qt→t+1 over the desired number of generations yields the

transition probabilities over the total time span and therefore the joint probability distribution

of going from state i at time t′ to state j at time t′′: Qt′→ t′′ = Qt′→ t′+1 · Qt′+1→ t′+2 · ... ·
Qt′′−1→ t′′ . Derived demes evolve from time tα to time ts, so that the transition matrix of

interest is Q
(α)
tα→ ts . Analogously, Q

(0)
t0→tf is the transition matrix for the ancestral deme from

t0 to tf .

When a derived deme dα is founded by sampling from the ancestral deme, we express this in

a similar way with a vector of transition probabilities F(α) =
{
f

(α)
kl

}
, where k is the number of

A1 alleles in the ancestral deme at time tf and l is the number of copies among the founders of

the derived deme at the time of founding. The f
(α)
kl are calculated from the binomial distribution

(see Appendix). To speed up computation, we truncated the binomial distribution at the mean

± four times the standard deviation. We normalized the truncated distribution such that the

total probability mass was equal to 1. This way, we did not spend time computing very low

probabilities and were thus able to reduce the computation time by more than 50%. The error

introduced by the truncation accumulated as we iterated the matrices, but it was negligible (<

0.005) after twelve generations, which is more than the maximum number of iterations needed

for this study (data not shown).

For the matrix iteration approach we simplified the full founding history of the derived

demes. In reality, most derived demes received founder individuals in several years. These

founding years may, but need not have taken place in consecutive years; there may be gaps

when no individuals were released. Reflecting such details in the Markov implementation would

have been tedious. Therefore, we determined one single point in time of establishment (tα) per

derived deme. We did so by defining as the year of establishment the year by which at least 50%

of the total number of founders of a particular derived deme had been released. We choose the

deme size in the year of establishment as the number of founders. For the founder individuals,

we also dropped the distinction between males and females. Notice that we did not make these

simplifications for the simulations resulting in the distribution of FST versus diversity, described

in the following subsection. See Table 5.5 and Figure 5.2 for details of the founder events and

demography.

We obtained the likelihood of the parameters given the observed allele frequencies, p̂,

and the deme size trajectories, N , as the probability of p̂ given the parameters and N , i.e.

L(s,m, φ, pinit; p̂,N ) = P[p̂ | s,m, φ, pinit,N ]. Here and in the following, φ may be replaced

by h depending on the dominance scheme (cf. equations (5.6) and (5.7)). Computing the joint

likelihood surface on a dense four-dimensional parameter grid would be prohibitive. Therefore,

we first limited the range of m to three distinct values {0.0, 0.1, 0.2}. Second, we set the

dominance coefficient φ to values from 0.00 to 1.00 in steps of 0.125, and computed the joint
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likelihood of s and pinit for each. We did so for values of s ranging from -1.0 to 1.0 in steps of 0.1

for over- and underdominance, and from 0.00 to 0.95 in steps of 0.05 for directional selection.

For given values of m and φ, we computed L(s, pinit; p̂,N ,m, φ). The likelihood function and

its derivation are given in the Appendix.

Spatial partition of variance in allele frequency

Selection in a spatial context may reduce or enhance genetic differentiation among demes at

the gene of interest, depending on whether it is spatially homogeneous or heterogeneous. The

impact of selection may be confounded by demography and gene flow. Beaumont and Nichols

(1996) suggested plotting the distribution of the standardized variance across demes in allele

frequency (FST) versus gene diversity between demes (heterozygosity) for a large set of neutral

loci simulated under the island model (Wright 1931). Comparing this neutral distribution to

the gene of interest may then reveal evidence for selection. Although results by Beaumont

and Nichols (1996) were robust to a range of demographic deviations from the island model,

we used a more realistic scenario to obtain the neutral distribution. The scenario reflects in

detail the history of re-introduction of Alpine ibex into the Swiss Alps. We used our software

SPoCS (http://pub.ist.ac.at/~saeschbacher/phd_e-sources/) to simulate 105 replica-

tions of neutral evolution given this demography. For each replicate, we simulated one bialellic

neutral marker. We drew the initial allele frequency from a uniform distribution between 0 and

0.5 and assumed no mutation and no migration. We followed Beaumont and Nichols (1996) in

computing and plotting the distribution and the 95% and 50% quantiles for FST, and we used

a sliding window comprising 104 points to estimate the quantiles.

5.3.3 Detecting short-term signals of viability selection

We performed standard statistical analyses to assess the correlation of age at sampling with

genetic composition as a potential short-term (within-generation) signal of selection (Garrigan

and Hedrick 2003). Since most of our samples are from harvested individuals, age at sampling

in those cases coincides with age at culling. Age at sampling is not a direct measure of natural

survival (Hadfield 2008), and it would be misleading to treat it as a response to the genetic

composition in statistical analyses. Rather, we used it as an index of viability in the following

sense: In response to viability selection, we expect the genetic constitution of individuals sam-

pled at different ages to change as a function of the latter. It then makes sense to consider the

genetic constitution as a response – in the statistical sense – to age at sampling. Throughout,

we assume that culling (and hence sampling) and the genotype of an individual are uncorre-

lated. We further assume that the correlation between viability and genotype at OLADRB2 is

constant across cohorts.

Correlation of age at sampling with zygosity and genotype

First, we investigated heterozygosity as a function of age at sampling, deme and sex by fitting

Generalized Linear Models (GLM) with binomial error distribution (logistic regression). We

compared models with various combinations of predictors and performed model selection based

on the Akaike Information Criterion (AIC; Akaike 1974; Burnham and Anderson 2002) and on

http://pub.ist.ac.at/~saeschbacher/phd_e-sources/
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the area under the Receiver Operating Characteristic curve (AUC; Fawcett 2006). We did this

for OLADRB2, for the two other MHC-linked markers OLADRB1 and OMHC1, and for the

putatively neutral markers. The latter is to make sure that the pattern observed at OLADRB2

is not due to a genome-wide heterozygosity effect. If more than two alleles were observed per

locus, we did the analysis for all possible heterozygotes. For the neutral loci, we also computed

a standardized version of multilocus-heterozygosity (Coltman et al. 1999a; Slate et al. 2004)

and regressed it against the predictors. This is an alternative way of testing for a genome-wide

heterozygosity effect. The multilocus-heterozygosity of individual i is obtained as

Hi =

∑L
l=1 hl,i∑L
l=1 h̄l

, (5.9)

where hl,i is the heterozygosity (0 if homozygote and 1 if heterozygote) of individual i at locus

l (l = 1 . . . L), and h̄l = 1
k

∑k
i=1 hl,i is the mean heterozygosity across all individuals k typed

at locus l.

Second, for OLADRB2 we extended the analyses from zygosity (heterozygous versus ho-

mozygous) to the full genotype, which may reveal more information about the dominance

scheme. We fitted pairwise logistic regressions explaining the difference between any two of the

three potential OLADRB2 genotypes in response to age at sampling, deme, sex and first-order

interaction terms. Alternatively, we treated the genotype as a three-level response in a multi-

nomial logistic regression, with age at sampling, deme and sex as predictors (again allowing for

first-order interactions). We did all statistical analyses in R version 2.11 (R Development Core

Team 2011), using the aod package (Lesnoff and Lancelot 2009) for Wald tests of significance

in logistic regressions (Agresti 1990) and the mlogit package (Croissant 2008) for multinomial

logistic regression (see SI for details).

Change in deviation from HWE as a function of age at sampling

Viability selection with under- or overdominance is expected to change the ratio of heterozygotes

to homozygotes. To assess this, we pooled all individuals from different demes and then grouped

them into two age classes, using the global median (5.25 years) as boundary. A total of 307

samples (138 females, 169 males) were included, of which 161 (74 females, 87 males) in age

class 1 and 146 (64 females, 82 males) in age class 2. We computed the deviation from HWE of

the proportion of heterozygotes, FIS, for both age classes with Genepop version 4.0.9 (Raymond

and Rousset 1995; Rousset 2008). We then computed the change in FIS as a function of age,

∆FIS = F
(age2)
IS − F (age1)

IS , and compared ∆FIS for OLADRB2 to the distribution of ∆FIS for

the 36 putatively neutral markers (BM1225 was monomorphic in data mhc 14). Since we did

not account for population structure, our estimates of FIS are subject to the Wahlund effect

(Wahlund 1928; Wright 1931). Because we are interested in the relative change in FIS within

one generation, not in the absolute values, this should not be a problem.

5.3.4 Estimating effective deme size from demographic data

In the matrix iteration approach, we have modeled genetic drift according to the idealized

conditions of a Wright-Fisher population. This implies assumptions that cannot be justified
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for Alpine ibex. Generations are overlapping, and the mating system does not result in equal

contribution of parents to the gamete gene pool and random union of gametes. To account

for these deviations, we calculated effective deme sizes Ne (Wright 1931) from demographic

data, following Nunney (1993), and then used those in the matrix iteration approach (see SI

for details).

5.4 Results

5.4.1 Evidence for viability selection, and its mode of dominance

Negative correlation between heterozygosity and age at sampling specific to OLADRB2

We found that the probability of an individual being heterozygous at OLADRB2 decreased with

increasing age at sampling. This was independent of the exact structure of the GLM, as long as

age at sampling was included as a predictor. Both criteria for model selection, AIC and AUC,

yielded similar results (Tables 5.11, 5.12 and 5.13). For data mhc 23, the best-compromise

model between AIC and AUC was the one that includes all predictors, but no interaction terms.

Age at sampling had a significant negative effect, −0.0625 (95% confidence interval: [−0.1199,

−0.0080]) on the logit of the probability of an individual being heterozygous (p ∼ 0.0281),

deme had a marginally significant joint effect (p ∼ 0.063) and sex had no significant effect.

The overall effect of deme was caused by significantly positive effects of the levels Calanda,

Macun, Safien-Rheinwald, Rothorn-Weissfluh, Wittenberg (all p < 0.05), and Cape au Moine

(p < 0.001; see SI for details). These deme-specific effects are likely due to varying degrees

of genetic drift to which the demes were exposed during re-introduction (Biebach and Keller

2009, 2010). For data mhc 14, the best model was the one with age as the only predictor (Table

5.13). Age at sampling had a negative effect on the probability of being heterozygous (−0.0595

[−0.1242, 0.0007] on the logit scale), but the effect was only marginally significant (p ∼ 0.0608).

We also observed a negative effect of age at sampling on heterozygosity for allele 184 of

the OLADRB1 locus, both for data mhc 23 and data mhc 14. The effect was significant for

data mhc 23 (−0.0557 on the logit-scale [−0.1090, −0.0051], p ∼ 0.0351), but not significant for

data mhc 14. The result is not surprising given that allele 184 is in strong linkage disequilibrium

with allele 277 (the ‘goat’ alllele) of OLADRB2. None of the other alleles (174, 178, 170) of

OLADRB1 showed a significant relationship between heterozygosity and age. We also observed

no significant relation for the biallelic MHC-linked marker OMHC1.

For the majority of alleles at the putatively neutral markers (37 in case of data mhc 23, 36

for data mhc 14), we observed no statistical correlation between heterozygosity and age at sam-

pling. However, a small number of alleles showed a significant correlation. We observed both

positive and negative correlations, and it remains to be shown if these just correspond to the

proportion of false positives to be expected under neutrality, or if they reflect effects of selection

(see SI for details). None of these alleles is in linkage disequilibrium with the ‘goat’ allele of

OLADRB2. Overall, there is therefore no evidence for a genome-wide correlation of heterozy-

gosity with age at sampling. This was confirmed by regression of multilocus-heterozygosity

against age at sampling, deme and sex: There was no significant effect of age at sampling on

multilocus-heterozygosity in both data sets (see SI for details).
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Reduced age at sampling of heterozygotes compared to ibex homozygotes

Since results from the multinomial logistic regression were essentially the same for data mhc 23

and data mhc 14, we only state those for the latter here and present results for data mhc 23 in

the SI. Five demes (Calanda, Macun, Oberalp-Frisal, Safien-Rheinwald and Rothorn-Weissfluh)

had a positive single-level effect on the odds of genotype A2A2 relative to A1A2 (data not

shown). We therefore modified the original factor deme with 14 levels to a factor with only two

levels, one containing the five demes just mentioned (deme set 1), and the second containing all

other demes (deme set 2). Within deme set 2, the probability of an individual having genotype

A2A2 relative to A1A2 increased significantly as a function of age at sampling (0.1460 [0.0138,

0.2782] on the logit-scale, p ∼ 0.0304; Table 5.2 and Figure 5.3). There was no effect of age

at sampling within deme set 1. The contrasts between the other pairs of genotypes (A1A1

versus A1A2, and A1A1 versus A2A2) were not significantly influenced by age at sampling. The

results from the pairwise logistic regressions supported this finding: The best model was one

that distinguished between two sets of demes (see Tables 5.26 to 5.28 in SI for details on model

selection). For the subset consisting of demes Macun, Oberalp-Frisal and Rothorn-Weissfluh,

the probability of an individual being A2A2-homozygous compared to heterozygous was sig-

nificantly lower compared to the other demes (−2.0652 [−3.2153, −0.9923] on the logit-scale,

p ∼ 0.0002; Table 5.28). Within this subset of demes, however, the probability that an indi-

vidual is A2A2-homozygous compared to heterozygous increased significantly as a function of

age at sampling (0.2142 [0.0912, 0.0508], p ∼ 0.0188; Table 5.28). In summary, we confirmed

the negative correlation between age at sampling and heterozygosity at OLADRB2, at least

for subsets of demes for which there was enough statistical power. However, we obtained no

further insight into the effect of age at sampling on the ratios of A1A2 to A1A1 and of A2A2

to A1A1. Hence, we remain uncertain about the mode of dominance. Both, underdominance

or directional selection against the ‘goat’ allele (intermediate dominance including full recessiv-

ity), are compatible with the short-term signals of viability selection (Figure 5.3). Remember,

however, that viability is only one aspect of fitness, and that we have ignored sexual selection.

Increase in FIS at OLADRB2 as a function of age at sampling

Pooling samples from different demes, we found that the change in deviation from HWE as a

function of age at sampling, ∆FIS = F
(age2)
IS − F (age1)

IS , was strongly positive for OLADRB2.

∆FIS for OLADRB2 was slightly beyond the upper limit of the distribution of ∆FIS obtained

for 36 neutral microsatellites (Figure 5.4). Hence, the proportion of OLADRB2 heterozygotes

dropped significantly as a function of age at sampling. The mean ∆FIS for the neutral loci was

not different from 0 (one sample t-test, t = 0.346, df = 35, p > 0.7). This applies analogously

to data mhc 23 (Figure 5.18). Overall, these results confirm the previous findings of a decrease

in heterozygosity at OLADRB2 as a function of age at sampling.

Medium-term evidence for spatially homogeneous selection

The short-term signals of viability selection reported above build up within one generation, but

are wiped out by mating and reproduction. In the following, we turn to medium-term signals,

which accumulate across generations and are potentially reflected in the observed allele frequen-

cies. For data mhc 14 we investigated the genetic differentiation across demes at OLADRB2
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measured in terms of FST and compared it to the distribution expected under neutrality, as

well as to the other markers. Accounting for the dependence of FST on total diversity, we found

that the observed spatial differentiation at OLADRB2 is low compared to a large number of

neutral loci simulated under the demographic scenario of Alpine ibex (Figure 5.5). FST for

OLADRB2 was within, but close to the lower bound of, the interval between the empirical 5%
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Figure 5.3: Predicted probability of the three OLADRB2 genotypes as a function of age at sampling. The
predictions were obtained from the multinomial logistic regression model given in Table 5.2. The right figure
is for demes in set 2 = {Calanda, Macun, Oberalp-Frisal, Safien-Rheinwald, Rothorn-Weissfluh}, the left
for all other demes in data mhc 14. A1 denotes the ‘goat’ allele, A2 the ibex allele. For demes in set 2,
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Table 5.2: Estimates of effects on the contrast between all three OLADRB2 genotypes from a multinomial
logistic regression for data mhc 14.

Model Coefficient Estimate SE 2.5% 97.5% p

gtp.ola2 ∼ age + I(deme ∈ D) + age:I(deme ∈ D)

a1a1 −2.8502 0.8741 −4.5635 −1.1370 0.0011 ∗∗
a2a2 1.3511 0.3022 0.7588 1.9434 <0.0001 ∗∗∗
a1a1:age 0.1025 0.0888 −0.0715 0.2766 0.2481
a2a2:age −0.0068 0.0404 −0.0860 0.0725 0.8673
a1a1:I(deme ∈ D) 0.2485 1.1657 −2.0362 2.5332 0.8312
a2a2:I(deme ∈ D) −1.8438 0.4697 −2.7645 −0.9231 <0.0001 ∗∗∗
a1a1:age:I(deme ∈ D) 0.0158 0.1349 −0.2487 0.2802 0.9069
a2a2:age:I(deme ∈ D) 0.1460 0.0675 0.0138 0.2782 0.0304 ∗

Model, the multinomial logistic regression model fitted to explain the odds of the three OLADRB2 genotypes
(gtp.ola2 ∈ {a1a1, a1a2 and a2a2}) as a function of the predictors; Coefficient, name of predictor; Estimate,
estimated effect of predictor (on the logit scale); SE, standard error; 2.5% and 97.5%, the limits of the 95%
confidence interval; p, p-value (Wald test), significance code: ∗∗∗ for 0 < p ≤ 0.001, ∗∗ for 0.001 < p ≤ 0.01, ∗
for 0.01 < p ≤ 0.05, · for 0.05 < p ≤ 0.1 and ‘ ’ for 0.1 < p ≤ 1. I(deme ∈ D) = 1 if deme ∈ D, and I(deme ∈ D)
= 0 if deme /∈ D. The set D contains the demes with a significant single-level effect on the genotype in a more
extended model: Calanda, Macun, Oberalp-Frisal, Safien-Rheinwald and Rothorn-Weissfluh. The estimates for
I(deme ∈ D) are given for the effect of I(deme ∈ D) = 1 compared to the default I(deme ∈ D) = 0. All estimates
are relative to the heterozygous genotype A1A2 (gtp.ola2 = a1a2).

and 95% quantiles. It was also lower than the one for the majority of the other markers (Figure

5.5A). The result suggests that, if OLADRB2 is under selection, the selection pressure is more

likely to be spatially homogeneous than heterogeneous (Lewontin and Krakauer 1973, 1975;

Beaumont and Nichols 1996). In addition, the observed FST was very high compared to the

neutral expectation for the putatively neutral markers BM1415 and SR-CRSP08, and very low

for INRABERN172, TGLA73, BM302, TGLA10, OARHH35 and OARFCB20 (Figure 5.5A).

These markers might in fact not be neutral, but under spatially heterogeneous or homogeneous

selection, respectively. If loci are not artificially made biallelic, the effect vanishes for BM302

(4 alleles) and TGLA10 (3), however.

5.4.2 Likelihood-based estimates of strength of selection

Recall that for the matrix iteration approach we needed estimates of effective deme sizes that

account for demography, life cycle and mating system in Alpine ibex. Table 5.5 summarizes in

the outer right column the trajectories of per-generation effective sizes for each deme, estimated

from demographic data. The matrix iteration approach allowed us in principle to obtain the

joint likelihood of the selection (s) and dominance (φ or h) coefficient, the migration rate (m)

and the initial frequency (pinit) of the ‘goat’ allele A1. In practice, there is a high computational

cost for evaluating the likelihood on a dense enough grid, and it is not obvious how to present

four-dimensional joint likelihood surfaces. Therefore, we start without migration. Further,

we only consider a small set of values for the dominance coefficients. For each dominance

coefficient, we obtained the joint likelihood surface of s and pinit. Since s is of most interest,

whereas pinit is a confounding parameter, we were mainly interested in the marginal likelihood

of s with respect to pinit. At the end, we will assess the effect of gene flow.

Under- and overdominance without migration

In the case of under- and overdominance (where φ is the dominance coefficient; cf. equation

(5.6)) there was most support for φ around 0.125 (Tabe 5.3). Given φ = 0.125, the marginal
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Figure 5.5: The distribution of the standardized variance in allele frequency across 14 derived demes (FST)
as a function of gene diversity (expected between-deme heterozygosity). (A) The point cloud represents the
distribution of values simulated under neutrality for the demographic scenario of Alpine ibex (n ≈ 9 · 104

biallelic loci). The median, 25% and 75%, and 75% and 95% quantiles are given by the bold dashed line,
the thin dashed lines and the solid line, respectively. FST and gene diversity observed for real loci are given
by the diamond for OLADRB2 and the circles for the other MHC-linked markers (OLADRB1, OMHC1)
and the 36 neutral markers. Names of markers with extreme values are shown. For loci with more than
two alleles, we pooled all alleles except the one with the major allele frequency. (B) The FST distribution
conditioning on the gene diversity being equal to the one observed for OLADRB2 (0.296) ± 0.02 (n = 5634
simulations). This corresponds to taking a vertical slice through the plot in (A) at a gene diversity of about
0.3. The triangle represents OLADRB2 and the vertical lines have the same meaning as the respective lines
in (A).

maximum likelihood estimate (MLE) of s was 0.974, which suggests overdominance (s > 0).

Table 5.3 summarizes the results for various values of φ and gives 95% credible intervals for s.

Figure 5.6 shows the respective marginal likelihood curves of s. Interestingly, the observed allele

frequency spectrum contained quite some information about pinit (Figure 5.19). Therefore, in

Table 5.3 we also provide joint maximum-likelihood estimates of s and pinit. Comparing the

marginal and joint estimates of s, there is considerable difference for φ = 0 and φ = 0.125, but

for φ ≥ 0.25, the two estimates become very similar. Although some point estimates of s were

relatively high, s = 0 was included in all 95% credible intervals. Therefore, a drift-only scenario

cannot be excluded for any φ considered here. Figure 5.7 further illustrates the relation between

s and pinit. First, it is obvious that if we had a precise point estimate of pinit, we would be

able to make more precise inference on s and, in some cases, to exclude a drift-only scenario.

Second, it illustrates how crucial the effect of pinit is on the point estimate of s. Given φ, the

conditional MLE of s may be negative or positive, depending on pinit (e.g. Figure 5.7A).

Conditioning on underdominance without migration

Taken on its own, the matrix iteration approach yielded most support for asymmetric overdom-

inance, with an equilibrium frequency of the ‘goat’ allele A1 of about 0.125. But Figure 5.6

and Table 5.3 show that the observed allele frequency spectrum may also be explained by other

scenarios. Without knowing the true dominance coefficient in advance, choosing the one with

highest marginal likelihood seems justified (Table 5.3). In our case, however, the short-term
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Figure 5.6: Likelihood of the selection coefficient s for various dominance coefficients φ without migration.
The likelihood curves are marginal with respect to the initial frequency pinit of the ‘goat’ allele A1. Fitnesses
are parameterized as in equation (5.6) in the text. A1 is fully recessive if φ = 0 and fully dominant if φ = 1.
For φ /∈ {0, 1}, there is overdominance if s > 0 and underdominance if s < 0. (A) The likelihoods are not
normalized. Therefore, the areas under the curves indicate the relative support for the respective values of φ
(cf. Table 5.3). (B) As in (A) but with likelihoods normalized such that the area under the curve is 1. In a
Bayesian view, these curves correspond to the posterior distribution of s given a uniform prior on the normal
scale. The curves in (A) and (B) were obtained by third-order interpolation of points computed for values
of s on a grid from –1.0 to 1.0 with step size 0.1 (black dots). (C) Relative fitnesses of the three genotypes
for some values of φ and the respective MLE of s. The plot in the middle of the top row corresponds to
the most likely scenario.

signals of selection provide an indicator for the mode of dominance. They suggest a disadvan-

tage of heterozygotes compared to the ibex-homozygotes, which rules out overdominance. In

the following, we therefore conditioned on underdominance, including the two marginal cases

of full recessivity and full dominance of A1. Figure 5.10 and Table 5.7 show that, in this case,

the relative support for different values of φ was similar, with φ = 0.75 being slightly preferred.

For φ ∈ {0, 0.125, 0.25, 0.375}, the MLE of s was 0, suggesting that drift-only is most likely for

Table 5.3: Likelihood-based estimates of selection (s) and dominance (φ) coefficient with under- or over-
dominance, without migration.

Dominance scheme φ L a
φ B.F. ŝφ HPD {ŝ, pinit}φ

A1 fully recessive 0.000 4.210 0.680 0.595 (−0.306, 0.869) {0.50, 0.36}
Overdom. if s > 0, underdom. if s < 0 0.125 6.193 1.000 0.974 (−0.352, 1.000) {0.79, 0.30}

· 0.250 2.877 0.465 0.493 (−0.718, 1.000) {0.50, 0.14}
· 0.375 1.970 0.318 −0.017 (−0.990, 0.608) {0.01, 0.18}
· 0.500 1.811 0.292 −0.165 (−0.995, 0.344) {−0.10, 0.21}
· 0.625 1.776 0.287 −0.205 (−0.971, 0.239) {−0.20, 0.54}
· 0.750 1.721 0.278 −0.209 (−0.930, 0.196) {−0.20, 0.29}
· 0.875 1.550 0.250 −0.200 (−0.790, 0.179) {−0.20, 0.31}

A1 fully dominant 1.000 1.332 0.215 −0.190 (−0.613, 0.142) {−0.20, 0.35}

Lφ =
∑
s∈S L(φ, s;D) =

∑
s∈S P (D|φ, s) is an approximation to the marginal likelihood of φ, L(φ;D) =

P (D|φ) =
∫
S P (D|φ, s)P (s|φ)ds =

∫
S P (D|φ, s)P (s)ds, where S is the set of possible values for s, and the

last equality holds because φ and s are independent. The Bayes Factor (B.F.) is here defined as Lφ/max(Lφ),
and therefore denotes the support for any model compared to the one with the maximum marginal likelihood
(φ = 0.125 in this case). The maximum-likelihood estimate (MLE) of s given φ is provided by ŝφ. In a Bayesian
perspective, this is equal to the posterior mode, since the prior was uniform on the normal scale. HPD, 95%
highest posterior density interval of s. Point and interval estimates correspond to likelihood curves displayed
in Figure 5.6. These were obtained after marginalizing out the initial allele frequency pinit. The last column
gives the joint MLE of s and pinit, which is obtained if pinit is not marginalized out (cf. Figure 5.19 for the full
likelihood surface).
aIn multiples of 10−13
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these dominance coefficients. For φ ∈ {0.5, 0.625, 0.75, 0.875, 1}, the MLE of s was negative,

which implies underdominance. Moreover, A1 is preferred in these cases whenever its frequency

is larger than the respective value of φ, and disfavored if its frequency is below φ. However,

the 95% credible interval included s = 0 in all cases, such that drift-only cannot be excluded.

Intermediate dominance without migration

The short-term signals of viability selection were either compatible with underdominance, or

with intermediate dominance and directional selection against the ‘goat’ allele A1 (cf. Figure

5.3B). In the previous paragraph, we have dealt with medium-term evidence in the case of

underdominance. We will now turn to the case of intermediate dominance. Recall that for this

case we parameterized the relative fitnesses as in equation (5.7), with dominance coefficient h,

where 0 < h < 1 and 0 ≤ s ≤ 1. Hence, A1 is partially recessive if 0 < h < 0.5 and partially

dominant if 0.5 < h < 1. There is no dominance if h = 0.5. For the values of h assessed, we

found most support in terms of the marginal likelihood for h = 0.125, and decreasing support

for increasing values of h (Figure 5.8A and Table 5.4). Marginal likelihood curves and posterior

distributions of s are shown for various h in Figures 5.8A and 5.8B, respectively. The MLE

of s given h = 0.125 was 0.5, and the 95% credible interval did not include s = 0 (Table

5.4). Hence, we found support for medium-term negative selection against A1, with A1 being

partially recessive. Although the relative support for higher values of h decreased, as long as

h < 0.5, the 95% credible interval for s did not incude s = 0, and for no dominance (h = 0.5),
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Figure 5.7: The effect of the initial allele frequency pinit on the likelihood of the selection coefficient s,
for under- and overdominance. The joint likelihood surface of pinit and s is shown in the bottom row
(third-order interpolation was applied). The top row shows the conditional likelihoods L|pinit of s given
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horizontal slices from the surface plots at respective positions. Fitnesses are parameterized as in equation
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Figure 5.8: Likelihood of the selection coefficient s for various dominance coefficients h without migration.
The likelihood curves are marginal with respect to the initial frequency pinit of the ‘goat’ allele A1. Fitnesses
are parameterized as in equation (5.7). For 0 < h < 1 (and 0 ≤ s ≤ 1, as is the case here), dominance
is intermediate. A1 is partially recessive if 0 < h < 0.5 and partially dominant if 0.5 < h < 1; there is no
dominance if h = 0.5. The limiting case of full recessivity of A1 (h = 0) is equivalent to the case of φ = 0
in Figure 5.6 and therefore not plotted again. (A) The likelihoods are not normalized and the areas under
the curves indicate the relative support for the various values of h (cf. Table 5.4). (B) As in (A) but with
likelihoods normalized such that the area under the curve is 1. In a Bayesian view, these curves correspond
to the posterior distribution of s given a uniform prior on the normal scale. The curves were obtained by
third-order interpolation of points computed for values of s on a grid from 0.0 to 0.95 with step size 0.05
(black dots). (C) Relative fitnesses of the three genotypes for some values of h and the respective MLE
of s. The top left plot corresponds to the most likely scenario. Notice the similarity with the most likely
scenarios in Figure 5.6C (φ = 0 and 0.125).

the lower bound of the interval was at 0.008. However, for partial dominance, the drift-only case

(s = 0) could not be excluded (Table 5.4). Table 5.4 also shows the joint maximum-likelihood

estimates of s and pinit. Both, the joint and marginal MLE of s are similar for all values of h.

While the estimate of s decreased monotonously with increasing h, the estimate of pinit first

increased, with a maximum of 0.42 for h = 0.25, and then decreased h increased further. The

effect on the estimate of s caused by marginalizing out pinit is illustrated in Figure 5.9. As

for under- and overdominance (Figure 5.7), knowing pinit would allow for preciser and more

accurate inference on s.

The effect of gene flow via migration

The main effect of gene flow via migration was to reduce the marginal likelihood of s compared

to the case with m = 0. Second, migration tended to smooth out the likelihood curves (Figure

5.11A for intermediate dominance and Figure 5.25A for under- and overdominance). The effect

on the mode of the posterior was minor (Figures 5.11B and 5.25B). These results are expected,

since if selection is spatially homogeneous, and migration happens after selection, gene flow from

the common migrant pool supports the effect of selection and balances differences among demes.

As a consequence, weaker selection is needed to achieve the same net change in allele frequency

as in the case without migration. The highest migration rate we considered is m = 0.2. Some

of our previous analyses not reported here suggest that migration rates between Alpine ibex

demes in the Swiss Alps do not exceed this value (see chapter 3).
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Figure 5.9: The effect of the initial allele frequency pinit on the likelihood of the selection coefficient s,
for intermediate dominance. Fitnesses are parameterized as in equation (5.6) in the text. (A) φ = 0.125
(B) φ = 0.5 and c) φ = 0.875. The corresponding marginal likelihood curves in Figure 5.8 are obtained by
summing over the range of possible values of pinit, 0.0 < pinit < 0.6. L|pinit is shown in units of 10−15.
Further details as in Figure 5.9. See Figure 5.22 for intermediate values of h.

Summary

The results on the medium-term signals of selection can be summarized as follows. We dis-

tinguished between i) under- and overdominance, and ii) intermediate dominance. For i), we

further distinguished between i.a) not conditioning on short-term evidence, and i.b) condition-

ing on the short-term evidence. For ii), no further distinction was needed, because this case was

in agreement with short-term evidence. In case i.a), the vector of observed allele frequencies

was best explained by overdominant selection, with equilibrium frequency around 0.125, and

ŝφ ≈ 0.97. For i.b) – excluding overdominance as suggested by the short-term analyses – we

found weak support for underdominance and an unstable internal equilibrium φ at about 0.75.

For φ < 0.5, there was most support for a drift-only scenario (ŝφ = 0), although these cases

Table 5.4: Likelihood-based estimates of selection (s) and dominance (h) coefficient with intermediate
dominance, without migration.

Dominance scheme h L a
h B.F. ŝh HPD {ŝ, pinit}h

A1 partially recessive 0.125 5.415 1.000 0.500 (0.035, 0.661) {0.45, 0.40}
· 0.250 4.202 0.776 0.435 (0.025, 0.574) {0.40, 0.42}
· 0.375 3.397 0.627 0.380 (0.016, 0.512) {0.35, 0.41}

No dominance 0.500 2.822 0.521 0.326 (0.008, 0.463) {0.30, 0.40}
A1 partially dominant 0.625 2.391 0.442 0.271 (0.000, 0.421) {0.25, 0.37}

· 0.750 2.057 0.380 0.223 (0.000, 0.394) {0.20, 0.35}
· 0.875 1.790 0.331 0.186 (0.000, 0.368) {0.15, 0.31}

Lh, the Bayes Factor (B.F.), ŝh, HPD and {ŝ, pinit}h are as in Table 5.3, with φ replaced by h. Point
and interval estimates correspond to likelihood curves displayed in Figure 5.8. These are obtained after
marginalizing out the initial allele frequency pinit. The last column gives the joint MLE of s and pinit,
which is obtained if pinit is not marginalized out. For full recessivity and full dominance of the ‘goat’
allele, see Table 5.3.
aIn multiples of 10−13
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had slightly less overall support than cases with φ ≥ 0.50 and ŝφ < 0. For directional selection

(ii), we found relatively strong support for partial recessivity of the ‘goat’ allele, with ŝh ≈ 0.5.

Relative support decreased with increasing degree of dominance h. A drift-only scenario could

be excluded for h < 0.5, but not for h ≥ 0.5. Importantly, the relative fitnesses implied by

the most likely scenarios of i.a) and ii), respectively, are not so different (compare Figures 5.6C

and 5.8C). Both clearly suggest lowest fitness for the ‘goat’ homozygote (A1A1) and heterozy-

gote fitness close to that of ‘ibex’ homozygotes A2A2. In case i.a), the heterozygotes are as fit

(φ = 0) or slightly fitter (φ = 0.125), in case ii) they are slightly less fit than A2A2 (h = 0.125).

The truth might be somewhere in between, since we have only considered discrete values of φ

and h. Further, it turned out that integrating out the initial allele frequency pinit could also be

avoided; the vector of observed allele frequencies allowed for a joint estimation of s and pinit.

The marginal and joint point estimates of s were similar in most cases. The effect of migration

on inference of s was weak, as long as m was not too high.

5.5 Discussion

In the following, we first discuss biological implications and address the apparent contradiction

between short- and medium-term evidence. We then revisit some of our assumptions and

discuss advantages and limitations of our approach.

5.5.1 Biological implications

Linking results to the biological function of MHC

Using the matrix iteration approach exclusively we found strongest support for asymmetric

overdominance. In contrast, the short-term results ruled out overdominance, but suggested

underdominance or intermediate dominance. Intermediate dominance in the form of directional

selection against the ‘goat’ haplotype was also well supported by the matrix iteration approach.

This is compatible with the hypothesis of selection varying in space or time. Since we found

lower than expected variance in allele frequency across demes, selection seems to be uniform in

space. Selection varying in time remains as a potential mechanism for explaining the observed

pattern of genetic diversity at the MHC locus. However, to confirm this, we would need samples

from more than one point in time. Such samples are currently available only to a limited extent

for the demes studied here (Biebach and Keller 2010). Therefore, while we found evidence

for selection acting on DRB, our results do not provide conclusive evidence for the underlying

mechanism. Combining short- and medium-term evidence, it seems that the DRB allele shared

with domestic goat has been selected against during about the last ten generations (1920 until

2006). Whether this is in the form of balancing selection with very low equilibrium frequency

or strictly directional selection remains open. Similarly, whether or not the disadvantage of

the ‘goat’ allele is permanent or transient is not evident. Selection in favour of or against

particular MHC alleles has been reported before in free-living populations (e.g. Paterson et al.

1998; Meyer-Lucht and Sommer 2005) or humans (e.g. Thursz et al. 1997), and is a plausible

scenario given the role of MHC in pathogen defense (Sommer 2005; Radwan et al. 2010, but

see Black and Hedrick (1997)).
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A negative correlation between age at sampling and heterozygosity at DRB has been sug-

gested before by Ch. Grossen (personal communication). Here, we have confirmed this partly

by statistical analyses. Heterozygotes were on average younger at culling compared to ‘ibex’

homozygotes (A2A2). But we found no significant difference between heterozygotes and ‘goat’

homozygotes (A1A1). We have interpreted this as a signal of viability selection on a short

time scale, either in the form of heterozygote disadvantage or directional selection against the

‘goat’ allele (A1). This interpretation is indirectly supported by the trend for an increase in

nematode fecal egg counts with increasing population frequency of the ‘goat’ allele reported by

Grossen (2005). If heterozygotes carry more parasites, they may accumulate higher mortality

and therefore be underrepresented among individals of high age at sampling.

We found low spatial differentiation for OLADRB2 among demes (Figure 5.5) and concluded

that selection is homogeneous in space. This might be a consequence of a spatially homogeneous

parasite community. In contrast, Grossen (2005) reported higher FST for MHC-linked markers

compared to neutral ones. This would argue for spatially heterogeneous selection, possibly due

to adaptation to genetically different parasite populations. The contradictory results may be

explained by the fact that not exactly the same sets of demes were analyzed in the two studies.

While the 14 focal demes of our study are all geographically close, Grossen (2005) studied fewer

(six) demes, and these were on average further appart from each other. The difference in spatial

scale between the two studies might correlate with changes in the selection scheme.

How do our maximum likelihood estimates of s (0.97 for φ = 0.125; 0.5 for h = 0.125)

compare to those in previous studies? Aguilar et al. (2004) reported similar values (0.5–0.95) for

DRB for the San Nicolas Island fox population. Studies on various MHC genes in humans found

estimates that vary over several orders of magnitude: 0.05–0.605 (Black and Hedrick 1997),

0.0007–0.042 (Satta et al. 1994), and 0.022 (Currat et al. 2010). Overall, our estimates seem

high, but are plausible. For example, the observed change in the proportion of heterozygotes

between age classes 1 and 2 (Figure 5.4) is about 1.3 times the one expected with s = 0.5 and

h = 0.125 under a deterministic model. van Oosterhout (2009) recently suggested a model

that complements the hypothesis of overdominance or spatio-termporally varying selection. It

incorporates purifying selection on recessive deleterious mutations linked to the MHC. Lower

selection coefficients are needed at the MHC to explain the same data that, under the traditional

balancing selection hypothesis, would lead to very high estimates of s. On the other hand, the

diffusion approximation suggests that, for selection to leave a signal in populations of low

effective size, s must be high relative to 1/Ne, since it is 2Nes that determines the effective

strength of selection (Wright 1945; Charlesworth and Charlesworth 2010). In our case, deme-

specific values of Ne are low, namely of order 102 (Table 5.5). It is therefore not surprising that

we could reliably detect only moderate to strong selection (s of order 10−2 and higher) in our

medium-term analysis.

Explanations for the disparity between short- and medium-term evidence

Disparity between short- and medium-term evidence of selection is common in empirical studies

and there are various explanations (Arnold 1992; Coltman et al. 2001; Merilä et al. 2001;

Kruuk et al. 2002; Wilson et al. 2005b). First, as mentioned earlier, the distribution of allele
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frequencies may not be sufficient for inference on the model parameters. Several evolutionary

scenarios might lead to similar distributions. Although our matrix iteration approach uses

the whole distribution for inference, the differences might be hard to detect with data from

only thirteen derived demes and incomplete sampling within demes. Ideally, one would like to

combine the likelihoods of the short- and medium-term analyses to obtain a single measure.

This is compromised in our case by a fact that, on its own, provides a second explanation: While

the short-term analysis focussed on viability – which is only one aspect of fitness – the matrix

iteration also captures other aspects of fitness. Although heterozygotes seemed less viable, they

might be more fertile. In the medium-term, this might compensate lower viability and cause the

apparent contradiction. As a third explanation is related to this: selection on correlated traits

may impose a constraint on the locus of interest (Merilä et al. 2001). For instance, if exon 2 of

DRB were linked to another gene or a QTL with antagonistic effects on lifetime fitness, short-

and medium-term signals do not need to be consistent. A striking example of such a constraint

in a free-living species was recently documented by Gratten et al. (2008) for coat color in Soay

sheep on St. Kilda. Dark color is genetically associated with larger body size (Clutton-Brock

et al. 1997; Gratten et al. 2008), which in turn is heritable (Wilson et al. 2005a, 2007) and

positively correlated with survival (Wilson et al. 2005b) and reproductive success (Coltman

et al. 1999b). Yet, the population frequency of dark color decreased over a period of 20 years.

Gratten et al. (2008) showed that this is due to linkage between the color locus and another

QTL with negative effect on lifetime fitness. This imposes a direct fitness cost on the dark allele

that outweighs the expected benefit of being larger. Fourth, a change over time in the selection

regime – both in the strength or the optimum phenotype – may explain disagreement between

short- and medium-term evidence (Merilä et al. 2001). For example, selection may depend on

population density (e.g Coltman et al. 1999b; Cutrera and Lacey 2006) or alter with changes

in the environment (e.g. Haldane 1924; Steward 1977; Merilä et al. 2001; Cook 2003).

A combination of these explanations might apply in our case. We have merely relied on

genetic data sampled at one point in time, and on the age at sampling as an index of survival.

In the absence of direct measures of selection – which would require phenotypic data relevant to

fitness and estimates of heritability of those traits – there is little scope for specific conclusions

regarding the mechanisms underlying the observed signals of selection.

5.5.2 Approach and assumptions

Inference of selection and model complexity

When inferring the strength of selection, there is a choice between general models that make

strong assumptions and more specific models that account for various sources of uncertainty.

The first strategy is usually associated with higher statistical power and analytical solutions,

but biologically important details might be missed. This may lead to wrong conclusions, which

motivates the second strategy (Zeng and Charlesworth 2009). A number of neutrality tests

assume equilibrium of evolutionary forces (Schierup et al. 2000; Garrigan and Hedrick 2003;

Charlesworth and Charlesworth 2010), and the common principle is to compare candidates of

genes or sites under selection to putatively neutral ones (e.g. Lewontin and Krakauer 1975;

Watterson 1978; McDonald and Kreitman 1991). Rejection of the null model (neutrality) is
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the strongest result that may be obtained. This is fine if the goal is to obtain a set of neutral

markers for inference on demography (Vitalis et al. 2001) – as was often the case in original

applications. What if selection is of interest? Showing that a gene or site is under selection

is one task. Estimating its strength and mode of dominance another, more difficult one. One

must revert to models that explicitly parameterize the aspects of selection that are of interest.

These parameters can then be estimated via maximum likelihood or in a Bayesian context.

An important requirement for the validity of such inference, however, is that the demography

is known and incorporated. One cannot infer details about the demography and test for the

homogeneity of loci at the same time. This would lead to Felsenstein’s (1982) “infinitely many

parameters” problem (Vitalis et al. 2001). Recent studies do account for demography (e.g.

Aguilar et al. 2004; Mona et al. 2008; Currat et al. 2010), and robust tests are being developed

(Li 2011), but often this is intricate on its own (e.g. Barton and Etheridge 2004; Novembre et al.

2005; Keightley and Eyre-Walker 2007; Nielsen et al. 2007). The effect of alternative dominance

schemes, however, seems to be ignored or only marginally addressed in most studies (e.g. Black

and Hedrick 1997; Aguilar et al. 2004; Zeng and Charlesworth 2009, but see Lynd et al. (2010)).

This may be justified when dominance does not affect the equilibrium state, which is the case

for directional selection, but not for overdominance. Moreover, whether or not equilibrium has

been reached is not obvious in general. We have tried to avoid some of these problems by

i) explicitly conditioning on known demography, ii) allowing for a wide range of dominance

schemes, and iii) not assuming equilibrium. We have used a modification of Beaumont and

Nichols (1996) to show that selection is uniform in space. For parameter estimation, we then

employed an explicit model of selection, migration and drift.

What information do these approaches use? The one similar to Beaumont and Nichols

(1996) compares the FST of candidate loci to the distribution expected under the null model

of neutrality. FST is essentially the observed between-deme variance, divided by the expected

(maximum) value of this variance (Wright 1931). The variance (second moment) of the observed

allele frequency distribution is affected by the spatial configuration of selection. For a one-locus

model with two alleles, spatially uniform selection reduces the variance across demes, whereas

heterogeneous selection maintains or increases it. The matrix iteration approach, on the other

hand, uses the full information of the observed allele frequency distribution (Figures 5.13 and

5.14). Importantly, that distribution is not only sensitive to the strength of selection (s).

Assuming spatially uniform selection, the variance in allele frequencies across derived demes

also carries information about the initial allele frequency pinit (think of the binomial variance

as a function of its parameter).

The advantages of our matrix iteration approach are the following. It provided a full-

likelihood framework for joint parameter estimation. We did not assume equilibrium of evolu-

tionary processes, and could incorporate demography via effective deme sizes and an explicit

model of migration. It accounted for the uncertainty about the nuisance parameter pinit. Last,

it is straightforward to include prior information if such is available. The drawback of the ap-

proach is its high computational cost due to the construction of large stochastic matrices. The

size of those depends on Ne. The problem may be overcome using a scaling argument based on

the diffusion approximation (Hill and Robertson 1966).
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Assumptions revisited

Throughout, we assumed viability selection and ignored potential effects on fertility. Also, we

assumed that mating is random with respect to the MHC. If the MHC were involved in mate

choice or other aspects relevant to reproduction (e.g. Thoß et al. 2011), the matrix iteration

approach could still be used. However, the model would have to be adjusted to account for

those aspects. This would require additional parameters and might limit the statistical power.

Selection acting at the stage of reproduction or early development would not have been detected

by our short-term analysis. Further, we have used a one-locus model. The signatures of selection

detected at the DRB locus might be a joint effect of selection acting at DRB, at other MHC

genes and elsewhere in the genome (van Oosterhout 2009; Thoß et al. 2011).

For the short-term analyses, we used the age at sampling (equivalent to age at culling

in most cases) as an indicator of survival. This way, we only caught one aspect of viability

(Hedrick et al. 1976). We were also exposed to the ‘invisible fraction’ problem (Hadfield 2008),

because individuals that died before sampling were not observed and their genotypes are thus

unknown. A further note of caution seems appropriate given a meta-analysis by Chapman

et al. (2009) of studies on heterozygosity-fitness correlations. The authors found that generally

the observed patterns are in disagreement with population genetic predictions, and the effects

only explain a small (< 1%) proportion of the variance in phenotypic characters. We further

assumed that culling and genotype were uncorrelated. We do not know of any evidence for

the opposite in Alpine ibex, although there might be visual or behavioral differences between

carriers of the ‘goat’ and the ibex allele at OLADRB2, with consequences on the probability

of being culled (see Giacometti et al. 2004, for body weight, horn growth and morphology of

F1 and F2 hybrids). For an example of such biases in bighorn sheep rams, see Coltman et al.

(2003). Compared to this, however, the Swiss hunting scheme for Alpine ibex is very restrictive

and less prone to such effects. Last, we assumed that, conditional on the genotype, individuals

are exchangeable across time with respect to viability selection. This would be hampered, if

selection pressure changes on a shorter time scale than that of generations.

In the model used for the medium-term analyses, we have ignored mutation for the ∼90

years (∼10 generations) between reintroduction and sampling. This is justified for two reasons.

First, even in the most extreme case of a star-shaped genealogy, the per-site mutation rate

would have to be extremely high (≥ 10−6) for at least one mutation to be expected. Second,

the two DRB haplotypes observed in the derived demes are identical to those still present in the

original deme in Italy (Figure 5.2), and allele 277 of OLADRB2 is fully diagnostic for the ‘goat’

haplotype at exon 2 of DRB. Second, we assumed that the allele frequency in the ancestral deme

(p0) was constant during the 16 years (1.7 generations) between the establishment of the first

and last derived deme. This may have introduced a bias, but it simplified the likelihood function

considerably. Third, we approximated migration by a continent-island model, which implies

a common gene pool of infinitely many immigrants and a global immigration rate. Although

the demes are geographically close, this is certainly an oversimplification. A detailed study

on pairwise migration rates is underway. Fourth, we have assumed that selection coefficient,

dominance coefficient and migration rate are constant over time. In the absence of time-series

data, this is the most parsimonious assumption.
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Uncertainty about Ne

In the matrix iteration approach we relied on demographic estimates of effective deme sizes

Ne. We obtained these estimates from various parameters that were more or less accurately

estimated in previous studies (see Appendix and SI), but are in general difficult to estimate.

Our estimates of Ne are therefore error-prone. To assess the potential effect on the marginal

estimate of the selection coefficient s, we repeated the inference with values of Ne increased

or decreased by 20% of the actual estimate. As shown in Table 5.8, the effect on the MLE of

s was moderate, with a maximum relative bias of 13% in case of φ = 0.50. The width of the

95% credible interval was only marginally affected. For intermediate dominance, the MLE of

s was negatively correlated with Ne (Table 5.8B). This is reminiscent of the fact that in the

diffusion approximation, only the compound parameter Nes is relevant. However, the relation

we observed between s and Ne was not perfectly proportional. The reason is that time is

constrained by the demographic scenario (Figure 5.2). This hampers the scaling argument in

our case.

5.5.3 Conclusion and outlook

Using a combination of approaches, we found signatures of spatially uniform selection at exon 2

of DRB (MHC class II) in a structured population of Alpine ibex in the Swiss Alps. Scenarios

with either asymmetric overdominance or directional selection against the haplotype shared

with domestic goat were most likely. Other, less likely dominance schemes were most compatible

with a drift-only scenario, however. Assuming a constant selection pressure over the last 10

generations, and that short-term signatures of selection can be used to condition the analysis

over the microevolutionary time scale, it seems that the ‘goat’ haplotype is selected against

in Alpine ibex. Extrapolating further back in time, this would imply that the trans-species

polymorphism is more likely a consequence of relatively recent introgression, rather than a

shared ancestral polymorphism (SAP). Otherwise, we would expect it to have been lost (in

case of directional selection, at least). However, the question of SAP versus recent introgression

should be addressed independently in the future, using sequence data of the flanking region of

the MHC. Differences at synonymous sites between goat and ibex haplotype would support

a shared ancestral polymorphism (or ancient introgression), rather than recent introgression.

Similarly, the pattern of LD along the chromosome may be informative.

Although current literature reflects a consensus that selection has been acting on MHC in

many taxa, the pattern and conclusions about mechansisms are surprisingly heterogeneous. No

general rule has emerged from studies on natural or human populations. Our work adds to

this complexity, in particular providing support for selection under two distinct, contradicting

modes of dominance. There is clearly a need for further empirical studies. In particular, insight

may be obtained by i) considering different time scales on which selection may act and over

which its signatures persist; ii) taking into account the effects of demography and alternative

modes of dominance; iii) using time series data and/or samples from multiple populations; and

iv) showing causal relationships between MHC variation and fitness. Those are challenging

requirements. Recent studies satisfy some, but more effort seems needed to complete our

understanding of MHC evolution.
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5.6 Appendix

5.6.1 Transition probabilities

For derived demes (α ∈ {1, 2, . . . ,Γ}), recalling equations (5.8), (5.5) and (5.4), the transition

probabilities are given by

q
(α)
ij =

(
2N

(α)
t+1

j

)(
p∗∗α
)j (

1− p∗∗α
)2N(α)

t+1−j , (A1)

where

p∗∗α
(5.8)
= p∗α +m(p∗I − p∗α),

p∗I
(5.5)
= pI(t)

w1,I

w̄I
, (A2)

p∗α
(5.4)
= pα(t)

w1,α

w̄α
,

and

pα(t) =
i

2N
(α)
t

. (A3)

For the ancestral deme, there is no migration, and we obtain

q
(0)
ij =

(
2N

(0)
t+1

j

)(
p∗0
)j (

1− p∗0
)2N(0)

t+1−j , (A4)

where

p∗0
(5.4)
= p0(t)

w1,0

w̄0
, (A5)

and

p0(t) =
i

2N
(0)
t

. (A6)

Recall that in equations (A1) and (A4) the marginal and mean fitnesses are functions of p(t),

which we have omitted for simplicity.

The transition probabilities for the founder events are obtained according to the binomial

distribution as

f
(α)
kl =

(
2N

(α)
tα

l

)
p0(tf )l

(
1− p0(tf )

)2N(α)
tα
−l
, where p0(tf ) =

k

2N
(0)
tf

. (A7)

5.6.2 Derivation of likelihood function

Here, we describe the derivation of the likelihood of the parameters s and pinit given the data

(p̂,N ) and some fixed values of m and φ (or h): L(s, pinit; p̂,N ,m, φ). For simplicity, we

omit m and φ in the notation from now on. We define X as the number of copies of allele
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A1 in the ancestral deme at time tf ; Yα as the number of copies in deme dα at the time of

founding, tα; and Zα as the number of copies in deme α at the time of sampling, ts. We do

not have information about the Yα, so that we have to sum over all possible outcomes of this

intermediate state. We know Zα directly from the observation p̂. X is determined via pinit,

the initial allele frequency in the ancestral deme d0. The likelihood of interest is then equal to

the probability of the observed allele frequencies p̂, given the parameters s and pinit and the

deme size trajectories N :

L (s, pinit; p̂,N ) = P
[
Z = (Z1, Z2, . . . , ZΓ) | s, pinit,N

]
(A8)

=
∑
x∈X

P
[
X = x | s, pinit,N (0)

] Γ∏
α=1

P
[
Zα = zα | X = x, s,N (α)

]
, (A9)

where X is the set of possible values thatX can take. Recall thatN (0) is the deme size trajectory

of the ancestral deme, whereasN (α) is the one for the derived deme dα, with α ∈ {1, 2, 3, . . . ,Γ}.
The probabilities P

[
Zα = zα | X = x, s,N (α)

]
are given by

P [Zα = zα | X = x] =
∑
yα∈Yα

P [Yα = yα | X = x] · P [Zα = zα | Yα = yα] , (A10)

where Yα is the set of values that Yα can take, and we have dropped the conditioning on s,

pinit and N for simplicity. Equation (A10) makes explicit the summation over all unobserved

outcomes of the variable Yα mentioned in the main text, and introduces the founder event

explicitly via P [Yα = yα | X = x].

It is straightforward to relate the probabilities P
[
X | s, pinit,N (0)

]
, P

[
Yα | X,N (0)

]
, and

P
[
Zα | Yα, s,N (α)

]
to the transition matrices introduced in the main text (Methods). First,

P
[
X | s, pinit,N (0)

]
is obtained from the transition matrix Q

(0)
t0→tf . It corresponds to the proba-

bility distribution given by the row of Q
(0)
t0→tf that reflects the transition from an initial number

of i =
⌊
pinit · 2N (0)

t0

⌉
copies of A1 to any possible number x of copies at time tf , where we use

bre to denote the nearest integer from r. Second, P
[
Yα | X,N (0)

]
is the probability distribution

given by the vector that contains the transition probabilities of going from X = x copies of A1

in the ancestral deme at time tf to any possible number yα of copies in deme dα at time tα. So,

the desired probability distribution is given by the row vector F(α). Third, P
[
Zα | Yα, s,N (α)

]
is obtained from the transition matrix Q

(α)
tα→ ts . It is the probability distribution given by

the row of Q
(α)
tα→ ts that corresponds to going from a number of Yα = yα copies of A1 in deme

dα at time tα to any possible number zα of copies in deme dα at the time of genetic sampling, ts.

Recall from the description of the model (Model and parameters) that pinit is a nuisance

parameter and expected to be correlated to s. Since we do not have data to estimate pinit, we

are also interested in the likelihood of s marginal to pinit. This is obtained by summing the

joint likelihood over the range of values that pinit can take:

L (s; p̂,N ) =
∑

pinit∈P
L (s, pinit; p̂,N ) , (A11)
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where P is the set of values in (0.0, 0.6] that pinit can take (cf. Figure 5.2). We provide

an illustration of the approach in the SI. Mathematica notebooks implementing the matrix

approach are available from the corresponding author or may be downloaded from the website

http://pub.ist.ac.at/~saeschbacher/phd_e-sources/.

http://pub.ist.ac.at/~saeschbacher/phd_e-sources/
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5.7 Supporting information: Additional tables

Table 5.5: Founder events, demography and trajectories of effective deme sizes.

Deme Name τfirst τlast Ftot Fm Ff τ50 Fe gα N (α)

d0 Albrisa 1920 1934 42 16 26 1927 25 9
{25, 137, 241, 340, 478,
463, 479, 498, 410}

d1 Adula-Vial 1965 1965 19 13 6 1965 15 5 {15, 45, 98, 176, 162}
d2 Calanda 1968 1970 36 15 21 1970 26 4 {26, 29, 41, 56}
d3 Crap da Flem 1958 1963 27 16 11 1958 7 5 {7, 32, 36, 42, 52}
d4 Flüela 1958 1987 42 30 12 1959 40 5 {40, 238, 342, 357, 326}
d5 Hochwang 1965 1973 40 21 19 1971 32 4 {32, 67, 74, 49}
d6 Julier Nord 1954 1970 109 76 33 1965 74 5 {74, 225, 276, 280, 248}
d7 Julier Süd 1954 1970 41 30 11 1957 16 6 {16, 44, 160, 271, 177, 155}
d8 Macun 1969 1980 53 36 17 1974 22 4 {22, 45, 52, 56}
d9 Safien-Rheinw. 1954 1965 29 17 12 1954 17 6 {17, 49, 128, 156, 245, 198}
d10 Rothorn-Weissfl. 1959 1971 77 47 30 1962 52 5 {52, 155, 173, 121, 114}
d11 Umbrail 1970 1979 59 38 21 1976 17 3 {17, 49, 35}
d12 Val Bever 1957 1971 137 91 46 1961 56 5 {56, 99, 146, 116, 95}
d13 Oberalp-Frisal 1955 1970 65 42 23 1966 32 5 {32, 67, 87, 154, 157}

τfirst, τlast, year in which first/last founders were released, respectively; Ftot, Fm, Ff , number of individuals,
males and females, respectively, released as founders into the deme (all originating from d0); τ50, year by which
at least 50% of founders had been released (corresponds to tα in Figure 5.2); Fe, effective number of founders

used in the matrix iteration approach (equal to N (α)
tα

in main text); ga, age of deme in generations; N (α),
trajectory of effective deme sizes for deme α, estimated from demographic data (see text for details).
aThe Albris deme is ancestral to all other derived demes. It was established with 25 individuals (59.5%; 11

males, 14 females) from the St. Gall zoo and with 17 (40.5%; 5, 12) from the Interlaken zoo (cf. Figure 5.2,
and Figure 5.12).

Table 5.6: Genotypes, age and sex of sampled Alpine ibex (large table provided as a spreadsheet on
http://pub.ist.ac.at/~saeschbacher/phd_e-sources/).

Table 5.7: Likelihood-based estimates of selection (s) and dominance (φ) coefficient conditioning on
underdominance, without migration.

Dominance scheme φ L a
φ B.F. ŝφ HPD

Full recessivity of the ‘goat’ allele A1 0.000 0.594 0.386 0.000 (−0.781, 0.000)
Underdominance (−1 ≤ s ≤ 0) 0.125 0.784 0.509 0.000 (−0.862, 0.000)

· 0.250 1.009 0.656 0.000 (−0.892, 0.000)
· 0.375 1.232 0.800 −0.018 (−0.903, 0.000)
· 0.500 1.410 0.916 −0.165 (−0.902, 0.000)
· 0.625 1.517 0.985 −0.205 (−0.892, 0.000)
· 0.750 1.539 1.000 −0.209 (−0.869, 0.000)
· 0.875 1.415 0.919 −0.200 (−0.748, 0.000)

Full dominance of the ‘goat’ allele A1 1.000 1.229 0.799 −0.190 (−0.574, 0.000)

Details are as in Table 5.3, with the difference that, here, we conditioned the inference on underdom-
inance, i.e. we required −1 ≤ s ≤ 0. Point and interval estimates correspond to likelihood curves
displayed in Figure 5.10. The marginal cases of φ = 0.00 and φ = 1.00 are included for comparison.
aIn multiples of 10−13.

http://pub.ist.ac.at/~saeschbacher/phd_e-sources/
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ŝ

(0
)

φ
H

P
D

(0
)
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5.8 Supporting information: Additional figures
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Figure 5.10: Likelihood of the selection coefficient s for various degrees of underdominance without migra-
tion. Details are as in Figure 5.6 in the main text, with the difference that, here, we conditioned the inference
on underdominance, i.e. we required −1 ≤ s ≤ 0. (A) The likelihoods are not normalized. Therefore, the
areas under the curves indicate the relative support for the respective values of φ (cf. Table 5.7). (B) As in
(A) but with likelihoods normalized such that the area under the curve is 1. Further details as in Figure 5.6
in the main text. For comparison, the marginal cases of full recessivity and full dominance of A1, φ = 0.00
and φ = 1.00, are included.
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Figure 5.11: The effect of gene flow via migration (at rate m) on the marginal likelihood of the selection
coefficient s intermediate dominance. (A) The likelihoods are not normalized and the areas under the curves
indicate the relative support for the different migration rates m, given h. (B) Likelihoods normalized such
that the area under the curve is 1. In a Bayesian view, these curves correspond to the posterior distribution
of s given a uniform prior on the normal scale. Other details as in Figure 5.8 in the main text. For under-
and overdominance, see Figure 5.25.
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5.9 Supporting information: Additional data and methods

5.9.1 Demography and effective deme size

Figure 5.12 gives the trajectories of effective deme sizes for each deme.
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Figure 5.12: Trajectories of effective deme sizes N (α) over time in generations. Black bars show effective
deme size Ne computed according to Nunney (1991, 1993) and described in the Appendix of the main text.
Dashed lines show the harmonic mean over time of Ne, which was used to illustrate the principle of the
matrix iteration approach in Figures 5.13 and 5.14. Generations are discrete, and are aligned on the real
time scale such that their last generation coincides with the time of sampling ts (cf. main text, Figure 5.2
and Table 5.5).

5.9.2 Genotypic raw data

Table 5.6 (in electronic format only) provides genotypes, age at sampling and sex of sampled

Alpine ibex. Table 5.9 gives the abbreviations of deme names used, along with sample sizes

and observed frequencies of the ‘goat’ allele A1.

5.9.3 Heterozygosity versus age at sampling

To quantify the relationship between heterozygosity, age at sampling, deme and sex, we fitted

Generalized Linear Models (GLM) with various combinations of predictors, assuming a binomial

distribution of the error terms (logistic regression). We performed model selection based on the

Akaike Information Criterion (AIC; Akaike 1974; Burnham and Anderson 2002). We regressed

the response variable heterozygosity against combinations of the explanatory variables age,

deme and sex. In the stepwise fitting process, we allowed for all first-order interaction terms

to be explored. Recall that we are mainly interested in the effect of age, but would like to

account for the potentially confounding effects of the two covariates deme and sex. We kept

as the best models the one with minimum AIC (AICmin) and those with substantial support,
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Table 5.9: Deme name abbreviations, sample sizes and estimated frequencies p̂ of the ‘goat’ allele at
OLADRB2.

Deme Name Abbreviation data mhc 14 Males Females Total p̂

Albris Albris TRUE 17 21 38 0.1447
Adula-Vial AdulaVial TRUE 20 16 36 0.0972
Calanda Calanda TRUE 9 10 19 0.2368
Cape au Moine CapeMoine FALSE 10 11 21 0.3095
Crap da Flem CrapFlem TRUE 3 3 6 0.0833
Fergen-Seetal FergenSeetal FALSE 3 1 4 0.1250
Flüela Fluuela TRUE 23 11 34 0.0735
Gran Paradiso (Rhemes) GPRhemes FALSE 4 0 4 0.1667
Graue Hörner GrHörner FALSE 15 14 29 0.1034
Hochwang Hochwang TRUE 12 13 25 0.2200
Julier Nord Julier N TRUE 2 2 4 0.2500
Julier Süd Julier S TRUE 8 6 14 0.1071
Macun Macun TRUE 12 10 22 0.2727
Oberalp-Frisal Oberalp TRUE 5 5 10 0.3000
Pierreuse-Gummfluh Pierreuse FALSE 9 9 18 0.0833
Safien-Rheinwald Rheinwald TRUE 17 13 30 0.2500
Rothorn-Weissfluh RothWeiss TRUE 14 11 25 0.2400
Umbrail Umbrail TRUE 13 11 24 0.1667
Val Bever ValBever TRUE 14 6 20 0.1000
Vals Vals FALSE 1 1 2 0.2500
Weisshorn Weisshorn FALSE 6 5 11 0.0455
Wittenberg Wittenberg FALSE 14 6 20 0.2000
Wildpark Goldau WPGA FALSE 2 4 6 0.2500

All demes are shown in which both the goat (A1) and ibex (A2) allele were found and which therefore
make up data set data mhc 23 (see main text for details). The field ‘data mhc 14’ indicates if samples
from a deme are present in data mhc 14, the data set used for the matrix iteration approach.

i.e. with ∆i < 2, where ∆i = AICi − AICmin is the difference between the AIC of model i

and AICmin. We treated all explanatory variables as fixed effects and obtained p-values for the

effects from a Wald test (Agresti 1990), as available in the glm function of the stats package in

R (R Development Core Team 2011). We judged significance based on the threshold of 0.05 and

computed 95% confidence intervals of the estimates using the confint function of the stats

package in R (R Development Core Team 2011). For the explanatory variable deme, which is

a multilevel factor, we assessed its overall significance by a Wald test as provided by the aod

package in R (Lesnoff and Lancelot 2009).

The AIC for model selection aims at a trade-off between explanation of the data and pre-

diction. A model with many parameters (effects) will potentially fit the data better, but be

less general. AIC punishes for this by adding twice the number of parameters to the negative

log-likelihood. Hence, for two models with equal likelihoods, the one with fewer parameters is

preferred. Alternatively, logistic regression models may be compared according to their discrim-

inating power, i.e. by how well the model predicts the true response given some explanatory

value. Discriminating power can be expressed as the ratio of the true positive rate (TPR, sen-

sitivity) to the false positive rate (FPR, 1 − specificity), TPR/FPR, as the FPR is changed.

The curve obtained by plotting the empirical TPR versus FPR is called Receiver Operating

Characteristic (ROC) curve. The ROC hence illustrates the relative trade-off between the ben-

efits (true positives) and costs (false positives; Fawcett 2006). The ROC of a model that makes

random decisions (a random classifier in the machine learning chargon) would correspond to
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a straight line with slope 1. The more concave the ROC is, the better is the model at dis-

criminating. The point (0, 1) represents perfect classification, and the area under the ROC

(called AUC) is a measure of overall discriminating performance of the model. However, a very

concave ROC may arise merely due to overfitting, and there is no obvious threshold for when

to accept or reject a model (but see Forman 2002). We use the AUC as an alternative criterion

for model selection besides AIC.

A potential heterozygosity-age relationship for OLADRB2 does not need to be specific to

exon 2 of the MHC class II complex (or the surrounding area), but might reflect a genome-wide

heterozygosity effect. In the latter case, we would expect to see a significant heterozygosity-

age relationship for many other (neutral) loci. If the effect is specific to the MHC class II

genes, however, we expect to see no systematic negative relationship between age and heterozy-

gosity at other markers than those in tight linkage to exon 2 of the MHC class II complex

(OLADRB1, OLADRB2, OMHC1). When regressing heterozygosity at other markers than

OLADRB2 against the covariates, we started off with the same samples as used for OLADRB2

(data sets data mhc 14 and data mhc 23), but excluded those with missing values for the geno-

type of the respective marker. We performed stepwise fitting of a Generalized Linear Model

(GLM) with binomial error distribution (logistic regression) for each locus and, within each

locus, for each allele. Model selection was done via AIC as described above for OLADRB2. For

a given focal allele, we determined heterozygosity after assigning all other alleles to a separate

class.

5.9.4 Genotype versus age at sampling

Pairwise logistic regression

OLADRB2 is a biallelic locus with alleles A1 (the ‘goat’ allele) and A2. Hence, there are three

potential genotypes, A1A1, A1A2 and A2A2, and three pairwise comparisons among them.

Let the binary response variable a1a1.a1a2 contrast the genotype A1A1 with A1A2, where

a1a1.a1a2 = 0 for an A1A1 individual and a1a1.a1a2 = 1 for an A1A2 individual. Analogously,

let a1a1.a2a2 and a1a2.a2a2 be the contrasting factors for the remaining two comparisons. For

each pairwise comparison, we fitted a GLM with binomial error distribution (logistic regression)

with age at sampling, deme and sex as potential predictors. We performed stepwise model

selection based on the Akaike Information Criterion (AIC; Akaike 1974; Burnham and Anderson

2002) and we allowed for first-order interaction terms to be included. We kept as the best models

the one with minimum AIC (AICmin) and those with substantial support, i.e. with ∆i < 2,

where ∆i = AICi−AICmin is the difference between the AIC of model i and AICmin. We treated

all explanatory variables as fixed effects and obtained p-values for the effects from a Wald test,

as available in the glm function of the stats package in R (R Development Core Team 2011).

We judged significance based on the threshold of 0.05 and computed 95% confidence intervals

of the estimates using the confint function of the stats package in R (R Development Core

Team 2011). For the explanatory factors with multiple levels (deme, interactions), we assessed

the overall significance with a Wald test as provided by the aod package in R (Lesnoff and

Lancelot 2009).
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Multinomial logistic regression

Alternatively, we defined ola2.gtp as the three-level response in a multinomial regression. It

takes the values a1a1, a1a2 and a2a2 for the three potential OLADRB2 genotypes A1A1,

A1A2 and A2A2, respectively. We fitted multinomial logistic regressions to explain ola2.gtp

in terms of the predictors age at sampling, deme, sex and their interactions. We treated all

predictors as individual-specific variables and used the mlogit package (Croissant 2008) for R

(R Development Core Team 2011).

5.9.5 Estimating effective deme size from demographic data

Here, we give formal details of how we estimated effective deme sizes from demographic data.

Specifically, we account for overlapping generations, the variance in reproductive success, differ-

ences between the two sexes and population growth. Nunney (1991, 1993) approximated earlier

results on this by Hill (1972, 1979) and formulated them in terms of quantities that may be

estimated more easily from wild populations. Hill and Nunney derived their results assuming

that deme sizes are constant over time and that the age structure is stable. We will present

a heuristic way of adjusting this to changing deme sizes. We start with equation (A3) in the

Appendix of Nunney (1993) which gives the effective size as

Ne =
NA(T/A)

1 +
{
Ibm/r + Ibf /(1− r)− 2/

[
(1− r)bf

]}
/(4A) + (IAm + IAf )/2

, (A12)

where NA is the number of adults and T is the mean generation time of males and females,

defined as the average age of a parent. A is the average adult life span, defined as (Am+Af )/2,

where Am and Af are the average life span of male and female adults, respectively. Am and

Af are given by the average age of death of males and females, respectively, minus (M − 1),

where M is the age at which juveniles of either sex start reproducing. The NA adults have a

sex ratio (proportion of males) of r. The standardized variances (variance/mean2) in life span

and in seasonal fecundity are defined as IAm and Ibm for males, and as IAf and Ibf for females,

respectively. Seasonal mean fecundity of a female (the average number of offspring reared to

independence) is bf (cf. Nunney 1993).

To estimate the standardized variance in female seasonal fecundity, Ibf , we proceeded as

follows. The proportion of adult females that reproduce in a given mating season, ρf , and the

expected number of offspring reared to independence by a female, bf , are related as

bf = ρf (1 + z), (A13)

where z is the proportion of twin births. One can therefore estimate ρf by b̂f/(1+ẑ). If K is the

number of offspring per female per season, bf is the expectation ofK, i.e. bf = E(K) = ρf (1+z).

The variance of K is given by V (K) = E(K2)−E(K)2 = ρf (1− 3z)− ρ2
f (1 + z)2. Hence, the

standardized variance in seasonal female fecundity is

Ibf =
V (K)

E(K)2
=
V (K)

bf
=
ρf (1− 3z)− ρ2

f (1 + z)2

(ρf (1 + z))
2 =

1 + 3z − ρf (1 + z)2

ρf (1 + z)2
. (A14)

The standardized variance in male seasonal fecundity depends on the mating system. For

dominance hierarchy, the system that applies to Alpine ibex, it is given by equation (19) in
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Nunney (1993) as

Ibm =
r

ρf (1− r)
+

1− ρm
ρm

, (A15)

where ρm is the proportion of dominant males (i.e. the proportion of males getting access to

matings per season). In the Online SI we show how we estimated the ingredients to formulae

(A12) to (A15).

We applied formula (A12) to obtain, for each deme, a series of local in time estimates of

the effective size. We then substituted these series for the deme size trajectories N (α) and N (0)

as introduced in (5.1). By ‘local in time’ we mean that we obtained one estimate of Ne per

time segment. We chose the length of such a segment to be equal to the average generation

time T = 9 years (generation time for Alpine ibex). We started dividing time into segments

(i.e. generations) at the time of sampling, τs (in units of one year), and then went backwards

in time year by year, closing a segment (generation) every T = 9 years. The time in years of

existence of a deme is not necessarily a multiple of the generation time. In such cases, if less

than five years were remaining after the last complete generation, we assigned them to the last

complete generation. If five or more years remained, we lumped them into a new generation.

Therefore, we obtained the number of generations over which a derived deme dα existed as

gα := b(τs − τα)/T e, where τα is the year in which the first founder individual was released to

deme dα, and bxe means rounded to the next integer. Analogously, we set g0 := b(τs − τ0)/T e
for the ancestral deme d0. We further obtained the time of sampling in units of generations as

ts =

⌊
τs − τ0
T

⌉
= g0, (A16)

and the time of foundation in units of generations as

tα = ts − gα and t0 = ts − g0 (A17)

for derived demes and the ancestral deme, respectively. Combining (A16) and (A17) then

asserts that t0 = ts − g0 = 0. From the recorded census size estimates N
(α)
c, τ , we obtained

the corresponding numbers of adults N
(α)
A, τ = âN

(α)
c,τ in derived demes, and analogously for the

ancestral deme, replacing α by 0. We then set the per generation number of adults, N
(α)
A, t, equal

to the harmonic mean of the corresponding annual numbers of adults:

N
(α)
A, t = T

(∑
τ∈T

1

N
(α)
A, τ

)−1

, (A18)

where T is the set of all years τ that are assigned to generation t, i.e. T = {τ : t ≤ bτ/T c <
t+ 1}. Substituting (A18) for NA in (A12), we obtained the local in time estimate N

(α)
e, t for a

derived deme dα in generation t. For the ancestral deme, replace α by 0 in (A18).

5.9.6 Parameter values used for the estimation of effective deme sizes

In the following, we describe how we estimated the parameters that were needed to compute

effective deme sizes from demographic data. The formal aspects of this are given in the previous

paragraph. A list of symbols used is provided in Table 5.10.
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Table 5.10: List of symbols used in the estimation of effective deme sizes.

Symbol Description

Nc Total census size of a constant population
NA Number of adults (≥ 3 years) in a constant population
a NA/Nc
T Mean generation time (average age of a parent)
Am, Af , A Average life span of male and female adults
A Average adult live span
M Age at which juveniles start reproducing
r Adult sex ratio (proportion of males)
IAm , IAf Standardized variance in male and female life span
Ibm , Ibf Standardized variance in male and female seasonal fecundity
bf Average number of offspring reared to independence by a female
ρf Proportion of adult females that reproduce in a given season
ρm Proportion of dominant males (access to matings) in a season
z Proportion of twin births
τ Time in years (cf. t in Table 5.1)
τs, τα Year of sampling, year of first founder event in deme dα
gα Number of generations for which an ancestral deme dα existed
g0 Number of generations for which the ancestral deme d0 existed

N
(α)
c,τ Census size estimate for deme dα in year τ

N
(α)
A,τ Estimated number of adults for deme dα in year τ

N
(α)
A,t Estimated number of adults for deme dα in generation t

N
(α)
e,t Local in time estimate of effective size of deme dα in generation t

We assumed that Alpine ibex start reproducing at an age of M = 3 years (Nievergelt 1966;

Stuwe and Grodinsky 1987; Töıgo et al. 2002). Nievergelt (1966) argues that it may be higher

(M ≥ 4). The generation time T has been estimated previously to about 9 years (Stuwe

and Grodinsky 1987; Scribner and Stuwe 1994, and see Jacobson et al. (2004) for potential

environmental effects on T ). In order to estimate NA, r and bf , we used time series of detailed

census data that included the counts for different age classes of either sex. Such counts were

available for a limited period of time for the demes considered here, but also for further demes

in the Swiss Alps. From these data, we estimated the ratio a of NA to the total census size

Nc as the number of adults (≥ 3 years of age) of either sex divided by the total number of

individuals. Similarly, we estimated r as the number of adult males divided by the total number

of adults. To obtain an estimate of bf , we divided the number of kids (< 1 year of age) of either

sex by the number of adult females (cf. Nievergelt 1966). Recall that we had defined bf with

respect to offspring reared to independence. Ibex kids are independent at an age of about six

to twelve months. Strictly speaking, we might thus have overestimated bf , since some of the

juveniles younger than one year might still have died until independence. However, different

studies concluded that, once ibex kids survived the first six weeks, their mortality is very low

until the age of one year (Nievergelt 1966). Our estimate should therefore be reliable. For each

of a, r and bf , the estimates were more or less constant over time and remarkably similar among

the 28 (24 for bf ) demes for which these estimates were available, although the demes varied

substantially in their demographic history (Table 5.5). We therefore considered it justified to

use the same estimate per parameter for each deme. Specifically, we obtained r̂ ≈ 0.5 for

the proportion of males, â ≈ 0.7 for the proportion of adults, and b̂f ≈ 0.4 kids per female

per year. Our estimate of r agrees well with previous studies on Alpine ibex: Jacobson et al.
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(2004) found that r varied between 0.43 and 0.53 in the Gran Paradiso deme over a 45-year

time series, with a mean below 0.5. The authors also reported a slight correlation between r

and the total population density in response to environmental conditions. Scribner and Stuwe

(1994) assumed r ≈ 0.5, and Nievergelt (1966) also reported an estimate of about 0.5. For

bf , the number of offspring reared to independence per female, Stuwe and Grodinsky (1987)

observed values between 0.78 and 0.99 in a captive ibex population. The authors argued that

bf should be lower in wild populations. Nievergelt (1966) presented estimates of bf between

0.44 and 0.74 for six wild demes with differing dynamics. He discussed potential reasons for

varying fecundity. One observation was that demes in the colonizing phase showed higher values

compared to those close to the carrying capacity. Overall, our estimate seems low compared to

those from the previous studies. A potential explanation is that the 28 demes considered here

are most likely close to their carrying capacity.

To quantify the standardized variance in male and female adult life span (IAm and IAf )

we needed an estimate of the mean and the variance in adult life span. Töıgo et al. (2007)

presented results on sex and age-specific survival in a wild ibex deme in the Belledonne-Sept-

Laux Reserve in France. In their 25-year capture-mark-recapture study, the authors found that

both females and males show a highly conservative life-history tactic. Prime-aged (2–8 years)

and old adults (8–13) enjoyed very high survival, and mortality increased only afterwards, at

senescence (> 13 years). This pattern is rather exceptional among ungulates, especially for

males. It may be explained by a conservative male reproductive tactic: mainly dominant males

get access to matings, and dominance is correlated with size, body weight and horn size. So,

by surviving to an advanced age, males may reach high reproductive success (Willisch 2009;

Willisch and Neuhaus 2009, 2010; Willisch et al. 2011). The data by Töıgo et al. (2007) suggest

a slight difference between males and females, though. While for male survival was very high up

to about ten years and then dropped clearly, for females, survival decreased much less strongly

and more linearly after about eight years. The pattern for male ibex reported by Töıgo et al.

(2007) is in agreement with previous results by Nievergelt (1966). In order to capture the high

survival of prime-aged and old adults, but also the difference in survival between senescent

males and females, we modelled adult life span as a random variable that follows a negative

binomial distribution. For females, we got a good fit to the data by Töıgo et al. (2007) with

a mean adult life span, Af , of six years and a dispersion parameter ν (the shape parameter of

the gamma mixing distribution) of 1. For males, we obtained good agreement with Töıgo et al.

(2007) and Nievergelt (1966) with Am = 6 years and ν = 4. The advantage of parameterizing

via the negative binomial distribution is that the variance can be expressed as a function of the

two parameters: var(Aγ) = Aγ + A2
γ/ν, where γ is m for males and f for females. From this,

we obtained estimates of the standardized variances in adult lifespan, IAm and IAf , of 0.417

and 1.167, respectively.

Töıgo et al. (2002) reported data from a wild population that imply an estimate of the

proportion of twin births (z) of ∼ 0.08. In contrast, results by Stuwe and Grodinsky (1987)

imply a twin birth rate of ∼ 0.17, but for a captive population. We used ẑ ≈ 0.08, which

(combining with b̂f ≈ 0.4 from above, and using equation (A13) in the Appendix resulted in an

estimate of ρ̂f ≈ 0.370. Scribner and Stuwe (1994) have previously estimated that about 50%

of all females reproduce. Töıgo et al. (2002) found that reproductive success differed between
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colonizing and well-established demes. For colonizing demes, they reported proportions of 0.4 to

0.8; for well-established ones, they found values between 0.3 and 0.5 (cf. Stuwe and Grodinsky

1987, who obtained higher estimates for a zoo population). Our estimate ρ̂f is therefore in

the range of previously reported values. Plugging into equation (A14) in the Appendix our

estimates ẑ ≈ 0.08 and ρ̂f ≈ 0.37, we obtained for the standardized variance in female seasonal

fecundity Îbf ≈ 1.870. Our previous investigations suggested an estimate for the proportion of

dominant males of ρ̂m ≈ 0.2 (details not shown). Combining with the estimates of r̂ ≈ 0.5 and

ρ̂f ≈ 0.37 from above, and using equation (A15) in the Appendix, we obtained an estimate of

the standardized variance in male seasonal fecundity of Îbm ≈ 6.7. This is in good agreement

with a recent study by Willisch et al. (2011) who presented point estimates ranging from 4.8

to 8.0 for different models using paternities inferred from genetic data.

5.9.7 Illustration of the matrix iteration approach

Figures 5.13 and 5.14 illustrate the approach we used to make joint inference about the pa-

rameters, given the vector of observed allele frequencies. In essence, transition matrices that

describe the evolutionary processes are iterated, and the likelihood of the parameters is then

computed from elements of these matrices. For details, see the main text.

In Figures 5.13 and 5.14 the likelihood-based inference is motivated in the following way.

The vertical bars – one for each deme – give the density of the focal allele frequency at the time

of sampling, psampling. The darker the shading, the higher the density for the respective value

of psampling. These densities were obtained by iterating the deme-specific transition matrices, as

explained in the main text (to save computing time, a slightly simplified demographic scenario

with constant deme sizes was used here; cf. Figure 5.12). The black circles denote the observed

focal allele frequency in each deme. The likelihood-based inference may then be understood

in the following way: The darker the vertical bar at the position of a circle, the more support

there is for the parameter combination used to generate the density of psampling. Combining

over all demes, one obtains the likelihood of the parameter combination given the observed

data – which is equivalent to the probability of the data given the parameters. This approach

makes use of the full information contained in the observed focal allele frequencies. The demes

are arranged according to their effective size, such that the effect of genetic drift decreases from

left to right. The number of individuals sampled per deme (numbers in parentheses after deme

names) also has an influence on the shape of the density of psampling: The higher the sampling

size, the smoother the transition between different shades of gray in the vertical bars. The

approach thus has the advantage of accounting both for genetic drift and sampling. Different

evolutionary scenarios for under- and overdominance are compared.
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Figure 5.13: Illustration of likelihood-based inference with the matrix iteration approach for under- and
overdominance. Details and symbols are explained in the corresponding text of the SI. Each panel shows a
different evolutionary scenario, with parameter combinations given below each panel. Specifically, (A) versus
(B) shows the contrast between drift-only and selection. (B) versus (D) illustrates the effect of limiting the
range of the initial allele frequency pinit (see main text). (C) versus (D) shows the effect of changing the
sign of the selection coefficient s: In (C), s > 0 and there is overdominance (balancing selection) with a
stable polymorphic equilibrium at φ = 0.75. In (D), s < 0 and there is underdominance with an unstable
internal equilibrium at φ = 0.75; the dynamics depend on pinit. Finally, (D) versus (E) compares two values
of φ and hence gives an intuition for how inference on the degree of dominance is possible. For intermediate
dominance, see Figure 5.14.
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Figure 5.14: Illustration of likelihood-based inference with the matrix iteration approach for intermediate
dominance. Details are as in Figure 5.14. The difference is that there is intermediate dominance here,
with directional selection against the focal allele (see equation (5.7) in the main text for the definition of
fitnesses). (A) The focal allele is fully recessive. (B) The focal allele is partially dominant. In both cases,
the allele frequency will approach the equilibrium value of 0. However, before the equilibrium is reached,
there is information in the data about the degree of dominance. The approach is therefore appropriate for
cases in which the sampled populations have not necessarily reached evolutionary stasis.
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5.10 Supporting information: Additional results

5.10.1 Statistical correlation between age at sampling and genetic composition

Heterozygosity at OLADRB2

The distribution of age at sampling in the different demes is shown in Figure 5.15 and the

probability of being heterozygous given a certain age at sampling is given in Figure 5.16. In the

following, we present detailed results on the relationship between the response (heterozygosity)

and the predictors (age at sampling, deme and sex) inferred via logistic regression.

Table 5.11 summarises the GLM fitting process and its result for data mhc 23. The model

with most support (minimum AICi) included age as the only predictor. The model with

age and sex as predictors also had substantial support (∆i = AICi − AICmin = 1.56). In

the model with age as the only predictor, age had a significant negative effect, -0.0584 (95%

confidence interval: [−0.1118, −0.0078]), on the logit of the probability of an individual being

heterozygous at OLADRB2 (p ∼ 0.0273). For the model with age and sex as predictors, the

effect of age was −0.0587 [−0.1118, −0.0083] on the logit scale (p ∼ 0.0257), and males showed

a non-significantly lower chance of being heterozygous compared to females (−0.1433 [−0.5698,

0.2841] on the logit scale, p ∼ 0.5099).

Table 5.11: Stepwise model selection via AIC for the explanation of heterozygosity at OLADRB2, using
data mhc 23.

Step Model i Add./rem. Df Dev AICi ∆i wi ei

1 het ∼ age + deme + sex
. − deme 418 499.46 505.46 1.56 0.23 0.46
. − sex 397 461.81 509.81 5.91 0.03 0.05
. none 396 461.68 511.68 7.78 0.01 0.02
. + age:sex 395 461.65 513.65 9.75 0.00 0.01
. + age:deme 374 420.43 514.43 10.53 0.00 0.01
. − age 397 466.76 514.76 10.86 0.00 0.00
. + deme:sex 375 434.53 526.53 22.63 0.00 0.00

2 het ∼ age + sex
. − sex 419 499.90 503.90 0.00 0.49 1.00
. + age:sex 417 499.22 507.22 3.32 0.09 0.19
. − age 419 504.71 508.71 4.81 0.04 0.09

3 het ∼ age
. − age 420 505.05 507.05 3.15 0.1 0.21

Add./rem., the term that was added (+) or removed (−) relative to the current model; Df, residual
degrees of freedom; Dev, residual deviance; AICi = −2 log(Li) + 2k, Akaike Information Criterion
for model i, where Li is the likelihood and ki the number of parameters estimated under model i;
∆i = AICi − min(AICi), italic for the best model and models with substantial support (∆i < 2);
wi = exp (−∆i/2) /

∑R
r=1 exp (−∆r/2), Akaike weight; ei = wi/wmax, evidence ratio relative to best

model; het, heterozygosity at the OLADRB2 locus (binary response); age, age at sampling (continuous);
deme, factor with 23 levels; sex, factor with 2 levels. Only those models are shown which were visited
during the stepwise fitting procedure, and duplicate lines were removed. Interaction terms were added
only if the corresponding main effects were also present.

Table 5.12 lists the area under the ROC (AUC) for some models of interest (first two

columns). As expected, the complete model (with all interaction terms included) resulted in
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Figure 5.15: Distribution of age at sampling depending on the genotype (zygosity) at the OLADRB2
microsatellite. One plot is shown for each deme in which both alleles (277 and 293) occur and for which at
least eight samples (n = 8) were available. The dashed (black) line applies when all individuals are pooled,
the solid (blue) line applies to homozygous individuals, and the dot-dashed (red) line to heterozygotes. For
five demes all three lines could be plotted. For four of them (Albris, Cape au Moine, Macun, Rothorn-
Weissfluh), there seems to be a relative excess of heterozygotes at lower ages and, correspondingly, a
heterozygote deficiency at higher ages. For deme Rheinwald this pattern is also true, but much weaker, and
for Wittenberg it does not apply. Numbers in parentheses give the numbers of data points from which the
densities were estimated. Abbreviated deme names are used (see Table 5.9).

the largest AUC, but was prone to overfitting. Comparing to Table 5.11 suggests that a good

compromise between the two approaches for model choice via AIC and AUC is provided by the

model that includes all predictors, but no interactions (het ∼ age + deme + sex). Figure 5.17

compares the ROC of this model to the curve of the best model chosen with AIC (het ∼ age)

and the curve for the model that maximises the AUC (het ∼ age ∗ deme ∗ sex). For the ‘best

compromise’ model (het ∼ age + deme + sex), age had a significant negative effect (−0.0625

[−0.1199, −0.0080], p ∼ 0.0281), deme had a marginally significant joint effect (p ∼ 0.063) and

sex had no significant effect. The effect of deme was mainly caused by significantly positive
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Figure 5.16: Absolute and relative frequencies of OLADRB2 genotypes (zygosity) as a function of age
at sampling. Plots are shown for demes in which both OLADRB2 alleles were present and in which the
sample size of either homozygotes and heterozygotes was at least eight. The first and the third row show
the absolute frequencies of homozygotes and heterozygotes as a function of age class. The second and
fourth row illustrate the probability that an individual is heterozygous given it was in a certain age class
when culled, Pr[het|age], as a function of age class. The numbers on top of and below the bars give the
log odds of this probability. For all demes, there is a tendency for Pr[het|age] to dicrease with increasing
age at sampling. The observation is affected by the size of the age class, (4 years as shown here) but the
general trend applies for other sizes, too (not shown). In general, the ratio of heterozygotes to homozygotes
decreases as a function of age at sampling. Abbreviated deme names are used (see Table 5.9).

effects of the levels Calanda, Macun, Safien-Rheinwald, Rothorn-Weissfluh, Wittenberg (all

p < 0.05), and Cape au Moine (p < 0.001). These deme-specific effects are likely due to

differences in ancestral genetic composition and demography, i.e. genetic drift (Biebach and

Keller 2009, 2010). We conclude that both strategies for model selection gave preference to a

model in which age at sampling is included as a predictor. Independently of the exact model

chosen, age at sampling had a significant negative effect on the probability of an individual

being heterozygous at OLADRB2. These results apply to the set data mhc 23.

For the set data mhc 14, model selection based on AIC suggested as the best model the one

with age as the only predictor, as for data mhc 23 (Table 5.13). For this model, age at sampling

had a negative effect on the probability of being heterozygous (−0.0595 [−0.1242, 0.0007] on
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the logit scale), the effect being marginally significant (p ∼ 0.0608). The models (het ∼ age

+ sex) and (het ∼ .) also had substantial support (∆i < 2, Table 5.13). Importantly, the

latter is the one with no predictors, which means that there is not much scope for explaining

heterozygosity in data set data mhc 14. For (het ∼ age + sex), age again had a marginally

significant negative effect (−0.0594 [−0.1233, 0.0002], p ∼ 0.0584), while males had a non-

significantly lower probability of being heterozygous than females (−0.2554 [−0.7649, 0.2538]

on the logit scale, p ∼ 0.3247). The performance of the competing models in terms of the AUC

is shown in Table 5.12 (right column).

Overall, we found that the probability of an individual being heterozygous at OLADRB2

decreased with increasing age at sampling. This was true independently of the exact model

structure, as long as age at sampling was included as a predictor. The negative effect was

significant for the larger data set (data mhc 23), but only marginally significant for the smaller

one (data mhc 14). Recall that data mhc 14 contains those samples that we used for the

matrix iteration approach (long-term analysis). In contrast, data mhc 23 contains samples

from additional demes, and statistical power might be higher there.

Table 5.12: Discriminating power of different GLMs explaining heterozygosity at OLADRB2.

Model AUC23 AUC14

het ∼ age 0.560 0.556
het ∼ deme 0.683 0.661
het ∼ sex 0.516 0.530
het ∼ age + deme 0.679 0.678
het ∼ age + sex 0.568 0.579
het ∼ deme + sex 0.683 0.663
het ∼ age + deme + sex 0.703 0.684
het ∼ age + deme + age:deme 0.755 0.750
het ∼ age * deme * sex 0.834 0.812

AUC, the area under the ROC, the subscripts 23 and 14 referring to the data sets data mhc 23
and data mhc 14, respectively (see text for details). The larger the AUC, the higher the
discriminating power of a model, and for random classification AUC = 0.5.

Heterozygosity at other MHC-linked markers

Recall that we found a negative correlation between age at sampling and heterozygosity at the

OLADRB2 marker linked to the MHC class II gene DRB: increasing age showed a negative

effect on the probability of an individual being heterozygous. This effect was significant when

we used samples from all demes with both the ibex and the ‘goat’ allele present (data mhc 23),

and marginally significant when we considered only samples from those demes used in the

matrix iteration approach (data mhc 14).

For set data mhc 23 we observed a significant negative relationship (−0.0557 [−0.1090,

−0.0051], p ∼ 0.0351) also for allele 184 of the OLADRB1 locus, a marker physically linked to

both OLADRB2 and MHC class II genes. The result is not surprising given that allele 184 is

in strong linkage disequilibrium with allele 277 of OLADRB2. None of the other alleles (174,

178, 170) of OLADRB1 showed a significant relationship between heterozygosity and age. For
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Figure 5.17: Discriminating power of different GLMs explaining heterozygosity at OLADRB2 as a function
of age at sampling. (A) The simplest model with age as the only predictor. (B) An intermediate model with
age, deme and sex as predictors (best compromise between model selection via AIC versus AUC). (C) The
model with highest discriminating power, including age, deme, sex and all interaction terms as predictors.
The graphs apply to data set data mhc 23 (see text for details).

Table 5.13: Stepwise model selection via AIC for the explanation of heterozygosity at OLADRB2, using
data mhc 14.

Step Model i Add./rem. Df Dev AICi ∆i wi ei

1 het ∼ age + deme + sex
. − deme 304 353.62 359.62 1.03 0.21 0.6
. + age:deme 278 303.13 361.13 2.54 0.1 0.28
. − sex 292 334.00 364.00 5.41 0.02 0.07
. none 291 333.51 365.51 6.92 0.01 0.03
. − age 292 337.10 367.10 8.51 0.00 0.01
. + age:sex 278 333.10 367.10 8.51 0.00 0.01
. + deme:sex 278 324.43 382.43 23.84 0.00 0.00

2 het ∼ age + sex
. − sex 305 354.59 358.59 0.00 0.35 1.00
. − age 305 357.43 361.43 2.84 0.08 0.24
. + age:sex 303 353.54 361.54 2.95 0.08 0.23

3 het ∼ age
. − age 306 358.34 360.34 1.75 0.14 0.42

Add./rem., the term that was added (+) or removed (−) relative to the current model; Df, residual
degrees of freedom; Dev, residual deviance; AICi = −2 log(Li) + 2k, Akaike Information Criterion
for model i, where Li is the likelihood and ki the number of parameters estimated under model i;
∆i = AICi − min(AICi), italic for the best model and models with substantial support (∆i < 2);
wi = exp (−∆i/2) /

∑R
r=1 exp (−∆r/2), Akaike weight; ei = wi/wmax, evidence ratio relative to best

model; het, heterozygosity at the OLADRB2 locus (binary response); age, age at sampling (continuous);
deme, factor with 14 levels; sex, factor with 2 levels. Further details as in Table 5.11.

OMHC1 (biallelic) we did not observe a significant relationship between heterozygosity and age

at sampling.

For set data mhc 14, no other MHC-linked allele showed an effect on heterozygosity with a

p-value equal to or smaller than the one of allele 277 of OLADRB2. Allele 184 of OLADBR1

showed a nonsignificant negative effect of age (−0.0294 [−0.3462, 0.2486] on the logit scale;

p ∼ 0.8407).
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Putatively neutral markers

From the total of 44 other available markers we excluded seven, because, in previous analyses

(Biebach and Keller 2009), they have either shown signatures of spatially uniform (BM4208) or

spatially heterogeneous selection (OARHH62), are linked to a quantitative trait locus (ETH10),

to MHC class II genes (BM1258, BM1818, on chromosome 23), to INFG (OARKP6), or are

not in Hardy-Weinberg equilibrium (HWE) (SR-CRSP07).

For the remaining 37 markers, a total of 130 stepwise searches for model selection were

performed (one search for each allele). Among these, 22 (16.9%) resulted in a ‘best’ model that

included age as main effect for the data set data mhc 23. However, this effect was significant at

a threshold of 0.05 for only three (2.3%) alleles. The first was allele 134 of marker MILSTS076

(seven alleles, chromosome 9 (Vaiman et al. 1996, citing Kemp et al. (1995)), for which age

had a positive effect (0.1009) on heterozygosity (p ∼ 0.0049). The second was allele 151 of

marker OARFCB48 (2 alleles, chromosome 17 (Vaiman et al. 1996, citing Bishop et al. (1994)),

for which age had a negative effect (−0.1333, p ∼ 0.0126). The third was allele 123 of marker

MCM73 (four alleles in total, chromosome 4 (Vaiman et al. 1996, citing Crawford et al. (1995)),

for which age had a negative effect (−0.0466) on heterozygosity (p ∼ 0.0447).

For data mhc 14, 24 (21.2%) out of 113 best models (one for each allele) contained age at

sampling as a main effect. This effect was significant at a level equal to or lower than that of

allele 277 of OLADRB2 for six alleles (5.3%). For the following four of them the effect of age

was positive: allele 134 of MILSTS076 (see above), allele 115 of MCM152 (3 alleles, chromosome

13, (Mainguy et al. 2005, citing Crawford et al. (1995)), and allleles 100 and 116 of SR-CRSP25

(3 alleles, chromosome unknown, (Maddox et al. 2001; Maudet et al. 2002)). For the remaining

two alleles – allele 272 of INRABERN185 (4 alleles, chromosome 18, (Luikart et al. 1999)) and

allele 151 of OARFCB48 (see above) – the effect was negative (−0.0540 and −0.2012 on the

logit scale, with p ∼ 0.0466 and p ∼ 0.0222 respectively).

Overall, this suggests that there was no genome-wide negative effect of age at sampling

on heterozygosity. However, the significant relationship found for a small number of alleles

at neutral markers wait for an explanation. They might just correspond to the proportion

expected under the null hypothesis. Neither of those alleles are in linkage disequilibrium with

allele 277 of OLADRB2 (data not shown).

Multilocus-heterozygosity at putatively neutral markers

For data mhc 23, the best model was the one with deme as the only predictor, where deme had

a highly significant overall effect (p < 0.0001). Two further models with substantial support

(∆i < 2) were the one with deme and sex as predictors and the one with age and deme as

predictors. However, in the former, the effect of sex (males versus females) was not significant

(−0.0085 [−0.0518, 0.0348] on the normal scale, p > 0.7), and in the latter the effect of age

was not significant (0.0009 [−0.0041, 0.0059], p > 0.7). For data mhc 14, the model without

any predictors had most support. The two models with either sex or age as the only predictor

also had substantial support (∆i < 2), but these predictors had non-significant effects (−0.0196

[−0.0695, 0.0304], p > 0.40 for males versus females, and 0.0003 [−0.0054, 0.0059] p > 0.90 for

age). Deme had no effect anymore compared to data mhc 23 because two demes with strong
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effects (Pierreuse-Gummfluh, Wittenberg) are not included in data mhc 14. Taken together,

these results suggest that there is no genome-wide relationship between heterozygosity and age

at sampling, which confirms the previous result obtained by fitting models for individual alleles.

Pairwise logistic regression of OLADRB2 genotypes

We start by presenting the results for data set data mhc 23 and will come to data mhc 14

later. Four models explaining the contrast between heterozygotes (A1A2) and goat homozy-

gotes (A1A1) have substantial support. Two of them include age as a predictor (Table 5.14).

In those, the probability of A1A2 versus A1A1 tends to decrease with increasing age at sam-

pling. However, none of the effects is significant (Table 5.15). For the contrast between goat

homozygotes (A1A1) and ibex homozygotes (A2A2), there are also four models with substantial

support (Table 5.16). Again, none of the respective predictors has a significant effect, but the

probability of A2A2 relative to A1A1 tends to decrease with increasing age (Table 5.17). There

are two models with substantial support in explaining the difference between heterozygotes

and ibex homozygotes (A2A2), both including age as a predictor (Table 5.18): Both suggest

that, the older individuals were at sampling, the higher the probability that they had the A2A2

genotype compared to the A1A2 genotype. The effect of age is significant for both models

(0.057 on the logit scale, p < 0.035; Table 5.19). These results agree with our previous find-

ing that the probability of being heterozygous decreases with age at sampling. Additionally,

they suggest that this effect must be due to lower survival of heterozygotes compared to ibex

homozygotes. On the other hand, the contrasts between heterozygotes and goat homozygotes,

as well as between the two homozygote genotypes, can only be weakly explained by age at

sampling. They tend to suggest heterozygote disadvantage, but directional selection against

the ‘goat’ allele (i.e. intermediate dominance) cannot be excluded with certainty. We assume

that the lack of significance for the two comparisons under question (A1A2 versus A1A1, and

A2A2 versus A1A1) is due to the small number of A1A1 individuals in the sample.

We now turn to data set data mhc 14. For the contrasts in probability between genotypes

A1A2 and A1A1, and between A2A2 and A1A1, the results were completely analogous to those

obtained above with data set data mhc 23 (Tables 5.20 and 5.21, and Tables 5.22 and 5.23,

respectively). The outcome for the probability of being homozygous for the ibex allele A2A2

compared to heterozygous (A1A2) was more intricate. Three models had substantial support,

all of them including age as a predictor. Among those, two additionally included deme and

the interaction of deme with age as predictors (Table 5.24). The best model was the one with

age, deme and the interaction between age and deme as predictors (a1a2.a2a2 ∼ age + deme

+ age:deme). In there, age at sampling had no significant effect (0.0112 on the logit scale,

p ∼ 0.9404), deme had a marginally significant overall effect (p ∼ 0.0620), but the interaction

between age and deme had no significant overall effect (p ∼ 0.4000; Table 5.26). The overall

effect of deme was due to significant negative single-level effects of demes Macun (−2.5139,

p ∼ 0.0435) and Rothorn-Weissfluh (−2.8550, p ∼ 0.0265), and a marginally significant negative

single-level effect of deme Oberalp-Frisal (−3.6980, p ∼ 0.0672; Table 5.26). The second best

model additionally included sex as a predictor with non-significant effect (Table 5.27). The

third best model was (a1a2.a2a2 ∼ age + sex), where age had a marginally significant positive

effect on a1a2.a2a2 (0.0561; p ∼ 0.751) and sex had no effect (p ∼ 0.2639; Table 5.27). To better
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Table 5.14: Stepwise model selection for the contrast between the OLADRB2 genotypes A1A1 and A1A2,
using data mhc 23.

Step Model i Add./rem. Df Dev AICi ∆i wi ei

1 a1a1.a1a2 ∼ age + deme + sex
. − deme 129 72.425 78.425 1.02 0.18 0.60
. − sex 108 57.675 105.675 28.27 0.00 0.00
. none 107 57.404 107.404 30.00 0.00 0.00
. − age 108 59.548 107.548 30.15 0.00 0.00
. + age:sex 106 56.709 108.709 31.31 0.00 0.00
. + deme:sex 91 38.224 120.224 42.82 0.00 0.00
. + age:deme 90 42.151 126.151 48.75 0.00 0.00

2 a1a1.a1a2 ∼ age + sex
. − sex 130 73.401 77.401 0.00 0.30 1.00
. − age 130 74.612 78.612 1.21 0.16 0.55
. + age:sex 128 71.585 79.585 2.18 0.10 0.34

3 a1a1.a1a2 ∼ age
. − age 131 75.725 77.725 0.32 0.26 0.85

Add./rem., the term that was added (+) or removed (−) relative to the current model; Df, residual
degrees of freedom; Dev, residual deviance; AICi = −2 log(Li) + 2k, Akaike Information Criterion
for model i, where Li is the likelihood and ki the number of parameters estimated under model i;
∆i = AICi − min(AICi), italic for the best model and models with substantial support (∆i < 2);
wi = exp (−∆i/2) /

∑R
r=1 exp (−∆r/2), Akaike weight; ei = wi/wmax, evidence ratio relative to best

model; a1a1.a1a2, binary response contrasting the OLADRB2 genotypes A1A1 versus A1A2 (0 for
A1A1 and 1 for A1A2); age, age at sampling (continuous); deme, factor with 23 levels; sex, factor with
2 levels. Only those models are shown which were visited during the stepwise fitting procedure, and
duplicate lines were removed. Interaction terms were added only if the corresponding main effects were
also present.

account for the effect of deme, but at the same time avoid overfitting, we simplified the model

(a1a2.a2a2 ∼ age + deme + age:deme) by pooling samples from demes other than Macun,

Oberalp-Frisal and Rothorn-Weissfluh. We explored four models of that kind, among which

one had clearly most support. It explains the probability of A2A2 relative to A1A2 by age at

sampling, by whether or not the deme is in the set {Macun, Oberalp-Frisal, Rothorn-Weissfluh},
and by the interaction of these two predictors (Table 5.25). This model is instructive: it

suggests that the probability of being homozygous for the ibex allele compared to heterozygous

is significantly lower in demes Macun, Oberalp-Frisal and Rothhorn-Weissfluh relative to the

other demes (−2.0652 on the logit scale, p < 0.001). However, within these three demes,

increasing age at sampling is significantly positively correlated with the probability of being

homozygous for the ibex allele compared to being heterozygous (0.2142, p < 0.02; Table 5.28).

Overall, the results for data mhc 14 support those we obtained with data mhc 23: the older an

individual at sampling, the lower the probability that it was heterozygous (A1A2) compared

to homozygous for the ibex allele (A2A2). In addition, the results for data mhc 14 reveal an

effect of deme – namely demes Macun, Oberalp-Frisal and Rothorn-Weissfluh – which most

likely reflects the founder effect.
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Table 5.15: Estimates of effects on the contrast between OLADRB2 genotypes A1A1 and A1A2 for
data mhc 23.

Model Coefficient Estimate SE 2.5% 97.5% p

a1a1.a1a2 ∼ age
(Intercept) 3.1180 0.6080 2.0253 4.4403 <0.0001 ∗∗∗
age −0.1113 0.0712 −0.2515 0.0335 0.1180

a1a1.a1a2 ∼ 1
(Intercept) 2.3979 0.3149 1.8281 3.0746 <0.0001 ∗∗∗

a1a1.a1a2 ∼ age + sex
(Intercept) 2.7930 0.6616 1.6133 4.2437 <0.0001 ∗∗∗
age −0.1057 0.0700 −0.2444 0.0361 0.1311
sexmale 0.6407 0.6595 −0.6254 2.0326 0.3313

a1a1.a1a2 ∼ sex
(Intercept) 2.0971 0.4005 1.3815 2.9757 <0.0001 ∗∗∗
sexmale 0.6754 0.6527 −0.5738 2.0574 0.3007

Model, the models with substantial support in explaining a1a1.a1a2 as a function of the predictors (cf.
Table 5.14 for a summary on model choice); Coefficient, name of predictor; Estimate, estimated effect
of predictor (on the logit scale); SE, standard error; 2.5% and 97.5%, the limits of the 95% confidence
interval; p, p-value (Wald test), significance code: ∗∗∗ for 0 < p ≤ 0.001, ∗∗ for 0.001 < p ≤ 0.01, ∗ for
0.01 < p ≤ 0.05, · for 0.05 < p ≤ 0.1 and ‘ ’ for 0.1 < p ≤ 1.
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Figure 5.18: Change in deviation from HWE measured by FIS as a function of age. Age class 1 comprises
individuals of age up to and including 5.25 years, and age class 2 those of age older than 5.25 years.
(A) Gray symbols belong to 37 neutral microsatellites, and the symbols represents the MHC-linked marker
OLADRB2. (B) The change in FIS as a function of age (∆FIS) for OLADRB2 (red triangle) is compared
to the distribution of ∆FIS obtained for the 37 neutral markers. Vertical lines represent the median (solid)
and the 95% credibility interval (dashed) of the neutral distribution. Plots are shown for the data set
data mhc 23 (see text for details).
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Table 5.16: Stepwise model selection for the contrast between the OLADRB2 genotypes A1A1 and A2A2,
using data mhc 23.

Step Model i Add./rem. Df Dev AICi ∆i wi ei

1 a1a1.a2a2 ∼ age + deme + sex
. − deme 297 92.243 98.243 1.92 0.13 0.38
. − age 276 74.750 122.750 26.43 0.00 0.00
. − sex 276 76.314 124.314 27.99 0.00 0.00
. none 275 74.701 124.701 28.38 0.00 0.00
. + age:sex 274 74.268 126.268 29.95 0.00 0.00
. + age:deme 255 56.707 146.707 50.39 0.00 0.00
. + deme:sex 256 59.728 147.728 51.41 0.00 0.00

2 a1a1.a2a2 ∼ age + sex
. − age 298 92.544 96.544 0.22 0.31 0.89
. − sex 298 93.847 97.847 1.53 0.16 0.47
. + age:sex 296 91.767 99.767 3.45 0.06 0.18

3 a1a1.a2a2 ∼ sex
. − sex 299 94.321 96.321 0.00 0.34 1.00

4 a1a1.a2a2 ∼ 1
. + deme 277 76.454 122.454 26.13 0.00 0.00

Add./rem., the term that was added (+) or removed (−) relative to the current model; Df, residual
degrees of freedom; Dev, residual deviance; AICi = −2 log(Li) + 2k, Akaike Information Criterion
for model i, where Li is the likelihood and ki the number of parameters estimated under model i;
∆i = AICi − min(AICi), italic for the best model and models with substantial support (∆i < 2);
wi = exp (−∆i/2) /

∑R
r=1 exp (−∆r/2), Akaike weight; ei = wi/wmax, evidence ratio relative to best

model; a1a1.a2a2, binary response contrasting the OLADRB2 genotypes A1A1 versus A2A2 (0 for
A1A1 and 1 for A2A2); age, age at sampling (continuous); deme, factor with 23 levels; sex, factor with
2 levels. Only those models are shown which were visited during the stepwise fitting procedure, and
duplicate lines were removed. Interaction terms were added only if the corresponding main effects were
also present.

Table 5.17: Estimates of effects on the contrast between OLADRB2 genotypes A1A1 and A2A2 for
data mhc 23.

Model Coefficient Estimate SE 2.5% 97.5% p

a1a1.a2a2 ∼ 1
(Intercept) 3.2685 0.3072 2.7171 3.9330 <0.0001 ∗∗∗

a1a1.a2a2 ∼ sex
(Intercept) 2.8824 0.3884 2.1971 −0.3885 <0.0001 ∗∗∗
sexmale 0.8312 0.6379 3.7428 2.1890 0.1926

a1a1.a2a2 ∼ age
(Intercept) 3.5796 0.5625 2.5622 4.7912 <0.0001 ∗∗∗
age −0.0443 0.0630 −0.1629 0.0885 0.4815

a1a1.a2a2 ∼ age + sex
(Intercept) 3.1347 0.6188 2.0355 4.4943 <0.0001 ∗∗∗
age −0.0338 0.0607 −0.1495 0.0937 0.5778
sexmale 0.7971 0.6426 −0.4344 2.1616 0.2148

Model, the models with substantial support in explaining a1a1.a2a2 as a function of the predictors (cf.
Table 5.16 for a summary on model choice); Coefficient, name of predictor; Estimate, estimated effect
of predictor (on the logit scale); SE, standard error; 2.5% and 97.5%, the limits of the 95% confidence
interval; p, p-value (Wald test), significance code as in Table 5.15.
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Table 5.18: Stepwise model selection for the contrast between the OLADRB2 genotypes A1A2 and A2A2,
using data mhc 23.

Step Model i Add./rem. Df Dev AICi ∆i wi ei

1 a1a2.a2a2 ∼ age + deme + sex
. − deme 407 492.11 498.11 1.41 0.23 0.49
. − sex 386 453.42 501.42 4.72 0.04 0.09
. none 385 453.15 503.15 6.45 0.02 0.04
. + age:sex 384 453.15 505.15 8.45 0.01 0.01
. + age:deme 363 411.84 505.84 9.14 0.00 0.01
. − age 384 457.96 505.96 9.26 0.00 0.01
. + deme:sex 364 426.63 518.63 21.93 0.00 0.00

2 a1a2.a2a2 ∼ age + sex
. − sex 408 492.70 496.70 0.00 0.47 1.00
. + age:sex 406 491.94 499.94 3.24 0.09 0.20

3 a1a2.a2a2 ∼ age
. − age 409 497.47 499.47 2.77 0.12 0.25

Add./rem., the term that was added (+) or removed (−) relative to the current model; Df, residual
degrees of freedom; Dev, residual deviance; AICi = −2 log(Li) + 2k, Akaike Information Criterion
for model i, where Li is the likelihood and ki the number of parameters estimated under model i;
∆i = AICi − min(AICi), italic for the best model and models with substantial support (∆i < 2);
wi = exp (−∆i/2) /

∑R
r=1 exp (−∆r/2), Akaike weight; ei = wi/wmax, evidence ratio relative to best

model; a1a2.a2a2, binary response contrasting the OLADRB2 genotypes A1A2 versus A2A2 (0 for
A1A2 and 1 for A2A2); age, age at sampling (continuous); deme, factor with 23 levels; sex, factor with
2 levels. Only those models are shown which were visited during the stepwise fitting procedure, and
duplicate lines were removed. Interaction terms were added only if the corresponding main effects were
also present.

Table 5.19: Estimates of effects on the contrast between OLADRB2 genotypes A1A2 and A2A2 for
data mhc 23.

Model Coefficient Estimate SE 2.5% 97.5% p

a1a2.a2a2 ∼ age
(Intercept) 0.5303 0.1884 0.1626 0.9024 0.0049 ∗∗
age 0.0566 0.0266 0.0057 0.1103 0.0334 ∗

a1a2.a2a2 ∼ age + sex
(Intercept) 0.4361 0.2234 0.0015 0.8789 0.0509 ·
age 0.0568 0.0264 0.0061 0.1101 0.0318 ∗
sexmale 0.1691 0.2188 -0.2607 0.5981 0.4395 n.s.

Model, the models with substantial support in explaining a1a2.a2a2 as a function of the predictors (cf.
Table 5.18 for a summary on model choice); Coefficient, name of predictor; Estimate, estimated effect
of predictor (on the logit scale); SE, standard error; 2.5% and 97.5%, the limits of the 95% confidence
interval; p, p-value (Wald test), significance code as in Table 5.15.
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Table 5.20: Stepwise model selection for the contrast between the OLADRB2 genotypes A1A1 and A1A2,
using data mhc 14.

Step Model i Add./rem. Df Dev AICi ∆i wi ei

1 a1a1.a1a2 ∼ age + deme + sex
. − deme 91 64.892 70.892 1.48 0.16 0.48
. − sex 79 57.675 87.675 18.26 0.00 0.00
. none 78 57.404 89.404 19.99 0.00 0.00
. − age 79 59.548 89.548 20.14 0.00 0.00
. + age:sex 77 56.709 90.709 21.30 0.00 0.00
. + deme:sex 66 38.224 94.224 24.81 0.00 0.00
. + age:deme 66 42.151 98.151 28.74 0.00 0.00

2 a1a1.a1a2 ∼ age + sex
. − sex 92 65.413 69.413 0.00 0.34 1.00
. − age 92 67.060 71.060 1.65 0.15 0.44
. + age:sex 90 64.564 72.564 3.15 0.07 0.21

3 a1a1.a1a2 ∼ age
. − age 93 67.858 69.858 0.45 0.27 0.80

Add./rem., the term that was added (+) or removed (−) relative to the current model; Df, residual
degrees of freedom; Dev, residual deviance; AICi = −2 log(Li) + 2k, Akaike Information Criterion
for model i, where Li is the likelihood and ki the number of parameters estimated under model i;
∆i = AICi − min(AICi), italic for the best model and models with substantial support (∆i < 2);
wi = exp (−∆i/2) /

∑R
r=1 exp (−∆r/2), Akaike weight; ei = wi/wmax, evidence ratio relative to best

model; a1a1.a1a2, binary response contrasting the OLADRB2 genotypes A1A1 versus A1A2 (0 for
A1A1 and 1 for A1A2); age, age at sampling (continuous); deme, factor with 14 levels; sex, factor with
2 levels. Only those models are shown which were visited during the stepwise fitting procedure, and
duplicate lines were removed. Interaction terms were added only if the corresponding main effects were
also present.

Table 5.21: Estimates of effects on the contrast between OLADRB2 genotypes A1A1 and A1A2 for
data mhc 14.

Model Coefficient Estimate SE 2.5% 97.5% p

a1a1.a1a2 ∼ age
(Intercept) 2.7409 0.6005 1.6583 4.0454 <0.0001 ∗∗∗
age −0.1129 0.0706 −0.2532 0.0300 0.1100

a1a1.a1a2 ∼ 1
(Intercept) 2.0209 0.3209 1.4369 2.7071 <0.0001 ∗∗∗

a1a1.a1a2 ∼ age + sex
(Intercept) 2.4733 0.6785 1.2684 3.9732 0.0003 ∗∗∗
age −0.1046 0.0701 −0.2452 0.0360 0.1360
sexmale 0.4845 0.6784 −0.8273 1.9047 0.4751

a1a1.a1a2 ∼ sex
(Intercept) 1.7677 0.4090 1.0306 2.6589 <0.0001 ∗∗∗
sexmale 0.5837 0.6641 −0.6885 1.9845 0.3794

Model, the models with substantial support in explaining a1a1.a1a2 as a function of the predictors (cf.
Table 5.20 for a summary on model choice); Coefficient, name of predictor; Estimate, estimated effect
of predictor (on the logit scale); SE, standard error; 2.5% and 97.5%, the limits of the 95% confidence
interval; p, p-value (Wald test), significance code: ∗∗∗ for 0 < p ≤ 0.001, ∗∗ for 0.001 < p ≤ 0.01, ∗ for
0.01 < p ≤ 0.05, · for 0.05 < p ≤ 0.1 and ‘ ’ for 0.1 < p ≤ 1.
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Table 5.22: Stepwise model selection for the contrast between the OLADRB2 genotypes A1A1 and A2A2,
using data mhc 14.

Step Model i Add./rem. Df Dev AICi ∆i wi ei

1 a1a1.a2a2 ∼ age + deme + sex
. − deme 221 85.369 91.369 1.62 0.14 0.45
. − age 209 74.750 104.750 15.00 0.00 0.00
. − sex 209 76.314 106.314 16.56 0.00 0.00
. none 208 74.701 106.701 16.95 0.00 0.00
. + age:sex 207 74.268 108.268 18.52 0.00 0.00
. + age:deme 196 56.707 112.707 22.95 0.00 0.00
. + deme:sex 195 59.728 117.728 27.97 0.00 0.00

2 a1a1.a2a2 ∼ age + sex
. − age 222 85.821 89.821 0.07 0.31 0.97
. − sex 222 87.144 91.144 1.39 0.16 0.50
. + age:sex 220 84.802 92.802 3.05 0.07 0.22

3 a1a1.a2a2 ∼ sex
. − sex 221 87.753 89.753 0.00 0.32 1.00

4 a1a1.a2a2 ∼ 1
. + deme 210 76.454 104.454 14.7 0.00 0.00

Add./rem., the term that was added (+) or removed (−) relative to the current model; Df, residual
degrees of freedom; Dev, residual deviance; AICi = −2 log(Li) + 2k, Akaike Information Criterion
for model i, where Li is the likelihood and ki the number of parameters estimated under model i;
∆i = AICi − min(AICi), italic for the best model and models with substantial support (∆i < 2);
wi = exp (−∆i/2) /

∑R
r=1 exp (−∆r/2), Akaike weight; ei = wi/wmax, evidence ratio relative to best

model; a1a1.a2a2, binary response contrasting the OLADRB2 genotypes A1A1 versus A2A2 (0 for
A1A1 and 1 for A2A2); age, age at sampling (continuous); deme, factor with 14 levels; sex, factor with
2 levels. Only those models are shown which were visited during the stepwise fitting procedure, and
duplicate lines were removed. Interaction terms were added only if the corresponding main effects were
also present.

Table 5.23: Estimates of effects on the contrast between OLADRB2 genotypes A1A1 and A2A2 for
data mhc 14.

Model Coefficient Estimate SE 2.5% 97.5% p

a1a1.a2a2 ∼ 1
(Intercept) 2.9634 0.3092 2.4072 3.6311 <0.0001 ∗∗∗

a1a1.a2a2 ∼ sex
(Intercept) 2.5539 0.3924 1.8586 3.4203 <0.0001 ∗∗∗
sexmale 0.8720 0.6419 −0.3557 2.2363 0.1744

a1a1.a2a2 ∼ age
(Intercept) 3.3092 0.5572 2.2978 4.5067 <0.0001 ∗∗∗
age −0.0499 0.0622 −0.1668 0.0818 0.4224

a1a1.a2a2 ∼ age + sex
(Intercept) 2.8513 0.6098 1.7632 4.1870 <0.0001 ∗∗∗
age −0.0410 0.0597 −0.1546 0.0850 0.4923
sexmale 0.8417 0.6454 −0.3948 2.2108 0.1922

Model, the models with substantial support in explaining a1a1.a2a2 as a function of the predictors (cf.
Table 5.22 for a summary on model choice); Coefficient, name of predictor; Estimate, estimated effect
of predictor (on the logit scale); SE, standard error; 2.5% and 97.5%, the limits of the 95% confidence
interval; p, p-value (Wald test), significance code as in Table 5.21.
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Table 5.24: Stepwise model selection for the contrast between the OLADRB2 genotypes A1A2 and A2A2,
using data mhc 14.

Step Model i Add./rem. Df Dev AICi ∆i wi ei

1 a1a2.a2a2 ∼ age + deme + sex
. + age:deme 267 294.48 352.48 1.63 0.20 0.44
. − deme 281 346.66 352.66 1.81 0.18 0.40
. − sex 281 325.60 355.60 4.75 0.04 0.09
. none 280 324.79 356.79 5.94 0.02 0.05
. − age 281 328.07 358.07 7.22 0.01 0.03
. + age:sex 279 324.15 358.15 7.30 0.01 0.03
. + deme:sex 267 316.54 374.54 23.69 0.00 0.00

2 a1a2.a2a2 ∼ age + deme + sex + age:deme
. − sex 268 294.85 350.85 0.00 0.45 1.00
. + age:sex 266 294.06 354.06 3.21 0.09 0.20
. + deme:sex 254 286.78 370.78 19.93 0.00 0.00

Add./rem., the term that was added (+) or removed (−) relative to the current model; Df, residual
degrees of freedom; Dev, residual deviance; AICi = −2 log(Li) + 2k, Akaike Information Criterion
for model i, where Li is the likelihood and ki the number of parameters estimated under model i;
∆i = AICi − min(AICi), italic for the best model and models with substantial support (∆i < 2);
wi = exp (−∆i/2) /

∑R
r=1 exp (−∆r/2), Akaike weight; ei = wi/wmax, evidence ratio relative to best

model; a1a2.a2a2, binary response contrasting the OLADRB2 genotypes A1A2 versus A2A2 (0 for
A1A2 and 1 for A2A2); age, age at sampling (continuous); deme, factor with 14 levels; sex, factor with
2 levels. Only those models are shown which were visited during the stepwise fitting procedure, and
duplicate lines were removed. Interaction terms were added only if the corresponding main effects were
also present.
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Table 5.26: Estimates of effects on the contrast between OLADRB2 genotypes A1A2 and A2A2 for
data mhc 14, part 1.

Model Coefficient Estimate SE 2.5% 97.5% p

a1a2.a2a2 ∼ age + deme + age:deme
(Intercept) 1.7247 1.0130 −0.1281 3.9566 0.0887 ·
age 0.0112 0.1505 −0.2775 0.3348 0.9404
demeAlbris −1.3404 1.2326 −3.9281 0.9922 0.2768
demeCalanda −1.2323 1.4625 −4.1998 1.6780 0.3995
demeCrapFlem −4.1930 4.1753 −16.7399 3.2346 0.3153
demeFlueela 1.5101 1.4983 −1.4088 4.6808 0.3135
demeHochwang −1.7084 1.2329 −4.3028 0.6204 0.1658
demeJulier N 104.1874 11434.6510 2931.7533 8710.2284 0.9927
demeJulier S 62.7910 3469.2199 1020.3946 1146.1607 0.9856
demeMacun −2.5139 1.2453 −5.1466 −0.1844 0.0435 ∗
demeOberalp −3.6980 2.0203 −8.5578 −0.1176 0.0672 ·
demeRheinwald −1.9414 1.2600 −4.5825 0.4415 0.1234
demeRothWeiss −2.8550 1.2866 −5.5925 −0.4674 0.0265 ∗
demeUmbrail −0.7388 1.2632 −3.3629 1.6902 0.5586
demeValBever 0.2882 1.3759 −2.4794 3.0748 0.8341
age:demeAlbris 0.0919 0.1745 −0.2677 0.4357 0.5985
age:demeCalanda −0.0164 0.1924 −0.4134 0.3559 0.9319
age:demeCrapFlem 0.7025 0.8119 −0.4119 3.6197 0.3869
age:demeFlueela −0.2087 0.1889 −0.6045 0.1519 0.2692
age:demeHochwang 0.1310 0.1861 −0.2423 0.5184 0.4816
age:demeJulier N −27.2207 2856.1854 NA 300.1088 0.9924
age:demeJulier S −4.3348 243.4479 −182.8066 52.5800 0.9858
age:demeMacun 0.1405 0.1828 −0.2309 0.5081 0.4419
age:demeOberalp 0.4058 0.3716 −0.1922 1.4697 0.2748
age:demeRheinwald 0.1207 0.2009 −0.2847 0.5194 0.5482
age:demeRothWeiss 0.2805 0.2162 −0.1304 0.7593 0.1944
age:demeUmbrail −0.0349 0.2082 −0.4553 0.3836 0.8669
age:demeValBever −0.1353 0.2016 −0.5547 0.2611 0.5022

deme (overall, Wald test) 0.0620 ·
age:deme (overall, Wald test) 0.4000

Model, the models with substantial support in explaining a1a2.a2a2 as a function of the predictors
(only one model shown here; cf. Table 5.24 for a summary on model choice and Table 5.27 for the
remaining models); Coefficient, name of predictor; Estimate, estimated effect of predictor (on the logit
scale); SE, standard error; 2.5% and 97.5%, the limits of the 95% confidence interval; p, p-value (Wald
test), significance code as in Table 5.21. The single-level effects of demes are relative to the one of
deme AdulaVial.
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Table 5.27: Estimates of effects on the contrast between OLADRB2 genotypes A1A2 and A2A2 for
data mhc 14, part 2.

Model Coefficient Estimate SE 2.5% 97.5% p

a1a2.a2a2 ∼ age + deme + sex + age:deme

(Intercept) 1.6387 1.0235 −0.2371 3.8869 0.1094
age 0.0091 0.1508 −0.2801 0.3329 0.9521
demeAlbris −1.3390 1.2319 −3.9266 0.9912 0.2771
demeCalanda −1.2239 1.4638 −4.1943 1.6884 0.4031
demeCrapFlem −4.4190 4.2359 −16.9898 3.0904 0.2968
demeFlueela 1.4365 1.4983 −1.4841 4.6057 0.3377
demeHochwang −1.7177 1.2328 −4.3125 0.6101 0.1635
demeJulier N 104.0413 11507.8822 2949.7743 8765.1282 0.9928
demeJulier S 62.8751 3467.9970 705.4432 831.8066 0.9855
demeMacun −2.5231 1.2468 −5.1597 −0.1918 0.0430 ∗
demeOberalp −3.6666 2.0124 −8.4971 −0.0906 0.0685 ·
demeRheinwald −1.9322 1.2620 −4.5774 0.4546 0.1257
demeRothWeiss −2.8228 1.2874 −5.5623 −0.4339 0.0283 ∗
demeUmbrail −0.7193 1.2622 −3.3427 1.7062 0.5688
demeValBever 0.2672 1.3750 −2.5005 3.0500 0.8459
sexmale 0.1784 0.2946 −0.4015 0.7563 0.5447
age:demeAlbris 0.0944 0.1743 −0.2649 0.4376 0.5883
age:demeCalanda −0.0156 0.1926 −0.4129 0.3571 0.9354
age:demeCrapFlem 0.7409 0.8244 −0.3911 3.6572 0.3688
age:demeFlueela −0.2010 0.1892 −0.5973 0.1599 0.2879
age:demeHochwang 0.1350 0.1854 −0.2376 0.5196 0.4665
age:demeJulier N −27.1689 2873.3136 NA 302.1227 0.9925
age:demeJulier S −4.3323 243.2135 −182.6344 52.5176 0.9858
age:demeMacun 0.1408 0.1824 −0.2301 0.5072 0.4402
age:demeOberalp 0.3984 0.3671 −0.1967 1.4513 0.2778
age:demeRheinwald 0.1169 0.2016 −0.2894 0.5170 0.5618
age:demeRothWeiss 0.2748 0.2160 −0.1358 0.7531 0.2033
age:demeUmbrail −0.0397 0.2078 −0.4597 0.3772 0.8486
age:demeValBever −0.1368 0.2014 −0.5556 0.2590 0.4969

deme (overall, Wald test) 0.0700 ·
age:deme (overall, Wald test) 0.4100

a1a2.a2a2 ∼ age + sex

(Intercept) 0.4551 0.2591 −0.0486 0.9702 0.0791 ·
age 0.0561 0.0315 −0.0038 0.1204 0.0751 ·
sexmale 0.2918 0.2612 −0.2210 0.8052 0.2639

Model, the models with substantial support in explaining a1a2.a2a2 as a function of the predictors (cf.
Table 5.24 for a summary on model choice); Coefficient, name of predictor; Estimate, estimated effect
of predictor (on the logit scale); SE, standard error; 2.5% and 97.5%, the limits of the 95% confidence
interval; p, p-value (Wald test), significance code as in Table 5.21. The single-level effects of demes are
relative to the one of deme AdulaVial.
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Figure 5.19: Joint likelihood surface of selection coefficient s and initial frequency pinit of the ‘goat’ allele
A1, for under- and overdominance and without migration. Joint maximum-likelihood estimates are given in
the boxes. The dotted and solid black lines denote regions of highest posterior density for levels of support
of 99%, 95%, 75%, 50%, 25%, 5% and 1%. Crosses denote parameter combinations for which exact values
were computed, and the surface was obtained by third-order interpolation. Fitnesses are parameterized as
in equation (5.6) in the main text. (A) Dominance coefficient φ = 0.00, (B) φ = 0.125, (C) φ = 0.25,
(D) φ = 0.375, (E) φ = 0.50, (F) φ = 0.625, (G) φ = 0.75, (H) φ = 0.875, (I) φ = 1.00. For marginal
likelihoods of s with respect to pinit see Figure 5.6.

5.10.2 Additional results from the matrix iteration approach

Figure 5.19 shows the joint likelihood surface of the selection coefficient (s) and the initial

frequency of the focal allele (pinit), for under- and overdominance. Figure 5.20 and Table 5.29,

and Figure 5.21 and Table 5.30 provide likelihood curves and parameter estimates for migration

at rate m = 0.1 and m = 0.2. These results should be compared to Figure 5.6 and Table 5.3

without migration in the main text.

Figure 5.22 gives the joint likelihood surface of the selection coefficient, s, and the initial

frequency of the focal allele, pinit, for intermediate dominance. Figure 5.23 and Table 5.31, and
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Figure 5.20: Likelihood of the selection coefficient s for various dominance coefficients φ with migration
rate m = 0.1. The likelihood curves are marginal with respect to the initial frequency pinit of the ‘goat’
allele A1. Fitnesses are parameterized as in equation (5.6) in the main text. A1 is fully recessive if φ = 0
and fully dominant if φ = 1. For φ /∈ {0, 1}, there is overdominance if s > 0 and underdominance if s < 0.
(A) The likelihoods are not normalized. Therefore, the areas under the curves indicate the relative support
for the various values of φ (cf. Table 5.29). (B) As in (A) but with likelihoods normalized such that the area
under the curve is 1. In a Bayesian view, these curves correspond to the posterior distribution of s given a
uniform prior on the normal scale. The curves in (A) and (B) were obtained by third-order interpolation of
points computed for values of s on a grid from –1.0 to 1.0 with step size 0.1 (black dots).

Figure 5.24 and Table 5.32 provide likelihood curves and parameter estimates for migration at

rate m = 0.1 and m = 0.2. These results should be compared to those in Figure 5.8 and Table

5.4 for intermediate dominance without migration in the main text.

Table 5.29: Likelihood-based estimates of selection (s) and dominance (φ) coefficient with under- or
overdominance and migration rate m = 0.1.

Dominance scheme φ L a
φ B.F. ŝφ HPD

A1 fully recessive 0.000 4.006 0.672 0.580 (−0.651, 0.824)
Overdom. if s > 0, underdom. if s < 0 0.125 5.959 1.000 0.967 (−0.655, 1.000)

· 0.250 3.453 0.579 0.290 (−0.837, 1.000)
· 0.375 2.781 0.467 −0.127 (−1.000, 0.627)
· 0.500 2.564 0.430 −0.217 (−1.000, 0.394)
· 0.625 2.423 0.407 −0.226 (−1.000, 0.266)
· 0.750 2.244 0.377 −0.211 (−0.980, 0.214)
· 0.875 1.876 0.315 −0.197 (−0.786, 0.228)

A1 fully dominant 1.000 1.539 0.258 −0.177 (−0.594, 0.189)

Lφ =
∑
s∈S L(φ, s;D) =

∑
s∈S P (D|φ, s) is an approximation to the marginal likelihood of φ, L(φ;D) =

P (D|φ) =
∫
S P (D|φ, s)P (s|φ)ds =

∫
S P (D|φ, s)P (s)ds, where S is the set of possible values for s, and

the last equality holds because φ and s are independent. The Bayes Factor (B.F.) is here defined as
Lφ/max(Lφ), and therefore denotes the support for any model compared to the one with the maximum
marginal likelihood (i.e. to φ = 0.125). The maximum-likelihood estimate of s given φ is provided by
ŝφ. In a Bayesian perspective, this is equal to the posterior mode, since the prior was uniform on the
normal scale. HPD, highest posterior density interval of s. Point and interval estimates correspond to
likelihood curves displayed in Figure 5.20.
aIn multiples of 10−13.



186 CHAPTER 5. SHORT- AND LONG-TERM EVIDENCE FOR SELECTION ON MHC

Table 5.30: Likelihood-based estimates of selection (s) and dominance (φ) coefficient with under- or
overdominance and migration rate m = 0.2.

Dominance scheme φ L a
φ B.F. ŝφ HPD

A1 fully recessive 0.000 2.873 0.650 0.576 (−0.754, 0.796)
Overdom. if s > 0, underdom. if s < 0 0.125 4.421 1.000 0.966 (−0.731, 1.000)

· 0.250 2.483 0.562 0.218 (−0.965, 0.900)
· 0.375 2.047 0.463 −0.203 (−1.000, 0.598)
· 0.500 1.904 0.431 −0.261 (−1.000, 0.377)
· 0.625 1.802 0.408 −0.251 (−1.000, 0.258)
· 0.750 1.659 0.375 −0.227 (−1.000, 0.191)
· 0.875 1.334 0.302 −0.202 (−0.773, 0.228)

A1 fully dominant 1.000 1.077 0.244 −0.186 (−0.579, 0.190)

Lφ =
∑
s∈S L(φ, s;D) =

∑
s∈S P (D|φ, s) is an approximation to the marginal likelihood of φ, L(φ;D) =

P (D|φ) =
∫
S P (D|φ, s)P (s|φ)ds =

∫
S P (D|φ, s)P (s)ds, where S is the set of possible values for s, and

the last equality holds because φ and s are independent. The Bayes Factor (B.F.) is here defined as
Lφ/max(Lφ), and therefore denotes the support for any model compared to the one with the maximum
marginal likelihood (i.e. to φ = 0.125). The maximum-likelihood estimate of s given φ is provided by
ŝφ. In a Bayesian perspective, this is equal to the posterior mode, since the prior was uniform on the
normal scale. HPD, highest posterior density interval of s. Point and interval estimates correspond to
likelihood curves displayed in Figure 5.21.
aIn multiples of 10−13.

Figure 5.25 illustrates the effect of gene flow via migration on the marginal likelihood of

s, when there is under- or overdominance. This is similar to Figure 5.11 for intermediate

dominance.
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Figure 5.21: Likelihood of the selection coefficient s for various dominance coefficients φ with migration
rate m = 0.2. The likelihood curves are marginal with respect to the initial frequency pinit of the ‘goat’
allele A1. Fitnesses are parameterized as in equation (5.6) in the main text. A1 is fully recessive if φ = 0
and fully dominant if φ = 1. For φ /∈ {0, 1}, there is overdominance if s > 0 and underdominance if s < 0.
(A) The likelihoods are not normalized. Therefore, the areas under the curves indicate the relative support
for the various values of φ (cf. Table 5.30). (B) As in (A) but with likelihoods normalized such that the area
under the curve is 1. In a Bayesian view, these curves correspond to the posterior distribution of s given a
uniform prior on the normal scale. The curves in (A) and (B) were obtained by third-order interpolation of
points computed for values of s on a grid from –1.0 to 1.0 with step size 0.1 (black dots).
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Figure 5.22: Joint likelihood surface of selection coefficient s and initial frequency pinit of the ‘goat’ allele
A1, for intermediate dominance and without migration. Joint maximum-likelihood estimates are given in
the boxes. The dotted and solid black lines denote regions of highest posterior density for levels of support
of 99%, 95%, 75%, 50%, 25%, 5% and 1%. Crosses denote parameter combinations for which exact values
were computed, and the surface was obtained by third-order interpolation. Fitnesses are parameterized as
in equation (5.7) in the main text. (A) Dominance coefficient h = 0.125, (B) h = 0.325, (C) h = 0.375,
(D) h = 0.50, (E) h = 0.625, (F) h = 0.75, (G) h = 0.875, (H) h = 1.00. For marginal likelihoods of s
with respect to pinit see Figure 5.8 in the main text.
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Figure 5.23: Likelihood of the selection coefficient s for various dominance coefficients h migration rate
m = 0.1. The likelihood curves are marginal with respect to the initial frequency pinit of the ‘goat’ allele
A1. Fitnesses are parameterized as in equation (5.7) in the main text. For 0 < h < 1 (and 0 ≤ s ≤ 1, as is
the case here), dominance is intermediate. A1 is partially recessive if 0 < h < 0.5 and partially dominant
if 0.5 < h < 1; there is no dominance if h = 0.5. The limiting case of full recessivity of A1 (h = 0) is
equivalent to the case of φ = 0 in Figure 5.20 and therefore not plotted again. (A) The likelihoods are not
normalized and the areas under the curves indicate the relative support for the various values of h (cf. Table
5.31). (B) As in (A) but with likelihoods normalized such that the area under the curve is 1. In a Bayesian
view, these curves correspond to the posterior distribution of s given a uniform prior on the normal scale.
The curves were obtained by third-order interpolation of points computed for values of s on a grid from 0.0
to 0.95 with step size 0.05 (black dots).

Table 5.31: Likelihood-based estimates of selection (s) and dominance (h) coefficient with intermediate
dominance and migration rate m = 0.1.

Dominance scheme h L a
h B.F. ŝh HPD

Partial recessivity of the ‘goat’ allele A1 0.125 4.641 1.000 0.485 (0.014, 0.620)
· 0.250 3.737 0.805 0.418 (0.007, 0.536)
· 0.375 3.139 0.676 0.362 (0.001, 0.476)

No dominance 0.500 2.712 0.584 0.295 (0.000, 0.435)
Partial dominance of the ‘goat’ allele A1 0.625 2.389 0.515 0.244 (0.000, 0.404)

· 0.750 2.134 0.460 0.203 (0.000, 0.379)
· 0.875 1.928 0.415 0.172 (0.000, 0.358)

Lh =
∑
s∈S L(h, s;D) =

∑
s∈S P (D|h, s) is an approximation to the marginal likelihood of h, L(h;D) =

P (D|h) =
∫
S P (D|h, s)P (s|h)ds =

∫
S P (D|h, s)P (s)ds, where S is the set of possible values for s, and

the last equality holds because h and s are independent. The Bayes Factor (B.F.) is here defined as
Lh/max(Lh), and therefore denotes the support for any model compared to the one with the maximum
marginal likelihood (i.e. to h = 0.125). The maximum-likelihood estimate of s given h is provided by
ŝh. In a Bayesian perspective, this is equal to the posterior mode, since the prior was uniform on the
normal scale. HPD, highest posterior density interval of s. For full recessivity and full dominance of
the ‘goat’ allele, see Table 5.29. Point and interval estimates correspond to likelihood curves displayed
in Figure 5.23.
aIn multiples of 10−13.
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Figure 5.24: Likelihood of the selection coefficient s for various dominance coefficients h migration rate
m = 0.2. The likelihood curves are marginal with respect to the initial frequency pinit of the ‘goat’ allele
A1. Fitnesses are parameterized as in equation (5.7) in the main text. For 0 < h < 1 (and 0 ≤ s ≤ 1, as is
the case here), dominance is intermediate. A1 is partially recessive if 0 < h < 0.5 and partially dominant
if 0.5 < h < 1; there is no dominance if h = 0.5. The limiting case of full recessivity of A1 (h = 0) is
equivalent to the case of φ = 0 in Figure 5.21 and therefore not plotted again. (A) The likelihoods are not
normalized and the areas under the curves indicate the relative support for the various values of h (cf. Table
5.32). (B) As in (A) but with likelihoods normalized such that the area under the curve is 1. In a Bayesian
view, these curves correspond to the posterior distribution of s given a uniform prior on the normal scale.
The curves were obtained by third-order interpolation of points computed for values of s on a grid from 0.0
to 0.95 with step size 0.05 (black dots).

Table 5.32: Likelihood-based estimates of selection (s) and dominance (h) coefficient with intermediate
dominance and migration rate m = 0.2.

Dominance scheme h L a
h B.F. ŝh HPD

Partial recessivity of the ‘goat’ allele A1 0.125 3.138 1.000 0.483 (0.015, 0.606)
· 0.250 2.518 0.802 0.419 (0.009, 0.525)
· 0.375 2.117 0.675 0.367 (0.003, 0.468)

No dominance 0.500 1.835 0.585 0.315 (0.000, 0.425)
Partial dominance of the ‘goat’ allele A1 0.625 1.625 0.518 0.257 (0.000, 0.396)

· 0.750 1.462 0.466 0.210 (0.000, 0.371)
· 0.875 1.332 0.425 0.178 (0.000, 0.351)

Lh =
∑
s∈S L(h, s;D) =

∑
s∈S P (D|h, s) is an approximation to the marginal likelihood of h, L(h;D) =

P (D|h) =
∫
S P (D|h, s)P (s|h)ds =

∫
S P (D|h, s)P (s)ds, where S is the set of possible values for s, and

the last equality holds because h and s are independent. The Bayes Factor (B.F.) is here defined as
Lh/max(Lh), and therefore denotes the support for any model compared to the one with the maximum
marginal likelihood (i.e. to h = 0.125). The maximum-likelihood estimate of s given h is provided by
ŝh. In a Bayesian perspective, this is equal to the posterior mode, since the prior was uniform on the
normal scale. HPD, highest posterior density interval of s. For full recessivity and full dominance of
the ‘goat’ allele, see Table 5.30. Point and interval estimates correspond to likelihood curves displayed
in Figure 5.24.
aIn multiples of 10−13.
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Figure 5.25: The effect of gene flow via migration (at rate m) on the marginal likelihood of the selection
coefficient s with under- or overdominance. (A) The likelihoods are not normalized and the areas under the
curves indicate the relative support for the different migration rates m, given φ. (B) Likelihoods normalized
such that the area under the curve is 1. In a Bayesian view, these curves correspond to the posterior
distribution of s given a uniform prior on the normal scale. Other details as in Figure 6 in the main text.
For intermediate dominance (directional selection), see Figure 5.11.
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Töıgo, C., J. M. Gaillard, M. Festa-Bianchet, E. Largo, J. Michallet, and D. Maillard, 2007.

Sex- and age-specific survival of the highly dimorphic Alpine ibex: evidence for a conservative

life-history tactic. J. Anim. Ecol. 76:679–686.
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