

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

• This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

• A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

• This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

• The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

• When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

A SEMANTIC APPROACH TO AUTOMATIC

PROGRAM IMPROVEMENT

by

John Darlington

Ph.D. Thesis

University of Edinburgh

1972

ABSTRACT

The programs that are easiest to write and understand are often

not the most efficient. This thesis gives methods of converting

programs of the former type to those of the latter type; this

involves converting definitions of algorithms given as recursion

equations using high level primitives into lower level flow chart

programs.

The main activities involved are recursion removal (c.f. Strong),

loop elimination, and the overwriting of shared structures. We

have concentrated on the semantics, rather than the syntax, of the

programs we are transforming and we have used techniques developed in

work done on proving the correctness of programs.

The transformations are done in a hierarchical manner and can be

regarded as compiling a program defined in a structured manner (Dijkstra)

to produce an efficient low level program that simulates it.

We describe the implementation of a system that allows the user

to specify algorithms in a simple set language and converts them to

flow chart programs in either a bitstring or list processing language.

Both of these lower languages allow the sharing of structures. The

principles are applicable to other domains and we describe how our

system can be applied more generally.

ACKNOWLEDGEMENTS

Particular thanks are due to my supervisor, Rod Burstall, not

only for his constant encouragement and assistance throughout this research

but also for introducing me to the ideas of abstract programming and

program semantics.

The influence of Cooper, Dijkstra, Milner and Minsky will be

obvious from the thesis.

The POP-2 language developed at the Department of Machine

Intelligence by Burstall, Collins and Popplestone greatly assisted the

implementation of the ideas in this thesis and the sets package also

developed at the Department of Machine Intelligence by Ambler and

Burstall provided a useful starting point for the thesis.

I would like to thank all my colleagues in the Department of

Machine Intelligence for many helpful conversations, in particular I

am indebted to Bruce Anderson, Michael Gordon, Nigel Parker, Gordon

Plotkin, Robin Popplestone, Rodney Topor and Sylvia Weir.

More than the usual thanks are due to the typist, Eleanor Kerse,

not only for her patience and skill but for her active interest in the

thesis. Thanks also to Margaret Pithie for printing and compiling

this thesis.

Finally I would like to thank the Science Research Council for

providing the financial support that made this work possble.

CONTENTS

Chapter 1 Introduction

Chapter 2 Outline

2.1 Introduction
2.2 Philosophy
2.3 Basic Method

2.L- Outline Description

2.L.1 Languages and Domains

2.L..1.1 Source Languages
2.L..1.2 Target Languages
2.L..1.3 Intermediate Languages

2.4-2 Outline of Compiler

2.k.2.1 Removal of Recursion
2.k.2.2 Choice of Representation

2.L.2.2.1 Transformation Extraction
2.4-2.2.2 Planning
2.4.2.2.3 Projection
2.t..2.2.t. Program Writing

2.L23 Example

2.L 2.3.1 Transformation Extraction
2.4-2.3.2 Processing the Transformation
2.L 2.3.3 Implementation in L-O
2.4.2.3.1. Implementation in B-0

2.L.2.1. Destructive Implementation
Chapter 3 Implementation

3.1 Removal of Recursion

3.1.1 Introduction
3.1.2 Source and Target Languages

3.1.2.1 Source Language

3.1.2.1.2 Semantics

3.1.2.2 Target Language

3.1.2.2.1 Target Language Syntax
3.1.2.2.2 Target Semantics

3.1.3 Translation Process

3.1.3.1 Pre-processing
3.1.3.2 Structure Recognising

3.1-3.2.1/

CONTENTS contd. (v)

3.1.3.2.1 Matching Algorithm

3.1.3.3 Production of Translation

3.1.3.3.1 Syntax of Tests
3.1.3.14. Examples

3.2 Compilation

3.2.1 Language Descriptions

3.2.1.1 S-1 Syntax
3.2.1.2 S-1 Semantics
3.2.1.3 L-0 Syntax
3.2.1.14- L-1 Syntax
3.2.1.5 L-0, L-1 Semantics
3.2.1.6 B-0 Syntax
3.2.1.7 B-0 Semantics

3.2.2 Compilation Example

3.2.2.1 Extracting the Transformation
3.2.2.2 Simplification
3.2.2.3 Planning

3.2.2.3.1 Production of Alternative Forms
3.2.2.3.2 Evaluation of Alternatives

3.2.2.14. Projection
3.2.2.14..1 Projection into B-0
3.2.2.14..2 Projection into L-0

3.2.2.5 Shrinking
3.2.2.6 Linking
3.2.2.7 Program Writing

3.2.2.7.1 Code Production
3.2.2.7.2 Code Expansion

3.2.2.8 Examples

3.2.3 Destructive Implementation of L-0 Programs

3.2.3.1 Extraction of Transformation
3.2.3.2 Optimisation of Transformation
3.2.3.3 Projection
3.2.3.14. Program Writing

3.2.3.14..1 Examples and Remarks

3.2.3.5 Example

303/

CONTENTS contd.

3.3 Algebraic Manipulation Routines

3.3.1 Specification
3.3.2 Produceallforms

Chapter 4 Theory of Computation and Computer Science

4.1 Programming and Machine Design
4..2 Theory of Computation

4.2.1 Languages and Meta-Languages
4.2.2 Proofs about Programs
4.2.3 Program Writing

Chapter 5 Extension to General Systems. Extensible Compilers

5.1 Improvements and Suggestions
5.2 Language Extension

5.2.1 Semantic Apparatus
5.2.2 The Generalised Compiler
5.2.3 Example. A transformational compiler for a matrix

system.

References

Appendix I The Matching Algorithm

Appendix31 The Function Codefor

CHAPTER 1. INTRODUCTION

Here are two versions of one program.

reverse (xl) = if null(xl) then nil

else append(reverse(tl(x1)),hd(x1))

reverse(xl) = nil->ans;

while not(null(xl))

do [tl(xl)->temp; ans->tl(x1); xl->ans;

temp->xl];

One is clear and abstract the other tortuous and efficient.

Given the first as a definition a competent programmer should be able

to produce the second. Can we get the computer to do this?

Again, in fairly abstract terms a definition of set union is

union(x,y) = if nullset(x) then y else

consset(choose(x),union(minus(choose(x),x),y)).

If/

* The primitives that we use are based on the POP-2 language,
Burstall, Collins and Popplestone (1971). The main features to
note are that X->Y is equivalent to the Algol Y:=X, hd is the
LISP car, tl is the LISP cdr, append adds an element to the end of
a list, and intsub(n,s) selects the nth element of a string s.
Nullset, consset, choose and minus are primitives of a set language
that we define later, nullset is true if the set is empty, consset
adds an element to a set, choose picks an element from a set and
minus removes a given element from a set.

-2-

If we represent sets of integers as bitstrings in the computer

there is an efficient but unnatural implementation for this function,

viz.

length(x)->l; 1->n;

while n<l do [if intsub(n,x) = I then 1->intsub(n,y);

1+n->n];

In the following chapters (2 and 3) we first outline and then

give details of a system and its implementation that can achieve these

transitions. In the above examples the first version is written in

a simple language and the second in a more extensive and efficient

language with more machine oriented primitives. Thus we can regard

the change as a sort of compilation. We might call it 'transformational

compilation' since the structure of the program is transformed during

compilation.

Chapters 4 and 5 give our views on (i) The relevance of this

activity to high level languages, program proving and automatic program

writing and (ii) How our transformational compiler could be extended to

a wide variety of domains.

-3-

CHAPTER 2

2.1 Introduction

In this chapter we present an outline of a scheme for a trans-

formational compiler that will attempt the efficient compilation of

programs stated in a mathematical user oriented language for a

limited domain. We will describe the implementation of these ideas

in more detail in the following chapter.

2.2 Philosophy

The basic approach combines two philosophies of programming and

compilation given by Minsky and Dijkstra.

In his Turing Lecture Minsky (1970) said that there is too much

preoccupation with form (or syntax) in present day compilers and not

enough attention is paid to computational content. We believe that

there is a growing divergence between the program structures that

enable programmers to clearly and concisely specify computations and

structures that are suitable for efficient implementation on present

day computers.. Further we believe that form based compilation of

these structures will be inefficient and traditional optimisation

techniques insignificant. We have attempted to produce a compiler

that knows a lot more about the programs it is implementing,

particularly their semantics, and has a limited inferential capability

that allows it to attempt the implementation of high level programs

in a more intelligent manner.

The/

The other aim of our approach is basically to implement in our

compiler techniques for program production first advocated by Dijkstra

(1970) in his works on structured programming. We will not give a

full description of the technique of structured programming as it is a

widely known and accepted technique. For our purposes, however, we

note that it has a natural implementation in programming languages with

a well-developed procedure (function) mechanism, for example in LISP.

Here, if one is faced with the task of writing a program to perform a

given task using certain basic primitives with known semantics one can

adopt the following top down method. Assume you have enough useful

high level primitives to make the writing of the program trivial and

write a program (or function) using these primitives. You are then

faced with the task of realising these primitives, which you do by the

same process, until all the last functions written use only the

originally given primitives. This method applies whether we are

thinking of purely functional languages or ones with imperative pro-

cedures. Thus if we view a program as an expression (which may be

other than purely functional) in certain primitives the process is tree-

like, with primitives being realised as further expressions in lower

more machine oriented languages.

2.3 Basic Method

Our compiler, which is for a simple set language, works on this

structured pattern. The user is presented with certain high level

set primitives and for a given task produces the top portion of the

tree. The compiler can complete the tree as it has structured

definitions/

-5-

definitions of the given primitives in terms finally of the target or

machine primitives. Each level in these structured definitions

corresponds to a well-identified domain. The task is to flatten the

tree and produce if possible a single expression in the target

primitives that performs the task specified by the topmost function,

given appropriate data domain mappings to encode the inputs and

decode the outputs i.e. representations.

Note that we already differ from normal compilers for functional

languages where the tree structure is retained after compilation and

accommodated to the linear nature of the machine by means of inter-

pretive run time systems performing function entry and exit.

The way that we proceed is top down, rewriting each expression

into another expression. However we do not proceed by the normal

method of replacing each primitive by its definition (in-line code

introduction) followed by optimisation. We compile as much as

possible via the semantics of the procedures. At a given level we

examine as much as possible the semantic content of the given program

or function and then reimplement this in the most appropriate manner in

the next level. This consists of four stages.

(i) We extract the semantic content or transformation induced by

the program.

(ii) In a planning or lookahead stage we consider the future

implementation of this transformation and using knowledge appropriate

to this domain adjust it so that it is still effectively the same

transformation but is in a form more suitable for future implementation.

(iii)

-6-

(iii) We then project this transformation into the next (lower)

domain. By this we mean produce a transformation in the next domain

which represents the previous transformation under the appropriate

domain mappings.

(iv) Our compiler has certain automatic program writing ability

that enables it to take this projected semantic transformation and

produce a program in the lower domain that performs this transformation

and is appropriate to that domain, a task similar to that proposed for

the heuristic compiler of Simon (1963)°

Note that our 'optimisations' are basically performed in (ii)
and consist of manipulations in a clearer semantic domain and not

manipulations of program text.

Each primitive at a given level in the tree has two faces as far

as our compiler is concerned. It has a semantic face that allows the

content of functions written using these primitives to be extracted and

it has an implementation face, allowing the compiler to know about the

future (lower down the tree) implementation of primitives, and it is

thus able to rearrange the transformations in such a way as to facil-
itate optimising interactions in future implementations. The main

optimising interactions are-

(i) Linking, where two primitives have a common loop structure

and may be merged if they occur in certain combinations.

(ii)/

-7-

(ii) Repeated expression elimination.

(iii) Construction reduction (doing less constructing of data

structures by using assignment into structures and sharing). This

can be thought of as compile time garbage collection.

We thus rewrite our programs to facilitate these optimisations.

The stages are facilitated if we can keep the changes between stages

as small as possible. Only as much structure as is needed to give

some point to the step should be introduced so that we effectively

deal with one language feature at a time.

It is usual in producing a program to have a choice of several

ways of implementing primitives. Often the crucial choices are the

ones of choosing representations for the data objects. It is a merit

of strL,, tuned programming that these decisions are separated from the

task of producing the basic algorithm. Our compiler shares these

advantages. It offers the user a choice of two representations for

the abstract data objects. At present the choice is left to the user

although the structure and information is there to allow the compiler

to make the decision.

One must also distinguish between the functions on the tree

defined by the user and those known to the compiler. For the latter

we have information about their semantics and implementation. For

the former, one would need to disonirer facts about their semantics and

implementation. Our compiler can do this only to a limited extent.

2.4/

®ge

2.4 Outline Description

We will now describe in outline how our transformational compiler

works. In order to make our discussions more concrete we will describe

it by showing how it works on an example. This entails introducing

the language and the semantic apparatus used for dealing with programs

written in these languages in this chapter though we do so informally

and only to the extent needed to describe our methods. A fuller

description and semantic definition will be given in the following

chapter describing the implementation and the program writing

algorithms.

2.4.1 Languages and Domains

To give the reader a guide we present here a summary of the

relationships between the languages we are about to introduce

S-0 Recursion equations

1
in the set primitives User language

the set primitives Intermediate
languages

S-1 Iterative language in

L--O Iterative constructive
list language

Iterative B®0 L-1 Iterative destructive
bitstring list language Target machine
language oriente d

languages

The abstract language that we choose for our compiler was one

that would help people who wishtn write programs involving manipulation

of/

-9-

of sets of integers. Although this is not an area that is very rich

in natural and useful algorithms the area does have an abstract

structure and the sets have two competing representations, viz. as

lists or as bitstrings.

2. L-.1 .1 User Langua e

The language in which the user presents his algorithms to

the compiler is a purely functional recursive language.

As a pilot project we have chosen to implement a simple set language

following Ambler and Burstall (1971) who developed a set package to allow

the user to write programs using set primitives and offered a choice of

representations. Much of the work applies to other systems and we

discuss this in chapter 5.

The input consists of sets of mutually recursive equations in the

set primitive's, union, subtract, nullset, consset, choose and minus.

These have the following informal semantics which we will give more

formally in 3.2.1.

union(sl,s2) = s1 U s2

subtract(sl,s2) = sl/s2

consset(x,s) = {x} U s

minus(x,s) = s/{x}

nullset(s) = s=O

choose(s) = x such that xes

and s1 = s2 => choose(sl) = choose(s2)

The only one worthy of remark is choose, which is an arbitrary

but deterministic function.

For

-1o-

For example, a program that defines union in terms of choose,

minus and consset consists of the single recursive equation

nullset(sl)-__ s2

union(s1,s2

not(nullset(sl))___. consset(choose(s1),

union(minus(choose(s1),s1),s2))

We will call this language S-0.

2.4.1.2 Target Languages

The target languages in which we wish to implement these

algorithms we will call L-1 and B-0. L-1 is basically an iterative,

non-functional list programming language using the usual list primitives

and B-0 is an iterative, non-functional language using bitstrings, one

dimensional boolean arrays.
We avoid the use of unrestricted goto's to make our programs more

easily understandable and amenable to manipulation and cptimisation.

Iteration in both these languages is taken care of by the use of

'canned' loops, namely while statements and applists (in L-0 and L-1).

Applist applies a function to every member of a list and is

defined as

Applist(x1,f) = while not(null(x1))

do [f(hd(x1)); tl(x1)->x1];

The results of Ashcroft and Manna (1971) show that we lose no

power in avoiding unrestricted goto's.

In/

-11

In both these languages (B-0 and L-1) destructive assignment

is allowed, that is, assignment to parts of structures., instead of

only allowing assignment to variables. Two examples will serve to

give the flavour of these languages.

(i) A program in L-1 to change the nth element of a list 1 to x

is simply

1->lcopy;

while n>1 do [n-1->n; tl(lcopy)->lcopy];

x->hd(lcopy)

(ii) A program in B-0 to concatenate two bitstrings.

Length(sl)->nl; Length(s2)->n2;

init(n1+n2)->s3;

1->n; while n<nl do [intsub(n,s1)->intsub(n,s3); n+1->ri]

1->n; while n<n2 do [intsub(n,s2)->intsub(n+n1,s3); n+1->n]

As we are using lists and bitstrings to represent sets we must define

the representation relationship.

A list L represents a set S iff each member of S occurs just once

in L and L has no other elements, e.g. (1,2,3) represents 3,2,1J but

(1,2,3,1) does not.

A bitstring B represents a set S of integers iff the x'th

component of B is I whenever x(S and 0 whenever x/S.

2.4.1-3/

-12-

2.4.1.3 Intermediate Languages

In order to give the compilation process structure we

introduce intermediate languages.

Our first task is to remove as much recursion as possible. This is

represented as a transition between S-0 and a language we call S-1.

S-1 has the same basic primitives as S-0 but it has assignment (to

variables only) and its iterative structure is the same as Lm1 or B-0.

Thus the previous example of a definition in S-0 of union in terms of

consset, choose and minus becomes in S-1.

while not(nullset(s1)) do [choose(s1)->x; minus(x,s1)->s1

consset(x,s2)->s2]

The next stage down the hierarchy concerns the expansion of the set

primitives (e.g. union,choose) in terms of the list or bitstring

primitives. It is here that a choice concerning the representation

is made by the user. For bitstrings the translation is straight to

B-0. If lists are chosen the translation is first to a program in a

language L-0 which is similar to L-1 but is purely constructive in

that it only allows assignment to variables and not to structure.

The previous example of a program written in L-1 to replace the

nth element of a list 1 by x would have to be written thus in L-0.

nil

3-

nil->res;

applist(l,lambda z; if n=1 then cons(x,res)->res

else cons(z,res)->res

n-1->n)

rev(res)->l;

Assuming rev is a primitive for the moment (which it is not in L-0).

The final stage, if lists have been chosen as a representation, is the

translation of the program from L-0 to L-1. The transitions can be

summarised as

S-0

Removal of Recursion

S-1

Bitstrings Chosen Lsts iChosen Expansion of Primitives \
B-0 L-0

Analysis of Store Usage

L-1

The steps S-O->S-1, S-1->B-0 and S-1->L-0 are the steps where the main

flattening of the functional tree takes place.

[By a completely flattened program at a given level we understand an

iterative (non-recursive program) composed entirely of primitives of

that level.]

The removal of recursion S-O=>S-1 attempts to convert a tree of

mutually recursive equations to a single iterative program. The

steps S-1=>B-0, and S-1=>L-0 involve looking at the semantics of this

program, manipulating this transformation according to set theoretic

laws/

laws and rewriting it in such a way that when the primitives are

expanded into B-0 or L-0 primitives the most beneficial interactions

occur enabling loops to be linked.

The step L-.0.>L-1 involves no expansion of primitives,

It involves looking at the way the program uses store and attempting

to economise on its use of store, by looking after many of the

responsibilities usually allocated to the garbage collector at run

time and rewriting the program to remove as many of these responsibilities

as possible.

2.4.2 Outline of Compiler

We are now in a position to describe these steps in some

detail. This will be done mainly through the use of an example. We

show how the compiler deals with the definition of union illustrated

earlier

(nullset(sl)----)s2

union(sl ,s2) =

Lnotnu11set1))__ consset(choose(s1),

union(minus(choose(s1),s1),s2))

2.4.2.1 Removal of Recursion

We do not implement a general method of recursion

translation such as thoseix'oposed by Strong (1970) and Garland and

Luckham (1971)- We find that many recursive forms often met in

practical/

-1 5-

practical programming fall outside the scope of these methods. As

these methods are based on schemas they do not make use of any of the

properties of the primitives such as associativity or commutativity

and any tree-like recursion resulting from polyadic functions, for

example the factorial function, is often only translatable because of

certain properties of its primitives. Conversely the schemas for

which these general methods are most impressive, viz. highly inter-

related monadic schemas, are very little met in practical programming.

Instead, we concentrate on bringing as much semantic information as

possible to bear on the translation. The system classifies the input according

to its structural form by matching it with one of a repertoire of stored schemas

eaching having a known iterative translation. It then looks at the semantic

properties of the primitives making up the function to see if a translation is
possible.

This approach is not rigid in that one can vary the matching

filter to classify more functions in one structural form and then do

more work in the second phase, which performs a semantically based

translation. It is a matter for empirical testing whether an

adequate number of functions can be handled by a manageable number of

patterns. We have not been concerned with the completeness of our

algorithm, although it will translate many functions that complete

algorithms in the schemata sense will be unable to. We visualise

that its use would be in partnership with a general complete algorithm

of the kind proposed by Strong.

The

16®

The first task on being given a set of recursion equations is to

partition it into sets of mutually recursive equations. These can be

translated independently and then recombined.

In the case of our example this partitioning is trivial as there

is only one equation.

Our matching process classifies this equation into the class

associated with the dyadic functions with a structure similar to

factorial. Generally this form is untranslatable, but as consset has

the property that

consset(ol,consset(,, K)) = consset(p consset(CA))

our program manages to produce the translation,

s2->Ans;

while not(nullset(sl))

do [choose(sl)->t; consset(t,Ans)->Ans;

minus (t,s1)->s1]

2.L.2.2 Choice of Representation, Implementation in Lower

Level Description

The basic process we describe in this section is used for

all transitions between language levels except for the recursion trans-

lation stage (S-0 to S-1). Different transitions however emphasise

different aspects of this process and will be described separately.

2.L1.2.2.1/

-17-

2.4.2.2.1 S-1=>B-0, S-1=>L-0 Transformation Extraction

The approach to compilation we adopt owes much to

Milner's work on Simulation, Milner (1971). Given a piece of program

text (say in S-1) we first analyse the transformation induced by this

program text on a symbolic state vector. A state vector gives a value

for every variable occurring in the program. It therefore defines a

state the program could be in. A symbolic state vector is one in

which the values given to variables are names instead of actual values.

We extract the transformation from a piece of program text by eval-

uating its effect on the symbolic vector, producing a pair of before

and after state descriptions.

2.4.2.2.2 Planning

It is here that the choice of the next lower

language is made, at present by the user. This stage is the planning

or optimisation stage. We will describe it as occurring before the

next stage, projection, but as we will see later the separation is not

critical. This stage consists of rearranging the state descriptions

so that they will be optimally implemented in the next lower language

chosen. This involves rearranging the state descriptions using algebraic

laws appropriate to the higher level, but the evaluation function

that measures the optimality of the rearranged transformations is

couched in terms of the future implementation proposed for these

primitives. Thus though the state descriptions manipulated are in
terms/

terms of the higher level primitives and it is their algebraic laws

that we utilise, they may be thought of as shorthand for their proposed

expansion.

This stage can also be truly called a planning stage as the search

for an optimal implementation is done in a simplified space, and

proposed solutions may be sub-optimal although the computation required

to find them is much less than would be needed to find an optimal

solution.

2.4.2.2,3 Projection

The result of the previous stage is a pair of

symbolic state vectors representing the transformation extracted from

the program text. We now project these symbolic state vectors into

the lower domain chosen using the representation relationship.

2.4.2.2.4 Program Writing

Given this pair of lower level state descriptions

we then automatically write a program to perform this transition in

the lower level language as efficiently as possible.

Thus

-1 9-

Thus to summarise

Transformation
extraction 1

Higher level
program

Higher level Optimised Lower level
state pair transformation state pair

Representation
relationships

1
1 1

State State
1

Planning or
optimisation
stage

X

State ` State 11

State
A

Program
writing

Lower level

State

--7 program

The higher level transformation is given in the form of a program,

re-expressed as a pair of symbolic state descriptions. This trans-

formation is rearranged in the planning stage and then translated in

the projection stage into a corresponding pair of lower level state

descriptions. From these the lower level program is produced.

Ideally we would like to be able to take for our pieces of program

text arbitrary programs. Then this process would be devoid of any

form-directed compilation and able to take a program at any given

level purely as a specification and re-interpret this entirely. This

of course requires the ability to extract the semantics of whole

programs, which we are unable to do. Our basic unit for the process

is a single while statement. Generally we are unable to alter whiles

introduced by the recursion translation process and the overall

iterative structure introduced there remains to the end. However,

there are several special cases that our compiler can recognise where

it can alter this structure.

2...2.3/

-20-

2.4.2.3 Implementation in Lower Level Example

Our first task is to segment the program into sections

to be dealt with independently. A section is usually a while state-

ment together with any piece of the program text following the

while statement up to the next while statement or end of program.

Our example divides into two sections

s2->ans

and while not(nullset(sl)) do [choose(si)->t; consset(t,ans)->ans;

minus (t, sl)->sl]

Our compiler can do nothing for the first section which remains as it

is. On looking at the second section, it generally divides it up

into three parts: the predicate of the while statement, its body and

the rest of the section. In this example only the first two are

present.

2.4.2.3.1 Transformation Extraction

We now investigate the semantic transformations

involved. The semantic apparatus that we use will be described in

detail in the following chapter, chapter 3. At this level (3-1) the

semantics of our program is not unnaturally expressed in set-theoretic

terms. We require the variables in our programs to be typed, so

that we know which variables can take sets as values and those that

take objects as values. Persuasive reasons have been advanced for

typed

-21-

typed languages. We do not enter this controversy here but note that

typing makes translation easier.

Thus in our example s1, s2 and ans would be of type set and t of

type object. We invent symbolic names for our semantic objects and

set up an initial state vector thus

ss.1 s2 ans t

set1 set2 set3 obl

Our semantic transformation is basically derived as expressions over

the set and object names. However we also have the ability to give

symbolic names to members of specific sets. Thus if we attempt to

choose an element from a set we can give it a specific symbolic name.

Each set has associated with it a membership list which is a list of.

those object names which are definitely in the given set (this is

discovered from the program text).

The transformation is extracted from the program text basically

by interpreting the state vector through the text. If we encounter

a 'choose' we attempt to discover whether the set already has any

designated members. If it has, we choose the first one to be the

value of this choose, if not we invent one and choose it.

To illustrate this process we will first annotate points in our

example program thus.

I
while I

. not(nullset(sl)) do [. choose(sl)->t; I
. consset(t,ans)->ans; I

.

E
minus(t,s1)->s1 i]

We/

-22-

We may wish to combine some of the work done in evaluating

the predicate expression controlling the execution of the

while statement and evaluating the other two (in this case one) bodies

of the section, thus we include the predicate value in our inter-

pretation by giving it a variable denoted PV. When rewriting the

program we insist that PV must be evaluated before any assignment to

program variables takes place. Any values that may be used again

later are stored as temporary values. The process of interpreting

the state vector thus produces these intermediate stages.

A sl s2 ans t PV Membership list of setl,set2,set3

setl set2 seta o 1 ob2 - nil.

B s l s2 ans t PV

IL t r
setl set2 seta obi not(nullset(setl,))

C sl s2 ans t PV

setl set2 seta obi n t(nullset(setl))

and the membership list of setl becomes [ob3]

D s1 s2 ans t PV

setl set2 consset(ob3,set3) 13 not(nullset(setl))

E s1 s2 ans t

minus(ob3,set1) seet2 consset(ob3,set3) obb3 not(nullset(setl))

Thus the overall transition is

s1/

-23-

s1 s2 ans t PV s1 s2 ans t

set1 s
t
et2 seta obi ob2 minus(ob3,setl) 12 consset(ob3,set3) 013

PV

not(nullset(setl))

with property lists

2.1.2.3.2 Processing the Transformation

We are now in a position to consider the implementation

of these primitives into the next level L-0 or B-0. We therefore give

the general definition of these primitives in the two languages:-

B-0

nullset(s) = true->res; length(s)->l; 1->n;

while n<l do

[if intsub(n,s) = I then false->res; n+1->n]

res

choose(s) = length(s)->l; 1->n;

while n<l do

[if intsub(n,s) = I then n->res; n+1->n]

res

minus

-24.-

minus(x,s) = 0->intsub(x,s);s

consset(x,s) = 1->intsub(x,s),;s

union(sl,s2) = copy(s1)->res;

length(s2)->l; 1->n;

while n<l

do [if intsub(n,s2) = I then

1->intsub(n,res); n+1->n]

res

subtract(sl,s2) = copy(s1)->res;

length(s2)->l; 1->n;

while n<l

do [if intsub(n,s2) = I then 0->intsub(n,res);

n+1->n]

res

member(x, s1) = intsub (x, sl) = 1

L-O

nullset(s) = null(s)

choose(s) = hd(s)

consset(x,s) = if member(x,s) then s else cons(x,s)

minus(x,s) = nil->res;

applist(s, A y; if not(y=x) then

cons(x,res)->res)

re s

union/

-25-

union(sl,s2) = s2->res;

applist(sl , , \ x; if not(member(x,s2)) then

cons(x,res)->res)

res

subtract(sl,s2) = nil->res;

applist(sl, }\x; if not(member(x,s2)) then

cons(x,res)->re3)

res

The next step is to attempt to simplify some of the set expressions.

We note that in B-0 nullset and choose have to be interpreted iteratively,

similarly consset and minus in L-0. We try to avoid this. We note

that if we know something about the membership of the sets in question

this is not always necessary. We have two ways of avoiding this

(i) calculating whether specific symbolic objects are definitely in or

definitely not in a specific set and (ii) ordering the known members of

sets so that when they are projected into lists they will be accessible

without iteration.

(1) We define two functions in the meta-language, defon, defnoton.

defon, defnoton: expressions in setnames->lists of members

which tell us what members are known to be in or known to be not in

given expressions of type set. They are defined inductively over

expressions thus:-

defon

-26-

defon(C) = cases : setname: membership list of

nilset: 0

un3ion(E 1 , e 2): defon(6 1) j defon(62)

subtract(62): defon(f 1) A defnoton(£ 2)

consset(E,1, 2): 1 } U defon(E2)

minus(E12): defon(E2), E.1i

defnoton(O = cases E : setname: 0

nilset: 0

union(2) defnoton(defnoton(.

subtract(&1, E2): (defnoton(E.1) v defon(£2))

(defon(E1) A defnoton('2))

cons set(£i , C 2 defnoton(f 2)/ E1 i

minus((11 , 2): 61 defnoton(, 2)

Given these functions we can make the following simplifications.

consset (obi ,)

(i) if obl e defon() then E

(ii) if ob1edefnoton(E) then in L-0 this can be simplified to

cons(ob1 , E.)

minus,

* The cases notation that we will use for describing algorithms was
developed from the switch on type introduced into CPL by M. Richards
(1967),by R.M. Burstall (1969). As well as being a conditional
switch it allows structures to be decomposed into their constituents.

-27-

minus (obi , .
(i) if obiedefon(6) then in L-0 we may be able to arrange it so

that this is tl(C

(ii) if obledefnoton(E) then
The first case for consset and the

second case for minus 4pnot likely to occur. As these relations
are discoverable from the program text, they would also be apparent to

a programmer. They may occur after recursion translation.

The next stage depends on which language is chosen. It is at

this stage that a choice of representation would have to be made. We

could make the choice by evaluating the transformation in terms of how

much work it involves in each of the competing domains. These would

be upper bounds as they would not be able to take into account any

optimisations we may be able to perform later.

For this small example the planning or manipulation stage does

not alter the state transformations in any of the two implementations.

We therefore reserve its detailed description until we have an

example where it has a significant effect. (3.2.2.3).

2.4 203.3 Implementation in L-0

If we choose L-0 the next task is to project the

transition into the lower domain. We must therefore briefly explain

our semantic apparatus for this domain. Transformations are again

expressed as pairs of state vectors. In the place of sets we have

lists.

-28-

lists. Lists are represented symbolically as chained links of named

nodes. Each list is given just enough structure to enable us to

describe the transformation. Variables can again take as values free

expressions over symbolic objects or nodes. The main work of the

projection is in attempting to arrange the nodes of the list

(representing the members of the set) in such a way as to be able to

implement them easily.

As there is no possible linking of the iterative structure of

the primitives in this example we will leave its description for the

section on the implementation in B-0 where it is of importance.

In this example one set has only one named member so the

projection is easily done. The symbolic set set1 is represented by

the symbolic list n1[cb33I 2 where n1 is the name of the first node

whose head points to ob3 and whose tail points to the node n2. n2 can

be thought of as the rest of the list whose structure does not enter

into our computation.

Thus our projection is

31 s2 ans t PV

set1 set2 seta ob1 ob2

I
s1 s2 ans

minus(ob3,set1) set2 consset(ob3,set3)

t PV

J

`lY

s1 s 2 ans t/
1

n1 n3 nk o11 ob2

n1[yob3 In2

1ob3 not(nullset(set1))

lt
s2 an s

minus(ob3,nl) n3 consset(ob3,nQ

t PV

b o b3

I

-29-

where minus, consset, not and nullset should now be thought of in the

lower domain as shorthand for their definition in this domain. The

program can now see that it can simplify the minus(ob3,nl) into n2.

Thus our final transition is

s1 s2 ans t PV

nV1 n3 n . obi ob

n1 [cjob3in2

s1 s2 ans t

n2 n3 consset(ob3,n4.) ob3

P11V

n t(nullset(n1)) n1 [(ob3 I n2

The task now is to write the program to perform the above trans-

formation and to expand the primitives.

We would like to make a small change here that will enable us to

better illustrate a later mechanism. We were unable to reduce the

consset(ob3,n4.) as we can derive no knowledge of the membership of seta.

However we could have given our compiler a slight interactive capacity

so that when it saw a possible optimisation it could ask the user

questions. Feldman (1972) points out that this capacity will be

essential. Thus if the user knew that the sets were always to be

disjoint we could further simplify the transition to

s1 s2 ans t PV s1 s2 ans t PV

nI n3 nk 0 1 ob n3 n5 pb3 no (nullset(n1))
n1 [l ob3] 2 n1

[4ob3 I n2 n5 ob31n4-

where n5 is the name of the new node introduced by cons(ob3,n4).

The task is now to produce a program from the state transformation.

Our

-30-

Our basic method is given in outline flowchart form overleaf.

It will be described more fully in the later chapter on implementation.

We first calculate a set of differences between the states. A

difference occurs when a variable has differing values in the two

states or a new node is introduced. [At this stage the list

structure can only be altered by adding new nodes.] There exist

ways of removing these differences by assignment instructions,

provided that certain information, in this case the information

required to calculate the value of the left hand side of the assign-

ment, is available. Our program attempts to order the differences

in such a way that they can be removed without any necessary information

being lost. If there exists such an order our program produces the

program corresponding to that order which is guaranteed to be optimal,

as each difference requires at least one assignment statement to

remove it. If this is not possible our program allows itself one

extra instruction, in order to remember information that would other-

wise get lost, and again attempts to order the differences. The

program continues in this way until either a program is found or an

effort bound is exceeded. One restriction is that the difference

corresponding to 'PV' in the transformation must be removed first.

Any calculation that is done in the course of this calculation that

will be useful later is stored in temporary variables until after the

PV difference has been removed. On being given the above state

transformation our program produces the following order of

differences

(i)/

-31-

IN

Outline of the algorithm

to produce a program to

transform stateO to

statel

0->Bound

List of all permutations of differences
between stateO and statel

->diffpermlist

1->Newinstructions

state0->state

1+Bound->Bound.

empty ?

1
Select from diffpermlist

->difflist,difflist->difflistcopy

Remove difflist from diffpermlist

->diffpermlist

YES

Dsff'list empty ? Succeeded UT

I NO
produce program

corresponding to
difflistcopy

NY

Select from difflist
->difference

Remove difference from difflist

->difflist

4
3

Information available

to remove difference ? NO > Newinstructions>Bound
YES NO I YES

Process state by removing difference 1+Newinstruotion

->state ->Newi struotions
I

-32-

(i) PV (ii) t (iii) s1 (iv) n5 (v) ans

and produces the following program

while not(null(sl)) do [hd(sl)->t; tl(sl)->sl; cons(t,ans)->ans]

2.4.2.3.k Implementation in B-0 (S-1 => B-01

We now back up and show how our compiler implements

the transition in B-0.

Here none of the investigation of the discoverable memberships of sets

is useful as in B-0 both consset and minus are implemented as single

operations, so we do not bother to investigate set membership or

simplify choose, minus or consset, thus the transition is

s1 s2 ans t PV s1 s2

1
set1 set2 seta obi ob2 minus(choose(set1),set1) set2

ans t

co sset(choose(setl),set3) ch ose(set1)

PV

1
not(nullset(set1))

What is important is that choose and nullset have similar iterative

structure in this implementation and can be linked. An important

point to note before we proceed is that the combining of the loops of

nullset and choose is done as it were using the S-1 primitives [with

a knowledge of their future implementations] and then expanding them

into an already optimised form, not expanding the code and then

optimising.

An/

®33°

An improvement would be to have several competing implementations

of S-1 primitives within a single representation choice and allow the

compiler to choose the best one for this particular purpose, or to have

the compiler write or modify implementations according to its need.

Our compiler has none of these capacities.

The same program writing mechanism was used for the S-1 => L-0

transition is again used. In this transition, though, iterative

linking plays an important part, so we shall describe it in some

detail. During the calculation of differences the program notes if

any of the expressions it needs to calculate can be linked iteratively.

Basically they can be linked if and only if they are in the same

iterative group (as nullset and choose are), they have the same

iterative argument, and one does not occur as a subexpression of the

other. The program has an evaluation mechanism that attempts to

evaluate whether the effort saved in doing things on the same loop is

worthwhile. In this case it is, and it links nullset(setl) and

choose(setl). As nullset(set1) is part of the 'PV' difference no

assignment can take place until after 'PV' has been calculated.

Our program therefore produces

while [length(sl)->l; 1->n; true->resl;

while n<l do [if intsub(n,s1) = 1 then[false->resl; n->res2;1

n+1->n]

not(res1)] do [rest->t; 0->intsub(t,sl); 1->intsub(t,ans)]

Generally/

Generally that would be as far as our compiler goes on,this

branch (B-0). As we said earlier the compiler has no general ability

to alter the structure of a complete while after introduction.

Usually those whiles that are introduced by the recursion translation

remain to the end. However we have added to our compiler the ability

to recognise and deal with two special cases

viz. while nullset(.) do A

and while not(nullset(e,)) do A.

As the second case is applicable to our example we choose that to

explain.

If it is discoverable that performing A once removes exactly one

element from EOhis form can be rewritten as

length(,)->L; 1->n; while n<L do [A; 1+n->n]

Applying this to the transition our compiler gets as its final B-0

program,

length(s1)->l; 1->n;

while n<l do [if intsub(n,sl) = 1

then [n->t; 1->intsub(t,ans); 0->intsub(t,sl)]

n+1->n]

2.1+.2.1+ Destructive Implementation L-0 => L-1

There

-35-

There remains one step left to describe. The program

produced by projection from S-1 to L-0 was

s2->ans;

while not(null(s1)) do [hd(s1)->t; tl(s1)->s1; cons(t,ans)->ans]

We now describe how our compiler re-implements this in L-1 which

is a destructive list language (i.e. one that allows assignment to

parts of structure, as in X->hd(Y)).

This part of our program concentrates on analysing the store

usage as there are no primitives that expand further.

Again the only section of the above program that our compiler

changes is

2 3 4 56
while not(null(s1)) do [hd(sl)->t; : tl(sl)->sl; o cons(t,ans)->ansb].'

The starting state can be described symbolically as

s1 s2 ans t

H3

n1 ->n2

ob3

£ oil

n3. n4.

We here present our descriptions of the structure of the front portions

of our symbolic lists in pictorial form. How much structure we

actually need at the beginning of our symbolic lists to adequately

describe the transformation is discovered by starting off with a node

representing/

-36-

representing each list and whenever we access some of this structure

(which must be on the front of the list) backing up, adding as much

structure as is needed and restarting. Some of this information

could have been deduced from the fact that not(null(sl)) is true on

this branch.

The following states are derived by interpreting our symbolic

state on the above program

At 2 s1 s 2 ans t nl ->n2, n3, nl1.

n"1 n 3 4 oil ob3

3 s1 s2 ans t nl->n2, n3, n4
t

1 V
n1 n3 n4 ob3 ob3

4 s1I1 s2 ans t nl ->n2, n3, n4

n2 n3 n4 ob3 ob 3

5 s 1 s2 ans t nl->n2, n3, n5->n4
II

n2 n 3 n 5 ob3
W

ob3 ob3

and s1 s2 ans t n1->n2, n3, n4
at 6 W 1 1 4

n1 n3 n4 obi ob3

So the only effective transition we need to implement is

s1 s2 ans t
n1 n3 n4 obi

nl->n2, n3, n4

1
ob 3

to/

-37-

to

s1 s2 ans t nl->n2, n3, n5->nk

n2
n3

n5 b3 ob3 ob3

We now project this transformation into the lower domain, in this

case L-O=>L-1. TI esemantic apparatus we use for the two domains is the

same and so the projection is the identity.

The optimisation of the transition we now perform is to try and

economise on store usage by stopping the introduction of new cells.

Our program notes that n1 is not accessed in any way at the end (as

far as this piece of program is concerned) and that its hd has the

same value as our new node n5, thus an equivalent transformation

involving less rearranging (fewer differences).

s1 s2 ans t nl->n2, n3, nL.

4'

n1 n3 n!F obi ob3

to

s1 s2 ans t n1->n ., n3
.1, \1' 'J .I, .I.
n2 n3 n1 ob3 ob3

Our compiler now writes the program to realise this transition.

The method is as before, calculating differences and attempting to

find an order in which they can be removed. In this case

differences are more complex as they may involve rearranging of hd, tl
pointers

-3g-

pointers and our compiler has to check that side-effects are not losing

information. Our program outputs the following program to perform

the above transformation.

ans->t;

s1->ans;

tl(s1)->s1 ;

t->tl(ans);

hd(ans)->t;

which when plugged back in the earlier program gives

s2->ans;

while not(null(sl)) do [ans->t; sl->ans; tl(s1)->s1; t->tl(ans);

hd(ans)->t]

umm

We have implemented the recursive definition

union(s1,s2) =

in two programs viz.

nullset(s1)_-.->s2

not(nullset(sl))-3 consset(choose(s1),

union(minus(choose(s1),s1),s2))

s2/

-39-
s2->ans;

length(s1)->l; 1->n;

while n<l do [if intsub(n,sl) = 1

then[n->t; 1->intsub(t,ans); 0->intsub(t,s1)]

n+1-> n]

and

s2->ans;

while not(null(s1)) do [ans->t; s1->ans; tl(s1)->s1; t->tl(ans);

hd(ans)->t]

The order of complexity of both of these implementations is n where

n = length of s1 .

If we had implemented our function by the normal interpretive

compiler we would have had two program viz.

nullset(s1)----3 s2

union(s1,s2) _

(not(nullset(s1))-+ consset(choose(s1),union(minus

(choose(s1),s1),s2))

where nullset(s) = True->res; length(s)->L; 1->n;

while n<L do

[if intsub(n,s) = I then false->res; n+1->n]

res

where/

-40-

where consset(x,sl) = 1->intsub(x,s1); s1

where minus(x,sl) = 0->intsub(x,si); s1

where choose(s) = Length(s)->l; 1->n;

while n<l do

[if intsub(n,s) = I then n->res; n+1->n]

res

A program of the order of complexity n2

and

union(s1,s2) = nullset(s1)--4s2

not(nullset(s1))..-_ consset(choose(s1),union(minus

(choose(sI),sI),s2))

where nullset(s1) = null(S1)

where consset(x,s1) = if member(x,s1) then s1 else cons(x,s1)

where minus(x,s1) = nil- >res;

applist(s1, A y; if not(y=x) then cons(x,res)->res)

res

where choose(sl) = hd(sl)

A program of the order n3o

-t-1-

CHHFTER. 3. IMPLEMENTATION

In this chapter we describe how we have implemented the ideas

described in chapter 2.

3.1 Removal of Recursion

3.1.1 In this section we deal with how, whenever possible,

w.e translate sets of recursion equations to iterative programs. It

has long been held desirable to remove some recursion on compilation

in order to discard some of the inefficiencies often inherent in the

use of a stack. There has been some theoretical investigation of

when and how it is possible to translate recursive schemas into

equivalent iterative schemas e.g. Strong (1970) although as far as

we know no actual compiler makes use of any of these ideas, although

BBN LISP, Teitelman et. al. (1971) removes very trivial recursions at

compilation. These methods usually are developed for free or

uninterpreted schemas and thus rely on syntactic criteria for

classifying schema and syntactic translation algorithms for converting

suitable schema to equivalent iterative schema (i.e. ones that agree

over a given range of interpretations of the basic symbols). Not

all schemas are translatable and not all are translatable into

iterative schemas of comparable efficiency. We, of course, are

interested only in translations that maintain or improve efficiency,

but our approach differs in several other respects. Firstly our

inputs will be fully interpreted functions and not schemas, that is,

the

®42_

the function letters occurring will have known denotations; by solely

dealing with schema translatability results we will be restricting

ourselves unnecessarily. Also most of the positive translatability

results have been confined to monadic schemas or linear recursive

schemas and are unable to deal with K-fold recursions, Peter (1951),

for K>2. We feel that many of the forms often met in practical

programming thus fall outside the scope of these methods, as often

when it is natural to use recursion it is because the underlying data

is tree--like (lists) or the algorithm involves polyadic functions.

The schemas on which these methods seem most impressive are highly

interrelated monadic or linear schemas. These are met very little

in practical programming.

The translations that we achieve are of two types.

(i) Where the computation sequence of the iterative program

produced is a rearrangement of the computation sequence of the

recursive program but contains the same number of computation steps.

In these cases we save the time and storage overheads and inefficiencies

associated with the various stacking mechanisms and function entry and

exit. The factorial function is an example here (see 3.1.3.4).

(ii) In other cases, for example the Fibonacci function (3.1.3.4),

the tree grown by the recursive calls contains redundancies in that

the same values are calculated at separate nodes. Our translation

process attempts to recognise these cases and produce an iterative

program whose computation sequence is shorter and contains no

redundancies/

-3-

redundancies, these savings being on top of removing the stacking over-

heads.

The system that we propose and have implemented consists

basically of a 'big switch' according to the structural form of the

equations input followed by the investigation of the semantic

properties of the primitives making up the function in an attempt to

produce a translation. This method owes much to the Planner

philosophy, Hewitt, C. (1971), in that it consists of a matching phase

that attempts to match the input with a set of target patterns.

Associated with each target pattern is a set of rules or procedures

that investigate the semantic properties of the values produced by

the matching process and produce a translation if one is possible.

The work of Cooper (1966) provided valuable insights here. We do

not aim at a theoretically complete translation algorithm although

of course the method could be backed by a general method for the sake

of completeness.

3.1.2 Source and Target Languages

We now define the problem. We do not restrict ourselves to

the task of translating S-0 programs into S-1 programs but generally

state the problem of translating recursion equations into iterative

programs given that we know certain basic semantic properties of the

function primitives making up the recursion equations.

3.1.2.1 Source Language

Most

Most of the following definitions for the recursion

equations follow Strong (1970).

For the source language, which we shall call, S-T, we have an

alphabet B of base symbols, an alphabet P of predicate symbols, an

alphabet X of argument symbols and an alphabet F of function letters.

Each element feF of rank n has associated with it a collection of n

argument symbols xf1,..,,xfn abbreviated to xf. However, to

re-emphasise that we are dealing with functions and not uninterpreted

schemas, each pEP and bEB has associated with it a specific

function and we are given certain properties of these functions.

A tree is an element of B of rank 0 or an element of X or an

expression a(t19...,tn) where a is an element of B, P or F of rank

n and t1,...,tn are trees.

A branched recursion e uation is of the form

f(xf) =

L
pm--.>

tm

where f is an element of F, p1,...9pm are trees with symbols from

X V B V P whose topmost node is a symbol from P and t19...,tm are

trees with symbols from X ./ B V P ./ F.

Note that we do not allow recursive calls to occur in the predicate

trees p. This is not an essential restriction for us but it

simplifies the exposition. We also require that the pi for a

particular recursion equation be exhaustive and mutually exclusive.

A branched recursion set is a system of branched recursion

equations with distinct left hand sides. One of the left hand

function letters is distinguished as the name of the branched

recursion set.

3.1.2.1.2 Semantics

The semantics of branched recursion sets are

straightforward.

Consider a given domain D. A specific recursion equation set

E(f,xf) with name f of rank n defines a partial function Dn_>D.

Each base function beB of rank m defines a partial function
Dm->D.

A computation of E(f,xf) for a particular value of

xf = <d1,...,dn> e Dn, is defined as follows. The computation is a

sequence of trees t0,...,tk where t0 = f(d1,.o.,dn) and ti+1 is

derived from ti by the following rule. Select the leftmost innermost

sub-tree whose rooteF, say g(g1,...,gm substitute g1,.... gm in place

of xg1,...,xgm throughout the schema g(xg), select the line whose

predicate evaluates* to true, if this is p then t replaces
gi gi

g(g1,..,gm) in ti to produce ti+1 This process is continued until a

t i is reached that contains only elements from B V D. The fixed

interpretation of the base functions means that this defines a unique

element/

* The evaluation of the predicate trees is identical to the above
process. The peP have fixed interpretationzo

-1,6-

element in D which is the result of the computation. If there is no

such ti the computation is said not to terminate.

3.1.2.2 Target Language

The target language into which we attempt to translate

the recursion equation sets is a simple flow chart language. The

main feature is that we do not allow an unrestricted flow chart shape,

but only those flow charts that can be represented by while statements.

We do this tc make our tasks of further manipulating the program easier.

The results of Ashcroft and Manna (1971) mean that we do not lose any

chance of translatability by so doing.

We have the same sets B of basic functions and P of predicate

functions and a (possibly) augmented set X of variables.

3.1.2.2.1 Target Language Syntax

A program is a sequence of statements.

A statement is either an assignment statement

or an if then else statement

or a while statement.

An assignment statement has a left hand side and a variable.

A left hand side is a function tree i.e. a tree with members of

X or members of B of rank 0 at its tip and members of B at its nodes.

A/

A while statement has a predicate tree i.e. a tree with members

of X or members of B of rank 0 at its tip and members of B or of P at

its nodes and a member of P at its root, and a program.

An if then else statement has a predicate tree, a true branch and

a false branch.

A true branch is a program.

A false branch is a program.

For example a program to calculate factorial of n.

1->ans;

1->x2;

while not(x2>n) do [mult(x2,ans)->ans; x2+1->x2]

Throughout this thesis programs in the target language will

represent functions and will therefore be single valued. For

convenience the result of these programs will be stored in a variable

called either res or ans. We do not make this part of the syntax of

the language though.

We do not give a concrete syntax for our language. Whenever

the abstract structure of a program is not clear from the written

text we will insert extra separators or delimiters

make it clear.

such as [] to

3.1.2.2.2/

3.1.2.2.2 Target Semantics

We do not give a detailed semantics for our target

language programs deeming them to be sufficiently obvious.

3.1.3 Translation Process

The input to the process is a recursion equation set.

3.1.3.1 Pre-processing

Our first task is to extract all maximal mutual

recursive sets from these recursion equations. A recursion equation

set E is said to be a mutual recursion set if for each pair of

function letters (f,g) occurring in E there is a finite sequence of

function letters f = g09g1,0,gi,9gn = g such that for i between 0

and n-1 , g 1 appears in the tree of a rule of g
. 1

The problem of extracting maximal mutual recursive sets is

identically that of extracting maximal circuits from the di-graph

derived from the schemas by drawing up the calling graph. As there

exist many algorithms to do this in the literature we shall not dis-

cuss it further, Berge and Ghouila-Houri (1965).

Maximal mutual recursion sets correspond to sets of equations

closed under the possibility of recursive re-entry, and function

letters (members of 1R) not being names of equations in a mutual

recursion set can be regarded as basic functions (members of B) as far

as the translation of this mutual recursive set is concerned. Thus

we can translate each maximal mutual recursion set independently, and

recombine/

recombine after the translation. The recombination is trivial as

long as we take care to standardise apart variables used in the trans-

lation.

For example the schema 8 (f,xf)

f(xf) _ ... g(Xf)

... f(Xf)

xi) =
L

... g(xi)

where no other feF occurs in any tree of any rule of f, g, h or i, has

the following associated graph

and the maximal mutual recursive sets are two, viz.

fj and ig,hs1S

For recursion equations that are not part of any mutual recursion

set the translation is immediate, viz.

f/

®50-

f(xf) =
PI -> t1 where t1,O 0

9tm
are trees not containing any fEFO

O

pm---/ tm

becomes if p1 then t1->xf"

else if p2 then t2®>xf

else if pm then tm®>xf

Having extracted the mutual recursive sets the remaining part of

the translation can be divided into two parts, 1) recognising the

structure of the input set and 2) using semantic information about

the primitives to try and affect a translation.

3.1-3.2 Structure Recognising

This is achieved by a matching algorithm that matches

the input set against pattern sets embodying particular recursive

forms. For example the factorial function

fact(x)
5

not(zero(x))..-->mult(x,fact(minus(x,

zero (x) -4 1

has recursive form typified by

f(xf) = a--fib

1 c-h(d,f(e))

as has the function to reverse a list.

Rev

-51-

Rev(xl) = null(xl)--j nil

not(null(xl))-> append(Rev(tl(xl)),hd(xl))

Our matching algorithm has the ability to perform functional

abstraction and we are able to characterise a wide variety of

equations by one structural pattern.

3.1.3.2.1 Matching Algorithm

The following abstract structure is assumed.

A circuit is a set of recursion equations.

A recursion equation has a left hand side and a right hand side.

A left hand side has a name and list of variable names.

A right hand side is a set of rules.

A rule has a predicate tree and a tree.

A function findmatchi circuit: circuit x2
circuit

xm-list->m-list

is provided. Findmatchingcircuit(actualcircuit,posscircuitset,nil)

searches through the set of possible circuit patterns posscircuitset

and if it finds a circuit pattern that matches with the input circuit,

actualcircuit, it succeeds producing a matchlist of elements of the

chosen pattern with fragments of the input circuit.

The/

-52-

The full algorithm to achieve this is given in appendix I. The

correctness criterion of this function is fairly simple to specify.

However if one wanted to prove this function it is debatable whether

this is what one would wish tc prove as an important point of the

algorithm is the dynamic way the backtracking organises the search

for a successful match and we feel that any proof should take account;

of this.

The correctness criterion defines a successful conclusion to the

search in terms of two functions match and matchtree which are defined

further in appendix I. There they are functions that either succeed.

or fail, here they are regarded as predicates.

The conditions required for an element of the pattern to match

with a fragment of a function are given fully in appendix I.

Basically there are three types of elements in the pattern

(i) Atomic nodes. These can match with any tree as long as the

tree does not contain any potentially recursive calls.

(ii) Recursive nodes. These must match directly with recursive

nodes (i.e. names of equations) in the tree.

(iii) Compound nodes. These can match with functions abstracted from

the tree having the same number of arguments and which do not contain recursive

nodes.

matchlist/ .3

A matchlist circuit(circuit c po.scircuitset

A dschema(schemaccircuit

d schemal(schemalEactualcircuxt

matchscherra(schema,schemal,matchlist)

schi,sch2((schlEactualcircuitAsch2Eactualcircuzt

matchschema(schema,schl,matchlist)

matchschema(schema,sch2,matchlist))

schl sch2))))

where matchschema(schema,schemal,matchlist) is

match(nameof (schema),nameof (schemal),match'list)

f\ match(varsof (schemalvarsof(schemal),matchlist)

rule(ruleEschema

rulel (rulel E schemal

matchtree(predicatetreeof(rule)

,predicatetreeof(rulel)

,matchlist)

matchtree(treeof(rule),treeof(rulel),matchlist))

rl i r2((r1 E schemal A r2E schemal

matchtree(predicatetreeof(rule),

predi.catetreeof(rl),matchlist)

matchtree(predicatetreeof(rule),

predicatetreeof(r2),matchl.ist))

ri = r2))

3,1.3031

-54-

3.1.3.3 Production of Translation

The result of the first stage of the process is either

a fail indicating that the input does not correspond to any structure

within the present repertoire or a successful match indicating that

the input has a structure that we can investigate further, and a

matching of variables of the pattern to expressions and primitives

within the function.

In the latter case findmatchingcircuit produces a list associating

elements in the successful pattern with fragments of the input.

Associated with each structural form are procedures that look for

special properties of the function and its primitives to try and find

a translation. This could of course be an arbitrary piece of program

text, and in the limit we could have a preliminary matching process

that always succeeds and a complete algorithm i.e. Strong (1970) in

this section. As a first order approximation we have implemented a

simple system where only the properties of the primitives comprising

the input function are considered. Each' pattern has associated with

it a piece of program which is run if the match succeeds with this

pattern. Each such program consists of a series of tests and

patterns.

3.1.3.3.1 Syntax of Tests

A program is a list of statements.

A/

-55-

A statement is <test program> translation is <program pattern>.

A test program is a list of tests.

A test is either a transformation test

or an oracle

or a function.

A program pattern is a target language program as defined earlier

(3.1.2.2.1, except that the function trees may have as tips or nodes

letters from the associated circuit pattern.

We use the word oracle for a device shown to us by R.M. Burstall

by which the system interrogates the user to fill in gaps in its know-

ledge. At present the system has no ability to discover whether a

piece of program text matched with a pattern element has an inverse or

to construct such an inverse. This ability is often needed in

producing translations. So we use an oracle to type out the text and

ask the user if he can produce an inverse. If the user says no this

test fails, otherwise if all the other tests succeed we ask the user to

type in the inverse and incorporate this into the translation.

A transformation test is used to discover whether input functions

have certain semantic properties needed to achieve a translation.

A transformation test is lefthandside==>righthandside.

Lefthandside and righthandside are both trees composed of

elements from the associated pattern. The program substitutes in

these

56

these trees the values associated with the elements in the matchlist

and then uses the algebraic manipulation routine (3.3) to see if it

can transform the lefthandside to the righthandside using the rules

giving the semantics of the primitive functions. If it can do so

the test succeeds. If the effort bound is exceeded without a

transformation being achieved the test fails.

A function can be any arbitrary function that either succeeds

or fails. The basic one is freecf(x1,x2) which succeeds if the

expression associated with x2 in matchlist does not contain as a

subexpressior the expression associated with x1 in matchlist. Fails

otherwise.

The whole test program is run by taking each statement in turn

and running each of the tests, if one test fails the next statement is

tried. If all tests succeed the corresponding program pattern is

taken. Occurrences of schema pattern letters are replaced by their

values from matchlist and the expanded pattern is the translation.

If all statements fail to produce a translation the fail is

propogated back and either another match produced with the pattern or

if there are no further matches the attempted match with this pattern

fails and the fail propogates further back and the next pattern is

attempted. If there are no further patterns the whole translation

fails.

The derivation of the translation patterns was done in a manner

similar to that used by Cooper (1966)o This concentrates on the

operational/

57

operational aspect of the recursion equation by writing down a

computation sequence and seeing if any properties of the primitives

would allow us to transform this computation sequence to one that

corresponds to an iterative program. Again following Cooper we could

use this method to show that our transformations are correct. We

also suggest an alternative method. Given a recursion equation schema

R1 and an iterative schema I1 which we wish to prove equivalent we

first translate I1 into a recursion equation R2 by any of the well-

known methods and then attempt to prove RI and R2 equivalent using

only the properties of the primitives asked for in the translation

test.

3.1.3.1+ Examples

We now give a list of patterns and translations with a

list of some of the examples that they have translated.

A basic pattern is

SCHEMA

-58-

SCHEMA 1

pattern

f(x) _ f a--yb

1 c---jh(d,f(e))

Translation program

<freeof(x,h); h(xl,h(x2,x3)) ==> h(h(xl,x2),x3)>

translation is <if a then b->ans

else[d->ans; e->x;

while c do [h(ans,d)-->ans; e->x]

h(ans,b)->ans]>

<freeof (x,h); h(xl,h(x2,x3)) ==> h(x2,h(x1,x3))>

translation is <b->ans; while c do

[h(d,ans)->ans; e->x]>

<freeof(x,h); hasinverse(e); hasuniquepoint(a)>

translation is < b->ans; x->xsave;uniquepointof(a)->x;

while not(x=xsave) do [inverseof(e)(x)->x;

h(d,ans)->ans]>

hasinverse(x) is oracle which asks if the text associated with x has

an inverse

hasuniquepoint(x) is an oracle which asks if there is a unique value

that satisfies the predicate associated with x.

inverseof and uniquepointof are oracles which ask the user to type

these values in.

On inputting the factorial function

fact/

-59-

fact(n) = zero(n) --_1

not(zero(n))--jmult(n,fact(minus(n,1)))

the program succeeds in matching it with the above pattern in just one

way viz.

a = zero(n); b = 1; c = not(zero(n)); d = n;

h = \xl,x2; mult(xl,x2); e = minus(n,l)

f = fact; x=n.

Running this match on the first test succeeds. Freeof(x,h) succeeds

because X xlyx2; mult(x1,x2) does not haven as a free variable. On

substituting into the transformation we get mult(xl,mult(x2,x3)) _=>

mult(mult(xl,x2),x3). This transformation is then presented to the

expression transformation routine (see 303) which succeeds in making

the transformation. This fact is given as a basic theorem for the

mult function.

Thus one translation produced is

if zero(n) then 1->ans

else [n->ans; minus(n,1)->n; while not(zero(n)) do [mult(ans,n)->ans;

minus(n,1)->n]

mult(ans,1)->ans]

The second test program also succeeds although in this case the

transformation requires some deduction. We have to prove

mult(xl,mult(x2,x3)) => mult(x2,mult(xl,x3))0

Given

-60-

Given the rules

I mult(x,y) = mult(y,x)

and 2 mult(x,mult(y,z)) = mult((x,y),z)

the algebraic manipulation routine goes through the following deduction

mult(xl,mult(x2,x3)) Starting Expression

mult(mult(xl,x2),x3) by 2

mult(mult(x2,xl),x3) by 1

mult(x2,mult(xl,x3)) by 2

Giving the translation

1->ans; while not(zero(n)) do [mult(n,ans)->ans; n-1->n]

The third test also succeeds the dialogue with the user going:

Has minus(n,1) a unique inverse

Yes

Has zero(n) a unique point

Yes

Type in the inverse of minus(n,1) please

Plus (n, 1)

Type in the unique point such that zero(n)

0

The program produced in this case is

1/

-61 -

1->ans; n->xsave; 0->n;

while not(n=xsave) do [plus(n,l)->n; mult(n,ans)->ans]

A more complicated example, a function for reversing lists at the

top level o

Rev(xl) = not(null(xl)).- concat(Rev(tl(xl)), cons(hd(xl),nil))

null(xl)-nil

matches with the factorial pattern in the following ways

A. a = null(xl) B. a

b = nil b

c = not(null(xl)) c

As in A.
e = tl(xl) e

f = Rev f

x=xl x

h = A xl,x2; concat(x2,xl) h = xl,x2; concat(x2,cons(xl,nil))

d = cons(hd(xl),nil) d = hd(xl)

C. a D. a

b b

c c

As in A. e
e

As in A.

f f
x x

h =X x1 ,x2; concat(x2,cons(hd(xl),xl)) h = A xl,x2; concat(x2,cons(hd(xl),nil)

d=nil d =xl

The/

-62-

The program succeeds in just one case in making a translation.

Taking match A together with the first condition requires the

transformation

concat(concat(x3,x2),xl) => 6oncat(x3,concat(x2,x1)) which

succeeds being again a basic property.

Thus the translation produced is

if null(xl) then nil->ans

else [cons(hd(xl),nil)->ans; tl(xl)-'>xl;

while not(null(xl))

do [concat(cons(hd(xl),nil),ans)->ans;

tl(xl)->xl]

concat(nil,ans)->ans]

All the other matches fail on all tests.

2. SCHEMA 2

f(xl,x2) r a----)b

coh(d,f(e1,e2))

Translation program

<freeof(xl,h); freeof(x2,h); h(xi,h(x2,x3)) ==> h(x2,h(xl,x3))>

translation is < b->ans; while c do [h(d,ans)->ans; el->xlsave;

e2->x2; xlsave->x1]>

3/

-63-

3. ScHEn 3

f(x) = I a 3b
c---+h(f(dl),f(d2))

Translation program

<freeof(x,h); dl ==> d2; hasinverse(dl); hasuniquepoint(a)>

translation is < b->ans; x-.>xsave; uniquepointof(a)->x;

while not(x=xsave) do [inverseof(dl)(x)->x; h(ans,ans)->an:]

<freeof(x,h); dl =_> d2jd2,/xj; h(xl,h(x2,x3)) ==> h(x2,h(xl,x3))>

translation is < b->y1; b->y2; while c do [h(y1,y2)->ans;

y2->y1 ; ans->y20d1->x]>

<freeof(x,h); dl ==> d2; h(x1,h(x2,x3)) _=> h(x2,h(xl,x3))>

translation is < b->ans; while c do [h(ans,ans)->ans; d1->x]>

* dl ==> d2 means that whatever matches with d1 is transformable to
whatever matches with d2. We need not state the other case i.e.
d2 ==> dl as this will be catered for by the matching algorithm.
Similarly with the second condition.

t 1 By e1e2/e3} we mean substitute e3 for e2 throughout e1.

4. Iterative schemas viz.

SCHEMA 4

f(x) =
J

a_-4b

c--4h(f (d))

Translation program

<freeof(x,h); hasinverse(d); hasuniquepoint(a)>

translation is < b->ans; x->xsave;

uniquepointof(a)->x;

while not(x=xsave)

do [inverseof(d)->x; h(ans)->ans]>

<h ==> >>\ x; L

translation is < while c dm [d->x] b->ans>

SCHEMA 5

f (x 9 y) a-- 4b

I c-----+h(f(d19d2))

Translation program

<h ==> X, x;x>

translation is < while c do [dl->xsave; d2->y; xsave->x]

b->ans>

There

-65-

There are of course further translations if one allows oneself counter

augmented flowcharts, Strong (1970)0, We do not introduce this

complication here.

These are sufficient to achieve the following translations

1 . Fib(n) = or(equal(n,1),equal(n,0))..---1

not(or(equ.al(n,1),equal(n,0)))___

plus(Fib(minus(n,1)),Fib(minus(n,2)))

1->yl; 1->y2; while not(or(equal(n,1),equal(n,2)))

do [plus(yl,y2)->ans; y2->y1; ans->y2; minus(n,1)->n]

By schema 3 test 2

2. A function defining union in terms of consset

union(x,y) = nullset(x)---->y

L not(nullset(x))---,%consset(choose(x),union(manus(choose(x),,

x),y))

y->ans;

while not(nullset(x)) do [consset(choose(x),ans)->ans;

minus(choose(x),x)->x]

By schema 2

3. A function to compute the Boolean (power set) of a set is

Boov

-66-

Bool(S) - 1nls(s)1set
r not(nullset(S))----)union(union(bool(S/choose(S)),

choose(S)),g(bool(S/{choose(s)),

choose(s)))

g(S,x) = nullset(S)--jn.ilset

not(nullset(s))-- consset(consset(x,choose(S)),g(S/cho.se(S)))

This divides first into two separate tasks corresponding to the two

separate equations. The first equation matches with schema 3 giving

the following match

a = nullset(S) b = nilset

c = not(nullset(S)) f = bool x = S

dl = S/choose(S)j d2 = S/choose(S)j

h =,A x1yx2; union(union(xl,choose(S)i,g(x2,choose(S))),g(x2,ohoose(S)))

All tests fail.

The second equation matches with schema 2, and the test succeeds h

being matched with X xl,x2; consset(xl,x2)

and consset(xl,consset(x2,x3)) ==> consset(x2,consset(xl,x3)) is

provable. This gives the translation

nilset->ans;

while not(nullset(S))

do [consset(consset(x,choose(S)}),ans)->ans;

S/ choose (S) ->x1 saved x->x; xl save->S]

? ./

-67-

A program to compute 2n

tvon(n) = zero(n)---}1

mult(2,twon(minus(n,1)))

matches with schema 1,and translates in 3 ways

(1) if zero(n) then 1->ans;

else [2->ans; minus(n,1)->n;

while not(zero(n))

do [mult(ans,2)->ans; minus(n,1)->n]

mult(ans,1)->ans]

(ii) 1->ans; while not(zero(n)) do [mult(2,ans)->ans; minus(n,1)->n]

(iii) 1->ans; n->xsave; 0->n;

while not(n=xsave) do [plus(n,1)->n; mult(2,ans)->ans]

where plus(n,1) is the user supplied inverse to minus(n,1) and 0 is the

unique n such that zero(n)o

5. A function that takes a finite partial function represented as a

set of pairs and applies it to all members of a set

apply(f,s) =
J

nulls et (f)- ?nilset

not(nullset(f))----->union(g(choose(f),s),apply(f/choose(f)i,s))

g(P,s) = (nullset(s)_-_ni1set

and(not(nulls et(s)),equal(choose (s),front(p)))back(p)

L and(not(nullset(s)),not(equal(choose(s),front(p))))- g(p,s/choose(s))

This

-68-

This again splits into two problems.

The first equation (treating g as basic) translates to

nilset->ans;

while not(nullset(f))

do [union(g(choose(f),s),ans)->ans;

f/ehoose(f)}->x1save; s->s; x1save->f]

By schema 20

The second equation illustrates a point about generality. At

the present level of simplicity our implementation would fail to

translate this, but it would be easy to add a preprocessor which

effectively generalises rules that contain no recursive call into

one rule i.e m in this case a function of the form

f (X,Y) = a---fib

c-d
e-*h(f(g1,g2))

would be preprocessed into the form

f(x,y) = a i/ c a then b else d'

e -jh(f(g1,g2))

which is then translatable giving

while and(not(nullset(s)),not(equal(choose(s),front(p))))

do [p->xsave; s/jchoose(s)j->s; xsave->p]

[if nullset(s) then nilset else iback(p)]

->ans

BJ schema 5 .

-69-

3.2 Compilations

We are now in a position to describe in some detail our

implementation of the compilation process outlined in chapter 2. To

recapitulate our overall task is the implementation of recursion

equations written in the language S-0 as iterative programs in B-0 or

L-1. The first stage S-0=>S-1 is achieved by the recursion trans-

lation process previously described. This process is not restricted

to any particular set of function primitives., the semantics of the

primitives being given as transformation rules. The basic process

involved in the transformations S-1=>L-0, S-1=>B-0 and L-0=>L-1 could

be applied to any compilation and we have attempted to separate the

subject dependent information from the main processes in order to

make it easier to specialise the compiler to other domains. To make

our discussions more concrete we will describe them in terms of the

specific domains of S-1, B-0, L-0 and L-1 and indicate later how the

differing aspects are separated [chapter 5].

Towards this end we will have to describe the syntax and

semantics of the languages S-1, B-0, L-0 and L-1.

3.2.1 Description of S-1, B-0, L-0 and L-1

3.2.1.1 S-1 Syntax

A program is a sequence of statements.

A statement is either an assignment statement e.g. x->y

or an ifthenelse statement e.g. if P then Al else A2

or a while statement e.g. while P do [A]

An/

-70-

An assignment statement has a left hand side and a variable.

A left hand side is a function tree which has members of X or

members of B of rank 0 at its tips and members of B at its nodes.

A while statement has a predicate tree and a program.

An ifthenelse statement has a predicate tree, a true branch and

a false branch.

A predicate tree is a tree with members of X or members of B of

rank 0 at its tips, members of B or of P at its nodes and a member of

P at its root.

A true branch is a program.

A false branch is a program.

B= BO I) B1 U"2
where B0 = nilset} LI names for integers

B1 = choosej

B2 = union,subtract,consset,minusi

P P1 U P2

where P1 = not,nullset}

p2 = and,or,equal

3.2.1.2/

-71-

3.2.1.2 S-1 Semantics

We describe as much semantic apparatus as is utilised in

our implementation. We define the semantics by giving a mathematical

meaning to the state of a computation of a program and showing how

certain constructs modify the state. Our meta-language is set-

theoretic.

The state of a computation of a program P written in S-1 is given

by a pair

S = <V,C>

where V = {Variables occurring in P}
K

and C = VX
UO Ib n(I)

and I = the integers.

We write IV (X) to denote the power set of X,

to denote the sets of sets of X to depth n.
i.e.

and

W 0(I) = I

r 1

(r) = (I)
tn+1 (I) _ (n(I))

i.e. u3 (X) E 2X, and 1 n(X)

We shall give an outline of a recursive definition of a function value:
Kf

expressions in
5-1->nVn4

n(I) which allows the semantics of an

expression to be evaluated.

In state S0 = <V,C0> value(C) is given by

cases/

-72-

cases E,

minus(E 1 $ E2).

value(
E1

)1 0 value(62)

value(C 1) U value(E: 2)
value(

E1
)/value(62) subtract(L1 , 62)'

E ev: C0(E

nilset: f6

consset(

union(Gr1,

value(f,2)/ value(61) i

choose(f 1) a x for some xe value([1)

and C I
=

C2 > choose(C) choose(E.' 2)

C -> £2s then causes state transition S° >SI such that

S1=<V,C1>

where C1=C0 U <6 2value(61)>s/<62,value(2)

3.2.1.3 L-0 Syntax

As for S-1 except that

B=B0U B1 lJ B2

where B0 = nilj ') names for integers

B1 = hd,tlj

B2 = cons

Applist(x,f) stands for while not(null(x)) do;[f(hd(x)); tl(x)->x]
P = P

1
0 P2

where P1 = null,not}

P2 = equal,and,ori

3.2.10 ./

-73-

3.2.1.4 L-1 Syntax

As for L-0 except that

An assignment statement has a right hand side and a left hand side.

A left hand side is as in L-0.

A right hand side is a tree whose tips are variables and whose

nodes are hd or tl, e.g. X->hd(Y) is allowed.

3.2.1.5 L-O and L-1 Semantics

The state of the computation of a program P written in

L--O or L--1 is given by a 4-tuple.

S <V,A,L,C>

where V = variable symbols in Pi

A = unique names for store locations

L = Vx(A 11 I) I = integer--

C Ax((A V 'nil' V I) x (A V 'nil' 0 I))

The explicit mention of store locations is not strictly necessary

for L--O but it is for L=-1, where destructive assignment is allowed.

We use the same semantic apparatus for both languages as this

facilitates the translation of programs written in L-0 into programs

in L-1. Store locations are thought of as being taken off the free

list when required. The semantics of the freelist are mirrored by a

function nextname.- (1j (A)->A which when given all the store locations

used so far produce a name for the next store location.

We/

We again give an outline of a function value

value: expressions->V V A V I U 'nil' which will allow the

semantics of any list expression to be calculated.

value(,) in state SC = <V,AO,LO,CO>

Cases G

,eV:

hd(f,1):

tl(
cons(61, -2) :

LC(.)
(C0(value(1)))1

(C0(value(
E1)))2

nextname(A1), where S1 = <V,A1,L1,C1> is the tate

'obtaining after the evaluation of value(C1), value(E2).

i+1 i+1 i+1 i i+1 Causes state transition S ->S , S = <V,A L ,C >

Ai+1 Al V nextname(Al)
i+1 Ci C V <nextname(pl), <value(E 1), value(2)»}

Causes state transitions Sl-,>S1+1 where Si is the

state obtaining after the evaluation of C
1

and £2.

cases

(i) E. 2EV

Ai+1 Ai

Li+1 Li U <E2,valtle(G1)>}/
< G2,(value(E2))2>5

The

-75-

The next two cases can only occur if the

program is written in L-1

(ii) E2 ishd(&3
A

i+1 i

Li-k 1 Li

Ci+1
Ci <value(F3),<value(E1),(C'(value(£J)))2>>

/<value(E3),Cl(value(E3))>

2 is tl(3)
i+1

=
Ai

Li+1 Li

Ci+1
= Ci U <value(E3),<(C'(value(E3))1,value(1)»}

/ <value (E.3) , Cl (value(E.3))>

3.2.1.6 B-0 Syntax

As in L-1 except that

An assignment expression has a right hand side and a left hand side.

A left hand side as in L-0.

A right hand side is either a variable or a tree of depth I

whose tips are variables and whose root is intsub.

B=B0U B1 l)B2

where B0 = names for integers

B1 = {init,length}

B2 = {intsub,plus,minus

P/

-76-

P=P1 V P2

where P1 = noti

P2 = j and, or, equal

3.2.1.7 B-0 Semantics

S = <V,I,C>

V = (variables

I=N+

C = V-> (N+-> 0,1 D) U I

i.e. a bit string is viewed as a function (total ono some subset of N+)

from N+ to 0,1 j .

Value(s) in S0 = V,I,C0>

= cases

EEV: c°(E)

init(L1): (value(9,1)(N+)

/, i; if O<i<value (C,1) then 0 else undef

intsub(E1, E2): value(£2)(value(1))

length (C1) : max i I value (E1) (i) / undef I

cases, (i) 2(V

then causes transition
S0->S1

such that

S1 = S0 except that C1 (E2) = value(F,
1

)

(ii)/

-77-

(ii) £2 is intsub(C3, 64)

causes transition S0=>S1

such that S1 = SO

except that value(4)(value(C3)) = value(E
1)

3.2.2 Compilation S-1=>B-0 or L-O-Example

We will now describe the steps of our algorithm involved in

the translation of an S-1 program into an L-0 or B-0 program. The

process involved in the step L-0 to L-1 is similar but we have chosen

to describe it separately in section 3.2.3 as it involves a more

complicated semantic apparatus but does not involve the expansion of

iterative operators.

The process takes as input whole programs, splits them into sections as

defined in 2.4.2.3 and subjects each section to the process of

(i) Extracting the transformation

(ii) Projecting and optimising the transformation

(iii) Re-writing in the lower domain.

In order again to give our discussion some concreteness we will
illustrate the steps involved by means of an example. In order to

illustrate several points succinctly in one example we have

constructed an artificial example.

We/

-78-

We will consider the section of program, with various textual

points numbered.

while or(nullset(union(s2,s3)),member(x,s2))
f1 2 3

do [union(s3,s2)->s2;lsubtract(s2,subtract(s3,s2))->s3]

consset(choose(s2),nilset)->s2;
5

union(s2,s3)->s3;
6

3.2.2.1 Extracting the Transformation

(i) Initialising the state vector.

The program requires knowledge of the types of each variable

present in the program. From this information it constructs an

initial state vector, inventing a name for the symbolic value of each

variable.

In the example s1, s2, s3 are of type set and x is of type

individual, thus we get an initial vector.

siit s2 s3 x

s t1 set2 set3 obi

Associated with each set name is a membership list which is initially
empty.

(ii) Interpreting the program on the state vector.

The/

79-

The program proceeds as a normal interpreter from instruction to

instruction. For each assignment instruction it evaluates the left

hand side and replaces this as the value of the variable on the right

hand side producing an updated state vector. However in this case

evaluating consists of forming the free expression in the functions

over the set or object names. One special transformation is applied

here in the case of implementations into L-0.

Any occurrence of chooseO causes defon(f,), see 3.2-.2:. ,to be

calculated. If defon(,) is nonempty the first element of defon(f.

is chosen and replaces choose(E,). If defon(,) is empty then if C

is a setname a new object is invented, added to this setnames object

list and replaces choose(), otherwise the expression is left as it

is.

In the rest of the example we will assume that the implementation

is to be in L-0 and note where the implementation would differ if it

were to be in B-0.

In our example, the state vector at the numbered points is thus

1 s1 s2 s3 x

set1 set2 set3 obi

membership list setl f

set2 f
seta 0

2/

2 s1 s2 s3 x

setl union(set3,set2) seta obi

3 sl s2 s3

yI
X

set1 u bon(set3,set2) subtract(union(set3,set2),subtract(set3,union ob1

(set3,set2)))

and at Lj-

sl s2 x

set1 set2 seta obi

5 sl s2 s3 x and the membership list of set2

setl consset(ob2,n"Llset) set3 obl becomes [ob2]

6 s1 s2 s3 x

set1 consset(ob2,ni2set) union(consset(ob2,nilset),set3) ok

Thus the two transformations extracted are

sl s2 s3 x membership list setl 0

setl set2 set3 obi set2 [ob2]

seta 0

to

s1 s2 s3

setl union(set3,set2) subtract(union(set3,set2),subtract(set3,union(set3,set2)))

and

si s2 s3 x

setl set2 seb3 obl

to/

-81-

to

si ,s2 s3 x

set1 consset(ob2,nilset) union(consset(ob2,nilset),set3) ob1

The predicate expression of the while is also included in the

transformations o In our example this is

or(nullset(union(set2,set3)), member(obl,set2))

3.2.2.2 Simplification

For this and subsequent expositions the state

description will be thought of as consisting of four elements

(i) the original state which we will call stateO

(-,.i) the predicate expression of the while statement and

(i_ii)Q(iv) the end states resulting from the execution of the while

body and the rest of the section;. We will call these

statet and statef respectively.

In this process the program goes through the state description

and replaces each expression e by simplify(£) where simplify(E.) is

as below.

Simplify: expression->expressiono

(i) For implementation into L-0

Cons set/

-82-

Consset(x,S) can be reduced to S if we know that x is in S or to

cons(x,S) if we know x is definitely not in S. Minus(x,S) can be

reduced to S if we know x is definitely not in S. If x is definitely

in S we attempt to order S to make x the first element so that minus(x,S)

can be reduced to tl(S).

simplify(expr) = cases expr

s'etname, objectname

or constant: expr

f (ai g? ,arg2):

cases f :
cons set: if simplify(argl)e defon(simplify(arg2))

then arg2

elseif simplify(argl)edefnoton(simplify(arg2))

then cons(simplify(argl),simplify(arg2))

else consset(simplify(argl),simplify(arg2))

minus: if simplify(argl)edefon(simplify(arg2))

then access(simplify(argl),s:implify(arg2))

elseif simplify(argl)edefnoton(simplify(arg2))

then simplify(arg2)

else minus(simplify(arg1),simplify(arg2))

rest: f(simplify(argl),simplify(arg2))

f(argl): f(simplify(argl))

(ii) For implementation into B-0

Consset/

-83-

Consset(x,S) can be reduced to S if we know that x is in S.

Minus (x,S) can be reduced to S if we know that x is not in S.

simplify(expr) _

cases expr

f(92):

cases f:
consset: if simplify(E1)edefon(simplify(E 2))

then simplify(62)

else consset(simplify(E1),simplify(E2))

minus . if simplify(El)Edefnoton(simplify(Ed)

then simplify(. 2)

else minus(simplify(
E1

),simplify(F'2))

rest . f(simplify(£1), simplify(E2))

f(CI f (simplify(

rest : expr

where access(argi,arg2) produces the code to enable argl to be

accessed in the list arg2

where defon(E.) =

cases * a

setname: membership list of E

nilset : 0

union(I' f,2) . defon(&1) V defon(£2)

I . , C2): defon(£1) A defnoton(£2)

consset(E1
, E2) : 1 El i 0 defon(E2)

minus(EV'F2) : defon(2)/{ E 11

where

-8k-

where defnoton(i,) = cases E :

setname '0

nilset 0

union(E 1 , 62) . defnoton(E 1) A defnoton(Ed
subtract(E1, 62 (defnoton(E1)) defon(2))

J (defon(E1) A defnoton(E2))

consset(El' E2) : defnoton(E2)" 9-1

minus(E 1 , 2) E1
1 U defnoton(62)

3.2.2.3 Planning

The planning and projection (3.2.2.4) stages of the

program are commutative. In the program projection actually occurs

before planning, but it is conceptually easier to describe it the other

way around.

In this the planning or optimising stage the transformations in

the higher domain, in this case S-1, are rearranged using algebraic-laws

appropriate to this domain but with an aim that when these trans-

formations are projected into the lower domain (B-0 or L-0) they can

be implemented as efficiently as possible. In this case the

planning is done so that when the rearranged transformations are

implemented expansion of the higher primitives in terms of lower

primitives will present the maximum opportunities for optimising

interactions. The main optimising interactions important here are

the combination of common iterations and common subexpressions.

3.2.2.3.1/

-85-

3.2.2.3.1 Production of Alternative Forms

The program goes through the state description and

produces three lists of expressions which occur in the predicate

expression, statet and statef. We call these the plist, the tlist

and the flist respectively. It then uses the algebraic manipulation

routine (3.3) and the rules giving the algebra of the primitives to

form these into a list of lists of all alternative forms for these

expressions. While doing this it forms two dictionaries.

1) The expression dictionary that associates a unique number with

every expression occurring

and 2) The subexpression dictionary that associates with each

expression number a list of numbers corresponding to subexpressions of

the expression.

Thus in our example which has a state description of

stateO = sl s2 s3 x

setl set2 seta obi

predicate expression = or(nullset(union(set2,set3)),member(obl,set2))

statet = sl s2 s3 x

seti union(set3,set2) subtract(union(set3,set2),subtract obi

(set3,union(set3,set2)))

statef = sl s2 s3 x

setl c sset(ob2,nilset) un on(consset(ob2,nilset),set3) ob1

the/

-86-

the plist is

[or(nullset(union(set2,set3)),member(obl,set2))]

the tlist is

[union(set3,set2),subtract(union(set2,set3),subtract(set3,union(set3,set2)))]

and the flist is

[consset(ob2,nilset),union(consset(ob2,nilset),set3)].

Given just the commutative property of union

i.e. union(x,y) = union(y,x), the program goes through the state

description and produces alternative form lists

plist =

[[or(r.ullset(union(set2,set3)),member(obl,set2)),

or(nullset(union(set3,set2)),member(obl,set2))]]

tlist =

[[union(set3,set2),union(set2,set3)]

[subtract(union(set2,set3),subtract(set3,union(set3,set2))),

subtract(union(set3,set2),subtract(set3,union(set3,set2))),

subtract(union(set2,set3),subtract(set3,union(set2,set3))),

subtract(union(set3,set2),subtract(set3,union(set2,set3)))]]

f list/

-87-

(list =

[[consset(ob2,nilset)],

[union(consset(ob2,nilset),set3),union(set3,consset(ob2,nilset))]]

The expression dictionary that is formed during this second pass

is

No

I

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Expression

or(nullset(union(set2,set3)),member(obl,set2))

nullset(union(set2,set3))

union(set2,set3)

member(obl,set2)

or(nullset(union(set3,set2)),member(obl,set2))

nullset(union(set3,set2))

union(set3,set2)

subtract(union(set2,set3),subtract(set3,union(set3,set2)))

subtract(union(set3,set2),subtract(set3,union(set3,set2)))

subtract(union(set2,set3),subtract(set3,union(set2,set3)))

subtract(union(set3,set2),subtract(set3,union(set2,set3)))

subtract(set3,union(set3,set2))

subtract(set3,union(set2,set3))

cons set(ob2,nilset)

union(consset(ob2,nilset),set3)

union(set3,consset(ob2,nilset))

And the subexpression dictionary is

Expression/

-88-

Expression number

1 2 3 L 5 6 7 8 9 10 11 12 13 111 15 16

subexpressions

4 L 7 3 7 3 3 7 3 1L 1L 1L

5 6 7 9 10 7 12 13 15 16

6 8 12 13 11

7 12 13

Thus after the second pass through the state description the plist,

tlist and flist are coded as

[[1 5]]

[[7 3][8 9 10 11]]

and [[11+][15 16]] respectively.

Each element of these lists is a list giving all alternative forms

for an expression occurring in that component of the state description.

3.2.2.3.2 Evaluation of Alternatives

From each list the program now forms a new plist,

tlist and flist. Each is a list of n-tuples. Each n-tuple is formed

by picking one element from each n-'tuple of the old list. Thus our

new plist, tlist and flist become

plist [[1][5]]

tlist [[7 8][7 9][7 10][7 11][3 8][3 9][3 10][3 1111

flist [[11+ 15][1!+ 16]]

Each

-89-

Fach n-tuple of a list represents one form for all the expressions

involved in the corresponding state. A choice of one n-tuple from

each list represents one form for all expressions involved in the

state descriptions. The program now evaluates all such choices in

order to try and determine the optimal form to implement.

The program has two measures that it uses in forming this

evaluation.

1) The total number of distinct subexpressions that it will

need to calculate

and 2) The number of expressions that can have their iterations

performed together. For example in L-0 the definitions of union and

subtract are

union(sl,s2) = s2->res; applist(sl,lambda x; if not(member(x,s2)) then

cons(x,res)->res)

subtract(sl,s2) = nil->res; applist(s1,lambda x; if not(member(x,s2) then

cons(x,res)->res)

and if therefore two expressions with outermost functions union and

subtract have an equal iterative argument (fixed to be the first
argument) their evaluation can be performed on a common loop. The

evaluation function regards this as equivalent to saving the

evaluation of one subexpression. The program requires only a list
showing which functions can be linked together in this way. In a

later

-90-

later stage (3.2.2.5) some of the linkings that the program thought

possible may be disqualified as one linked expression is a

subexpression of another. Thus our planning is done on a simplified

space but the computation required is much less. Our evaluation

function will always be a lower bound on the actual effort required.

Assume we have (for L-0) a linking list thus

[[union subtract]]

showing that union and subtract can be linked. Thus we can see from

the expression dictionary that expressions 7, 12, 13 and 16 are

candidates for linking and no others.

The results of the programs evaluation are summarised in the

following table.

T
ot

al
 n

o.

of

C
om

bi
na

tio
ns

E

xp
re

ss
io

ns
 r

eq
ui

re
d

ex
pr

es
si

on
s

N
o

of
 lin

ki
ng

s
E

st
im

at
ed

 E
ffo

rt

[7
 8

]

[7
 8

]
[7

 9
]

[7
 9

]

17

10
1

[7
 1

0]

[7
 1

11

17

11
1

[
3

8
]

(
3

8
]

[
3

9
]

[
3

9
]

[3

10
]

[3

10
]

13

11
1

13

11
1

[7

81

[7
 8

]

[7
 9

]

(7
 9

]

[7
10

]
(7

 1
0]

[7
 1

11

[7
 1

1
]

[
3

8
]

[
3

8
]

[1
4

15
]

[1
4

16
]

[1
4

15
]

[1
4

16
]

[1
4

15
]

[1
4

16
]

[1
4

15
]

[1
4

16
]

[1
4

15
]

[1
4

16
]

[1
4

15
]

[1
4

16
]

[1
4

15
]

[1
4

16
]

[1
4

15
]

[1
4

16
]

[1
4

15
]

[1
4

16
]

[1
4

15
]

[1
4

16
]

[1
4

15
]

(1
4

16
]

[1
4

15
]

[1
4

16
]

[1
4

15
]

[1
4

16
]

1
2

3

1
2

3

1
2

3

1
2

3

1
2

3

1
2

3

1
2

3

1
2

3

1
2

3

1
2

3

1
2

3

1
2

3

1
2

3

4

5

6

4
5

6

4

5

6

4

5

6

4

5

6

4

5

6

4

5

6

4

5

6

4

5

6

4

5

4
7

8
12

14

15

9

1
8

4

7

8

1
2

1
4

1
6

9

1

8

4

7

9

1
2

1
4

1
5

9

1

8

4
7

9
12

14

16

9

2
7

4

7

1
0

1
3

1
4

1
5

9

1

8

4

7

1
0

1
3

1
4

1
6

9

2

7

4
7

11

13

14

15

9
1

8

4
7

11

13

14

16

9
2

7

)4
-

7
8

12

14

15

9
1

8

4

7

8

1
2

1
4

1
6

9

2

7

4

7

9

1
2

1
4

1
5

9

1

8

4

7

9

1
2

1
4

1
6

9

2

7

1
0

1
3

1
4

1
5

8

1

7

1
0

1
3

1
4

1
6

8

1

7

4
7

11

13

14

15

9
1

8

2-

7
11

13

14

16

9

2
7

7

8

3

1
2

1
4

1
5

9

1

8

7

8

3

1
2

1
4

1
6

9

2

7

7

9

1
2

1
4

1
5

8

1

7

7

9

1
2

14

16

8
2

6

7

3

1
0

1
3

1
4

1
5

9

1

8

7

3

1
0

1
3

1
4

1
6

9

2

7

7
11

13

3

14

15

9
1

8

7
11

13

3

14

16

9
2

7

7

8

3

1
2

1
4

1
5

9

1

8

7

8

3

1
2

1
4

1
6

9

2

7

c
c
n
t
d
.
/

15
1

13

91

[1
4

15
]

4
5

6
7

3
9

12

14

15

9
2

7

[5
]

[3

9]

[1
4

16
]

4
5

6
7

3
9

12

14

16

9
2

7

[5
]

[3

10
]

11
4

15
]

4
5

6
7

3
10

13

14

15

9

1
8

15
]

13

10
]

[1
41

6]

4

5

6

7

3

1
0

1
3

1
4

1
6

9
2

7

[5
]

[3
 Il

l
[1

4
15

]
4

5
6

7
3

11

13

14

15

9
1

8

[5
]

L3

11
1

[1
4

16
]

4
5

6
7

3
11

13

14

16

9

2
7

-93-

It can be seen from the table that the combination the program

estimates will require least effort to compute is 5 7 9 11.16. This

is the one that it chooses to continue with and thus our state

description becomes

stateO = s1 s2 s3 x

set1 se t2 set3 obit

predicate expression = or(nullset(union(set3,set2),member(obi,set2))

statet = s1 s2 s3

set1 union(set3,set2) subtract(union(set3,set2),subtract(set3,union(

x
l

obi

set3,set2)))

statef = s s2 s3 x 1
II

s t1 consset(ob2,nilset) union(set3,consset(ob2,nilset)) 11

with potential linkings between union(set3,set2),subtract(set3,union(set3,set2))

and union(set3,consset(ob2,nilset)).

3.2.2.4 Projection

3.2.2.4.1 Projection into B-0

For implementation in B-0 the projection is the

identity.

3.2.2.4.2 Projection into L--0

For

For implementation in L-0 the program goes through

the state description transforming it to a state description in I,-0

that represents the original transformation in S-1. It does this by

basically projecting the original state (stateO) and the final states

(statet and statef), and the predicate expression into the lower domain.

The program goes through each component of the state description,

replacing setnames by names for nodes and for every setname that has a non-

empty membership list it adds a triple <t1,t2,t3> to that component of

the state description where t1 is the name of the list node this triple

represents. t2 is the name of the head of this node, a member of the

set this list represents, and t3 is the name of the node that forms

the tail. The order of the elements (head values) of these lists

corresponds to the order decided earlier for"the membership lists of the

sets (3.2.2.2).

Thus our example becomes

stateO = s1. s2 s3 x [[n2 ob2 n3]]

ni n2 ob1

predicate expression = or(nullset(union(n3,n2)),member(obl,n2))

statet = s1 s 2 s3 x

n1 un ion(n3,n2) subtract(union(n3,n2),subtract(r..3,union(n3,n2)) 11

[[n2 ob2 n3]]

statef = s 1 s 2 s 3 x

n 1 co nsset(ob2,nilset) un ion(n3,consset(ob2,nilset)) oil

[[n2 ob2 n3]]

3.2.2.5/

-95-

3.2.2.5 Shrinking

This can be thought of as pre-processing the state

description to simplify the task of the program writing algorithm.

The program processes the state description so that expressions that

are equal become the same expression. This is only done between

the predicate expression and statet, between the predicate expression

and statef and within statet and statef. Equal expressions between

statet and statef are left distinct.

Thus our state description in expanded tree form is

stateO =

sl s2 s3 x predicate expression =

ni n2 n ob1 or(
ttullset(

,

) member(obi,n2)
[[n2 ob2 n3]] ion(n3,n2)

statet s1 s2 s3 x

n1 union(n3,n2) subtract(,) obi

union(n3,n2) subtract(n3,)

union (n3,n2)

[[n2 ob2 n3]]

statef = si s2 s3 x

n consset(ob2,nilset) union(n3,) obi

con sset(ob2,nilset)

[[n2 ob2 n3]]

after

i

s
t
a
t
e
O

=

s
1

s
2

s
3

x

n
1

n
2

n
3

o
b
i

[
[
n
2

o
b
2

n
3
]
]

p
r
e
d
i
c
a
t
e

e
x
p
r
e
s
s
i
o
n

=

o
r
(

st
at

ef
 =

n
u
l
l
4
s
e
t
(

a

)

em
be

r(
ob

1,
n2

)

s1

s2

s3

x
I ni

un

 on
(
n
3
,
J

ob
i

co
ns

 s
et

(o
b2

;n
ils

et
)

)

st
at

et
=

s3

x

o
b
i

[
[
n
2

o
b
2

n
3
]
]

c
F

O
j

(D

0 0 0 (D

I rn

-97-

The program goes through the shrunken state description inserting

backpointers. A backpointer is a pointer from an expression to any

other expression which has the first expression as an immediate sub-

expression.

Thus our state description becomes, with backpointers shown as -- - -

T-
M-410

O

N
10
0

Nvl N o u
4) u
Cd

4)

.^ Fl

NCB
(n ' O

m98-

3.2.2.6 Linking

The program now goes through the state description

making lists of any expressions that can be linked together. Two

expressions can be linked if

(i) Their outermost functions are in the same linking class

according to the appropriate linking list, that is the list showing which

functions can be linked together.
For B-0 the linking list is

[[nullset choose][union subtract]]'

and for L-0

[[union subtract]]

As can be seen from the definitions in 2.1+.3.1+.

(ii) The arguments on which the iterations depend are equal.

(iii) One expression is not a subexpression of the other in the

state description. This is because when two functions are linked it

is required that all arguments are known. Thus in our example only

two expressions (of the three thought possible in the planning stage)

can be linked. Our program produces a tobelinked list of

[[union(n3,n2),union(n3,consset(ob2,nilset))]]

3.2.2.7/

®-99

3.2.207 Pr°ogram Writing

The next task is to produce a program that will perform

the transitions represented by the state description.

Although the state description is still stated in terms of

primitives from S-1 these should be thought of as standing for their

expansion in L'0 or B=O. The program is written mainly in terms of

these S -I primitives but with knowledge of their intended expansion,

and then the expansion into B-0 or L-0 primitives is performed.

3.2.2,7,1 Code Production

The program writing task is done in 3 stages.

(i) First code is produced to perform the evaluation of the

predicate expression. Any expression that will be required elsewhere,

indicated by the backpointers, is saved using a temporary variable.

Any expression that can share iterations with an expression in the

predicate expression, as indicated by being on the to be linked list,

is evaluated during the computation of the predicate expression

(ii) and (.iii) Code is then produced to perform the transition

represented by stateO and statet and stateO and statef. Again

common computations are saved and iterations combined where possible

but only within each transition not between transitions.

(i_) Code to the Predicate Expression

Th e/

-100-

The basic function is codefor which takes an expression and

produces the code that performs the evaluation of this expression.

This is given in full in appendix II. As extra parameters this

function takes, the present state description, a list of sub-

expressions that have already been calculated and will be needed

again, and a list of expressions that the program has decided will

be linked. If codefor finds that it needs to evaluate an

expression previously evaluated it looks up where this expression

has been stored. If it finds itself evaluating an expression that

will be needed again, indicated by the expression having more than

one backpointer, it stores the result of its evaluation in a temporary

variable and updates the list of evaluated expressions. If codefor,

comes across an expression that is on its to be linked list it finds

all other expressions whose computation is to be linked with the

computation of this expression and forms a linkedgroup which is a

compound object which is used in the next phase,code expansion

(3.2.2.7.2. The components of this compound item are

(i) The type of linking group this is.

(ii) A list of the top functions of the expressions involved in

this common iteration.

(iii) The iterative argument.

(iv) A list of the non-iterative arguments, if any.

(v) A list of destination variables where the results of these

common iterations will be stored.

As/

-101-

As well as forming the linkedgroup codefor updates its list of

already evaluated expressions.

(ii) Producing Code for the State Transformations

(i) For each state, statet or statef a list of differences

between that state and stateQ is produced. A difference is said to

occur when a variable has a different value in one state from the

other.

(ii) The program then attempts to order these differences in such

a way that after the removal of each difference the information

required for the removal of the remaining differences is still

accessible, either from the present state description or the programs

list of temporarily stored values.

For each ordering of differences the program does this by

simulating the action of the proposed program on the symbolic states.

If there is such an ordering the program continues to the next stage

which is producing the code for this ordering. If there is no such

ordering the program allows itself one extra instruction to remember

information that would be lost and attempts again to re-order the

differences in such a way that with this extra instruction it does

not lose any necessary information. The program continues in this

way until it succeeds in finding such an ordering. Thus the final

program produced is guaranteed optimal in the number of instructions

needed.

(iii)/

-102-

(iii) When the program has found an ordering of differences it

goes through theme It uses codefor to produce the code for the new

value for the variable, pr aluces an assignment statement to that

variable, updates the present state description and continues until

all differences have been eradicated.

Thus in our example, the evaluation of code for the predicate

expression produces

consset(hd(s2),nslset)->temp1; *

linkedgroup<union,[union u.nion],s3,[s2 templ],[temp2 tempi]>,

or(nullset(temp2),member(x,s2))

There are differences between stateO and statet at s2 and s3. The

program produces an ordering <s2, s3> and the code corresponding to

this is

temp2->s2;

subtract(s2,subtract(s3,s2))->s3;

Between stateO and statef there are again differences at s2 and 33.

Any ordering will doe The code produced is

tempi->s2;

temp3->s3;

3.2.2.7.2/

In implementation in L-0 any access of a node in the list description
component of the state produces the appropriate accessing hd tl functions.

-103-

3.2.2.7.2 Code Expansion

This is straightforward. The program has

associated with each primitive in S-1 the code that represents that

primitive in B-0 or L-0 and the program expands the code using these.

The only interesting feature is the expansion of a linked group.

Corresponding to each linkedgroup type there is a schema and for every

function of that type an expansion. For each linked group the

program expands each function and then fits these expansions into

the schema. Thus in our example the linkedgroup is

<union,[union union],s3,[s2 templ],[temp2 temp3]>

Associated with union is the schema

<bitl >

applist(<iterativeargument>,lambda bv; <bit2>)

And associated with union the code schema

<secondargument>-><result> for bitl
and if not(member(bv,<secondargument>)) then

cons(bv,<result>)-><result>

for bit2

Thus bitl is expanded to

s2/

-104-

s2->temp2;

templ->temp3;

and bit2 to

if not(member(bv,s2)) then cons(bv,temp2)->temp2

if not(member(bv,templ)) then cons(bv,temp3)->temp3

Thus the whole linked group expands to

s2->temp2;

tempi->temp3;

applist(s3,lambda bv; if not(member(bv,s2)) then cons(bv,temp2)->temp2

if not(member(bv,templ)) then cons(bv,temp3)->temp3

);

The whole example expands to

while [if member(hd(s2),nilset) then nilset->templ

else cons(hd(s2),nilset)->templ;

s2->temp2;

tempt->temp3;

applist(s3,lambda bv; if not(member(bv,s2)) then cons(bv,temp2)->temp2,,

if not(member(bv,templ)) then cons (bv,temp3)->t mp'

or(null(temp2),member(x,s2))]

LO/

-105-

do [temp2->s2;

nil->tvarl ;

applist(s3,lambda bv; if not(member(bv,s2)) then cons(bv,tvarl)->tvarl)

nil->s3;

applist(s2,lambda bv; if not(member(bv,tvarl)) then cons(bv,s3)->s3)];

tempi->s2;

temp3->s3;

3.2.2.8 Examples

(i) For another example we will take the program described

earlier (3.1.10. This function takes a set s and a pair p and if there

is an element in s equal to the front of p it returns Jback(p)j other-

wise it returns the empty set.

In S-1, with front and back considered basic, this is

while and(not(nullset(s)),not(equal(choose(s),front(p))))

do [p->xsave; minus(choose(s),s)->s; xsave->p]

if nullset(s) then nilset->ans else conss,et(back(p),nilset)->ans;

Implemented in B-0 this becomes

while

-106-

while [true->res2; length(s)->l; 1->n;

while n<1

do [if intsub(n,s) = I

then[n->resl; true->res2]

n+1-> n]

and(not(res2),not(equal(resl,front(p))))]

do [p->xsave; 0->intsub(resl,s)]

if rest then nilset->ans else[nilset->ans; 1->intsub(back(p),ans`.I

and in L-0

while [null(s)->templ;

and(not(tempt),not(equal(hd(s),front(p))))]

do [tl(s)->s; p->xsave]

if tempi then nil->ans else if member(back(p),nil)

then nil->ans

else cons(back(p),nil)->ans;

(ii) A function highest that picks the highest integer from a

seta

In S-0

highest(set) = (nullset(set)___O

not (null set (set))---).if choose(set)>highest (minus (choose (set), set))

then choose(set)

else highest(minus(choose(set),set))

-107-

In S-1

0->ans;

while not(nullset(set))

do [if choose(set) > ans then choose(set)->ans;

minus(choose(set),set)->set]

Again our compiler finds the natural implementation for this in B-0.

0->ans; length(set)->l; 1->n;

while n<l

do [if intsub(n,set) = 1

then[if n > ans then n->ans;

0->intsub(n,set)]

and in L-0

0-> ans ;

while not(null(set))

do [if hd(set) > ans then hd(set)->ans;

tl(set)->set]

(iii) An interesting class of programs that one can write using

the 'true' set primitives, that is, those that operate on sets as

entities, are the one line programs. These are just expressions in

the given primitives. We feel the ability to write programs without

using the control primitives is an indication of the power of these

primitives/

-108-

primitives and we will have more to say on this in connection with APL >

Iverson (1962) in chapter 5.

Suppose we are asked to write a program that would select from

given sets all people who were over 6' together with all those people

with dark hair who were under 61 and all those people who have dark

hair but don't speak English.

Letting U = all people in the sample

A = all people over 6'

B = all people who have dark hair

C = all people who don't speak English

This transcribes directly into the I line program

(A 0 ((u/A) A B)) 11 (B/C)

Continuing j,' and / as shorthand for union and subtract. Our compiler

is able to implement this involving 2 iterations. The expression

reduces to

(B 1) A) V (B/C)

and B \) A, and B/C can be linked and implemented as a single iteration.

The deduction the compiler performs to achieve this is

(A/

-109-

(A V ((U/A) A B))

= (A V (U/A)) A (A U B) by A j ,(B A C) = (A U B) A (A 0 C)

= (U A (A U B) by A J (U/A) = U

=AV B by UA A=A

=BV A by A UB=B U A

The point that our compiler performs these manipulations not just to

minimise the set expression but to optimise the future implementation

is illustrated by the fact that it does not reduce

(A V B) V (A V C)

Instead it links the iterations involved in the evaluation of A V B

and A _J C.

-110-

3.2.3 Destructive Implementation of L-0 Programs (L-0=>L-1)

We here describe the final stage of one branch of our

implementation, namely the implementation of L-0 programs as

destructive (L-1) programs. Again this process is divided into the

same sub processes., namely analysis of transformations, optimisations,

projection and program writing. The sections of program dealt with

by this process are the same as previously.

3.2.3.1 Extraction of Transformation

This is straightforward and we will not describe it in

detail, the only novelty is that the state descriptions contain no

free expressions, only variable values and list fragments as defined

in 3.2.1.5. The program invents an initial symbolic vector and then

interprets the program text on this according to the semantic

definitions given in 3.2.1.5.

3.2.3.2 Optimisation of Transformation

The optimisation done at present is rather arbitrary.

We concentrate on avoiding the introduction of any new list cells.

This is dectectable from the state descriptions. If the program finds

that any such cells have been introduced, it searches the state

description for any cell that has been discarded, i.e. one that is

not accessible in the final state and sees if it is possible to use

this in place of the old cell. If it can do this it rearranges the

state description to do this.

3.2.3.3/

-111-

3.2,3.3 Projection

As the semantic apparatus used for L-0 and L-1 is the

same the projection is the identity.

3.2.3.L. Program Writing

The algorithms used to transform the state descriptions

into m L-1 program are very similar to those used for the earlier

program writing activities (S-1 to B-0 or L-0). However we will
describe them separately and take this opportunity to use a different

mode of explanation. The process is simpler as there are no

iterative operators nor any that expand further. We will thus

describe how we convert a pair of before-after state vectors into a

piece of straight line L-1 code.

Given two states

S = <V,A,L,C> and S' = <V',A',L',C'>

We need to define a function

makeprogram: statexstate->instructions

which will produce a program to perform the transformation represented

by the state pair.

We say that a difference occurs between the two states whenever

either

(i) -3 v(vEV' n v/V)

or/

-112-

or (ii) 3a(acA' A a/A)

or (iii) -3 v(vEV' A (L(v) / L'(v)))

or (iv) 3 a((aEA') A (aeA) A (C(a)l / C'(a)1

or (v) -3 a((acA') A (a(A) A (C(a)2 / CI(a)2))t

Two states are said to be equal when there are no differences

between them. Thus a program has to remove all the differences,

However removing one difference may lead to the loss of access to a

node needed later.

Define: Nodesaccessible: State_>Nodes*

such that nodesaccessible(S) where S = <V,A,L,C>

= N where range(V) N

and if nEN then C(n)1EN

and C(n)2EN

if they are defined.

Define: differences: statexstate->differences*. A function that

calculates all the differences between two states.

Define a function Perm: cab*->(ob*)* which takes a list onto a list of

permutations of the list.

Define a function process: statexdiff->state which maps a state and.

a difference onto the state resulting from the removal of that

difference.

t <x,y>1 =x
<x,Y> 2 =Y

-113-

Thus given two states: beginstate and finalstate we try to find

an ordering of the differences between the two states that can be

translated into a program. That is an ordering such that when we

come to remove a difference the information needed is available. If

there is no such ordering we have to introduce extra instructions to

remember such information.

More exactly let Permlist = Perm(Differences(beginstate,finalstate)).

We need to find a member of Permlist, perml, say, such that if

perml= <. diff, ,..9d.iff. > and we define
1 i2 1n

state0 = beginstate

statej¢1 = process(statej,diffi

J

(thus staten = finalstate)

then we require that

V i(0<i<n) (node)(nodecncdesaccessible(state i)

/ nodeenodesaccessible(finalstate)

D nodeenodesaccessible(state.))

If there is no member of Permlist that satisfies the above criteri!n

then we require a member of Permlist that satisfies the above condition

for the most i. For each i that the condition is false we need to

introduce an extra instruction to remember the information that would

otherwise be lost.

Given

-11 .-

Given this ordering of the differences it is then straight-

forward to convert this into a program. Each difference, or require-

ment to remember information, gives rise to an assignment instruction.

Define a function. routetoo statexnode->v,"hd","tl"}* which

maps a state and a node onto an expression which describes how that

node can be accessed in the state from a variable via the hd, ti

pointers.

Each type of difference gives rise to a different type of

assignment instruction which removes that difference. After an assign-

ment instruction has been produced the state is updated and the next

difference processed., For example consider the state pair

Sb <Vb,A ,Lb,Cb> and S f = <VfAf,Lf,C f>

Say that the first difference in the order chosen is a type (iv)

difference (see above) i.e.

aA` /\ acA A (C f(a)I Cb(a)1)

then the instruction produced is of the form

routeto(Sb,Cf(a)1)->hd(routeto(Sb,a))

Sb is then updated to be process(S.bdiffl), the next difference chosen

and the process repeated until no differences are left.

As/

-115-

As it is apparent that each difference requires one assignment

instruction (the existence of type (ii) differences complicates this

slightly, the introduction of a new node and the placing of this node

in the structure removes two differences) it can be seen that'the

above method produces an optimal program in the sense that for any

state pair there is no program with fewer instructions than the one

we produce that will remove all the differences between the two

states.

For a fuller example let us consider the program produced earlier in

section 3.1.3.4 on page 62. Here the state pair would be

S1 = <V1 A1 ,L, ,C1>
S2 = <V29A2,L2,C2>

where V1 V2 = x,anss

Al = A2 = J
`i'1

9 a2 9 a3 9 ak

L1 <x,a1>,<ans,a2>

L2 _ {<x,ak,,,<ans,a1>j
L

C1 W <a1 9<a39ak>aj

C2 = <,a,1 ,<a3,a2>H

There are therefore 3 differences between the states, two of type (ii)
and one of type (v)

visa I L1 (x) = a1 A L2(x) = ak

2 L1 (ans) = a2 A L2(ans) = a1

3 C1 (a1)2 ak n C2(a1)2 = a2

It/

-116-

It will be seen that any permutation of these 3 differences is

untranslatable into a program,.for example attempting to remove the

differences in the order <1,293> results in node a1 being lost.

However allowing ourselves one extra instruction perms <1,3,2>, <2,1,3>

and <3,2,1> are suitable. The program came across <3,2,1> first and

accordingly produces

tl(x)->newvarl;

ans->tl(x);

x->ans;

newvarl->x;

3.2.3.x..1 Further Examples and Remarks

(i) Swapping two variables. S->S' where

S = <V,A,L,C> and S' = <V',A',L',C°>

where V = V° _ x9Y

A A' _0

L = <:x,a1>9<y,a2>j

L' _ <x,a2>9<Y9a1>j

CC' = 0

The program produced was

x n>newvarl ;

y->x;

newvarl -> y;

(ii)/

-117-

(ii) We desire to produce a program that will cyclically permute

the values of six variables. The state transition is represented thus.

S->S' where V V' (X,Y,Z,P,Q,Rj

A=A' _0

L <Xal>9<Y,a2>9<Z,a3>,<P,a4->,<Q,a5>,<R,a6>j

L' _ <:X,a2>,<Y,a3>,<Z,aL.:.-,<P,a5>,<Q,a6>,<R,al>i

C = C' = 0

when given this state pair the program produced

X->newvarl;,

Y-> X;

R->newvar2;

newvarl ->R;

Z-> Y;

Q->newvar3;

newvar2->Q;

P->Z;

newvar3->P;

The production and printing of this program took about 6 seconds.

Note that it is not optimal as regards the number of new variables

introduced, In fact whenever an 'extra' instruction is needed we

invent a new variable. By doing more work we could find if any

variables or accessible location was redundant.

(iii.)/

-118-

(iii) An example involving cons.

S->S' where V = VI = X1 ,X,Y1

A = a1,a2,a3,a11.,a5,a6,a7}

A° = A , a81ja1}

L = <X1,a1>,<X,a2>,<Y,a5>1

L' _ <X1,a3>,<X,a1->,<Y,a8>*

C = k<a2,<a3,a >>,<a5,<a6,a7»}

C' = <.a2,<a3,a >>,<a5,<a6,a7>>,<a8,<a3,a5»I

produces:

cons(hd(X),Y)->Y;

hd(X)->X1;

ti(x)->x;

(iv) S->S' where V = V ° = Xi

A = a1,a2,a31

A' = jaI,a29a4- 1

L = 2+' = <X, a1 > j

C = {<.a19<a29a3»j

Cl = <a1,<a2,a4>s<a4-,<a2-' a2>>

gives

cons(hd(X),hd(X))->tl(X);

(v)/

119-

(=3) S->S' where V = V° _ X,Y,Zj

A = A' _ a1,a29a39a14- ,a5

L <.X,a1>,<Y,a3>,<Z,a5>1

L' <.Xa2>,<Ya1>,<Z,a1>1

C =. { <.a1 <a2,a3>>,<a39<a,,a5»j

C1
- <aI<a2,a3>>,<a3,<a59ak>>

gives

hd(Y)->tl(Y),

X-> Y;

Z->hd(tl(X));

X->Z;

hd(X)->X;

At present the program uses no heuristics in its attempt to produce

a program. However certain obvious heuristics could be tried. When

removing differences it is usually better to affect nodes that are

accessible in more than one way. Also for certain configurations of

nodes, e.g. those configurations where each node can only be
accessed

one way, one extra instruction at least is going to be necessary
if

there is at least one difference between the states
and all the

information is to be retained.

30203.5/

-120-

3.2°3.5 Further Example

A program in L-0 to sort a list of numbers using a

swapping technique. A confession, this program can be re-implemented

destructively by our compiler. There do exist equally admissible

versions that our compiler does not convert.

true doneshuffle;

while doneshuffle

[false->doneshuff le; nil->result; hd(xl)->last;

while not(riull(tl(xl)))

do [].f last<hd(tl(xl)) then

[cons(last,result)->result;

tl(xl)->xl; hd(xl)->last]

else [tl(xl)->xl;

cons(hd(xl),result)->result;

true->done shuffle]

I

cons (last result)->result; rev(result)->xl]

(Producing the result in xlo)

The two straight line pieces of text that our program alters are the

two branches of the conditional viz.

cons

-121

cons(last,result)->result;

tl(xl)->xl;

hd(xl)->last;

and

tl(xl)->xl;

cons(hd(xl),r.esult)->result;

true-> done shuf fal e

For the first it invents a starting state description

last xl result obi'
n2

nb n

interpreting this on the above text it produces a final state

description

last xl result

n6 n3 n5 /\
rib n7 1L

ob.1 nk

where n5 is the new node introduced by the cons.

The optimisation routine, on being given the above transition notes

that the cell n1 is no longer pointed to and uses this to rewrite the

final state producing a transition

last

-122-

last xl result

j obi n I n -> n6 n3

Z n n6 n3 n7 obi r4-

n(n7

This is then given to the program writing routines which produce a

program

last-,-hd(xl);

hd(tl(xl))->last;

tl(xl)®>newvari1

resu.lt->tl(xl);

xlm>result

newvari ->xl,

The second piece of code viz.

tl(xl) >xl;

cons(hd(xl) result->result;

true--doneshuffle;

needs a starting state

doneshuffle xl result

obi ni n6

last xl result

which/

@123_

which on being interpreted produces a final state

xl result dones``huffie

n3 n7 true
V1 \ 14

n1. n5 n n6

Again this transition can be optimised, the routines making use of the

discarded cell to produce a new transformation

xl result doneshuffle xl result doneshuffle

I 4_>

n n6
obb1

n3 ni true
2 n

n3 5 n'

nk n

On being given this, the program writing routines produce

tl(xl)m>newvar1;

hd(tl(xl))->hd(xl);

result>tl.(x1),

xl-,>re suit;

newvarl ->xl;

true- done shuffle;

Thus on being re-assembled the program our compiler produces is

true

-124-

true->doneshuffle;

while done shuffle

do [false->doneshuffle; nil->result; hd(xl)->last;

while not(null(tl(xl)))

do [if last<hd(tl(xl)) then

[last->hd(xl.); hd(tl(xl))->last;

tl(xl)->newvar1; result->tl(xl);

xl->result; newvarl->xl]

else [tl(xl)->newvarl; hd(tl(xl))->hd(xl);

result->tl(xl); xl->result; newvarl->xl;

true->doneshuffle]

I

cons(last,result)->result; rev(result)->xl]

-125-

3.3 Algebraic Manipulation Routines

The algebraic manipulation routines are used by the recursion

translation (3.1.303) and compilation (3.2.2.3.1) routines. The

algebraic manipulation has been kept simply to what is required for

these two activities and there has been no attempt to write a powerful

and general algebraic routine.

3.3.1 specification

The basic properties of the primitives are specified as a

set of pairs of formulae, indicating that each pair of formulae are

equivalent. For example, if we wished to specify that union was

commutative, associative and that nilset was the identity we would

give the set

<union(x,y),union(y,x)> , <union(x,union(y,z)) , union (union(x ,y), Z)>

,<union(x,nilset),x>}

where x y and z are variables.

The basic function is produceallforms

produceallforms- expssionxset of rules->set of expressions

which given an expression and a set of rules produces a set of

expressions that are equivalent to the given expression by one

application of any rule.

Produceallforms/

-126-

Produceallforms uses a function

produceformso expressionxset of rules->set of expressions

that produces all expressions that can be produced from the given

expression by applying any rule to the whole of the expression.

produceallforms(exp,ruleset) _

let resultset=f

appset(produceforms(exp,ruleset),

lambda ex;

cases exg

isconstant

or isvariable: let resultset =

produceforms(exp,ruleset)

f(e1) appset(produceallforms(el,ruleset),

lambda arg;

let resultset =

{f(arg)} tj resultset)

f(e1,e2) o appset(produceallforms(el,ruleset),

lambda argi;

appset(produceallforms(e2,ruleset),

lambda arg2;

let resultset =

f(arg1,arg2)} U resultset

))9

);

resultset;

produceforms/

-1 27®

produceforms(exp,ruleset)

let expset=exp

appset(ruleset, lambda rule;

if trymatch(front(rule),exp) then

let expset w

substitute(back(rule),makematch(front(rule),exp))j J expset

else if trymatch(back(rule),exp) then

let expset

substitute(frcnt(rule),makematch(back (rule),exp))j V expset

)

expset;

a set: of msetx(o(-> ()) -> ()

This function applies a function to every element of a set

trymatcha expressionxexpression->T/F

This function is true if the second expression can be produced from

the first by instantiating some variables. False otherwise.

makematcho expressionxexpression-,>m-list

This function produces a list of matches of variables from the

first expression to subexpressions of the second expression that

perform the instantiation mentioned in trymatcho

substitute:/

-128-

substitutes expressionxmmlistm>expression

This function instantiates variables in the expression according

to the matchings given in the matching list.

-129-

CHAPTER 24 o

Theory of Computation and Computer Science

In this chapter we aim to give a brief survey of some of the aims

and developments in the main line of Computer Science and in the Theory

of Computation and develop a synthesis between some of these developments

that sets the scene for our work.

4_.1 Programming and Machine Desn

One of the more remarkable features about the development of the

computer is that although this has been an area of rapid technological

advance the basic design principle or model on which almost all

computers are based is fundamentally unaltered since the first true

computer Edsac was completed in 1949. Despite the fact that the

design of system components used to implement this model has been

improved enormously. Most recent computers with the significant

exception of the B5000 follow the von Neuman model of which the most

important concept is that of a linear addressable store that is shared

between program and data. We follow Iliffe (1968) in believing that

this 'engineering model' of computation persists in the design of

present day high level language and compilers in such a way as to

prevent them fully realising their aims. "One should define a

component of a computer by what it does rather than by what it is."
If we apply this criterion to present day high level languages we see

that

-130-

that this criterion is not fully satisfied. These languages [Algol,

Fortran, Cobol] were developed to allow programmers to specify

algorithms conveniently and independently of any particular machine.

However it is clear that several features of the engineering model or

the actual implementation of the language are still present. The

goto statement is an example and there has been discussion, Dijkstra

(1968) as to whether its use inhibits the development, understanding

and modification of programs. The concensus and the view to which we

subscribe is that it does. We shall attempt to amplify this later.

There are other features of high level problem oriented languages

which seem to owe little to the problem areas they are supposed to

tackle and much to actual methods used to implement these features.

Here we could cite the various calling mechanisms and variable binding

conventions of Algol. Iliffe again:- "The common problem oriented

languages conveniently express the structure of conventional machines

and some of the problems to which they are suited and the investment in,

for example, Fortran or Cobol programming can be assured by carrying

such standards into future machines."

More recently, languages have been developed [LISP, POP-2, Planner]

designed to reflect structures more appropriate to problem solving.

However, as these languages have still to be run on von Neuman-type

machines we are faced with the problems of reducing these structures

to fit the logic of the machine. 'Existing compilers only 'recognise'

structure by virtue of restrictions on input languages which enables

it/

-131-

it to be absorbed during translation or by the use of interpretive

(and therefore slow) execution modes.' It is our contention that the

two aims (i) ease or succinctness of programming and (ii) efficient

implementation", are contradictory given the persistance of the

von Neuman model. Recursion is a case in point. Its use makes

writing of some programs easier, but often efficient implementation of

these programs is difficult. We do not want the programmer to be

concerned with machine features but often it is concern with just these

features cf programming that makes for efficient programming. Not

all this dichotomy is due to present machine structure. It is often

implicit in the nature of the algorithm for example the Fibonacci

function. It is these areas with which we concern ourselves. We

have approached language design from the users viewpoint and

specified a simple language in which we think it is natural for a

programmer to specify some problems and then investigated the problems

involved in implementing these programs efficiently for the present

model of machines. We hope to have demonstrated that it is possible

to reconcile these aims but that it requires the design of compilers

that understand programs to a far greater extent and possess some

limited problem solving or inferential capacity. The problem is one

of optimisation but we believe that as more and more natural

languages are developed, local low level optimisation will be insig-

nificant. Thus we view compilation of a process as involving a)

understanding what the process does and b) implementing the process

as efficiently as possible in the target language.

..2/

-132-

k.2 Theory of Computation

In this section we wish to discuss interconnected aspects of Theory

of Computation, the semantic definition of programming languages,

proving properties of programs and automatic program writing.

1.2.1 Languages and Meta-Languages

Semantics may be defined as the study of the relation between

objects and their representation, programming language semantics is

concerned with the relationship between programs of a programming

language and the objects (functions, data) which they denote. The

approaches taken to program language semantics may be broadly split

into two camps, the operational approach and the denotational or

mathematical approach.

The operational approach requires that meaning be defined in

terms of transformational properties rather than in terms of non-

operational correspondence between a program and the abstract object

it represents. This approach to semantics is representation-

dependent since the semantics of a given function will differ

depending on the programming language in which it is represented.

By contrast the denotational approach attempts to provide rules that

allow, for any program written, the mathematical function associated

with the program to be produced.

Common

-133-

Common to both these approaches is the need for a semantic meta-

language for defining the meaning of a class of object languages. The

reasons behind this effort are the desire to clarify and 'formalise'

aspects of programs and programming languages and to facilitate invest-

igation of the properties of languages and programs written in the

languages. Whether one follows the operational orfenotational

approach to semantics seems to depend on what questions you are asking.

If you are interested in the transformational aspects of certain

representations you would prefer the latter. For our purpose we

assume that all a programmer is concerned with is what his program

viewed as a function should do. He is, therefore, more interested in

denotational semantics. Wegner (1969) puts forward four aspects

desirable in a semantic meta-language. It should be natural, it

should be elegant when considered as a programming language in its

own right, it should be simple and it should facilitate proofs of

properties. We suggest that from the users viewpoint these are all

necessary aspects of a good program specification language,

L.. 2.2 Proofs about Proframs

One of the uses of semantic meta-languages has been to

facilitate the proving of properties about programs. We give reasons

why this activity has not been too successful and suggest why it may be

to some extent misguided.

Some

-134--

Some of the reasons for slow progress are clear. People have

attempted the axiomatisation of existing languages and those features

that we pointed to as making them difficult to understand also make

them difficult to axiomatise concisely. One of the gravest defects

that most of these languages possess is the existence of referential

opacity manifest in side effects which have their genesis in the fact

that objects are located in physical store. Referential transparency

has long been considered essential for any decently manipulable

mathematical system.

As Dijkstra has suggested the development of program proving as

a separate activity from program creating also seems mistaken and

involves duplication of many of the tasks of the programmer in that

the same understanding about a given program needs to be brought to

bear on both occasions.

The approach to proving programs is to provide ways of associating

with programs expressions in a meta-language. Questions about these

programs are then answered within the meta-language. To prove a

program one has to write down what one expects the program to do. We

propose that this distinction between programming language and meta-

language should be avoided and compilers be designed to accept programs

or specifications of programs written in a language clear and concise

enough to be thought of as a meta-language and compile them efficiently.

Thus proofs of programs could either be represented as transformations

within this language or should become unnecessary as no more adequate

definition exists of what a program should do than the program itself.

4..2.3/

-135-

1...2.3 Program Writing

A parallel activity to program proving within Theory of

Computation has been the search for automatic program writing systems.

The typical approach of the theorem prover school of automatic program

writing (Green (1969), Waldinger and Lee (1969), Waldinger and Manna

(1971)) is for the user to specify the desired computation by means of

input/output predicates stated in first order predicate calculus. A

theorem induced by these specifications is then proved and the desired

program which is guaranteed correct (relative to the I/O predicates) is

then extracted from the proof. In all these attempts the inductive

step or iterative structure of the program has to be given by the user

either implicitly in the I/O predicates or by explicitly telling the

system the iterative structure the final program will have.

If one considers what is happening in these cases it is that one

is using the language of the I/O predicates as a source language to

describe what the desired computation should do. What is important is

not that predicate calculus is being used as a language but the

equational forms that are allowed to the programmer for him to specify

his program and the primitives he has available.

Consider a high level specification of an algorithm in terms of

recursion equations, for example, Euclid's algorithm for the H.C.F.

hcf/

G -136

,hcf(n,m

rem(n,m,

(m<n) A (m/,0)__ hof(m,rem(n,m,0))

= n<m+r__-> n-(m+r)

n>m+r >rem(n,m,m+r)

These definitions have the form

f1(x1,...,xn)
1

f2(x1,...,xn
2

)

fm(x1,...,xn)
m

1(x1,...,xn 3f1,f299fm)
1

2(x1,...,xn
2

,f1,...,fm)

m(x1 , ...,xn ...,.fm
m

where £t(x1,...,xn,f1,...,fm) denotes an expression that may concern

x1I...,xnf1...,fm and other basic functions or constants. These can

be said to have imperative content as there exist computation (or run

time) systems (see Cadiou (1972)) that will for any given input assignment

to x1,...,xn reduce the program if it is correct to an expression not

involving f1,...,fm. These definitions also have assertional content

in that given an input assignment and a proposed answer the equations

can be used to check whether the answer is correct. Our compiler

translates this specification of a program into another specification

for which there is a different evaluation mechanism (run time system).

We distinguish two further developments on the way to a fully

fledged automatic program writing system.

(i) The restrictions on the equational form may be relaxed to allow

constructs of the basic functions and variables to appear in the place

of/

-137-

of variables on the left hand side. For example, one may find it easier

to define the Fibonacci system as

Fibonacci(n+2) = Fibonacci(n+1)+Fibonacci(n)

and Fibonacci(1) and Fibonacci(O) = 1.

Of course, equations of this form do not always define unique functions

e.g.

f(x2)=x.

(ii) A fully fledged program writer completely relaxes the restriction

on the left hand side, and allows general equational forms.

(x1 ,...,xn,f1,...,fm) E1(x...... x ,...,f
m

)

01 (x1,...,xn,f1,...Ifm) = 1(x1,...,xn,f1,...Ifm)

For example it seems most natural to define a function to compute the

number of times y divides x by

f(x,y).y=x

f (x,x)=1

The first task as we see it for any program writer is to translate

this specification into one which has some imperative content, that

is, into equations of the first sort. This we see as being in two

parts (i) Manipulating the equations into the form

f (x1,,xn) = E 1!(x1)..,xn,f1,...,fm), 1<i<m and (ii) Ensuring

that/

-138-

that these manipulations produce equations with the 'desirable'

imperative content. If the manipulations have been done correctly

the equations produced will be correct, what is important is to

ensure that the computation proceeds in the right direction and

terminates. Thus in our example the manipulation

f(x,Y).y=x

f(x,2.y).2.y=x

f(x,2.y).2.y=f(x,y).y

t f(x,y)=2.f(x,2.y)

indicates a recursive definition

f(x,y) = if x=y then 1 else 2.f (x,2.y)

which is correct and in which the computation proceeds

direction' but it does not always terminate.

'in the correct

We do not know exactly how to do this but if we could it would

be a preliminary stage to our program and extend it towards an auto-

matic program writing system.

-139-

CHAPTER 5.

In this chapter we hope to explore the possibilities for our

compiler. In 5.1 we examine some suggested improvements and in 5.2

we hope to show how our transformational compiler could be generalised

to provide an intelligent compiler/ mprcver for any abstract

programming system that a user may wish to define.

5.1 Some Improvements

At present the program writing routines can produce effectively

only straight line text. An obvious extension would be to provide

our programs with some inductive capability. There are two factors

against this

a) It is difficult.

b) It can be avoided to a certain extent.

We feel that in a properly structured language system iterations

in one level are often realisations of primitives that operate non-

iteratively on compound objects at a higher level. For example in

a list system functions such as concat and rev are single primitives

that operate on lists as objects. They are realised lower down as

iterations in a virtual machine that deals more with list-cells i.e.

its characteristic functions are hd and tl which operate on list-cells

rather than on lists.

Thus

-14.0-

Thus if we wish to manipulate iterations at one level. it is

perhaps better to do this by seeking, or keeping a record during the

compilation, the higher level piece of code from which these

iterations originate and performing the manipulations here on hopefully

non-iterative expressions and then projecting back to the lower level.

Our compiler does this in a hierarchical manner that is just across

one layer and in one direction only. A full heterarchical system,

Winston (1972), which allows communication between any two layers would

be an improvement.

5.2 LauageExtension

One of the advantages of a language that allows the definition

of functions [LISP, POP-2, Algol] is the ease with which one is able

to add to the given primitives. This is done by defining new data

objects in terms of given data objects and defining new primitives in

terms of given primitives to act over these data objects. This

enables one to produce new abstract systems which facilitate writing

programs in certain subject areas. For example systems can be

produced to deal with trees, relational structures, partial functions,

or general algebras, within mathematical domains and files or

structured data banks within more general domains.

Typically/

-141-

Typically this building of new virtual machines is done in

several stages defining a new virtual machine on top of an old. A

useful illustrative device is the 'onion diagram' due to Dijkstra

where each new language or virtual machine is represented as a layer.

The central core is the high level language presented with the

machine which itself is built on layers terminating with the hardware

implemented machine code.
Virtual machine

User defined :layers
Given high level
language

Machine code

In our system L-1 or B-0 is the given language,S-0 the final virtual

machine and S-1 and L-0 the intermediate layers.

The situation we envisage is that the user has defined a new

subject area by just such a structured definitions of primitives. He

now wants to write programs in this system and then submit them to a

compiler similar to the one defined earlier for sets.

Before going on to describe how our compiler can be generalised

and then re-specialised to perform this function we will discuss the

various types of semantic apparatus we envisage our compiler using.

5.2.1/

-1.2-

5.2.1 Semantic ApPVatus

By definition the top-level languages used (e.g. S-0) will be

close to the abstract area under discussion. This means, to our view-

point, that the programming language and the semantic apparatus can be

similar. In particular they can share the same primitives and the

semantics can make use of the algebraic"laws of - these primitives.

For example consider the semantic apparatus used in the transition S-1

to L-0 or B-0. Here our transformations are expressed in terms of

state vectors whose values are expressions in S-1 primitives and the

manipulation is done relative to algebraic laws over these primitives.

In contrast lower machine based languages such as L-1 need a much more

complicated semantic domain separate from the programming language.

Thus while we (the compiler writers have to provide the semantic

apparatus to adequately describe the lower languages the user can

easily specify an adequate semantics for his defined languages as algebraic

laws for the primitives.

5.2.2 The Generalised Transformational Compiler

We now describe what a generalised transformational compiler

or rather our compiler generalised and then re-specialised to a specific

area would look like.

Given that the basic languages are as before the core of our

compiler would be the same as previously and the semantic apparatus

could be built in.

For

-11.4-

5.2.3 Example. A transformational compiler for a matrix

system

To illustrate these points we will briefly describe how our

transformational compiler might be set up to work for another domain.

This section will be tentative but it may help to persuade the reader

that our methods have wider application,

The domain that we have chosen is that of matrices and vectors.

This domain is similar to that dealt with by APL but we wish to

emphasise that we are not attempting to implement APL nor would we

want to. APL, to our viewpoint, has many appropriate high level

primitives but we feel that it is burdened with many other primitives

that encourage the production of opaque programs. Also we feel that

its control structures are of a low level; instead we would use the

control structures of the language S-0, that is simple recursion

equations.

We will assume a target language that allows matrix and vector

definition and element by element manipulation of these objects.

The primitives of the top level language would include all those

used in the normal informal mathematical discourse about matrices.

For a very structured system we would perhaps want to implement these

primitives first at a level which allows row and column selection

and vector operations. However for this brief example we will assume

that they are implemented directly in the target language.

Among

Among the obvious primitives we would define are,

Matrix operations and constants.

For example

+, -, x, / Element wise addition, subtraction, multiplication

and division.

For example

C = A-B where C.A. and B are all mxn

iff C(i,j) = A(i,j)-B(i,j) i=1,2,...,m

j=1 ,2, ...,n

0 Matrix multiplication

C= A 0 B where C is mxr

A is mxn

and B is nxr
n

iff C(i,j) k A(i,k)xB(k,j) i=1,2,...,m
k=1

j=1,2,...n

I The identity matrices.

A 0 1 = A and I OA = A

Inv Matrix inversion

Inv(A) 0 A = I and A© Inv(A) = I

Vector

-146-

Vector operations

v+,v-,vx,v/ Element wise addition 2subtraction, multiplication

and division.

sx Scalar multiplication

V' = dsxV iff V'(i) = cxV(i) i=1,...,n

where V' and V are of length n.

In addition to these we could define the more unusual APL-like operations,

such as the reduction operations or column and row extractions, as

required.

These operations can be defined in the obvious way by iterative

definitions in the lower primitives.

For example

A (D B is

1->i; row(A)->ra; col(B)->cb; col(A)->ca;

while i<ra

do [1->j; while j<cb

do [1->k; 0->RES(i,j);

while k<ca

do [A(i,k)xB(k,j)+RES(i,j)->RES(i,j);

I +k->k]

j+1->j]

There/

-1Z.7-

There are obviously very many opportunities for linking while

statements. Given the obvious definitions of the other primitives

we would be able to produce a linking list thus.

[[+ - x /([v+ v- vx v/ sx]]

However the greater structure of matrices as opposed to sets

give us even greater opportunities for linking. We will return to

this briefly in the example given below.

This area is also very rich in algebraic laws. We would be

able to give our compiler a rule list thus

AxB = BxA, A+B = B+A, A+(B+C) _ (A+B)+C etc.

A®(Bo C) _ (A®B)®C

Inv(A() B) = Inv(B) ® Inv(A)

A ® (B+C) _ (A® B) + (A® C)

Inv(I) = I

A®I = A etc.

Inv(A) ® A = I etc.

These things together with the linking schemas are all that the user

would have to provide to produce a transformational compiler for a matrix

language which would hopefully be an improvement on the usual

implementations. Other features could be added, an obvious one being

destructiveness, however, this feature is not so clearly separated as

it was in the sets example. For example Axb->A has a meaning at the

matrix

-11a.8-

matrix level and could be implemented destructively but we must be

careful not to allow (x to be implemented destructively as A (D B->A

would then be calculated wrongly. A() B->A can be implemented

destructively using as temporary storage a vector of length row(A)

so there is obviously room for investigation.

Example

We give a simple example, but even this small example is rich

in optimising opportunities. Suppose we wish to discover if the

powers of a matrix converge, a problem met repeatedly in Markov

processes. The simple algorithm

convg(P) = JT->convgl(P,P)

convgl (P,Q) =
I

IQ-Q x®PI I<E- >Q

Q-Q QP I>E ..->convgl (P,Q @ P)

which converges to the stable matrix if there is such a matrix has

an obvious iterative implementation.

P->Q;

while I IQ-Q t P
I I

>E

do [Q (P->Q]

Q->Ans;

Two interesting points emerge on considering the further implementation

of this program.

(i)/

-14 9-

(i) The two occurrences of Q 0 P obviously do not need to be
separately computed however if we had inadvertently, but correctly,

written one as P ® Q, our compiler would have been unable to spot

this as(D does not in general commute. This, we feel, reinforces

what was said earlier about the need for an interactive capacity.

(ii) As mentioned earlier, there are richer opportunities for

linkings. In the set domain no expressions could be linked if one

was a sub-expression of the other. The greater structure of

matrices allows us to relax this condition for many combinations of

operators, at the expense of a more complicated linking list. In

particular the - and @ operations in Q-Q ® P can be linked to give

an implementation of Q-Q Q) P thus,

1->i; row(Q)->rq; col(Q)->cq;

while i<rq

do [1->j;while j<cq

do [1->k; 0->RES1(i,j);

while k<c q

do [Q(i,k)xP(k,j)+RES1(i,j)->RES1(i,i);

1 +k-> k]

Q(i,j)-RES1(i,j)->RES2(i,j); j+1->j']

i+1->i]

Using this would enable us to make an improvement over the normal

closed subroutine implementation for this simple algorithm.

REFEREL'ICES

Ambler, A.P. and Burstall R.M. (1971) LIB POLYSETS. POP-2 Program

Library Specification. Department of Machine Intelligence and

Perception, University of Edinburgh.

Ashcroft, E. and Manna, Z. (1971) The translation of 'goto' programs

to 'while' programs. Stanford Artificial Intelligence Project

Memo AIM-i38. Computer Science Department, Stanford University.

Berge, C. and Ghouila-Houri (1965) Programming, Games and

Transportation Networks. Methuen.

Burstall, R.M. (1969) Proving properties of programs by structural

induction. Computer Journal, Vol. 12, No. 1, February, 1+1-i,.8.

Burstall, R.M., Collins, J.S. and Popplestone, R.J. (1971) Programming

in POP-2. Edinburgh: Edinburgh University Press.

Cadiou, J.M. (1972) Recursive definitions of partial functions and

their computations. Ph.D. thesis. Computer Science Department,

Stanford University (to appear).

Cooper, D.C. (1966) The equivalence of certain computations.

Computer Journal, Vol. 9, No. 1, May, 1+5-52.

Dijkstra, E.W. (1968) Goto statement considered harmful. C.A.C.M.

Vol. 11, No. 3, 1L.7-1L.8.

Dijkstra/

Appendix II The Function Codefor

Here we give in full the function codefor described in section

3.2.2.7.1.1. Codefor is used to produce the code that will perform

the evaluation of a given expression. Expressions that will be

needed again later, indicated by their having more than one backpointer,

are stored in temporary variables and remembered in donelist.

Expressions that are to be linked together are formed into a compound

item, a linked group, and expanded at a later stage.

codefor: expressionxstatexcodelistxdonelistxlinkedlist->expressionxcodelist

xdonelist

To produce a codelist to perform the evaluation of an expression exp

starting in state with no expressions previously evaluated we call

codefor(exp,state,nil,nil,tobelinked)

codefor(exp,state,codelist,donelist,tobelinked)

cases

Appendix I The Matching Algorithm

Here we give in full the matching algorithm described in 3.1.3.2.1.

We repeat the abstract structure that is assumed.

A circuit is a set of recursion equations.

A recursion equation has a left hand side and a right hand side.

A left hand side has a name and a list of variable names.

A right hand side is a set of rules.

A rule has a predicate tree and a tree.

We attempt to find a match for a circuit c1 from amongst a set

of circuit patterns sp by calling findmatchingcircuit(cl,sp,nil).

findmatchingcircuit: circuitx2
circuit

xm-list->m-list.

This function searches the set of circuits given as the second

argument. It succeeds if it finds one that matches with the circuit

in the first argument producing a list associating elements of the

selected circuit with fragments of the input circuit.

findmatchingcircuit(circuit,posscircuitset,matchlist) _

if isempty(posscircuitset) then fail close;

let x = choose(posscircuitset);

either matchcircuit(circuit,x,matchlist)

orlast findmatchingcircuit(circuit,

posscircuitset/{xi,matchlist)

close

The/

	PhD coversheet April 2012.pdf
	EDI-INF-PHD-72-001

