
Safety Assurance in Interlocking Design

Matthew John Morley

Doctor of Philosophy
University of Edinburgh

1996

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429723237?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

This thesis takes a pedagogical stance in demonstrating how results from theoretical

computer science may be applied to yield significant insight into the behaviour of the

devices computer systems engineering practice seeks to put in place, and that this is

immediately attainable with the present state of the art. The focus for this detailed

study is provided by the type of solid state signalling systems currently being deployed

throughout mainline British railways. Safety and system reliability concerns dominate

in this domain. With such motivation, two issues are tackled: the special problem

of software quality assurance in these data-driven control systems, and the broader

problem of design dependability. In the former case, the analysis is directed towards

proving safety properties of the geographic data which encode the control logic for the

railway interlocking; the latter examines the fidelity of the communication protocols

upon which the distributed control system depends.

The starting point for both avenues of attack is a mathematical model of the in-

terlocking logic that is derived by interpreting the geographic data in process algebra.

Thus, the emphasis is on the semantics of the programming language in question, and

the kinds of safety properties which can be expressed as invariants of the system’s

ongoing behaviour. Although the model so derived turns out to be too concrete to

be effectual in program verification in general, a careful analysis of the safety proof

reveals a simple co-induction argument that leads to a highly efficient proof methodo-

logy. From this understanding it is straightforward to mechanise the safety arguments,

and a prototype verification system is realised in higher-order logic which uses the

proof tactics of the theorem prover to achieve full automation.

The other line of inquiry considers whether the integrity of the overall design that

coordinates the activities of many concurrent control elements can be compromised.

Therefore, the formal model is developed to specifically answer safety-related con-

cerns about the protocol employed to achieve distributed control in the management of

larger railway networks. The exercise reveals that moderately serious design flaws do

exist, but the real value of the mathematical model is twofold: it makes explicit one’s

assumptions about the conditions under which the faults can and cannot be activated,

and it provides a framework in which to prove a simple modification to the design

recovers complete security at negligible cost to performance.

Acknowledgements

A PhD thesis is seldom completed in isolation, but it is often a lonely activity. My

thanks, therefore, to George Cleland and Stuart Anderson in Edinburgh: George, for

his cheerful optimism throughout, and Stuart not least for teaching me Iyengar’s asanas

and the merit of standing on my head. I think this work has benefited from discussions

with them, but certainly many of my ideas have been enriched by their experience and

that of others in the department.

Outside Edinburgh, I am very grateful to Graham Birtwistle for his encouragement

as I struggled to write up this work and without which I should not have completed the

job. Thanks, too, to Chris Tofts and Faron Moller for their quiet, moral support (mostly

quiet, as we exasperate each other on occasion as friends do.)

Ian Mitchell at British Rail Research contributed much to my knowledge of railway

signalling. I will always be a novice, but hopefully he does not feel misrepresented by

this text. Last, but by no means least, my thanks go to Axel Poign´e for his tacit approval

since some of my time was also his.

Declaration

This thesis was composed by myself, and the work it contains is my own except where

I have indicated otherwise.

Some of the material in Chapter 5 appeared in the proceedings of the Sixth International

Workshop on Higher-order Logic Theorem Proving and its Applications, Vancouver,

1993 [75]; the results reported in Chapter 6 will appear in theScience of Computer

Programmingjournal, late in 1996.

Table of Contents

List of Figures v

Notational Conventions vii

1. Introduction 1

1.1 Motivation . 1

1.2 A Whistle-stop Tour of Railway Signalling 8

1.3 Solid State Interlocking . 11

1.3.1 Overall System Architecture 11

1.3.2 Generic SSI Software . 13

1.3.3 Examples of Geographic Data 15

1.4 Inter-SSI Communications . 18

1.4.1 Setting Routes over Boundaries 19

1.4.2 Releasing Sub-routes over Boundaries 20

1.4.3 Implementing Remote Route Locking 21

1.5 Formal Approaches to Signalling Safety 22

1.5.1 Related Work . 22

1.5.2 Contributions & Thesis Overview 26

2. The Geographic Data Language 29

2.1 Introduction . 29

2.2 Static Data and Dynamic Data . 30

2.2.1 Geographic Data Identity Files 30

2.2.2 Source Files: Periodic Access 31

2.2.3 Source Files: Random Access 32

2.3 Geographic Data Source File Syntax 34

2.3.1 Examples: Route Locking & Release 35

2.3.2 Concrete Syntax of the Geographic Data Language 36

2.4 Semantics: The Control Interpreter 39

2.4.1 Abstract Syntax of Simple Tests and Commands 39

2.4.2 Points Free to Move Conditions 40

i

Table of Contents ii

2.4.3 The Map Search . 41

2.5 Indirect Semantics of the Map Search 42

2.6 Summary . 45

3. Modelling Solid State Interlocking 47

3.1 Introduction . 47

3.2 CCS Model of Solid State Interlocking 50

3.2.1 Modelling Assumptions . 50

3.2.2 Model . 52

3.2.3 Translating Geographic Data into CCS 54

3.3 Defining Safety Properties Formally 56

3.3.1 Safety Properties of Geographic Data 56

3.3.2 Tags and Probes . 58

3.3.3 Geographic Data Invariants 59

3.3.4 Generalising the Translation Schema 61

3.4 The Problem with State Spaces . 62

3.4.1 Hiding Assumptions . 62

3.4.2 Agent Transformations . 63

3.4.3 Model Checking . 65

3.5 Proof by Program . 67

3.5.1 Generating States of SSI . 67

3.5.2 Checking Properties . 70

3.6 Summary . 71

4. Proving Safety Properties of Geographic Data 74

4.1 Introduction . 74

4.2 Tableau Proofs in Local Model Checking 76

4.2.1 Unfolding Proof Tableaux 76

4.2.2 Partial Tableaux . 79

4.3 Invariance & Co-induction . 82

4.4 Checking Interlocking Data . 85

4.4.1 Sub-route Release Data . 85

4.4.2 Route Request Data . 87

4.4.3 Unprovable Assertions . 89

4.5 From Rigorous to Formal Proofs . 91

4.5.1 The Temporal Logic of Actions 91

4.5.2 Unity . 93

4.5.3 Floyd-Hoare Logic . 95

4.6 Summary . 96

Table of Contents iii

5. A Formal Theory of the Geographic Data Language 99

5.1 Introduction . 99

5.2 Geographic Data in Higher-order Logic 102

5.2.1 A Simple Imperative Language 102

5.2.2 Semantics in Higher-order Logic 104

5.2.3 Hoare Logic: Rules and Tactics 107

5.3 A Theory of Geographic Data Invariants 110

5.3.1 Track Circuits –MX . 111

5.3.2 Points –PT . 112

5.3.3 Routes –RT . 114

5.4 Mechanising the Invariance Proof 117

5.4.1 Sub-route Release Data Tactic 118

5.4.2 Route Request Data Tactic 119

5.4.3 Failed Tactics . 121

5.5 Decomposing Global Invariance . 123

5.5.1 Computational Complexity (Revisited) 123

5.5.2 Heuristics for Decomposition in the Proof 125

5.5.3 Static & Dynamic Decomposition 126

5.6 Summary . 128

6. Distributed Control in Complex Interlockings 131

6.1 Introduction . 131

6.2 The Remote Route Request Protocol 135

6.2.1 Preliminaries: Elapsed Timers and Telegrams 135

6.2.2 Geographic Data . 136

6.2.3 Safety Considerations . 139

6.3 Modelling Remote Route Locking 142

6.3.1 Timing Issues . 142

6.3.2 A Formal CCS Model . 142

6.3.3 Matching up the Interfaces between East & West 145

6.3.4 Axiomatising Remote Route Requests 146

6.4 Safety Properties of the Model . 148

6.4.1 First Refinement: Eliminating Arbitrary Delays 149

6.4.2 Second Refinement: Adding Priorities 151

6.4.3 Lossy Communications and Duplicating Telegrams 152

6.5 Summary . 155

Table of Contents iv

7. Safety in Interlocking Design 157

7.1 Implementing Remote Route Locking Safely 157

7.2 Leamington Spa . 162

7.2.1 Strengthening the Invariant 162

7.2.2 Swinging Overlaps . 163

7.3 Conclusions . 167

7.3.1 Theorem Proving . 167

7.3.2 Semantics . 169

7.3.3 Model Checking . 171

7.3.4 Railway Signalling . 173

Bibliography 175

A. Glossaries 182

A.1 Glossary of Railway Signalling Terms 182

A.2 Glossary of SSI Terminology . 187

A.3 Glossary of Geographic Data Terminology 191

B. Theory 195

B.1 Calculus of Communicating Systems 195

B.2 Modalµ-calculus . 200

B.3 HOL Proofs . 207

C. Examples of Geographic Data 210

List of Figures

1.1 Part of a signal control panel . 10

1.2 Schematic overview of the main features of SSI 13

1.3 Scheme plan with route and sub-route annotations 16

1.4 EAST-WEST—Setting routes divided by Interlocking boundaries . . . 19

2.1 Signalling scheme plan for WEST 34

2.2 Geographic Data: conditional language constructs 36

2.3 Semantics of the conditional language 45

3.1 Trailing points may derail trains . 48

3.2 Simple grammar for a subset of the Geographic Data Language 51

#1 A CCS model of Solid State Interlocking 53

3.3 Translating Geographic Data into CCS 54

3.4 Panel route request*Q02 translated into CCS 55

#2 An observable model of SSI . 59

3.5 Geographic Data invariant for WEST 60

3.6 Transition rules forPRRandFOPdata 68

3.7 Results of Proof by Program . 71

4.1 A Partial tableau . 80

4.2 RoutesR2 andR51 from the scheme plan for WEST 90

5.1 Denotational Semantics of Geographic Data Language Commands . . 104

5.2 HOL Derived Rules of Floyd-Hoare Logic 109

5.3 Routes that diverge after a common segment 115

5.4 Routes: Massaging theRT invariant 117

5.5 Experiments using HOL on some simple Geographic Data 123

5.6 A distinction between network structure and route structure 127

6.1 EAST-WEST—Setting routes across SSI boundaries 132

6.2 Train derailment due to partial route setting 134

6.3 Normal sequence of events in making remote route requests 140

v

List of Figures vi

6.4 Abnormal sequence of events in making remote route requests 141

#3 Simple model of SSI communications over Internal Data Link 146

6.5 Generic rules for remote route locking and release 147

#4 Refining Model #3 so as to discard tardy IDL inputs after∆ cycles . . 149

6.6 Illustrating how unsafe states arise in Model #4 when∆ = 2 151

#5 Introducing lossy link behaviour to Model #4 152

#6 Refining Model #5 to filter duplicate IDL inputs 154

7.1 Modified rules for remote route locking and release 159

7.2 Final version of the Internal Data Link model in CCS 161

7.3 SamplePRRdata from Leamington Spa 163

7.4 Overlaps . 164

B.1 Transition rules for pure CCS . 196

C.1 Sample interlocking: WEST . 210

C.2 The EASTWEST interlocking . 213

C.3 The FORESTLOOP interlocking . 215

C.4 The THORNTON JN. interlocking . 216

C.5 An artistic impression of Leamington Spa 217

Notational Conventions

b a

Ti

Plain (bi-directional) track section

c b

Tj

a

�
�
��Pi Points track section (points shown normal)

hhh.................Si

Three aspect main signal (red/green/yellow)

hhSi

Two aspect main signal (red/green)

Ti Track circuit identifier (for track sectionTi)
Si Signal identifier
Pi Points identifier

T abi Sub-route overTi in the direction~ab
Rmn Route from signalm to signaln
Rm Route from signalm into another interlocking

Zab
i Dummy sub-route overTi in the direction~ab

Oab
i Sub-overlap overTi in the direction~ab

P Set of points identifiers (or its cardinality)
R Set of route identifiers (or its cardinality)
S Set of signal identifiers (or its cardinality)
T Set of track circuits (or its cardinality)
U Set of sub-routes (or its cardinality)
Q Set of panel (route) requests

FOP Flag operations data file
PRR Panel route request data file
PFM Points “free to move” data file
IPT Input telegram data file
OPT Output telegram data file
MAP Map search data file

* L, * Q, * PN, * PR Labels in Geographic Data source code
@L, { L, } L, ˆ L Label references

vii

Chapter 1

Introduction

This thesis presents a study into the application of theoretical computer science to

problems arising in the railway signalling industry. Although the focus is on the type

of computer controlled signalling systems that are currently replacing electromechan-

ical technology throughout mainline British railways, the analysis techniques used and

illustrated here are of a general nature and may be applied in a similar fashion to a

range of data-driven control systems. The technical material in this thesis is presented

in a style which, it is hoped, is sufficiently transparent to be intelligible to practising

engineers seeking to emulate the study. This introductory chapter covers much of the

background needed to establish an intuitive framework which later chapters will build

upon more formally.

1.1 Motivation

While results from this work have already enjoyed both direct and indirect influence in

the given industrial domain, this thesis is notaboutrailway signalling any more than it

is aboutcomputer science itself. Indeed, this work falls somewhere between the needs

of engineering practice on the one hand, and the advancing scientific basis of comput-

ing on the other. That it does so is not really an accident: it is precisely because of the

gulf that exists between the communities of industrial developers of computer based

systems whose work is strongly governed by market imperatives, and academic com-

puter scientists who have hitherto been motivated more by the mathematical elegance

and precision of their theories. Our endeavour is, in a small way, to shed some light

on what lies in between these positions with a particular regard to the application of

notions from theoretical computer science to relevant problems faced by industry.

Appliedtheoretical computer science has, for better or worse, become synonymous

with the term ‘formal methods’. Despite several decades of research in the area, formal

methods have yet to be wholeheartedly incorporated into the development of computer

systems on any scale of design. In the large scale applications that include the control

1

Chapter 1. Introduction 2

of industrial plant, power generation, aviation and mass transportation, this may be

because the move towards computer dominated solutions to the engineering problems

is a relatively recent development for communities and licensing authorities that have

strong, conservative safety cultures. On the smaller scale, in consumer electronics

say, the financial risks seem too great when formal mathematical techniques towards

software development and system design are difficult to apply in general, currently

impossible to use with only na¨ıve understanding of the theory and supporting tools,

and poorly promoted by real, or even realistic, case-studies from which to learn.

The emergence of two relevant industrial standards is thus particularly interest-

ing: MOD 00-55: The Procurement of Safety Critical Software in Defence Equip-

ment[69], andIEC 1131-3: Software for Computers in the Application of Industrial

Safety-Related Systems[46]. One of the requirements appearing in the former (In-

terim) standard is the mandatory use of formal methods in projects intended to supply

equipment to the UK Ministry of Defence; the latter standard defines several languages

(e.g., Function Block Diagrams, or Structured Text) that provide software for Program-

mable Logic Controllers (PLC), mainly used in the process control industry. Neither

standard is solely for use within the given sector. However, it is fair to say that the

assemblageof PLC languages defined in IEC 1131-3 seems insufficiently well defined

mathematically for such software to be readily acceptable according to the coding re-

quirements of MOD 00-55. This is a shame since the relative simplicity of the PLC

languages (e.g., when compared to Ada) ostensibly offer excellent opportunities for the

kind of formal design and development anticipated in MOD 00-55.

Interestingly, Halang and Kr¨amer [39] (unintentionally) illustrate one of the key

technical difficulties involved here. Their work addresses the reluctance of licensing

authorities to certify software embedded in process control with a proposal for a formal

software development methodology for PLC programs. The underlying theory is OBJ

through which the authors formalise requirements and functional aspects of the design

specification assembled as a Function Block Diagram. Properties of the specification

can be verified largely automatically with the mechanical support for OBJ, and design

validation is further supported through symbolic execution. A Structured Text program

(Structured Text is a small, procedural tasking language) is then developed and annot-

ated in the sense of Floyd-Hoare logic with assertions drawn from the requirements and

specification documents—the verification conditions derived from the structured text

can also be discharged using OBJ. Practical considerations aside, the main problem

with this development methodology is simply that the relationship between Function

Block Diagrams and Structured Text (and indeed the other PLC languages) is entirely

informal. This reflects the relationship between these languages in the defining IEC

standard.

Chapter 1. Introduction 3

Halang and Kr¨amer seriously tackle the crisis in embedded software but there

may yet be some doubt, depending of course on how one interprets the standard,

whether their efforts satisfy the strictures of MOD 00-55. (Similar concerns have also

been voiced about the RAISE wide spectrum language and programming methodo-

logy [23].) While there is no intended cross-reference between the two cited standards,

the point is that neither really grasps the strength of applied theoretical computer sci-

ence. MOD 00-55 is very rigid in its definition of ‘formal methods’ and probably

overestimates the benefit currently to be accrued from, if not the difficulty attending

to, the use of mathematical formalism indevelopingsoftware all the way down from

high-level requirements to detailed code. Although MOD 00-55 addresses software is-

sues only, neither it nor MOD 00-56 [70] with which it is explicitly related, recognise

a potential rˆole for formal methods in supporting system design as a whole. The IEC

standard, however, underestimates the insight and assurance to be obtained by theor-

etical analysis of programming languages, by clarifying their mathematical definitions

and, in this case, by elaborating the semantics of their interactions. This is a partic-

ular concern for languages intended for use in the burgeoning area of safety critical

computer systems.

Mandating the use of formal methods is certainly one way of getting designers

to use them, but the paucity of guidance of thehow-tovariety is evidently a major

stumbling block: the guidance [68] offered on the selection of formal techniques to

use to meet the requirements of MOD 00-55 suggests that case-studies published in the

open literature should already demonstrate their successful industrial application. In

1991 such evidence was thin on the ground even for ‘mainstream’ formal methods like

Z and VDM; several years later the situation is not much improved, but the publication

of the NIST report by Craigen, Gerhart, and Ralston [22, 23], and the FAA report by

Rushby [83], indicate growing awareness in several key industrial sectors. The former

was commissioned by the (US) National Institute of Science and Technology (and other

bodies) to inform deliberations within industry and government on the potential impact

of formal methods on standards and regulations; the latter report was commissioned

by the (US) Federal Aviation Administration who face the increasingly challenging

task of certifying to very high levels of dependability the computer systems on board

commercial aircraft (in particular).

The NIST report summarises twelve industrial applications of formal methods used

with varying degrees of mathematical rigour on projects of substantial commercial im-

portance. The timescales involved ranged from about nine months (Hewlett-Packard,

Medical Instruments), to about nine years (GEC Alsthom, Railway Signalling). The

projects studied focused mainly on software specification. The GEC case-study was

thought particularly successful: 15,000 lines of formally specified and verified code

Chapter 1. Introduction 4

were produced for a signalling system that increased the capacity of one Paris Metro

line by 12,000 passengers per hour (25%), so saving the operators the enormous cost

of constructing a new line to meet the capacity. The success of the project is perhaps

better judged by the fact that GEC Alsthom are presently using the same tools and

software development techniques on similar railway contracts. The Hewlett-Packard

case-study is singled out here for another reason: this produced 4,500 lines of ‘zero

defect’ code (according to the certifier, another branch of the organisation) through

machine supported formal specification, but without proof because the software was

not safety critical. The project was also intended to achieve technology transfer by

promoting the specification language used, but was in this respect an abject failure.

Implicated in the additional costs that arose in the least successful case-study sum-

marised in the NIST report (Ontario Hydro, Tripwire Computer) is the lack of tools

support for the formal method used (the fidelity of the formalism is not otherwise in

question). Given such a small sample it would be premature to suppose that there is

in general a relationship between the level of tool support and the costs incurred (or

savings made) in applying formal methods. What several examples in the NIST report

do indicate is that the methodology into which more rigorous mathematical techniques

are introduced is at least as important to the project’s success as the strength of tools

applied. However, perhaps the strongest suggestion Craigenet al. put forwardis that

the standard of tools supporting particularly the deeper applications (where, for ex-

ample, proofs demonstrating the conformance of code to specifications are required

to satisfy licensing authorities) urgently needs to be improved. This may be so, but

begs the question whether there are tangible benefits presently to be obtained through

formal verification at the level of program code: the report does not examine the is-

sue, but the evidence presented hardly convinces one that there are—indeed, it rather

illustrates that the rˆole of formal methods (orformal proof) in the design of complex

systems is as yet poorly understood. Unfortunately the analysis in the NIST report is

quite shallow, and it therefore offers little guidance in these matters.

Rushby [83] on the other hand, offers considerable practical guidance on the uptake

of formal methods in a thorough, and far ranging, survey of current techniques in sup-

port of system (and software) quality control, and assurance. This report is intended

to inform licensing bodies, in particular the FAA, about the strengths and fallibilit-

ies of mathematical formalism in system design,as well asto inform those seeking

to license critical software-based systems about where in the development lifecycle to

apply formal methods to best effect. The analysis begins with a classification of formal

methods that is given in terms of the degree of rigour attending the mathematical argu-

Chapter 1. Introduction 5

ments used in support of system development. In a simplified form:

Level 0 No applied mathematics at all, but perhaps appeal to tabular or diagrammatic

notations, pseudocode, and equations defining transfer functions,etc..

Level 1 The use of concepts and notations from discrete mathematics, with proofs

conducted in the traditional, informal style of mathematical discourse.

Level 2 The use of formalised specification languages with mechanised support for

syntax analysis, pretty-printing, and simple type checking.

Level 3 The use of fully formal specification languages with comprehensive support

environments including mechanised theorem proving and proof checking.

Proofs at levels 1 and 2 are conducted in the manner of the rigorous arguments pre-

ferred by mathematicians, although specification formalisms at level 2 may provide

deduction rules that could in principle lead to formalising such arguments; the trans-

ition to level 3 is therefore marked by the provision of theorem provers and the ‘fully

formal’ specification languages alluded to which are firmly rooted in mathematical lo-

gic (making mechanical support a practical necessity), and which have demonstrably

sound axiomatisations.

This classification may not be universally applicable, but it serves Rushby’s pur-

pose which is to examine the likely rˆole of formal methods in the development life-

cycle and in the certification of critical systems. His conclusions address the aviation

industry specifically, but are quite unequivocal in asserting thattheir current best prac-

tise, based as it is on design reviews, inspections and structured walkthroughs, and but-

tressed by various approaches to testing to support verification and validation, appear

to be adequate for the task of producing certifiable software from clearly stated require-

ments and unambiguous specifications. Formal methods should first be applied in the

earlier stages of the lifecycle, with whatever appropriate degrees of rigour, to produce

precise statements of requirements and assumptions, and thoroughly debugged design

specifications. Neither the evidence nor the analysis in the FAA report prioritises the

application of formal methods to the problem of producing code from specifications.

Rushby goes on to argue that the most rigorous (i.e., level 3) applications of formal

methods should be brought to bear precisely where traditional approaches are appar-

ently least adequate: in designing those aspects of digital (avionic) systems that deal

with the management of hardware redundancy, algorithms to achieve fault tolerance,

and the synchronisation of independent control channels (in particular). The anecdotal

evidence in the NIST report also indicates that the lower level applications of formal

methods (e.g., RAISE andZ which are identified explicitly) are particularly weak in

Chapter 1. Introduction 6

the specification and analysis of the coordination between concurrent, synchronous, but

often asynchronous and distributed, activities. To apply formal methods with success

at any level to such challenging problems demands intense effort and deep abstractions

in order to gain intellectual control over the task at hand. But then formal methods can,

and indeed as we shall see in later chaptersdo, lead to discoveries and insights into the

nature of complex control systems that are quite unapproachable by other means.

Some care has to be exercised in transferring Rushby’s analysis to other industrial

domains however, since the non-existence of a safe state for airborne systems nat-

urally introduces a heightened appreciation of the need for rigour and robust design

throughout the development cycle which may be less marked in other industrial do-

mains. Yet many terrestrial control systems are acutely safety critical and have similar

architectural needs that involve replicated hardware for high availability, independent

data and control channels and voting mechanisms to mask random environmental per-

turbations, and so on. Moreover, there is an important class of control systems that

apparently challenge the notion that formal verification ‘close to the code’ does not

deserve a high priority: these aredata-drivencontrol systems. The architecture of

such systems typically consists of a generic hardware platform that executes a generic

read/write loop (or polling cycle) which is parameterised by application specific con-

trol laws manifest in static data that are interpreted to yield appropriate responses to

polled inputs. Such data (though one might as well call them software) may be highly

safety critical in that they govern the behaviour of the control system as a whole; they

therefore demand the most rigorous techniques of analysis (and design).

Large scale examples of data-driven control systems that have been developed in

recent years can be found in the railway signalling industry. A specific example is Brit-

ish Rail’sSolid State Interlockingwhich is described in more detail in later sections of

this chapter. Clearly, one of the main attractions of developing data-driven controllers

for highly complex systems such as this is that to a large extent they effect a clean

separation of concerns. On the one hand the computer systems engineering concerns,

such as those identified by Rushby, are focused in the design of the generic hardware

platform and control software. On the other hand the application specific concerns that

can be addressed by domain experts without the need for particular computing skills

are focused in the preparation of the data. In the world of railway signalling the ap-

plication data are instantiated for each network installation—that is, roughly speaking,

for each station—and express logical relationships between the various controlled ele-

ments in the network as well as dynamic relationships between trains and signals, and

the sequencing of signal aspects. Such data vary in the details according to the geo-

graphic layout of the network concerned; then, the generic control software applied to

thesegeographic datayields the desired control function.

Chapter 1. Introduction 7

Unfortunately a complete separation of concerns according to this division between

data and control is rather more ideal than it is commonplace. Complications arise in

the realm of railway signalling from the practical necessity of subdividing the railway

into separate control authorities. One has therefore to design the interfaces, orpro-

tocols, between physically separated controllers, and this inevitably blurs the division

between what one considers to be application data, and that which is thought of as

generic control software.Somelayer of the protocol will very likely be expressed in

the application data since it is required to set up communication to enable one control

system to perform specific (within the geography of the network concerned) signalling

functions on behalf of another. But if one wishes to avoid programming timers, queues,

and watchdogs (the stock in trade of protocol design) at the application layer then one

is left with little choice but to encode specific domain knowledge about the nature of

the data transferred, or the functions requested/acknowledged, in the underlying ar-

chitecture. Thus, in order to conceal the interface at the application layer (this might

be construed as a good thing to do) one has to complicate the generic software with

non-generic code.

While this example illustrates something of a paradox in the philosophy of (dis-

tributed) data-driven control, in practice some experimentation leads to a workable

compromise. But this thesis will demonstrate, echoing Rushby’s appeal for the utmost

rigour in precisely this area of system design, that enormous care has to be exercised

in building such interfaces. For when in Chapter 6 our formal analysis is focused on

one of the protocols by which Solid State Interlocking achieves distributed control of

the railway, we shall indeed find subtle (and not-so-subtle) flaws in the overall design.

A second advantage of data-driven controllers is the introduction of application

specific languages in which to express the control functions. A well-known example is

Ladder Logic (or Ladder Diagrams, now standardised in IEC 1131-3) which evolved

in the electrical engineering community as a specification notation for relay circuits

(with delayed feedback). Ladder Logic has found use in interlocking design too, but

with solid state logic gradually replacing the more costly relay logic, more appropri-

ate notations have begun to emerge. An example is British Rail’sGeographic Data

Languagewhich is studied in this thesis. Both these examples areexpressively weak:

application specific languages are not typically called upon to express more complex

programs than sequences of commands like

IF 〈conditions〉 THEN〈actions〉

for simple atomic actions like assigning a variable or setting a register, and condi-

tions that are expressed in terms of internal state variables. From the point of view

of software assurance such languages are interesting in several ways. Firstly, because

Chapter 1. Introduction 8

they support design abstraction in a notation that is closely integrated with the applic-

ation domain. Secondly, such unsophisticated languages admit precise mathematical

definitions from which compilers and interpreters can be rigorously derived. Finally,

efficient interpretations in formal logic are possible to realiseautomaticverification

tools for checking behavioural properties of their programs.

With respect to Solid State Interlocking in particular, one of the problems with data

preparation is that the activity is very much like programming, even to the point that

the specifications are incomplete. For signalling, specifications are given bycontrol

tableswhich, loosely, indicate all of the conditions that have to be satisfied before a

signal can be switched from red to green to admit a train into the track section beyond.

These tables have a well defined syntax, and a clear meaning for signalling engineers,

but remain exceedingly difficult to ‘get right’—so difficult, in fact, that some railway

authorities have abandoned control tables as specification documents. Nonetheless

these are used along with other documents by British Rail to guide the production of

their geographic data. In the absence of any means to demonstrate completeness (in

the informal sense, but also the formal) of these specifications there is inevitably a need

to verify that the derived code does enjoy certain fundamental safety properties—such

as logically prohibiting the possibility for two trains to simultaneously enter the same

section of the railway.

Traditional methods of verification,i.e., those which constitute current practice, are

based on inspections of control tables and the derived geographic data, on simple de-

compilers and syntax comparators, and massive testing both in the design office andin

situ. The enormous combinatorial complexity inherent to railway interlockings means

that exhaustive simulation is simply impossible. Yet the syntactic nature of the data

also make visual inspection an extremely arduous task—so that the discovery by this

means of deep errors (problems of specification), or even minor ‘typographic’ errors

(problems of coding), can be haphazard at best. Logical flaws in geographic datado

emerge through testing the designs, but there is a clearly recognised need (throughout

the industry, in fact) to reduce the costs of extensive testing and to boost productivity

in interlocking design. To achieve these ends, but particularly to introduce the rigour

needed to radically improve quality assurance, calls for a measured introduction of

formal methods into the design process. These are some of the reasons why we need

theorem proving for geographic data.

1.2 A Whistle-stop Tour of Railway Signalling

Railway signalling engineers face a difficult distributed control problem. Train drivers

can know little of the overall topology of the network through which they pass, or of the

Chapter 1. Introduction 9

whereabouts of other trains in the network and their requirements. Safety is therefore

invested in the control system, orinterlocking (the glossary clarifies the meaning of

unfamiliar signalling terms emphasised thus), and drivers are required only to obey

signals and speed limits. The task of the train dispatcher (signalman, or signal operator)

is to adjust the setting of switches and signals to permit or inhibit traffic flow, but the

interlocking has to be designed to protect the operator from inadvertently sending trains

along conflicting routes.

The network can be operated with more security and efficiency if the operators have

a broad overview of the railway and the distribution of trains. Since the introduction

of mechanical interlockings in the late 1800’s, and as the technology has gradually

improved, the tendency has therefore been for control to become progressively cent-

ralised with fewer signal control centres individually responsible for larger portions

of the network. In the last decadeSolid State Interlockinghas introduced computer

controlled signalling, but the task of designing a safe interlocking remains essentially

unchanged.

Solid State Interlocking is a data-driven signal control system designed for use

throughout the British railway system. SSI is a replacement for electromechanical

interlockings—which are based on highly reliable relay technology—and has been de-

signed with a view to modularity, improved flexibility in serving the needs of a diversity

of rail traffic, and greater economy. The hugely complex relay circuitry found in many

modern signalling installations is expensive to install, difficult to modify, and requires

extensive housing—but the same functionality can be achieved with a relatively small

number of interconnected solid state elements as long as they are individually suffi-

ciently reliable. SSI has been designed to be compatible with current signalling prac-

tice and principles of interlocking design, and to maintain the operator’s perception of

the behaviour and appearance of the control system.

At the signal control centre acontrol panel displays the current distribution of

trains in the network, the current status of signals, and sometimes that ofpoint switches

(points) and other signalling equipment. The railway layout is depicted schematically

on the panel by a graphic similar to Figure 1.1. There are seven (three aspect) main

signals shown here, and three sets of points. It is British Rail’s practice to associate

routesonly with main signals. The operator can select a route by pressing the button

at the entrance signal (say,S7), then pressing the button at the exit signal—the consec-

utive main signal, being the entrance signal for the next route (S5). This sequence of

events is interpreted as apanel route request, and is forwarded to the controlling com-

puter for evaluation. Other panel requests arise from thepoints keyswhich are used to

manually call (and hold) the points to the specified position, or from button pull events

(to cancel a route by pulling the entrance signal button).

Chapter 1. Introduction 10

hhh.................S8

hhh.................S6

hhh.................
S7

hhh.................
S9

hhh.................
S5

hhh.................S2

hhh.................S4

T4 P3 T7 T8 T9

P2 T6 P4

c
n r

P4

Points Key

Figure 1.1: Signals (Si) on the control panel appear on the left to the direction of travel, each
signal has a lamp indicator, and each main signal has a button. Switches (points,Pi) show
thenormalposition, and there is usually a points key on the panel so one can throw the points
‘manually’. Lamps illuminate those track sections (Ti) over which routes are locked (white),
and those in which there are trains (red).

When the controlling computer receives a panel route request it evaluates the avail-

ability conditions specified for the route. These conditions are given in a database by

Geographic Datawhich the control program evaluates in its on-going dialogue with

the network. If the availability conditions are met the system responds by highlight-

ing the track sectionsalong the selected route on the display (otherwise the request

is simply discarded). At this point the route is said to belocked: no conflicting route

should be locked concurrently, and a property of the interlocking we should certainly

verify is that no conflicting routecanbe locked concurrently.

Once a route is locked the interlocking will automaticallysetthe route. Firstly, this

involves calling the points along the route into correct alignment. Secondly, the route

must beproved—this includes checking that points are correctly aligned, that the fila-

ments in the signal lamps are drawing current, and that signals controlling conflicting

routes are on (i.e., red). Finally, the entrance signal can be switched off when the route

is clear of other traffic—a driver approaching the signal will see it change from red to

some less restrictive aspect (green, yellow,etc.), and an indicator on the control panel

will be illuminated to notify the operators.

The operation of Solid State Interlocking is organised around the concept of a

polling cycle. During this period the controlling computer will exchange messages

with each piece of signalling equipment to which it is attached. An outgoing command

telegram will drive the track-side equipment to the desired state, and an incoming data

telegram will report the current state of the device. Signalling equipment is interfaced

with the SSI communications system throughtrack-side functional modules. A points

module will report whether the switch isdetected normalordetected reversedepending

Chapter 1. Introduction 11

on which, if either, of the electrical contacts in the switch is closed. A signal module

will report the status of thelamp proving circuit in the signal: if no current is flowing

through the lamp filaments the lamp proving input in the data telegram will warn the

signal operators about the faulty signal.

Other than conveying status information about points and signals, track-side func-

tional modules report the current positions of trains. These are inferred fromtrack

circuit inputs to the modules. Track circuits are identified with track sections which

are electrically insulated from one another. If the low voltage applied across the rails

can be detected, this indicates there is no train in the section; a train entering the section

will short the circuit causing the voltage to drop and the track section will be recorded

asoccupiedat the control centre. Track circuits are simple, fail-safe devices, and one

of the primary safety features of the railway.

All actions performed by Solid State Interlocking—whether in response to periodic

inputs from the track-side equipment, aperiodic panel requests, or in preparing outgo-

ing command telegrams—are governed by rules given in the Geographic Data that

configure each Interlocking differently. Some examples of route locking and release

data are explained in Section 1.3.3 below. TheGeographic Data Language(GDL) is

introduced in more depth in Chapter 2. In the following section an outline is given of

the architecture of the system, and the organisation of the software. These details are

needed for a proper appreciation of the models developed in succeeding chapters.

1.3 Solid State Interlocking

Cribbens [24] describes the overall organisation and operation of SSI, and discusses

many of the philosophical and technical problems that have had to be overcome in its

development. Here we only recall the salient details in order to give a broad overview

of the architecture and the manner in which the system maintains safety. The Glossary

in Appendix A.2 accompanies this section.

1.3.1 Overall System Architecture

SSI is a multicomputer system with two panel processors, a diagnostic processor, and

three central interlocking processors which operate in repairable triple modular redund-

ancy. Higher-order control devices such as route planning and automatic route setting

computers are not part of SSI, but they can be interfaced with the system.

The central interlocking processorsare responsible for executing all signalling

commands and producing correct system outputs, and operate in TMR to ensure high

availability and single fault tolerance in the presence of occasional hardware faults.

These are the safety critical elements of SSI. A TMR system has been implemented

Chapter 1. Introduction 12

for hardware reliability: each subsystem is identical, and runs identical software. All

outputs are voted upon, redundantly in each interlocking processor, and the system is

designed so that a module will be disconnected in the event of a majority vote against

it—SSI will continue to operate as long as the outputs of the remaining modules are

in agreement. A replacement module is updated by the two functioning modules be-

fore being allowed online. (In the sequel we usually refer to the central interlocking

processors collectively asthe SSI, or the Interlocking.)

The panel processorsare responsible for tasks which are not safety critical such

as interfacing with the signal control panel, the display, and other systems such as

automatic route setting computers. These processors are run in duplex ‘hot standby’

for reasons of availability. The diagnostic processor is accessible from a maintenance

terminal (thetechnician’s console) through which the system’s performance and fault

status can be monitored, and whereby temporary restrictions on the Interlocking’s be-

haviour can be introduced. In the latter case this is a provision for temporarily barring

routes, locking points, or imposing other restrictions that are not directly under the

control of the signal operators (for example, at times when there is a need for track

maintenance).

A central feature of SSI is that the controlling computer is directly connected to

track-side equipment by means of a duplexdata highwaycarrying discrete signalling

information (cf. Figure 1.2). Track-side functional modules (TFMs) interface with

signals and points to provide power switching under microprocessor control. Here,

duplication of the hardware has been designed to ensure safe response to failures, but

not fault masking: the TFM will set its outputs to the most restrictive state (e.g., signals

at red) whenever a fault is detected or the duplicated control paths are found to diverge.

One points module may be connected to two to four point switches, and can report up

to four track circuit inputs. A signal module is usually connected to one signal and

several nearby track circuits, but is flexible enough for any other desired function.

The operation of Solid State Interlocking is organised around the concept of ama-

jor cycle. During this period the central interlocking will address each of the track-side

functional modules, and expect a reply from each in turn. A maximum of 63 TFMs can

be connected to one SSI, and the major cycle is consequently divided into 64minor

cycles. In the zeroth cycle data are exchanged with the diagnostic processor. In each

minor cycle the central interlocking will decode one incoming message (ordata tele-

gram) from the data highway, and process one outgoingcommand telegram.

The cable conveying messages to and from the central interlocking is a screened

twisted pair carrying relatively high signal levels. Cribbens discusses in detail the

performance requirements for this vital component of the system: the minimum refresh

rate for the TFMs, the necessity of real-time encoding and decoding of transmitted

Chapter 1. Introduction 13

Points Signals Track Circuits

Status of the Network
Commands to Signals/Points

Baseband Data Highway

Geographic

Data

Interlocking Processor

Book-
Keeping

Control

Loop

Panel
Processor

Internal
Data
Link

Figure 1.2: Schematic overview of the main features of SSI

data, the geographic extent of the interlocking area and the need for an acceptable

range without the need for repeaters (circa 15 km), are all factors that contribute to

the design. A data rate of 20k bits per second has been adopted, and a cyclic polling

strategy implemented to ensure early detection of communications breakdown at either

end of the link. The data path is duplicated and TFMs and central interlocking are

designed to tolerate single faults on the line—detected through missed or corrupted

messages. In each addressing cycle 25 bits of message data are padded with five parity

bits to form a truncated (31,26) Hamming code which is transmitted in Manchester

encoded biphase form. TFMs are configured to reply immediately upon receipt of

a message from the central interlocking. Cribbens argues convincingly that the SSI

transmission system is highly secure.

1.3.2 Generic SSI Software

SSI has been designed to be data-driven with a generic program operating on rules

held in a ‘geographic’ database. These data configure each SSI installation differently,

and define the specific interlocking functions (although the more primitive functions

are directly supported by the software). The relationship between generic program and

the data is one in which the former acts as aninterpreterfor the latter—for this reason

we usually refer to the generic software as thecontrol interpreterin the sequel. The

Motorola 6800 microprocessors used in SSI have a 16-bit address space: 60–80k bytes

are EPROM which hold the generic program (about 20k bytes), and the Geographic

Data; 2k bytes are RAM, and the rest is used for input and output devices. The modest

RAM is used, mainly, to hold the system’s record of the state of the railway—generally

Chapter 1. Introduction 14

referred to as theimage of the railway, or theinternal statein the sequel.

All SSI software is organised on a cyclic basis with the major cycle determining

the rate at which track-side equipment receive fresh commands, and the rate at which

the image of the railway is updated. During one minor cycle the generic program:

performs all redundancy management, self-test and error recovery procedures; updates

system (software) timers and exchanges data with external devices such as panel pro-

cessors; decodes one incoming data telegram and processes an associated block of

Geographic Data; and processes the data associated with one outgoing command tele-

gram. The latter phase is the most computational intensive part of the standard minor

cycle because it is through these data that the Interlocking calculates the correct signal

aspects.

The SSI minor cycle has a minimum duration of 9.5 ms, and a minimum major

cycle time of 608 ms. However, SSI can operate reliably with a major cycle of up to

1,000 ms, with an individual minor cycle extensible to 30 ms. This flexibility is needed

for handling panel requests. If the required minor cycle processes mentioned above

can be completed in under the minimum minor cycle time, the control interpreter will

process one of any pending panel requests (which are stored in a ring buffer). The

data associated with a panel request must not require more than a further 20 ms of pro-

cessing time—the data are structured such that accurate timing predictions can be made

at compile time. If the minor cycle is too long the track-side functional modules will

interpret the gaps between messages as data link faults, and will drive the equipment

to the safe state in error.

The initialisation software compares the internal state of each of the three inter-

locking processors to determine the required start up procedure. When power is first

applied a‘mode 1’ startupis necessary: this sets the internal state to a (designated)

safe configuration, forces all output telegrams to drive the track-side equipment to the

safe state and disables processing of panel requests; after a suitable delay so that TFM

inputs can bring the internal state up to date, the Interlocking can be enabled under

supervision from the technician’s console. After a short power failure much of the

contents of RAM will have been preserved and a ‘mode 2’ or ‘mode 3’ start up is

appropriate. A ‘mode 2’ start up resets the internal state to the safe configuration but

preserves any restrictions that had been applied through the technician’s console—the

system is disabled for a period long enough for all trains to come to a halt, and allowed

to restart normal operation automatically. A ‘mode 3’ start up involves a similar reset

but the status of routes is also preserved, and the system restarts immediately.

Validation of the generic SSI program has been described by Short [85] who points

out the need for extensive testing to validate the final hardware and software com-

bination because the software performs safety checks (redundancy management,etc.)

Chapter 1. Introduction 15

on the hardware. Short also notes the difficulty (i.e., the intractability) of perform-

ing correctness proofs at the level of the semantics of 6800 assembler—yet when one

considers that there are of the order of twenty megabytes of control and monitoring

software on board the A340 [5] airliners, for example, the 20 thousand bytes of ma-

chine code that constitute the safety critical software in SSI is quite modest.

The validation effort that Short describes is rigorous and very thorough. The ana-

lysis has been aided by the fact that the SSI software is highly modular, and because

the control flow is not complicated by the use of interrupts—polling mechanisms, as

opposed to preemption mechanisms, have been used throughout. The analytic frame-

work described includes functional, structural, information flow, and semantic ana-

lysis. These techniques have been applied in top down fashion through the modular

structure of the software. Functional analysis checks the design against the (informal)

requirements specification and identifies the requirements for each program module.

Structural analysis checks the design and code for conformance to certain structured

programming standards, and is intended to prove accessibility of every line of code.

Information flow analysis detects illegal or omitted reference to variables. Given the

control flow graph obtained by structural analysis, a semantic analysis assembles the

individually validated modules into a validated whole, with a check that derived in-

put/output relations correspond to the requirements. A detailed timing analysis is per-

formed in the final review stage, prior to extensive online testing.

It seems that a completely formal treatment of the design path from high level

system requirements to detailed timing analysis of the SSI generic program would

present a major engineering challenge if conducted in a formal manner. Interesting

though it would be to conduct a reappraisal of the correctness of the SSI software

given the current state of the art, it is not what this thesis sets out to achieve (although

see Chapter 6). Instead we consider an issue not mentioned by Short, nor even by Crib-

bens [24]—namely, the validation of the Geographic Data. Cribbens hints at the need

for a “knowledge based approach to scheme design”, but it was only later that proposals

for formally based tools for Geographic Data preparation and analysis emerged [25].

The work reported in this thesis started from early consultations with Mitchell [66],

but has progressed independently of British Rail’s own research [48].

1.3.3 Examples of Geographic Data

A more thorough account of the Geographic Data Language is given in Chapter 2,

but it is easy to introduce the main concepts occupying later chapters through a few

examples. Figure 1.3 reproduces thescheme planfor the layout in Figure 1.1 with

further annotations to show routes andsub-routes. RouteR28 proceeds fromS2 to S8

through the pointsP2 andP3 reverse and normal respectively. In this scheme plan,

Chapter 1. Introduction 16

b a

T4

c

L
L
L
L
L
LP2 c aT6

b �
�
�
�
�
�P3

b a

T7

b a

T8

c aT9

bL
L
L
L
L
LL P4

hhh.................S2

hhh.................S8hhh.................S4

R28

R48 R8

hhh.................
S5

hhh.................
S9

hhh.................
S7

R5

R95

R75

Figure 1.3: The scheme plan signalling layout in Figure 1.1 with route and sub-route annota-
tions. Routes are identified paths between main signals, and each track circuit is associated
with a collection of sub-routes so that a sub-route is defined for each path through a track cir-
cuit that lies on a route. A sub-route may be a component of more than one route (asT ba7 , for
instance).

there are four sub-routes associated withT4: westwardT ab4 andT ac4 , and eastwardT ba4

andT ca4 . ThusR48 (say) can be identified with the sub-routesT ba4 , T ca6 , andT ba7 in that

order, by the pointsP2 andP3 which are required normal (and anyoverlapbeyond the

exit signalS8, but shall not consider overlaps at present). These entities are control

variables upon which the Geographic Data and control interpreter operate.

The Geographic Data are conceptually organised into a number of files each of

which holds data that serves a specific purpose. Some of these files are accessed at

random (as, for example, when a panel request is processed), whilst others are pro-

cessed in rotation, once a major cycle. Thus, data in theinput data fileare responsible

for copying the incoming status information to memory, and theoutput data filecon-

tains data that determine the command to be issued to each TFM as the system evolves.

These data are accessed periodically, and there is one block of code to execute corres-

ponding to each telegram. For example, the data listed for the command telegram for

signalS2 will specify the conditions under which the signal can be switched off (i.e.,

from red to a less restrictive aspect). These will typically include checks thatS4, S7

andS9 are on, that the points on the route are detected (in some position), and that the

track circuits to the next signal are clear. These data are designed to ensure that signals

remain at red unless an onward route is locked (e.g., by testing the appropriate route

variables)—though this is apropertythat should be checked.

The conditions under which a route may be locked, and the locking conditions for

the route (i.e., the conditions that must not change while the route is set), are specified

Chapter 1. Introduction 17

by route request data. For the running example:

*Q28 if P2 crf , P3 cnf , T ac4 f , T ab7 f

then R28 s , P2 cr , P3 cn , T ca4 l , T ca6 l , T ba7 l \ .

This guarded command is a statement in the Geographic Data Language that is ex-

ecuted in response to a route request issued at the signal control panel. Execution

begins at thelabel *Q28 (which is treated as a pointer into the static data table), and

continues without interruption up to the “. ” which terminates the command. Several

variables are tested here: pointsP2 are tested to see if they are controlled reverse or

“free to move” reverse (P2 crf); similarly,P3 cnf is a test to see if these points are nor-

mal or “free to move” normal (a more detailed discussion of the points test is deferred

until Chapter 2). In addition, several conflicting sub-routes are tested (T ac4 f , T ab7 f) to

check that they arefree. If all these conditions are satisfied the route is locked by up-

dating the variables as specified in the conclusion of the rule: the route variable isset,

the points arecontrolled reverseandcontrolled normal, and the sub-routes arelocked.

(The terminology of railway signalling is used here, but it is mildly confusing to speak

of the route being ‘locked’ by this action, rather than ‘set’, although the control vari-

able for the routeis ‘set’. Note that the signalling actions in setting a route are firstly

that it is ‘locked’, then it is ‘proved’; the route is finally ‘set’ when the entrance signal

displays a proceed aspect, usually green.)

Another class of Geographic Data specifies conditions that govern route release. It

is (usually) necessary to lock routes in a single action, but they can be released gradu-

ally as the train proceeds,‘freeing’ the network to the rear. Such bookkeeping is carried

out by commands listed in thesub-route releasedata file which are executed sequen-

tially over the course of a major cycle. Continuing with the example in Figure 1.3,

these data may specify:

T ca4 f if R28 xs , T4 c \ .
T ca6 f if T ba4 f , T ca4 f , T6 c \ .

T ba7 f if T ca6 f , T ba6 f , T7 c \ .

These rules introduce the following signalling principle: the first sub-route on a route

can be released (freed) as soon as the route has been unset as long as the track circuit is

clear; subsequent sub-routes are released in the sequence they are traversed. The sub-

route release data must specify the sequence correctly. The order in which the rules are

specified in the file, and hence the order in which they are executed, is immaterial—

more precisely, safety properties of the interlocking must not depend on the order.

To illustrate the importance of this, the testT ab7 f should be sufficient to guarantee

that neither of the conflicting routes that terminate atS5 is locked in whenR28 is

locked; indeed, if a train onR95 (say) has passed the entrance signal but not yet cleared

Chapter 1. Introduction 18

T9, this test in the availability conditions forR28, and similar tests in the rule forR95,

will ensure that these two routes do not interfere however far the train has progressed

from S9. The command tounsetR28 is executed from the output data file (usually

when the data for signal moduleS2 are processed). A route is unset in response to a

cancellation request from the signal control panel (or automatically as the train enters

the route), but the conditions under which the entrance signal can be returned to red

will depend on whether an approaching train is within sighting distance of the signal.

The problem we have to face is to determine whether the locking conditions in

rules such as the above are adequate to ensure that trains do not run an undue risk

of a collision or derailment. This is clearly not a trivial matter. In order to approach

this subject the semantics of the Geographic Data Language are discussed further in

Chapter 2, and properties of the data are examined in succeeding chapters. The next

section introduces theremote route requestprotocol which is investigated in Chapter 6,

and explains the mechanisms that enable several Interlockings at the control centre to

communicate to achieve their collective management of larger railway networks.

1.4 Inter-SSI Communications

In any signalling scheme there may be a requirement, depending on the physical extent

of the network, to divide the railway into a number of areas (or blocks), each controlled

by a separate interlocking. Where SSI is concerned this distribution of control is further

necessitated by the limited capacity of a single central interlocking processor. Limited

capacity means the signalling area under the control of one operator will be divided

between a number of Interlockings. On this scale the divisions may be rather small

so it is important that boundaries are not only transparent to traffic in the network, but

also transparent to the signal operator. The less fragmented the operator’s view of the

network is the better SSI can approach the broad aim in railway signalling of relieving

the signal operator of the greater part of the burden of the safety of railway traffic.

In order for the control of a train to pass safely between interlocking areas some

communication mechanism is needed to transfer information that needs to be shared

about the status of the network in the fringe area. A typical situation is illustrated by

the scheme plan in Figure 1.4 which focuses the discussion below. Here the cross-

boundary routes converge before the boundary and terminate at a common exit signal.

It is also possible that routes will diverge again after the boundary. In general there

will be numerous lines linking the two interlockings. Signal engineering practice seeks

to avoid placing boundaries through points since the complications introduced signi-

ficantly increase the communication overheads. For the same reason boundaries are

avoided if there would be points immediately beyond the signal at the boundary.

Chapter 1. Introduction 19

b a

T4

c

L
L
L
L
L
LP2 c aT6

b �
�
�
�
�
�P3

b a

T7

b a

T8

c aT9

bL
L
L
L
L
LL P4

hhh.................S2

hhh.................S4

hhh.................S6

hhh.................S8

hhh.................
S5

hhh.................
S9

hhh.................
S7

WEST

EAST

Figure 1.4: EAST and WEST communicate to set routes from entry signalS7 orS9 in EAST,
to the exit signal (S5) in WEST—since WEST controls the tail portion of both routes (just that
overT7, plus overlaps). There are no WEST to EAST routes as those up toS8 are contained in
WEST, and routes onward from this signal are controlled by EAST, as is the signal itself.

Data are transmitted between Interlockings by means of a high speed communic-

ation bus called theInternal Data Link. Several Interlockings can be connected to a

single bus, but normally an individual need only exchange data with its nearest neigh-

bours. OutgoingIDL telegramsare prepared by commands in the Geographic Data

and the generic control program is configured to copy their contents to the link at

least once a major cycle. Two main classes of data are required to be communicated:

continuously required data such as the aspects displayed by signals in advance of the

boundary, and intermittently required data such as requests from one SSI for another

to perform some signalling function such as moving a set of points or setting a route.

Exactly what data need to be communicated depends on the nature of the boundary—

our concern in Chapter 6 will only be with the complex situation of setting routes that

are divided by Interlocking boundaries. Typically, the inter-SSI communications these

induce occupy about twenty percent of the capacity of one Interlocking.

1.4.1 Setting Routes over Boundaries

Suppose that one wished to route a train fromS7 to S5. On receiving the panel request

for this route EAST first evaluates the availability conditions in its portion of the net-

work: if these are not met the request simply fails, otherwise EAST must wait until it is

certain the route is also available in the other Interlocking before locking it. To achieve

this EAST issues aremote route requestto WEST over the internal data link.

On receiving such an input WEST should handle the request just as it would handle

route requests coming directly from the control panel—this simplifies the design of

Chapter 1. Introduction 20

the control interpreter, and data preparation. Thus an incoming IDL request will be

translated into a panel request and queued in the usual manner. When a remote route

request is subsequently processed the difference is that WEST must communicate to

EAST if, or when, the route is locked: WEST sends its acknowledgement via a reply

telegram to EAST over the IDL.

In EAST the acknowledgement is also treated as a remote route request: on this

occasion EAST proceeds to lock the route it had originally requested. The two Inter-

lockings need to use a dedicated pair of IDL telegrams to communicate request codes

and their acknowledgements. Normally, many routes over numerous lines link the two

signalling areas, but a single pair of (eight bit) telegrams should suffice to carry all the

necessary request codes and their acknowledgements. To summarise:

1. EAST receives a panel route request for a cross-boundary route. If the route is

available in EAST, issue a remote route request to WEST.

2. WEST receives an IDL input conveying a remote route request. If the route is

available, lock the route and reply to EAST with an acknowledge telegram.

3. EAST receives a reply telegram to the earlier remote route request: it can then

lock the route and control the entrance signal as usual.

Once the route has been locked in EAST the aspect of the entrance signal can be

changed if the prevailing conditions allow this. For example, only if the tracks down

to the exit signal are clear, and if opposing signals are on, can EAST clear the signal—

to green or yellow, depending on the aspect displayed by the exit signal. Thus, in

addition to the telegrams used to convey request codes, another IDL telegram is needed

to convey the status of tracks and signals in the fringe area. Such data are needed

continuously.

1.4.2 Releasing Sub-routes over Boundaries

Once a train has passed the entrance signal and progressed along the route (or if the

route is subsequently cancelled by the signal operator) the sub-routes along it should

be released in the usual manner—i.e., by rules in the continuously executed sub-route

release data (as in Section 1.3.3). At least, the sub-routes can be freed in this way up

to the boundary:T ab8 is a control variable in EAST of course, whileT ab7 is in WEST, so

the usual rule for freeing the ‘inward’ sub-route does not apply.

In order for the whole of the route to become free EAST must send a request to

WEST for it to release its part of the route once the correct circumstances obtain. If

the sub-route release mechanism is to be transparent (to the operators) the necessary

cancellation requestshould be issued automatically. To achieve this in SSI the correct

Chapter 1. Introduction 21

circumstances are recognised by rules in the sub-route release data. If WEST receives

a cancellation request it can release the inward portion of the cross-boundary route

unconditionally. Furthermore, WEST should acknowledge the cancellation request so

that EAST will be aware that the route has indeed been released. The usual sub-route

release mechanism in WEST will ensure that the remainder of the route is released as

the train proceeds to the next signal. To summarise:

4. Whenever conditions indicate that a route has cleared up to the boundary, EAST

issues a remote cancellation request to WEST.

5. When WEST receives a request to cancel an inward route it does so uncondition-

ally, and acknowledges the request with a reply telegram to EAST.

6. On receipt of such an acknowledgement, EAST should cease to issue cancellation

requests, the route having been cancelled in both Interlockings.

1.4.3 Implementing Remote Route Locking

With the current generation of Solid State Interlocking the number of IDL telegrams

that can be used is limited to a maximum of fifteen in total. Each IDL telegram conveys

eight data bits, and the Interlockings connected to the link take it in turns to transmit

all fifteen bytes of data in a round-robin protocol: the transport layer is configured so

that each SSI broadcasts its data at least once a major cycle (the frequency depends on

the number of Interlockings connected to the link). On receipt of an IDL data packet

the SSI is able to extract those bytes that are relevant to it (this address information

can be computed statically, and is ‘burned’ into EPROM when the system is installed).

Since the outgoing IDL telegram will be written at arbitrary times during a major cycle

it is necessary to buffer the telegrams. As a consequence the protocol as presented

is far from being robust as the various uses of the request telegram can interfere with

one another. If one SSI locks the inward portion of a route in response to a remote

route request, the (buffered) reply telegram should not be overwritten before it can be

sent. While not unsafe, in extreme circumstances this may lead to livelock, and other

problems. Another reason why the protocol sketched above is not correct is that the

remote route request may simply fail in the second Interlocking (WEST), but the first

(EAST) has to be notified of this failure.

Such concerns introduce the need for telegram protection and timers. To implement

remote route locking the designer has access to a collection ofelapsed timerswhich

may be stopped and started by commands from the Geographic Data, but which are

otherwise updated by the (real-time) generic program. Note that an elapsed timer can

serve both purposes if we can differentiate between a timer that isstopped, and one

Chapter 1. Introduction 22

that is running. One timer is needed for each IDL telegram used to convey request

codes to another SSI, but other control data are needed to implement the sub-route

release mechanism over the boundary. The details are drawn out in Chapter 6 where

safety properties of these inter-SSI communications will be examined. Until then our

concern will be with the safety properties of the Geographic Data within a single SSI.

1.5 Formal Approaches to Signalling Safety

In seeking to adopt rigorous techniques British Rail (now Railtrack), along with sev-

eral other railway authorities, advance the opinion that the more formal analysis will

improve the quality and safety of their products and services. While the reasons for

introducing computer controlled railway signalling may be largely economic, it seems

that with the advent of design notations such as the Geographic Data Language the

overall safety case can be strengthened because of the possibility to produce formal

proofs of the behaviour of the interlocking. Even without formal proofs the possibility

to test (simulate) the design long before tracks are laid down, and with full confidence

that the same software will control the live network, is a considerable boost to safety

and productivity. In principle at least, the introduction of more rigorous techniques

will improve productivity in the long run because a formal proof that the Geographic

Data are safe may remove much of the need for testing the design.

These arguments indicate that what is required is a framework within which to

conduct various forms of analysis on Geographic Data. Simulation and testing remain

central concerns in signalling engineering—if only because of the need to test the final

data/control configuration for each instantiation of the data. In the context of this thesis

the ‘formal correctness’ of the Solid State Interlocking is not in itself the issue. Rather,

the central problem is that of automatically checking SSI data through an appropriate

language of logical assertions and proof. There appear to be two distinct approaches

to providing the analytic framework required: either we attempt to formalise the prin-

ciples of railway signalling, or we reduce a given design to a formal specification (or

model) whose properties we verify. A brief survey of related work will help to illustrate

these choices.

1.5.1 Related Work

The treatise by O. S. Nock [76] sets out in considerable detail the recent signalling

engineering practice on British railways. Nock deals both with thestaticanddynamic

issues of scheme design: static issues include network topology, the placement of sig-

nals, and their relative separation; dynamic issues address the relationships between

train positions and signal aspects, and the separation between trains,etc., in the evol-

Chapter 1. Introduction 23

ution of the network topology (as points settings change), and as trains proceed. For

example, Nock can be interpreted to yield the following requirements for clearing the

entrance signal of an uncomplicated (mainline) route without overlaps:

i All track circuits on the route must beclear;

ii Track circuits on all conflicting routes up to the point of conflict must beclear;

iii All points on the route must becontrolledanddetected(in correct position);

iv The exit signal must bealight (i.e., drawing current);

v The entry signal for all conflicting routes must beon.

The route’s entrance signal may gooff if and only if these conditions are satisfied,

and the route is locked. One persistent problem for signalling engineers is to decide

whether all conflicting routes have been identified.

Recent work by King [51] records the current signalling rules applied by Railtrack.

King’s layeredZ specification is intended to form part of requirements specification

documents used for the procurement of signalling systems. The first layer defines the

concept of network topology in terms of primitive track components (points, plain track

anddiamond crossings) and their allowable interconnections. Paths, and the concept

of interference between paths, are defined on this static component. The second layer

formalises the dynamic signalling rules in aconceptual foundation—since this is sup-

posed to be independent of any particular technology, trains themselves are modelled

(in terms of the paths they are on and in which they may come to a halt).

The third layer in King’s specification is an instantiation of the conceptual found-

ation (e.g., SSI, which introduces signals, routes and sub-routes as control elements).

However, since King does not address the question of whether the rules formalised in

the conceptual foundation are ‘safe’ (or at least consistent), it is inevitable, as the author

himself points out, that verification of the safety properties of anyformal refinement

of the conceptual foundation will be needed. TheZ specification cannot therefore be

used to define safety requirements—although safety can of course be defined in terms

of the conceptual foundation.

Wong [99] also attempts to codify the dynamic signalling rules in a formal theory.

He proposes a scheme design methodology that links a theorem prover for higher-order

logic with CAD tools for signalling scheme plans. The theorem prover automatically

checks that the network described is legal with respect to some simple rules for assem-

bling network components (e.g., that it forms a finite connected graph). Wong goes

on to generatecontrol tablesfor each route inferred from the scheme plan—these are

specification documents used to guide the preparation of Geographic Data for an SSI

Chapter 1. Introduction 24

installation. This is practically interesting because of the difficulty of certifying that

the route setting conditions specified in the control table are sufficient (for safety).

However, Wong does not use his HOL theory directly to address the question of the

adequacy of control table route specifications. Instead he derives the behaviour of the

railway from the network structure, presenting the model as a finite state automaton.

In higher-order logic a ‘time’ varying function describes the state of the network at

any instant, and the behaviour is governed by the dynamic signalling rules. Wong

demonstrates how to prove that the automaton is safe with respect to the property that

no two conflicting routes can be simultaneously set. Unhappily Wong’s demonstration

is somewhat vacuous since the notion ofconflict in defining the formal property is

identical to that used to encode Nock’s requirements. Cullyer and Wong [26] have

used a similar model to examine safety related properties of a level crossing.

Some related work on behalf of the Danish State Railways has been carried out

by Mark Hansen [56] under the aegis of the ProCos project. Her VDM specification

is also based on a description of the network topology, and the purpose of the model

is to clarify formal requirements (functional, as well as safety) for interlockings to be

developed on a per station basis. This work emphasises model validation (through

simulation), and requirements capture. The principal requirement is that trains do not

collide. Modulo the usual caveats about coupling trains, this is expressed in a predicate

that asserts that no track section contains more than one train. An attribute of track

sections in the model is, therefore, that they may be associated with asetof trains. The

hidden assumption here is that track-side equipment is capable of determining that a

second or subsequent train has entered an already occupied track section. Track circuits

are unable to decide this, for example, although more sophisticated train detection

systems can relay train identities to the control system (trains and tracks communicate).

The authors cited above record the (static and) dynamic signalling rules in a math-

ematical theory. The natural focus in these enterprises is on requirements capture, with

safety requirements dominating. But this begs the question of how to demonstrate

that a purported implementation conforms to the requirements—in particular, to verify

that the interlocking is safe. Another body of work addresses the verification problem

directly.

Atkinson and Cunningham [4] describe a signalling case-study that exercised a

tableaux proof system for Modal Action Logic (a variant of PDL). This took a simple

interlocking (the FOREST LOOP scheme [8, illustrated on page 215]) described by a

system of MAL axioms derived from the Geographic Data and the network topology,

and furtheraction rules to describe permitted train movements. The idea is to prove

that a modal propertyp is a consequence of such a specificationSpec: the MAL prover

Chapter 1. Introduction 25

attempts to refute the goalSpec ⇒ ¬p. The logic has a refutation complete decision

procedure to prove such goals—meaning that if a counter model exists it will always

be found. The procedure is semi-decidable however, so cannot always proveSpec ⇒
p when it is true. This case-study can fairly be said to demonstrate the capabilities

of the FOREST tools, but the model is too concrete to be aspecification, and too

impoverished (in its notion of time and computation step in calculating signal aspects,

for example) to be useful as a vehicle for proving safety of the interlocking.

In a similar, but much more successful vein, Stlmarck and S¨aflund model inter-

lockings for the Swedish railway authorities (Banverket, and SJ, the railway company)

using propositional logic [88]. They have developed dedicated tools for analysing

safety related properties of STERNOL programs which are used in interlocking design.

A STERNOL program is a system of equations, with one equation—really, a guarded

command—for each value a variable in the program can take. One group of equations

may refer, for example, to the aspect of a particular signal. The Circuit Verification

Tool [88] is used to verify that exactly one of the guards in the equations for a program

variable is true at any time. This guarantees determinism (in each execution cycle),

and such a STERNOL program can therefore be implemented by executing the equa-

tions in any order (cyclically). For SJ and their subcontractors this is an important

safety property of their interlockings.

By representing a STERNOL program in propositional logic it is possible to go on to

examine other safety properties by provingProg ⇒ p. Given the size of such formulas,

this would be a severe challenge but for Stlmarck’s (patented) natural deduction style

proof technique for Boolean satisfiability. The time complexity of the algorithm is

polynomially related to the number of subterms in the formula, with the exponent

(hardness) being determined by the number of simultaneous free assumptions needed

in the natural deduction proof tree. The empirical evidence is that for many practical

problems the degree of hardness is low by this measure, so the proof technique is

effective for extremely large formulae (exceeding105 connectives). To obtain counter

models an ordering on the subterms in the formula is needed; this does not affect the

hardness of the proof, but makes space requirements (i.e., the length of the proof)

sensitive to the order chosen.

The Vital Processor Interlocking (VPI) analysed by Grooteet al.[37] for the Dutch

Railway Company has an execution model that is similar to the STERNOL programs

described above: a sequence of equations that are solved once a cycle, each of which

defines the value of an internal control variable or system output. Groote and his col-

leagues formulate safety requirements in a modal logic so as to express properties

relating to finite sequences of program steps (or states):nextformulae refer to a finite

future, just formulae refer to finite immediate past, andstatic formulae refer only to

Chapter 1. Introduction 26

the current state. To prove that the program satisfies a modal property both are trans-

lated into propositional logic, andProg ⇒ p is checked using Stlmarck’s method. In

general, if the property refers ton time steps then this many time-indexed copies of

the program are needed for the proof. Clearlyn and the size ofProg, in terms of the

number of subformulae, determine the range of application of this approach to VPI

program verification. Taken literally,n may be ‘large’ (21 s in the example), but a time

abstraction alleviates the complexity problem so that the results are encouraging.

Returning, finally, to the problem of verifying safety properties of Geographic

Data, we should note British Rail’s own research which tackles the problem from an

automata-theoretic perspective. Ingleby and Mitchell [48] represent SSI behaviour in

a Mealy machine having next state and output functionsν andω. Safety properties

are characterised as state predicates (static properties in Groote’s terminology [37])

and output predicates (also static). The problem is to demonstrate that the automaton

modelling the interlocking issafety transitive: if safe(s) asserts that states is safe, the

interlocking is safety transitive if for all statess and inputsi, safe(s)⇒ safe(ν(s, i)).
This proof concept [74, illustrated more coherently in Chapter 4] is an instance of a

powerful proof technique for safety properties calledco-induction.

Ingleby’s data decompositions [47] (discussed further in Chapter 5) are what makes

this approach to automatic verification of safety properties of Geographic Data prac-

tical at all: these lead to state clustering in the automaton, and alocal proof strategy,

but complicate the task of generating counter models and tracing the location in the

data where the safety properties are being violated. Related work has been reported by

Conroy and Pulley [21] whose models are B¨uchi automata. These authors are plagued

by the enormous combinatorial complexity of the reachable state space in signal inter-

lockings. For the Hoorn-Kersenboogerd interlocking [37], Groote puts the reachable

state space somewhere between1030 and10500 states: the lower bound arises because

the VPI records circa 100 Boolean inputs—SSI receives up to 512 such inputs in each

major cycle (ignoring the occasional panel request) and the internal state is a vector of

(at most) 1,216 bytes.

1.5.2 Contributions & Thesis Overview

When approaching the question of automated verification, the cited work illustrates

that great care should be exercised to avoid intractable state spaces on the one hand,

and combinatorial explosion in checking Boolean formulae on the other. Both can be

avoided by selecting an appropriate abstraction with which to work, and as long as

safety can be satisfactorily formalised through invariants of the internal state of the

SSI (which may still refer to system inputs and outputs of course). We concentrate

on the semantics of the Geographic Data Language which, in programming terms,

Chapter 1. Introduction 27

is a somewhat richer language than STERNOL or the Vital Logic Code in VPI. The

focus on semantics leads to acompositionalverification strategy—but the route to this

understanding of the problem is as important to record here as the final synopsis itself.

Chapter 2 The next chapter fills out the background, concentrating on the syntax and

semantics of the Geographic Data Language, and explains the overall organisation of

the data in the SSI. The Geographic Data Preparation Guide [9] defines the language

informally, in a manner that is intelligible to signalling engineers, but to prove proper-

ties of programs written in the language a more rigorous understanding is needed. In

this chapter therefore, a formal semantics is proposed that is faithful to the informal

description. This defines the execution model that is elsewhere assumed to be valid.

Chapter 3 The starting point was not a formal description of the Geographic Data

Language, but a model of a much simplified signalling scheme. The model is derived

by a systematic translation of the data into CCS. The execution model abstracts from

such details as minor and major cycles, concentrating only on the transitions allowed

by the rules held in the database. The focus then is on thepropertiesof the Geographic

Data, and their formulation in terms of a predicateF of the states of the abstract ma-

chineM . For the simple example we can verify these properties by model checking:

we proveF is invariant, that isM |= νZ.F ∧ [−]Z in the terminology of the modalµ-

calculus, using the Concurrency Workbench and tools developed for the task. However,

this verification method does not scale beyond the small examples tried—the problem

is one of abstraction in theproof.

Chapter 4 This chapter examines the invariance proof in detail. Instead of trying to

establish that (all reachable) states of the model are safe we prove that the transitions

preserve safety. This gives a much more direct demonstration that the Geographic Data

are safe because the data really define the state transitions of the SSI (with respect to

the semantics). The (co-)inductive nature of the proof is explained here in terms of the

proof tableau constructed by the model checker used in Chapter 3: the idea is to show

that if a stateS is safe (i.e., S |= F) then every stateS ′ that is immediately reachable

from S is safe:S ′ |= F. We do not worry about whetherS is reachable. Since the

proof method is to be mechanised, time is taken here to identify the steps needed to

demonstrate that theseverification conditionsare true.

Chapter 5 The arguments formulated in Chapter 4 are interpreted here in the frame-

work of Floyd-Hoare logic. In this chapter the syntax and semantics of the Geographic

Data Language are formalised as a theory of higher-order logic, and embedded in the

HOL proof system. From this theory the program logic is derived, and the proof oblig-

ation formulated in the goal{F} c {F}, for each commandc in the data. Through the

Chapter 1. Introduction 28

tactics of the HOL system, and a modest amount of ML programming, we recover a

fully automatic proof method which is linear in both in the length ofF and the number

of commandsc (and independent of the number of states of the SSI). We show that

the range of application of this prototype Geographic Data verifier can be considerably

extended through techniques for decomposing the invariance proofs. Decomposition

according to the structure ofc comes for free with Floyd-Hoare logic, so we concen-

trate on decomposingF.

Chapter 6 Here the model presented in Chapter 3 is developed in a different way

to analyse properties of the inter-SSI communications—specifically, those by which

two Interlockings cooperate in locking routes over their common boundary. The logic

to achieve this route locking (and release) is also encoded in Geographic Data. It is

found that unfavourable message delays can lead to circumstances in which hazards

that compromise the safety of railway traffic can arisein principle. Since such hazards

are not precludedin practice, a strict interpretation of the term ‘safety’ leads to the

conclusion that this is a design flaw in the remote route request protocol. In fact the

risk implied by this fault in the generic program is difficult to quantify precisely—

which is sufficient reason to study the problem formally. Our analysis leads to several

recommendations to eliminate the flaw, and we prove that it is possible to implement

the protocol so that it cannot then, of itself, lead to unsafe states in the railway.

Finally, Chapter 7 concludes this work with a summary, and indicates the likely

impact of our findings on the industrial usage of formal methods and the practice of

interlocking design. The application of the theorem prover developed in Chapter 5

to ‘live’ data from the Leamington Spa signalling scheme is described in this final

chapter. Also considered are the concrete recommendations coming from the analysis

in Chapter 6: these indicate that only very minor changes to the SSI generic program

would be needed to address the concerns raised there.

Chapter 2

The Geographic Data Language

It is the main purpose of this thesis to devise an approach to the verification of safety

properties of Geographic Data. The Introduction described the relevant features of

Solid State Interlocking to provide the necessary context. The focus in this chapter

will be on the language in which the interlocking functions are encoded. Section 2.2

explains the overall organisation of the Geographic Data which are conceptually ar-

ranged in a number of files at the source level. In Section 2.3 the (concrete) syntax of

the Geographic Data Language is given, accompanied by an explanation of the intu-

itive meaning of the various constructs. Sections 2.4 and 2.5 introduce rigour to the

underlying execution model by providing the language with a mathematically precise

semantics.

2.1 Introduction

Due to the undesirability of developing and verifying the correct implementation of

a separate control program for each SSI installation, the system’s software has been

separated into itscontrolanddataparts. The control part is independent of the specific

signalling functions and is implemented in the generic software which is the same in

every installation. The Geographic Data Language expresses the specific signalling

functions which vary from Interlocking to Interlocking. This is an application spe-

cific language designed to be intelligible to railway signalling engineers without their

needing specialised knowledge of computer programming. The SSI generic program

interpretsthese data, and for this reason is usually referred to as thecontrol interpreter

in the sequel. In fact, the program interprets a (byte) compiled version of the Geo-

graphic Data, so the correct implementation of the compiler is also an issue that should

be addressed in checking (safety) properties of the data.

This separation of concerns means one can use very different techniques to val-

idate the generic software on the one hand, and the Geographic Data on the other.

Whereas the control interpreter requires to be validated with respect to its require-

29

Chapter 2. The Geographic Data Language 30

ments only once (see Section 1.3.2), the Geographic Data have to validated with re-

spect to the prevailing principles of signal engineering at each installation. We expect

the (safety) properties of the generic software to be independent of the data interpreted,

although precise timing properties inevitably depend on the final data/control config-

uration. There are also some (functional) properties of the combination that cannot be

verified by considering these aspects of the SSI software in isolation. The principal

culprit in this respect is the remote route request protocol examined in Chapter 6.

Properties of the Geographic Data, however, only depend on the execution model

supplied by the control interpreter. It will therefore be fruitful to formalise the se-

mantics of the Geographic Data Language. On the one hand this provides a reference

for the language against which we can judge whether the compiler and the interpreter

have been correctly implemented, and on the other it provides a precise mathematical

framework in which to conductproofsabout the behaviour of the interlocking. These

semantics are discussed in Sections 2.4 and 2.5 below. This focus leads to the treat-

ment of the Geographic Data as aprogramwhich has static and dynamic components.

The static data are the rules listed in the database—these are code fragments stored

in EPROM, and are what is meant when referring tothe Geographic Data in the se-

quel. The dynamic component is the memory on which the data and generic program

operate.

2.2 Static Data and Dynamic Data

At the source level the data are separated into a number of files that deal with distinct

interlocking functions. The static data can be broadly placed into two groups: those

data that are executed periodically over the course of a major cycle, and those that

are accessed randomly. Concrete examples are given in the next section—here we

are interested in the data’s overall organisation, and the general functions they are to

perform. The glossary in Appendix A.3 accompanies this section.

2.2.1 Geographic Data Identity Files

The dynamic component of a ‘Geographic Data program’ is given by a collection of

state variables upon which the static data operate—these constitute the internal state

of the SSI, stored in RAM. One variable is defined for each physical control device—

i.e., for each signal, track circuit and point switch—as well as for each logical control.

Logical controls include routes,sub-routesandsub-overlaps, timers and latches (as

well as the telegrams used to communicate with external devices). These variables are

globally declared and may be accessed throughout the Geographic Data.Identity files

define sets of variables of appropriate types:

Chapter 2. The Geographic Data Language 31

TCS the status of a track circuit may beundefined, occupiedor clear. An eight-bit

timer in track circuit memoryrecords how long it has been in the current state

(up to 254 seconds).

PTS each point switch is represented by two four-bit records, one for thenormal,

and one for thereverselie of the switch. The normal or reverse field must be

specified wheneverpoints memoryis accessed in the data.

ROU each route through the network is represented by two control bits. Routes may

besetor unset. Routes may also be barred by clearing the other control bit, but

this can only be modified from the technician’s console.

FLG flags are single bit control variables. In the sequel we are mainly concerned with

sub-routes: these, and sub-overlaps, may be eitherlockedor free.

SIG signals have many attributes and require three bytes of data. One byte is a timer,

three bits indicate the aspect to display, and other fields are for control informa-

tion such as the status of the lamp proving circuit, recording cancellation requests

from the signal control panel,etc..

In addition, each panel request is identified, and a collection of general purposeelapsed

timers is provided (used to implement the remote route request protocol, and for

swinging overlaps). In the sequel we shall let the script lettersP , R, S, T , andU
stand for the sets of points, routes, signals, track circuits and sub-routes declared in the

Interlocking;Q is the set of panel requests.

2.2.2 Source Files: Periodic Access

One major cycle is divided into 64 minor cycles irrespective of the actual number (≤
63) of track-side modules with which the Interlocking communicates. One incoming

data telegram is processed, and one outgoing command telegram is processed in each

minor cycle. Command and data telegrams convey up to eight bits of information. A

block of data is associated with each telegram, drawn from the appropriate Geographic

Datasource file:

IPT One block of data is associated with each input telegram received from the track-

side functional modules. These data are normally very simple since all that is

required is to copy the bit-fields in the incoming telegram to the internal state. In

preparing these data (a sequence of assignments) the signalling engineer has to

be careful to associate the input fields, which correspond to the physical output

pins in the TFM, with the correct data variable—for instance, bits 7 (and 5)

and 6 (and 4) conventionally refer to thedetected normalanddetected reverse

Chapter 2. The Geographic Data Language 32

fields when the message is from a points module. Low-order bits are used for

track circuit inputs from the device, which are likewise copied to track circuit

memory.

OPT One block of data is needed for each TFM addressed by the Interlocking. When

the command is to a points module these data are again rather simple since all

that is required is to copy thecontrolled normalandcontrolled reversefields

in points memory to the appropriate outputs. More complex instructions are

necessary when the command is to a signal module since it is these data that

must calculate the correct aspect to be displayed. This calculation depends on

the aspects of neighbouring signals, which if any of the onward routes is locked,

and on the proximity of trains to the signal. Several other attributes of the signal

(not transmitted in the command telegram) have also to be computed by the

output telegram data. These calculations are repeated every major cycle.

FOP Each command in the flag operations data file is executed in sequence, once

a major cycle. These data perform various bookkeeping functions, the most

important of which issub-route release(see Section 1.3.3). The flag operations

data are essentially guarded commands, and the control interpreter will execute

1/64th of these in each minor cycle.

During one major cycle therefore, all of the data in theIPT, OPT, andFOPdata files

will be executed once, and the data will be executed in the same order (the polling

sequence, specified by the signalling engineer when the data are compiled) in every

major cycle. TheIPT andOPT data are listed in the same order, input telegramm

corresponding to output telegramm (and the TFM with that index), but being processed

in minor cyclem+ 1 (modulo 64).

2.2.3 Source Files: Random Access

The other source files considered here contain geographic conditions and commands

that only need to be accessed on demand:

PRR Each input from the signal control panel corresponds to a command, or command

sequence. Thepanel route requestdata file lists all route requests that arrive

from the panel processor (or, as described in Section 1.4, from another SSI), and

all route cancellation requests. The block of code associated with a route request

usually consists of a conditional statement that tests the internal state to ascertain

if the route availability conditions are met, and a command sequence to update

the internal state accordingly, locking the route. Subsequent processing of the

OPTdata will effect the necessary changes in the network to set the route.

Chapter 2. The Geographic Data Language 33

PFM Points “free to move” data specify the conditions under which points may be

switched, with one set of data required for each lie of the points (normal or

reverse). The conditions are shared by instructions elsewhere in the data, notably

in thePRRdata since route availability always depends on being able to move

the points on the route to the correct position. Several routes may pass through

the same collection of switches. ThePFM data therefore help to reduce the

volume of instructions needed in the database; they simplify the data according

to the geographic principle that the conditions for moving the points are local

ones, and this, in turn, reduces the likelihood of introducing errors in the route

specifications. The interpretation of thePFMdata is discussed in Section 2.4.

MAP Map data typically define a partial graph of the railway network. Searches are

performed on this graph whenever it is necessary to look for evidence of a train

in the approach to a signal (e.g., an occupied track section). Such searches are

often performed as part of the aspect calculation in theOPT data for a signal

module, and will be used to decide if a route can be cancelled. Unlike thePFM

data, theMAP data do not specify statictestson the internal state: instead, when

the control interpreter encounters amap searchit executes an algorithm to dy-

namically compute the test to perform given a starting point in the graph, and a

set of termination points. Map search data are also discussed in Section 2.4.

Once the control interpreter begins to execute a block of data from one of the above

sources, it continues without interruption until the block has been completed. The con-

trol interpreter is a sequential program so this behaviour is expected for the periodically

accessed data processed as part of the standard minor cycle. However, this is also the

case for the data executed on demand, so it is vital to be able to predict timing bounds

for the execution of each code fragment. The Geographic Data Language admits only

assignment of constants to variables, branching and sequence (and a simple code shar-

ing mechanism), permitting one to accurately predict upper timing bounds.

Occasionally it is found, by a timing analysis of the Geographic Data, that the

code for a panel request cannot be computed inside the permitted 20 ms. In such cases

the data must be split over two or more minor cycles. This is achieved by a mech-

anism to add a panel request to the input buffer via a data command—the control

interpreter processes the first part of the data for such a panel request, and queues a

second panel request for the continuation to be processed in a subsequent minor cycle.

At most one panel request is processed each minor cycle. It seems, even from this

informal description of events, that the practice of splitting panel requests may intro-

duce unpredictable behaviour because of the possibility that conflicting requests may

intervene—although predictability may be recovered by placing the subsequent parts

Chapter 2. The Geographic Data Language 34

c b

T1

a

�
�
�
�
�
�P1 b a

T4

c

L
L
L
L
L
LP2 c aT6

b �
�
�
�
�
�P3

b a

T2

b a

T3

b a

T5

b a

T0

b a

T7

hhh.................S0

hhh.................S2

hhh.................S4

hhh.................S6

hhh.................
S1

hhh.................
S3

hhh.................
S5

Figure 2.1: Signalling scheme plan for WEST

of the split panel request always at theheadof the queue rather than at the tail, but

the author does not know if the generic program has this behaviour. In any case, it

is clear that validation of the Geographic Data is an issue that demands considerable

effort. Presently the data are prepared by hand and (visually) inspected for errors by

the engineers responsible for the design of the interlocking [25]. Software supports

various kinds of syntactic analysis only (but several authors have begun to address the

problem of providing semantics-based tools to support interlocking design and data

validation [48, 75, 99, 88]).

2.3 Geographic Data Source File Syntax

This section spells out the details of the concrete syntax of the Geographic Data Lan-

guage, although we shall restrict attention here, and in the rest of this thesis, to the

route locking data in thePRR, FOP, andPFM (andMAP) data files. The semantics of

the language will be clarified in Section 2.4, but we begin with a few examples drawn

from the data for the signalling scheme in Figure 2.1. WEST will serve as a concrete

example for this and subsequent chapters when such is needed. The entities declared

in this scheme are:

T {T0, T1, . . . , T7} Track Circuits
P {P1, P2, P3} Points
S {S0, S1, . . . , S6} Signals

which represent physical entities in the network, and

R {R02, R04, R1, R2, R3, R4, R5, R51, R53, R6} Routes
U {T ab0 , T

ba
0 , T

ca
1 , . . . , T

ba
7 } Sub-routes

which represent logical control entities. The set of panel requestsQ is also declared:

{Q02,Q04, . . . ,Q6, . . .}.

Chapter 2. The Geographic Data Language 35

2.3.1 Examples: Route Locking & Release

The conditions under which a route can be locked (prior to being set), and the locking

conditions for the route (i.e., the conditions that must not change while the route is set),

are specified by data in thePRRandPFMfiles. ForR4 andR51 in WEST we have:

*Q4 if P2 cnf , P3 cnf , T ab4 f , T ab7 f

then R4 s , P2 cn , P3 cn , T ba4 l , T ca6 l , T ba7 l \ .

*Q51 if P2 crf , P3 cnf , T ba2 f , T ca6 f

then R51 s , P2 cr , P3 cn , T ac6 l , T ac4 l , T ab2 l \ .

It is not necessary to test all opposing sub-routes in the availability conditions for a

route—thus*Q4 does not checkT ac6 , for example. Itis necessary to testT ab7 in this rule

because it is the last sub-route on all routes terminating atS5 (but sub-routes further to

the east do not need testing since it is required to release sub-routes in sequence). In

the same rule, it is also necessary to testT ab4 because this sub-route opposes the first

sub-route on the route, and is the last conflicting sub-route on routes that also require

the pointsP2 normal (i.e., R53). Similar principles apply to*Q51 , and all other main

routes on British railways.

As a matter of principle, all points on the route should be checked in the availability

conditions. ForR51 the first set of points (P3) are required in the normal position,

and the second set are required reverse. The control interpreter evaluatesP2 crf as a

disjunctive test; it first checks whether the points are already controlled reverse (P2 cr)

and if they are not evaluates thePFMdata:

*P2N T ac4 f , T ca4 f , T4 c \
*P2R T ab4 f , T ba4 f , T4 c \

The pointsP2 can be moved to the normal position if the reverse sub-routes are free,

and the track circuit is clear. Conversely, the points are “free to move” reverse if the

normal sub-routes are free and the track circuit is clear.

The FOPdata specify route release conditions: it is (usually) necessary to lock

a route in a single action, but routes can be released gradually as the train proceeds,

and the tracks in the rear can be released and made available to other routes. Such

bookkeeping is carried out by commands in theFOPdata file which are executed se-

quentially over the course of a major cycle. These data may specify:

T ac6 f if R51 xs , R53 xs , T6 c \ .
T ac4 f if T ac6 f , T4 c \ .
T ab2 f if T ac4 f , T2 c \ .

Chapter 2. The Geographic Data Language 36

〈cs〉 ::= if
[
〈gc〉

]∗
then

[
〈oc〉

]∗ [
else

[
〈oc〉

]∗]
\

〈gc〉 ::= 〈test〉
| 〈map〉
| (

[
〈gc〉

]+ [
or

[
〈gc〉

]+]∗
)

| @L

〈oc〉 ::= 〈cmd〉
| 〈cs〉
| 〈sc〉
| @L

〈sc〉 ::= (〈ac〉
[

or 〈ac〉
]∗

or
[
〈oc〉

]+
)

〈ac〉 ::= if
[
〈gc〉

]∗
then

[
〈oc〉

]∗
\

〈ev set〉 ::= if
[
〈gc〉

]∗
\

〈ex set〉 ::=
[
〈oc〉

]∗
\

Figure 2.2: Geographic Data: conditional language constructs

The first sub-route on a route is released (freed) as soon as the route has been unset

as long as the track circuit is clear; subsequent sub-routes are released in the sequence

traversed. Note that thePFMand the sub-route release data (in particular) are specified

in accordance with the geographic principle: the interlocking of elements in the railway

depend onlocal components only.

2.3.2 Concrete Syntax of the Geographic Data Language

The syntax of the conditional language used throughout the Geographic Data is given

by the grammar displayed in Figure 2.2. A conditional statement〈cs〉 contains a list

of geographic conditions〈gc〉 followed by an operational clause〈oc〉 . Essentially, a

test list is a conjunction of simple tests〈test〉 on the internal state, but or-branching

and map searches,〈map〉 , introduce more complex conditions. The empty test list is

allowed (meaning ‘true’), which indicates that the alternative clause〈ac〉 is redundant.

The selective (switch) construct〈sc〉 is also redundant, but is often more natural to use

than an extended conditional.

Tests and commands (which in this text will be separated by commas in lists to

aid readability) have similar syntax. The basic format is a pairD v, whereD is a

variable andv selects a field in the record: when this is a〈test〉 , v is the value being

tested for; when this is a〈cmd〉 , v is the value assigned. Usually the fields tested are

binary, in which case the modifierx can be used to test or assign the opposite value.

Throughout, the mnemonicsl and f denote the two states of a sub-route (lockedor

free, the modifierx is not used);s andxs denote thesetor unsetstate of a route;o

Chapter 2. The Geographic Data Language 37

andc denote track circuitsoccupiedor clear (two separate fields in the track circuit

memory). Where points are accessed one must modify the field selected with either

r or n for the reverse or normal fields in points memory. Thef modifier inP1 crf is

discussed later in Section 2.4.

To reduce the volume of data required the language provides a simple subroutine

mechanism. In the context of a test the directive@L causes the interpreter to jump to

theevaluation setidentified by the label* L in the source; in the context of a command

the label should identify anexecution set. Evaluation sets have no side-effects, and

return true or false at the point at which they occur; execution sets can be arbitrary

sequences of data. Here\ marks the end of the subroutine code, but otherwise it closes

the if bracket. A further syntactic constraint is imposed on the use of the subroutine

mechanism: the reference@L and the label* L must both appear in the same data file.

(See Figure 7.3 for an example of the use of this subroutine machanism.)

The @directive is one of several so-calledspecials. These directives indicate to

the interpreter that it should execute a pre-programmed sequence of actions, being

typically given a variable name as a parameter upon which to operate. Use of the

specials in preparing Geographic Data is not mandatory, but it shortens the runtime

execution of the program. Further examples are given below.

Letting * Q, * P, and* L be metavariables over the class of labels, thePRR, PFM,

andFOPdata files can be constructed thus:

PRR ::=
[

* Q
[
〈oc〉

]∗
.

∣∣∣ * L 〈ev set〉
∣∣∣ * L 〈ex set〉

]∗
PFM ::=

[
* P

[
〈gc〉

]∗
\

∣∣∣ * L 〈ev set〉
]∗

FOP ::=
[
〈cmd〉 〈ev set〉 .

∣∣∣ 〈cs〉 .
]∗

Each panel request and flag operation is terminated by a period. In these files the period

terminates a block of data that will always be executed without interruption in the SSI

minor cycle. ThePFM data contain only tests and the label* P is the entry point for

the interpreter when it is evaluating a points “free to move” test. The label* Q is the

entry point for a panel request, as in*Q4 above. Other labels are targets for jumps

(@L) appearing in these data. There should be no jumps in theFOPdata. (It will be

convenient in the sequel to use the notationPRR(* Q) to refer to the data for the panel

requestQ ∈ Q; similarly, whenP ∈ P we will refer to the two data sets byPFM(* PN)

andPFM(* PR), and so on.)

Our final concern in this section is with the map search data. These data, like the

PFMdata, may be accessed throughout the other source files—but typically in theOPT

data when a search is needed to determine the proximity of a train to a signal. Amap

searchis a geographic condition having the syntax specification:

〈map〉 ::= { L
[

} L
]+

Chapter 2. The Geographic Data Language 38

The entry point for the search is the label referenced by the first entry in this list,{ L,

while the search end-points are specified by the labels referenced by the remaining

elements,} L. The map search must specify at least one end-point. Map data are

constructed thus:

MAP ::=
[
〈segment〉

]∗
〈segment〉 ::= * L 〈ref〉

[
〈entry〉

]∗
〈exit〉

〈entry〉 ::= 〈ref〉
∣∣∣ if

[
〈gc〉

]∗
then 〈exit〉 \

〈ref〉 ::= #T
∣∣∣ #S

〈exit〉 ::= pass
∣∣∣ fail

∣∣∣ ˆ L

S andT are variables representing signals and track circuits respectively, where the

specials#T and#S abbreviate simple tests on track circuit and signal memory.

Informally, a map search begins at a feature reference, usually a signal, and pro-

ceeds back through the network until apass or a fail is encountered, or a label

remembered from the beginning of the search. The conditional used in theMAP data

is an expression, not a command as it is elsewhere. For a concrete example, the data

for the search back fromS3 might include the fragment:

*T3DN #T3 , #T4

if P2 cdr then pass \

if P2 cdn then ˆT6DN \

fail

*T3UP ...

*T6DN #T6 , #T7

if P3 cdr then pass \

if P3 cdn then fail \

fail

When points are encountered in the search there is a choice to be made which is gov-

erned by their current state. If these aretrailing points in the direction of the search

(e.g., P3), and if they arecontrolled and detected reverse, the search succeeds uncon-

ditionally because there can be no train approaching thew signal (S3). If the points are

controlled and detected normalthe search continues from the location*T6DN in the

map; otherwise the search fails (probably because the points were moving when the

search started since the controlled and detected fields in points memory will normally

be in correspondence). When points arefacing the direction of the search a different

principle applies, deflecting the search along one or other of the paths to the signal.

The meaning of thêL special is discussed below.

Chapter 2. The Geographic Data Language 39

2.4 Semantics: The Control Interpreter

The Geographic Data Language has not hitherto benefited from a formal semantics.

Therefore in analysing safety properties of the data one must offer formal semantics

that are faithful to the informal description of the language given in the Data Prepara-

tion Guide [9]. The informal description is inevitably vague and imprecise in places—

particularly in explaining the logic encoded in the interpreter itself. It is noted, for

example, that the logic encoded in the specials can be expressed in the conditional lan-

guage alone, but no translation table is given to clarify the point. That this translation

is not trivial is illustrated below where we discuss the relationship between the control

interpreter and the points “free to move” data and the map search data in Sections 2.4.2

and 2.4.3 respectively.

2.4.1 Abstract Syntax of Simple Tests and Commands

Earlier we characterised the state of the SSI in terms of dynamic and static components.

The dynamic component is what one usually means when referring to thestateof a

program, and we shall model states with the function space

State : Var −→ Val

i.e., mappings from a domain of variables (e.g., P , T . . .) to a suitable domain of values

({0, 1} say). Letσ ∈ State, D ∈ Var be representative elements from these domains.

It will also be necessary to have direct access to the static data. For this we are given

a domain of labels. LetL ∈ Lab. Labels and references to them will be syntactically

distinguished as before.

The phrase structure of the Geographic Data in thePRR, PFM, andFOPfile (and

theMAP file, but this is postponed until Section 2.4.3) is succinctly specified by the

abstract syntax below. Lett be a test, andc a command:

Tst ::= B
∣∣∣ t1 , t2

∣∣∣ (t1 or t2)
∣∣∣ @L

Cmd ::= A
∣∣∣ c1 , c2

∣∣∣ skip
∣∣∣ if t then c1 else c2

∣∣∣ @L

B is a basic variable test (e.g., P1 cr), A is the basic command to set the value of

(a field in) a variable. In order to be specific about the meaning of simple tests and

commands we define interpretation functionsT andC:

C : Cmd −→ State−→ State

T : Tst −→ State−→ (State× State) −→ State

We expect a command to yield a new state given an initial stateσ. For example, if the

command is to control the pointsP reverse:

C[[P cr]]σ = σ[P.cr := 1] (1)

Chapter 2. The Geographic Data Language 40

This (function updating) notation is chosen to emphasise that the command assigns

a value to a (binary) field in the points record. Tests, on the other hand, are best

understood in terms of ‘continuations’:

T[[P cn]]σ (s, f) = if σ(P.cn) = 1 thens elsef (2)

T[[t1 , t2]]σ (s, f) = T[[t1]]σ (T[[t2]]σ (s, f), f) (3)

T[[(t1 or t2)]]σ (s, f) = T[[t1]]σ (s,T[[t2]]σ (s, f)) (4)

Heres is the successful continuation, andf is the failure continuation—i.e., the state

reached if the test fails. Notice that a test list (3) is treated as conjunction. Elaborating

on this theme we obtain for the one-armed conditional:

C[[if t then c]]σ = T[[t]]σ (C[[c]]σ, σ) (5)

If the testt is passed in stateσ the commandsc are executed in that state, otherwise the

state remains unchanged. Command continuations may be needed to elegantly model

jumps, but they do not enhance the clarity of the presentation of the language here.

2.4.2 Points Free to Move Conditions

Whenever a route is to be set over points they must first be called into the correct

alignment. In SSI this is achieved in two stages: firstly, the control field in points

memory must be properly set (as in the conclusion of*Q4 above); secondly, the output

telegram for the points module must be set up with the correct command (usually

achieved by copying the control bits to the output). There is a problem, however, with

the na¨ıve semantics of thepoints commandsuggested above:σ[P.cr := 1] is not

the correct interpretation. According to the informal presentation of the language the

control interpreter is programmed to clear the reverse control bit when the normal bit is

set, and vice versa. Thus:C[[P cr]]σ = σ[P.cr := 1][P.cn := 0], for example. Track

circuit clear and occupied fields also have this inversion property, but other commands

(assignments) in the language are treated uniformly as suggested by Equation (1).

The points testP crf also introduces behaviour that depends on the interpreter.

The test is disjunctive: it is passed if the points are already controlled reverse, and if

not, it is passed if the “free to move” conditions are met. Intuitively:

T[[P crf]]σ (s, f) = T[[(P cr or PFM(* PR))]]σ (s, f)

= T[[P cr]]σ (s,T[[PFM(* PR)]]σ (s, f))

However, it should be noted that the control interpreter performs two further tests when

thePFMdata are accessed: firstly the key switch field in points memory in the opposite

direction is examined; secondly, the program checks that the points have not been

Chapter 2. The Geographic Data Language 41

disabled in the opposite direction by an override from the technician’s console. The

former condition can be programmed in the Geographic Data, but the latter cannot

since the override flag in points memory is accessible only to the generic program.

Since the override flag alwaysrestricts the behaviour of the SSI we shall generally

ignore its effect in the sequel.

Specialising for the moment, and bringing the key switch test into consideration,

we expect the following equivalence to hold:

P2 crf ≡ (P2 cr or P2 xkn , T ab4 f , T ba4 f , T4 c)

Similarly for the other direction of the points. More generally we obtain as themeaning

of the points “free to move” geographic conditions:

T[[P crf]]σ (s, f) = T[[P cr]]σ (s,T[[P xkn ,PFM(* PR)]]σ (s, f)) (6)

T[[P cnf]]σ (s, f) = T[[P cn]]σ (s,T[[P xkr ,PFM(* PN)]]σ (s, f)) (7)

The substitutionPFM(* PN) used above has been informally presented, but can be rig-

orously defended since thePFMdata file is just such a function:

PFM : Lab −→ Tst

We shall generalise this notion toMAP andPRRin the sequel.

2.4.3 The Map Search

Another point of contact between the Geographic Data Language and the interpreter

arises in theMAP data. Given a (concrete) specification of the form{ L , } L1 , . . . } Ln,

which we shall henceforth represent by(L, E), the interpreter begins the search at

location* L and terminates at one of the end-points given by the setE = {L1 . . . , Ln}.
More formally, letMap andEnt be new phrase classes:

Tst ::= · · ·
∣∣∣ (L, E)

Map ::= * L #D , m

Ent ::= #D , m
∣∣∣ if t then e , m

∣∣∣ e

wherem is a map entry,D ∈ T ∪ S, ande is one of the map exitspass , fail , or ˆ L.

The interpretation functionM takes a set of labels in its first argument. However, since

for any map search the set of end-points is fixed, we shall writeME [[·]] instead

ME : (Map + Ent) −→ State−→ (State× State) −→ State

Chapter 2. The Geographic Data Language 42

and define this function inductively along these lines:

T[[(L, E)]]σ (s, f) = ME [[* L MAP(* L)]]σ (s, f) (8)

ME[[* L #T , m]]σ (s, f) =
{

T[[T c]]σ (s, f) if L ∈ E
ME[[#T , m]]σ (s, f) otherwise

(9)

ME [[#T , m]]σ (s, f) = T[[T c]]σ (ME [[m]]σ (s, f), f) (10)

ME[[if t then e , m]]σ (s, f) = T[[t]]σ (ME[[e]]σ (s, f),ME [[m]]σ (s, f)) (11)

From (9) note that the map search terminates if the label at the head of the list is

a designated end-point (successfully or not, depending on whether the track circuit

referenced is clear); otherwise the search continues along the mapm if the track circuit

is clear, or fails if it is not by (10). A signal reference#S is treated in a similar manner,

being also an abbreviation for a simple test on the signal memory. Clause (11) is what

one would expect for anif-then-elseexpression. The end-point rules are simpler:

ME [[pass]]σ (s, f) = s (12)

ME [[fail]]σ (s, f) = f (13)

ME [[ˆ L]]σ (s, f) = ME[[* L MAP(* L)]]σ (s, f) (14)

Thus, when the specialˆ L is encountered the interpreter jumps to the indicated label

in the map—of course, this means that there is no guarantee that a map search ever

terminates since one can easily define a cyclic map segment. In order to ensure that the

interpretation functions are total we suppose that the data are well formed in the sense

that cyclic references are syntactically prohibited (which is the case, in fact). Note that

only one branch in the map is explored for any search conducted: no backtracking is

necessary since there can be at most one open path to a signal at any time.

2.5 Indirect Semantics of the Map Search

The interpretation functionM defines the algorithm that the control interpreter should

perform when encountering a map search(L, E) geographic condition—that is,M

specifies how to conduct the search dynamically. When we come, as in Chapter 5, to

formalisethe syntax and semantics of the language, this direct interpretation of the map

search will be inconvenient to manipulate because of the need to represent the map in

the formalism (as well as the algorithm). However, since the setE is defined statically,

we can convert the map into a decision treea priori and reason with that instead. This

supplies anindirect semantics for the map search, which this section justifies.

To give a rigorous context we extend the phrase classTst with pseudo tests for the

if-then-elseform, and the constantspass andfail . Then we extend the definition of

Chapter 2. The Geographic Data Language 43

the semantic valuation functionT by defining

T[[if t1 then t2 else t3]]σ (s, f) = T[[t1]]σ (T[[t2]]σ (s, f),T[[t3]]σ (s, f)) (15)

T[[pass]]σ (s, f) = s (16)

T[[fail]]σ (s, f) = f (17)

and syntactically translatet ∈ Tst which may have a map search, to{|t|} ∈ Tst which

has the map search converted toif-then-elsenormal form. The function{|·|} is the

identity everywhere, except:

{|(L, E)|} = {|* L MAP(* L)|}E (i)

{|* L #D , m|}E =
{

#D if L ∈ E
{|#D , m|}E otherwise

(ii)

{|#D , m|}E = if # D then {|m|}E else fail (iii)

{|pass |}E = pass (iv)

{|fail |}E = fail (v)

{|ˆ L|}E = {|* L , MAP(* L)|}E (vi)

{|if t then e , m|}E = if {|t|} then {|e|}E else {|m|}E (vii)

In the last clause defining{|·|}E we apply the (unadorned) transformation{|·|} to the

guardt (cf. Equation (11)). Since theMAP data are required to be free of (syntactic)

cyclic references{|t|} is always defined (and finite).

Theorem 2.1 The direct and the indirect semantics of the map search agree:

T[[{|(L, E)|}]]σ (s, f) = T[[(L, E)]]σ (s, f)

when{|(L, E)|} is defined, for anyσ, s, andf . 2

Proof Theorem 2.1 is a corollary toT[[t]] = T[[{|t|}]], which is proved by induction of

the structure of testst, and the depth of the decision tree. The interesting case is for the

map search where one has to show

T[[{|(L, E)|}]]σ (s, f) = T[[(L, E)]]σ (s, f)

T[[{|* L MAP(* L)|}E]]σ (s, f) = ME [[* L MAP(* L)]]σ (s, f)

(applying the rules given above and in Section 2.4.3) which proceeds by induction on

the structure of maps.

base casesThese are trivial, by the definitions (12,16,iv) and (13,17,v):

ME [[pass]]σ (s, f) = s = T[[{|pass |}E]]σ (s, f)
ME [[fail]]σ (s, f) = f = T[[{|fail |}E]]σ (s, f)

Chapter 2. The Geographic Data Language 44

case * L #D , m. There are two subcases to consider. WhenL ∈ E both sides reduce

to T[[#D]]σ (s, f) by (9) and (ii). OtherwiseL 6∈ E, and the induction hypothesis

will be T[[{|m|}E]]σ (s, f) = ME [[m]]σ (s, f). Then

ME [[* L #D , m]]σ (s, f) = T[[#D]]σ (ME [[m]]σ (s, f), f)

by (9), whereas the expanded term yields by way of (15), (ii) and (iii):

T[[{|* L #D , m|}E]]σ (s, f) = T[[{|#D , m|}E]]σ (s, f)

= T[[if # D then {|m|}E else fail]]σ (s, f)

= T[[#D]]σ (T[[{|m|}E]]σ (s, f), f)

Applying the induction hypothesis proves the result in this case.

case #D , m. This is similar to the above whenL 6∈ E.

case ˆ L. The result follows by finiteness of the map and the assumption that{|t|} is

defined for anyt (hence so is{|m|}E, for any mapm). Consequently

ME [[* L MAP(* L)]]σ (s, f) = T[[{|* L MAP(* L)|}E]]σ (s, f)

by a shorter inference, soME [[ˆ L]]σ (s, f) = T[[{|ˆ L |}E]]σ (s, f).

case if t then e , m. Two induction hypotheses are needed:T[[{|m|}E]]σ (s, f) =

ME [[m]]σ (s, f), andT[[{|e|}E]]σ (s, f) = ME [[e]]σ (s, f). Then

ME [[if t then e , m]]σ (s, f)
= T[[t]]σ (ME [[e]]σ (s, f),ME [[m]]σ (s, f))

by (11), while

T[[{|if t then e , m|}E]]σ (s, f)
= T[[{|t|}]]σ (T[[{|e|}E]]σ (s, f),T[[{|m|}E]]σ (s, f))

using (15) and (vii). Applying the induction hypothesis, and generalising, leaves

the requirement to prove that

T[[t]]σ (s′, f ′) = T[[{|t|}]]σ (s′, f ′)

This follows by a shorter inference by finiteness of{|t|}.

HenceT[[t]] = T[[{|t|}]], and Theorem 2.1 follows.

The assumption that{|·|} is a total function seems quite strong, but this is really

a matter of pragmatics: the data compiler has to check for the possible existence of

cyclic references in theMAP data (also in the other data source files) when the data

are loaded into the SSI. The syntactic check is the most practical means of doing this,

Chapter 2. The Geographic Data Language 45

C[[Dv]]σ = σ[D.v := 1]
C[[D xv]]σ = σ[D.v := 0]
C[[P cr]]σ = σ[P.cr := 1][P.cn := 0]
C[[P cn]]σ = σ[P.cn := 1][P.cr := 0]
C[[skip]]σ = σ

C[[c1 , c2]]σ = C[[c2]](C[[c1]]σ)
C[[@L]]σ = C[[PRR(* L)]]σ
C[[if t then c1 else c2]]σ = T[[t]]σ (C[[c1]]σ,C[[c2]]σ)

T[[Dv]]σ (s, f) = if σ(D.v) = 1 thens elsef

T[[D xv]]σ (s, f) = if σ(D.v) = 0 thens elsef

T[[P cn]]σ (s, f) = if σ(P.cn) = 1 thens elsef

T[[P kn]]σ (s, f) = if σ(P.kn) = 1 thens elsef

T[[P crf]]σ (s, f) = T[[P cr]]σ (s,T[[P xkn ,PFM(* PR)]]σ (s, f))
T[[P cnf]]σ (s, f) = T[[P cn]]σ (s,T[[P xkr ,PFM(* PN)]]σ (s, f))
T[[t1 , t2]]σ (s, f) = T[[t1]]σ (T[[t2]]σ (s, f), f)
T[[(t1 or t2)]]σ (s, f) = T[[t1]]σ (s,T[[t2]]σ (s, f))
T[[if t1 then t2 else t3]]σ (s, f) = T[[t1]]σ (T[[t2]]σ (s, f),T[[t3]]σ (s, f))
T[[pass]]σ (s, f) = s

T[[fail]]σ (s, f) = f

Figure 2.3: Semantics of the conditional language

although eliminating potentially interesting ‘maps’ that contain syntactic cycles, but

not semantic ones. The question of whether semantic cycles exist is a difficult issue

that is related to the problem of eliminatingcausal loops(short-circuits) in sequential

hardware. Malik [55] has a polynomial algorithm to decide whether a sequential circuit

can be converted into a (much larger)combinationalcircuit: this algorithm may be

adapted to the present setting by representing the map (graph) as a system of Boolean

equations, but the syntactic test for circularity is presently acceptable in practice.

2.6 Summary

This brings to a close our examination of the syntax and semantics of the conditional

language in which Geographic Data are specified. Henceforth we shall assume that

map searches (andevaluation setswhich can be treated similarly) have been elimin-

ated from the data analysed in the manner suggested in the preceding section. The

main semantic definitions are summarised in Figure 2.3. Note thatc1 , c2 represents

sequential composition, and that thex flag in (basic) tests and commands is interpreted

Chapter 2. The Geographic Data Language 46

as inverting the literal value: negation can only be applied at this level. Note, too, that

expressions are only of Boolean type. The Geographic Data has access to other data,

such as counters (elapsed timers), but no means of calculating with these other than by

comparison with integral constants (or enumerated type constants in the case of signal

aspects, say).

Not all features of the Geographic Data Language have been summarised above.

In particular, theOPT data have been omitted since they do not play a rˆole in later

chapters. However, these data are also built from conditional and sequential constructs.

We note that there is no looping construct, since none is needed to specify the interlock-

ing logic. Implicit loops can be defined in terms of jumps (the@L special) to execution

sets, but this practice is forbidden by the data compiler. Recall that the Geographic

Data are evaluated in real-time, subject to stringent timing constraints, and loops may

have unpredictable timing behaviour (or at least timing properties that are difficult to

verify).

Even so, interlocking behaviour may be very complex. In the next chapter a CCS

model of Solid State Interlocking is developed which provides a framework in which it

is intended to prove safety properties of the data. The model is derived by a translation

according to the above semantics. We focus onpropertiesof the data, and on the

problem of proving these properties for simplified signalling systems such as WEST.

These early attempts to (mechanically) verify properties of Geographic Data are refined

in later chapters to a stage where we can verify properties of real signalling data.

Chapter 3

Modelling Solid State Interlocking

This chapter builds on the informal description of Solid State Interlocking given in the

Introduction. The model developed in Section 3.2 serves as a reference for this and

subsequent chapters so some time is taken below to discuss its objectives and particu-

lar representation. The model is derived from a translation of the Geographic Data into

CCS. Ultimately this gives rise to alabelled transition system, an automaton whose

safety properties are formally characterised in Section 3.3 asinvariantsexpressed in

the modalµ-calculus. Then in Sections 3.4 and 3.5 we address the question of veri-

fying that these invariants hold for some simple examples. The problem of finding a

flexible and efficient framework within which to conduct the formal verification, which

is scalable and which will also form the foundation of amechanicalGeographic Data

checker, will occupy us through to Chapter 5.

3.1 Introduction

The purpose of railway signalling is to ensure the safe passage of trains through to-

pologically complex networks. Safety properties therefore dominate our analysis. In

designing and constructing signalling systems engineers seek to ensure, amongst other

things, the following safety properties of the systemas a whole:

• At no time does more than one train occupy a given track section (except when

a train is being coupled to an engine of course).

• No train passes through a set of points which are not locked (locking the points

physically prevents their movement).

• No train passes in the normal (or reverse) direction through trailing points which

are locked reverse (or normal).

These have been drawn from discussions with signalling engineers. To understand the

last of these, consider the fragment from WEST in Figure 3.1. If a train is moving

47

Chapter 3. Modelling Solid State Interlocking 48

b a

T4

c

L
L
L
L
L
LP2 c aT6

b �
�
�
�
�
�P3

b a

T2

b a

T7

hhh.................S2

hhh.................S4

hhh.................
S1

hhh.................
S5

Figure 3.1: Trailing points may derail trains if locked against the direction of travel

through pointsP2 in the direction~ba (normal) there is a real danger of its derailment if

the points are in fact (physically) clamped in the reverse (~ca) orientation; derailment is

also likely if the points are moved while a train is passing throughT4.

The problem, of course, is that properties such as these plainly rely on the behaviour

of trains, or at least on their drivers, and are therefore very unlikely to be demonstrable

in practice because trains may fail to obey signals. But the engineering problem is

to ensure thatin principle no two trains are allowed simultaneous access to the same

section of track, and so on. This immediately focuses attention on the interlocking

logic, and obviates the need to capture in a formal model vagaries in the behaviour of

trains, elements of the network, or the complex communications between the signal

control centre and the railway. We do not attempt to verify thatat no time does more

than one train occupy a given track sectionbecause any model in which it makes sense

to express such a property at all would be exceedingly difficult (if not impossible) to

validate with respect to the physical control system.

Nevertheless, the correct functioning of the underlying communication mechanism

is intrinsic to the safe operation of SSI as a whole. There is considerable scope for

formally verifying safety properties of the SSI generic software (see Cribbens [24],

and Chapter 6 for example), although a thorough analysis of the underlying commu-

nication mechanisms is an issue whose scope is too broad for a completely formal

understanding. Yet even if the communications between SSI and track-side equipment

are functioning perfectly, it is clear that the presence of errors in the Geographic Data

will negate the Interlocking’s overall integrity.

It is therefore argued here that the most fundamental safety properties of the signal

control system may be exposed in the Geographic Data alone. An example from Sec-

tion 3.3 is themutual exclusionproperty: no more than one of the sub-routes over a

given track section is locked at any time. This says something about the logical rela-

Chapter 3. Modelling Solid State Interlocking 49

tionship between the control variables that constitute the Interlocking’s internal repres-

entation of the state of the railway: it expresses aninvariant of the program’s memory.

Admittedly this property does not hold while the SSI is in its initialisation phase, but

if it holds thereafter it lends considerable credence to the notion thatin principle no

two trains have simultaneous access to a given section of track. In the final analysis

however, it is difficult to argue (formally) that properties such as this are sufficient, in

the absence of faults elsewhere, to guarantee system properties such as those identified

above. So for the present we contend only that these properties of the Geographic Data

are interesting in themselves.

Properties of the data such as the mutual exclusion property above can be verified

only if a suitable semantics for the Geographic Data Language is given. In Section 3.2

these semantics are given indirectly by translating the Geographic Data into CCS, fol-

lowing the definitions in the preceding chapter. Consequently we obtain an operational

semantics, and require only to validate the operational model with respect to the phys-

ical system—in this case the control interpreter. In fact, the model derived in this way

is rather abstract so it is better thought of as aformal specificationof the admissible

behaviour (state transitions) of the SSI: details such as the order in which the data are

to be executed, and how and when communications are initiated, are omitted.

Clearly there are many ways in which one could present a formal model of SSI, its

Geographic Data, and properties of the system. Some of the approaches that have been

tried were mentioned in Section 1.5. Our choice of CCS seems strange at first since

this is a language for modelling parallel systems. While there is loose parallelism in

the interactions between Interlockings, there is no parallelism within a single SSI—

only a sequential control program. However, it turns out that the model obtained by

interpreting the Geographic Data in CCS has precisely the execution model needed

to verify that they are safe. As we shall see in Chapter 4, as far as the invariance

proof is concerned it makes little difference whether one represents the model, say,

in TLA, CCS, or in UNITY. Moreover, the model developed in here turns out to be

easy to extend when, in Chapter 6, the problem of verifying properties of the inter-SSI

communications protocol is addressed. It is in this area, that of protocol verification,

that CCS and its derivatives have been shown to be most successful.

The mechanical support for CCS is rudimentary [20], but the advantage of the Con-

currency Workbench (CWB) is that the tool can be used: to simulate the model, single

stepping through the execution; to test the model in the sense of Hennessey’s [41]

equivalences and preorders; and to verify temporal properties of the system through

model checking. The versatility of the tool is due to a simple representation of the

model (i.e., the transition system, as a graph). The techniques discussed in Section 3.4

for controlling the model’s space complexity are highly effective, but the tool’s simple

Chapter 3. Modelling Solid State Interlocking 50

representation of the model is also a weakness and, it turns out, in general too concrete

for large scale applications.

Safety properties of the Geographic Data are captured by logical relationships

between the control variables. Technically, these will be expressed as state formu-

lae in the modalµ-calculus: the formulae will be true of a state if and only if the state

is safe—thisdefinessafety. In Section 3.3 we formalise the safety properties and for-

mulate the proof obligation which is to show that all (reachable) states of the model are

safe. Since formulae of the modalµ-calculus are interpreted over transition systems

the logic is well suited to specification of CCS programs. The logic also subsumes

the familiar program verification logics like Floyd-Hoare logic and PDL [11, 95]. The

specification style of Floyd-Hoare logic is particularly suitable for proving safety prop-

erties of Geographic Data (see Chapter 5). We start out, therefore, with a quite general

framework in which to model SSI.

3.2 CCS Model of Solid State Interlocking

A natural starting point for a CCS model is to consider the system as a whole, decom-

posing its overall behaviour into that of two communicating systems:

(Interlocking | Network)\L

Network is a parallel composition of many agents representing physical components

of the system such as signals and points. In this design we may choose to abstract

features of the communications mechanism, allowing synchronisations on the actions

L to represent the transfer of telegrams between SSI and track-side functional modules.

However theNetwork component in the above scheme is redundant when our primary

concern is with the properties of the Geographic Data rather than the overall behaviour

of the system. Such a model is needed to animate the behaviour allowed by the control

system—to test and simulate the design of the interlocking—but the focus here is on

theInterlocking model and its underlying assumptions.

3.2.1 Modelling Assumptions

Conceptually, the SSI model consists of three parts: theinterpreter, thedata, and the

programmemory. The latter component represents the Interlocking’s internal state—

the image of the railway—and consists of the collection of all control variables defined

for the system. The former components, which are referred to collectively in the sequel

asthe control, embody not only the Geographic Data but also the assumptions we make

about the behaviour of the interpreter: we would prefer these assumptions to be as weak

as possible.

Chapter 3. Modelling Solid State Interlocking 51

〈pfm〉 ::= 〈tl〉
〈fop〉 ::= 〈cmd〉 if 〈tl〉
〈prr〉 ::= if 〈tl〉 then 〈cl〉
〈tl〉 ::= 〈test〉 [〈tl〉]
〈test〉 ::= 〈gc〉 | (〈tl〉 or 〈tl〉)
〈cl〉 ::= 〈cmd〉 [〈cl〉]
〈gc〉 ::= P (cn [f] | cr [f]) | R (s | xs) | T (o | c) | U (l | f)
〈cmd〉 ::= P (cn | cr) | R (s | xs) | T (o | c) | U (l | f)

Figure 3.2: Simple grammar for a subset of the Geographic Data Language

In Section 2.4 the relationship between the SSI generic program and the Geo-

graphic Data was discussed in some detail, at least in respect ofPFM andMAP data.

In developing the model below we shall assume the validity of those semantics, par-

ticularly the points “free to move” test. Otherwise, the principal assumption in our

analysis is that the safety properties of the data do not depend on the generic program.

It is important to note that the signal engineer has complete authority in specifying

the execution order imposed on the Geographic Data—i.e., in defining the polling cycle

which is not itself expressible in the Geographic Data Language. We contend therefore

that the safety properties of the data are, or at least ought to be, independent of the

order imposed. As a corollary, properties that can be proved under the assumption of

an arbitrary execution order will be enjoyed by any system implementing those data—

because to assume an arbitrary execution order is to assumenothingabout the order.

Under these conditions one has only to perform the safety analysis once: otherwise

one would be obliged to redo the proof whenever the execution order is changed, or a

rule in the database is modified.

Other assumptions require less comment. Firstly, we abstract the system’s out-

puts to, and inputs from, the railway, and indeed follow the informal specification [66]

closely in ignoring theIPT andOPTdata and concentrating on the route locking data

in thePRR, PFM andFOPdata files. Secondly, the image of the railway is described

by a collection ofBooleanvariables representing points, track circuits, routes and sub-

routes. For the model this simplification is inessential, but is mandated to some extent

by the desire to control the computational complexity in automating the formal ana-

lysis. Finally, and in accordance with the above, it is appropriate for the time being

to suppose the somewhat restricted syntax for Geographic Data given in Figure 3.2.

While this guarded command fragment is inexpressive as a programming language, it

is sufficient to encode many examples in theFOPandPRRdata files.

Chapter 3. Modelling Solid State Interlocking 52

3.2.2 Model

In his book [62] Milner defines the semantics of a simple (concurrent) imperative pro-

gramming language by translating it into CCS. In this way a program is represented

(concretely) by a labelled transition system. Milner’s objective here is to interpret

one calculus, that of Hoare logic and its proof system for the language in question, in

his more primitive calculus [63]. The semantic embedding so derived demonstrates the

universality of CCS, and is used by Milner to investigate properties of the programming

language and its program logic. Here, we shall simply use this form of embedding in

order to fix the (operational) semantics of the Geographic Data Language.

Although its designers may not think of the Geographic Data Language as a pro-

gramming language as such, the presence of the interpreter provides a convenient exe-

cution model—so it might as well be assumed that we ‘run’ the data. More precisely,

each rule in the database defines a state transformation, where a state is the Inter-

locking’s current image of the railway. The execution model can be described in a

single command loop—an endlessdo loop in Dijkstra’s language of guarded com-

mands, say. In CCS this becomes a single recursive agent which nondeterministically

chooses among the guarded commands to execute at each iteration.

The typical scheme for representing a program variable as a readable and writable

location in memory is given by the following pair of agents:

LocD
def= putD(x).RegD(x)

RegD(y) def= putD(x).RegD(x) + getD(y).RegD(y)

The values the program variableD may take are drawn from some (usually finite) data

domain. For convenience it will be assumed in the model that these registers are always

suitably initialised before being read. In what follows the CCS value passing syntax

would quickly become cumbersome to use in its full formality—because of a profusion

of sub- and super-scripts. We shall therefore abuse the notation slightly, and represent

the binary track circuit variableT , for example, by the pair agents:

RegT (c) def= putT (c).RegT (c) + putT (o).RegT (o) + getT (c).RegT (c)

RegT (o) def= putT (o).RegT (o) + putT (c).RegT (c) + getT (o).RegT (o)

ThenameputT (c) denotes the pure CCS action obtained by the usual interpretation of

the value passing calculus in the basic calculus (see Appendix B);putT (c) denotes the

inverse action. We shall freely useputT (v), etc., when the value communicated need

not be specified like this, or when the value passing syntax offers greater clarity.

Using the registers defined above the image of the railway is represented by

Image def=
∏
U∈U

RegU(f) |
∏
R∈R

RegR(xs) |
∏
T∈T

RegT (c) |
∏
P∈P

RegP (cn)

Chapter 3. Modelling Solid State Interlocking 53

RegD(y) def= putD(x).RegD(x) + getD(y).RegD(y)

Image def=
∏
U∈U

RegU (f) |
∏
R∈R

RegR(xs) |
∏
T∈T

RegT (c) |
∏
P∈P

RegP (cn)

Control
def= Request + Unlock + Cancel + Input

Request def=
∑
Q∈Q

setQ.(C[[PRR(* Q)]]Control)

Unlock
def=

∑
U∈U

(C[[FOP(U)]]Control)

Cancel def=
∑
R∈R

canR.putR(xs).Control

Input def=
∑
T∈T

inT (o).putT (o).Control + inT (c).putT (c).Control

West
def= (Control | Image)\L

Model #1: A CCS model of Solid State Interlocking

This is a parallel combination of agents, though none of the components communicate.

The image of the railway has been initialised to some suitable state, andD = P]R]
T] U represents the set of WEST’s points, routes, track circuits and sub-routes.

The execution model proposed is simple: during each iteration of the Interlock-

ing’s minor cycle one of the rules in the database is selected at random and evaluated.

Only if the guards are currently true will the state be updated by the commands in the

conclusion of the rule. This behaviour is encoded in the recursive

Control
def= Request + Unlock + Cancel + Input

Each of the sequential components embodies one aspect of the behaviour of the system;

each returns evaluation to theControl state which we may think of as the ‘top’ of the

minor cycle loop in the system’s ongoing evaluation of the data. The elements of this

model are gathered together in the agentWest displayed in Model #1 (which may

sometimes be referred to explicitly asWest#1 in the sequel). TheRequest andUnlock

components are derived by translating the Geographic Data into CCS as described

below. Other components allow one to cancel routes that have been set, and to follow

the movements of trains in the network. The restriction setL = L(Image) binds the

components of the model together. The visible actions are:

• {setQ | Q ∈ Q}, representing panel route requests. Each of these invokes the

appropriate rule in thePRRdata file, one per route. In SSI these are always

processed in a single minor cycle.

• {canR | R ∈ R}, representing route cancellation requests. These are also panel

requests: there are normally several preconditions to be satisfied before the route

can be unset, but this is not captured in the model.

Chapter 3. Modelling Solid State Interlocking 54

C[[if 〈tl〉 then 〈cl〉]]c = T[[〈tl〉]](C[[〈cl〉]]c, c) (1)

C[[〈cmd〉 if 〈tl〉]]c = T[[〈tl〉]](C[[〈cmd〉]]c, c) (2)

C[[]]c = c (3)

C[[D v 〈cl〉]]c = putD(v).C[[〈cl〉]]c D ∈ D (4)

T[[]](s, f) = s (5)

T[[D v]](s, f) = getD(u).if (u = v) then s else f D ∈ D (6)

T[[P crf]](s, f) = T[[(P cr or PFM(* PR))]](s, f) (7)

T[[P cnf]](s, f) = T[[(P cn or PFM(* PN))]](s, f) (8)

T[[〈test〉 〈tl〉]](s, f) = T[[〈test〉]](T[[〈tl〉]](s, f), f) (9)

T[[(〈tl〉1 or 〈tl〉2)]](s, f) = T[[〈tl〉1]](s,T[[〈tl〉2]](s, f)) (10)

Figure 3.3: Translating Geographic Data into CCS

• {inT (v) | T ∈ T , v ∈ {c , o}}, representing minor cycle inputs from the track-

side hardware. No assumption is made about the order in which these arrive,

incoming values being simply copied to memory.

Note thatControl is a serial recursive agent, and that the fanout from theControl state

is exactlyQ+ U +R+ 2T .

3.2.3 Translating Geographic Data into CCS

To complete the definition of the model a translation to CCS is provided for the gram-

mar cited earlier. This translation is specified by the ten rules of the inductive defini-

tion displayed in Figure 3.3. The two syntactic forms of the one-armed conditional are

given the same interpretation in rules (1) and (2). Note that in correspondence to Sec-

tion 2.4,T[[·]] takes a pair of continuations as arguments—the first represents success

of the rule, the second represents failure.C[[·]] carries only the successful continuation.

These rules need little comment, except in the treatment of the points test discussed

in Section 2.4.2. When the “free to move” flag is present the test is disjunctive in rules

(7) and (8), and if the points are in the wrong state thePFM data for the points are

evaluated. In this case, since the other fields in the points memory are omitted in the

model, we simply rewrite the test as shown.

An illustration of how the translation proceeds is worthwhile. For an example

consider the panel request rule for the routeR02:

*Q02 if P1 crf , T ac1 f , T ab2 f

then R02 s , P1 cr , T ca1 l , T ba2 l \ .

If this code fragment is identified with the agentQ02, then

Q02 = C[[PRR(*Q02)]]Control

Chapter 3. Modelling Solid State Interlocking 55

Q02 = C[[PRR(*Q02)]]Control

= getP1
(u).if (u = cr) then Q021 else Q022

Q021 = T[[T ac1 f , T ab2 f]](C02,Control) = T[[T ac1 f]](Q024,Control)

= getT ac1
(u).if (u = f) then Q024 else Control

Q022 = T[[T bc1 f , T cb1 f]](Q021,Control) = T[[T bc1 f]](Q023,Control)

= getT bc1
(u).if (u = f) then Q023 else Control

Q023 = T[[T cb1 f]](Q021,Control)

= getT cb1
(u).if (u = f) then Q021 else Control

Q024 = T[[T ab2 f]](C02,Control)

= getT ab2
(u).if (u = f) then C02 else Control

C02 = C[[R02 s , P1 cr , T ca1 l , T ba2 l]]Control

= putR02
(s).putP1

(cr).putT ca1
(l).putT ba2

(l).Control

Figure 3.4: Panel route request*Q02 translated into CCS

= T[[P1 crf , T ac1 f , T ab2 f]](C[[R02 s , P1 cr , T ca1 l , T ba2 l]]Control,Control)

= T[[P1 crf]](Q021,Control)

by rules (1) and (9) respectively.Q021 is a place holder—the control will reach this

point if the points test succeeds, otherwise execution returns to theControl state. Con-

tinuing via rules (7) and (10):

T[[P1 crf]](Q021,Control) = T[[(P1 cr or T bc1 f , T cb1 f)]](Q021,Control)

= T[[P1 cr]](Q021,Q022)

Q022 is a second place holder—execution continues from here (the “free to move” test)

if the points are controlled normal instead of reverse. Finally

T[[P1 cr]](Q021,Q022) = getP1
(u).if (u = cr) then Q021 else Q022

= getP1
(cr).Q021 + getP1

(cn).Q022

by rule (6). Shown here is the result of the translation from value passing CCS syntax

to the underlying calculus.

The rest of the clauses required in translating this panel request are given in Fig-

ure 3.4. This illustration completes the basic definition of the formal model of SSI, but

it is not the last word we shall have to say about it. After discussing safety properties

in the next section, it will be convenient to instrument Model #1 so that these can be

formalised, and checked, appropriately. In Chapter 6 the model described above is ex-

tended with more of the apparatus of the SSI—in particular, input and output buffers,

and watchdog timers.

Chapter 3. Modelling Solid State Interlocking 56

3.3 Defining Safety Properties Formally

Technically, safety properties are associated withinvariants. In sequential programs

loop invariants are used to assert the correctness of while- and for-loops, for example;

variant properties—e.g., assertions that some program measure always diminishes—

are used to make termination arguments. Termination need not be a concern here as

there are no loop constructs in the language which could introduce infinite behaviour.

The safety property will be a formulaF expressing logical relationships between

the control variables of the SSI—a property which should hold after the execution of

any of the rules in the database. That is to say it should be invariant under the state

transformations induced by the Geographic Data. Formally,F is defined as amodal

formula in the modalµ-calculus. We may prove the invariance ofF by establishing the

satisfaction relation:

(Control | Image)\L |= νZ.F ∧ [−]Z

A state or processE satisfies thetemporalformulaνZ.F ∧ [−]Z if E satisfiesF and

every derivativeE′ of E satisfiesνZ.F ∧ [−]Z. This inductive definition of the notion

of safety plays a crucial rˆole in the development of the proof strategy in Chapter 4.

3.3.1 Safety Properties of Geographic Data

In Section 3.1 it was noted that it would not be possible to give formal proofs ofsystem

properties such as those listed drawn from the principles of railway signalling. Our

thesis is that it is instead better to identify properties of thedata since these can be

formally verified with respect to a suitable model. If the model is valid the formal

verification will give considerable weight to the necessarily informal argument that the

safety principles have been adhered to in the interlocking’s design. With this in mind

the following properties are taken to be central to the correct design of the route request

and sub-route release data:

MX It is never the case that two or more of the sub-routes over a given track section

are simultaneously locked;

RT Whenever a route is set, all its component sub-routes are locked;

PT Whenever a sub-route over a track section containing points is locked, the points

are controlled in alignment with that sub-route.

Throughout the sequel these three properties are referred to by the namesMX (for

mutual exclusion),RT (for routes), andPT (for points). Another property associated

with points is also of interest:

Chapter 3. Modelling Solid State Interlocking 57

PT The reverse (respectively, normal) sub-routes over points are free whenever the

points are controlled normal (respectively, reverse).

If points are represented internally by binary variables the two formulations ofPT are

equivalent—in SSI, however, points do not have a binary representation so these are

distinct properties.

Refining the above, one might wish to add the requirement that if a route is set the

points along it are properly aligned—but this is unnecessary sincePT andRT together

ensure that the points along a route become correctly aligned when it is set. Drawing

the example from the scheme plan on page 48, ifR51 is set we require sub-routesT ac6

andT ac4 to be locked and the pointsP3 andP2 to be controlled normal and reverse

respectively. If this is so, when the route is set the points will be correctly aligned;

subsequently, if the route is unset,PT ensures that the points remain correctly aligned

until the sub-route is freed.

Together,MX andRT are designed to ensure that no routes over the same section

of track in opposing or otherwise conflicting directions are simultaneously set. Since

signals that have routes associated with them are supposed to remain at red unless

an onward route has been set, these properties ensure, in the absence of other faults,

that no more than one train has access to any given track section at any one time.

Naturally, that signals do have this property must also be verified—but this will arise

from safety properties elsewhere in the data (OPT data, in particular). We shall see

later in Section 4.4.3 that a slightly stronger form ofRT is needed in general.

The foregoing discussion raises the question ofwherethe invariant comes from.

MX is easy enough to define given the naming conventions adopted for identifying

track circuits and sub-routes. The other properties are more problematic. Using an

informal notation for the present, and reading from the scheme plan on page 48, it is

clear that the routes property forR51 should be:

R51(s)⇒ T ac6 (l) ∧ T ac4 (l) ∧ T ab2 (l)

However, that this is the correct relationship has to be taken ‘on trust’—plainly it can-

not be inferred from the data we wish to certify. In the absence of a generic charac-

terisation ofRT andPT it is therefore necessary to resort to specifying these by direct

transcription from the scheme plan.

This raises the prospect that the invariant may be incorrect since transcription errors

will likely arise if this is to be done by hand. Fortunately it is very much easier to define

the invariant correctly than it is to compile the Geographic Data without error. Even so,

in the worst case we should verify that the specified invariant is not inconsistent—i.e.,

that it does not specifyfalse. But it is easy to see that at least one model exists for theF

if it expresses the above properties. SincePT andRT are implicative they will always

Chapter 3. Modelling Solid State Interlocking 58

be true when the antecedent isfalse, or the consequent istrue. Thus any assignment to

the variables in which every route is unset and every sub-route is free will satisfyPT

andRT: obviously it will also satisfyMX , and checking this is trivial.

3.3.2 Tags and Probes

Before discussing the precise definition of the formulaF it is first necessary to repair a

purely technical difficulty with Model #1. The problem is that one cannot observe the

internal state of the model: the restriction setL precludes direct observation of the state

of the variables in theImage of the railway. Nor is there any apparent mechanism by

which the state of the system can be inferred from the actions that remain visible. Thus,

although the model correctly expresses our intentionvis-à-vis formal specification, it

is of little worth from the verification standpoint. We remedy this situation with some

technical machinery which, although having no functional purpose in itself, enables

observation of the hidden states of the model.

Probes Walker used these in his work on mutual exclusion algorithms [97]. A probe

may be used to observe anaction hidden by the restriction operator; it is an action

‘attached’ to the hidden one, but which itself remains visible. In the model is is possible

to probeputD(v), with an action likeobsD(v), so that wheneverControl and Image

synchronise this will be followed by an observation recording the event. By this means

one may in principle keep track of the dynamic evolution of the image of the railway.

There is a major drawback with the na¨ıve use of probes however, for they introduce

states to aCCSmodel that are entirely artificial. ForWest#1, since there are so many

probes needed, this presents a very serious overhead indeed. (It is worth noting that

probes are much more natural in the analysis of synchronous models: inSCCS, the

richer structure of actions means one may probe an action without introducing artificial

states to the model.)

Tags Whereas probes are inserted in the execution sequence, tags are not intended

for execution—they merely label some internalstate. A tag is ‘attached’ to a state of

interest by using sum, but it is easiest to explain the principle by an example. The

registers given earlier are redefined thus:

RegD(y) def= putD(x).RegD(x) + getD(y).RegD(y) + obsD(y).RegD(y)

In this way one may always observe the state of the variableD, and hence the state of

the image of the railway. In principle an external agent may interact with the model to

ascertain the state of the system: moreover, such observation is quite transparent since

the obsD(y) actions neither introduce new states, nor change the current state of the

Chapter 3. Modelling Solid State Interlocking 59

RegD(y) def= putD(x).RegD(x) + getD(y).RegD(y) + obsD(y).RegD(y)

Image def=
∏
U∈U

RegU (f) |
∏
R∈R

RegR(xs) |
∏
T∈T

RegT (c) |
∏
P∈P

RegP (cn)

Control
def= Fix(X. ctrl.0

+
∑
Q∈Q

setQ.(C[[PRR(* Q)]]X)

+
∑
U∈U

(C[[FOP(U)]]X)

+
∑
R∈R

canR.putR(xs).X

+
∑
T∈T

inT (o).putT (o).X + inT (c).putT (c).X)

West
def= (Control | Image)\L

Model #2: An observable model of SSI

system. However, this is not the intention: we never expectImage to execute these new

actions, we merely wish to exploit their presence in defining the modal formulaF. In

contrast, the tag in

RegD(y) def= putD(x).RegD(x) + getD(y).RegD(y) + obsD(y).0

introduces a new state, and a deadlock if the action is ever performed.

Observing SSI One reason for choosing theobsD(y).RegD(y) tag over the alternat-

ive is that it does not introduce new states to the model. This is important when one

wishes to formally verify its properties (see Section 4.2). It turns out that it is also

convenient to tag a particular state in the control. The state of interest is that between

the end of one minor cycle and the beginning of the next. We therefore introduce the

tag ctrl.0 to Control, as displayed in Model #2 (the slightly baroqueFix notation is

needed in the sequel). The reason for this minor intrusion is that the invariant need

only hold at certain (safety critical) states inControl. This is made clear in the next

section. Note that this tagdoesintroduce a new state: in fact, it doubles the state space

of the model (this can be avoided using the tagctrl.X as described in Section 3.3.4

below.) In Model #2 note thatL = {putD(v), getD(v) | D ∈ D}.

3.3.3 Geographic Data Invariants

The properties discussed in Section 3.1 are easily expressed as state properties in the

modalµ-calculus. ForMX , for example, and for the track sectionT2 in particular, any

state in which both sub-routes are locked will satisfy the formula:

〈obsT ab2
(l)〉tt ∧ 〈obsT ba2

(l)〉tt

Chapter 3. Modelling Solid State Interlocking 60

RT def=
∧

RT(R02, [T ca1 , T
ba
2])

RT(R04, [T cb1 , T
ba
3])

RT(R1, [T
ac
1 , T

ab
0])

RT(R3, [T
bc
1 , T

ab
0])

RT(R5, [T ab6 , T
ab
5])

RT(R6, [T ba6 , T
ba
7])

RT(R2, [T
ca
4 , T

ca
6 , T ba7])

RT(R4, [T
ba
4 , T

ca
6 , T ba7])

RT(R51, [T ac6 , T
ac
4 , T

ab
2])

RT(R53, [T ac6 , T
ab
4 , T

ab
3])

MX def=
∧

MX [T ab0 , T
ba
0]

MX [T ab2 , T
ba
2]

MX [T ab3 , T
ba
3]

MX [T ab5 , T
ba
5]

MX [T ab7 , T
ba
7]

MX [T ac1 , T
bc
1 , T

ca
1 , T

cb
1]

MX [T ab4 , T
ac
4 , T

ba
4 , T

ca
4]

MX [T ab6 , T
ac
6 , T

ba
6 , T

ca
6]

PT def=
∧

PTcn(P1, [T bc1 , T
cb
1])

PTcr(P1, [T ac1 , T
ca
1])

PTcn(P2, [T
ab
4 , T

ba
4])

PTcr(P2, [T
ac
4 , T

ca
4])

PTcn(P3, [T ac6 , T
ca
6])

PTcr(P3, [T ab6 , T
ba
6])

Figure 3.5: Geographic Data invariant for WEST

The invariant required is therefore the logical negation of this:

MX [T ab2 , T
ba
2] def= [obsT ab2

(l)]ff ∨ [obsT ba2
(l)]ff

A similar term will express the same condition for each of the other track sections in

the interlocking. In sections containing a points switch the sub-routes have to be taken

pair-wise, giving rise to (up to) six conjuncts of disjuncts such as this.

PropertiesRT andPT may be similarly characterised. For routeR02 and the points

along it the following are required to hold invariantly:

RT(R02,[T ca1 , T
ba
2]) def= 〈obsR02

(s)〉tt⇒ 〈obsT ca1
(l)〉tt ∧ 〈obsT ba2

(l)〉tt
PTcr(P1, [T

ac
1 , T

ca
1]) def= 〈obsT ac1

(l)〉tt ∨ 〈obsT ca1
(l)〉tt⇒ 〈obsP1

(cr)〉tt
PTcn(P1, [T

bc
1 , T

cb
1]) def= 〈obsT bc1

(l)〉tt ∨ 〈obsT cb1
(l)〉tt⇒ 〈obsP1

(cn)〉tt

For the record, Figure 3.5 defines the required safety property for WEST. To avoid

burdensome notation in the sequel we shall usually use abbreviationsMX , RT, PTcn

andPTcr as above.

The safety property for WEST is therefore taken to be the conjunctive termF def=

MX ∧ RT ∧ PT in Figure 3.5. Although a large formula, this in itself is not problem-

atic for model checking algorithms which automate the invariance proof—the space

complexity of the model is by far the greatest obstacle. Still, the proof obligation

we require to discharge is now fully defined with the propertyF, given above, and

Model #2:

(Control | Image)\L |= νZ.F ∧ [−]Z

It turns out, however, that this analysis is too fine:F does not hold in every state of the

model as required to satisfy this formula. This becomes apparent when considering the

Chapter 3. Modelling Solid State Interlocking 61

route request rule forR02 (see Figure 3.4). During the computation several states are

encountered in which the route is only partly locked (inC02), soPT andRT will not

generally hold until all of the variables have been updated in setting the route.

However, the control is a sequential machine and SSI never takes decisions based

on the values of the variables in these intermediate (or transient) states—they are never

evaluated by the guard in a command. This leads to the observation that the safety

critical states of the system are those in which the SSI is about to evaluate such a

guard. We therefore conclude that the invariant can be weakened, using thectrl tag, to:

Φ def= νZ.(〈ctrl〉tt⇒ F) ∧ [−ctrl]Z

That is,F need only hold at the tagged control states. The[−ctrl] modality ensures that

only those runs through the state space that do not follow thectrl action, which leads

to the deadlocked control, are considered in the proof.

3.3.4 Generalising the Translation Schema

In Model #2 the labelled states of theControl represent the beginning (or end) of each

minor cycle. However, the observation that it is these that are the safety critical states

is only strictly valid for the guarded command language assumed here: when guarded

commands are placed in sequence it is necessary to be more careful about identifying

the critical states of the model.

In sketching how these ideas can be generalised, we first extend the grammar given

in Figure 3.2 with a new phrase form:

〈gd〉 ::= 〈prr〉 | 〈fop〉 | 〈gd〉 ; 〈gd〉
〈prr〉 ::= if 〈tl〉 then 〈cl〉 else 〈cl〉

(this syntax is not correct Geographic Data, but it serves to illustrate the principle).

Then the appropriate rule in the translation to CCS is supplied which identifies the

safety critical states in the process:

C[[〈gd〉1 ; 〈gd〉2]]c = C[[〈gd〉1]](ctrl.0+ C[[〈gd〉2]]c)

C[[if 〈tl〉 then 〈cl〉1 else 〈cl〉2]]c = T[[〈tl〉]](C[[〈cl〉1]]c,C[[〈cl〉2]]c)

There are alternatives to this scheme of course, but they will not be explored far here.

In the sequel we suppose that the safety property expressed inF should hold at the

intermediate control points, so the invariant is defined just as it was above, and we use

thectrl.0 tag throughout.

In order to avoid introducing artificial states to the model, withctrl.0, one could

instead translate sequence thus

C[[〈gd〉1 ; 〈gd〉2]]c = C[[〈gd〉1]](Fix (Y. ctrl.Y + C[[〈gd〉2]]c))

Chapter 3. Modelling Solid State Interlocking 62

as long asY is not free inC[[〈gd〉2]]c. On the other hand one may be satisfied with a

weaker property holding at the intermediate control points—in which case a different

tag could be used and the invariant modified appropriately. For example,Φ can be

generalised along these lines:

νZ.(〈c1〉tt⇒ F1 ∧ 〈c2〉tt⇒ F2 ∧ 〈c3〉tt⇒ F3) ∧ [−c1, c2, c3]Z

wherec1, c2 andc3 are distinct control tags.

3.4 The Problem with State Spaces

The space complexity of the model presented is (potentially) enormous although much

of the behaviour has been abstracted and the example is itself rather small. Yet of

the 2|D| possible configurations ofImage, |D| being typically in the hundreds, only

a tiny percentage are expected to be reachable from any given initial state. Given an

efficient representation we therefore expect model checking techniques could prove

the invariant. Efficiency is needed both in constructing the model, and in its storage.

Firstly, however, the model’s space complexity can be substantially reduced through

the application of someagent transformations[72, 73].

3.4.1 Hiding Assumptions

The first transformation in simplifying the model is tohide some of the observable

actions. Hiding does not preserve the observable behaviour in an agent of course, but

focuses the analysis instead on particular aspects of the model. A simple example of

hiding irrelevant behaviour would be to hide the tags introduced in Model #2. Suppose

O = {obsD(v) | D ∈ D} ∪ {ctrl}. If Model #2 is defined using only the non-

deadlocking tags thenWest#2 /O = τ.West#1. This follows by a straightforward

application of theτ -laws, and the Recursion Laws (in particularFix (X. τ.X + E) =
Fix (X. τ.E)) for observation congruence [62].

Hiding can be used to prove theabsenceof deadlock in a model by appealing to

the intuition that deadlocks do not arise from the observable actions of a system [73].

Hiding is used here for a different purpose: to abstract the behaviour associated with

track circuits. This is justified by appealing to the following premises:

• jumping trains axiom: we assume track circuits may change state uncondition-

ally at any time;

• unconditional route cancellation: we assume that routes may be cancelled un-

conditionally at any time.

Chapter 3. Modelling Solid State Interlocking 63

The jumping trains axiom (for want of a better name!) has some interesting con-

sequences: firstly it is clear that space complexity of the model is proportional to2|T |;

secondly, as explained below, if the initial actions of theInput component are hidden

the state space can be reduced by this factor; thirdly, adopting this premise negates any

possibility of examining safety properties of signal data. (Signal aspects are tightly

interlocked with the state of the tracks in advance and in the rear.) It is for this reason

that the jumping trains axiom is not an assumption which is intrinsic to the model.

Although there may be some doubt as to the validity of the jumping trains axiom,

it is clear that in the unlikely presence of faulty track circuiting in the railway, track

circuits may indeed appear to the SSI as if they change state at random. This is, in

fact, the weakest assumption that can be made about the behaviour of the environment

in which the SSI operates—that is, we make no assumption at all. Consequently, any

safety properties of the Geographic Data that can be established under these conditions

will be robust indeed, being certainly enjoyed by the SSI when placed in a more orderly

environment.

We shall therefore temporarily adopt the two premises above in verifying safety

properties of the route request and sub-route release data. In doing so, we might as

well hide the behaviour associated with these aspects of the model—in particular the

visible actions inC = {canR | R ∈ R} andI = {inT (v) | T ∈ T , v ∈ {c , o}}.

3.4.2 Agent Transformations

Using theFix notation introduced earlier we proceed with the untagged Model #1 and

let Control = Fix (X. Sum+ Input), whereInput abbreviates theInput behaviour, and

Sumabbreviates the rest. The agent

West#1 /I = (Control /I | Image)\L
= (Fix (X. Sum/I + Input/I) | Image)\L

= (Fix (X. Sum+
∑
T∈T

τ.putT (v).X) | Image)\L

by the static laws since the actions inI occur only inInput.

In itself, hiding these visible actions achieves no compression in the state space. To

do that we first have to use the idea oflocal expansion. Consider:

A
def= (Control /I | RegT (o))\LT

whereLT = {getT (o), getT (c), putT (o), putT (c)}. This, for any particularT ∈ T ,

is a local component ofWest/I becauseLT ⊆ L(Image) and only these two agents

communicate over the actions inLT . The idea is to apply the Expansion Law to arrive

at a serial recursive agent that is equal to the pair. Taking observation equivalence as

Chapter 3. Modelling Solid State Interlocking 64

the notion of equality it is possible to further abstract the silent actions appearing in

the expansion; then partitioning the state space with respect to≈ we derive a minimal

serial agent equivalent toA.

The question then is how ‘minimal’ this transformed agent is compared withA. In

this case the heuristics work favourably. IfControl hasK states thenControl /I also

hasK states and clearlyA has2K states as the register is binary. However, it is not

difficult to see thatA is observation equivalent toB def= (Control /I | RegT (c))\LT .

Indeed, the agents are congruent. In detail, for the congruence the initial transitions of

each agent must be matched with at least one transition of the other:

A
B

τ−→
τ−→

(putT (v).Control /I | RegT (o))\LT
(putT (v).Control /I | RegT (c))\LT

}
≈ (i)

A
B

α−→
α=⇒

(C ′ /I | RegT (o))\LT
(C ′ /I | RegT (o))\LT

}
≡ (ii)

B
A

α−→
α=⇒

(C ′ /I | RegT (c))\LT
(C ′ /I | RegT (c))\LT

}
≡ (iii)

A suitable (congruence) relation therefore consists of the above pairs together with the

identity relation. In (i) the pairs are bisimilar since the only derivative in each case is

(Control /I | RegT (v))\LT ; in (ii) and (iii) C ′ may be any (other) intermediate state

of Control reachable in one step (or several steps by first resetting the register in the

simulating agent). This relation is not minimal, but note that

(C ′ /I | RegT (o))\LT and (C ′ /I | RegT (c))\LT

are observation equivalent wheneverC ′ is such that however it returns to theControl

state it does so without interacting, viaLT , with the register. This is a sufficient condi-

tion, and the graph partitioning algorithm implemented in the Edinburgh Concurrency

Workbench [20] will identify such pairs in finding a suitable bisimulation. It follows

that the minimal serial agent that is observation equivalent toA also has (approxim-

ately)|Control| = K states.

Note that to arrive at this result it is necessary to hide theI actions for otherwise

A 6≈ B. As a corollary to the above

(Control |
∏
T∈T

RegT (v))\LT

whereLT = {putT (v), getT (v) | T ∈ T , v ∈ {c , o}} clearly has2|T |K states—so the

model has space complexity exponential in the number of track circuits. Hiding the

input actions therefore factors out the2|T |.

The actionsC = {canR | R ∈ R} can also be hidden, now in the agentWest#1 /I ,

but on this occasion the heuristics achieve little further compression in the model. The

same transformation works for Model #2, but the congruence proof needs a minor

change since the right-hand agents at (i) are not then bisimilar.

Chapter 3. Modelling Solid State Interlocking 65

3.4.3 Model Checking

Following the simplifications above, the question is whether it is possible now to use

the Concurrency Workbench to establishWest /I |= Φ? Model checking algorithms

to decide this question come in two varieties, global and local (the tool provides both),

so a brief comparison is useful.

Global Model Checking Here, a propertyΦ is shown to hold at a states in a model

M by first enumeratingM’s states, finding the set of these for which the property

holds, and checking thats is in the set. This, at least, is the approach advanced by

Clarke, Emerson and Sistla [18]. Their models are Kripke structures (unlabelledtrans-

ition systems) and the property language is Computation Tree Logic (CTL). In this

language the invariantΦ can be expressed by the temporal formulaAG (C ⇒ F),

whereC is an atomic proposition true at the control states, andF has been suitably

recoded (along all paths globally,C impliesF). States of the model are just vectors of

variables likeImage. Note that to identify (tag) the control states an additional variable

is needed in the representation. Clarke’s model checker has been adapted for use with

process algebraic models directly [31]—but, as with the Concurrency Workbench, in-

efficiency in the algorithm used to construct the model is the first obstacle to overcome

in applying these tools (cf. Section 3.5).

Burch, McMillan and others [13, 57] claim good results for an approach to model

checking CTL formulae that adapts Clarke’s global algorithm in another way. Their

methods use a compact representation for Boolean formulae, known as binary decision

diagrams [12], to represent the state space symbolically—as opposed to explicitly, by

the graph. McMillan’s system uses a richer logic, the propositionalµ-calculus, to

encode the transition relation of the model: the transition system is then represented

by the transitive closure of this relation. It is the computation of the transitive closure

that presents the most serious limitation of this technology because, when measured in

terms of the number of nodes needed in the binary decision diagram, the intermediate

computations can far exceed the space required to represent the model. Heuristics to

alleviate these difficulties have been found to help for particular circuits [14], but they

are not generally reliable.

Symbolic model checking is certainly useful in hardware verification, but the ap-

plicability to the world of CCS models is uncertain. Taubneret al. [30] show that the

representation of the product ofN transition relations requires a binary decision dia-

gram of size O(2|Act| ·∑N
i=1 |Si|

2), where|Si| is the size of each parallel component.

This is a good bound when the signature is fixed and it is the degree of parallelism that

varies. But for Model #2 this bound is O(2|Act| · (4N + K2)). Doubling the size of

the problem—i.e., the interlocking, which doubles the number of registers and rules—

Chapter 3. Modelling Solid State Interlocking 66

doubles all of the parametersAct,N andK, so giving at least an eightfold increase in

the size of the representation of the model. These are asymptotic bounds, but precise

estimates are notoriously difficult where binary decision diagrams are concerned.

Local Model Checking On the other hand one can demonstrate thatΦ holds at a

states in a modelM by a purely local argument since one need only exploreM in the

neighbourhood of the (initial) state of interest: often this is enough to demonstrate that

Φ holds ats, and avoids construction of the entire model. So from a practical point of

view the key idea behind local model checking is that it is a lazy proof method. The

tableau proof technique due to Stirling and Walker [90] is lazy in this sense, the proof

rules used to construct the tableau being governed by the actions in the modalities:

these specify the minimal set of next states to consider in traversing the transition

system. This model checker is described in more detail in Appendix B.

A major difficulty arises with the tableau proof method described by Stirling and

Walker since the algorithm has very poor (i.e., exponential) worst case complexity [91].

The algorithm implemented by Cleaveland [19] in the Concurrency Workbench is more

efficient, running in time polynomial in the size of the model for a formula as simple as

Φ, but this also has poor worst case performance. Andersen [2, 3] describes aglobal

algorithm for the modalµ-calculus that, for a class of formulae includingΦ and all

CTL formulae, runs in time linear in the size of the structure and the formula. (This

is the same complexity as Clarke’s CTL model checker.) Andersen’slocal version, for

the same class of formulae, runs in time that is no more than a log factor worse than

the global version. The worst case performance of these local algorithms becomes

important if, due to the structure of the particular model, or formula, the algorithm has

to do what the global model checkers do: examine the global state space of the model.

Local model checking is most useful when one is interested in checking a property

that involves only a fraction of the actions an agent can perform. Liveness and fairness

properties are often good candidates here, but global invariants such asΦ are not.

Local model checking is also of practical interest when the models are infinite (where

global methods are obviously inadequate). Bradfield and Stirling [10] have extended

the tableau proof technique for the modalµ-calculus to a semi-automatic method for

infinite models—but a formula such asΦ would be dealt with by the automatic part of

the algorithm, which is also global in character.

Model Checking Geographic Data Returning, then, to the question of whether

West/I |= Φ, it appears that local model checking offers no practical advantage since

the structure of the invariant necessarily entails exploring the entire state space—this

arises from the box modality,[−ctrl], which only excludes transitions labelled by the

Chapter 3. Modelling Solid State Interlocking 67

ctrl action in building the model. Even so, for WEST, the global model checker in the

Concurrency Workbench answers the question affirmatively, although one has to be

content to follow the unorthodox path of reprogramming the tool to handle this class

of CCS models more efficiently than the generic algorithms are capable of. Moreover,

the local model checker is effectual when the propertyΦ does not hold of the model

because the algorithm terminates with a negative result while the transition system is

only partially built, but a mechanism to generate counterexamples would make the tool

more useful as a debugging aid than in its present incarnation.

In general however, even with the jumping trains abstraction, the number of reach-

able safe states quickly becomes astronomical. Space complexity in the problem of

checking safety properties of Geographic Data is endemic, presenting a severe chal-

lenge for verification methods based on model construction. Even so, in the next

chapter we shall see that Stirling and Walker’s tableau method for the modalµ-calculus

reveals a simple inductive proof method which is linear in the number of rules in the

data, and independent of the number of states of the system. Chronologically however,

the next stage in the analysis focused on the problem of efficiently generating the state

space of the model described in here. This is the subject of the brief digression from

the formal analysis described next.

3.5 Proof by Program

One difficulty encountered in trying to analyse the present model of SSI in an auto-

mated tool arises in the method by which the model is constructed from the textual

description. As long as the goal remains the direct exploration of the states space, we

should supply the intelligence that theControl is the dynamic component, while the

Image is passive. This leads to an efficient means of generating the transition system.

3.5.1 Generating States of SSI

One way of constructing the model is to compute the product automaton from the

component parts whose specifications are given. For the present model this would im-

mediately run into trouble because theImage component really has2|D| states—the

restriction is only applied at the outermost level. Since there is no communication

between any of theImage components we can improve the na¨ıve method consider-

ably by applying a smaller restriction (smaller than\L) at each step in constructing

(((Control | I1)\L1 | I2)\L2 | · · ·)\Ln. But this will not help in general either as it

gives rise to intermediate representations which may be far too large to handle because

the smaller restrictions (setsL1, L2, etc.) permit more behaviour than is intrinsic to the

model.

Chapter 3. Modelling Solid State Interlocking 68

*Q02 cr
P1 ∈ N {T ac1 , T ab2 } ⊆ F

(N,S, F) ; (N,S ∪ {R02}, F − {T ca1 , T
ba
2 })

*Q02 cn
P1 ∈ N {T ac1 , T

bc
1 , T

cb
1 , T

ab
2 } ⊆ F

(N,S, F) ; (N − {P1}, S ∪ {R02}, F − {T ca1 , T
ba
2 })

R02 ∈ S
(N,S, F) ; (N,S, F ∪ {T ca1 })

T ca1 ∈ F
(N,S, F) ; (N,S, F ∪ {T ba2 })

(N,S, F) ; (N,S − {R}, F)

Figure 3.6: Transition rules forPRRandFOPdata

Instead, a program is developed to generate the safety critical states which is based

directly on a simple transitional semantics (formally justified later in Section 4.3). We

discard the transition information since our interest is not currently in the structure of

the automaton induced by the rules in the Geographic Data, but in its states. These are

then checked against the invariant, suitably encoded.

Semantics The states of the machine are represented by three sets(N,S, F), where

N ⊆ P is the collection of points that are controllednormal, S ⊆ R is the collection

of routes that areset, andF ⊆ U is the collection of sub-routes that arefree. Each rule

in the route request and sub-route release data defines a transition between the set of

states satisfying the test in the rule, to a new set of states resulting from the assignments

in the rule’s command. This unlabelled transition relation is represented by; , and

is defined by interpreting thePRRandFOPdata as per the examples in Figure 3.6.

There will generally be several rules for each panel route request due to the dis-

junctive test on points. The last of the rules in Figure 3.6 specifies that routes may be

cancelled unconditionally at any time. Track circuits have been removed from consid-

eration from the system, as in Section 3.4, so they do not appear in the state or in the

sub-route release rules. Also, if a rule does not apply in some state then no action is

taken—because if a rule fails in SSI, the image of the railway goes unmodified.

Compilation The PRR andFOP files have to be read and the data compiled into

some suitable internal representation. During parsing there is an opportunity to carry

out some syntactic analysis on the data. For example, by exploiting the naming con-

ventions employed in the identity files it is possible to check that:

• the points command in the conclusion of a route request rule corresponds to the

points tested in the condition;

Chapter 3. Modelling Solid State Interlocking 69

• the track circuit tested in a sub-route release rule corresponds to the sub-route

being freed;

• that the sub-routes appearing in thePFM data occur in opposing pairs (there are

exceptions where tracks are unidirectional) over the same track circuit;

and so on. One can also find sub-route ‘chains’ in theFOPdata: each rule should test

the immediately preceding sub-route(s), unless it is the rule for the first sub-route in

which case it should test the route variable(s). Themaximalchains—roughly speaking,

the closure of the ‘chain’ relation—in theFOPdata should correspond to the sub-routes

locked in thePRRdata (in some order). While these syntactic checks can remove many

typographic errors, they do not help the behavioural analysis except in so far as we can

assume data submitted for behavioural analysis pass such tests. (It is worth noting that

deliberate errors in the FORESTLOOPdata [8, see page 215] received from British Rail

did not even pass this syntactic analysis.)

Data Structures Boolean vectors are a natural, compact representation for the states

of the SSI. Given the right programming language, functions such as complement and

bit-wise “and” and “or” may be implemented highly efficiently. Each state is therefore

represented by a Boolean vectorv of fixed lengthd = |D−T |. Given a fixed ordering

onP] R] U one can representDj by the vectordj, also of lengthd, having all but

the jth bit clear. The interpretation is that if thejth bit is set in statev the variable

represented bydj is in the statenormal, setor free, depending on the partition (P ,R
or U) to which it belongs.

The finite set operations appearing in the transition rules, like member, union, and

subset, are implemented in logical operations lifted to Boolean vectors, taking equality

on Boolean vectors to be primitive—e.g.the equality on the underlying (implementa-

tion) type. Set difference,V −X, is encoded asx · v, andDj ∈ V asdj · v = dj, for

example. (Dot product represents bit-wise “and”,x represents ones complement, and

we use juxtaposition to represent “or”.) Then a fast data structure is needed to hold

sets of states. Threaded binary trees, for the minimal overhead of two additional bits

for the threads (as well as the pointers to subtrees), offer a representation for which, in

the average case, insertion and deletion operations have logarithmic time complexity.

We use the natural ordering on the data (the order on the integers[0, 2d − 1]) and may

approached the average case complexity by randomly orderingP]R] U .

Algorithm Since the task is not that of building the transition graph, only that of

enumerating the states of SSI, the algorithm to generate the state space is brutally

simple. The transition rules define a function which takes a state to a set of states;

Chapter 3. Modelling Solid State Interlocking 70

the application of this function is therefore iterated over all (reachable) states of the

SSI. Starting from some set of (presumably safe) initial statesI0 (such as{0}) the first

iteration generates its immediate descendantsI1. Let I1 ← I1 − I0 be the generating

set on the next iteration, and updateI0 ← I1 ∪ I0 with the new states generated.

The process terminates when the generating set is empty, and in this way all states

reachable from the initial state(s) are generated. The time complexity depends on the

number of transition rules and on the number of reachable states of course; but the

space complexity of the algorithm, and indeed of railway interlockings in general, is

difficult to analyse formally as the precise relationship betweend, the number of rules,

and the number of reachable states is highly obscure (no useful measure has emerged

from the parameters and figures in Figure 3.7 at least).

The above method can be easily adapted to generate the transition graph, but then

memory requirements become seriously limiting because of the need to represent a

large number of transitions. The algorithm can also be extended to account for track

circuits, but then the state space, as already indicated, is exponential in their number.

But when track circuitsareadded to the state (and one is not interested in constructing

the state space of the SSI) the programs discussed here may be readily integrated into

a simulation environment for the purpose of testing the interlocking design.

3.5.2 Checking Properties

Once the states of the model have been enumerated, the global safety analysis can

proceed since it is required only to verify that each state satisfies the given safety

property. For instance, for router over sub-routesa, b andc, RT(r, [a, b, c]) is satisfied

by a state(N,S, F) if r ∈ S, or if {a, b, c} ⊆ F . This may be expressed as a disjunctive

test on the Boolean vectorv representing the state:r · v = 0 or (abc) · v = (abc),

for example. Generally, sinceF is a predicate on states it is necessary to checkF(v) is

true for each reachable statev.

Results WEST is a very small SSI and can be constructed and analysed by the meth-

ods indicated above in a matter of seconds. THORNTON JN. (see page 216) is obviously

more complex, having six sets of points and twice as many rules. The table in Fig-

ure 3.7 summarises the results of the experiment, though timings are only approximate

(for a Sun4 workstation). In conducting these experiments numerous typographic er-

rors in the data were exposed by the syntactic analysis; only one (unseeded) semantic

error passed through to the verification stage before being revealed.

The strategy of constructing the model before trying the verification step is not

optimal (just easier to describe). Instead, the two programs are combined so that at

each iteration of the generation algorithm the generating set is immediately checked

Chapter 3. Modelling Solid State Interlocking 71

INTERLOCKING (P ,R,U) (T) Size Genesis Analysis

WEST (3,10,22) (8) 5,072 8 s 1 s

EAST-WEST (4,14,32) (12) 165,856 17 m 56 s

FORESTLOOP (4,16,32) (12) 695,552 2 h 50 m 6 m

THORNTON JN. (6,16,40) (14) 1,373,532 7 h 40 m 22 m

Figure 3.7: Results of Proof by Program

for errors. MX can be checked as each new state is added to the graph. Seeding

the data with errors it was found that they were always revealed within the first few

iterations of the program. Nevertheless, to verify that there areno errors one has to

examine the entire state space, and this quickly becomes infeasible.

3.6 Summary

In this chapter a CCS model of Solid State Interlocking has been developed to focus on

properties of Geographic Data, particularly the route locking data in thePRR, PFM,

andFOP data files. The basic model in Section 3.2 was defined by translating the

Geographic Data into CCS—this approach fixes the semantics of the language (or,

equivalently, the behaviour attributed to the SSI generic software) by the translation

mechanism. The execution model taken selects a single rule for evaluation in each

minor cycle. This differs from the Interlocking’s usual mode of operationvis-à-vis

sub-route release in that there are normally many more sub-route release rules than

minor cycles—thus several must be executed consecutively as a block within a single

cycle. Although the sub-route release data are processed in strict rotation over each

SSI major cycle, it is in general difficult to predict which sub-route release rules will

be executed in a particular minor cycle. We are therefore obliged to show that safety is

preserved by the execution of each sub-route release rule, and not each block.

This feature of the model can also be justified by observing that when compiling

the Geographic Data, the signalling engineer has considerable freedom in specifying

the order in which these data are listed (and hence executed). Safety, therefore,should

be independent of the execution order. Not only is this the case for theFOPdata, but

also theIPT andOPT data which have not been explained in detail. Since railway

signalling engineering is as well a matter of maximising the capacity of the network,

there will inevitably be many constraints that select a preferred order in addressing the

track-side functional modules. Our thesis, however, is that such considerations should

never compromise safety.

In any event, the SSI model is at least as general as the foregoing discussion sug-

gests it needs to be since the execution order has been disregarded entirely: this is not

Chapter 3. Modelling Solid State Interlocking 72

to say that the order is unimportant, merely that nothing has been assumed about it.

Clearly one can conceive of a more elaborate model of SSI, and capture much more

of the system’s behaviour described in Chapter 1, but one has to ask what is to be the

purpose served by the model? For this thesis the answer is that it serves the purpose

of checking safety propertiesof the data, and only that. The success of the model

therefore has to be judged by the validity of the supposition that properties of the data

are independent of SSI. Naturally, one must supply an operational interpretation (se-

mantics) for the Geographic Data Language before questions can be formulated about

the properties of ‘programs’ written in it, but this is precisely what the translation to

CCS achieves. Later, in Chapter 5, the Geographic Data will be interpreted in a differ-

ent way, by means of an embedding in higher-order logic, so the question of validity

arises again there.

In this chapter, however, the main assumption about safety properties of the data

is that they may be expressed as invariants of the internal state of the Interlocking.

The safety properties are expressed in the ‘state formula’F of Section 3.3;Φ =
νZ.([ctrl]ff ∨ F) ∧ [−ctrl]Z specifies that it should be invariant. Other ways of ex-

pressing this same property will emerge in subsequent chapters, but it is worth noting

that the change in Model #1 which introduced theobsD tags inImage is not strictly

necessary if one’s purpose is (only) to check properties such asF. Recall that this

embellishment was mandated by the\L restriction in defining(Control | Image)\L,

whereL = L(Image). This is the natural way to present the model since the intention,

clearly, is that only these two agents communicate via theL actions. But we can eas-

ily do without the restriction: the difference is that(Control | Image) can in principle

communicate with external agents throughgetD andputD (or their inverses), but this

introduces many bogus states to the model. However, we can instead ask the question

(Control | Image) |= νZ.(〈ctrl〉tt⇒ F) ∧ [−K]Z

whereK = {ctrl} ∪ {getD, getD, putD, putD | D ∈ D}. The[−K] modality instructs

the local model checker to ignore precisely the (bogus) transitions that arise from the

autonomous movements of these two agents. The above is thus equivalent to

(Control | Image)\L |= νZ.(〈ctrl〉tt⇒ F) ∧ [−ctrl]Z

with the choice of presentation being governed mainly by the efficiency of the model

checker’s representation of the model. Notice that in the reformulation (without the

\L) theobsD tags are no longer needed sinceF can then be expressed in terms of the

getD actions ofImage, and these do not cause(Control | Image) to change state.

While safety properties may generally be expressed as state predicates likeMX ,

PT andRT, it is clear that not all properties of the Geographic Data are independent

Chapter 3. Modelling Solid State Interlocking 73

of the execution order imposed. Temporal properties expressing eventualities may be

a case in point: if a route is cancelled the sub-routes will eventually be free. Well

this may in fact be independent of the execution order, but in the current model a

fairness assumption (to ensure that allFOPrules are executed, and that trains progress)

is needed for the proof. Moreover, if a time limit were to be specified then not only

does order matter, but a notion of major or minor cycle would be needed in the model

to provide a time reference. Presently the model lacks any notion of time—principally

because the data cannot express anything about clocks or cycles. Later, in Chapter 6,

we shall need to introduce a weak notion of time when looking at safety properties of

the inter-SSI communications protocol.

For the moment though we have enough difficulties dealing with the invariance

proof we have assigned ourselves. Using the model checking facilities of the Concur-

rency Workbench we were able to prove that WEST satisfiesF invariantly, and may

therefore conclude that the Geographic Data for this scheme are safe (with respect to

the properties encoded inF). This result was made possible by appealing to the jump-

ing trains axiom and the agent transformations described in Section 3.4 which were

highly effective in controlling the state space of the model. However, it is clear by the

evidence of the programming experiments described in Section 3.5 that this particu-

lar approach to mechanical verification will not scale beyond the simple example: the

number of reachable safe states is too great for direct analysis. For this reason global

model checking is not explored further as a means to formally verify safety properties

of Geographic Data. However, in the next chapter we shall briefly exercise the modal

µ-calculus local model checker on the present model: the inductive nature of the al-

gorithm reveals a simple proof method which relieves us of the need to represent the

state space of the model at all.

Chapter 4

Proving Safety Properties of
Geographic Data

With the basic model of SSI having been explained in the previous chapter, the focus

here will be the invarianceproof. Section 4.2 begins with a sketch of the proof tableau

constructed by the local model checking algorithm for the modalµ-calculus because

this reveals a simple inductive proof strategy. This leads, in Section 4.3, to a dis-

cussion of the fundamental concept underlying our technical definition of safety: the

mathematical principle of co-induction. Reinterpreting the model in this light in Sec-

tion 4.4, we then demonstrate some of the individual proof steps needed to verify that

the data are safe. In Section 4.5 we shall look at a number of methods by which these

mathematical arguments can be presented within the constraints of a formal logic—in

anticipation of Chapter 5 where a proof tool is devised to automate the safety analysis.

4.1 Introduction

Model #2 and the invariantΦ have been designed with the intention of providing a

fully automatic proof. In principle, all that is required to achieve full automation in a

proposed ‘data checker’ is to translate the Geographic Data into a formal language such

as CCS, express the safety properties in an expressive logic like the modalµ-calculus,

and pass the problem on to a sufficiently powerful model checker. In this enterprise the

difficulties that emerge are due to the huge size of the state spaces involved.

Yet the problem is not with the modelper se: while the representation can be

changed the model cannot readily be made ‘more abstract’ since a bit is a bit, and

every bit in the image of the railway is significant—at least, all those considered in the

PRRandFOPdata are significant. Nor does the problem lie with the safety property:

that a state satisfies the formulaF is easy to establish, and all the safety critical states

of the machine must satisfy this property however it is expressed. In fact, the problem

lies with theproof, and here there is much scope for better abstraction.

74

Chapter 4. Proving Safety Properties of Geographic Data 75

The starting point in Section 4.2 is to consider the tableau proof method for the

modalµ-calculus due to Stirling and Walker [91]. This is not mere diversion because

the structure of the proof tree that the algorithm constructs reveals a remarkable regu-

larity which derives from the structure of the logical formula as much as it does from

the structure of the model. It turns out that the enormous complexity of the full proof

tree can be folded into a rather smallpartial tableau: then a simple induction argument

leads to a highly efficient proof strategy which is linear in the number of rules in the

Geographic Data, and independent of the number of states of the model. The proof

that the Geographic Data are correct with respect to the formulaF is therefore reduced

to the problem of showing that the individual inductive steps are sound. That is to say,

we transfer the problem from that of showing that the model’s states are safe, to that of

showing that the transitionspreserve safety. This gives a much more direct proof that

the Geographic Data are safe.

The mathematical principle which underlies the invariance proof is that of co-

induction. In Section 4.3 we review some of the theory involved, and show how our

SSI model and the proof of safety are related to this notion. The model does not sur-

vive this analysis completely unscathed however: in setting up the proof as a proof by

co-induction it is much more convenient to discard theImage component entirely, rep-

resenting it instead by a variable (a state vectorS) on which theControl operates. This

does not change the model’s semantics, only its presentation. However, this change

does have an impact on the particular formula chosen to express the safety properties

identified in the previous chapter.

Section 4.4 draws out some of the details of the proofs needed to show that theFOP

andPRRdata are safe. It must be said that these details do not make very interesting

reading, but they are important to consider if we are to recover a fully mechanised proof

procedure. The proof schemas worked out here are the basis of thetacticsdeveloped

in Section 5.4, and expose a technical difficulty which suggests that the safety property

defined in Section 3.3 is too weak. Even if it were not too weak, it turns out we should

have difficulty proving thePRRdata correct with respect to that particular formula-

tion of the property since the tests in these rules do not instantiate enough of the key

variables. The difficulty is in proving the mutual exclusion property for track circuits

on the route where no sub-route over them is tested in the precondition of the rule: we

need to somehowinfer the status of the intermediate sub-routes from the status of those

that are tested in the rule. This problem arises because of the abstraction introduced

here in representing the image of the railway, a problem that does not appear when

model checking since then all states and state variables are properly instantiated.

Precisely how to strengthen the invariant will not be discussed until Chapter 5

where these proof ideas are formalised and implemented in the HOL theorem prover.

Chapter 4. Proving Safety Properties of Geographic Data 76

Chronologically, the details of Section 4.4 and the difficulty of proving the invariant

in the absence of complete information about the configuration of the internal state

predate the other material in this chapter [74]. The ‘correct’ formulation ofRT, the

component ofF which needs to be strengthened, only became apparent when the at-

tempt was made to formalise the proof steps in the theorem prover. Moreover, it was

only with later analysis that the precise rˆole co-induction plays in these arguments

became clear. Thus in presenting here a coherent logical progression of these ideas

concerning the safety analysis of Geographic Data, it has been necessary to conceal

their chronological progression. Such deception is sometimes essential in the interests

of making a clear presentation!

In Section 4.5 we round off the discussion of the invariance proof by demonstrating

that one can express the same model and invariant in a variety of formalisms, arriving

at a similar proof obligation in each case. In TLA the problem is tackled from a purely

logical standpoint, reducing the invariance proof to (what amounts to) Boolean sat-

isfiability. In UNITY one can capture the SSI model in a nondeterministic program

reminiscent of that of Model #1, and the proof turns out to be the same as that illus-

trated in Section 4.4. Thirdly, we set up the proof in the style of Floyd-Hoare logic,

and show that the sameverification conditionsarise here too. This convergence of

methods suggests that the choice of an appropriate environment in which to mechanise

the invariance will be largely governed by efficiency considerations.

4.2 Tableau Proofs in Local Model Checking

When modelled at the abstract level of the previous chapter, the Leamington Spa sig-

nalling scheme mentioned by Cribbens [24] has between248 and2230 states (T = 48,

U + R + P = 96 + 71 + 15). With the jumping trains abstraction of Section 3.4.1

one can guesstimate the reachable state space of the model by placing three to four

copies of THORNTON JN. in parallel (circa1021 states). Dealing with such inherent

computational complexity is the principal difficulty in formally verifying properties of

Geographic Data through model checking. It is nevertheless instructive to unfold a

small portion of the tableau that the local model checking algorithm constructs since

this illustrates how the verification conditions that need to be established are obtained.

This leads to a simple inductive method for proving the invariant.

4.2.1 Unfolding Proof Tableaux

We proceed here with the tagged Model #2 and adhere to the notation used by Stirl-

ing and Walker throughout in unfolding the proof tree [90, and Appendix B.2 for de-

tails of the algorithm]. The numbered paragraphs below correspond to the numbered

Chapter 4. Proving Safety Properties of Geographic Data 77

nodes in the displayed proof tree. LetI0 stand for the initial state ofImage, and

let Φ = νZ.([ctrl]ff ∨ F) ∧ [−ctrl]Z. Since the algorithm is sound and complete,

(Control | I0)\L |= Φ if and only if there exists a successful tableau with root sequent

(Control | I0)\L ` Φ. The computation begins:

1 (Control | I0)\L ` νZ.([ctrl]ff ∨ F) ∧ [−ctrl]Z
(Control | I0)\L ` U

(Control | I0)\L ` ([ctrl]ff ∨ F) ∧ [−ctrl]U
2 (Control | I0)\L ` [ctrl]ff ∨ F

(Control | I0)\L ` F
3 (Control | I0)\L ` [−ctrl]U

...
...

...

1 The first proof rule introduces a constantU def= νZ.([ctrl]ff ∨ F) ∧ [−ctrl]Z. This

constant is immediately unrolled, the rule replacing all (free) occurrences ofZ in the

formula byU , and the tree splits due to a conjunction. Both branches must be success-

ful if a successful tableau is to be found for the root sequent. The side condition to the

rule for unrolling the constant is that no node in the tree above should be labelled with

the same sequent; if there is such a node the constant is not unrolled, and the node is

declared a terminal.

2 In general, disjunctive goals introduce an element of choice in the proof tree; but

here, since(Control | I0)\L ctrl−→ , the left-hand disjunct inevitably leads to an unsuc-

cessful leaf. Essentially, the obligation at this point is to show thatI0 |= F. That I0

does or does not satisfyF is easy to ascertain since it is only necessary to examine

the immediate capabilities of this agent; ifI0 6|= F we might as well halt the algorithm

immediately since no successful tableau can exist.

3 There is considerable fanout here since the proof rule for the box modality insists

that every derivative of(Control | I0)\L must be considered, other than the ‘deadlock’

reached via ctrl−→ . Next actions due to tags in theImage component lead immediately

to a node labelled with the same sequent as1. Such nodes are successful terminals

and need not be considered further. However, the algorithm must also consider the

next actions of theControl, and there is one branch corresponding to each panel route

request and sub-route release rule in the data (as well as those from theInput and

Cancel components). Just one derivative is considered here, corresponding to the sub-

route release ruleT ca1 f if T1 c , R02 xs \ . .

U1CA = getT1
(c).U1CA1 + getT1

(o).Control

U1CA1 = getR02
(xs).U1CA2 + getR02

(s).Control

U1CA2 = putT ca1
(f).Control

Chapter 4. Proving Safety Properties of Geographic Data 78

Without loss of generality we may supposeI0 |= 〈obsT1
(c)〉tt; otherwise this branch

in the proof tree leads immediately to a node labelled with the sequent1.

3 (Control | I0)\L ` [−ctrl]U
(U1CA1 | I0)\L ` U

(U1CA1 | I0)\L ` ([ctrl]ff ∨ F) ∧ [−ctrl]U
4 (U1CA1 | I0)\L ` [ctrl]ff ∨ F

(U1CA1 | I0)\L ` [ctrl]ff
5 (U1CA1 | I0)\L ` [−ctrl]U

...

4,6 The situation here is similar to that in2 except that both the possible subtrees

are successful (assumingI0 |= F). One can choose the branch in the proof that in-

volves the least computation—in this case the left-hand subtree since the agent cannot

immediately perform actrl action. This terminal is successful.

5 As with 3, any next action due to an autonomous move inImage leads directly to

a successful terminal (labelled with the same sequent as3). Otherwise there are fewer

subtrees to examine asU1CA1 unfolds:

5 (getR02
(xs).U1CA2 + getR02

(s).Control | I0)\L ` [−ctrl]U
(U1CA2 | I0)\L ` U

(U1CA2 | I0)\L ` ([ctrl]ff ∨ F) ∧ [−ctrl]U
6 (U1CA2 | I0)\L ` [ctrl]ff ∨ F

(U1CA2 | I0)\L ` [ctrl]ff
7 (U1CA2 | I0)\L ` [−ctrl]U

(Control | I1)\L ` U

This derivation assumesI0 |= 〈obsR02
(xs)〉tt since, for the other case, the node labelled

(Control | I0)\L ` U is a successful terminal as it is appears also at1.

7 Here the situation is analogous to1 except now theImage has (or at least may

have) changed in respect of the variableT ca1 . If I0 andI1 are identical this is a success-

ful terminal, and this branch of the proof tree (from3) terminates with all its leaves

successful according to the algorithm’s termination criteria. On the other hand, if these

two agents are different, the tableau continues to unfold:

7 putT ca1
(f).Control ` [−ctrl]U

(Control | I1)\L ` U
(Control | I1)\L ` ([ctrl]ff ∨ F) ∧ [−ctrl]U

8 (Control | I1)\L ` [ctrl]ff ∨ F
(Control | I1)\L ` F

(Control | I1)\L ` [−ctrl]U

...
...

...

In order to make the model checking slightly more efficient we can exploitconfluence

in the tableau: that is, identifying nodes under the right-hand subtree from7, and nodes

labelled with the same sequents under the other branches from3. This optimisation

does not affect the soundness of the algorithm [19].

Chapter 4. Proving Safety Properties of Geographic Data 79

8 The situation here is similar to that at2: this is a control state, so the safety property

F must be verified. Again, this is an easy check whetherI1 |= F, whereI1 corresponds

to I0, except in respect of the variableT ca1 .

♦

There is no need to proceed further with the tableau. It is clear, intuitively at least,

that the algorithm sketched above explores all states of the model. This arises from the

box modality,[−ctrl], which specifies that all states, other than those reached via the

ctrl action, must satisfy the invariant—the model checker duly examines them all. As

indicated in Section 3.4.3, this is not a weakness particular to the local model checking

algorithm: it is a general problem where such a simple invariant entails what amounts

to an exhaustive search of all the system’s states. Neither Cleaveland’s more efficient

algorithm [19], nor the iterative method of Clarket al.[18], would fare any better here.

Nevertheless, the structure of the proof tree sketched above reveals a simple in-

duction principle: ifI0 is an arbitrary initial state andI0 |= F impliesI1 |= F, then

wheneverI0 is instantiated to a particular (initial) state we can deduce that the suc-

cessorI1 |= F whenI0 does so. The proposition asserts that the sub-route release rule

for T ca1 (say) preserves the invariance ofF, and this can be used to prune the proof tree.

We now make this idea more precise.

4.2.2 Partial Tableaux

Definition 4.1 Let Φ def= νZ.([ctrl]ff ∨ F) ∧ [−ctrl]Z, and define(Control | Image)\L
as in Model #2. LetI represent an arbitrary configuration ofImage. A partial tableau

is a proof tree for(Control | I)\L ` Φ whose terminals are labelled by one of

◦ (Control | I)\L ` F

◦ (Control | Ij)\L ` U , for someIj and whereU def= Φ

◦ (Control′ | I)\L ` [ctrl]ff , for someControl′ 6≡ Control

and where there is exactly one node(Control | I ′)\L ` U , for someI ′, on the branch

from the root sequent to any terminal labelled(Control | Ij)\L ` U . 2

Call Ij 6≡ I a one-step successorof the initial stateI if (Control | Ij)\L ` U is

such a teminal in the partial tableauT. Due to the shape of the invariantΦ, the partial

tableau for(Control | I)\L ` Φ has the overall structure shown in Figure 4.1. A

partial tableau is constructed by the proof rules for the local model checking algorithm

of Stirling and Walker, but since the initial stateI is uninstantiated we observe that

whenever the box rule is applied to nodes like(Control′ | I ′)\L ` [−ctrl]U this will

cause maximal fanout in the tableau since, in particular, all next transitions ofControl′

Chapter 4. Proving Safety Properties of Geographic Data 80

(Control | I)\L ` νZ.([ctrl]ff ∨ F) ∧ [−ctrl]Z

(Control | I)\L ` U
���������������)

�
�
�
�
�
�
�
�
�
�
�
��

@
@
@
@
@
@
@
@
@
@
@
@R

B1

Bn

JJ

JJ

JJ

JJ

��

��

��

��

BB

BB

BB

BB

.

(Control | I)\L ` F

(Control | I1)\L ` U (Control | In)\L ` U

Figure 4.1: A Partial tableau

must be recorded. Clearly this gives rise ton branches from(Control | I)\L ` U that

terminate with nodes of the form(Control | Ij)\L ` U , for Ij 6≡ I , wheren is the

fanout of theControl component of the model as defined in Section 3.2.2.

Now given a partial tableauT we can associate abranch predicateBj with each

branch that leads to a terminal of the form(Control | Ij)\L ` U . WhenIj ≡ I we let

Bj = tt, otherwiseBj is deduced by observing the actions performed (by theImage

component) in arriving at the terminal(Control | Ij)\L ` U .

Definition 4.2 Given a partial tableauT, a branch predicateBj has the following

syntax, wheregetDi(vi), putDi(vi) ∈ L(Image):

Bj
def= (F ∧Gj)⇒ Pj(F)

Gj
def=

∧
i

〈getDi(vi)〉tt, i ≥ 0

Pj(Φ) def= [putD1
(v1)][· · ·][putDn(vn)]Φ, n ≥ 1

Note thatGj = tt wheni = 0. Let BT be the set of branch predicates associated with

T. A partial tableau isexhaustiveiff I |= Bj for all Bj ∈ BT. 2

Lemma 4.1 Giver a partial tableauT, andBj ∈ BT:

1. (Control | I)\L ` F iff I |= F

2. I |= Bj iff I |= F ∧Gj impliesIj |= F

for (Control | Ij)\L ` U a terminal inT. 2

Chapter 4. Proving Safety Properties of Geographic Data 81

Proof The first part follows directly from the definition ofF, and from the proof rules

for the local model checking algorithm. For the second part we use Definition 4.2 and

the definition of satisfaction for Hennessey-Milner logic. ForBj ∈ BT:

I |= Bj

iff I |= (F ∧Gj)⇒ Pj(F)
iff I |= (F ∧Gj) impliesI |= Pj(F)

SinceRegD(u)
putD(v)−−−−→ RegD(v) in any state holdingu, it follows thatI |= Pj(F) if

and only ifIj |= F.

Proposition 4.2 If there exists an exhaustive partial tableau for(Control | I)\L ` Φ,

and if I0 |= F for some initial configuration ofImage, then(Control | I0)\L |= Φ. 2

Proof (Control | I0)\L |= Φ if and only if we can construct a successful tableau for

(Control | I0)\L ` Φ using the proof rules for the local model checking algorithm.

We show that this is always possible if there exists an exhaustive partial tableau for

(Control | I)\L ` Φ, as long asI0 |= F.

Consider(Control | I0)\L ` Φ, and unfold the proof tree for this goal in a breadth

first manner until all one-step successors ofI0 have been encountered. Terminals of

this (partially constructed) proof tree will have one of the forms:

(1) (Control′ | I0)\L ` [ctrl]ff for Control′ 6≡ Control, or

(2) (Control | I0)\L ` F, or

(3) (Control | I1
k)\L ` U

whereI1
k is a one-step successor ofI0. The only other possibility, namely nodes like

(Control′ | I ′)\L ` F for someI ′ andControl′ 6≡ Control, can be discounted since we

need only show that there exists a successful tableau for the root sequent.

Nodes such as (1) are successful terminals by the local model checking criteria

since the agent cannot immediately perform actrl−→ action. Nodes such as (2) are

the roots of successful subtrees by Lemma 4.1.1, sinceI0 |= F by hypothesis. For

nodes such as (3) there are two cases to consider. IfI1
k ≡ I0 then this is a successful

terminal since then node(Control | I0)\L ` U already appears at a higher level on the

same branch in the proof tree under construction. OtherwiseI1
k 6≡ I0 and so we must

continue to unfold the proof tree from all such nodes since these arenot terminals by

the local model checking criteria.

Take some such(Control | I1
k)\L ` U , and unfold the proof tree in a breadth first

manner until all one-step successors ofI1
k have been encountered. Terminals in this

subtree will have one of the forms:

Chapter 4. Proving Safety Properties of Geographic Data 82

(4) (Control′ | I1
k)\L ` [ctrl]ff for Control′ 6≡ Control, or

(5) (Control | I1
k)\L ` F, or

(6) (Control | I2
k)\L ` U

whereI2
k is a one-step successor ofI1

k . Nodes such as (5) are successful terminals for

the same reason as (1) above. To see that (4) is the root of a successful subtree it is

enough, by Lemma 4.1.1, to show thatI1
k |= F. Given thatI1

k is a one-step successor

of I0 we can findBk such thatBk = (F ∧Gk)⇒ Pk(F), andI0 |= Gk. Now suppose

¬(I0 |= F ∧Gk implies I0 |= Pk(F)) (†)
(that is to sayI0 6|= Bk, using Lemma 4.1.2). Well, since there exists an exhaustive

partial tableau for(Control | I)\L ` Φ then, in particular,I |= Bk with Bk ∈ BT,

and this contradicts (†) above. ThusI0 |= F ∧ Gk impliesI0 |= Pk(F); sinceI0 |= F

it follows thatI0 |= F ∧ Gk and,modus ponens, I0 |= Pk(F). The conclusionI1
k |= F

therefore follows by the definition ofImage.

Before concluding that(Control | I1
k)\L ` U is the root of a successful subtree we

have to show that nodes such as (6) also have only successful terminals according to

the local model checking criteria. But given that the model(Control | I)\L is finite

state we can repeat the forgoing argument (withI1
k playing the rôle of I0, etc.) along

every branch of the tree, and so conclude that all successorsInk of I0, for some finiten,

satisfy the safety propertyF. Thus(Control | I0)\L ` Φ, and soundness of the local

model checking algorithm guarantees(Control | I0)\L |= Φ as required.

Proposition 4.2 is useful since it indicates that we do not have to enumerate states

of the SSI in order to prove the invariant. It is enough, though perhaps still not easy,

to establish that if an arbitrary initial state satisfies the invariant, so do its immediate

successors. Then, given any initial state (or more generally, any set of initial states), if

the initial state satisfies the safety property this will be maintained through all future

evolution of the system because theControl permits only safe transitions. This is not to

insist that the initial state of the SSI satisfies our safety property, only that the ‘initial

state’ represent some reasonable state for the machine to be in.

The drawback, in using this result, is that in order to find the required lemmas we

have to go outside the proof system of the modalµ-calculus—though this does not

invalidate the mathematical argument of course.

4.3 Invariance & Co-induction

Safety properties are associated with greatest fixed points in the modalµ-calculus.

This was demonstrated in Larsen’s work on modal equations with recursion [54, 89].

Chapter 4. Proving Safety Properties of Geographic Data 83

An example, perhaps the simplest, is the equationZ
def= Φ ∧ [K]Z whereZ does not

appear inΦ. Larsen defines satisfaction,E |= Ψ, indirectly in terms of the (inductively

defined) semantics ofΨ—given as‖Ψ‖, the set of states in the model that have the

property. Larsen shows that the‖ · ‖ operator is monotonic, so maximal and minimal

solutions exist for such recursive modal equations. In particular, the greatest fixed point

of a functionF : P → P is the union of all pre-fixed points

gfpF =
⋃
{E ⊆ P | E ⊆ F(E)} (∗)

whereP , here, is the universal set of (CCS) processes, or states. (The setE is apre-

fixed pointof F iff E ⊆ F(E).) Stirling [89] has extended these ideas to define the

semantics of the modalµ-calculus in which least and greatest fixed points may become

arbitrarily entangled (the pertinent details are sketched in Appendix B.2). But in our

simple example whereZ does not appear inΦ, F is the function

F(E) = ‖Φ ∧ [K]Z‖
= ‖Φ‖ ∩ ‖ [K] ‖E
= ‖Φ‖ ∩ {E ∈ P | if E a−→ E′ anda ∈ K, thenE′ ∈ E}

which is easily seen to be monotonic because of the intersection with‖Φ‖ which is

a fixed set (of states).‖Φ‖ is interpreted as the set of states that satisfyΦ; the other

component is a set of statesE such that ifE performs an actiona ∈ K, the derivative

E′ is contained inE.

Now the greatest fixed point ofF is writtenνZ.Φ ∧ [K]Z in the modalµ-calculus,

and the right-hand side of (∗) gives the meaning of this temporal formula:⋃
{E ⊆ P | E ⊆ ‖Φ‖ ∩ {E ∈ P | if E a−→ E′ anda ∈ K, thenE′ ∈ E}}

That is to say, it is the union of the setsE ⊆ P such thatE ⊆ ‖Φ‖, andE is a subset of

{E ∈ P | if E a−→ E′ anda ∈ K, thenE′ ∈ E}. To establish that some set of states

Q is a pre-fixed point ofF we showQ ⊆ F(Q). This is the case if one can prove that

E ∈ Q impliesE ∈ F(Q)—in other words we proveE ∈ Q implies

• E |= Φ, and

• wheneverE a−→ E′ with a ∈ K, E′ ∈ Q.

This is an instance ofco-induction.

In a motivating article [65] Milner and Tofte exemplify the use of co-induction

as a device for reasoning about non-well-founded sets. They prove the consistency

between the static and the dynamic semantics of a simple functional language with

recursion, co-induction being used to show that recursive functions are well typed.

Paraphrasing [65], the principle may be stated thus:

Chapter 4. Proving Safety Properties of Geographic Data 84

If U is any set,F : 2U → 2U is a monotonic function, andR is the greatest

fixed point ofF , thenQ ⊆ F(Q) impliesQ ⊆ R for anyQ ⊆ U .

TakingU to be the set of SSI images of the railway, we wish to show that{I ∈ U |
I |= F} is contained in the greatest fixed point of a certain monotonic operator (C, say)

which is induced by our encoding of the Geographic Data. This is themeaningof

the safety property expressed in the temporal formulaνZ.([ctrl]ff ∨ F) ∧ [−ctrl]Z. In

pursuing this idea we discard theImage component of the CCS model, replacing it

instead by ann-tuple,S, of appropriate variables to represent the image of the railway.

States of the model are henceforth writtenControl(S). We could refer the components

of S asS.T1, etc., but generally prefer their usual names in the sequel.

Now, letC, C ′, Ci range over states ofControl, S, S ′, Si over 2n, and define a

new transition system,(M,L(Control), T), whereM = {C(S) | S ∈ 2n} and the

transition relationT is defined by the clauses:

i. C(S)
getD(v)−−−−→ C ′(S) & S.D = v if and only if

C
getD(v)−−−−→ C ′ I

getD(v)−−−−→ I

(C | I)\L τ−→ (C ′ | I)\L

ii. C(S)
putD(v)−−−−→ C ′(S[v/D]) if and only if

C
putD(v)−−−−→ C ′ I

putD(v)−−−−→ I ′

(C | I)\L τ−→ (C ′ | I ′)\L

iii. C(S) a−→ C ′(S) if and only if
C

a−→ C ′

(C | I)\L a−→ (C ′ | I)\L

where, in the last case,a ∈ L(Control) is any action other than agetD or a putD
action. M is much too large, representing as it does the space of all possible SSI

configuration rather than just the reachable ones(from some initial set), but our in-

terest here is in the coarser transition relation,; ⊆ M ×M (implicitly defined in

Section 3.5). This is defined as follows:Control(S) ; Control(S ′) iff there exist

a0, a1, . . . , an ∈ L(Control) and statesC1(S1), . . . , Cn(Sn) ∈ M such that

Control(S) a0−→ C1(S1) a1−→ · · ·Cn(Sn) an−→ Control(S ′)

with {C1, . . . , Cn} |= [ctrl]ff (i.e., none are control points). The operatorC alluded to

earlier is therefore defined by

C(S) def= {S ′ | ∃S ∈ S.Control(S) ; Control(S ′)}

whereS ⊆ 2n.

Finally recall that, as a modal formula,F was defined in terms of theobsD tags

in Image. In order for the assertionS |= F to be meaningful in the new settingF

must be redefined accordingly. But this is easy for ifS representsImage, in some

configuration, thenImage |= 〈obsD(v)〉tt if and only ifS.D = v. Returning, therefore,

Chapter 4. Proving Safety Properties of Geographic Data 85

to the induction principle given earlier, we defineQ = {S ∈ 2n | S |= F}. Then

to showQ is contained in the greatest fixed point ofC we may proveQ ⊆ C(Q).

It suffices to show instead thatS |= F ⇒ C(S) |= F (since then the sets are equal).

Notice that we do not insist all ofQ is reachable from any given initial state inQ; the

proof demonstrates only that if the machine is in a stateS ∈ Q, it will not leaveQ.

4.4 Checking Interlocking Data

There are many ways in which to checkS |= F implies C(S) |= F mechanically (cf.

Section 4.5). The strategies developed below are tailored to the different classes of

Geographic Data, and inform the search for proofs in Chapter 5. These sketches il-

lustrate clearly howMX , PT, andRT combine to guarantee safety. We shall find

it convenient to use some elementary properties of these invariants—principally that

unlockingsub-routes does not affect the truth ofMX or PT:

Lemma 4.3 For all sub-routesu, and routesr

1. S |= MX ∧ PT⇒ S[f /u] |= MX ∧ PT

2. S |= F⇒ S[xs /r] |= F

whenF = MX ∧ PT ∧ RT. 2

Proof This is straightforward given the definitions in Section 3.3.3, and the interpret-

ation thatImage |= 〈obsD(v)〉tt iff S.D = v. It is worth noting thatS |= MX [a, b]

iff S.a = f ∨ S.b = f —that is, if and only if¬(S.a = l ∧ S.b = l); the second

equivalence here is valid because sub-routesare propositional variables.

4.4.1 Sub-route Release Data

To see how to establish that the invariant holds for the sub-route release rules we shall

consider two typical examples, taking the data forT ca1 andT ba2 in WEST. These are

the components of the routeR02 in Figure 2.1. The demonstration only sketches the

essential details of the proof as it might proceed by hand: even these steps are laborious,

so mechanised support is essential to improve confidence in the results. The uniformity

in the sub-route release rules means they can all be verified in much the same way.

Proposition 4.4 The sub-route release rules forT ca1 andT ba2

T ca1 f if T1 c , R02 xs \ .
T ba2 f if T2 c , T ca1 f \ .

preserve the invariance ofF = MX ∧ PT ∧ RT. 2

Chapter 4. Proving Safety Properties of Geographic Data 86

Proof Given stateS we exhibit the derivation of successor stateS ′ from the definition

of theControl. It is required to show thatS |= F impliesS ′ |= F. Lemma 4.3 is used to

reduce this to showingS |= F impliesS ′ |= RT. The values of the variables deduced

in the derivation ofS ′ from S are needed to complete the crucial steps.

From the definition of theControl we arrive at the following sequence of transitions

leading from a stateS to successor statesS1 andS2:

Control(S) = getT1
(c).(getR02

(xs).putT ca1
(f).Control(S1) +

getR02
(s).Control(S))

+ getT1
(o).(getR02

(xs).Control(S) + getR02
(s).Control(S)) (i)

Control(S) = getT2
(c).(getT ca1

(f).putT ba2
(f).Control(S2) +

getT ca1
(l).Control(S))

+ getT2
(o).(getT ca1

(f).Control(S) + getT ca1
(l).Control(S)) (ii)

HereS1 = S[f /T ca1] andS2 = S[f /T ba2], and the obligation is to show thatS1 and

S2 both satisfyF as long asS |= F. It follows from Lemma 4.3 that the successor

states satisfyMX andPT as long as the initial state satisfiesF. For theRT component,

inspection of the definition (on page 60) reveals that the updated variables appear in

only one conjunct; the others are proven sinceS |= Fi ⇒ S ′ |= Fi is always true if

none of the variables on whichS andS ′ differ appear inFi. The only term to consider

is that defining the invariant forR02:

S |= R02=s ⇒ T ca1 = l ∧ T ba2 = l {sinceS |= RT}
S1 |= R02 = xs ∧ T ca1 = f {from (i) andS1 = S[f /T ca1]}

The conclusion thatS1 |= RT follows immediately since the implication is always true

when the antecedent is false.

The same conjunct is involved in updatingS to S2, but now there are two cases to

consider which depend on whether or notR02 is set inS. Firstly:

S |= R02 = s {by hypothesis}
S |= R02=s ⇒ T ca1 = l ∧ T ba2 = l {sinceS |= RT}

S |= T ca1 = l ∧ T ba2 = l {modus ponens}
but from (ii) it is clear that if the system evolves toS2 thenS |= T ca1 = f , which

contradictsS |= R02 = s . Proceeding to the second case:

S |= R02 = xs {by hypothesis}
S2 |= R02 = xs ∧ T ca1 = f ∧ T ba2 = f {from (ii) andS2 = S[f /T ba2]}

but in that caseS2 |= R02=s ⇒ T ca1 = l ∧ T ba2 = l now follows immediately since

S2 |= R02 = xs whenS |= R02 = xs . Hence,S2 |= RT if S |= RT.

Chapter 4. Proving Safety Properties of Geographic Data 87

To see how errors might be identified suppose that in (ii), for example, the variable

T ac1 was examined instead ofT ca1 . Case analysis would fail to find the contradiction

whenR02 = s , so:

S |= R02 = s ∧ T ca1 = l ∧ T ba2 = l {as before}

but clearlyS2 6|= R02=s ⇒ T ca1 = l ∧ T ba2 = l , sinceS2 |= T ba2 = f . In this case we

therefore arrive at an assignment to the variables which, by (ii), leads to a successor

state where the safety property does not hold. Errors in the conclusions of the rules

may be similarly identified.

4.4.2 Route Request Data

It slightly more difficult to verify properties of the route request data since here several

variables become instantiated by the assignments in the rules. The focus onR02 is

maintained although this route does not bring to light all the issues (see Section 4.4.3,

and Section 7.2 where overlaps are discussed).

Proposition 4.5 The route request rule forR02

*Q02 if P1 crf , T ac1 f , T ab2 f

then R02 s , P1 cr , T ca1 l , T ba2 l \ .

preserves the invariance ofF = MX ∧ PT ∧RT. 2

Proof The structure of the proof is much as that for Proposition 4.4. We show that if

S |= F thenS ′ |= F. SinceF is conjunctive, the proof breaks down into a number of

components,S |= F⇒ S ′ |= Fi, each of which can be discharged independently.

From the definition of theControl (see Figure 3.4) it is clear that the following

sequence of transitions leads from a stateS to the successor stateS ′:

Control(S) = set*Q02 .(getP1
(cr).Q021(S) + getP1

(cn).Q022(S)) (iii)

Q022(S) = getT bc1
(f).Q023(S) + getT bc1

(l).Control(S) (iv)

Q023(S) = getT cb1
(f).Q021(S) + getT cb1

(l).Control(S) (v)

Q021(S) = getT ac1
(f).Q024(S) + getT ac1

(l).Control(S) (vi)

Q024(S) = getT ab2
(f).C02(S) + getT ab2

(l).Control(S) (vii)

C02(S) = putR02
(s).putP1

(cr).putT ca1
(l).putT ba2

(l).Control(S ′) (viii)

whereS ′ = S[s/R02, cr /P1, l /T
ca
1 , l /T

ba
2]. The main difficulty here is in demon-

strating thatMX is invariant. Two terms in the conjunct require detailed assessment,

corresponding to the mutual exclusion property forT1 andT2 respectively. Proceeding

with the latter case:

Chapter 4. Proving Safety Properties of Geographic Data 88

S |= MX [T ab2 , T
ba
2] {sinceS |= MX }

S |= MX [T ab2 , T
ba
2] ∧ T ab2 = f {from (vii)}

S ′ |= T ba2 = l ∧ T ab2 = f {asS ′ = S[s/R02, cr /P1, l /T
ca
1 , l /T ba2]}

The conclusionS ′ |= MX [T ab2 , T
ba
2] follows immediately from the definition ofMX .

More difficult is the case where the sub-route traverses a points track section:

S |= MX [T ac1 , T
bc
1 , T

ca
1 , T

cb
1] {sinceS |= MX }

but now there are two cases to consider for from (iii) eitherS |= P1 = cr orS |= P1 =
cn . Proceeding with the latter:

S |= P1 = cn {by hypothesis}
S |= T cb1 = f ∧ T bc1 = f {from (v) and (iv)}

while on the other hand:

S |= P1 = cr {by hypothesis}

S |= T bc1 = l ∨ T cb1 = l ⇒ P1 = cn {sinceS |= PT}
S |= T cb1 = f ∧ T bc1 = f {modus tollens}

Thus, in either case:

S |= T ac1 = f ∧ T cb1 = f ∧ T bc1 = f {from (vi)}

S ′ |= MX [T ac1 , T
bc
1 , T

ca
1 , T

cb
1] {asS ′ = S[s/R02, cr /P1, l /T

ca
1 , l /T ba2]}

It follows therefore thatS ′ |= MX if S |= MX . It also follows, independently of

S |= RT, that the route property forR02 is invariant since plainly:

S[s/R02, cr /P1, l /T
ca
1 , l /T ba2] |= R02=s ⇒ T ca1 = l ∧ T ba2 = l .

Finally the two safety properties for the pointsP1 have to be checked since they are

commanded to the reverse position by the rule. For the reverse direction:

S ′ |= P1 = cr ∧ T ca1 = l {by definition ofS ′}
S ′ |= T ac1 = l ∨ T ca1 = l ⇒ P1 = cr {for any assignment toT ac1 }

and for the normal direction of these points:

S |= T bc1 = f ∧ T cb1 = f {case analysis as above}
S |= T bc1 = l ∨ T cb1 = l ⇒ P1 = cn {sinceS |= PT}

The antecedent remains false inS ′ so the conclusionS ′ |= PT follows. Bringing the

conjunctive parts together we can conclude therefore thatS |= F⇒ S ′ |= F.

In the above we usedmodus tollensto deduceS |= T cb1 = f ∧T bc1 = f assuming, in

effect, thatP1 = cn ⇒ P1 6= cr . This, in turn, assumes that these SSI control variables

are binary (which they are not). However, nothing in the model depends upon this

assumption. Using the alternative characterisation ofPT mentioned in Section 3.3.1

obviates the need to assume in the proof thatP1 = cn ⇔ P1 6= cr . Reformulating

Chapter 4. Proving Safety Properties of Geographic Data 89

the safety property appropriately we can instead use the hypothesisS |= P1 = cr ⇒
T cb1 = f ∧ T bc1 = f to arrive at the same conclusion. With the change toPT a slightly

longer sequence of deductions is needed to showS ′ |= PT. In detail:

S |= P1 = cr ⇒ T cb1 = f ∧ T bc1 = f {sinceS |= PT}
S |= P1 = cr {by hypothesis}
S |= T cb1 = f ∧ T bc1 = f {modus ponens}
S ′ |= P1 = cr ∧ T cb1 = f ∧ T bc1 = f {by definition ofS ′}
S ′ |= P1 = cr ⇒ T cb1 = f ∧ T bc1 = f {algebra}

On the other hand, the points may initially have been normal:

S |= P1 = cn {by hypothesis}
S |= T cb1 = f ∧ T bc1 = f {by (iv) and (v)}
S ′ |= P1 = cr ∧ T cb1 = f ∧ T bc1 = f {by definition ofS ′}
S ′ |= P1 = cr ⇒ T cb1 = f ∧ T bc1 = f {algebra}

Finally for the points normal property:

S |= P1 = cn ⇒ T ac1 = f ∧ T ca1 = f {sinceS |= PT}
S ′ |= P1 = cn ⇒ T ac1 = f ∧ T ca1 = f {sinceS ′ |= T ca1 = l ∧ P1 = cr }

This illustrates that the alternative characterisation of the safety property introduces

no additional difficulty to the proof. Indeed, the proof simplified by the assumption

S |= P1 = cr ⇒ T cb1 = f ∧ T bc1 = f , so it is useful to provebothcharacterisations of

PT. However, some properties are unprovable with the current infrastructure.

4.4.3 Unprovable Assertions

The uniformity exhibited by the sub-route release rules means that essentially the same

proof method can be employed to verify safety properties for all sub-route release data.

This degree of uniformity is not exhibited by the route request rules. For example, the

rule forR02 is in some sense fully specified since the opposing sub-routes to all those

along its length are tested in the precondition. This makes it easy to verifyMX for

each track section along the route. However, the rule forR2 is not completely specified

in this sense:

*Q2 if P2 crf , P3 cnf , T ac4 f , T ab7 f

then R2 s , P2 cr , P3 cn , T ca4 l , T ca6 l , T ba7 l \ .

The signalling principle here is that in checking for a route’s availability it is only

necessary to test the last conflicting sub-route on any opposing routes, together with

the opposing sub-route over the berth track section of anydirectly opposing routes.

To clarify, consider the routes depicted in Figure 4.2. For the routes fromS5 the last

Chapter 4. Proving Safety Properties of Geographic Data 90

b a

T4

c

L
L
L
L
L
LP2 c aT6

b �
�
�
�
�
�P3

b a

T2

b a

T7

hhh.................S2

hhh.................S4

hhh.................
S1

hhh.................
S5

Figure 4.2: RoutesR2 andR51 from the scheme plan for WEST

conflicting sub-route on opposing routesR2 andR4 is T ca6 ; for R51, the opposing sub-

route in the berth track section of the directly opposing route isT ba2 . Given that sub-

routes are released sequentially along a route, the intermediate sub-routes do not need

to be tested:T ac6 should always be free when its successor (T ac4) is free.

To see where the paucity of information provided by the tests in*Q2 leads to diffi-

culty in the proof, consider the steps involved in showing that theMX property is pre-

served by this rule. There are three track sections to look at in detail, hence three terms

in the invariant: MX [T ab7 , T
ba
7], MX [T ab4 , T

ac
4 , T

ba
4 , T

ca
4] and MX [T ab6 , T

ac
6 , T ba6 , T

ca
6].

The first two of these may be established just as in the proof sketched in the previ-

ous section; the latter is more problematic:

S |= MX [T ab6 , T
ac
6 , T ba6 , T

ca
6] {sinceS |= MX }

By a case analysis as in the proof of Proposition 4.5, sinceS |= P3 = cn orS |= P3 =

cr , we find that in either case

S |= T ab6 = f ∧ T ba6 = f

S |= MX [T ac6 , T
ca
6] {simplifying}

Now the next stateS ′ |= T ca6 = l , so to establishS ′ |= MX we must first show

S |= T ac6 = f . But it is difficult to be unequivocal about this since possibly

S |= MX ∧ T ca6 = f ∧ T ac6 = l (†)
leading to an unsafe state in which both these sub-routes are locked. One cannot pre-

clude this possibility from within the framework so far established. It is important to

note that this is not simply an artefact of the formalism: thereal SSI would enter the

unsafe state if it were initially in this configuration. Seemingly, the system enters an

unsafe state from a safe one. There is a clear objection, however, for while any state

satisfying (†) may be “safe” with respect to the formulaF it is not really safe in a wider

sense. The sub-routeT ac6 should never be in the locked state when its successorT ac4

Chapter 4. Proving Safety Properties of Geographic Data 91

(or for that matterT ab4) is free: the free status of a sub-route depends on that of its

predecessors. With regard toR2 there are two options:

• If the sub-route release data are correct then by the rule forT ac4 we can deduce

T ac4 = f ⇒ T ac6 = f , which is enough to complete the arrested proof;

• Otherwise we can strengthen the invariant appropriately.

The former option was adopted when these ideas were first explored [74]. However,

when we turn to formalising the mathematical arguments given in the preceding sec-

tions it is less problematic to adopt the second option. Discussion of precisely how we

strengthen the invariant is deferred until Section 5.3.

4.5 From Rigorous to Formal Proofs

For the purposes of mechanically checking properties of the Geographic Data, the

rigorous mathematical arguments of the kind presented above must be turned into fully

formal proofs. Such proofs should never be performed by hand—rather, the objective

here is to find an appropriate logic within which to formulate the proof steps. In this

section we therefore survey some of the likely formalisms suggested by the literature

on formal specification and verification. Specifically, we briefly reexamine the problem

of proving safety properties of Geographic Data in the Temporal Logic of Actions, in

the UNITY notation, and in the framework of Floyd-Hoare Logic. The invariance proof

turns out to be very similar in each of these cases.

4.5.1 The Temporal Logic of Actions

Lamport’s Temporal Logic of Actions [53] is described by its inventor simply as “math-

ematics plus box”, the mathematics involved being the predicate calculus. The2 em-

bellishment meansalways. TLA formulae are expressed in the syntax:

Φ,Ψ ::= P
∣∣∣ ¬Ψ

∣∣∣ Ψ ∧ Φ
∣∣∣ 2A

∣∣∣ 2Ψ

Other common logical connectives are derived from these. HereP represents apre-

dicateinvolving variables and numeric constants;A represents anaction, these being

formulae involving variables, primed variables and constants. The semantics of TLA

are given in terms of infinite sequences of states (mappings from variables to values).

A primed variablev′ represents the value of the variablev in the ‘next state’. The

meaning of2Ψ with respect to a sequenceσ is thatΨ holds of all states inσ. In con-

trast, the meaning of2A is thatA relates every pair of consecutive states inσ. Further

constructs are introduced by Lamport to represent fair executions and stuttering states,

but these need not concern us here.

Chapter 4. Proving Safety Properties of Geographic Data 92

A program is always represented in TLA by a formula of the formI ∧ 2A where

I is a predicate representing the initial state—i.e., specifying the initial values of the

program variables.A represents the possible steps that the program may take over time

in modifying the initial state. To show that a program has propertyΦ one exhibits a

proof of I ∧2A ⇒ Φ. In particular,Φ may be a temporal formula: ifΦ = 2P andP

is a predicate, thenΦ is a safety (or invariance) property.

Geographic Data in TLA ThePRRandFOPrules in the Geographic Data Language

can be interpreted as actions in TLA. For example, the now familiar rules forR02 and

its sub-routes may become:

(P1 = cr ∨ (T cb1 = f ∧ T bc1 = f)) ∧ T ac1 = f ∧ T ab2 = f ⇒
R02

′ = s ∧ P1
′ = cr ∧ T ca1

′ = l ∧ T ba2
′ = l

R02 = xs ∧ T1 = c ⇒ T ca1
′ = f

T ca1 = f ∧ T2 = c ⇒ T ba2
′ = f

and so on. The formulaAssi, representing a single transition of the SSI, is expressed as

the disjunction of terms such as these. This disjunction does not preclude the possibility

that more than one of the rules may fire in a single step—in contrast to the CCS model

which does. However, in accordance with the CCS model,Assi makes absolutely no

commitment about the implementation of these rules.

Proving Safety The safety property is also expressed as a TLA formula—indeed, the

predicateF in the previous section is already in the required form. To show that this

is invariant, we must exhibit a proof thatI ∧ 2Assi ⇒ 2F. Characterising the initial

state of the system as ‘any safe state’ this obligation becomes:F ∧ 2Assi ⇒ 2F. By

the proof rules of TLA this is further transformed into the goalF ∧ Assi ⇒ F′, where

F′ is the result of priming all the variables inF. SinceAssi is a disjunctive formula, this

proof naturally decomposes into a separate proof for each disjunct—i.e., one proof for

each rule in theFOPandPRRdata:

F ∧ (R02 = xs ∧ T1 = c ⇒ T ca1
′ = f)⇒ F′

However, a difficulty emerges with this formulation since this formula is falsifiable.

This is because theactiononly specifies thatT ca1 changes between states: we forgot to

specify that all other control variables remain unchanged when this rule is executed. It

is therefore necessary to strengthen each disjunct ofAssi. For example:

F ∧ (R02 = xs ∧ T1 = c ⇒ T ca1
′ = f ∧Unchanged (D − {T ca1 }))⇒ F′

Unchanged (D − V) is a formula specifying that all variables inD other than those

in V remain unchanged (as a result of the action). A similar term is needed in each

disjunct, and with these additions the proof of the invariance ofF can proceed.

Chapter 4. Proving Safety Properties of Geographic Data 93

Discussion The need to introduce theunchangedclauses is regrettable since these

may add to the computational complexity of the formal (mechanical) proof. Addi-

tional complexity will be introduced when one considers modelling control flow. Lam-

port [53] gives examples where TLA formulae model the sequencing of actions in a

program by introducing special ‘control’ variables (program counters). These model

the control points in a (possibly parallel) program. The upshot of this is that for each

action in the program one must additionally test for the control point. Although only

one control variable will be introduced, this nevertheless introduces an artificial test to

each rule in the data—the TLA representation of a program is therefore surprisingly

concrete when one is obliged to specify which variables do and do not change in the

execution of an action, and to explicitly keep track of the program counter. Lamport

argues that TLA programs are in this sense completely specified, and sees this as a vir-

tue paid for at the small price of added complexity in the specification. Unfortunately,

the formulae arising from encoding Geographic Data in TLA are already very large, so

any extraneous complexity introduced is certainly unwelcome.

4.5.2 Unity

Chandy and Misra’s UNITY notation (this being an acronym for Unbounded Non-

deterministic Iterative Transformation) has much in common with both TLA and Dijk-

stra’s guarded command language. A UNITY program consists of a declaration of

variables, their initial values, and a collection of guarded multi-assignments. UNITY ’s

program execution model is that of an infinite sequence of (state,command) pairs: the

next command to operate is chosen randomly, subject to the fairness constraint that

every command is selected infinitely often. This fairness constraint aside, the pro-

gram execution model (or operational semantics) is really no different from that of the

CCS model presented in Section 3.2: there, upon hiding the visible actions, the recurs-

ive Control implements the unbounded nondeterministic iterative transformation of the

state encoded inImage.

In their book [16] Chandy and Misra discuss a great many case-studies to introduce

the notation and explain the development methodology, but they present UNITY ’s se-

mantics only informally. This is regrettable since the logic they develop for reasoning

about safety and liveness properties of programs evidently needs a precise foundation.

Sanders [84] has shown that inconsistent deductions arise due to ambiguities in the

definition of substitution; she avoids the problem by eliminating the Substitution Ax-

iom and (in so doing) reducing the logic to linear temporal logic. More practically,

Andersenet al. [1] have demonstrated that it is possible to formalise UNITY by in-

terpreting the notation in higher-order logic in a way that avoids making inconsistent

deductions.

Chapter 4. Proving Safety Properties of Geographic Data 94

The UNITY logic is a species of temporal logic which has assertions of the form

{P} s {Q} as its basis. These are reminiscent of Hoare triples (cf. Sections 4.5.3

and 5.2) whereP is a predicate characterising the state in which the commands is

executed, resulting in a state satisfying the predicateQ. If the initial condition that a

program satisfies isI , a propertyP is invariant iff:

I ⇒ P ∧ ∀s.{P} s {P}

where quantification is over all program statements. In UNITY parlance the second

conjunct asserts thatP is stable. As has been seen, our main concern with the stability

properties of Geographic Data.

Geographic Data in Unity It is straightforward to represent the Interlocking’s con-

trol (i.e., the data) as described in Chapter 3 in the UNITY notation:

program SSI

declare P , T ,R, . . .
initially

∥∥∥
U∈U

(U = f)
∥∥∥
R∈R

(R = xs) . . .

always F

assign R02, P1, T
ca
1 , T ba2 := s , cr , l , l

if (P1 = cr ∨ (T cb1 = f ∧ T bc1 = f)) ∧ T ac1 = f ∧ T ab2 = f []

T ca1 := f if R02 = xs ∧ T1 = c []

T ba2 := f if T ca1 = f ∧ T2 = c [] · · ·
end

The initial conditionI is extracted from theinitially section by interpreting‖ as con-

junction; thealwayssection specifies the invariant the program should maintain over

all execution sequences—in this case the safety propertyF.

Proving Safety Stability ofF amounts to showing, for each guarded command of the

form x̃ := ẽ if b, thatF ∧ b⇒ F[ẽ/x̃]. In particular, to show that the sub-route release

rule forT ca1 ensures the stability ofF one would prove

F ∧ R02 = xs ∧ T1 = c ⇒ F[f /T ca1]

which should be compared with the corresponding goal in Section 4.4.1. In that proof

we started out with the goal of showingS |= F⇒ S[ẽ/x̃] |= F and deduced thatS |= b

from the transitions that must have occurred to allow the transformation in the state

S. However, we might just as well have started out with the goalS |= F ∧ b ⇒
S[ẽ/x̃] |= F, as per the partial tableau of Section 4.2.2.

Chapter 4. Proving Safety Properties of Geographic Data 95

Discussion Seldom does one encounter a programming notation which has been

designed with such a flagrant disregard for control flow! For UNITY this is both a

strength, in its targeted area of application, that of parallel program development, and

a weakness in a setting where the sequential flow of control is an occasional concern.

Nonetheless, it is possible to simulate sequential composition, by the same device as

suggested for TLA programs, and there is a convincing parity between the UNITY for-

mulation of the data correctness problem, and our earlier co-induction formulation:

indeed, it is this same principle that underwrites the UNITY invariance proof.

4.5.3 Floyd-Hoare Logic

In the late 1960’s Floyd [33], and Hoare [44], developed a logical notation for reas-

oning about simple imperative programs. At the heart of Hoare’saxiomatictheory of

partial correctness are assertions about program fragments of the form{P} c {Q}. As

before,P characterises the state in which the programc is executed, andQ charac-

terises the state of the memory of the machine when, and if,c terminates. The basic

premise of Floyd-Hoare logic is the assignment axiom:

ASS
{P [e/x]}x := e {P}

This is motivated by observing that ifP holds in a state modified only by the assign-

ment of the value of (the function)e to the variablex, then the predicate obtained by

substitutinge for all free occurrences ofx in P holds before the assignment is made.

It is easy to generalise this idea to parallel multi-assignment, like that seen in UNITY.

Multi-assignments provide a convenient abstraction when it does not matter in which

order a sequence of assignments is made.

Geographic Data in Floyd-Hoare Logic The Geographic Data Language is an in-

terpreted language—the SSI control program providing the interpretation. From this

perspective we may naturally consider the rules in the data to be commands in a simple

language involving sequence, assignment and conditional jumping. As such

*Q02 if P1 crf , T ac1 f , T ab2 f then R02 s , P1 cr , T ca1 l , T ba2 l \ .

clearly needs no further interpretation. Expanding the subroutine code inline (i.e., the

PFM test here, and the@specials elsewhere) obviates the need to define a program

logic with subroutine handling facilities:

*Q02 if (P1=cr or T bc1 =f , T cb1 =f) , T ac1 =f , T ab2 =f then . . . \ .

Chapter 4. Proving Safety Properties of Geographic Data 96

Proving Safety The safety analysis of the Geographic Data can proceed by exhibit-

ing a proof of a theorem such as

{F} if b then x̃ := ẽ {F}

for each data fragment in thePRRandFOPfiles. The multi-assignment axiom and

the rules for one-armed conditional and strengthening in the precondition are used to

derive the appropriate verification condition(s) from this assertion:

IF

PRE
F ∧ b⇒ F[ẽ/x̃]

ASS
{F[ẽ/x̃]} x̃ := ẽ {F}

{F ∧ b} x̃ := ẽ {F} F ∧ ¬b⇒ F

{F} if b then x̃ := ẽ {F}

This gives rise to two verification conditions—one is a trivial theorem of first-order

logic, while the other is already too familiar.

Discussion It is not difficult to define an appropriate program logic for the general

purpose conditional statements of the Geographic Data Language, nor for the ‘spe-

cials’ if they can be interpreted in these terms as in Sections 2.4 and 2.5. Floyd-Hoare

logic—that is, the logic of partial correctness—is thus adequate for analysing invari-

ant properties of Geographic Data. However, the logic is not well suited to analysing

liveness or progress properties such as: “after initialisation, eventually a safe state will

be reached.” Using the logic oftotal correctness one may make such termination ar-

guments, but generally one needs a dynamic or temporal logic in which to concisely

express properties that speak about eventualities, and not just invariants.

4.6 Summary

The primary concern of this chapter has been to explore the nature of the invariance

proof with a view to finding a simple and efficient means of mechanising the necessary

reasoning. We began by looking at (local) model checking since it offers full automa-

tion and guarantees success one way or the other because the method is complete. The

property either holds invariantly, or it does not. But given the astronomical sizes of the

state spaces involved, model checking on its own is simply too expensive. Neverthe-

less, in exploring the structure of the proof tree for the given satisfaction problem, we

found that it was possible tofold the structure into a partial tableau and transfer the

proof to a simple induction argument.

That argument turns out to be an instance of the method of co-induction, and the

invariance proof therefore reduces to the problem of demonstrating a closure property

of a certain monotonic operator—i.e., the Control. This dramatically improves the

Chapter 4. Proving Safety Properties of Geographic Data 97

tractability of the proof because it replaces the problem of showing that every state of

the model is safe, with that of showing every fragment of the Geographic Data that is

executed as a unitpreserves safety.

Although the semantics of TLA (also those of UNITY) are given in terms of infinite

sequences of states, whereas the semantics of the CCS model are given as a (finite)

transition system, it turns out that co-induction is the unifying principle in the safety

analysis. Recall that in the TLA setting invariance amounts to showing that all (finite or

infinite) extensions of a sequence of safe states are safe. The proof step demonstrates

that from a safe state the model can only reach one of a set of safe successors. Hence,

by co-induction, all sequences extending from a safe state are safe.

Section 4.4 described some of the details of how to establish the appropriate verific-

ation conditions for thePRRandFOPdata. Such detail is necessary for several reasons,

not the least of which is that before proving something with a theorem prover’s support

we must firstunderstandthe proof. Moreover, as demonstrated by the ‘failed’ proof

in Section 4.4.3, it is important to know whether there is in fact enough information to

complete the proof envisaged. Careful analysis indicated that this was not the case for

the given formulation of the problem, and revealed that the safety property defined in

Chapter 3 was too weak in general. This weakness will be repaired in the next chapter.

Mathematical sophistication is not required to prove safety in interlocking data. In

a sense, this is entirely as it should be since the reason why a system is safe ought to

be sufficiently simple to be convincing. However, mathematical insight and a detailed

knowledge of the problem at hand are needed to select the right representation within

which to conduct the formal analysis. The discussion in Section 4.5 reveals that there

is no obviously best choice in this matter. TLA is an expressive logic within which

one can capture not only safety properties of systems, but also properties such as live-

ness and fairness which express eventualities. But TLA imposes penalties too, since

it becomes inconvenient to reason about simple sequencing of events. The CCS and

µ-calculus framework with which the analysis began does not carry this penalty—in

process algebra, we may model functional aspects of the SSI’s control with arbitrary

precision. However, model checking is enormously computationally expensive.

It is straightforward to define a program logic for the general purpose conditional

statements of the Geographic Data Language, slightly less so for the ‘specials’. The

data preparation guide [9] observes (but without justification) that the specials never

in fact need to be used because one can express all the required signalling functions in

the language of sequential and guarded commands. The specials are only designed to

speed the real-time functioning of the SSI. As this is irrelevant from the (functional)

verification standpoint we may assume that they are always expanded into equivalent

conditional code. However, itis of course relevant that the SSI control interpreter

Chapter 4. Proving Safety Properties of Geographic Data 98

and the translation mechanism agree on the semantics of the specials. Justification for

this position was given in Chapter 2, but however we set about verifying properties of

Geographic Data, a proper treatment of the specials has to be taken into consideration.

By insisting that the safety property holds both before the block of code is executed

as well as after it has terminated, other data, includingOPT data, may be treated in

a manner similar to the guarded command illustrated earlier. However, where com-

mands are in sequence it is necessary to specify orassert[35] the weakest condition

that should hold at the intermediate states. Since the safety critical states in the evolu-

tion of the system are those at which the command interpreter is evaluating the guard

of a command (to make the next signalling decision), it is appropriate that the weak-

est condition here be the safety propertyF. These were identified in Chapter 3 as

the control points in the model. At other intermediate states (and these will only be

between updates to the image of the railway) the weakest condition will betrue. This

justifies treating sequences of assignments as multi-assignments: it is reasonable since

only constant expressions are allowed at the level of Geographic Data (the interpreter

updates counters,etc.).

Not without some misgivings we settle, therefore, for conducting the invariance

proof in Floyd-Hoare logic. Firstly, this notation has an intuitive appeal likely to be

more attractive to non-specialists in formal methods, but who may nevertheless have

to certify that the results of our analysis present a convincing argument that the data

are safe. Secondly, we retain greater control over the structure of the proof because

the model naturally permits sequencing of commands. Thirdly, the proof system of

Floyd-Hoare logic is compositional. On the one hand, compositionality means that

we do not have to treat every rule in the Geographic Data as a unit, but can rather

examine its structure (intermediate states). On the other hand, compositionality can

lead to shortcuts in proofs if the same formal argument is needed in several places—

for instance, if some code is used in several contexts, or on the disjunctive branches of

a complex proof.

Later, in Chapter 6 where issues raised by the interactions between Interlockings

are considered, there will be some cause to review this decision to use a simple pro-

gram logic since the properties of interest there are not readily expressible in the Floyd-

Hoare logic of partial correctness. In that chapter we shall return to the richer modal

µ-calculus. Meanwhile we have not only to formalise Floyd-Hoare logic in an appro-

priate environment, but also have to construct a program that will implement the proof

strategies worked out in Section 4.4. That is the subject of the following chapter.

Chapter 5

A Formal Theory of the Geographic
Data Language

In this chapter a fully automatic means of checking safety properties of Geographic

Data is recovered. This is achieved by implementing the proof ideas discussed in

the preceding chapter within the formal constraints of a deductive reasoning system.

After a brief introduction, we begin in Section 5.2 by formalising the semantics of

the Geographic Data Language in higher-order logic, and obtain a program logic as a

collection of derived inference rules. In Section 5.3 a simple theory of Geographic Data

invariants is described, which is used in Section 5.4 to formalise the invariance proofs

sketched earlier for thePRRandFOPdata. In Section 5.5 we assess the computational

complexity of the approach, and describe some heuristics to decompose the (quadratic

time) global proof into more readily tractable local constituents.

5.1 Introduction

The typical proofs sketched in Section 4.4 are too laborious to be done reliably by

hand. Yet it is essential to conduct some proofs in this way if one is to devise special

purpose proof schemas to handle various classes of Geographic Data. The challenge is

then to devise a method of mechanically verifying safety properties of GDL programs.

Ideally a fully automated tool should be provided since, while railway signalling is in

some sense a logical discipline, we should not require railway signalling engineers to

be also adept at formal proof.

Rigorous mathematical proofs are not necessarily easy to transcribe into the purely

formal, symbolic manipulations mandated by automated proof checkers and theformal

systemsthat underly them. Some experimentation is necessary, for which aninteract-

ive theorem prover is needed, equipped with ametalanguagein which to express the

derived proof procedures for subsequent reuse. Milner called thesetactics[60] in the

context of automated formal proof.

99

Chapter 5. A Formal Theory of the Geographic Data Language 100

The HOL system [34] meets this requirement, although not uniquely. HOL sup-

ports a variety of higher-order logic, a type theory derived from Church’s typed lambda

calculus [17], and the Logic of Computable Functions [36] from which it inherits a

polymorphic type discipline. Some features of the HOL system which make it a suit-

able vehicle with which to implement a Geographic Data theorem prover include:

• Mechanisms to support both forward proof by means of primitive and derived

inference rules of higher-order logic, and backward, goal orientated proof by

means of tactics under user or program control.

• A ready collection of rules and tactics and a language oftacticalswith which to

combine them for specialised applications. Rules, tactics and tacticals are just

programs written in ML, the theorem prover’s metalanguage.

• ML’s own type discipline means values representing theorems of higher-order

logic can only be obtained by applying the primitive inference rules of the logic.

One may write arbitrarily proof procedures as ML programs, and the system’s

type security ensures that only valid theorems result.

• HOL is an open programming system so one can provide parsers, unparsers, and

GDL syntax checkers, entirely within the ML system. Otherwise one can run

the theorem prover as a client in a larger environment and communicate with the

command loop through a variety of mechanisms [94, 92].

• The HOL system and its logic are stable, and widely used in academic and in-

dustrial institutions. A strong user base can be taken to mean that the system has

progressed from an experimental platform to a proven technology.

A growing number of freely and commercially available proof systems offer similar

functionality to HOL. Of these, Isabelle (Paulson [79]) and PVS (Shankaret al. [77])

warrant mention—the former because it is a generic theorem prover in which one can

readily encode a specialised theory of Geographic Data like that described in here;

the latter because it offers very powerful decision procedures for first-order logic and

arithmetic (which HOL currently lacks). With PVS however, adapting the tool to ap-

plication specific tasks is difficult since it is not provided with an open programming

environment. Commercial variants on the theme in which one could directly imple-

ment the method discussed below include ProofPower (International Computers Ltd.)

and LAMBDA (Abstract Hardware Ltd.).

The approach taken to providing a Geographic Data theorem prover is based on

Gordon’s experimental embedding of program logics in HOL [35]. We begin in Sec-

tion 5.2 below by formalising a denotational semantics for the Geographic Data Lan-

guage, and exploit the expressive power of higher-order logic to represent the semantics

Chapter 5. A Formal Theory of the Geographic Data Language 101

directly in the theorem prover. Such an approach would not be possible in a first-order

logic, for example. The rules and axioms of Floyd-Hoare logic are then mechanically

derived from the formal theory of the semantics of GDL. This guarantees the validity

of the program logic.

The theory of the embedded programming language developed differs from Gor-

don’swhile language, notably because there is no need for thewhile construct in Geo-

graphic Data. However, Gordon defines a language having only the natural numbers as

data, and this should be generalised in order to reason about the concrete datatypes for

points, signals, and so on. The theory described in Section 5.2 is in factpolymorphic:

states are modelled by functions from a concrete domain of program identifiers to an

unspecified data domain represented by atype variable. The image of the SSI is rep-

resented by a collection of such functions.

The effort of constructing a polymorphic theory pays in a prototype verification

tool since we may readily experiment with different representations of the data. The

theory is instantiated in Section 5.3 when particular representations for the datatypes

are chosen: routes, sub-routes and track circuits are modelled as Boolean variables,

but points are treated more elaborately. In accordance with this representation we next

develop a theory of the invariants discussed earlier, taking care to repair the weakness

in RT identified in Section 4.4.3. The precise formulation of this property turns out to

be delicate.

A tactic in the HOL system is a function that given a goal to prove will return

a collection of (simpler) subgoals together with avalidation. A validation is an ML

program that given a proof for each subgoal will yield a proof of the original goal.

The composition of these functions is a proof of the initial conjecture given to the

system, the result of which is a theorem. Now given a partial correctness specification

{F}c{F}, the program uses a combination of tactics to decomposec into a number of

verification conditions according to the syntactic structure. The validations of these

tactics are the derived rules of Floyd-Hoare logic. Thus the problem addressed in

Section 5.4 is how to prove the verification conditions which arise from the sub-route

release and panel route request rules. Two tactics are offered that correspond to the

demonstrations in Sections 4.4.1 and 4.4.2.

In Section 5.5 the computational complexity of the proof method is examined. It

turns out that the size of the invariantF (i.e., the number of conjuncts) is proportional

to the size—in terms of the number of rules—of the verification task. This gives rise to

quadratic time complexity in proving{F}c{F} for all c. Space requirements are linear.

The quadratic time complexity arises because we insist on establishing thatlocal safety

properties of the Geographic Data holdglobally. In Section 5.5 this issue is addressed

by considering heuristics to decompose the verification task. In fact we decompose

Chapter 5. A Formal Theory of the Geographic Data Language 102

the proofs. These heuristics are intended to be implemented in ML programs which,

together with cosmetic but desirable utilities such as parsers and pretty-printers to hide

the HOL syntax, would provide the foundation of a mature tool for analysing safety

properties of Geographic Data.

5.2 Geographic Data in Higher-order Logic

The Geographic Data Language is an interpreted programming language. It is also

a weak language whose syntactic constructs include only simple assignment (of con-

stants to variables), sequence, one- and two-armed conditionals and a switch construct.

The datatypes over which the control structures operate are of a fixed format as de-

scribed in Section 2.2. There is, however, a primitive subroutine mechanism which

is mainly used in thePRRandPFM data. The@directive diverts the interpreter to a

block of code that may be common to several routes: in the context of a test this will

be anevaluation set, having no side-effect; in the context of a command this will be an

execution set.

In checking properties of Geographic Data one must always expand evaluation sets

inline since their adequacy is context dependent. For execution sets one may option-

ally seek to verify that the common blocks of data are independently safe. This offers

a potential shortcut in proofs where a common block is referenced—because one can

appeal to a pre-proved theorem, like{F} c {F}, instead of reproving the same theorem

several times. But this will be left for future optimisation: instead of formalising the

semantics of jumps explicitly the subroutine code will be assumed to have been ex-

panded inline before the formal verification proceeds. For GDL this never alters the

meaning of the program.

The absence of a looping construct or any form of nondeterminism means that the

semantics of the Geographic Data Language are easy to define formally—although

the SSI’s designers have only provided a formal statement of the language’s syntax.

In putting forward a formal semantics below it must be remembered therefore that it

is the control interpreter itself whichdefinesthe language. Consequently, the formal

semantics can only be faithful to the informal description given in [9].

5.2.1 A Simple Imperative Language

The simple imperative language ofwhile programs forms the introductory basis of

a number of text books on the subject of programming language semantics, such as

Tennent’s [93], but the language formalised here is simpler even than this since it omits

the looping constructs. For the moment suppose that values (Val) in the language will

be of several primitive types, including at least truth values and natural numbers. The

Chapter 5. A Formal Theory of the Geographic Data Language 103

appropriate domains of interpretation are

B = {true, false} and

N = {0, 1, 2, . . .}

as expected. Expressions will be of these types, but no particular expression language

here is assumed here. Lete, b, c andg, be metavariables ranging over the syntactic cat-

egories of expressions, Boolean expressions and commands respectively, withx, y, . . .

representing variable identifiers (Var). The abstract syntax of commands is (see Sec-

tion 2.4.1) can be summarised thus:

c ::= x := e | c1 ; c2 | if b then c | if b then c1 else c2 | skip

Formally we needskip , the command that does nothing, because the concrete syn-

tax admits an empty command list. The case construction of Section 2.3.2 can also

be introduced (indeed, it is necessary to do so if the verification tool is to produce

meaningful error messages) with the clauses:

c ::= · · · | (if b then c or g)

g ::= c | if b then c or g

but its semantics is just that of the conditional. Only the two-armed conditional is

needed (givenskip) for the theory development, but the one-armed conditional is

more prevalent in Geographic Data, so it is retained as a primitive.

The semantics described here are functional (and presented in slightly different

style to Section 2.4): themeaningof a command in this language will be a function

between program states, a state being a mapping from variables to an appropriate do-

main of values. The meaning of an expression will be a function from states to values

(of appropriate type):

State = Var −→ Val

E[[·]]θ : State−→ Valθ

C[[·]] : State−→ State

The semantics of commands is summarised in Figure 5.1. Note in particular that the

assignmentx := e, when evaluated in a states, yields a new state that differs from the

old only in thatx now maps to the value ofe in s. In fact there will be several versions

of assignment, corresponding to the differing expression types in the language. In the

displayed semantics a type subscript is used to distinguish phrases (expressions) of

differing types:E[[e]]θ evaluatese to yield a value of typeθ, which is then bound ins

to an identifier of the same type.

Chapter 5. A Formal Theory of the Geographic Data Language 104

C[[skip]] s = s

C[[x := e]] s = s[E[[e]]θ s /xθ]

C[[c1 ; c2]] s = C[[c2]](C[[c1]] s)

C[[if b then c]] s = if E[[b]]B s = true thenC[[c]] s elses

C[[if b then c1 else c2]] s = if E[[b]]B s = true thenC[[c1]] s elseC[[c2]] s

C[[(if b then c or g)]] s = G[[if b then c or g]] s

G[[c]] s= C[[c]] s
G[[if b then c or g]] s = if E[[b]]B s = true thenC[[c]] s elseG[[g]] s

Figure 5.1: Denotational Semantics of Geographic Data Language Commands

In implementing this language in HOL it will be more appropriate to adopt a re-

lational style of presentation. Generally, semantic equations such as those displayed

above give rise topartial functions, which are difficult to represent or reason about in

the logic of the HOL system. It turns out, however, that the semantics of GDL define a

total function: every well formed phrase of the language denotes a value—essentially

because all commands are finite, and the expression evaluation function is total (ex-

pressions are constant functions, in fact). But it is still less problematic in HOL to

adopt the relational style of presentation. Note that if[[c]] is the denotation ofc in the

relational presentation,(s, s′) ∈ [[c]] just in caseC[[c]] s = s′.

5.2.2 Semantics in Higher-order Logic

We follow Gordon [35] closely in formalising the semantics of the Geographic Data

Language in HOL. However, the language Gordon described had only a single data-

type, the natural numbers, and while this is adequate the restriction is inconvenient

since it will (ultimately) be desirable to represent the concrete datatypes arising in

Geographic Data. This immediately raises the problem of modelling a state in the

domain

State : Var −→ B +N + · · ·

since it is difficult, in a straightforward implementation, to represent a function defined

over disjoint domain or codomain. The logic of the HOL system is a modest variant

of Church’s simple type theory and does not providesum types. One way forward is

to use the clever embedding described by Melham [58] to define variant records in

the logic, and thereby simulate the above function domain. The ‘+’ type operator is

part of the HOL basis, but the disadvantage of using Melham’s sum types is that they

would requireprogramvariables to have typesB +N + · · ·, etc., which is somewhat

unnatural.

Chapter 5. A Formal Theory of the Geographic Data Language 105

The simpler approach is taken here of splitting the state into the product of several

functions. To fix ideas we introduce the type abbreviation

state= (string→ α)× (string→ β)

wherestring is the predefined type of (ASCII) strings andα andβ are type variables

in higher-order logic. In this theory, program variables (identifiers) will be represented

simply by strings. Clearly one could add further state components in a similar way,

e.g.

state= (string→ α)× (string→ β)× (string→ γ) · · ·

but just the two will suffice for our current purposes. The theory of the semantics of

the Geographic Data Language will be instantiated later, in Section 5.3, by supplying

concrete types—such asnum, bool, or four-bit-word—in place of the type variables

appearing here. The advantage gained by constructing a polymorphic theory in the

prototype verification tool is that one may easily experiment with different representa-

tions of the data.

Now the semantic evaluation functions (for expressions) will be represented in the

HOL theory by functions of typestate→ α andstate→ β respectively. Predicates are

functionsstate→ bool. Then, in order to bind a sequence of values into the appropriate

state component we define constantsBind andBindSeq:

` ∀x v (g:state→ γ).Bind x v g = λz. (z = x→ v | g x)

` (∀ (s:state)X (g:state→ γ).BindSeq sX nil g = g) ∧

(∀ sX eE g.

BindSeq sX (cons eE) g = Bind (hdX) (e s) (BindSeq s (tlX)E g))

The first of these defines theBind operator which binds a valuev of typeγ to identifier

x in state (component)g. The result is a new state, a function in higher-order logic

from identifiers to values. The type variablesα andβ (andγ, which must match one of

these) appearing in the definitions are universally quantified—so the operators are well

defined when any concrete types are instantiated in their place. Note that(a→ b | c)
is HOL syntax for ‘ifa thenb elsec’ which is well typed only ifa is a proposition and

b andc are of the same logical type. Also note that function application associates to

the left.

The first argument toBindSeq is the state (s) in which the expressionsE are to

be evaluated: the last argument (g) is the state component into which the variables are

to be bound. The constantsnil andcons are constructors of the type of polymorphic

lists; hd andtl being the obvious list operations.BindSeq is defined by unwinding the

recursion along the second list, of expressions, but it would seem to be more natural

instead to write:

Chapter 5. A Formal Theory of the Geographic Data Language 106

BindSeq s nil nil g = g ∧

BindSeq s (consxX) (cons eE) g = Bind x (e s) (BindSeq sX E g)

However, this formulation introduces domain equations that the HOL system cannot

solve when it attempts to prove that the definition is logically sound.

The definitions above illustrate that the theory of the Geographic Data Language

has parent theories of lists, strings,etc.. In the sequel the syntax of lists will be simpli-

fied in order to make the formal definitions more readable, using[] for the empty

list, and [h | t] for cons h t. The syntax[a, b] will occasionally be used in lieu of

cons a (cons b nil), and when they appear, strings will be delimited by quotes (’ ·’).

We may then prove some simple theorems about binding:

` BindSeq s [] [] g x = g x

` BindSeq s [x |X] [e |E] g x = e s

` ¬(x = y)⇒ (BindSeq s [x |X] [e |E] g y = BindSeq sX E g y)

The free variables in these theorems are implicitly universally quantified. In partic-

ular, the free type variables are universally quantified—so the theorems remain true

under any type instantiation. In the sequel, universal quantification and explicit type

annotation will often be elided.

The constantBindSeq simultaneously binds a sequence of values—in order to

define parallel multi-assignment which generalises the single assignment seen earlier:

` ∀XE Y F s s′.Ass(X,E, Y, F) (s, s′) =

(s′ = (BindSeq sX E (fst s) , BindSeq s Y F (snd s)))

Operatorsfst andsnd project the components of the pairs. Fortunately the user of the

system never need be aware of the HOL presentation of the object language syntax.

Although the aim is for full automation, where command loop interaction with the tool

is necessary one can modify the parser to admit GDL syntax directly (as in [35]).

In these semantics a command has logical typestate× state→ bool. This means

that the semantics of the embedded language is represented by a relation—as promised

at the end of the preceding section. The definition above asserts thats′ is the result

of binding the values of the expressionsE to identifiersX in the first component, and

F to Y in the second. Where assignments are all of the formx := k, for constant

k, x1, x2 := k1, k2 is equivalent tox1 := k1 ; x2 := k2 as long asx1 andx2 are

distinct. This treatment means that only one version of assignment needs to be defined,

rather than one for each datatype in the language. Consequently only one version of

the assignment axiom needs to be derived. (However, this is only a matter of style:

the advantage gained from the multi-assignment primitive is only tenuous, and none

Chapter 5. A Formal Theory of the Geographic Data Language 107

of the subsequent developments depend critically on this particular formulation of as-

signment.)

The other command forms of the Geographic Data Language are represented more

naturally in higher-order logic:

` ∀ s s′.Skip (s, s′) = (s = s′)

` ∀ c c′s s′.Seq (c, c′) (s, s′) = ∃s′′.c(s, s′′) ∧ c′(s′′, s′)

` ∀ b c s s′. If (b, c) (s, s′) = (b s→ c(s, s′) | s = s′)

` ∀ b c c′ s s′. Ite (b, c, c′) (s, s′) = (b s→ c(s, s′) | c′(s, s′))

This conceals the fact thats, s′ are pairs of functions. These definitions, and the theor-

ems concerning binding, complete the formal (HOL) theory of the semantics.

5.2.3 Hoare Logic: Rules and Tactics

Again, the details here follow Gordon [35] so only the delicate parts of the embedding

are indicated, and where the more general theory introduces subtleties. The approach

is to derive the rules and axioms of partial correctness specifications from the theory of

the denotational semantics. The program logic, or axiomatic semantics of the program-

ming language [93], was described in Section 4.5.3. The assertion{P} c {Q} may be

represented in higher-order logic by introducing a new constantSpec

` ∀ (c:state× state→ bool) p q.Spec(p, c, q) = ∀ s s′.p s ∧ c(s, s′)⇒ q s′

where the pre- and post-conditions here are state predicates. Under this scheme an

assertion about an SSI control variable, say{T2 = v}, is denoted by a HOL term like

λs:state.snd s’ T2’ = v. In the following let [[P]] be the denotation in HOL of the

predicateP (so that[[T2 = v]] abbreviatesλs.snd s’ T2’ = v, say).

5.2.3.1 Derived Rules of Floyd-Hoare Logic

From the definitions outlined above one can routinely prove some theorems about

Spec:

` (∀ s. p′s⇒ p s) ∧ Spec(p, c, q)⇒ Spec(p′, c, q)

` (∀ s. q s⇒ q′ s) ∧ Spec(p, c, q)⇒ Spec(p, c, q′)

` Spec((λs. p (BindSeq s x e (fst s),BindSeq s y f (snd s))),Ass(x, e, y, f), p)

` Spec(p, c, r) ∧ Spec(r, c′, q)⇒ Spec(p,Seq(c, c′), q)

` Spec((λs. p s ∧ b s), c, q) ∧ (∀ s. p s ∧ ¬(b s)⇒ q s)⇒ Spec(p, If(b, c), q)

In this way the rules of Floyd-Hoare logic become derived rules of higher-order logic.

Chapter 5. A Formal Theory of the Geographic Data Language 108

The other constructs of the embedded language are treated similarly. The last of the

above theorems is the foundation from which theIF rule is derived:

IF
` {P ∧ b} c {Q} ` P ∧ ¬b⇒ Q

` {P} if b then c {Q}

Note, however, that the second antecedent is a theorem of higher-order logic, while the

former is a theorem of Hoare logic. The distinction is delicate: the program variables

appearing in{P ∧ b} are quoted, while they appear as (unquoted) logic variables in

P ∧ ¬b ⇒ Q. As the free variables in the theorems above are universally quantified

we can specialise

` Spec((λs. p s ∧ b s), c, q) ∧ (∀ s. p s ∧ ¬(b s)⇒ q s)⇒ Spec(p, If(b, c), q)

to:

` Spec((λs. [[P]]s∧ [[b]]s), [[c]], [[Q]])∧ (∀ s. [[P]]s ∧ ¬([[b]]s)⇒ [[Q]]s)

⇒ Spec([[P]], If([[b]], [[c]]), [[Q]])

Since(λs. [[P]]s∧ [[b]]s)≡β [[P ∧ b]], this is beta-convertible to

` Spec([[P ∧ b]], [[c]], [[Q]])∧ (∀ s. [[P]]s ∧ ¬([[b]]s)⇒ [[Q]]s)

⇒ Spec([[P]], If([[b]], [[c]]), [[Q]])

and theIF rule follows from this as long as̀ ∀ s. [[P]]s ∧ ¬([[b]]s) ⇒ [[Q]]s can be

derived from (the verification condition)̀ P ∧ ¬b ⇒ Q. To see that this is the case

suppose, without loss of generality, that the free (program) variables inP, b andQ of

typeα are contained inA1, . . .Am, and those of typeβ are contained inB1, . . .Bn.

Then denote these explicitly inP by writingP [A1, . . . Am, B1, . . . Bn], etc.. The vari-

ablesA1, . . .Bn are free in

` P [A1, . . .Bn] ∧ ¬b[A1, . . . Bn]⇒ Q[A1, . . .Bn]

and so theAi andBj can be instantiated withfst s’ Ai ’ andsnd s’ Bj ’ respectively,

and the free variables:stategeneralised to obtain

` ∀ s.P [fsts’ A1’ , . . . snd s’ Bn’] ∧ ¬b[fsts’ A1’ , . . . snd s’ Bn’]

⇒ Q[fsts’ A1’ , . . . snd s’ Bn’]

which is beta-convertible to:

` ∀ s.(λs.P [fst s’ A1’ , . . . snd s’ Bn’])s ∧¬((λs.b[fst s’ A1’ , . . . snd s’ Bn’])s)

⇒ (λs.Q[fsts’ A1’ , . . . snd s’ Bn’])s

This is precisely as required:̀∀ s. [[P]] s ∧ ¬([[b]] s)⇒ [[Q]] s.
Underlying the use of theIF rule there is therefore a mechanism to translate

between theorems of higher-order logic and theorems of the embedded program logic.

Chapter 5. A Formal Theory of the Geographic Data Language 109

ASS
` {P [ẽ/x̃]} x̃ := ẽ {P}

SEQ
` {P} c1 {R} ` {R} c2 {Q}

` {P} c1 ; c2 {Q}

PRE
` P ′ ⇒ P ` {P} c {Q}

` {P ′} c {Q}
POST

` {P} c {Q} ` Q⇒ Q′

` {P} c {Q′}

IF
` {P ∧ b} c {Q} ` P ∧ ¬b⇒ Q

` {P} if b then c {Q}

ITE
` {P ∧ b} c1 {Q} ` {P ∧ ¬b} c2 {Q}
` {P} if b then c1 else c2 {Q}

Figure 5.2: HOL Derived Rules of Floyd-Hoare Logic

This translation is routine, implemented using higher-order matching, but complicated

by the possible appearance oflogical variables in addition to program variables in the

specifications—one is obliged to distinguish between logical variables and program

variables by observing some suitable syntactic convention. We note thatIF is an ML

function taking two theorems as arguments, and yielding a theorem as result. ML

values of typetheoremcan only be derived in the HOL system by application of the

primitive inference rules of higher-order logic—though they can also be introduced as

formal axioms. In avoiding axioms, the definitional style of interaction with the the-

orem prover that we have been following, where constants such asBind, Spec, etc., are

defined in terms of existing constants and logical connectives, ensures that the logic

of the HOL system remains consistent. Thus theorems such as` {P} c {Q} can be

trusted, but whether or not they are meaningful is of course a matter of interpretation.

The other rules of the program logic (see Figure 5.2) are derived in much the same

way asIF , and uniformly so, from the theorems listed above—all, that is, except for

the assignment axiom. In the simple case this must be a function taking terms repres-

enting{P} andx := e, and which yields a theorem̀{P [e/x]}x := e {P}. Gordon’s

derivation of the assignment axiom must be generalised in two important respects be-

cause of the parallel multi-assignment, and the polymorphism in the typestate. Thus

care has to be taken not only to correctly instantiate the terms in forming{P [ẽ/x̃]}, but

also their types. Otherwise, the derivation is much as in [35].

5.2.3.2 Tactics for Floyd-Hoare Logic

The inference rules derived above support forward proof in HOL. It is more natural

however, when devising proof strategies from scratch, to work backwards in a goal

directed manner from the desired theorem. For this tactics are needed which render

a goal into a number of (hopefully) simpler goals. Tactics to support reasoning about

Chapter 5. A Formal Theory of the Geographic Data Language 110

partial correctness specifications can be obtained by inverting the corresponding rules

of Hoare logic. For example, a combination of the assignment axiom and the rule for

strengthening the precondition will yield:

PRE
` P ⇒ Q[ẽ/x̃]

ASS
` {Q[ẽ/x̃]} x̃ := ẽ {Q}

{P} x̃ := ẽ {Q}

Given the goal? ` {P} x̃ := ẽ {Q}, the appropriate tactic,ASS TAC, will produce

as its only subgoal the verification condition? ` P ⇒ Q[ẽ/x̃]. The tacticIF TAC

also yields a verification condition as one of its subgoals. These verification conditions

may be proven using the full power of higher-order logic, since they are pure logic

formulae, though they will be unprovable if the initial goal is not a theorem.

Appropriate combinations of tactics, usingtacticals for repetition (REPEAT) and

trial and error (ORELSE) will generate the verification conditions for a partial correct-

ness specification{P} c {Q} for any commandc in the embedded language. This

tactic, which Gordon calledVC TAC, may be implemented thus

val VC_TAC = REPEAT
(SEQ_TAC ORELSE ITE_TAC ORELSE IF_TAC ORELSE ASS_TAC);

The tacticSEQTACbehaves as follows:

? ` {P} c1 ; c2 {Q}

? ` {P} c1 {Q} ? ` {Q} c2 {Q}

? ` {P} c ; x̃ := ẽ {Q}

? ` {P} c {Q[ẽ/x̃]}

SEQTACfirst tries to apply the second form, matching the last of a sequence of com-

mands againstAss; if this fails (the match can only be a conditional if sequences of

assignments are merged andskip commands have been dropped) the heuristic inserts

a{Q} before the conditional.

These tactics are an essential component in our approach to automating the analysis

of Geographic Data invariants. Now we need a theory of those invariants.

5.3 A Theory of Geographic Data Invariants

In the preceding section a state was modelled by a pair of polymorphic functions of

typestring→ α andstring→ β. It is straightforward, though tedious, to extend this

theory to several more state components. Here we shall just model sub-routes, routes

and track circuits in the second component as entities of typebool, and points in the

first component (these having more complex type).

Sub-routes have two states, locked and free, and are thus properly modelled as

Boolean variables. Routes have three states: unavailable, available and set, and avail-

able and unset. In representing routes by Boolean variables it will only be possible to

Chapter 5. A Formal Theory of the Geographic Data Language 111

verify properties of the set/unset bit and not the ‘availability’ bit which the data can

examine but never modify. The availability bit is an override used exceptionally to

temporarily bar a route—e.g., for maintenance purposes. Treating routes as Boolean

variables is to assume that a test on the availability (bit) of a route is always passed.

Track circuits also have three states: occupied, clear and undefined. The occupied

and clear states are represented in different bits in the track circuit memory: if neither

is set the track circuit state is undefined. According to the informal description of the

semantics in [9], whenever the occupied bit is set by a data command, the clear bit will

be cleared, and vice versa. (Points too have this inversion property—see Section 2.4.2,

and Section 5.3.2 below.) In modelling track circuits in a single Boolean variable we

therefore assume that their state is never undefined.

The sections that follow develop the HOL theory needed to represent the properties

of Geographic Data introduced in Section 3.3.1 and 3.3.3. These are:

MX the mutual exclusion property for sub-routes over a track section, and discussed

in Section 5.3.1 below;

PT the points property relating the orientation of the points with the sub-routes

through them (Section 5.3.2); and

RT the property relating routes and their component sub-routes (Section 5.3.3).

We shall therefore define the corresponding functions in higher-order logic.

5.3.1 Track Circuits – MX

In higher-order logic the free (f) state of a sub-route will be represented by the constant

T, and the locked (l) state byF, these being the distinct elements of the typebool. We

shall freely writef andl instead, whenever this clarifies the the explanation. A plain

bidirectional track section will be associated with a pair of sub-routes (a andb, say),

thus the mutual exclusion property can be expressed in the HOL terma ∨ b, or, more

verbosely ina = T ∨ b = T. In Section 3.3.3 themacroMX operated on a list of sub-

routes—this can be expressed in HOL by the constantMX, defined using the auxiliary

functionM:

` (∀ s.M s [] = T) ∧ (∀ s t h.M s [h | t] = (s ∨ h) ∧ (M s t))

` (MX [] = T) ∧ (∀ s t.MX [h | t] = (M s t) ∧ (MX t))

In the sequel two common special cases will arise from which other varieties can be

assembled as desired:

` ∀ a b.MX2(a, b) = (a ∨ b)

` ∀ a b c d.MX4(a, b, c, d) = MX [a, b, c, d]

Chapter 5. A Formal Theory of the Geographic Data Language 112

The latter involves
(

4
2

)
= 6 terms likeMX2, viz.:

(a ∨ b) ∧ (a ∨ c) ∧ (a ∨ d) ∧ (b ∨ c) ∧ (b ∨ d) ∧ (c ∨ d)

This combinatorial explosion of terms is problematic only if the definition is ex-

panded in proofs, but this is never necessary in practice. AproposMX4, for example,

we can prove some simple but essential theorems

` MX4(a, T, T, T) = T

` MX4(a, b, c, d)⇒ MX4(T, b, c, d)

and so on. The first of these will be useful in simplifying (rewriting) terms in the in-

variance proof, while the second is a resolution theorem by which fresh hypotheses

can be generated from those already given. A collection of such theorems is needed

to cover the possible cases since the HOL proof system is not readily able to exploit

even first-order unification (although Slind [86] has illustrated that AC unification can

be added to the HOL system’s proof infrastructure).

To illustrate the use of the above definitions, consider the track circuitT2 which

has two sub-routesT ab2 andT ba2 . ThepropertyMX [T ab2 , T
ba
2] will be expressed in the

higher-order logic termMX2(T ab2 , T ba2). In the embedded logic this will be expressed

in the predicateλs.MX2(snd s’ T2AB’ , snd s’ T2BA’). If this is the only term in the

invariant, and we wish to prove that the sub-route release rule forT ba2 is correct with

respect to this, then the goal

? ` {MX [T ab2 , T
ba
2]} if T2 = c ∧ T ca1 = f then T ba2 := f {MX [T ab2 , T

ba
2]}

(which is in any case true by Lemma 4.3 on page 85) is reduced byVC TACand some

other machinery to:

[MX2(T ab2 , T ba2)] ` MX2(T ab2 , T)

This can be solved immediately using the pre-proved theorems aboutMX2.

5.3.2 Points – PT

Points are represented by an eight-bit record which is subdivided into two four-bit

fields, one holding data for the points normal, and the other reverse. In a data test or

command on points it is always necessary to select the normal or reverse field (e.g.,

P1 cn , orP1 cr f). Thus points may be modelled using two four-bit words having the

format:

[c , d, k ,]︸ ︷︷ ︸
normal

, [c , d, k ,]︸ ︷︷ ︸
reverse

The fourth bit in each field has been masked out here as these are override flags which

the Geographic Data can neither write to nor, in this case, read. These flags may be

Chapter 5. A Formal Theory of the Geographic Data Language 113

cleared to temporarily disable the points in one position or the other directly from

the technician’s console: the control interpreter examines these in evaluating a points

“free to move” condition, and only if they are set is the condition passed. Moreover,

whenever data are processed which set the normal command bit (c), the SSI automat-

ically clears the reverse command bit, and vise versa. The same is true of the detection

bits (d), updated in processing the incoming status telegrams from the points modules

in the railway.

One way to model this behaviour is to suppose, as in the earlier chapters, that

points have but a single control variable which can be in one of the two statescn or

cr . Nevertheless, the SSI is still in a well defined state when both control bits are unset

(though these circumstances only prevail at startup), and so both should be modelled.

This also entails modelling the inversion of the reverse control bit (say) whenever the

normal control bit is set/cleared. But in the semantic framework sketched in Section 5.2

this aspect of the ‘behaviour’ of points was not considered. It is possible to express

this inversion of the control (c, and detectiond) bits directly in the semantics of the

embedded language, but this entails introducing to the theory of the object language,

object level datatypes—product types in particular—and much semantic complexity

which it has hitherto been sought to avoid. As far as is possible we prefer to separate

the theory of the semantics of GDL from the theory needed to represent the datatypes

for points, track circuits,etc..

Let us therefore introduce the abbreviation

points= bool list× bool list

This is a product type in higher-order logic, and the first of the pair is a list of Boolean

variables to represent the normal bits in points memory, the second represents the

reverse bits. Ideally one would use a package such as theword or record librar-

ies [100, 98] for HOL which automate the derivation of the representation theorem

and access functions for manipulating user declared types such aspoints—but neither

was available for the version of the HOL system being used at the time. In any case,

we spell out a few of the details that use of therecordlibrary conceals in defining con-

stantsCN andCR to select the appropriate fields from a points record, and the mutator

functions for these fields:

` ∀ p:points.CN p = hd (fstp)

` ∀ p:points.setCNp = ([T | tl (fstp)], [F | tl (snd p)])

` ∀ p:points.CR p = hd (snd p)

` ∀ p:points.setCRp = ([F | tl (fstp)], [T | tl (snd p)])

Thed andk fields are treated similarly. Some easy theorems follow from these defini-

Chapter 5. A Formal Theory of the Geographic Data Language 114

tions which are useful in simplifying goals:

` CN (setCNp) = T

` ¬(CN (setCRp)) = T

Thus, in order to make matters concrete, the points commandP1 cn will be represented

in higher-order logic by the term:

Ass([’ P1’], [λs.setCN(fst s ’ P1’)], [], [])

This harsh HOL syntax may be rendered invisible by a parser and unparser—albeit one

of some sophistication—but we aim of course for batch automation.

Finally, as in Section 3.3.3, the macrosPTcn andPTcr can be defined, but here in

the contrapositive:

` (PC ([]:bool list) = T) ∧ (∀h t.PC [h | t] = (h ∧ PC t))

` ∀ p s.PNT (p, s) = (CN p)⇒ PC s

` ∀ p s.PRT (p, s) = (CR p)⇒ PC s

The first parameter is a points variable (e.g., P1) and the second is intended to be a

list of sub-routes through those pointsin the other orientation(i.e., [T cb1 , T
bc
1], in this

case). Recalling Section 3.3, this captures the property that if the points are controlled

normal (say) then the reverse sub-routes should be free. From these definitions it easily

follows, for example, that∀ p s.PNT ((setCR p) , s).

5.3.3 Routes – RT

In Section 4.4.3 it was shown that the original, rather simple formulation ofRT was

inadequate. The intuition though is clear: when the router is set, its sub-routesa, b

andc should be locked:

(r = s)⇒ (a = l ∧ b = l ∧ c = l) (i)

Given that the route is defined by the sub-routesa, b and c in that order, we may

consider an alternative that captures the same intuition

r⇒ a ∧ a⇒ b ∧ b⇒ c (ii)

(now dropping the equational format, and giving⇒ higher precedence than∧). This

is a stronger property expressing “if the first sub-route is locked then the rest of the

route remains locked”, and so on. The drawback is that we require to specify the sub-

routes along the route in order, (i) being insensitive to order. Nevertheless, using (ii),

in contrapositive form,a = b = f can be inferred givenc = f . It was the unknown

Chapter 5. A Formal Theory of the Geographic Data Language 115

hhh.................
- - -

�
�
�
�
�
�

- -

a

b1

b2

c1

c2

A B C(1&2)

r1, r2

Figure 5.3: Routes that diverge after a common segment

state ofb, the intermediate sub-route, that posed the problem in Section 4.4.3. Now if

r⇒ a ∧ a⇒ b ∧ b⇒ c is invariant, then so is

r ⇒ (r⇒ a ∧ a⇒ b ∧ b⇒ c) (iii)

which is equivalent tor ⇒ a ∧ b ∧ c, the equivalence being due to the following:

Proposition 5.1 For alln ≥ 1, r⇒ (r⇒ a1 ∧ a1 ⇒ a2 ∧ · · · ∧ an−1 ⇒ an) if and

only if r⇒ (a1 ∧ a2 ∧ · · · ∧ an). 2

Proof By a simple induction on the ‘length of the route’n, for example.

Upon reflection however (ii) is not correct under all circumstances. To see why

consider the two routes in Figure 5.3 whichdivergeatB after following a common

route segment overA. Without loss of generality supposer1 andr2 start at the same

signal, anda is the first sub-route on each. Generalising (ii) gives

r1 ⇒ a ∧ a⇒ b1 ∧ b1 ⇒ c1

∧ r2 ⇒ a ∧ a⇒ b2 ∧ b2 ⇒ c2

}
(iv)

but clearly, in any assignment to the variables satisfyingRT in which a is locked,b1

andb2 must also be locked—yet this contradictsMX [b1, b2] which must hold simul-

taneously withRT. The result is that no invariant designed along these lines can be

satisfied by any data which set either of these routes. Naturally this is undesirable

(technically, we have eliminated an intended model forF). However, the intuition con-

cerning the linkageA ↔ B is that whenevera is locked, eitherb1 or b2 is locked.

Instead, (iv) givesa⇒ b1 ∧ b2, so this is weakened toa⇒ b1 ∨ b2:

r1 ⇒ a ∧ a⇒ (b1 ∨ b2) ∧ b1 ⇒ c1

∧ r2 ⇒ a ∧ b2 ⇒ c2

}
(v)

Although this will be satisfied whenevera, b1 andb2 happen to be locked simultan-

eously, the mutual exclusion property forB, viz.MX [b1, b2], ensures that these circum-

stances are invalidated.

Chapter 5. A Formal Theory of the Geographic Data Language 116

It turns out that (v) can still be improved for it is easy to see that the formula will

be satisfied by an assignment to the variables in whichr2 = s while a = b1 = c1 = l .

This could have undesirable consequences if one remembers thatr1 may be temporarily

barred by the technician’s control: if the technician barrsr1 (the branch line route), but

r1 andr2 are confused in the Geographic Data for these routes, this would have the

effect of barring the mainline route instead. So (v) alone is not enough to guarantee

“whenever a route is set, all its sub-routes are locked.” There are several ways to

strengthen the invariant so as to trap this not unlikely error in the data. The safest is to

retain the original formulation given by (i):

r1 ⇒ a ∧ a⇒ (b1 ∨ b2) ∧ b1 ⇒ c1

∧ r2 ⇒ a ∧ b2 ⇒ c2

∧ r1 ⇒ (a ∧ b1 ∧ c1) ∧ r2 ⇒ (a ∧ b2 ∧ c2)

 (vi)

This formula is undeniably complex, increasing the likelihood of introducing spe-

cification errors if it has to be defined manually. Fortunately this is unnecessary be-

cause the specification

RT(r1, [a, b1, c1]) ∧RT(r2, [a, b2, c2]) (vii)

can be algorithmically massaged to the correct form. In the HOL formulation it is

preferable to have (ii) in contrapositive form because this simplifies the mechanisation

of the invariance proof in the next section. DefineRT thus:

` (∀ r.RTr [] = T) ∧ (∀ r a s.RT r [a | s] = a⇒ r ∧ (RTa s))

Then, given a specification in higher-order logic such as (vii), or that on page 60, the

definition of RT is expanded everywhere to obtain an equivalent conjunctive formula

which is then broken up into the list of its conjuncts (e.g., (iv)). This list (unsafe) is then

passed to theRoutesalgorithm displayed in Figure 5.4 which generalises the preceding

argument. In quadratic time this produces a new list (keep) which is then turned back

into a conjunctive formula.

Note that the result can be optimised in the inner loop of the program by deleting

any duplicated terms inunsafe. The formula obtained fromkeepis then strengthened

with clauses such as those introduced at (vi), one for each diverging route (requiring an

R2 algorithm, ifR is the number of routes). Once more appealing to the contrapositive

define:

` (RC [] = F) ∧ (∀h t.RC [h | t] = h ∨ (RC t))

` ∀ r s.RT1 r s = RC s⇒ r

The result fromRoutescan be further optimised to minimise the number of terms in

the invariant by rewritingb⇒ a1 ∧ b⇒ a2 asb⇒ (a1 ∧ a2), etc..

Chapter 5. A Formal Theory of the Geographic Data Language 117

initialise: keep← []
while unsafe6= [] do

let conj be head andrestbe tail ofsafe= [conj| rest]
let a be consequent andb be antecedent ofconj = b⇒ a
for conj′ = b′ ⇒ a′ in restdo

if a′ = athen
deleteconj′ from restand
updateb sob← b∧ b′

done
updatekeepsokeep← [b⇒ a| keep]
updateunsafesounsafe← rest

done

Figure 5.4: Routes: Massaging theRT invariant

Note, finally, that the elaboration in the formal definition ofRT introduced above is

only needed where routes diverge after following a common segment of track. Where

routes only converge (likeR2 andR4) or diverge due to points in thefirst track section

(cf.R02 andR04), (ii) suffices by Proposition 5.1. In these circumstancesRoutesreturns

a formula logically equivalent to its input.

5.4 Mechanising the Invariance Proof

Turning now to the Geographic Data for WEST (see Appendix C), there are ten panel

route requests and nineteen sub-route release rules, there being no data for the inward

sub-routes at the fringes of the Interlocking area. The invariant for this system was

defined in Figure 3.5, on page 60. Note that there are diverging routes here, namely

R51 andR53, hence two additional terms will be appended to the formula when the

inconsistencies these routes introduce are removed.Routesreturns the term:

T ca1 ⇒ R02 ∧ T ba2 ⇒ T ca1 ∧ T cb1 ⇒ R04 ∧
T ba3 ⇒ T cb1 ∧ T ac1 ⇒ R1 ∧ T ab0 ⇒ (T ac1 ∧ T bc1) ∧
T bc1 ⇒ R3 ∧ T ab6 ⇒ R5 ∧ T ab5 ⇒ T ab6 ∧
T ba6 ⇒ R6 ∧ T ba7 ⇒ (T ba6 ∧ T ca6) ∧ T ca4 ⇒ R2 ∧
T ca6 ⇒ (T ca4 ∧ T ba4) ∧ T ba4 ⇒ R4 ∧ T ac6 ⇒ (R51 ∧R53) ∧
(T ac4 ∧ T ab4)⇒ T ac6 ∧ T ab2 ⇒ T ac4 ∧ T ab3 ⇒ T ab4

Following the discussion in Section 4.4, two proof schemas are proposed which will

be referred to asSRRTAC (for sub-route release tactic) andPRRTAC (for panel route

request tactic) in the sequel. Since the data for WEST are very regular a single tactic

could deal with both classes of data—but in general several tactics will be needed. The

Chapter 5. A Formal Theory of the Geographic Data Language 118

verification conditionsSRRTACandPRRTACmust solve will have the general form

? ` (F1 ∧ F2 ∧ · · · ∧ Fn) ∧ b⇒ (F1 ∧ F2 ∧ · · · ∧ Fn)[ṽ/x̃] (∗)

where theFi are components of the safety propertyF. In the following two subsections

we look in detail at how to solve these verification conditions as they arise in the route

request and sub-route release data. Section 5.4.3 considers the situations where the

tactics developed below do not succeed.

5.4.1 Sub-route Release Data Tactic

Lemma 4.3 on page 85 is given as a metatheorem, stating that the invariant is preserved

when clearing a sub-route for appropriate formulations ofMX andPT. Pragmatically,

this offers a potential shortcut in implementingSRRTACsince much of the extraneous

computational complexity encountered stems from manipulating long lists of assump-

tions in the sequents. Unhappily, we cannot prove Lemma 4.3 in the present frame-

work as the semantic embedding is too shallow: there is no metatheory concerning the

representation of GDL nor the invariants in higher-order logic on which to draw. In

principle, this deficiency can be redressed by providing a deeper semantic embedding,

but that would require a radically different framework to that sketched above. For the

present the inefficiencies the weaker theory entails can be tolerated.

Proceeding from? ` {F} if b then x̃ := ṽ {F} we begin by deriving the veri-

fication conditions usingVC TAC. This produces two subgoals from the guarded com-

mand; the first of these is briefly postponed usingALL TAC, and the latter can be solved

immediately as it is an instance of the tautologyx ∧ y ⇒ x:

fun POP_ONE th =
ASSUME_TAC th THEN UNDISCH_TAC(concl th) THEN PIMP th;

fun RECURSE () = POP_ASSUM (fn th => STRIP_TAC THENL
[POP_ONE th,

RECURSE () ORELSE POP_ASSUM (fn th => POP_ONE th)]);

val SRR_TAC =
VC_TAC THENL [ALL_TAC, MATCH_ACCEPT_TAC FB_IMP_F]

THEN RSTRIP_TAC THEN RECURSE ();

The remaining goal is of the form(∗) and is solved by stripping the antecedent and

forming one goal for each conjunct in what remains. WithRSTRIP TACwe are careful

to leave this in the form:

[F1, F2, . . . , Fn, b] ` (F1 ∧ F2 ∧ · · · ∧ Fn)[ṽ/x̃]

The recursive tacticRECURSEimplements the finer details of the proof. Inside the loop

POPASSUMremoves (or pops, since the structure holding the assumptions is a stack)

Chapter 5. A Formal Theory of the Geographic Data Language 119

the first assumption from the goal; this is followed bySTRIP TACwhich reduces (∧-

Elimination) the result to two subgoals

[F2, . . . , Fn, b] ` F1[ṽ/x̃]

[F2, . . . , Fn, b] ` (F2 ∧ · · · ∧ Fn)[ṽ/x̃]

the first of which is solved by the procedurePOPONE, while the second is solved in

the next iteration of the loop. The recursion ‘bottoms out’ when (STRIP TACfails and)

the only remaining goal is[Fn, b] ` Fn[ṽ/x̃].

The tacticPOPONEreintroduces the popped assumption to the first goal

[F2, . . . , Fn, b] ` F1 ⇒ F1[ṽ/x̃]

and invokes a procedure,PIMP, that will prove such theorems efficiently given the

known structure of Geographic Data invariants. This structure is inferred byPIMP

from the parameterth which is a theorem of the form̀ Fi ⇒ Fi. In particular:

• if Fi’s leading combinator isMX2, MX4 or PT the goal may be easily solved

by rewriting, using basic facts from propositional logic and/or the pre-proved

theorems concerning these constructors;

• otherwise the term is derived from encodingRT and is therefore of the general

form (f ⇒ g) ⇒ f ′ ⇒ g′. These can usually be solved by a combination of

rewriting and resolution.

In the latter case only the assumptionb, derived from the guard in the command, is

needed to complete the proof. To illustrate, recall the sub-route release rule forT ba2

that served as an example in Section 4.4:T ba2 f if T2 = c , T ca1 = f \ . . At some

point during its traversal ofF, RECURSEgenerates the subgoal

[H] ` (T⇒ T ca1)⇒ T ba2 ⇒ T ca1

and foremost amongst the hypothesesH is the assumptionT ca1 (= T) derived from the

rule itself. With this fact we can simplify the goal and, sincet⇒ T for anyt, eventually

conclude that the sub-route release rule forT ba2 satisfies the invariant. However, when

the only useful fact at our disposal isT ac1 (= T), as is the case with the erroneous version

of this rule also considered in Section 4.4, this step in the proof fails so the tactic as a

whole fails.

5.4.2 Route Request Data Tactic

The finesse with whichSRRTACwas approached is not to be repeated in defining the

route request data tactic.PRRTACessentially solves its goal by a brute force rewriting

strategy:

Chapter 5. A Formal Theory of the Geographic Data Language 120

val BTHEN_TAC =
REWRITE_TAC[PT,PC,RT1,RC]

THEN STRIP_TAC
THEN TWICE RES_TAC
THEN ASM_REWRITE_TAC (PT_THM::MX_THMS);

val PRR_TAC =
VC_TAC

THENL [BTHEN_TAC THEN NO_TAC, MATCH_ACCEPT_TAC FB_IMP_F];

Since the data for WEST are one-armed conditionalsVC TACalways reduces the initial

goal to two subgoals: as before, the second of these is an instance of a trivial pre-

proved theorem, while the former is like(∗). BTHENTAC solves such goals by first

expanding the definitions ofPT (andRT1 if needed) and stripping (⇒-Elimination) the

antecedent of this implicative goal:

[b, Fn, . . . , F1] ` (F1 ∧ F2 ∧ · · · ∧ Fn)[ṽ/x̃]

At the next step in the proof there is much scope for refining the tactic.TWICE is a

tactical that applies its tactic argument to the goaltwice. In this caseRESTAC is used

to search (exhaustively) among the hypotheses for assumptionsa anda⇒ b, by which

b may added. Assumptions likeb anda ∧ b ⇒ c work equally well to adda ⇒ c to

the hypotheses. This resolution step is applied twice (here) because a further pass is

needed to deducec givena.

For a concrete example take the proof required for*Q2. Due to the diverging routes

R51 andR53, the termT ab4 ∧T ac4 ⇒ T ac6 appears amongst the hypotheses in the goal after

applyingSTRIP TAC. By the guard in the commandT ac4 = T; furthermore,P2 crf is

also a guard, so fromPRT(P2, [T ab4 , T
ba
4]) one can deduce that thesenormalsub-routes

overT4 are free. However, two applications ofRESTACare needed to deduceT ac6 from

the hypothesesT ac4 andT ab4 . Following the discussion in Section 4.4.3 this intermediate

result is needed to proveMX invariant.

The final step inPRRTAC is to rewrite the goal using all appropriate assumptions,

some primitive (built-in) facts about propositional logic and the pre-proved theorems

aboutPRT, MX2 and MX4, etc.. ASMREWRITETAC will replace any terms in the

goal which also appear amongst the hypotheses byT, and similarly any terms that

are instances of the supplied and built-in theorems. HOL’s rewrite engine applies the

rewrite theorems repeatedly until either the goal reduces toT, in which casePRRTAC

succeeds, or until no further change occurs in the goal (in which casePRRTAC fails

since there remain unproved subgoals andNOTAC is a tactic that always fails).

The success of this procedure therefore depends upon the resolution step yield-

ing all the necessary intermediate results. Generalising the tacticalTWICE, the tactic

BTHENTACcan be implemented thus:

fun BTHEN_TAC n = ...
THEN (repeat n) RES_TAC THEN ...

Chapter 5. A Formal Theory of the Geographic Data Language 121

The integern is supplied by the program calling this tactic. It turns out that (in most

cases)n need be no more than the length of the route—which can be ascertained by

a purely syntactic check on the panel route request rule to which the tactic is being

applied. Exceptional cases may arise if opposing routes bifurcate more than once.

However, it is perhaps ultimately more satisfactory to implementRESTAC, one of the

theorem prover’s primitive tactics, in such a way as to reapply itself as long as fresh hy-

potheses are being discovered (this can be simulated using the tacticalCHANGEDTAC,

but is it not very efficient). Note that we should not attempt to use

val BTHEN_TAC = ...
THEN REPEAT RES_TAC THEN ASM_REWRITE_TAC ...

since this would diverge whenever the combination of resolution and rewriting fails to

solve the goal completely (since neither tactic fails).

Computationally, while resolution is itself rather expensive, most of the complexity

inherent in this tactic (or to the proof it performs) is introduced by the innocent-looking

STRIP TAC. The reason for this is that when there is a disjunctive term in the ante-

cedent of the goal(∗), STRIP TACyields several subgoals:

? ` a ∨ b⇒ c

[a] ` c [b] ` c

This will be the case whenever a ‘points controlled or free to move’ test is included in

the availability conditions for a route (e.g., P3 cnf in *Q51). Thus, if there arep such

tests (say), there are2p very similar subgoals in the proof. Controlling the rewriting

procedure and the efficiency of the resolution step therefore offer the main opportunit-

ies for improving the computational complexity ofPRRTAC(but see Section 7.2).

5.4.3 Failed Tactics

The failure of a tactic on the goal? ` {F} c {F} does not imply the data are incorrect—

the tactics discussed above are not complete proof procedures. From the logical stand-

point there are three situations that should be borne in mind when the tactic intended

to prove the goal fails:

1. The purported theorem is simply not true because the data violate the safety

propertyF. In the case of the erroneous rule forT ba2 mentioned above

T ba2 f if T2 = c , T ac1 = f \ .

a visual inspection of the scheme plan is enough to identify the error. Likewise,

the error in the route request rule

*Q51 if P3 cnf , P2 cnf , T ca6 f , T ba2 f

then R51 s , P3 cn , P2 cn , T ac6 l , T ac4 l , T ab2 l \ .

Chapter 5. A Formal Theory of the Geographic Data Language 122

will be so revealed, but with perhaps a little more difficulty. Our verification

strategy is designed to isolate exactly these sorts of common data errors.

2. The data are correct but the heuristic implemented by the tactic is not sufficiently

powerful. This is very likely when one is devising the tactics in the first place,

and it is inevitable that some experimentation is needed before one’s tactics are

sufficiently robust (this was one of the reasons for using HOL after all). Thus, as

it stands,SRRTACwill likely need to be reengineered if the invariant is radically

changed—instantiating a new dataset will not be a problem, but covering safety

properties other thanMX , PT, andRT may be. Likewise, since realPRRdata

are often more complex than the guarded commands used to exercise the GDL

theorem prover, this tactic too will have to be reengineered to accommodate a

wider class of panel request data. An example to illustrate both issues will be

given in Section 7.2 where we examine a live set of Geographic Data, and the

problem ofoverlapsin particular.

3. Due to Gödel’s Incompleteness Theorem there are theorems that are expressible

in higher-order logic but which are not provable within its proof system. Thus

` {F} c {F} may be true but unprovable. Nevertheless, theverification con-

dition is expressed as a conjecture in the propositional, first-order fragment of

higher-order logic, and this is decidable. Completeness of the underlying as-

sertion language is a necessary condition, though in general not sufficient, for

the completeness of Floyd-Hoare logic. By restricting to a decidable assertion

language we should be able to prove the verification conditions when they are

true.

Another source of ‘failure’ warrants mention. The theorem` {F} c {F} attests

only thatc leavesF invariant. According to the definitionF is insensitive to the error in:

T ba2 f if T1 = c , T ca1 = f \ . . As pointed out in Chapter 3, many such errors may

be identified by a purely syntactic analysis: this is therefore an important precursor to

the behavioural analysis undertaken with the theorem prover.

To summarise this section therefore, two simple proof methods have been imple-

mented in HOL tactics to discharge the verification conditions arising in the safety

analysis of sub-route release, and route request data. In the case ofSRRTAC the tactic

is as efficient as possible since it is clearly linear in the size ofF, and there is seldom (if

ever) a need to resolve amongst the hypothesis to verify theFOPdata. The same is not

true ofPRRTACwhere resolution is the key to discharging these proofs automatically

and, moreover, where the proofs are complicated by disjunctive terms in the antecedent

due to points tests in thePRRdata. Complexity issues are discussed further in the next

section.

Chapter 5. A Formal Theory of the Geographic Data Language 123

5.5 Decomposing Global Invariance

In Section 3.5 we were able by dint of an exhaustive proof strategy to verify some

safety properties of a few small collections of Geographic Data. The same data (and

Sun workstation) were used to exercise the HOL proof method, the results being dis-

played in Figure 5.5. The first observation is that for an Interlocking as trivial as WEST

the direct enumeration approach is by far the quicker! Nevertheless, the algorithmic

complexity of the HOL approach is a considerable improvement. In the table below

u is the number of sub-route release rules andr is a measure of the number of route

request rules taking into account the doubling caused by points tests.

INTERLOCKING (P ,R,U) (T) u r Time FOP Time PRR

WEST (3,10,22) (8) 19 28 175 s 210 s

EAST-WEST (4,14,32) (12) 28 34 415 s 515 s

FORESTLOOP (4,16,32) (12) 30 32 435 s 515 s

THORNTON JN. (6,16,40) (14) 36 56 720 s 850 s

Figure 5.5: Experiments using HOL on some simple Geographic Data

5.5.1 Computational Complexity (Revisited)

It is difficult to give a precise measure of the computational complexity of the proof

procedures outlined in the previous section. Clearly there is one proof to conduct

for each rule in the data, so as long as the invariant remains unchanged the method has

linear time complexity. However, as the data and the physical extent of the interlocking

grows, so too will the (global) invariant.

For SRRTAC at least, the time complexity is directly proportional to the number

of terms inF. This, in turn, depends onP , R, U andT . Assuming that no track

section contains more than one set of points|MX ∧PT| = T + 2P ≤ 2(T +P) = U .

Less certainty concerns|RT|, but evidently|RT| ≤ U +R once the invariant has been

rewritten according to theRoutesalgorithm—one conjunct for each sub-route, plus at

most one extra for each route. SinceU ≈ u, the number of sub-route release rules,

time complexity for analysing theFOPdata is quadratic inU .

The empirical evidence indicates that the quadratic measure is overly optimistic.

This is because it represents the (theoretically) best attainable time complexity. Coding

inefficiencies inherent to the theorem prover account for the discrepancy (for example,

in manipulating lists of assumptions and, especially, in handling very large terms).

However, forPRRTACit is more difficult to obtain a useful measure of the complexity.

Partly this is because the complexity of the resolution step is difficult to quantify. A

Chapter 5. A Formal Theory of the Geographic Data Language 124

more serious reason is that the number of intermediate proofs that the theorem prover

has to perform on each invocation of the tactic grows exponentially with the number

of points on the route, but the measure(2U + R) r provides little intuition because

r is not a function of the other parameters. (It turns out that the exponential ‘in’r

can be eliminated, leaving the measure(2U + R)R, by suitably strengthening the

invariant—i.e., adding another safety property. This will be described in Section 7.2.)

Abandoning the search for a global complexity measure, it is nevertheless instruct-

ive to consider how the complexity of discharging each verification condition grows

with the size of the interlocking under investigation. With the assumption that no track

section contains more than one set of points, the number of terms in the invariantF

was noted above:|F| ≈ 2U + R (which is a good approximation even without the

assumption). The number ofvariablesin the term is of course equal toP +R + U ,

andP andU are linear functions ofT—i.e., adding one track section (circuit) addsat

mostone point switch and four sub-routes. (The number of routesR does not depend

onT , but it is unlikely to exceed the number of sub-routes,U , in practice.)

A natural question is whether one might not redesign the algorithm for discharging

the proofs more efficiently. In the next subsection a simple approach to decomposing

these global proof steps is proposed, but an alternative is to encode the verification con-

ditions in propositional logic, and call an external decision procedure to check whether

F ∧ b⇒ F′ is falsifiable. Two candidates emerge:

• Binary Decision Diagrams: These were considered in the context of symbolic

model checking in Section 3.4.3. The advantage now is that it is not necessary to

represent the transition system of the model, which was the problem with model

checking. The BDD representation ofF ∧ b ⇒ F′ may be efficient in spite of

disjunctive components inb because the graph structure representingF may be

shared by all branches. The tautology check is then linear in the size of the

BDD, but the size of the graph depends critically on the ordering imposed on the

propositional variables involved in the computation.

• NP-TOOLS: The theorem prover marketed by Logikkonsult [88, see Section 1.5]

implements remarkably efficient heuristics for natural deduction style proofs in

propositional logic. The evidence, supported by Grooteet al. in a recent applic-

ation to railway signalling [37], is that this theorem prover is very much more

effective at proving ‘simple theorems’ than are BDD based approaches. Compu-

tationally, the efficiency of NP-TOOLS depends on the number of simultaneous

(free) assumptions that must be recorded in the natural deduction proof [87]—

in practical applications this is usually close to zero. The method is relatively

insensitive to the number of propositional variables involved.

Chapter 5. A Formal Theory of the Geographic Data Language 125

In either case, a serious disadvantage of using external decision procedures is that it

undermines the logical coherence of the proofs conducted with the HOL system. Argu-

ably this is of little significance since it is plainly the verification conditions themselves

that demonstrate ‘safety’, not the Hoare triplesper se; but this argument fails to take

into account the advantage that can be gained from the compositional nature of Floyd-

Hoare logic, or the additional confidence obtained by submitting the proof generated to

an independentproof checker. This latter option is impossible when external decision

procedures are used to complete parts of HOL proofs.

On the other hand, the integration of BBD based verification and deductive the-

orem proving is an area of active research, although still in its infancy. Harrison [40]

describes an interesting experiment along these lines, where he implemented a BDD

based tautology checker as aderivedrule of higher-order logic (thus maintaining the

logical coherence of the system, and the security of the proofs). If such tools become

part of the mainstream apparatus of the HOL system, the derived decision procedures

may well avoid some of the inefficiencies of tactics likePRRTAC.

5.5.2 Heuristics for Decomposition in the Proof

A polynomial time global safety analysis of the data is of significant interest, but prac-

tically the implemented proof method is still rather slow. Improving the efficiency of

the infrastructure underlying the theorem prover would speed up the process, but this

only addresses one cause of the problem. SinceF is a conjunction of a large number

of local safety properties it is very likely that an effective decomposition strategy will

emerge. To this end, Ingleby [47] has described some of the underlying principles

which he derives from Galois theory. It is instructive to relate the main idea here since

it explains how to partition the network into non-overlapping segments.

The signalling scheme plan and Geographic Data identity files define an incidence

relation—a binary relationI ⊆ A×C between physical trackattributessuch as points

and track circuits, and logicalcontrolelements such as routes and sub-routes over those

attributes. This induces a Galois connection: essentially, given a set of tracks and points

F ⊆ A, the Galois connection gives a setF⊥ = {c ∈ C | ¬∃a ∈ F . (a, c) ∈ I} which

is the set of routes and sub-routes thatdo notpass over any of the elements inF . For

G ⊆ C, G⊥ is dually defined. Ingleby searches for setsX ⊆ C that are closed in

the sense thatX = X⊥⊥. The intuition is that a closed set of control elementsX is

maximal with respect to sharing of attributes inA.

Given closedX ⊆ C, if the setA−X⊥ is also closed the pair define what Ingleby

calls alocality. For example, the pairs:

({T0, T1, T2, T3, P1}, {R02, R04, R1, R3} ∪ {sub-routes over{T0, T1, T2, T3}})
({T4, T5, T6, T7, P2, P3}, {R2, R4, R5, R6} ∪ {sub-routes over{T4, T5, T6, T7}})

Chapter 5. A Formal Theory of the Geographic Data Language 126

are (in terms ofattributes) mutually disjoint localities in WEST. Note, in passing, that

the long routesR51 andR53 are in neither of these partitions. Such relationships are

easy to derive automatically from the Geographic Data. These are used by Ingleby

and Mitchell [48] to guide heuristics that limit the search space in proving safety by

enumeration of the states of the automaton.

The same Galois theory may be adapted to our HOL setting to guide the overall

analysis, but this has not been investigated thoroughly. Instead, some rather obvious

heuristics are described below for decomposing proofs like` {P ∧Q} c {P ∧Q}. We

alsopartition the network structure, as above, keeping routes whole. The observation

is that the truth of{Q} c {Q} (say) ought to be computationally trivial when execution

of the commandc has no bearing on the truth ofQ.

More formally, given a set of assumptionsA and conjunctive goalI, it is con-

venient to break up the proof ofA ` I into smaller proofs:A ` I1 . . .A ` In.

Then a derived rule of higher-order logic can assemble these into the desired theorem.

SRRTACworks in essentially this manner:

a1 ∧ · · · ∧ an ∧ b⇒ a′1 ∧ · · · ∧ a′n
⇔ (a1 ∧ · · · ∧ an ∧ b⇒ a′1) ∧ · · · ∧ (a1 ∧ · · · ∧ an ∧ b⇒ a′n)
⇐ (a1 ∧ b⇒ a′1) ∧ · · · ∧ (an ∧ b⇒ a′n)

Hereai ∧ b is (usually) sufficient fora′i when the data are correct. In general, more

powerful heuristics for the proof’s decomposition are needed. An heuristicH will

select subsets of the assumptions:H(A, Ij) = Aj ⊆ A. Monotonicity of the logic

guarantees soundness in thatAj ` Ij impliesA ` Ij.

5.5.3 Static & Dynamic Decomposition

Firstly, givern the theorems̀ {P} c {P} and` {Q} c {Q} we can derive the theorem

` {P ∧Q} c {P ∧Q} in our HOL theory. Then,given a decomposition likeF ≡
F1 ∧ F2, and a rulec which we suppose to be of the formif b then x̃ := ṽ, the proof

proceeds with two separate goals:? ` {F1} c {F1} and? ` {F2} c {F2}. For good

choices ofF1 andF2 the sets of program variables mentioned in each term will have

a small intersection. We can then expect to find that for a significant number of the

rulesc in the database the program variables inc andF2 (say) will be disjoint. When

this is the case the second of these subgoals is trivial since the verification condition

F2 ∧ b ⇒ F2 matches a simple theorem of propositional logic. This test is a syntactic

condition which is sufficient to prove the initial goal. Also, whenever this holdsVC TAC

generates the above verification condition so the tactic implementing the proof steps

need only match the appropriate theorem. However, when the syntactic condition does

not hold the tactic must resort to solving? ` {F1 ∧ F2} c {F1 ∧ F2} directly.

Chapter 5. A Formal Theory of the Geographic Data Language 127

hhh.................

hhh.................

(a)

hhh.................

hhh.................

(b)

Figure 5.6: A distinction between the network and route structure. In (b) the routes termin-
ating at the signals overlap, in (a) they do not. In (a) the route structure coincides with the
network structure, but not the latter case.

The question then is to decide how to separateF into its two (or more) compon-

ents. The Galois theory would help here but we only envisage partitioning the invariant,

never the Geographic Data, because the logical route structure and the network struc-

ture seldom coincide in practice. This can be seen in the difference between the two

parts of Figure 5.6. Given the form of the invariant it is clear thatMX encourages

a decomposition based on the physical (or geographic) structure of the interlocking,

while RT encourages adherence to the logical structure in ‘keeping routes whole’.

In the THORNTON JN. example (see page 216) the notional boundary corresponds

to a natural interlocking boundary. Thus, intuitions from signalling engineering are

used to decompose the invariant according to the geographic separation. We have

sought to minimise the number of routes that straddle the boundary while keeping the

partitions evenly proportioned. For thePRRdata for THORNTON JN. this achieved a

20% improvement in the processing time; on extending THORNTON JN. by adjoining

an interlocking similar to WEST, this simple decomposition strategy resulted in a 40%

improvement over the corresponding global proof.

In the forgoing analysis it was assumed that the decomposition intoF1 andF2 was

givena priori. The other heuristic considered here is similar, but dynamic in character.

From the initial goal we can proceed as follows:

? ` {F} if b then x̃ := ṽ {F}
⇔ ? ` F1 ∧ F2 ∧ b⇒ (F1 ∧ F2)[ṽ/x̃] & ? ` F ∧ ¬b⇒ F
⇔ ? ` F1 ∧ F2 ∧ b⇒ F1[ṽ/x̃] & ? ` F1 ∧ F2 ∧ b⇒ F2

⇔ ? ` F1 ∧ F2 ∧ b⇒ F1[ṽ/x̃]

This again supposes that the program variables inF2 (say) and the commandc are

disjoint. However, the separation intoF1 andF2 is not predetermined—the tactic im-

plementing these steps should perform the task differently for each command.

It follows from the tautology(x ⇒ z) ⇒ (x ∧ y ⇒ z) that if F1 ∧ b ⇒ F1[ṽ/x̃]
can be proved, the initial goal can be proved as well. There may be some doubt over

whetherF1 ∧ b is sufficient in general—but when it is not the goal in the last line

Chapter 5. A Formal Theory of the Geographic Data Language 128

above can be tried instead. Note that in order to implement this heuristic we require

to rearrange the terms inF in a manner governed by the syntactic form of, and the

program variables appearing in, the GDL command in the initial goal. For optimal

performance modifications to the interface to the theorem prover (the subgoal package

which manages the proof) would be needed to provide efficient data structures for

holding and manipulating Geographic Data invariants, to improve the performance of

rewriting and resolution strategies,etc.. The HOL theorem prover being an open ML

programming system facilitates such application specific refinements in a natural and

logically secure manner.

5.6 Summary

In this chapter an unsophisticated use of the HOL theorem prover has been made to

realise a fully automated tool for checking safety properties of Geographic Data. This

has been achieved by representing the syntax and semantics of the Geographic Data

Language in higher-order logic, and through a semantic embedding of the associated

program logic in the HOL system. The theorem prover’s tactic language (together

with some routine ML programming) have been used to automate proofs of Floyd-

Hoare assertions of the form{F} c {F}, for commandsc taken from thePRRandFOP

data. There are essentially two circumstances in which the theorem prover fails to

prove such conjectures: either the tactic implementing the proof is inadequate, for

instance because the form ofc introduces subgoals the tactic was not designed to handle

(refinement of the tactic is required); or, which is more likely, because the commandc

does not satisfy the safety criteria encoded in the invariantF (indicating a coding error

in c or, exceptionally, a specification error inF). Being able to pinpoint errors in the

data with such precision is a considerable advantage of our proof methodology.

While the prototype GDL verifier described might not be very fast, the potential of

the approach has been shown, and its utility demonstrated for interlockings as ‘com-

plex’ as THORNTON JN.—which is about one third of the scale of a real Interlocking.

In Chapter 7 we shall use the theorem prover to tackle the route locking data for the

Leamington Spa signalling scheme which represents a typical SSI installation. Suc-

cess in this venture rests on the compositional nature of Floyd-Hoare logic, the major

strength of the approach, and on being able to decompose the global safety proof as

per the illustration in Section 5.5 above. Not unnaturally the Leamington Spa case-

study raises issues that have not hitherto been ventilated, particularly in generalising

the approach discussed above to safety properties of other classes of Geographic Data.

If one wishes to prove properties of GDL programs a precise mathematical state-

ment of the semantics of the language is essential. To formalise,i.e., to mechanise,

Chapter 5. A Formal Theory of the Geographic Data Language 129

such proofs a formal statement of the language’s semantics is mandatory. This focus

on semantics represents a considerable departure from the work of other authors on

the subject, particularly Ingleby and Mitchell [48], and Pulley and Conroy [21], where

both sets of authorstacitlyassume that the code used to generate their automata is equi-

valent, in some sense, to that running in the SSI. In raising the issue of the semantics of

the Geographic Data Language at the outset we address the somewhatad hoccharacter

of the language’s definition; the novelty of this approach to checking safety properties

of the data is to use the semantics of the language todefinethe GDL verifier which we

have realised using HOL.

On the face of it, therefore, there is apparently a weakness in the proof methodology

put forward in this chapter in that it is not known whether the semantics formalised in

HOL are entirely faithful to the semantics of the language as implemented by the SSI

control interpreter. However, in Section 5.2 we sought only to demonstrate that the

language can be formalised so as to offer the highest degree of automation in checking

safety properties of Geographic Data—it is not claimed that every detail is correct. The

semanticsare thought to be valid but there are several questions to address, for instance

with respect to points:

• Whether it is admissible to split the datatype into two components?

• Whether the inversion of the control bits is faithfully modelled?

• WhetherPFMconditions are properly dealt with in the translation?

These are answered in the affirmative in Section 2.4 where the semantics of GDL were

first discussed. For the second point, note that two (machine) operations are neces-

sary to set the reverse control bit (say) and clear the normal—no single bit-mask can

achieve this in one step and leave the other fields undisturbed. In refining the repres-

entation of points, track circuits,etc., in the theorem prover it would be better style to

introduce record types and define appropriate selector and mutator operations on the

type. HOL libraries are available to automatically derive the abstract characterisation

of such datatypes, so we have not dwelt on the details.

The style of semantic embedding given in Section 5.2 is shallow in the sense that

one cannot prove ‘deep’ theoremsaboutthe semantics of the embedded language. An-

other approach is suggested in the work Camilleri and Melham [15] who describe HOL

utilities to support deeper reasoning about languages such as GDL. Their scheme auto-

mates the derivation of the abstract characterisation of inductively defined relations

in higher-order logic—a natural candidate here would be theoperationalsemantics

of a simple programming language like GDL. There is a distinction to note between

Gordon’s method and that of Camilleri and Melham: in the former case, as in Sec-

tion 5.2, the axiomatic semantics (Floyd-Hoare logic) are manually derived from the

Chapter 5. A Formal Theory of the Geographic Data Language 130

denotational semantics; in the latter, one must first prove that the proposed rules of the

program logic are sound with respect to the operational semantics.

Adopting this alternative style of presentation would place the safety analysis of

Geographic Data on quite a different, and perhaps slightly richer, mathematical found-

ation where one could in principle approach the metatheory required to prove simple

properties such as Lemma 4.3 which states that clearing a sub-route leavesMX in-

variant. On the other hand it is questionable whether such elaboration is practically

necessary: it is only in so far as̀{F} c {F} is a desirable thing in itself. For if, where

c is a sub-route release rule, one can be satisfied with asyntacticcheck that these data

are properly formed—e.g., that they indeed clear the sub-route to which they refer—

one may be perfectly content to prove only the weaker theorem` {RT} c {RT}.
These considerations are not merely stylistic: the efficiency of the proof method is

still at issue, and a decomposition of the invariant such as this, enhanced by a deeper

semantic framework within which to formulate the invariants we wish to prove, would

considerably further the utility of the tool. As demonstrated in Section 5.5, even relat-

ively simple decompositions, based on the rule

` {P} c {P} ` {Q} c {Q}
` {P ∧Q} c {P ∧Q}

were effective in speeding the overall safety analysis. It will be necessary to use further

decompositions of this kind to analyse the Leamington Spa data in Chapter 7.

♦

The issue of decomposition in the proof leads to the question of composition in in-

terlocking design. The decompositions favoured earlier followed from the engineering

discipline employed to distribute the control of large or complex signalling schemes

between a number of cooperating interlockings. The general idea is to ‘draw the line

through the signal post’ since this entails fewer communication overheads: the routes

up to the signal are controlled by one interlocking, those forward from the signal by the

other. However, where trains can run in both directions over the same track this inevit-

ably leads, as in Figure 5.6(b), to severed routes in one direction or the other. Matters

are complicated if there are points in the fringe track section beyond the signal, or if

the boundary unavoidably passes through a set of points.

Clearly then, in order to set a route traversing a boundary the adjacent Interlockings

need to communicate in some secure manner. Certain data such as the availability of

the tail (or remote) portion of a route are required to be communicated only sporadic-

ally, but to control signal aspects up to the boundary data such as the status of signals

and track circuits in the fringe area are required to be communicated in a continuous

basis. These inter-SSI communications, and the safety concerns raised by the remote

route locking protocol in particular, are the topic for discussion in the next chapter.

Chapter 6

Distributed Control in Complex
Interlockings

In the analysis of the static safety properties of Geographic Data it has not been neces-

sary to attribute any particular behaviour to trains—thus they might appear and disap-

pear at the periphery of the controlled area at will. But clearly this traffic comes from,

and goes to, somewhere. In fact the control of large signalling areas will be divided

between a number of Interlockings which must act in concert to ensure the overall

safety of trains in the network. In particular, two or more Interlockings will need to

cooperate to set routes that cross the boundaries between them. The first two sections

below recall the main ideas from Section 1.4, and explain how thisremote route lock-

ing is implemented partly in the data, and partly in the generic program. Then, in

Sections 6.3 and 6.4, a CCS model is developed and its properties examined. Although

the given protocol is found to have certain unsafe features, the formal analysis shows

that these can easily be eliminated.

6.1 Introduction

The inter-SSI communications utilise a high speed communications bus called the in-

ternal data link (IDL). Several Interlockings can be connected the link, but normally

an individual need only exchange data with its nearest neighbours. Although each SSI

broadcasts its data, communication is one-to-one rather than one-to-many: each Inter-

locking connected to the link reads the broadcast data, but extracts only those telegrams

that have been addressed to it. Given a cyclic communications strategy, there are two

broad classes of data that need to be communicated: continuously required data such

as signal aspects used to calculate the aspects of remote signals, and intermittently

required data such as are needed to set routes or control points near the boundary.

In the simplest case where a pair of unidirectional lines connect two interlocking

areas the boundary can be drawn “through the signal post”. In these circumstances,

131

Chapter 6. Distributed Control in Complex Interlockings 132

b a

T4

c

L
L
L
L
L
LP2 c aT6

b �
�
�
�
�
�P3

b a

T7

b a

T8

c aT9

bL
L
L
L
L
LL P4

hhh.................S2

hhh.................S4

hhh.................S6

hhh.................S8

hhh.................
S5

hhh.................
S9

hhh.................
S7

A75
A95
AZ

Q75
Q95
QZ

WEST

EAST

Figure 6.1: EAST-WEST—Setting routes across SSI boundaries

on the outgoing line, the aspects of signals and the status of track circuits beyond the

boundary are needed to control signals up to the boundary, and the condition of track

circuits up to the boundary will be needed by the other SSI to calculate the aspects

of signals beyond the boundary (cf. Figure 6.1, where the notional boundary passes

throughS8). The IDL simulates the delivery of these data, which would normally

arrive over the track-side data highway, typically compressing all of the data required

into a single telegram. No route locking over the boundary is necessary in such (ideal)

circumstances.

More complicated circumstances arise where route locking across the boundary is

necessary, or where the boundary must pass through a set of points. The Interlocking

controlling the entrance signal on a cross-boundary route must request the adjacent

Interlocking to set that part of the route (thetail portion of the route) that is under its

jurisdiction. This arises as a consequence of the simple design of the SSI where the

TFM inputs are not multiplexed, and there is no shared state (memory) in the distrib-

uted control system. Moreover, to control the aspects of signals up to the boundary the

first Interlocking needs to be regularly informed about the status of signals and track

circuits in the fringe area of the other Interlocking. Distinct IDL telegrams are used to

convey the intermittently and continuously needed data.

Outgoing IDL telegrams are prepared by commands in the Geographic Data and

the generic control program is configured to copy their contents to the link at least

once a major cycle. There are two parts to the remote route request protocol since it

deals on the one hand with the problem of locking routes over Interlocking boundaries,

and on the other, with releasing them again. The principles involved in achieving these

Chapter 6. Distributed Control in Complex Interlockings 133

functions in SSI were introduced in Section 1.4, from where we recall the six main

steps for the participants EAST and WEST in Figure 6.1. Both Interlockings use an

elapsed timer to protect outgoing telegrams:

1. EAST receives a panel route request for a cross-boundary route. If the route

is available in EAST, start the elapsed timer and issue a remote route request

telegram to WEST.

2. WEST receives an IDL input conveying a remote route request. If the route is

available, set the route, reply to EAST with an acknowledge telegram, and start

the timer in order to guarantee transmission of the reply.

3. EAST receives a reply telegram to the earlier remote route request: if the timeout

has not expired, EAST can then lock the route, stop the timer, and control the

entrance signal as usual.

4. Whenever conditions indicate that a route has cleared up to the boundary, EAST

issues a remote cancellation request to WEST as long as the elapsed timer is not

running.

5. When WEST receives a request to cancel an inward route it does so uncondition-

ally (but as long as its timer is not running), and acknowledges the request with

a reply telegram to EAST.

6. On receipt of such an acknowledgement, EAST should cease to issue cancellation

requests, the route having been cancelled in both Interlockings.

Because the precise conditions vary from route to route, the details of the protocol

are implemented by standardised rules in the Geographic Data. Also, because of the

desire to render invisible the subdivisions of the interlocking area under the control of

one signal operator, the route release part of the protocol is implemented in the con-

tinuously executedFOPdata, and not through panel requests. It is the signal engineer’s

responsibility to ensure that the elements of the protocol are correctly used, but who is

to ensure that the protocol is “safe”?

In addressing this issue it is pertinent to ask what safety means in the context of this

now distributed control system. At a human level of interpretation one could consider

the control system safe if it is not prone to failure, there being an (essential) tem-

poral component to the inquiry. However, since we deal here with a highly technical

artefact—the control program, and the remote route locking algorithm it implements—

the question can be sharpened. From [9]:

Chapter 6. Distributed Control in Complex Interlockings 134

L
L
L
L
L
LL P3

L
L
L
L
L
LP4

hhh.................S8

hhh.................
S5

hhh.................
S9

hhh.................
S7

WEST

EAST

Figure 6.2: Derailment is likely if the tail part ofR75 is not set

The overall requirement is to ensure that the [cross-boundary] route is set

only if it is available in both Interlockings, and that it is never possible to

arrive at a situation where half of the route only is set.

For a precise discussion of safety the second clause should be refined. In practice the

safety requirement is that it is never possible to arrive at a situation where only the first

half of the route is set. In the sequel we shall insist that:

• The remote route request protocol ensures the cross-boundary route is locked

only if it is available in both Interlockings, and

• it is never possible to arrive at a situation where the first half only is locked.

This more rigorous formulation of the safety requirement reflects two things: firstly,

routelocking is what the protocol is supposed to achieve, not route setting; secondly,

it is assumed here as earlier that for a route to belockedis a necessary condition for

the route to beset—that is, for the entrance signal to be switched off (in practice this

means we should verify that the output to each signal drives the signal to red unless

some onward route is locked). The conditions under which the entrance signal will be

switched off depend on continually transmitted data from the other Interlocking, but

those data are not transmitted as part of the remote route request protocol.

In order to appreciate the gravity of the situation in which only the first half of a

cross-boundary is locked, consider the scheme in Figure 6.2. SupposeR75 is locked

in EAST, but free in WEST, all signals are on, and tracks clear. If the route is set,S7

can now go off to admit a train into the track section down toS5. In the meantime,

however, WEST can lock the route fromS9 which involves moving the points (P3)

normal—but the train approaching from EAST requires these points reverse and will

(likely) be derailed if they are normal. Other hazards may also arise, but a head on

collision is unlikely if the signals are properly interlocked according to the dynamic

signalling rules (see Nock [76], and page 23).

Chapter 6. Distributed Control in Complex Interlockings 135

It turns out, in fact, that under somewhat adverse conditions the protocol will fail

to meet the second of the stated objectives. This is illustrated in Section 6.2.3, after

a detailed description of how the Geographic Data implement remote route locking.

In order to properly assess whether the technical violation of safety presents a real

hazard, a more rigorous understanding of remote route locking is necessary. Therefore

in Section 6.3 a formal model of the inter-SSI communications is developed that is

based on the model in Chapter 3 which began our analysis. In fact, we shall simply

extend Model #2 with the apparatus needed for two Interlockings to communicate—

input and output buffers, telegrams, and timers.

The formal model serves a second, more important purpose, since it provides a

framework within which it can beprovedthat the remote route request protocol can

be safely implemented. In Section 6.4 we therefore develop the CCS model through

a succession of refinements, the properties of each of which are verified using the

model checker provided by the Concurrency Workbench. It turns out that safetycan

be assured as long as an additional timer is introduced to the protocol implemented

by both parties in the negotiation. Unfortunately, however, this is not sufficient for

safety—because of a second failure mode in the protocol. This problem is described,

with its solution, in Section 6.4.3. The likely impact of our findings on the SSI are

deferred until the concluding Section 7.1.

6.2 The Remote Route Request Protocol

In Section 1.4 the essential actions that are needed to lock cross-boundary routes were

described, along with the elements that are required for their implementation. We

briefly review how the SSI generic software acts so as to transport IDL telegrams,

before spelling out the details of the Geographic Data that implement the protocol.

Further details emerge as they become relevant in Section 6.3.

6.2.1 Preliminaries: Elapsed Timers and Telegrams

With the current generation of SSI the number of IDL telegrams that can be used is

limited to a maximum of fifteen in total (so an SSI can exchange data with at most this

many neighbours). The Interlockings connected to the link take it in turns to transmit

all fifteen bytes of data (in a round-robin protocol), and the transport layer is configured

so that each SSI can broadcast its data at least once a major cycle. These data are

typically a mixture of messages containing signal and track circuit data, and request

codes. The former are messages that are prepared from theOPT data file; the latter

are prepared by commands from other data files (see Section 6.2.2 below). Thenull

request code will often be transmitted (since usually there is no remote route request in

Chapter 6. Distributed Control in Complex Interlockings 136

progress)—but null requests are ignored by the receiver. The SSI generic program is

configured to copy non-null request codes to the IDL on two successive occasions: this

provides fault tolerance in case the link is lossy, and ensures that like all other panel

requests, IDL requests are processed twice.

An elapsed timer is associated with each IDL telegram that conveys request codes

to another Interlocking (by convention). Timers may bestoppedwhen not in use, or

running—in which case they indicate an integral value in the range [0–254]. Timers

are initialised by commands in the Geographic Data, usually by setting them to zero:

thereafter they count upwards to a maximum value at which they stick (254), but may

bestoppedat any time by setting them to 255. The SSI generic program (not through

the data) updates all such software timers in rotation, approximately once a second,

but cannot update a timer more than once a major cycle. Software timers are only

accurate to±2 s, so cannot be used for very precise timing. Given the strict polling

cycle maintained by the SSI generic program it is evident that much more accurate

system timers exist, but these are not meaningful to, or accessible from, the data.

Just as eachOPTtelegram is paired with anIPT telegram in the ongoing exchange

of messages between SSI and track-side functional modules, so eachOPT internal

data link telegram is paired with anIPT telegram. When the telegram pair is used to

convey request codes and their acknowledgements there will in fact be noOPT data

(the code to transmit is calculated elsewhere, as we shall see), and theIPT data will

simply specify the relationship between incoming request code and the desired panel

request (in thePRRdata file). On processing an incoming IDL telegram the interpreter

will place the indicated panel request in the input buffer behind any outstanding panel

requests.

The decisions taken at each step are programmed in the Geographic Data, and not

in the SSI generic program which manages the low-level concerns of transferring re-

quests to the internal data link, reading from the link, and queuing the appropriate panel

requests for later processing. That is, the generic program provides the lower layers

of the inter-SSI communications protocol on top of which the route request protocol is

implemented. It is the responsibility of the signal engineer to prepare the Geographic

Data in accordance with the guidelines described in [9]. The principles involved are

now illustrated by considering the data necessary for the example in Figure 6.1.

6.2.2 Geographic Data

The Geographic Data needed to set up and cancel cross-boundary routes will be es-

sentially similar to the example considered here, but the precise details will vary for

every such route as the availability conditions will differ. In the sequel the identifiers

GW andGE are used to represent the IDL telegram in EAST and WEST respectively

Chapter 6. Distributed Control in Complex Interlockings 137

(the subscript identifies the recipient’s address). The corresponding timers areEW and

EE. To highlight where the telegram is written by a data command we shall use the

formGW = Q75 , whereQ75 is the request code transmitted—pronounced ‘sendQ75

to WEST’. Suppose EAST wishes to set the route from signalS7:

1. When EAST receives a panel request for the route from the signal operator (via

the control panel), all the route availability conditions specified in thePRRdata

are evaluated. Among these conditions is a test on the elapsed timer for the

telegram used to convey request codes to WEST. Instead of locking the route,

the command in the rule causes the timer to be started and the outgoing telegram

to be written with the request code for the tail portion of the route:

*Q75 if P4 crf , T ca9 f , EW =stop

then EW =0 , GW = Q75 \ .

Here the timer is started by setting its value to zero. If no acknowledgement is

received from WEST the timer will be stopped by a rule in theFOPdata when it

shows five (or more) seconds have elapsed:

EW =stop if EW >5 \ .

2. When WEST receives a remote input from EAST, the code will be interpreted

and the appropriate panel request queued. This is later evaluated to determine

the availability of the tail portion of the route in WEST’s interlocking area. Not

only must the usual conditions prevail in the network, but the elapsed timer for

the reply telegram should be stopped:

*Q75 if T ba7 f , EE =stop

then T ab7 l , Zab
7 l , EE =3 , GE = A75 \ .

Zab
7 is a dummy sub-route used in the sub-route release mechanism for cross-

boundary routes. All EAST to WEST routes over this line will share this control

variable. Here the elapsed timer is started (with an initial value of 3) in order to

protect the acknowledgement to EAST, guaranteeing its transmission. The timer

will be stopped by a rule appearing in theFOPdata similar to that in EAST:

EE =stop if EE >5 \ .

3. When EAST receives a remote input from WEST, the code will be interpreted

and the appropriate panel request queued. When this is the acknowledgement to

Q75 the rule invoked reevaluates the availability of the route and checks that the

request has not expired:

Chapter 6. Distributed Control in Complex Interlockings 138

*A75 if P4 crf , T ca9 f , EW <5

then R75 s , P4 cr , T ac9 l , T ab8 l \

Zab
8 l , EW =stop .

The test ‘EW <5’ fails if the timer has stopped. Whether or not the route can

still be set the dummy outward sub-route (Zab
8) should be locked and the elapsed

timer stopped.

4. Locking the dummy sub-route is necessary so the SSI will invoke the sub-route

release request for the tail portion of the route (otherwise it remains locked in

WEST). This rule resides in theFOPdata and is therefore evaluated once every

major cycle:

if Zab
8 l , T ab8 f , EW =stop then GW = QZ \ .

Whenever these conditions prevail the cancellation request will be issued—but

note that this request is not protected by starting the timer. A subsequent request

to WEST in the same major cycle may overwrite the cancellation request before

it is posted.

5. Whenever WEST receives a request to cancel the inward portion of one of the

cross-boundary routes it does so unconditionally, except for a timer test, by a

panel request rule of the form:

*QZ if EE =stop then Zab
7 f , GE = AZ \ .

Again note that the timer is not started to protect the reply telegram. The other

sub-routes along the route in WEST will clear in the usual manner, but the first

inward sub-route should always test the dummy inward sub-route:

T ab7 f if T7 c , Zab
7 f \ .

6. Whenever EAST receives the acknowledgement to its request to cancel the tail

portion of the outward route, thePRRrule frees the dummy outward sub-route

only if the last sub-route up to the boundary is (still) free:

*AZ if T ab8 f then Zab
8 f \ .

There will normally be several cross-boundary routes, but there is only one

dummy inward and one dummy outward sub-route needed in the protocol to

cancel these routes (unless the boundary passes through points).

A number of observations follow from the foregoing description. Firstly, there

is a simple priority mechanism that gives precedence to telegrams originating in the

Chapter 6. Distributed Control in Complex Interlockings 139

PRRdata over those arising in theFOPdata. This is achieved by ensuring that only

thePRRdata may start the elapsed timer, while for all classes of data a test that it is

stopped should be passed before writing an outgoing telegram. Secondly, the practice

of not prioritisingFOPdata uses of the telegram means that the acknowledgement to a

sub-route release request may be overwritten by a subsequent panel route request—or

indeed by a request generated from theFOPdata (if a route in the opposite direction

is about to be released, say). This will leave the Interlocking initiating the cancellation

request with the dummy outward sub-route locked even though the tail portion of the

route is now cancelled. The first SSI will reissue the cancellation request until such

time as it receives a reply from the second (or an outward route over the same line is

again locked).

6.2.3 Safety Considerations

As a consequence of the lower priority given toFOPuses of the IDL telegram it is

possible, where route locking in both directions across the boundary is required, for

the inward and outward dummy sub-routes in one SSI to be locked simultaneously.

No safety critical functions of the SSI should depend on the mutual exclusion property

(MX) for these dummy variables; of course, the real sub-routes over the fringe track

section should satisfy this condition. The routes property (RT), for both parts of the

route, should also hold. In the case of the SSI controlling the tail portion of the route

the property will state thatif the first inward sub-route is locked then the rest of the

route is locked(route variables for the tail parts of these cross-boundary routes are in

fact defined, but they do not serve a route locking rˆole, and they are not elements of

the remote route request protocol). For the coupled system the required invariant states

that if the first part of the route is locked then the tail portion is also locked.

Consider the normal sequence of events depicted graphically in Figure 6.3. The

initiating panel request is processed in EAST (top rail), the timer started and shortly

thereafter the telegram is placed on the IDL. WEST reads this message and places the

request in its input buffer. When this is processed (successfully) the timer is started and

the reply telegram written. EAST later reads the reply telegram from WEST and queues

the appropriate second part of the panel request. When this is subsequently processed

the route is locked in EAST, and the timer stopped. The timer in WEST expires because

of the timeout implemented in theFOPdata. If the remote route request fails in WEST

the second timer is not started, and the first expires in due course.

The scenario sketched presupposes that IDL telegrams will be transmitted at most

one major cycle after they were written (and the timer started). The ticks on the

timelines indicate seconds—i.e., moments at which the timers are updated by the real-

time software. The major cycle can be no longer than the space between the ticks. In

Chapter 6. Distributed Control in Complex Interlockings 140

EAST

� - � -m m

POST RRR E STOP

? ? ? ?

*Q75

POST[Q75] READ[A75]
*A75

E=0 1 2 3 4 5

◦

WEST

� - � -n n

POST ACK E STOP

? ? ?

READ[Q75]
*Q75

POST[A75]

E=3 4 5

◦

6
..
..

....

..

..

....?
..
..

....

..

..

....

Figure 6.3: Normal sequence of events in making remote route requests

normal operation the whole process can easily be completed before the timer in EAST

reaches the second tick.

Attention is drawn to the unusual sequence of events depicted in Figure 6.4. Matters

are as before except for the insertion of some lengthy delays. The illustration suggests

that the acknowledgement rule in thePRRdata in EAST (i.e., *A75) can be executed

after the timeout has occurred. Of course, if this happens the timer test in the second

rule fails, and so the route will not be locked in EAST—the usual (sub-route) release

mechanism will free the tail portion locked in WEST. Indeed, the tail portion of the

route may already have been released since the appropriate rule resides in theFOPdata

(the right circumstances for this can arise if, for instance, a route is being overset while

a train isen route).

Unfortunately this is not the only action that can intervene between the timeout

and processing the reply from WEST. In the lower part of Figure 6.4 this segment of

EAST’s timeline has been magnified, revealing a second panel request. This gives rise

to concern only if the panel request restarts the elapsed timer: under these circum-

stances the delayed reply will then succeed, other things being equal, even though it

should have expired. This leaves the route locked in EAST but free in WEST.

The question is whether these extremely long delays in processing panel route re-

quests, delays that are of the order of several major cycles, are credible? Such delays

are unlikely, but there are circumstances in which they could arise:

• If for some reason a data packet on the IDL becomes corrupted the receiving SSI

will treat the telegram as if it were zero—the second transmission of the same

request code will therefore afford a degree of fault tolerance. However, if the

Interlockings exchange data only once a major cycle, and if the major cycle is

long (closer to 1,000 ms than to 608 ms), delays will accumulate.

Chapter 6. Distributed Control in Complex Interlockings 141

EAST

◦
� - � -

POST RRR E STOP

m m
? ? ? ?

*Q75

POST[Q75] READ[A75]
*A75

E=0 21 3 4 5

WEST

◦
� - � -

POST ACK E STOP

n n
? ? ?

READ[Q75]
*Q75

POST[A75]

E=3 4 5

?
..
..

....

..

..

....

6
..
..

....

..

..

....

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.

? ? ? ? ?

[STOP] [CANCEL]
POST[QZ]

*Q95 *A75

5 E=0

◦

Figure 6.4: Abnormal sequence of events in making remote route requests

• If a route traverses complex point work in either Interlocking the route request

may have to be split over several minor cycles. This can be achieved by dividing

the route availability checks between several panel requests that follow one an-

other: if the first succeeds, a second is queued; if the second succeeds a third is

queued, and so on. This procedure will delay a panel request over several minor

cycles.

• More seriously, a long route may straddle more than one Interlocking boundary,

and more than one SSI may have to cooperate in locking a route, selecting and

locking an overlap, and guaranteeing flank protection. If an intermediate SSI

should need to make a further remote route request to set the tail, then even under

favourable conditions several major cycles can elapse before the originating SSI

receives the final acknowledgement.

Recall that queued panel requests will remain in the buffer for an indeterminate

period of time because the interpreter will only process a panel request if all the re-

quired processes have been completed in under the minimum minor cycle time of 9.5

microseconds (see Section 1.3.2). Queued requests, whether from the control panel

or received from another Interlocking, may therefore remain in the input buffer for

arbitrary periods of time—but usually not more than a few minor cycles.

In order to assess whether the weakness in the protocol identified above presents

a real hazard to railway traffic we shall need a more thorough analysis, and a formal

model. On the one hand the purpose of such a model is to show precisely under what

Chapter 6. Distributed Control in Complex Interlockings 142

circumstances this fault will be manifest (for example, by making explicit all our as-

sumptions about the SSI’s behaviour). On the other hand it is to place our under-

standing on a more rigorous foundation so as to formulate strategies to overcome the

problem and prove, within the framework of the model, that safety can be assured.

6.3 Modelling Remote Route Locking

Evidently a model of these aspects of the inter-SSI communications needs some notion

of time. The CCS model of Chapter 3 was devised to examine static properties of the

Geographic Data where timing issues were not considered—thus Model #2 admits

no notion of a major cycle, nor even a minor cycle, by which to clock the system. In

developing that model further here, we therefore introduce such a clocking mechanism.

6.3.1 Timing Issues

Precise arguments about critical timing properties of systems cannot be made within

the framework of an asynchronous calculus such as CCS whose semantics say noth-

ing about the duration of actions, nor the duration of the intervals between them.

Such properties can be explored using languages such as Timed CCS [71] and Timed

CSP [82] which introduce discrete or continuous domains of ‘time transitions’. Gen-

erally, either time progresses or computation does, but not both together.

Where the events that clock a system are discrete, for example in synchronous hard-

ware where a global clock signal defines the frequency with which all system compon-

ents change state, the weaker time model of SCCS [59] or MEIJE [27] may offer the

right kind of temporal abstraction. In such models all system components proceed in

lockstep whether or not they communicate, computation always coinciding with the

clock’s tick. From the synchronous model of process interaction one may, as Milner

showed, recover the asynchronous behaviour associated with distributed systems.

The natural clock of the SSI is themajor cycle. Not only does this define the

frequency with which the Interlocking and the track-side modules exchange fresh data,

but it also defines the maximum frequency at which the system’s elapsed timers can

be updated. This latter point is crucial since the behaviour associated with the remote

route request protocol does not depend on the number of seconds that have passed since

the outgoing IDL telegram was written, but on the number of times the elapsed timer

has been updated. We need not, therefore, introduce real time to the modela priori.

6.3.2 A Formal CCS Model

The Interlockings connected to the internal data link are not tightly synchronised with

one another. The lower layers of the inter-SSI communications protocol ensure that

Chapter 6. Distributed Control in Complex Interlockings 143

each SSI communicates its outgoing telegram data to the bus at least once a major

cycle. For the formal model we shall tighten this assumption and suppose that each

SSI communicates exactly once (twice,etc.,) a major cycle. These communication

events are used to clock the system. We shall further assume, grossly erring on the

side of pessimism, that one major cycle consumes one second of elapsed time. Since

608 ms≤ 1 major cycle≤ 1 elapsed ‘second’, the second inequality will be taken to

be a strict equality, and the model’s elapsed timers will therefore count major cycles.

To simplify the presentation of the model let us suppose that only two Interlockings

are connected to the link (i.e., the effects of the other Interlockings connected to the

link will be ignored). Extending Model #2, the elements needed include an elapsed

timer, an input queue, and an output buffer to hold the current output telegram. We do

not model the internal data linkper se, merely wishing to count the synchronisations

between the two Interlockings. Any lossy behaviour of the link can be emulated in the

input or output buffers.

Elapsed Timers In SSI, elapsed times that protect IDL telegrams used to convey

request codes should always be stopped by a timeout command in theFOPdata (in case

they are not stopped by rules in thePRRdata). This timeout behaviour is modelled here

with a watchdog timer which may be started or reset by the data, but which is otherwise

stopped by an external event. This simple version increments the counter on eachsync

action (provided by theControl, below):

E(m) def=

getE(m).E(m) + putE(n).E(n) + stop.E(stop) m = M

getE(m).E(m) + putE(n).E(n) + sync.E(m+ 1) 0 ≤ m < M

getE(m).E(m) + putE(n).E(n) + sync.E(m) m = stop

The timer cannot synchronise again once it has counted up toM : it must stop explicitly

by thestop action, or be reset from the data viaputE(stop). A stopped timer will

continue to synchronise as required. LetM < stop be the maximum timeout the

timer can observe (e.g., five ‘seconds’). This formulation reflects the notion that while

the timeout is programmed in theFOPdata, it is undesirable to specify in which minor

cycle the relevant rule is to be executed—because, although the execution order is

fixed, it is arbitrary and so we should therefore assume nothing about it. The timeout

is thus represented by thestop action whichmustoccur in the(M−n)th cycle after the

timer was started with the valuen. The above definition is simple to generalise so that

the timer can be incremented instead on every second, third,etc., sync action.

Queue Process The specification of the input ring-buffer is data orientated. Let[]

represent the empty queue, and[e | q] represent the queue whose first element ise and

Chapter 6. Distributed Control in Complex Interlockings 144

whose tail isq. This agent will synchronise withControl in recording IDL inputs,

throughqin, and again in removing panel requests, throughset. Other input requests,

e.g., from the control panel, will enter the queue directly (viaqin).

Q(q) def=

 qin(e).Q(appl(e, q)) if q = []

qin(e).Q(appl(e, q)) + set(e′).Q(q′) if q = [e′ | q′]

Heree, e′ ∈ Q, whereQ is the set of all panel requests, there being one rule in the

PRRdata for each element ofQ. In the sequel we let 0 represent the null telegram, and

for convenience let0 ∈ Q.

The append function,appl, places the new arrival at the end of the queue as expec-

ted. The specification should be made more precise since the buffer will be of bounded

capacity, sayl:

appl(e, q) =

 q

app(e, q)
if e = 0 or length (q) = l

otherwise

app(e, q) =

 [e | q]
[e′ | app(e, q′)]

if q = []
if q = [e′ | q′]

An input arriving at a full queue will be silently discarded.

Telegram In the Geographic Data, outgoing telegrams are treated just as any other

variable. SSI normally resets a telegram’s contents to zero when it is posted. Here, we

model a telegram as a process which can hold one of a setO of values (also letting

0 ∈ O) which can occasionally be placed on the link:

G(u) def= getG(u).G(0) + putG(v).G(v) u ∈ O

The telegram is reset to zero whenever its contents are read. The (only) process to read

this variable is the output buffer which is a simple cycler (for the moment, it is refined

later) that executes the sequence: output to the IDL, await the next enabling action

(turn) in accordance with the round-robin protocol, and fetch the next output telegram:

O(u) def= idl out(u).turn.getG(v).O(v) u ∈ O

In general, if there aren+1 Interlockings connected to the IDL the output buffer should

awaitn enabling actions before being permitted to communicate the next output. Here,

any lossy behaviour associated with the link, and the compensating duplication of tele-

grams, has been ignored.

Control The Control is constructed just as in Chapter 3, but with an explicit syn-

chronisation (with the elapsed timer) to mark the start of the major cycle loop:

Control def= set(Q).(C[[PRR(* Q)]]Control) + · · ·+ idl in(v).qin(v).Sync

Sync def= sync.turn.Control

Chapter 6. Distributed Control in Complex Interlockings 145

Now, in addition, theControl reads an IDL input, queues the appropriate panel re-

quest and updates the major cycle counter. Having read an IDL input, theControl also

enables the output buffer for writing to the link. The translationC[[·]] is extended ca-

nonically. TheControl can now be composed with the output buffer and the timer,e.g.,

as in

((Control | O(u))\{turn} | E(m))\{sync}

so that the model is ‘clocked on input’—that is, we increment the timer on each input

from the other Interlocking, then enable the output telegram. Since both Interlockings

implement the same protocol, this ensures a (logical) one cycle delay between outputs,

or inputs, and gives the model a simple clocking mechanism. Note that theControl

reads the IDL and queues the input for later processing. Other inputs (i.e., those re-

ceived from the control panel) enter the queue directly.

6.3.3 Matching up the Interfaces between East & West

The model is then specified by the parallel composition of agents

(Control | Image | Q([]) | E(0) | G(0) | O(0))\L

whose components are gathered together in Model #3. Each component captures a

separate function of the generic program as discussed above. The restriction set,L, is

chosen so that the visible actions include

{idl in(m) | m ∈ I} inputs from the other Interlocking(s),

{idl out(m) | m ∈ O} outputs to the other Interlocking(s),

{qin(m) | m ∈ Q− I} panel requests from the signal control panel,

along with{obsD(v) | D ∈ D}, the observers (tags) inImage, stop, the timeout for the

elapsed timer, and the other visible inputs toControl discussed in Section 3.2.I ⊆ Q
(with 0 ∈ I) is the set of IDL inputs the SSI can receive. We then compose two such

systems, sayEast andWest, in such a way as to ensure that they synchronise on the

IDL transmissions:

EastWest
def= (East[idl in(m)/idl out(m) | m ∈ OE][stopE/stop]

| West[idl in(m)/idl out(m) | m ∈ OW][stopW/stop])

\ {idl in(m) | m ∈ OW ∪OE}

The setOW (‘out WEST’, which is the same asIE) is the union of two disjoint sets

of messages: the requests sent fromWest to East, and the set ofWest’s replies to

Chapter 6. Distributed Control in Complex Interlockings 146

E(m) def=

getE(m).E(m) + putE(n).E(n) + stop.E(stop)

getE(m).E(m) + putE(n).E(n) + sync.E(m+ 1)

getE(m).E(m) + putE(n).E(n) + sync.E(m)

if m = M

if 0 ≤ m < M

if m = stop

Q(q) def=

 qin(e).Q(appl(e, q))

qin(e).Q(appl(e, q)) + set(e′).Q(q′)

if q = []

if q = [e′ | q′]
G(u) def= getG(u).G(0) + putG(v).G(v)

O(u) def= idl out(u).turn.getG(v).O(v)

Control def= set(Q).(C[[PRR(* Q)]]Control) + · · ·+ idl in(v).qin(v).Sync

Sync
def= sync.turn.Control

SSI def= (Control | Image | Q([]) | E(0) | G(0) | O(0))\L

appl(e, q) =

 q

app(e, q)

if e = 0 or length (q) = l

otherwise

app(e, q) =

 [e | q]
[e′ | app(e, q′)]

if q = []

if q = [e′ | q′]

Model #3: Simple model of SSI communications over Internal Data Link

the requests received fromEast. OE is similarly defined. We arrange that the sets of

observations (tags inImage) in the two systems are disjoint. In particular

{qin(m) | m ∈ (QE − IE)] (QW − IW)} panel inputs forEast or West,

{eobsD(v) | D ∈ DE} observations (tags) inEast,

{wobsD(v) | D ∈ DW} observations (tags) inWest,

are visible actions of the coupled system, along with{stopE , stopW}, the timeout ac-

tions for the elapsed timers. The setsDE andDW are the control variables (points,

routes, sub-routes and track circuits) defined in each Interlocking.

Having set up the model as above it should be remarked, before proceeding with the

analysis, that the semantics of CCS do not at all compel the exchange of data between

East andWest to take place. Indeed, both systems can proceed independently without

ever synchronising—but then in neither frame of reference will time advance.

6.3.4 Axiomatising Remote Route Requests

Although describing only the binary case, the formal CCS model described above is

couched in rather general terms. In fact, the protocol itself will have to be instanti-

ated (in the Geographic Data) for each Interlocking boundary—that is, in preparing

the Data for each SSI, a telegram (G) and an elapsed timer (E) have to be allocated

Chapter 6. Distributed Control in Complex Interlockings 147

1. *QN if @CN , E =stop then E =0 , G = QN \ .

2. *AN if @CN , E <5 then @SN, T outL l \ Zout
L l , E =stop .

3. *QM if @CM, E =stop then @SM , T inL l , Zin
L l , E =3 , G = AM \ .

4. *AZ if T outL f then Zout
L f \ .

5. *QZ if E =stop then Zin
L f , G = AZ \ .

6. E =stop if E >5 \ .

7. if Zout
L l , T outL f , E =stop then G = QZ \ .

8. T inL f if Zin
L f , TL c \ .

Figure 6.5: Generic rules for remote route locking and release

for each boundary over which routes must be set, and the data for the individual routes

should adhere to the guidelines sketched in Section 6.2. IfL is just one of the lines over

the SSI boundary where routes must be set, there are potentially eight generic rules in

thePRRandFOPdata that will be instantiated (see Figure 6.5). Of these, rules (1) and

(2) will be instantiated for each outward routeN ; rule (3) will be instantiated for each

inward routeM ; the other rules need instantiating only once for lineL, except rule

(6) which needs instantiating only once for each timer/telegram. No other Geographic

Data should update the telegram, the timer, or the dummy sub-routes needed to imple-

ment remote route locking. The availability conditions for a route, and the commands

for locking a route, are inserted at the place-holders@CN, @SN, etc.. Note that thereal

inward and outward sub-routes are mentioned in rules (2) and (3). Here we assume that

the boundary is on plain track, and that no route straddles more than one SSI boundary.

Ideally one would like to establish the safety of the remote route request protocol

independently of the safety analysis required for the rest of the Geographic Data. Un-

fortunately this is not possible since errors in the route specific data (@CN, and@SN),

may introduce unsafe states irrespective of the correct functioning of the protocol. So

we assume the data are correct—this is valid because the safety properties of the Geo-

graphic Data can be established independently of the ‘correctness’ of the protocol.

For example, the safety propertyF of the earlier chapters makes no reference to the

additional control data needed to implement remote route locking, so theorems like

{F} ci {F}, for i = 1 . . . 8 above, are rather easy to prove.

In analysing properties of the protocol it is therefore reasonable to assume that

the specific route data satisfy the appropriate invariants—RT in particular, with the

characterisation given in Section 5.3.3: if the route is locked, all the sub-routes on

the route are locked; if the first sub-route on the route is locked, the remaining sub-

routes are locked, and so on. This considerably simplifies of the model, leaving only

the generic parts listed above, and omitting the specific route locking data entirely.

Chapter 6. Distributed Control in Complex Interlockings 148

Intuitively, the route locking conditions will always be passed, and the only action

taken in locking a cross-boundary route (other than executing the protocol actions of

course) is to lock the inward or outward sub-route as appropriate. Where routes are set

in the direction EAST to WEST only, we require rules (1), (2), (4), and (7) inEast, and

(3), (5), and (8) inWest. The timeout rule (6) is omitted since the watchdog mechanism

is used instead.

This, then, is the formal model submitted to the Concurrency Workbench for se-

mantic analysis. The interface between the two components is specified by the sets

IE = {AN,AZ} andIW = {QN,QZ} while QW = IW andQE = IE] {QN,QNX}.
Apart from the timeout actions associated with the elapsed timers,stopE andstopW ,

the only inputs of interest are inEast: qin(QN), and this route’s (unconditional) cancel-

lation qin(QNX). Outputs are just the observations made of the control variablesT outL ,

Zout
L , T inL andZin

L .

6.4 Safety Properties of the Model

Informally, the safety property associated with the remote route request protocol can

be expressed thus:

whenever the initial portion of a cross-boundary route is locked in the first

Interlocking, the tail portion of the route is locked in the second.

In light of the discussion in Section 5.3.3 we strengthen this to:

whenever the last sub-route of the first portion of the route is locked, the

first sub-route of the tail portion is locked.

If this property holds it also ensures that the route is not prematurely released in the

second Interlocking. The modal formulaΘ, where

Θ def= 〈eobsT outL
(l)〉tt ∧ 〈wobsT inL (f)〉tt

therefore characterises the unsafe states inEastWest. This is sufficient since, by hy-

pothesis, each Interlocking independently satisfiesRT, and in particular WEST has the

property that if the first sub-route on the cross-boundary route is locked, then the rest

of the (tail of the) route is locked. Now¬Θ ⇔ 〈eobsT out
L

(l)〉tt ⇒ 〈wobsT in
L

(l)〉tt, so

the invariant all states of the model should satisfy is justΞ def= νZ.¬Θ ∧ [−]Z. When

started from a sensible initial state, no reachable state of the model should satisfyΘ.

Given an initial state in which all the sub-routes arefree the local model checker

confirms that:

EastWest#3 |= νZ.〈−〉tt ∧ [−]Z : Freedom from deadlock,

EastWest#3 |= 〈〈qin(QN)〉〉〈〈eobsT outL
(l)〉〉tt : Can set the outward route,

EastWest#3 6|= Ξ : Safety.

Chapter 6. Distributed Control in Complex Interlockings 149

Q(q) def=

 qin(e).Q(appl(e, q)) if q = []

qin(e).A(e, q) + set(e′).Q(q′) if q = [e′n | q′]
A(e, q) def= if (e ∈ I) then Q(appl(e, age(q))) else Q(appl(e, q))

app(e, q) =

 [idl∆(e) | q]
[e′n | app(e, q′)]

if q = []

if q = [e′n | q′]

age(q) =

q

age(q′)

[en−. 1 | age(q′)]

if q = []

if q = [en | q′] andn = 1

if q = [en | q′] andn 6= 1

idl∆(e) =

 e∆

e0

if e ∈ I
otherwise

Model #4: Refining Model #3 so as to discard tardy IDL inputs after∆ cycles

The double diamond modality,〈〈a〉〉, abstracts from the silent or unobservable activity

of the model (accompanying the initial input, in this case). IfEastWest′#3 is a state in

whichZout
L is lockedbutT outL is free(both timers being stopped), then

EastWest′#3 |= 〈〈qin(QN)〉〉〈〈qin(QN)〉〉〈〈stopW 〉〉〈〈stopE〉〉Θ

The reasonEastWest#3 6|= Ξ is just as discussed earlier in Section 6.2.3: the possibility

that IDL inputs can remain in the queue indefinitely.

6.4.1 First Refinement: Eliminating Arbitrary Delays

If the problem arises from the possibility that panel requests can remain in the queue

for an indeterminate period of time, perhaps the situation can be repaired by elimin-

ating such arbitrary delays? This introduces the idea that IDL inputs should expire if

they have been queuing “too long” (a parameter one might wish to adjust). This is

achieved in Model #4 by modifying the queue process so that panel requests are given

timestamps. In the data part of the specification of the queue,app adds inpute with

its timestamp to the queue—the function is defined much as before, but now elements

will be (time) indexed. No attempt has been made here to make these specifications

efficient, only precise.

Given thatQ is the set of all panel requests the SSI can receive, andI ⊆ Q are

just the IDL requests, the functionidl∆ computes the initial timestamp for the given

input e: this is non-zero if and only ife ∈ I. The delay parameter∆ is chosen to be

the maximum length of time (the number of major cycles) a message can have been

pending before expiring. The functionage is arranged so that tardy IDL requests are

Chapter 6. Distributed Control in Complex Interlockings 150

discarded. A zero timestamp ensures that the queued request is not discarded however

long it has been waiting. A non-zero timestamp should be interpreted as the number of

cycles a request can remain in the queue.

A small change in the queue process is necessary since we only propose IDL inputs

should expire. The clause

A(e, q) def= if (e ∈ I) then Q(appl(e, age(q))) else Q(appl(e, q))

ensures that the timestamps are only decremented when an IDL input is received. In

generalising this scheme,∆ should be some constant multiple of the total number of

IDL inputs the SSI receives (i.e., those addressed to it) in one major cycle.

Setting∆ = 1 the result from the model checker is that in addition to satisfying

the deadlock freedom and liveness properties cited earlier, the model now satisfies the

safety property:EastWest#4 |= Ξ. One can investigate further and set∆ = 2, which

is a more generous delay, but the result is somewhat surprising: since elapsed timers

count up to five ‘seconds’ a combined delay (i.e., in EAST and WEST) of four ‘seconds’

is long enough for states satisfyingΘ to reappear. To understand this fully it is best

to explore the behaviour of Model #4 more thoroughly—for which purposes we need

a simulation environment to animate the formal model. The Concurrency Workbench

can also be used for this purpose, but however the model is simulated one can derive a

transition sequence such as that depicted in Figure 6.6.

At line (1) the initiating panel request is made. This is processed at line (2) and

there follows a series of (ten) message exchanges. The remote route request must be

processed in WEST before line (9), otherwise it expires. In the figure,0 represents the

null telegram,• the stopped state of the elapsed timer, and blank spaces in columnsQ,

E , andG indicate ‘no change’ (with respect to the line above). At line (17) we see the

acknowledgement waiting to be processed in EAST, the timer is running, but the route

is unset in WEST. The main point to observe here is that if the fault is to occur the

second panel request, which need not of course be for the same route, nor even refer to

the same line, must be queued before the reply telegram is received by EAST.

Moreover, also from the trace in Figure 6.6, we can infer that when∆ = 1 the reply

telegram will always arrive at EAST (if it arrives at all) before the elapsed timer has

advanced to four. If this were not the case the elapsed timer could stop before the reply

was processed, leading to a state satisfyingΘ—but this cannot be the case since¬Θ

is invariant. This suggests that as long as the SSI can guarantee to process all panel

requests within a single major cycle, the remote route request protocol is safe. This

conclusion is in fact premature, as we shall see below when modelling IDL faults.

Chapter 6. Distributed Control in Complex Interlockings 151

EAST Q E G Q E G WEST

(1) {PRR}→ [QN0] • 0 [] • 0 (1)
(2) [] 0 QN ←− (2)
(3) 1 −→ (3)
(4) 0 ←− [QN2] (4)
(5) 2 −→ (5)
(6) ←− [QN1] (6)
(7) 3 (7)
(8) −→ [] 3 AN (8)
(9) 4 (9)
(10) {PRR}→ [QN0] ←− (10)
(11) [QN0 |AN2] 4 −→ 0 (11)
(12) ←− 5 (12)
(13) [QN0 |AN1] 5 • ←{STOP} (13)
(14) {STOP}→ • (14)
(15) {FOP}→ QZ −→ (15)
(16) 0 [QZ2] (16)
(17) [AN1] 0 QN [] AZ (17)

Figure 6.6: Illustrating how unsafe states arise in Model #4 when∆ = 2

6.4.2 Second Refinement: Adding Priorities

In refining the model above we might observe that there seems to be no need to assign

any special consideration to cancellation requests, nor to the acknowledgements to

remote route or cancellation requests. That is, acknowledgements need not expire if

the system is busy. Indeed, since the proposed solution to this flaw in the protocol sets

the delay∆ = 1, a busy Interlocking may sometimes find it difficult to lock cross-

boundary routes. Let us therefore

• arrange to timeout only remote routerequestsand not their acknowledgements,

nor cancellation requests, nor their acknowledgements, and

• assign higher priority to the messages acknowledging remote route requests in

the queue process—i.e., implement a priority queue.

It turns out that these modifications have to be implemented together for otherwise the

model remains unsafe with respect toΘ even when∆ = 1.

GivenI, two disjoint subsets can be identified:QI (‘queries in’), the remote route

requests served by this SSI, andAO, the acknowledgements to the remote route re-

quests sent by this SSI. All other IDL inputs (e.g., cancellation requests) are contained

in I − (QI]AO). The queue process is defined as in Model #4, but in the data part of

Chapter 6. Distributed Control in Complex Interlockings 152

Out(v)�
� �

�Out(0)�
� �

�

O′(v)�
� �

�

��
��

��
��

��
��

-

�
?

6

6

- �

-

?

�

�

�

� �

get(0) get(v)

idl out(0) idl out(0)

idl out(v)

idl out(0)

idl out(v)
turn

turn

Model #5: Introducing lossy link behaviour to Model #4

the specification the definitions ofapp andidl∆ are replaced by those displayed below:

app(e, q) =

 [idl∆(e) | q]
[e′n | app(e, q′)]

if q = [] or e ∈ AO
if q = [e′n | q′] ande 6∈ AO

idl∆(e) =

 e∆

e0

if e ∈ QI
otherwise

When setting∆ = 1, 2, or 3 cyclesEastWest#4′ |= Ξ, but higher values lead to unsafe

states as before. Note that the priority mechanism ensures the acknowledgement is

always processed before any other panel requests which could restart the elapsed timer

(i.e., the order of the elements in the queue in EAST at line (11) in Figure 6.6

6.4.3 Lossy Communications and Duplicating Telegrams

Model #3 and its refinements above are built upon the assumption that the communic-

ation medium, the internal data link, functions perfectly at all times. It has been shown

therefore that even when this is the case a reasonable (though slightly pessimistic)

model of the inter-SSI communications fails to satisfy the overall safety requirement.

By eliminating arbitrary delays in the input buffer we have seen that safety can be as-

sured (in the model). However, this is not the only, nor even the likely, source of delays

which the SSI has to tolerate. Recall that IDL telegrams may occasionally be lost due

to imperfections in the communications medium, and so the telegrams used to convey

requests to other Interlockings are duplicated (once) to tolerate such faults.

If the two Interlockings exchange messages only once a major cycle the loss (or

failure) of a remote route request, followed by the loss of the first reply, can lead to

several seconds’ delay. This weakness will be exacerbated if a third SSI has to enter

the negotiations to set a route that straddles more than one Interlocking boundary. In

order to model the lossy behaviour of the IDL the modifications shown in Model #5 are

implemented (the transition diagram representation of the agentO(v) is preferred here

as it is easier to interpret). In this specification the buffer processO(v) now duplicates

Chapter 6. Distributed Control in Complex Interlockings 153

the value read from the telegram, throughO′(v), but may nondeterministically transmit

the null telegram instead ofv. This models possible faults on the IDL. Note that in the

left-hand loop null telegrams are not duplicated. In the model, neither Interlocking

engaged in these communications will detect the faults occurring on the link.

Implementing these changes in Model #4 we can constructEastWest#5, and setting

∆ = 1 once more interrogate the model checker:

EastWest#5 |= νZ.〈−〉tt ∧ [−]Z : Freedom from deadlock

EastWest#5 |= 〈〈qin(QN)〉〉〈〈eobsT outL
(l)〉〉tt : Can set the outward route

EastWest#5 6|= Ξ : Safety.

This result is no surprise when Figure 6.6 shows that a two cycle delay in the input

buffer leads to unsafe states: a three cycle delay is also “too long”.

That said, there is one parameter in the remote route request protocol that can

be adjusted with ease: the hitherto arbitrary timeout observed by the elapsed timers,

currently set to five major cycles. It is now possible to suggest much more precisely

what value this should take if the protocol is to ensure both safe and live usage of

the IDL. Suppose that arbitrary delays are to be eliminated by setting∆ = 1 as in

Model #4. From Section 6.4.1 we know the reply telegram must arrive at least one

cycle before the timer is stopped by theFOPdata. There are at most six delay cycles

to accommodate through the lossy link because the output buffer inEast may be in

the stateO′(QZ) when protocol rule (1) (see Figure 6.5) is executed. The elapsed timer

should therefore not timeout the remote route request beforesevencycles have elapsed.

Adjusting Model #5 accordingly to lengthen the timeout, we can confidently ad-

dress the model checker with the question

EastWest7#5 |= Ξ ?

Intriguingly, this is false! There is a second failure mode revealed here which has

been introduced by the duplication of telegrams—this turns out to be a reincarnation

of the failure depicted in Figure 6.4. Observe that the SSI will normally send two reply

telegrams (although it may receive two requests, at most one of these will succeed

when∆ = 1 because of the timer test in rule (3)). When the first acknowledgement

is processed the elapsed timer will be stopped whether or not the route is actually

locked (by rule (2)). However, before the second acknowledgement is returned the

timer may well be restarted by another request for a cross-boundary route. As before,

if the cancellation request precedes this the subsequent but spurious reply to the earlier

remote route request may lock the route anyway. Ergo,EastWest7#5 6|= Ξ.

This problem may be somewhat artificial since it depends on the route first being

set, and then quickly cancelled again:

EastWest7#5 |= [[qin(QN)]](νZ.¬Θ ∧ [−qin(QNX)]Z)

Chapter 6. Distributed Control in Complex Interlockings 154

H(u) def= getH(u).H(u) + putH(v).H(v)

Control def= set(Q).(C[[PRR(* Q)]]Control) + · · ·+ idl in(v).Filter(v)

Filter(v) def= getH(u).if (v = u) then qin(0).Sync else putH(v).qin(v).Sync

Sync def= sync.turn.Control

SSI
def= (Control | Image | Q([]) | E(0) | G(0) | O(0) | H(0))\L

Model #6: Refining Model #5 to filter duplicate IDL inputs

whereqin(QNX) is the (panel request) input toEast that cancels the route. This prop-

erty asserts that whenever the cross-boundary route is requested (from the initial state)

¬Θ remains invariant at least until such time as the route is subsequently cancelled.

Apropos the possibility that the route is no longer available in the first Interlocking

when the acknowledgement is received, the main reference [9] comments

this can only be due to failure, overrun, or signalman error.

The first two possibilities (failure of the computer or signalling hardware, or a train

overrunning a signal at red) can be reasonably ignored as these conditions will prevail

long enough forall the reply telegrams to arrive, but we should ask whether operator

error could lead to the failure the model suggests is inherent? It does not seem a very

unlikely action on the part of the signal operator to set a route on the control panel and

cancel it again, realising immediately that it was the wrong route to set, but the issue

is difficult to resolve with certainty through informal argument—which is, in any case,

hardly adequate when dealing with a system as complex as SSI.

It is not necessary to resort to informal argument however. Observe that once the

first IDL message in a particular phase of the protocol has beenreceived, any sub-

sequent copies are redundant. This suggests that one need only record the identity of

the last IDL input, and may discard the copies. This analysis leads to the final modi-

fication depicted in Model #6, where now{putH(v), getH(v)} ⊆ L. Here the queue is

defined as before but a filter has been introduced.H is a new variable (a ‘dummy tele-

gram’) that is not accessed from the Geographic Data but which the generic program

uses to record the identity of the last IDL input from the other Interlocking (in general

an array of these filter variables is needed). With this last change the model checker

finally discharges the proof:

EastWest7#6 |= Ξ

To summarise we have: instigated a one cycle timeout for queued IDL inputs, filtered

the multiple copies of these inputs, passing only the first to the input buffer, and im-

plemented a seven major cycle timeout for the elapsed timers used to protect IDL

Chapter 6. Distributed Control in Complex Interlockings 155

communications on each side of the protocol. This completes the formal analysis of

the model of the remote route request protocol.

6.5 Summary

In this chapter we have discussed the question of whether the remote route request pro-

tocol is intrinsically safe with respect to what it is designed to achieve, namely route

locking. Informal analysis in Section 6.2 suggested that under unfavourable timing

conditions failures may be observed that lead to states of the coupled system in which

only the first half of a cross-boundary route is locked. These can arise because there is

no means to guarantee the timely arrival of reply telegrams and, in particular, of dis-

carding tardy replies from the other Interlocking. If the elapsed timer used to timeout

remote route requests is subsequently restarted, the delayed reply telegram will be

accepted as a bona fide acknowledgement to the earlier request, and the route locked

accordingly. This is a cause for concern because it is not possible to predict what (safe)

changes in the state of either Interlocking may have occurred in the interim.

At first sight there does not appear to be much of a ‘protocol’ here, at the level of

Geographic Data, about which to reason formally. The control decisions—i.e., about

the messages that should be exchanged to invoke functions in the other SSI—are im-

plemented in the Data, while the communications are handled by the subsystem over

which they have no control. Yet thereis a protocol that is revealed in the generic rules

given on page 147 from which the route specific control data have been abstracted.

The generic rules in the Geographic Data form the basis of the formal model ana-

lysed through a succession of refinements in Section 6.4. Other components of the

model represent features of the underlying communication mechanism—the input and

output buffer processes, and the elapsed timers which are modelled using watchdogs.

The weakest aspect of the model is its notion of time. The simple idea of counting ma-

jor cycles can be justified on the one hand because the SSI updates the elapsed timers

no more frequently than this, and on the other because the worst case is assumed where

the major cycle is extended to its operational upper limit of one second. Of course, a

less pessimistic, average case model should admit the worst case behaviour we have

assumed (because the SSI does).

The first formulation, Model #3, confirms that there is a logical flaw in the remote

route request protocol since this model assumes the IDL is a perfect communication

medium. Model #4 demonstrates that as long as we can guarantee to deliver IDL

telegrams within one major cycle, and service them within another, the protocol will

function safely. This model illustrates that if buffered IDL inputs timeout after one

major cycle, safety is guaranteed as the reply telegram always arrives, if it arrives at all,

Chapter 6. Distributed Control in Complex Interlockings 156

at least one cycle before the elapsed timer reaches the timeout. The second refinement,

in Section 6.4.2, shows that at the cost of implementing a priority queue (which may

be a severe cost, in a real-time setting), longer servicing delays could be tolerated.

In Model #5 the assumption that the IDL functions perfectly was relaxed, and du-

plication of IDL telegrams was introduced to compensate for occasional losses. If the

Interlockings only exchange messages once a major cycle we found that even with a

one cycle timeout for buffered IDL inputs, the protocol cannot guarantee safety. The

failure mode observed in Model #5 can be eliminated, however, by modifying the

protocol slightly so the elapsed timers do not expire before seven major cycles have

elapsed. This assertion is supported by the observation that

EastWest7#5 |= [[qin(QN)]](νZ.¬Θ ∧ [−qin(QNX)]Z)

holds in the initial state (in which all sub-routes are free, and routes unset). The prop-

erty Θ is not invariant, however, sinceEastWest7#5 6|= νZ.¬Θ ∧ [−]Z. This, in turn,

is because the duplication of IDL telegrams introduces a second failure mode.

It is interesting to note that it is the defensive measure employed to provide fault

tolerance, the duplication of IDL telegrams, that leads here to a weaker safety ar-

gument. The interplay between safety requirements and fault tolerance is obviously

delicate and this can lead, in the design of robust safety critical systems, to difficult

compromises between the two. In this case, however, there seems no need to com-

promise safety in order to tolerate occasional lost IDL telegrams: Model #6 indic-

ates that the simple strategy of filtering the redundant copies received eliminates the

newly identified failure mode, whether or not it is ever likely to appear in practice.

EastWest7#6 |= νZ.¬Θ ∧ [−]Z as long as queued IDL requests expire after a one ma-

jor cycle delay.

While these results are reliable for the model described in here, it is important to

realise that it is not fully general since only route locking in one direction over the

boundary is examined, and since it also only captures the case where there are just two

Interlockings connected via the internal data link (rather, two Interlockings that engage

in locking any particular cross-boundary route). The model is in fact easy to general-

ise if one can achieve multi-way synchronisation on the IDL transmissions (e.g., with

SCCS, CSP, or perhaps more naturally with LOTOS [7] where one can model broad-

cast). In the next, concluding chapter we shall pick a number of concrete recommend-

ations for the implementation of the remote route request protocol which the formal

analysis in this chapter has brought forward. These, and the model described here and

the proofs of its properties have already played an important rˆole in the internal review

which British Rail initiated in response to these discoveries in order to try and qual-

ify the risk which may arise from the flaws discussed. The results of this assessment

process are unfortunately not available at the present time.

Chapter 7

Safety in Interlocking Design

This final chapter summarises the main ideas discussed in the earlier chapters, and

puts forward some conclusions and observations that are pertinent to the industrial

usage of formal methods. Section 7.1 below considers the impact that implementing

the changes to the remote route protocol suggested in the previous chapter may have on

the system’s overall performance. The discussion in Section 7.2 returns attention to the

Geographic Data theorem prover described in Chapter 5: the data for the Leamington

Spa pilot scheme [24] were tackled using the prototype with some success, but also

some frustration since the sample data supplied to launch the project [66, 8] were far

from representative. Even so, the results here are promising. Finally, Section 7.3

concludes this thesis.

7.1 Implementing Remote Route Locking Safely

The model and its formal analysis in the preceding chapter bring forward several con-

crete recommendations for the implementation of the remote route locking protocol.

It is therefore important to consider the overall impact these might have when imple-

mented in SSI. The elements we found to be missing were a second timer mechanism

to ensure that messages cannot be delayed arbitrarily, and a filter mechanism to re-

move redundant copies of the reply telegrams. The reasons why these are important

were discussed in depth in Section 6.4. The modifications to the SSI generic program

their implementation entails are straightforward, but it is not our place here to argue

that theseshouldbe implemented—that is for the appropriate signalling authority to

decide after the results of their independent risk assessment procedures are finalised.

The preceding analysis and the observations that follow were put forward as input to

that process only:

Filter variables Introducing these involves a change to the SSI generic program, but

not in the Geographic Data. In general, an array of these is needed, one for each

(incoming) IDL telegram used to convey request codes. The required algorithm

157

Chapter 7. Safety in Interlocking Design 158

need make at most two memory accesses: when a null input telegram is received

the filter variable can be set to zero unconditionally; otherwise the filter variable

needs comparing with the current input, and resetting accordingly (note that the

test is data independent). It is important that receipt of a null telegram neverthe-

less causes the timestamps of all queued IDL messages to be adjusted (0 ∈ I,

in the definition ofA(e, q) in Model #4). In the long run fewer requests will be

queued and, hence, serviced.

Ring buffer The expiration of delayed IDL inputs requires a more complex algorithm

and data structure. If ring buffer slots are two bytes wide one byte can hold

the panel request code, the other an integral timestamp. On queuing an IDL

input the timestamp in each non-empty buffer position requires adjusting. If

an element in the queue expires the code can be set to null, and the algorithm

to remove elements from the queue should discard null values. This slows the

generic program, but only in minor cycles when theIPT data for IDL telegrams

conveying request codes are processed. The main reference [9] indicates that

these minor cycles are otherwise very lightweight, and the overhead will be very

modest since the ring buffer has rather limited capacity. Note that changes to

the generic program are localised in the modules that manage the queue of panel

requests.

Deadlocks If the acknowledgement to a remote route request expires, the system may

enter a state in which the tail half only of the route is set. In particular, the

dummy outward sub-route will be free, so the (sub-route) release mechanism

in the protocol cannot clear the tail portion of the route as it should. We may

overcome this with a simple change in to the protocol to be implemented at the

level of the Geographic Data:

*QN if @CN , E =stop then Zout
L l , E =0 , G = QN \ .

*AZ if E =stop , T outL f then Zout
L f \ .

These should be compared with the rules (1) and (4) on page 147 (locking the

dummy sub-route in rule (2) is now no longer necessary). With this change we

find that:

EastWest7#6 |= νZ.(〈eobsZoutL
(f)〉tt⇒ 〈wobsZinL (f)〉tt) ∧ [−]Z

The dummy inward sub-route is free in WEST whenever the dummy outward

sub-route is free in EAST—a desirable property that the original specification

does not enjoy. This change can never lead to an unwanted cancelling of a route

in the other Interlocking.

Chapter 7. Safety in Interlocking Design 159

1′. *QN if @CN , E =stop then Zout
L l , E =0 , G =QN \ .

2′. *AN if @CN , E <5 then @SN , T outL l \ E =stop .

3. *QM if @CM, E =stop then @SM , T inL l , Zin
L l , E =3 , G =AM \ .

4′. *AZ if E =stop , T outL f then Zout
L f \ .

5. *QZ if E =stop then Zin
L f , G =AZ \ .

6′. E =stop if E >7 \ .

7. if Zout
L l , T outL f , E =stop then G =QZ \ .

8. T inL f if Zin
L f , TL c \ .

Figure 7.1: Modified rules for remote route locking and release

Elapsed timer Lengthening the timeout observed by the elapsed timers involves a

change in the Geographic Data (in theFOPdata file):

E =stop if E >7 \ .

Consequently when remote route requests fail there will be a (two second) longer

pause before the telegram can be reused. (There will also be a longer pause when

remote route requests succeed since the timer in WEST will take longer to stop.)

Recall that the model counts major cycles, not seconds, and that the requirement

is for a minimum of seven major cycles between starting the timer in EAST, and

stopping it again through the above rule.

In Section 6.3.4 the protocol was axiomatised in terms of the eight generic rules in Fig-

ure 6.5. These, with the modifications suggested above, are reassembled in Figure 7.1.

However, the urge to implement any changes to the SSI generic program should be

suppressed unless a clear case can be made that the weaknesses identified in the pro-

tocol induce unacceptable risk. This requires signalling engineering judgement, not

formal methods. However, while the delays needed to activate the fault (in its first in-

carnation) are hardly credible, an unfortunate combination of circumstances may lead

to the tail part of a route being released prematurely: a long route straddling several SSI

boundaries, a glitch on the IDL, a busy interlocking with a naturally long major cycle.

Moreover, the second incarnation of the fault need not depend on poor timing proper-

ties at all—so it may in fact present the more serious hazard. That said, the signalling

consequences of the tail portion of the route being free while the first part is locked

need to be analysed in depth. At first sight, the scenario sketched in the discussion

accompanying Figure 6.2 in Section 6.1 is pessimistic since if the dynamic signalling

rules are implemented correctly the signal controlling the entrance to the route will be

green for only a few seconds before being returned to red [67].

Chapter 7. Safety in Interlocking Design 160

Guaranteeing safety is one thing, but we should also consider whether the perform-

ance of the SSI might be degraded in other ways if these changes are made. In fact, the

practice of filteringall IDL inputs could lead to circumstances where the tail portion

(in WEST) of a route remains locked even though it should have been released—e.g., if

the first cancellation request fails legitimately because the timer is running but all sub-

sequent copies of the request are then filtered. Livelock in the protocol is undesirable

as it would require the signal operator’s intervention in order to ‘unstick’ the part of the

route still locked in WEST (e.g., by reselecting the route, and then cancelling it again).

However, the formal model allows us to prove that the following filter issufficientfor

safety:

Filter(v) def= getH(u).if (v = u) then Sync(0) else Sync(v)

Sync(v) def= putH(v).qin(v).sync.turn.Control

The subtlety here is to filter only the second of any pair of successive, non-null tele-

grams, as long as the second is identical to the first of the pair. This is simpler than

the version of the filter displayed in Model #6, and eliminates the possibility that the

two Interlockings deadlock due to filtering all low priority IDL messages. Informally,

this is because the protocol rule*QZ (in WEST) is guarded only by the timer test, and

WEST cannot restart the timer except in response to a route request from EAST—in

general though, WEST can restart its timer autonomously due to a remote route request

in the opposite direction.

Finally, the elements of the model are assembled in the figure on page 161. In

principle theImage component is given by a parallel composition of all the control

variables defined in the SSI as specified in Section 3.2, but in practice the set is lim-

ited to just those that are needed to model the protocol (those explicitly mentioned in

Figure 7.1). The setsI, O, andQ are as specified in Section 6.3.3, and define the

interface to the IDL (throughidl in and idl out) as well as the signal control panel:

{qin(v) | v ∈ Q− I}. The model analysed setsM = 7 and∆ = 1 to achieve the final

result, specialising the model to EAST and WEST which set routes in one direction

only. It is thus not possible to claim thatM = 7 achieves safe usage of the protocol

when∆ = 1 in general, although this is thought to be sufficient when only two Inter-

lockings negotiate the locking of any single route. To answer the question formally,

a more powerful model checker than that in the Concurrency Workbench is needed

(although a more powerful machine may suffice in the binary case—the analysis used

a 75 MHz Sun SparcStation 20 with 128M bytes of RAM, and it should perhaps be

recorded tha none of the proofs involved took more than a few hours to complete).

Chapter 7. Safety in Interlocking Design 161

E(m) def=

getE(m).E(m) + putE(n).E(n) + stop.E(stop)

getE(m).E(m) + putE(n).E(n) + sync.E(m+ 1)

getE(m).E(m) + putE(n).E(n) + sync.E(m)

if m = M

if 0 ≤ m < M

if m = stop

G(u) def= getG(u).G(0) + putG(v).G(v) u ∈ O
Empty

def= getG(v).if (v = 0) then idl out(0).Empty else O′(v)

O′(u) def= idl out(u).turn.O(u) + idl out(0).turn.O(u) u ∈ O − {0}
O(u) def= idl out(u).turn.Empty + idl out(0).turn.Empty u ∈ O − {0}

Q(q) def=

 qin(e).Q(appl(e, q))

qin(e).A(e, q) + set(e′).Q(q′)

if q = []

if q = [e′n | q′]
A(e, q) def= if (e ∈ I) then Q(appl(e, age(q))) else Q(appl(e, q))

H(u) def= getH(u).H(u) + putH(v).H(v) u ∈ I
Filter(u) def= getH(v).if (v = u) then Sync(0) else Sync(v) u ∈ I
Sync(u) def= putH(u).qin(u).sync.turn.Control u ∈ I
Control def= set(Q).(C[[PRR(* Q)]]Control) + · · ·+ idl in(v).Filter(v)

SSI def= (Control | Image | Q([]) | E(0) | G(0) | O(0) | H(0))\L

appl(e, q) =

 q

app(e, q)

if e = 0 or length (q) = l

otherwise

app(e, q) =

 [idl∆(e) | q]
[e′n | app(e, q′)]

if q = []

if q = [e′n | q′]

age(q) =

q

age(q′)

[en−. 1 | age(q′)]

if q = []

if q = [en | q′] andn = 1

if q = [en | q′] andn 6= 1

idl∆(e) =

 e∆

e0

if e ∈ I
otherwise

Figure 7.2: Final version of the Internal Data Link model in CCS

Chapter 7. Safety in Interlocking Design 162

7.2 Leamington Spa

The Leamington Spa signalling scheme was the first in Britain to use Solid State Inter-

locking. The layout is moderately complex, covering about 15 track kilometers, with

48 track circuits, 15 sets of points, and 35 signals. The SSI needs 96 sub-routes (a

further 14 sub-overlaps), but there are 71 routes (including main routes, warner routes,

and call-on routes). Unfortunately no scheme plan for this interlocking was made

available so the invariant had to be deduced from the data. Several track circuits had

sub-routes defined through them only in one direction, and were therefore ignored, but

several others had six or eight sub-routes and severalMX4 terms were used to specify

all mutually exclusive combinations. Then|MX | = 44, |PT| = 30, and|RT| = 137

after simplifying and eliminating all inconsistent paths according to the algorithm dis-

cussed in Section 5.3.3. However, without reference to the scheme plan it is difficult to

simplify the proof by the method implemented in Section 5.5.3 (which requires a given

decomposition ofF), so we proceed below without the aid of decomposition.

7.2.1 Strengthening the Invariant

The sub-route release rules are syntactically uniform, and easy enough to convert into

HOL syntax. Taking the quadratic complexity measure claimed in Section 5.5 seri-

ously, with the parameters defined above, we should expect the theorem prover to batch

process the data in about two hours: in fact it took three and a half hours, which sug-

gests coding inefficiencies in manipulating very large terms in HOL cannot be ignored.

There were two rules rejected: one of these turned out to be due to a specification error

(a spurious route variable was introduced in hand coding the invariant), but the other

appears to be due to a genuine omission in the conditions for the rule. Without access

to the scheme plan or control tables for the route(s) in question it is not possible to

determine whether or not this is deliberate.

Only a handful of rules from the route request data were analysed. The first tried,

*QR41(3M) in Figure 7.3, was selected due to its complexity. There are seven points

along the route, and hence seven points tested in the condition. In Section 5.5 it was

noted that eachPi crf (or cnf) test doubles the proof due to the implicit disjunction,

making the efficiency ofPRRTACrather poor. In fact the theorem prover could handle

this rule without decomposingF—with modest space requirements (circa 30M bytes),

but ‘overnight’ (circa 9 hours).

There is, however, a simple observation that allows us to sidestep the extraneous

exponential complexity incurred through points “free to move” conditions:if the points

are controlled normal (respectively, reverse), they should be free to move normal (re-

Chapter 7. Safety in Interlocking Design 163

*QR41(3M) if R41(3M) a , P221 cfn , P222 cfr , P223 cfn ,
P224 cfr , P225 cfr , P228 cfr , P231 cfn , U7DA f

then R41(3M) s , S41 clear bpull , P221 cn , P222 cr , P223 cn,
P224 cr , P225 cr , P228 cr , P231 cn , U7A D l , U8CD l ,
U9AC l , U22BD l , U13AB l , U14A B l , U28AB l \.

*QR35(2M) if R35(2M) a , R35(2W) xs , P211 cfn , P213 cfn ,
P224 cfn , U5BA f , U9BA f , @OL225A

then R35(2M) s , S35 clear bpull , P211 cn , P213 cn , P224 cn,
U2AB l , U3BC l , U4AC l , U5A B l , O8AD l , @OL225Q \.

/ OVERLAP AVAILABLE (OUTER ROUTE SETTING)
*OL225A if (P225 cfn or P225 cfr) \

/ CHOOSE & LOCK OVERLAP (OUTER ROUTE SETTING)
*OL225Q (if P225 cr then O9A C l , O22BD l \

or if P225 cfn then P225 cn , O9AB l \
or P225 cr , O9AC l , O22BD l) \

Figure 7.3: SamplePRRdata from Leamington Spa

verse). Thispropertyof the data may be expressed in generic terms thus:

P def= (P cn ⇒ PFM(* PN)) ∧ (P cr ⇒ PFM(* PR))

The informal notation to refer to the “free to move” data for the points in question was

motivated in Section 2.4.2. Now, ifP can be proved invariant,i.e., {P} c {P}, this fact

can be used in the proof thatc leavesF invariant. This is because

(P cn ⇒ PFM(* PN))⇒ (P cn ∨ PFM(* PN) = PFM(* PN))

and similarly in the other points setting—since, in particular,(p⇒ q)⇒ (p ∨ q ⇔ q).

To pursue this, we strengthen the invariant and prove{P∧F} c {P∧F} since the desired

rewrite rules (the antecedent in the above implication) can be deduced on-the-fly from

the verification conditions which will now have the form:? ` P∧F∧b⇒ (P∧F)[ṽ/x̃].

As before,b is the guard in the commandc, if any. Although this introduces still

greater complexity to the invariant, the proof becomes easier because the disjunctive

term b can be simplified prior to the case analysison b. For the rule cited earlier

from the Leamington Spa scheme this strategy improves the performance twentyfold

(28 minutes). Of course, failure to proveP ∧ F invariant does not implyF is variant

(the problem may be withP). However, we can check whether{P} c {P} when the

proof fails: fortunately this proof does not incur the same penalty in time complexity

because the formula is much simpler thanF (the same set of rewrite rules can be used

to simplify b).

7.2.2 Swinging Overlaps

Dealing with extraneous complexity due to points tests in the panel route request data

is one thing, but there also arise disjunctive tests in these data that cannot be avoided.

Chapter 7. Safety in Interlocking Design 164

b a

T4

c

L
L
L
L
L
LP2 c aT6

bL
L
L
L
L
LP3

b a

T7

b a

T5

b a

T8

c aT9

bL
L
L
L
L
LL P4

hhh.................S2

hhh.................S4 hhh.................S8

hhh.................
S5

hhh.................
S6

hhh.................
S7

hhh.................
S9

Figure 7.4: The overlap beyondS5 for main routes up to this signal extends over the points
P3 normal (for a longer overlap the pointsP2 can be either normal or reverse). Likewise for
routes up toS6, the overlap requiresP3 reverse.Sub-overlapsOac6 , Obc6 , etc., lock the overlap
when the route up to the signal is locked.

The example to illustrate this point, which is the last we shall address here, concerns

overlaps. There is often an overlap, or a choice of overlap, associated with the route(s)

up to a signal that should be locked when the route is set. For routes terminating atS8

for example (see Figure 7.4), there may be an overlap which extends some distance into

the track section immediately beyond the signal—no overlap is needed if the signal is

placed at a sufficient distance from the end of the track section. For routes terminating

atS5 there will be a choice of overlap if the pointsP2 are close to the signal, since they

arefacingthe direction of traffic up to the signal. Although not part of the routeper se,

the overlap is locked with it in order to protect other traffic against a train overrunning

the signal at red.

The scheme in Figure 7.4, modelled on EAST-WEST with the pointsP3 having

been rotated, supplies the necessary intuition to understand the second Leamington

Spa example. The route request data forR75 (say), and the pointsP3 will be extended

with tests on the sub-overlaps. Suppose that there are no overlaps required for routes

up to the opposing signals (S4 andS2), then

*Q75 if P4 crf , P3 cnf , T ca9 f , T ba7 f

then R75 s , P4 cr , P3 cn , T ac9 l , T ab8 l , T ab7 l , Oac
6 l \ .

*P3N T6 c , T bc6 f , T cb6 f , Obc
6 f \

*P3R T6 c , T ac6 f , T ca6 f , Oac
6 f \

The (sub-)overlap release conditions will not be described here, but from these rules

we may observe that while the overlap is locked (Oac
6 l) it will not be possible to lock

Chapter 7. Safety in Interlocking Design 165

a route fromS6. Expressed as invariants, the overlap locking conditions are thus:

MX [Oac
6 , O

bc
6] ∧ PTcn(P3, [O

bc
6]) ∧ PTcr(P3, [O

ac
6])

(recalling the macros in Section 3.3). Moreover, one should addR75 l ⇒ Oac
6 l , that

is RT(R75, [Oac
6]), since this will be specified in the control tables for the scheme.

Now PRRTAC can deal with such simple circumstances where the route and its

overlap are locked in a single action, but the second example cited earlier (the rule

*QR35(2M)) extends over points that are facing the route’s exit signal. With respect to

the scheme in Figure 7.4 the corresponding interlocking logic is expressed thus:

*Q75 if P4 crf , P3 cnf , T ca9 f , T ba7 f ,@OLAP-A

then R75 s , P4 cr , P3 cn , T ac9 l , T ab8 l , T ab7 l , Oac
6 l ,@OLAP-L \ .

*OLAP-A if (P2 cnf or P2 crf) \

*OLAP-L if P2 cr then Oac
4 l

else if P2 cnf then P2 cn , Oab
4 l else P2 cr , Oac

4 l \ \ \

Here anevaluation sethas been used to specify the conditions for the longer overlap

which will be shared by several routes; similarly, theexecution setlocks one of the

overlaps (with a preference for that overP2 reverse). However, the “free to move”

conditions forP2 do not test the sub-overlaps (Oab
4 orOac

4) in this example because the

overlap selected may have to be changedafter the route is locked:

*P2N T4 c , T ac4 f , T ca4 f \

*P2R T4 c , T ab4 f , T ba4 f \

This can happen, say, because the normal overlap through these points was locked with

the route, but at a later time an onward route fromS5 over these points in the reverse

direction requires to be locked. The signalling action to achieve this is calledswinging

the overlap.

The MX andPT properties for these longer overlaps may be defined in analogy

with the simpler example above and, modulo the discussion in Section 5.3.3 about

diverging routes, we have in particular:

MX [Oac
4 , O

ab
4] ∧ . . . ∧ RT(R75, [Oac

6 , O
ab
4]) ∧ RT(R75, [Oac

6 , O
ac
4])

If F is extended in this way toF′, there are two problems which emerge in attempting

to prove{F′}PRR(*Q75) {F′}. Before discussing these, first note that@OLAP-Lis

in sequence with the assignments made in this command, and that the overlap is con-

sequently locked in two actions. The overall form of the term in the goal is that of a

sequence nested in a conditional:if (b1, a1;ife (b2, a2, ife (b3, a3, a4))), which gives

Chapter 7. Safety in Interlocking Design 166

rise to four nontrivial verification conditions (and one trivial one). Now this proof goal

degenerates into the two subgoals

? ` {F′} if P4 crf . . . then . . . Oac
6 l {F′}

? ` {F′}PRR(*OLAP-L) {F′}

because the heuristic implemented inVC TAC(by SEQTAC, in Section 5.2.3) movesF′

before the secondif statement.

• However, it is not hard to see that the first of these subgoals cannot be proved

since, in particular,RT(R75, [Oac
6 , O

ac
4]) (part of F′) does not necessarily hold

at the intermediate point. With some reprogramming we can circumvent this as

follows:
? ` {F′} if P4 crf . . . then . . . Oac

6 l {F ∧B}
? ` {F ∧ B}PRR(*OLAP-L) {F′}

whereB carries through to the second step of the proof all of the information

in the guard (and the command) in the first part—‘b1 ∧ a1’ in this instance. But

it turns out thatF ∧ B alone is, in general, too weak for the second part of the

proof; the syntax-driven heuristic to counter this is fragile, but in this case drops

RT(R75, [Oac
6 , O

ac
4]) andRT(R75, [Oac

6 , O
ab
4]) from F′.

• The reasoning above would be adequate for the Leamington Spa data but for

the second problem which is that{F′}PRR(*OLAP-L) {F′} cannot be proved.

Ultimately, this is becauseMX [Oac
4 , O

ab
4] cannot be proved invariant (similarly

PTcn(P2, [Oac
4]) andPTcr(P2, [Oab

4])). We can falsifyMX [Oac
4 , O

ab
4] whenOac

4 l

and the preconditions forR75 are satisfied, ifPFM(*P2N) is satisfied, butP2 are

neither controlled normal, nor controlled reverse. The proof is possible if one

assumesP2 cn or P2 cr , but in the absence of this constraint there is insufficient

information in the “free to move” conditions for these points when the test is to

select an appropriate overlap. Thus, the problem is thatMX [Oac
4 , O

ab
4] cannot be

proved invariant in principle, rather than just in practice, because these points are

part of a swinging overlap.

However, althoughMX [Oac
6 , O

bc
6] is a safety critical property, it is apparent that

MX [Oac
4 , O

ab
4] is not since these sub-overlaps do not have a (points) locking rˆole—

neither sub-overlap throughT4 is tested in any geographic condition for the scheme in

question.One can reasonably ask, therefore, what is the purpose of the sub-overlap(s)

throughT4? The answer is that they serve no purpose—and this is also true ofO22BD

(see Figure 7.3) in the Leamington Spa data. (However, these variables would have

an interlocking function if, for instance, routes up toS4 also required an overlap—

the conditions for selecting such an overlap would need to checkOac
4 f , Oab

4 f before

proceeding lockingOba
4 , say.)

Chapter 7. Safety in Interlocking Design 167

In summary, therefore, the invariant for the Leamington Spa data is the conjunction

P ∧ F′, whereF′ extendsF with the MX , PT, andRT terms for the fixed overlaps,

but only theRT terms for the swinging overlaps (there is only the one mentioned, in

fact). ImprovingVC TACso that it pushes information forwards, the analysis proceeds

slowly since no decomposition has been used. The rules cited in Figure 7.3 represent

the most complex proofs conducted. The latter is the more computationally demanding

because there are effectively four verification conditions to prove (these examples took

approximately 28 minutes and 94 minutes respectively).

7.3 Conclusions

In summing up, there are several broad categories of observations that can be made

here, or recalled from earlier summaries at the end of individual chapters. These con-

cerntheorem provingand theorem provers in general; the pivotal issue ofsemanticsas

a means to realising formal proofs of Geographic Data invariants;model checking, and

the models we must build and validate when designing complex systems. There are

naturally some ramifications for the railway signalling industry (in particular) which

cannot be ignored. These are set out in the sections to follow.

7.3.1 Theorem Proving

Developing a theorem prover for Geographic Data from scratch is a major undertak-

ing, and not one to be readily embarked upon by engineers in the railway signalling

industry themselves. This is a task for mathematicians and computer scientists with

a flair for formal logic, but such people are unlikely to produce tools useful to rail-

way signalling engineers if, as one would expect, their work is conducted without due

awareness of the practical problems faced in interlocking design. But the specialisa-

tion of an existing tool to a particular class of problems to solve is much less daunting;

while still not easy perhaps, it gives one a real opportunity to carry out the technical

development of the theorem prover in an environment that is informed by the engineer-

ing issues at hand. This approach to checking safety properties of geographic data has

the merit that one quickly obtains a prototype with which to explore certain pertinent

considerations—such as which properties can be proved, what representations of the

data are appropriate, and which theorem proving strategies are likely to be fruitful.

Now the proof sketches in Chapter 4 notwithstanding, the discovery of the tactics

needed to guide the theorem prover is very much an experimental process—not least

because one needs to get a feeling for how the underlying algorithms massage the goal.

Such feedback is of course invaluable, when the proof fails, because of the incomplete-

ness of higher-order logic. But those same sketches (Propositions 4.4 and 4.5) are, it

Chapter 7. Safety in Interlocking Design 168

goes almost without saying, very much more valuable to anyone who wishes to under-

stand whỳ {F} c {F} is true: the sketch renders the proof intelligible (to the reader)

in a way that the tactic can never do—since the reader, as opposed to the programmer,

has not benefited from experimenting with the theorem prover to discover the tactic in

the first place.

Yet is it not the theorem itself which is important? Indeed, but in fact there are

three essential elements in our proof methodology for Geographic Data:

1. A proof sketch such as that for Proposition 4.5 which explains whyF is invariant.

This will be convincing evidence for the certifier, or other responsible party, who

must ultimately pronounce the SSI installation ‘safe’. Note, in passing, that

this is a mathematical argument at the first level of Rushby’s characterisation of

formal methods (page 5, and [83, pages 15–21]).

2. A tactic—a proof script that is really no more than a sophisticated program—that

guides the mechanical edition of the the invariance proof. There is no require-

ment that the tactic correspond exactly, or even approximately, to the informal

sketch. (For the record,SRRTAC was greatly influenced by the proof of Pro-

position 4.4, butPRRTACwas hardly influenced at all by the proof of Proposi-

tion 4.5.)

3. The theorem̀ {F} c {F}, for eachc, and the formal proof (which shall remain

inscrutable). This represents thehard evidence thatc is safe with respect toF;

the certifier need only verify that the formal proof exists.

Lest the reader be confused, it is worth pointing out that it is not necessary to provide

a rigorous (level 1) argument to support every formal proof (i.e., for eachc); it is only

important to select a representativec, as in Chapter 4, and to convincingly show why

each property, likeMX , is invariant.

The problem with this vision of adapting general purpose theorem provers like

HOL to specific application domains, is that the tools do not tend to be optimised for

non-interactive use. In particular, HOL suffers a well-known quadratic time penalty

when translating between different representations of the terms of the logic; this pen-

alty becomes debilitating when formulae become too large—it is difficult to be specific

here, but terms the size of those needed in the safety proofs for THORNTON JN. are

probably ‘too large’. However, such term translations are not strictly required for non-

interactive theorem proving. So, could we not then abandon the need to interact with

the theorem prover, or abandon our adherence to HOL? As we saw in Chapter 5, the

ultimate aimis to achieve full automation; however, as already emphasised, there are

tangible gains to be had in active experimentation, particularly in the proof of concept

phase of the development.

Chapter 7. Safety in Interlocking Design 169

Switching to a more efficient platform is obviously appealing. PVS [77] is an at-

tractive alternative because its designers have carefully integrated many decision pro-

cedures for arithmetic and first-order logic. These make swift work of what in HOL

would be several minor proof steps, so the granularity of the (interactive) proof is

somewhat coarser in PVS than it would be in HOL. Whether this has a dramatic effect

on non-interactive efficiency remains to be established. However, a problem with PVS

is that it is not an open programming system, and it is considerably more difficult to

specialise the theorem prover to application specific task. Also, as a programmer, one

has to be very cautious not to undermine the logical integrity of the proofs because,

amongst other reasons, Lisp does not enjoy the type security of ML. This is not to say

that PVS is poorly structured: on the contrary, it is extremely well designed, but being

highly optimised for the convenience of the interactive user it is simply more difficult

to modify as a result.

In the end, while theorists and their acolytes can argue the relative merits of fully

expansive theorem provers like HOL, against agglomerations of decision procedures

like PVS, such systems (or more realistically their commercial successors) will never

be used in anger by industry if they are cumbersome, or inefficient. Let us therefore

summarise the main point which is that

• flexibility and openness in interactive use, and

• efficiency in non-interactive symbol manipulation

are essential features of a theorem prover for higher-order logic that is to support ap-

plication specific refinements in a convenient and practical way. If general purpose

theorem provers like HOL succeed to a next generation, designers might like to reflect

beforehand that their customerswill tend to have specific applications in mind!

7.3.2 Semantics

The foundation of any formal approach to verifying properties of Geographic Data—

even ifformal is only taken to meanmachine checked—is the semantics of GDL. One

could argue, perhaps, that this language of sequential and conditional statements is too

weak to make a big issue out of its formal definition, but this attitude is complacent at

best. There are many reasons why formal semantics are important:

• they constitute a succinct and unambiguous reference for the language;

• being mathematically precise they redress the otherwisead hoccharacter of its

definition and natural language description;

• they provide a stable basis from which to extend (or even simplify) the language

when the need arises, with consequences that are predictable;

Chapter 7. Safety in Interlocking Design 170

• one can use the operational semantics to judge the correctness of the interpreter’s

implementation (i.e., as a specification of its functionality);

• one can precisely identify the functionality to encode in the byte compiler (e.g.,

whether it should only perform a one-to-one mapping at the level of syntax);

• and it becomes possible in principle, which would not otherwise be the case, to

state and prove properties of GDL programs.

In Chapter 5 we used the formal (denotational) semantics to define our Geographic

Data checker. But even if this particular verification approach is rejected, one could

still use the operational semantics to define the finite state machine whose properties

can be checked, with the additional reassurance that the control interpreter implements

the very same machine—witness the construction in Chapter 3.

The focus on semantics raises the central question of their validity. Neither the

denotational semantics in Chapter 5, nor the operational semantics in Chapter 2, claim

to be definitive—the objective has been primarily to demonstrate how the semantics

issue can be approached, and why it is important. However, while both accounts of

the language are thought to be reasonable, their validity will still have to be estab-

lished through experimentation—that is, essentially, through simulation—since they

have been defined long after the language’s original conception.

The question of validity can be approached in part formally by demonstrating acor-

respondence theoremto relate the operational and denotational semantics of GDL; one

often wants to prove the semantics are in equivalence, but weaker relations like con-

tainment are also interesting. The absence of such a theorem from this thesis is perhaps

an error of omission, although that was never one of its goals. In any case, much of the

work needed has been done in the theorem (Theorem 2.1) at the end of Chapter 2. The

missing step is to show that the operational interpretation of the Geographic Data with

the map search converted toif-then-elsenormal form, coincides with the denotational

interpretation of Section 5.2. Unfortunately, to prove equivalence, it will be necessary

to give a more precise denotational account of the ‘inversion’ of the control bits when

they are assigned in points memory—compare Section 5.3.2 with 2.4.2. The equival-

ence proof would provide indirect evidence that the semantics are valid, but at the very

least it would demonstrate that they are mutually consistent.

Whether or not one proves that the operational and denotational semantics coincide,

the question of validity remains. It is pertinent to ask, therefore, whether our HOL im-

plementation of the Geographic Data theorem prover would be seriously compromised

if the formal semantics did need to be revised? Well, if it turns out that one of the rules

in Figure 5.1 is incorrect this may effect the derivation of a few of the underlying the-

orems, but only as far asVC TAC. On the other hand, if it turns out to be unsatisfactory

Chapter 7. Safety in Interlocking Design 171

to maintain the separation between the theory of the semantics of the language, from

the (HOL) theory needed to represent datatypes likepoints, then the changes may be

more far reaching (there again, perhaps not since specialising the assignment axiom

to concrete datatypes at the outset is a rather trivial change). The HOL theory of the

semantics of GDL is in fact quite robust and has already been through several painless

iterations. Of course, establishing a completely different basis for the embedding, say

via the operational semantics in the style of Camilleri and Melham [15], would be a

more significant undertaking.

In summary then, raising the issue of the semantics of the Geographic Data Lan-

guage at the outset helps to achieve the goal of providing a dedicated theorem prover

for the language. It also establishes a proof methodology that is largely independent of

SSI. This may be of considerable practical interest in the future since the next genera-

tion of solid state interlockings are already under development. The code (that is, the

data) in the current SSI installations do not need to be discarded if their semantics can

be preserved—and our proofs will of course remain valid. The corpus of Geographic

Data should be reused if possible since it is an asset (rather than a legacy, or something

to be ashamed of) if it has demonstrated that it is trustworthy through being used.

7.3.3 Model Checking

The question of validity arises again in the model developed through Chapters 3 and 4

(to examine safety properties of Geographic Data), and through Chapters 3 and 6 (to

investigate the remote route request protocol). In the first case this is ameliorated to

considerable extent by the fact that the construction in Section 3.2 is derived directly

from the operational semantics set out in the preceding chapter. (In the interests of

historical accuracy it is perhaps fair to note that the CCS construction in fact came

first.) But the CCS model admits much more behaviour than does the SSI (with its

data), so one still has to defend the choice of model. Well, the arguments put forward in

Chapter 3 will not be rehashed here: it suffices to note that ifF is invariant in the chaotic

model, we can conclude that it will also be invariant in the more orderly environment of

the railway—giventhat we accept the semantics, or translation, by which the model is

derived. That is to say, the abstraction is conservative with respect to safety properties

such asF. This ‘trick’ of abstraction, where one relaxes the environmental constraints

that are present in the system one is modelling, is perhaps the most common modelling

device to be found in the systems verification literature.

Our further development of the CCS model in Chapter 6 to investigate the remote

route request protocol was a more conventional exercise in modelling and analysis. It is

pertinent to ask, though, how the error in the design was found in the first place? From a

methodological standpoint it might perhaps have been more satisfying to report that the

Chapter 7. Safety in Interlocking Design 172

(first) flaw was discovered only after a suitable model of the inter-SSI communications

had been built and probed for conformance to the stated requirements. However, the

formal methods approach to system verification seldom works in quite this way. In

fact, this design error was revealed during theprocess of modelling the protocol, as

an indirect result of the deep introspection needed to write down the eight axioms in

Figure 6.5. One can think of this loosely as ‘during the specification stage’ of the

design of the process—since the analysis was conductedpost hoc.

On the other hand, the second logical flaw in the protocol was indeed found dur-

ing verification, and actually remained hidden—and unsuspected—until the supposed

repaired model failed the safety proof. This experience very clearly illustrates how

design dependability is at once improved by the attention to detail needed to produce

a formal specification, and how one’s confidence in the design is both deepened and

justified by submitting the formal specification (the model) to the exacting analysis

needed to prove that it meets its requirements. These activities encourage one to ‘look

in all the corners’ in order to explicitly state one’s assumptions about the environment

in which the device is to operate, and to explore all of its possible behaviours within the

confines of the model. There are both tangible and intangible results, or rewards, from

pursuing these technical developments (which in our case of the remote route request

protocol really did unfold in the manner described in Chapter 6). The tangible result is

a greatly ruggedised description of the system design; the intangible results are present

in our deeper understanding of the device to be built—its aims, how it works and, most

importantly, why it functions as it does (safely, in the end).

As long as one has the patience to experiment a little in order to find the right level

of abstraction, process calculus is an excellent mathematical formalism with which to

model systems in general, but especially communication protocols. Being essentially

algebraic in character, process calculi are much more than finite state machines with

syntax. The subtle interplay between syntax and semantics (for CCS in particular) is

perhaps the key which allows one topresentwhat would otherwise be a monolithic

state machine as a collection of cooperating agents. Such object-oriented decomposi-

tions, tightly bound to one’s design intuitions, are a great boon for systems enginnering.

Yet while building such a formal description of a complex system and formulating its

mathematical properties is a highly skilled activity, checking that these properties hold

of the model is best left to a machine. But a substantial amount of the skill (and energy)

of the modeller is invested in expressing the model in such a way that the machine—in

this case a model checker—can complete the task at all. This is not as it should be:

tools such as the Concurrency Workbench should support, more than they dictate, the

level of abstraction at which one operates.

It is not wholly fair to ridicule the CWB for its inefficiency in the face of chal-

Chapter 7. Safety in Interlocking Design 173

lenging industrial problems. Explicit (graph) representations of finite state machines

give one a rich choice of analysis methods, but one soon runs into the ‘state space

explosion’ problem. With hissecondmodel checker [13], Clark handled this problem

with seeming dexterity by representing the model symbolically instead: this innov-

ation works well enough for hardware verification where states are bit vectors, but

BDDs have yet to establish their utility in modelling software and systems in general.

Nevertheless, Taubneret al. [32] at Siemens have, acknowledging the power of CCS

as a modelling paradigm, developed successful (in-house) industrial prototypes having

CWB functionality by exploiting symbolic representations of the transition relations.

Commercially supported variations on the theme can be had in FDR (Formal Systems

(Europe) Ltd.) for CSP, and (recently) in the LOTOS toolset.

There again, the CWB itself was never built as an industrial prototype for CCS,

and it should not be mistaken for one even though there are now many case studies

in the open literature where industrially relevant problems have been solved using the

tool. What these studies show, and the analysis here of British Rail’s remote route

request protocol is hopefully a pedagogic example, is that for a successful application

of CCS—and through incautious extrapolation, formal methods in general—calls for a

careful balance between intellectual input and push-button verification. At present the

balance may be weighted too heavily in the direction of intellectual effort. Yet despite

industry’s impatience, push-button verification may not be the panacea it at first seems.

For no matter how efficient model or equivalence checkers become we shall always be

able to conceive of designs that are too large to handle, and any tool’s success, if meas-

ured in terms of state counts as is the current trend, will only encourage us to tackle

more concrete design descriptions. However, when one is seeking safety assurance in

interlocking design it cannot be ignored that it is through abstracting complex beha-

viour into simple models that one achieves the necessary understanding. This cannot

be had simply by pushing buttons. Thus, there may be much that is positive in tools

that are limited if they encourage abstraction in system design and analysis—though it

is mildly embarrassing to hold up the CWB as an example of this!

7.3.4 Railway Signalling

Overall, the integrity of the interlocking depends on many distributed elements, and on

the coordination of their activities through the protocols that connect them. Firstly, the

integrity of each SSI is paramount: the Geographic Data that configure each installation

have to demonstrate conformance to the prevailing principles of railway signalling, and

that demonstration has to become an integral part of the design process. The approach

to the problem sketched in this thesis is perhaps more sophisticated than that of other

researchers in the field, but then the Geographic Data Language is markedly more

Chapter 7. Safety in Interlocking Design 174

complex than the competitors we have encountered like STERNOL [88] or Vital Logic

Code [37]. Secondly, the integrity of the generic architecture is also fundamental to the

success of SSI: this has to be verified only once of course, but one has to take great care,

and expend considerable effort, to identify the requirementsa priori. For the remote

route request protocol in particular, that processing all panel requests within one major

cycle is in fact asafety requirementis certainly not obvious; that it also turns out not

to be sufficient for safety illustrates the power of the modelling process, and the need

to attempt formal proofs.

When viewed from the systems engineering perspective one would expect such

analyses to be performed early in the software (and system) lifecycle, rather than after

several years in service. This begs the question, therefore, of whether the analysis

could be carried out by engineers in the railway signalling industry themselves? In

principle, of course; but in practice the successful uptake of formal methods calls for

a broadening of the skills base in the signalling community. However, as we have

seen, the problems addressed by formal methods are not first and foremost those of

signalling engineering (that is, of interlocking design), but rather those of computer

systems engineering. Clearly, with the growing interest in computer based signalling

systems the skills base in the railway signalling community is already broadening in

this direction. And it is not unreasonable, though it may yet seem na¨ıve, to expect

the computer systems engineers who deign such safety critical systems to be fluent in

formal methods. In the medium term the prospect for formal methods exploitation in

interlocking design is therefore quite promising—particularly if one observes the close

correlation between interlocking logic and mathematical logic (be it first-order logic or

predicate calculus [88, 37], automata theory [48], or higher-order logic [99, 75]).

In the end, safety in interlocking design cannot be guaranteed by mathematical

analysis alone—it would be unsafe to suppose that it could be. But since the railway

is operated in the belief that adherence to the proper procedures introduces no undue

risk, we have to assemble what evidence we can to justify that belief. This naturally

calls for rigour throughout the design process. Since the control logic is now imple-

mented in computer-based technology, particularly software, formal methods can bring

unprecedented levels of confidence in the integrity of the design since formal proofs of

critical properties provide the hardest possible evidence in support of safety assurance.

Bibliography

[1] F. Andersen, K. D. Pertersen, and J. S. Pettersson. Program verification using
HOL-UNITY. In Joyce and Seger [50], pages 1–17.

[2] H. R. Andersen. Model checking and boolean graphs. In B. Krieg-Br¨uckner, ed-
itor, Proceedings of the 4th European Symposium on Programming (ESOP’92),
volume 582 ofLecture Notes in Computer Science. Springer-Verlag, 1992.

[3] H. R. Andersen. Verification of Temporal Properties of Concurrent Systems.
PhD thesis, rhus Universitet, 1993.

[4] W. Atkinson and J. Cunningham. Proving properties of a safety critical system.
Software Engineering Journal, 6(2):41–50, 1991.

[5] A. Beveniste. Synchronous languages provide safety in reactive system design.
Control Engineering, Sept. 1994.

[6] G. M. Birtwistle and P. A. Subrahmanyam, editors.Current Trends in Hardware
Verification and Automated Theorem Proving. Springer-Verlag, 1989. Proceed-
ings of the 1988 Banff Workshop on Hardware Verification.

[7] T. Bolognesi and E. Brinksma. Introduction to the ISO specification language
LOTOS. Computer Networks and ISDN Systems, North-Holland, 14:25–59,
1987.

[8] A railway signalling case study for FOREST. Internal publication by British
Rail Research, London Rd., Derby, England, 1988. Issue B, ELS-DOC-4314.

[9] SSI Data Preparation Guide. Published by British Railways Board, Feb. 1990.
ELS-DOC-3080, Issue K of SSI8003-INT and supplements; British Rail Re-
search, London Road, Derby, England.

[10] J. Bradfield and C. Stirling. Local model checking for infinite state spaces.
Theoretical Computer Science, 96:157–174, 1992.

[11] J. C. Bradfield.Verifying Temporal Properties of Systems with Applications to
Petri Nets. PhD thesis, University of Edinburgh, 1991. Available as CST-83-91.

[12] R. E. Bryant. Graph-based algorithms for boolean function manipulation.IEEE
Transactions on Computers, C-35(8):677–91, 1986.

[13] J. R. Burch, E. M. Clark, et al. Symbolic model checking:1020 states and
beyond. InProceedings of Fifth Annual IEEE Symposium on Logic in Computer
Science, pages 428–39. Computer Society Press, 1990.

175

Bibliography 176

[14] J. R. Burch, E. M. Clark, et al. Symbolic model checking for sequential cir-
cuit verification. IEEE Transactions on Computer-Aided Design of Integrated
Circuits, 13(4):401–24, 1994.

[15] J. Camilleri and T. Melham. Reasoning with inductively defined relations in the
HOL theorem prover. Technical Report 265, University of Cambridge Computer
Laboratory, 1993.

[16] K. M. Chandy and J. Misra.Parallel Program Design: A Foundation. Addison-
Wesley, 1988.

[17] A. Church. A formulation of the simple theory of types.Journal of Symbolic
Logic, 5(1):56–68, 1940.

[18] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications.ACM Transactions
on Programming Languages and Systems, 8(2):244–63, 1986.

[19] R. Cleaveland. Tableau-based model checking in the modal mu-calculus.Acta
Informatica, 27:725–47, 1990.

[20] R. Cleaveland, J. Parrow, and B. Steffen. The concurrency workbench: A
semantics-based verification tool for finite-state systems. InProceedings of the
9th IFIP Symposium on Protocol Specification, Testing and Verification, pages
287–302. North-Holland, 1989.

[21] G. V. Conroy and C. Pulley. Logical methods in the formal verification of safety-
critical software. Presented at the IMA Conference on Dependable Computing,
Sept. 1993.

[22] D. Craigen, S. Gerhart, and T. Ralston.An International Survey of Industrial Ap-
plications of Formal Methods—Purpose, Approach, Analysis and Conclusions,
volume 1. NIST (National Institute of Standards and Technology), 1993.

[23] D. Craigen, S. Gerhart, and T. Ralston.An International Survey of Industrial
Applications of Formal Methods—Case Studies, volume 2. NIST (National In-
stitute of Standards and Technology), 1993.

[24] A. H. Cribbens. Solid State Interlocking (SSI): an integrated electronic sig-
nalling system for mainline railways.Proc. IEE, 134(3):148–58, 1987.

[25] A. H. Cribbens and I. H. Mitchell. The application of advanced computer tech-
niques to the generation and checking of SSI data.Proceedings of the Institute
of Railway Signalling Engineers, 1992.

[26] W. J. Cullyer and W. Wong. Application of formal methods to railway
signalling—a case study.IEE Computing and Control Engineering Journal,
4(1):15–22, 1993.

[27] R. de Simone. Higher-level synchronising devices in Meije-SCCS.Theoretical
Computer Science, 37:245–67, 1985.

[28] E. A. Emerson. Temporal and modal logic. InHandbook ot Theoretical Com-
puter Science[96], chapter 16.

Bibliography 177

[29] E. A. Emerson and C.-L. Lei. Efficient model checking in fragments of the
modal mu-calculus. InProceedings of the 1st Annual IEEE Symposium on Logic
in Computer Science, pages 267–78. Computer Sociecty Press, 1986.

[30] R. Enders, T. Filkorn, and D. Tauber. Generating BDDs for symbolic model
checking in CCS. InProceedings of the 3rd Workshop on Computer Aided
Verification, 1991.

[31] A. Fantechi, S. Gnesi, and G. Ristori. Model checking for action-based logics.
Formal Methods in System Design, 4:187–203, 1994.

[32] S. Fisched, A. Scholz, and D. Taubner. Verification in process algebra of the
distributed control of track vehicles—a case study.Formal Methods in System
Design, 4(2):99–122, 1994.

[33] R. Floyd. Assigning meanings to programs. InMathematical Aspects of Com-
puter Science. American Mathematical Society, 1967.

[34] M. J. C. Gordon. HOL: A proof generating system for higher-order logic. In
G. M. Birtwistle and P. A. Subrahmanyam, editors,VLSI Specification, Verific-
ation and Synthesis, Kluwer International Series in Engineering and Computer
Science, pages 73–128. Kluwer, Boston, 1988.

[35] M. J. C. Gordon. Mechanizing programming logics in higher-order logic. In
Birtwistle and Subrahmanyam [6], pages 387–439.

[36] M. J. C. Gordon, R. Milner, and C. P. Wadsworth.Edinburgh LCF: A Mechan-
ised Logic of Computation, volume 78 ofLecture Notes in Computer Science.
Springer-Verlag, 1979.

[37] J. Groote, J. Koorn, and S. van Vlijmen. The safety guaranteeing system at sta-
tion Hoorn-Kersenboogerd (extended abstract). InProceedings of the 10th An-
nual Conference on Computer Assurance (COMPASS’95), pages 57–68, Gaith-
ersburg, Maryland, 1995.

[38] A. Gupta. Formal hardware verification methods: A survey.Formal Methods in
System Design, 1:151–238, 1992.

[39] W. A. Halang and B. J. Kr¨amer. Safety assurance in process control.IEEE
Software, pages 61–7, Jan. 1994.

[40] J. Harrison. Binary decision diagrams as a HOL derived rule.The Computer
Journal, 38(5), 1995.

[41] M. Hennessey.Algebraic Theory of Processes. Foundations of Computing. MIT
Press, London, 1988.

[42] M. Hennessy and R. Milner. On observing nondeterminism and concurrency. In
Proceedings of the 7th Colloquium on Automata, Languages and Programming,
volume 85 ofLecture Notes in Computer Science, pages 299–309. Springer-
Verlag, 1980.

[43] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concur-
rency.Journal of the ACM, 32(1):137–161, 1985.

Bibliography 178

[44] C. A. R. Hoare. An axiomatic basis for computer programming.Communica-
tions of the ACM, 12(10), 1969.

[45] C. A. R. Hoare.Communicating Sequential Processes. International Series in
Computer Science. Prentice Hall, 1985.

[46] Software for computers in the application of industrial safety-related systems.
International Electrotechnical Commission, 1994. IEC Standard 1131, Part 3.

[47] M. Ingleby. A Galois theory of local reasoning in control systems with compos-
itionality. Presented at the IMA Conference on Dependable Computing, Sept.
1993.

[48] M. Ingleby and I. Mitchell. Proving safety of a railway signalling system incor-
porating geographic data. InProceedings of SAFECOMP’92, pages 129–134.
IFAC, Pergamon Press, 1992.

[49] A. Jowett.Jowett’s Railway Atlas of Great Britain and Ireland. Patrick Stephens
Ltd. (Haynes), 1989. ISBN: 1-85260-086-1.

[50] J. Joyce and C. Seger, editors.Higher Order Logic Theorem Proving and its Ap-
plications, volume 780 ofLecture Notes in Computer Science. Springer-Verlag,
1994.

[51] T. King. Formalising British Rail’s signalling rules. InProceedings FME’94:
Industrial Benefit of Formal Methods, volume 873 ofLecture Notes in Computer
Science. Springer-Verlag, 1994.

[52] D. Kozen. Results on the propositionalµ-calculus.Theoretical Computer Sci-
ence, 27:333–54, 1983.

[53] L. Lamport. The temporal logic of actions. Technical Report 79, Digital Systems
Research Center, 1991.

[54] K. G. Larsen. Proof systems for satisfiability in Hennessy-Milner logic with
recursion.Theoretical Computer Science, 72:265–88, 1990.

[55] S. Malik. Analysis of cyclic combinational circuits.IEEE Transactions on
Computer-Aided Design of Integrated Circuits, 13(7), 1994.

[56] K. Mark Hansen. Formalising railway interlocking systems. Technical report,
Department of Computer Science, Technical University of Denmark, July 1994.
Presented at the Nordic Seminar on Dependable Computing Systems.

[57] K. L. McMillan. Symbolic Model Checking: An Approach to the State Explosion
Problem. PhD thesis, Carnegie Mellon, 1992.

[58] T. F. Melham. Automating recursive type definitions in higher order logic. In
Birtwistle and Subrahmanyam [6], pages 341–86. Proceedings of the 1988 Banff
Workshop on Hardware Verification.

[59] R. Milner. Calculi for synchrony and asynchrony.Theoretical Computer Sci-
ence, 25:267–310, 1983.

Bibliography 179

[60] R. Milner. The use of machines to assist in rigorous proof.Phil. Trans. R. Soc.
Lond., 312:411–22, 1984.

[61] R. Milner. A Calculus of Communicating Systems. Springer-Verlag, 1990.

[62] R. Milner. Communication and Concurrency. International Series in Computer
Science. Prentice Hall, 1990.

[63] R. Milner. Interpreting one concurrent calculus in another.Theoretical Com-
puter Science, 75:3–13, 1990.

[64] R. Milner. Operational and algebraic semantics of concurrent processes. In
Handbook ot Theoretical Computer Science[96], chapter 19.

[65] R. Milner and M. Tofte. Co-induction in relational semantics.Theoretical Com-
puter Science, 87:209–22, 1990.

[66] I. H. Mitchell. Proposal for an SSI data checking tool. Internal publication by
British Rail Research, London Rd., Derby. DE2 8YB, June 1990.

[67] I. H. Mitchell, Nov. 1995. Personal communication.

[68] The procurement of safety critical software in defence equipment (Guidance).
UK Ministry of Defence, Apr. 1991. (Interim) Defence Standard 00-55, Part 1.

[69] The procurement of safety critical software in defence equipment (Require-
ments). UK Ministry of Defence, Apr. 1991. (Interim) Defence Standard 00-55,
Part 2.

[70] Hazard analysis and safety classification of the computer and programmable
electronic system elements of defence equipment. UK Ministry of Defence,
Apr. 1991. (Interim) Defence Standard 00-56.

[71] F. Moller and C. Tofts. A temporal calculus of communicating systems. InPro-
ceedings of CONCUR’90, volume 458 ofLecture Notes in Computer Science,
pages 401–15, 1990.

[72] M. J. Morley. An heuristic approach to state space reduction of communicating
parallel systems. Master’s thesis, University of Edinburgh, 1989. Summarised
in [73].

[73] M. J. Morley. Tactics for state space reduction on the CWB. Technical Re-
port ECS-LFCS-90-109, Laboratory for Foundations of Computer Science, Uni-
versity of Edinburgh, 1990.

[74] M. J. Morley. Modelling British Rail’s interlocking logic: Geographic data
correctness. Technical Report ECS-LFCS-91-186, Laboratory for Foundations
of Computer Science, University of Edinburgh, 1991.

[75] M. J. Morley. Safety in railway signalling data: A behavioural analysis. In Joyce
and Seger [50], pages 465–74.

Bibliography 180

[76] O. S. Nock. Railway Signalling—a treatise on the recent practice of British
Railways. Adam and Charles Black, London, 1980. Prepared under the direction
of a committee of the Institution of Railway Signalling Engineers under the
general direction of O. S. Nock.

[77] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype verification system.
In D. Kapur, editor,Proceedings of the 11th International Conference on Auto-
mated Deduction, volume 607 ofLecture Notes in Artificial Intelligence, pages
748–52. Springer-Verlag, 1992.

[78] D. Park. Concurrency and automata on infinite sequences. InTheoretical Com-
puter Science, volume 104 ofLecture Notes in Computer Science. Springer-
Verlag, 1981.

[79] L. C. Paulson. The Isabelle Reference Manual. Computer Laboratory, Uni-
versity of Cambridge, 1993.

[80] A. Pnueli. Applications of temporal logic to the specification and verification of
reactive systems: a survey of current trends. InCurrent trends in Concurrency,
volume 224 ofLecture Notes in Computer Science, pages 510–84. Springer-
Verlag, 1986.

[81] V. Pratt. A decidableµ-calculus. InProceedings of the 22nd Annual IEEE
Symposium on Foundations of Computer Science, pages 421–427, 1981.

[82] G. M. Reed and A. Roscoe. A timed model of communication sequential pro-
cesses. InProceedings of ICALP’86, volume 226 ofLecture Notes in Computer
Science, pages 314–23. Springer-Verlag, 1986.

[83] J. Rushby. Formal methods in the certification of critical systems. Technical Re-
port CSL-93-7, SRI International, 1993. Also: NASA CR 4551Formal Methods
and Digital Systems Validation for Airborne Systems.

[84] B. Sanders. Eliminating the Substitution Axiom from UNITY logic.Formal
Aspects of Computing, 3(2):189–285, 1991.

[85] R. C. Short. Software validation for a railway signalling system. InProceedings
of SAFECOMP’83, pages 183–193. IFAC, Pergamon Press, 1983.

[86] K. Slind. AC unification in hol90. In Joyce and Seger [50], pages 437–49.

[87] G. Stlmarck. A proof theoretic concept of tautological hardness. Incomplete
manuscript circulated to interested parties for review., May 1994.

[88] G. Stlmarck and M. S¨aflund. Modelling and verifying systems and software
in propositional logic. InProceedings of SAFECOMP’90, pages 31–6. IFAC,
Pergamon Press, 1990.

[89] C. Stirling. Modal and temporal logics for processes. Technical Report ECS-
LFCS-92-221, Laboratory for Foundations of Computer Science, University of
Edinburgh, 1992. Lecture notes for the4th European Summer School in Logic,
Language and Information, University of Essex.

Bibliography 181

[90] C. Stirling and D. Walker. Local model checking in the modal mu-calculus. In
Proceedings of the International Joint Conference on Theory and Practice of
Software Development (TAPSOFT’89), volume 351 ofLecture Notes in Com-
puter Science, pages 368–82. Springer-Verlag, 1989.

[91] C. Stirling and D. Walker. A general tableau technique for verifying tem-
poral properties of concurrent programs. InProceedings of the International
BCS-FACS Workshop on Semantics for Concurrency, Workshops in Computing,
pages 1–15, Berlin, 1990. Springer-Verlag.

[92] D. Syme. A new interface for HOL - ideas, issues and implementation. In T. E.
Schubert and P. J. Windley, editors,Higher Order Logic Theorem Proving and
its Applications, volume 971 ofLecture Notes in Computer Science. Springer-
Verlag, 1995.

[93] R. D. Tennent.Semantics of Programming Languages. International Series in
Computer Science. Prentice Hall International, 1991.

[94] L. Thèry, Y. Bertot, and G. Kahn. Real theorem provers deserve real user in-
terfaces. InProceedings of the fifth ACM SIGSOFT Symposium on Software
Development Environments, volume 17 ofSoftware Engineering Notes, 1992.

[95] C. Tofts.Proof Systems and Pragmatics for Parallel Programming. PhD thesis,
University of Edinburgh, 1990.

[96] J. van Leeuwen.Handbook ot Theoretical Computer Science, volume B. El-
sevier, 1990.

[97] D. Walker. Automated analysis of mutual exclusion algorithms using CCS.
Formal Aspects of Computing, 1:273–92, 1989.

[98] P. J. Windley. Therecords library. Unpublished, although avail-
able on-line., 1993.http://lal.cs.byu.edu/lal/holdoc/library/-
records/records.html .

[99] W. Wong. A Formal Theory of Railway Track Networks in Higher-order Logic
and its Applications in Interlocking Design. PhD thesis, University of Warwick,
1991.

[100] W. Wong. Modelling bit vectors in HOL: theword library. In Joyce and Seger
[50], pages 371–84.

Appendix A

Glossaries

The three glossaries in the pages that follow are intended to aid the reader by filling

out some of the details omitted from the general discussion in the Introduction, and in

Chapter 2. The entries are grouped according to the following conventions:

A.1 Glossary of railway signalling terminology, describing the main components of

the railway and the control system;

A.2 Glossary of Solid State Interlocking terminology, describing the central notions

that are mainly specific to this kind of signal control system;

A.3 Glossary of Geographic Data terms, describing the organisation and purpose of

the entities in the geographic database.

The reader may benefit simply from reading these pages through in a linear fashion on

the first occasion.

A.1 Glossary of Railway Signalling Terms

APPROACH LOCKING The aspect displayed by a signal depends on the tracks in

advance (they should be clear of traffic, and all points should be locked, before a

green aspect is displayed)and in the rear. For example, a signal at green should

not be reset to red if there is a train within sighting distance of the signal—

otherwise the driver may be unable to halt the train before reaching the signal.

Approach locking is the interlocking function that maintains the displayed aspect

while a train is approaching a signal. SeeROUTE RELEASE(A.1).

ASPECT Traffic indication displayed by a signal. For semaphore signals this is indic-

ated by the position of the arm—vertical (and thus not visible) meaning proceed,

horizontal (and often accompanied by a red warning lamp) meaning halt. An

intermediate diagonal position was introduced to permit traffic to proceed with

caution (and expect to halt at the next signal). Modern power lamp signals often

182

Appendix A. Glossaries 183

have four aspects: red, yellow, double yellow, and green. Intermediate flashing

yellow aspects introduce further speed indications. See alsoSIGNAL (A.1).

BERTH TRACK SECTION This is the track section in which a train will be stand-

ing when facing a signal at red. By analogy with a ship’s berth in harbour, it is

the ‘berth’ for all routes onward from the signal.

CONTROL PANEL A visual display at the signal control centre indicating the cur-

rent status of railway network. A schematic plan of the railway will be illumin-

ated to indicate which routes are set and to show the current position of trains.

Other indications display the on/off state of signals, and sometimes the position

in which points switches are detected. Modern technology has introduced video

display units to replace ‘mosaic’ control panels, but the principles of operation

are the same. Operators issue commands at the panel to reconfigure the network

and route trains to their destinations. Points can be moved independently by

moving a pointskey switchon the panel; routes are set by pressingbuttonsat the

entrance and exit signals (in that order), and released by pulling the entry signal

button. SeePANEL REQUESTS(A.3) andROUTE SETTING(A.1).

CONTROL TABLE Control tables list the locking conditions for each route in the

interlocking. Each route has an entry that specifies which track circuits must be

clear before the entry signal can be turned off (including overlaps, and overlaps

associated with conflicting routes). The control table also specifies the required

orientation of the points along the route, and specifies which signals control ac-

cess to conflicting routes (which should be on before the route is set). Some

railway authorities and providers of signalling equipment have abandoned the

control table as the means of specifying routes—due to the difficulty of verify-

ing that the route locking conditions are adequate.

CROSSOVER A configuration of points that permit trains to cross between parallel

tracks. The points at either end of the crossover are usually coupled together so

that they may only move in unison. SeePOINT SWITCH (A.1).

DIAMOND CROSSING A section of track where two lines cross without the pos-

sibility of allowing traffic to switch between lines. The area marked out between

the four rails is trapezoidal, hence the name!

INTERLOCKING As a noun, a generic name for the signal control system as a

whole. Interlockings may be of several types: ground-frame interlockings op-

erated mechanically, relay-based systems with electromechanical controls, and

Appendix A. Glossaries 184

computer controlled or ‘solid state’ interlockings. When capitalised, Interlock-

ing always abbreviatesSolid State Interlockingin the main text.

INTERLOCKING LOGIC A term used for the logical relationships between phys-

ical entities in the railway such as points, signals, track circuits, and so on. In

SSI, this is programmed in the Geographic Data; in relay-based interlockings

this is hardwired into the relay circuitry, and in ground-frame interlockings it is

manifest in the mechanical linkages between physical components.

LAMP PROVING (CIRCUIT) A separateproving circuit is built into power lamp

signals to check that the selected aspect is in fact drawing current—this will

be the case unless both the main and auxiliary filaments in the lamp are broken.

Lamp proving therefore offers a positive indication that the selected signal aspect

is being displayed.

OVERLAP Main signals (as opposed to repeaters,etc..) act as the exit signal for

routes up to the signal, and the entrance signal for all onward routes. The overlap

track section (and circuit) lies immediately beyond the signal. The overlap is not

strictly part of the route up to the signal, but while the signal is on it should

be kept clear of other traffic to afford protection against a train inadvertently

overrunning the signal. The overlap track circuit is distinct from the (full) track

circuit in advance of the signal. See alsoSWINGING OVERLAPS(A.1).

POINTS KEY This is a switch on the signal control panel that allows the signal op-

erator to lock the points semi-permanently in normal or reverse position. The

centre setting for the points key releases control of the points to the interlocking.

See alsoPOINTS MEMORY (A.3), POINTS DATA (A.3).

POINT (SWITCH) Points are mechanical devices in the railway to change the path

that trains may take through a junction. The switch positions are callednor-

mal and reverserespectively, the former usually referring to the mainline, the

latter to the branch. An electrical contact is used to detect—i.e., to give a posit-

ive indication—that the points are lying in the position to which they have been

called by the interlocking. When a route is set the points along it will be locked

(logically, but also physically clamped) to prevent their being moved again be-

fore the train has passed.

ROUTE Routes are definite paths between pairs of signals—at least on British rail-

ways, other railway authorities often define routes in different ways.Main routes

are defined between consecutive pairs of main signals;warner routes coincide

Appendix A. Glossaries 185

with main routes, but permit traffic to proceed only under caution (i.e., the en-

trance signal will typically not display a green aspect);call-onroutes have a very

specific function: to allow an engine to be coupled to a train—since to achieve

this one must violate the safety principle that only one train may occupy a track

section at once.

ROUTE LOCKING/SETTING Before a signal can be turned off, an onward route

must be set. In the first instance, this involves checking that the availability

conditions for the route in question are met—e.g., to check that no conflicting

route is currently set; then the route must belockedso that subsequent actions

taken by the interlocking do not change these conditions. Secondly, the route

must beproved—the control system expects a positive indication that the points

along the route are detected in the required positions, for example. Finally, the

entrance signal can be turned off, but the aspect displayed will depend on the

class of route, the aspect displayed by the next signal, and other factors. See

PANEL REQUEST (A.2), ROUTE RELEASE (A.1) andROUTE MEMORY

(A.3).

ROUTE RELEASE Under normal conditions a route, having been set, will be re-

leased automatically once a train passes the entrance signal. This switches the

signal back on. As it proceeds the route is released behind the train—e.g., once

it is clear of a set of points they can be unlocked and subsequently moved in set-

ting another, previously conflicting route. Otherwise, a route may be cancelled

by the signal operator (usually in order to set an alternative route) but then the

approach locking conditions must be met. SeeAPPROACH LOCKING(A.1),

SUB-ROUTE RELEASE(A.3).

SCHEME PLAN A scheme plan is a detailed drawing of the railway layout, in a

diagrammatic form, that identifies all of the physical components of the inter-

locking. In particular all signals, points, track sections and track circuits will

appear on the plan. Train control tables and Geographic Data are derived from

the scheme plan. See alsoCONTROL TABLE (A.1).

SEMAPHORE Early type of signalling device, beloved of enthusiasts. The arm on

the signal post is operated against a heavy counterweight so that effort is required

to lift the arm to the vertical position. Should the mechanical linkage between

signalbox and signal break, the weight will drop the arm to the horizontal po-

sition. By convention the horizontal position means stop! The semaphore is a

simple, gravity operated, fail-safe device.

Appendix A. Glossaries 186

SIGNAL Signals control the linear movements of trains, and can give a speed indic-

ation to drivers by displaying one of a variety of aspects. A signal ison when it

displays the red aspect, meaning halt; it isoff otherwise, giving drivers permis-

sion to enter the track section ahead. Signals themselves may serve a variety of

purposes: main signals for normal traffic control; route (or junction) indicators

may warn drivers to slow down due to a diversion ahead; shunt and subsidi-

ary signals have specialised functions in closely monitored situations. Signals

are capable of displaying multiple aspects: two-aspect main signals will display

either red or green aspects; two-aspect repeaters (intermediate signals between

the entrance and exit signals) will normally display yellow or green aspects, but

not red. Most modern signal installations on mainline railways use three or four

aspect colour signals, with flashing yellow aspects for finer speed control.

SWINGING OVERLAPS If there are facing points in the overlap track section there

may be a choice of overlap. For route(s) up to the signal it may not matter which

overlap is selected in setting the route, but routes in the network beyond the

signal may be unavailable because they conflict with the chosen overlap. Under

careful control it is possible to swing the overlap—that is, to select another one—

some timeafter the route has been set. Swinging overlaps is not an inherently

safe activity (some railway authorities have outlawed the practice!) because this

involves releasing the first overlap before setting the second. In particular, the

points in the overlap will be ‘undetected’ whilst they are moved from one pos-

ition to the other, and consequently the signal should come on (display the red

aspect), but this would be unsafe if a train where within sighting distance.

TRACK CIRCUIT The track circuit is the primary safety device in the railway. Track

circuits are always identified with a track sections, though there may be several

electrically isolated track circuits in a single track section in a complex network.

A track circuit is used to detect the presence of a train in the section. A voltage

is applied across the rails, which may be detected to indicate that the section

is clear. When a train is present the voltage between the rails drops due to the

short circuit, and this registers the sectionoccupiedat the control centre. Track

circuits fail on the safe side since a faulty circuit will indicate the presence of a

train.

TRACK SECTION An identified section of the railway line that is controlled by a

signal. The primitive components (segments, or parts) from which track sections

are assembled are points, diamond crossings, and plain track. Track sections are

electrically isolated from one another.

Appendix A. Glossaries 187

A.2 Glossary of SSI Terminology

(BASEBAND) DATA HIGHWAY The data highway is a bidirectional communica-

tions link between the central interlocking processor and the track-side func-

tional modules. The data highway is operated at the rate of 20 k bits per second

and uses a screened twisted-pair, duplicated for reasons of fault tolerance.

CENTRAL INTERLOCKING PROCESSOR The interlocking processor is mainly

responsible for the safe operation of the railway network. This is usually referred

to astheSSI in the main text (occasionally Interlocking, but then always capit-

alised, in the interests of avoiding terminological monotony). The central inter-

locking processors operate in (repairable) triple modular redundancy to achieve

high levels of hardware reliability, and to afford fault tolerance. Each submodule

is identical, running identical software and having identical copies of the Geo-

graphic Data, but independent RAM devices. See alsoGEOGRAPHIC DATA

(A.2).

COMMAND TELEGRAM Command telegrams convey signalling controls to the

equipment at the track-side. Eight control bits are bundled together with sender

and receiver address and diagnostic data with five parity bits to form a trun-

cated (31,26) Hamming code which is transmitted in Manchester encoded bi-

polar form, adding a second layer of error protection. The eight command bits

are set up by commands in the Geographic Data. SeeOUTPUT TELEGRAM

DATA (A.3).

CONTROL INTERPRETER The SSI is a data-driven control system. In this thesis,

the control interpreter (often, just ‘the control’) is the name given to the generic

software running in the SSI, sometimes referred to as the ‘interlocking functional

program’ by other authors. This software interprets the Geographic Data, and it

is this behaviour of the program that is of most interest in this thesis. The control

interpreter has other functions, but all interlocking functions are encoded in the

data except for a few very simple operations ‘hardwired’ into the interpreter for

the sake of efficiency. See alsoINTERLOCKING FUNCTIONAL PROGRAM

(A.2), GEOGRAPHIC DATA(A.3) and the discussion in Sections 1.3.2 and 1.4.

DATA TELEGRAM The Reply telegrams from track-side equipment to the SSI are

encoded according to the same format as command telegrams. Data telegrams

relay the inputs from detection devices in the track-side equipment to the cent-

ral interlocking (lamp proving, points detection and track circuit inputs, for ex-

ample). These inputs are typically copied directly to the internal state. See

INPUT TELEGRAM DATA (A.3).

Appendix A. Glossaries 188

GEOGRAPHIC DATA These data specify the logical relationships between the com-

ponents of the railway, encoding the signal control functions of the Interlocking.

Stored in EPROM (60 k bytes of which are allocated, 20 k bytes of these re-

quired to hold the generic SSI software) the Geographic Data configure each

SSI installation. Data and program together achieve the required signalling

function—setting a route, releasing an overlap, and so on—but the data them-

selves can be considered a program that operates on a state that is composed of

the collection of all control variables defined for the interlocking (one for each

point switch, track circuit,etc.). SeeINTERNAL STATE (A.2) andCONTROL

INTERPRETER (A.2), and Appendix A.3 where different classes of data are

described.

GEOGRAPHIC DATA LANGUAGE (GDL) is a specialised design notation used

by signal engineers to encode the interlocking logic. This simple language of

assignment, sequence and conditional statements is general enough to code all

signalling functions, but it is enriched by ‘specials’ designed to shorten the minor

cycle execution time. Specials are directives to the interpreter to carry out simple

functions efficiently—such as copying an input telegram bit to memory, for ex-

ample. SeeSPECIALS (A.3), and Section 2.3.

INTERLOCKING FUNCTIONAL PROGRAM While its main function is that of

interpreting Geographic Data, the generic SSI software also: initiates all com-

munications with track-side functional modules; encodes and decodes all out-

going and incoming telegram data; performs single fault recovery; implements

the TMR voting mechanism and shutdown procedure; implements the inter-SSI

communications protocol; interfaces with the panel and diagnostic processors,

and implements all startup routines. The interlocking functional program oc-

cupies about 20 k bytes of EPROM. The program is referred to as thecontrol

interpreterthroughout the main text.

INTERNAL DATA LINK (IDL) The internal data link is a separate communications

channel to provide inter-SSI communications. There will usually be more than

one SSI at a single control centre, 30 of which may be connected to one IDL, but

the current technology is limited so that an SSI can send (and receive) only up

to 15 eight-bit messages. The IDL is primarily used for setting routes across SSI

boundaries, and for controlling signals or points in the fringe area.

IDL TELEGRAM Telegrams sent over the internal data link convey two kinds of in-

formation. When used to carry status information between the two interlockings,

each bit in the telegram is interpreted individually—like data telegrams received

Appendix A. Glossaries 189

over the baseband data highway. In these circumstances the individual bits are

used to set up dummy signal or track circuit memories in the receiving inter-

locking. The other use for IDL telegrams is to carryrequest codes, as part of

the remote route request protocol. The eight-bit telegram is interpreted as an

integral request code which causes the receiving SSI to execute a specific in-

terlocking function from thePRRdata file. IDL telegrams can serve one, and

only one, of these two purposes. SeePANEL REQUEST(A.2), andREMOTE

ROUTE REQUEST(A.2).

INTERNAL STATE The internal state of the SSI represents the current status of the

railway—in the main text this is usually referred to as theimageof the railway.

A collection of control variables are defined and held in RAM: up to 256 track

circuit memories are allocated, with 64 points and 128 signals, together with

logical control variables for routes, timers, sub-routes, and other binary flags.

These data represent 1,216 bytes of ‘live’ memory upon which the Geographic

Data and control interpreter operate.

MAJOR CYCLE One major cycle is 64 minor cycles. A maximum of 63 TFMs

may be attached to each SSI, the zeroth minor cycle being used for diagnostic

purposes and updating the SSI with commands from the technician’s console.

A major cycle is 64 minor cycles in duration irrespective of the actual number

of TFMs attached, with a lower limit of 608 ms, and an upper limit that should

not exceed 1,000 ms. During a major cycle all flag operations data will have

been processed once, as will all input and output telegram data, and all timers

will have been adjusted once. Timers are only accurate to±2 s, and cannot be

updated more than once a major cycle.

MINOR CYCLE The minor cycle is the basic execution cycle during which the SSI

will process and issue one command telegram, and receive and process one reply

telegram (from the TFM addressed in the previous minor cycle). Other required

activities during the minor cycle include the processing of1/64th of the com-

mands in theFOPdata file, and updating1/64th of the approach locking, track

circuit and elapsed timers in the interlocking. If these actions can be completed

in under 9.5 ms the SSI will process one panel request, if any are pending. The

minor cycle has a minimum duration of 9.5 ms, and should be no longer than

30 ms otherwise track-side modules may interpret the gaps in the communic-

ations as failures of the baseband data highway and enter the failure mode of

operation.

Appendix A. Glossaries 190

MODE 1/2/3 STARTUP A ‘mode 1’ (2 or 3) startup is chosen by heuristics in the

initialisation software. A ‘mode 1’ startup is the most severe, necessitating a

reset of the entire contents of RAM: all bits are cleared to zero except the techni-

cian’s controls and the elapsed timers whose contents are set to one. This initial

state means that all routes areunset, all sub-routes and sub-overlaps arelocked,

and all timers arestopped; also, all technician’s controls are applied, points are

neither controlled normal nor reverse, and track circuits are undefined. Moreover

the processing of panel requests is suspended while the system is brought up-to-

date by incoming data telegrams, and while technician’s controls are released

manually from the technician’s console. A ‘mode 2’ startup involves a similar

reset, but preserves the technician’s controls, and the system restarts automat-

ically after a four minute suspension in processing panel requests. A ‘mode 3’

startup also preserves the status of route memory, and allows an immediate re-

start. See alsoTECHNICIAN’S CONSOLE (A.2), INTERNAL STATE (A.2),

and Appendix A.3.

PANEL PROCESSOR The panel processor handles non-critical duties such as hand-

ling commands issued at the control panel (or automatic route setting computer)

and passing them over to the interlocking processor, and updating the display.

Panel processors are operated in duplex ‘hot standby’.

PANEL REQUEST Signalling commands issued at the signal control panel are either

route requests, route cancellation requests, or panel key requests (to move points

‘manually’). The panel processor converts these into a stream of inputs to the

SSI—but because both panel processors are normally operational, the SSI re-

ceives and executes two copies of each request. These are stored by the central

interlocking in a ring buffer of bounded size, and processed during minor cycles

which are otherwise completed in under the minimum minor cycle time. At most

one panel request will be served in any minor cycle. See alsoMINOR CYCLE

(A.2) andROUTE REQUEST DATA(A.3).

REMOTE ROUTE REQUEST Routes that straddle interlocking boundaries require

special treatment since two (or more) Interlockings must cooperate to set them

up safely. When the Interlocking controlling the entrance signal receives a panel

request for such a route, it issues a remote route request via the internal data link

to the Interlocking controlling the tail portion of the route. Only if an acknow-

ledgement to this remote request is received from the other Interlocking (within

a prescribed period of delay) will the first Interlocking go ahead and lock the

route. See Section 1.4.

Appendix A. Glossaries 191

TECHNICIAN’S CONSOLE The technician’s console allows close monitoring of

the internal state of several Interlockings at a signal control centre, and the on-

line diagnosis of faults in the signalling equipment,etc.. The technician’s con-

sole also allows one to impose (temporary) restrictions on the behaviour of the

interlocking, by applying so-calledtechnician’s controls. These can be applied

to routes (so that they are unavailable, and requests for them always fail), to

track circuits (so they always appear occupied, irrespective of the actual state),

to points (so they can be disabled in either the normal or reverse position), and

to signals (to override the lamp-proving input from the TFM). Of these, only the

‘availability bit’ in route memory is accessible from the Geographic Data—so

that an alternative route can be selected perhaps.

TRACK-SIDE FUNCTIONAL MODULE (TFM) These devices interface with the

track-side signalling equipment. Two types of module are provided: one to drive

signal aspects and detect lamp proving inputs,etc.; the other to drive points and

detect their position contacts. Either type of module can report track circuit in-

puts. Both signal and points modules have identical interfaces to the baseband

data highway, and are configured to respond to a command telegram with an

immediate reply (data) telegram. Track-side functional modules provide power

switching under duplicated microprocessor control—duplication here, as else-

where in SSI, being designed to mask single faults and to drive the outputs to a

safe state when unrecoverable faults are detected.

A.3 Glossary of Geographic Data Terminology

(ELAPSED) TIMER 64 bytes of RAM are reserved for 64 timers which may be used

for any purpose in the Geographic Data—but they are usually associated with

communications with other interlockings and swinging overlaps. Timers count

seconds, to an accuracy of±2 s, upwards from zero to the ‘sticking’ value of

254. Timers are ‘stopped’ by setting their contents to 255: elapsed timers are

stopped and started from the Geographic Data, but incremented by the control

interpreter at most once a major cycle.

EVALUATION SET An evaluation set is a labelled block of tests on data variables

which may be referenced in any context where a test is valid (but reference and

label must be in the same data file). See alsoSPECIALS (A.3).

EXECUTION SET An execution set is a labelled block of arbitrary conditional code

which may be referenced in any context where a command is valid (but reference

and label must be in the same data file). See alsoSPECIALS (A.3).

Appendix A. Glossaries 192

FLAG MEMORY 128 bytes of RAM are allocated to flags (single bit variables).

Flags include sub-routes and sub-overlaps whose states may belockedandfree,

and general purpose latches.

FLAG OPERATIONS DATA Each command in the flag operations data file (FOP

data) is executed once a major cycle. One release rule is needed for each sub-

route and sub-overlap, but any other data that require to be executed once a major

cycle can be placed here.

INPUT TELEGRAM DATA One block of data is associated with each input tele-

gram received from the track-side functional modules (in theIPT data file). The

SSI is configured so that the input telegram processed in minor cyclem is the

reply from the module addressed with a command telegram in cyclem−1 (mod-

ulo 64). Input telegram data update the detection bits in the image of the railway.

IPT data are also specified for each telegram received over the IDL, and in the

special case that these convey request codes the interpreter is configured to queue

the appropriate ‘panel’ request.

MAP SEARCH Map searches (in theMAP data file) are frequently used to decide

if route release conditions are met. A map search involves a look back from a

feature reference (a signal or track circuit) for evidence of an approaching train

(i.e., an occupied track circuit).

OUTPUT TELEGRAM DATA The most complex interlocking logic is located in

theOPTdata file. One block of data is needed for each TFM addressed by the

interlocking: data for points modules are simple (one just needs to drive the

points to the position of thec bit in points memory) but signal aspects are inter-

locked with those of other nearby signals and track circuits, so setting the correct

command bits in the output telegram requires a longer sequence of commands.

OPTdata are also needed for telegrams used to convey signal control data over

the IDL.

PANEL REQUEST Each input from the signal control panel corresponds to a com-

mand to be executed from the panel (route) request data (PRRdata file). These

data list all route requests that arrive via the IDL or from the panel processor,

and all route release requests. Points ‘key’ requests allow the operator to move

points independently of setting a route over them.PANEL PROCESSOR(A.2)

andROUTE REQUEST DATA(A.3).

POINTS DATA Points “free to move” data (PFM data file) specify the conditions

under which points may be switched, with one set of data required for each lie of

Appendix A. Glossaries 193

the points.PFM data may be called from other data files, particularly thePRR

data in deciding route availability.

POINTS MEMORY 64 bytes of RAM are allocated to points memories, each of

which contains two four-bit records (for thenormalandreverselie of the points).

The ‘controlled’, ‘detected’, and ‘key switch’ fields of each record are under

Geographic Data control, the fourth is used to disable the points and is only

accessed by the program (technician’s control).

ROUTE MEMORY 64 bytes of RAM are allocated to 256 route memories. Routes

may besetor unset, this field being under the control of the Geographic Data:

the ‘available’ flag is used to disable a route and is only testable.

ROUTE REQUEST DATA ThePRRdata file contains commands that are executed

only on demand, when the SSI serves a panel request. Route request data specify

the availability conditions, and locking conditions for each route defined in the

Interlocking. Availability conditions need to check that points along the route

can be moved to the required positions, and whether an opposing route is already

locked—normally, it suffices to test the opposite sub-route to the first sub-route

on the route in question, and the last sub-route on any directly opposing routes.

The points “free to move” data (PFMdata file) for each set of points on the route

should cause the route request to fail if any route is locked over the points in the

wrong direction. See alsoPOINTS DATA (A.3).

SIGNAL MEMORY 128 signal memories are allocated, each requiring 3 bytes. Each

signal memory includes an ‘approach locking timer’ (one byte), an aspect code

(three bit), and a several other control flags for deciding which aspect to display,

for sequencing the distant signals, and for deciding when the signal can be turned

on, and the forward route(s) released.

SUB-ROUTE One sub-route is allocated to each path through a track circuit that lies

on a route (so one sub-route may be part of several routes). Similarly, asub-

overlapis allocated for each path through an overlap track circuit that is part of

an overlap. Sub-routes and sub-overlaps are boolean flags that may belockedor

free.

SUB-ROUTE RELEASE DATA These data are located in theFOPdata file, and spe-

cify the conditions under which sub-routes (and sub-overlaps) can be released.

Usually, the first sub-route on a route requires the routeunset, and the first track

circuit clear; subsequent sub-routes are ‘chained’, requiring the previous sub-

route(s)freeand the track circuitclear.

Appendix A. Glossaries 194

SPECIALS Specials are directives in the Geographic Data Language that instruct the

control interpreter to take short cuts in processing frequently occurring con-

structs. The volume of data, especially inPRRandOPT data files, can be re-

duced by putting common code in an evaluation set: the@special causes the

interpreter to jump to the reference. Other specials are associated with input

telegrams—typically to abbreviate the actions of testing a telegram bit, and set-

ting the corresponding memory bit appropriately. The logic that the specials

abbreviate can always be expressed in the conditional language.

TRACK CIRCUIT MEMORY 512 bytes of RAM are allocated for 256 track circuit

memories. Each track circuit may beclear or occupied. Two single bit fields are

used to give this indication, and three successive ‘track circuit clear’ inputs must

be received before theclearfield is set. Each record includes an eight bit timer to

record how long the track circuit has been in the current state. The Geographic

Data can test the timer along with the status flags – often used for automatic

signals which revert to green after a suitable interval since the last train went

through (automatic signals do not have routes associated with them in the same

way as the fixed block main signals described in the main text).

Appendix B

Theory

In this technical appendix we summarise, rather briefly, the syntax and semantics of the

mathematical formalisms used throughout the main text. There is no need to be com-

prehensive here since the theories used are by now well established and understood.

This appendix is provided as a convenience, key references being cited below. Here

we discuss the main notions underlying CCS, which formed the basis of the models

developed in Chapters 3 and 6, and the modalµ-calculus and an associated proof sys-

tem which we used in Chapters 4 and 6. Lastly, the proof tactics described in Chapter 5

are assembled in Appendix B.3.

B.1 Calculus of Communicating Systems

The Calculus of Communicating Systems is an an algebraic theory intended to de-

scribe communication between, and computations of, abstractprocesses. The theory

developed in [61] tookobservation equivalenceas the basis of deciding when two pro-

cesses are to all visible intents, equivalent. The theory of observation equivalence was

refined by Park [78] who introduced thebisimulationproof technique which is now

fundamental to the theory. The equational theory of CCS is formulated on a refined

notion of observation equivalence, that of observation congruence [64]. In [62] Mil-

ner has brought the theory up to date, the exposition being based around a wealth of

examples.

CCS is not unique in what it sets out to achieve: it has spawned numerousprocess

algebrasthat develop the theory in different directions. Of special note is Hoare’s CSP

which was developed independently of CCS [45]. CSP also takes as primitive the idea

of indivisible action representing communication, but differs slightly in the semantics

of the interaction between processes, as well as in its notion of equivalence.

195

Appendix B. Theory 196

α.P
α−→ P

P
α−→ P ′

P +Q
α−→ P ′

Q
α−→ Q′

P +Q
α−→ Q′

P
α−→ P ′

P | Q α−→ P ′ | Q
Q

α−→ Q′

P | Q α−→ P | Q′
P

α−→ P ′ Q
α−→ Q′

P | Q τ−→ P ′ | Q′

P
α−→ P ′

P [f]
f(α)−→ P ′[f]

P
α−→ P ′ α, α 6∈ L
P\L α−→ P ′\L

P
α−→ P ′ A

def= P

A
α−→ P ′

Figure B.1: Transition rules for pure CCS

PURE CCS

In CCS, computation and communication are both abstractly represented byactions.

LetA = Λ] {τ} be a set of actions,τ being a distinguished so-called ‘silent’ action.

Λ is a set oflabelshaving two disjoint subsets:Λ+ is a set ofnames, andΛ− is a set

of co-names. We leta, b, c . . . range over names,a, b, c, . . . range over co-names, and

α, β range overA. If l ∈ Λ is a label, then its inverse isl ∈ Λ, and for any labell = l.

From this alphabet terms, oragent expressionsare constructed according to the syntax:

P ::= 0
∣∣∣ α.P

∣∣∣ P +P
∣∣∣ P | P

∣∣∣ P\L
∣∣∣ P [f]

Informally, 0 represents a stopped or deadlocked computation;α.P can perform

actionα and will then behave asP ; P +Q represents choice—the agent can evolve

either asP or asQ; P | Q represents the parallel interleaving of the actions ofP and

Q; P\L is restricted in its visible behaviour—P cannot communicate via actions in

the setL; finally, P [f] behaves just asP , but the actions are renamed according to the

bijectionf : Λ → Λ. Relabelling functions have the property thatf(a) = f(a); we

can extend the domain toA, but insistf(τ) = τ for all f .

More formally, the semantics of CCS terms are given with respect to alabelled

transition system: (P ,A, { α−→ | α ∈ A}). A is a set of actions,P is a universal set

of processes (or states), and for eachα ∈ A, α−→ ⊆ P × P is a labelled transition

relation. The transitional semantics are then specified by the rules in Figure B.1. The

last of these rules introduces the principle of definition: ifA is defined to beP thenA

behaves exactly asP does. Definitions likeA def= P are a means to introduce non-finite

behaviour to CCS terms (because theconstantA may appear in the bodyP). Another

way is to explicitly introduce recursive terms:Fix (X. P) whereX may appear free in

P . The rule forFix is
P{Fix (X. P)/X} α−→ P ′

Fix (X. P) α−→ P ′

The two recursive forms are equivalent: the latter is more satisfactory in proofs, the

former much more convenient in specifying models.

Appendix B. Theory 197

VALUE PASSING

Pure CCS describes only synchronisations between abstract agents. Whether one

thinks ofa.P as output anda.P as input, or the other way around, is immaterial. The

value passing calculus has a richer syntax since we think of values being communic-

ated over channels, but it turns out to be no more expressive than the pure calculus.

If we let V be some domain of values, the parameterised actiona(e) represents the

communication of the valuev ∈ V of the expressione over the channela. On the other

hand,a(x) will bind the value received ona to the (value) variablex.

The syntax and semantics of the value passing calculus are given in the following

translation table:

[[a(x).P]] =
∑
v∈V av.[[P{v/x}]]

[[a(e).P]] = ae.[[P]]

[[
∑
i∈I Pi]] =

∑
i∈I[[Pi]]

[[P | Q]] = [[P]] | [[Q]]

[[P\L]] = [[P]]{lv | l ∈ A, v ∈ V }
[[P [f]]] = [[P]][f̂] wheref̂(lv) = f(l)v

[[if (b) then P]] =

 [[P]] if b = true

0 otherwise

[[A(ẽ)]] = Aẽ

In translatinga(x) therefore, a distinct actionav is created for each valuev ∈ V the

parameterx may take. The outputa(e) also becomes an indexed action—this time

the complement toae will be a member of{av | v ∈ V }. Note that the indexed

sum
∑
i∈I Pi generalises the binary sum given earlier. The index set may be finite or

infinite. We may also admit the notation
∏
i∈I Pi as long asI is a finite set, but note

that synchronisations between parallel agents are always pair-wise, by the third rule

for composition.

A(ẽ) denotes a parameterised agent,A(x̃) def= P being the appropriate definition.

Only the value variables̃xmay appear free inP . The two-armed conditional is defined

in terms of the simpler guarded command:

(if (b) then P) + (if (¬b) thenQ)

Some examples should help to clarify the translation mechanism.

Example B.1 Recall the definition of a register, from Chapter 3:

Reg(x) def= get(x).Reg(x) + put(y).Reg(y)

Appendix B. Theory 198

If we suppose that the values are binary,B = {0, 1}, this definition will be translated

into an indexed set of pure CCS definitions:

{Regv
def= getv.Regv +

∑
u∈B putu.Regu | v ∈ B}

Hence:

Reg0
def= get0.Reg0 + put0.Reg0 + put1.Reg1

Reg1
def= get1.Reg1 + put0.Reg0 + put1.Reg1

♣

Example B.2 For a second example, recall that in translating Geographic Data into

CCS in Chapter 3 we obtained a term like:

getP (v).if (v = cn) then P elseQ

for suitable (unparameterised)P andQ. See Figure 3.4 on page 55, for instance. The

data domain for points we considered there was just{cn , cr }. Then:

[[getP (v).if (v = cn) then P elseQ]] = getPcn .[[if (cn = cn) then P elseQ]]

+ getPcr .[[if (cr = cn) then P elseQ]]

= getPcn .[[P]] + getPcr .[[Q]]

which is justgetPcn .P + getPcr .Q sinceP andQ are simple constants. In the main

body of the thesis this term is writtengetP (cn).P + getP (cr).Q simply to avoid an

unreadable profusion of subscripts. ♣

BISIMULATION

Of central importance to the development of the theory of CCS is the notion ofbisim-

ulation. Intuitively, two agents or states in a transition system, are bisimilar if each

can simulate the other—that is, every action of one agent is matched by some action

of the other in such a way that the resulting states are also bisimilar. This is succinctly

captured by the following:

Definition B.1 A binary relationS ⊆ P×P is astrong bisimulation if PSQ implies

for all α ∈ A:

1. if P α−→ P ′ thenQ α−→ Q′ with P ′SQ′ for someQ′, and

2. if Q α−→ Q′ thenP α−→ P ′ with P ′SQ′ for someP ′.

We say that two agentsP andQ arestrongly bisimilar , writtenP ∼ Q, if PSQ for

some strong bisimulationS. 2

Appendix B. Theory 199

P ∼ Q is considered a strong equivalence relation (a congruence with respect

to the operators of the language), as it gives no special status to the silent actionτ .

A coarser equivalence, more useful in practice, is obtained by considering only the

visible behaviour of an agent. We may define anobservationusing the transitive

closure of theτ relation: P (τ−→)∗P ′, which is normally writtenP =⇒ P ′. Then

for α ∈ A, P α=⇒ P ′ is defined by composing α−→ on the left and on the right by

=⇒ : P =⇒ α−→ =⇒ P ′. Finally we define the visible content of the observation by

P
α̂=⇒ P ′, which denotesP =⇒ P ′ whenα = τ , andP α=⇒ P ′ otherwise. This leads

to:

Definition B.2 A binary relationW ⊆ P×P is aweak bisimulation if PWQ implies

for all α ∈ A:

1. if P α−→ P ′ thenQ α̂=⇒ Q′ with P ′WQ′ for someQ′, and

2. if Q α−→ Q′ thenP α̂=⇒ P ′ with P ′WQ′ for someP ′.

Two agentsP andQ areobservation equivalent, writtenP ≈ Q, if PWQ for some

weak bisimulationW. 2

From the definition it follows, therefore, that in order to prove two agentsP andQ

are equivalent it is enough to find a bisimulation containing the pair.

Example B.3 By way of an example the relation{(a.0, τ.a.0)}⋃ Id , whereId is the

identity relation, is a weak bisimulation containing the agentsa.0 andτ.a.0. However,

this example also serves to show that observation equivalence is not a congruence

relation:b.0 + a.0 6≈ b.0 + τ.a.0. ♣

Although observation equivalence is not fully substitutive, it almost is. In fact,

only the preemptive power of theτ action in the context of sum, as above, breaks

the congruence. This leads to the following formulation of the definition ofequality

between agents:

Definition B.3 P andQ areobservation congruent, writtenP = Q, if for all α ∈ A:

1. if P α−→ P ′ thenQ α=⇒ Q′ for someQ′ with P ′ ≈ Q′, and

2. if Q α−→ Q′ thenP α=⇒ P ′ for someP ′ with P ′ ≈ Q′.

2

If P andQ are to be equal, each initial action ofP must be matched byat least one

action ofQ, and vice versa. Subsequently, the agents need only be observation equi-

valent. Note thatP ∼ Q impliesP = Q, which in turn impliesP ≈ Q. Observation

congruence establishes the equational theory of CCS [64], but we shall not expound

that theory here.

Appendix B. Theory 200

B.2 Modal µ-calculus

The modalµ-calculus is a rich logic for expressing dynamic properties of systems. The

logic was formulated by Pratt [81] and Kozen [52] as a generalisation of propositional

dynamic logics (which themselves extend Hoare logics to recursive programs). Start-

ing from a simple modal logic, put forward by Hennessy and Milner in [43] where

2 and 3 modalities are indexed (or relativised) by actions, Stirling shows how the

modalµ-calculus naturally arises when one wishes to more abstractly express durable

properties of communicating systems. Stirling, in [89], extends HML, and Kozen’s

µ-calculus in a minor, but very convenient manner: modalities are indexed bysetsof

actions. The resulting logic is very suitable for exploring temporal properties of par-

allel systems in general, including at least concurrentwhile programs, CSP and CCS

programs, and Petri nets [91, 11].

Temporal logics have often been advanced as specification formalisms for con-

current programs—though they are suitable for purely sequential, non-interfering pro-

grams too. (See Pnueli [80], for example, for good motivation, and [28, 38] for recent

surveys.) The problem then remains of verifying that models of programs satisfy their

temporal logic specifications. Emerson and Lei [29] discovered a decidable method for

a restricted version of theµ-calculus; Stirling and Walker [90] were first to describe a

local model checker for the full logic. Local model checking is appealing since one

may never need to construct the entire model to verify interesting properties of systems.

HENNESSY-MILNER LOGIC

Hennessy-Milner logic (HML) is a modal logic for specifying local capabilities of sys-

tems usually modelled in CCS. Typically, modal logics are interpreted over Kripke

structures (unlabelled transition systems) but the modal connectives of HML are la-

belled by actions, so we interpret them over labelled transition systems. Since CCS

terms define these structures, the relationship between logic and algebra is a natural

one. Formulae of HML are constructed by the following syntax:

Φ ::= tt
∣∣∣ ¬Φ

∣∣∣ Φ ∧ Φ
∣∣∣ [K]Φ

whereK ⊆ A. Other logical connectives are defined as required using negation.

In particular〈K〉Φ def= ¬[K]¬Φ is the dual to the ‘box’ modality (‘diamond’). This

description somewhat generalises the original formulation of the logic [42, 43] since

there only single actions are permitted in decorating modal connectives.

Now if (P ,A, { α−→ | α ∈ A}) is a labelled transition system we can precisely

determine when some processP ∈ P enjoys a property expressed in HML by the fol-

lowing inductive definition ofsatisfaction. First, letK(P) be the set of states reachable

Appendix B. Theory 201

fromP via an action inK: K(P) def= {P ′ ∈ P | P a−→ P ′ for somea ∈ K}. Then:

P |= tt

P |= ¬Φ iff P 6|= Φ

P |= Φ ∧Ψ iff P |= Φ andP |= Ψ

P |= [K]Φ iff ∀Q ∈ K(P).Q |= Φ

P |= 〈K〉Φ iff ∃Q ∈ K(P).Q |= Φ

Intuitively, any process satisfies the propertytt (true); in contrast, no process satisfies

ff . For the modal connectives,P satisfies〈K〉Φ if and only if someK-derivative

satisfies the propertyΦ; P satisfies[K]Φ if and only if allK-derivatives satisfyΦ.

Example B.4 The box modalities express necessities, the diamond modalities express

capabilities. Consider the property〈a〉tt for the simple actiona:

P |= 〈a〉tt iff ∃Q ∈ {P ′ ∈ P | P a−→ P ′}.Q |= tt

SinceQ |= tt for all a-derivatives ofP (in particular, since it is true for allP ∈ P)

this property therefore expresses the capacity forP to perform ana action. In contrast

¬〈a〉tt = [a]ff , and:

P |= [a]ff iff ∀P ′ ∈ {P ′ ∈ P | P a−→ P ′}.P ′ |= ff

But Q 6|= ff for anyQ. This property therefore expresses the fact thatP cannot (im-

mediately) perform ana action. In a similar vein, note that∀K, 0 |= [K]ff . ♣

There are a number of interesting results concerning HML, the most important of

which is the Modal Characterisation Theorem. If the agentsP andQ are finite state,

they are strongly bisimilar if and only if they have the same modal properties:P ∼
Q⇔ {Φ | P |= Φ} = {Ψ | Q |= Ψ}. While HML is rich enough to express properties

aboutfinite behaviour, it is not expressive enough to capture enduring properties. The

µ-calculus introduces a temporal operator to the modal logic for this purpose.

MODAL TEMPORAL LOGIC

An alternative way of assigning meaning to modal logic formulae is throughsatisfac-

tion sets. We use the notation‖Φ‖P to denote the set of processes (inP) having the

propertyΦ. This set is defined inductively on the structure of formulae:

‖tt‖P = P
‖¬Φ‖P = P − ‖Φ‖P

‖Φ ∧Ψ‖P = ‖Φ‖P ∩ ‖Ψ‖P

‖[K]Φ‖P = {P ∈ P | K(P) ⊆ ‖Φ‖P}
‖〈K〉Φ‖P = {P ∈ P | ∃P ′ ∈ K(P) ∩ ‖Φ‖P}

Appendix B. Theory 202

As long asP is transition closed—i.e., if P ∈ P then every derivative ofP is in the

set—then the two semantics of HML coincide:P |= Φ if and only ifP ∈ ‖Φ‖P .

It is by extending these semantics that we assign meaning to formulae of the modal

µ-calculus which introduces propositional variables and a fixed point operator to the

modal logic:

Φ ::= Z
∣∣∣ ¬Φ

∣∣∣ Φ ∧ Φ
∣∣∣ [K]Φ

∣∣∣ νZ.Φ

A fixed point formulaνZ.Φ represents the maximal solution to the (possibly) recurs-

ive modal equationZ def= Φ. This solution always exists, as does the minimal solution

denoted byµZ.Φ def= ¬νZ.¬Φ{¬Z/Z}, under the syntactic restriction that ifZ appears

free in the bodyΦ, it does so within the scope of an even number of negations. Models

for this temporal logic are given as before by labelled transition systems—but now we

have to supply an interpretation for the propositional variables appearing in subformu-

lae. LetV be avaluationthat assigns a subset ofP to each variableZ (i.e., the set of

states having the property expressed byZ). Now:

‖Z‖PV = V(Z)

‖νZ.Φ‖PV =
⋃
{E | E ⊆ ‖Φ‖PV [E/Z]}

‖µZ.Φ‖PV =
⋂
{E | ‖Φ‖PV [E/Z] ⊆ E}

with the meanings of the other logical connectives being given as above (but with

respect toV). The notationV [E/Z] signifies the valuationV ′ that agrees withV on all

variables exceptZ, for whichV ′(Z) = E.

Example B.5 Notice that we do not need to takett or ff as primitive in the temporal

logic: they can bedefined. From the semantics:

‖νZ.Z‖PV =
⋃
{E | E ⊆ ‖Z‖PV [E/Z]}

=
⋃
{E | E ⊆ E}

= P

while, in contrast,‖µY.Z‖P = ∅. But if a property—of the labelled transition system

(P ,A, { a−→ | a ∈ A})—is identified with a subset ofP , the only propertyP can

express is the propertytrue. Conversely,∅ expressesfalse: no process can have this

property. ♣

Notice that‖νZ.Z‖PV = P independently of any particularV . The same is true of

all HML formulae but, properly speaking, a temporal property is only expressed in a

closed formula (no freeZ) of the logic. We can thus continue to use the notation‖Φ‖P

to represent the set of processes that have the propertyΦ. Now satisfaction is defined:

Appendix B. Theory 203

P |= Φ wheneverP ∈ ‖Φ‖P . The notion may be generalised to sets of processes:

E |= Φ if and only if allP ∈ E satisfyΦ.

The modalµ-calculus is a very powerful logic, but suffers from cumbersome-

looking syntax. A good reading ofµ-calculus formulae only comes through tackling

some examples! First, a difficult one:

Example B.6 The propertyµZ.Φ ∨ 〈K〉Z , whenZ does not appear free inΦ, asserts

that Φ mayeventually hold. Now, dropping the (fixed) superscriptP , the semantics

supply the interpretation:

‖µZ.Φ ∨ 〈K〉Z‖V =
⋂
{E | ‖Φ ∨ 〈K〉Z‖V [E/Z] ⊆ E}

=
⋂
{E | ‖Φ‖V [E/Z] ∪ ‖〈K〉Z‖V [E/Z] ⊆ E}

=
⋂
{E | ‖Φ‖V [E/Z] ∪ {P | ∃P ′ ∈ K(P) ∩ E} ⊆ E}

=
⋂
{E | ‖Φ‖V [E/Z] ∪ {P | ∃P ′ ∈ E.∃a ∈ K.P a−→ P ′} ⊆ E}

So a processP satisfies the defining condition either ifP |= Φ or someK-successor

P ′ is in E impliesP ∈ E. SoP |= µZ.Φ ∨ 〈K〉Z if P |= Φ or, if it does not, some

K-successorP ′ |= Φ or, if it does not, someK-successorP ′′ of P ′ satisfiesΦ. . . : in

short, some state reachable fromP via zero or some finite number ofK actions must

satisfyΦ. ♣

The above is an example of alivenessproperty, asserting that something (good),

characterised by the propertyΦ, may happen. Liveness properties are associated with

least fixed points in the fixed point logic. On the other hand,safetyproperties reverse

the scenario, asserting that something (bad) must never happen. These correspond to

greatest fixed points.

Example B.7 The property¬µZ.¬Φ ∨ 〈K〉Z = νZ.Φ ∧ [K]Z is a strong invariance

property:Φ holds along all computations involving only actions drawn from the setK.

‖νZ.Φ ∧ [K]Z‖V =
⋃
{E | E ⊆ ‖Φ‖V [E/Z] ∩ ‖[K]Z‖V [E/Z]}

=
⋃
{E | E ⊆ ‖Φ‖V [E/Z] ∩ {P | K(P) ⊆ E}}

=
⋃
{E | E ⊆ ‖Φ‖V [E/Z] ∩ {P | P ′ ∈ K(P) impliesP ′ ∈ E}}

This therefore specifies a set of states that is closed underK actions, but each of which

satisfies the property expressed inΦ. ♣

Example B.8 Let [a1 . . . an]Φ def= [{a1 . . . an}]Φ, [−K]Φ def= [A−K]Φ and [−]Φ def=

[A]Φ. We can specialise the examples above in interesting ways. Firstly, the fixed

point formulaνZ.Φ ∧ [−]Z expresses invariance ofΦ over all computations—i.e., the

Appendix B. Theory 204

branching time temporal logic formulaAG Φ. Secondly,µZ.Φ ∨ 〈τ〉Z specifies that

after some silent activity the propertyΦ may become true. This is usually written

〈〈 〉〉Φ. Similarly [[]]Φ = νZ.Φ ∧ [τ]Z. ♣

Notice the distinction betweenνZ.Φ ∧ [−]Z which is global invariance, and the

case when the modality selects a subset ofA—local invariance. The latter property is

also expressible in CTL, but only in a rather complicated and unintuitive formula.

The double bracket modalities expressweakmodal properties—they treat the silent

τ action of CCS in much the same way as it is treated in the theory of observational

equivalence. Generalising, we get:

[[K]]Φ def= [[]][K][[]]Φ

= νZ.[K][[]]Φ∧ [τ]Z

= νZ.[K](νY.Φ ∧ [τ]Y) ∧ [τ]Z

and similarly〈〈K〉〉Φ = ¬[[K]]¬Φ:

〈〈K〉〉Φ def= µZ.〈K〉(µY.Φ ∨ 〈τ〉Y) ∨ 〈τ〉Z

Just as Hennessy-Milner logic characterises (strong) bisimulation, Stirling has shown

that the modalµ-calculus does likewise: ifP andQ are (image finite) processes then

they are strongly bisimilar if and only if they have the same temporal properties. In-

deed, theweakµ-calculus, using only the double bracket modalities together with the

fixed point and boolean connectives, characterises observation equivalence.

The examples considered above serve to illustrate the utility of macros! Yet al-

though some of these formulae look complicated they barely scratched the surface of

the expressive power of the logic [11]. Theµ-calculus is a very powerful logic and

in general the truth of assertions expressed in it is undecidable. However, there are

polynomial time algorithms for deciding if an assertion is valid on a particularfinite

model.

LOCAL MODEL CHECKING

The simple property checker described here is due to Stirling and Walker [90]. It

is not very efficient as it stands, but Cleavland discovered significant improvements

(see [19]) when he implemented local model checking in the Edinburgh Concurrency

Workbench [20]. Local model checking contrasts withglobal model checking in that

one need nota priori construct the model before checking that a particular state satisfies

a formula of the logic. Of course, if one wants to prove a global invariant, then local

model checking brings nothing new to the problem.

Appendix B. Theory 205

The temporal property checker is atableauproof system, each rule used to con-

struct the tree having the general form

E ` Φ
{Ei ` Φi}

where there may be side-conditions. The premise sequent, above the line, is the goal

to be proved—i.e., that the statesE ⊆ P satisfyΦ—and the subsequents are derived

from this according to the form ofΦ and the structure of the model in the vicinity of

E. The rules for the modal fragment of the logic, which we assume now is in positive

form (that is, negation is omitted, and we take the derived operators∨, 〈K〉, etc., as

primitive) are as follows:

∧
E ` Φ ∧Ψ

E ` Φ E ` Ψ
[K]
E ` [K]Φ
K(E) ` Φ

∨
E ` Φ ∨Ψ

E1 ` Φ E2 ` Ψ
〈K〉

E ` 〈K〉Φ
f(E) ` Φ

with side conditions on the∨-rule and the〈K〉-rule which introduce choices. Note

first thatK(E) generalises the earlier notation:K(E) = {P ′ ∈ P | ∃P ∈ E.∃a ∈
K.P

a−→ P ′}. The side condition in the∨-rule is just thatE = E1 ∪ E2. In the case

thatE is a single state the choice here is over which branch of the disjunct to take: this

more general formulation is more powerful, but not readily automated. The choice in

the〈K〉-rule is similar:f : E → K(E) allows one to discard as many successors from

E as desired.

The essential ingredient in the rules for the fixed point formulae is the use ofpro-

positional constants, these being introduced as fixed point operators are encountered

in traversing the structure of the formula. LetU range over such constants, and letσZ.

stand or either fixed point operator. The final rules are:

σZ.
E ` σZ.Φ
E ` U

introducingU def= σZ.Φ andU is a fresh variable;

U
E ` U

E ` Φ{U/Z} as long asU def= σZ.Φ.

When a fixed point formula is encountered it is replaced by a (new) constant, and when

a constant is subsequently encountered it is replaced by the body of its definition with

U replacing all free occurrences ofZ in the body.

To see if each of a set of processesE has the propertyΦ, the model checker is

invoked with the root sequentE ` Φ. This process would not terminate because of the

constant rule, but there are several conditions to check whether a nodeF ` Ψ should

be considered a terminal (a leaf, in the tree constructed):

Appendix B. Theory 206

1. the set of states is trivialF = ∅;

2. Ψ = 〈K〉Φ and for someP ∈ F ,K(P) = ∅;

3. Ψ = U
def= νZ.Φ and some sequentE ` U , with F ⊆ E, appears higher in the

proof tree;

4. Ψ = U
def= µZ.Φ and some sequentE ` U , with E ⊆ F , appears higher in the

proof tree.

No rule applies to a terminal. A node fulfilling the first and third of these conditions is

deemed to besuccessfulterminal, not otherwise. A successful tableau is a finite proof

tree that has only successful terminals. The crucial results (see [90] for the details) are

as follows:

Proposition B.1 If E ` Φ has a successful tableau thenE |= Φ. 2

Proposition B.2 If E is a finite set of finite state processes andE |= Φ, thenE ` Φ has

a successful tableau. 2

The first of these demonstrates that the proof system is sound, the latter that is

complete if the models are finite (when it is also decidable). Stirling and Bradfield [10,

11] extend the proof system described above to arbitrary labelled transition systems:

their method remains sound and complete, but not decidable in general (of course).

Example B.9 To illustrate the working of the model checker, consider the very trivial

CCS modelFix (X. a.X + b.0) which has just the two states{X, 0}. The property

νZ.〈b〉tt ∧ [−b]Z obviously holds atX. The tableau:

{X} ` νZ.〈b〉tt ∧ [−b]Z
{X} ` U

{X} ` 〈b〉tt ∧ [−b]U

{X} ` 〈b〉tt
{X} ` tt

{X} ` [−b]U
{X} ` U

demonstrates this. Note that{X} ` 〈b〉tt is not terminal, and we disregard this trans-

ition in moving to the sequent below. On the other branch,{X} ` [−b]U has only one

(−b)-successor to be considered.

Strictly speaking the left-hand leaf is not terminal, but this subtree does terminate

successfully. Recall thattt def= νZ.Z, so by the fixed point and constant rules we arrive

at a sequent similar to that terminating the right-hand branch.

The right-hand terminal is successful because{X} ` U appears higher up in the

proof tree.{X} |= νZ.〈b〉tt ∧ [−b]Z follows from Proposition B.1. ♣

Appendix B. Theory 207

In the example it was not necessary to construct all states of the model in order to

prove the result. The same would not be true of the global invariantνZ.〈−〉tt ∧ [−]Z

which expresses freedom form deadlock. In that case, all proof trees contain the un-

successful terminal{X, 0} ` 〈−〉tt.

B.3 HOL Proofs

HOL TACTICS FORGEOGRAPHICDATA

fun HANDY_TAC thl =
ASM_REWRITE_TAC thl

THEN POP_ASSUM_LIST (fn _ => ALL_TAC)
THEN REPEAT STRIP_TAC
THEN RES_TAC
THEN ASM_REWRITE_TAC[]
THEN NO_TAC;

Commentary on HANDYTAC Given a list of rewrite theorems, the goal expected is

[H] ` Fi⇒ F ′i , whereFi is a simple term derived fromF. First rewrite with the given

assumptions and rewrite theorems, then discard the assumptions to render something

like ? ` (f ⇒ g)⇒ f ′ ⇒ g′. Strip all leading quantifiers (i.e., by applying Elimination

rules) from the goal, and resolve among these new assumptions. Finally, rewrite (g′)

using these to solve the goal completely—otherwise this tactic fails (to be handy).

fun PIMP th = REWRITE_TAC[MX2_TH0,MX2_TH1] THEN (*1*)
(let val tm = concl th

in if is_comb tm (*2*)
then

let val n =
(#Name o dest_const o #Rator o dest_comb) tm

in case n of
"PT" => MATCH_ACCEPT_TAC PT_L1 ORELSE (*2a*)

MATCH_ACCEPT_TAC PT_L2 ORELSE
HANDY_TAC[PT,PC] (*2b*)

| "MX4" => MATCH_ACCEPT_TAC MX4_L1 ORELSE (*2c*)
MATCH_ACCEPT_TAC MX4_L2 ORELSE
MATCH_ACCEPT_TAC MX4_L3 ORELSE
MATCH_ACCEPT_TAC MX4_L4

| _ => HANDY_TAC[RT1,RC] (*2d*)
end

else ALL_TAC (*3*)
end) handle _ => HANDY_TAC[]; (*4*)

Commentary on PIMP The goalPIMP expects is[H] ` Fi ⇒ F ′i , whereFi is a

simple term derived fromF, so:

1. If Fi is derived fromMX2, facts` MX2(a, T) and` MX2(T, b) should solve it.

2. Otherwise, given[H] ` F (a)⇒ F (a′) find out whatF is:

Appendix B. Theory 208

(a) aPT so match the goal with̀ PT(p, [a; b])⇒ PT(p, [T; b]) etc.;

(b) still a PT, but letHANDYTACtry to solve this more general case.

(c) F is anMX4 so match̀ MX4[a, b, c, d]⇒ MX4[T, b, c, d], etc..

(d) Otherwise it is an additionalRT term (i.e., RT1) which HANDYTAC can

solve.

3. ALL TACis likeskip (the program never reaches this whenF = MX ∧PT∧RT).

4. Trap exceptions from attempts to decompose(b ⇒ a) ⇒ b′ ⇒ a′ which are

from a regularRT terms. Another job forHANDYTAC.

val RSTRIP_TAC = STRIP_TAC THEN
POP_ASSUM_LIST

(fn thl => MAP_EVERY (fn th => ASSUME_TAC th) thl);

Commentary on RSTRIP TAC This strips the goal, an implication where used, and

reverses the order of the assumptions (conjunctions in the antecedent of the goal) so

obtained.

local
fun POP_ONE th =

ASSUME_TAC th THEN UNDISCH_TAC(concl th) THEN PIMP th

fun RECURSE () = POP_ASSUM (fn th => STRIP_TAC
THENL

[POP_ONE th,
RECURSE () ORELSE POP_ASSUM (fn th => POP_ONE th)])

in
val SRR_TAC =

VC_TAC THENL[ALL_TAC,MATCH_ACCEPT_TAC FB_IMP_F]
THEN RSTRIP_TAC
THEN RECURSE ()

end;

Commentary onSRRTAC See Section 5.4.

fun repeat 0 tac = ALL_TAC
| repeat n tac = tac THEN (repeat (n-1) tac);

fun PRR_TAC F pfm_list n = VC_TAC F
THEN TRY (MATCH_ACCEPT_TAC FB_IMP_F)
THEN REWRITE_TAC (PT_DEFS @ RT_DEFS @ pfm_list)
THEN STRIP_GOAL_THEN (fn th =>

REWRITE_TAC(CONJUNCTS th)
THEN ASSUME_TAC th
THEN UNDISCH_TAC(concl th))

THEN STRIP_TAC
THEN (repeat n) RES_TAC
THEN ASM_REWRITE_TAC (PT_THMS @ MX_THMS)

end;

Appendix B. Theory 209

Commentary on PRRTAC See Section 5.4. This version is more general, passing a

copy (theF parameter) of the invariant on toSEQTACwhich implements heuristics to

guess the strongest predicate to assert between sequenced commands. Thepfm list is

an (optional) list of rewrite rules used to simplify the disjunctive points “free to move”

conditions (to be used with great care since these are free axioms). The idea is to first

prove that ifthe pointsPi are controlled normal (respectively, reverse)thenthey are

free to move normal (reverse)is invariant, and then to use the factp⇒ q ⇒ (p∨q = q)

to obtain the simplifying rewrite rule(s) for the proof thatF is invariant. This is quicker

than provingP ∧ F and constructingpfm list on-the-fly, but less secure since the

rewrite rules have to be entered as free axioms—i.e., they cannot be deduced from

` {P} c {P}.

Appendix C

Examples of Geographic Data

This final appendix lists Geographic Data for some of the interlockings studied in the

main text of the thesis. Pages 211–212 list thePFM, PRR, and sub-route release data

for WEST (Figure C.1). Pages 214–215 list the same data files for the EAST-WEST

interlocking in Figure C.2. These data extend that for WEST in the obvious way for

a singleSSI—the data for the protocol studied in Chapter 6 have not been listed here.

Figures C.3 and C.4 display two further interlockings studied: the former was the

subject of the Alvey Forest project [4, 8]; the latter is a fanciful scheme based loosely

on Thornton Junction, in Fife, Scotland, and the author acknowledges the inspiration

of [49] as the source for this scheme.

Finally, Figure C.5 is an artistic impression of the Leamington Spa scheme, as

gleaned from the Geographic Data. The data in Figure 7.3 refer to marked routes

R35(2M) which is the main route from signalS35 to signalS37 with a choice of

overlaps throughP224 andP225. The other route,R41(3M) is the main route from

signalS41 to signalS57.

c b

T1

a

�
�
�
�
�
� P1 b a

T4

c

L
L
L
L
L
LP2 c aT6

b �
�
�
�
�
�P3

b a

T2

b a

T3

b a

T5

b a

T0

b a

T7

hhh.................S0

hhh.................S2

hhh.................S4

hhh.................S6

hhh.................
S1

hhh.................
S3

hhh.................
S5

Figure C.1: Sample interlocking: WEST

210

Appendix C. Examples of Geographic Data 211

/ Points Free to Move Data for Sample Interlocking: West

P1R T1cb f , T1bc f , T1 c \

P1N T1ca f , T1ac f , T1 c \

P2R T4ba f , T4ab f , T2 c \

P2N T4ca f , T4ac f , T2 c \

P3R T6ac f , T6ca f , T3 c \

P3N T6ab f , T6ba f , T3 c \

/ Panel Route Requests Data for Sample Interlocking: West

*Q02 if P1 crf , T1ac f , T2ab f
then P1 cr , R02 s , T1ca l , T2ba l \ .

*Q04 if P1 cnf , T1bc f , T3ab f
then P1 cn , R04 s , T1cb l , T3ba l \ .

*Q1 if P1 crf , T0ba f , T1ca f
then P1 cr , R1 s , T1ac l , T0ab l \ .

*Q2 if P2 crf , P3 cnf , T7ab f , T4ac f
then P2 cr , P3 cn ,

R2 s , T4ca l , T6ca l , T7ba l \ .

*Q3 if P1 cnf , T0ba f , T1cb f
then P1 cn , R3 s , T1bc l , T0ab l \ .

*Q4 if P2 cnf , P3 cnf , T7ab f , T4ab f
then P2 cn , P3 cn ,

R4 s , T4ba l , T6ca l , T7ba l \ .

*Q51 if P2 crf , P3 cnf , T6ca f , T2ba f
then P2 cr , P3 cn ,

R51 s , T6ac l , T4ac l , T2ab l \ .

*Q53 if P2 cnf , P3 cnf , T6ca f , T3ba f
then P2 cn , P3 cn ,

R53 s , T6ac l , T4ab l , T3ab l \ .

*Q5 if P2 crf , P3 crf , T6ba f , T5ba f
then P2 cr , P3 cr , R5 s , T6ab l , T5a b l \ .

*Q6 if P3 crf , T6ab f , T7ab f
then P3 cr , R6 s , T6ba l , T7ba l \ .

Appendix C. Examples of Geographic Data 212

/ Subroute Release Data for Sample Interlocking: West

T0ab f if T0 c , T1ac f , T1bc f \ .

T5ab f if T5 c , T6ab f \ .

T3ab f if T3 c , T4ab f \ .
T3ba f if T3 c , T1cb f \ .

T2ab f if T2 c , T4ac f \ .
T2ba f if T2 c , T1ca f \ .

T1ac f if T1 c , R1 xs \ .
T1ca f if T1 c , R02 xs \ .

T1cb f if T1 c , R04 xs \ .
T1bc f if T1 c , R3 xs \ .

T4ab f if T4 c , T6ac f \ .
T4ba f if T4 c , R4 xs \ .

T4ac f if T4 c , T6ac f \ .
T4ca f if T4 c , R2 xs \ .

T6ab f if T6 c , R5 xs \ .
T6ba f if T6 c , R6 xs \ .

T6ac f if T6 c , R51 xs , R53 xs \ .
T6ca f if T6 c , T4ba f , T4ca f \ .

T7ba f if T7 c , T6ba f , T6ca f \ .

Appendix C. Examples of Geographic Data 213

c
b

T
1

a

� � � � � �P
1

b
a

T
4

c

L L
L L
L L

P
2

c
a

T
6

b
��
��
��

P
3

b
a

T
2

b
a

T
3

b
a

T
5

b
a

T
0

b
a

T
7

b
a

T
8

c
a

T
9

b
LLLLLLL

P
4

b
a

T
10

b
a

T
11

hh
h

S
0

hh
h

S
2

hh
h
S

4

hh
h

..........
.......

S
6

hh
h

..........
.......

S
8

hhh

..........
.......

S
1

hhh

..........
.......

S
3

hhh

...........
......

S
5

hhh
S

7

hhh
S

9

F
ig

ur
e

C
.2

:T
he

EA
S

T
W

E
S

T
in

te
rl

oc
ki

ng

Appendix C. Examples of Geographic Data 214

/ Points Free to Move Data for Sample Interlocking: EastWest

/ As for West, but including:

P4R T9cb f , T9bc f , T4 c \

P4N T9ca f , T9ac f , T4 c \

/ Panel Route Requests Data for Sample Interlocking: EastWest

*Q02 if P1 crf , T1ac f , T2ab f
then P1 cr , R02 s , T1ca l , T2ba l \ .

*Q04 if P1 cnf , T1bc f , T3ab f
then P1 cn , R04 s , T1cb l , T3ba l \ .

*Q1 if P1 crf , T0ba f , T1ca f
then P1 cr , R1 s , T1ac l , T0ab l \ .

*Q28 if P2 crf , P3 cnf , T7ab f , T4ac f
then P2 cr , P3 cn ,

R28 s , T4ca l , T6ca l , T7ba l \ .

*Q3 if P1 cnf , T0ba f , T1cb f
then P1 cn , R3 s , T1bc l , T0ab l \ .

*Q48 if P2 cnf , P3 cnf , T7ab f , T4ab f
then P2 cn , P3 cn ,

R48 s , T4ba l , T6ca l , T7ba l \ .

*Q51 if P2 crf , P3 cnf , T6ca f , T2ba f
then P2 cr , P3 cn ,

R51 s , T6ac l , T4ac l , T2ab l \ .

*Q53 if P2 cnf , P3 cnf , T6ca f , T3ba f
then P2 cn , P3 cn ,

R53 s , T6ac l , T4ab l , T3ab l \ .

*Q5 if P2 crf , P3 crf , T6ba f , T5ba f
then P2 cr , P3 cr , R5 s , T6ab l , T5a b l \ .

*Q68 if P3 crf , T6ab f , T7ab f
then P3 cr , R68 s , T6ba l , T7ba l \ .

*Q75 if P4 crf , T9ca f , T7ba f
then P4 cr , R75 s , T9ac l , T8ab l , T7a b l \ .

*Q8a if P4 crf , T8ab f , T10ab f
then P4 cr , R8a s , T8ba l , T9ca l , T10ba l \ .

*Q8b if P4 cnf , T8ab f , T11ab f
then P4 cn , R8b s , T8ba l , T9cb l , T11ba l \ .

*Q95 if P4 cnf , T9cb f , T7ba f
then P4 cn , R95 s , T9bc l , T8ab l , T7a b l \ .

Appendix C. Examples of Geographic Data 215

/ Subroute Release Data for Sample Interlocking: EastWest

/ As for West, with the following changes and additions:

T4ba f if T4 c , R48 xs \ .

T4ca f if T4 c , R28 xs \ .

T6ba f if T6 c , R68 xs \ .

T7ba f if T7 c , T6ba f , T6ca f \ .

T8ab f if T8 c , T9ac f , T9bc f \ .
T8ba f if T8 c , R8a xs , R8b xs \ .

T9ac f if T9 c , R75 xs \ .
T9ca f if T9 c , T8ba f \ .

T9cb f if T9 c , T8ba f \ .
T9bc f if T9 c , R95 xs \ .

T10ba f if T10 c , T9ca f \ .
T11ba f if T11 c , T9cb f \ .

TAG

TAD

TCA

TAH

TAC

TBA

TAK

TAA

TAJ

TAB

S22

S24

S25

S23

S20

S21

S15

S13

S11

S14

S12

S10

P203P204

P202P201 TAE

TAF

Figure C.3: The FORESTLOOP interlocking

Appendix C. Examples of Geographic Data 216

B

D

E F

I

N

M

L

J

G

K

P1 P2

P6

S1 S3 S2

S7S9

S5

S8

P3

P4

N

C

H
A S4

S6

S10

Figure C.4: The THORNTON JN. interlocking

Appendix C. Examples of Geographic Data 217

S3
5

T
2

T
3

T
4

T
5

T
8

T
9T
22

T
14

/T
14

/T
28

S3
7

P2
11

P2
24

P2
13

P2
25

S4
1

T
7

P2
21

P2
23

P2
22

P2
28

P2
31

S5
7 F
ig

ur
e

C
.5

:A
n

ar
tis

tic
im

pr
es

si
on

of
Le

am
in

gt
on

S
pa

