
T
H

E

U N I V E R S

I T
Y

O
F

E
D I N B U

R
G

H

Division of Informatics, University of Edinburgh

Institute for Communicating and Collaborative Systems

A Flexible Integrated Architecture For Generating Poetic Texts

by

Hisar Manurung, Graeme Ritchie, Henry Thompson

Informatics Research Report EDI-INF-RR-0016

Division of Informatics May 2000
http://www.informatics.ed.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429723272?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A Flexible Integrated Architecture For Generating Poetic
Texts

Hisar Manurung, Graeme Ritchie, Henry Thompson

Informatics Research Report EDI-INF-RR-0016

DIVISION of INFORMATICS
Institute for Communicating and Collaborative Systems

May 2000

Appears in Proceedings of the Fourth Symposium on Natural Language Processing (SNLP 2000), Chiang
Mai, Thailand 10-12 May 2000

Abstract :
In this paper we describe a flexible approach to natural language generation that employs a stochastic hillclimbing

search algorithm and an integrated architecture. We then discuss the benefits of this approach over existing, informative,
goal-driven generation systems. We choose the generation of poetry as our research task domain, as it is a prime
example of natural language that demands the degree of flexibility provided by our approach. Finally, we report and
discuss results of our preliminary implementation work.

Keywords : NLG architectures, stochastic search, creativity, poetry generation

Copyright c
 2000 by The University of Edinburgh. All Rights Reserved

The authors and the University of Edinburgh retain the right to reproduce and publish this paper for non-commercial
purposes.

Permission is granted for this report to be reproduced by others for non-commercial purposes as long as this copy-
right notice is reprinted in full in any reproduction. Applications to make other use of the material should be addressed
in the first instance to Copyright Permissions, Division of Informatics, The University of Edinburgh, 80 South Bridge,
Edinburgh EH1 1HN, Scotland.



A FLEXIBLE INTEGRATED ARCHITECTURE FOR
GENERATING POETIC TEXTS

Hisar Maruli Manurung, Graeme Ritchie, Henry Thompson

Institute for Communicating and Collaborative Systems, Division of Informatics, University of
Edinburgh, 80 South Bridge Edinburgh EH1 1HN, Scotland, UK

hisarm@dai.ed.ac.uk, g.d.ritchie@ed.ac.uk, ht@cogsci.ed.ac.uk

In this paper we describe a flexible approach to natural language generation that employs
a stochastic hillclimbing search algorithm and an integrated architecture. We then discuss the
benefits of this approach over existing, informative,goal-driven generation systems. We choose the
generation of poetry as our research task domain, as it is a prime example of natural language that
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of our preliminary implementation work.
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1. MOTIVATION

Natural language generation (NLG) systems have typically been aimed at producing
what might be termed informative texts: sentences, paragraphs or documents which attempt
to convey precise facts about some situation or events. The generation system is considered
successful if it can produce well-formed and lucid text that conveys a certain communicative
goal. This goal is given as some form of non-linguistic input, and the system must find the
linguistic structure and form that conveys it. Even where the requirement that the text must
encode the semantics exactly is relaxed (as in the approximate generation of Nicolov (1998)),
the aim is still to inform the audience as accurately as possible.

With the broadening of AI into the production of cultural artefacts (e.g. stories, jokes,
poetry), and also affective computing (cf. Picard (1997)), the task of a NLG system may be
less straightforward. Such texts (sometimes classed as “creative”) may have a more diffuse
communicative goal, or may be attempting to achieve some emotional effect rather than
to inform. This may involve a trade-off between semantic, syntactic, lexical and phonetic
factors, rather than simply having semantics supply a specification which other levels must
conform to. Some work on incorporating affect into NLG already exists, e.g. Kantrowitz and
Bates (1992), Walker et al. (1997), DiMarco et al. (1993).

Conventional informative NLG systems commonly decompose the generation task into
several stages: content determination, sentence planning, surface generation, morphology
and formatting (Reiter 1994). Furthermore, these stages are usually handled by different
modules arranged in a pipelined or interleaved architecture (De Smedt et al. 1996). This
often introduces a problem of architectural rigidity: the possible interactions and mutual
constraints between the various linguistic levels may not be permitted.

In pipelined systems, the module for the early conceptual stage commits to its decisions
and passes its output along to the surface realisation module, hoping it will succeed in finding
an appropriate linguistic structure. Committing to such decisions early on can often lead to
awkward results, such as failing to exploit an opportunity to convey two or more subgoals
with one linguistic expression, or worse, being unable to convey some subgoals at all. Meteer
(1991) refers to this as the “generation gap” problem, and Kantrowitz and Bates (1992) refers
to these systems as “talking themselves into a corner”.

An interleaved system tries to remedy this by providing a feedback loop from the surface
realiser back to the conceptual module. However, this does not elegantly handle certain multi-
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Figure 1. (a) Pipelined architecture (b) Interleaved architecture

level linguistic phenomena, which require a combination of many individual local effects that
contribute to create a global effect.

These forms of inflexibility can be a serious issue when tackling more “artistic” (as
opposed to “informative”) types of text.

We are exploring ways of generating poetry, which provides a particularly extreme form
of these problems. A poetic text must not only convey a communicative goal but also satisfy
figurative, form, and phonetic constraints, and the unity of poetry means that interdepend-
encies between semantics, syntax, lexis and phonetics are at their strongest.

2. THE TASK DOMAIN

2.1. Poetry generation

Levin (1962) states that “In poetry the form of the discourse and its meaning are fused
into a higher unity.” This definition highlights the point of a strong interaction between
semantics, syntax and lexis. Boulton (1982) reiterates this point, claiming that it is mislead-
ing to separate the physical and intellectual form of a poem so far as to ask, “What does it
mean?”. The poem means itself.

These are rather esoteric quotations, and one would expect these quotes to be referring
to abstract, complex, “high-brow” poetry. However, we claim that this unity is inherent even
in traditional forms of poetry, for example, the following stanza of Robert Burns’ A Red, Red
Rose:

O my Luve’s like a red, red rose
That’s newly sprung in June:
O my Luve’s like the melodie
That’s sweetly play’d in tune!

Essentially unity here means that the poem “works” due to a combination of features
at the surface level (the rhyming of June and tune, the repetition of red to fit the rhythm),
rhetorical level (coupling effect of repetitive forms in first and third lines, and second and
fourth lines), and semantics level (describing love through analogies with red roses and music).

As for the process of writing poetry, it is often claimed to proceed in a much more flexible
manner than other writing processes. There is often no well-defined communicative goal, save



for a few vague concepts such as “wintery weather” or “a scary lion”. Furthermore, a human
could begin writing a poem inspired by a particular concept, or scenario, but end up writing
a poem about an altogether different topic.

This specification of loose constraints fits with the proposals of Sharples (1996) and
Boden (1990), who claim that while a writer needs to accept the constraints of goals, plans,
and schemas, creative writing requires the breaking of these constraints. Yet these constraints
are still necessary, as they allow for the recognition and exploiting of opportunities. Sharples
(1996) models the writing process as that of creative design, involving a cycle of analysis,
known as reflection, and synthesis, known as engagement. This process is analogous to
our iterative process of evaluation and evolution (see section 3 below), and ties in with the
concept of unity between content and form: during the reflection phase, when looking at an
intermediate draft of the poem on paper, a poet may come to realize the opportunities of
surface features that can be exploited, which enables further content to be explored upon
subsequent engagement phases.

2.2. The problems of poetic text

There are various ways in which poetic text makes particular demands on an NLG system,
as indicated in section 1 above. More fully, these are:

1. The high occurrence of interdependent linguistic phenomena requires simultaneous con-
sideration of semantics, syntax and lexis to produce a poem.

2. Conventional informative NLG systems require a given well-specified communicative goal
as its starting point. In poetry, however, there may not be a well-defined message to be
conveyed (see section 2.1).

3. If our poetry generator is to create texts which satisfy the multitude of phonetic, syntactic
and semantic constraints, it must have a very rich supply of resources, namely: a wide
coverage grammar which allows for paraphrasing, a rich lexicon which supplies phonetic
information, and a knowledge-base if we hope to produce coherent poems. This, in turn,
leads to a problem of efficiently searching these resources for a text that satisfies all
constraints.

4. One of the main difficulties lies in the objective evaluation of the output text (and hence
the performance of the generation system). The question of measuring text quality
arises for existing NLG systems, but is much more pronounced in evaluating poetry: it
is unclear how one objectively evaluates if something is a poem or not.

The first three points mentioned above are of a more technical nature, while the last
one is more conceptual, perhaps even philosophical. Currently, we do not have much to
say on this last point, except that we hope to adopt an objective and empirical evaluation
methodology similar to that of Binsted et al. (1997).

2.3. Limiting our aims

There is no clear definition of what counts as poetry, but the texts we are focussing on
are those more structured verses used in relatively simple and traditional poetry within our
own cultures, as typified by the verse in section 2.1. Such texts involve a highly regular
occurrence of syntactic and phonetic patterns, such as metre, rhyme, and alliteration, and
hence are a suitably demanding test for our proposed architecture.



3. INTEGRATION AND EVOLUTION

3.1. Overview

We have chosen a scheme in which all the levels of a sentence (semantic, syntactic,
etc.) are represented simultaneously (section 3.2). Operators can then be applied to this
structure randomly, to mutate or extend the linguistic content (section 3.3). The effects of
these operators are evaluated at each step to assess whether the amended structure is an
improvement (section 3.3). The cycle is then repeated (section 3.3).

3.2. Linguistic representation

Integrated structure. As mentioned above in section 2.2, the unity of poetry demands
that semantic, syntactic, and lexical information are simultaneously considered at every step
of decision making. Furthermore, the exploratory nature of the creative writing process
would suggest that it should be possible to apply semantic, syntactic and lexical operations
in any order. Both pipelined and interleaved architectures fail to provide for this.

We therefore propose to model poetry generation as a process in which there is, at every
stage, a full representation of all the levels of the text (semantic, syntactic, phonetic). This
representation can then be operated on in various ways, at any of the available levels, and in
any order. The applications of the operators are viewed as moves in an explicit search space.
This is actually readopting what De Smedt et al. (1996) call an integrated architecture, where
there is no explicit modular decomposition of the generation process.

Syntax. Our central idea of an integrated representation and an evolutionary processing
method (section 3.3 below) are not dependent on any particular linguistic representation.
However, to allow concrete testing it was necessary to select a grammatical formalism. We
have opted for Lexicalized Tree Adjoining Grammar (LTAG). For reasons of space, however,
we will not explain this formalism in depth; see Joshi and Schabes (1992) for details.

Ordinary syntax trees are conventionally used to represent the complete constituent
structure of a sentence (or phrase). In Tree Adjoining Grammar, there is, in addition to
such elementary trees, a derivation tree, which is a kind of meta-level tree that records
operations performed on elementary trees. In particular, nodes of a derivation tree do not
signify phrase structure in any way, but rather the process of adjoining and substitution of
elementary phrase structure trees. Nodes of a derivation tree are labelled by references to
elementary trees, and edges are labelled by the address at which the elementary tree of the
child node substitutes or adjoins into the elementary tree of the parent (see Figure 2).

In our example, the root node of the derivation tree introduces the verb, and its two
siblings then introduce the subject and object noun phrases. The edges signify at which NP
node the child gets substituted into, effectively indicating which is the subject and which is
the object.

The common way to deal with TAG trees is by repeatedly performing adjunction and
substitution (creating a derived tree), while having a derivation tree as a record-keeping
“roadmap” of how the derived tree is created. However, the derived tree alone does not allow
us to change or delete portions of our text (see section 3.3 below), since there is no way to
“un-adjoin” subtrees. We must always refer back to the derivation tree. For our purposes,
there is no point in maintaining the derived tree throughout the generation process. Instead,
the derivation tree becomes our primary data structure, and everything else can be derived
from it on demand. When our operators are said to perform adjunction and/or substitution,
they are simply recording the operation in the derivation tree, not actually performing it.



NP
campus

campus(c)

NPPrep

VP

PPVP*

to
dest(w,c)

NP

John

john(x)

VP

Adv VP*

quickly
fast(w)

NP VP
V

walked

S

walk(w,x)

A@2 A@2I@1

I@2.2

walk(w,x), john(x), dest(w,c),
campus(c), fast(w)

Semantics:

NP VP

VP

PP

NP

campusto

S

John

quickly

walked Prep

Adv

V

Derived Tree:

Surface Form:
John quickly walked to campus.

Derivation Tree:

Figure 2. The LTAG derivation tree as the main data structure

LTAG has the following advantages for our work:

• The adjunction operation in LTAG allows flexible incremental generation, such as sub-
sequent insertion of modifiers to further refine the message. This is required as the system
builds texts incrementally through an iterative process.

• LTAG provides an extended domain of locality which allows for predicate-argument struc-
tures and feature agreements over a structured span of text that need not be contiguous
at the surface. This potentially allows for the coupling of poetic features such as rhyming
across lines.

• We also adopt an extension to the formalism, Synchronous Tree Adjoining Grammar
(STAG), which has been proven useful for paraphrasing purposes (Dras 1999).

• The derivation tree provides an elegant mechanism for deletions and amendments. It
keeps all syntax and semantics locally integrated at each node, and allows non-monotonic
modification of content simply by deleting or replacing the corresponding node.

Semantics. For our semantics, we follow Stone and Doran (1997) in using an ontologic-
ally promiscuous flat-semantics (Hobbs 1985). The semantics of a given individual is simply
the conjunction of all the semantics introduced by each lexical item, given adjustments for
unification of argument structure.

The generation process maintains a “semantic pool”, which is simply a collection of
propositions. The generator is under no commitment to realize these semantics (unlike a
traditional NLG system with strict communicative goals). The relationship between the
semantic pool and the derivation tree’s semantics is very flexible. In particular, there is no
subsumption relationship either way between them.

In the beginning (the initialization phase) the semantic pool is initialised with a copy of
the target semantics. This is ultimately what we hope our resulting poem to “be about”.
But as time progresses, the generation can evolve and mutate the semantic pool, thereby
(probably) moving away from the initial target.



3.3. Stochastic Hillclimbing Search

If we are representing the generation process as a search in which operators are applied
to a structure, the problem is then to find a way to navigate through the prohibitively large
search space. Our proposed solution is to employ a stochastic hillclimbing search, not merely
for its relatively efficient performance, but especially because the existing models of creative
writing (section 2.1) advocate an iterative, incremental process of refining and rewriting.
Also, a process with some element of randomness to it seems perfectly suited to the creative
aspect of poetry.

Our stochastic hillclimbing search model is an evolutionary algorithm, which is basically
an iteration of two phases, evaluation and evolution, applied to an ordered set (the population)
of candidate solutions (the individuals).

This approach is quite analogous to Mellish et al. (1998), an experiment in using stochastic
search for text planning, but in our research we extend it to the whole NLG process.

Evaluation. Arguably the most crucial aspect of a stochastic search is the evaluation
scheme which lets the system know what a desirable solution is. Below we present an informal
description, not necessarily exhaustive, of the features that our evaluation functions must look
for in a poem. A description of the actual evaluators in our currently implemented system
can be found in section 4.2.

1. Phonetics: One of the most obvious things to look for in a poem is the presence of
a regular phonetic form, i.e. rhyme, metre, alliteration, etc. This information can be
derived from a pronunciation dictionary.
One possible evaluation method is to specify a “target phonetic form” as input, i.e.
the ideal phonetic form that a candidate solution should possess, and to then score a
candidate solution based on how closely it matches the target form.
For example, we could provide the system with the following target form (here w means
a syllable with weak stress, s a syllable with strong stress, and (a) and (b) would
determine the rhyme scheme, e.g. aabba), which effectively means we are requesting it
to generate a limerick:

w,s,w,w,s,w,w,s(a)

w,s,w,w,s,w,w,s(a)

w,s,w,w,s(b)

w,s,w,w,s(b)

w,s,w,w,s,w,w,s(a)

2. Linguistics: Aside from phonetic patterns, there are other, more subtle, features to look
for in a poem: lexical choice, where the evaluation could reward the usage of interesting
collocations and words marked as “poetic”, syntax, where reward could be given to usage
of interesting syntactic constructs, e.g. inverse word and clause order, topicalization, and
rhetoric, where evaluation would score the usage of figurative language constructs such
as metonymy.

3. Semantics: Even more abstract would be a mechanism for evaluating the semantics of a
certain candidate. Again, we could specify a “target semantics” and score a candidate’s
semantics relative to this target. Unlike conventional NLG, though, this target semantics
is not viewed as a message that must be conveyed, but rather as a “pool of ideas”, from
which the system can draw inspiration. The system could choose to convey more or less
than the given semantics (cf. approximate generation in Nicolov (1998)).



Story generation issues such as narrative structure and interestingness are beyond the
scope of this research.

Having analysed the three points above, it seems that to devise an evaluation function,
the following 3 issues must be tackled:

Identifying the presence of a feature. With the possible exception of figurative lan-
guage, it is reasonably straightforward to observe the features. Most of them are repres-
ented directly in the data structure, e.g. phonetic form, lexical choice, syntactic structure,
semantic interpretation.

Quantifying a feature. Yielding a numerical measure for the occurrence of a poetic fea-
ture sounds like a very naive idea. Nonetheless, we believe that it is the only way to
mechanically and objectively guide the stochastic search to producing poem-like texts.
Above we have mentioned a score-relative-to-target strategy for both phonetics and se-
mantics. This seems to be the most concrete method of evaluation, and is what we have
chosen to implement in our current system. Certain features, however, most notably
those considered to be preferences as opposed to constraints, do not lend themselves
easily towards this strategy.
A naive alternative scoring method is to maintain a tally of points for every occurrence
of a feature encountered in a text. This resembles a greedy algorithm search heuristic.
For example: applied to the feature of alliteration, if we scored positively for each word
that appeared in a line starting with the same phoneme, the final output could become
ridiculously riddled with redundant repetitions of rewordings. This might be good for
generating tongue-twister-like sentences, but any literary critic would baulk at these
results. However, at the moment this is how we implement evaluation of such features,
and although we do not intend to go deep into literary theory, we hope to develop a more
sophisticated approach.
For now our aim is to facilitate a modular approach to the evaluation of features, so that
each particular type of feature will have its own corresponding “evaluator function”. This
will allow for more sophisticated approaches and techniques to be easily added in the
future.
Apart from a modular approach, we also aim to parameterize the behaviour of these
evaluation functions, e.g. allow a user to set the coefficients and weighting factors that
determine the calculation of a certain score. A very interesting prospect is the interfacing
of these coefficients with empirical data obtained from statistical literary analysis, or
stylometry.

Weighting across features. Assuming we have obtained numerical scores for each of the
features we are considering, how do we combine them? As in the previous point about
parameterizing coefficients of a particular evaluator, we propose to treat the weighting
across features in a similar fashion. This parameterization could possibly allow a choice
between, say, a preference for rigidly structured poetry and a preference for a more
contemporary content-driven poem.

Evolution. Like most stochastic search algorithms, the process starts with an initial-
isation phase. Provided with the input of a target semantics and target phonetic form as
mentioned in section 3.3, it then creates a collection of individuals, each corresponding to a
minimally complete utterance that more or less conveys the target semantics. This initial
semantic pool gives rise to an LTAG derivation tree as a result of application of any operators
which map semantic propositions to tree structure (e.g. the semantic realizer described in
section 4.3 below).



After evaluating a set of candidate solutions and choosing a subset of candidates with the
best score, we must then create new variations of them through “mutation”. This process
can be seen as applying a collection of operators on the chosen candidates. We introduce here
three conceptual types of operators, before describing our currently implemented operators
in section 4.3:

• Add: “John walked”→“John walked to the store”

• Delete: “John likes Jill and Mary”→“John likes Jill”

• Change: “John walked”→“John lumbered’

Due to our integrated architecture, these mutations may occur at different underlying levels of
representation of the text. Because these different levels are all interdependent, the operators
must take special care to preserve consistency when performing mutation. For example, if
the addition of “to the store” is viewed mainly as a syntactic addition of a prepositional
phrase, the operator would have to update the semantics to reflect this, for instance by
adding destination(w,shop). In contrast, if it is viewed primarily as a semantic addition, the
operator would have to realize these semantics, one option being the use of a prepositional
phrase. Our practice of introducing semantics via a flexible “semantic pool” addresses this
issue (see section 3.2).

As it is probably too optimistic to rely on pure random mutation to lead us to a decent
poem, we would also like to introduce several heuristic-rich operators. These heuristics
would be the encoding of “how to write poetry” guidelines, such as “use ‘little’ words to
‘pad’ sentences when trying to fit the metre”, and “don’t use words with few rhymes at the
end of a line”. These “smarter” operators, however, seems to go against stochastic search
traditions wherein the operators are deliberately knowledge-poor, relying on the stochastic
nature to lead us to the solution. Here, we are adding informedness of heuristics to the whole
stochastic process, somewhat analogous to sampling bias in stochastic search.

As mentioned earlier, there is an initialisation phase in which each generation process
(individual in our evolutionary population) is given an initial semantic pool of propositions
which will guide its choice of content; as the evolution progresses, the various individuals
may diverge in their semantic content.

What follows is a process of incrementally modifying the utterance to satisfy the target
phonetic form while simultaneously attempting to maintain an approximation of the target
semantics, as follows:

• During the evaluation phase, a collection of evaluators analyses each individual for its
surface form, phonetic information, and semantics, and assigns a score (see section 4.2).

• After every individual has been scored, the set is sorted by score in a descending order.
• During the evolution phase, the N highest ranking individuals spawn “children”, which

are mutations of themselves. These children replace the N lowest ranking individuals,
thus maintaining the set size. N is a modifiable parameter.

4. THE IMPLEMENTATION

We are currently in the process of implementing our stochastic search model in Java. In
this section we will first briefly discuss our chosen linguistic resources, e.g. lexicon and gram-
mar, before describing the current implementation of our evaluation and evolution functions.
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A long, long series of operations...
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Figure 3. Idealized diagram of a stochastic search

4.1. Resources

At the moment we are still using a very small hand-crafted grammar and lexicon. Like
most TAG-based systems, the grammar is a collection of elementary trees, and the lexicon
is a collection of words that specify which elementary trees they can anchor. The lexicon
also provides phonetic information and lexicon stress, which is extracted from the CMU
Pronunciation Dictionary.

A typical lexical entry looks something like this:

Orthography fried

Elementary Tree(s) ITV

Signature F,Frier,Fried

Semantics fry(F,Frier,Fried)

Phonetic Spelling f,r,ay1,d

whereas a typical grammar entry looks something like Figure 4.

NP VP

V NP

S [X]

[Y] [X]

[X][Y][Z] [Z]

Figure 4. Grammar entry ITV: Intransitive Verb



When binding a lexical entry to an elementary tree, argument structure is preserved by
unifying the signature of a lexical entry with the signature of its preterminal node. In the
above case: (X=F, Y=Frier, Z=Fried).

4.2. Evaluators

At the moment we have only implemented an evaluator for rhythm: the metre evaluator.
Its function is to provide a quantitative measure of how well an individual satisfies the target
form constraints.

For example, let us take as the target form the first line of the limerick specification in
section 3.3: w,s,w,w,s,w,w,s, and compare it with the line “There /once was a /man from
Ja/karta”, which has a stress pattern of w,s,w,w,s,w,w,s,w.

Once we consider pairs of very different stress patterns, using a pattern-matching process
on such flat lists does not give as good a measure as with pairs of feet-structured represent-
ation. For our purposes, a foot is a rhythmic unit consisting of a strong syllable followed
by zero or more weak syllables, with the exception of the collection of weak syllables at the
beginning of a line, known as the upbeat. Upbeats are not preceded by strong syllables.
This definition of a foot corresponds to descending rhythm or falling rhythm. Note that the
grouping of these feet units need not coincide with groupings of phrase structure.

Using this definition of feet, we can represent the previous two stress patterns as:
Target form feet: (w),(s,w,w),(s,w,w),(s)
Individual feet: (w),(s,w,w),(s,w,w),(s,w)

The evaluator compares the metrical configuration of an individual with the target phon-
etic form by first comparing their number of feet, penalizing those that are either too short
or too long. Since each foot, with the exception of the upbeat, contains exactly one strong
syllable, this effectively evaluates how close they match in number of strong syllables. It then
compares the number of weak syllables between each corresponding foot, once again penal-
izing the discrepancies, but the penalty coefficient we impose here is less than that of the
strong syllables. This provides a natural formalization of the heuristic that strong syllables
dominate the effect of a line’s metre, and a surplus or missing weak syllable here and there
is quite acceptable. For example, (2) sounds more like (1) than (3) does:
(1) The /curfew /tolls the /knell of /parting /day
(2) The /curfew /tolls the /knell of the /parting /day
(3) The /curfew /tolls the /knell of /long /parting /day

4.3. Operators

We have currently implemented the following operators:

Semantic explorer. This operator works with the semantic pool of an individual. Cur-
rently it just introduces random propositions into the pool, but with the help of a
knowledge-base, it could introduce propositions that are conceptually related to what
is already existing in the pool.

Semantic realizer. This operator is one of the most important ones: it interfaces between
the semantic pool and the actual built structure. The semantic realizer will randomly
select a proposition from the pool and attempt to realize it by:

• Selecting all lexical items that can convey the proposition,

• For each lexical item, selecting all elementary trees that can be anchored by it,



• For each elementary tree, selecting all nodes in the derivation tree where it can be
applied (either adjoined or substituted),

• Building a list of all these possible nodes and choosing one at random, and inserting
the new lexicalized elementary tree at that position.

Syntactic paraphraser. This operator works by randomly selecting an elementary tree
in an individual’s derivation tree and trying to apply a suitable paraphrase pair in the
manner of Dras (1999). Since all adjunction and substitution information is kept relative
to one’s parent node in the derivation tree, adjusting for paraphrases (i.e. changing an
elementary tree at a certain derivation tree node) is a simple matter of replacing the
elementary tree and updating the addressing of the children.
For example, if paraphrasing a sentence from active to passive form, this would involve
exchanging the “Active Transitive Verb” elementary tree at the root to “Passive Trans-
itive Verb”, and updating the substitution addresses of the subject and object noun
phrases so that the subject now moves to the end of the verb and the object moves to
the front.

5. EXAMPLES

Although our system is still in a very early stage of implementation, particularly in
terms of evaluators, operators, and linguistic resources, we already have some sample output
to present. The examples below should not be assessed for their poetic nature, as they barely
rate as verse of any kind. What they show is that our architecture does indeed, as claimed,
allow various types of linguistic constraints to control the stochastic search, resulting in
texts which, as intended, are related to the semantic input and are close to the metric form
stipulated.

In Example 1 below, we have provided a simple set of semantic predicates as the semantic
pool and asked the system to produce a “poem” with the form similar to the first two lines of
a limerick. The resulting score is obtained from the metre evaluator (section 4.2), and is out
of a maximum score of 1.0. There are two particular points of interest from this example:

1. There is an appearance of the noun poppies, despite it not being mentioned in the target
semantics. This is due to the semantic explorer operator, which randomly introduces new
predicates into the semantic pool. By and large, though, the output does approximate
the target semantics.

2. The target metre is not precisely followed (the last foot in the second line is lacking a
weak syllable), but the resulting form is arguably comparable with what a human might
produce given the same task.

At present, agreement of arguments between semantic predicates is not considered, hence
the assignment of arbitrary symbols to the target semantics’ predicate arguments. For ex-
ample, compare the target semantics of Example 1 and the target semantics of the example
in section 6, where the subject of the verb is clearly the cat and the object is the bread. On
one hand this limits the treatment of semantics to a rather trivial account, but on the other
hand it allows for more flexibility in exploring the semantics search space.



Input

Target semantics: Target form:
{john(1), mary(2), dog(3), bottle(4), w,s,w,w,s,w,w,s,
love(5,6,7), slow(8), smile(9,10)} w,s,w,w,s,w,w,s

Output (Score: 0.991)

Surface: Stress:
a bottle was loved by a dog w,s,w,w,s,w,w,s,

for poppies. the bottle smiled. w,s,w,w,s,w,s

Example 1: Sample output given both semantic and form constraints.

As a baseline comparison, we also provide some purely random output of the system.
To achieve this, we disabled the sorting process that normally occurs immediately after the
evolution process, effectively crippling the hillclimbing heuristic. This is intended to simulate
how a “blind”, purely random traversal through the search space would fare in trying to
satisfy the given constraints.

Using the exact same target semantics and target form from Example 1, we conducted 5
test runs, leaving the system to run for 15, 30, 60, 90, 120, and 150 seconds before terminating
the process. Before each test run the system was always reinitialised. We also increased the
population size to 100. The table below shows the average score of the population after
termination along with the score and surface form of the best scoring individual.

What we can see is that without the hillclimbing heuristic, the blind random mutation
does not produce output as good as the near-perfect score in Example 1.

Also, it is interesting to see how the system behaved when given more time to explore
the search space. Because the texts are incrementally generated, they gradually grew longer
in length as time went on. This is also caused by the fact that we have not yet implemented
a “delete” operator. This also affects the scoring: the best results occurred when the system
was terminated after 60 seconds (presented again as Example 2). After that, the score started
to decrease again as the text lengths exceeded the target form specification. The best output
of the last test run, for example, contains eight strong syllables, whereas the target form only
has six.

Seconds Average Best Best surface output
Score Score

15 0.340 0.558 the bottle sweetly sweetly smiled.
30 0.372 0.615 the bottle loved slowly John at clouds.
60 0.455 0.672 smiled. a bottle loved Mary. Mary sat.
90 0.398 0.627 a dog warm close smiled. music swelled.
120 0.402 0.615 the bottle loved John soft. a lambs smiled slowly.
150 0.431 0.546 a last bottle loved Mary. a dog smiled loudly. moss matured.

Notice that the first sentence of Example 2 is the ungrammatical “smiled”. This is
because this generation effort was terminated prematurely by manual intervention, and at the
last iteration before termination the semantic realizer chose to introduce the verb “smiled”,
leaving its subject empty. The fragment “ran” appears in Example 3 for the same reason.



Input

Target semantics: Target form:
{john(1), mary(2), dog(3), bottle(4), w,s,w,w,s,w,w,s,
love(5,6,7), slow(8), smile(9,10)} w,s,w,w,s,w,w,s

Output (Score: 0.672)

Surface: Stress:
smiled. a bottle loved s,w,s,w,s,

Mary. Mary sat. s,w,s,w,s

Example 2: The best produced output from total randomness

In Example 3, we give the system no target semantic input at all, and ask it to produce an
iambic pentameter couplet. The system still produces output, something that a conventional
informative NLG system wouldn’t. However, since the semantic explorer operator is still
purely random, it resembles “word salad”.

Input

Target semantics: Target form:
none w,s,w,s,w,s,w,s,w,s,

w,s,w,s,w,s,w,s,w,s

Output (Score: 0.845)

Surface: Stress:
a warm distinctive season humble mel- w,s,w,s,w,s,w,s,w,s,

low smiled refreshingly slowly. ran. w,s,w,s,w,w,s,w,s

Example 3: Sample output given only form constraints.

Although these results can hardly be called poems, nevertheless they succeed in showing
how the stochastic hillclimbing search model manages to produce text that satisfies the given
constraints, something very difficult for a random word-salad generator to achieve. This
success is clearly evident when Examples 1 and 3 are contrasted with the baseline results
achieved by the purely random generation.

6. PREVIOUS WORK

For comparison, we first describe our previous attempt at implementing poetry genera-
tion, reported in Manurung (1999). This was not a stochastic search model but exhaustively
produced all possible paraphrases using chart generation, while simultaneously pruning por-
tions of the search space which were deemed ill-formed from an early stage. It also worked
with the target specification of both phonetic form and semantics.

As an example, given the target semantics {cat(c), dead(c), bread(b), gone(b),
eat(e,c,b), past(e)} and the limerick target form shown in section 3.3, but disregarding
the rhyme scheme, the chart generator could produce, among others, the following:

the cat is the cat which is dead;
the bread which is gone is the bread;
the cat which consumed
the bread is the cat
which gobbled the bread which is gone



Since this system does not have the equivalent of a semantic explorer operation (section 4.3),
the output semantics is always subsumed by the target semantics. Moreover, because the
chart generator rules out ill-formed subscontituents during the bottom-up construction, the
output form always matches exactly the target form. There are no partial solutions or
imperfect poems.

Although the example output shown here seems to compare favourably with those in
section 5 above, it should be borne in mind that the non-stochastic system has very limited
possibilities for further development, as it does not have the flexibility to allow various forms
of knowledge to contribute and for multiple-level constraints to interact. On the other hand,
our newer, evolutionary system is at a very early stage, and the sample outputs show little
more than the fact that the overall processing model does indeed run as intended. This
system, nevertheless, has the potential for future development owing to its generality and
flexibility.

Our stochastic hillclimbing model is similar in some ways to other work, including the
following:

NITROGEN This is a generator that employs a generate-and-test model, using a know-
ledge poor symbolic generator for producing candidate solutions and ranking them based
on corpus-based information (Langkilde and Knight 1998). It is similar to our system in
the sense that it generates many candidate solutions and then evaluates them, assigning
each candidate solution a score, and finally sorts them based on this score. The difference
is that the evaluation is a measure of the probability of a candidate solution with respect
to some corpus data. Furthermore, there is no feedback or iterative process.

SPUD This is a TAG-based generator that exploits opportunity arising between syntax
and semantics, allowing generation of collocations and idiomatic constructs (Stone and
Doran 1996). In terms of representation, our approach is very similar to SPUD, as it also
uses LTAG and maintains semantics as the conjunction of predicates found at each LTAG
node. Moreover, SPUD also incrementally builds up a sentence by repeatedly adjoining
or substituting new elementary trees. The difference, however, is that SPUD’s algorithm
is not stochastic, it does not generate several alternative candidate solutions. Instead,
it employs a greedy algorithm, always adjoining or substituting in the “best” possible
subscontituent, terminating when it has conveyed its input communicative goals. It also
does not explicitly quantify scores over partial solutions.

GLINDA This is an integrated-architecture NLG system that is used in CMU’s Oz In-
teractive Fiction project (Kantrowitz and Bates 1992). GLINDA produces narrative
and dialogue from believable agents in the Oz storyworld, and therefore must consider
issues of affect and style, differentiating it from conventional informative systems. Con-
vicing believable agents must be able to express affect through its choice of word, e.g.
expressing anger, sympathy, etc., and to achieve this GLINDA’s planner must consider
interdependent constraints at different levels of representation. In this respect, GLINDA
employs an integrated architecture for the same reasons we do. Furthermore, (Kantrow-
itz and Bates 1992) also mentions poetic features as examples of texts requiring such an
architecture, although it is not stated whether they handle this in their system. One
difference from our approach is that GLINDA does not model the generation process as
an explicit stochastic search, and its integrated architecture is more in terms of represent-
ation, where semantics and syntax are all represented using a uniform feature structure
formalism.



7. CONCLUSION

If we are to tackle the generation of texts which are not straightforwardly informative,
then we may have to consider a wider range of architectures and representations. We have
outlined a very general and flexible approach, based on an integrated architecture and a
stochastic hillclimbing search model. We believe this model allows the interaction of multiple
constraints coupled with a less precise communicative goal. The main use we have had in
mind for this system is the generation of simple poetry. Despite our implementation being
at a very early stage, the sample output succeeds in showing how our method manages to
produce text that satisfies these constraints.
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