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Abstract 

The gene encoding the E. coil flavodoxin NADP oxidoreductase (FLDR) has been 

overexpressed in E. coil and the enzyme was purified to homogeneity. The 

molecular mass of FLDR apoprotein was determined as 27648 Da. The midpoint 

reduction potentials of the oxidisedlsemiquinone and semiquinone/hydroquinone 

couples of FLDR (-308mV and -268mV, respectively) were measured using redox 

potentiometry. FLDR was filly characterised kinetically both by steady state and 

pre-steady state techniques. Arginines (R144, R174 and R184) in the proposed 

NADPH binding site of E. coil flavodoxin NADP oxidoreductase (FLDR) were 

replaced by alanines and the mutant enzymes fully characterised and studied by pre-

steady-state and steady-state kinetics. From our studies R174 and R184 appear to 

interact with the adenosine ribose 2' phosphate, while R144 is more likely to 

stabilise NADPH binding by interaction with the nicotinamide ribose 5' phosphate. 

R174A and R184A are more efficient enzymes than wild-type or R144A with 

NADH as substrate, consistent with the proposed phosphate-binding roles for these 

residues. Arginine residues R237 and R238 in the proposed binding site for FLDR 

redox partner flavodoxin, have been mutated to alanine. These mutant enzymes have 

been characterised by pre-steady-state and steady-state kinetics, UV-Vis 

spectrophotometry, CD and fluorescence. These mutants are less efficient electron 

transfer proteins. 

In a separate project it was attempted to identify genes associated with the antibiotic 

biosynthetic pathway of aristeromycin from Strepiomyces citricoior. An 

aristeromycin-induced protein was isolated from S. citricolor purified to 

homogeneity and an N-terminal sequence was determined. From this an 

oligonucleotide was designed and used to probe S. citricolor chromosomal DNA. A 

1 000bp fragment of DNA was isolated and sequenced, and the presence of part of an 

ORF identified. 
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FLDR, Chapter 1: Introduction 

Chapter 1 (FLDR) 

Introduction 

The enzyme which is the subject of this study is the E. coil flavodoxin NADP 

reductase, a flavin containing electron transfer enzyme, it is involved in many 

important systems in E. coil. A deeper comprehension of electron transfer is 

required before a full understanding of the enzyme can be gained. 

Electron transfer 

Electron transfer is a key process in all living organisms and is involved in many 

essential pathways. For example, mitochondrial respiration is a series of electron 

transfer steps, which are coupled with chemical reactions through membrane bound 

multi-subunit proteins. It is an energetically favourable process, in which the redox 

reactions pump ions and metabolites across the membrane, driving the synthesis of 

ATP. Electron transfer is also a key process in the capture of light energy in 

photosynthesis, and in many anabolic and catabolic reactions. Electron transfer has 

been the subject of many reviews as it is such an essential process (McLendon 1988, 

McLendon & Hake 1991, McLendon 1992, Moser 1992, Chapman & Mount 1995, 

Moser etal. 1995, Larsson 1998). 

There are some fundamental factors that control electron transfer, which need to be 

appreciated before it can be fully understood. Assuming the reaction involves the 

interaction of two species, then an encounter complex is formed and the exchange of 

electrons follows. There is no energy change in electron transfer, as the process is 

radiationless. The combined energy of the system must remain constant; therefore 

the redistribution of electrons is isoenergetic. The 'Frank-Condon principle' also 

applies to these reactions (Kauzmann 1957). In other words electron transfer is so 

rapid that the reactants do not have time to change their nuclear configuration during 

the reaction. If the reactant and product have different structures, the common 

isoenergetic configuration is most likely, which is the intermediate between the 

reactant and the product. This intermediate will be of higher energy than both. The 

higher the energy, the slower the rate of electron transfer. These factors have been 
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developed into a quantitative theory by Marcus, "The Marcus Theory" (Marcus 1956, 

Marcus 1964, Marcus 1965). 

1n order to understand how electron transfer occurs in proteins, it is necessary to 

understand how electrons can travel through them. There are thought to be various 

mechanisms by which this process occurs. One, which has been demonstrated, is 

through space electron transfer between biological redox centres (Moser et al. 1992). 

This involves an electron in an orbital of one redox centre being transferred to a 

vacant orbital of another. The electron tunnels through the medium, the efficiency of 

this process depending on the extent of the overlap of the electronic wave functions. 

As the process is non-adiabatic, the electron transfer rate is best described by 

'Fermi's golden rule' (Devault 1980). "The electron transfer rate is proportional to 

the square of the coupling of the reactant and the product electronic waveflinctions, 

which is proportional to the overlap of the donor and acceptor molecules across the 

space". The greater the overlap the better the electron transfer rate, and therefore the 

rate decreases exponentially with increased distance between redox centres. 

This system obviously does not explain how electron transfer occurs over larger 

distances. A system is needed where the electronic wavefhnction does not decrease 

rapidly with distance. One way, in which it would occur is if the energy of the 

intervening medium is lowered, therefore the nature of the medium is important. If 

the medium is homogenous, the protein can be thought of as organic glass, which 

would provide a good medium for electrons to travel through (Moser et al. 1992). 

An example of this is a photosynthetic reaction centre. 

Alternative mechanisms need to be considered, as not all proteins can be thought of 

as organic glasses. Electron transfer can also occur by electron tunnelling, where the 

electron is transferred via covalent bonds, hydrogen bonds, and small space jumps 

through a specific pathway in the medium. A controversial mechanism which has 

been proposed involves electron transfer via 7t orbitals of conjugated molecules 

(aromatic residues), which in principle provide an alternative low energy pathway 

(Beratan & Onuchic1989, Beratran et al. 1991). As there are many mechanisms by 
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which electron transfer can occur, this leads to complications when considering 

along which pathway electron transfer occurs. Another complication when 

considering electron transfer is that a longer pathway between redox centres in 

proteins may lead to the greatest stabilisation of electronic wavefunctions, in turn 

leading to faster electron transfer rates than the shortest electron transfer route. 

There are two basic types of electron transfer proteins, those that simply shuttle 

electrons, and oxido-reductases that combine electron transfer with a net chemical 

transformation. Electron transfer proteins include redox active prosthetic groups 

such as haem, Cu, iron-sulphur, chlorophyll and flavins. 

Flavin and Flavoproteins 

Flavoprotems contain a prosthetic group. The flavin's structure is based on riboflavin 

a 7,8-dimethlyisoazoxalline ring. There are two types of flavin found in proteins, 

FAD and FMN, see fig 1.1. 

Fig 1.1 Structure of FAD and FMIN 

Flavin adenine din ucteotide (FAD) 

91 	01 7  
142 

HO o 	 'T1 T 
HcWyMl  

Flavin inonunucIeodt (FIiN) 

Side chains such as adenine in FAD serves to anchor the prosthetic group to its host 

protein structure (Gishla & Massey 1989). Inmost cases the flavin protein interaction 

exists as a tightly bound non-covalent complex. However, there are a small number 

of examples of enzymes where the flavin is covalently attached (Mewies et al. 1997). 

Flavin chemistry usually involves oxidation and reduction, and is centred on the 

isoazoxalline ring. The pyrimidine nucleus of the isoalloxanine ring is an electron 

3 
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deficient group, which acts as an electron sink during oxidation of the substrate 

(Gishla & Massey 1989), see fig 1.2. 

Fig 1.2 Electron transfer reaction of FAD and FMN 

FAD FWt 

\ 	FAD. FKW SIqub. 
702W 

:xxçc 
FADN, cFMNIl 

Since flavoproteins take part in a number of very different types of catalysis, the 

chemistry underlying these events can be quite different in the various reactions. 

The specific properties of the flavin results from interaction with the surrounding 

protein structure. Several hundred flavoproteins have been discovered to date. 

Flavoproteins are very versatile enzymes, and play an important role in a variety of 

processes, involving the transfer of either one or two electrons. Flavoproteins are 

involved in processes as diverse as photochemistry, DNA damage repair, light 

emission, and dehydrogenation. Flavoproteins also fill a unique niche due to the fact 

that they can mediate electron transfer between a two electron donor and one electron 

acceptor. In the process of the reaction the flavin is reduced. The oxidized form of 

flavin is regenerated, at the expense of the reduction of an electron acceptor. In 

many cases the acceptor molecule is molecular oxygen, or another redox protein. 

Flavoproteins reduce molecular oxygen in a variety of ways including the production 

of the superoxide ion (02), direct two electron reduction of 02 to H202 , and also the 

insertion of one atom of 02 into the substrate and with the other forming H 20. These 

characteristics have formed the basis of the classification system of flavoproteins 

(Massey & Hemmerich1980). 

4 
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Class 1 Transdehydrogenases. 

These dehydrogenate saturated double bonds of the type C-C, C-S, C-N and N-N, an 

example of C-N transdehydrogenase is D-lactate dehydrogenase from Megasphera 

elsdenii (Olson & Massey 1979). 

Class 2. Dehydrogenases/oxidases 

These enzymes combine the dehydrogenation of one substrate with the reduction of 

molecular oxygen, to generate H 202. An example is L-lactate oxidase from 

Mycobacterium smeginatis (Massey et al. 1969). 

Class 3 Dehydrogenases/oxygenases 

This class differs from the previous one in the fate of oxygen as the substrate. 

Peroxide is not liberated, but instead all four equivalents of 02 are consumed, two for 

water formation and two for incorporation into another substrate of the enzyme 

(AH-> AOH), an example of this type of enzyme is p-hydroxy-benzoate hydroxylase 

from Pseudomonasfluorescens (Entsch et al. 1979). 

Class 4 Dehydrogenases/electron trasnferases 

These enzymes carry out the transformation of two electron transfer into one electron 

transfer, sometimes the reverse reaction. These enzymes are important in all known 

biological redox chains, as no redox transfer occurs between strictly two electron 

nicotinamide nucleotides and strictly one electron reacting haem proteins and iron 

sulfur proteins without the aid of a flavoprotein. An example of this class is liver 

microsomal NADPH-cytochrome P-450 reductase (Vermillion & Coon 1978). 

Class 5 Pure electron transferases 

These do not catalyse dehydrogenation reactions but only take part in the electron 

transfer process. These electron transfers may occur from other flavoproteins with 

one or two electrons to a number of other acceptors. An example of this is spinach 

ferredoxin NADP reductase (Massey et al. 1969). 
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Flavodoxin NADP Reductase (FLDR) 

FLDR is an electron transfer enzyme containing the flavin FAD as a prosthetic 

group, see fig 1.1. FLDR's main redox partner is flavodoxin (FLD), which contains 

FMN as its prosthetic group, see fig 1.1. However, although FLDR can also pass 

electrons to ferredoxin, there is no known function for this redox partnership. In the 

reaction NADPH transfers two electrons to FLDR and FAD is converted to its 

hydroquinone. An electron is then transferred to flavodoxin and a stable 

semiquinone is formed. FLDR is a member of a large family of flavin dependent 

oxidoreductases known as the FNR family. The members of the family are electron 

transfer proteins mainly containing FAD as a prosthetic group and are NADPH or 

NADH specific. The only member of the family to contain FMIN as a prosthetic 

group is phthalate dioxygenase reductase. A pattern of conserved residues, proposed 

by Karplus and co-workers (Karplus et al. 1991), is reported to be the sequence 

signature characteristic of the family, see fig 1.3. •  The ordering of these binding 

sequences along the chain is important in discriminating FNR proteins from other 

families. The structural motif is that that the members of the family are expected to 

be a two-domain module, one domain binding the flavin the other binding the 

pyridine nucleotide. 
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Fig 1.3 Conserved sequences that characterise the FNR family 

Conserved fingerprint region in E. co/i FLDR (Ingleman et al. 1997), Pseudomonas 

cepacia PDR, phthalate dioxygenase reductase (Correll el al. 1992) and spinach FNR 

ferredoxin NADP reductases (Karplus el al. 1991) are aligned in lines 1,2 and 3. 

Characters in blue represent residues that are implicated in the binding of flavin or 

pyridine nucleotide. Line 4 represents an approximate consensus for the whole 

family. Here the pink letters represent the absolutely conserved residues, and the red 

represent semi-conserved residues. The first two sequences bind the isoalloxanine 

and phosphate group of the flavin, respectively. The consensus for segment 2 

distinguishes FAD and FMN binding. The third and fourth sequences are involved 

in the binding and differentiation of NAD7NADP. The conserved C in the fifth 

sequence may be involved in the binding of the nicotinamide group. The final 

aromatic group of the sixth sequence is stacked against the flavin ring. 

FLDR HAH 3 GKL: 11 LiTAIG: 1R ' 7ML'N 45 EH 

PDR 12OI 	IT '' 3 H ' 9 'YC 

FNR 
I 17i, 

: 	 IAT : 	 F 20YM 	L :EV 

Consensus x xx 
FAD) 

t 	1.X 

GG 	r FMN)  

(NAD) 

X X 

FLDR and FLD are involved in a number of important systems in K co/i, including 

various aerobic and anaerobic processes, such as methionine synthase, anaerobic 

ribonucleotide reductase, pyruvate formate lyase and biotin synthase a number of 

these systems are described. 

The flavoprotein system of FLDR and FLD supports methionine synthase, which is 

an important E. co/i enzyme in aerobic growth conditions. It is a key enzyme in the 

one-carbon metabolism of mammals, and micro-organisms. Impairment of this 

enzyme results in megablastic anaemia and spinal cord degeneration in humans. 

Methionine synthase catalyses two separate methylation reactions. The primary 

reaction involves the transfer of a methyl group from methyltetrahydrofolate to the 

7 
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cob(I)alamin form of the co-factor, to form methylcobalamin and tetrahydrofo late. 

The methyl group is then transferred to homocystiene forming methionine and 

regenerating the cob(I)alamin form of the enzyme. The regeneration methylation 

reaction of methionine synthase, occurs when the enzyme undergoes oxidation and 

forms its inactive cob(II)alamin form. The enzyme along with FLDR and FLD 

catalyses its reactivation to the active cob(1)alamin form. Electron transfer via FLDR 

and FLD to cob(11)alamin is thought to generate the cob(I)alamin form, which is then 

trapped by methyl transfer from adenosylmethionine to the cobalt, forming the active 

form of the enzyme, see fig 1.4 (Jarrett ci al. 1998, Jarrett ci at 1997, Fuji & 

Huennekens 1974). 

Fig 1.4 Scheme for the primary turnover and reactivation cycles of methionine 

synthase (Jarrett ci al 1998). 
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Methionine synthase is made up of four subunits each responsible for the binding the 

three substrates and cobalamin cofactor. Repositioning of these units allow the 

enzyme to control which substrate has access to the cofactor, and therefore which 

8 
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methylation reaction is carried out. It has been proposed that methionine synthase 

exists in two separate conformations that interconvert in the cob(ll)alamin state, thus 

enabling the enzyme to perform two separate methylation reactions, its primary 

turnover and its own reactivation. In its primary turnover reaction it is active 

towards homocysteine and methyltetrahydrofolate, but is unreactive to FLD and 

adenosylmethionine, in its other conformation it is active to FLD and 

adenosylmethionine and unreactive to homocysteine and methyltetrahydrofolate 

(Jarrett etal. 1998). 

Pyruvate formate lyase is an important enzyme in anaerobic glycolysis of E. co/i, it 

catalyses the CoA-dependent non-oxidative cleavage of pyruvate to acetyl-CoA and 

formate. The mechanism is proposed to be a homolytic process, since the enzyme in 

the active form has an organic free radical at the active site (g1y734). However, the 

enzyme also exists in an inactive form where there is no free radical. An iron-

dependent converter enzyme, pyruvate formate lyase activase, which requires FLD 

and adenosylmethionine (AdoMet), is thought to regenerate the free radical. 

(Blaschkowski et al. 1982, Knappe & Sawers 1990). Here, FLD is reduced by 

FLDR which converts NADPH to NADP, or by pyruvate:flavodoxin (ferredoxin) 

oxidoreductase which catalyses the conversion of pyruvate and CoA to acetyl-CoA + 

CO2, see fig 1.5 

9 
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Fig 1.5 Interconversion of pyruvate formate lyase between radical and non 

radical forms (Knappe & Sawers 1990). 

pyru vat.: lid 	W4OPH: lid 
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Ado Met 	 NAOH 
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Met. 	 ("c 	 HAD 
5.deoxyadenosine  
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I 	 I 

activase (Fe 2 ) dcfivas. (Fe 2 .COA) 

There are similarities between pyruvate formate lyase and methionine synthase 

systems, as both require flavodoxin and adenosylmethionine to reactivate the 

enzyme. However, they have different modes of processing these substrates. 

Pyruvate formate lyase needs an activator enzyme to utilise the co-factors, 

flavodoxin and adenosylmethionine, whereas methionine synthase appears to interact 

directly with them. Additionally, in pyruvate formate lyase the hydroquinone form 

of FLD acts as an electron donor, whereas in methionine synthase it is the 

semiquinone of flavodoxin which is the electron donor (Knappe & Sawers 1990). 

Ribonucleotide reductase is another enzyme, which is similar to pyruvate formate 

lyase, as both enzymes contain a radical and requires adenosylmethionine (AdoMet) 

and the reducing flavodoxin system for activation. Ribonucleotide reductase is 

essential in anaerobic growth, where it catalyses the formation of 

deoxyribonucleotide triphosphates needed for DNA replication, from rbonucleoside 

di- or triphosphate. Ribonucleotide reductase catalyses the replacement of the 

hydroxyl group at C-2' of the ribose ring by a hydrogen, using a number of small 

redox proteins in their reduced forms as electron donors e.g. thioredoxin. The 

10 
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reaction is thought to proceeds by a radical mechanism (011agnier et al. 1996). In its 

active form the enzyme contains a glycyl radical (Gly-681) which is stable in 

anaerobic conditions, but not in the presence of oxygen. To regenerate the radical 

the enzyme uses the FLDR and FLD electron donating system (Bianchi etal. 1993b). 

An appreciation of the structure of ribonucleotide reductase is necessary, to 

understand how FLDR and FLD interact with the enzyme. It has a a232 structure, 

where the a2 unit is a large homodimer containing the gylcyl radical, and the 32 unit 

is a smaller homodimer containing a 4Fe-4S centre (Reichard 1993). The first step in 

radical generation is the reduction of the iron centre of the f2  subunit by the 

flavoprotein system (FLDR and FLD). AdoMet then binds to the reduced enzyme, 

and is thought to give rise to the transient 5 '-deoxyadenosyl radical, which is then 

involved in generation of the stable glycyl radical in the a2 protein. The enzyme is 

similar to pyruvate formate lyase (PFL) in a number of ways as it contains a glycyl 

radical which is produced by FLDR, FLD andAdoMet. However, the two reductase 

proteins in ribonucleotide reductase are tightly bound in the a2132  structure whereas 

the binding of the PFL activase to PFL is relatively weak (Knappe & Sawers 1990). 

In constrast to pyruvate formate lyase and methionine synthase which are strictly 

anaerobic processes, is biotin biosynthesis an important aerobic process; FLDR is 

involved in the final step where dethiobiotin is converted to biotin by the insertion of 

sulphur, see fig 1.6. 

Fig 1.6 Conversion of dethiobiotm to biotin 

0 	 0 
A 	 A RN NH 	 HN NH 

Dethiobiotin 	 Biotin 
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In this reaction a sulphur atom is inserted between methyl and methylene carbon 

atoms adjacent to the imidazolinone ring. The reaction is catalysed by the bloB gene 

product. It needs a variety of co-factors, Fe 2+, adenosyl methionine, NADPH and 

KC1. It was also shown that FLD is required for the conversion of dethiobiotin to 

biotin (Ifuku et al. 1994). Another protein in addition to bloB gene product and FLD 

is required. It has been assumed that this is FLDR (Ifliku et al. 1994), as this is 

FLD's main redox partner. The conversion of dethiobiotin to biotin shares similarity 

to the anaerobic ribonucleotide reductase and pyruvate formate lyase. All require 

FLD and FLDR redox system and adenosyl methionine as a radical intiator. In the 

PFL and anerobic ribonucleotide reductase systems there is a formation of a radical. 

While it has been proposed that radical chemistry is also involved in the mechanism 

of biotin synthase, the fact that this enzyme functions in air is anomalous. 

Additionally, PFL and anaerobic ribonucleotide reductase both require an activating 

enzyme. It could be that biotin synthase requires an activating enzyme, which has 

not yet been identified (Flint & Allen 1997). 

In addition to their role as activation systems in E. coli for the three enzymes 

discussed above, the redox system of FLDR and FLD appears to be able to support 

microsomal cytochrome P450s (Jenkins & Waterman 1998). This is unexpected, as 

E. coil does not contain indigenous P450s. However, it has been observed that 

FLDR and FLD are structurally similar to the functional domains of NADPH-

cytochrome P450-reductases. Consequently it has been proposed that cytochrome 

P450 reductases may have arisen from the fusion of a flavodoxin and a ferredoxin 

reductase (Porter & Kasperl986). Though there are some differences between the 

FLDR and FLD system and NADPH-cytochrome P450-reductase, it is the stable 

semiquinone of FMN in FLD that is the electron donor to cytochrome P450. 

Whereas in P450 reductase it is proposed to be the hydroquinone of FMN which is 

the electron donor, to cytochrome P450 (Jenkins & Waterman 1998). There are 

however major structural differences between the systems. Specifically P450 

reductase possesses an N-terminal anchor domain, which links it to the membrane, 

where as FLDR and FLD, are not linked to the membrane and therefore are both 

soluble. FLDR and FLD are not connected by a bridging polypeptide, unlike P450 

12 
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reductase. This factor may go some way to explaining why FLDR and FLD support 

cytochrome P450 at a reduced rate, (Jenkins & Waterman 1998). 

FLDR has a role in the cellular defence against oxidative damage in E. coil. This is 

caused by species such as hydrogen peroxide (H 202), superoxide (02) and hydroxyl 

radicals (OH), which in their combined form give rise to the phenomenon of 

"oxidative stress". To deal with oxidative stress aerobic organisms have developed 

an antioxidant defence system, composed of both enzymatic and non-enzymatic 

constituents. In E. coil FLDR has been hypothesised to be involved in the cell 

defence system against oxidative damage. Evidence that this may be the case is 

provided by the finding that FLDR expression is regulated by the soxRS regulon 

(Liochev et al. 1994), which is activated by an increase in superoxide stress. The 

response is now understood to be regulated by a two stage control system. Firstly 

soxR, an iron-sulphur protein which senses oxidative stress, activates the 

transcription of the soxS gene. The product of the soxS gene then activates the 

expression of various proteins, including FLDR, which in turn regulates the amount 

of superoxide in the cell, fig 1.7 (Demple 1996). FLDR may play a general role in 

the oxidative stress response by regulating the NADPH/NADP ratios within the cell, 

and this seems to be logical since it has been shown that a transient accumulation of 

NADPH can lead to the formation of hydroxyl radical (OH) (figi .7) (Krapp et ai. 

1997). 
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Fig 1.7 A schematic model representing possible role of FLDR in the oxidative 

stress response, and a representation of the two stage transcriptional induction 

in the soxRS regulon (Krapp 1997 etal., Demple 1996). 

A canonical Haber-Weiss cycle is shown in the central pathway (with 01 acting as 

the metal ion reductant. The exsisting Sox R protein is activated by an intracellular 

redox signal caused by excess superoxide or nitric oxide. The activated SoxR 

stimulates the transcription at the soxS promotor, and the increased levels of the 

SoxS protein activates regulon genes inculdingfldr. A role is proposed for NADPH 

in the reduction of free or DNA-bound Fe 3  to Fe 2+,  which will then react with H202 . 

The resulting hydroxyl, ferryl and other radicals attack the adjacent DNA. 
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E. coli flavodoxin NADP' reductase structure 

FLDR is an important enzyme in E. coil and a full understanding of the enzyme is 

necessary to gain insight into the metabolic pathways in which it participates in. The 

gene encoding FLDR has been cloned from E. co/i (Bianchi et al. 1993 a) and was 

found to encode a protein containing 248 amino acids and to have a molecular 

weight of 27 648Da. The crystal structure of FLDR has been solved (Ingleman et 

al. 1997), and indicates that the enzyme has two distinct domains. One these is 
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involved in the binding of FAD and the other in the binding of NADPH. The FAD 

domain has structural similarity to other members of the ferredoxin reductase super 

family e.g. spinach ferredoxin reductase (Karplus et al. 1991), having a flattened 

cylindrical 13-domain with a double sandwich with six strands. The cylinder is open, 

which makes space for the isoalloxazine and ribityl moieties of the FAD, to which 

direct and water mediated hydrogen bonds are formed from the edges of the strands 

(Ingleman et al. 1997). 

In the FLDR family a total of seven crystal structures have been solved, see fig 1.8. 

These include spinach ferredoxin NADP reductase (Karplus et al. 1991, Bruns & 

Karplus 1995), Anabaena (Serre et al. 1996), corn nitrate reductase (Lu et al. 1994), 

Pseudomonas cepacia phthalate dioxygenase reductase (PDR) (Correll et al. 1992), 

Azotobacter vinelandii NADPH:ferredoxin reductase (Prasad et al. 1998) and, of 

course, E. coli FLDR (Ingleman et al. 1997), see figl.8. All the structures show a 

FAD or FMN binding domain, comprising a six stranded 13-barrel with a capping a-

helix. The NADP or NAD binding domain contains a parallel 13-sheet nucleotide 

binding fold. 
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Fig 1.8 Comparison of the properties of the solved crystal structures of 

members of the FNIR family. 

Protein Cofactor Substrate Bound Target Source 

FLDR FAD NADP - FLD Escherichia coil 

FPR FAD NADP - 7FeFd Azotobacter vineiandii 

FNR FAD NADP 2',5'ADP 2FeFd Spinach 

FNR FAD NADP NADP 2FeFd Anabaena 

NiR FAD NM) ADP Cytb5 Corn (domain of NiR) 

PDR FMN NM) NM) 2FeFd Pseudomonas cepacia 

Structural studies have defined the FAD and FMIN binding sites (Karplus et al. 1991, 

Bruns & Karplus 1995, Serre etal. 1996, Correll et al. 1992). The NADP or NAD 

binding sites of some enzymes have been demonstrated by co-crystallisation with 

NADP or NAD, or with ADP, which is a good analogue of NADP. This led to 

structure/sequence alignment studies of theses six enzymes and, as a result, a number 

of specific residues have been implicated in the binding of NADP or NAD, see fig 

1.9. 
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Fig 1.9 Sequence alignment analysis 

Structure alignment of K co/i FLDR (Ingleman ci al. 1997) with five homologous 

oxioreductases whose structure are known, NADPH:flavodoxin reductase Azobacter 

vinelandli (Prasad 1998), flavodoxin reductase from spinach (Karplus ci al. 1991, 

Bruns & Karplus 1995), flavodoxin reductase from Anabaena (Serre ci al. 1996), 

corn nitrate reductase (Lu el al. 1994) PDR from Pseudomonas cepacia (Correll et 

al. 1992). Motifs are indicated by the coloured text. * represent conserved residues. 

FNRE. ccli ---------------- MP.D-UT3KVTKVQTD ------ ALFSLTVHA ---- PVLPFTA 33 
FDRArobzcoto - ---------------- MSN-LVERVLSVHHWND ------ TLFSFKTTR --- ?PSLRFEN 34 

FNRSp1 nach HSKKMEEGITVNKFKPKTP-YVGRCLLNTKITGDDAPGETWHMVFSHEGEI PYREGQSV 58 
FNRAnabaena QAXAK}1ADVPVNLYRPNAP- FIGKVI SNEPLVKEGGI I3IVQHIKFDLTGGNLKYIEGQSI 59 
NjRCrjrri ---- VAPALSN --- PREK-IHCRLVGKELSRD-VRLERFSLPSPDQVLGLPI 45 
PDRPseudcmoras ------------- TTPQEDGFLRLKIASKEKIAR ------ NIWSFELTNPQGAPLPPFEA 41 

FNRE . coli GQEKLGLEIDGERVQ 	SYVNSP ---- DNPDLEEYLVTVP -------------- DGKL 75 
FDRAzobzcotor GQFVMIGLEVDGRPLMI-. SIASPN----YEEHLEFFSIKVQ--------------NGPL 76 
FNR Spinach GVI PDGEDGKPH 	L'SIASSA--LGDFGDAKSVSLCVKRLIYTNDAGETIKGVC 114 
FNRAnabaena Gil PPGVD<NGKPEKL 	YSIASTR 	HGDDVDDKTISLCVRQLEY}GP-ESGETV?GVC 116 
NIR Corn GKHIFVcASIEGKLW 	TPTSMVDEIGHFDLLVKVYFKNEHPKFPNGGLMTQYLDSLP 105 
PDRPseudcicnas GANLTVAVPNGSR--- 	SLCNES----SERDRYTIAVKRD ----------- SNGRGGS 83 

ERE. col i SPRLNLK-PGDEVQVVSEPAGFEvLDEVPHCETLWMLAT 	YLSI LQ-L------127 
FDRzobzcotor TSRLQHLK-EGDEUiVSRKPTGTLVTSDLLPGKHLYMLST 	E11SLIQ -------- 127 
FNRSpinach SNFLCDLK- PGPEVKLTGPV-GKEMLMPKDPNATI IMLGT 	ERS FLWKM------166 
E'NRnabaena STYLTHIE-PGSEVK1TGPV-GKEMLLPDDPEANVIMLAT 	MRTYLWRM------168 
NiR Corn VGSYIDVKGPLGHVEYTGRG-SFVINGKQRHASRL°MICG 	MYQIIQAV ------ 158 
PDRPseudornorLas 

	

ISFIDDTS-EGDAVEVSLPR-NEFPLDKRAKSFILVAG 	MLSMRQLRAEGLR 139 

	

* 	. 	* 

FNRE. col j GKDLD ----------- RFKNLVLVHAAF( --- YAADLSYLPLMQE--LEKRYE- 163 
FDRAzobzco ---- --------- DPE -------- VYERFEKVVLIHGVR --- QVNELPYQQFITEHLPQSEYFG 167 
FNR Spinach ------- EFEKH ---------- DDYKFNGL 	LFLGVPTSSSLLYKEEFEK--MKEKAP- 206 
FNR.knabaena ------- FKDAER ------ AIANPEYQFKGFSWLVFGVPTTPNILYKEELEE--IQQKYP- 212 
NIR Corn LRDQP ---------- EDHTENHL\ 	NR-TEDDILLRDELDRWAEYP 	195 
PDRpseudomonas SFRLYYLTRDPEGTAE'FDELTSDEWQSDVKIHHDHGDPTKAFDEWSVFEKSKPAQHVYC 198 

FNRE. ccli -----------GKLRIQT--VVS ETA--AGSLTGRIPALIESGELESTIGL-PMNKETS 207 
FDRAzobzcotor E ------- AVKEKLIYYP--TVT ESF--H--NQGRLTDLMRSGKLFEDIGLPPINPQDD 214 
FNR Spinach -----------DNFRLDF--AVS EQT--N-EKGE}YIQTRMAQYAVELWEMLKKDNT 249 
FNRAnabaena -----------DNFRLTY--AIS EQK--N-PQGGRMYIQDRVAEHADELWQ-LIKNQKT 255 
NiR Corn -----------DRLKVWY--VIDQVKR--P-EEGWKYSVGFVTEAVLREHVP-EGGDDT 237 
PDRPseudomonas CcPQ ­LM 2TVRDMTGHPSGTVHFESFGGAAA1AAANTADTVRDP.RSGTSFEIP?NRSIN 258 

FNRE. coli HVM -------------- LCGNP ----- QMVRDTQQLLKETRQMTKI-ILRRRPGHMThEHYW 248 
FDRzobzcotor RAM -------------- ICGSP ----- SMLDESCEVLDGFGLKISPRMGEPGDYLIERAF 255 
FNRSpi nach YFY -------------- MCGLKGM --- EKGIDDIMVSLAAAEGIDWIEYKRQLKKAEQWN 292 
FNRAnabaena HTY -------------- ICGLRGM --- EEGIDAALSAAAP.KEGVTWSDYQKDLKKAGRWH 298 
NiR Corn LPL -------------- ACGPP ----- P ------ MIQFAISPNLEXNKYDMANSFVVF- 	270 
PDRPS eudornonas QVLRDANVRVPSSCESGTCGSCKTGLCSGAADHRDDVLAAAAKGTQIMVCVSRA}CSAELV 318 

FNRE.coli 
FDRAzobzcotor VEK- 258 
FNR Spinach VEVY 296 
FNRAnabaena VETY 302 
N1R Corn 
PDRPseucnic'nas LDL- 321 
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However, the NADPH binding domain in E. co/i FLDR is not frilly understood, as 

the enzyme has never been co-crystallised with NADPH or one of its analogues. 

Citrate present in the crystallisation buffer is incorporated in the proposed NADPH 

binding site (Ingleman et at. 1997). The citrate molecule interacts with three 

arginine residues Arg144, Arg174 and Arg184, which are proposed to be involved in 

NADPH binding. Arg 174 is conserved in spinach and Anabaena and has been 

proposed to be involved in the binding of the 2' phosphate group of NADPH. This 

2' phosphate group is what discriminates between NADPH and NADH, see fig 1.10. 

From figi .11 it is clear that these residues form a positive area, which would be an 

attractive docking site for NADPH (Ingleman et al. 1997). 

Fig 1.10 Structure of NADPH and NADH 
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The binding of FLDR's redox partner, flavodoxin (FLD), is also not understood. 

There is a distinct bowl-shaped depression in the FLDR molecule, close to FAD that 

involves both domains. In this depression there are three surface arginine residues, 

Arg236, Arg237 and Arg238, which form a large positive patch in the putative 
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Fig 1.12 Potential Map of FLD 
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'binding' site of the enzyme, see fig 1.11. Flavodoxin, which exhibits a large 

number of negative residues on its surface and it is one of the most negatively 

charged proteins known, see fig 1.12. It appears likely that at least some of the 

positive residues on FLDR are involved in the binding of flavodoxin (Hoover & 

Ludwig 1997, Ingleman etal. 1997). 

Interaction between proteins has long been speculated on. How does the interaction 

occur? Is it specific? How does the alignment of the proteins occur? All these 

factors are important for redox enzymes. The different theories are discussed below 

with particular emphasis upon redox enzymes. 

Redox enzymes are often involved in more than one physiological system, 

interacting with various very different donor and acceptor molecules. Similarly, 

different redox proteins are able to mediate electron transfer between two particular 

donors and acceptors. An example of this is pseudoazurin, which can donate 

electrons to a range of structurally diverse enzymes in the periplasm of T. 

pantotripha (Williams et al. 1995). However, only one of them, cytochrome cd1  

nitrite reductase, has its 3-D structure solved. Cytochrome cd1  nitrite reductase can, 

in turn, accept electron from a range of donors, including pseudoazurin, azurin, 

cytochrome C550 and cytochrome c 551 (Williams et al. 1995). In fact it is known that 

FLDR can use either FLD or ferredoxin as its electron acceptor, although its main 

redox partner is thought to be FLD (Bianchi et al. 1993a). It is obvious that the 

traditional theory of the lock and key mechanism, where a protein has one specific 

site on its surface only suitable for a particular substrate, does not necessarily apply 

to electron transfer proteins which appears to exhibit promiscuous behaviour. 

One possibility is that electron transfer can occur without complex formation. In this 

case the donor and acceptor molecules exchange electrons without actually docking. 

According to the 'Marcus theory' the speed of electron transfer could not be very fast 

in this case (Marcusl956, Marcus 1964, Marcus 1965). It is more likely that redox 

proteins dock to form a complex in order to promote electron transfer. The 

molecular recognition event could be promiscuous in nature, and very specific 
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interactions such as salt brides and hydrogen bonding would not be involved. The 

interaction is more likely to involve less specific and transient electrostatic and 

hydrophobic attractions. 

A basic electrostatic theory is the velcro theory (McLendon 1991), where positive 

charges on one protein and negative charges on the other bring the two proteins 

together. This allows a certain flexibility in docking enabling the sampling of a 

number of sites until the electron transfer complex is achieved. The proteins can be 

imagined to be rolling over each other until the ideal position is achieved. 

The velcro theory has been developed into the "pseudospecfic docking theory" 

(Williams et aL 1995). This takes into account both hydrophobic and electrostatic 

interactions, and has been used to explain the behaviour of pseudoazurin from 

Thioshaerapantotropha. Pseudoazurins are small copper containing redox enzymes, 

which are involved in the flow of electrons between various donors and acceptors in 

the bacterial periplasm. The interaction between pseudoazurin, cytochrome C550 and 

cytochrome cd1  nitrite reductase have been investigated (Williams et al. 1995). The 

crystal structure of pseudoazurin was studied to look for residues which may be 

involved in its binding motif. A hydrophobic patch was found surrounding the 

copper ion. Hydrophobic interactions are thought to be important, because they are 

relatively less specific and directional than electrostatic interactions. An important 

aspect is that a hydrophobic interface has a low dielectric constant, which is 

favourable for electron transfer. In conjunction with this there are a large number of 

positively charged residues, which may be involved in docking along with the 

hydrophobic residues surrounding the copper ion of pseudoazurin. This feature is 

highly conserved in other pseudoazurins. Cytochrome cd1  nitrite reductase, one of 

pseudoazurin's redox partners from T. pantotropha structure was examined, and it 

was found that it showed a hydrophobic patch surrounded by negative residues. 

Modelling studies of the docking of these two proteins show that the interaction of 

the two hydrophobic patches on each protein, surrounded by the oppositely charged 

residues brings the copper ion of pseudoazurin to the closests possible distance to the 

heme iron of cytochrome cd1  nitrite reductase (19-20A) (Williams etal. 1995). 
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In pseudoazurin there are a large number of negatively charged residues on the 

opposite side of the protein from the positively charged patch. This bipolarity of the 

molecule induces a dipole movement. This may help to steer the pseudoazurin and 

cytochrome cdi  nitrite reductase together from long range distances, bringing them 

together in an orientation so that their prosthetic groups are orientated to an optimal 

position for an electron transfer complex to form. This asymmetrical distribution of 

charge is observed in numerous other redox proteins, including cytochrome c. It has 

been observed that electron transfer between cytochrome c and its physiological 

partners occurs at rates, 10 8_109,  which are close to diffusion control. The 

asymmetric distribution of charges helps the molecules to attain the correct 

orientation for electron transfer (Koppenol & Margoliash 1982). Electron transfer 

between cytochrome c and fiavodoxin has been extensively studied (Matthew et al. 

1983), the electrostatic interactions pre-orient the molecules before they make 

physical contact, facilitating the formation of an optimal reaction complex. This 

suggests that the reactants may orientate themselves as they approach each other to 

form the electron transfer complex. 

Neither electrostatic nor hydrophobic interactions are highly specific, since these 

surface motifs allow partners to take up related but different orientations relative to 

each other. Both electrostatic and hydrophobic interactions are important in the 

docking of redox partners, and experimental conditions determines which dominates. 

The above discussion has indicated that there are interactions between redox coupled 

protein molecules before collision occurs. This type of interaction has been 

discussed by Janin (Janin 1997) and developed into a theory. The Janin model 

incorporates the basic feature of protein-protein recognition with the rigid body 

approximation and assumes that no large conformational changes occurs in the 

molecules. The process starts (if long range electrostatic interactions are ignored), 

with a random collision at the rate (k11) predicted by the Einstein- S moluchowski 

equation (Atkins 1990). An encounter complex is formed, which may evolve into a 

stable complex if the two molecules are correctly aligned. The probability of a 
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correct alignment is defined as Pr  and the bimolecular rate of association is defined as 

prkcoii. However, long-range interactions can affect both constants. Coulombic 

attraction makes collisions more frequent and the collision rate can be multiplied by 

a factor qt. This factor is larger than one if the proteins carry net charge of opposite 

sign. The probability factor Pr  is multiplied by a factor qr  that represents the steering 

effect of electric dipoles, which pre-orientate the molecules before they collide. This 

gives an association rate constant Ka = qtqrprkii, making collisions more frequent 

and pre-orienting proteins so that the collision is more successful one. This has been 

applied, to the barnase-barstar system. The presence of barnase in a cell is lethal, 

giving to rise the need for an inhibitor of bastar which has a femtomolar binding 

constant. These proteins have an asymmetric charge distribution, which is important 

in bringing them together. The model predicted a Ka of iO under these 

conditions a Pr  is 1.5 1 O, its value is compatible to computer docking simulations. 

At low ionic strength, long-range electrostatic interactions accelerate the interaction 

of the barnadse-barstar association by a factor of qtqr of up to 10 5  as favourable 

charge-charge and charge-dipole interactions work together to make it much faster 

than free diffusion. From this information it should be possible to gain an 

understanding of how FLDR and FLD interact, by a variety of experimental 

techniques. 

The aim of this work, is to gain a greater understanding of FLDR and its interaction 

with NADPH and FLD. The initial step was to optimise the expression and 

purification of FLDR allowing a full characterisation of the protein. The crystal 

structure of FLDR does not fully elucidate the interaction of FLDR with either FLD 

or NADPH. It is of great interest to understand how these substrates interact with 

FLDR. This will be an important aim of this project. 
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Chapter 2 (FLDR). 

Materials and Methods 

Materials 

Chemicals were purchased from Pharmacia, Promega, Sigma, Biorad, Gibco BRL, 

Amicon, New England Biolabs, Invitrogen and Difco. 

Cell lines 

Strain Genotype Description/Applications 

TOP 10 	One FmcrA(mrr-hsdRMS- Used for transforming DNA ligations 

Shot 	Cells mcrBC)801acZM151acX74 deoR 

recAl araD139 (ara-leu)7697 ga/U 

ga/K rpsL endAl nupG 

BL21(DE3) -Fomp Thsdsb (rB mB)  gal dcm General purpose expression host 

(DE3) 

JM101 sup E, thi, i\ (lac-proAB)[F' tra Storing plasmid DNA 

D36, pro AB, lac 1 9L.M15] 

JM109 F traD36 lacP (lac Z) M15 Storing plasmid DNA 

proAB/e14(McrA) (lac-proAB) 

thi gyr A96 (Nal) endAl hsdR17 
Expression of flavodoxin 

(r K12-mK124) relAl supE44 recAl 

HMS174(DE F-recAl hsdR(r, 2-mK , 2 )Rif(DE3) recA-K-12 expression host 

3) 

B834(DE3) F-ompT hsdSB(rfl-mB-)gal dcm met Met auxotroph, parent 	of BL2 1 

(DE3) control non-expression host 
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Plasmids 

Plasmids 

pCL21 pET-16b + fldr 

pCL22 pUCI8IRBS + fldr RI 44A 

pCL23 pUCI8IRBS + fldr R174A 

pCL24 pUC1SIRBS + fldr R184A 

pCL25 pUCI8/RBS + fldr R23 7A 

pCL26 pUC18IRBS + fldrR238A 

pDH1 pTRC-99A +fld 

Growing cells 

Overnight cultures were grown up by inoculating in sterile conditions. A loop fill of 

bacterial culture was added to lOmi of Luria Bertani (LB) medium, [bactotryptone 

(lOg/I), bacto yeast extract(5g/1), NaCl (log/1), pH adjusted to 7.5 with NaOH, 

autoclaved at 121°C for 15 min at 15psi.], containing ampicillin (lOOj.ig/ml). For 

larger cultures the same procedure was used scaled up by the necessary factor. The 

cultures were grown overnight with shaking (37'Q. 

To prepare agar plates bacto-agar (15g11)was added to the LB medium, the plates 

were then poured (40m1 per plate). If antibiotics were required they were spread to 

dryness after the plate had dried. The bacterium was added in sterile conditions by 

spreading a loopful of bacterium over the plate. The plate was then incubated 

overnight (37'Q. 
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SDS-PAGE 

SDS-Page gels were used for the analysis of proteins present in cells (Laemmli 1970). 

Transformation 

LB broth (lOmi) was inoculated with cell line (0.2m1) and 1M MgCl (0.2m1), and then 

grown for 1 hour. The cells were chilled on ice (5mins), and then centrifuged at 

2000rpm (15 mm). The supernatant was discarded and the cells resuspended in 

chilled transformation buffer (TB) (50mM CaC12, 10mM Tris, pH 8). The cells were 

left on ice (30 mins), and were then centrifuged at 3000rpm (15mm). 

The cells were resuspended in 4001.1.1 of TB buffer and to lOOpi fractions of this, up to 

101.11 of DNA was added and left on ice (1-2 hours). The cells were then heat 

shocked at 37°C (5 mm), LB medium (In-fl) was added and then the cells were grown 

at 37°C (1 hour). The cells were centrifuged (lOmins) and then resuspended in lOOp.! 

of LB and spread to dryness on selective plates. 

Transformation of DNA into TOP 10 One ShotTm Cells (Novagen) was done as per 

the manufacturer's instructions. 

Polymerase chain reaction (PCR) 

The template and primer were added in appropriate proportions to Ready To Go PCR 

beads (Pharmacia Biotech), this was then made up to 25 p.1 as per the manufacturer's 

instructions. The PCR reaction was then carried out in Perkin Elmer DNA thermal 

cycler, with a typical cycle of 95°C 1mm, 54°C I min and 72°C 1mm 

Agarose gel 

Required amount of agarose was added to TE buffer (40mM Tris, 1mM EDTA) and 

heated to dissolve the agarose. The solution was allowed to cool to 60°C and 

ethidium bromide added to a final concentration of 0.5tg/m1. The gel was then 
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poured into a casting mould and allowed to set at room temperature. The DNA 

sample was loaded onto the agarose gel using blue/orange loading dye. The DNA 

was size separated by running the gel at 100V (40 mins). The gel was then visualised 

under UV light. 

Purification of DNA from agarose gels 

DNA was prepared from agarose gels using Prep-A-Gene ®  DNA Purification Systems 

(BlO-RAD), as per the manufacturer's instructions. 

Digestion of DNA with restriction endonuclesaes 

The required amount of DNA was treated with the appropriate enzyme(s) and buffer. 

This was incubated at the required temperature for a specified time. 

Ligation of DNA 

DNA was cut with appropriate restriction enzymes was incubated with DNA ligase 

and the ligase buffer at room temperature (two days). A control reaction was also 

carried out. Both the control and ligation reaction were transformed into an 

appropriate cell line. 

PCR screen 

Colonies were picked from a plate, and then touched on to another plate at a known 

position. The remaining colonies were suspended into 50j.il of water. The cell 

suspension was then boiled for five minutes, and the solution centrifuged (14 000rpm) 

for two minutes. A sample (5j.il) was taken and used as a template in a PCR reaction 

to amplify the required gene using the appropriate primers. The resulting reaction 

was run on an agarose gel and visualised using UV light. 
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Preparation of plasmid DNA 

Plasmid DNA was prepared using Wizard ® Plus SV Minipreps DNA Purification 

System (Promega), following the manufactures instruction. 

DNA sequencing 

The sequencing was carried out by combining the following together for each 

template to be sequenced: sequencing reagent pre-mix (Amersham), DNA template, 

primer (Spmol), and H20 to final volume of 2Oiil. The PCR reaction was carried out 

with the following cycle 96°C for 30s, 45°C for 15s and 60°C for 4 mins. The DNA 

was then precipitated, and submitted for sequencing by Sanger dideoxy chain 

termination method on ABI Prism 377 DNA sequencer. Nicola Preston provided the 

sequencing service. 

DNA Precipitation 

DNA was precipitated with 3M sodium acetate (pH 5.3): ethanol (0.1:2 v/v), which 

was mixed well with the DNA solution, and kept at -20°C (1 hour). The solution was 

then centrifuged (15mins), and the supernatant discarded. The precipitated DNA was 

then washed with a 70% solution of ethanol and the supernatant discarded. The DNA 

pellet was then dried under vacuum. 

Purification of flavodoxin NADPH reductase & mutants 

Fermenter containing LB medium (91) was inoculated with HMS 174 (DE3) cells (11), 

containing the plasmid pCL21, which had been grown overnight. The cells were 

grown (37'Q until an OD=1 @ 600nm was reached. The over-expression of the fldr 

gene was achieved by the addition of IPTG (1 OOiiM), and the cells were then grown 

for a further 3 hours. The cells were harvested by centrifugation (5 000rpm, 20 

mins). The wet weight of the cells was recorded. The cells were washed with Tris 

buffer A ( Tris 50mM, pH 7.5) The cells were lysed by sonication (20*30  s bursts). 
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The cell free extract was separated by anion exchange chromatography (Q-Sepharose 

column) using a gradient of 0-IM NaCl in 50 mM Tris pH 7.5, over 20 column 

volumes. The FLDR elutes at 150mM NaCl and is yellow in colour. The fractions 

containing FLDR were combined and applied to an adenosine 2',5'-diphosphate 

(ADP) sepharose column. The column was washed with three column volumes of 

binding buffer (10mM sodium phosphate, 0.1 5M NaCl, pH 7.5). FLDR was eluted 

with elution buffer (10mM sodium phosphate, 0.5M NaCl, pH7.5). FLDR was then 

dialysed against assay buffer (10mM sodium phosphate, pH 7.5). Glycerol was added 

to a concentration of 10%, and FLDR was stored at -20°C. 

Flavodoxi n NADP reductase extinction coefficient 

To calculate the concentration of ferredoxin NADP reductase the extinction 

coefficient was used, (Jenkins & Waterman 1993). 

c456=7 1 00M'cm' 

Preparation of 15N labelled Flavodoxin NADP Reductase 

HMS 174 cells(1l) containing the pCL21 plasmid were grown with shaking (37°C) 

overnight in LB medium. The cells were then washed with M9 media. This was then 

used to inoculate 10 1 of ' 5N-M9 minimal media, [Na2HPO4  (6gfl), KH2PO4  (3g/l), 

NaCl (0.5g11), 15NH4C1 (lg/l), MgSO4, (1M 2nil)]. This was grown for 10 hours in a 

fermentor at 37°C, until an 0D1 @ 600nm. The cells were then induced with IPTG 

(100pM) for a further 12 hours. FLDR was then purified as previously described. 

NMR Spectroscopy 

The NMR spectroscopy was performed with the assistance of Dr. Emma Beatty. 2-D 

HSQC (heteronuclear single quantum coherence) was performed on 15N-FLDR 

(0.33mM). NADPH (0.4mM) and fiavodoxin (0.27mM) were titrated into FLDR 

separately and HSQC spectra was recorded. 
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Purification of flavodoxin 

Fermenter containing LB medium (91) was inoculated with JIM109 cells (11) 

containing the plasmid pDH1, which had been grown overnight. The cells were 

grown (37'Q until an 013=1 @ 600nm was reached. The overexpression of the fld 

gene was achieved by the addition of IPTG (1 OOp.M) and riboflavin (5mg/1), the cells 

were grown for a further 6 hours. The cells were harvested by centrifugation (5000 

rpm, 20 mins). The wet weight of the cells was recorded. The cells were washed 

with Tris buffer A (Tris 50mM, pH 7.5) The cells were lysed by sonication (20*30  s 

bursts). Protamine sulphate (0.1 %[w/v]) was added to the cell free extract. 

The cell free extract was separated by anion exchange chromatography (Q-sepharose) 

using a gradient of 0-1M NaCl in 100mM sodium acetate, pH 5, (20 column 

volumes). The FLD elutes at 450mM NaCl and is blue in colour. The fractions 

containing the FLD were combined, and dialysed against 50mM Tris pH 7.5 over 

night. The FLD re-oxidised to an orange colour. FLD was then applied to 

RESOURCE Q column and eluted with a gradient 0-1M NaCl in Tris 50mM, pH 7.5 

(20 column volumes). The fractions containing FLD were collected and combined. 

Glycerol was added to a concentration of 10%, and FLD was stored at -20°C. 

Flavodoxin extinction coefficient 

The concentration of flavodoxin was calculated using the extinction coefficient. 

E466= 8250 M'cm' (Fuji & Huennekens 1974) 

The purity of flavodoxin was estimated using a ratio. 

A274IA 6=5 .8 (Bianchi et al. 1993 b) 

Steady-state kinetic assay of flavodoxin NADP reductase 

Steady-state kinetic parameters for wild-type and mutant forms of FLDR were 

measured at 30 °C in 10 mM sodium phosphate (pH 7.5) (assay buffer) on a 

Shimadzu 1201 UV/Vis spectrophotometer. Reduction of cytochrome c (horse heart, 

type 1) was monitored by absorbance increase at 550 nm, using an absorbance 
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coefficient ( 	= 22640 M4  cm'. Reduction of potassium ferricyanide was 

monitored by absorbance decrease at 420nm, using absorbance coefficient (c 	= 

1010 M'cm'. 

Pre-steady-state kinetic 

Stopped-flow measurements of transient absorbance changes associated with 

reduction of FLDR flavin (decrease in absorbance at 456nm), FLD flavin (increase in 

absorbance at 583nm) and reduction of cytochrome c (550 nm) were made using an 

Applied Photophysics SF. 17 MV stopped-flow kinetics spectrophotometer. 

Reactions were performed at 30 °C in assay buffer (7.5) (unless otherwise stated). 

Analysis of stopped-flow data were performed using the SF. 17 MV software and 

Origin (Microcal), both of which use non-linear least-squares regression analysis. The 

reduction of wild-type and mutant forms of FLDR by NADPH and NADH were 

measured by rapid mixing of NAD(P)H (10 p.M - 10 mM) with enzyme (10 - 50 p.M) 

and monitored at 456 nm (total flavin reduction). Rates of FLDR-to-FLD electron 

transfer were measured after enzyme and buffer solutions had been degassed and 

bubbled for 15 minutes with oxygen-free nitrogen. The solutions were then 

transferred to the stopped-flow syringes and sealed within the glove box before 

transferring to the stopped-flow apparatus. Wild-type and mutant FLDRS (at a fixed 

concentration between 30 — 50 p.M) were placed in one stopped-flow syringe, with 

FLD (20 p.M), and NADPH (2mM) in the other syringe, the rate of electron transfer 

from FLDR to FLDs FMN was monitored by absorbance change at 583 nm. 

Reduction of cytochrome c was measured at 550 nm after reaction of reduced FLDR 

(10 - 50 p.M enzyme + 2 mM NADPH) with cytochrome c (horse heart, type 1; 20-3 

tiM). All solutions were degassed as described above. 

CD Spectrometry 

Protein samples were in assay buffer (10 mM sodium phosphate, pH 7.5) throughout. 

CD measurements were made in the far UV (190-260 nm), near UV (260-320 nm) 
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and visible (320-600 nm) regions on a Jasco spectropolarimeter at protein 

concentrations of ca. 15 - 20 p.M (far UV) and ca. 30 - 80 p.M (near UV-visible). 

UVNis Spectroscopy 

Protein samples were in assay buffer (10 mM sodium phosphate, pH 7.5) throughout. 

All UV-visible spectra were run on a Shimadzu 2101 scanning spectrophotometer. 

Fluorescence 

Protein samples were in assay buffer (10 mM sodium phosphate, pH 7.5) throughout. 

Fluorescence from protein aromatic residues (primarily tryptophan) was measured on 

a Shimadzu RF-5301 spectrofluorophotometer with excitation wavelength set at 290 

rim and emission measured between 300-400 nm, using 0.5 p.M protein. Flavin 

fluorescence was measured with excitation at 456 nm and emission measured between 

500-600 nm, also using - 0.5 p.M protein. Excitation and emission slit widths on the 

Shimadzu instrument were set at 5 nm / 5 rim for tryptophan fluorescence, and at 10 

nm / 10 rim for flavin fluorescence. 

Mass Spectrometry 

Electrospray mass spectrometry was performed on a micromass Platform quadrupole 

mass spectrometer equipped with an electrospray ion source. The cone voltage was 

set to 70V and the source temperature to 65 °C. A waters 2690 HPLC unit with a 

Waters 486 Tunable Absorbance Detector was connected to the mass spectrometer. 

Protein samples (10p.g protein in buffer) were separated on a Jupiter 5p.g C-4 300A 

column at a constant TFA concentration of 0.01% using a linear gradient of 10-100% 

acetomtrile in water over 40 min flow rate of 0.05m1/min. The total ion count of all 

ions in the range m/z 500 to 2000 and the UV chromatogram at 280nm were recorded 

for the reversed-phase HPLC separation. The mass spectrometer was scanned at 

intervals of 0. is, the scans accumulated, the spectra combined and the average 

molecular mass determined using the MaxEnt and Transform algorithms of MassLynx 

software. Dr. Scott Webster provided this service. 
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Potentiometnc titrations 

All redox titrations were conducted within a Belle Technology glove box under a 

nitrogen atmosphere, with oxygen maintained at less than 5 p.p.m. Degassed, 

concentrated enzyme samples were passed through an anaerobic Sephadex G25 

column (1 x 20cm) (Sigma) immediately on admission to the glove box to remove all 

traces of oxygen. The column was equilibrated and proteins were eluted with 0. 1M 

phosphate buffer (pH 7.0), which was used throughout the experimental procedures. 

Protein solutions were titrated electrochemically according to the method of Dutton 

(Dutton 1978) using sodium dithiomte as reductant and potassium ferricyanide as 

oxidant. Mediators were introduced prior to titration; typically 2-hydroxy-1,4-

napthaquinone (5 1.tM), benzyl viologen (1 1tM) and methyl viologen (1 jiM) within 

sample volumes of 5-10mi. After 10-15 minutes equilibration following each 

reductive/oxidative addition, spectra were recorded on a Shimadzu 1201 UV/Vis 

spectrophotometer (typically between 350 and 800nm) contained within the anaerobic 

environment. The electrochemical potential of the sample solutions were monitored 

using a CD740 meter (WPA) coupled to either Pt/calomel or PtJAg.AgC1 combination 

electrodes (Russell pH Ltd.) at 25 ± 2°C. The electrodes were calibrated using the 

FefFe11  EDTA couple as a standard (+108mV). The calomel and Ag.AgC1 electrodes 

were corrected by +244 ± 2mV and +198 ± 3mV respectively, both relative to the 

normal hydrogen electrode. For experiments involving FLDR, UV/Vis spectra were 

affected by the slow formation of a protein precipitate, which resulted in a small 

increase in baseline absorbance with time. This was corrected for by transforming 

each spectrum with a 1/?. subtraction calculated to return the absorbance at 800nm 

back to zero (at this wavelength chromophore absorbance is minimal). All data 

manipulations and non-linear least squares curve fitting of electrochemistry data were 

conducted using Origin (Microcal). This experiment was undertaken with the 

assistance of Dr. Simon DaTh 
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Molecular modelling 

Dominikus Lysek carried out molecular modelling studies studying the interaction of 

FLDR with NADPH. Atomic co-ordinates for protein were taken form the 1.7A 

resolution X-ray structure of flavodoxin reductase from E. coil (Protein Data Bank 

number = 1FDR) (Ingleman et al. 1997). All modelling studies were carried out using 

residues 2-248, excluding residues 44-46, which could not be refined in the original 

structure. The graphics program SYBYL (Tripos) was used to dock the NADPH 

onto flavodoxin reductase, and to rotate W248 by 900.  The restraints for this 

preliminary model were that the hydride to isoalloxazine distance should be less than 

8A and residues R144, 174 & 184 should be close to, or should form part of, the 

intermolecular recognition surface. 

A number of possible orientations were selected as starting points for further 

molecular mechanics refinement to remove any short non-bonded contacts and to 

optimise any intermolecular hydrogen bonds and salt bridges using the program 

Biopolymer-flexidock within SYBYL, using the maximum of 3000 generations 

allowed. All non-hydrogen atom positions of the amino acid residues and prosthetic 

groups in flavodoxin reductase and NADPH were refined using a Powel least squares 

minimisation algorithm with the standard geometry definitions. No water or other 

solvent molecules were included in any of the models. 

Sequence Alignment 

Amino acid sequence alignments of E. coil FLDR with other proteins were performed 

initially using the MSA (Multiple Sequence Alignment) program from Washington 

University, and refined manually. 
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Chapter 3 (FLDR) 

Investigation into wild type flavodoxin NADP reductase 

Introduction 

The aim of this work is to clone the fidr gene into an efficient vector to achieve a 

high level of protein expression, and to develop a simple and effective purification 

system. This will allow the production of large amounts of homogenous protein for 

characterisation. The characterisation of FLDR is essential because it is involved in 

many important systems in E. co/i, and a thorough knowledge of FLDR is essential 

to provide an understanding of these pathways. The interaction of FLDR with its 

redox partner enzyme FLD and cytochrome P-450 will also be discussed in this 

section. This latter work was carried out by Miss Lisa McIver and is included for the 

sake of completeness. I thank Miss McIver for permission to use her data. 

Results 

Cloning of fldr gene 

The fldr gene was cloned from the plasmid pEEIOIO (a gift from Dr. Elizabeth 

Haggârd-Ljungquist, Department of Chemistry, Karolinska Institute, Stockholm, 

Sweden) (Bianchi el at 1993a) using primers "RED FOR" (5' 

CAGGAGAATT 	CTGATTGGGTAACAGGC 3') and "RED REV" (5' 

ATAA ;. . 	GCTTACCAGTAATGCTCCGCTGTCAT 3'). "RED FOR" 

contains a NcoI site (red) encompassing the start codon (underlined) of the fldr 

gene). "RED REV" contains a BamHI site (red) encompassing the stop codon 

(underlined) of fldr. A PCR reaction was carried out, and the PCR product was 

cleaved with NcoI and BamHI. The digested product was ligated into plasmid 

pET 16b (Novagen Inc., Madison) under the control of a T71ac promoter to produce 

the plasmid pCL2I, see fig 3.1 
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Fig 3.1 Picture of the plasmid pCL21 (pET16-b/fldr) 

Diagram showing the construct of pCL2 I plasmid which is a construct of pET 16-b 

and thefldr gene. Thefldr gene was cloned into pET 16-b using the restriction sites 

NcoI and Barn M. The ampicillin resistance gene (amp) is present on the construct. 

The vector is under the control of the T7 promotor system. 

Hind III (6277) 

Cia 1(6024) 

fldr 

Apa U (5971) 

	

Hind III (5349) 	 .4pa Li (808) 

	

Cia 1(5344) 	 lac i 

., 

Expression & purification of wild-type FLDR 

Flavodoxin NADP reductase (FLDR) is a monomeric (247 amino acids, M 1  27648) 

enzyme containing FAD. E. coil I-IIVIS 174 (DE3 )/pCL2 1 was used to overexpress 

FLDR. Expression level of 15mg/liter was achieved. The protein was purified by 

sequential chromatography steps on Q-Sepharose and 2', 5 '-ADP Sepharose (Table 

3.1). Transformants of pCL2I in strain BL2I (DE3) resulted in even higher 

expression of fldr (Ca 35mg/I); but the specific activity of the purified FLDR was 

considerably lower than that purified from the HMS 174 (DE3) strain. Samples were 

analysed at all steps by SDS-PAGE (Fig 3.2) and UV-visible spectroscopy. 
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Table 3.1 Purification table for E. coil NADP flavodoxin oxidoreductase 

(FLDR) 

Total protein was estimated by absorbance at 280nm. FLDR was estimated by 

measurement of absorbance at the peak of the longer wavelength flavin band 

(456nm). 

Purification 

step 

Total 	volume 

(V) (ml) 

Total protein 

(VxAbs) 

Total FLDR 

(VxAbs456) 

Abis456/AbS2811 Purification 

fold 

Lvsate 55 833.9 18.26 0.0207 

Q-Sepharose 80 119.1 9.28 0.0779 3.77 

2'.5-ADP 

Sepharose 

35 37.5 5.74 0.1531 7.41 

Fig 3.2 SDS —page gel of the purification steps of wt FLDR 

la: SDS PAGE of E. co/i Flavodoxin NADP oxidoreductase (FLDR) purification 

steps. Lane 1: Molecular weight standards (94000, 67000, 43000, 30000, 20100, 

14400 Da), Lane 2:CFE, Lane 3: Q-Sepharose Lane, 4: 2', 5'-ADP Sepharose. 

1 2  3 4 

jTL Imp 
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Spectra was carried out as described in the 

Materials & Methods section. 
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The molecular weight of the expressed FLDR apoprotein was determined as 27648 

Da by electrospray mass spectroscopy. This is 28 Da higher than the predicted 

molecular mass of 27620 Da calculated from the amino acid sequence derived from 

the database gene sequence (Bianchi et al. 1995) (less the N-terminal methionine). 

However, the recent solution of the atomic structure of the E. coil FLDR indicates 

that an arginine is present at position 126, as opposed to a glutamine predicted from 

the gene sequence (Ingleman et al. 1997). The difference in molecular mass of these 

two residues is exactly 28 Da, corresponding to the apparent discrepancy. The fldr 

gene was sequenced by Sanger dideoxy chain termination method and this also 

confirmed that arginine was present at position 126 and not glutamine. 

FLDR is bright yellow in its oxidised form and it is converted to a neutral blue 

semiquinone by the addition of one reducing equivalent. FLDR has an extinction 

coefficient of 7100 M'cm' at 456nm (Jenkins & Waterman 1993). The oxidised 

FLDR had flavin absorbance maxima at 456nm and 400nm, with a shoulder on the 

longer wavelength band at 483nm see fig 3.3. Based on the 7.41-fold purification 

value calculated using flavin absorbance at this wavelength, the overexpressed FLDR 

comprises 13.5% of the total soluble protein in the E. coil extract. 

NMR Spectrscopy 

2-D HSQC spectra was carried out on ' 5N labelled FLDR (0.33mM), NADH 

(20mM) and flavodoxin (20mM) were titrated in separately. A shift in some peaks 

was observed, when both FLD and NADPH were titrated into FLDR. 

Enzyme activities 

Purified FLDR shows NADPH-dependent reductase activity towards a variety of 

electron acceptors (Table 3.2). In previous studies a buffer of 100 mM sodium 

phosphate (pH 7.5) was used. However, we established in the current study that 

interaction with the cytochrome was primarily electrostatic and was enhanced at. -  

lower ionic strength, being optimal at 10 mM sodium phosphate (pH 7.5) (assay 

buffer). 
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Table 3.2 Steady-state kinetic parameters for FLDR. 

Rates of reduction of artificial electron acceptors were measured at 550nm for 

cytochrome c (22640 M'cm') and 420nm for potassium ferricyanide (1010 M'cm 

'). Rates were measured at 30 °C in 10mM sodium phosphate buffer (pH 7.5) with 

saturating (200 jiM) NADPH. The Km for NADPH was determined under conditions 

of saturating cytochrome c (200 jilVi). The Km for the FLD was determined under 

conditions of saturating cytochrome c and NADPH, with the FLDR at 16.65 nM. 

Substrate k 	(mol/min/mol) Km (pM) 

Potassium ferricyanide 673.9 ± 16.3 3.95 ± 0.54 

Cytochromec 340±7 17.6±2.15 

NADPH ---- 3.85±0.5 

FLD ---- 6.84±0.68 

Using cytochrome c (horse heart) as the acceptor, a k t  of 340± 7 mol/minlmol and a 

Km  of 17.6:L 2.15 jiM were measured using homogeneous FLDR at 30°C in 10mM 

sodium phosphate buffer (pH 7.5). With saturating cytochrome c, the Km for 

NADPH was estimated at 3.85 ± 0.5 pM. Under similar conditions, potassium 

ferricyanide was reduced with a Km of 3.95 ± 0.54 M and a k at  of 673.9 ± 16.3 

mol/min/mol. Purified FLD acts as a single electron shuttle and is able to stimulate 

the rate of FLDR-dependent cytochrome c reduction approximately 6-fold under the 

above conditions. With saturating cytochrome c (200pM) and FLDR at 16.65 nM, a 

Michaelis curve was obtained for the stimulation of cytochrome c reductase activity 

by FLD indicating an apparent V of 272 ± 11.5 mollmin/mol and an apparent Km 

of the FLD for the FLDR of 6.84 ± 0.68 jiM. 

Stopped-flow characterisation 

Investigations of the rates of reduction of FLDR (40 pM) with NADPH (4 pM — 2 

mM) were performed with measurement of the rate of decrease in absorbance at 

456nm, the oxidised FLDR absorbance maximum. The rate observed was 21± 2 s_ i , 

-a 
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regardless of the concentration of NADPH. A similar value was obtained when the 

concentration of FLDR was altered. 

Attempts to measure the rate of electron transfer between NADPH-reduced FLDR 

and FLD (following the formation of FLD semiquinone at 583nm) proved difficult 

under aerobic conditions due to the slow rate of this process and the relatively rapid 

reoxidation of the FLDR. To solve this problem, solutions were degassed and made 

up anaerobically prior to performing the stopped-flow experiments. The rate of 

formation of FLD semiquinone was seen to be very slow when reduced FLDR (40 

p.M) was mixed with FLD (20.tM). Over the first 60 seconds, a single exponential 

rate of only (3.4 ± 0.2) x 10.2  was recorded in the presence of 2mM NADPH. 

Cytochrome P-450 reduction 

Miss Lisa McIver also analysed the nature and kinetics of the reduction of 

cytochrome P-450 by the FLDR/FLD system. The ability of these flavoproteins to 

support the oxidation of arachidonic acid by the haem domain of flavocytochrome P -

450 BM3 was studied by Miles etal. (1992). The FLDRIFLD system proved able to 

transfer electrons to the P-450. At concentrations of 0.762 PM P-450, 0.25 p.M 

FLDR and 25 iM FLD, a rate of 5.48 ± 0.95 mol arachidonic acid oxidised/min was 

measured. Data were collected from three sets of fatty acid oxidation assays in which 

the P-450 was maintained at one of three different concentrations (0.76 j.i.M, 2.54 p.M 

or 3.81 p.M), FLD was kept constant at 25 j.tM (4-fold in excess of its apparent Km 

for FLDR) and FLDR was varied between 0.25 iiM and 10 p.M. The plots of the 

reciprocal rates of these data v. the reciprocals of the [FLDR]. The lines plotted were 

parallel (not convergent) indicates that the P-450 reduction mechanism is ping-pong 

in nature, rather than involving a ternary complex between the P-450, FLDR and 

FLD. 
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Potentiometric titràtions 

The absorbance v. potential data is fitted in figure 3.4 to an equation (equation 1) 

comprising the sum of one 2-electron redox function designed to model the 

absorbance of a flavin passing through 3 different oxidation states. 

aiO E9 + b + clo(E2-E )/59 

Flavin absorbance = 
1 + io -E/59  + 10(E2-E )159 

Equation 1: a, b, c absorbance coefficients for oxidised, semiquinone and reduced 

fiavin, respectively. E electrode potential; E 1 , E' 2  midpoint potentials for the 

semiquinone/reduced couple and the oxidised/semiquinone couple, respectively. 
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Figure 3.4 a plots the proportion of FLDR oxidised based on the sum of the 

absorbance values between 440nm and 480nm against the potential of the 

enzyme solution. 

Figure 3.4 b the redox titration of the .E coli FLDR at ca 72.tM monitored by 

UVfVis spectrophotometry between 350 and 800nm. 

The 1 electron reduction of FLDR does not result in the accumulation of a stable 

semiquinone intermediate with long wavelength absorbance. Thus potentiometric 

data for both 1 and 2nd  electron reductions are determined from the continuous 

decrease in absorbance between 440-480nm. Using absorbance between 440-480nm 

fitted to Equation 1. From these data E 1  (oxlsq) = -308±4 mV and E' 2  (sq/red) = - 

268±4 mV. 

Fig 3.4 a 
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Lisa McIver carried out further redox titration studies, of interest, which will be 

reported here. The redox titration of FLDR was carried out in the presence of a 

saturating concentration (5mM) of 2' adenosine monophosphate (2' AMP), in order to 

investigate the effects of binding of a nucleotide analogue to the NADPH site on the 

redox properties of the FAD in FLDR. 2' AMP is non-redox active and thus can be 

used to in reductive titrations to mimic the effects of binding of NADP on the FAD 

redox properties. In preliminary experiments, the affinity of 2' AMP for FLDR was 

estimated by measurement of its 10 50  (-- 1mM) for FLDR-mediated cytochrome c 

reduction. The concentration of 5mM used in the titration was based on this result. 

An increase in the reduction potentials of both the oxidised/semiquinone ' 1 

elevated by l5mV to -293 ± 6mV) and semiquinone/reduced (E' 2  elevated by 38mV 

to -230 ± 7mV) couples of FLDR was observed in the presence of 2' AMP (table 

3.3). Lisa McIver also determined the redox potential of FLD, FLDR's redox 

partner. Values for the reduction potentials of FLDR and FLD flavins are collected 

in table 3.3 
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Table 3.3 Redox potentials 

Midpoint reduction potentials (E' in mV) for the flavin cofactors in purified E. co/i 

FLDR (NAI)P+  flavodoxin oxidoreductase) and FLD (flavodoxin), calculated from 

electrode potential v. absorbance data. E' 12  refers to the midpoint potential for the 2-

electron reduction of the flavins in each protein, while E' 1  and E' 2  refer to the 

midpoint reduction potentials for the ox/sq and sq/hq couples, respectively, for FLD 

and FLDR. The values for FLD and FLDR are compared with the values for free 

FAD and FMN (Massey 1991, Draper & Ingraham 1968). 

E' 1  E' 2  

FLDR FAD -288 ±4 -308 ±4 -268 ±4 

FLDR FAD (+2' AMP) -261 ± 6 -293 ± 6- 230 ± 7 

FLDFMN -343±6 -254± 5 -433 ±6 

FREE FAD -207 ----- 

FREE FMN -205 -172 -238 

Discussion 

The reduction potentials for the flavins in the flavodoxin NADP reductase (FLDR) 

have not been previously reported. An understanding of the FLD and FLDR system 

is central to our understanding of the roles these flavoproteins play in electron-

transfer to the various systems in E. co/i for which they are essential. These systems 

include cobalamin-dependent methionine synthase, biotin synthase anaerobic 

ribonucleotide reductase and pyruvate formate lyase. 

The quantities of pure FLDR and FLD recovered in our expression system are 

considerably higher those reported previously (Jenkins & Waterman 1993, Bianchi et 
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al. 1995). 	The high levels of expression achievable with the T7 

polymerase/promoter system, coupled with efficient purification regimes (including a 

2', 5' -ADP Sepharose affinity step for FLDR) facilitate good recovery. Protein 

purification data indicate that the FLDR can be overexpressed to at least 10% of total 

cell protein without notable detrimental effects on cell growth. However, it was 

noted that transformants of the fldr gene in the faster growing BL21 (DE3) strain 

yielded protein with considerably lower specific activity than that from HMS 174 

(DE3). This is possibly due to failure of the cells to match FAD synthesis and/or 

incorporation to the production of FLDR apoenzyme with strong induction under fast 

growth conditions. 

It is worthy of note that E. co/i FLDR is capable of reduction of cytochrome c in the 

absence of flavodoxin or alternative protein mediators. This has not been reported 

previously. However, the rate is elevated by the presence of E. coli FLD. In a recent 

publication, Jenkins and co-workers (Jenkins et al. 1997) reported the kinetics of 

cytochrome c reduction with the Anabaena variabilis flavodoxin NADP 

reductase/flavodoxin system. In this system, there is negligible flavodoxin-

independent cytochrome c reduction by the Anabaena FLDR. However, the 

cytochrome c turnover number of 1200min' for the Anabaena FLDR/FLD system is 

much higher than that of its E. co/i homologue reported here. From stopped-flow 

studies, the first reduction of cytochrome c by reduced FLDR can occur at up to 1740 

mind  compared with only 339 min- ' during steady state. Clearly, the reduction of 

cytochrome c by FLDR is rate-limited by processes other than its binding and the 

transfer of an electron to the ferric haem. 

The mass of the FLDR shows a discrepancy of 28 Da from that predicted by 

translation of the determined nucleotide sequence (Bianchi et al. 1995). The recently 

determined atomic structure of FLDR (Ingleman el al. 1997) indicated the presence 

of an arginine as opposed to a glutamine residue at position 126. The difference in 

mass between these two residues is precisely 28 Da; thus our data indicate that the 

discrepancy is in the DNA sequence and not the atomic structure, and that residue 

126 is an arginine. It is worthy of note, also, that the mass determined for FLDR 

44 



FLDR, Chapter 3: Characterisation of wt FLDR 

indicate that insignificant proportion of the purified protein retains its initiator 

methiomne residue, and that there are no covalent modifications of the flavoprotein 

in the homologous host. 

Very good NMR data was obtained for 15N-FLDR. Although FLDR is a relatively 

large protein in NMIR terms. When NADPH was added to FLDR some peaks were 

seen to shift, some of these peaks were inferred to be arginines from their chemical 

shift and the nitrogen dimension. Shifts in other peaks were seen when FLD was 

added to ' 5N-FLDR, again some of these peaks were inferred to be arginines from 

the chemical shift and the nitrogen dimension. However, these peaks could not be 

assigned to specific arginine residues as a fill structure determination of FLDR by 

NM1R has not been carried out. Movement was also seen in other peaks when FLD 

and NADPH were added, however it was not possible to identify the corresponding 

residues. When the crystal structure was examined three arginines residues, R144, 

RI 74 and RI 84 were proposed to be present in the NADPH binding site (Ingleman et 

al. 1997). As mentioned previously citrate present in the crystallisation buffer had 

precipitated in the proposed NADPH binding site, and FLDR has not been co-

crystallized with NADPH. Three other arginine residues, R236, R237 and R238 are 

clearly visible on the surface of FLDR, and these form a positive patch which can be 

inferred to be a potential docking site for flavodoxin, as flavodoxin is one of the most 

negatively charged proteins known. Ingleman et a! (Ingleman et al. 1997) have 

suggested that the residues R236, R237 and R238 of FLDR would be able to dock 

FLD. All these arginine residues clearly warrant further exploration into their role in 

the interaction with both FLD and NADPH, and the results of our investigations are 

discussed in the next chapters. 

Lisa McIver collected potentiometric data for E. co/i flavodoxin, and it was 

demonstrated that FLD stabilises a neutral blue semiquinone form of FMN. The 

FLD hydroquinone cannot be proposed as a realistic electron transferase to the biotin 

synthase enzyme or cytochrome P-450; since the midpoint reduction potential for the 

sqlhq couple is some lOOmV more negative than that of the NADPH/NADP couple 

(and 165mV and 125mV more negative than those of the FLDR ox/sq and sq/hq 
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couples, respectively). The midpoint reduction potential values for the FLD (-

254mV [ox/sql and -433mV [sq/red]) are similar to those obtained from non-

recombinant E. coil FLD and flavodoxins from other species (Skyes & Rogers 1984). 

Repeats of the FLDR titration in the presence of a saturating concentration of 2' 

AMP indicated that the midpoint potentials of both the ox/sq and sq/red couples are 

elevated by binding this nucleotide analogue and that E' 12  is increased by 27mV 

from -288 ± 4 mV to -261 ± 6 mV, respectively. The effect of bound nucleotide 

analogue is similar to that observed previously for the homologous FAD-containing 

enzymes adrenodoxin reductase (Lambeth & Kamin 1976) and cytochrome b5 

reductase (lyganagi 1977) and indicates that the binding of NADP to FLDR may 

exert an important controlling influence on the catalytic properties of the enzyme. 

The elevation of both of the reduction potentials of FLDR places them even closer to 

that of the ox/sq couple of FLD and decreases further the driving force for electron 

transfer to FLD. This may at least partially explain the very slow rates of electron 

transfer measured between FLDR and FLD using stopped-flow spectrophotometry. 

Though it is possible that when FLD and FLDR interact their ox/red midpoint 

potentials may shift to make electron transfer more favourable. A study of two 

electron transfer partners isolated from Paracoccus denitrfi cans, a pyrroloquinoline 

quinone containing enzyme methylamine dehydrogenase, and the copper containing 

electron carrier amicyanin (Gray et al. 1988), demonstrated a changed ox/red 

midpoint potential when they were measured while complexed together. The 

oxidation-reduction midpoint potential (Em) of methylamine dehydrogenase was 

found to be +lOOmV, and the Em for amicyanin was +294mV. Amicyanin serves as 

an electron shuttle between methylamine dehydrogenase and cytochrome c551 . 

However, the Em value of cytochrome c551  is +190mV, suggesting that this reaction is 

thermodynamically unfavourable. Complex formation of amicyanin with 

methylamine dehydrogenase shifted the oxidation-reduction midpoint potential of 

amicyanin by 73mV, from +294 to +221mV, making electron transfer from 

amicyanin to cytochrome c5 51  thermodynamically possible. 

The potentiometric data have important implications for the mechanism of the 

reduction of cytochromes P450 (and other enzyme systems). They indicate that 
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(unless there is a very large increase in the FLD sq/hq couple caused by binding of 

FLD to P450) the 2 electrons required for P450 catalysis must be delivered through 

2 consecutive single electron-transfers from FLD sq; as opposed to the first FMN-to-

haem electron transfer being mediated by FMN hq and the second by FMN sq. This 

raises the question as to whether these transfers occur in a ternary complex of 

FLDR/FLDIP-450 or through a ping-pong mechanism in which the FLD may interact 

firstly with the FLDR and secondly with the P-450. The fact that the flavins in both 

proteins are relatively exposed, suggests that electron transfer between them is likely 

to be through close approach of the isalloxazine rings, as opposed to involving a 

protein pathway (Bianchi etal. 1995, Hoover & Ludwig 1997). The atomic structure 

of a eukaryotic P-450 reductase also indicates that the edges of the FAD and FMN 

ring systems in this protein are only 4A apart and that inter-flavin electron transfer 

must occur without mediation by any amino acid side chains (Wang et at 1997). 

Thus, it appeared most likely that reduced FLDR and FLD would dock, an electron 

would be transferred to form the FLD sq and the FLD would then dissociate from the 

FLDR and associate with a P-450 to reduce this enzyme, again via the exposed 

FMN. The ping-pong kinetic properties of the FLDRIFLDIP-450 BM3 haem domain 

system are consistent with this model, suggesting that the FLD acts as a shuttle 

between FLDR and the P.450, as opposed to the three proteins forming a ternary 

complex for electron transfer. 

The data presented here clearly define the electron-transfer route through this system 

as NADPH —* FLDR (FAD) —* FLD (FMINT) and then onto other enzyme partners. 

This is a similar flavin electron-transfer path to that described previously for the E. 

coil sulfite reductase and for the diflavin reductases of cytochromes P-450 (P-450 

reductase or CPR) and nitric oxide synthase (Abu-Soud et al. 1994). In fact, the 

FLDR and FLD proteins show structural homology to the FAD and FMIN domains of 

CPR (Porter 1991), and these domains have been expressed independently for both a 

eukaryotic P-450 reductase and the reductase of flavocytochrome P-450 BM3 - a 

natural CPR/P-450 fatty acid hydroxylase fusion protein. (Smith et at 1994, 

Govindarj & Poulos 1997). However, it is of particular interest to note here that the 

FAD and FMIN domains of P-450 BM3 show very different redox characteristics to 
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FLDR and FLD; with the blue semiquinone being formed on the FAD domain of P-

450 BM3 (Daff et al. 1997). In P-450 BM3, the FAD hydroquinone is 

thermodynamically unfavourable, compared the FIv1N of FLD in the E. coil system. 

In all three systems the high and low potential flavins are the FMN and FAD, 

respectively. However, both the ' and E ' 2 values for FLDR are considerably less 

negative than those for the related reductases. Also, the ox/sq and sq/red couples for 

FLD are both more negative than those for the BM3 (Daff et al. 1997) and CPR 

(lyanagi 1974) systems. Indeed, the sq/red couple of FLD has a very negative 

potential (-433mV) which makes electron-transfer via an NADPH-driven system 

virtually impossible. The results indicate that the overall driving force (i.e. the 

difference in reduction potential) for single electron-transfer from NADPH-reduced 

FLDR to oxidised FLD is considerably less than those for CPR and BM3. In 

addition, the binding of nucleotide (NADP) to FLDR may result in further increase 

in the flavin reduction potentials (as we have shown with 2' AMP) and decrease 

further the driving force for electron transfer to FLD. Our stopped-flow data are 

consistent with these findings. The rate of reduction of FLDR (20s') is markedly 

slower than that seen in the P-450 BM3 system (> 700s) and the reduction of FLD 

by reduced FLDR is also very slow (0.034 s'). 

These results are published (McIver et al 1998), a copy of the publication forms 

appendix of this thesis. 
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Chapter 4 (FLDR) 

Investigation into the binding site of NADPH in flavodoxin 

NADP red uctase 

Introduction 

The aim of this study is to gain insight into the interaction between FLDR and 

NADPH. FLDR has not been co-crystallised with NADP/NADPH or any anlogues. 

However, citrate has been found bound in a site proposed to accommodate the 

adenine ribose of NADPH (based on homology with the spinach FNR) (Ingleman et 

al. 1997, Karplus et al. 1991). On the basis of modelling three arginine residues, 

R144, R174 and R184 have been proposed to bind the 2' —phosphate of NADPH. 

The amino acid R174, is a conserved residue described as part of a "fingerprint" 

region for NADPtbinding members of the FNR (ferredoxin reductase)-like family of 

flavoenzyme (Correll et al. 1993). In this project we wanted to elucidate the roles of 

these positively charged residues, R144, R174 and R184 in the interaction with 

NADPH, and in the transfer of hydride ions from the reduced pyridine dinucleotide to 

generate the FAD hydroquinone. We also want to investigate the relative importance 

of each of these residues in the interaction with the pyridine nucleotide and the 

distinct roles that each of these residues plays in the discrimination between 

NADPHINADH, and in the catalysis of electron transfer from NAD(P)H to flavin and 

on to an electron acceptor (cytochrome c). To achieve this we decided to mutate 

each of these residues (R144, R174, R184) from arginine to alanine, and examine the 

effects of charge neutralisation in the putative NADPH binding site. 

Results 

Mutagensis and cloning of R144A, R174A and R184A 
The wild-type fldr gene was expressed under the control of an IPTG-inducible T7 

promoter in pCL 21, in the cell line HMS I 73(DE3) as reported in chapter 3. For the 

generation of mutants R144A, R174A and R184A, thefldr gene was sub-cloned into 

pUC 18IRBS (Yanisch-Perron et al. 1985) using Nco I and Barn HI restriction sites. 

Site-directed mutagenesis was performed using the "mega-primer" PCR method 

(Sarkar & Somers 1990) using vector forward (5' CGC CAG GUT TTT CCC 
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AGT CAC G 3') and reverse (5' GTT GTG TGQ AAT TGT GAG CGG 3') 

oligonucleotides, and the following mutagenic primers: 

R144A: 5' CAC GCGGCC GCC TAT GCC GCC GAC 3' 

RI 74A: 5' GTGGTCAGTGCAGAAACGGCAGCG3' 

RI 84A: 5' CTC ACC GQCGCCATACCGGCATTA3' 

The bases underlined in each primer indicate the position at which the arginine codon 

is replaced by one encoding an alanine. Mutated fldr genes were digested with NcoI 

and BamHI and re-cloned into pUC 18IRBS (Yanisch-Perron et al. 1985), to form 

plasmids pCL22(pUC18IRBS/fldrRl44A), pCL23 (pUC18IRBS/fidrRl74A), pCL24 

(pUC 18IRBS/fldrRl84A). The E. co/i strain TOP10 One Shotm (Invitrogen) was 

used for transformation of the mutant ligation mixes. Mutant clones were sequenced 

by the Sanger dideoxy chain termination method to establish that secondary mutations 

had not occurred, and expressed in strain C6007, which is deficient in the host fldr 

gene (Bianchi et al. 1995) which was a kind gift from Vera Bianchi (Department of 

Biology, University of Padua, Pauda, Italy). 

Protein expression and purification 

Wild-type and mutant FLDRs were successfully overexpressed in E. coil and purified 

to homogeneity in two column chromatography steps (Q-Sepharose and 2', 5' -ADP 

Sepharose). The expression of mutant forms from plasmids pCL22-24 under the lac 

promoter system in the background of strain C6007 (fldr) (Bianchi et al. 1995) was 

not as high ~! 2 mg of pure enzyme/litre of cells 
(--- 

2 % of total cell protein) as that 

obtained for the wild-type under the T7-promoter from plasmid pCL2 1, necessitating 

purification from a larger E. co/i transformant cell mass (10 - 20 1 vs. 2 1 for wild-type 

FLDR). However, the use of strain C6007 guaranteed lack of contamination with the 

wild-type FLDR, which is normally expressed naturally at high levels. The purity of 

the mutant and the wild-type proteins were anaylsed by SDS-PAGE (Fig. 4.1). 
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Fig 4.1 SDS-PAGE gel of purified wt and mutant (R144A, R174A and R184A) 

of E.coli FLDR 

Lane 1: Molecular weight standards (94000, 67000, 43000, 30000, 20100, 14400 

Da), Lane 2: Pure wild-type FLDR, Lane 3: Pure R144A FLDR, Lane 4: Pure R174A 

FLDR, Lane 5: Pure R184A FLDR,, Lane 6: Molecular weight standards (as lane 1). 

1 2 3 4 5 6 

- 

__- 

The stability of the FLDR proteins enabled the collection of high resolution mass 

spectrometric data, confirming the isolation of homogeneous, non-proteolysed 

protein. Mass spectrometric data was obtained for wt and the mutants of FLDR, 

confirming the predicted molecular weight analysis. Fig 4.2 shows an example of the 

mass spectrum data collected, table 4.1 shows the predicted and obtained molecular 

weights for wt and mutants FLDR. 

I 
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Fig 4.2 Typical ESMS spectrum of a purified FLDR enzyme. 

The mass spectrum shown is that of mutant R174A. The inset shows the total ion 

count of all ions in the m/z range 500 to 2000 (peaks at 785.3, 788.4, 811.7, 836.2, 

862.2, 890.1, 919.7, 951.2, 985.2, 1021.7, 1060.9, 1103.3, 1149.3, 1199.3, 1253.7, 

1268.7, 1313.3, 1329.2, 1379.0, 1395.5, 1451.4, 1468.5, 1532.1, 1550.2, 1622.0, 

1641.5, 1723.3, 1744.1, 1838.3 and 1969.3). The molecular mass of FLDR R174A 

(27 558.5 Da). 
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Table 4.1 Predicted and obtained mass by ES-MS for wt and mutant FLDR 

Predicted Mass (Da) Obtained Mass (Da) 

Wt 27647 27641 

R144 27 562 27 552 

R174 27562 27558 

R184 27562 27554 

Spectroscopic characterisation 

UV-visible spectrophotometry 

Wild-type and mutant FLDRs have essentially identical visible absorption spectral 

characteristics, with absorbance maxima at 456nm and 400nm, and a shoulder on the 

longer wavelength band at 483nm (Fig. 3.3, chapter 3). The far UV absorption 

maxima are at 280 nm for all forms. The ratio of absorbance at 280 nrn1456 nm 

(protein/flavin) is 6.5 ± 0.2 for both wild-type FLDR and mutants. Occasional pure 

preparations of mutants had slightly lower flavin content. However, preparations 

always contained> 85 % holoenzyme and those used for kinetic studies contained> 

95 % fiavin. 

CD spectroscopy 

Wild-type and mutant FLDRs had very similar far UV CD spectra, exhibiting a 

negative Cotton effect from 202 nm to 250 nm, and positive ellipticity at 

wavelengths lower than the abcissa at 202 rim. The mimimum is at 215 nm for all 

FLDRs. The visible CD spectra of the proteins were also very similar, showing 

positive ellipticity in the region of the first flavin visible absorption band (385 nm) 

with a peak at 388 nm and a less intense band of negative ellipticity in the region of 

the second flavin visible band (456 nm), centred at 454 nm (Fig. 4.3). In the near UV 

region, all FLDRS exhibit a very strong, sharp signal of positive ellipticity, centred at 

272 nm. The intensity of the signal indicates that it may derive from stacking 

interactions between the FAD and one or more aromatic residues in FLDR. The 

R144A and R184A mutations do not alter significantly the intensity or position of this 
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near UV band. However, the intensity (but not position) of the band appears slightly 

lower in mutant R174A (Fig. 4.3), which also exhibits unusual aromatic amino acid 

fluorescence properties. 

Fluorescence spectroscopy 

The fluorescence properties of wild-type and mutant FLDRs were compared to probe 

further for effects on tertiary structure (aromatic amino acid fluorescence) and flavrn 

environment (flavin fluorescence). Flavin emission (excitation 456 nm, emission 500 - 

600 nm) from all FLDRs was low, due to strong quenching of the chromophore by 

the surrounding protein matrix. By comparison of the fluorescence of the FLDRs 

with that of free FAD under the same conditions, and with the knowledge of the 

quantum yield (Qf) for FAD (0.032) (Harvey 1980), the Qf  values for the FLDR-

bound flavins were all measured to be < 0.001, i.e. negligible fluorescence. Using 

high flavoprotein concentrations (- 0.5 l.tM) and wide slit widths (10 nm/10 nm 

excitation/emission on the Shimadzu instrument) the flavin emission maxima was 

found to be at 528 nm for both wild-type and mutant FLDRs. 

Aromatic amino acid (primarily tryptophan) fluorescence (excitation 290 Mn, emission 

300 - 400 nm) was measured for wild-type and mutant FLDRs (0.05 AM) with 

excitation/emission slit widths set at 5 nm on the Shimadzu instrument. Emission 

spectra were of similar intensity and had similar emission maximum (328 tim) for 

wild-type and for R144A and R184A FLDRS. However, the emission from mutant 

R 1 74A was of slightly greater intensity and was maximal at a longer wavelength (336 

nm) (Fig. 4.4). 

Enzyme activities 

The reduction of wild-type and mutant FLDRs by NAD(P)H, and the catalysis of 

cytochrome c reduction by the enzymes were investigated using steady-state and 

stopped-flow methods. All experiments were performed in 10 mM sodium phosphate 

buffer (pH 7.5) (assay buffer). 

54 



Fig 4.3 Near UV-visible CD 

spectra of wt FLDR and 
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Steady-state kinetics 

The steady-state kinetic behaviour of wild-type and mutant FLDR enzymes was 

investigated using cytochrome c as an electron acceptor and either NADPH or NADH 

as the donor. Preliminary experiments indicated that the Km for NADPH was - 4 p.M 

and for NADH was - 2 mM. A set of experiments was performed with 

NADPH/NADH at saturating or near-saturating conditions (200 PM and 10 mM 

respectively) and cytochrome c varied between 0-200 PM. With NADPH, wild-type 

FLDR catalysed cytochrome c reduction with a k of 338.9 ± 7.2 min- ' and a Km of 

17.6 ± 1.6 p.M for cytochrome c. The value was lower for mutants R144A and 

RI 74A, and their Km values were also higher. In particular, RI 74A had a Km of 64.8 ± 

7.2 p.M - almost 4 times that for wild-type FLDR. However, mutant R184A was a 

slightly superior cytochrome c reductase to wild-type FLDR, with a kcat of 384.1 ± 8.4 

min' and a Km of 16.7 ± 1.3 p.M (Table 4.2). 

With NADH as the donor, all k at  values were greatly reduced relative to NADPH 

(Table 4.2). The apparent Km values for cytochrome c were also markedly decreased 

(3.2 ± 0.19 p.M [wild-type], 0.82 ± 0.04 p.M [R144A], 5.9 ± 0.46 MM [R174A] and 

4.4 ± 0.35 p.M [R184A]), although this may indicate only that cytochrome c is able to 

saturate the FLDR at much lower concentrations due to constraints on catalytic 

activity imposed by the use of NADH as the reductant. However, the kct  values for 

mutants R174A and R84A with NADH are both higher than that for wild-type, while 

R144A has a lower k value (Table 4.2). 

With cytochrome c maintained at a saturating concentration (200 p.M), the Km values 

for NAD(P)H were also determined by steady-state kinetic analysis. As expected, 

wild-type FLDR had the lowest Km for NADPH (3.9 ± 0.3 p.M). Mutant R1 84A was 

the most affected in affinity for NADPH (Km = 54.4 ± 6.0 j.iM) (Table 4.2). The Km  

for NADH was also much greater for mutant R144A and R174A than for wild-type 

FLDR (2.0 ± 0.15 p.M). However, affinity for NADH was slightly enhanced in 

mutant RI 84A (Km  = 1.6± 0.2 p.M) (Table 4.2). 
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Table 4.2 Steady-state kinetic parameters for cytochrome c reduction with 

NAD(P)H by wild-type, R144A, R174A and R184A mutants of E. coli FLDR 

Kin Km k 31  (min kcat (min kcatfKin kcat/Km 

NADPH NADH 1) 1)  NADPH NADH 
(mM) NADPH NADH (vf 1  min-  (mM 1  min 

1) 1) 

wild-type 3.86 2.04 339 33.0 87.8 ± 7.3 16.2 ± 1.6 
±0.28 ±0.17 ±7.2 ±0.35  

R144A 5.3 5.14 237 13.7 44.7±7.9 2.67± 
±0.76 ±0.51 ±7.1 ±0.12  0.31 

R174A 20.2 9.86 153 42.3 7.6 ± 0.6 4.29 ± 
± 0.95 ± 0.79 ± 5.6 ± 1.4  0.53 

R184A 54.4 1.66 384 50.4 7.1 ± LI 30.4 ± 5.4 
±5.9 ±0.22 ±8.4 ±1.1  

Stopped-flow kinetics 

Stopped-flow absorption spectrophotometry was used to investigate the effects of 

mutations on the microscopic rate constants for the NAD(P)H-dependent flavin 

reduction step in the catalytic cycle. This was achieved by rapid mixing of wild-type 

and mutant FLDRs (at a fixed concentration between 10-40 jtM) in one stopped-

flow syringe with an excess ofNADPH (100 p.M - 10 mM) or NADH (100 p.M - 25 

mM) in the other syringe, and monitoring the rate of hydride transfer from NAD(P)H 

to reduce the FAD to its hydroquinone form by following the absorbance change at 

456 nm. 

NADPH 

With wild-type FLDR, negligible variation in the rate of NADPH-dependent reduction 

(k) of FLDR (34 j.t.M) was seen between 10 p.M and 10 mM reductant. FLDR was 

reduced at 22 s_ i  and the Km was clearly < 5 p.M. A similar phenomenon (Km  < 5 IIM) 

was observed with mutant R1 74A, with reduction rate constant over the entire 

NADPH concentration range. However, k 1  was considerably lower than in the wild-

type (8.8 s 1). For mutants R144A and R184A, a clear flavin-reduction rate-

dependence on [NADPH] was observed. A plot of reduction rate vs. [NADPH] 

described a rectangular hyperbola, from which a Km and k ed  could be determined by 
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fitting the data to the Michaelis function in Origin. The apparent affinity for NADPH 

was dramatically weakened in both R144A (Km  = 0.64 niM) and R184A (Km  = 2.3 

mM), although the k ed values were not lowered to the same extent (12.9 s, R144A; 

15.2 s, R184A). The kj/Km ratio for each enzyme indicates the relative efficiency of 

the NADPH-binding and fiavin reduction process. The ratios for wild-type FLDR (> 

4500 niM4  s) and R174A are massively (> 100-fold) higher than those for R144A 

(20.4 nM 1  s') and RI 84A (6.7 mM s) (Table 4.3). 

NADH 

The affinity of wild-type and mutant FLDRS for NADH was considerably lower that 

for NADPH. The rate of fiavin reduction showed a clear [NADH]-dependence for all 

enzymes, allowing calculation of /c j  and Km by fitting of data points to the Michaelis 

function. Wild-type FLDR had the highest apparent affinity for NADH (Km  = 1.7 

mM), while R144A had the lowest (Km  = 56.2 mM). RI 74A and RI 84A had apparent 

affinities approximately 3-fold higher than wild-type (Km  = 4.1 mM [RI 74A] and 4.4 

mM [R184A]). Less variation was observed for the /cd values - with both R144A 

(10.1 i)  and RI 74A (9.0 s') giving higher rates than wild-type (7.8 RI 84A had 

the lowest Li (4.2 s'). The kredlKm ratio for wild-type FLDR (4.7 MM -1  s) is the 

highest, followed by RI 74A (2.2 mJv1T' s'), RI 84A (0.97 mM4 5) and RI 44A (0.18 

mM' ) (Table 4.3). 
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Table 4.3 Stopped-flow kinetic parameters for NAD(P)H-dependent flavin 

reduction in wild-type and mutant (R144A, R174A and R184A) forms of E. cdi 

FLDR. 

Kd KdNADH k d  k d  kredKd kredfKd 
NADPH (mM) NADPH NADH NADPH NADH 

(jiM)  (s 1 ) (s 1) (jiM' s 1 ) (miMT 1  s') 
wild- <5pM 1.67 22.63 7.79 > 4.53 ± 4.66 ± 
type  ±0.38 ±0.67 ±0.61 0.13 1.09 

R144A 635 56.15 12.94 10.09 0.0204± 0.18± 
± 10 ± 4.55 ± 0.73 ± 0.61 0.0015 0.027 

R174A <5pM 4.14 8.82 9.05 1.76± 2.18± 
± 0.49 ± 0.52 ± 0.47 0.11 0.43 

R184A 2300 4.35 15.22 4.24 0.00667± 0.97± 
±60 ±0.60 ±0.14 ±0.39 0.00019 0.26 

Discussion 

In their report of the atomic structure of the E. co/i flavodoxin NADP reductase, 

Ingelman et al. (Ingleman et al. 1997) identified arginines 144, 174 and 184 as 

essential components of the NADPH-binding site of the enzyme, although this site 

was occupied by citrate in the crystal. Examination of the structure highlights this 

cluster of three positively charged arginine residues located at the cleft between the 

NADP(H)-binding and FAD-binding sub-domains of the enzyme (Fig. 4.5). 

We decided to probe the effects of charge-neutralising (R->A) mutations to these on 

the catalytic activities, pyridine nucleotide affinity and preference, and spectroscopic 

properties of the mutant flavodoxin reductase enzymes. We expected to find that one 

or more of the arginines would play key roles in pyridine dinucleotide recognition 

and/or distinguishing between NADPHINADH (which differ only in the presence of a 

phosphate group, rather than a hydroxyl, at the 2' position of the ribose). The results 

of steady-state kinetic studies on R144A, R174A and R184A mutants (Table 4.2) 

indicate that the removal of the positively charged arginines at each of these positions 

results in decreased NADPH-dependent cytochrome c reductase activity. In addition, 

stopped-flow studies show that each mutation has clear effects on the binding of 
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Figure 4.5 

Ribbon diagram of the 3D structure of E. co/i Flavodoxin NADP reductase (PDB 

number, 1FDR). The positions of the three mutated arginine residues (R144, R174 

and R184) are indicated in black, relative to the FAD moiety (also in black). The 

positively charged NH 2  groups of the arginines are exposed, providing potential 

interaction sites with the negatively charged phosphate groups of NADPH. A binding 

cavity for the NADPH cofactor is obvious between the arginines and theFAD 
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NADPH and/or the process of hydride transfer to the flavin (Table 4.3). Thus, kinetic 

data indicates that all mutations have major consequences for FLDR catalysis. 

In terms of the severity of the overall effects of the mutations, Ri 74 and Ri 84 appear 

much more important to NADPH-dependent activity than does R144. From steady-

state studies, the kcat/Km ratio for RI 74A and R  84A (a measure of catalytic efficiency 

with NADPH) is decreased 11-fold and 12-fold, respectively, compared to wild-type. 

By contrast, the kcatlKm is decreased less than 2-fold for R144A. Despite their 

apparent similarity in efficiency and NADPH-dependent cytochrome c reductases 

(kcat/Km  = 7.6 and 7.1 .tIVf' min- 1 , respectively), R  74A and R  84A are affected rather 

differently. Both the k and the Km for R184A are 2.5-fold greater than the same 

parameters for R174A (Table 4.2). Indeed, the k for R184A is actually slightly 

higher than for the wild-type FLDR. 

Since the Km is a complex measure of NADPH affinity, we decided also to analyse the 

NAD(P)H-dependent reduction of the FAD in FLDR using stopped-flow absorption 

spectroscopy. By this technique, we were able to examine the effects of mutations on 

only the binding of NAD(P)H and the hydride transfer to oxidised FAD, the first two 

steps in FLDR catalysis. By this method, the Kd for NADPH for wild-type FLDR was 

determined to be very tight (< 5 p.M, Table 4.3), i.e. the flavin reduction rate was seen 

to remain constant even when the NADPH concentration was lowered to a level 

equimolar with that of the FLDR (10 jiM). The Kd for NADPH remained very low 

for mutant R174A (< 5 j.tM). However, the apparent NADPH affinity was much 

reduced for mutants R144A(Kd  = 635 pM) and R184A(Kd  = 2.3 mM). 

From stopped-flow studies, the limiting rate of reduction (k) of FAD by NADPH in 

wild-type FLDR was determined to be 22.63 s' (Table 4.3). Since each hydride 

transfer to the flavin involves transfer of two electrons, the theoretical maximal rate of 

cytochrome c reduction by the reduced wild-type FLDR is 45 s'. The actual steady-

state rate is only 5.65 s', some 8-fold lower. Clearly, cytochrome c reduction is rate-

limited by its binding to FLDR and/or the flavin-to-cytochrome c haem electron 
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transfer. Although the Kd for NADPH remains low in mutant RI 74A, it is the worst 

affected in the catalysis of hydride transfer to the FAD. For R174A, the k ed  falls to 

8.82 s', only 39 % of the wild-type value (Table 4.3). It would appear that although 

this mutant maintains a low Kd for NADPH, it is badly affected in the catalysis of 

electron transfer to the flavin. It is notable also for this mutant that CD properties are 

altered (the near UV band showing a positive Cotton effect at 272 nm is reduced in 

intensity [Fig. 4.3]). The aromatic amino acid fluorescence emission from R174A is 

of slightly greater intensity than wild-type or the other mutants, with a maximum at a 

longer wavelength (336 nm vs. 328 nm, Fig. 4.4). Both these parameters indicate a 

perturbed tertiary structure in mutant R174A, the effects of which must underlie its 

diminished hydride transfer rate. 

From alignments of the amino acid sequences of FLDR with other pyridine 

dinucleotide-dependent oxidoreductase superfamily of enzymes, it is evident that an 

arginine corresponding to R174 is strongly conserved in virtually all the NADP -

dependent members of the ferredoxin NADP reductase (FNR) family of enzymes 

(Fig. 4.6). 

Fig 4.6 Amino acid alignment of E. coli FLDR ("E. coli", Swiss-Prot code 

P28861, [Bianchi 1993]) with other members of the ferredoxin NADP 

oxidoreductase (FNR) family of enzymes. 

Alignments were performed by comparing other protein sequences with the region of 

FLDR from L139 to E190 (encompassing all three of the mutated arginines). 

Flavodoxin reductase arginine residues 144, 174 and 184 are highlighted in red, as are 

positively charged amino acids (arginines and lysines) conserved in the aligned 

enzymes. Serine 173 is highlighted in blue. "Spinach" = , spinach ferredoxin NADP 

reductase (Swiss-Prot code P00455, (Karplus et al. 1991); "Anabaena" = ferredoxin 

reductase from Anabaena variabilis (Q4459) (Serre et al. 1996); 'P450 BM3" = 

flavocytochrome P450 BM3 from Bacillus megaterium (P14779, [Ruettinger et al. 

1989]); "Hum CPR" = Human NADPH-cytochrome P450 reductase (P16435, [Haniu 

et al. 1989]); "Rat CPR" = Rat NADPH-cytochrome P450 reductase (P00388, 
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[Porter & Kasper 1985]); "B5 R' ase" = Bovine NADH-cytochrome b5  reductase 

(P07514, [Ozols et al. 1985]); "Hum NOS" = Human inducible nitric oxide synthase 

(P35228, [Geller et al. 1993]); "Hum nNOS" = Human neuronal nitric oxide synthase 

(P29475, [Hall et al. 1994]); "Hum eNOS" = Human endothelial nitric oxide synthase 

(P29474, [Janssens et al. 1992]); "Corn NIIR" = corn nitrate reductase (P17571, 

[Gown & Campbell 1989]). Bovine cytochrome b5  reductase and corn nitrate 

reductase are NADH-dependent reductases, all other enzymes shown are NADPH-

dependent. 

144 	 174 	184 

E. 	coli LVHAA YAADLS-YLPLMQELEKRYEGKLRIQTVV .ETAAGSLTGiIPALIE 
Spinach LFLGVPTS S SLL-YKEEFEKMKEKAPDNFRLDFAV EQTNEK-GE MYI -QTR 
Anabaena LVFGVPTTPNIL-YKEELEEIQQKYPDNFRLTYAI .EQKNPQ-GGMYI-QDR 
P450 BM3 LYFGCSPHEDYLYQEELENA-QSEGIIT-LHTAF :..NPNQPKTYVQHVMEQDG 
Hum CPR LYYGCRRSDEDYLYREELAQF-HRDGA.LTQLNVAF PEQS-HKVYVQHLLKQDR 
Rat CPR LYYGCRRSDEDYLYREELARF-HKDGALTQLNVAF EQA-HKVYVQHLLXRDR 
B5 R' ASE LLFPNQTEKDI LLRPELLEELRNEHSARFKLWYTVD:APEA-WDYSQGFVNQEM 
Hum iNOS LVFGCiRPDEDHIYQEEMLEMAQK-GVLHAVHTAY LPGKPKVYVQDILRQQL 
Hum nNOS LVFGCRQSKIDHIYREETLQAKNK-GVFRELYTAY PEPDKPKKYVQDILQEQL 
Hum eNOS LVFGCCSQLDHLYRDEVQNAQQR-GVFGRVLTAF zEPDNPKTYVQDILRTEL 
Corn NIR LVYANiTEDDILL-RDELDRWAAEYPDRLKVWYVIDQV-KRPEEGWE-YSVGFV 

In addition, a serine is also conserved in the majority of related enzymes at a position 

corresponding to SI 73 in FLDR. However, the serine is replaced by an acidic residue 

in many of the NADH-dependent members of the FNR family (Wierenga ci al. 1986). 

For instance, in the bovine NADH-cytochrome b5  reductase, an aspartate replaces the 

senne. This is also the case for e.g. the human and porcine b5  reductases, the nitrate 

reductase from corn and the NADH-putidaredoxin reductase component of the 

Pseudomonas putida cytochrome P450cam camphor hydroxylase system (Correll el 

al. 1993, Karplus et al. 1991). By analogy with the NADPH- and NADH-dependent 

glutathione reductases (Scrutton ci al. 1990), the aspartate side chains may be 

involved in hydrogen bonding to the 2' hydroxyl of the adenosine ribose in NADH, 

i.e. the functional group which is replaced by phosphate in NADPH. However, it 

should be remembered that glutathione reductases are not members of the FNR 

family. Karplus ci al from their crystallographic studies of the 2' AMP-bound form 
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of spinach ferredoxin reductase (the "prototype" enzyme for the FNR family) 

(Karplus et al. 1991), identified S234, R235, K244 and Y246 as a cluster of residues 

whose side chains provide hydrogen bonds to the 2' phosphate group of bound 2' - 

phospho-5' -adenosine monophosphate (2' -phospho-AMP), and hence hydrogen 

bond to the same position on NADP and aid in the discrimination against NAD, 

which has a Km 400-fold greater than NADP (Shin & Amon 1965). The first three of 

these residues correspond to S173, R174 and R184 in E. co/i FLDR (a positively 

charged arginine replaces the lysine at position 184 in FLDR), but an aromatic residue 

corresponding to Y246 is not conserved in FLDR (Fig. 4.6 sequence alingnment). By 

comparison with data for related FNR enzymes, it appears clear that R174 and R184 

of E. coli FLDR interact with the NADP 2' phosphate group, but that R144 may 

not. However, other amino acid side chains are also implicated in stabilising 

interactions with NADP. In addition, chemical modification studies of spinach FNR 

have suggested that K116, K244 (= R184 in FLDR), another lysine, a carboxylate 

group and a histidine are involved in NADPtbinding (Kaplus et al. 1991). 

Recent studies have been carried out on the role of ArgiOO and Arg264 in Anabaena 

PCC71 19 ferredoxin-NADP reductase in the reconition and hydride transfer of 

NADPH. ArglOO was mutated to alanine and Arg264 was mutated to glutamic acid 

spectroscpoic and kinetic studies were carrid out on the two mutant proteins. It was 

found that the mutation R100A had a minor affect on the binding of NADPH, and 

R264E had no effect. ArglOO and Arg264 in Anabaena ferredoxin-NADP reductase 

do not correspond to R144, R174 or R184 in E. coli FLDR (Martinez-Julvez et al. 

1998). Studies have recently been carried out into the role of the glutamyl residues 

312 in spinach ferredoxin - NADP reductase and it was found that this residue is 

necessary for the binding of the nicotinamide ring of NADPH: In addition it charge 

modulates the two one-electron redox potential of the flavin to stabilize the 

semiquinone form. It is stated that this residue is conserved through out the FNR 

family with the exception of cytochrome b5  reductase, though in our sequence 

alignment studies we found that the residue was not conserved in E. co/i FLDR 

(Aliverti et al. 1998). 
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Scrutton et al. (Scrutton et al. 1990), carried out a more succeful mutagenesis of 

residues involved in NADPH binding in glutathione reductase. Scrutton mutated the 

residues located at positions analogous to Si 73 and RI 74 in E. coli FLDR, which led 

to alterations in the pyridine nucleotide specificity of glutathione reductase. However, 

several successive mutations were required to achieve a complete conversion of 

specificity from NADP to NAD. Multiple mutations will also doubtless be required 

to convert E. co/i FLDR to an NADH-dependent reductase. However, if both Ri 74 

and R184 are involved in adenosine ribose 2' phosphate binding (but R144 is not), 

then we might expect to observe an increased selectivity for NADH over NADPH in 

mutants R174A and R184A, but not for R144A. The steady-state and stopped-flow 

kinetic data presented (Tables 4.2 & 4.3) are largely supportive of this theory. In 

steady-state cytochrome c reduction, the for the NADH-dependent reaction is 1.3-

and 1.5-fold higher than wild-type for R1 74A and RI 84A, respectively. By contrast, 

the k for R144A is 2.4-fold lower than wild-type FLDR. The kt/Km  ratio for 

NADH-dependent catalysis also indicates that R1 74A and R1 84A are more efficient 

NADH-dependent reductases than R144A, with R184A, in particular, being 1.9- and 

11.4-fold more efficient than wild-type and R144A, respectively (Table 4.2). The 

comparative efficiency with NADH VS. NADPH ([kcai/Km]NJWH/[kcal/Km]NIWpH)  for the 

three mutants also indicates that there is partial conversion to NADH specificity in 

R1 74A and R1 84A, but not 144A. The values for R1 74A and R 1 84A are 3.1- and 

23.2-fold greater than wild-type; while that for R144A is 3.1-fold lower. Stopped-

flow studies also indicate that NADH is bound more efficiently by R174A and R184A 

than by R144A. Although the apparent Kd for NADH is decreased in all three 

mutants with respect to wild-type (Table 4.3), the Kd is 13.6- and 12.9-fold lower for 

R174A and R184A, respectively, than for R144A. The /c (limiting flavin reduction 

rate)/Kd ratio is also much higher for R174A and R184A than for R144A. 

Comparisons of efficiency with NADH vs. NADPH ([k/Kd]NH/[k1/Kd]Np.ipH) 

based on stopped-flow data are confused by the fact that the binding of NADPH is 

extremely tight (Kd < 5 iiM) for wild-type and R174A, but that the apparent Kd is 
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dramatically increased for both R144A and R184A (Table 4.3). However, if this 

relative efficiency parameter is compared for only these two mutants, it is found that 

R184A has a 16.5-fold increase in relative efficiency with NADH over R144A. 

The bulk of the kinetic data support the proposal that R1 74A and R1 84A are 

important to binding the adenosine ribose 2' phosphate of NADPH, although further 

mutations would clearly be required to convert specificity completely in favour of 

NADH. The atomic structure of the 2' -phospho-AMP-bound form of spinach FNR 

indicates that R235 (= R174 in E. co/i FLDR) and K244 (= R184 in FLDR) each 

probably provide two hydrogen bonds to the 2' phosphate, but that K116 is also 

involved in hydrogen bonding to stabilise the adenosine ribose 5' phosphate group 

(Karplus el al. 1991). This lysine is also conserved in E. co/i FLDR (K83), 

suggesting it may play a similar role here. This raises the question as to the specific 

role of R144 in NADPH interactions in FLDR. An obvious suggestion would be that 

it is involved in electrostatic interactions or hydrogen bonding with the nicotinamide 

ribose 5' phosphate, which is present in both NADH and NADPH. This would 

explain that, although mutant R144A is profoundly affected in its binding of NADPH 

and in its catalytic activity towards an artificial electron acceptor (cytochrome c), its 

relative efficiency with NADH is also diminished (not increased, as in R17A and 

R184A). An arginine is conserved at a position corresponding to R144 in FLDR in 

the majority of other NADP-dependent members of the FNR family, providing 

further indication for an important role in pyridine nucleotide binding (Fig. 4.6). 

To investigate further the binding of NADPH to the E. coli flavodoxin reductase, we 

undertook molecular modelling studies in attempts to dock the pyridine nucleotide in 

the FLDR structure close to the FAD, in the binding region identified from the atomic 

structure of Ingelman el al. (Ingleman et al. 1997). We discovered that the NADPH 

could not be docked favourably to permit hydride transfer from the nicotinamide ring 

of NADPH to the FAD, since the C-terminal amino acid side-chain of FLDR 

(tryptophan 248) blocks the entrance to the flavin in the crystal structure (Fig. 4.7 a). 

This may at least partly explain the rather slow fiavin reduction rates measured in our 
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stopped-flow studies (Table 4.3). For wild-type FLDR, the limiting rate of flavin 

reduction (k) was only 22.63 s_i . This compares rather poorly with previous studies 

of the NADPH-reduction of the FAD in its domain of flavocytochrome P450 BM3, 

another member of the FNR family (Munro et al. 1996). For P450 BM3, rates in 

excess of 700 s were obtained for FAD reduction under conditions comparable with 

those used for FLDR. A conformational change to displace W248 on NADPH 

binding and permit flavin reduction could explain the relatively low rate of hydride 

transfer measured in FLDR. Molecular modelling was performed using SYBYL 

(Tripos Inc.) (by Dominikus Lysek) with the constraints that the NADPH hydride / 

FAD isoalloxazine distance should be < 8 A and that W248 should rotate to expose 

the flavin for interaction with NADPH. This modelling resulted in the best-fit docking 

structure shown in Fig. 4.7 b, where the nicotinamide ring of NADPH approaches the 

FAD with a minimum distance of 5.8 A between the two centres. The modelled 

structure shown in Fig 4.7 a, also highlights the proximity of the three arginines to the 

phosphate groups of NADPH. The model indicates that R174 and R184 lie close to 

the adenosine ribose 2' phosphate, probably within hydrogen bonding distance. 

Interaction between R184 and the adenosine ribose 5' phosphate may also be 

feasible. However R144 is rather more distant from the adenosine ribose, and makes 

closest approaches to the nicotinamide ribose 5' phosphate, as suggested above. The 

NADPH-bound model structure is consistent with the results from our kinetic studies, 

placing R174 and R184 much closer to the 2' phosphate group of NADPH (which is 

replaced by a hydroxyl in NADH) and R144 closer to another phosphate group. 

Fig 4.7 The atomic structure of E. coli flavodoxin reductase and the results of 

molecular modelling of its interaction with NADPH. 

Structures are depicted in Rasmol. Fig. 4.7 a, shows the polypeptide backbone of 

FLDR (grey) in the region of the proposed NADPH docking site from the atomic 

structure of Ingelman et al. (Ingleman 1997). The FAD moiety is coloured in yellow, 

and relevant amino acid side chains (R144, R174, R184 & W248) are also shown, 

with nitrogen atoms depicted in blue and oxygens in red. Tryptophan 248 obscures 

access of the nicotinamide ring of NADPH to the flavin in this structure. Fig. 4.7 b, 
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shows the results of molecular modelling studies, with NADPH binding optimised. 

Phosphorus atoms in the docked NADPH are depicted in orange. Tryptophan 248 is 

rotated away from the adenine moiety of FAD to facilitate closer approach of the 

NADPH nicotinamide ring, which is now located only 5.8 A from the FAD 

isoalloxazine ring system. The arginines are now positioned close enough for 

potential electrostatic or hydrogen-bonding interactions with the adenosine ribose 2' 

phosphate (R174 and R184), adenosine ribose 5' phosphate (possibly R184) and 

nicotinamide ribose 5' phosphate (R144), explaining the deleterious effects of 

mutating these residues on NADPH-binding and catalytic efficiency. 

A 
Arg174 	Arg144 

Trp248 

Arg184 

a  

B 
NADPH 

248 

174 	. 

184 	 144 



FLDR, Chapter 4: NADPH binding 

In conclusion, the atomic structure of E. co/i flavodoxin reductase implicated the 

positively charged arginine residues at positions 144, 174 and 184 in the interaction 

with NADPH. Our studies have proven that charge-neutralising mutations (to 

alanine) at each of these positions have profound consequences for the efficiency of 

the mutants to act as NADPH-dependent reductases. The mutations increase the Km 

for NADPH in all mutants, and the apparent Kd for NADPH in R144A and R184A 

(possibly R174A also). The efficiency (k/Km) of cytochrome c reduction is 

diminished in all mutants, with R174A and R184A worst affected. While R174A 

maintains a low Kd for NADPH, the mutation also induces alterations in the near UV 

circular dichroism and flavin fluorescence spectra, consistent with tertiary structure 

changes in the vicinity of the NADPH-binding site. Indeed, the fact that the near UV 

CD (resulting mainly from aromatic amino acids) is altered suggests that there may be 

some movement of the tryptophan (W248) that obscures the FAD in the R1 74A 

mutant. These structural changes may explain the low rate of flavin reduction for 

R174A (only 39 % of wild-type), despite the fact that the Kd for NADPH remains < 5 

p.M. Molecular modelling studies of NADPH-binding are consistent with the roles of 

the arginines inferred from structural comparisons with other members of the FNR 

family, and from our kinetic studies. R174 and R184 appear to interact with the 

adenosine ribose 2' phosphate, while R144 is more likely to stabilise NADPH binding 

by interaction with the nicotinamide ribose 5' phosphate. R174A and R184A are 

more efficient enzymes than wild-type or R144A with NADH as substrate, consistent 

with the proposed phosphate-binding roles for these residues. In particular, from 

steady-state studies, mutant R1 84A shows marked conversion in pyridine nucleotide 

preference, with the [k/Km]NH/k t/Km]NpH for this mutant being> 23-fold that of 

wild-type. From stopped-flow studies, the ratio of Kd y'[Kd is also> 175-

fold lower for RI 84A than for wild-type. An interesting possibility which has arisen 

out of these studies is the possibility of mutating Trp248. If this residue was mutated 

it may give greater access to the flavin which may increase the electron transfer rate. 
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Chapter 5 (FLDR) 

Investigation into the binding site of flavodoxin in flavodoxin 

NADP red uctase 

Introduction 

The aim of this study was to gain insight into the interaction between E. co/i 

flavodoxin NADP reductase (FLDR) and E. coil fiavodoxin (FLD). The interaction 

between FLD and FLDR is not understood, and none of the redox partners in the 

FNR families have been co-crystallized. There have however been some hypotheses 

as to how E. co/i FLDR and FLD interact. Ingleman et a! (Ingleman et al. 1997) 

modeled FLDR and FLD together, and suggested that FLD fitted into a depression in 

the FLDR molecule, with the methyl groups of the FMN of FLD and the FAD of 

FLDR coming into van der Waals contact to each other. In their model strands 3A 

and fB of FLDR come into contact with negatively charged residues G1u95, Glu 127 

and Asp 134 in the FLD. In the FLDR crystal structure three arginines residues 

R236, R237 and R238 form a very large positive patch on FLDR. On this surface 

R236 is on the strand PA and R237 and R238 are on the strand OB. To elucidate the 

roles that these residues have to play in the interaction with FLD, we decided to 

mutate these residues from arginine to alamne in a charge neutralisation mutation, and 

examine the effects of this on electron transfer. 

Results 

Mutagensis and cloning of R237A and R238A 

The wild-type fidr gene was expressed under the control of an IPTG-inducible T7 

promoter in pCL 21, in the cell line HMS173(DE3) as reported in —chapter 3. For the 

generation of mutants R237A and R238A, the fldr gene was sub-cloned into pUC 

18/RBS (Yanisch-Perron et al. 1985) using Nco I and Barn HI restriction sites. Site-

directed mutagensis was performed using the "mega-primer" PCR method (Sarkar & 

Sommers 1990) using vector forward (5' COC CAG GOT TTT CCC AGT CAC G 

3') and reverse (5' GTT GTG TGQ AAT TGT GAG CGO 3') oligonucleotides, 

and the following mutagenic primers: 

M. 
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R237A: 5' ATG GCC CGG TCG TGC ACG TAA ATG 3' 

R238A: 5' ATG GCC CGG TGC GCG ACG TAA 3' 

The bases underlined in each primer indicate the position at which the arginine codon 

is replaced by one encoding an alanine. Mutated fldr genes were digested with NcoI 

and BamHT and re-cloned into pUC 18IRBS (Yanisch-Perron et al. 1985), to form 

plasmids pCL25 (pUC 18IRBS/fidrR237A), pCL26 (pUC 18IRBS/fldrR238A). The 

E. coil strain TOP 10 One Shot (Invitrogen) was used for transformation of the 

mutant ligation mixes. Mutant clones were sequenced by the Sanger dideoxy chain 

termination method to establish that secondary mutations had not occurred, and were 

expressed in strain C6007, which is deficient in the host fldr gene (Bianchi et al. 

1995). The C6007 strain was a kind gift from Vera Bianchi (Department of Biology, 

University of Padua, Pauda, Italy). 

Protein expression and purification 

Wild-type and mutant FLDRs were successfully over-expressed in E. coil and purified 

to homogeneity in two column chromatography steps (Q-Sepharose and 2', 5'-ADP 

Sepharose). The expression of mutant forms from plasmids pCL25-26 under the lac 

promoter system in the background of strain C6007 (fidr) (Bianchi et al. 1995) was 

not as high 
( 

2 % of total cell protein) as that obtained for the wild-type under the 

T7-promoter from plasmid pCL21 
( 

14 % total cell protein, as reported in chapter 

3), necessitating purification from a larger E. coii transformant cell mass (10 - 20 1 vs. 

2 1 for wild-type FLDR). However, the use of strain C6007 guaranteed lack of 

contamination with the wild-type FLDR. 

Wild-type FLDR from HMS174 (DE3)/pCL21 usually yielded ~! 30 mg of pure 

FLDR/litre of cells. Mutants R237A and R238A from C6007/pCL25-26 yielded ~! 2 

mg of pure enzyme/litre of cells. Both wild-type and mutant forms of FLDR proved 

very insensitive to proteolysis in the homologous host organism, as evidenced by 

SDS-PAGE, see fig 5.1. 
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Fig 5.1 SDS-PAGE gel of purified wt and mutant (11237A and R238A) of E.coli 

FLDR 

Lane 1: Molecular weight standards (94000, 67000, 43000, 30000, 20100, 14400 

Da), Lane 2: Pure wild-type FLDR, Lane 3: Pure R237A FLDR, Lane 4: Pure R238A 

FLDR, 

1 	2 	3 	4

Aglow - - 

dodo 

00 

High resolution mass spectrometric data was obtained for wt and the mutants of 

FLDR, confirming the predicted molecular weight analysis. Table 5.1 shows the 

predicted and obtained molecular weights for wt and mutants FLDR. 

Table 5.1 Predicted and obtained mass by ES-MS for wt and mutant FLDR 

Predicted Mass (Da) Obtained Mass (Da) 

Wt 27647 27641 

R237A 27 562 27 560 

R238A 27 562 27 560 
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Spectroscopic characterisation 

UV-visible spectrophotometry 

Wild-type and mutant FLDRs have essentially identical visible absorption spectral 

characteristics, with absorbance maxima at 456nm and 400nm, and a shoulder on the 

longer wavelength band at 483nm (Fig. 3.3). 

CD spectroscopy 

CD spectra were run for E. coil FLD, wild-type FLDR, R237A FLDR and R238A 

FLDR. The spectra was run in both the far UV (190-260nm) and the near UV/Vis 

(260-600nm), for both the individual proteins and FLDR and FLD mix. In both the 

far UV region and near UVIV1s region the spectra of the mutant FLDR was 

essentially the same as wild type FLDR, as reported in chapter 4. In the far UV the 

spectra of the mixture of FLD with the wild-type and mutant FLDRs are essentially 

identical to those spectra derived by addition of the individual components spectra at 

the same concentration. In the near UVIVis region differences were observed 

between the algebraic and the physical mixtures. Of these proteins differences were 

small, but the presence of isobestic points at approximately 350nm and 525nm in the 

overlaid physical and algebraic mixtures indicated that the alterations were genuine, 

see fig 5.2. 
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Fig 5.2 Near UV/Vis CD spectra of R237A and R238A FLDR, and physical and 

algebraic mixtures of FLD & mutant proteins 
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Fluorescence spectroscopy 

The fluorescence properties of wild-type and mutant FLDRs were compared to probe 

further for effects on tertiary structure (aromatic amino acid fluorescence) and flavin 

environment (flavin fluorescence). The spectra were found to be essentially identical 

to the spectra for wild-type FLDR, as described in chapter 4. 

Enzyme activities 

The reduction of wild-type and mutant FLDRs by NAD(P)H, and the catalysis of 

cytochrome c and potassium ferricyanide reduction by the enzymes were investigated 

using steady-state and stopped-flow methods. The reduction of FLD by FLDR and 

mutants was also examined by steady state and stopped-flow methods. All 

experiments were performed in 10 mM sodium phosphate buffer (pH 7.5) (assay 

buffer). 

Steady-state kinetics 

The steady-state kinetic behavior of wild-type and mutant FLDR enzymes was 

investigated using cytochrome c as an electron acceptor and NADPH as the donor. 

Preliminary experiments indicated that the wt and mutant enzymes all had a of 

340 min- ', for cytochrome c reduction. The Km of NADPH for the wild type FLDR 

was 3.86 ± 0.283.tM. Wild-type FLDR had a Km of 17.6 ± 1.6 tM for cytochrome c. 

The Km for cytochrome c for the mutants R237A and R238A were much greater; that 

for R237A was 176.3 ± 27 M and R238A had a Km of 186.6 ± 36 M. Steady-state 

studies were also carried out using potassium ferricyanide as the acceptor, again using 

NADPH as the donor. Wild-type FLDR catalysed potassium ferricyanide reduction 

with a k of 478.4 ± 28.9 min- '. The ofR237A potassium ferricyanide was raised 

at 673 ± 16 JjJ(1  whereas the k., for R238A was slightly lowered at 402 ± 6.2 min- '. 

The potassium ferricyanide Km for the R23 7A and R23 8A were both lowered three 

fold with respect to wild-type. The Km for R237A was 3.95 ± 0.54 p.M and for 

R238A was 3.04 ± 0.37 pM, in comparison to 9.68 ± 0.36 pM for the wild type 

enzyme, see table 5.2. 
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Table 5.2 Steady-state kinetic parameters for cytochrome c reduction with 

NAD(P)I1 by wild-type, R144A, R174A and R184A mutants of E. coli FLDR. 

kcat 
(mini) Km(:i.tM) Km(p.M) KmQ.LM) kcatjKm  kcaijKm  

Cytochrome NADPH Cytochrome Potassium Cytochrome Potassium 

C c ferricyanide c (p.M' ferricyanide 

min') (j.tM' min 
1) 

Wild-type 339±7.2 3.86±0.28 17.6± 1.6 9.68±0.36 87.8 49 

R237A 319±8.2 - 176.3±27 3.95±0.54 1.81 170 

R238A 354 ± 40 - 186.6 ± 36 3.04 ± 0.37 1.91 134 

Purified FLD acts as a single electron shuttle and is able to stimulate the rate of 

FLDR-dependent cytochrome c reduction approximately 6-fold. Clearly FLD must 

have superior interaction with cytochrome c compared to FLDR. As FLDR and FLD 

are a physiological complex, therefore you may be able infer their affinity for one 

another on the basis of cytochrome c stimulation. With saturating cytochrome c 

(200tM) and FLDR at 16.65 nM, a Michaelis curve was obtained for the stimulation 

of cytochrome c reductase activity when FLD was varied 0.25-10 i.M and the 

reduction rate was plotted v. [FLD] and gave an apparent Km of the FLD for the 

FLDR of 6.84 ± 0.68ixM. When purified FLD was added to the mutant proteins 

R237A and R238A, it did not stimulate the rate. 

Stopped-flow kinetics 

Stopped-flow absorption spectrophotometry was used to investigate the rate of 

hydride transfer from NADPH to FLDR, to assess if the mutations had had any effect 

on this stage of the catalysis. The rate of electron transfer for the mutants and the 

wild-type enzyme was found to be 22s1,  see table 5.3 

Stopped-flow absorption spectrophotometry was also used to investigate the effects 

of mutations on the microscopic rate constants for the electron transfer from FLDR to 

FLD. This was achieved by rapid mixing of wild-type and mutant FLDRs (at a fixed 
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concentration between 30 - 50 .tM) in one stopped-flow syringe with FLD (20 1iM), 

and NADPH (2mM) in the other syringe, and monitoring the rate of electron transfer 

from FLDR to the ThIN of FLD. The increase in absorbance at 583nm formation of 

the semiquinone on FLD was measured. The reaction time was 1000s, as the rate of 

electrons transfer from FLDR to FLD was apparently very slow. The rate for the wild 

type enzyme was 0.03407 ± 0.00021 s. The rate for both mutants were lowered, 

R237A had a rate of 0.01755 ± 0.00035 s' and R238A a rate of 0.01871 ± 0.00012s 

1, see table 5.3. 

The affect of ionic strength on the electron transfer from FLDR to FLD for the wild-

type and mutants enzymes was also investigated using stopped-flow 

spectrophototrometry. This was achieved by having FLDR of a fixed concentration 

(30-50p.M) in the assay buffer (10mM sodium phosphate, pH 7.5) in one syringe, with 

FLD (20p.M) pre-reduced by NADPH (2mM) in the other, in the assay buffer at 

double the required ionic strength. Wild-type enzyme showed the fastest rate at the 

lowest ionic strength (10mM) whereas the mutants maximal rate was achieved at 

100mM and 200mM for R237A and R238A respectively, see fig 5.3. 

Table 5.3 Stopped-flow kinetic parameters for wild-type and mutant FLDR 

Kd kred kred 

NADPH NADPH FLD 

(pIvl) (s1) (s') 

wild- <5 22.63 0.03407 

type ± 0.67 ± 0.0024 

R237A <5 21.79 0.01755 

± 0.68 ± 0.0031 

R238A <5 25.43 0.01871 

±0.78 ±0.0014 
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Fig 5.3 Ionic Strength studies of wild-type FLDR and R237A and R238A by 

stopped-flow spectro photometric studies 
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Discussion 

In the crystal structure of FLDR three arginine residues, R236, R237 and R238, near 

to the C-terminus have been proposed as anchor points for interaction with glutamate 

residues of the redox partner FLD. The residues R237 and R238 have been mutated 

to alanine and, the affects of these mutations have been examined by kinetic and 

spectroscopic studies. 

It was expected that the neutralisation of these arginine residues would have an affect 

on the binding and transfer of electrons to the terminal electron acceptor. The 

transfer of electrons from NADPH to FLDR was not affected. The results of the pre-

steady-state studies showed that the electron transfer from NADPH to FLDR in the 

mutant enzymes in comparison to the wild-type enzyme is unchanged at 22s 1 . This 

was also observed in steady state where the k for both R237A (319 ± 8.2 min') and 

R238A (354 ±40 min') was again equivalent to the wild-type enzyme (339 ± 7.2 min 

1) 
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These mutations did however affect the terminal electron transfer to both FLD and 

artificial electron acceptors. This stage of the catalytic cycle was studied by both pre-

steady-state and steady-state techniques. For both mutants steady state studies the 

k for cytochrome c reduction was roughly equivalent to the wild-type enzyme, 

although the Km for both R237A (176 ± 27 j.tM) and R238A (187 ± 36 jiM) had 

increased ten fold in comparison to wild-type (17.6 ± 1.6 jiM). Cytochrome c has an 

asymmetric distribution of charge, which it uses to pre-orientate itself to the optimal 

position for electron transfer in conjunction with its electron donor. The mutations in 

FLDR may have disturbed this balance of charge between itself and cytochrome c, 

and this may prevent the two proteins from pre-orientating themselves to the optimal 

position for the electron transfer complex. This alteration of charge may also disrupt 

the electrostatic forces, which stabilize the electron transfer complex. However, the 

for the reduction of cytochrome c was not affected. This suggests that the rate 

limiting step in the catalytic cycle is the transfer of electrons from the FLDRs flavin to 

the haem group of cytochrome c. When potassium ferricyanide is used as the terminal 

electron acceptor, both the mutants R237A and R238A are three fold more efficient 

than the wild-type enzyme, see table 5.2. Ferricyanide is a comparatively small 

artificial electron acceptor and if the protein structure is examined, it can be seen that 

the R236, R237 and R238 form a positive arm protruding from the main bulk of the 

protein, see fig 5.4. Potassium ferricyanide may be interacting with these residues and 

not moving in close enough to the site of the flavin for efficient electron transfer to 

occur. When one of these positive charges is removed as in the mutants, R237A and 

R238A, the potassium ferricyanide may approach closer enabling more efficient 

electron transfer to occur. 

The electron transfer from FLDR to its physiological acceptor, FLD, was examined 

by both steady-state and pre-steady-state kinetics. In steady-state studies, using 

cytochrome c as the terminal electron acceptor with wild-type FLDR, addition of 

FLD was found to stimulate the reaction six fold and had a Km of 6.84 ± 0.68 W. 

FLD therefore must transfer electrons at a greater rate to cytochrome c than FLDR. 

Therefore the steady-state reaction with cytochrome c as the terminal electron and 
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FLDR and FLD present should give an insight into the interaction between FLDR and 

FLD. In steady-state studies with both of the mutants R237A and R238A, when FLD 

was added to the assay it was found that the rate was unaffected. This appears logical 

since these mutations should impair the ability of FLDR and FLD to dock in the 

optimal electron transfer complex. Either FLDR and FLD cannot pre-orientate 

themselves or they cannot form the electron transfer complex correctly due to the 

disruption of electrostatic forces. 

The pre-steady-state kinetics showed that the rate of electron transfer between FLDR 

and FLD for both the mutants R237A and R238A (0.01755 ± 0.0031 s', 0.01871 ± 

0.0014 s_ i  respectively) is reduced by 50% in comparison to the wild-type ( 0.03407 ± 

0.0024 s'). Therefore both mutations R237A and R238A have disrupted the electron 

transfer from FLDR to FLD. Unfortunately it was not possible to measure the 

apparent Kd  of FLDR and FLD by pre-steady-state, because the rate of electron 

transfer from FLDR to FLD is very slow. Ionic interactions obviously play an 

important role in the binding of FLDR and FLD. Ionic strength studies were carried 

out by stopped-flow spectrophotometry, to try and gain an insight as to how these 

mutations have affected the electrostatic interactions. The optimal ionic strength for 

electron transfer in the wild-type enzyme was found to be 10mM NaCl. At higher 

ionic strengths these ionic interaction are swamped out, therefore FLDR and FLD 

have trouble forming the optimal electron transfer complex and the rate is reduced. 

R23 7A does not appear to be that important in orientating FLDR and FLD, since 

optimal ionic strength is similar to wild-type at 10mM NaCl but the rate does remain 

constant until 100mM NaCl then rapidly decreases. In the mutant R23 8A the optimal 

ionic strength was found to be 200mM NaCl, so obviously this residue plays an 

important role in forming the electron transfer complex. When R238 is removed 

unfavorable electrostatic interactions may dominate. It is plausible that these can be 

overcome at higher ionic strength. Hence, R238A function best at 200mM NaCl. 

All the mutant FLDRS exhibited the same properties as the wild-type enzyme in 

fluorescence, UV-Vis and CD studies demonstrating that there has been no major 
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structural change. CD studies were carried out to study the interaction of FLD with 

the wild-type and mutant FLDR. In the far UV the spectra of the mixture FLD with 

the wild-type and mutant enzymes were found to be essentially to be identical to those 

spectra derived by adding the spectra for the individual components at the same 

concentration. This indicates that the secondary structure of FLDR and FLD are not 

perturbed by any complex formation. However, in the near UV region there were 

isobestic points present when the algebraic and arithmetic spectra were overlaid. The 

changes presumably reflect small re-orientations of one or both of the flavins when 

complex formation occurs, this would lead to the change in the chiral properties of the 

flavin observed. Similar small changes were observed with wild-type FLDR and FLD, 

as when the mutant proteins were mixed with FLD. We were unable to determine 

from CD if there were any changes in the interaction between the mutant enzymes 

complex with FLD and the wild-type complex with FLD. CD does not appear to be a 

particularly sensitive probe for these flavoproteins interaction, but other kinetic data 

indicates that there are genuine differences in the docking with FLD. When alignment 

studies were carried out on other members of the pyridine dinucleotide-dependent 

oxidoreductase super-family of enzymes; it was evident that neither R237 nor R238 

are conserved. 

Various studies have been carried out into the interaction of various electron transfer 

partners, including members of the FNR family and their partners. A study has been 

carried out on the complex between Azotobacter vinelandii ferredoxin I and NADPH-

ferredoxin reductase (Jung et al. 1999). The electrostatic potential of the two 

proteins were calculated, and it was found that ferredoxin had an asymmetric 

distribution of charge. The region surrounding the area where the [4Fe-4S] cluster 

approaches the surface appears to be hydrophobic and surrounded by a ring of 

negatively charged residues. The surface of NADPH-ferredoxin reductase has an area 

of positive potential surrounding the area where the flavin approaches the surface of 

the protein. This asymmetric distribution of charge may help the proteins to pre-

orientate themselves for the formation of the electron transfer complex. This 
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negatively charged ferredoxin and the positively charge ferredoxin reductase surface 

motif is a common trend in ferredoxin reductase and ferredoxin partners. 

In studies using differential chemical modification of spinach ferredoxin reductase Dc 

Pascalis et a! (Dc Pascalis et al. 1993) proposed that a series of basic residues on 

ferredoxin reductase are involved in the binding of ferredoxrn reductase to ferredoxin. 

As all these residues are conserved in Anabaena ferredoxin NADP reductase these 

were used as the basis for mutagensis studies to elucidate ferredoxin NADP 

reductase interaction with ferredoxin (Schmitz et al. 1998). These basic residues 

were either charge neutralized or charged reversed, and their effects on electron 

transfer to ferredoxin were examined. It was observed that all of these residues are 

required for efficient electron transfer between ferredoxin NADP reductase and 

ferredoxin. However, only one of these residues is conserved in E. coil FLDR, 

(Anabaena R214 E.coii R50). The Anabaena residue R214 is implicated in binding 

of the FAD (Schmitz 1998), as is R50 in E. coil FLDR (Ingleman etal. 1997). 

Mutagenesis studies have also been carried out on Anabaena ferredoxin to study its 

relationship with Anabaena ferredoxin NADP reductase (Hurley et al. 1997). 

Mutations were carried out on acidic residues which were proposed to interact with 

basic residues present on ferredoxrn NADP reductase. Hurley et al concluded that it 

is very specific protein-protein interactions at the ferredoxin/ ferredoxin NADP 

reductase interface that controls the formation of the optimal electron transfer 

complex. They have demonstrated that hydrophobic interactions play a key role in 

forming the optimal electron transfer complex and that electrostatic interactions favor 

less productive orientations between the two proteins (Hurley et al. 1996). This was 

also found to be the case for the interactions between flavodoxin and cytochrome c3  

from Desuifovibrio vuigaris (Feng & Swenson 1997). Various acidic residues 

present on flavodoxin were charge neutralised and the interaction with cytochrome c3  

was studied. The conclusion was reached that flavodoxin and cytochrome c3  interact 

by a 'minimal electron transfer mechanism' in which the initial complex formed is 

stabilized by electrostatic interactions, but is relatively inefficient in electron transfer 
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terms. The complex then rearranges in a rate limiting step to form a more efficient 

electron transfer complex. 

FLDR and FLD are probably not interacting in this rather inefficient method of 

electron transfer, as the optimal ionic strength for the interaction of FLDR and FLD is 

10mM NaCl, which suggests that electrostatic interactions are important in forming 

the electron transfer complex. It would be expected that the rate would increase at 

elevated ionic strength if 'minimal electron transfer mechanism' was the mechanism, 

as the electrostatic interactions would become weaker. FLDR and FLD are most 

likely to interact in a more classical electron transfer mechanism. The first step 

involving the orientation of the two proteins through the interaction of their general 

electrostatic fields, but it is unclear from our data how important this "steering" 

process is in the formation of the complex. The two proteins would then dock 

through electrostatic and hydrophobic interaction, to form the electron transfer 

complex. Transfer of electrons then occurs and the complex dissociates. Other 

studies mainly based on hypothetical models have been carried out on protein-protein 

electron transfer complexes between cytochrome c and fiavodoxin, (e.g., Stewart et 

al. 1988, Palma et al. 1994, Weber & Tollin 1985). The overriding conclusion from 

these is that the proteins which contain complementary charged patches surrounding 

the area where the prosthetic group approaches the surface, pre-orientate themselves 

to form the electron transfer complex. 

Unfortunately no atomic structure has been determined for the FLDR/FLD complex, 

although a structure has been solved for the cytochrome c-cytochrome c peroxidase 

complex (Pelletier & Kraut 1992). However, it is unclear whether this complex 

represents the active form of the electron transfer complex. The crystal structure 

between the haem-and FMN binding domain of bacterial cytochrome P450BM-3 has 

also recently been determined (Severioukova et al. 1999). However, this is not a 

good model for the interaction of FLDR and FLD as the BM3-FIMN domain differs 

dramatically from FLD. In this protein the FMN is mainly surrounded by neutral and 

hydrophobic residues whereas FLD has highly conserved negatively charged residues 
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surrounding the FMN. This manifest in the very different redox properties of the two 

FMN containing proteins. 

In conclusion, the atomic structure of E. coil FLDR (Ingleman et al. 1997) suggested 

that the residues R236, R237 and R238 are involved in the interaction of FLDR and 

FLD. In our studies, R237 and R238 were mutated and both these residues proved to 

be involved in the interaction of FLDR with FLD. From our data it is not clear 

whether these residues are important in pre-orienting the proteins, forming 

electrostatic interactions with FLD, or a combination of the two. The collection of 

kinetic data was difficult due to the poor rate of electron transfer between FLDR and 

FLD, which is at least 100, 000 times lower than similar systems (Hurley et al. 1996). 

One reason for the slow rate of electron transfer, is that the reduction potential of 

FLDR is very close to that of the ox/sq couple of FLD, which leads to a very low 

driving force for electron transfer to FLD. The rate may increase when FLDR and 

FLD are in complex with their terminal electron acceptor. Studies with cytochrome c 

as the terminal electron acceptor, suggest that the rate limiting step of the reaction is 

the transfer of electrons from FLDR to cytochrome c and not the electron transfer 

complex formation. However, it is not known whether this is also the rate limiting 

step for electron transfer from FLDR to FLD. Which raises the question as to 

whether FLDR and FLD are actually physiological redox partners. Nonetheless, the 

systems that FLDR and FLD support in E. coil are not systems that require a fast 

turnover. It is unfortunate that a Kd for FLDR and FLD has not been determined, but 

it was not possible to derive it by kinetic studies due to the slow rate of electron 

transfer. 

Various techniques were considered for determining the FLD/FLDR Kd, including 

fluorescence studies. However, the fluorescence of FLDR is very poor and it would 

not be possible to determine the Kd in this manner. Binding the FLDR to a support 

column and passing through FLD and then calculating how much of the FLD had 

bound was also considered. The problem with this method is that we cannot be 

certain exactly how FLDR is attached to the column. Biacore experiments were 
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considered, but again it is not possible to ensure that the chip has a homogenous 

protein covering of FLDR. Obviously further studies are required to gain a fuller 

understanding of the interaction of FLDR and FLD. The arginine residue R236 

should be mutated to gain a fuller understanding of the interaction of the three 

arginine residues R236, R237 and R238. It would be interesting to make multiple 

mutations of these arginines to look at the combined effects of these residues. 
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Chapter 6 (S. citricolor) 

Introduction 

Aristeromycin (Fig 6.1) is a carbocyclic analogue of adenosine, and was first 

synthesised in a racemic form in 1966 (Shealy & Clayton 1966). Shortly thereafter it 

was isolated from Streptomyces citricolor (Kusaka et al. 1967). Neplanocin A, 

which has been shown to be a precusor of aristeromycin (Parry et al. 1989), and 

some closely related compounds have subsequently been identified as metabolites of 

Ampullariella regularis (Hayashi et aL 1981, Yaginuma et al. 1981). 

Fig 6.1 Structure of Aristeromycin and neplanocin A. 
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Biological Activity 

Both, neplanocin A and aristeromycin show inhibitory activity against bacteria and 

fungi, which is presumably due to their close structural relationship to natural 

nucleosides. Both have been shown to have antiviral activity against (-) RNA viruses 

(i.e., parainfluenza, measles, and vesicular stomatitis, and double stranded RNA 

viruses i.e., reo)(De Clercq 1987). They also posses antitumour activity (Yaginuma 

etal. 1981) but unfortunately their cytotoxicity precludes clinical use. 

Inhibition of S-adenosyl-L-homocysteine hydrolase 

The mechanism of neplanocin A and aristeromycin antiviral activity is the inhibition of 

the enzyme S-adenosyl-L-homocysteine (AdoHcy) hydrolase. This enzyme catalyses 

the reversible hydrolysis of S-adenosyl-L-homocysteine to adenosine and L- 
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homocysteine without added cofactors. AdoHcy hydrolase is a key enzyme in 

transmethylation reactions using S-adenosyl-L-methionine (AdoMet) as the methyl 

donor, including those that are involved in the maturation of viral mRNA. The by-

product of these methylations, AdoHcy, serves as a feedback inhibitor for many 

methyltransferases. AdoHcy hydrolase is the only enzyme known to catalyse AdoHcy 

catabolism, and is thought to play an important role in allowing the methylation 

process to proceed at its normal physiological rate, see fig 6.2 (Wolfe et al. 1991). 

Fig 6.2 The action of S-adenosyl-L-homocysteine hydrolase (De-Ctercq 1987) 
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While the equilibrium reaction favours the synthesis of S-adenosyl-L-homocysteine, 

under physiological conditions the reaction proceeds in the hydrolytic direction 

because the products, adenosine and L-homocysteine, are removed by a number of 

other enzymes, see fig 6.2 (De-Clercq 1987). Adenosine actually inhibits AdoHcy 

hydrolase, which means it has to be removed for AdoHcy hydrolase to proceed with 

its catalytic cycle. It is removed by several pathways, including adenosine deaminase 

and from fig 6.2 it is clear that the concerted action of three enzymes 

(methyltransferase, AdoHcy hydrolase and adenosine deaminase) is required. 

There is now strong evidence that AdoHcy hydrolase is associated with 

transmethlyation reactions in the virus replicative cycle. Many plant and animal 



S. citricolor, Chapter 6: Introduction 

viruses require a methylated cap structure at the 5' terminus of their mRNA for viral 

replication. Virus encoded methlytransferases that are involved in the formation of 

this structure are inhibited by AdoHcy. Therefore, inhibition of AdoHcy hydrolase 

would be expected to result in an increased concentration of AdoHcy in the cells, in 

turn inhibiting the viral methlytransferases (Wolfe et al. 1992). The resulting under 

methylation of the viral mRNA cap structure induced by the inhibition of AdoHyc 

hydrolase has been correlated to the inhibition of viral replication (Ransohoff et al. 

1987). The question arises as to how AdoHcy hydrolase inhibitors can impart any 

specificity towards viral replication. It appears that these may confer their antiviral 

specificity via inhibition of virus specific methlytransferases (De-Clercq 1987). 

A detailed knowledge of how neplanocin A and aristeromycin act as inhibitors 

requires a prior understanding of the enzymatic mechanism of AdoHcy hydrolase. An 

important feature of the mechanism of the enzyme is the oxidation/reduction at C-3' 

of the substrate, by the tightly bound NAD of the enzyme. Oxidation activates the 

C-4' proton facilitating the elimination of the C-S' substituent. In the next step, the 

Michael type addition of water or L-homocysteine is facilitated by the transiently 

induced ketone functionality (Palmer & Abeles 1979) as shown in fig 6.3. 
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Fig 6.3 Mechanism of action of S-adenosylhomomcysteine hydrolase 
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During the inhibition of AdoHyc hydrolase by aristeromycin and neplanocin A they 

are oxidised at the 3' position by the NADP co-factor of the AdoHyc hydrolase 

resulting in the 3' -keto derivative, which remains tightly bound to the NADPH form 

of the enzyme leading to inactivity (Paisley et al. 1989). This mechanism has been 

supported by the observation that the binding of neplanocin A to AdoHyc hydrolase 

involves a stoichiometry of one molecule of enzyme to one molecule of inhibitor 

(Parry & Bornemannl985). 

Aristeromycin metabolism & antitumour activity 

It was found that cells with and without adenosine kinase activity are equally sensitive 

to aristeromycin. However, the mechanism of cell death is different depending on 

whether adenosine kinase activity is present or not. Aristeromycin kills cells with no 

adenosine kinase activity, due to the action of the unphosphorylated nucleoside 

carbocyclic analogue, presumably by inhibiting S-adenosyl-L-homocysteine hydrolase. 
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It is the metabolites of aristeromycin which confer antitumour activity. 

Aristeromycin is metabolised to its triphosphate in cells by adenosine kinase in vivo 

(Bennett etal. 1986). 

Aristeromycin has a potent toxicity to cultured tumour cells (Hill et al. 1971) which 

is increased by the presence of guanine. Aristeromycin inhibits guanine and 

hypoxanthine utilisation by the cells (Bennett et al. 1985). A possible explanation for 

this is that aristeromycin, in addition to being metabolised to the phosphate 

derivatives, (Bennett el al. 1968) may be also metabolised to the phosphates of the 

carbocyclic analogue of guanosine (C-Guo). The identification of both 5'-

triphosphate of aristeromycin (C-ATP) and the 5'-tiiphosphate of the carbocycic 

analogue of guanosine (C-GTP) as metabolites of aristeromycin indicates that 

aristeromycin is metabolised along the same pathways as adenosine, see fig 6.4. 

Fig 6.4 The metabolism of aristeromycin. 
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The observation that C-GTP is a metabolite of aristeromycin, when considered with 

the fact that the carbocyclic analogue of inosine monophosphate (C-IMP) and the 

carbocyclic analogue of monophospate of guanosine (C-GMP) are present on the 

metabolic pathway of aristeromycin, gives a possible explanation as to why 

aristeromycin inhibits the utilisation guanine and hypoxanthine. Both the 5'-

phosphates of the carbocyclic analogues of inosine and guanosine strongly inhibit 

hypoxanthine (guanine) phosphoribosyltransferase (H(G)PRT) (Murray 1966). To 

date C-GMP is the best known inhibitor for H(G)PRT. In mammalian cells H(G)PRT 

is present as a salvage pathway of purine synthesis; hence inhibition of H(G)PRT 

should not lead to excessive cytotoxicity. However many parasites are dependent on 

pre-formed purines for the synthesis of purine nucleosides, and thus are selectively 
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inhibited. Hence, inhibitors of H(G)PRT and other salvage enzyme are of potential 

importance in the therapy of diseases caused by such parasites. 

In conclusion, aristeromycin inhibits enzymes in a number of pathways aristeromycin 

appears an attractive as a drug candidate. Unfortunately, since it is toxic to 

mammalian cells it cannot be used therapeutically. However, aristeromycin analogues 

which retain its activity and have less harmful effects, could be potential drug 

candidates. Due to the therapeutic potential of analogues of aristeromycin, there has 

been interest in the biosynthetic pathway in S. citricolor. If the genes from the 

biosynthetic pathway were isolated this would possibly enable its manipulation, 

potentially giving rise to novel analogues as drug candidates. 

Biosynthesis of ansteromycin 

The biosynthesis of aristeromycin was first studied by Parry (Parry & Borenemann 

1985, Parry el al. 1987, Parry et al. 1989). On the basis of feeding experiments 

Parry proposed that D-glucose was the starting point in the pathway. In more recent 

studies (Jenkins & Turner 1995), the intermediates on the pathway have been identified 

by co-biosynthesis experiments. A series of mutants of Streptomyces citricolor which 

were blocked at different stages of the biosynthetic pathway were isolated by Glaxo in 

the early 1990's. It was found that combinations of certain mutants could restore the 

production of aristeromycin. A specific mutant (secretor) emerged that secreted a 

compound, the tetrol fig 6.5. The tetrol could support the production of 

aristeromycin in another mutant (converter) which was blocked earlier in the pathway 

see fig 6.6. 

Fig 6.5 Structure of Tetrol 

OH 

OH OH 
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Fig 6.6 Co-synthesis of aristeromycin using the secretor mutant and the 

converter mutant (Jenkins & Turner 1995) 
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Not much is known about other intermediates on the pathway, though it is speculated 

that the tetrol may be activated at the C-i via its pyrophosphate, which would allow 

the introduction of the adenine base. There are two possibilities for the origin of the 

adenine base of aristeromycin. The adenine ring could be synthesised by the stepwise 

construction of the punne ring, on a carbocyclic analogue of 5-phosphoribosyl 

pyrophosphate containing a pre-existing amino group at C-i. Alternatively, the 

adenine ring could be added directly to a carbo cyclic intermediate activated at C-i by 

pyrophosphate group. Evidence suggests that the direct incorporation of adenine is 

the major route to aristeromycin, though this does not eliminate the possibility of a 

competing denovo pathway (Jenkins & Turner 1995). 

The co-production of aristeromycin and neplanocin A in cultures of wild type 

Streptomyces curicolor suggested from the outset that they may be closely related on 

the biosynthetic pathway. In Jenkins work certain mutants of S. citricolor could not 

produce neplanocin A or aristeromycin but were able to convert neplanocin A to 

aristeromycin (Jenkins & Turner 1995). A mutant of Streptomyces citricolor, which 

produced neplanocin A but no aristeromycin, was fed [6- 2H2]-D-glucose; and 6'- 2H-

neplanocin A was isolated. 6'- 2H-neplanocin A was then fed to a second mutant, 

which was blocked in the production of both aristeromycin and neplanocin A, but was 
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able to convert neplanocin A to aristeromycin. 6'- 2H -aristeromycin was isolated 

suggesting that neplanocm A is the direct precursor of aristeromycin (Jenkins & 

Turner 1995). Parry has produced enzymological evidence which supports this 

conclusion (Parry & Jiang 1994). A cell free system was prepared from culture of 

Streptomyces citricolor, which was producing aristeromycin. This cell free system 

was shown to catalyse the NADPH dependant reduction of neplanocin A to 

aristeromycin. Labelling studies were carried out in the presence of the partially 

purified enzyme, see fig 6.7. These studies demonstrated that the reaction proceeds 

with anti geometry and involves the transfer of the pro-R hydrogen atom of NADPH 

to the 6-3-position of aristeromycin, see fig 6.7. The stereochemistry of the double 

bond is anti. The reaction proceeds with the addition of the hydride to the double 

bond in an anti Markovnikov fashion. It has been suggested that the mechanism of 

the conversion may involve initial oxidation of C-5' hydroxymethyl group to an 

unsaturated aldehyde, followed by the conjugate reduction, and the reduction of the 

unsaturated aldehyde with NADPH, and finally reduction the aldehyde moiety to the 

primary alcohol. 

Fig 6.7 Results of labelling studies 
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From these studies Jenkins suggested a route; D-glucose —* enone - tetrol —p 

neplanocin A —* aristeromycin, (Jenkins & Turner 1995) see fig 6.8. D-glucose, 

tetrol, and neplanocin A have all been shown to be intermediates on the pathway, but 

the enone is only a proposed intermediate. 
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Fig 6.8 The proposed biosynthetic pathway of aristeromycin production 

(Jenkins & Turner 1995) 
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It has been suggested that the aristeromycin pathway may be similar to the 0-

nucleoside pathway, since coupling of the tetrol and adenine to give neplanocin A 

could proceed via carbocyclic analogues of ribose-5-phosphate and 5-phosphoribosyl-

(x-1-pyrophosphate (PRPP). Enzymological studies have been carried out on the third 

defined step, step 2 in fig 6.8, using 5-phosphoribosyl-a-1-pyrophosphate (PRPP) 

synthases (Nilsson & Hove-Jensen 1987). PRPP synthases catalyse the reaction of 

ribose-5-phosphate with ATP in the presence of magnesium ions to form 5-

phosphoribosyl-a-1-pyrophosphate and AMP. It was therefore suggested that a 

homolog of PRPP synthases may be used in the biosynthetic pathway. The 

cyclopentyl analogue of ribose-5-phosphate was synthesised and its behaviour with 

various PRPP synthases was investigated. However the carbocyclic analogue of 

ribose-5-phosphate proved not to be a substrate for PRPP synthase, in fact it acted as 

an inhibitor. Moreover the cyclopentyl analogue showed quite diverse inhibition 

behaviour against a variety of PRPP synthases (Parry et al. 1996). 
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Natural product biosynthesis 

A major goal of natural product studies is to isolate the enzymes involved in the 

pathway, and clone their respective genes. Therefore, an initial problem is how to 

assay for and isolate the enzymes on the pathway. Natural product biosynthesis is 

frequently a multi-step process, often involving 15-20 gene products. The 

biosynthetic genes in many biosynthetic pathways are clustered together on the 

genomic DNA, in what is known as a biosynthetic operon (Roessner & Scott 1996). 

When the natural product is an antibiotic; the producing organism must have a 

mechanism of resistance to its own antibiotic. The gene encoding the resistance 

mechanism is situated on or near the biosynthetic operon, of all the biosynthetic 

pathways isolated so far. The mechanisms of resistance can take various forms such 

as the modification of the target site, confinement of the antibiotic to discrete 

subcellular compartments or the production of them as inert derivatives to be 

activated during or following export. It maybe a membrane transport enzyme, which 

would pump the natural product outside the cell. The resistance may also be that the 

antibiotic undergoes some form of chemical modification such as phosphorylation or 

acelylation, once it is produced (Cundliff 1984). Often an organism can have multiple 

resistance genes, incorporating a variety of mechanisms of resistance to an antibiotic. 

The problem in natural product biosynthesis is to understand all the enzymes present 

on the biosynthetic pathway. There are numerous methods for gaining an insight into 

the enzymes situated on the biosynthetic pathway. These include labelling studies to 

examine the progression of intermediates along the pathway. Isolation and 

characterisation of individual enzymes on the pathway, which can then give an insight 

into the catalytic mechanism. 

There are also many reasons for cloning an entire biosynthetic pathway. Natural 

product biosynthesis pathways can be engineered to enhance production or product 

diversity. Unnatural products may be obtained by supplying unnatural substrates. 

Limitations in vivo (1. e, cell toxicity, lack of substrate uptake), may be overcome in 

vitro. Competing pathways can be overcome in vitro by using purified enzyme or a 

large excess of the required enzymes. Inactivating the enzyme that normally uses the 
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intermediate as a substrate, either by mutating it in vivo, or omitting it in vitro can 

induce the accumulation of intermediates. New products may be produced by 

introduction of genes from heterologous organisms in vivo, or by addition of the 

corresponding enzyme in vitro. This may also reduce problems of expression, toxicity 

and unfavourable culture conditions. Product inhibition may be overcome by replacing 

regulatory enzymes with isozymes, either naturally occurring or genetically altered, so 

that they do not exhibit feedback inhibition. Combinatorial biosynthesis is an 

important result of genetically engineered biosynthetic pathway, where enzymes 

which have been isolated and characterised these are combinatorially reconstructed to 

produce libraries of novel compounds which are appropriate for use in screening new 

drugs, see fig 6.9 (Roessner & Scott 1996). An initial early success in this field by 

Whiteside and Wong (Wong & Whiteside 1980) who developed the concept of 

reconstituting a pathway or mixing enzymes from interlinking pathways. They used 

commercially available enzymes to synthesise ribose-5-phosphate and ribulose-1,5-

diphosphate from glucose. 

Fig 6.9 Genetic engineering of natural product biosynthesis (Roessner & Scott 

1996) 
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The most successful examples of cloning entire natural product biosynthetic pathways 

have come from Streptomyces and related filamentous bacteria. Many Streptomyces 

produce polyketide natural products. Streptomyces produce over 50% of the 

clinically known antibiotics. They include antibiotics, anticancer agents, 

immunosuppressants, antiparasitic agents, antiflingals and cardiovascular agents. The 
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enzymes which catalyse the construction of these molecules are known as polyketide 

synthases (PKSs). PKSs are multi-enzyme assemblies which catalyse the repeated 

decarboxylative condensations between coenzyme A thioester. In this way PKSs are 

similar to fatty acid synthases (FAS5) which undergo a similar reaction. The FASs 

then undergo a full reductive cycle, which consists of a keto reduction, dehydration 

and enoyl reduction on the 13-keto group of the chain. However, unlike FASs PKSs 

often omit this cycle or shorten it. After the carbon chain of the polyketide has grown 

to the required length, it is released from the synthase by thiolysis or acyltransfer. The 

variation among different polyketides is achieved by variations in chain length, chain 

building units and the differences in the reductive cycles (Khosla & Zawada 1996). 

Many polyketide biosynthetic pathways have been cloned and characterised. The 

cloning of these pathways has enabled combinatorial biosynthesis to be carried out 

giving rise to novel polyketides that can be either modified further or screened to 

identify promising drug leads. An important factor is that polyketide enzymes are 

similar in many ways and contain many conserved motifs, which have similar DNA 

sequences. These conserved DNA sequences can be used to probe other polyketide 

producing organisms to enable the isolation of the gene cluster that encodes for their 

biosynthetic pathway. Therefore, as more polyketides biosynthetic pathways are 

cloned this leads in turn to it being easier to clone further pathways. An example of 

combinatorial synthesis being applied to a system is the biosynthetic pathway which 

catalyses the formation of 6-deoxyerythronolide B (6-dEB). This is catalysed by 

DEBS synthases 1, 2 and 3, each compromising of two modules. Each module 

contains a full complement of sites required for one condensation, an acyl transferase, 

along with a subset reductive active site. Various genetic manipulations and feeding 

of novel compounds have been performed leading to a variety of products, see fig 

6.10 (Khosla & Zawada 1996) 
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Fig 6.10 Genetic Manipulations of 9-deoxyerythronolide B synthase (DEBS) 

genes (Khosla & Zawada 1996) 
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Various other classes of compounds biosynthetic pathways have been cloned, though 

the most common class is polyketides. One of the most recent biosynthetic pathways 

to have been cloned is the antitumor antibiotic mitomycin C from Streptomyces 

lavendulae. Probing with rijK gene, encoding the rifamycin AHBA synthase from 

Amycolatopis mediterranei (Kim et al. 1998) identified the mitomycin C gene 

cluster. The rijK gene was used because mitomycin C is in part derived from 3-

amino-5-hydroxybenzoic acid (AHBA), a precursor that is also required for the 

biosynthesis of the ansamycin antibiotics, including rifamycin. The biosynthetic 

operon consists of a cluster of forty-seven genes spanning fifty-five kilobases of DNA. 

The putative mitomycin C pathway regulator has been manipulated, which has led to 

an increase in the drug production (Mao et al. 1999) 
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Aims of this project 

The aim of this work was to isolate an enzyme whose gene would be situated on the 

aristeromycin biosynthetic operon in S. citricolor. Once the enzyme has been 

purified, determination of the N-terminal sequence would lead to the design of a 

degenerate DNA oligonucleotide, and used to probe S. citricolor chromosomal DNA. 

However, unlike many biosynthetic pathways which have recently been cloned, the 

aristeromycin pathway has the disadvantage that there is not a common probe, for 

example an acyl carrier protein as in the polyketide biosynthetic pathways, whose N-

terminal sequence can be used as a probe for S. citricolor DNA. Possible targets in 

the aristeromycin biosynthetic pathway include the neplanocin A to aristeromycin 

converting enzyme. Parry (Parry & Jiang 1994) has carried out initial enzymatic 

studies on this stage of the pathway. Another possible target is an aristeromycin 

resistance protein, as this could possibly be situated on the biosynthetic operon. To 

enable the possible isolation of the biosynthetic operon of aristeromycin, 

chromosomal DNA would need to be packaged into cosmids. A cosmid is a circular 

piece of DNA, which can hold very large fragments of DNA up to 40Kbp. If a 

cosmid is isolated which contains the target gene, the cosmid may contain part or the 

whole of aristeromycin biosynthetic operon. The cosmid would be sequenced and 

one could "walk down" the operon looking for open reading frames, for the enzymes 

involved in the biosynthetic pathway. Recognition of known sequence motifs for 

example nucleotide binding sites e. t. c may enable the tentative assignment of function, 

see fig 6.11. 
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Fig 6.11 Procedure for isolating the biosynthetic operon 
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Chapter 7 (S. citricolor) 

Materials & Methods 

Any methods which were used in S. citricolor project but are not stated here, have 

been previously stated previously in chapter 2. 

Materials 

The wild type and mutants of Streptomyces citricolor were complimentary from 

Glaxo. 

All other reagents were supplied as stated in chapter 2: 

Cell Lines 

Cell Line Characteristics 

Streptomyces citricolor (cc2667) Wild type 

Streptomyces lividans Wild type 

Oligonucleotides 

Name Sequence 

AlP 1 TCC TTC CAG CTG CCG CCG CTG CTG 

AIP2 TCS TTC CAG CTS CCS CCS CTS CTS 

AlP 3 TCS TTC CAG CTS CCS CCS CTS CTS TAC BVS GAS TAC GAC 

B=T+C+G 

V=A+C+G 

S=C+G 

Growth of Streptomyces citricolor 

Spore suspension (vol = 1% culture volume) was added to the required media in 

sterile conditions. 250m1 baffled flasks containing 50m1 of the required media were 

used and grown at 30°C with shaking at 225rpm (3-4 days). 
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GNY Media 

GAM 6.6 

20mls Glycerol 

8g Nutrient Broth 

3g Yeast 

5gK2HPO4  

60g Glucose 

per litre 

60g Arkasoy 50 	 per litre 

21g MOPS 	 (tap water) 

25mg Uradil 	 adjust pH to7. 5 

autoclave at 121'C for 20mins, stir immediately after autoclaving. 

To assess if the culture was uncontaminated, a sample of Streptomyces citricolor 

(lOp.!) was examined by a light microscope (x40 magnification). 

Agar plates, were prepared pouring approx. 40ml of required agar per plate. 100p.l of 

the culture of bacterium was spread over the plate in sterile conditions, and the plate 

incubated at 30°C (3-4 days) 

T/O Agar 

20g Tomato puree 

20g Fine milled oatmeal 

5g Yeast Extract 

15g Agar 

25mg Uracil 

per liter 

make in tap water 

adjust pH 7.0 

Streptomyces citricolor spore suspension 

T/O agar plates of S. citricolor were incubated at 30°C until sporulation had occurred 

(3-4 days). The plate was then covered with sterile water (9mls). Spores were 

scraped from the plate to form a suspension. This was then sterile filtered, and 
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centrifuged (3 000 rpm, 15 mm). The resulting pellet was resuspended in sterile water 

(l ml). Spore suspensions were stored at -20°C for future use. 

HPLC analysis 

HPLC analysis was used to detect the presence of neplanocin A and aristeromycin. A 

solution of aristeromycin (1mg/mi) and neplanocin A (1mg/mi) was used to 

standardize the procedure, when the analysis was carried out. 

Stationary phase ODS2 Cl 8 reverse phase (sphericlone) 

Mobile phase 	97% 50mM ammonium formate buffer pH 3 

3% acetonitrile 

Flow Rate 	imi/min 

Detection 	UV@ 260nm 

Retention time 	6.6 mins neplanocin A 

9.0 mins aristeromycin 

Purification of 27kDa aristeromycin induced protein (AlP) 

S. citricolor was grown in GNY media (11) in the presence of aristeromycin 

(100.tg/ml). The cells were resuspended in buffer A (50mM Tris, pH 7.5) and were 

lysed by nebulization. The cell free extract was filtered and applied to a Q-Sepharose 

column and eluted with a gradient of 0-1M NaCl, using buffer B (buffer A + 1M 

NaCl). The resulting fractions were analysed by SDS-PAGE. The fractions 

containing the 27kDa AlP were collected. These fractions were then applied to a 

RESOURCE-Q column. The fractions were again analysed by SDS-PAGE, and the 

27kDa fraction collected. 
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Western blotting 

A 15% SDS gel was prepared and the sample was run in all lanes. The gel was 

soaked in electrolyte buffer (lOOmI 10*  CAPS [100mM CAPS, pH 11], lOOmI 

methanol, 800ml H20) for 5 mins. The membrane was soaked in methanol (20secs). 

The protein was transferred to a membrane using the western blot apparatus, at 50V 

for two hours. The membrane was rinsed in H 20, and stained with SDS PAGE stain 

(0.1% coomassie blue R-250, 10%[v/v] methanol, 10%[v/v] acetic acid). The 

membrane was then air dried and the required protein band was cut out (Maniatis 

1989). 

N-Terminal sequencing 

Dr. Andrew Cronshaw of the Welmet Protein Characterisation Facility, University of 

Edinburgh carried out this service (Hayes et al. 1989). The sequencing was 

accomplished using the Edman degradation method. 

Southern blotting (Southern 1975) 

Protocol for capillary blotting from agarose gels 

The DNA sample was separated on a 0.8% agarose gel. The DNA was visualized 

with UV light and photographed. The position of DNA was marked using ink. The 

gel was then processed for blotting which involves a number of steps: 

Denaturation: the gel was submerged in denaturation buffer (1.5M NaCl, 0.5M 

NaOH) for with gentle agitation (30 minutes). 

Neutralisation: the gel was placed in neutralisation buffer (1.5M NaCl, 0.5M Tris 

base, pH 7.5), for with gentle agitation (30 minutes). 

Between each 	step 	the 	gel 	was 	rinsed 	with 	distilled 	water. 

A nylon membrane (Hybond-N, Amersham) was cut to the size of the agarose gel. A 

tray was half filled with 20*SSC (300mM Tn sodium citrate, 150mM NaCl, pH7.5). 

A platform was made and covered with a wick of 3MM paper saturated in 20*SSC. 

The treated gel was placed on the wick, avoiding air bubbles. The gel was 

surrounded by cling film. The membrane was placed directly onto the gel on top of 
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this were placed, three sheets of 3MM paper cut to the size of the gel and saturated in 

20*SSC. A stack of absorbent towels was then placed on top of the 3MM paper to a 

height of 15cm. Finally a weight was place on top of the paper stack. The transfer 

was allowed to proceed overnight. The DNA was then fixed to the membrane by 

incubating at 80°C (2 hours). 

Colony lifts 

The cells were plated out in the usual way and incubated overnight. The agar plates 

were cooled (4°C) for at least an hour before the lift. The nylon membrane was pre-

wetted on a blank agar plate. The membrane was then placed on the colonised agar 

(60 seconds), and the position of the membrane was marked using a pin. The 

membrane then underwent numerous steps to liberate the DNA. This was achieved 

by placing the membrane disc colony side uppermost on a series of solution saturated 

3MM paper filters: 

Lysis: 10% (w/v) SDS (3 minutes). 

Denaturation: denaturation buffer (3 minutes). 

Neutralization: neutralisation buffer (3 minutes), repeated twice. 

The membrane was then washed in 2*SSC.  The DNA was fixed by incubating the 

membrane (80°C) for two hours. 

Hybridisation Protocol 

The membrane was pre-wetted with 20*SSC  and then rolled between two nylon 

meshes and placed in hybridsation tubes. Hybridisation buffer (5*SSC, 5*D enhardt's 

solution (Manatasis 1989), 0.5% (w/v) SDS,) was added which contained denatured 

salmon sperm DNA. The membrane was then prehybridized (30 minutes) at an 

appropriate temperature. 

The DNA probe was labeled with 32-[7]—P, by the following reaction: 
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Volume (tl) 

32-[y]-P-ATP 	5 

Kinase 0.8 

10* kinase buffer 2 

Probe (1 Opmol) 1 

Water 11.2 

Total 20 

The reaction is incubated at 37°C (45 minutes). 

The reaction was then applied to a gel filtration column (NICK ©, Amersham), to 

separate the un-reacted ATP from the labeled probe. The labeled probe was collected 

(400.tl) and added to the pre-hybridisation buffer. Hybridization was carried out 

overnight at an appropriate temperature. 

The membrane was then washed with SSC solutions, with increasing stringency. The 

bolt was wrapped in SaranWrap and exposed X-ray film. The film was exposed for 

an appropriate length of time, at -80°C. The film was then developed. 

Polymerase chain reaction (PCR) 

The template and primer were added in appropriate proportions to Ready To Go PCR 

beads (Pharmacia Biotech). These were then made up to 25p.l as per the 

manufacturer's instructions, with DMSO (5%-10%v/v) included. The PCR reaction 

was then carried out in Perkin Elmer DNA thermal cycler, with a typical cycle of 

95°C 1mm, 54°C ln­ mn and 72°C 1mm 

Similarity Searches 

DNA and protein similarity searches were carried out using the BLAST program 

(http://www.ncbi.nlm.nih.p-ov/blast/blast . cp-i?Jform=O).  
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Frame analysis 

Frame 	Plot 	2.3 	from 	the 	Actinomyces 	resource 	centre 

(http://www.nih.go.jp/—khottalsaj/) which predicts the most probable translation 

direction for a sequence. 
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Chapter 8 (S. citricolor). 

Results and discussion 

Introduction 

The aim of this work was to isolate a protein the gene of which was situated within 

the aristeromycin biosynthetic operon. To achieve this goal a protein needs to be 

isolated which either catalyses a reaction on the biosynthetic pathway, or is part of a 

resistance mechanism. To accomplish this, we firstly needed to achieve reproducible 

growth of S. citricolor and production of aristeromycin. 

Analysis of the aristeromycin biosynthetic pathway fig 6.8 (Jenkins & Turner 1995), 

revealed various target enzymes, an obvious candidate is the enzyme which converts 

neplanocin A to aristeromycin as some enzymological work has already been done 

by Parry (Parry & Jiang 1994). Parry reported that the conversion of neplanocin A to 

aristeromycin is an NADPH-dependent enzymatic reaction, and the reaction could be 

followed by UV/Vis spectroscopy. This method was followed a cell free extract was 

produced from an aristeromycin producing culture. The reaction was followed by 

the addition of neplanocin A and NADPH the activity was monitored by the 

aborbance change of NADPH. The cell free extract was separate by Fp1C and the 

reaction monitored through the fractions. A enzyme was isolated which had NADPH 

activity dependent on the presence of neplanocin A. However, when the reaction 

was analysed by HPLC there was no conversion from neplanocin A to aristeromycin. 

This procedure has not been described in the material and method section. Another 

entry to the biosynthetic pathway would be to isolate an enzyme which activates the 

tetrol compound by phosphorylation, see fig 6.8 (Jenkins & Turner 1995). Though 

this is only a proposed step on the biosynthetic pathway, it should be possible to 

follow the reaction using 32-[y]—P-ATP as a substrate, as the tetrol would 

incorporate the 32-[y]—P, this method was not pursued. The route that was followed 

was the isolation of a possible aristeromycin resistance protein 

119 



S. citricolor, Chapter 8: Results & Discussion 

Results 

Growth of S. citricolor 

Growth of wild type S. citricolor (cc2779) was achieved in GAM6:6 medium, with 

the production of aristeromycin ~! 0.2mg/mi. The production of aristeromycin was 

found to be very dependent on the aeration of the growing cells. If the cells were 

resuspended into fresh medium the production of aristeromycin ceased. Fig 8.1 

shows aristeromycin production curve for S. citricolor grown in GAM 6:6, the 

production of aristeromycin was monitored by HPLC. Unfortunately it was not 

possible to determine the growth curve of S. citricolor, because the media contains 

particulate materials which decrease as S. cl/rico/or grows and which make it very 

difficult to monitor the optical density or to measure the dry weight of cells 

produced. 

Fig 8.1 Aristeromycin production by £ citricolor in GAM 6:6 medium measured 

by HPLC 
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S. citricolor was grown in a variety of other media including GNY and GAC 1, but 

no production of aristeromycin was observed. Rapid cell growth was observed in 

GNY media. 

Expression of an ansteromycin inducible protein (AlP) 

Sireplornyces citricolor was grown in GNY media with the addition of varying 

amounts of aristeromycin (1 0Lg/mi-500.1g/ml), and the protein content of the cells 

was determined by SDS PAGE. At aristeromycin concentrations of between 50- 

120 



S. citricolor, Chapter 8: Results & Discussion 

100.tg/ml the overexpression of two additional proteins at 27kDa and 42kDa was 

observed. These proteins were not observed when there was no aristeromycin 

present. When S. citricolor was grown with varying concentrations of neplanocin A 

(10j.tg/ml-500p.g/ml) the 42kDa protein was observed but the 27kDa absent. 

As a control experiment, to determine whether these proteins were expressed as a 

result of general antibiotic stress, S. citricolor was grown in GNY media with a 

variety of other antibiotics; ampicillin, kanamycin and chioramphenicol at varying 

concentrations (1Oig/ml-500J.g/ml). S. citricolor did not grow in the presence of 

chioramphenicol, and it had limited growth in the presence of ampicillian and 

kanamycin. Examination of the cellular extracts showed that there was no 

expression of either the 27kDa or the 42kDa proteins. S. citricolor was also grown in 

the presence of adenine and adenosine (10.tgIml-500p.gIml) and here again the 

27kDa and 42kDa band were not observed. To determine if this was a species 

specific response, Streptomyces lividans was grown in the presence of aristeromycin 

and neplanocin A (lOj.ig/ml-500p.glml), but neither the 27kDa and 42kDa bands were 

observed. 

Purification & N-terminal sequence of the 27kDa ansteromycin induced 

protein (AlP) 

The 27kDa protein which was only induced by the presence of aristeromycin was 

more strongly expressed than the 42kDa protein, and was therefore the obvious target 

for isolation. The 27kDa protein was purified by two ion exchange chromtaography 

steps, using Q-Sepharose and RESOURCE Q leading to an extract containing the 

27kDa protein which was pure enough to obtain an N-terminal sequence, see fig 8.2. 
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Fig 8.2 SDS-PAGE of the purification stages of the ALP 27kDa protein 

The growth of S. citricolor and the purification of the AlP 27 kDa protein is 

described in chapter 7 Materials & Methods. Lane I Standard 94 67 43 30 20.1 

14.4kDa, Lane 2 CFE of S. citricolor no aristeromycin, Lane 3 CFE of S citricolor 

lOOug/ml aristeromycin, Lane 4 CFE of S. citricolor lOOug/ml aristeromycin after Q-

Sepharose, Lane 5 CFE of S. citricolor I OOug/ml aristeromycin after RESOURCE Q 

2 	3 	4 	5 

42kT1. 

- 	 27kD 

After the final purification step on a RESOURCE Q column the 27kDa protein was 

transferred to a nitrocellulose membrane (western blot), and its N-terminal sequence 

was determined by the Edman degradation method, see fig 8.3. 

Fig 8.3 The N-terminal sequence of 27kDa AlP 
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From this N-terminal sequence three DNA probes were designed. The codon choice 

was determined using the Streptomyces preferential codon usage (ref hhttp ://www 

.nihgo.jp h-jun/act /codon /104.gcg). AlP I probe was based on the first eight amino 

acids and was non-degenerate, the sequence was based on the most preferred codon 
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usage for Sireptomyces. All? 2 was again based on the first eight amino acids but 

was degenerate, incorporating all possible codon Streptomyceles usage of S. 

c/tricolor. AIP3 was similar to ALP 2 but incorporated the next two amino acids in 

the N-terminal sequence. 

Table 8.1 Probes designed from the N-terminal sequence of the ALP protein 

Amino acids are represented in blue and the codons are represented in pink. 

B=T+C±G,VA+C+G,S=C+G 

Isolation of I 000bp fragment of S. citncolor DNA 

S. c/tricolor chromosomal DNA which had been prepared by Dr. Gareth Roberts was 

cut with the restriction endonucleases Sma I, Sac I and Psi I, and the DNA was size 

separated on an agarose gel. The DNA was transferred to a nitrocellulose membrane, 

and hybridised against the probes. Hybridisation was attempted using AlP I, AlP 2 

and AIP3 at various temperatures and washing conditions. The aim was to achieve a 

single hit, where a single band lit up on the autoradiograph. This was eventually 

achieved under the following conditions: 
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Probe AlP 3 

Hybridization temperature 62°C 

Washing conditions 

[Buffer] Temperature Time (mins) 

1 	2/SSC RT 2 

2 	2xSSC 62°C 5 

3 	IxSSC 62°C 5 

4 	0.5 x SSC 62°C 5 

5 	0.2 x SSC 62°C 5 

6 	0.2 x SSC 62°C 5 

7 	0.1xSSC 62°C 5 

A band at 1000bp on chromosomal DNA which had been cut with Sma I showed on 

the radiograph, see fig 8.4 

Fig 8.4 Autoradiograph of S. citricolor chromosomal DNA cut with restriction 

endonucleases and probed with ALP 3 

Lane 1, S citricolor chromosomal DNA cut with Ps! I, Lane 2 S. citricolor 

chromosomal DNA cut with Sma I, Lane 3 PCR standards 2000bp, I SOObp, I 000bp, 

900bp, 800bp, 700bp, 600bp, 

1 2 3 
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S. citricolor chromosomal DNA was cut with Sma I and size seperated on an agarose 

gel. A band at 1000bp was cut out and gel eluted from the agarose gel, see fig8.5. 

Fig 8.5.a Lane 1, X Hind Ill standards 23 130, 9460, 6557, 4361, 2311, 2027, 564, 

124bp, Lane 2 PCR markers 2000, 1500, 1000, 900, 800, 700, 600, 500., Lane 3 S. 

citricolor chromosomal DNA cut with Sma I 

Fig 8.5 b Lane 1, X Hind III standards 23 130, 9 460, 6557, 4361, 2311, 2027, 564, 

124bp, Lane 2 PCR markers 2000, 1500, 1000, 900, 800, 700, 600, 500., Lane 3 S. 

citricolor chromosomal DNA cut with Sma I. with 1 000bp band cut 

Fig 8.5a 	 Fig 8.5b 

The 1 000bp fragment of S. citricolor DNA cut with Sma I was ligated with pUC 18 

cut with Sma I (Yanisch-Perron ci al. 1985). The E. co/i strain TOP 10 One ShotTM  

was used for transformation of the ligation mixes. Ten plates were obtained from the 

pUC 18/1 000bp clones. The DNA from these colonies were transferred to a 

nitrocellulose membrane and a hybridisation with ALP 3 was carried out using the 

same conditions as those used to previously isolate the single I000bp band of S. 

citricolor chromosomal DNA cut with Sma I. The autoradiograph showed numerous 

positive spots, and which were then correlated with the original colonies on the plate. 

The colonies which matched the spots on the autoradiograph were picked, and the 

plasmids contained in these colonies were isolated. The isolated plasmids were then 

cut with Sma I and separated on an 0.8% agarose gel and transferred to a 
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nitrocellulose membrane. Hybrisation was carried out with AlP 3 using conditions 

established previously. This step was repeated numerous times until a plasmid was 

isolated containing the 1000bp fragment which gave a positive hit on the 

autoradigraph. 

Characterisation of the I 000bp DNA fragment 

The isolated positive clone was then cut with Sma I, showing two DNA fragments at 

-900bp and —1000bp. This plasmid was transformed into Top 10 One ShotTM cells. 

Ten of the resulting colonies were picked and the plasmid DNA prepared and again 

cut with Sma I and separated on a 0.8% agarose gel, see fig 8.6. 

Fig 8.6 Plasmid DNA cut with Sma I from transformed positive colonies 

Lane I X Hind III standards 23 130, 9 460, 6557, 4361, 2311, 2027, 564, 124bp, 

Lane 2 clone 1, Lane 3 clone 2, Lane 4 clone 3, Lane 5 clone 4, Lane 6 clone 5, Lane 

7 clone 6, Lane 8 clone 7, Lane 9 clone 8, Lane 10 clone 9, Lane 11, clone 10, Lane 

12 PCR markers 1000, 900, 800, 700, 600, 500. 

The plasmids prepared proved to be a mixture of clones which contained either a 

single insert or double insert, see fig 8.6. The DNA was transferred to a 

nitrocellulose membrane, and hybridisation was carried out. Clone 9 (fig 8.6 lane 

10), showed a positive result, this clone was cut with Sma lit showed a double insert. 

This clone obviously needed further investigation. Southern blotting procedure was 

inconclusive and it was difficult to determine which clone corresponded to the 

positive band. The clones in lane 9 and lane 11, clones 8 and 10 respectively, were 
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sequenced by Sanger dideoxy chain termination method. The frame which the DNA 

was translated into was analysed by Frame Plot 2.3 from the Actinomyces resource 

centre (http://www.nih.po.jp/—khotta/sai/
~

). The resulting protein sequence showed 

similarity to glutathione reductase proteins from various organisms. The N-terminal 

sequence was not present in the translated DNA sequence or the DNA sequence. 

Clone 9 was cut with Eco RI and Hind Ill whose sites on pUC 18 are situated either 

side of the Sma I site. Therefore these will lift out the whole insert. The DNA was 

size separated on an agarose gel, and a band at 2kbp was observed. This band was 

cut out of the agarose gel and gel eluted. The resulting DNA was then cut with Sma 

I, two fragments resulted at --900bp and --1000bp. Clone 9 was then cut with Sma I 

and the resulting fragments were separated on an agarose gel, both the —900bp and 

—1000bp fragments were cut out of the agarose gel and gel eluted. Each fragment 

was cloned into pUC 18, some of the resulting colonies were isolated and the 

plasmid DNA prepared and cut with Sma I. The cut DNA was transferred to a 

nitrocellulose membrane and hybridisation was carried out using the established 

conditions. The 1000bp fragment gave a positive result. This fragment was then 

sequenced by the Sanger dideoxy chain termination method. A PCR reaction was 

carried out using AW 3 (5' TCSTTCCAGCTSCCSCCSCTSCTSBVSGAS 3') 

oligonucleotide as a primer in two separate reactions with the pUC 18 forward (NR 

5' CGC CAG GGT TTT CCC AGT CAC G 3') and reverse primers (Ml 3 5' 

GTT GTG TOG AAT TGT GAG COG 3'). A band at 300 bp was observed, see fig 

8.7. 

Fig 8.7 Gel of amplified positive I000bp fragment by A1P3 pUC 18 forward 

primer (NR) 

Lane I Amplified fragment using the primer NR & AlP 3, Lane 2 PCR markers 

1000bp, 900bp, 800bp, 700bp, 600bp, 500bp, 400bp, 300bp, 200bp 
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The sequence was determined by the Sanger dideoxy chain termination method. The 

position of the oligonucleotide sequence of AlP 3 is at 300bp into the sequence, and 

has 64% identity with the determined sequence, see fig 8.8. However, it does not 

translate to the N-terminal sequence, which was determined for the aristeromycin 

induced protein. The sequence was determined to translate in the 3'-5' direction by 

Frame Plot 2.3 from the Actinomyces resource centre 

(http://www.nih.gojp/—khotta/saj/), which predicts the most probable translation 

direction for a sequence. The sequence does not contain an open reading frame, but 

when translated in the Y -5' direction it gave a sequence of amino acids with no stop 

codons. Conversely, when translated into the other five frames the sequence was 

littered with stop codons and very improbable sequences. Sequence alignment 

studies were carried out, and the translated sequence corresponds to various AMP 

binding proteins. There is also similarity to some proteins in the database of 

unspecified functions. 

Fig 8.8 Diagramatic representation of I000bp fragment of DNA isolated 

The blue line represents the positive 1 000bp fragment of isolated S. citricolor DNA; 

the fragment is cloned into the vector pUC 18 which is not shown here. The red 

arrows represent the pUC 18 forward primer (NR) and the reverse primer (M13). 

The red line represents the ALP 3 probe, showing where it anneals to S cur/color 

positive DNA fragment. The pink arrow represents the direction of translation. 

300 bp 	
3' 

- 	
I 	

5 

	

3. 	 '  
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Discussion 
The aim of this project was to isolate a protein whose gene would be situated on the 

aristeromycin biosynthetic operon. This is a difficult task as there is not a common 

probe for the aristeromycin biosynthetic pathway unlike the polyketide pathways, 

which could be used to probe S. citricolor chromosomal DNA. Many polyketide 

biosynthetic operons have been isolated and many of the genes present in these 

operons are similar. Therefore a common enzyme involved in polyketide 

biosynthesis can be used to probe the chromosomal DNA of another species which 

produce a different polyketide, and so can provide an entry into the biosynthetic 

pathway. For example the rapamycin biosynthetic genes were identified by 

hybridisation using DNA from the polyketide synthase genes from 

Saccharopolyspora erthraea that govern the biosynthesis of polyketide erythromycin 

A (Schwecke etal. 1995, Cortes etal. 1990, Donadio et al. 1991). 

In the initial phase of this study Dr. G. Roberts adopted this approach of using a gene 

of an enzyme from another organism which may be present on the pathway. He used 

the gene of adenine phosphoribosyl transferase from Streptomyces ceolicolor 

(Chakraburtty et al. 1996), which catalyses the reaction of 5-phosphoribosyl-1-

pyrophosphate with adenine to form adenosine monophosphate, as a probe for the 

aristeromycin biosynthetic operon. There is a proposed carbocyclic equivalent 

reaction at step 3 of the aristeromycin biosynthetic pathway (fig 6.8). The tetrol is 

activated as the pyrophosphate and is then converted to the carbocyclic analogue of 

adenine monophosphate. This is the same reaction as catalysed by adenosine 

phosphoribosyl transferase but using the carbocyclic analogue of ribosyl-1-

pyrophosphate. When G. Roberts probed S. citricolor chromosomal DNA, he found 

that a number of bands were giving a positive hit, and one band in particular was 

very strong. He then probed the S. citricolor cosmid library which we had 

constructed. When the positive cosmids were isolated and sequenced they were 

found to have 80% similarity with S. coelicolor adenine phosphoribosyl transferase, 

and it seems likely that the gene identified is that of the S. citricolor adenine 

phosphoribosyl transferase. However, there were other fainter bands which were 

showing a positive result on the autoradiograph, when the S. citrcolor chromosomal 
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DNA was probed with adenine phosphoribosyl transferase gene. One these may 

contain the gene or fragment of the gene for enzyme which catalyses the conversion 

of tetrol-pyrophosphate to neplanocin A. Work is currently underway to identify 

which of these cosmids may contain the gene, and hence the aristeromycin 

biosynthetic pathway. 

Of course a more specific approach would be to isolate an enzyme whose gene is 

present on the aristeromycin biosynthetic operon. Various targets were defined in 

aristeromycin biosynthetic pathway, and the initial target was to isolate the enzyme 

which converts neplanocin A to aristeromycin. Parry (Parry & Jiang 1994) had 

already carried out initial studies on this stage of the pathway, and made the 

observation that the reaction was NADPH dependant. However, Parry did not isolate 

the enzyme. We attempted to isolate this enzyme using an NADPH -* NADP assay 

in the presence of neplanocin A. An enzyme which oxidised NADPH in the 

presence of neplanocin A was partially purified. However, when the reaction 

products were analysed by }TPLC no conversion of neplanocin A to aristeromycin 

was observed. The only conclusion that can be reached is that the enzyme was 

NADPH dependant and requires neplanocin A as an allosteric activator. However, 

we were unable to identify the substrate or product(s), and there is no evidence that 

this activity is related to the biosynthetic pathway. Consequently this approach was 

abandoned. 

Other targets enzymes on the biosynthetic pathway were considered such as the 

proposed step where the tetrol is phosphorylated to form the tetrol pyrophosphate. A 

radioactive assay was considered using the tetrol compound and 32-[y]—P ATP. 

However, this assay was never fully developed, due to the shortage of the synthetic 

tetrol. Another stage in the pathway which was considered was the isolation of the 

enzyme which converts the tetrol pyrophosphate to neplanocin A. Again this assay 

was not developed due to the lack of tetrol pyrophosphate. Work on the chemical 

synthesis of potential intermediates on the biosynthetic pathway is however at an 

advanced stage, new compounds may lead to new targets for the isolation of 

enzymes on the biosynthetic pathway. 
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Since isolation of an enzyme did not appear straightforward (or possible in the short 

term) another approach was conceived. This was to identify a aristeromycin 

resistance enzyme from S. citricolor. As aristeromycin is an antibiotic it is likely 

that S. citricolor would have a mechanism of resistance to it. The genes for 

resistance mechanism are often situated on the biosynthetic operon of the antibiotic 

(Cundliff 1984). The usual method for isolating the resistance enzyme is usually 

done directly at the DNA level. The S. citricolor cosmid library would be 

transformed into cells which are sensitive to aristeromycin. The cells are then grown 

on a plate containing aristeromycin, any colonies which grow must contain the 

cosmid which encodes the mechanism of resistance to aristeromycin. This cosmid 

could then be isolated, and sequenced in the hope that it may contain part or the 

whole of the aristeromycin biosynthetic operon. Unfortunately no suitable cell lines 

were sensitive to aristeromycin, therefore this method could not be pursued. It was 

found that S. citricolor only produced aristeromycin in the complex media GAM 6:6. 

When grown in defined media such as GNY, a high cell mass was achieved but no 

aristeromycin production was observed. S. citricolor was grown in the presence of 

varying amounts of aristeromycin in GNY media, and the expression of two proteins 

at 27kDa and 42kDa was observed. These were not presents when there was no 

aristeromycin. S. citricolor was then grown in the presence of varying amounts of 

neplanocin A in GNY media and only the 42kDa protein was observed. This 

suggested that the 27kDa protein may be a fragment of the 42kDa protein. To 

ascertain whether this response was a general antibiotic stress response, S. citricolor 

was grown with various other antibiotics, but neither of these proteins were 

expressed. This protein may not necessarily be an aristeromycin resistance enzyme. 

However, the protein is not induced by the presence of adenosine or adenine, which 

suggests that it is not part of the purine pathways. 

There are relatively few investigations into the biological activity of antibiotics apart 

from the obvious antibiotic function. However, alternative biological activities such 

as triggers of gene expression (Murakami et al. 1989), differentiation (Sarkar & 

Paulus 1972) and sporulation (Ozcengiz & Alaeddinoglu 1991, Ristow et al. 1975) 
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have been suggested. The mechanism by which these antibiotics elicit these 

alternative responses or influence the metabolism of producing or resistant organisms 

is only partly understood (Demain 1995, Luckner 1990). These alternative biological 

activities can be rationalised by the idea that antibiotics represent "molecular fossils" 

that exert their biological activities through ancient conserved sites in 

macromolecules (Davies 1992). One particular response which is of interest is the 

trigger of gene expression which has occurred when aristeromycin is added to a non-

producing strain of S. citricolor. 

One study which has been carried out on the induction gene expression by an 

antibiotic, is using the antibiotic thiostrepton (Murakami et al. 1989). Thiostrepton is 

produced by Streptomyces azureseus and its mechanism of action is the prevention of 

the binding of translational initiation, elongation, and termination factors to the 

ribosome (Cundliffe 1980). Streptomyces azureseus contains ribosomes which are 

resistant to the antibiotic, and the tsr gene encodes for this mechanism of resistance. 

(Cundliffe 1978, Thompson et al. 1982). The tsr gene is commonly used as selective 

marker for the construction of Streptomycetes cloning vectors. It was found that, 

when thiostrepton was added to a Streplomyces lividans strain containing the tsr 

gene, it induced the expression of four proteins (Murakami et al. 1988). The gene 

encoding the most strongly expressed protein (tipA) was cloned and sequenced, it 

revealed no similarity to proteins in the databases. The sequence was found to 

contain a thiostrepton inducible promotor. This was cloned into a separate vector 

and is now a valuable tool in the study of gene expression Streptomycetes. Further 

studies have been carried out on the other proteins that thiostrepton induces in 

Streptomyces lividans including TipAL and TipAS (Chiu et al. 1996, Holmes et al. 

1993). A protein was purified which was found to be a thiostrepton induced 

transcriptional activator TipAL. Thiostrepton enhanced binding of TipAL to the 

promotor catalysed the specific transcription in vitro of TipAS. A second gene 

product of the same open reading frame, consisting of the C-terminal domain of 

TipAL, is apparently translated using its own in frame initiation site. However, there 

is no record of what effect thiostrepton has on its producing organism Streptomyces 

azureus. 
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In an attempt to isolate the 27kDa aristeromycin induced protein, its N-terminal 

sequence was determined, and used to probe S. citricolor chromosomal DNA. When 

southern blots are performed, it is difficult to determine which positive on the 

hybridisation film corresponds to which DNA on the membrane. Two clones were 

sequenced which were in the area of the positive band on the film. The first clone 

which was sequenced when it was translated into the correct frame had high identity 

to glutathione reductase from various species. The N-terminal sequence of the 

27kDa aristeromycin induced protein was not present in any of the translated frames 

of the protein, and no similarity to the DNA sequence of the AlP 3 probe was found. 

The conclusion was reached that the other clone was the positive one. The other 

clone was sequenced, and the N-terminal sequence of the 27kDa aristeromycin 

induced protein was again not present in the translated sequence. However a 

sequence at three hundred base pairs into the DNA was found to have 68% identity 

to the AlP 3 probe. This was also confirmed by PCR, a reaction was carried out 

using the AlP 3 probe as a primer and a pUC 18 primer, an amplified fragment of 

300 bp was observed. 

In conclusion the fragment of S. citricolor DNA which was isolated is unrelated to 

the aristeromycin biosynthetic operon. The probe was too degenerate, with eighteen 

out of thirty base pairs degenerate. There are over 300 000 possible sequences of the 

probe. A more specific probe will have to be used, such as the AIP1 probe, because it 

is non-degenerate and is based on the most frequent codon usage in Streptomycetes. 

The N-terminal sequence has to be repeated, as there is some doubt as to what certain 

residues are. This is a relatively new project and there are many potential target 

enzymes on the aristeromycin biosynthetic pathway which could be isolated and N-

terminal sequenced. Probes could then be designed based on these sequences. Cross 

hybridisation experiments could then be carried out using multiple probes which 

would give a higher probability of isolating the aristeromycin biosynthetic pathway. 
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The genes encoding the Escheric/iia co/i flavodoxin NADP oxidoreductase (FLDR) and flavodoxin 
(FLD) have been overexpressed in E. co/i as the major cell proteins (at least 13.5% and 11.4% of total 
soluble protein, respectively) and the gene products purified to homogeneity. The FLDR reduces potas-
sium ferricyanide with a k,, of 1610.3 min and a K of 23.6 i.iM.  and cytochrome c with a k,, of 
141.3 min' and a K,,, of 17.6 ilM.  The cytochrome c reductase rate is increased sixfold by addition of 
FLD and an apparent K of 6.84 .tM was measured for the affinity of the two flavoproteins. The molecular 
masses of FLDR and FLD apoproteins were determined as 27648 Da and 19606 Da and the isolectric 
points as 4.8 and 3.5, respectively. The mass of the FLDR is precisely that predicted from the atomic 
structure and indicates that residue 126 is arginine, not glutamine as predicted from the gene sequence. 
FLDR and FLD were covalently crosslinked using l-ethyl-3(dimethylamino-propyl) carbodiimide to gen-
erate a catalytically active heterodimer. The midpoint reduction potentials of the oxidised/semiquinone 
and semiquinone/hydroquinone couples of both FLDR (-308 mV and —268 mV, respectively) and FLD 
( - 254 mV and —433 mV. respectively) were measured using redox potentiometry. This confirms the 
electron-transfer route as NADPH—FLDR—FLD. Binding of 2' adenosine monophosphate increases the 
midpoint reduction potentials for both FLDR couples. These data highlight the strong stabilisation of the 
flavodoxin semiquinone (absorption coefficient calculated as 4933 M' cm' at 583 nm) with respect to 
the hydroquinone state and indicate that FLD must act as a single electron shuttle from the semiquinone 
form in its support of cellular functions, and to facilitate catalytic activity of microsomal cytochromes 
P-450 heterologously expressed in E. co/i. Kinetic studies of electron transfer from FLDR/FLD to the 
fatty acid oxidase P-450 BM3 support this conclusion, indicating a ping-pong mechanism. This is the 
first report of the potentiometric analysis of the full E. co/iNAD(P)H/FLDRIFLD electron-transfer chain: 
a complex critical to the function of a large number of E. co/i redox systems. 

Keywords: flavodoxin: flavodoxin NADP oxidoreductase: redox potentiometry; enzyme kinetics: cyto-
chrome P-450. 

The E.sc/zerichia co/i tiavodoxin NADP oxidoreductase 
FLDR or flavodoxin reductase) and flavodoxin (FLD) are the 
wo flavin-containing components of a short electron-transfer 
~ hain from NADPH. which provides electrons for the function 
f the biotin synthase [I] and cobalamin-dependent methionine 
ynthase systems [2]. The enzymes are also required during an-
erobic growth of the organism, participating in the pyruvate 
örmate/lyase system of E. co/i - a crucial mechanism for the 
naerobic generation of pyruvate for glycolysis [3] and in the 
eneration of deoxyribonucleotides through the enzyme anaero-
)ic ribonucleotide reductase [4]. Recently, the FLDRJFLD sys-
em has also been recognised as the E. co/i 'reductase'. which 
an support the function of heterologously expressed eukaryotic 
ytochromes P-450 [5], even though no endogenous P-450s 
tave yet been identified in the bacterium. 

Correspondence to A. W. Munro. Department of Chemistry. Joseph 
lack Building. The University of Edinburgh. The King's Buildings. 

West Mains Road. Edinburgh. EH9 3JJ. UK 
Fax: +44 131 650 4760. 
E-mail: Andrew.Munro@ed.ac.uk  
Abbreviations. CPR. cytochrome P-450 reductase: FLD. E. co/i tia-

'odoxin: FLDR. E. co/i flavodoxin NADP oxidoreductase: IPTG. iso-
ropyl-fJ. D-thiogalactopyranoside: P-450. cytochrome P-450 monooxv-
enase. 

We have overexpressed and purified the FLDR and FLD pro-
teins in order to investigate their function in biotin synthesis 
and cytochrome P-450 reductiQn. Of particular interest was the 
analysis of the interactions of the FLDR and FLD proteins and 
the redox characteristics of these enzymes. since it is known that 
the cytochromes P-450 require two successive single-electron 
transfers to perform their activation of molecular oxygen. While 
the flavodoxins have been considered to function as single-
electron donors by cycling between the hydroquinone and semi-
quinone states [6], it is by no means certain that the hydroqui-
none is a physiologically relevant species in electron-transport 
chains using NAD(P)H, FLDR and FLD, since the midpoint re-
duction potential of NAD(P)H (-320 mV) is likely to be con-
siderably higher (more positive) than that of the FLD semiqui-
none/hydroquinone couple. Indeed, there is evidence to support 
the utilisation of the flavodoxin semiquinone as the electron do-
nor for methionine synthetase [2. 71. It is known that flavodox-
ins, in general, stabilise a semiqui none- l-electron-reduced form 
as opposed to the 2-electron-reduced hydroquinone. In fact. 
potentiometric studies on non-recombinant E. co/i FLD, purified 
from large-scale cultures, indicated that this enzyme stabilises a 
blue neutral semiquinone form of FMN [8]. 

In this paper, we report the results of biophysical studies of 
the E. co/i FLDR and FLD, analysing the interactions between 
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these two proteins and determining the redox properties of the 
flavin cofactors. These data allow clearer understanding of the 
energetics of electron distribution between the two flavoproteins 
and of their capacity to participate in multiple E. co/i redox sys-
tems, as well as their function as a cytochrome P-450 reductase 

system. 

EXPERIMENTAL PROCEDURES 

E. coli strains and piasmid vectors. E. co/i strain HMS 174 
(DE3) (F. recA. hsdR [rKI .mKI .] Rif) [9] was used for over-
expression of the flavodoxin NADP reductase (fldr) gene. 
Strain JM 101 (F', traD36. 4(lcicZ) M15. proABVs,ipE. 
f/li. A(lac-proAB) [101 was used for overexpression of the flavo-
doxin (fldA) gene. Plasmid pCL2I was used for production of 
FLDR and was constructed by amplification of the structural 
gene from plasmid pEE 1010 (a gift from Dr Elizabeth Haggard-
Ljungquist. Department of Chemistry, Karolinska Institute, 
Stockholm. Sweden) [11] using primers 'RED FOR' (5' CAG-
GAGAAYTCCATGGCTGATTGGGTAACAGGC 3') and 
'RED REV' (5' ATAAGGATCCGCYTACCAGTAATGCTCC-
GCTGTCAT 3'). 'RED FOR' contains a iVcol site (bold) encom-
passing the start codon (underlined) of the jldr gene. 'RED 
REV' contains a BamHI site (bold) encompassing the stop co-
don (underlined) of fldr. The PCR product was cleaved with 
iVcol and BamHI and the digested product was ligated into plas-
mid pET 16b (Novagen Inc.) under the control of a T71ac pro-
moter to produce plasmid pCL2I. Plasmid pDHI (a gift from 
Dr Rowena Matthews, Division of Biological Chemistry, Uni-
versity of Michigan) was used for production of FLD [121. 

Enzyme preparations. E. co/i flat'odoxin NADP oxidore-
cluctase. Transformant HMS 174 (DE3)/pCL2I was grown in 2-
10 I of Luria-Bertani media containing ampicillin (100 .tgIml) to 
an = 1.0 and production of FLDR was induced by the addi-
tion of 1 mM isopropyl-9, D-thiogalactopyranoside (IPTG). 
Thereafter, growth was continued for 3 h and the cells (2.5 gil 
wet mass) were then harvested by centrifugation (5000 g for 
10 mm, 4°C), washed by resuspension in ice-cold buffer A 
(10mM sodium phosphate, pH 7.5) and lysed by intermittent 
sonication (30 s on, 30 s off) for 5 mm. Cellular debris was re-
moved by centrifugation (15000g for 30 mm, 4°C) and the su-
pernatant was loaded directly on a Q-Sepharose 26/10 Hi-Load 
anion exchange column (Pharmacia) which had been washed in 
buffer A. Protein was eluted with a gradient (0— 1 M) of sodium 
chloride in buffer A. Yellow FLDR-containing fractions were 
collected from 130-150mM NaCl. These were combined and 
loaded on a 2',5'-ADP Sepharose column (I cmX20 cm), equili-
brated with buffer A containing 150 mM NaCl. Pure FLDR was 
eluted using buffer A containing 500 mM NaCl. The purified 
enzyme was dialysed against buffer A. concentrated by ultra-
filtration (Amicon, 10000 Da cut-off) to a concentration of 

5 mg/mi and stored frozen at —20°C. PMSF (0.1 mM) was 
added to all buffers to minimise proteolysis. 

E. co/i flavodoxin. Transformant JM10I/pDH I was grown 
and induced in similar fashion to HMS 174 (DE3)/pCL2I, except 
that cells were harvested 6h after induction with IPTG 
(100 l.tM), and riboflavin (5 mg/I) was also added to the culture 
at the time of induction. Cells ('= 1.5 g/l wet mass) were washed 
by resuspension in ice-cold buffer B (50 mM Tris/HCI. pH 7.5). 
broken by sonication and the cell lysate collected after centrifu-
gation as previously. Protamine sulfate was added to a final con-
centration of 0.1% (mass/vol.) to the extract and the mixture 
centrifuged (15000g for 30 mm. 4°C). The supernatant was 
loaded directly on a Q-Sepharose 26/10 Hi-Load anion exchange 
column (Pharmacia), which had been washed in buffer C  

(100 mM sodium actetate, pH 5.0) and FLD was eluted from the 
column in a gradient of NaCl (0-1 M) in buffer C. between  
375 mM and 425 mM NaCl. The pH of the bright-orange FLD-
containing fractions was increased to pH 7.5 immediately 
following elution by dialysis against buffer B. This single-step 
procedure resulted in a fraction in which >90% of the protein 
was FLD. Further purification was achieved by a second anion-
exchange-chromatography step using a Resource Q column 
(Pharmacia). Protein was loaded in buffer B and eluted using a 
linear gradient of 0— 1 M NaCl in buffer B. Pure FLD was eluted 
between 350 mM and 400 mM NaCI. The final FLD fraction 
was dialysed against buffer B. concentrated by ultrafiltration 
(Amicoh. 10000 Da cut-off) to a concentration of 5 mg/mI and 
stored frozen at —20°C. PhMeSO.F (0.1 mM) was added to all 
buffers. 

Poteñtiometric titrations. All redox titrations were con-
ducted within a Belle Technology glove box under a N 2  atmo-
sphere. with O maintained at less than 5 ppm. Degassed. con-
centrated enzyme samples were passed through an anaerobic 
Sephadex G25 column (1X20 cm) (Sigma) immediately on ad-
mission to the glove box to remove all traces of 02. The column 
was equilibrated and proteins were eluted with 100 mM sodium 
phosphate, pH 7.0, which was used throughout the experimental 
procedures. Protein solutions were titrated electrochemically ac-
cording to the method of Dutton [13] using sodium dithionite as 
reductant and potassium ferricyanide as oxidant. Mediators were 
introduced prior to titration: typically 2-hydroxy-1,4-napthaqui-
none (5 jiM), benzyl viologen (I jiM) and methyl viologen 
(1 jiM) within sample volumes of 5-10 ml. After 10-15 mm 
equilibration following each reductive/oxidative addition. 
spectra were recorded on a Shimadzu 1201 ultraviolet/visible 
spectrophotometer (typically between 350 nm and 800 tim) con-
tained within the anaerobic environment. The electrochemical 
potential of the sample solutions were monitored using a CD740 
meter (WPA) coupled to either Pt/calomel or PtJAg—AgCI com-
bination electrodes (Russell pH Ltd) at 25 ±2°C. The electrodes 
were calibrated using the Fe"/Fe" EDTA couple as a standard 
(+ 108 mV). The calomel and Ag—AgCI electrodes were cor-
rected by +244±2 mV and +198±3 mV, respectively, both 
relative to the normal hydrogen electrode. For experiments in-
volving FLDR, ultraviolet/visible spectra were affected by the 
slow formation of a protein precipitate, which resulted in a small 
increase in baseline absorbance with time. This was corrected 
for by transforming each spectrum with a W. subtraction calcu-
lated to return the absorbance at 800 nm back to zero (at this 
wavelength chromophore absorbance is minimal). All data ma-
nipulations and non-linear least-squares curve fitting of electro-
chemistry data were conducted using Origin (Microcal). 

Enzyme assays. Steady-state kinetic parameters for FLDR 
and FLD were measured at 30°C in 100 mM sodium phosphate. 
pH 7.5, on a Shimadzu 2101 ultraviolet/visible spectrophotome-
ter. Reduction of cytochrome c (horse heart, type I) was moni-
tored by the absorbance increase at 550 nm, using a A absor-
bance coefficient of 22 640 M -1  cm'. Reduction of potassium 
femcyanide was measured by the absorbance decrease at 
420 nm, using a coefficient of 1010 M' cm. 

Measurements of P-450 BM3 haem-domain-catalysed fatty 
acid (arachidonic acid) oxidation [14] supported by FLDR and 
FLD were performed as described previously for the catalysis 
of pregnenolone oxidation by P-450 c17 [5].  To determine the 
mechanistic nature of the FLDRIFLD/P-450 interactions, a 
series of oxidation-rate measurements were performed in the 
presence of saturating (1 mM) NADPH - with FLD maintained 
constant at 25 jiM. FLDR varied from 0.25 l..tM to 10 jiM and 
P-450 BM3 haem-domain maintained constant (in three dif-
ferent experimental sets) at 0.76 jiM. 2.54 jiM and 3.81 jiM. Re- 



ion rates were determined at 30CC  in 100 mM sodium phos-

ate. pH 7.5. and the reciprocals of the data plotted against the 

:iprocals of the [FLDRI for each concentration of P-45() used. 

Stopped-flow measurements of transient absorbance changes 

ociated with reduction of FLDR and FLD tiavins (decrease 

absorbance at 456 nm and increase at 583 nm. respectively). 

)xidation of the tiavins (same wavelengths) and reduction of 

ochrome C (550 nm) were made using an Applied Photophvs-
SF17 MV stopped-flow kinetics spectrophotometer. Reac-

ns were performed at 30°C in 100 mM sodium phosphate. 

17.5 (unless otherwise stated). Rates of FLDR-FLD electron 

nsfer were measured after enzyme and buffer solutions had 

n degassed and bubbled for 15 min with 0 : -free N 2 . Trac 
0, were subsequently removed from the enzyme solutions H 

;sing the concentrated stock solutions of enzyme down a 

[-filtration column (1 X20 cm) within the anaerobic envir 

nt of a glove box (Belle Technology. The enzyme soluti. 

re  then diluted to the required concentrations, transferred 
stopped-flow syringes and sealed within the glove box b- 

e transferring to the stopped-flow apparatus. 

Analysis of stopped-flow data was performed using the 

117 MV software and Origin (Microcal). both of which use 

n-linear least-squares regression analysis. The reduction of 

DR by NADPH was measured by rapid mixing of NADPH 

MN1-2 mM) with FLDR (40(.tM) and monitored at 456 rim 

tal flavin reduction). The electron transfer from FLDR to FLD 

s monitored at 583 nm (formation of FLD blue semiquinone) 

r mixing of 40 jiM FLDR (reduced with 2 mM NADPH or 

hum dithionite) with FLD (20 MM). When sodium dithionite 

s used. FLDR was reduced completely in an anaerobic envi-
ment with excess reductant. then separated from the dithio-

by gel filtration under anaerobic conditions. Reoxidation of 

DR was measured after mixing of enzyme (80 jiM) with a 

-stoichiometric quantity of reductant (40 pM NADPH) and 

nitoring the absorbance increase at 456 nm. Reoxidation of 

FLD semiquinone (absorbance decrease at 583 nm) was 

asured after anaerobic reduction of the enzyme with excess 

hum dithionite, isolation of the reduced enzyme by gel filtra-

i and dilution of reduced FLDR into aerobic buffer. Reduc- 
of cvtochrome c was measured at 550 nm after reaction 

reduced FLDR (10-50 MM enzyme + 2 m NADPH) with 
ochrome c (horse heart, type I: 4 MM). 
Chemical crosslinking of FLDR and FLD. Purified FLD 
MM) and FLDR (8 MM) were covalentiv and specifically 

sslinked using I -ethvl-3-(dimethvlamino-propvl) carbodi-
de (EDC) (10 mM) in 10 mM Hepes buffer (2 ml. pH 7.0) at 

rn temperature [151. 10-mI aliquots were withdrawn from the 

clion at 15-min intervals to assess the progress of the reaction 

SDS/PAGE. After 1 h. the reaction was stopped by the addi-

i of ammonium acetate (100 mM) and the protein mixture 
centrated to approximately 0.5 ml by ultrafiltration [using a 

)0O Da cut-off Centricon concentrator (Amicon)J. The cross-

ced complex was separated from the FLDR and FLD proteins 

gel filtration on FPLC (Superdex 75 column. 1.6X60 cm) in 
mM Tris/HCI. pH 7.5. containing 50 mM KCI. 

a 4j. 

234 

1234 	56 	7 

Fig. t. (a) SDS/PA(;E of E. co/i ilavodoxin NADP' oxidoreductase 
FLDR( purification steps. Lane 1. low molecular mass standards 
94000. 67000. 430()0. 300(X). 20 tOO. 14 400 Da): lane 2. uninduced 

cells: lane 3. induced cells: lane 4. cell lysate: lane 5. Q-Sepharose: 
lane 6. 2'. 5'-ADP Sepharose: lane 7. low molecular mass standards as 
lane I). (b) SDS/PAGE of E. co/i flavodoxin IFLDt purification steps. 
Lane I. low molecular mass standards (94(1)0. 670(X). 4300). 30(1(X). 
20 100. 14 400 Da): lane 2. uninduced cell lysate: lane 3. induced cell 
lysace: lane 4. empty: lane 5. Q-Sepharose: lane 6. Resource-Q: lane 7. 
low molecular mass standards )as lane t). 

RESULTS 

Protein characterisation. F/avodo.vin NA DP o.vidoreductase. 
FLDR is a monomeric 247 amino acids. M, 27620 Da) enzyme 
which contains FAD. E. co/i HMSI74 DE3/pCL21 was used 
to overexpress FLDR. The protein was purified by sequential 

chromatography steps on Q-Sepharose and 2',5'-ADP Sepharose 

(Table H. Samples were analysed at all steps by SDS/PAGE 
(Fig. la) and ultraviolet-visible spectroscopy. The molecular 

mass of the expressed FLDR apoprotein was determined as 

27648 Da by electrospray mass spectroscopy. This is 2813a 

higher than the predicted molecular mass of 27620 Da. calcu-

lated from the amino acid sequence derived from the database 

gene sequence [161 (less the N-terminal methionine). However, 
the recent solution of the atomic structure of the E. co/i FLDR 
indicates that an arginine is present at position 126. as opposed 

to a glutamine predicted from the gene sequence [17]. The dif-

ference in molecular mass of these two residues is exactly 

28 Da. corresponding to the apparent discrepancy. The isoelec-

tric point of FLDR was measured as 4.8 by isolelectric focusing: 

rather more acidic than the theoretical value of 6.19 (SwissProt). 

FLDR is bright yellow in its oxidised form and it is con-

verted to a neutral blue semiquinone by the addition of one re-

ducing equivalent. FLDR has an absorption coefficient of 

le 1. Purification table for E. co/i NADP flavodoxin oxidoreductase FLDR. Total protein was estimated h absorhance at 28)) nm. FLDR 
estimated by measurement of absorbance (Abs)at the peak of the longer wavelength flavin band (456 nm. 

ticatron step Total volume V Total protein Total FLDR AbsjAbs,, Purification 

ml VXAbs.,, VXAbs. -told 
ate 55 833.9 18.26 0.0207 
epharose SO 119.I 9.28 0.0779 3.77 
'-ADP Sepharose 35 375 5.74 0.1531 7.4t 
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7100 M'' cm' at 456 rim [5]. The oxidised FLDR had flavin 

absorbance maxima at 456 nm and 400 rim. with a shoulder on 

the longer wavelength band at 483 rim. Based on the 7.41-fold 

purification value calculated using flavin absorbance at this 

wavelength, the overexpressed FLDR comprises I3.5C/c  of the 

total soluble protein in the E. co/i extract. 

FLDR used for kinetic and potentiometric studies was ob-

tained from transformants of pCL2I in strain HMSI74 DE31. 

which yielded approximately 23 mg pure FLDR/I of cells. The 

re-cloning of the Jide gene into vector pET16b (to generaL 

pCL2l along with an improved purification scheme (two step 

rather than four) allowed significantly higher levels of recover 

of FLDR compared with7 the original clone in pEE101u 

(3.5 mg/I) [16]. Transformants ofpCL2l in strain BL2I (DE , ) 

resulted in even higher expression of fldr (35 mg/I): but the 

specific activity of the purified FLDR was considerably lower 

than that purified from the HMS 174 (DE3) strain. 

Flavodoxin. FLD is a small (177 amino acids. M, 19606 Da) 

acidic flavoprotein. which contains FNIN as its prosthetic group. 

FLD was produced from E. co/i transformant JIM IOl/pDH I and 

the purification was followed by a combination of SDS/PAGE 

and spectroscopic characterisation on FLD-containing fractions 

(Table 2. SDS/PAGE analysis of the purified protein showed 

a single species which migrated at in = 20kDa (Fig. 1W. The 

molecular mass was confirmed by electrospray mass spectrome-

try as 19606 Da. precisely the mass predicted from the amino 

acid sequence (less the N-terminal methionine). The isoelectn, 

point of FLD was measured as 3.5: slightly more acidic than tli 

theoretical value of 4.21 (SwissProt). Fractions containing the 

protein had the distinct bright-orange colour expected for t1aso 
doxin in its oxidised state. Pure FLD has an absorption coet'li-

cient of 8250 M cm at 466 nm 12] and a ratio of A.,JA M,.. ol 

5.8 1121. Oxidised pure FLD had flavin absorbance maxima at 

466 rim and 372 nm, with a distinct shoulder on the longer 

was elength hand at 495 rim and a less obvious shoulder at 
438 rim. Total recovery was estimated at 37% based on the 

purity of the flavodoxin at the end of the short purification 

scheme and the assumption that the absorbance at 366 nm is 

specific for the overexpressed protein. Clearly. other E. co/i fla-

yin-containing proteins (as well as those containing, for exam-

ple, haem or iron-sulfur centres) will have absorbance in this 

region: so this figure is likely to be a small underestimate. Based 
on an 8.8-fold purification value, the overexpressed flavodoxin 

comprised 11.4% of the total soluble protein in the E. co/i ex-

tract. 
In J Ml 01 /pDH I transformants. flavodoxin was overex-

pressed to a level of approximately 19.5 mg/I. 

FLDRIFLD crosslinked complex. The FLDRJFLD complex 
was generated using EDC as a crosslinking agent. as indicated 

in Experimental Procedures. The time course of the production 

of the complex is shown in Fig. 2a. The complex was purified 

from unreacted FLDRIFLD using gel filtration on FPLC (Super-

dex 75) (Fig. 2W. It appears that only a single species was pro-

duced in the reaction with an apparent molecular mass (by SDS/ 

a 	 ' 

'NOW -oft Now 

.z. 

m 

V~ 	 NOW 

Fig. 2. (a) SDS/PAGE gel of formation of EDC-linked FLDR/F1 
complex as described in the Experimental Procedures section. L. 

I. pure FLDR and FLD proteins, no EDC added; lane 2. IS mm 

addition of 10 m EDC; lane 3. 30 min utter addition of EDC'lane 

I h after addition of EDC: lane 5. molecular mass standards (94(11 

67000. 43000. 30WO. 20 tOO. 14 40() Da). (h) SDS/PAGE gel '.hoss 

purification of EDC - linked FLDRJFLD complex using FPLC (Superc 
75). Lane 1. molecular mass standards (94000. 67000. 43000. 300 

20 100, 14 40) Da: lane 2. coniplex/FLDRJFLD mixture prior to - 

filtration: lane 3. FPLC fraction containing complex: lane 4. FPLC ft. 
tim containing FLDRJFLD: lane 5. as lane I. 

PAGE) of 47 kDa. The complex was analysed by electrospr 

mass spectrometry and a molecular mass of 47430 Da was 

tamed - close to the value of 47360 Da predicted fo r a 1 

EDC-linked complex of FLDR/FLD. There was no evidence 

self-complexation of FLDR or FLD after EDC treatment. su 

gesting that the interactions between FLDR and FLD 

stronger than those between FLD and FLD or FLDR and FLD 

Table 2. Purification table for E. co/i flavodoxin (FLD). Total protein was estimated by absorbance (Abs) at 280 nm. FLD was estimated 

measurement of absorhance at the peak of the longer-wavelength tiavin band (466 nmt. 

Purification step 	 Total volume V 	Total protein 	 Total flavodoxin 	Abs 	 Puriticati 

ml VXAbs.,, VXAbs, 	 -told 

Cell lysute 	 23 1166.1 21.62 	 0.0185 

Q-Sepharose 	 120 62.52 7.68 	 0.123 	 6.65 

Resource-Q 	 4.8 46.5 7.54 	 0 . 162 	 8.76 
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We 3. Steady-state kinetic parameters for FLDR. Rates of reduc-
i of artificial electron acceptors were measured at 550 nm for cyto-
ome c (22 640 M' cm) and 420 nm for potassium femcvanide 
10 M' cm ' ). Rates were measured at 30°C in 100 m sodium 

isphate. pH 7.5. with saturating (200 pM) NADPH. The K 
DPH was determined under conditions of saturating cytochrome c 
0 pM). The K,,, for the FLD was determined under conditions of saw-
ing cvtochrome c and NADPH. with the FLDR at 16.65 nM. 

strate k, K. 

min 

:assium ferricyanide 1610.3 ± 50.1 23.6 	±3.2 
tochrome c 141.3 ± 	5.3 17.6 	± 2.15 
DPH - 3.85±0.5 

D - 6.84±0.68 

ble 4. Steady-state kinetic parameters for the EDC-linked corn- 
x of FLDRJFLD. Experiments were performed as described above. 

Dstrate k, K,,, 

min PM 

Lassium ferricyanide 782.0± 35 33.2 ±6.4 
tochrome c 109.2 ±4.5 87.4±8.2 

sible spectra of the complex showed absorbance maxima at 
9.5 nm and 462 nm. with shoulders at 487 nm and 404 nm. 
ese absorbance characteristics are different from those of the 
lividual FLDR and FLD - with absorbance maxima located 
Lween the peaks of the isolated flavoproteins. Addition of 
DPH was seen to induce a decrease in the intensity of the 

yin spectrum, but not to induce the formation of a species 
sorbing in the 550-600 nm region, suggesting that there was 
formation of the neutral blue semiquinone form expected for 
FMN in FLD. 

Izyme activities. Purified FLDR has NADPH-dependent 
luctase activity towards a variety of electron acceptors 
ible 3). Using cytochrome c (horse heart, Sigma) as the accep-

a k,,, of 141.3 ±5.3 min and a Km  of 17.6± 2.15 jiM were 
asured using homogeneous FLDR at 30°C in 100 mM so-
um phosphate, pH 7.5. With saturating cytochrome c. the K. 
NADPH was estimated at 3.85 ± 0.5 jiM. Under similar con-

ions, potassium ferricyanide was reduced, with a K. of 
.6±3.2j.tM and a k',, of 1610.3±50.1 min'. Purified FLD 
Ls as a single electron shuttle and is able to stimulate the rate 
FLDR-dependent cytochrome c reduction approximately six-
Ed under the above conditions. With saturating cytochrome c 
JO jiM) and FLDR at 16.65 nM, a Michaelis curve was ob-
ned for the stimulation of cytochrome c reductase activity by 
D. indicating an apparent Vm .. of 272±11.5 min and an 
parent Km  of the FLD for the FLDR of 6.84 ± 0.68 pM. 
The purified EDC-linked complex of FLDR/FLD was also 

talytically active (Table 4). With cytochrome c as the acceptor, 

L of 109 ± 5 min' and a Km  of 87 ± 8 pM were measured 
th the complex at 30°C in 100 mM sodium phosphate. pH 7.5. 
ith potassium ferricyanide, a k,,,,, of 782 ± 4 min' and a K. of 
±6 jiM were measured. Both the rate of reduction and the 
inity of these substrates for the complex were lower than 
se for FLDR on its own (Tables 3 and 4). 

opped-flow characterisation. Investigations of the rates of 
juction of FLDR (40 pM) with NADPH (4 pM-2 mM) were 

Table 5. Stopped-flow parameters for oxidation/reduction reactions 
involving FLDR and FLD. Reaction rates were determined at 30°C in 
100 mM sodium phosphate. pH 7.5. as described in the Experimental 
Procedures section. Measurement of FLDR reduction was made at 
456 nm. FLD reduction to its semiquinone at 583 nm and cvtochrome c 
reduction at 550 nm. Reoxidation of FLDR and FLD were monitored at 
the same wavelengths used to measure their reduction. 

Stopped-flow rate 	 k 

5_ I  

FLDR reduction (by NADPH) 	15±2 (900 min') 
FLDR oxidation 	 (5.44±0.5)X 10 (3.3 min) 
FLD reduction (by FLDR) 	 (3.4±0.2)X 10_ 2  (2.0 min) 
FLD oxidation 	 (1.07±0.03)X10 (3.85 h') 
Cvtochrome c reduction (by FLDR) 	29.0± 2.0 (1740 min) 

performed with measurement of the rate of decrease in absor-
bance at 456 nm. the oxidised FLDR absorbance maximum. The 
rate observed was 15±2 s. regardless of the concentration of 
NADPH. A similar value was obtained when the concentration 
of FLDR was altered. 

Attempts to measure the rate of electron transfer between 
NADPH-reduced FLDR and FLD (following the formation of 
FLD semiquinone at 583 nm) proved difficult under aerobic 
conditions due to the slow rate of this process and the relatively 
rapid reoxidation of the FLDR. To solve this problem. solutions 
were degassed and made up anaerobically (as described in the 
Experimental Procedures section) prior to performing the 
stopped-flow experiments. The rate of formation of FLD semi-
quinone was seen to be very slow when reduced FLDR (40 MM) 
was mixed with FLD (20 MM), regardless of whether NADPH 
(500 pM-2 mM) or sodium dithionite was used as the reduc-
tant. Over the first 60 s, a single exponential rate of only 
(3.4±0.2)X 10-2 _1 was recorded in the presence of 2mM 
NADPH. 

To compare the reduction of an artificial electron acceptor 
on stopped flow/steady-state time scales, the reduction of cyto-
chrome c by FLDR was investigated. NADPH (2 mM)-reduced 
FLDR (10-50 MM) was mixed with cytochrome c (4 MM) and 
absorbance monitored at 550 nm. A kca, of 29±2 s_ I  and a K,,, 
of 12.58± 1.1 pM were calculated by fitting the first-order rate 
data against [cytochrome c] to a rectangular hyperbola on Origin 
software. All stopped-flow data is tabulated (Table 5). 

To measure the rate of reoxidation of the reduced FLDR, the 
enzyme was reduced aerobically in the stopped-flow apparatus 
by mixing with a sub-stoichiometric quantity of NADPH and 
recording the increase in absorbance at 456 rim. At 30°C. FLDR 
(80 pM) was observed to reoxidise after rapid mixing with 
NADPH (60MM) with a rate of (5.44±0.5)X10 2 s 
(3.26 min'). To measure reoxidation of the FLD semiquinone, 
we initially attempted the same experiment as used for FLDR. 
employing 80 pM FLD and 60 pM sodium dithionite as the re-
ductant. However, it was found that reduction of FLD by the 
dithionite was very slow, with the semiquinone taking several 
minutes to form completely. Instead, the FLD was reduced with 
an excess of dithjonite under anaerobic conditions, until the 
semiquinone formation was seen to be complete (maximal ab-
sorbance at 583 nm). Thereafter, excess dithionite was removed 
from the FLD by gel filtration (G25) within the anaerobic glove 
box and the reduced FLD removed from the anaerobic environ-
ment. The reduced FLD was then diluted to 30 pM in oxygen-
ated buffer, the buffer bubbled with air for 2 min and the rate of 
reoxidation of the semiquinone measured at 583 nm under 
steady-state conditions. The semiquinone was seen to be air sta- 
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Fig. 3. Reciprocal plot of P.450 BM3 haem-domain catalysed arachi-
donic acid oxidation versus concentration of FLDR. The three experi-
mental data sets shown were perfomed as described in the Experimental 
Procedures section. with P-450 BM3 haem-domain maintained constant 
at 0.76 IIM. 2.54 !IM or 3.81 pM: FLD maintained at 25 pM throughout 
and FLDR varied between 0.25 pM and 10 pM. The parallel data plots 
indicate that a ping-pong mechanism for FLDRJFLD-supported P-450 
reduction is likely. 

ble. taking several hours to reoxidise completely. The reoxida-
tion trace at 583 nm fitted accurately to a single exponential 
curve, with a rate of 3.85±0.11 h' (0.642 min'). 

Cytochrome P-450 reduction. To analyse the nature and kinet-
ics of the reduction of cytochrome P-450 by the FLDR/FLD 
system, we examined the ability of these flavoproteins to support 
the oxidation of arachidonic acid by the haem-domain of flavo-
cytochrome P-450 BM3 [18].  The FLDRJFLD system proved 
able to transfer electrons to the P-450. At concentrations of 
0.762 jiM P-450. 0.25 pM FLDR and 25 jiM FLD, a rate of 
5.48 ±0.95 mol arachidonic acid oxidised/min was measured. 
Data were collected from three sets of fatty acid-oxidation as-
says, in which the P-450 was maintained at one of three different 
concentrations (0.76 MM. 2.54 pM or 3.81 pM). FLD was kept 
constant at 25 jiM (fourfold in excess of its apparent K, for 
FLDR) and FLDR was varied between 0.25 MM and 10 MM. The 
plots of the reciprocal rates of these data versus the reciprocals 
of the [FLDR] were used to generate the graph shown in Fig. 3. 
The fact that the lines plotted are parallel (not convergent) indi-
cates that the P-450 reduction mechanism is ping-pong in nature, 
rather than involving a ternary complex between the P-450, 
FLDR and FLD. 

Potentiometric titrations. F/a vodoxin NADP oxidoreductase. 
Fig. 4a shows the redox titration of the E. co/i FLDR at 72 MM 
monitored by ultraviolet/visible spectrophotometry between 
350 nm and 800 nm. Fig. 4b plots the proportion of FLDR oxi-
dised based on the sum of the absorbance values between 
440 nm and 480 nm against the potential of the enzyme solution. 
The first electron reduction of FLDR does not result in the accu-
mulation of a stable semiquinone intermediate with long-wave-
length absorbance. Thus, potentiometric data for both first and 
second electron reductions are determined from the continuous 
decrease in absorbance between 440 nm and 480 nm. 

The absorbance versus potential data is fitted in Fig. 4b to 
an equation (Eqn 1) comprising the sum of two I-electron redox 
function designed to model the absorbance of a flavin passing 
through three different oxidation states. 
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Fig. 4. (a) Ultraviolet-visible spectra of E. ccli FLDR (72 jiVI) dur 
redox titration. Reductive (sodium dithionite) and oxidative (potassil 
ferricyanide) titrations were performed anaerobically as described in 
Experimental Procedures section. The spectra shown in solid lines 
from the reductive titration and the flavin signals become less inter. 
on reduction. The dOtted spectra are from reoxidation of the redu 
FLDR and become more intense with successive additions of potassit 
femcyanide until the onginal spectrum of oxidised FLDR returns. 
Plot of proportion FLDR oxidised versus reduction potential (E', in 
during reductive and oxidative titrations. using absorbance betwe 
440 nm and 480 nm fitted to Eqn. I. as described in Results. From the 
data E (oxidisedlsemiquinone) = —308±4 mV and E (semiquino 
reduced) = —268±4mV. 

al0_Ew59  + b + cl02)'5S  
Flavin absorbance = 	

+ 1oE-E) + 10(E—E)I59 

where a, b. c = absorbance coefficients for oxidised. semiqt 
none and reduced flavin. respectively; E = electrode potenti: 
and E, E = midpoint potentials for the oxidised/semiquino: 
couple and the semi quinone/reduced couple, respectively. 

In a subsequent experiment, the redox titration of FLDR w 
repeated in the presence of a saturating concentration (5 mM) 
2' adenosine monophosphate (2' AMP) in order to investig:. 
the effects of binding of a nucleotide analogue to the NADF 
site on the redox properties of the FAD in FLDR. 2' AMP 
non-redox active and, thus, can be used in redox titrations 
mimic the effects of binding of NADP on the FAD redox proT 
erties. In preliminary experiments, the affinity of 2' AMP b 
FLDR was estimated by measurement of its IC,,, (-I mM) f 
FLDR-mediated cytochrome c reduction. The concentration 



06 

04 

0 
'I) 

02 

00 

4:11 7tD 

McIver et al. (Eli,: I. BiocIw,,,. 257) 
	

583 

'able 6. Midpoint reduction potentials (E' in mV) for the flavin Co. 

Ictors in purified E. coil FLDR (NADP flavodoxin oxidoreductase) 
nd FLD (flavodoxin). Values were calculated from electrode potential 
ersus absorbance data as described in the Results section and in Figs 2 
nd 3. E refers to the midpoint potential for the 2-electron reduction 
f the flavins in each protein, while E and E refer to the midpoint 
duction potentials for the oxidised/semiquinone and semiquinonelhv-

roquinone couples. respectively, for FLD and FLDR. The values are 
ompared with those of the FAD and FMN cofactors in the reductase 
omain of flavocytochrome P-450 BM3 from Bad//its inegaleriwn 

31M3) [29] and mammalian P-450 reductase (CPR) [30].  and with the 
alues for free FAD/FMN [3]. 321. 

E E E 

LDR FAD —288±4 —308±4 —268±4 
LDR FAD (+2' AMP) —261±6 —293 ±6 —230± 7 
LD FMN —343 -±6 —254±5 —433 ±6 
M3 FAD —332 ±4 —292±- 4 —372±4 
M3FMN —203±6 —213±5 —193±6 
PR FAD —327 —290 —365 
PR FMN —190 —110 —270 
REE FAD —207 - - 

REEFMN —205 —172 —238 

mM used in the titration was based on this result. An increase 

1 the reduction potentials of both the oxidisedlsemiquinone 

elevated by IS mV to —293 ± 6 mV) and semiquinone/re-

uced (E elevated by 38 mV to —230± 7 mV) couples of 

LDR was observed in the presence of 2' AMP (Table 6). 

E. co/i Jiavodoxin. Fig. 5 a shows the redox titration of the 

co/i FLD at 80 PM monitored by visible spectrophotometry 

etween 400 nm and 800 nm. Fig. 5  plots the sum of absor-

ance values between 600 nm and 650 nm against the potential 

f the enzyme solution. The increase and decrease in absorbance 

this region reflects the build up (0 —  1 electron reduced) and 

)5S (1 —2 electron reduced), respectively, of the flavodoxin neu-

-al-blue semiquinone. The FLD data was also fitted to Eqn (1). 

i this case, E represents the oxidised/semiquinone couple of 

LD and E the semiquinone/reduced couple. 

Values for the reduction potentials of the FLDR and FLD 

avins are collated in Table 6. Although the potentials for the 

vo I-electron couples of the FLD are very well separated 

179 mV), this is clearly not so for the FLDR. For the FLDR, 

te first couple (ox idi zed/se miquinone - E) is calculated to be 

tore negative than the second (semiquinone/reduced - E) by 

0 mV. In FLDR, the two 1-electron-reduction processes appear 

occur simultaneously and the data can be represented reason-

bly accurately by a 2-electron function. The midpoint reduction 

alues in Table 6 are compared with those from the homologous 

omains of flavocytochrome P-450 BM3 and eukarvotic P-450 

ductase, and with the potentials of free FAD and FMN. 

Analysis of the later data sets for the FLDR was complicated 

y the tendency of this enzyme to form a precipitate (very 

owly) over the course of the experiment. For this reason, the 

uality of these data is not as high as those obtained for FLD. 

[owever, correction of these data by subtraction of l/,. from 

ch spectrum (to compensate for the small- increases in turbid-

y) results in values that fit well to the 2-electron Nernst func-

on used to derive the flavin reduction potentials for FLDR. 

Based on the wide separation of the midpoint reduction po-

,ntials of the oxidised/semiquinone and serniquinonelhydroqui-

one couples of the FLD: we calculate that a maximum of 94% 

lue semiquinone can be formed during the reductive titration 

f this protein. As shown in Fig. Sa. the strongly absorbing 

miquinone has a peak at approximately 583 rim. The maxi- 

Wavelength (nm) 
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mum absorbance reached by the semiquinone is 56.2% of that 

of the oxidised flavin band at 466 nm. Based on this proportion 

and the known coefficient of 8250 M -  cm' for the 466-nm 
band [2], we calculate a coefficient of 4933 M' cm for 100% 

of the semiquinone. 

DISCUSSION 

This is the first report of the determination of all of the re- 

duction potentials for the flavins in the FLDR and FLD system. 

the flavoprotein electron-transfer chain of the E. co/i biotin (vita- 
min H)-synthase system, which also supports the function of 

heterologously expressed cytochrome P-450 in E. co/i [5]. The 

knowledge of these values is central to our understanding of the 

roles of these flavoproteins in electron transfer to these en- n- 

200 

E (mV) 

Fig. 5. (a) Ultraviolet-visible spectra of E. coil FLD (80 pM) during 
redox titration. Reductive (sodium dithionite) titrations were performed 
anaerobically as described in the Experimental Procedures section. The 
spectra shown by solid lines are those representing the conversion from 
the oxidised to the semiquinone form: with decreasing absorbance in the 
450-nm region and increasing absorbance in the 600-nm region (semi-
quinone region). The dashed line shows the spectrum of the maximal 
semiquinone species (absorbance maximum at 583 nm). Spectra shown 
by dotted lines are those representing the conversion from the semiqui-
none to the hydroquinone (fully reduced) form: with decreasing absor-
bance in the 600-nm region. Oxidative titrations with potassium ferricya-
nide give essentially identical results to the reductive titrations. (b) Plot 
of the sum of absorbance between 600 nm and 650 nm against electrode 
potential (E'. mV) during reductive and oxidative titrations. fitted to 
Eqn. I. as described in Results. From these data. E (oxidised/semiqui-
none) = —254±5 mV and E (semiquinone/reduced) = —433±6mV. 

EM 	 EM 	 711) 
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zymes: and to the multiple other redox enzymes with which 
FLDRJFLD communicate, such as cobalamin-dependent methio-
nine synthase and anaerobic ribonucleotide reductase. 

The quantities of pure FLDR and FLD recovered are con-
siderably higher than those reported previously [5. 161. The high 
levels of expression achievable with the T7 polymerase/pro-
moter system. coupled with efficient purification regimes (in-
cluding a 2'.5'-ADP Sepharose affinity step for FLDR) facilitate 
good recovery. Protein purification data indicate that the FLDR 
and FLD proteins can be overexpressed to at least 10% of total 
cell protein without notable detrimental effects on cell growth. 
However, it was noted that transformants of the fldr gene in the 
faster growing BL21 (DE3) strain yielded protein with consider-
ably lower specific activity than that from HMS 174 (DE3). This 
is possibly due to failure of the cells to match FAD synthesis 
and/or incorporation to the production of FLDR apoenzyme with 
strong induction under the faster gro wth conditions. 

It is worthy of note that E. co/i FLDR is capable of reduction 
of cytochrome c in the absence of flavodoxin or alternative pro-
tein mediators (e.g. ferredoxin): this has not been reported pre-
viously. However, the rate is considerably elevated by the pres-
ence of E. co/i FLD. In a recent publication. Jenkins and co-
workers [19] reported the kinetics of cytochrome c reduction 
with the Ancibaena variabi/is flavodoxin NADP reductase/tla-
vodoxin system. In this system, there is negligible flavodoxin-
independent cytochrome c reduction by the Aiiabaena FLDR. 
However, the cytochrome c turnover number of 1200 min' for 
the Ancihciena FLDRJFLD system is much higher than that of its 
E. co/i homologue reported here. From stopped-flow studies, the 
first reduction of cytochrome c by reduced FLDR can occur at 
up to 29 s (1740 min) compared with only 141.3 min' dur-
ing steady state. Clearly, the reduction of cytochrome c by 
FLDR is rate-limited by processes other than its binding and the 
transfer of an electron to the ferric haem. 

The value determined from mass spectrometry of FLD is 
exactly that predicted from the amino acid sequence translated 
from the sequenced DNA [12]. However, the mass of the FLDR 
shows a discrepancy of 28 Da from that predicted by translation 
of the determined nucleotide sequence [16]. The recently deter-
mined atomic structure of FLDR [17] indicated the presence of 
an arginine as opposed to a glutamine residue at position 126. 
The difference in mass between these two residues is precisely 
28 Da; thus, our data indicate that the discrepancy is in the DNA 
sequence and not the atomic structure, and that residue 126 is 
an arginine. It is worthy of note, also, that the masses determined 
for both FLD and FLDR indicate that insignificant proportions 
of the purified proteins retain their initiator methionine residue. 
and that there are no covalent modifications of either flavopro-
tein in the homologous host. 

The potentiometric data demonstrate clearly that the E. co/i 
flavodoxin stabilises a neutral-blue semiquinone form of FMN 
and that the FLD hydroquinone cannot be postulated as a realis-
tic electron transferase to the biotin synthase enzyme or cyto-
chrome P-450: since the midpoint reduction potential for the 
semiquinone/hydroquinone couple is some 100 mV more nega-
tive than that of the NADPHINADP couple (and 165 mV and 
125 mV more negative than those of the FLDR oxidised/semi-
quinone and semiquinone/hydroquinone couples, respectively). 
The midpoint reduction-potential values for the FLD (-254 mV 
[oxidised/semiquinone] and —433 mV [semiquinone/reduced) 
are similar to those obtained from non-recombinant E. co/i FLD 
and flavodoxins from other species [20]. Repeats of the FLDR 
titration in the presence of a saturating concentration of 2' AMP 
indicated that the midpoint potentials of both the oxidised/semi-
quinone and semiquinone/reduced couples are elevated by bind-
ing this nucleotide analogue and that E is increased by 27 mV 

from — 288:t 4 mV to —261±6 mV. The effect of bound nii 
otide analogue is similar to that observed previously for the 
mologous FAD-containing enzymes adrenodoxin reductase 
and cytochrome b, reductase [22] and indicates that the bilk. 
of NADP to-FLDR may exert an important controlling in: 
ence on the catalytic properties of the enzyme. The elevatini: 
both of the reduction potentials of FLDR places them e 
closer to that of the oxidised/semiquinone couple of FLD 
decreases further the driving force for electron transfer to 
FLD. This may at least partially explain the very slow rates 
electron transfer measured between FLDR and FLD u 
stopped-flow spectrophotometry. 

The potentiometric data have important implications relat 
to the mechanism of the reduction of cytochromes P-450 . 
other enzyme systems). They indicate that (unless there is a v 
large increase in the FLD semiquinone/hydroquinone cow 
caused by binding of FLD to P-450). the two electrons requir 
for P-450 catalysis must be delivered through two consecuti 
single electron transfers from FLD semiquinone: as opposed 
the first FMN-haem electron transfer being mediated by F\ 
hydroquinone and the second by FMN semiquinone. This rais 
the question as to whether these transfers occur in a ternary co 
plex of FLDRJFLD/P-450 or through a pin-pong mechani: 
in which the FLD may interact firstly with the FLDR and SL 

ondly with the P-450. The fact that the flavins in both prote: 
are relatively exposed suggests that electron transfer betwe 
them is likely to be through close approach of the isoalloxazi 
rings, as opposed to involving a protein pathway [16. 231. T 
atomic structure of a eukaryotic P-450 reductase also indica 
that the edges of the FAD and FMN ring systems in this pro 
are only 0.4 nm apart and that inter-flavin electron transfer mi 
occur without mediation by any amino acid side chains [2-
Thus, it appeared most likely that reduced FLDR and FL 
would dock, an electron would be transferred to form the FL 
semiquinone and the FLD would then dissociate from the FLE 
and associate with a P-450 to reduce this enzyme. again via 
exposed FMN. The ping-pong kinetic properties of the FLD 
FLD/P-450 BM3 haem-domain system (Fig. 3) are consiste 
with this model, suggesting that. the FLD acts as a shuttle 
tween FLDR and the P-450, as opposed to the three protel 
forming a ternary complex for electron transfer. 

The data presented here clearly define the electron-transi 
route through this system as NADPH—FLDR (FAD)—FL 
(FMN) and then onto other enzyme partners. This is a simii 
flavin electron-transfer path as that described previously for ii 
E. co/i sulfite reductase and for the diflavin reductases of cvi 
chromes P-450 (P-450 reductase or CPR) and nitric oxide s' 
thase [25]. In fact, the FLDR and FLD proteins show structur 
homology to the FAD and FMN domains of CPR [26], and the: 
domains have been expressed independently for both a eukar 
otic P-450 reductase and the reductase of tlavocytochron-
P-450 BM3 - a natural CPR/P-450 fatty-acid hydroxylase ft 
sion protein [27, 28]. However, it is of particular interest to no 
here that the FAD and FMN domains of P-450 BM3 show ye 
different redox characteristics to FLDR and FLD. with the bIt 
semiquinone being found on the FAD domain of P-450 B 
[29] (Table 6). In P-450 BM3. the FAD hydroquinone 
thermodynamically unfavourable. while it is the FMN of FL 
in the E. co/i system. In all three systems. the high and lo 
potential flavins are the FMN and FAD, respectively. Howev,  
both the E 2  and E values for FLDR are considerably less ne 
tive than those for the related reductases. Also, the oxidisei. 
semiquinone and semiquinone/reduced couples for FLD are bo 
more negative than those for the P-450 BM3 [29] and CPR [31 
systems. Indeed, the semi quinone/reduced couple of FLD has 
very negative potential (-433 mV) which makes electn 
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insfer via a NADPH-driven system virtually impossible. The 
ults indicate that the overall driving force, i.e. the difference 
reduction potential. for single electron transfer from NADPH-
Juced FLDR to oxidised FLD is considerably less than that 

CPR and P-450 BM3. In addition, the binding of nucleotide 
'ADP) to FLDR may result in further increase in the flavin 
:luction potentials (as we have shown with 2' AMP) and 
crease further the driving force for electron transfer to FLD. 
ir stopped-flow data are consistent with these findings. The 
e of reduction of FLDR (15 s') is markedly slower than that 
n in the P-450 BM3 system (>700s') and the reduction of 

.D by reduced FLDR is also very slow (0.034 s'). 
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