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1. A INTRODUCTION 

While it is unusual to test tank-models with controlled, variable 

elasticity there are several reasons why we believe that it is important 

to exert the large effort required. 

1. The convenient model-building materials are much too stiff to 

represent the proper behaviour of concrete and steel at full scale. 

2. We believe that, although the close-packed, crest-spanning terminator 

configuration is the best possible arrangement for a wave-energy 

device, it is not economic to resist bending moments greater than 

those which would occur at the power limit. This means that non- 

destructive yielding to bigger waves must be achieved. This will 

not only save money on the spine structure but will also produce 

dramatic reductions in mooring forces. 

3. Work in the narrow tank had shown that the correct control of 

a duck mounting could produce large improvements in duck performance, 

doubling the efficiency in waves twenty-five duck diameters in 

length. We had also discovered that the best values of mounting 

stiffness were low, less than those that would be provided by 

post-tensioned concrete at full scale, and that the mounting movement 

could itself be a useful power-generating mechanism. Furthermore 

the hardware needed to provide non-destructive yielding needed 

very little modification to provide intelligent control and the 

extra generating capability. We realised that the sof tware 

requirements would be formidable - well beyond our present knowledge. 
But we were confident that the existence of a controlled model 

would, as so often before, stimulate theoretical work. Furthermore 

we were quite certain that the progress of computer technology 

between now and the date of the return of energy shortage would 

be so enormous that any level of control sophistication could 

be safely assumed to be available at virtually zero cost. On 

many occasions it has seemed that this view was not shared by 

the civil and marine engineers who assess our progress. 



The work reported in this volume covers the measurements of bending 

moments and joint angles as a function of sea conditions, model lengths 

and stiffness, for circular spine sections without ducks. Other volumes 

will contain the observations of shear, axial, torsion and mooring 

forces, for spines with various appendages. 

We found that it was necessary to put a very great deal of effort 

into the presentation of the data if the essential truth was to be 

revealed. The graphs in this report are about one twentieth of those 

plotted during the analysis of the results. They are largely the 

work of Mr. J.R.M. Taylor. 

In parallel with the experimental programme sponsored by the 

Department of Energy was a computer simulation study which formed 

the doctoral thesis of Ian Bryden, supported by the SERC. Copies 

of this thesis have been sent to the Energy Technology Support Unit 

at Harwell and the UK Department of Energy. I would like to draw 

the attention of WESC to the close correspondence of theoretical 

simulation and experimental tests even for the most bizarre model 

behaviour. 

The Wave Energy Steering Committee will not be surprised to read 

that the problem of plant availability has been given a great deal 

of attention. Several papers on the subject have been submitted to 

WESC through Harwell. I would like to emphasise the importance which 

we attach to the questions raised in these papers. 

S. H. Salter 

August 1984 



l . B  M A I N  CONCLUSIONS 

1. There seems t o  be no obvious r e l a t i o n s h i p  between l eng th  and bending 

moment f o r  long compliant sp ines .  Length squared and l eng th  cubed 

r u l e s  do not  apply. 

2. Bending moments a r e  nea r ly  independent of energy per iod  over t h e  

c e n t r a l  p a r t  of t h e  use fu l  energy-generating spectrum and f a l l  

f o r  t h e  very s h o r t e s t  per iods .  

3. Heave bending moments a r e  propor t iona l  t o  t h e  f i r s t  power of wave 

amplitude. 

4. Surge bending moments r i s e  with wave amplitude t o  t h e  power 0.8. 

5. Surge bending moments a r e  nea r ly  always about twice heave moments. 

For engineering purposes it is s a f e  t o  assume t h a t  t h e r e  is a  

90° phase s h i f t  between heave and surge  moments. We can reduce 

t h e  quan t i t y  of s t e e l  used f o r  r e s i s t i n g  heave loading.  

6. Bending moments r i s e  r a t h e r  gen t ly  with s t i f f n e s s .  A logari thm 

r e l a t i o n s h i p  f i t s  our t e s t  range. Reducing s t i f f n e s s  makes t h e  

e f f e c t s  of per iod  change even smal le r .  

7. Changing t h e  s t i f f n e s s  i n  one d i r e c t i o n  produces l i t t l e  e f f e c t  

on t h e  bending moments i n  t h e  o the r .  We cannot run  away from 

surge  moments by y i e l d i n g  i n  heave. 

8. Seas wi th  a  mean approach d i r e c t i o n  of 90' t o  t h e  l eng th  of t h e  

sp ine  produce a  bending moment p a t t e r n  which o s c i l l a t e s  about 

a  mean l e v e l  i n  t h e  c e n t r a l  reg ions  ai-~d which is  r a i s e d  a t  po in t s  

approximately a  wave-length i n  from each end. 

9. Seas which approach t h e  sp ine  from an obl ique  d i r e c t i o n  produce 

smal le r  moments a t  t h e  up-wave end and much l a r g e r  ones a t  t h e  

down-wave end. 



10. The down-wave enhancement factor in monochromatic waves can be 

as high as twenty five so that obliquity is by far the most powerful 

variable. As it is a relatively narrow effect (changing over 

one or two degrees) we must do some careful experiments to decide 

whether or not the use of 75-tooth comb spectra is sound. 

11. We believe that enhancement happens when the velocity of a flexural 

wave along the length of the spine is close to the velocity of 

an intersecting wave crest. As flexural propagation velocity 

is a function of spine rigidity the effects can be controlled 

by the use of intelligent joints and perhaps even turned to 

advantage for power generation. 

12. Changes to the mooring pattern, including the removal of a large 

fraction of the moorings, do not significantly change bending 

moment. We can afford to lose a lot of moorings and need not 

repair them immediately. 

13. The maximum joint angle in the steepest, largest, credible wave 

is only just over 4 O  so that the 12' design allowance is generous. 

The result is unaffected by any attempt to stiffen or loosen 

the joint. 

14. Broken joints reduce their own bending moment and raise the moments 

at adjacent joints. 



2. D E S C R I P T I O N  O F  THE MODEL 

F ig  2.1 shows t h e  genera l  arrangement of  t h e  model, i t s  moorings 

and t h e  w i r e l e s s  mast which c a r r i e s  t h e  mul t ip le  c o n t r o l  boards.  

A t  t h e  back of t h e  drawing can be seen some of  t h e  e igh ty  wavemakers. 





Fig 2.2 shows more detail of the spine sections and gives leading 

dimensions, weights and calibrations. 
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Fig 2.3 shows the mooring arrangements used for these experiments. 

The system is symmetrical fore and aft. It is an adaptation of the 

system developed for full scale ducks and based on force measurements 

in the narrow tank (ref e). 

It is designed to provide a restoring force by changing the direction 

of a rode rather than the magnitude of its tension. In many ways 

it performs too well with rms tension variations less than 0.5% of 

the mean value. Other configurations have also been tested. 

The cost of the full-scale sinker weights is high but they can 

very conveniently make use of the scrap obtained when round gyros 

discs are made from rectangular steel sheet. 

Model anchors are placed 2 metres up- and down-wave of the mean 

spine centre-line. We have two types of anchor block. The passive 

ones are plastic lunch boxes filled with scrap steel and cement. 

Force-sensing ones use a steel base-plate with a square-bar cantilever 

fitted with vertical and horizontal strain gauges. 

The experiments in section 4.M show the effects of making a major 

change to the mooring system. 



MOORING SYSTEM. General arrangemen t showing 
40 spine joints with mooring 
attached a t  every 8th jo int .  



Photograph 2.4 shows a spine section with its outer skin removed. 

The spines are connected to one another by finger clamps which 

can be tightened by radial screws. These can be seen protruding from 

the inner ring at the near end of the spine. Between the fingers 

is a flat beryllium-copper strip which acts as a low-rate torsion 

spring to centralise the AC-coupled stiffness control. 

Inside the bulkhead we can see the triangular plate torque-arm 

with two of the four strain-gauges which sense fluid loading. Note 

the T-shaped slots which concentrate strain under the gauges. 

The far end of the triangular plate can be moved through an angle 

of 2 4 . 2 O  by a pair of steel-reinforced polyurethane toothed belts. 

These run on pulleys with tension-adjusting eccentrics. 

The low-inertia motor and its 18:l gear box can just be seen 

behind the torque arm. The length of the torque arm contributes the 

final stage of the step-down gearing which has an overall ratio of 

565:l from motor shaft to joint angle. 

The low-inertia motors are fitted with tacho-generators. We 

use integrated velocity to indicate position. 

Although rotation is constrained by carbon steel ball-bearings 

exposed to the water, the addition of a corrosion inhibitor known 

as 'Cimplus' has prevented problems and the original joint bearings 

are still in use. 





Photograph 2.5 shows a spine section with electronic control 

board. Signals from the strain-gauge bridge are conditioned and sent 

to a control computer which decides the correct command signal to 

be sent to the servo-motor. This moves the joint via belts and torque 

arm. The tank operator can control both stiffness and damping at 

each joint. We can also send a series of command signals to induce 

eel-like swimming motions in the model. 

We had to fit a 16 channel bi-directional multiplexer to measure 

and control the spine joint and the duck which will be mounted on 

it. Each spine section contains two servo amplifiers. Their power 

transistors can be seen to the left of the board and are in excellent 

thermal contact with the water. One amplifier will be used for duck 

control. 

In front of the spine is a collection of its machined parts. 

The entire assembly is enclosed in a centrifugally cast G.R.P. tube 

with light alloy end rings. We found that G.R.P. shows some long 

term porosity and that after a few years the bond between epoxy resin 

and freshly anodised light alloy is degraded. We are replacing the 

outer tubes with light alloy. Cimplus does not get through G.R.P. 

and there was quite serious corrosion on the pulley bearings inside 

the spine. These were all replaced and arrangements were made to 

pass a slow current of dry air through the model. 





Figure 2.6 shows a circuit diagram of the spine electronics. 

This diagram divides roughly into three sections: 

Section 1: (ICS 1 to 3) shows the conditioning and pre- 

amplification for the strain gauge bridge and the tacho- 

generator. At the right-hand end can be seen the resistive 

divider that drives the "BLOTIt leak detector. It normally 

sits at -10V, but water in the module will change it to 

about -3V. 

Section 2: (IC 10 down to IC 9) shows the multiplex section. There 

are 3 lines multiplexed out, labelled ZERO, BB (backbone 

or spine) and DUCK. (The line marked (DUCK) is connected 

to the local duck.) The Harris HI-507 chip handles most 

of the switching and an HI-201 the rest. Clocking is 

managed by a "token passingtt system. Clock pulses are 

fed to either "CK1" or ItCK2" (it doesn't matter which) 

and the spine counts eight of them, sending out spine 

and duck data appropriately. At this point IC 9 closes 

a switch between "CKltt and I1CK2", allowing the clock pulses 

to go on to the next spine in line. This system allows 

all spines to be electronically identical. 

IC8 is a 4-bit counter that sets the "STATUS" of the spine. 

It programmes the gain of IC15 and thus the overall spine 

force-feedback loop gain. 

Section 3: ICll down. This circuitry comprises a sample and hold 

(ICs 11 and 14) which handles the local duck multiplex, 

and op-amps 16, 17 and 15, which optimise the frequency 

responses of the duck and spine feedback loops. The bottom 

row, ICs 18 and 19, shows the two power amplifiers needed 

to drive the duck and spine motors. These amplifiers 

are based on the LM391 IC which is designed for hi-fi 

work but, when combined with a pair of Darlington transistors, 

makes a very compact servo unit. 





Photograph 2.7 shows David J e f f r e y  and a p i l e  o f  sp ine  s e c t i o n s  

p r i o r  t o  launching.  

Each is  connected t o  i ts  neighbours with a waterproofed multiway 

p lug  c a r r y i n g  power and s i g n a l s .  Two u n i t s  i n  f r o n t  of  t h e  p i l e  have 

t h e i r  ducks f i t t e d .  

A t  t h e  t op  r i g h t  of  t h e  photograph we can s e e  a few o f  t h e  c i r c u i t  

boards which s e l e c t  d a t a  channels f o r  c o n t r o l  and measurement. The 

boards a r e  mounted on a t r i angu la r - sec t ion  w i r e l e s s  mast which spans 

t h e  e n t i r e  width of  t h e  tank  and is used t o  launch and recover  models. 





Photograph 2.8 shows Chris Retzler checking the clamping of a 

joining ring. 

The model is hanging up by nylon ropes from its wireless mast. 

When this is pulled back over the work platforms which cover our beaches 

we can get convenient access to both mechanical and electronic bits. 

Launching the model and connecting all the moorings takes one 

person less than 3 minutes. 





Photograph 2.9 shows t h e  sp ine  model i n  t h e  tank.  J o i n t  d e f l e c t i o n  

can be c l e a r l y  seen.  Grid l i n e s  on t h e  tank f l o o r  a r e  a t  5 metre 

i n t e r v a l s .  The j o i n t  p i t c h  is  0.4 metres.  

The w i r e l e s s  mast has been moved beachward t o  al low a c l e a r e r  

view. For t e s t i n g  it would be placed s o  a s  t o  minimise t h e  drag of 

l i f t i n g  ropes  and umbi l ica l  cab les .  I n i t i a l  t e s t s  of  candida te  cab le s  

i n  t h e  narrow tank showed t h a t  t h i s  drag was about 5% of  t h e  mooring 

fo rce .  

A l i n e  of mooring f l o a t s  can be seen t o  t h e  r i g h t  of  t h e  model. 

We found t h a t  t hese  could be rep laced  by o t h e r s  one t h i r d  of  t h e  

displacement.  

The t h r e e  heavy b a r s  on t h e  f r o n t  of t h e  w i r e l e s s  mast d i s t r i b u t e  

power t o  t h e  model. Each group of fou r  sp ines  is p ro t ec t ed  by sepa ra t e  

fu ses  and over-voltage crow ba r s .  One sp ine  caught f i r e  bu t  t h e  damage 

w a s  contained.  

A l l  t h e  mult iplex con t ro l  boards a r e  mounted on t h e  beachward 

s i d e  of t h e  wi re l e s s  mast. Their Terry-cl ip  attachments can be seen. 





Fig 2.10 shows a block diagram of the data collection and model 

control system. 

We found that the combination of distributed multiplex boards, 

differential signal-pairs and insulation-displacing ribbon-cable 

connectors has produced excellent reliability. The settling time 

of the 30 metre length of the wireless mast data-collection system 

is about 12 microsecond with a noise level of 1.5 millivolts. We 

ran into a problem with a residual dielectric 'remnance' which required 

the signal wires to be 'cleaned-out' by the subtraction of a small 

charge which depended on the previous measurement. 





3.A POX-PLOTS 

Introduction 

We find visual representations of the sea states very useful 

both as a check that we are getting the sea that we want and as an 

aid to understanding test results. We found that the most useful 

representation is the 'pox-plot'. An example is shown below. Each 

individual pox-plot identifies, with a dot or cross, the period and 

angle of the component wavefronts making up a sea state. The number 

of wavefronts is limited to 75 by the current wavemake~controlling 

computer. Angle is shown as the horizontal variable, usually scaled 

between -70 and +70 degrees, with period increasing from 0 to 2.0 

seconds vertically. A separate diagram on each page of pox-plots 

shows the scaling in use. 

Information about wave height is not displayed graphically, but 

as a single value of Hrms (in centimetres) below and to the left of 

each plot. This is the mean of several measurements made at different 

times during the course of the experiments. We use a row of sixteen 

conductivity-corrected wave gauges placed 2 metres in front of the 

wavemakers. 

-70 
Fig  3.1 The pox-plot for a 1.2 second Pierson Moskowitz sea +70 

with a Mitsuyasu spread. 
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In this section we include diagrams of every sea used in the 

experiments. The pox-plots are produced by reading back tank data 

files normally sent to the wave-making computer, and then performing 

a 'reverse tank transfer function' to convert back to amplitudes, 

periods and angles. On more than one occasion this process has uncovered 

faults in our tank software. 

We lay out pox-plots in 2-dimensional arrays to match test results 

given in other sections. Where appropriate, rows and columns of the 

array are assigned particular values of a sea constant such as energy 

period or Hrms, which varies vertically or horizontally. The names 

of these variables are then printed with a large set of cross-arrows 

at the top left of the page. In the case of the South Uist spectra 

the Institute of Oceanographic Science reference number is placed 

at the bottom right of each plot. 

The lack of height information about individual wavefronts is 

not a drawback with single-component monochromatic seas, or with our 

standard Pierson-Moskowitz spectra, which comprise equal amplitude 

' teeth' , each representing a wavefront of identical energy.' The 

South Uist seas, however, are made up by combining up to 3 separate 

'sub-seas' (see section 6.G), each of which has its own fixed tooth 

size, so dots may represent wavefronts of slightly differing heights. 

1 In fact at low frequencies the heights of wavefronts are adjusted 

slightly to maintain constant energy in finite tank-depth (see 

section 6.B). 



Sea Set: PM 'm' 'Scatter Diagram Explorer' Graph 3.2 

This is a basic set of Pierson-Moskowitz spectra with energy 

period and Hrms varying independently. We use a modification of the 

standard PM spectrum as described in our 4th year report, (see ref 

b, page 6.9). 

The directional spread is based on the Mitsuyasu formula discussed 

in ref b, page 6.10. 

We limited the spectral frequencies to the range 0.5 to 3.0 Hz, 

corresponding to periods of 0.33 to 2.0 seconds. The noticeable 

similarity between the patterns of dots shows that the same random 

number seed was used throughout to initiate the choice of angles. 

For a standard Pierson-Moskowitz spectrum the theoretical value 

of Hrms is related to energy period by: 

Hrms (cm) = 1.361 ~e' 

Wavemaking geometry sets limits on the range of wavefront frequencies 

and angles (section 6.D), so the realisable Hrms is reduced. The amount 

of this reduction clearly depends on the energy period and the directional 

spread of each spectrum. The seas here all have Mitsuyasu spread 

with mean direction of zero degrees, so the reduction in Hrms due 

to angular limits is low and virtually constant at 1.5%. The tank 

frequency limits have varying effects. Hrms is reduced by only 0.5% 

at an energy period of 1 second, but this increases to a maximum of 

3% at 1.4 seconds. The combined effect is to reduce the realisable 

Hrms values from 2% to 4.5%. 
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However our measured H r m s  va lues  a r e  up t o  10% lower than  t h e s e  

co r r ec t ed  t h e o r e t i c a l  values.  The most l i k e l y  cause is  t h e  reduct ion  

t h a t  we make i n  wavemaker d r i v e  command s i g n a l s  as wavefront angle  

i nc reases .  This is p a r t  of t h e  wide tank ' t r a n s f e r  f u n c t i o n ' .  We 

mul t ip ly  by t h e  square r o o t  of t h e  cos ine  of  t h e  wavefront angle .  

A quick t e s t  confirms t h a t  t h i s  is too  severe  a co r rec t ion  f o r  angles  

g r e a t e r  than  about 40° ,  s o  t h a t  wavefronts near  t h e  s i d e s  of  t h e  p l o t s  

a r e  being over-at tenuated.  

A l l  t e s t  r e s u l t s  i n  t h i s  r e p o r t  use  a c t u a l  measured va lues  s o  

t h a t  dev ia t ions  from our  i n i t i a l  tank t r a n s f e r  func t ion  do not  a f f e c t  

conclusions.  We hope t o  produce an improved multi-parameter t r a n s f e r  

func t ion  f o r  f u r t h e r  r e p o r t s .  

Graph 3.3 shows t h e  H r m s  and Te t e s t  p o i n t s  superimposed on a 

South U i s t  s c a t t e r  diagram. Lines of  cons t an t  power dens i ty  have 

been added. 

These seas  were used f o r  t h e  s c a t t e r  diagram explor ing  experiments 

i n  s e c t i o n  4.A. The 1 .0  second s e a  with nominal H r m s  o f  1.36 cm was 

used f o r  t h e  s t i f f n e s s  v a r i a t i o n  experiments i n  s e c t i o n  4 . B .  
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Sea S e t  PM ' a '  Graph 3.4 

These a r e  s tandard  Pierson-Moscowitz s e a s  with Mitsuyasu spreading.  

We wanted t o  i n v e s t i g a t e  t h e  e f f e c t  of angled s e a s ,  and t o  check 

tank angular  symmetry. The wavefront angles  a r e  b iased  p o s i t i v e l y  

and nega t ive ly .  

Energy per iod  v a r i e s  v e r t i c a l l y  with a h igher  maximum value  than  

i n  t h e  previous s e t .  

The expected H r m s  l o s s e s  due t o  frequency c l i p p i n g  range from 

0.4% a t  an energy period of  1.0 seconds, t o  9.3% a t  1 .6  seconds. 

The expected l o s s e s  due t o  angular  c l i p p i n g  average about 1.3% f o r  

t h e  O 0  o f f s e t  s e a s ,  and about 7% f o r  t h e  40° seas .  The combined e f f e c t s  

range from a t o t a l  expected H r m s  l o s s  of  2% a t  1 second and 0 ° ,  t o  

15% a t  1 .6 seconds and 40°. 

Measured H r m s  va lues  a r e  lower than  these  expec ta t ions  by an 

average of 7%, the  e r r o r s  being worst a t  1 .4  and 1.6 seconds, and 

a t  40° o f f s e t .  

These s e a s  were used f o r  t h e  experiments of  s e c t i o n  4.C. 
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Sea S e t  CO ' a '  G r a ~ h  3 .5  

These a r e  Pierson-Moskowitz s p e c t r a  aga in ,  bu t  spreading  is  
S 

according t o  t h e  cos  model. We va r i ed  s from 2 t o  10,000. (This  

is deemed t o  be wi th in  a  few percent  of i n f i n i t y ! )  Of f se t  angle  is 

a l s o  va r i ed  aga in  bu t  t h i s  time only i n  a  p o s i t i v e  sense ,  away from 

t h e  g l a s s .  

Nominal H r m s  f o r  a  1 second Pierson-Moskowitz s e a  is 1.36 cm. 

The expected l o s s  due t o  frequency c l ipp ing  is cons tan t  throughout 

t h i s  s e t ,  a t  0.4%. Angular c l i pp ing  is  most severe  f o r  t h e  widely 

spread s e a s  and f o r  those  with l a r g e  angular  o f f s e t s .  Even a t  0' 

o f f s e t ,  H r m s  w i l l  be reduced by 8% f o r  a  spread  exponent of 2 and 

a t  50° o f f s e t  t h i s  i nc reases  t o  16%. 

For t h e  f i r s t  t ime,  many of  t h e  s e a s  i n  t h i s  s e t  have measured 

H r m s  va lues  g r e a t e r  than expected, and i n  many cases  g r e a t e r  than  

t h e  nominal value.  For i n s t a n c e ,  H r m s  f o r  t h e  bottom l e f t  s e a  is 

10% higher  and t h e  e f f e c t  is c l e a r l y  r e l a t e d  t o  angular  spread and 

mean angle.  

I n  t h e  ' i n f i n i t y '  row some of  t h e  upper wavefronts a r e  seen breaking 

away from t h e  l i n e .  This is t h e  r e s u l t  of an i n s u f f i c i e n t l y  s u b t l e  

shallow-water co r r ec t ion .  The symptoms a r e  hard t o  s e e  i n  t h e  a c t u a l  

tank s e a ,  even t o  a well-briefed observer .  

Occasional wavefronts seen wandering well  away from t h e  herd ,  

near  t h e  bottom r i g h t  of  t h e  p l o t s ,  a r e  symptoms of t h e  ' t ank  l i m i t s '  

problem discussed  i n  s e c t i o n  6.D, and a r e  i l l u s t r a t e d  more c l e a r l y  

i n  t h e  a d d i t i o n a l  s e t  of pox-plots i n  s e c t i o n  3.B. 

These s e a s  were used f o r  t h e  experiments descr ibed  i n  s e c t i o n  

4.D. 
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(3.A c o n t )  

Sea S e t s :  South U i s t  ' s u '  ' a ' ,  ' b ' ,  ' c '  & ' d l  Graphs 3.6 - 3.9 

The South U i s t  s e a s  make much more i n t e r e s t i n g  pox-plots. Our 

tank  implementation of  t h e  I n s t i t u t e  of  Oceanographic Science ( 1 0 s )  

da t a  is  descr ibed  i n  s e c t i o n  6.H. 

An a d d i t i o n a l  image on each page d e p i c t s  our  t ank  and model i n  

t h e i r  working r e l a t i o n s h i p s  t o  t h e  compass. 

Components i n  t h e  r i g h t  h a l f  of  each p l o t  r e p r e s e n t  wavefronts 

approaching from t h e  sou th  of  t h e  mean d i r e c t i o n ,  and those  t o  t h e  

l e f t  approach from n o r t h  o f  t h e  mean d i r e c t i o n .  

The s e p a r a t e  wind, swe l l  and o l d  wind components a r e  o f t e n  c l e a r l y  

v i s i b l e .  Swell  is u s u a l l y  i n  t h e  upper p a r t  o f  t h e  p l o t  and t i g h t l y  

bunched i n  spread .  The width o f  spread  i n d i c a t e s  t h e  s i z e  and d i s t a n c e  

of  t h e  o r i g i n a t i n g  weather.  Wind s e a  is  u s u a l l y  a t  lower f requenc ies  

near  t h e  bottom o f  t h e  p l o t s ,  and wel l  spread.  The e f f e c t  o f  t h e  

s p e c t r a l  width parameter i n  compressing t h e  frequency range of  wavefronts 

is a l s o  o f t e n  c l e a r .  

Sea number 223A (graph 3.6) has  only a s i n g l e  component from 

a well-defined and small  swel l  source .  Sea 371A (graph 3 .6)  has  a 

wide swe l l  source  t o  t h e  no r th  and i t s  'wind' and ' o l d  wind' components 

a r e  n o t  superimposed on t h e  pox-plot. 

Measured H r m s  va lues  f o r  a s c a l e  o f  107.7 a r e  g iven  i n  cen t imet res  

a t  t h e  bottom l e f t  of each p l o t .  They gene ra l l y  i n c r e a s e  with s e a  

number. 

Although 13 of  t h e  46 s p e c t r a  a r e  n o t  very accu ra t e ly  represen ted  

by t h e  ' a '  ve r s ion  (graph 3.6)  we used them f o r  most of  our experiments.  

There a r e  enough v a r i a t i o n s  i n  t h i s  one group t o  t e s t  ou t  any bending 

moment t h e o r i e s  and model deployment is very much e a s i e r  when p a r a l l e l  

t o  t h e  wavemakers. 



IOSdata adjusted for 100m water depth 
and rescaled at  1/108 POX PLOTS 

SEA SET: SU 'a' 46 The ' 4 6  s p e c t r a 1 ,  b a s e d  o n  b u o y  d a t a  o f f  t h e  c o a s t  o f  s o u t h  U i s t ,  w i t  

bSPECTRA - 
10 lsecords) !-='I f r o m  w i n d  r e c o r d s .  The 46 a r e  s e l e c t e d  t o  be r e p r e s e n t a t i v e  o f  a l l  s e a s o n s ,  b u t  t h e i r  w e i g h t i n g s  

a r e  n o t  e q u a l .  F o r  t h e  l a t  s e t ,  t h e  n o r m a l  t o  t h e  wavemaker  a x i s  r e p r e s e n t s  a  compass b e a r i n g  
o f  260 d e g r e e s  w i t h  t h e  mode l  p a r a l l e l  t o  t h e  wavemakers .  13  o f  t h e  46  s p e c t r a  a r e  p o o r l y  

b 

'a' set 
Bnfh r e p r e s e n t e d  by  t h e  l a 1  v e r s i o n ,  a n d  t h e  I b I  o r  l c l  v e r s i o n  i s  a  c l o s e r  match .  
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The ' b '  s e t  (graph 3.7) provide improved ve r s ions  of  t hose  s e a s  

which have s t r o n g  sou the r ly  components. The model is r o t a t e d  clockwise 

40 degrees and t h e  tank mean heading s h i f t s  t o  220°. It  is  i n t e r e s t i n g  

t o  compare t h e  ' a t  and ' b '  vers ion  of  t h e  same sea .  The swel l  components 

c l e a r l y  s h i f t  l e f t  and t h e  number of wavefronts a l l o c a t e d  t o  them 

a r e  reduced, a s  t h e  new o r i e n t a t i o n  al lows wind s e a  components t o  

be r e a l i s e d  wi th in  t h e  wavemaker angular  range. 

The ' c t  s e t  (graph 3.8) provide improved ve r s ions  of those  s e a s  

which have s t r o n g  n o r t h e r l y  components. The mean wave d i r e c t i o n  

r ep re sen t s  a compass bear ing  of 310 degrees.  Swell now moves t o  t h e  

r i g h t  compared with t h e  ' a t  s e t .  

It is n o t  very convenient t o  yaw t h e  model clockwise f o r  t h e  

' b '  s e t  and then  anti-clockwise f o r  t h e  ' c t  s e t .  I n  p r a c t i c e  we use  

the  ' d l  s e t  t o  implement a mirror  image of t h e  ' c t  s e t .  The model 

need only be yawed another  lo0  clockwise from t h e  p o s i t i o n  f o r  t h e  

' b t  s e t .  The Hebrides look s t r a n g e  t h a t  way round, bu t  it makes l i t t l e  

d i f f e r ence  t o  our bending moment t e s t s .  

The South U i s t  s e a s  were used f o r  t h e  experiments descr ibed i n  

s e c t i o n s  4.E t o  4.H, and 4.L t o  4 . M .  
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10 (seconds) f-1 9 o f  t h e  46 s p e c t r a  w h i c h  a r e  p o r l y  r e p r e s e n t e d  b y  t h e  l a 1  s e t .  F o r  t h e s e ,  t h e  n o r m a l  t o  t h e  

w a v e m a k e r  a x i s  r e p r e s e n t s  a  c o m p a s s  b e a r i n g  o f  220  d e g r e e s  when t h e  m o d e l  i s  s e t  a t  an  a n g l e  
o f  4 0  d e g r e e s  t o  t h e  w a v e m a k e r .  
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Sea S e t s :  MO ' a ' .  ' b '  & ' c '  G r a ~ h s  3.10 - 3.12 

Regular s e a s  do n o t  make very  i n t e r e s t i n g  pox-plots.  

We increased  t h e  angular  l i m i t  of  t h e  tank  t o  80° f o r  t h e s e  waves. 

The nominal H r m s  is 1.414~111 f o r  t h e  ' a '  s e t ,  and l.Ocm f o r  t h e  ' b '  

and ' c '  s e t s .  

I n  a l l  3 s e t s ,  t h e  v e r t i c a l  v a r i a b l e  is energy per iod  with a 

range of 0 .8  t o  1 .6  seconds i n  5 s t e p s .  

' a '  s e t :  (g raph  3.10) 

The nominal c r e s t  angle  v a r i e s  from -lo0 t o  -80°. A t  long per iods  

and extreme angles  (bottom r i g h t  co rne r )  t h e  a c t u a l  angles  produced 

i n  t h e  tank  a r e  v i s i b l y  lower than t h e i r  nominal va lues .  This was 

t h e  first i n d i c a t i o n  of  a f a u l t y  shallow water c o r r e c t i o n  i n  our sea- 

gene ra t i ng  sof tware .  The e f f e c t  is a l s o  c l e a r l y  v i s i b l e  i n  Graph 

3.5. 

These s e a s  were used f o r  t h e  experiments i n  s e c t i o n  4.1. 

' b '  s e t :  (graph 3.11) 

The c r e s t  l eng th  is  va r i ed  from 2 t o  12 metres i n  2 metre s t e p s .  

These s e a s  were used f o r  t h e  experiments i n  s e c t i o n  4.5. 

' c '  s e t :  (g raph  3.12) 

I n  a d d i t i o n  t o  angle  and c r e s t  l e n g t h  we discovered t h a t  it was 

u se fu l  t o  desc r ibe  wavefronts i n  terms of  t h e  v e l o c i t y  of  movement 

of t h e  c r e s t  a long t h e  sp ine .  The c r e s t  v e l o c i t y  is  va r i ed  from 2 

t o  8 metres pe r  second. 

These s e a s  were used f o r  t h e  experiments i n  s e c t i o n  4.K and 4.L. 



40  m o n o c h r o m a t i c  s e a s  g i v i n g  known c r e s t  a n g l e s  a t  v a r i o u s  p e r i o d s ,  w i t h  n o m i n a l  Hrms o f  1.414cm. 
The a n g u l a r  l i m i t s  o f  t h e  wavemakers  were  i n c r e a s e d  t o  80  d e g r e e s  f r o m  t h e  n o r m a l  v a l u e  o f  70 
d e g r e e s .  The f a l l  o f f  i n  m e a s u r e d  Hrms v a l u e s  a t  l a r g e  a n g l e s  shows i n c o r r e c t  a m p l i t u d e  

c o m ~ e n s a t i o n  i n  t h e  t a n k  t r a n s f e r  f u n c t i o n .  
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37 m o n o c h r o m a t i c  s e a s  g i v i n g  known c r e s t  l e n g t h s  a t  v a r i o u s  p e r i o d s ,  w i t h  n o m i n a l  
The wavemak ing  a n g u l a r  l i m i t s  w e r e  i n c r e a s e d  t o  80 d e g r e e s ,  b u t  3 s e a s  were  s t i l l  
a t  2 m e t r e s .  Hrms f o r  t h e  4 m e t r e  s e a  a t  1.2 s e c o n d s  was i n a d v e r t e n t l y  d o u b l e d .  
i n  measured  Hrms v a l u e s  a t  l a r g e  a n g l e s  shows i n c o r r e c t  a m p l i t u d e  c o m p e n s a t i o n  i n  
t r a n s f e r  f u n c t i o n .  
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33 monochromat ic seas g i v i n g  known c r e s t  v e l o c i t i e s  a t  v a r i o u s  p e r i o d s ,  w i t h  n o m i n a l  Hrms o f  
1 cm. The wavemaking a n g u l a r  l i m i t s  were i n c r e a s e d  t o  80 degrees, b u t  2 seas were s t i l l  
u n r e a l i s a b l e  a t  2 metres /sec .  The f a l l  o f f  i n  measured Hrms v a l u e s  a t  l a r g e  a n g l e s  shows 
i n c o r r e c t  a m p l i t u d e  compensat ion  i n  t h e  t a n k  t r a n s f e r  f u n c t i o n .  

POX PLOTS 
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3.B POX-PLOTS WITH GHOST WAVEFRONTS Graphs 3.13 - 3.19 

The restrictions on frequencies and angles due to the finite 

width of wavemakers are discussed in section 6.D. 

An absolute upper tank limit exists at 2.26 hz, the frequency 

at which the wavelength is equal to wavemaker pitch. Between 1.6 

hz and 2.26 hz the maximum permissible wavefront angle drops steadily 

from ?9O0 to OO. Wavefronts transgressing this envelope acquire one 

or more 'ghost siblingst at the same frequency but at a different 

angle. Below 1.6 hz the theoretical angular limit is over 90°. Below 

0.5 hz the wavemakers have too little displacement to work effectively. 

We have not yet made any measurements of the unwanted wavefronts but 

their amplitudes are visibly of the same order as the principal wavefront. 

These modified pox-plots show the effect on our sea sets of using 

a simple rectangular limit (?70°, 0.5 - 3.0 hz) when calculating wavefront 
frequencies and angles. The limit has been over-drawn on each plot 

as a roughly horizontal line. Any intended wavefront below these 

lines acquires a ghost. Both wavefront and ghost are drawn as a dot. 

The number of ghosts is totalled at the top left of each plot. Naturally 

the effect is most obvious at high frequencies, so that in the scatter 

diagram set (graph 3.13), the seas at Te = 0.7 seconds have the most 

ghosts. The effect of angular offsets is to increase marginally the 

number of ghosts (graphs 3.14 & 3.15). On average the basic westerly 

set of South Uist spectra have 8 ghosting wavefronts, but this rises 

to 21 for the southerly set, and 14 for the northerly set (graphs 

3.16 - 3.19). 

Generally the effect of having too many fronts outside the tank 

limits is to widen the angular distribution of energy at short periods. 

Test work in monochromatic seas, (section 4.H, and more recent work 

still to be reported) suggests that the spine model is comparatively 

insensitive to short-period, off-axis wavefronts. Our wavemaking 

software will in future represent only those parts of spectra which 

fall within the tank limits. An override facility will allow deliberate 

transgressions. 





Offset 
I ANGLE 2 
I 

Enerav (degrees) 

(seconds) 
I 

wavefronts 
BELOW Line 
have ghost sibling 

Ref& 

POX PLOTS 
SEA SET:  PM*aO 

rshowina HIGH FREQUENCY limit 1 

''C)co,2~S3 PM mn 4.  TNk " 
GRAPH 3 . 1 4  



+70 

wavefronts 
BELOW Line 
have ghost 

Offset 
ANGLE r-> 

I i d e q r  ees) 

sibling 

POX PLOTS 
SEA SET:CO'CI' 

showing HIGH FREQUENCY limit 

GRAPH 3.1 5 



> 

showing HIGH FREQUENCY limit 

c- 

the IOSdata adjusted for 100m water depth 
and rescaled at  1/108 POX PLOTS 

SEA SET:  SU'aJ 

26 

GRAPH 3 . 1 6  



IOSdata adjusted for 100m water depth 
and rescaled at  1/108 

'D- set 

Southerly 
seas J 

+70 

wavefronts 
BELOW line 
have ghost 

~~ 

POX PLOTS 
SEA SET: SU 'b' 

sibling (showina HIGH FREQUENCY limit 1 

GRAPH 3.1 7 



showing HIGH FREQUENCY limit 
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3.C 3D WAVE PLOTS 

In t roduc t ion  

3D p l o t s  add another  dimension t o  pox-plots. They g ive  a b e t t e r  

impression of  t h e  o v e r a l l  s i z e  of  s e a s ,  bu t  they have lower r e s o l u t i o n  

on t h e  per iod /angle  p lane .  

We inc lude  two s e p a r a t e  groups of  3D p l o t s :  

I n  t h e  1st group - graphs 3.20 t o  3.26 - t h e  he igh t  of p l o t  

is p ropor t i ona l  t o  wavefront amplitudes: 

I n  t h e  2nd group - graphs 3.27 t o  3.32 - t h e  volume under 

t h e  p l o t  is  p ropor t i ona l  t o  t o t a l  power i n  s ea .  

The l ayou t  of  each page of  3D p l o t s  matches t h e  corresponding 

page of  pox-plots and bending moment t e s t  r e s u l t s .  The range of  per iods  

and angles  a r e  t h e  same. The v e r t i c a l  s c a l e s  a r e  unique t o  each page, 

s o  he igh t  comparisons between pages should n o t  be made. 

The nodes of  each 3D p l o t  form t h e  b i n s  o f  a 2-dimensional histogram. 

Each wavefront a l l o c a t e s  s co re s  t o  t h e  b i n s  i n  i ts  v i c i n i t y  according 

t o  a smoothing func t ion .  

The number of per iod  and angle  increments depends on t h e  t h i cknes s  

of our  p l o t t e r  pens. We inc rease  t h e  r e s o l u t i o n  f o r  t h e  v a r i a b l e  

spread s e t  i n  graph 3.22 by p l o t t i n g  a t  a l a r g e r  s c a l e  and then  reducing 

t h e  whole page on a cop ie r .  

The Pierson-Moskowitz/Mitsuyasu s p e c t r a  i n  graphs 3.20 & 3.21 

a r e  d e l i g h t f u l l y  smooth. The cut-off enforced by t h e  l i m i t e d  angular  

range of  t h e  tank  i s  apparen t  on t h e  r i g h t  edge of  many s p e c t r a .  

We increased  t h e  per iod  and angle  r e s o l u t i o n  t o  t r y  t o  show t h e  

dramatic  change i n  angular  d i s t r i b u t i o n  i n  graph 3.22. Ghost 

wavefronts show up a s  detached outcrops  i n  t h e  p l o t s  a t  t h e  lower 

l e f t .  

Swell components show up c l e a r l y  i n  t h e  South U i s t  s e t s  

(graphs 3.23 - 3.26) bu t  it is q u i t e  d i f f i c u l t  t o  s e p a r a t e  wind s e a  

and old-wind s e a  components. 
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4.A SCATTER DIAGRAM EXPLORING 

Bending Moment Resul t s  

I n  graph 4.1 we draw s e t s  of sub-graphs of  t h e  r o o t  mean square 

bending moment a t  each j o i n t  along t h e  sp ine .  The po in t s  a r e  connected 

by s t r a i g h t  l i n e s  bu t  a s  t h e r e  a r e  u sua l ly  s o  many j o i n t s  we g e t  t h e  

impression of a reasonably f a i r  p a t t e r n .  

A s  i n  most of t h e  t e s t s  i n  t h i s  r e p o r t  we recorded 1024 measurements 

from each j o i n t  a t  a sampling r a t e  of 20 Hertz.  With 44 j o i n t s  t o  

t h e  model each sub-graph is  t h e r e f o r e  based on 45,056 measurements 

and t h e  a r r a y  of 39 t e s t s  shown on t h i s  page needed 1,757,184 

observa t ions .  

Bending moment s c a l e s  a r e  given on t h e  r i g h t  of t h e  diagram. 

The u n i t s  a r e  Newton metres a t  model s c a l e .  They can be convenient ly 

read with t h e  a i d  of  a p a i r  of d i v i d e r s .  The most h ighly  s t r e s s e d  

j o i n t  on t h i s  page had an r m s  bending moment j u s t  under 10 Newton 

metres.  

Tick marks along t h e  top  and bottom of  t h e  diagram allow us  t o  

i d e n t i f y  j o i n t  numbers. A t  a s c a l e  of  107.7 t h e  44 j o i n t  model would 

cover nea r ly  1.9 ki lometres  of s e a ,  equiva len t  t o  twelve wavelengths 

of a 10  second period wave. 

Each sub-graph is l a i d  out  a s  a member of  an a r r a y  corresponding 

t o  t h e  p o s i t i o n  of  t h e  s e a  s t a t e  given i n  i ts  corresponding pox-plot. 

I n  t h i s  case  it would be t h e  pox-plot on graph 3.2.  The reader  w i l l  

f i n d  it he lp fu l  t o  r e f e r  backwards and forwards. The columns show 

t h e  f a c t o r  by which we mul t ip ly  t h e  Pierson Moskowitz norm f o r  each 

of t h e  va lues  of Te shown i n  rows. Amplitude and per iod  a r e  of course 

i n t e r r e l a t e d  i n  t h e  P ierson  Moskowitz formula. A x2 m u l t i p l i e r  f o r  

a 1 . 4  second s e a  is very l a r g e ,  with power equiva len t  t o  3.75 MWatts/metre 

a t  f u l l  s c a l e .  

The mean d i r e c t i o n  of  t h i s  s e a  is a t  90° t o  t h e  l eng th  of t h e  

sp ine .  The c e n t r a l  reg ions  show o s c i l l a t i o n s  about a mean l e v e l  with 

an inc rease  a t  each end. Surge moments a r e  always bigger  than  heave 

ones. The r a t i o  is about two f o r  small  s eas  but  f a l l s  f o r  bigger  

ones. 

This s e t  of measurements was made a t  a s t i f f n e s s  of  1 ,000 Nm/radians 

with a whole sp ine  l eng th  of 18  metres.  
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In graph 4.2 we have increased the stiffness to 3,500 ~ / m  radian. 

The very big seas at this stiffness might have damaged our control 

motors so we leave blanks. 
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In graph 4.3 we re-plot only the surge results but superimpose 

projections to the right column and bottom row. This useful technique 

highlights the changes between each test condition. It looks as though 

surge bending moments are rising rather less rapidly than wave amplitude. 
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I n  graph 4.4 we re -p lo t  t h e  surge  d a t a  bu t  d iv ide  each va lue  

by t h e  measured value of H r m s  f o r  each t e s t .  We found t h a t  us ing  

a d i v i s o r  of H r m s  t o  t h e  power 0.8 produces very c l o s e  matching i n  

t h e  r i g h t  hand column, sugges t ing  t h a t  t h i s  is  t h e  r i g h t  r e l a t i o n s h i p  

between wave amplitude and bending moment f o r  surge  i n  a l l  p a r t s  of  

t h e  sp ine .  
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I n  graph 4.5 we inc rease  s t i f f n e s s  t o  3500 Nm/rad and then f o r  

graph 4.6 we normalise by H r m s  t o  t h e  power 0.8, The same amplitude 

t o  bending moment r u l e  a p p l i e s .  

I n  graphs 4.7 t o  4.10 e x a c t l y  t h e  same procedure is  c a r r i e d  o u t  

f o r  heave b u t  we found t h a t  t h e  b e s t  normal i se r  was H r m s  t o  t h e  first 

power. 
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Having shown t h e  d i s t r i b u t i o n  of  bending moment along t h e  sp ine  

we now want t o  e x t r a c t  t h e  r u l e s  f o r  o t h e r  v a r i a b l e s .  Graph 4.11 

p l o t s  t h e  r o o t  mean square bending moment f o r  a l l  j o i n t s  i n  t h e  model 

f o r  heave and surge a g a i n s t  H r m s  a t  each energy period.  

Heave f a m i l i e s  a r e  very s t r a i g h t ,  confirming t h e  H r m s  t o  t h e  

f i r s t  power r u l e .  Surge values show t h e  H r m s  t o  t h e  power 0.8 e f f e c t .  

Heave per iod  curves a r e  a l l  c l o s e ,  showing t h a t  per iod  is having 

very l i t t l e  e f f e c t .  Surge per iods  a r e  a l s o  f a i r l y  c l o s e  except  f o r  

t h e  s h o r t e s t  per iod  of  0.7 seconds. 

Graph 4.12 shows t h a t  i nc reas ing  t h e  s t i f f n e s s  t o  3500 Nm/radians 

r a i s e s  t h e  s lope  but  no t  by a s  much a s  3.5. I t  a l s o  seems t o  s epa ra t e  

t h e  surge  per iod  curves.  

I n  graph 4.13 we a r e  p l o t t i n g  s i m i l a r  d a t a  but  draw l i n e s  f o r  

each j o i n t .  The s t i f f n e s s  is 1000 Nm/radian. We can s e e  t h e  bunched 

r e s u l t s  f o r  t h e  c e n t r a l  r eg ion ,  two o r  t h r e e  j o i n t s  with h igher  values 

near t h e  end and low ones a t  t he  very end. We must remember t h a t  

heave and surge  j o i n t s  a l t e r n a t e .  

Heave l i n e a r i t y  is evident  even with such s c a t t e r e d  po in t s .  

Surge non- l inear i ty  is a l s o  c l e a r .  

I n  4.14 we r e p e a t  t h e  procedures f o r  an increased  s t i f f n e s s  of  

3500 Nm/radian. Everything is exac t ly  a s  expected. 
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I n  graph 4.15 we e x t r a c t  t h e  maximum value  and t h e  whole sp ine  

averages f o r  heave and surge  f o r  t h e  two s t i f f n e s s e s .  We were su rp r i s ed  

t o  s e e  t h e  heave l i n e s  f o r  two s t i f f n e s s  values i n t e r s e c t i n g  a t  very 

low wave amplitudes.  We p r e f e r  t o  use  da t a  from l a r g e r  samples bu t  

a  s i m i l a r  e f f e c t  is ind ica t ed  f o r  t h e  whole s p i n e  averages and we 

a r e  i n c l i n e d  t o  t r u s t  t h e  r e s u l t .  

The maximum r o o t  mean square surge va lue  i s  more than  twenty 

times t h e  y i e l d  l i m i t  o f  our  1981 reference  design.  The peak 

ins tan taneous  value would have been about t h r e e  t imes t h e  r m s  va lue  

and so  t h e  peak-to-yield r a t i o  would be about s i x t y .  Our preference  

f o r  c o n t r o l l e d  y i e l d  p o i n t s  seems t o  be sound. 

Graph 4.16 shows t h e  r e l a t i o n s h i p  of  bending moment t o  wave period 

f o r  cons t an t  H r m s .  The maximum values  occur i n  t h e  cen t r e  of  t h e  

use fu l  energy-generating band but  t h e  reduct ion  t o  e i t h e r  s i d e  i s  

bare ly  d e t e c t a b l e  except f o r  t h e  very s t i f f e s t  condi t ions .  Energy 

period is t h e  l e a s t  important va r i ab l e .  

GRAPH 4.16rms bending moments (average for all joints) 
against energy period, for Hrms = l.Ocm 



Graph 4.17 shows superimposed simultaneous plots of surge moment 

against heave moment for every joint of a 36 joint model in a 1.0 

sec PM cos2 sea. The joint stiffness was 1,000 Nm/rad. The heave 

data were obtained by taking the average values of the heave moment 

at either of the surge joints. 

This method of deriving a synthetic heave measurement for a notional 

heave sensor at the position of a surge joint is open to some question 

because the correlation coefficient between the two heave joints is 

only 0.8. However we found that the rms value of the synthetic time 

series is on average only 1% lower than the value of the true time 

series. 

The plot allows us to judge the accuracy of our estimate that 

there is about 90° phase shift between the two channels. It is 

interesting to compare this with page 28 of our slamming test report 

(ref L). 

Each dot represents a probability density of 1 in 18,432. 

It is premature to claim that the cost of post-tensioning steel 

and joint power plant can be reduced by as much as 25% because these 

measurements were taken without the torque limit which would have 

occurred at 1.5 Nm. Furthermore we should recall that the narrow 

tank variable coefficient work shows that, in many sea states, the 

required heave stiffness is a little greater than that for surge. 

Nevertheless there are some grounds to hope for savings in capital 

cost. 
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EFFECTS OF VARYING J O I N T  STIFFNESS 

We wanted t o  know: 

a )  How do sp ine  bending moments vary with j o i n t  s t i f f n e s s ?  

b )  Are surge  bending moments independent of heave s t i f f n e s s ?  

c )  Are heave bending moments independent of surge s t i f f n e s s ?  

We used t h e  same Pierson-Moskowitz s e a  throughout wi th  an energy 

period of 1 second, a measured H r m s  of 1.26cm and Mitsuyasu spreading.  

The sp ine  was 18  metres long with 44 a c t i v e  j o i n t s  and 6 moorings. 

We va r i ed  surge  and heave s t i f f n e s s  independently i n  6 s t e p s  between 

250 and 8000 Nm/rad, doubling t h e  value a t  each change. 

Graph 4.20 shows t h e  bas i c  r e s u l t s  with bending moment a r r a y s  f o r  

surge and heave p l o t t e d  toge the r .  Except where otherwise marked, t h e  

top curve i n  each p l o t  is  surge .  The heave a r r a y s  tend t o  be about h a l f  

t he  s i z e  of t h e  surge a r r a y s  f o r  equal surge and heave s t i f f n e s s e s .  

Surge bending moments tend t o  be about 50% higher  near  t h e  ends than 

they a r e  i n  t h e  middle, bu t  i n  heave t h e  r e s u l t s  a r e  more even. 
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Graphs 4.21 and 4.22 show t h e  d a t a  s e p a r a t e l y  i n  surge  and heave 

with t h e  a r r a y s  a l s o  c o l l e c t e d  toge ther  i n t o  ' p r o j e c t i o n s '  a t  t h e  ends 

of rows and t h e  bottoms of  columns. We f i n d  t h i s  a  u s e f u l  way o f  

summarising t h e  e f f e c t s  of  t h e  2  v a r i a b l e s .  Note t h a t  t h e  surge  v e r t i c a l  

s c a l e  is  twice t h e  heave one. 

On t h e  surge  page (graph 4 .21) ,  t h e  r i g h t  hand column of  p r o j e c t i o n s  

summarises t h e  e f f e c t  of varying surge  s t i f f n e s s .  Each doubling of  

s t i f f n e s s  produces an approximately equal  increment i n  t h e  bending 

moment. The row of p r o j e c t i o n s  a t  t h e  bottom shows t h a t  surge s t i f f n e s s  

v a r i a t i o n s  have very l i t t l e  e f f e c t  on heave bending moments. 
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On t h e  heave page, (graph 4.22) t h e  row of p r o j e c t i o n s  a t  t h e  bottom 

again  shows t h a t  heave bending moment increments a r e  about cons t an t  f o r  

doublings of  s t i f f n e s s .  But t h e  column of  p r o j e c t i o n s  a t  t h e  r i g h t  shows 

a l i t t l e  more ' c r o s s t a l k '  than  is v i s i b l e  on t h e  surge  page. A t  low 

heave s t i f f n e s s e s  heave bending moments i n  t h e  middle of t h e  sp ine  tend 

t o  i nc rease  with surge  s t i f f n e s s ,  while a t  high heave s t i f f n e s s e s  

bending moments a t  t h e  ends tend t o  g e t  smal le r .  However t h e  e f f e c t s  

a r e  small  and it is  s a f e  t o  say  t h a t ,  f o r  engineering purposes,  t h e  two 

d i r e c t i o n s  a r e  independent.  We cannot r e l i e v e  t h e  surge  bending moments 

by running away i n  heave. We had hoped t h a t  t h i s  would be poss ib l e  when 

we discovered t h e  death v a l l e y  e f f e c t  ( s e e  page 4.1 of our  4 t h  year  

repor t ,  r e f  b )  . 
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Summary of  E f f e c t s  of  Varying J o i n t  S t i f f n e s s :  graphs 4.23 and 4.24 

Graph 4.23 shows t h e  d a t a  re -p lo t ted  t o  i l l u s t r a t e  t h e  r e l a t i o n s h i p  

between s t i f f n e s s  and bending moment. 

Separa te  curves a r e  drawn i n  surge  and heave f o r :  

1. t h e  r m s  bending f o r  t h e  most h ighly  s t r e s s e d  j o i n t ;  

2. t h e  average of t h e  r m s  bending moment f o r  t h e  middle s i x  j o i n t s ;  

3. t h e  average of t h e  r m s  bending moments of  a l l  t h e  j o i n t s .  

The top  graph has a l i n e a r  ho r i zon ta l  s t i f f n e s s  s c a l e ,  and t h e  

bottom one has a l o g  s c a l e .  

The cu rva tu re s  a t  t h e  l e f t  on t h e  upper p l o t  do n o t  suggest  ze ro  

bending moments f o r  zero appl ied  s t i f f n e s s e s ,  and some r e s i d u a l  r eac t ion  

fo rces  a t  t h e  j o i n t  a r e  c l e a r l y  i nd ica t ed .  The j o i n t  c o n t r o l  system 

( s e e  s e c t i o n  2 )  had a r a t h e r  low c losed  loop-gain of  about 2.7 i n  t h e  

conf igura t ion  used f o r  t h e  lowest  s t i f f n e s s  experiments,  implying t h a t  

t h e  background s t i c t i o n  and damping of t h e  j o i n t s  would only be reduced 

t o  about 40% of  t h e  inhe ren t  va lues .  Since t h e s e  experiments we have 

a l t e r e d  feed  back cu r ren t  va lues  t o  allow more loop-gain a t  very low 

s t i f f n e s s .  

The l o g  p l o t s  a r e  remarkably s t r a i g h t  from 500 Nm/rad upwards. 

However t h e  h igher  s t i f f n e s s  values w i l l  i n  f a c t  be modified by t h e  

inherent  compliance of t h e  sp ine  u n i t s  ( s e e  s e c t i o n  6.E), s o  t h a t  t h e  

bending moment graphs should r e a l l y  be compressed ho r i zon ta l ly  a t  t h e  

r i g h t .  This is done on t h e  next  page. 
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Graph 4.24 shows r m s  bending moments p l o t t e d  a g a i n s t  s t i f f n e s s  

with t h e  nominal s t i f f n e s s  va lues  ' c o r r e c t e d '  u s ing  t h e  va lues  suggested 

i n  t a b l e  6.7 ( s e c t i o n  6.E) .  Upward tendenc ies  a r e  v i s i b l e  i n  t h e  l o g  

p l o t s  f o r  t h e  maximum va lues ,  though t h e  average va lues  f o r  t h e  whole 

sp ine  a r e  f a i r l y  l i n e a r  over t h e  range of  s t i f f n e s s e s  from 1000 t o  5000 

Nm/rad . 

The r e s u l t s  of v a r i a b l e  c o e f f i c i e n t  c o n t r o l  i n  t h e  narrow tank l ead  

us  t o  b e l i e v e  t h a t  t h e  d e s i r a b l e  j o i n t  s t i f f n e s s  w i l l  be much lower than 

we had expected when t h e  model w a s  designed and we do n o t  propose t o  

improve high s t i f f n e s s  performance. 
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4.C EFFECT OF VARYING SEA OFFSET ANGLE AND ENERGY PERIOD 

A l l  p rev ious  t e s t s  used s e a s  wi th  a mean approach angle  o f  90° ,  

i . e .  w e s t e r l i e s  h i t t i n g  a s p i n e  l y i n g  nor th-south .  

I n  t h i s  s e c t i o n  we vary both t h e  approach d i r e c t i o n  and t h e  energy 

per iod .  The amplitude w a s  he ld  t o  t h e  P ie rson  Moskowitz norm f o r  each 

energy per iod .  S t i f f n e s s  was 1000 Nm/rad throughout  and t h e  Mitsuyasu 

spread was used throughout.  The pox-plot f o r  t h e s e  t e s t s  is t h a t  of 

graph 3.4. The r e s u l t s  a r e  given i n  graph 4.30. 

Cen t r a l  approach d i r e c t i o n s  have equal  a m p l i f i c a t i o n s  of  bending 

moments a t  each end as expected from previous work. 

O f f s e t  approach angles  r a i s e  t h e  moments a t  t h e  down-wave end and 

depress  those  a t  t h e  windward end. The r a t i o  approaches 3 : l  f o r  

40 degree o f f s e t .  

When surge  bending moments a r e  normalised by d i v i s i o n  by H r m s  t o  

t h e  power 0.8 we can s e e  on graph 4.31 a f l a t  c e n t r a l  reg ion  f o r  low 

va lues  o f  Te bu t  a t  t h e  l onges t  ones t h e r e  is  a r i s e  with d i s t a n c e  a long  

t h e  sp ine .  

The accumulations p r o j e c t e d  t o  t h e  right-hand column show a very 

n i c e  symmetry,at l e a s t  a s  far a s  a Te of  1 .4  seconds. They a l s o  show 

t h a t  t h e r e  is more bending moment skew a t  longer  Te. 

Graph 4.32 shows t h e  same e f f e c t s  a r e  p re sen t  bu t  l e s s  pronounced 

f o r  normalised heave. 
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4.D EFFECT OF VARYING SEA OFFSET ANGLE AND SPREAD 

I n  t h i s  s e r i e s  we va r i ed  angular  spread ( t h e  va lue  o f  S i n  t h e  toss 
spreading f u n c t i o n )  and angular  o f f s e t ,  keeping energy per iod  cons t an t  

a t  1 second and s t i f f n e s s  cons t an t  a t  100 Nm/rad. The pox-plot is g iven  

i n  graph 3.5. 

It i s  n o t  s u r p r i s i n g  t o  s e e  i n  graph 4.40 t h a t  narrow spreads  

gene ra t e  wide v a r i a t i o n s  of  bending moments f o r  small  o f f s e t  angles  

whereas wide s e a s  wi th  s = 2 show no change with angle .  A spread  of  

s = 2 is a l i t t l e  wider than  Mitsuyasu. The Mitsuyasu func t ion  is more 

t i g h t l y  bunched a t  i ts  c e n t r a l  per iods  and angles  ( s e e  pox-plots 3.4 

and 3 .5 ) .  

It  is  very unusual t o  s e e  t h a t ,  f o r  1 0  degrees  o f f s e t  and t h e  

narrowest  sp read ,  t h e  heave moments a t  one j o i n t  exceed t h e  surge  value.  

The normalised r e s u l t s  on graphs 4.41 and 4.42 show t h a t  heave 

maxima occur  a t  about  10  degrees  of  o f f s e t  whereas surge  maxima 

a r e  a t  20°. 
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GRAPH 4 . 4 2  
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4.E BENDING MOMENTS I N  THE SOUTH UIST SPECTRA 

In  t h i s  s e r i e s  of t e s t s  we use t h e  IOS s e t  o f  46 s p e c t r a  measured 

a t  South U i s t .  (The s e l e c t i o n  procedure is descr ibed i n  s e c t i o n  6.G). 

The surge  and heave bending moments of t h e  46 ' a '  s e t  a r e  shown 

on graph 4.50. Model length  was increased  t o  48 j o i n t s  and t h e  s t i f f n e s s  

was held a t  1000 Nm/radian. It  is  i n t e r e s t i n g  t o  look a t  t h e  normalised 

surge r e s u l t s  i n  graph 4.51 i n  which bending moments a r e  divided by 

measured ~ r m s ~ * ~ -  Compare r e s u l t s  f o r  s e a s  220 and 223 and then  look 

a t  t h e i r  pox-plots on graph 3.6. 

We s e e  l i t t l e  end-enhancement f o r  low spread s e a s ,  f o r  example 201, 

210, 212, and some asymmetrical enhancements p red ic t ab le  from our e a r l i e r  

o f f s e t  t e s t s .  

I n  normalised heave (graph 4 .52 , in  which s c a l e  is doubled) we s e e  

much l e s s  d i f f e r e n c e  between seas .  Look aga in  a t  220 and 223. 

Test  378 shows r e l a t i v e l y  more enhancement than  f o r  t h e  

corresponding surge  r e s u l t .  
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For t h e  next  s e r i e s  of t e s t s  we va r i ed  t h e  t o t a l  model l e n g t h ,  

keeping t h e  46 ' a '  s e t  and 1000 Nm/rad j o i n t  s t i f f n e s s .  

The r e s u l t s  on graph 4.53 a r e  f o r  36 j o i n t s  and on graph 4.54 a r e  

f o r  22 j o i n t s .  For graph 4.55 we use a 22 j o i n t  model swung round t o  

t h e  South ' b t  s e r i e s  of s e a s .  The r e s u l t s  a r e  c l o s e  t o  t h e  ' a t  s e r i e s  

with t h e  except ion of s e a  number 3.78. Relevant pox-plots a r e  graphs 

3.6 and 3.7.  

Graph 4.56 shows t h e  r e s u l t s  of t e s t i n g  22 j o i n t s  i n  t h e  ' d t  s e r i e s  

s e a s .  The mir ror  image r e v e r s a l  f o r  s e a  359 is  b e a u t i f u l l y  shown. There 

is  a wide d i f f e r e n c e  f o r  s e a  223 between graph 4.56 and 4.54. Again 

t h e  pox-plots on 3.9 and 3.6 show why. 

The s e r i e s  of  graphs 4.57 t o  4.61 is an exac t  r e p e a t  of t h e  previous 

group with t h e  s t i f f n e s s  increased  t o  3500 Nm/rad. The shapes of t h e  

a r r ays  a r e  s i m i l a r ,  and t h e  only obvious e f f e c t  of  changing s t i f f n e s s  

is  t o  i nc rease  bending moments i n  a l l  j o i n t s  and i n  a l l  s ea s .  
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4.F EFFECT OF STIFFNESS VARIATIONS IN SOUTH UIST SEAS 

In this series of experiments the 46 'a1 set seas are used on a 

48 joint model with three different stiffness values; 1000, 3500 and 

5000 Nm/rad. 

Graphs 4.70 and 4.71 show the raw data for the three stiffnesses. 

Graphs 4.72 and 4.73 show them normalised by division by Hrms. 

The very small heave bending moments for sea 122 look suspiciously 

jagged when normalised and we suspect a communication fault for the left 

hand half of the spine. 

In general, the relationship of bending moments to stiffness follows 

the approximately logarithmic pattern shown in graph 4.23 of section 

4B, with little change between stiffnesses of 3500 Nm/rad and 

5000 Nm/rad. However, the difference between the down-wave peaks in 

strongly offset seas is greater than expected when the stiffness 

increases from 1000 Nm/rad to 3500 Nm/rad. Sea number 220 is again the 

obvious example. It is reasonable to hope that lower model stiffness 

will reduce the severity of down-wave enhancement. 
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4.G SHAPE OF BENDING MOMENT DISTRIBUTION I N  SOUTH UIST SEAS 

I n  t h i s  s e c t i o n  we a r e  t r y i n g  t o  show t h e  shape o f  t h e  d i s t r i b u t i o n  

o f  bending moment a long t h e  sp ine .  Data from t h e  previous t e s t s  a r e  

s ca l ed  t o  make t h e  maximum va lue  t h e  same f o r  each t e s t .  For example 

i n  graph 4.80 t h e  double hump i n  s e a  223 was u s u a l l y  t o o  small t o  show 

up wel l  even i n  normalised p l o t s .  

We p l o t  su rge  and heave s e p a r a t e l y  f o r  l eng ths  o f  48, 36 and 22 

j o i n t s  wi th  s t i f f n e s s  he ld  cons t an t  a t  1000 Nm/rad. 

Heave r e s u l t s  a r e  g e n e r a l l y  f l a t t e r  t han  su rge  bu t  s e a s  228, 224 

and 378 a r e  except ions  ( s e e  graph 4 .83) .  

We a r e  susp i c ious  of  t h e  first t h r e e  r e s u l t s  on graph 4.83. The 

reduced moment f o r  one j o i n t  i n  s e a  089, which is ad j acen t  t o  r a i s e d  

moments on e i t h e r  s i d e , i s  c h a r a c t e r i s t i c  o f  a loose  model j o i n t  ( s e e  

s e c t i o n  4.M). 

Shortening t h e  model by a f a c t o r  of  two has  removed t h e  asymmetry 

of  223, bu t  i n  gene ra l  shape is  no t  much changed by sho r t en ing  ( s e e  

f o r  example s e a  366) .  

The s h o r t e s t  model was swung round t o  be t e s t e d  i n  t h e  ' b '  and ' d l  

South U i s t  s e a s .  The b igges t  changes a r e  f o r  s e a  346 i n  graph 4.86 and 

223 i n  graphs 4.88 and 4.89. A l l  t h e  o t h e r s  look very  much l i k e  t h e i r  

' a '  s e r i e s  ve r s ions .  

More l eng th  v a r i a t i o n s  a r e  given i n  s e c t i o n  4.K. 

Note t h e  s t r i k i n g  s i m i l a r i t y  of  s e a s  201, 210, 212, 291, 292, 322 

and 336. We s e e  t h a t  t h e r e  a r e  c e n t r a l  moments very  c l o s e  i n  va lue  t o  

end peaks. 

We can a l s o  n o t i c e  t h e  s i m i l a r i t y  o f  t h e  pox-plots i n  graph 3.6. 
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4.H BENDING MOMENTS I N  ANGLED MONOCHROMATIC WAVES 

By t h i s  s t a g e  i n  t h e  t e s t s  it was c l e a r  t o  u s  t h a t  by f a r  t h e  most 

i n t e r e s t i n g  phenomenon w a s  t h e  enhancement of bending moment a t  t h e  down 

wave end of t h e  sp ine .  We formed a  theory t o  exp la in  t h e  e f f e c t  and 

c a r r i e d  ou t  t h e  next  s e r i e s  of  t e s t s  i n  monochromatic waves t o  t e s t  it. 

We were i n t e r e s t e d  i n  c r e s t  l e n g t h ,  c r e s t  angle  and c r e s t  v e l o c i t y  

and we va r i ed  them toge the r  with energy per iod  f o r  two sp ine  s t i f f n e s s e s .  

The r e s u l t s  a r e  dramatic.  Look a t  graph 4.90 f o r  40° c r e s t  angle  and 

1 .6  seconds per iod .  The surge t r a c e  shows growing c y c l i c a l  v a r i a t i o n s  

of bending moment as we move along t h e  sp ine .  The behaviour is  repea ted  

f o r  s h o r t e r  pe r iods  and smal le r  o f f s e t  angles  so  t h a t  a  group of  s i m i l a r  

p l o t s  l i e  on a  diagonal  of t h e  page. The v io lence  of t h e  v a r i a t i o n s  

seems t o  be growing a s  we move t o  longer  per iod  and b igger  o f f s e t s .  

Despi te  t h e  f a c t  t h a t  t h e  s e a s  were nominally t h e  same amplitude 

(1.414 cm) we g e t  bending moment v a r i a t i o n  of a t  l e a s t  20 : l  f o r  t h e  same 

o f f s e t  angle  and even more i f  we change o f f s e t  and per iod .  

In  graphs 4.91 we have normalised t h e  r e s u l t s  by d iv id ing  by t h e  

measured value of  wave amplitude t o  c o r r e c t  f o r  any minor v a r i a t i o n s  

and superimposed rows and columns a t  bottom and r i g h t .  

The heave r e s u l t s  i n  graph 4.92 show s l i g h t l y  l e s s  dramatic changes 

bu t  neve r the l e s s  t h e  e f f e c t  is  c l e a r l y  v i s i b l e  f o r  0.8 second per iod  

and -10 degrees of o f f s e t .  The number of  humps decreases  from 4  t o  2  

a s  t h e  per iod  inc reases .  

A l l  t h e  t e s t s  s o  f a r  descr ibed i n  t h i s  s e c t i o n  were c a r r i e d  ou t  

with a  s t i f f n e s s  of  3500 Nm/rad. When i n  graph 4.93 we c u t  s t i f f n e s s  

t o  1000 Nm/rad we can s e e  t h a t  t h e  enhancement r i d g e  is  moved t o  b igger  

o f f s e t  angles .  Normalisation and superpos i t ion  of  rows and columns i s  

as before.  
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Next, i n  graphs 4.94 t o  4.96, we c a r r i e d  out  a  f r e s h  s e r i e s  of t e s t s  

i n  which t h e  v a r i a b l e  is  c r e s t  l ength .  For a  s i n g l e  wavefront s e a  we 

def ine  c r e s t  l e n g t h  a s  t h e  d i s t ance  a long  t h e  sp ine  between p o i n t s  of  

t h e  same phase. Some sub-graphs a r e  missing because they  would l i e  

ou t s ide  t h e  tank  envelope. Once aga in  we s e e  t h e  same p a t t e r n  of 

p rog res s ive ly  inc reas ing  bending moments a s  we move down-wave along t h e  

sp ine .  The obl ique  r idge  has moved nea r ly  t o  t h e  v e r t i c a l .  The maximum 

surge va lues  a r e  between 5 and 6  metres c r e s t  l eng th ,  independent of 

per iod.  

Surge moments g e t  worse with longer  per iods  bu t  i n  graph 4.96 t h e  

oppos i te  is  t r u e  f o r  heave. Note t h e  sp lendid  e f f e c t  f o r  6  metres a t  

1 .0 second. 
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Our next  v a r i a b l e  is  t h e  v e l o c i t y  of t h e  c r e s t  a s  it moves along 

t h e  sp ine .  Graph 4.97 shows heave and surge superimposed f o r  a s t i f f n e s s  

of 3500 Nm/rad. Peak surge  va lues  a r e  always b igger  than  peak heave 

except  i n  t h e  top  r i g h t  t e s t .  The maximum enhancement f o r  heave occurs  

a t  8m/sec (it might st i l l  have been g e t t i n g  b igge r )  and 0.8 seconds 

whereas t h e  surge  e f f e c t  is  b igges t  a t  4 rn/sec and 1.6 seconds. 

In  graphs 4.98 and 4.99 we s e p a r a t e  heave and surge and superimpose 

rows and columns t o  emphasise t h e  wide range of v a r i a t i o n .  While o n e ' s  

eyes a r e  n a t u r a l l y  drawn t o  t h e  most dramatic  r e s u l t s  we should not  

overlook t h e  8 m/sec 1 .6  s e c  en t ry  on graph 4.98, which has a peak-free 

f l a t  response. This is what a naive expec ta t ion  might have been bu t  

it is extremely r a r e  f o r  long sp ines .  The only o t h e r  examples i n  t h i s  

r e p o r t  a r e  f o r  r a t h e r  s h o r t  l eng ths .  

Next we reduced t h e  s t i f f n e s s  t o  1000 Nm/rad f o r  graphs 4.100 t o  

4.102. Note t h a t  t h e  v e r t i c a l  s c a l e  is a l s o  changed. I n  both surge  

and heave t h e  maximum enhancement has  moved t o  t h e  l e f t ,  i . e .  toward 

slower c r e s t  v e l o c i t i e s ,  and t h e  number of humps has increased  from 4 

t o  5. 
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Our next  v a r i a b l e  was t o  t e s t  c r e s t  v e l o c i t y  a g a i n s t  per iod  f o r  

s h o r t e r  l eng ths  and two s t i f f n e s s e s .  Graph 4.103 f o r  28 j o i n t s  shows 

t h a t  t h e  maximum value of  t h e  peaks is  about t h e  same and occurs  i n  

nea r ly  t h e  same t e s t  condi t ions .  There is only room f o r  2 o r  3 peaks 

but  otherwise t h e  r e s u l t s  a r e  very c l o s e  t o  those  f o r  longer  l eng ths .  

Clear ly  t h e  l eng th  is  not  t h e  cause of t h e  enhancement. The unusual 

zero r i p p l e  surge  r e s u l t  f o r  8m/sec and 1.6 seconds on graph 4.98 does 

no t  occur on 4.104 although t h e r e  a r e  two such r e s u l t s  f o r  heave on 

4.105. 

Cut t ing  t h e  s t i f f n e s s  f o r  t h e  28 j o i n t  sp ine  (graphs 4.106 t o  

4.108) shows t h e  same le f tward  movement of  maximum enhancement and r a t h e r  

l e s s  r i p p l e  i n  surge  f o r  t h e  h igher  v e l o c i t i e s .  V e r t i c a l  s c a l e s  a r e  

changed. 

Cut t ing  t h e  l eng th  even more t o  16  j o i n t s  i n  graphs 4.109 t o  4.111 

f o r  3500 Nm/rad g ives  us  l o t s  of s i n g l e  hump r e s u l t s .  There is  a 

suspic ion  of double humps beginning i n  t h e  top  l e f t  diagonal  of  t h e  

diagram. The maximum value has dropped but  nowhere near  a s  much a s  a 

l eng th  squared r u l e  would p r e d i c t .  Cut t ing  t h e  l eng th  by t h r e e  has 

reduced peak bending moment t o  about two t h i r d s .  However, i f  we average 

t h e  va lues  of t h e  h ighes t  peak of a long sp ine  with i t s  adjacent  t rough 

( (24 + 4.0)  + 2 = 14 Nm on graph 4.98) t h e  r e s u l t  is l e s s  than t h e  

16  Nm peak i n  t h e  c e n t r e  of a s h o r t  sp ine  on graph 4.110. We expect  

t h a t  bending moment enhancement w i l l  be u s e f u l l y  suppressed by t h e  

presence of j o i n t  genera t ion  and t h a t  power-generating j o i n t s  i n  long 

sp ines  w i l l  be s u b j e c t  t o  lower f l u i d  loading than t h e  concre te  of s h o r t  

sp ines .  The presence of ducks w i l l  a l s o  reduce t h e  e f f e c t s .  

Graphs 4.112 t o  4.114 show t h e  16  j o i n t  sp ine  with s t i f f n e s s  reduced 

t o  1,000 Nm/rad. V e r t i c a l  s c a l e s  a r e  changed. I n  surge t h e  a r r ays  a r e  

more o f t e n  doubly humped t h a t  a t  3,500 Nm/rad. I n  heave t h e  peak bending 

moments occur a t  a longer  per iod  and a s h o r t e r  wave v e l o c i t y .  
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4.5 EFFECT OF LENGTH I N  SOUTH UIST SEAS 

In  t h i s  s e c t i o n  we a r e  t r y i n g  t o  i d e n t i f y  t h e  var ious  e f f e c t s  of 

l eng th  changes. Three d i f f e r e n t  l eng ths ,  48, 36 and 22 j o i n t s  a r e  t e s t e d  

i n  t h e  South U i s t  s p e c t r a  a t  two d i f f e r e n t  s t i f f n e s s  va lues .  The s c a l e  

f o r  each sepa ra t e  s e a  is adjus ted  t o  make t h e  maximum moment i n  t h e  

s h o r t e s t  sp ine  equal  t o  u n i t y .  

The r e s u l t s  of l eng th  changes a r e  l e s s  obvious than  f o r  a l l  t h e  

previous v a r i a b l e s  of s t i f f n e s s ,  c res t -angle ,  c r e s t - l eng th ,  

c r e s t -ve loc i ty ,  energy per iod  and wave amplitude. 

In  some c a s e s  i nc reas ing  t h e  l eng th  makes bending moments b igge r ,  

i n  some cases  t h e  oppos i te .  I n  some cases  t h e  in te rmedia te  l eng th  has 

t h e  l a r g e s t  moments. But even i n  s e a  220 t h e  changes a r e  no t  v i o l e n t .  

Seas 280 and 318 (graph 4.123) show a lef t -hand peak f o r  a  s h o r t  sp ine  

and a  right-hand peak f o r  a  long one. 
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The d i f f i c u l t y  of  i n t e r p r e t i n g  t h e  graphs 4.120 t o  4.123 l e d  us  

t o  t r y  r e p l o t t i n g  the  same d a t a  i n  graphs 4.124 and 4.125. Here we use 

t h e  s h o r t e s t  s p i n e  a s  a  r e f e rence  and p l o t  South U i s t  r e s u l t s  f o r  o t h e r  

lengths  i n  terms of t h e i r  r a t i o  t o  t h e  s h o r t e s t .  

Data a r e  s epa ra t ed  i n t o  t h e  maximum s i n g l e  h ighes t  va lue ,  t h e  mean 

of t h e  e n t i r e  sp ine  and t h e  mean of t h e  c e n t r a l  t h r e e .  Each s e a  is shown 

a s  a  s h o r t  dash,  t h e  r o o t  mean square of a l l  t h e  r e s u l t s  as a longer  

one, and t h e  mean of a l l  a s  t h e  longes t  dash. A s  some of s eas  g ive  

i d e n t i c a l  r e s u l t s  wi th in  t h e  p l o t t i n g  r e s o l u t i o n ,  they a r e  repea ted  a s  

sideways histogram blocks. 

No c l e a r  p a t t e r n  emerges. We might have thought t h a t  i nc reas ing  

length  was inc reas ing  bending moment bu t  sometimes t h e  36 j o i n t  model 

has higher  va lues  than  t h e  44 j o i n t  one. While we s e e  low heave r e s u l t s  

f o r  both longer  lengths  i n  graph 4.124 we f i n d  t h e  oppos i te  when 

s t i f f n e s s  is  reduced i n  graph 4.125. The only c e r t a i n  conclusion is  

t h a t  t h e  length  squared and l eng th  cubed t h e o r i e s  a r e  i n c o r r e c t  f o r  t hese  

lengths  and s t i f f n e s s  va lues .  
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effect of LENGTH on Bending Moments 
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4.K EFFECT OF LENGTH I N  ANGLED MONOCHROMATIC SEAS 

I n  t h i s  s e c t i o n  we cont inue  t h e  s ea rch  f o r  a  theory  f o r  length-  

e f f e c t s .  We use  monochromatic wavefronts ,  varying both c r e s t  v e l o c i t y  

and per iod  f o r  two s t i f f n e s s  va lues  and f o r  t h r e e  s p i n e  l eng ths .  The 

s h o r t e s t  sp ine  l eng th  is  p l o t t e d  more heav i ly  t o  a s s i s t  i d e n t i f i c a t i o n .  

'Telegraph-poles '  a r e  added t o  mark t h e  maximum va lues .  

Resu l t s  a r e  a  l i t t l e  c l e a r e r  than  f o r  t h e  South U i s t  s ea s .  For 

surge  a t  3500 Nm/rad i n  4.130 it looks a s  though t h e  longer  l eng th  sp ine  

r e s u l t s  a r e  p ivo ted  about t h e  maximum o f  t h e  s h o r t  one. Only f o r  8  m/sec 

and 0.8 seconds i s  t h e r e  a  dramatic  enhancement f o r  a l l  t h e  l eng th  o f  

t h e  longer  s p i n e s .  This is accompanied by a  g r e a t  r educ t ion  a t  t h e  

bottom o f  t h e  8  m/sec column. The o v e r a l l  enhancement e f f e c t s  vanish 

f o r  t h e  lower s t i f f n e s s  i n  graph 4.132, which shows p ivo t ing  n e a r l y  

everywhere. I n  heave on graphs 4.131 and 4.133 t h e  p a t t e r n  is  s i m i l a r .  

Corresponding histograms a r e  given on graphs 4.134 and 4.135. 

Rat ios  up t o  3 .5  a r e  ev iden t  bu t  t h e r e  a r e  a l s o  some depress ions .  I n  

graph 4.134 t h e  c e n t r a l  j o i n t s  a r e  a s  low a s  0.35 o f  t h e  s h o r t e s t  sp ine .  
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effect  of LENGTH on Bendinq Moments 
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Monochromatic sea set: MO1c' 

SURGE HEAVE 

MAXIMUM -single - highest value (near end) 

B E N D I N G  M O M E N T  R A T I O  B E N D I N G  M O M E N T  R A T I O  
A G A I N S T  S P I N E  L E N G T H  I A G A I N S T  S P I N E  L E N G T H  

I - rms 
3.0 - mean 
2 .5  

2.0 

1.5 

1.0 ------------++---- 
0.5  

0.0 , 
0 10 20 30 40 50 60 

Bend i ng 
Moment 3.0 
ratio 

2.5 

2.0 

I .5  

1.0 

0 .5  

0 . 0 .  

RMS - of ALL ioints 

3 . 5 ' . 1 . 1 . 1 . t . . q  
- rms - mean !I 

> 

------------x------ 

I . I . I . I . 1 . I  

2 

1 .o:-------------x------- 
0.5  

0 . 0 .  . , . , . , . , . , . . 
0 10 20 30 40 50 60 

Number of J o b  
L 
0 $ 10 15 20 

0 10 20 30 40 50 60 0 10 20 30 40 50 60 

Length (metres) 

RMS - of MIDDLE 3 joints O~~,UJS,H OZ,O~,OBMO~C.M 

STIFFNESS 350OA Nm/rad 
GRAPH 4 . 1 3 4  
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4.L EFFECT OF MOORING MODIFICATIONS 

If t h e  s a f e t y  o f  an i n s t a l l a t i o n  depends on t h e  i n t e g r i t y  o f  i ts  

moorings t h e r e  must be s t r i n g e n t  r u l e s  about i n spec t ion .  We wanted t o  

f i n d  ou t  whether bending moments would be changed by t h e  l o s s  of  

moorings. 

We measured bending moments i n  t h e  46 South U i s t  s e a s  f o r  t h e  normal 

5 mooring l a y o u t ,  and then moved t h e  number 2 mooring t o  a p o s i t i o n  

between numbers 4 and 5 ,  as shown i n  graph 4.140, f o r  a r e p e a t  t e s t .  

The r e s u l t s  f o r  heave and surge  before  and a f t e r  t h e  changes a r e  super- 

imposed. I n  many cases  they  a r e  wi th in  t h e  l i n e  t h i cknes s  o f  t h e  p l o t t e r  

pen. The b igges t  d i f f e r e n c e  occurs  when l o s t  moorings a r e  a t  t h e  down- 

wave end of  t h e  sp ine .  Compare, f o r  example, s e a  numbers 378 and 220. 

We su f f e r ed  a mul t ip lex  f a i l u r e  f o r  s e a  numbers 112 and 377. 

The d a t a  a r e  r e p l o t t e d  i n  graphs 4.141 and 4.142 s e p a r a t e l y  f o r  

heave and surge  wi th  s c a l e  changes t o  make maximum va lues  a l l  t h e  same. 

This a l lows shape comparisons t o  be made more e a s i l y .  Surge behaviour 

looks more r e p e a t a b l e  a f t e r  a mooring change than does heave. 

A s  t h e  first cond i t i on  i t s e l f  represen ted  only 25% o f  t h e  planned 

mooring d e n s i t y ,  we can be conf ident  t h a t  t o l e r a n c e  t o  t h e  l o s s  o f  

moorings i s  very high.  While we must r e p e a t  t h e  t e s t s  when ducks a r e  

mounted on t h e  s p i n e  it would seem t h a t  l e av ing  moorings t o  f a i l  and 

r ep l ac ing  them t h e  fo l lowing  summer could wel l  be t h e  b e s t  maintenance 

po l i cy  d e s p i t e  i t s  h e r e t i c a l  imp l i ca t i ons .  
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4.M EFFECT OF BROKEN JOINTS 

I n  graph 4.150 we show t h e  e f f e c t  of  an acc iden ta ly  cracked f i n g e r  

clamp. (These were designed t o  s a c r i f i c e  themselves before  damage t o  

t h e  i n s i d e  of  t h e  s p i n e . )  The j o i n t  w a s  s t i l l  a b l e  t o  pas s  shea r  f o r c e s .  

Both heave and surge  moments a r e  reduced a t  t h e  break and e l eva t ed  t o  

e i t h e r  s i d e .  The model i s  behaving l i k e  a p a i r  of  s h o r t e r  s t r i n g s .  

r m s  
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GRAPH 4.150 E f f e c t  o f  a broken s u r g e  j o i n t  
on measured bending moments 



5.A CUMULATIVE JOINT ANGLES 

We define cumulative joint angle as the total travel of a joint 

during a given period. It is a useful number to know if you are 

designing full-scale spine joints for long maintenance-free periods at 

sea. Values are calculated from the spine tacho-generator velocity 

signals, by integrating their moduli. They are surprisingly low. 

Each test lasted 51.2 seconds. For a scale of 107.7 the degrees- 

per-test result should be multiplied by the numbers shown below to give 

values for total angular excursion over longer periods. (Angles remain 

the same at all scales.) 

t i m e  

1 hour 

1 day 

1 year 

25 years 

The data are plotted separately in surge and heave. The spine has 

40 joints, and the cumulative angle at each joint is shown as a short 

bar. The range of values along the spine is clearly shown. In graph 

5.1 joint stiffness was varied in four steps from 500 to 5000 Nm/rad. 

Energy Period and wave amplitude were kept constant. We see that angles 

rise with the inverse root of stiffness. Heave angles are about half 

the size of surge angles. 

In seas equivalent to our 1 second Pierson-Moskowitz with 

Hrms = 1.46111 and Te = 10.4 seconds, a central surge joint with stiffness 

equivalent to 1000 Nm/rad would be moving through 50 degrees per test. 

Although this is a very rough sea (power = 173 kW/m, about three times 

our power limit) the full scale joint would only be moving at 0.94 

revolutions per hour. It is likely that attempts to make more use of 

the power-generating capacity of joints will produce much larger values 

of cumulative angle. But we can go a long way in this direction before 

wear becomes a problem. 
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I n  graph 5.2 t h e  s e a  amplitude m u l t i p l i e r  was r a i s e d  i n  5  s t e p s  

from 0.25 t o  2.0.  Energy pe r iod  was kept  cons t an t  a t  1 .0  s ec .  S t i f f n e s s  

was kept  cons t an t  a t  1000 Nm/rad. 

We s e e  t h a t  surge  angles  a r e  r i s i n g  l i n e a r l y  with H r m s  except  f o r  

t h e  b igges t  ones.  The t r ends  f o r  t h e s e  remind us  of  t h e  0.8 power r u l e  

( s e c t i o n  4 . A ) .  Heave angles  r i s e  very s l i g h t l y  f a s t e r  than  t h e  first 

power of  amplitude. 

I n  Graph 5.3 we va r i ed  energy per iod  by s i x  s t e p s  from 0.7 t o  1 . 5  

seconds while wave amplitude and s t i f f n e s s  were kept  cons t an t .  Both 

heave and surge  angles  r i s e  r a p i d l y  between 0.7 and 0.9 seconds with 

another  r i s e  from 1 . 3  t o  1 .5  seconds. Heave angles  a r e  about  h a l f  t h e  

s i z e  of  corresponding surge  ones except  a t  1 . 5  seconds where they  r i s e  

t o  about two-thirds .  
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5.B MAXIMUM J O I N T  ANGLE I N  FREAK WAVE 

Graph 5.4 shows a t ime s e r i e s  from a s p i n e  su rge  j o i n t  dur ing  t h e  

passage of  an extreme wave. This  was t h e  l a r g e s t  angular  excursion of  

a l l  j o i n t s .  

The s e a  was a s tandard  Pierson-Moskowitz spectrum wi th  1 .0  second 

energy per iod  and Mitsuyasu spread.  We arranged t h e  s t a r t i n g  phases 

such t h a t  c r e s t s  i n  each of  t h e  75 component wavefronts would occur  a t  

t h e  same p l ace  and time. We chose t h e  p l ace  t o  be a t  t h e  j o i n t  which 

s u f f e r e d  t h e  b i g g e s t  bending moment i n  normal 1 second Pierson-Moskowitz 

s e a s .  

We inc reased  t h e  wavemaker d r i v e  vo l t age  t o  g i v e  a well-defined 

plunging breaker .  This command s i g n a l  had an r m s  va lue  f o u r  t imes t h e  

Pierson-Moskowitz norm. 

The r e s u l t i n g  wave (used t o  s i n k  model t r a w l e r s  dur ing  tank  

demonstrat ions)  is o u t s i d e  t h e  range of  our  wave gauges. We t h e r e f o r e  

took a video f i l m  of  t h e  wave h i t t i n g  a metre-s t ick and by use  of  a 

s i n g l e  frame playback judged its trough-to-crest  he igh t  t o  be 32 cm. 

A t  f u l l  s c a l e  t h i s  would be equ iva l en t  t o  34.5 metres - about t h e  50 

year  extreme f o r  S t a t i o n  I n d i a  and wel l  above anything expected a t  South 

U i s t .  

J o i n t  angle  r eco rds  were i d e n t i c a l  r e g a r d l e s s  of  whether we were 

t r y i n g  t o  make t h e  sp ine  a s  compliant o r  a s  stiff a s  pos s ib l e .  

The t ime-ser ies  was produced by t ak ing  t h e  i n t e g r a l  of  t h e  j o i n t  

angular  v e l o c i t y .  The maximum value of 4.01° is j u s t  a f r a c t i o n  l e s s  

than t h e  maximum design angle  o f  t h e  j o i n t ,  4.2O, bu t  t h e r e  is no 

evidence of  c l i p p i n g  i n  t h e  ang le  waveform. 

We conclude t h a t  t h e  212O j o i n t  angle  es t imated  f o r  t h e  p re sen t  

r e f e r ence  des ign  provides  a generous allowance. 
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6.A WAVELENGTHS 

Tables 6.1 and 6.2 compare deep water wavelengths with the 

wavelengths in the narrow and wide tanks, for a number of frequencies 

and periods. 

Graph 6.1 shows the ratio of shallow-water wavelength to deep-water 

wavelength for both tanks. 

The expression for wavelength L of small amplitude waves as a 

function of period is: 

9T2 2 n d  
= - tanh (T) 
2n 

and as a function of frequency: 

9 m 
- - 2  tanh ( L )  
- 2xf 

where : g = gravitational acceleration = 9.81 m/s2 

d = water depth (metres) 

T = period (sec) 

f = frequency (hertz) 

L appears on both sides of the equations, and it is usually found 

by an iterative process starting by inserting the deep water value 

on the right. 

In both tanks the effect of the tanh correction drops to less 

than one part in a thousand at 1.3 hertz and above. 



W I D E  B NflRROW TANK 

W R V E L E b I G T H  R A T I O  

WAVELENGTH 
RATIO 1 1 - 

1 - 0  --------- -------- 

deep wide narrow 
period. water tank tank 

( set ) (1.2m) (0.6m) 

0.4 
0.5 rE471--, 
0.6 0.562 0.562 0.562 
0.7 0.766 0.766 0.765 
0.8 1.000 1.000 0.999 
0.9 1.265 1.265 1.259 
1 .O  1.562 1.562 1.539 

1 .I 1.890 1.889 1.830 
1.2 2.250 2.244 2.124 
1.3 2.640 2.623 2.417 
1.4 3.062 3.021 2.706 
1.5 3.515 3.430 2.992 

1.6 3.999 3.844 3.273 
1.7 4.515 4.260 3.550 
1.8 5.062 4.675 3.824 
1.9 5.640 5.086 4.095 
2.0 6.249 5.494 4.363- 

1 

I 
I 

1 
I 

1 
1 

Table 6.1: WAVELENGTHS against FREQUENCY Table 6.2: WAVELENGTHS against PERIOD 

t deep wlde narrow 
frequency water tank tank 

(hz ) 
t 

0.5 

0.6 
0.7 
0.8 
0.9 
1.0 

1 .I 
1.2 
1 .3  
1.4 
1 .5  

1.6 
1.7 
1.8 
1.9 
2.0 

2.1 
2.2 
2.3 
2.4 
2.5 

(1.2m) (0.6m) 

6.249 5.494 4.363 

4.340 4.122 3.458 
3.188 3.137 2.788 
2.441 2.431 2.271 
1.929 1.927 1.863 
1.562 1.562 1.539 

1.291 1.291 1.284 
1.085 1.085 1.083 
0.924 0.924 0.924 

I-, 0.797 -1 
0.694 

0.610 
0.541 
0.482 
0.433 
0.391 

0.354 
0.323 
0.295 
0.271 
0.250 

i 



6 . B  POWER RATIO 

T h i s  is  t h e  r a t i o  o f  t h e  power of a  r e g u l a r  wave i n  water  of 

f i n i t e  d e p t h ,  t o  t h e  power i n  a  wave o f  t h e  same h e i g h t  and p e r i o d  

t r a v e l l i n g  i n  water  o f  i n f i n i t e  dep th .  

The energy  E ,  i n  a  r e g u l a r  wave o f  u n i t  w i d t h ,  b u t  one wavelength 

l o n g ,  can be w r i t t e n  a s  ( r e f  g ,  p 2 1 ) :  

where: is  wate r  d e n s i t y  

g i s  g r a v i t a t i o n a l  a c c e i e r a t i o n  

H r m s  is r o o t  mean s q u a r e  wave h e i g h t  

L i s  wavelength 

The power d e n s i t y  P can  be c a l c u l a t e d  by d i v i d i n g  t h e  energy 

by t h e  t ime  t a k e n  f o r  it t o  c r o s s  a l i n e  p e r p e n d i c u l a r  t o  i ts d i r e c t i o n  

of  t r a v e l .  I f  t h e  energy t r a v e l l e d  a t  t h e  phase  v e l o c i t y  ( t h e  v i s u a l l y  

a p p a r e n t  speed o f  t h e  t r o u g h s  and c r e s t s )  t h i s  t ime i n t e r v a l  would 

be t h e  wave p e r i o d  T ,  b u t  i n  f a c t  i t  t r a v e l s  more s lowly  a t  t h e  group 

v e l o c i t y .  Denot ing t h e  r a t i o  o f  group t o  phase  v e l o c i t i e s  a s  n, power 

d e n s i t y  can be w r i t t e n  a s :  

Combining (1) and ( 2 ) :  P = 
n L e 3 14'R.s 

T 

Both t h e  v e l o c i t y  r a t i o  n ,  and t h e  wavelength  L a r e  f u n c t i o n s  o f  wa te r  

d e p t h  : 

d i s  wate r  d e p t h  

z 
L = 3T - pwk 2TTd ( s e e  s e c t i o n  6.A) - 

2 lT L 

The v a l u e  o f  n i n c r e a s e s  from 0 . 5  i n  deep w a t e r  t o  1 i n  v e r y  

s h a l l o w  w a t e r ,  whi le  L g e t s  s h o r t e r  a s  d e p t h  d e c r e a s e s .  The combined 

e f f e c t s  o f  t h e s e  v a r i a t i o n s  causes  t h e  power r a t i o  t o  v a r y  w i t h  wave 

f requency  a s  shown i n  Graph 6.2 f o r  t h e  narrow and wide t a n k s ,  and 

Tab les  6 . 3  and 6 .4  l i s t  v a l u e s  f o r  some s e l e c t e d  f r e q u e n c i e s  and p e r i o d s .  

The t a n k  t r a n s f e r  f u n c t i o n  t a k e s  bo th  e f f e c t s  i n t o  accoun t  b u t  can 

be r e p l a c e d  by an ' a m p l i t u d e  p r i o r i t y '  one f o r  over- topping exper iments .  
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Table 6.3 : POLTER RATIO/FREQUENCY Table 6.4: POWER RATIO/PERIOD 

v 

wide narrow 
period tank tank 
( sec (1.2m) (0.6m) 

I 

1.191 1.141 

1.129 1.195 
1.061 1.193 
1.021 1.154 
1.005 1.102 
1.001 1.057 

1 .OOO 1.027 
1.000 1.011 
1.000 1.004 
1 .OOO 1.001 
1.000 1.000 

0.5 

0.6 
0.7 
0.8 
0.9 
1 .O 

1 .I 
1.2 
1.3 
1.4 
1.5 

1.6 
1.7 
1.8 
1.9 
2.0 

1.000 1.000 

1 .OOO 1 .OOO 
1 .OOO 1.001 
1 .OOO 1.007 
1.000 1.025 
1.001 1.057 

1.005 1.098 
1.014 1.137 
1.030 1.168 
1.053 1.189 
1.081 1.198 

1.110 1.199 
1.138 1.192 
1.161 1.179 
1.178 1.161 
1.191 1.141 



6.C CREST-LENGTHS 

For a regular wave, crest-length is the distance between crests 

along a line parallel to the wavemakers. 

rz ~n A 
where L is the wavelength = ?- bm ' (, ) 

2-K 
a is the angle that the wavefront makes 

with the wavemakers. 

Tables 6.5 and 6.6 list crest-lengths against frequency and period, 

for a number of wave angles. The values in the 90 degree columns 

are of course the same as the wavelengths. These tables avoid the 

need for the unpleasant iterative solution of the TANH equation. 

They allow for the tank depth of 1.2 metres but do not take larger 

amplitude effects into account. These become significant for breaking 

waves. We have not yet thought of a way to incoporate amplitude effects 

into the tank transfer function. 



for  wide tank  (depth: 1.2m) 

Table 6.5 WST-LENGTHS (metres) against FREQUENCY 

frequency 
(hz 

0.5 

0.6 
0.7 
0.8 
0.9 
1 .O 

1 .I 
1.2 
1.3 
1.4 
1.5 

1.6 
1.7 
1.8 
1.9 
2.0 

2.1 
2.2 
2.3 
2.4 
2.5 

a n g l e  ( d e g r e e s )  
5 10 1 5  20 25 30 35 40 45 50 55 60 65 70 75 80 85 

63.05 31.65 21.23 16.07 13.00 10.99 9.58 8.55 7.77 7.17 6.71 6.35 6.06 5.85 5.69 5.58 5.52 

47 .3023 .7415 .9312 .05  9.75 8.24 7.19 6.41 5.83 5.38 5.03 4.76 4.55 4.39 4.27 4.19 4.14 
36 .0018.0712.12  9.17 7.42 6.27 5.47 4.88 4.44 4.10 3.83 3.62 3.46 3.34 3.25 3.19 3.15 
27.9014.00 9.40 7.11 5.75 4.86 4.24 3.78 3.44 3.17 2.97 2.81 2.68 2.59 2.52 2.47 2.44 
22.1211.10 7.45 5.64 4.56 3.86 3.36 3.00 2.73 2.52 2.35 2.23 2.13 2.05 2.00 1.96 1.93 

90 

5.49 

4.12 
3.14 
2.43 
1.93 

17.93 9.00 6.04 4.57 3.70 3.12 2.72 2.43 2.21 2.04 1.91 1.80 1.72 1.66 1.62 1.59 1.57 i1 .56  

14.82 7.44 4.99 3.78 3.06 2.58 2.25 2.01 1.83 1.69 1.58 1.49 1.42 1.37 1.34 1.31 1.30 
12.45 6.25 4.19 3.17 2.57 2.17 1.89 1.69 1.53 1.42 1.32 1.25 1.20 1.15 1.12 1.10 1.09 
10.61 5.32 3.57 2.70 2.19 1.85 1.61 1.44 1.31 1.21 1.13 1.07 1.02 0.98 0.96 0.94 0.93 

9.15 4.59 3.08 2.33 1.89 1.59 1.39 1.24 1.13 1.04 0.97 0.92 0.88 0.85 0.83 0.81 0.80 

1.29 
1.08 
0.92 
0.80 

7.97 4.00 2.68 2.03 1.64 1.39 1.21 1.08 0.98 0.91 0.85 0.80 0.77 0.74 0.72 0.71 0.70 10.69 

7.00 3.52 2.36 1.78 1.44 1.22 1.06 0.95 0.86 0.80 0.75 0.70 0.67 0.65 0.63 0.62 0.61 1 0.61 
6.20 3.11 2.09 1.58 1.28 1.08 0.94 0.84 0.76 0.71 0.66 0.62 0.60 0.58 0.56 0.55 0.54 
5.53 2.78 1.86 1.41 1.14 0.96 0.84 0.75 0.68 0.63 0.59 0.56 0.53 0.51 0.50 0.49 0.48 
4.97 2.49 1.67 1.27 1.02 0.87 0.75 0.67 0.61 0.57 0.53 0.50 0.48 0.46 0.45 0.44 0.43 
4.48 2.25 1.51 1.14 0.92 0.78 0.68 0.61 0.55 0.51 0.48 0.45 0.43 0.42 0.40 0.40 0.39 

4.07 2.04 1.37 1.04 0.84 0.71 0.62 0.55 0.50 0.46 0.43 0.41 0.39 0.38 0.37 0.36 0.36 
3.70 1.86 1.25 0.94 0.76 0.65 0.56 0.50 0.46 0.42 0.39 0.37 0.36 0.34 0.33 0.33 0.32 
3.39 1.70 1.14 0.86 0.70 0.59 0.51 0.46 0.42 0.39 0.36 0.34 0.33 0.31 0.31 0.30 0.30 
3.11 1.56 1.05 0.79 0.64 0.54 0.47 0.42 0.38 0.35 0.33 0.31 0.30 0.29 0.28 0.28 0.27 
2.87 1.44 0.97 0.73 0.59 0.50 0.44 0.39 0.35 0.33 0.31 0.29 0.28 0.27 0.26 0.25 0.25 

0.54 
0.48 
0.43 
0.39 

0.35 
0.32 
0.30 
0.27 
0.25 



period 
( set 

- -- - - - - 

a n g l e  ( d e g r e e s )  
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 

44.12 22.14 14.86 11.24 9.10 7.69 6.70 5.98 5.44 5.02 4.69 4.44 4.24 4.09 3.98 3.90 3.86 
48.89 24.54 16.46 12.46 10.08 8.52 7.43 6.63 6.03 5.56 5.20 4.92 4.70 4.53 4.41 4.33 4.28 
53.6526.9318.0713.6711.06 9.35 8.15 7.27 6.61 6.10 5.71 5.40 5.16 4.98 4.84 4.75 4.69 
58.37 29.30 19.66 14.87 12.04 10.17 8.87 7.91 7.19 6.64 6.21 5.87 5.61 5.41 5.27 5.17 5.11 
63.05 31.65 21.23 16.07 13.00 10.99 9.58 8.55 7.77 7.17 6.71 6.35 6.06 5.85 5.69 5.58 5.52 

f o r  wide tank (depth: 

Table 6.6 CREST-LENGTHS (metres) against PERIOD 



6.D TANK LIMITS 

Sea s t a t e s  i n  t h e  wide tank a r e  composed of up t o  75 s e p a r a t e  

wave f r o n t s .  Each is defined by an amplitude, a f requency,  an ang le ,  

and a s t a r t i n g  phase. 

The range of u se fu l  angles  is l i m i t e d  by t h e  p i t c h  of i nd iv idua l  

wave makers. 

Angles a r e  produced by ar ranging  a cons tan t  phase d i f f e r e n c e ,  

9 between t h e  command s i g n a l s  t o  each wavemaker. 

where P is  t h e  p i t c h  of  t h e  wavemaker 

L is  t h e  wavelength co r r ec t ed  f o r  shal low water e f f e c t s  

a is  t h e  r equ i r ed  wavefront angle  

Inve r se ly ,  phase d i f f e r e n c e  d produces angle  a: 

Phase d i f f e r e n c e  f ~ $  between wavemaker n and wavemaker n + 1, 
I 

impl ies  phase d i f f e r e n c e  d = (2r- d )  between wavemaker n and wavemaker 

n - 1. This may r e s u l t  i n  a second wave a t  angle  a' i f  t h e  expression 
I 

i n  bracke ts  above is  l e s s  than o r  equal t o  1 when / is  rep laced  by $. 

This is  shown i n  graph 6.3. Lines of cons t an t  wave angle a r e  

p l o t t e d  a g a i n s t  wave making frequency and phase d i f f e r ence .  Normal 

tank ope ra t ion  corresponds t o  t h e  2 t runca ted  t r i a n g u l a r  a r e a s  a t  

top and bottom, where only one wavefront is  poss ib l e .  The a r e a  where 
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GRAPH 6 .3 .  The w i d e  tank angular envelope. 



secondary wave f r o n t s  w i l l  occur  i s  t o  t h e  r i g h t  where a n g l e  l i n e s  

i n t e r s e c t .  A t  f r e q u e n c i e s  above 2.26 h e r t z , w h e r e  t h e  wavemaker p i t c h  

is e q u a l  t o  o r  g r e a t e r  t h a n  wave l e n g t h ,  secondary f r o n t s  a r e  i n e v i t a b l e ,  

whatever t h e  ang le .  Phase d i f f e r e n c e s  and f r e q u e n c i e s  i n  t h e  whi te  

a r e a  produce l o t s  o f  movement a t  t h e  wavemakers b u t  l i t t l e  i n  t h e  

t a n k .  The waves a r e  t r y i n g  t o  go backwards ' i n t o  t h e  c a r - p a r k ' .  

Phase d i f f e r e n c e s  # and 6 '  a r e  o f  course  t h e  same a s  

F i g  6 . 4  shows t h e  a r e a s  where t h e s e  ' g h o s t s '  w i l l  appear  i n  t h e  t a n k .  

Graph 6 . 5  shows how we could  make t h e  t a n k  b e t t e r  o r  worse by 

changing t h e  p i t c h  o f  t h e  wavemakers from t h e  p r e s e n t  12". Very narrow 

wavemakers p r e s e n t  a  s e v e r e  h inge  d e s i g n  problem. 
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GRAPH 6.4: Wide Tank angular envelope - extended 
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Pitch: 6" 

Pitch: 3" 

GRAPH 6.5 
Angular envelope 
for 4 different 
wavemaker pitches 
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6.E INHERENT J O I N T  STIFFNESS 

The s p i n e  model is designed s o  t h a t  bending f o r c e s  a r e  opposed 

by a motor dr iven  arm. There a r e  a l s o  small  t o r s i o n  sp r ings  with 

s t i f f n e s s  of  15NM/rad a t  each j o i n t  t o  provide mean r e fe rence  p o s i t i o n s  

f o r  t h e  j o i n t s .  

In  a d d i t i o n  t o  t h e s e  known compliances, t h e  mechanical components 

of t h e  sp ine  u n i t s  d e f l e c t  under t he  a c t i o n  of  t h e  t r ansmi t t ed  f o r c e s ,  

such t h a t  t h e  angular  d e f l e c t i o n s  of  t h e  j o i n t s  may be a l i t t l e  g r e a t e r  

than  ind ica t ed  by t h e  i n t e g r a t e d  angular  v e l o c i t y  s i g n a l s  from t h e  

tacho-generators.  We measured t h e  combined s t i f f n e s s  c h a r a c t e r i s t i c s  

of 5  j o i n t s  and t h e  r e s u l t s  a r e  shown i n  graph 6.6. 

We used a  metal-working l a t h e  t o  provide a  r i g i d  r e f e rence  frame. 

The a c t i v e  j o i n t  was gr ipped by t h e  chuck, and a  con ica l  cen t r e  a t tached  

t o  t h e  t a i l  s t ock  provided a  shear  r e a c t i o n  a t  t h e  pas s ive  end without 

e x e r t i n g  any a d d i t i o n a l  torque.  

With s i n u s o i d a l  command s i g n a l s  app l i ed ,  t h e  f o r c e  feedback c i r c u i t  

drove t h e  j o i n t  motor back and f o r t h  through whatever angle  was requi red  

t o  match and cancel  t h e  command torque.  A s  t h e  ends were he ld  r i g i d l y  

by t h e  l a t h e ,  t h i s  angular  movement was e n t i r e l y  a  func t ion  of  t h e  

inhe ren t  compliance of  t h e  sp ine  components. 

We recorded bending moments a t  t h e  s t r a i n  gauges and divided 

them by angular  d e f l e c t i o n s  ca l cu la t ed  from t h e  i n t e g r a l  o f  t h e  tacho 

v e l o c i t y  s i g n a l s .  The graph shows these  der ived  s t i f f n e s s e s  p l o t t e d  

aga ins t  t h e  bending moments. 

The curves f o r  a l l  sp ines  a r e  s i m i l a r .  The inhe ren t  s t i f f n e s s  

i nc reases  wi th  appl ied  torque and then f l a t t e n s  ou t .  The most obvious 

source of t h e  non-linear p a r t  of t h e  c h a r a c t e r i s t i c  is  t h e  toothed 

d r ive  b e l t s .  They a r e  made with s t e e l  r e i n f o r c i n g  bands encased i n  

polyurethane. 



Inherent Stiffness of Spine Joints 
as a function of Bending Moment 
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GRAPH 6.6: Joint inherent stiffness against applied torque 
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TABLE 6.7 Approximate asymptotic net s t i f fness  of joints  and estimated 
bending momnt multipliers,  against nominal s t i f fnesses .  

- - --.  

Nominal Stiffness 
Net Stiffness 

Moment Multiplier 

- 

- 

5 - 

250 500 1000 2000 3500 4000 5000 8000 (Nm/rad) 
245 485 930 1750 2800 3100 3700 5100 (Nm/rad) 

1 .OO 1.00 1.01 1.08 1.12 1 .I4 1 .I7 1 .I7 

- 

0 1 - - . - 1 - - - - 1 . - . .  

0 5 10 15 20 



The inherent stiffness is in series with the 'electronic' joint 

stiffness and so the net stiffness is calculated using the reciprocal 

of the sum of the reciprocals of the separate values. 

In practice it is not easy to adjust single rms bending moment 

values for the effect of inherent stiffness, because it varies throughout 

the original time series, depending on the instantaneous forces. 

The actual joint stiffness will always be lower than desired, but 

the effect will be worse for higher nominal stiffnesses. We were 

relieved when narrow tank results showed that required stiffness values 

were going to be at the bottom end of the range. 

Table 6.7 shows the effect of adding the average asymptotic value 

of 14,000 Nm/rad suggested by graph 6.6 to various nominal stiffnesses 

and lists estimated correction multipliers for bending moments. 



6.F TIME SERIES AND HISTOGRAMS 

a )  Mixed Seas 

Most o f  t h e  d a t a  i n  t h i s  r e p o r t  a r e  presented  a s  a r r a y s  of  r o o t  

mean square ( r m s )  va lues ,  each of t hese  numbers i t s e l f  being a func t ion  

of a complete t ime s e r i e s .  

Using r m s  va lues  reduces t h e  amount of d a t a  t h a t  we have t o  d i sp l ay  

and s t o r e ,  t y p i c a l l y  by a f a c t o r  of  1024. This  was necessary before  

we i n s t a l l e d  t ape  handl ing equipment f o r  bulk d a t a  s to rage .  The use  

of r m s  va lues  impl ies  t h e  assumption of  a shape of t h e  d i s t r i b u t i o n  

of t h e  measurements. Graphs 6.7 and 6.8 show compressed Bending Moment 

time s e r i e s  i n  Surge and Heave f o r  each j o i n t  i n  a sp ine  o f  35 j o i n t s .  

Histograms der ived  from t h e  time s e r i e s  a r e  drawn a t  t h e  bottom o f  

t h e  pages a s  s e t s  of  v e r t i c a l  l i n e s .  A normal d i s t r i b u t i o n  curve 

with a s tandard  dev ia t ion  equal t o  t h e  r m s  va lue  of  t h e  time s e r i e s  

is p l o t t e d  over each histogram. A t h e o r e t i c a l  normal d i s t r i b u t i o n  

curve is p l o t t e d  over each histogram, with s tandard  dev ia t ion  equal  

t o  t h e  r m s  of t h e  time s e r i e s .  

The t ime s e r i e s  a r e  p l o t t e d  t o  a common v e r t i c a l  s c a l e  on each 

page, bu t  t h e  histograms a r e  ad jus ted  s o  t h a t  t h e  h ighes t  t o o t h  i n  

each case  i s  t h e  same h e i g h t ,  and t h e  a r e a s  under t h e  normal curves 

a r e  made equal  t o  those  under t h e  histogram. 

The s e a  used is  one of t h e  sma l l e s t  o f  t h e  South U i s t  s p e c t r a ,  

so  we would expect t o  s e e  any imperfect ions i n  t h e  j o i n t  hinge 

mechanism, p a r t i c u l a r l y  i n  end sp ines  where t h e  bending moments u sua l ly  

f a l l  t o  t h e i r  lowest va lues ,  and i n  heave where t h e  va lues  tend t o  

be about h a l f  o f  those  i n  surge.  

I n  f a c t  t h e  q u a l i t y  of f i t  of t h e  measured histograms t o  t h e  

normal curves is g r a t i f y i n g .  Occasional high t e e t h  near  t h e  middle 

of t h e  histograms suggest  s lackness  i n  t h e  d r i v e  b e l t ,  with an apprec iab le  

delay before  t h e  motor can r eve r se  i ts r e a c t i o n  a s  t h e  wave-induced 

f o r c e s  change p o l a r i t y .  Low t e e t h  i n  t h e  middle of  histograms sugges t  

s t i c t i o n  i n  t h e  d r ive  s o  t h a t  waves have t o  work e x t r a  hard t o  g e t  

t h e  j o i n t s  moving. 
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b) Regular Waves 

Graphs 6.9 and 6.10 show time series and histograms for the joints 

in a regular wave. 

The time series on each page are plotted to the same vertical 

scale, but the histograms are individually scaled according to the 

highest tooth. The horizontal time-scale is one quarter of that used 

in the preceding South Uist plots, although, for the monochromatic 

wave tests shown elsewhere in this report, the test times were the 

same. 

The time series in surge are strikingly symmetrical. With only 

256 data samples per plot shown here, the sampling time steps are 

clearly visible. Most of the peaks are ragged, and the histograms 

are fairly noisy versions of the U shapes expected with approximately 

sinusoidal signals. The effect of stiction is particularly visible 

in the histogram for joint number 039 which had unusually low loading 

for this sea. 

In heave, the striking asymmetry of the time series is reminiscent 

of our work with cylinders in the narrow tank (see page 15.2 of our 

1976 report). Frequency doubling is evident in many of the joints 

and the 2 least distorted waveforms, 040 and 042, show interesting 

modulation in their envelopes, suggestive of beating. We know that 

wave amplitude stability is much better than that. 

Before plotting each time series we subtracted the mean value 

of the time series from each data point to remove the effects of any 

electrical offsets in the system. At this stage, we are not able 

to distinguish genuine non-zero bending moment means from such offsets, 

so the apparent asymmetry of positive and negative peak values should 

be treated with caution. This caveat applies particularly to the 

modulus results in section 4.A. However it is difficult to imagine 

a hydrodynamic mechanism which could induce permanent bending moment 

offsets in a free floating structure of constant section and weight 

distribution. 

We have now installed economic mass data storage in the wide 

tank. Magnetic tape is used to record the millions of numbers produced 

during each experiment and so we can, in future, maintain access to 

the original time series indefinitely. 
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6 . G  THE SOUTH UIST 46 SPECTRA 

In t roduc t ion  

Crabb has given an  e x c e l l e n t  d e s c r i p t i o n  o f  t h e  c o l l e c t i o n  and 

a n a l y s i s  o f  wave d a t a  from s e a s  o f f  South U i s t  c a r r i e d  out  by t h e  

I n s t i t u t e  of  Oceanographic Sciences ( r e f  a ) .  Wave measurement had 

s t a r t e d  i n  March 1976 with a waverider buoy ope ra t ing  8 n a u t i c a l  miles  

o f f sho re  i n  1 5  metres depth ,  and a t  2 o t h e r  s i t e s  i n  23 metres depth 

and 100 metres  depth (Mollison r e f  f ) .  

They produced a group of  399 evenly weighted s p e c t r a ,  c o l l e c t i v e l y  

r e p r e s e n t a t i v e  of a ' s t anda rd '  Hebridean yea r ,  with wave d i r e c t i o n s  

synthes ised  from h indcas t s  us ing  l o c a l  and d i s t a n t  wind da ta .  

The ind iv idua l  s p e c t r a  were expressed a s  combinations of  up t o  

3 components : 

a )  Wind s e a :  t h e  higher  frequency p a r t  of t h e  spectrum caused 
by l o c a l  winds concurrent  with t h e  wave record .  

b )  Swell s e a :  t h e  low frequency p a r t  of t h e  spectrum a t t r i b u t a b l e  
t o  e a r l i e r  and d i s t a n t  wind condi t ions .  

c )  Old Wind Sea: a c e n t r a l  p a r t  of t h e  spectrum caused by l o c a l  
winds which had changed j u s t  p r i o r  t o  t h e  wave 
sampling per iod .  

Graph 6.11, reproduced from r e f  a ,  shows a t y p i c a l  measured South 

U i s t  spectrum with c l e a r l y  v i s i b l e  'wind' and ' s w e l l '  components. 

S. Uist spectrum 86 76 173 14 58 
10 1 

SIGNIFICANT WAVE HEGHT 1 l7me4res 

ZERO CROSSlffi P E I O D  3 68 %&s 
WIND SPEED I 4  k n o l l  

WIND OlRECTlON 150 d e g r ~ s  

Freauancy Hz 
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Se lec t ion  of  a Sub-Set 

Subsequently,  IOS were asked by t h e  Department of Energy's 

c o n s u l t a n t s ,  Rendal, Palmer and T r i t t o n ,  t o  s e l e c t  a small  subse t  

of about 40 s p e c t r a  which would c o l l e c t i v e l y  r e f l e c t  t h e  p r i n c i p a l  

c h a r a c t e r i s t i c s  of t h e  399, bu t  which could convenient ly be used i n  

s c a l e  model t e s t s  ( r e f s  k & j ) .  

IOS f i r s t  s o r t e d  t h e  399 s p e c t r a  i n t o  c l a s s e s  according t o  3 

parameters ( r e f  i ) :  

a )  'Frequency-Width' : t h e  frequency i n t e r v a l  wi th in  which 
80% of t h e  power is  conta ined ,  ( 4  c l a s s e s )  

b )  'Direct ion-Width ' :  t h e  angular  i n t e r v a l  wi th in  which 80% 
of t h e  power i n  t h e  frequency width 
is contained.  ( 4  c l a s s e s )  

c )  Energy Period Te:  ( 5  c l a s s e s )  

Within each c l a s s  t h e  399 s p e c t r a  were f u r t h e r  so r t ed  i n t o  groups 

according t o  power dens i ty .  

Even wi th  t h i s  grouping process  it was found t h a t  t h e  number 

of s e a  types  was too  g r e a t  t o  be adequately represented  by a small  

sub-set and s o  2 sepa ra t e  sub-sets were proposed: 

S e t  1 - A group of s p e c t r a  covering a s  wide a range a s  poss ib l e  
of frequency width,  d i r e c t i o n  width and energy per iod  b u t  
r e s t r i c t e d  i n  t h e  range of power and t h e  d i r e c t i o n s  of peak 
power. 38 s p e c t r a  were eventua l ly  s e l e c t e d  f o r  t h i s  group 
and it was suggested t h a t  they be used t o  p r e d i c t  f u l l - s c a l e  
system behaviour from 2-dimensional model t e s t  da t a .  

S e t  2 - A group of s p e c t r a  covering a s  wide a range a s  poss ib l e  
of frequency width,  d i r e c t i o n  width, energy period and power, 
a s soc i a t ed  with those  s p e c t r a  which con ta in  t h e  bulk of  
t h e  power a r r i v i n g  a t  South U i s t .  46 s p e c t r a  were eventua l ly  
s e l e c t e d  f o r  t h i s  group, which was intended f o r  use  i n  a s se s s ing  
f u l l - s c a l e  output  p roduc t iv i ty  of wave energy devices .  S e t  
2 is  t h e  group of  South U i s t  s p e c t r a  implemented i n  t h e  
wide tank and r e f e r r e d  t o  below and throughout t h i s  r e p o r t .  



Selection of the 46 S~ectra 

The classification of the 399 spectra, by frequency-width, 

direction-width, energy period and power density produced a 4-dimensional 

histogram, with 107 occupied cells, each of which should ideally have 

a representative assigned to Set 2. By excluding from representation 

sea states which did not greatly contribute to the annual energy available 

a further reduction of numbers was made. 

The rules chosen for exclusions were: 

a) power density too low ( 10 kW/m) 
b) power density too high ( 300 kW/m) 
c) energy period too low ( 7.0 sec ) 
d) energy period too high ( 12.9 sec ) 
e) 'unusual' combinations of Energy Period, Power, Spectral 

Width, Directional Spread and Principal Direction 

This reduced the number of spectra to be represented to 267, 

occupying 46 different cells of the histogram. 76.5% of the total 

energy in the 399 spectra is accounted for by these cells. (see below 

for details of 46 spectra weightings.) 

The Set 2 spectra were made up by selecting, from each of the 

46 occupied cells, a spectrum whose power density was near the average 

for that cell and whose direcion of peak power was close to either 

240 degrees or 270 degrees. 



Wide Tank I m ~ l e m e n t a t i o n  o f  t h e  46 S ~ e c t r a  

Our c u r r e n t  f u l l - s c a l e  des igns  a r e  based on 1 4  metre ducks. 

The wide t ank  model u se s  130mm ducks on 125mm diameter  s p i n e s ,  implying 

a tank  s c a l e  of 1 4  metres/l30mm1 o r  107.7. 

The IOS s p e c t r a  a r e  based on wave d a t a  c o l l e c t e d  a t  42 metres  

depth ,  bu t  we favour  ope ra t i on  around t h e  100 metre contour .  The 

small  amount of  d a t a  c o l l e c t e d  by IOS a t  t h e i r  100 metre s i t e  allowed 

us  t o  make frequency dependent c o r r e c t i o n s  t o  t h e  46 s o  a s  t o  e s t ima te  

t h e i r  s p e c t r a l  con ten t  a t  100 metres.  The d i r e c t i o n a l  d i s t r i b u t i o n s  

a l r eady  ass igned  t o  t h e  42 metre s e t  by IOS, a r e  i n  f a c t  more app rop r i a t e  

t o  our  deep water s i t e .  (Moll ison,  r e f  f ) .  

The t h r e e  p o s s i b l e  sub-spectra  i n  t h e  s e a  s t a t e s  were each descr ibed  

by IOS us ing  a  Pierson-Moskowitz model ( r e f  b ,  pp6.8-6.9) with assigned 

va lues  of  H r m s  and Te, and a modified ' s p e c t r a l  width parameter '  which 

allowed t h e  range o f  wavefront f requenc ies  t o  be compressed o r  expanded. 

The s p e c t r a l  width parameter is  analogous t o  our  'compression f a c t o r ' .  

D i r e c t i o n a l i t y  is  i n d i c a t e d  by a  ' p r i n c i p a l  d i r e c t i o n '  parameter ,  

and an angular  d i s t r i b u t i o n  model with exponent i f  app rop r i a t e .  

The t a b l e  below summarises t h e  parameters  used: 

Component 1 Parameters s p e c i f i e d  I angular  I d i s t r i b u t i o n  
name I f o r  a l l  components I d i s t r i b u t i o n  model I exponent 

I 

Our c u r r e n t  wavemaking computer can produce 75 s e p a r a t e  wavefronts 

f o r  each s e a  s t a t e .  We make b e s t  use o f  t h i s  l i m i t e d  number by a r ranging  

t h a t  t h e  t o t a l  energy i n  t h e  s e a  i s ,  where p o s s i b l e ,  evenly d iv ided  

between them bu t  we must a l s o  ensure t h a t  t h e  range o f  f requenc ies  

is reasonably  covered. We used a  s imple r u l e  and d iv ided  t h e  75 

wavefronts between t h e  3 s e a  components i n  p ropor t i on  t o  t h e  product  

of H r m s  and t h e  s p e c t r a l  width parameter f o r  t h a t  component. 

Wind s e a  

w e  s e a  

Old Wind s e a  

We ignored s e v e r a l  wind s e a  components wi th  e a s t e r l y  mean d i r e c t i o n s ,  

a s  i n  every such ca se  t h e  energy con t r ibu t ed  was 3% o r  l e s s .  

frequency- 
dependent 

s v a r i e s  

s = 6  

I 

H r m s ,  Energy pe r iod  

S p e c t r a l  Width 

P r i n c i p a l  D i r ec t i on  

M i  t suyasu  

~ - 8 e - q  
C O S ~ ~ ( Q  -ed 



Angle Considerations 

The 46 spectra contain energy arriving from all compass bearings, 

but a line of wavemakers has a limited angular range. At frequencies 

below 1.6 Hz the theoretical angle limit is k90°, and it rapidly falls 

off to 0 degrees at 2.26 Hz (see Section 6.D). We can make 90° waves 

at the wavemakers but they do not find their way into the centre of 

the tank. The width of tank usefully served by the wavemakers is reduced 

by the product of the tangent of the wavefront angle and the distance 

of the model from the wavemakers. We lose this width at both ends 

of the tank if there are positively and negatively angled wavefronts, 

so that very long models in mixed seas must be deployed as close to 

the wavemakers as possible. 

We used an angular range of -70° to +70°, and a frequency range 

of 0.5 to 3.0 Hz in implementing the 46 spectra. With hindsight these 

limits are clearly too wide. The second set of pox-plots (section 

3.B) show the presence of numerous additional 'ghost' wavefronts wherever 

the specified wavefronts fall outside the tank angular envelope (see 

section 3.B, and section 6.D). Current tank work, to be reported 

later, suggests that the 'ghost' wavefronts are at frequencies and 

angles generally benign to spines, but we propose creating further 

sets of 46 tank spectra with better limits. 

The closest that we can get spine models to the wavemakers is 

about 2 metres. The ?70° limit suggests that the maximum width of 

model exposed to all wavefronts would be equal to the width of wavemakers 

minus 11.0 metres, which works out at 14.0 metres for 82 wavemakers. 

This is equivalent to 35 of our spine units. In practice, deployment 

of the models so close to the wavemakers is difficult because of mooring 

access problems, and we usually work further out into the tank. The 

monochromatic spine tests in section 4.H suggest that bending moments 

rise towards the down-wave end so this problem is unlikely to affect 

the maximum values recorded. 



Alternative Realisations 

Most of the 46 spectra can be reasonably realised with the model 

lying parallel to the wavemakers, so that their normal represents 

a compass bearing of 260°, which is thought to be the angle of optimum 

energy capture for a line of wave energy absorbers. However, 13 of 

the spectra have important amounts of energy approaching from southerly 

or northerly directions which fall outside the ?70° limit discussed 

above. We cannot increase the tank angular window above 140° but 

we can improve the representation of these spectra by moving the model. 

We produced a second set of 9 spectra for southerly seas with the 

model yawed through +40° (clockwise from above), so that the normal 

to the wavemakers represents a bearing of 220°. A third set of 4 

spectra cater for northerly seas with the model yawed through -50° 

to make the wavemaker normal represent a bearing of 310°. In practice, 

in this latter case, a mirror image set is used to invert the angles 

and allow the direction of yaw to be the same as in the second set. 

These alternative realisations limit the model length to about 22 

units . 

The 4 sets of South Uist spectra are depicted in the pox-plots 

and 3-D plots of Section 2. 



Weinhtinns of the 46 S~ectra 

The selection of a sub-set of spectra from the original 399 equally 

weighted South Uist seas results in an unequally weighted set of 46. 

Table 6.8 below shows the number of original spectra represented 

by each of the 46 and, by implication, their relative weightings. 

(A method suggested by Rendel, Palmer and Tritton for weighting test 

results to represent performance over the whole year is described 

in ref j.) 

Weights total: 267 - 

TABLE 6.8 Weightings for the 46 South Uist Spectra (source: ref i) 

IOS relative IOS relative IOS relative 
ref WEIGHT ref WEIGHT ref WEIGHT 
no no no 

1 089 4 
2 108 4 
3 112 3 
4 122 4 
5 154 8 

6 168 7 
7 171 1 9  
8 177 6 
9 180 6 

10 200 9 

11 201 2 1 
1 2  210 20 
1 3  212 3 
1 4  218 9 
1 5  220 4 

16 223 5 
1 7  228 3 
1 8  238 6 
1 9  241 4 
20 242 4 

21 244 1 5  
22 249 3 
23 267 4 
24 268 2 
25 280 7 

26 291 5 
27 292 7 
28 294 3 
29 318 6 
30 319 8 

31 322 4 
32 324 3 
33 336 3 
34 346 4 
35 347 2 

36 352 2 
37 355 2 
38 359 11 
39 360 3 
40 366 3 

41 371 5 
42 377 5 
43 378 2 
44 381 2 
45 388 3 
46 391 4 



6.H CONVERTING BENDING MOMENTS TO ANGLES 

Most of  t h e  graphs i n  t h i s  r e p o r t  show bending moments. I f  we 

assume t h a t  t h e  j o i n t s  a r e  behaving a s  undamped, l i n e a r  sp r ings  with 

known s t i f f n e s s  t h e  conversion is obvious. One d iv ides  a bending 

moment r e s u l t  by t h e  s t i f f n e s s  a t  which it was measured t o  ob ta in  

a va lue  of j o i n t  movement i n  rad ians .  

Af te r  t h e  angular  measurements i n  extreme waves showed t h a t  j o in t -  

angle  would be t h e  very l e a s t  of our  problems we decided t o  de fe r  

t he  p re sen ta t ion  of  angle  da t a  t o  a l a t e r  r e p o r t  which w i l l  dea l  with 

t h e  e f f e c t s  of torque l i m i t s  and j o i n t  damping. 



6.J  CALIBRATIONS AND ACCURACIES 

Wave Height Measurement 

Our knowledge of t h e  wave he igh t  i n  t h e  tank  depends on two th ings :  

1. Wave gauge c a l i b r a t i o n .  

An a r r a y  of 16  three-wire conductivity-compensating gauges is 

arranged about 2 metres i n  f r o n t  of  t h e  wavemakers. These a r e  c a l i b r a t e d  

before  every experiment. A monthly check was made of  t h e i r  d r i f t ,  

and over  t h e  per iod  January t o  J u l y  1983 t h e  RMS monthly e r r o r  was 

1.43% (Note t h a t  an average monthly e r r o r  would have been l e s s  due 

t o  c a n c e l l a t i o n ) .  Most gauges managed t o  s t a y  wi th in  'I%, bu t  t h e  

RMS is  pu l l ed  up by the  occasional  rogue. 

2. Tank r e p e a t a b i l i t y .  

Experiments on long sp ines  a r e  done by measuring t h e  s e a  i n  t h e  

absence of t h e  model, and r e l y i n g  on r e p e a t a b i l i t y  t o  ensure t h e  model 

s ee ing  t h e  same waves. ( I n  t h e  narrow tank  with r e g u l a r  waves we 

can s e p a r a t e  i nc iden t  and r e f l e c t e d  waves. This  is  no t  poss ib l e  i n  

t he  wide tank  and wave measurements done with t h e  model i n  t h e  water 

a r e  always high because of r e f l e c t i o n . )  Over a t e s t ,  t he  wavemaking 

system g ives  u s  an RMS r e p e a t a b i l i t y  of  b e t t e r  than 2%, while 

ins tan taneous  wave he ight  can have up t o  5% e r r o r .  

Spine Torque Measurement 

Spine torque  is measured with a br idge  of  4 s t r a i n  gauges on 

t h e  torque  p l a t e .  These a r e  pos i t ioned  s o  t h a t  a l l  torque is  appl ied  

through them with t h e  fol lowing except ions:  

1. Spine angle-centr ing torque  s p r i n g  

2. Spine bearing f r i c t i o n  

The s t i f f n e s s  of t h e  c e n t r i n g  s p r i n g  i s  known, a t  1 5  Nm/rad ( t h i s  

is approximately 0.1% of t h e  maximum s t i f f n e s s  o b t a i n a b l e ) ,  while  

t he  bear ing  f r i c t i o n  of a new sp ine  is  l e s s  than  1% of  t h e  f u l l - s c a l e  

torque l i m i t .  



The strain gauge circuit is calibrated using a special calibration 

rig. We trim every spine to better than 0.5% but the combination 

of drift and non-linearity increases this error. We believe that 

most spines have a worst error of less than 2%. 

The torque calibration is 10 Nm/volt. 

Spine Velocity Measurement 

This is done using a tacho-generator on the back of the spine 

motor. We calibrate it by mounting the spine on a special rig and 

allowing it to move through a precise angle between end stops: the 

output of the tacho-generator is accurately integrated, and the output 

of the integrator compared with the angle it has gone through. We 

aim at calibrating this to better than 0.25%. However, the 'inherent 

stiffness' (see graph 6.6) means that if the joint is experiencing 

a high torque it will underread its velocity. The 'movement multiplier', 

mentioned in Table 6.7, can be used to generate a correction if necessary. 

The velocity calibration is 0.1 rad/sec/volt. 

This is obtained by doing a digital integration of the sampled 

velocity signal in the Plessey Miproc computer. Its accuracy therefore 

is no worse than the velocity from which it is derived. 



6.K USEFUL EQUATIONS 

A Note on Scale 

If dynamic similarity exists between model and prototype, we 

can get full-scale figures from model figures with the right scaling 

factor. This is best described by some index of scale. These are 

listed below for various parameters. The second column gives actual 

multiplication factors for our current wide tank scale of 107.7 

PARAMETER 
FOR FULL SCALE 

INDEX OF SCALE MULTIPLY BY 

Bending moments 4 135 x lo6 

Wave height and length 
Period 
Frequency 

Distances 
Linear Velocities 
Linear accerations 

Angles 
Angular velocity 
Angular acceleration 

Buoyancy 
Inertial forces 
Velocity forces 
Drift forces 

Torque 
Power 

Power per unit length 
Force per unit length 
Torque per unit length 

Mass 3 
Inertia per unit length 4 
Buoyancy spring per unit length 3 
Damping per unit length 3.5 

Stiffness density 
Compliance density 

Beam stiffness EI 5 14.5 x 10 9 

The ratio of wavelength to diameter L/D is the most useful 

indicator of dynamic similarity. The ratio of wave height to diameter 

should also be considered. Scale effects should be less of a worry 

for inertia-dominated wave behaviour than in other fields. 



Vibrations 
In the following, k is spring stiffness, c  a viscous damping 
constant,  a,, an undanlped natural frequency and 1 7 1 .  M 
masses. 

Free vibration with viscous damping 

For a inass nz the undamped natural  frequency is 

w, = d ( k l m )  

the critical damping constant is 

cc = 2d(km)  

the damping ratio is ( = c/cc and the logarithmic dec reme~l  t 
is 

Steady-state vibration with viscous damping 

The ratlo of  peak amplitude X t o  the steady d~splacement  
X o  = P/k IS  

and the phase angle 4 is glven by 

tan 6 = 
2cw/w, 

1 - ( w / ~ , ) ~  

t 
P s ~ n  ~t These relations yield the curves given below. 

Frequency rat lo 3" 
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