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ABSTRACT 

The programs that are easiest to write and understand are often 

not the most efficient. This thesis gives methods of converting 

programs of the former type to those of the latter type; this 

involves converting definitions of algorithms given as recursion 

equations using high level primitives into lower level flow chart 

programs. 

The main activities involved are recursion removal (c.f. Strong), 

loop elimination, and the overwriting of shared structures. We 

have concentrated on the semantics, rather than the syntax, of the 

programs we are transforming and we have used techniques developed in 

work done on proving the correctness of programs. 

The transformations are done in a hierarchical manner and can be 

regarded as compiling a program defined in a structured manner (Dijkstra) 

to produce an efficient low level program that simulates it. 

We describe the implementation of a system that allows the user 

to specify algorithms in a simple set language and converts them to 

flow chart programs in either a bitstring or list processing language. 

Both of these lower languages allow the sharing of structures. The 

principles are applicable to other domains and we describe how our 

system can be applied more generally. 



ACKNOWLEDGEMENTS 

Particular thanks are due to my supervisor, Rod Burstall, not 

only for his constant encouragement and assistance throughout this research 

but also for introducing me to the ideas of abstract programming and 

program semantics. 

The influence of Cooper, Dijkstra, Milner and Minsky will be 

obvious from the thesis. 

The POP-2 language developed at the Department of Machine 

Intelligence by Burstall, Collins and Popplestone greatly assisted the 

implementation of the ideas in this thesis and the sets package also 

developed at the Department of Machine Intelligence by Ambler and 

Burstall provided a useful starting point for the thesis. 

I would like to thank all my colleagues in the Department of 

Machine Intelligence for many helpful conversations, in particular I 

am indebted to Bruce Anderson, Michael Gordon, Nigel Parker, Gordon 

Plotkin, Robin Popplestone, Rodney Topor and Sylvia Weir. 

More than the usual thanks are due to the typist, Eleanor Kerse, 

not only for her patience and skill but for her active interest in the 

thesis. Thanks also to Margaret Pithie for printing and compiling 

this thesis. 

Finally I would like to thank the Science Research Council for 

providing the financial support that made this work possble. 



CONTENTS 

Chapter 1 Introduction 

Chapter 2 Outline 

2.1 Introduction 
2.2 Philosophy 
2.3 Basic Method 

2.L- Outline Description 

2.L.1 Languages and Domains 

2.L..1.1 Source Languages 
2.L..1.2 Target Languages 
2.L..1.3 Intermediate Languages 

2.4-2 Outline of Compiler 

2.k.2.1 Removal of Recursion 
2.k.2.2 Choice of Representation 

2.L.2.2.1 Transformation Extraction 
2.4-2.2.2 Planning 
2.4.2.2.3 Projection 
2.t..2.2.t. Program Writing 

2.L23 Example 

2.L 2.3.1 Transformation Extraction 
2.4-2.3.2 Processing the Transformation 
2.L 2.3.3 Implementation in L-O 
2.4.2.3.1. Implementation in B-0 

2.L.2.1. Destructive Implementation 
Chapter 3 Implementation 

3.1 Removal of Recursion 

3.1.1 Introduction 
3.1.2 Source and Target Languages 

3.1.2.1 Source Language 

3.1.2.1.2 Semantics 

3.1.2.2 Target Language 

3.1.2.2.1 Target Language Syntax 
3.1.2.2.2 Target Semantics 

3.1.3 Translation Process 

3.1.3.1 Pre-processing 
3.1.3.2 Structure Recognising 

3.1-3.2.1/ 



CONTENTS contd. (v) 

3.1.3.2.1 Matching Algorithm 

3.1.3.3 Production of Translation 

3.1.3.3.1 Syntax of Tests 
3.1.3.14. Examples 

3.2 Compilation 

3.2.1 Language Descriptions 

3.2.1.1 S-1 Syntax 
3.2.1.2 S-1 Semantics 
3.2.1.3 L-0 Syntax 
3.2.1.14- L-1 Syntax 
3.2.1.5 L-0, L-1 Semantics 
3.2.1.6 B-0 Syntax 
3.2.1.7 B-0 Semantics 

3.2.2 Compilation Example 

3.2.2.1 Extracting the Transformation 
3.2.2.2 Simplification 
3.2.2.3 Planning 

3.2.2.3.1 Production of Alternative Forms 
3.2.2.3.2 Evaluation of Alternatives 

3.2.2.14. Projection 
3.2.2.14..1 Projection into B-0 
3.2.2.14..2 Projection into L-0 

3.2.2.5 Shrinking 
3.2.2.6 Linking 
3.2.2.7 Program Writing 

3.2.2.7.1 Code Production 
3.2.2.7.2 Code Expansion 

3.2.2.8 Examples 

3.2.3 Destructive Implementation of L-0 Programs 

3.2.3.1 Extraction of Transformation 
3.2.3.2 Optimisation of Transformation 
3.2.3.3 Projection 
3.2.3.14. Program Writing 

3.2.3.14..1 Examples and Remarks 

3.2.3.5 Example 

303/ 



CONTENTS contd. 

3.3 Algebraic Manipulation Routines 

3.3.1 Specification 
3.3.2 Produceallforms 

Chapter 4 Theory of Computation and Computer Science 

4.1 Programming and Machine Design 
4..2 Theory of Computation 

4.2.1 Languages and Meta-Languages 
4.2.2 Proofs about Programs 
4.2.3 Program Writing 

Chapter 5 Extension to General Systems. Extensible Compilers 

5.1 Improvements and Suggestions 
5.2 Language Extension 

5.2.1 Semantic Apparatus 
5.2.2 The Generalised Compiler 
5.2.3 Example. A transformational compiler for a matrix 

system. 

References 

Appendix I The Matching Algorithm 

Appendix31 The Function Codefor 



CHAPTER 1. INTRODUCTION 

Here are two versions of one program. 

reverse (xl) = if null(xl) then nil 

else append(reverse(tl(x1)),hd(x1)) 

reverse(xl) = nil->ans; 

while not(null(xl)) 

do [tl(xl)->temp; ans->tl(x1 ); xl->ans; 

temp->xl ]; 

One is clear and abstract the other tortuous and efficient. 

Given the first as a definition a competent programmer should be able 

to produce the second. Can we get the computer to do this? 

Again, in fairly abstract terms a definition of set union is 

union(x,y) = if nullset(x) then y else 

consset(choose(x),union(minus(choose(x),x),y)). 

If/ 

* The primitives that we use are based on the POP-2 language, 
Burstall, Collins and Popplestone (1971). The main features to 
note are that X->Y is equivalent to the Algol Y:=X, hd is the 
LISP car, tl is the LISP cdr, append adds an element to the end of 
a list, and intsub(n,s) selects the nth element of a string s. 
Nullset, consset, choose and minus are primitives of a set language 
that we define later, nullset is true if the set is empty, consset 
adds an element to a set, choose picks an element from a set and 
minus removes a given element from a set. 
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If we represent sets of integers as bitstrings in the computer 

there is an efficient but unnatural implementation for this function, 

viz. 

length(x)->l; 1->n; 

while n<l do [if intsub(n,x) = I then 1->intsub(n,y); 

1+n->n]; 

In the following chapters (2 and 3) we first outline and then 

give details of a system and its implementation that can achieve these 

transitions. In the above examples the first version is written in 

a simple language and the second in a more extensive and efficient 

language with more machine oriented primitives. Thus we can regard 

the change as a sort of compilation. We might call it 'transformational 

compilation' since the structure of the program is transformed during 

compilation. 

Chapters 4 and 5 give our views on (i) The relevance of this 

activity to high level languages, program proving and automatic program 

writing and (ii) How our transformational compiler could be extended to 

a wide variety of domains. 
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CHAPTER 2 

2.1 Introduction 

In this chapter we present an outline of a scheme for a trans- 

formational compiler that will attempt the efficient compilation of 

programs stated in a mathematical user oriented language for a 

limited domain. We will describe the implementation of these ideas 

in more detail in the following chapter. 

2.2 Philosophy 

The basic approach combines two philosophies of programming and 

compilation given by Minsky and Dijkstra. 

In his Turing Lecture Minsky (1970) said that there is too much 

preoccupation with form (or syntax) in present day compilers and not 

enough attention is paid to computational content. We believe that 

there is a growing divergence between the program structures that 

enable programmers to clearly and concisely specify computations and 

structures that are suitable for efficient implementation on present 

day computers.. Further we believe that form based compilation of 

these structures will be inefficient and traditional optimisation 

techniques insignificant. We have attempted to produce a compiler 

that knows a lot more about the programs it is implementing, 

particularly their semantics, and has a limited inferential capability 

that allows it to attempt the implementation of high level programs 

in a more intelligent manner. 

The/ 



The other aim of our approach is basically to implement in our 

compiler techniques for program production first advocated by Dijkstra 

(1970) in his works on structured programming. We will not give a 

full description of the technique of structured programming as it is a 

widely known and accepted technique. For our purposes, however, we 

note that it has a natural implementation in programming languages with 

a well-developed procedure (function) mechanism, for example in LISP. 

Here, if one is faced with the task of writing a program to perform a 

given task using certain basic primitives with known semantics one can 

adopt the following top down method. Assume you have enough useful 

high level primitives to make the writing of the program trivial and 

write a program (or function) using these primitives. You are then 

faced with the task of realising these primitives, which you do by the 

same process, until all the last functions written use only the 

originally given primitives. This method applies whether we are 

thinking of purely functional languages or ones with imperative pro- 

cedures. Thus if we view a program as an expression (which may be 

other than purely functional) in certain primitives the process is tree- 

like, with primitives being realised as further expressions in lower 

more machine oriented languages. 

2.3 Basic Method 

Our compiler, which is for a simple set language, works on this 

structured pattern. The user is presented with certain high level 

set primitives and for a given task produces the top portion of the 

tree. The compiler can complete the tree as it has structured 

definitions/ 
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definitions of the given primitives in terms finally of the target or 

machine primitives. Each level in these structured definitions 

corresponds to a well-identified domain. The task is to flatten the 

tree and produce if possible a single expression in the target 

primitives that performs the task specified by the topmost function, 

given appropriate data domain mappings to encode the inputs and 

decode the outputs i.e. representations. 

Note that we already differ from normal compilers for functional 

languages where the tree structure is retained after compilation and 

accommodated to the linear nature of the machine by means of inter- 

pretive run time systems performing function entry and exit. 

The way that we proceed is top down, rewriting each expression 

into another expression. However we do not proceed by the normal 

method of replacing each primitive by its definition (in-line code 

introduction) followed by optimisation. We compile as much as 

possible via the semantics of the procedures. At a given level we 

examine as much as possible the semantic content of the given program 

or function and then reimplement this in the most appropriate manner in 

the next level. This consists of four stages. 

(i) We extract the semantic content or transformation induced by 

the program. 

(ii) In a planning or lookahead stage we consider the future 

implementation of this transformation and using knowledge appropriate 

to this domain adjust it so that it is still effectively the same 

transformation but is in a form more suitable for future implementation. 

(iii) 
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(iii) We then project this transformation into the next (lower) 

domain. By this we mean produce a transformation in the next domain 

which represents the previous transformation under the appropriate 

domain mappings. 

(iv) Our compiler has certain automatic program writing ability 

that enables it to take this projected semantic transformation and 

produce a program in the lower domain that performs this transformation 

and is appropriate to that domain, a task similar to that proposed for 

the heuristic compiler of Simon (1963)° 

Note that our 'optimisations' are basically performed in (ii) 
and consist of manipulations in a clearer semantic domain and not 

manipulations of program text. 

Each primitive at a given level in the tree has two faces as far 

as our compiler is concerned. It has a semantic face that allows the 

content of functions written using these primitives to be extracted and 

it has an implementation face, allowing the compiler to know about the 

future (lower down the tree) implementation of primitives, and it is 

thus able to rearrange the transformations in such a way as to facil- 
itate optimising interactions in future implementations. The main 

optimising interactions are- 

(i) Linking, where two primitives have a common loop structure 

and may be merged if they occur in certain combinations. 

(ii)/ 
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(ii) Repeated expression elimination. 

(iii) Construction reduction (doing less constructing of data 

structures by using assignment into structures and sharing). This 

can be thought of as compile time garbage collection. 

We thus rewrite our programs to facilitate these optimisations. 

The stages are facilitated if we can keep the changes between stages 

as small as possible. Only as much structure as is needed to give 

some point to the step should be introduced so that we effectively 

deal with one language feature at a time. 

It is usual in producing a program to have a choice of several 

ways of implementing primitives. Often the crucial choices are the 

ones of choosing representations for the data objects. It is a merit 

of strL,, tuned programming that these decisions are separated from the 

task of producing the basic algorithm. Our compiler shares these 

advantages. It offers the user a choice of two representations for 

the abstract data objects. At present the choice is left to the user 

although the structure and information is there to allow the compiler 

to make the decision. 

One must also distinguish between the functions on the tree 

defined by the user and those known to the compiler. For the latter 

we have information about their semantics and implementation. For 

the former, one would need to disonirer facts about their semantics and 

implementation. Our compiler can do this only to a limited extent. 

2.4/ 
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2.4 Outline Description 

We will now describe in outline how our transformational compiler 

works. In order to make our discussions more concrete we will describe 

it by showing how it works on an example. This entails introducing 

the language and the semantic apparatus used for dealing with programs 

written in these languages in this chapter though we do so informally 

and only to the extent needed to describe our methods. A fuller 

description and semantic definition will be given in the following 

chapter describing the implementation and the program writing 

algorithms. 

2.4.1 Languages and Domains 

To give the reader a guide we present here a summary of the 

relationships between the languages we are about to introduce 

S-0 Recursion equations 

1 
in the set primitives User language 

the set primitives Intermediate 
languages 

S-1 Iterative language in 

L--O Iterative constructive 
list language 

Iterative B®0 L-1 Iterative destructive 
bitstring list language Target machine 
language oriente d 

languages 

The abstract language that we choose for our compiler was one 

that would help people who wishtn write programs involving manipulation 

of/ 
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of sets of integers. Although this is not an area that is very rich 

in natural and useful algorithms the area does have an abstract 

structure and the sets have two competing representations, viz. as 

lists or as bitstrings. 

2. L-.1 .1 User Langua e 

The language in which the user presents his algorithms to 

the compiler is a purely functional recursive language. 

As a pilot project we have chosen to implement a simple set language 

following Ambler and Burstall (1971) who developed a set package to allow 

the user to write programs using set primitives and offered a choice of 

representations. Much of the work applies to other systems and we 

discuss this in chapter 5. 

The input consists of sets of mutually recursive equations in the 

set primitive's, union, subtract, nullset, consset, choose and minus. 

These have the following informal semantics which we will give more 

formally in 3.2.1. 

union(sl,s2) = s1 U s2 

subtract(sl,s2) = sl/s2 

consset(x,s) = {x} U s 

minus(x,s) = s/{x} 

nullset(s) = s=O 

choose(s) = x such that xes 

and s1 = s2 => choose(sl) = choose(s2) 

The only one worthy of remark is choose, which is an arbitrary 

but deterministic function. 

For 
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For example, a program that defines union in terms of choose, 

minus and consset consists of the single recursive equation 

nullset(sl )-__ s2 

union(s1,s2 

not(nullset(sl ))___. consset(choose(s1 ), 

union(minus(choose(s1 ),s1 ),s2)) 

We will call this language S-0. 

2.4.1.2 Target Languages 

The target languages in which we wish to implement these 

algorithms we will call L-1 and B-0. L-1 is basically an iterative, 

non-functional list programming language using the usual list primitives 

and B-0 is an iterative, non-functional language using bitstrings, one 

dimensional boolean arrays. 
We avoid the use of unrestricted goto's to make our programs more 

easily understandable and amenable to manipulation and cptimisation. 

Iteration in both these languages is taken care of by the use of 

'canned' loops, namely while statements and applists (in L-0 and L-1). 

Applist applies a function to every member of a list and is 

defined as 

Applist(x1,f) = while not(null(x1)) 

do [f(hd(x1)); tl(x1)->x1]; 

The results of Ashcroft and Manna (1971) show that we lose no 

power in avoiding unrestricted goto's. 

In/ 
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In both these languages (B-0 and L-1) destructive assignment 

is allowed, that is, assignment to parts of structures., instead of 

only allowing assignment to variables. Two examples will serve to 

give the flavour of these languages. 

(i) A program in L-1 to change the nth element of a list 1 to x 

is simply 

1->lcopy; 

while n>1 do [n-1->n; tl(lcopy)->lcopy]; 

x->hd(lcopy) 

(ii) A program in B-0 to concatenate two bitstrings. 

Length(sl)->nl; Length(s2)->n2; 

init(n1+n2)->s3; 

1->n; while n<nl do [intsub(n,s1)->intsub(n,s3); n+1->ri] 

1->n; while n<n2 do [intsub(n,s2)->intsub(n+n1,s3); n+1->n] 

As we are using lists and bitstrings to represent sets we must define 

the representation relationship. 

A list L represents a set S iff each member of S occurs just once 

in L and L has no other elements, e.g. (1,2,3) represents 3,2,1J but 

(1,2,3,1) does not. 

A bitstring B represents a set S of integers iff the x'th 

component of B is I whenever x(S and 0 whenever x/S. 

2.4.1-3/ 
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2.4.1.3 Intermediate Languages 

In order to give the compilation process structure we 

introduce intermediate languages. 

Our first task is to remove as much recursion as possible. This is 

represented as a transition between S-0 and a language we call S-1. 

S-1 has the same basic primitives as S-0 but it has assignment (to 

variables only) and its iterative structure is the same as Lm1 or B-0. 

Thus the previous example of a definition in S-0 of union in terms of 

consset, choose and minus becomes in S-1. 

while not(nullset(s1)) do [choose(s1)->x; minus(x,s1)->s1 

consset(x,s2)->s2] 

The next stage down the hierarchy concerns the expansion of the set 

primitives (e.g. union,choose) in terms of the list or bitstring 

primitives. It is here that a choice concerning the representation 

is made by the user. For bitstrings the translation is straight to 

B-0. If lists are chosen the translation is first to a program in a 

language L-0 which is similar to L-1 but is purely constructive in 

that it only allows assignment to variables and not to structure. 

The previous example of a program written in L-1 to replace the 

nth element of a list 1 by x would have to be written thus in L-0. 

nil 
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nil->res; 

applist(l,lambda z; if n=1 then cons(x,res)->res 

else cons(z,res)->res 

n-1->n) 

rev(res)->l; 

Assuming rev is a primitive for the moment (which it is not in L-0). 

The final stage, if lists have been chosen as a representation, is the 

translation of the program from L-0 to L-1. The transitions can be 

summarised as 

S-0 

Removal of Recursion 

S-1 

Bitstrings Chosen Lsts iChosen Expansion of Primitives \ 
B-0 L-0 

Analysis of Store Usage 

L-1 

The steps S-O->S-1, S-1->B-0 and S-1->L-0 are the steps where the main 

flattening of the functional tree takes place. 

[By a completely flattened program at a given level we understand an 

iterative (non-recursive program) composed entirely of primitives of 

that level.] 

The removal of recursion S-O=>S-1 attempts to convert a tree of 

mutually recursive equations to a single iterative program. The 

steps S-1=>B-0, and S-1=>L-0 involve looking at the semantics of this 

program, manipulating this transformation according to set theoretic 

laws/ 



laws and rewriting it in such a way that when the primitives are 

expanded into B-0 or L-0 primitives the most beneficial interactions 

occur enabling loops to be linked. 

The step L-.0.>L-1 involves no expansion of primitives, 

It involves looking at the way the program uses store and attempting 

to economise on its use of store, by looking after many of the 

responsibilities usually allocated to the garbage collector at run 

time and rewriting the program to remove as many of these responsibilities 

as possible. 

2.4.2 Outline of Compiler 

We are now in a position to describe these steps in some 

detail. This will be done mainly through the use of an example. We 

show how the compiler deals with the definition of union illustrated 

earlier 

(nullset(sl )----)s2 

union(sl ,s2) = 

Lnotnu11set1 ))__ consset(choose(s1), 

union(minus(choose(s1),s1),s2)) 

2.4.2.1 Removal of Recursion 

We do not implement a general method of recursion 

translation such as thoseix'oposed by Strong (1970) and Garland and 

Luckham (1971)- We find that many recursive forms often met in 

practical/ 
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practical programming fall outside the scope of these methods. As 

these methods are based on schemas they do not make use of any of the 

properties of the primitives such as associativity or commutativity 

and any tree-like recursion resulting from polyadic functions, for 

example the factorial function, is often only translatable because of 

certain properties of its primitives. Conversely the schemas for 

which these general methods are most impressive, viz. highly inter- 

related monadic schemas, are very little met in practical programming. 

Instead, we concentrate on bringing as much semantic information as 

possible to bear on the translation. The system classifies the input according 

to its structural form by matching it with one of a repertoire of stored schemas 

eaching having a known iterative translation. It then looks at the semantic 

properties of the primitives making up the function to see if a translation is 
possible. 

This approach is not rigid in that one can vary the matching 

filter to classify more functions in one structural form and then do 

more work in the second phase, which performs a semantically based 

translation. It is a matter for empirical testing whether an 

adequate number of functions can be handled by a manageable number of 

patterns. We have not been concerned with the completeness of our 

algorithm, although it will translate many functions that complete 

algorithms in the schemata sense will be unable to. We visualise 

that its use would be in partnership with a general complete algorithm 

of the kind proposed by Strong. 

The 
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The first task on being given a set of recursion equations is to 

partition it into sets of mutually recursive equations. These can be 

translated independently and then recombined. 

In the case of our example this partitioning is trivial as there 

is only one equation. 

Our matching process classifies this equation into the class 

associated with the dyadic functions with a structure similar to 

factorial. Generally this form is untranslatable, but as consset has 

the property that 

consset( ol,consset(,, K )) = consset(p consset(CA )) 

our program manages to produce the translation, 

s2->Ans; 

while not(nullset(sl)) 

do [choose(sl)->t; consset(t,Ans)->Ans; 

minus (t,s1)->s1] 

2.L.2.2 Choice of Representation, Implementation in Lower 

Level Description 

The basic process we describe in this section is used for 

all transitions between language levels except for the recursion trans- 

lation stage (S-0 to S-1). Different transitions however emphasise 

different aspects of this process and will be described separately. 

2.L1.2.2.1/ 
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2.4.2.2.1 S-1=>B-0, S-1=>L-0 Transformation Extraction 

The approach to compilation we adopt owes much to 

Milner's work on Simulation, Milner (1971). Given a piece of program 

text (say in S-1) we first analyse the transformation induced by this 

program text on a symbolic state vector. A state vector gives a value 

for every variable occurring in the program. It therefore defines a 

state the program could be in. A symbolic state vector is one in 

which the values given to variables are names instead of actual values. 

We extract the transformation from a piece of program text by eval- 

uating its effect on the symbolic vector, producing a pair of before 

and after state descriptions. 

2.4.2.2.2 Planning 

It is here that the choice of the next lower 

language is made, at present by the user. This stage is the planning 

or optimisation stage. We will describe it as occurring before the 

next stage, projection, but as we will see later the separation is not 

critical. This stage consists of rearranging the state descriptions 

so that they will be optimally implemented in the next lower language 

chosen. This involves rearranging the state descriptions using algebraic 

laws appropriate to the higher level, but the evaluation function 

that measures the optimality of the rearranged transformations is 

couched in terms of the future implementation proposed for these 

primitives. Thus though the state descriptions manipulated are in 
terms/ 



terms of the higher level primitives and it is their algebraic laws 

that we utilise, they may be thought of as shorthand for their proposed 

expansion. 

This stage can also be truly called a planning stage as the search 

for an optimal implementation is done in a simplified space, and 

proposed solutions may be sub-optimal although the computation required 

to find them is much less than would be needed to find an optimal 

solution. 

2.4.2.2,3 Projection 

The result of the previous stage is a pair of 

symbolic state vectors representing the transformation extracted from 

the program text. We now project these symbolic state vectors into 

the lower domain chosen using the representation relationship. 

2.4.2.2.4 Program Writing 

Given this pair of lower level state descriptions 

we then automatically write a program to perform this transition in 

the lower level language as efficiently as possible. 

Thus 
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Thus to summarise 

Transformation 
extraction 1 

Higher level 
program 

Higher level Optimised Lower level 
state pair transformation state pair 

Representation 
relationships 

1 
1 1 

State State 
1 

Planning or 
optimisation 
stage 

X 

State ` State 11 

State 
A 

Program 
writing 

Lower level 

State 

--7 program 

The higher level transformation is given in the form of a program, 

re-expressed as a pair of symbolic state descriptions. This trans- 

formation is rearranged in the planning stage and then translated in 

the projection stage into a corresponding pair of lower level state 

descriptions. From these the lower level program is produced. 

Ideally we would like to be able to take for our pieces of program 

text arbitrary programs. Then this process would be devoid of any 

form-directed compilation and able to take a program at any given 

level purely as a specification and re-interpret this entirely. This 

of course requires the ability to extract the semantics of whole 

programs, which we are unable to do. Our basic unit for the process 

is a single while statement. Generally we are unable to alter whiles 

introduced by the recursion translation process and the overall 

iterative structure introduced there remains to the end. However, 

there are several special cases that our compiler can recognise where 

it can alter this structure. 

2...2.3/ 
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2.4.2.3 Implementation in Lower Level Example 

Our first task is to segment the program into sections 

to be dealt with independently. A section is usually a while state- 

ment together with any piece of the program text following the 

while statement up to the next while statement or end of program. 

Our example divides into two sections 

s2->ans 

and while not(nullset(sl)) do [choose(si)->t; consset(t,ans)->ans; 

minus (t, sl )->sl ] 

Our compiler can do nothing for the first section which remains as it 

is. On looking at the second section, it generally divides it up 

into three parts: the predicate of the while statement, its body and 

the rest of the section. In this example only the first two are 

present. 

2.4.2.3.1 Transformation Extraction 

We now investigate the semantic transformations 

involved. The semantic apparatus that we use will be described in 

detail in the following chapter, chapter 3. At this level (3-1) the 

semantics of our program is not unnaturally expressed in set-theoretic 

terms. We require the variables in our programs to be typed, so 

that we know which variables can take sets as values and those that 

take objects as values. Persuasive reasons have been advanced for 

typed 
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typed languages. We do not enter this controversy here but note that 

typing makes translation easier. 

Thus in our example s1, s2 and ans would be of type set and t of 

type object. We invent symbolic names for our semantic objects and 

set up an initial state vector thus 

ss.1 s2 ans t 

set1 set2 set3 obl 

Our semantic transformation is basically derived as expressions over 

the set and object names. However we also have the ability to give 

symbolic names to members of specific sets. Thus if we attempt to 

choose an element from a set we can give it a specific symbolic name. 

Each set has associated with it a membership list which is a list of. 

those object names which are definitely in the given set (this is 

discovered from the program text). 

The transformation is extracted from the program text basically 

by interpreting the state vector through the text. If we encounter 

a 'choose' we attempt to discover whether the set already has any 

designated members. If it has, we choose the first one to be the 

value of this choose, if not we invent one and choose it. 

To illustrate this process we will first annotate points in our 

example program thus. 

I 
while I 

. not(nullset(sl)) do [ . choose(sl)->t; I 
. consset(t,ans)->ans; I 

. 

E 
minus(t,s1 )->s1 i ] 

We/ 
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We may wish to combine some of the work done in evaluating 

the predicate expression controlling the execution of the 

while statement and evaluating the other two (in this case one) bodies 

of the section, thus we include the predicate value in our inter- 

pretation by giving it a variable denoted PV. When rewriting the 

program we insist that PV must be evaluated before any assignment to 

program variables takes place. Any values that may be used again 

later are stored as temporary values. The process of interpreting 

the state vector thus produces these intermediate stages. 

A sl s2 ans t PV Membership list of setl,set2,set3 

setl set2 seta o 1 ob2 - nil. 

B s l s2 ans t PV 

IL t r 
setl set2 seta obi not(nullset(setl,)) 

C sl s2 ans t PV 

setl set2 seta obi n t(nullset(setl )) 

and the membership list of setl becomes [ob3] 

D s1 s2 ans t PV 

setl set2 consset(ob3,set3) 13 not(nullset(setl )) 

E s1 s2 ans t 

minus(ob3,set1) seet2 consset(ob3,set3) obb3 not(nullset(setl)) 

Thus the overall transition is 

s1/ 
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s1 s2 ans t PV s1 s2 ans t 

set1 s 
t 
et2 seta obi ob2 minus(ob3,setl) 12 consset(ob3,set3) 013 

PV 

not(nullset(setl)) 

with property lists 

2.1.2.3.2 Processing the Transformation 

We are now in a position to consider the implementation 

of these primitives into the next level L-0 or B-0. We therefore give 

the general definition of these primitives in the two languages:- 

B-0 

nullset(s) = true->res; length(s)->l; 1->n; 

while n<l do 

[if intsub(n,s) = I then false->res; n+1->n] 

res 

choose(s) = length(s)->l; 1->n; 

while n<l do 

[if intsub(n,s) = I then n->res; n+1->n] 

res 

minus 
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minus(x,s) = 0->intsub(x,s);s 

consset(x,s) = 1->intsub(x,s),;s 

union(sl,s2) = copy(s1)->res; 

length(s2)->l; 1->n; 

while n<l 

do [if intsub(n,s2) = I then 

1->intsub(n,res ); n+1->n] 

res 

subtract(sl,s2) = copy(s1)->res; 

length(s2)->l; 1->n; 

while n<l 

do [if intsub(n,s2) = I then 0->intsub(n,res); 

n+1->n] 

res 

member(x, s1) = intsub (x, sl) = 1 

L-O 

nullset(s) = null(s) 

choose(s) = hd(s) 

consset(x,s) = if member(x,s) then s else cons(x,s) 

minus(x,s) = nil->res; 

applist(s, A y; if not(y=x) then 

cons(x,res)->res) 

re s 

union/ 



-25- 

union(sl,s2) = s2->res; 

applist(sl , , \ x; if not(member(x,s2)) then 

cons(x,res)->res) 

res 

subtract(sl,s2) = nil->res; 

applist(sl, }\x; if not(member(x,s2)) then 

cons(x,res)->re3) 

res 

The next step is to attempt to simplify some of the set expressions. 

We note that in B-0 nullset and choose have to be interpreted iteratively, 

similarly consset and minus in L-0. We try to avoid this. We note 

that if we know something about the membership of the sets in question 

this is not always necessary. We have two ways of avoiding this 

(i) calculating whether specific symbolic objects are definitely in or 

definitely not in a specific set and (ii) ordering the known members of 

sets so that when they are projected into lists they will be accessible 

without iteration. 

(1) We define two functions in the meta-language, defon, defnoton. 

defon, defnoton: expressions in setnames->lists of members 

which tell us what members are known to be in or known to be not in 

given expressions of type set. They are defined inductively over 

expressions thus:- 

defon 
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defon(C) = cases : setname: membership list of 

nilset: 0 

un3ion(E 1 , e 2): defon(6 1) j defon( 62) 

subtract( 62): defon(f 1) A defnoton(£ 2) 

consset(E,1, 2): 1 } U defon( E2) 

minus( E12): defon( E2), E.1i 

defnoton(O = cases E : setname: 0 

nilset: 0 

union( 2) defnoton( defnoton(. 

subtract(&1, E2): (defnoton(E.1) v defon( £2)) 

(defon( E1) A defnoton( '2)) 

cons set( £i , C 2 defnoton(f 2)/ E1 i 

minus( (11 , 2): 61 defnoton(, 2) 

Given these functions we can make the following simplifications. 

consset (obi , ) 

(i) if obl e defon( ) then E 

(ii) if ob1edefnoton(E) then in L-0 this can be simplified to 

cons(ob1 , E. ) 

minus, 

* The cases notation that we will use for describing algorithms was 
developed from the switch on type introduced into CPL by M. Richards 
(1967),by R.M. Burstall (1969). As well as being a conditional 
switch it allows structures to be decomposed into their constituents. 
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minus (obi , . 
(i) if obiedefon( 6) then in L-0 we may be able to arrange it so 

that this is tl( C 

(ii) if obledefnoton(E) then 
The first case for consset and the 

second case for minus 4pnot likely to occur. As these relations 
are discoverable from the program text, they would also be apparent to 

a programmer. They may occur after recursion translation. 

The next stage depends on which language is chosen. It is at 

this stage that a choice of representation would have to be made. We 

could make the choice by evaluating the transformation in terms of how 

much work it involves in each of the competing domains. These would 

be upper bounds as they would not be able to take into account any 

optimisations we may be able to perform later. 

For this small example the planning or manipulation stage does 

not alter the state transformations in any of the two implementations. 

We therefore reserve its detailed description until we have an 

example where it has a significant effect. (3.2.2.3). 

2.4 203.3 Implementation in L-0 

If we choose L-0 the next task is to project the 

transition into the lower domain. We must therefore briefly explain 

our semantic apparatus for this domain. Transformations are again 

expressed as pairs of state vectors. In the place of sets we have 

lists. 
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lists. Lists are represented symbolically as chained links of named 

nodes. Each list is given just enough structure to enable us to 

describe the transformation. Variables can again take as values free 

expressions over symbolic objects or nodes. The main work of the 

projection is in attempting to arrange the nodes of the list 

(representing the members of the set) in such a way as to be able to 

implement them easily. 

As there is no possible linking of the iterative structure of 

the primitives in this example we will leave its description for the 

section on the implementation in B-0 where it is of importance. 

In this example one set has only one named member so the 

projection is easily done. The symbolic set set1 is represented by 

the symbolic list n1[cb33I 2 where n1 is the name of the first node 

whose head points to ob3 and whose tail points to the node n2. n2 can 

be thought of as the rest of the list whose structure does not enter 

into our computation. 

Thus our projection is 

31 s2 ans t PV 

set1 set2 seta ob1 ob2 

I 
s1 s2 ans 

minus(ob3,set1) set2 consset(ob3,set3) 

t PV 

J 

`lY 

s1 s 2 ans t/ 
1 

n1 n3 nk o11 ob2 

n1[yob3 In2 

1ob3 not(nullset(set1)) 

lt 
s2 an s 

minus(ob3,nl) n3 consset(ob3,nQ 

t PV 

b o b3 

I 
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where minus, consset, not and nullset should now be thought of in the 

lower domain as shorthand for their definition in this domain. The 

program can now see that it can simplify the minus(ob3,nl) into n2. 

Thus our final transition is 

s1 s2 ans t PV 

nV1 n3 n . obi ob 

n1 [cjob3in2 

s1 s2 ans t 

n2 n3 consset(ob3,n4.) ob3 

P11V 

n t(nullset(n1)) n1 [(ob3 I n2 

The task now is to write the program to perform the above trans- 

formation and to expand the primitives. 

We would like to make a small change here that will enable us to 

better illustrate a later mechanism. We were unable to reduce the 

consset(ob3,n4.) as we can derive no knowledge of the membership of seta. 

However we could have given our compiler a slight interactive capacity 

so that when it saw a possible optimisation it could ask the user 

questions. Feldman (1972) points out that this capacity will be 

essential. Thus if the user knew that the sets were always to be 

disjoint we could further simplify the transition to 

s1 s2 ans t PV s1 s2 ans t PV 

nI n3 nk 0 1 ob n3 n5 pb3 no (nullset(n1 )) 
n1 [l ob3 ] 2 n1 

[4ob3 I n2 n5 ob31n4- 

where n5 is the name of the new node introduced by cons(ob3,n4). 

The task is now to produce a program from the state transformation. 

Our 
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Our basic method is given in outline flowchart form overleaf. 

It will be described more fully in the later chapter on implementation. 

We first calculate a set of differences between the states. A 

difference occurs when a variable has differing values in the two 

states or a new node is introduced. [At this stage the list 

structure can only be altered by adding new nodes.] There exist 

ways of removing these differences by assignment instructions, 

provided that certain information, in this case the information 

required to calculate the value of the left hand side of the assign- 

ment, is available. Our program attempts to order the differences 

in such a way that they can be removed without any necessary information 

being lost. If there exists such an order our program produces the 

program corresponding to that order which is guaranteed to be optimal, 

as each difference requires at least one assignment statement to 

remove it. If this is not possible our program allows itself one 

extra instruction, in order to remember information that would other- 

wise get lost, and again attempts to order the differences. The 

program continues in this way until either a program is found or an 

effort bound is exceeded. One restriction is that the difference 

corresponding to 'PV' in the transformation must be removed first. 

Any calculation that is done in the course of this calculation that 

will be useful later is stored in temporary variables until after the 

PV difference has been removed. On being given the above state 

transformation our program produces the following order of 

differences 

(i )/ 
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IN 

Outline of the algorithm 

to produce a program to 

transform stateO to 

statel 

0->Bound 

List of all permutations of differences 
between stateO and statel 

->diffpermlist 

1->Newinstructions 

state0->state 

1+Bound->Bound. 

empty ? 

1 
Select from diffpermlist 

->difflist,difflist->difflistcopy 

Remove difflist from diffpermlist 

->diffpermlist 

YES 

Dsff'list empty ? Succeeded UT 

I NO 
produce program 

corresponding to 
difflistcopy 

NY 

Select from difflist 
->difference 

Remove difference from difflist 

->difflist 

4 
3 

Information available 

to remove difference ? NO > Newinstructions>Bound 
YES NO I YES 

Process state by removing difference 1+Newinstruotion 

->state ->Newi struotions 
I 



-32- 

(i) PV (ii) t (iii) s1 (iv) n5 (v) ans 

and produces the following program 

while not(null(sl)) do [hd(sl)->t; tl(sl)->sl; cons(t,ans)->ans] 

2.4.2.3.k Implementation in B-0 (S-1 => B-01 

We now back up and show how our compiler implements 

the transition in B-0. 

Here none of the investigation of the discoverable memberships of sets 

is useful as in B-0 both consset and minus are implemented as single 

operations, so we do not bother to investigate set membership or 

simplify choose, minus or consset, thus the transition is 

s1 s2 ans t PV s1 s2 

1 
set1 set2 seta obi ob2 minus(choose(set1),set1) set2 

ans t 

co sset(choose(setl),set3) ch ose(set1) 

PV 

1 
not(nullset(set1)) 

What is important is that choose and nullset have similar iterative 

structure in this implementation and can be linked. An important 

point to note before we proceed is that the combining of the loops of 

nullset and choose is done as it were using the S-1 primitives [with 

a knowledge of their future implementations] and then expanding them 

into an already optimised form, not expanding the code and then 

optimising. 

An/ 
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An improvement would be to have several competing implementations 

of S-1 primitives within a single representation choice and allow the 

compiler to choose the best one for this particular purpose, or to have 

the compiler write or modify implementations according to its need. 

Our compiler has none of these capacities. 

The same program writing mechanism was used for the S-1 => L-0 

transition is again used. In this transition, though, iterative 

linking plays an important part, so we shall describe it in some 

detail. During the calculation of differences the program notes if 

any of the expressions it needs to calculate can be linked iteratively. 

Basically they can be linked if and only if they are in the same 

iterative group (as nullset and choose are), they have the same 

iterative argument, and one does not occur as a subexpression of the 

other. The program has an evaluation mechanism that attempts to 

evaluate whether the effort saved in doing things on the same loop is 

worthwhile. In this case it is, and it links nullset(setl) and 

choose(setl). As nullset(set1) is part of the 'PV' difference no 

assignment can take place until after 'PV' has been calculated. 

Our program therefore produces 

while [length(sl)->l; 1->n; true->resl; 

while n<l do [if intsub(n,s1) = 1 then[false->resl; n->res2;1 

n+1->n] 

not(res1)] do [rest->t; 0->intsub(t,sl); 1->intsub(t,ans)] 

Generally/ 



Generally that would be as far as our compiler goes on,this 

branch (B-0). As we said earlier the compiler has no general ability 

to alter the structure of a complete while after introduction. 

Usually those whiles that are introduced by the recursion translation 

remain to the end. However we have added to our compiler the ability 

to recognise and deal with two special cases 

viz. while nullset(.) do A 

and while not(nullset(e,)) do A. 

As the second case is applicable to our example we choose that to 

explain. 

If it is discoverable that performing A once removes exactly one 

element from EOhis form can be rewritten as 

length( ,)->L; 1->n; while n<L do [A; 1+n->n] 

Applying this to the transition our compiler gets as its final B-0 

program, 

length(s1 )->l; 1->n; 

while n<l do [if intsub(n,sl) = 1 

then [n->t; 1->intsub(t,ans); 0->intsub(t,sl)] 

n+1->n] 

2.1+.2.1+ Destructive Implementation L-0 => L-1 

There 
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There remains one step left to describe. The program 

produced by projection from S-1 to L-0 was 

s2->ans; 

while not(null(s1)) do [hd(s1)->t; tl(s1)->s1; cons(t,ans)->ans] 

We now describe how our compiler re-implements this in L-1 which 

is a destructive list language (i.e. one that allows assignment to 

parts of structure, as in X->hd(Y)). 

This part of our program concentrates on analysing the store 

usage as there are no primitives that expand further. 

Again the only section of the above program that our compiler 

changes is 

2 3 4 56 
while not(null(s1)) do [hd(sl)->t; : tl(sl)->sl; o cons(t,ans)->ansb].' 

The starting state can be described symbolically as 

s1 s2 ans t 

H3 

n1 ->n2 

ob3 

£ oil 

n3. n4. 

We here present our descriptions of the structure of the front portions 

of our symbolic lists in pictorial form. How much structure we 

actually need at the beginning of our symbolic lists to adequately 

describe the transformation is discovered by starting off with a node 

representing/ 
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representing each list and whenever we access some of this structure 

(which must be on the front of the list) backing up, adding as much 

structure as is needed and restarting. Some of this information 

could have been deduced from the fact that not(null(sl)) is true on 

this branch. 

The following states are derived by interpreting our symbolic 

state on the above program 

At 2 s1 s 2 ans t nl ->n2, n3, nl1. 

n"1 n 3 4 oil ob3 

3 s1 s2 ans t nl->n2, n3, n4 
t 

1 V 
n1 n3 n4 ob3 ob3 

4 s1I1 s2 ans t nl ->n2, n3, n4 

n2 n3 n4 ob3 ob 3 

5 s 1 s2 ans t nl->n2, n3, n5->n4 
II 

n2 n 3 n 5 ob3 
W 

ob3 ob3 

and s1 s2 ans t n1->n2, n3, n4 
at 6 W 1 1 4 

n1 n3 n4 obi ob3 

So the only effective transition we need to implement is 

s1 s2 ans t 
n1 n3 n4 obi 

nl->n2, n3, n4 

1 
ob 3 

to/ 
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to 

s1 s2 ans t nl->n2, n3, n5->nk 

n2 
n3 

n5 b3 ob3 ob3 

We now project this transformation into the lower domain, in this 

case L-O=>L-1. TI esemantic apparatus we use for the two domains is the 

same and so the projection is the identity. 

The optimisation of the transition we now perform is to try and 

economise on store usage by stopping the introduction of new cells. 

Our program notes that n1 is not accessed in any way at the end (as 

far as this piece of program is concerned) and that its hd has the 

same value as our new node n5, thus an equivalent transformation 

involving less rearranging (fewer differences). 

s1 s2 ans t nl->n2, n3, nL. 

4' 

n1 n3 n!F obi ob3 

to 

s1 s2 ans t n1->n ., n3 
.1, \1' 'J .I, .I. 
n2 n3 n1 ob3 ob3 

Our compiler now writes the program to realise this transition. 

The method is as before, calculating differences and attempting to 

find an order in which they can be removed. In this case 

differences are more complex as they may involve rearranging of hd, tl 
pointers 
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pointers and our compiler has to check that side-effects are not losing 

information. Our program outputs the following program to perform 

the above transformation. 

ans->t; 

s1->ans; 

tl(s1)->s1 ; 

t->tl(ans); 

hd(ans)->t; 

which when plugged back in the earlier program gives 

s2->ans; 

while not(null(sl)) do [ans->t; sl->ans; tl(s1)->s1; t->tl(ans); 

hd(ans)->t] 

umm 

We have implemented the recursive definition 

union(s1,s2) = 

in two programs viz. 

nullset(s1 )_-.->s2 

not(nullset(sl))-3 consset(choose(s1), 

union(minus(choose(s1),s1),s2)) 

s2/ 



-39- 
s2->ans; 

length(s1 )->l; 1->n; 

while n<l do [if intsub(n,sl) = 1 

then[n->t; 1->intsub(t,ans); 0->intsub(t,s1)] 

n+1-> n ] 

and 

s2->ans; 

while not(null(s1)) do [ans->t; s1->ans; tl(s1)->s1; t->tl(ans); 

hd(ans)->t] 

The order of complexity of both of these implementations is n where 

n = length of s1 . 

If we had implemented our function by the normal interpretive 

compiler we would have had two program viz. 

nullset(s1 )----3 s2 

union(s1,s2) _ 

(not(nullset(s1))-+ consset(choose(s1),union(minus 

(choose(s1),s1),s2)) 

where nullset(s) = True->res; length(s)->L; 1->n; 

while n<L do 

[if intsub(n,s) = I then false->res; n+1->n] 

res 

where/ 
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where consset(x,sl) = 1->intsub(x,s1 ); s1 

where minus(x,sl) = 0->intsub(x,si); s1 

where choose(s) = Length(s)->l; 1->n; 

while n<l do 

[if intsub(n,s) = I then n->res; n+1->n] 

res 

A program of the order of complexity n2 

and 

union(s1,s2) = nullset(s1)--4s2 

not(nullset(s1))..-_ consset(choose(s1),union(minus 

(choose(sI ),sI ),s2)) 

where nullset(s1) = null(S1) 

where consset(x,s1) = if member(x,s1) then s1 else cons(x,s1) 

where minus(x,s1) = nil- >res; 

applist(s1, A y; if not(y=x) then cons(x,res)->res) 

res 

where choose(sl) = hd(sl) 

A program of the order n3o 
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CHHFTER. 3. IMPLEMENTATION 

In this chapter we describe how we have implemented the ideas 

described in chapter 2. 

3.1 Removal of Recursion 

3.1.1 In this section we deal with how, whenever possible, 

w.e translate sets of recursion equations to iterative programs. It 

has long been held desirable to remove some recursion on compilation 

in order to discard some of the inefficiencies often inherent in the 

use of a stack. There has been some theoretical investigation of 

when and how it is possible to translate recursive schemas into 

equivalent iterative schemas e.g. Strong (1970) although as far as 

we know no actual compiler makes use of any of these ideas, although 

BBN LISP, Teitelman et. al. (1971) removes very trivial recursions at 

compilation. These methods usually are developed for free or 

uninterpreted schemas and thus rely on syntactic criteria for 

classifying schema and syntactic translation algorithms for converting 

suitable schema to equivalent iterative schema (i.e. ones that agree 

over a given range of interpretations of the basic symbols). Not 

all schemas are translatable and not all are translatable into 

iterative schemas of comparable efficiency. We, of course, are 

interested only in translations that maintain or improve efficiency, 

but our approach differs in several other respects. Firstly our 

inputs will be fully interpreted functions and not schemas, that is, 

the 
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the function letters occurring will have known denotations; by solely 

dealing with schema translatability results we will be restricting 

ourselves unnecessarily. Also most of the positive translatability 

results have been confined to monadic schemas or linear recursive 

schemas and are unable to deal with K-fold recursions, Peter (1951), 

for K>2. We feel that many of the forms often met in practical 

programming thus fall outside the scope of these methods, as often 

when it is natural to use recursion it is because the underlying data 

is tree--like (lists) or the algorithm involves polyadic functions. 

The schemas on which these methods seem most impressive are highly 

interrelated monadic or linear schemas. These are met very little 

in practical programming. 

The translations that we achieve are of two types. 

(i) Where the computation sequence of the iterative program 

produced is a rearrangement of the computation sequence of the 

recursive program but contains the same number of computation steps. 

In these cases we save the time and storage overheads and inefficiencies 

associated with the various stacking mechanisms and function entry and 

exit. The factorial function is an example here (see 3.1.3.4). 

(ii) In other cases, for example the Fibonacci function (3.1.3.4), 

the tree grown by the recursive calls contains redundancies in that 

the same values are calculated at separate nodes. Our translation 

process attempts to recognise these cases and produce an iterative 

program whose computation sequence is shorter and contains no 

redundancies/ 
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redundancies, these savings being on top of removing the stacking over- 

heads. 

The system that we propose and have implemented consists 

basically of a 'big switch' according to the structural form of the 

equations input followed by the investigation of the semantic 

properties of the primitives making up the function in an attempt to 

produce a translation. This method owes much to the Planner 

philosophy, Hewitt, C. (1971), in that it consists of a matching phase 

that attempts to match the input with a set of target patterns. 

Associated with each target pattern is a set of rules or procedures 

that investigate the semantic properties of the values produced by 

the matching process and produce a translation if one is possible. 

The work of Cooper (1966) provided valuable insights here. We do 

not aim at a theoretically complete translation algorithm although 

of course the method could be backed by a general method for the sake 

of completeness. 

3.1.2 Source and Target Languages 

We now define the problem. We do not restrict ourselves to 

the task of translating S-0 programs into S-1 programs but generally 

state the problem of translating recursion equations into iterative 

programs given that we know certain basic semantic properties of the 

function primitives making up the recursion equations. 

3.1.2.1 Source Language 

Most 



Most of the following definitions for the recursion 

equations follow Strong (1970). 

For the source language, which we shall call, S-T, we have an 

alphabet B of base symbols, an alphabet P of predicate symbols, an 

alphabet X of argument symbols and an alphabet F of function letters. 

Each element feF of rank n has associated with it a collection of n 

argument symbols xf1,..,,xfn abbreviated to xf. However, to 

re-emphasise that we are dealing with functions and not uninterpreted 

schemas, each pEP and bEB has associated with it a specific 

function and we are given certain properties of these functions. 

A tree is an element of B of rank 0 or an element of X or an 

expression a(t19...,tn) where a is an element of B, P or F of rank 

n and t1,...,tn are trees. 

A branched recursion e uation is of the form 

f(xf) = 

L 
pm--.> 

tm 

where f is an element of F, p1,...9pm are trees with symbols from 

X V B V P whose topmost node is a symbol from P and t19...,tm are 

trees with symbols from X ./ B V P ./ F. 

Note that we do not allow recursive calls to occur in the predicate 

trees p. This is not an essential restriction for us but it 

simplifies the exposition. We also require that the pi for a 

particular recursion equation be exhaustive and mutually exclusive. 



A branched recursion set is a system of branched recursion 

equations with distinct left hand sides. One of the left hand 

function letters is distinguished as the name of the branched 

recursion set. 

3.1.2.1.2 Semantics 

The semantics of branched recursion sets are 

straightforward. 

Consider a given domain D. A specific recursion equation set 

E(f,xf) with name f of rank n defines a partial function Dn_>D. 

Each base function beB of rank m defines a partial function 
Dm->D. 

A computation of E(f,xf) for a particular value of 

xf = <d1,...,dn> e Dn, is defined as follows. The computation is a 

sequence of trees t0,...,tk where t0 = f(d1,.o.,dn) and ti+1 is 

derived from ti by the following rule. Select the leftmost innermost 

sub-tree whose rooteF, say g(g1,...,gm substitute g1,.... gm in place 

of xg1,...,xgm throughout the schema g(xg), select the line whose 

predicate evaluates* to true, if this is p then t replaces 
gi gi 

g(g1,..,gm) in ti to produce ti+1 This process is continued until a 

t i is reached that contains only elements from B V D. The fixed 

interpretation of the base functions means that this defines a unique 

element/ 

* The evaluation of the predicate trees is identical to the above 
process. The peP have fixed interpretationzo 
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element in D which is the result of the computation. If there is no 

such ti the computation is said not to terminate. 

3.1.2.2 Target Language 

The target language into which we attempt to translate 

the recursion equation sets is a simple flow chart language. The 

main feature is that we do not allow an unrestricted flow chart shape, 

but only those flow charts that can be represented by while statements. 

We do this tc make our tasks of further manipulating the program easier. 

The results of Ashcroft and Manna (1971) mean that we do not lose any 

chance of translatability by so doing. 

We have the same sets B of basic functions and P of predicate 

functions and a (possibly) augmented set X of variables. 

3.1.2.2.1 Target Language Syntax 

A program is a sequence of statements. 

A statement is either an assignment statement 

or an if then else statement 

or a while statement. 

An assignment statement has a left hand side and a variable. 

A left hand side is a function tree i.e. a tree with members of 

X or members of B of rank 0 at its tip and members of B at its nodes. 

A/ 



A while statement has a predicate tree i.e. a tree with members 

of X or members of B of rank 0 at its tip and members of B or of P at 

its nodes and a member of P at its root, and a program. 

An if then else statement has a predicate tree, a true branch and 

a false branch. 

A true branch is a program. 

A false branch is a program. 

For example a program to calculate factorial of n. 

1->ans; 

1->x2; 

while not(x2>n) do [mult(x2,ans)->ans; x2+1->x2] 

Throughout this thesis programs in the target language will 

represent functions and will therefore be single valued. For 

convenience the result of these programs will be stored in a variable 

called either res or ans. We do not make this part of the syntax of 

the language though. 

We do not give a concrete syntax for our language. Whenever 

the abstract structure of a program is not clear from the written 

text we will insert extra separators or delimiters 

make it clear. 

such as [ ] to 

3.1.2.2.2/ 



3.1.2.2.2 Target Semantics 

We do not give a detailed semantics for our target 

language programs deeming them to be sufficiently obvious. 

3.1.3 Translation Process 

The input to the process is a recursion equation set. 

3.1.3.1 Pre-processing 

Our first task is to extract all maximal mutual 

recursive sets from these recursion equations. A recursion equation 

set E is said to be a mutual recursion set if for each pair of 

function letters (f,g) occurring in E there is a finite sequence of 

function letters f = g09g1,0,gi,9gn = g such that for i between 0 

and n-1 , g 1 appears in the tree of a rule of g 
. 1 

The problem of extracting maximal mutual recursive sets is 

identically that of extracting maximal circuits from the di-graph 

derived from the schemas by drawing up the calling graph. As there 

exist many algorithms to do this in the literature we shall not dis- 

cuss it further, Berge and Ghouila-Houri (1965). 

Maximal mutual recursion sets correspond to sets of equations 

closed under the possibility of recursive re-entry, and function 

letters (members of 1R) not being names of equations in a mutual 

recursion set can be regarded as basic functions (members of B) as far 

as the translation of this mutual recursive set is concerned. Thus 

we can translate each maximal mutual recursion set independently, and 

recombine/ 



recombine after the translation. The recombination is trivial as 

long as we take care to standardise apart variables used in the trans- 

lation. 

For example the schema 8 (f,xf) 

f(xf) _ ... g(Xf) 

... f(Xf) 

xi) = 
L 

... g(xi) 

where no other feF occurs in any tree of any rule of f, g, h or i, has 

the following associated graph 

and the maximal mutual recursive sets are two, viz. 

fj and ig,hs1S 

For recursion equations that are not part of any mutual recursion 

set the translation is immediate, viz. 

f/ 
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f(xf ) = 
PI -> t1 where t1,O 0 

9tm 
are trees not containing any fEFO 

O 

pm---/ tm 

becomes if p1 then t1->xf" 

else if p2 then t2®>xf 

else if pm then tm®>xf 

Having extracted the mutual recursive sets the remaining part of 

the translation can be divided into two parts, 1) recognising the 

structure of the input set and 2) using semantic information about 

the primitives to try and affect a translation. 

3.1-3.2 Structure Recognising 

This is achieved by a matching algorithm that matches 

the input set against pattern sets embodying particular recursive 

forms. For example the factorial function 

fact(x) 
5 

not(zero(x) )..-->mult(x,fact(minus(x, 

zero (x) -4 1 

has recursive form typified by 

f(xf) = a--fib 

1 c-h(d,f(e)) 

as has the function to reverse a list. 

Rev 
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Rev(xl) = null(xl)--j nil 

not(null(xl))-> append(Rev(tl(xl)),hd(xl)) 

Our matching algorithm has the ability to perform functional 

abstraction and we are able to characterise a wide variety of 

equations by one structural pattern. 

3.1.3.2.1 Matching Algorithm 

The following abstract structure is assumed. 

A circuit is a set of recursion equations. 

A recursion equation has a left hand side and a right hand side. 

A left hand side has a name and list of variable names. 

A right hand side is a set of rules. 

A rule has a predicate tree and a tree. 

A function findmatchi circuit: circuit x2 
circuit 

xm-list->m-list 

is provided. Findmatchingcircuit(actualcircuit,posscircuitset,nil) 

searches through the set of possible circuit patterns posscircuitset 

and if it finds a circuit pattern that matches with the input circuit, 

actualcircuit, it succeeds producing a matchlist of elements of the 

chosen pattern with fragments of the input circuit. 

The/ 



-52- 

The full algorithm to achieve this is given in appendix I. The 

correctness criterion of this function is fairly simple to specify. 

However if one wanted to prove this function it is debatable whether 

this is what one would wish tc prove as an important point of the 

algorithm is the dynamic way the backtracking organises the search 

for a successful match and we feel that any proof should take account; 

of this. 

The correctness criterion defines a successful conclusion to the 

search in terms of two functions match and matchtree which are defined 

further in appendix I. There they are functions that either succeed. 

or fail, here they are regarded as predicates. 

The conditions required for an element of the pattern to match 

with a fragment of a function are given fully in appendix I. 

Basically there are three types of elements in the pattern 

(i) Atomic nodes. These can match with any tree as long as the 

tree does not contain any potentially recursive calls. 

(ii) Recursive nodes. These must match directly with recursive 

nodes (i.e. names of equations) in the tree. 

(iii) Compound nodes. These can match with functions abstracted from 

the tree having the same number of arguments and which do not contain recursive 

nodes. 

matchlist/ .3 



A matchlist circuit(circuit c po.scircuitset 

A dschema(schemaccircuit 

d schemal(schemalEactualcircuxt 

matchscherra(schema,schemal,matchlist) 

schi,sch2((schlEactualcircuitAsch2Eactualcircuzt 

matchschema(schema,schl,matchlist) 

matchschema(schema,sch2,matchlist)) 

schl sch2)))) 

where matchschema(schema,schemal,matchlist) is 

match(nameof (schema),nameof (schemal),match'list) 

f\ match(varsof (schemalvarsof(schemal ),matchlist) 

rule(ruleEschema 

rulel (rulel E schemal 

matchtree(predicatetreeof(rule) 

,predicatetreeof(rulel) 

,matchlist) 

matchtree(treeof(rule),treeof(rulel),matchlist)) 

rl i r2((r1 E schemal A r2E schemal 

matchtree(predicatetreeof(rule), 

predi.catetreeof(rl ),matchlist) 

matchtree(predicatetreeof(rule), 

predicatetreeof(r2),matchl.ist)) 

ri = r2)) 

3,1.3031 
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3.1.3.3 Production of Translation 

The result of the first stage of the process is either 

a fail indicating that the input does not correspond to any structure 

within the present repertoire or a successful match indicating that 

the input has a structure that we can investigate further, and a 

matching of variables of the pattern to expressions and primitives 

within the function. 

In the latter case findmatchingcircuit produces a list associating 

elements in the successful pattern with fragments of the input. 

Associated with each structural form are procedures that look for 

special properties of the function and its primitives to try and find 

a translation. This could of course be an arbitrary piece of program 

text, and in the limit we could have a preliminary matching process 

that always succeeds and a complete algorithm i.e. Strong (1970) in 

this section. As a first order approximation we have implemented a 

simple system where only the properties of the primitives comprising 

the input function are considered. Each' pattern has associated with 

it a piece of program which is run if the match succeeds with this 

pattern. Each such program consists of a series of tests and 

patterns. 

3.1.3.3.1 Syntax of Tests 

A program is a list of statements. 

A/ 



-55- 

A statement is <test program> translation is <program pattern>. 

A test program is a list of tests. 

A test is either a transformation test 

or an oracle 

or a function. 

A program pattern is a target language program as defined earlier 

(3.1.2.2.1, except that the function trees may have as tips or nodes 

letters from the associated circuit pattern. 

We use the word oracle for a device shown to us by R.M. Burstall 

by which the system interrogates the user to fill in gaps in its know- 

ledge. At present the system has no ability to discover whether a 

piece of program text matched with a pattern element has an inverse or 

to construct such an inverse. This ability is often needed in 

producing translations. So we use an oracle to type out the text and 

ask the user if he can produce an inverse. If the user says no this 

test fails, otherwise if all the other tests succeed we ask the user to 

type in the inverse and incorporate this into the translation. 

A transformation test is used to discover whether input functions 

have certain semantic properties needed to achieve a translation. 

A transformation test is lefthandside==>righthandside. 

Lefthandside and righthandside are both trees composed of 

elements from the associated pattern. The program substitutes in 

these 
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these trees the values associated with the elements in the matchlist 

and then uses the algebraic manipulation routine (3.3) to see if it 

can transform the lefthandside to the righthandside using the rules 

giving the semantics of the primitive functions. If it can do so 

the test succeeds. If the effort bound is exceeded without a 

transformation being achieved the test fails. 

A function can be any arbitrary function that either succeeds 

or fails. The basic one is freecf(x1,x2) which succeeds if the 

expression associated with x2 in matchlist does not contain as a 

subexpressior the expression associated with x1 in matchlist. Fails 

otherwise. 

The whole test program is run by taking each statement in turn 

and running each of the tests, if one test fails the next statement is 

tried. If all tests succeed the corresponding program pattern is 

taken. Occurrences of schema pattern letters are replaced by their 

values from matchlist and the expanded pattern is the translation. 

If all statements fail to produce a translation the fail is 

propogated back and either another match produced with the pattern or 

if there are no further matches the attempted match with this pattern 

fails and the fail propogates further back and the next pattern is 

attempted. If there are no further patterns the whole translation 

fails. 

The derivation of the translation patterns was done in a manner 

similar to that used by Cooper (1966)o This concentrates on the 

operational/ 
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operational aspect of the recursion equation by writing down a 

computation sequence and seeing if any properties of the primitives 

would allow us to transform this computation sequence to one that 

corresponds to an iterative program. Again following Cooper we could 

use this method to show that our transformations are correct. We 

also suggest an alternative method. Given a recursion equation schema 

R1 and an iterative schema I1 which we wish to prove equivalent we 

first translate I1 into a recursion equation R2 by any of the well- 

known methods and then attempt to prove RI and R2 equivalent using 

only the properties of the primitives asked for in the translation 

test. 

3.1.3.1+ Examples 

We now give a list of patterns and translations with a 

list of some of the examples that they have translated. 

A basic pattern is 

SCHEMA 
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SCHEMA 1 

pattern 

f(x) _ f a--yb 

1 c---jh(d,f(e)) 

Translation program 

<freeof(x,h); h(xl,h(x2,x3)) ==> h(h(xl,x2),x3)> 

translation is <if a then b->ans 

else[d->ans; e->x; 

while c do [h(ans,d)-->ans; e->x] 

h(ans,b)->ans]> 

<freeof (x,h); h(xl,h(x2,x3)) ==> h(x2,h(x1,x3))> 

translation is <b->ans; while c do 

[h(d,ans)->ans; e->x]> 

<freeof(x,h); hasinverse(e); hasuniquepoint(a)> 

translation is < b->ans; x->xsave;uniquepointof(a)->x; 

while not(x=xsave) do [inverseof(e)(x)->x; 

h(d,ans)->ans]> 

hasinverse(x) is oracle which asks if the text associated with x has 

an inverse 

hasuniquepoint(x) is an oracle which asks if there is a unique value 

that satisfies the predicate associated with x. 

inverseof and uniquepointof are oracles which ask the user to type 

these values in. 

On inputting the factorial function 

fact/ 
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fact(n) = zero(n) --_1 

not(zero(n))--jmult(n,fact(minus(n,1 ))) 

the program succeeds in matching it with the above pattern in just one 

way viz. 

a = zero(n); b = 1; c = not(zero(n)); d = n; 

h = \xl,x2; mult(xl,x2); e = minus(n,l) 

f = fact; x=n. 

Running this match on the first test succeeds. Freeof(x,h) succeeds 

because X xlyx2; mult(x1,x2) does not haven as a free variable. On 

substituting into the transformation we get mult(xl,mult(x2,x3)) _=> 

mult(mult(xl,x2),x3). This transformation is then presented to the 

expression transformation routine (see 303) which succeeds in making 

the transformation. This fact is given as a basic theorem for the 

mult function. 

Thus one translation produced is 

if zero(n) then 1->ans 

else [n->ans; minus(n,1)->n; while not(zero(n)) do [mult(ans,n)->ans; 

minus(n,1 )->n] 

mult(ans,1)->ans] 

The second test program also succeeds although in this case the 

transformation requires some deduction. We have to prove 

mult(xl,mult(x2,x3)) => mult(x2,mult(xl,x3))0 

Given 
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Given the rules 

I mult(x,y) = mult(y,x) 

and 2 mult(x,mult(y,z)) = mult((x,y),z) 

the algebraic manipulation routine goes through the following deduction 

mult(xl,mult(x2,x3)) Starting Expression 

mult(mult(xl,x2),x3) by 2 

mult(mult(x2,xl),x3) by 1 

mult(x2,mult(xl,x3)) by 2 

Giving the translation 

1->ans; while not(zero(n)) do [mult(n,ans)->ans; n-1->n] 

The third test also succeeds the dialogue with the user going: 

Has minus(n,1) a unique inverse 

Yes 

Has zero(n) a unique point 

Yes 

Type in the inverse of minus(n,1) please 

Plus (n, 1 ) 

Type in the unique point such that zero(n) 

0 

The program produced in this case is 

1/ 
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1->ans; n->xsave; 0->n; 

while not(n=xsave) do [plus(n,l)->n; mult(n,ans)->ans] 

A more complicated example, a function for reversing lists at the 

top level o 

Rev(xl) = not(null(xl)).- concat(Rev(tl(xl)), cons(hd(xl),nil)) 

null(xl)-nil 

matches with the factorial pattern in the following ways 

A. a = null(xl) B. a 

b = nil b 

c = not(null(xl)) c 

As in A. 
e = tl(xl) e 

f = Rev f 

x=xl x 

h = A xl,x2; concat(x2,xl) h = xl,x2; concat(x2,cons(xl,nil)) 

d = cons(hd(xl),nil) d = hd(xl) 

C. a D. a 

b b 

c c 

As in A. e 
e 

As in A. 

f f 
x x 

h =X x1 ,x2; concat(x2,cons(hd(xl),xl)) h = A xl,x2; concat(x2,cons(hd(xl),nil) 

d=nil d =xl 

The/ 



-62- 

The program succeeds in just one case in making a translation. 

Taking match A together with the first condition requires the 

transformation 

concat(concat(x3,x2),xl) => 6oncat(x3,concat(x2,x1)) which 

succeeds being again a basic property. 

Thus the translation produced is 

if null(xl) then nil->ans 

else [cons(hd(xl),nil)->ans; tl(xl)-'>xl; 

while not(null(xl)) 

do [concat(cons(hd(xl),nil),ans)->ans; 

tl(xl)->xl] 

concat(nil,ans)->ans] 

All the other matches fail on all tests. 

2. SCHEMA 2 

f(xl,x2) r a----)b 

coh(d,f(e1,e2)) 

Translation program 

<freeof(xl,h); freeof(x2,h); h(xi,h(x2,x3)) ==> h(x2,h(xl,x3))> 

translation is < b->ans; while c do [h(d,ans)->ans; el->xlsave; 

e2->x2; xlsave->x1]> 

3/ 
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3. ScHEn 3 

f(x) = I a 3b 
c---+h(f(dl ),f(d2)) 

Translation program 

<freeof(x,h); dl ==> d2; hasinverse(dl); hasuniquepoint(a)> 

translation is < b->ans; x-.>xsave; uniquepointof(a)->x; 

while not(x=xsave) do [inverseof(dl)(x)->x; h(ans,ans)->an:] 

<freeof(x,h); dl =_> d2jd2,/xj; h(xl,h(x2,x3)) ==> h(x2,h(xl,x3))> 

translation is < b->y1; b->y2; while c do [h(y1,y2)->ans; 

y2->y1 ; ans->y20d1->x]> 

<freeof(x,h); dl ==> d2; h(x1,h(x2,x3)) _=> h(x2,h(xl,x3))> 

translation is < b->ans; while c do [h(ans,ans)->ans; d1->x]> 

* dl ==> d2 means that whatever matches with d1 is transformable to 
whatever matches with d2. We need not state the other case i.e. 
d2 ==> dl as this will be catered for by the matching algorithm. 
Similarly with the second condition. 

t 1 By e1e2/e3} we mean substitute e3 for e2 throughout e1. 



4. Iterative schemas viz. 

SCHEMA 4 

f(x) = 
J 

a_-4b 

c--4h(f (d)) 

Translation program 

<freeof(x,h); hasinverse(d); hasuniquepoint(a)> 

translation is < b->ans; x->xsave; 

uniquepointof(a)->x; 

while not(x=xsave) 

do [inverseof(d)->x; h(ans)->ans]> 

<h ==> >>\ x; L 

translation is < while c dm [d->x] b->ans> 

SCHEMA 5 

f (x 9 y) a-- 4b 

I c-----+h(f(d19d2)) 

Translation program 

<h ==> X, x;x> 

translation is < while c do [dl->xsave; d2->y; xsave->x] 

b->ans> 

There 
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There are of course further translations if one allows oneself counter 

augmented flowcharts, Strong (1970)0, We do not introduce this 

complication here. 

These are sufficient to achieve the following translations 

1 . Fib(n) = or(equal(n,1 ),equal(n,0))..---1 

not(or(equ.al(n,1),equal(n,0)))___ 

plus(Fib(minus(n,1)),Fib(minus(n,2))) 

1->yl; 1->y2; while not(or(equal(n,1),equal(n,2))) 

do [plus(yl,y2)->ans; y2->y1; ans->y2; minus(n,1)->n] 

By schema 3 test 2 

2. A function defining union in terms of consset 

union(x,y) = nullset(x)---->y 

L not(nullset(x))---,%consset(choose(x),union(manus(choose(x),, 

x),y)) 

y->ans; 

while not(nullset(x)) do [consset(choose(x),ans)->ans; 

minus(choose(x),x)->x] 

By schema 2 

3. A function to compute the Boolean (power set) of a set is 

Boov 
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Bool(S) - 1nls(s)1set 
r not(nullset(S))----)union(union(bool(S/choose(S)), 

choose(S)),g(bool(S/{choose(s)), 

choose(s))) 

g(S,x) = nullset(S)--jn.ilset 

not(nullset(s))-- consset(consset(x,choose(S)),g(S/cho.se(S) )) 

This divides first into two separate tasks corresponding to the two 

separate equations. The first equation matches with schema 3 giving 

the following match 

a = nullset(S) b = nilset 

c = not(nullset(S)) f = bool x = S 

dl = S/choose(S)j d2 = S/choose(S)j 

h =,A x1yx2; union(union(xl,choose(S)i,g(x2,choose(S))),g(x2,ohoose(S))) 

All tests fail. 

The second equation matches with schema 2, and the test succeeds h 

being matched with X xl,x2; consset(xl,x2) 

and consset(xl,consset(x2,x3)) ==> consset(x2,consset(xl,x3)) is 

provable. This gives the translation 

nilset->ans; 

while not(nullset(S)) 

do [consset(consset(x,choose(S)}),ans)->ans; 

S/ choose (S) ->x1 saved x->x; xl save->S ] 

? ./ 
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A program to compute 2n 

tvon(n) = zero(n)---}1 

mult(2,twon(minus(n,1))) 

matches with schema 1,and translates in 3 ways 

(1) if zero(n) then 1->ans; 

else [2->ans; minus(n,1)->n; 

while not(zero(n)) 

do [mult(ans,2)->ans; minus(n,1)->n] 

mult(ans,1)->ans] 

(ii) 1->ans; while not(zero(n)) do [mult(2,ans)->ans; minus(n,1)->n] 

(iii) 1->ans; n->xsave; 0->n; 

while not(n=xsave) do [plus(n,1)->n; mult(2,ans)->ans] 

where plus(n,1) is the user supplied inverse to minus(n,1) and 0 is the 

unique n such that zero(n)o 

5. A function that takes a finite partial function represented as a 

set of pairs and applies it to all members of a set 

apply(f,s) = 
J 

nulls et (f )- ?nilset 

not(nullset(f))----->union(g(choose(f),s),apply(f/choose(f)i,s)) 

g(P,s) = (nullset(s)_-_ni1set 

and(not(nulls et(s)),equal( choose (s),front(p)))back(p) 

L and(not(nullset(s)),not(equal(choose(s),front(p))))- g(p,s/choose(s)) 

This 
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This again splits into two problems. 

The first equation (treating g as basic) translates to 

nilset->ans; 

while not(nullset(f)) 

do [union(g(choose(f),s),ans)->ans; 

f/ehoose(f)}->x1save; s->s; x1save->f] 

By schema 20 

The second equation illustrates a point about generality. At 

the present level of simplicity our implementation would fail to 

translate this, but it would be easy to add a preprocessor which 

effectively generalises rules that contain no recursive call into 

one rule i.e m in this case a function of the form 

f (X,Y) = a---fib 

c-d 
e-*h(f(g1,g2)) 

would be preprocessed into the form 

f(x,y) = a i/ c a then b else d' 

e -jh(f(g1,g2)) 

which is then translatable giving 

while and(not(nullset(s)),not(equal(choose(s),front(p)))) 

do [p->xsave; s/jchoose(s)j->s; xsave->p] 

[if nullset(s) then nilset else iback(p)] 

->ans 

BJ schema 5 . 
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3.2 Compilations 

We are now in a position to describe in some detail our 

implementation of the compilation process outlined in chapter 2. To 

recapitulate our overall task is the implementation of recursion 

equations written in the language S-0 as iterative programs in B-0 or 

L-1. The first stage S-0=>S-1 is achieved by the recursion trans- 

lation process previously described. This process is not restricted 

to any particular set of function primitives., the semantics of the 

primitives being given as transformation rules. The basic process 

involved in the transformations S-1=>L-0, S-1=>B-0 and L-0=>L-1 could 

be applied to any compilation and we have attempted to separate the 

subject dependent information from the main processes in order to 

make it easier to specialise the compiler to other domains. To make 

our discussions more concrete we will describe them in terms of the 

specific domains of S-1, B-0, L-0 and L-1 and indicate later how the 

differing aspects are separated [chapter 5]. 

Towards this end we will have to describe the syntax and 

semantics of the languages S-1, B-0, L-0 and L-1. 

3.2.1 Description of S-1, B-0, L-0 and L-1 

3.2.1.1 S-1 Syntax 

A program is a sequence of statements. 

A statement is either an assignment statement e.g. x->y 

or an ifthenelse statement e.g. if P then Al else A2 

or a while statement e.g. while P do [A] 

An/ 
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An assignment statement has a left hand side and a variable. 

A left hand side is a function tree which has members of X or 

members of B of rank 0 at its tips and members of B at its nodes. 

A while statement has a predicate tree and a program. 

An ifthenelse statement has a predicate tree, a true branch and 

a false branch. 

A predicate tree is a tree with members of X or members of B of 

rank 0 at its tips, members of B or of P at its nodes and a member of 

P at its root. 

A true branch is a program. 

A false branch is a program. 

B= BO I) B1 U"2 
where B0 = nilset} LI names for integers 

B1 = choosej 

B2 = union,subtract,consset,minusi 

P P1 U P2 

where P1 = not,nullset} 

p2 = and,or,equal 

3.2.1.2/ 
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3.2.1.2 S-1 Semantics 

We describe as much semantic apparatus as is utilised in 

our implementation. We define the semantics by giving a mathematical 

meaning to the state of a computation of a program and showing how 

certain constructs modify the state. Our meta-language is set- 

theoretic. 

The state of a computation of a program P written in S-1 is given 

by a pair 

S = <V,C> 

where V = {Variables occurring in P} 
K 

and C = VX 
UO Ib n(I) 

and I = the integers. 

We write IV (X) to denote the power set of X, 

to denote the sets of sets of X to depth n. 
i.e. 

and 

W 0(I) = I 

r 1 

(r) = (I) 
tn+1 (I) _ ( n(I)) 

i.e. u3 (X) E 2X, and 1 n(X) 

We shall give an outline of a recursive definition of a function value: 
Kf 

expressions in 
5-1->nVn4 

n(I) which allows the semantics of an 

expression to be evaluated. 

In state S0 = <V,C0> value(C ) is given by 

cases/ 
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cases E, 

minus( E 1 $ E2). 

value( 
E1 

)1 0 value(62) 

value( C 1) U value( E: 2) 
value( 

E1 
)/value( 62) subtract( L1 , 62)' 

E ev: C0(E 

nilset: f6 

consset( 

union( Gr1, 

value( f,2)/ value( 61) i 

choose( f 1) a x for some xe value([ 1 ) 

and C I 
= 

C2 > choose( C ) choose( E.' 2) 

C -> £2s then causes state transition S° >SI such that 

S1=<V,C1> 

where C1=C0 U <6 2value(61)>s/<62,value(2) 

3.2.1.3 L-0 Syntax 

As for S-1 except that 

B=B0U B1 lJ B2 

where B0 = nilj ') names for integers 

B1 = hd,tlj 

B2 = cons 

Applist(x,f) stands for while not(null(x)) do;[f(hd(x)); tl(x)->x] 
P = P 

1 
0 P2 

where P1 = null,not} 

P2 = equal,and,ori 

3.2.10 ./ 
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3.2.1.4 L-1 Syntax 

As for L-0 except that 

An assignment statement has a right hand side and a left hand side. 

A left hand side is as in L-0. 

A right hand side is a tree whose tips are variables and whose 

nodes are hd or tl, e.g. X->hd(Y) is allowed. 

3.2.1.5 L-O and L-1 Semantics 

The state of the computation of a program P written in 

L--O or L--1 is given by a 4-tuple. 

S <V,A,L,C> 

where V = variable symbols in Pi 

A = unique names for store locations 

L = Vx(A 11 I) I = integer-- 

C Ax((A V 'nil' V I) x (A V 'nil' 0 I)) 

The explicit mention of store locations is not strictly necessary 

for L--O but it is for L=-1, where destructive assignment is allowed. 

We use the same semantic apparatus for both languages as this 

facilitates the translation of programs written in L-0 into programs 

in L-1. Store locations are thought of as being taken off the free 

list when required. The semantics of the freelist are mirrored by a 

function nextname.- (1j (A)->A which when given all the store locations 

used so far produce a name for the next store location. 

We/ 



We again give an outline of a function value 

value: expressions->V V A V I U 'nil' which will allow the 

semantics of any list expression to be calculated. 

value(,) in state SC = <V,AO,LO,CO> 

Cases G 

,eV: 

hd( f,1 ): 

tl( 
cons(61, -2) : 

LC( .) 
(C0(value( 1 )))1 

(C0(value( 
E1 )))2 

nextname(A1), where S1 = <V,A1,L1,C1> is the tate 

'obtaining after the evaluation of value(C1), value( E2). 

i+1 i+1 i+1 i i+1 Causes state transition S ->S , S = <V,A L ,C > 

Ai+1 Al V nextname(Al) 
i+1 Ci C V <nextname(pl), <value(E 1 ), value( 2)»} 

Causes state transitions Sl-,>S1+1 where Si is the 

state obtaining after the evaluation of C 
1 

and £2. 

cases 

(i) E. 2EV 

Ai+1 Ai 

Li+1 Li U <E2,valtle( G1 )>}/ 
< G2,(value( E2))2>5 

The 
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The next two cases can only occur if the 

program is written in L-1 

(ii) E2 ishd(&3 
A 

i+1 i 

Li-k 1 Li 

Ci+1 
Ci <value(F3),<value( E1),(C'(value( £J)))2>> 

/<value( E3),Cl(value( E3))> 

2 is tl( 3) 
i+1 

= 
Ai 

Li+1 Li 

Ci+1 
= Ci U <value( E3),<(C'(value( E3))1,value( 1)»} 

/ <value ( E.3) , Cl (value( E.3) )> 

3.2.1.6 B-0 Syntax 

As in L-1 except that 

An assignment expression has a right hand side and a left hand side. 

A left hand side as in L-0. 

A right hand side is either a variable or a tree of depth I 

whose tips are variables and whose root is intsub. 

B=B0U B1 l)B2 

where B0 = names for integers 

B1 = {init,length} 

B2 = {intsub,plus,minus 

P/ 
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P=P1 V P2 

where P1 = noti 

P2 = j and, or, equal 

3.2.1.7 B-0 Semantics 

S = <V,I,C> 

V = (variables 

I=N+ 

C = V-> (N+-> 0,1 D) U I 

i.e. a bit string is viewed as a function (total ono some subset of N+) 

from N+ to 0,1 j . 

Value(s) in S0 = V,I,C0> 

= cases 

EEV: c°(E ) 

init(L1 ): (value( 9,1)(N+) 

/, i; if O<i<value (C,1) then 0 else undef 

intsub(E1, E2): value( £2)(value(1 )) 

length (C1) : max i I value ( E1) (i) / undef I 

cases, (i) 2(V 

then causes transition 
S0->S1 

such that 

S1 = S0 except that C1 (E2) = value(F, 
1 

) 

(ii)/ 
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(ii) £2 is intsub(C3, 64) 

causes transition S0=>S1 

such that S1 = SO 

except that value( 4)(value( C3)) = value(E 
1) 

3.2.2 Compilation S-1=>B-0 or L-O-Example 

We will now describe the steps of our algorithm involved in 

the translation of an S-1 program into an L-0 or B-0 program. The 

process involved in the step L-0 to L-1 is similar but we have chosen 

to describe it separately in section 3.2.3 as it involves a more 

complicated semantic apparatus but does not involve the expansion of 

iterative operators. 

The process takes as input whole programs, splits them into sections as 

defined in 2.4.2.3 and subjects each section to the process of 

(i) Extracting the transformation 

(ii) Projecting and optimising the transformation 

(iii) Re-writing in the lower domain. 

In order again to give our discussion some concreteness we will 
illustrate the steps involved by means of an example. In order to 

illustrate several points succinctly in one example we have 

constructed an artificial example. 

We/ 



-78- 

We will consider the section of program, with various textual 

points numbered. 

while or(nullset(union(s2,s3)),member(x,s2)) 
f1 2 3 

do [union(s3,s2)->s2;lsubtract(s2,subtract(s3,s2))->s3 ] 

consset(choose(s2),nilset)->s2; 
5 

union(s2,s3)->s3; 
6 

3.2.2.1 Extracting the Transformation 

(i) Initialising the state vector. 

The program requires knowledge of the types of each variable 

present in the program. From this information it constructs an 

initial state vector, inventing a name for the symbolic value of each 

variable. 

In the example s1, s2, s3 are of type set and x is of type 

individual, thus we get an initial vector. 

siit s2 s3 x 

s t1 set2 set3 obi 

Associated with each set name is a membership list which is initially 
empty. 

(ii) Interpreting the program on the state vector. 

The/ 
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The program proceeds as a normal interpreter from instruction to 

instruction. For each assignment instruction it evaluates the left 

hand side and replaces this as the value of the variable on the right 

hand side producing an updated state vector. However in this case 

evaluating consists of forming the free expression in the functions 

over the set or object names. One special transformation is applied 

here in the case of implementations into L-0. 

Any occurrence of chooseO causes defon(f,), see 3.2-.2:. ,to be 

calculated. If defon( ,) is nonempty the first element of defon(f. 

is chosen and replaces choose(E,). If defon( ,) is empty then if C 

is a setname a new object is invented, added to this setnames object 

list and replaces choose( ), otherwise the expression is left as it 

is. 

In the rest of the example we will assume that the implementation 

is to be in L-0 and note where the implementation would differ if it 

were to be in B-0. 

In our example, the state vector at the numbered points is thus 

1 s1 s2 s3 x 

set1 set2 set3 obi 

membership list setl f 

set2 f 
seta 0 

2/ 



2 s1 s2 s3 x 

setl union(set3,set2) seta obi 

3 sl s2 s3 

yI 
X 

set1 u bon(set3,set2) subtract(union(set3,set2),subtract(set3,union ob1 

(set3,set2))) 

and at Lj- 

sl s2 x 

set1 set2 seta obi 

5 sl s2 s3 x and the membership list of set2 

setl consset(ob2,n"Llset) set3 obl becomes [ob2] 

6 s1 s2 s3 x 

set1 consset(ob2,ni2set) union(consset(ob2,nilset),set3) ok 

Thus the two transformations extracted are 

sl s2 s3 x membership list setl 0 

setl set2 set3 obi set2 [ob2] 

seta 0 

to 

s1 s2 s3 

setl union(set3,set2) subtract(union(set3,set2),subtract(set3,union(set3,set2))) 

and 

si s2 s3 x 

setl set2 seb3 obl 

to/ 
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to 

si ,s2 s3 x 

set1 consset(ob2,nilset) union(consset(ob2,nilset),set3) ob1 

The predicate expression of the while is also included in the 

transformations o In our example this is 

or(nullset(union(set2,set3)), member(obl,set2)) 

3.2.2.2 Simplification 

For this and subsequent expositions the state 

description will be thought of as consisting of four elements 

(i) the original state which we will call stateO 

(-,.i) the predicate expression of the while statement and 

(i_ii)Q(iv) the end states resulting from the execution of the while 

body and the rest of the section;. We will call these 

statet and statef respectively. 

In this process the program goes through the state description 

and replaces each expression e by simplify( £) where simplify( E.) is 

as below. 

Simplify: expression->expressiono 

(i) For implementation into L-0 

Cons set/ 
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Consset(x,S) can be reduced to S if we know that x is in S or to 

cons(x,S) if we know x is definitely not in S. Minus(x,S) can be 

reduced to S if we know x is definitely not in S. If x is definitely 

in S we attempt to order S to make x the first element so that minus(x,S) 

can be reduced to tl(S). 

simplify(expr) = cases expr 

s'etname, objectname 

or constant: expr 

f (ai g? ,arg2): 

cases f : 
cons set: if simplify(argl )e defon(simplify(arg2) ) 

then arg2 

elseif simplify(argl)edefnoton(simplify(arg2)) 

then cons(simplify(argl),simplify(arg2)) 

else consset(simplify(argl),simplify(arg2)) 

minus: if simplify(argl )edefon(simplify(arg2)) 

then access(simplify(argl ),s:implify(arg2)) 

elseif simplify(argl)edefnoton(simplify(arg2)) 

then simplify(arg2) 

else minus(simplify(arg1),simplify(arg2)) 

rest: f(simplify(argl),simplify(arg2)) 

f(argl): f(simplify(argl )) 

(ii) For implementation into B-0 

Consset/ 
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Consset(x,S) can be reduced to S if we know that x is in S. 

Minus (x,S) can be reduced to S if we know that x is not in S. 

simplify(expr) _ 

cases expr 

f( 92): 

cases f: 
consset: if simplify( E1 )edefon(simplify(E 2)) 

then simplify( 62 ) 

else consset(simplify( E1 ),simplify( E2)) 

minus . if simplify( El )Edefnoton(simplify( Ed) 

then simplify(. 2) 

else minus(simplify( 
E1 

),simplify( F'2)) 

rest . f(simplify( £1 ), simplify( E2)) 

f( CI f (simplify( 

rest : expr 

where access(argi,arg2) produces the code to enable argl to be 

accessed in the list arg2 

where defon( E.) = 

cases * a 

setname: membership list of E 

nilset : 0 

union( I' f,2) . defon( &1) V defon( £2) 

I . , C2 ): defon( £1 ) A defnoton( £2 ) 

consset( E1 
, E2) : 1 El i 0 defon(E2) 

minus( EV'F2 ) : defon( 2 )/{ E 11 

where 
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where defnoton(i,) = cases E : 

setname '0 

nilset 0 

union( E 1 , 62) . defnoton(E 1) A defnoton( Ed 
subtract( E1, 62 (defnoton( E1 ) ) defon( 2)) 

J (defon( E1 ) A defnoton( E2)) 

consset(El' E2) : defnoton( E2)" 9-1 

minus( E 1 , 2) E1 
1 U defnoton( 62) 

3.2.2.3 Planning 

The planning and projection (3.2.2.4) stages of the 

program are commutative. In the program projection actually occurs 

before planning, but it is conceptually easier to describe it the other 

way around. 

In this the planning or optimising stage the transformations in 

the higher domain, in this case S-1, are rearranged using algebraic-laws 

appropriate to this domain but with an aim that when these trans- 

formations are projected into the lower domain (B-0 or L-0) they can 

be implemented as efficiently as possible. In this case the 

planning is done so that when the rearranged transformations are 

implemented expansion of the higher primitives in terms of lower 

primitives will present the maximum opportunities for optimising 

interactions. The main optimising interactions important here are 

the combination of common iterations and common subexpressions. 

3.2.2.3.1/ 
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3.2.2.3.1 Production of Alternative Forms 

The program goes through the state description and 

produces three lists of expressions which occur in the predicate 

expression, statet and statef. We call these the plist, the tlist 

and the flist respectively. It then uses the algebraic manipulation 

routine (3.3) and the rules giving the algebra of the primitives to 

form these into a list of lists of all alternative forms for these 

expressions. While doing this it forms two dictionaries. 

1) The expression dictionary that associates a unique number with 

every expression occurring 

and 2) The subexpression dictionary that associates with each 

expression number a list of numbers corresponding to subexpressions of 

the expression. 

Thus in our example which has a state description of 

stateO = sl s2 s3 x 

setl set2 seta obi 

predicate expression = or(nullset(union(set2,set3)),member(obl,set2)) 

statet = sl s2 s3 x 

seti union(set3,set2) subtract(union(set3,set2),subtract obi 

(set3,union(set3,set2))) 

statef = sl s2 s3 x 

setl c sset(ob2,nilset) un on(consset(ob2,nilset),set3) ob1 

the/ 
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the plist is 

[or(nullset(union(set2,set3)),member(obl,set2))] 

the tlist is 

[union(set3,set2),subtract(union(set2,set3),subtract(set3,union(set3,set2)))] 

and the flist is 

[consset(ob2,nilset),union(consset(ob2,nilset),set3)]. 

Given just the commutative property of union 

i.e. union(x,y) = union(y,x), the program goes through the state 

description and produces alternative form lists 

plist = 

[[or(r.ullset(union(set2,set3)),member(obl,set2)), 

or(nullset(union(set3,set2)),member(obl,set2))]] 

tlist = 

[[union(set3,set2),union(set2,set3)] 

[subtract(union(set2,set3),subtract(set3,union(set3,set2))), 

subtract(union(set3,set2),subtract(set3,union(set3,set2))), 

subtract(union(set2,set3),subtract(set3,union(set2,set3))), 

subtract(union(set3,set2),subtract(set3,union(set2,set3)))]] 

f list/ 
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(list = 

[[consset(ob2,nilset)], 

[union(consset(ob2,nilset),set3),union(set3,consset(ob2,nilset))]] 

The expression dictionary that is formed during this second pass 

is 

No 

I 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

Expression 

or(nullset(union(set2,set3)),member(obl,set2)) 

nullset(union(set2,set3)) 

union(set2,set3) 

member(obl,set2) 

or(nullset(union(set3,set2)),member(obl,set2)) 

nullset(union(set3,set2)) 

union(set3,set2) 

subtract(union(set2,set3),subtract(set3,union(set3,set2))) 

subtract(union(set3,set2),subtract(set3,union(set3,set2))) 

subtract(union(set2,set3),subtract(set3,union(set2,set3))) 

subtract(union(set3,set2),subtract(set3,union(set2,set3))) 

subtract(set3,union(set3,set2)) 

subtract(set3,union(set2,set3)) 

cons set(ob2,nilset) 

union(consset(ob2,nilset),set3) 

union(set3,consset(ob2,nilset)) 

And the subexpression dictionary is 

Expression/ 
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Expression number 

1 2 3 L 5 6 7 8 9 10 11 12 13 111 15 16 

subexpressions 

4 L 7 3 7 3 3 7 3 1L 1L 1L 

5 6 7 9 10 7 12 13 15 16 

6 8 12 13 11 

7 12 13 

Thus after the second pass through the state description the plist, 

tlist and flist are coded as 

[[1 5]] 

[[7 3][8 9 10 11]] 

and [[11+][15 16]] respectively. 

Each element of these lists is a list giving all alternative forms 

for an expression occurring in that component of the state description. 

3.2.2.3.2 Evaluation of Alternatives 

From each list the program now forms a new plist, 

tlist and flist. Each is a list of n-tuples. Each n-tuple is formed 

by picking one element from each n-'tuple of the old list. Thus our 

new plist, tlist and flist become 

plist [[1][5]] 

tlist [[7 8][7 9][7 10][ 7 11 ][3 8][3 9][3 10][3 1111 

flist [[11+ 15][1!+ 16]] 

Each 
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Fach n-tuple of a list represents one form for all the expressions 

involved in the corresponding state. A choice of one n-tuple from 

each list represents one form for all expressions involved in the 

state descriptions. The program now evaluates all such choices in 

order to try and determine the optimal form to implement. 

The program has two measures that it uses in forming this 

evaluation. 

1) The total number of distinct subexpressions that it will 

need to calculate 

and 2) The number of expressions that can have their iterations 

performed together. For example in L-0 the definitions of union and 

subtract are 

union(sl,s2) = s2->res; applist(sl,lambda x; if not(member(x,s2)) then 

cons(x,res)->res) 

subtract(sl,s2) = nil->res; applist(s1,lambda x; if not(member(x,s2) then 

cons(x,res)->res) 

and if therefore two expressions with outermost functions union and 

subtract have an equal iterative argument (fixed to be the first 
argument) their evaluation can be performed on a common loop. The 

evaluation function regards this as equivalent to saving the 

evaluation of one subexpression. The program requires only a list 
showing which functions can be linked together in this way. In a 

later 
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later stage (3.2.2.5) some of the linkings that the program thought 

possible may be disqualified as one linked expression is a 

subexpression of another. Thus our planning is done on a simplified 

space but the computation required is much less. Our evaluation 

function will always be a lower bound on the actual effort required. 

Assume we have (for L-0) a linking list thus 

[[union subtract]] 

showing that union and subtract can be linked. Thus we can see from 

the expression dictionary that expressions 7, 12, 13 and 16 are 

candidates for linking and no others. 

The results of the programs evaluation are summarised in the 

following table. 
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It can be seen from the table that the combination the program 

estimates will require least effort to compute is 5 7 9 11.16. This 

is the one that it chooses to continue with and thus our state 

description becomes 

stateO = s1 s2 s3 x 

set1 se t2 set3 obit 

predicate expression = or(nullset(union(set3,set2),member(obi,set2)) 

statet = s1 s2 s3 

set1 union(set3,set2) subtract(union(set3,set2),subtract(set3,union( 

x 
l 

obi 

set3,set2))) 

statef = s s2 s3 x 1 
II 

s t1 consset(ob2,nilset) union(set3,consset(ob2,nilset)) 11 

with potential linkings between union(set3,set2),subtract(set3,union(set3,set2)) 

and union(set3,consset(ob2,nilset)). 

3.2.2.4 Projection 

3.2.2.4.1 Projection into B-0 

For implementation in B-0 the projection is the 

identity. 

3.2.2.4.2 Projection into L--0 

For 



For implementation in L-0 the program goes through 

the state description transforming it to a state description in I,-0 

that represents the original transformation in S-1. It does this by 

basically projecting the original state (stateO) and the final states 

(statet and statef), and the predicate expression into the lower domain. 

The program goes through each component of the state description, 

replacing setnames by names for nodes and for every setname that has a non- 

empty membership list it adds a triple <t1,t2,t3> to that component of 

the state description where t1 is the name of the list node this triple 

represents. t2 is the name of the head of this node, a member of the 

set this list represents, and t3 is the name of the node that forms 

the tail. The order of the elements (head values) of these lists 

corresponds to the order decided earlier for"the membership lists of the 

sets (3.2.2.2). 

Thus our example becomes 

stateO = s1. s2 s3 x [[n2 ob2 n3]] 

ni n2 ob1 

predicate expression = or(nullset(union(n3,n2)),member(obl,n2)) 

statet = s1 s 2 s3 x 

n1 un ion(n3,n2) subtract(union(n3,n2),subtract(r..3,union(n3,n2)) 11 

[[n2 ob2 n3]] 

statef = s 1 s 2 s 3 x 

n 1 co nsset(ob2,nilset) un ion(n3,consset(ob2,nilset)) oil 

[[n2 ob2 n3]] 

3.2.2.5/ 
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3.2.2.5 Shrinking 

This can be thought of as pre-processing the state 

description to simplify the task of the program writing algorithm. 

The program processes the state description so that expressions that 

are equal become the same expression. This is only done between 

the predicate expression and statet, between the predicate expression 

and statef and within statet and statef. Equal expressions between 

statet and statef are left distinct. 

Thus our state description in expanded tree form is 

stateO = 

sl s2 s3 x predicate expression = 

ni n2 n ob1 or( 
ttullset( 

, 

) member(obi,n2) 
[[n2 ob2 n3]] ion(n3,n2) 

statet s1 s2 s3 x 

n1 union(n3,n2) subtract( , ) obi 

union(n3,n2) subtract(n3, ) 

union (n3,n2) 

[[n2 ob2 n3]] 

statef = si s2 s3 x 

n consset(ob2,nilset) union(n3, ) obi 

con sset(ob2,nilset) 

[[n2 ob2 n3]] 

after 
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The program goes through the shrunken state description inserting 

backpointers. A backpointer is a pointer from an expression to any 

other expression which has the first expression as an immediate sub- 

expression. 

Thus our state description becomes, with backpointers shown as -- - - 

T- 
M-410 

O 

N 
10 
0 

Nvl N o u 
4) u 
Cd 

4) 

.^ Fl 

NCB 
(n ' O 
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3.2.2.6 Linking 

The program now goes through the state description 

making lists of any expressions that can be linked together. Two 

expressions can be linked if 

(i) Their outermost functions are in the same linking class 

according to the appropriate linking list, that is the list showing which 

functions can be linked together. 
For B-0 the linking list is 

[[nullset choose][union subtract]]' 

and for L-0 

[[union subtract]] 

As can be seen from the definitions in 2.1+.3.1+. 

(ii) The arguments on which the iterations depend are equal. 

(iii) One expression is not a subexpression of the other in the 

state description. This is because when two functions are linked it 

is required that all arguments are known. Thus in our example only 

two expressions (of the three thought possible in the planning stage) 

can be linked. Our program produces a tobelinked list of 

[[union(n3,n2),union(n3,consset(ob2,nilset))]] 

3.2.2.7/ 
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3.2.207 Pr°ogram Writing 

The next task is to produce a program that will perform 

the transitions represented by the state description. 

Although the state description is still stated in terms of 

primitives from S-1 these should be thought of as standing for their 

expansion in L'0 or B=O. The program is written mainly in terms of 

these S -I primitives but with knowledge of their intended expansion, 

and then the expansion into B-0 or L-0 primitives is performed. 

3.2.2,7,1 Code Production 

The program writing task is done in 3 stages. 

(i) First code is produced to perform the evaluation of the 

predicate expression. Any expression that will be required elsewhere, 

indicated by the backpointers, is saved using a temporary variable. 

Any expression that can share iterations with an expression in the 

predicate expression, as indicated by being on the to be linked list, 

is evaluated during the computation of the predicate expression 

(ii) and (.iii) Code is then produced to perform the transition 

represented by stateO and statet and stateO and statef. Again 

common computations are saved and iterations combined where possible 

but only within each transition not between transitions. 

(i_) Code to the Predicate Expression 

Th e/ 
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The basic function is codefor which takes an expression and 

produces the code that performs the evaluation of this expression. 

This is given in full in appendix II. As extra parameters this 

function takes, the present state description, a list of sub- 

expressions that have already been calculated and will be needed 

again, and a list of expressions that the program has decided will 

be linked. If codefor finds that it needs to evaluate an 

expression previously evaluated it looks up where this expression 

has been stored. If it finds itself evaluating an expression that 

will be needed again, indicated by the expression having more than 

one backpointer, it stores the result of its evaluation in a temporary 

variable and updates the list of evaluated expressions. If codefor, 

comes across an expression that is on its to be linked list it finds 

all other expressions whose computation is to be linked with the 

computation of this expression and forms a linkedgroup which is a 

compound object which is used in the next phase,code expansion 

(3.2.2.7.2. The components of this compound item are 

(i) The type of linking group this is. 

(ii) A list of the top functions of the expressions involved in 

this common iteration. 

(iii) The iterative argument. 

(iv) A list of the non-iterative arguments, if any. 

(v) A list of destination variables where the results of these 

common iterations will be stored. 

As/ 
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As well as forming the linkedgroup codefor updates its list of 

already evaluated expressions. 

(ii) Producing Code for the State Transformations 

(i) For each state, statet or statef a list of differences 

between that state and stateQ is produced. A difference is said to 

occur when a variable has a different value in one state from the 

other. 

(ii) The program then attempts to order these differences in such 

a way that after the removal of each difference the information 

required for the removal of the remaining differences is still 

accessible, either from the present state description or the programs 

list of temporarily stored values. 

For each ordering of differences the program does this by 

simulating the action of the proposed program on the symbolic states. 

If there is such an ordering the program continues to the next stage 

which is producing the code for this ordering. If there is no such 

ordering the program allows itself one extra instruction to remember 

information that would be lost and attempts again to re-order the 

differences in such a way that with this extra instruction it does 

not lose any necessary information. The program continues in this 

way until it succeeds in finding such an ordering. Thus the final 

program produced is guaranteed optimal in the number of instructions 

needed. 

(iii)/ 



-102- 

(iii) When the program has found an ordering of differences it 

goes through theme It uses codefor to produce the code for the new 

value for the variable, pr aluces an assignment statement to that 

variable, updates the present state description and continues until 

all differences have been eradicated. 

Thus in our example, the evaluation of code for the predicate 

expression produces 

consset(hd(s2),nslset)->temp1; * 

linkedgroup<union,[union u.nion],s3,[s2 templ],[temp2 tempi]>, 

or(nullset(temp2),member(x,s2)) 

There are differences between stateO and statet at s2 and s3. The 

program produces an ordering <s2, s3> and the code corresponding to 

this is 

temp2->s2; 

subtract(s2,subtract(s3,s2))->s3; 

Between stateO and statef there are again differences at s2 and 33. 

Any ordering will doe The code produced is 

tempi->s2; 

temp3->s3; 

3.2.2.7.2/ 

In implementation in L-0 any access of a node in the list description 
component of the state produces the appropriate accessing hd tl functions. 
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3.2.2.7.2 Code Expansion 

This is straightforward. The program has 

associated with each primitive in S-1 the code that represents that 

primitive in B-0 or L-0 and the program expands the code using these. 

The only interesting feature is the expansion of a linked group. 

Corresponding to each linkedgroup type there is a schema and for every 

function of that type an expansion. For each linked group the 

program expands each function and then fits these expansions into 

the schema. Thus in our example the linkedgroup is 

<union,[union union],s3,[s2 templ],[temp2 temp3]> 

Associated with union is the schema 

<bitl > 

applist(<iterativeargument>,lambda bv; <bit2>) 

And associated with union the code schema 

<secondargument>-><result> for bitl 
and if not(member(bv,<secondargument>)) then 

cons(bv,<result>)-><result> 

for bit2 

Thus bitl is expanded to 

s2/ 
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s2->temp2; 

templ->temp3; 

and bit2 to 

if not(member(bv,s2)) then cons(bv,temp2)->temp2 

if not(member(bv,templ)) then cons(bv,temp3)->temp3 

Thus the whole linked group expands to 

s2->temp2; 

tempi->temp3; 

applist(s3,lambda bv; if not(member(bv,s2)) then cons(bv,temp2)->temp2 

if not(member(bv,templ)) then cons(bv,temp3)->temp3 

); 

The whole example expands to 

while [if member(hd(s2),nilset) then nilset->templ 

else cons(hd(s2),nilset)->templ; 

s2->temp2; 

tempt->temp3; 

applist(s3,lambda bv; if not(member(bv,s2)) then cons(bv,temp2)->temp2,, 

if not(member(bv,templ)) then cons (bv,temp3)->t mp' 

or(null(temp2),member(x,s2))] 

LO/ 
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do [temp2->s2; 

nil->tvarl ; 

applist(s3,lambda bv; if not(member(bv,s2)) then cons(bv,tvarl)->tvarl) 

nil->s3; 

applist(s2,lambda bv; if not(member(bv,tvarl)) then cons(bv,s3)->s3)]; 

tempi->s2; 

temp3->s3; 

3.2.2.8 Examples 

(i) For another example we will take the program described 

earlier (3.1.10. This function takes a set s and a pair p and if there 

is an element in s equal to the front of p it returns Jback(p)j other- 

wise it returns the empty set. 

In S-1, with front and back considered basic, this is 

while and(not(nullset(s)),not(equal(choose(s),front(p)))) 

do [p->xsave; minus(choose(s),s)->s; xsave->p] 

if nullset(s) then nilset->ans else conss,et(back(p),nilset)->ans; 

Implemented in B-0 this becomes 

while 
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while [true->res2; length(s)->l; 1->n; 

while n<1 

do [if intsub(n,s) = I 

then[n->resl; true->res2] 

n+1-> n ] 

and(not(res2),not(equal(resl,front(p))))] 

do [p->xsave; 0->intsub(resl,s)] 

if rest then nilset->ans else[nilset->ans; 1->intsub(back(p),ans`.I 

and in L-0 

while [null(s)->templ; 

and(not(tempt),not(equal(hd(s),front(p))))] 

do [tl(s)->s; p->xsave] 

if tempi then nil->ans else if member(back(p),nil) 

then nil->ans 

else cons(back(p),nil)->ans; 

(ii) A function highest that picks the highest integer from a 

seta 

In S-0 

highest(set) = (nullset(set)___O 

not (null set (set) )---).if choose(set)>highest (minus (choose (set), set)) 

then choose(set) 

else highest(minus(choose(set),set)) 
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In S-1 

0->ans; 

while not(nullset(set)) 

do [if choose(set) > ans then choose(set)->ans; 

minus(choose(set),set)->set] 

Again our compiler finds the natural implementation for this in B-0. 

0->ans; length(set)->l; 1->n; 

while n<l 

do [if intsub(n,set) = 1 

then[if n > ans then n->ans; 

0->intsub(n,set)] 

and in L-0 

0-> ans ; 

while not(null(set)) 

do [if hd(set) > ans then hd(set)->ans; 

tl(set)->set] 

(iii) An interesting class of programs that one can write using 

the 'true' set primitives, that is, those that operate on sets as 

entities, are the one line programs. These are just expressions in 

the given primitives. We feel the ability to write programs without 

using the control primitives is an indication of the power of these 

primitives/ 
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primitives and we will have more to say on this in connection with APL > 

Iverson (1962) in chapter 5. 

Suppose we are asked to write a program that would select from 

given sets all people who were over 6' together with all those people 

with dark hair who were under 61 and all those people who have dark 

hair but don't speak English. 

Letting U = all people in the sample 

A = all people over 6' 

B = all people who have dark hair 

C = all people who don't speak English 

This transcribes directly into the I line program 

(A 0 ((u/A) A B)) 11 (B/C) 

Continuing j,' and / as shorthand for union and subtract. Our compiler 

is able to implement this involving 2 iterations. The expression 

reduces to 

(B 1) A) V (B/C) 

and B \) A, and B/C can be linked and implemented as a single iteration. 

The deduction the compiler performs to achieve this is 

(A/ 
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(A V ((U/A) A B) ) 

= (A V (U/A)) A (A U B) by A j ,(B A C) = (A U B) A (A 0 C) 

= (U A (A U B) by A J (U/A) = U 

=AV B by UA A=A 

=BV A by A UB=B U A 

The point that our compiler performs these manipulations not just to 

minimise the set expression but to optimise the future implementation 

is illustrated by the fact that it does not reduce 

(A V B) V (A V C) 

Instead it links the iterations involved in the evaluation of A V B 

and A _J C. 
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3.2.3 Destructive Implementation of L-0 Programs (L-0=>L-1) 

We here describe the final stage of one branch of our 

implementation, namely the implementation of L-0 programs as 

destructive (L-1) programs. Again this process is divided into the 

same sub processes., namely analysis of transformations, optimisations, 

projection and program writing. The sections of program dealt with 

by this process are the same as previously. 

3.2.3.1 Extraction of Transformation 

This is straightforward and we will not describe it in 

detail, the only novelty is that the state descriptions contain no 

free expressions, only variable values and list fragments as defined 

in 3.2.1.5. The program invents an initial symbolic vector and then 

interprets the program text on this according to the semantic 

definitions given in 3.2.1.5. 

3.2.3.2 Optimisation of Transformation 

The optimisation done at present is rather arbitrary. 

We concentrate on avoiding the introduction of any new list cells. 

This is dectectable from the state descriptions. If the program finds 

that any such cells have been introduced, it searches the state 

description for any cell that has been discarded, i.e. one that is 

not accessible in the final state and sees if it is possible to use 

this in place of the old cell. If it can do this it rearranges the 

state description to do this. 

3.2.3.3/ 
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3.2,3.3 Projection 

As the semantic apparatus used for L-0 and L-1 is the 

same the projection is the identity. 

3.2.3.L. Program Writing 

The algorithms used to transform the state descriptions 

into m L-1 program are very similar to those used for the earlier 

program writing activities (S-1 to B-0 or L-0). However we will 
describe them separately and take this opportunity to use a different 

mode of explanation. The process is simpler as there are no 

iterative operators nor any that expand further. We will thus 

describe how we convert a pair of before-after state vectors into a 

piece of straight line L-1 code. 

Given two states 

S = <V,A,L,C> and S' = <V',A',L',C'> 

We need to define a function 

makeprogram: statexstate->instructions 

which will produce a program to perform the transformation represented 

by the state pair. 

We say that a difference occurs between the two states whenever 

either 

(i) -3 v(vEV' n v/V) 

or/ 
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or (ii) 3a(acA' A a/A) 

or (iii) -3 v(vEV' A (L(v) / L'(v))) 

or (iv) 3 a((aEA') A (aeA) A (C(a)l / C'(a)1 

or (v) -3 a((acA') A (a(A) A (C(a)2 / CI(a)2))t 

Two states are said to be equal when there are no differences 

between them. Thus a program has to remove all the differences, 

However removing one difference may lead to the loss of access to a 

node needed later. 

Define: Nodesaccessible: State_>Nodes* 

such that nodesaccessible(S) where S = <V,A,L,C> 

= N where range(V) N 

and if nEN then C(n)1EN 

and C(n)2EN 

if they are defined. 

Define: differences: statexstate->differences*. A function that 

calculates all the differences between two states. 

Define a function Perm: cab*->(ob*)* which takes a list onto a list of 

permutations of the list. 

Define a function process: statexdiff->state which maps a state and. 

a difference onto the state resulting from the removal of that 

difference. 

t <x,y>1 =x 
<x,Y> 2 =Y 
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Thus given two states: beginstate and finalstate we try to find 

an ordering of the differences between the two states that can be 

translated into a program. That is an ordering such that when we 

come to remove a difference the information needed is available. If 

there is no such ordering we have to introduce extra instructions to 

remember such information. 

More exactly let Permlist = Perm(Differences(beginstate,finalstate)). 

We need to find a member of Permlist, perml, say, such that if 

perml= <. diff, ,..9d.iff. > and we define 
1 i2 1n 

state0 = beginstate 

statej¢1 = process(statej,diffi 

J 

(thus staten = finalstate) 

then we require that 

V i(0<i<n) (node)(nodecncdesaccessible(state i) 

/ nodeenodesaccessible(finalstate) 

D nodeenodesaccessible(state. )) 

If there is no member of Permlist that satisfies the above criteri!n 

then we require a member of Permlist that satisfies the above condition 

for the most i. For each i that the condition is false we need to 

introduce an extra instruction to remember the information that would 

otherwise be lost. 

Given 
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Given this ordering of the differences it is then straight- 

forward to convert this into a program. Each difference, or require- 

ment to remember information, gives rise to an assignment instruction. 

Define a function. routetoo statexnode->v,"hd","tl"}* which 

maps a state and a node onto an expression which describes how that 

node can be accessed in the state from a variable via the hd, ti 

pointers. 

Each type of difference gives rise to a different type of 

assignment instruction which removes that difference. After an assign- 

ment instruction has been produced the state is updated and the next 

difference processed., For example consider the state pair 

Sb <Vb,A ,Lb,Cb> and S f = <VfAf,Lf,C f> 

Say that the first difference in the order chosen is a type (iv) 

difference (see above) i.e. 

aA` /\ acA A (C f(a)I Cb(a)1 ) 

then the instruction produced is of the form 

routeto(Sb,Cf(a)1)->hd(routeto(Sb,a)) 

Sb is then updated to be process(S.bdiffl), the next difference chosen 

and the process repeated until no differences are left. 

As/ 
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As it is apparent that each difference requires one assignment 

instruction (the existence of type (ii) differences complicates this 

slightly, the introduction of a new node and the placing of this node 

in the structure removes two differences) it can be seen that'the 

above method produces an optimal program in the sense that for any 

state pair there is no program with fewer instructions than the one 

we produce that will remove all the differences between the two 

states. 

For a fuller example let us consider the program produced earlier in 

section 3.1.3.4 on page 62. Here the state pair would be 

S1 = <V1 A1 ,L, ,C1> 
S2 = <V29A2,L2,C2> 

where V1 V2 = x,anss 

Al = A2 = J 
`i'1 

9 a2 9 a3 9 ak 

L1 <x,a1>,<ans,a2> 

L2 _ {<x,ak,,,<ans,a1>j 
L 

C1 W <a1 9<a39ak>aj 

C2 = <,a,1 ,<a3,a2>H 

There are therefore 3 differences between the states, two of type (ii) 
and one of type (v) 

visa I L1 (x) = a1 A L2(x) = ak 

2 L1 (ans) = a2 A L2(ans) = a1 

3 C1 (a1)2 ak n C2(a1 )2 = a2 

It/ 
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It will be seen that any permutation of these 3 differences is 

untranslatable into a program,.for example attempting to remove the 

differences in the order <1,293> results in node a1 being lost. 

However allowing ourselves one extra instruction perms <1,3,2>, <2,1,3> 

and <3,2,1> are suitable. The program came across <3,2,1> first and 

accordingly produces 

tl(x)->newvarl; 

ans->tl(x); 

x->ans; 

newvarl->x; 

3.2.3.x..1 Further Examples and Remarks 

(i) Swapping two variables. S->S' where 

S = <V,A,L,C> and S' = <V',A',L',C°> 

where V = V° _ x9Y 

A A' _0 

L = <:x,a1>9<y,a2>j 

L' _ <x,a2>9<Y9a1>j 

CC' = 0 

The program produced was 

x n>newvarl ; 

y->x; 

newvarl -> y; 

(ii)/ 
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(ii) We desire to produce a program that will cyclically permute 

the values of six variables. The state transition is represented thus. 

S->S' where V V' (X,Y,Z,P,Q,Rj 

A=A' _0 

L <Xal>9<Y,a2>9<Z,a3>,<P,a4->,<Q,a5>,<R,a6>j 

L' _ <:X,a2>,<Y,a3>,<Z,aL.:.-,<P,a5>,<Q,a6>,<R,al>i 

C = C' = 0 

when given this state pair the program produced 

X->newvarl;, 

Y-> X; 

R->newvar2; 

newvarl ->R; 

Z-> Y; 

Q->newvar3; 

newvar2->Q; 

P->Z; 

newvar3->P; 

The production and printing of this program took about 6 seconds. 

Note that it is not optimal as regards the number of new variables 

introduced, In fact whenever an 'extra' instruction is needed we 

invent a new variable. By doing more work we could find if any 

variables or accessible location was redundant. 

(iii.)/ 
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(iii) An example involving cons. 

S->S' where V = VI = X1 ,X,Y1 

A = a1,a2,a3,a11.,a5,a6,a7} 

A° = A , a81ja1} 

L = <X1,a1>,<X,a2>,<Y,a5>1 

L' _ <X1,a3>,<X,a1->,<Y,a8>* 

C = k<a2,<a3,a >>,<a5,<a6,a7»} 

C' = <.a2,<a3,a >>,<a5,<a6,a7>>,<a8,<a3,a5»I 

produces: 

cons(hd(X),Y)->Y; 

hd(X)->X1; 

ti(x)->x; 

(iv) S->S' where V = V ° = Xi 

A = a1,a2,a31 

A' = jaI,a29a4- 1 

L = 2+' = <X, a1 > j 

C = {<.a19<a29a3»j 

Cl = <a1,<a2,a4>s<a4-,<a2-' a2>> 

gives 

cons(hd(X),hd(X))->tl(X); 

(v)/ 
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(=3) S->S' where V = V° _ X,Y,Zj 

A = A' _ a1,a29a39a14- ,a5 

L <.X,a1>,<Y,a3>,<Z,a5>1 

L' <.Xa2>,<Ya1>,<Z,a1>1 

C =. { <.a1 <a2,a3>>,<a39<a,,a5»j 

C1 
- <aI<a2,a3>>,<a3,<a59ak>> 

gives 

hd(Y)->tl(Y), 

X-> Y; 

Z->hd(tl(X)); 

X->Z; 

hd(X)->X; 

At present the program uses no heuristics in its attempt to produce 

a program. However certain obvious heuristics could be tried. When 

removing differences it is usually better to affect nodes that are 

accessible in more than one way. Also for certain configurations of 

nodes, e.g. those configurations where each node can only be 
accessed 

one way, one extra instruction at least is going to be necessary 
if 

there is at least one difference between the states 
and all the 

information is to be retained. 

30203.5/ 
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3.2°3.5 Further Example 

A program in L-0 to sort a list of numbers using a 

swapping technique. A confession, this program can be re-implemented 

destructively by our compiler. There do exist equally admissible 

versions that our compiler does not convert. 

true doneshuffle; 

while doneshuffle 

[false->doneshuff le; nil->result; hd(xl)->last; 

while not(riull(tl(xl))) 

do [].f last<hd(tl(xl)) then 

[cons(last,result)->result; 

tl(xl)->xl; hd(xl)->last] 

else [tl(xl)->xl; 

cons(hd(xl),result)->result; 

true->done shuffle] 

I 

cons (last result)->result; rev(result)->xl] 

(Producing the result in xlo) 

The two straight line pieces of text that our program alters are the 

two branches of the conditional viz. 

cons 
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cons(last,result)->result; 

tl(xl)->xl; 

hd(xl)->last; 

and 

tl(xl)->xl; 

cons(hd(xl),r.esult)->result; 

true-> done shuf fal e 

For the first it invents a starting state description 

last xl result obi' 
n2 

nb n 

interpreting this on the above text it produces a final state 

description 

last xl result 

n6 n3 n5 /\ 
rib n7 1L 

ob.1 nk 

where n5 is the new node introduced by the cons. 

The optimisation routine, on being given the above transition notes 

that the cell n1 is no longer pointed to and uses this to rewrite the 

final state producing a transition 

last 
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last xl result 

j obi n I n -> n6 n3 

Z n n6 n3 n7 obi r4- 

n( n7 

This is then given to the program writing routines which produce a 

program 

last-,-hd(xl); 

hd(tl(xl))->last; 

tl(xl)®>newvari1 

resu.lt->tl(xl ); 

xlm>result 

newvari ->xl, 

The second piece of code viz. 

tl(xl) >xl; 

cons(hd(xl) result->result; 

true--doneshuffle; 

needs a starting state 

doneshuffle xl result 

obi ni n6 

last xl result 

which/ 
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which on being interpreted produces a final state 

xl result dones``huffie 

n3 n7 true 
V1 \ 14 

n1. n5 n n6 

Again this transition can be optimised, the routines making use of the 

discarded cell to produce a new transformation 

xl result doneshuffle xl result doneshuffle 

I 4_> 

n n6 
obb1 

n3 ni true 
2 n 

n3 5 n' 

nk n 

On being given this, the program writing routines produce 

tl(xl)m>newvar1; 

hd(tl(xl))->hd(xl); 

result>tl.(x1), 

xl-,>re suit; 

newvarl ->xl; 

true- done shuffle; 

Thus on being re-assembled the program our compiler produces is 

true 
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true->doneshuffle; 

while done shuffle 

do [false->doneshuffle; nil->result; hd(xl)->last; 

while not(null(tl(xl))) 

do [if last<hd(tl(xl)) then 

[last->hd(xl.); hd(tl(xl))->last; 

tl(xl)->newvar1; result->tl(xl); 

xl->result; newvarl->xl] 

else [tl(xl)->newvarl; hd(tl(xl))->hd(xl); 

result->tl(xl); xl->result; newvarl->xl; 

true->doneshuffle] 

I 

cons(last,result)->result; rev(result)->xl] 
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3.3 Algebraic Manipulation Routines 

The algebraic manipulation routines are used by the recursion 

translation (3.1.303) and compilation (3.2.2.3.1) routines. The 

algebraic manipulation has been kept simply to what is required for 

these two activities and there has been no attempt to write a powerful 

and general algebraic routine. 

3.3.1 specification 

The basic properties of the primitives are specified as a 

set of pairs of formulae, indicating that each pair of formulae are 

equivalent. For example, if we wished to specify that union was 

commutative, associative and that nilset was the identity we would 

give the set 

<union(x,y),union(y,x)> , <union(x,union(y,z)) , union (union(x ,y), Z)> 

,<union(x,nilset),x>} 

where x y and z are variables. 

The basic function is produceallforms 

produceallforms- expssionxset of rules->set of expressions 

which given an expression and a set of rules produces a set of 

expressions that are equivalent to the given expression by one 

application of any rule. 

Produceallforms/ 
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Produceallforms uses a function 

produceformso expressionxset of rules->set of expressions 

that produces all expressions that can be produced from the given 

expression by applying any rule to the whole of the expression. 

produceallforms(exp,ruleset) _ 

let resultset=f 

appset(produceforms(exp,ruleset), 

lambda ex; 

cases exg 

isconstant 

or isvariable: let resultset = 

produceforms(exp,ruleset) 

f(e1) appset(produceallforms(el,ruleset), 

lambda arg; 

let resultset = 

{f(arg)} tj resultset) 

f(e1,e2) o appset(produceallforms(el,ruleset), 

lambda argi; 

appset(produceallforms(e2,ruleset), 

lambda arg2; 

let resultset = 

f(arg1,arg2)} U resultset 

))9 

); 

resultset; 

produceforms/ 
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produceforms(exp,ruleset) 

let expset=exp 

appset(ruleset, lambda rule; 

if trymatch(front(rule),exp) then 

let expset w 

substitute(back(rule),makematch(front(rule),exp))j J expset 

else if trymatch(back(rule),exp) then 

let expset 

substitute(frcnt(rule),makematch(back (rule),exp))j V expset 

) 

expset; 

a set: of msetx(o(-> ()) -> ( ) 

This function applies a function to every element of a set 

trymatcha expressionxexpression->T/F 

This function is true if the second expression can be produced from 

the first by instantiating some variables. False otherwise. 

makematcho expressionxexpression-,>m-list 

This function produces a list of matches of variables from the 

first expression to subexpressions of the second expression that 

perform the instantiation mentioned in trymatcho 

substitute:/ 
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substitutes expressionxmmlistm>expression 

This function instantiates variables in the expression according 

to the matchings given in the matching list. 
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CHAPTER 24 o 

Theory of Computation and Computer Science 

In this chapter we aim to give a brief survey of some of the aims 

and developments in the main line of Computer Science and in the Theory 

of Computation and develop a synthesis between some of these developments 

that sets the scene for our work. 

4_.1 Programming and Machine Desn 

One of the more remarkable features about the development of the 

computer is that although this has been an area of rapid technological 

advance the basic design principle or model on which almost all 

computers are based is fundamentally unaltered since the first true 

computer Edsac was completed in 1949. Despite the fact that the 

design of system components used to implement this model has been 

improved enormously. Most recent computers with the significant 

exception of the B5000 follow the von Neuman model of which the most 

important concept is that of a linear addressable store that is shared 

between program and data. We follow Iliffe (1968) in believing that 

this 'engineering model' of computation persists in the design of 

present day high level language and compilers in such a way as to 

prevent them fully realising their aims. "One should define a 

component of a computer by what it does rather than by what it is." 
If we apply this criterion to present day high level languages we see 

that 
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that this criterion is not fully satisfied. These languages [Algol, 

Fortran, Cobol] were developed to allow programmers to specify 

algorithms conveniently and independently of any particular machine. 

However it is clear that several features of the engineering model or 

the actual implementation of the language are still present. The 

goto statement is an example and there has been discussion, Dijkstra 

(1968) as to whether its use inhibits the development, understanding 

and modification of programs. The concensus and the view to which we 

subscribe is that it does. We shall attempt to amplify this later. 

There are other features of high level problem oriented languages 

which seem to owe little to the problem areas they are supposed to 

tackle and much to actual methods used to implement these features. 

Here we could cite the various calling mechanisms and variable binding 

conventions of Algol. Iliffe again:- "The common problem oriented 

languages conveniently express the structure of conventional machines 

and some of the problems to which they are suited and the investment in, 

for example, Fortran or Cobol programming can be assured by carrying 

such standards into future machines." 

More recently, languages have been developed [LISP, POP-2, Planner] 

designed to reflect structures more appropriate to problem solving. 

However, as these languages have still to be run on von Neuman-type 

machines we are faced with the problems of reducing these structures 

to fit the logic of the machine. 'Existing compilers only 'recognise' 

structure by virtue of restrictions on input languages which enables 

it/ 
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it to be absorbed during translation or by the use of interpretive 

(and therefore slow) execution modes.' It is our contention that the 

two aims (i) ease or succinctness of programming and (ii) efficient 

implementation", are contradictory given the persistance of the 

von Neuman model. Recursion is a case in point. Its use makes 

writing of some programs easier, but often efficient implementation of 

these programs is difficult. We do not want the programmer to be 

concerned with machine features but often it is concern with just these 

features cf programming that makes for efficient programming. Not 

all this dichotomy is due to present machine structure. It is often 

implicit in the nature of the algorithm for example the Fibonacci 

function. It is these areas with which we concern ourselves. We 

have approached language design from the users viewpoint and 

specified a simple language in which we think it is natural for a 

programmer to specify some problems and then investigated the problems 

involved in implementing these programs efficiently for the present 

model of machines. We hope to have demonstrated that it is possible 

to reconcile these aims but that it requires the design of compilers 

that understand programs to a far greater extent and possess some 

limited problem solving or inferential capacity. The problem is one 

of optimisation but we believe that as more and more natural 

languages are developed, local low level optimisation will be insig- 

nificant. Thus we view compilation of a process as involving a) 

understanding what the process does and b) implementing the process 

as efficiently as possible in the target language. 

..2/ 
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k.2 Theory of Computation 

In this section we wish to discuss interconnected aspects of Theory 

of Computation, the semantic definition of programming languages, 

proving properties of programs and automatic program writing. 

1.2.1 Languages and Meta-Languages 

Semantics may be defined as the study of the relation between 

objects and their representation, programming language semantics is 

concerned with the relationship between programs of a programming 

language and the objects (functions, data) which they denote. The 

approaches taken to program language semantics may be broadly split 

into two camps, the operational approach and the denotational or 

mathematical approach. 

The operational approach requires that meaning be defined in 

terms of transformational properties rather than in terms of non- 

operational correspondence between a program and the abstract object 

it represents. This approach to semantics is representation- 

dependent since the semantics of a given function will differ 

depending on the programming language in which it is represented. 

By contrast the denotational approach attempts to provide rules that 

allow, for any program written, the mathematical function associated 

with the program to be produced. 

Common 
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Common to both these approaches is the need for a semantic meta- 

language for defining the meaning of a class of object languages. The 

reasons behind this effort are the desire to clarify and 'formalise' 

aspects of programs and programming languages and to facilitate invest- 

igation of the properties of languages and programs written in the 

languages. Whether one follows the operational orfenotational 

approach to semantics seems to depend on what questions you are asking. 

If you are interested in the transformational aspects of certain 

representations you would prefer the latter. For our purpose we 

assume that all a programmer is concerned with is what his program 

viewed as a function should do. He is, therefore, more interested in 

denotational semantics. Wegner (1969) puts forward four aspects 

desirable in a semantic meta-language. It should be natural, it 

should be elegant when considered as a programming language in its 

own right, it should be simple and it should facilitate proofs of 

properties. We suggest that from the users viewpoint these are all 

necessary aspects of a good program specification language, 

L.. 2.2 Proofs about Proframs 

One of the uses of semantic meta-languages has been to 

facilitate the proving of properties about programs. We give reasons 

why this activity has not been too successful and suggest why it may be 

to some extent misguided. 

Some 
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Some of the reasons for slow progress are clear. People have 

attempted the axiomatisation of existing languages and those features 

that we pointed to as making them difficult to understand also make 

them difficult to axiomatise concisely. One of the gravest defects 

that most of these languages possess is the existence of referential 

opacity manifest in side effects which have their genesis in the fact 

that objects are located in physical store. Referential transparency 

has long been considered essential for any decently manipulable 

mathematical system. 

As Dijkstra has suggested the development of program proving as 

a separate activity from program creating also seems mistaken and 

involves duplication of many of the tasks of the programmer in that 

the same understanding about a given program needs to be brought to 

bear on both occasions. 

The approach to proving programs is to provide ways of associating 

with programs expressions in a meta-language. Questions about these 

programs are then answered within the meta-language. To prove a 

program one has to write down what one expects the program to do. We 

propose that this distinction between programming language and meta- 

language should be avoided and compilers be designed to accept programs 

or specifications of programs written in a language clear and concise 

enough to be thought of as a meta-language and compile them efficiently. 

Thus proofs of programs could either be represented as transformations 

within this language or should become unnecessary as no more adequate 

definition exists of what a program should do than the program itself. 

4..2.3/ 
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1...2.3 Program Writing 

A parallel activity to program proving within Theory of 

Computation has been the search for automatic program writing systems. 

The typical approach of the theorem prover school of automatic program 

writing (Green (1969), Waldinger and Lee (1969), Waldinger and Manna 

(1971)) is for the user to specify the desired computation by means of 

input/output predicates stated in first order predicate calculus. A 

theorem induced by these specifications is then proved and the desired 

program which is guaranteed correct (relative to the I/O predicates) is 

then extracted from the proof. In all these attempts the inductive 

step or iterative structure of the program has to be given by the user 

either implicitly in the I/O predicates or by explicitly telling the 

system the iterative structure the final program will have. 

If one considers what is happening in these cases it is that one 

is using the language of the I/O predicates as a source language to 

describe what the desired computation should do. What is important is 

not that predicate calculus is being used as a language but the 

equational forms that are allowed to the programmer for him to specify 

his program and the primitives he has available. 

Consider a high level specification of an algorithm in terms of 

recursion equations, for example, Euclid's algorithm for the H.C.F. 

hcf/ 
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,hcf(n,m 

rem(n,m, 

(m<n) A (m/,0)__ hof(m,rem(n,m,0)) 

= n<m+r__-> n-(m+r) 

n>m+r >rem(n,m,m+r) 

These definitions have the form 

f1(x1,...,xn ) 
1 

f2(x1,...,xn 
2 

) 

fm(x1,...,xn ) 
m 

1(x1,...,xn 3f1,f29 ....9fm) 
1 

2(x1,...,xn 
2 

,f1,...,fm) 

m(x1 , ...,xn ...,.fm 
m 

where £t(x1,...,xn,f1,...,fm) denotes an expression that may concern 

x1I...,xnf1...,fm and other basic functions or constants. These can 

be said to have imperative content as there exist computation (or run 

time) systems (see Cadiou (1972)) that will for any given input assignment 

to x1,...,xn reduce the program if it is correct to an expression not 

involving f1,...,fm. These definitions also have assertional content 

in that given an input assignment and a proposed answer the equations 

can be used to check whether the answer is correct. Our compiler 

translates this specification of a program into another specification 

for which there is a different evaluation mechanism (run time system). 

We distinguish two further developments on the way to a fully 

fledged automatic program writing system. 

(i) The restrictions on the equational form may be relaxed to allow 

constructs of the basic functions and variables to appear in the place 

of/ 
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of variables on the left hand side. For example, one may find it easier 

to define the Fibonacci system as 

Fibonacci(n+2) = Fibonacci(n+1)+Fibonacci(n) 

and Fibonacci(1) and Fibonacci(O) = 1. 

Of course, equations of this form do not always define unique functions 

e.g. 

f(x2)=x. 

(ii) A fully fledged program writer completely relaxes the restriction 

on the left hand side, and allows general equational forms. 

(x1 ,...,xn,f1,...,fm) E1(x...... x ,...,f 
m 

) 

01 (x1,...,xn,f1,...Ifm) = 1(x1,...,xn,f1,...Ifm) 

For example it seems most natural to define a function to compute the 

number of times y divides x by 

f(x,y).y=x 

f (x,x)=1 

The first task as we see it for any program writer is to translate 

this specification into one which has some imperative content, that 

is, into equations of the first sort. This we see as being in two 

parts (i) Manipulating the equations into the form 

f (x1,,xn) = E 1!(x1)..,xn,f1,...,fm), 1<i<m and (ii) Ensuring 

that/ 
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that these manipulations produce equations with the 'desirable' 

imperative content. If the manipulations have been done correctly 

the equations produced will be correct, what is important is to 

ensure that the computation proceeds in the right direction and 

terminates. Thus in our example the manipulation 

f(x,Y).y=x 

f(x,2.y).2.y=x 

f(x,2.y).2.y=f(x,y).y 

t f(x,y)=2.f(x,2.y) 

indicates a recursive definition 

f(x,y) = if x=y then 1 else 2.f (x,2.y) 

which is correct and in which the computation proceeds 

direction' but it does not always terminate. 

'in the correct 

We do not know exactly how to do this but if we could it would 

be a preliminary stage to our program and extend it towards an auto- 

matic program writing system. 
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CHAPTER 5. 

In this chapter we hope to explore the possibilities for our 

compiler. In 5.1 we examine some suggested improvements and in 5.2 

we hope to show how our transformational compiler could be generalised 

to provide an intelligent compiler/ mprcver for any abstract 

programming system that a user may wish to define. 

5.1 Some Improvements 

At present the program writing routines can produce effectively 

only straight line text. An obvious extension would be to provide 

our programs with some inductive capability. There are two factors 

against this 

a) It is difficult. 

b) It can be avoided to a certain extent. 

We feel that in a properly structured language system iterations 

in one level are often realisations of primitives that operate non- 

iteratively on compound objects at a higher level. For example in 

a list system functions such as concat and rev are single primitives 

that operate on lists as objects. They are realised lower down as 

iterations in a virtual machine that deals more with list-cells i.e. 

its characteristic functions are hd and tl which operate on list-cells 

rather than on lists. 

Thus 
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Thus if we wish to manipulate iterations at one level. it is 

perhaps better to do this by seeking, or keeping a record during the 

compilation, the higher level piece of code from which these 

iterations originate and performing the manipulations here on hopefully 

non-iterative expressions and then projecting back to the lower level. 

Our compiler does this in a hierarchical manner that is just across 

one layer and in one direction only. A full heterarchical system, 

Winston (1972), which allows communication between any two layers would 

be an improvement. 

5.2 LauageExtension 

One of the advantages of a language that allows the definition 

of functions [LISP, POP-2, Algol] is the ease with which one is able 

to add to the given primitives. This is done by defining new data 

objects in terms of given data objects and defining new primitives in 

terms of given primitives to act over these data objects. This 

enables one to produce new abstract systems which facilitate writing 

programs in certain subject areas. For example systems can be 

produced to deal with trees, relational structures, partial functions, 

or general algebras, within mathematical domains and files or 

structured data banks within more general domains. 

Typically/ 
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Typically this building of new virtual machines is done in 

several stages defining a new virtual machine on top of an old. A 

useful illustrative device is the 'onion diagram' due to Dijkstra 

where each new language or virtual machine is represented as a layer. 

The central core is the high level language presented with the 

machine which itself is built on layers terminating with the hardware 

implemented machine code. 
Virtual machine 

User defined :layers 
Given high level 
language 

Machine code 

In our system L-1 or B-0 is the given language,S-0 the final virtual 

machine and S-1 and L-0 the intermediate layers. 

The situation we envisage is that the user has defined a new 

subject area by just such a structured definitions of primitives. He 

now wants to write programs in this system and then submit them to a 

compiler similar to the one defined earlier for sets. 

Before going on to describe how our compiler can be generalised 

and then re-specialised to perform this function we will discuss the 

various types of semantic apparatus we envisage our compiler using. 

5.2.1/ 



-1.2- 

5.2.1 Semantic ApPVatus 

By definition the top-level languages used (e.g. S-0) will be 

close to the abstract area under discussion. This means, to our view- 

point, that the programming language and the semantic apparatus can be 

similar. In particular they can share the same primitives and the 

semantics can make use of the algebraic"laws of - these primitives. 

For example consider the semantic apparatus used in the transition S-1 

to L-0 or B-0. Here our transformations are expressed in terms of 

state vectors whose values are expressions in S-1 primitives and the 

manipulation is done relative to algebraic laws over these primitives. 

In contrast lower machine based languages such as L-1 need a much more 

complicated semantic domain separate from the programming language. 

Thus while we (the compiler writers have to provide the semantic 

apparatus to adequately describe the lower languages the user can 

easily specify an adequate semantics for his defined languages as algebraic 

laws for the primitives. 

5.2.2 The Generalised Transformational Compiler 

We now describe what a generalised transformational compiler 

or rather our compiler generalised and then re-specialised to a specific 

area would look like. 

Given that the basic languages are as before the core of our 

compiler would be the same as previously and the semantic apparatus 

could be built in. 

For 



-11.4- 

5.2.3 Example. A transformational compiler for a matrix 

system 

To illustrate these points we will briefly describe how our 

transformational compiler might be set up to work for another domain. 

This section will be tentative but it may help to persuade the reader 

that our methods have wider application, 

The domain that we have chosen is that of matrices and vectors. 

This domain is similar to that dealt with by APL but we wish to 

emphasise that we are not attempting to implement APL nor would we 

want to. APL, to our viewpoint, has many appropriate high level 

primitives but we feel that it is burdened with many other primitives 

that encourage the production of opaque programs. Also we feel that 

its control structures are of a low level; instead we would use the 

control structures of the language S-0, that is simple recursion 

equations. 

We will assume a target language that allows matrix and vector 

definition and element by element manipulation of these objects. 

The primitives of the top level language would include all those 

used in the normal informal mathematical discourse about matrices. 

For a very structured system we would perhaps want to implement these 

primitives first at a level which allows row and column selection 

and vector operations. However for this brief example we will assume 

that they are implemented directly in the target language. 

Among 



Among the obvious primitives we would define are, 

Matrix operations and constants. 

For example 

+, -, x, / Element wise addition, subtraction, multiplication 

and division. 

For example 

C = A-B where C.A. and B are all mxn 

iff C(i,j) = A(i,j)-B(i,j) i=1,2,...,m 

j=1 ,2, ...,n 

0 Matrix multiplication 

C= A 0 B where C is mxr 

A is mxn 

and B is nxr 
n 

iff C(i,j) k A(i,k)xB(k,j) i=1,2,...,m 
k=1 

j=1,2,...n 

I The identity matrices. 

A 0 1 = A and I OA = A 

Inv Matrix inversion 

Inv(A) 0 A = I and A© Inv(A) = I 

Vector 
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Vector operations 

v+,v-,vx,v/ Element wise addition 2subtraction, multiplication 

and division. 

sx Scalar multiplication 

V' = dsxV iff V'(i) = cxV(i) i=1,...,n 

where V' and V are of length n. 

In addition to these we could define the more unusual APL-like operations, 

such as the reduction operations or column and row extractions, as 

required. 

These operations can be defined in the obvious way by iterative 

definitions in the lower primitives. 

For example 

A (D B is 

1->i; row(A)->ra; col(B)->cb; col(A)->ca; 

while i<ra 

do [1->j; while j<cb 

do [1->k; 0->RES(i,j); 

while k<ca 

do [A(i,k)xB(k,j)+RES(i,j)->RES(i,j); 

I +k->k] 

j+1->j] 

There/ 
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There are obviously very many opportunities for linking while 

statements. Given the obvious definitions of the other primitives 

we would be able to produce a linking list thus. 

[[+ - x /( [v+ v- vx v/ sx]] 

However the greater structure of matrices as opposed to sets 

give us even greater opportunities for linking. We will return to 

this briefly in the example given below. 

This area is also very rich in algebraic laws. We would be 

able to give our compiler a rule list thus 

AxB = BxA, A+B = B+A, A+(B+C) _ (A+B)+C etc. 

A®(Bo C) _ (A®B)®C 

Inv(A() B) = Inv(B) ® Inv(A) 

A ® (B+C) _ (A® B) + (A® C) 

Inv(I) = I 

A®I = A etc. 

Inv(A) ® A = I etc. 

These things together with the linking schemas are all that the user 

would have to provide to produce a transformational compiler for a matrix 

language which would hopefully be an improvement on the usual 

implementations. Other features could be added, an obvious one being 

destructiveness, however, this feature is not so clearly separated as 

it was in the sets example. For example Axb->A has a meaning at the 

matrix 
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matrix level and could be implemented destructively but we must be 

careful not to allow (x to be implemented destructively as A (D B->A 

would then be calculated wrongly. A() B->A can be implemented 

destructively using as temporary storage a vector of length row(A) 

so there is obviously room for investigation. 

Example 

We give a simple example, but even this small example is rich 

in optimising opportunities. Suppose we wish to discover if the 

powers of a matrix converge, a problem met repeatedly in Markov 

processes. The simple algorithm 

convg(P) = JT->convgl(P,P) 

convgl (P,Q) = 
I 

IQ-Q x®PI I<E- >Q 

Q-Q QP I>E ..->convgl (P,Q @ P) 

which converges to the stable matrix if there is such a matrix has 

an obvious iterative implementation. 

P->Q; 

while I IQ-Q t P 
I I 

>E 

do [Q ( P->Q ] 

Q->Ans; 

Two interesting points emerge on considering the further implementation 

of this program. 

(i)/ 
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(i) The two occurrences of Q 0 P obviously do not need to be 
separately computed however if we had inadvertently, but correctly, 

written one as P ® Q, our compiler would have been unable to spot 

this as(D does not in general commute. This, we feel, reinforces 

what was said earlier about the need for an interactive capacity. 

(ii) As mentioned earlier, there are richer opportunities for 

linkings. In the set domain no expressions could be linked if one 

was a sub-expression of the other. The greater structure of 

matrices allows us to relax this condition for many combinations of 

operators, at the expense of a more complicated linking list. In 

particular the - and @ operations in Q-Q ® P can be linked to give 

an implementation of Q-Q Q) P thus, 

1->i; row(Q)->rq; col(Q)->cq; 

while i<rq 

do [1->j;while j<cq 

do [1->k; 0->RES1(i,j); 

while k<c q 

do [Q(i,k)xP(k,j)+RES1(i,j)->RES1(i,i); 

1 +k-> k ] 

Q(i,j)-RES1(i,j)->RES2(i,j); j+1->j'] 

i+1->i] 

Using this would enable us to make an improvement over the normal 

closed subroutine implementation for this simple algorithm. 
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Appendix II The Function Codefor 

Here we give in full the function codefor described in section 

3.2.2.7.1.1. Codefor is used to produce the code that will perform 

the evaluation of a given expression. Expressions that will be 

needed again later, indicated by their having more than one backpointer, 

are stored in temporary variables and remembered in donelist. 

Expressions that are to be linked together are formed into a compound 

item, a linked group, and expanded at a later stage. 

codefor: expressionxstatexcodelistxdonelistxlinkedlist->expressionxcodelist 

xdonelist 

To produce a codelist to perform the evaluation of an expression exp 

starting in state with no expressions previously evaluated we call 

codefor(exp,state,nil,nil,tobelinked) 

codefor(exp,state,codelist,donelist,tobelinked) 

cases 



Appendix I The Matching Algorithm 

Here we give in full the matching algorithm described in 3.1.3.2.1. 

We repeat the abstract structure that is assumed. 

A circuit is a set of recursion equations. 

A recursion equation has a left hand side and a right hand side. 

A left hand side has a name and a list of variable names. 

A right hand side is a set of rules. 

A rule has a predicate tree and a tree. 

We attempt to find a match for a circuit c1 from amongst a set 

of circuit patterns sp by calling findmatchingcircuit(cl,sp,nil). 

findmatchingcircuit: circuitx2 
circuit 

xm-list->m-list. 

This function searches the set of circuits given as the second 

argument. It succeeds if it finds one that matches with the circuit 

in the first argument producing a list associating elements of the 

selected circuit with fragments of the input circuit. 

findmatchingcircuit(circuit,posscircuitset,matchlist) _ 

if isempty(posscircuitset) then fail close; 

let x = choose(posscircuitset); 

either matchcircuit(circuit,x,matchlist) 

orlast findmatchingcircuit(circuit, 

posscircuitset/{xi,matchlist) 

close 

The/ 
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