
A Software Approach to Enhancing
Quality of Service in Internet Commerce

Yussuf N. Abu-Shaaban

Doctor of Philosophy
University of Edinburgh

2004

Abstract

In many e-commerce systems preserving Quality of Service (QoS) is crucial to
keep a competitive edge. Poor QoS translates into poor system resource util¬
isation, customer dissatisfaction and profit loss. One way to ensure that QoS
requirements are met is to use more hardware. However, adopting a software ap¬

proach could be both cheaper and easier to manage. A combination of software
solutions could be effective in aiding the process of making QoS-oriented decisions
in different stages of the e-commerce system's life-cycle.

A major contribution of this thesis is a general-purpose Internet Commerce per¬

formance benchmarking tool, ECBench. It is a design-stage software solution that
enables the benchmarking of different e-commerce technologies and techniques.
Using ECBench, an e-commerce application developer can evaluate competitive
technologies. The criteria of choice would be how well they meet a set of QoS sys¬

tem requirements. ECBench is based on the TPC-W standard specification, thus
providing a realistic model of an Internet Commerce system. A comprehensive
set of metrics and experiment design facilities are provided in the tool to enable
a detailed performance analysis of the e-commerce technologies and techniques
which are benchmarked. To demonstrate the use of the ECBench, PHP and Java
Servlets application server technologies have been incorporated into the tool and
experiments have been designed and performed to investigate and compare the
scalability of the two technologies.

Another major contribution of the thesis is a novel Cost-Based Admission Con¬
trol solution (CBAC) to preserve QoS in Internet Commerce systems. CBAC is
a dynamic software solution which uses a congestion control mechanism to main¬
tain QoS while the system is online. Rather than rejecting customer requests in
a high-load situation, a discount-charge model which is sensitive to system cur¬

rent load and navigational structure is used to encourage customers to postpone
their requests. A scheduling mechanism with load forecasting is used to schedule
user requests in more lightly loaded time periods. The effect of CBAC on QoS
has been investigated by benchmarking it on ECBench. It has been found that
the use of CBAC at high load achieves higher profit, better utilisation of system
resources and service times competitive with those which are achievable during
lightly loaded periods. Throughput is sustained at reasonable levels and request
failure at high load is dramatically reduced.

Acknowledgements
Firstly, Alhamdllah, all praise is for God.

Then,

I would like to thank Dr. Jane Hillston for being an excellent supervisor. Thanks
Jane for your valuable advice, generous support and giving me the time when¬
ever I needed it. Working with you was an enjoyable and rewarding experience.
Thanks Jane for everything.

Many thanks to my parents, father Nabeel and mother Iman. As always, your

endless love, unconditional care and support are driving forces in my life. Without
your direction, advice and patience, doing this Ph.D. would have been impossible.

Many thanks to my wife Rania. Thanks Rania for your great love and mas¬

sive support. Thanks for being an excellent listener and for caring. Thanks for
suspending your studies to join me in Edinburgh. I would like also to thank my

son Nabeel for being a huge inspiration in the last 16 months. Thanks also for
being an effective alarm clock without knowing it.

I would like also to thank my sisters Nadine and Sandra, and my brother Mo¬
hammed. Your love and support have been great throughout the years.

Thanks to all my friends and the rest of my family for their love and support.

I would like also to thank the Engineering and Physical Sciences Research Council
(EPSRC) for their financial funding, studentship 00317428, through the Depend¬
ability Interdisciplinary Research Collaboration (DIRC) project.

Finally, I would like to thank all members of staff at the school of Informat¬
ics including Mr. Stuart Anderson and Dr. Stephen Gilmore for their help and
support.

Declaration

I declare that this thesis was composed by myself and that the work contained
therein is my own, except where explicitly stated otherwise in the text.

Chapter 3 of this thesis is based on [1], accepted and presented at the 18th
UK Performance Engineering Workshop 2002 (UKPEW2002).

Chapter 4 of this thesis is based on [2], accepted and presented at the 10th
International Conference on Analytical and Stochastic Modelling Techniques and
Applications 2003 (ASMTA2003).

(Yussuf N. Abu-Shaaban)

Contents

List of Figures v

List of Tables vii

Chapter 1 Introduction 1

Chapter 2 Background 5
2.1 Introduction 5

2.2 E-commerce Definition 5

2.3 Classification of E-commerce Systems 6
2.3.1 B2B E-commerce 7

2.3.2 B2C E-commerce 7

2.4 Internet Commerce Performance Modelling 8
2.4.1 Performance Modelling Concepts 8
2.4.2 Menasce's E-business Reference Model 9

2.4.3 Internet Commerce Retailing Model 10
2.4.4 Internet Commerce System Architecture 10
2.4.5 Internet Commerce Workload Characterisation 12

2.4.6 QoS in Internet Commerce 16
2.5 Summary 17

Chapter 3 ECBench: Design and Implementation 19
3.1 Introduction 19

3.2 The TPC-W Benchmark 20

3.2.1 Remote Browser Emulator 21

3.2.2 Web Server 22

3.2.3 Database Server 22

3.2.4 Measurement Intervals 22

3.3 ECBench Design Objectives 23
3.4 ECBench Design Overview 24

i

3.5 Tool Control 25

3.5.1 Experiment Design 26
3.5.2 Experiment Results Analysis 28
3.5.3 Time Management 28
3.5.4 Workload Control 29

3.5.5 Web Server Control 30

3.5.6 Database Control 30

3.6 User Browsing Emulation 31
3.6.1 Navigation 32
3.6.2 User Session Tracking "7 34
3.6.3 Request Unit 35
3.6.4 Browsing Control 37

3.7 Web Server 38

3.7.1 Application Server 39
3.7.2 Controlling the Web Server 43

3.8 Database Server 43

3.8.1 DBMS 44

3.8.2 Database Server Control 46

3.9 ECBench Implementation Issues 46
3.9.1 Implementation in Java 47
3.9.2 Apache Web Server 47
3.9.3 MySQL DBMS 47

3.10 Summary 48

Chapter 4 Benchmarking Application Server Technologies 49
4.1 Introduction 49

4.2 PHP Overview 50

4.3 Java Servlets Overview 51

4.4 PHP and Java Servlets Benchmarking 54
4.4.1 Benchmarking PHP 56
4.4.2 Benchmarking Java Servlets 56

4.5 Experiment Setup 57
4.5.1 Experiment Design 57
4.5.2 ECBench Deployment 58
4.5.3 System Measurements 58

4.6 Results Analysis 58
4.6.1 Effect of Varying Workload Size on Throughput 59
4.6.2 Effect of Varying Workload Size on Request Failure 60

ii

4.6.3 Effect of Varying Workload Size on Server Processor Utili¬
sation 61

4.6.4 Effect of Varying Workload on Average Response Time . . 63
4.6.5 Effect of Varying Workload Size on Individual Interactions

Average Response Time 63
4.6.6 Discussion 65

4.7 Summary 66

Chapter 5 Cost-Based Admission Control for Internet Commerce
QoS Enhancement 71
5.1 Introduction 71

5.2 Related Work 72

5.2.1 Server Replication 73
5.2.2 Caching 76
5.2.3 Content Adaptation 78
5.2.4 Admission Control 80

5.2.5 Network QoS and Pricing 84
5.3 An Overview of CBAC 85

5.4 Discount-Charge Pricing Model 86
5.4.1 Factors Affecting the Model 86
5.4.2 Formal Definition of the Model 87

5.5 Internet Commerce Service Modelling 88
5.5.1 TPC-W, a Dependent Internet Commerce Service Model

Example 89
5.5.2 Navigational Structure Sample 90
5.5.3 CBAC's Navigational Model 92
5.5.4 Service Time Estimation 95

5.6 Customer Postponed Request Scheduling 95
5.6.1 The Scheduling Problem 96
5.6.2 Scheduling Strategy 96
5.6.3 Forecasting System Load 97
5.6.4 Scheduling Contribution to Cost 98

5.7 CBAC-specific Services 98
5.7.1 Making a CBAC Offer 99
5.7.2 Capturing Customer Response 100
5.7.3 Fulfilling Postponed Offers 100
5.7.4 Customer Behaviour 101

5.8 CBAC Applications 101
iii

5.9 Summary 102

Chapter 6 Investigating CBAC Performance 103
6.1 Introduction 103

6.2 ECBench Support for CBAC 103
6.2.1 ECBench Server-side Extensions 103

6.2.2 ECBench Workload Extension 106

6.3 CBAC Performance Analysis 107
6.3.1 Experiment Design and Deployment 108
6.3.2 Service Timo 117

6.3.3 CPU Utilisation 118

6.3.4 Throughput and Failed Requests 119
6.3.5 Profit 119

6.3.6 CBAC Overhead 125

6.3.7 CBAC Load Forecasting Effect 126
6.4 Summary 126

Chapter 7 Conclusions 133
7.1 Thesis Overview 133

7.2 Future Work 135

Bibliography 137

Appendix A ECBench Database Table Description 155

Appendix B TPC-W Random Methods for Database Population 159

Appendix C TPC-W's Navigational Pattern Thresholds for an Or¬
dering Interval 161

Appendix D PHP and Servlets Benchmarking 163

Appendix E Service Time Analysis for CBAC-disabled and CBAC
Experiments 169

iv

List of Figures

2.1 Menasce's Reference Model for E-business 10

2.2 Internet Commerce System Architecture 11

3.1 ECBench Overall Design 24
3.2 Control Unit 25

3.3 ECBench Experiment Setup GUI 26
3.4 User Browsing Emulation 31
3.5 ECBench's User Navigational Part 33
3.6 Navigation Selection Algorithm (implemented in Web Interaction's

changeInteraction() method) 34
3.7 Request Unit Block Diagram 36
3.8 ECBench's Web Server Component 38
3.9 TPC-W's Navigational Structure (derived from [3]) 40
3.10 ECBench's Database Server 44

3.11 Database Entity-Relationship Diagram, from the TPC-W Specifi¬
cation [3] 45

3.12 The Market Share of Apache, from Netcraft [4] 48

4.1 PHP Sample Code 52
4.2 HTTP Java Servlet hierarchy 53
4.3 HTTP Java Servlet Life-cycle 54
4.4 Java Servlet Sample Code 55
4.5 Workload Size vs. System Throughput 60
4.6 Workload Size vs. Number of Failed Requests 61
4.7 Workload Size vs. Server Processor Utilisation 62

4.8 Workload Size vs. Overall Average Response Time 64
4.9 Workload Size vs. Individual Interactions Average Response Time

(Cont. next page) 67
4.9 (Cont.) Workload Size vs. Individual Interactions Average Re¬

sponse Time (Cont. next page) 68

v

4.9 (Cont.) Workload Size vs. Individual Interactions Average Re¬
sponse Time 69

5.1 TPC-W's Service Model Navigational Probabilities in an Ordering
Interval (derived from [3]) 89

5.2 Internet Commerce Navigational Structure Sample 91
5.3 CBAC-NM Graphical Representation Entities 93
5.4 CBAC-NM for Sample Navigational Structure Shown in Figure 5.2 94
5.5 CBAC-specific Services 99

6.1 ECBench's Application Server Extension 104
6.2 CBAC Database Entity-relationship Diagram 105
6.3 Common Workload to All Experiments Performed 109
6.4 Scheduling Effect Experiment Workload 113
6.5 Jobs Scheduled at Each Interval 113

6.6 Cumulative Jobs Scheduled 113

6.7 CBAC-disabled, CBAC1, CBAC2 and CBAC3 Service Times for
Shopping Cart 114

6.7 (Cont.) CBAC-disabled, CBAC1, CBAC2 and CBAC3 Service
Times for Shopping Cart 115

6.8 CBAC3 and CBAC4 Service Times for Shopping Cart 116
6.9 CPU Utilisation for CBAC-disabled, CBAC1, CBAC2 and CBAC3 120
6.9 (Cont.) CPU Utilisation for CBAC-disabled, CBAC1, CBAC2 and

CBAC3 121

6.10 CBAC-disabled, CBAC1, CBAC2 and CBAC3 Throughput 122
6.10 (Cont) CBAC-disabled, CBAC1, CBAC2 and CBAC3 Throughput 123
6.11 Profit Gained in CBAC-disabled, CBAC1, CBAC2 and CBAC3 . 128
6.11 (Cont.) Profit Gained in CBAC-disabled, CBACl, CBAC2 and

CBAC3 129

6.12 Cumulative Profit 130

6.13 Effect of Varying CBAC Access Pattern on Profit 131
6.14 Effect of CBAC's Charge Factor on Profit 132

C.l TPC-W's Thresholds for an Ordering Interval [3] 161

vi

List of Tables

3.1 Number of Images Fetched for each Web Interaction 39
3.2 Bookstore Database Tables Summary 45
3.3 Bookstore Database Table sizes 46

4.1 Workload Deployment 58
4.2 Throughput Metric (Total Number of Requests Completed Suc¬

cessfully) 59
4.3 Request Failure Metric Results 61
4.4 Processor Utilisation Metric Results 62

4.5 Overall Average Response Time Metric Results 64

6.1 Shortlist of CBAC Parameters 107

6.2 Service Load Estimates 109

6.3 CBAC Experiments Varied Parameters 110
6.4 CBAC Experiments Common Parameters 110
6.5 Number of Jobs Scheduled in Each Hour 112

6.6 Mean and Standard Deviation Service Time Analysis for Shopping
Cart 117

6.7 Total Number of Interactions Completed During Experiments . . 119
6.8 Total Number of Failed Requests During Experiments 119
6.9 CBAC Overhead Analysis at Low Workload Intervals 125
6.10 CBAC-specific Services Delay 125
6.11 Service Time Analysis per Day for CBAC Experiments 126

A.l Item Table Fields Description [3] 155
A.2 Author Table Fields Description [3] 156
A.3 Customer Table Fields Description [3] 156
A.4 Orders Table Fields Description [3] 156
A.5 OrderJine Table Fields Description [3] 157
A.6 Address Table Fields Description [3] 157

vii

A.7 Country Table Fields Description [3] 157
A.8 CCJXacts Table Fields Description [3] 157

B.l RandomMethods Library's Random Functions, Based on TPC-W [3] 159
B.2 DigSyl Syllable Table, Based on TPC-W [3] 159

D.l Home Interaction Average Response Time (ms) 163
D.2 Best Sellers Interaction Average Response Time (ms) 163
D.3 New Products Interaction Average Response Time (ms) 164
D.4 Search Request Interaction Average Response Time (ms) 164
D.5 Search Result Interaction Average Response Time (ms) 164
D.6 Product Detail Interaction Average Response Time (ms) 165
D.7 Shopping Cart Interaction Average Response Time (ms) 165
D.8 Customer Registration Interaction Average Response Time (ms) . 165
D.9 Buy Request Interaction Average Response Time (ms) 166
D.10 Buy Confirm Interaction Average Response Time (ms) 166
D.ll Order Inquiry Interaction Average Response Time (ms) 166
D.12 Order Display Interaction Average Response Time (ms) 167

E.l All Web Interactions Mean and Standard Deviation Service Time

Analysis for CBAC-disabled and CBAC experiments 169

Chapter 1

Introduction

The size and value of Business-to-Consumer (B2C) Internet Commerce transac¬
tions have been increasing in recent years. An analysis performed by eMarketer
[5] indicates that, in 2003, the UK had 15.7 million online buyers spending an

average €745 and generating a total revenue of €11.7 billion. Across Western
Europe, €33.4 billion was generated from B2C e-commerce sales. According to
the US Census Bureau [6], retail e-commerce sales for the second quarter of 2004
was $15.7 billion, an increase of 23.1% from the second quarter of 2003. To cope

with such increasing demand, e-commerce system developers and administrators
need to consider Quality of Service (QoS) enhancement in various stages of the
system's life-cycle.
This thesis provides two major contributions to enhancing Internet Commerce
QoS. The first is a general-purpose Internet Commerce performance benchmark¬
ing tool ECBench, which enables making QoS-oriented decisions at early stages
of the system design process. The second contribution of the thesis is a novel
Cost-based Admission Control solution (CBAC) which can be applied to Inter¬
net Commerce systems, that are online and fully operating, to preserve QoS. An
overview of the thesis content is provided in the rest of this chapter.

Central to the work presented in this thesis is the performance modelling of
e-commerce systems. Definitions and background information on e-commerce are

presented in Chapter 2. Various definitions of the term e-commerce are presented
and a broad definition of e-commerce is adopted which includes different known

types of e-commerce and the organisational and commercial effects of such sys¬

tems. The chapter includes a review of different types of e-commerce systems

emphasising that Internet Commerce retailing is the domain considered in this
thesis. Background on the performance modelling of Internet Commerce systems
is also provided in this chapter. This includes describing the business model, the

1

architecture, workload characterisation and QoS metrics of such systems.

The first major contribution of the thesis, the ECBench tool, is described in Chap¬
ter 3. ECBench facilitates the performance benchmarking of different e-commerce

technologies and techniques. It can aid an Internet Commerce application devel¬
oper, in the system design stage, to choose between alternative technologies to
meet a set of QoS requirements. A researcher can use ECBench to investigate new

techniques to enhance Internet Commerce QoS. Based on the standard TPC-W
specification [3], ECBench provides a realistic emulation of an Internet Commerce
retailing system. The tool's modular design enables its extension to incorporate
new technologies and techniques to be benchmarked. A comprehensive set of In¬
ternet Commerce QoS metrics can be evaluated using ECBench including service
time, throughput, profit per second and system resource utilisation. The tool also
includes a set of experiment design features allowing the user to specify and run

a set of experiments. Results obtained can be analysed and presented graphically
by ECBench.
The use of ECBench to comparatively benchmark PHP and Java Servlets applica¬
tion server technologies is described in Chapter 4. Background on PHP and Java
Servlets is provided before discussing the incorporation of the technologies into
ECBench. The chapter also includes a description of the experiments performed
using ECBench and the results obtained when investigating the scalability of the
two technologies.

The second major contribution of the thesis, CBAC, is presented in Chapter 5.
CBAC is a novel cost-based admission control software approach to enhance In¬
ternet Commerce QoS by controlling system congestion. Rather than rejecting
customer requests to reduce system congestion, CBAC is based on a discount-
charge pricing model to encourage customers to postpone their requests when
the system is approaching a congested state. The pricing model is dependent on

system current load and navigational structure. A scheduling mechanism with
load forecasting is used to schedule user requests in more lightly loaded time in¬
tervals in return for getting a discount. A customer is charged if they decide to
pursue a request in a heavily loaded situation. Chapter 5 provides a review of
techniques used and proposed in the literature for QoS enhancement while the
system is online. The chapter also includes a description of CBAC's pricing model
and how it is affected by current system load and navigational structure. Due
to CBAC's sensitivity to system navigational structure, an analysis of the In-

2

ternet Commerce dependent service model is provided before describing CBAC's
Navigational Model (CBAC-NM). CBAC's scheduling mechanism and the use of
load forecasting in request scheduling are also described, before discussing CBAC
deployment and applicability.
CBAC provides a comprehensive framework to enhance the QoS metrics vital to
Internet Commerce system performance. The distribution of high load to less
loaded future time intervals reduces request service time and increases system
utilisation. Throughput is also sustained and request failure is reduced. The
charging element of CBAC, the abandoning of request rejection and increasing
customer satisfaction by offering discounts and better service times all contribute
to maximising profit. Work done on investigating CBAC performance is described
in Chapter 6. The extension of ECBench to benchmark CBAC is discussed before
describing experiments performed to analyse the performance gains that can be
achieved by adopting CBAC and how CBAC parameters can be tuned to optimise
different QoS metrics. Conclusions and directions for potential future work are

described in Chapter 7.

3

Chapter 2

Background

2.1 Introduction

In this chapter, a general background is provided on e-commerce and its perfor¬
mance modelling. Different definitions of e-commerce and e-business are examined
in Section 2.2. This is followed in Section 2.3 by a review of different types of
e-commerce models and systems. Elements realising the performance modelling
of Internet Commerce systems are described in Section 2.4 including Internet
Commerce business model, system architecture, workload characterisation and
metrics needed to evaluate Internet Commerce QoS.

2.2 E-commerce Definition

There is no agreed definition for e-commerce. Some adopt a specific definition and
think of e-commerce as an Internet phenomenon. They argue that e-commerce

is commerce enabled by Internet technologies. Others argue that e-commerce

systems such as Electronic Data Interchange (EDI) were used years before the
Internet era and thus specifying e-commerce systems as only Internet-based sys¬

tems is not accurate. Whiteley [7] provides a general (rather technical) definition
of e-commerce: 'Formulating commercial transactions at a site remote from the
trading partner and then using electronic communications to execute that trans¬
action'. Another definition is provided in a European Commission introductory
paper to e-commerce [8]: 'any form of business transaction in which the parties
interact electronically rather than by physical exchanges or direct physical con¬

tact'. The technical and business changes required when e-commerce is used are

captured in a more comprehensive definition of e-commerce provided by the Or¬
ganisation of Economic Cooperation and Development (OECD) [9]: 'Electronic
Commerce refers generally to all forms of commercial transactions involving both

5

organisations and individuals that are based upon the electronic processing and
transmission of data, including text, sound and visual images. It also refers to
the effects that the electronic exchange of commercial information may have on the
institutions and processes that support and govern commercial activities. These
include organisational management, commercial negotiations and contracts, le¬
gal and regulatory frameworks, financial settlement arrangements, and taxation,
among many others'.
All of the above definitions imply the broadness of e-commerce in including Inter¬
net Commerce, Business-to-Business (B2B), etc. Based on that, a classification
of e-commerce applications is provided in Section 2.3. A difference between the
above definitions is whether e-commerce is only restricted to the electronic buy¬
ing and selling or it also includes the adaptations required in the business model
as emphasised in OECD definition of e-commerce quoted above. Throughout
this thesis, the broader meaning of e-commerce implied in OECD's definition is
adopted.

E-business is another term that is closely related to e-commerce. Again, dif¬
ferent people use e-business to refer to different things. Some consider it to be
only specific to B2B applications. Others treat e-business as synonymous with
the broad definition of e-commerce described above and that is what is used in

this thesis.

2.3 Classification of E-commerce Systems

A common classification of e-commerce systems is based on the parties interact¬
ing in the system such as businesses, consumers and governments [10] [8]. This
includes Business-to-Consumer (B2C) which represents a main commercial use of
the Internet. Another class of e-commerce is Business-to-Business (B2B) which
involves all transactions made by a company and its suppliers. Consumer-to-
consumer (C2C) and e-government in the form of Government-to-Business and
Government-to-Citizen transactions could be considered as other classes of e-

commerce.

In the rest of this section, a review of B2C and B2B is given as they are the most
common forms of e-commerce. In Section 2.3.1, B2B is discussed; this is followed
in Section 2.3.2 by a review of B2C business models.

6

2.3.1 B2B E-commerce

B2B e-commerce refers to the commercial transactions between organisations.
Electronic Data Interchange (EDI) systems are the common form of B2B e-

commerce. EDI systems provide a standardised way for coding trade transac¬

tions, so that they can be communicated across organisations, e.g. linking a large
supermarket chain or an aircraft manufacturer with their suppliers. A traditional
EDI system is based on a Value-Added Network (VAN) which is a closed network
that organisations interacting in the system can access. Parties involved in EDI
transactions over a VAN must agree on a standardised way for transferring elec¬
tronic documents. The format of such documents must be agreed at the start of
the business relation. Recently, the use of Internet-based EDI systems minimises
the effort required to standarise business partners transactions as communica¬
tion is achieved over a common medium which is the World Wide Web (WWW).
In addition, using the expressive extensible Markup Language (XML) eases the
process of defining electronic documents exchanged between trading partners.

2.3.2 B2C E-commerce

The medium of interaction between business and consumer in B2C e-commerce

systems is usually the Internet. For that, Internet Commerce is the terminol¬
ogy that is usually used to describe such systems. Whiteley [7] describes Internet
Commerce as the commercial use of the Internet where information and technolo¬

gies can be used to allow Internet consumer purchasing. Goods can be delivered
by post or delivery can be electronic in the case of electronic materials. Several
types of Internet Commerce applications can be identified [11] [12] [7]. The most
common of these are described below:

• Retailing, the most widely known application of Internet Commerce. Ama¬
zon.com [13] and etoys.com [14] are examples of Internet Commerce retailing
sites. In such systems, online catalogues are used by merchants to offer the
products they are selling. The system includes a set of services which cus¬

tomers can request to browse merchants' catalogues and place orders. A
detailed description of the Internet Commerce retailing business model and
its functions is provided in Section 2.4.3.

• Auction sites are Internet Commerce applications which enable sellers and
bidders to trade online. A seller can post to the site an item for sale together
with a minimum price and deadline to close the auction. A bidder can search
the site for specific items, view current bids on an item and provide a bid.

7

An example of a major auction site is ebay [15]. Reverse Auction is another
auction model in which a buyer requests the purchasing of an item with a

maximum price. Sellers bid to provide the lowest price.

• Portals are sites that contain many resources on particular topic(s). Shop¬
ping pages are included in portals to link customers to thousands of mer¬

chants that offer products related to the portal's topic. One possible source

of revenue for portal owners is to charge merchants for each click from the
portal pages to the merchant site, yahoo.com [16] is an example of a portal
site.

• Electronic Markets (EM) which represent the use of information and com¬
munication technology to present offers available in a market segment so

that the purchaser can compare prices before making a purchase decision
[7]. Several models can be used in EM sites [11] including Name-Your-Price
Model, Comparison-Pricing Model and Demand-Sensitive-Pricing Model.

Throughout this thesis, only B2C e-commerce is considered, in particular the re¬

tailing Internet Commerce model. The terms e-commerce and Internet Commerce
will be treated as synonymous with Internet Commerce retailing.

2.4 Internet Commerce Performance Modelling
To model the performance of an Internet Commerce system, the following is re¬

quired: the business model of the system, its architecture, characteristics of its
workload and relevant performance metrics. In this section, a detailed descrip¬
tion is given of how performance modelling of Internet Commerce can be realised.
General performance modelling concepts are discussed in Section 2.4.1. A frame¬
work for the quantitative performance analysis of e-commerce systems devised
by Menasce and Almeida [10] is described in Section 2.4.2. The business model
of Internet Commerce retailing is described in Section 2.4.3. The architecture
of a typical Internet Commerce system is provided in Section 2.4.4. Work done
on web server and Internet Commerce workload characterisation is reviewed in

Section 2.4.5. Finally, in Section 2.4.6, QoS of Internet Commerce systems and
metrics used to measure its performance are discussed.

2.4.1 Performance Modelling Concepts
Performance evaluation of systems can be achieved through direct system mea¬

surements. However, gaining access to systems for performance evaluation is not

8

always feasible especially in commercial systems. An alternative approach is to
use a model of the system to evaluate its performance. This is a more flexible ap¬

proach where the right level of model abstraction can be used so that unimportant
system details are not included. The model should capture system characteristics
that affect performance including system workload and architecture. A set of per¬

formance metrics should also be specified. Once the system model is constructed
and its parameters are specified, evaluation of the model can be done using simu¬
lation or analytical methods. Emulation is a type of model simulation [17] where
the system model is used to construct a real system with the characteristics spec¬

ified in the model. Measurements are then taken for different model metrics to

investigate system performance under different alternative model parameter sets.

Performance modelling can be used for system capacity management and plan¬
ning. Jain [17] defines capacity management as the problem of ensuring that
the currently available computing resources are used to provide the highest per¬

formance while capacity planning is defined as ensuring that adequate computer
resources will be available to meet the future workload demand in a cost-effective
manner while meeting the performance objectives. Ensuring that QoS require¬
ments are met at present is the purpose of capacity management while capacity
planning is concerned with QoS guarantees in the future. Benchmarking tools
can be used to compare the effectiveness of alternative technologies and tech¬
niques in aiding capacity management and planning. Such benchmarking tools
could be based on performance model emulation of the system for which capacity

management and planning is required.

2.4.2 Menasce's E-business Reference Model

Menasce and Almeida in [10] devised a methodology for the capacity planning
of e-commerce systems. The methodology is based on an e-business reference
model that can be used as a framework for the quantitative performance analysis
of e-commerce systems. As shown in Figure 2.1, the model consists of four layers
grouped into two parts. The upper part includes the business and function mod¬
els of the e-commerce system while the lower part is concerned with modelling
system workload and resources. The business model specifies the type of service
offered by the e-commerce system and the properties of the service market. The
process of delivering the service using the functions available in the system and
the navigation between them is captured by the function model. The Customer
and Resource Models determine the demand that system workload imposes on

9

View

Figure 2.1: Menasce's Reference Model for E-business

the system's resources. Factors used to characterise system's workload include
customer navigational pattern and intensity of requests.

2.4.3 Internet Commerce Retailing Model

Retailing applications follow the shopfront model in which transaction processing,
information storage, security and payment are combined to enable the interac¬
tion between merchants and customers online [11]. Merchants provide online
catalogues of products they are offering. A customer uses services such as Search
Request, Search Result, Product Details, Best Sellers and New Products to browse
the merchant's product catalogue. A shopping cart is a central service in this
model which customers use to accumulate a selection of items from the mer¬

chant's product catalogue. Ordering services include Customer Registration, Buy
Request, Buy Confirm, Order Enquiry and Order Display. A customer uses those
ordering services to provide personal details, order items in the shopping cart
and enquire about the status of orders placed. Ordering services involve online
payment and authentication.

2.4.4 Internet Commerce System Architecture

Figure 2.2 is a block diagram of a simple Internet Commerce system architecture.
A typical Internet Commerce site is based on a 3-tier system containing a Web

10

Figure 2.2: Internet Commerce System Architecture

Server, an Application Server and a Database Server. Third party services such
as payment and certification are accessed via the Internet. The site's servers are

composed of hardware and software components. Many hardware configurations
are possible for hosting the system's servers ranging from hosting the three servers

on one machine to hosting each of the servers on a cluster of machines. In the
rest of this section, the software element of such servers is described.

The Web Server is the front-end of the system which interacts with customers

through the HyperText Transfer Protocol (HTTP) implemented on top of TCP/IP.
A Web Server listens for HTTP requests and follows the Request-Response paradigm
where a response is returned for each request received. Multiple client requests
can be handled by a Web Server simultaneously using process forking and multi¬
threading. Secure client connections can be established with Web Servers (espe¬
cially in payment-related interactions) using security protocols such as SSL [18]
and SET [19]. SSL authenticates the Web Server and provides a secure link over
the Web on which private information can be passed. SET authenticates all par¬

ties involved in a transaction as well as providing secure links over the Web.

A Web Server responds to static page requests directly by returning the files

11

composing such pages. However, dynamic page requests are forwarded to the Ap¬
plication Server. The business logic required to generate dynamically generated
pages is contained in the Application Server. It acts as an interface between the
manipulation and the presentation of data. The Application Server manipulates
the system's data by issuing queries and updates to the Database/Transaction
Server. Presentation of data is achieved by constructing pages containing query

results. Different Application Server technologies are available including PHP
and Java Servlets which are reviewed in Section 4.2 and Section 4.3 respectively.
Due to the stateless nature of the HTTP protocol and the dependency between
Internet Commerce services, the application server should provide some form of
session tracking to maintain customer information across subsequent requests, in¬
cluding items selected in the shopping cart. Different session tracking techniques
can be used including cookies [20] which is a named piece of data that is provided
by the server and stored on the client's side. The cookie is added to subsequent
client requests to the site. Another session tracking technique is URL rewriting
in which the necessary session information is encoded into any URLs the server

generates. Other forms of session tracking include using an application server

technology's built-in session tracking system or to use persistent storage such as

a database to store user session information.

A back-end data storage is required in an Internet Commerce system which is
hosted by a Database/Transaction Server. It includes data such as the catalogue
of products offered by the system, customer and order details. As described
above, the Application Server issues queries and updates manipulating the data
stored.

Transactions involving third-party independent institutions and companies are

usually required in an Internet Commerce system. Payment authorisation is one

form of such external transactions, e.g. customer's credit card details are sub¬
mitted to the issuing bank (via the merchant's bank) for authorisation. Other
forms of third-party requests include obtaining digital certificates required for
authentication and making orders to the merchant's suppliers.

2.4.5 Internet Commerce Workload Characterisation

As described previously, workload characterisation is required for the performance
modelling of Internet Commerce systems. In this section, the work done on the
characterisation of web server workload is reviewed. This is followed by a dis-

12

cussion of characterisations specifically targeting Internet Commerce systems.

Finally, benchmarks and tools that enable the generation of synthetic web and
Internet Commerce workloads are reviewed.

Extensive work has been done on generating synthetic web server workload, with
few studies specifically targeting Internet Commerce systems. Several properties

(invariants) can be used to characterise web server workload. Based on the in¬
variants identified by Arlitt and Williamson [21] [22], the following list highlights
the main features that characterise a web server workload:

• File Types: the different file types composing the documents offered by a

web site, e.g. HTML, dynamic content scripts, graphics, audio, video, etc.

• Median Document Size: for different documents offered by a web site.

• File Size Distribution: that is the cumulative size distribution of documents

offered.

• Inter-reference time: this could be the time between references to the same

document (as proposed by [21] [22]) but can be generalised to represent the
user think time between requests to different documents in a web site.

• User Access Patterns: the services offered by an Internet Commerce systems
are dependent; that is the user's decision of which document to request
next is dependent on the outcome of the document request just completed.
Thus, a set of possible next document requests must be identified for each
document in a web site. A probability of selection is assigned to each next
document based on observed user behaviour. Arlitt and Williamson [21]
[22] only consider Temporal Locality for individual documents in terms of
how frequently a document is requested in a short time interval.

Some of Arlitt and Williamson's [21] [22] findings when analysing access logs of
six web sites include: Temporal Locality of different web site documents follows
a non-uniform pattern where some documents are very popular and requests to
them represent most of the workload and other documents are rarely requested.
Inter-reference times are independent and follow an exponential distribution. File
Size Distribution follows the Pareto distribution. They have also found that there
is self-similarity in the workload of some of the sites they considered. That is,
bursts can be observed at different time scales with no changes to the traffic

13

structure. Crovella and Bestavros [23] confirm that WWW traffic has character¬
istics consistent with self-similar traffic. Their conclusion that File Size Distribu¬
tion follows the Pareto distribution confirms Arlitt and Williamson's findings [21]
[22], Almeida et al [24] have investigated web documents frequency of reference
and have found that it follows a Zipf-like distribution also confirming Arlitt and
Williamson's conclusion.

Substantial work has been done on modelling web user's access patterns. Hu-
berman et al [25] present the law of surfing in which a user continues to navigate
a path in the web site until the expected cost of continuing is larger than the
reward given by the expected value of the information to be found along this
path. They use a random-walk model to present regularities in user access pat¬
tern and have found that the probability distribution of surfing depth follows a

two-parameter inverse Gaussian distribution. Several predictive models have also
been devised to predict the user's future requests. Schechter et al [26] use point
and path profiles generated from the analysis of web server logs to predict user

requests. A point profile for a web document includes the set of its selected next

navigation options and the frequency with which each option was selected. A path
profile contains a sequence of document requests made by a single user and the
number of times that path occurred over the time period of the profile. Schechter
et al propose predicting the next navigation by matching the user's current nav¬

igation sequence with the paths in the path profile. Markov models have also
been used to predict web server user's navigation. Padmanabhan and Mogul [27],
and Bestravos [28] use a first-order (memoryless) Markov model to predict the
user's future navigations in order to improve web cache prefetching (as described
in Section 5.2.2). To overcome the inaccuracy of first-order Markov models and
the high state space requirements of higher order Markov modelling (when some

history is taken into account), Pitkow and Pirolli [29] propose identifying longest
repeating sequences of web user accesses and use those for navigation prediction.
Another approach considered by Deshpande and Karypis [30] is to use selective
Markov modelling in which high-order Markov models are optimised by eliminat¬
ing states that are expected to have low prediction accuracy. Su et al [31] and
Li et al [32] consider N-gram modelling commonly used in speech processing to
predict user navigation.

Fewer studies have considered the specific characterisation of Internet Commerce
workloads. To explore the properties of Internet Commerce workload, Arlitt et al

14

[33] analysed the logs of a large Internet Commerce system. They found the fol¬
lowing: most of the requests handled by the system are for dynamically generated
web pages. Popularity of different interactions follow a Zipf distribution which is
consistent with the general web server workload properties described above. The
average number of requests per session is about 7.5 for users and 51.8 for robots.
Menasce et al [34] also analysed the workload of two Internet Commerce sites:
an online bookstore and an electronic auction site. Some of their findings are:

88% of sessions are composed of less than 10 requests and most sessions last for
less than 1000 sec. More than 70% of the functions requested are product selec¬
tion functions rather than product purchasing functions. Strong self-similarity is
found in the arriving traffic and the popularity of interactions follow a Zipf distri¬
bution. Menasce et al. also found that at least 16% of the requests are generated
by robots. Almeida et al [35] provide a more detailed study on the presence of
robots in Internet Commerce workload in the form of Crawlers and Shop-Bots.
To characterise Internet Commerce workload access patterns, Menasce and Almeida
[36] devised the Customer Behaviour Model Graphs (CBMGs). These are based
on analysing HTTP logs where user sessions with similar behaviour are clus¬
tered into groups. The result of this analysis is to define CBMGs that describe
the user behaviour pattern. Nodes of the graph represent pages on the site and
arcs between states represent transitions between pages. Numbers are used along
arcs to indicate the probability of making a transition. The use of clustering
to understand Internet Commerce user behaviour is also considered by Wang
et al [37] where different criteria of clustering are used, including user access

patterns. Another characterisation of Internet Commerce workload is provided
by the TPC-W benchmark [3] presented by the Transaction Processing Council
(TPC). TPC-W provides a realistic model of an online bookstore site and uses the
Emulated Browser (EB) entity to simulate the activities of concurrent web brows¬
ing e-commerce users, each autonomously traversing the bookstore web pages. A
detailed description of TPC-W and its workload characterisation is provided in
Section 3.2 and Section 5.5.1. Throughout this thesis, TPC-W characterisation
of Internet Commerce workload is adopted.

Researchers have also considered predicting Internet Commerce user future nav¬

igation. For that, not only the history of users' traversal pattern is used, as in
the general web server workload prediction described above, but also purchase
patterns are considered to ensure an accurate prediction of user next requests

[38] [39],

15

Several tools are available to generate general synthetic web server workloads.
SPECWeb [40] and WebStone [41] are benchmarks that enable the simulation of
a fixed number of web clients. Other tools such as s-client [42] and httperf [43]
can sustain load with no restrictions on the number of users involved. A more re¬

alistic tool is SURGE [44] which can simulate more variable workloads that show
self-similarity. A more specific e-commerce workload generation tool is Geist [45]
which enables the generation of static web pages requests as well as requests for
dynamic pages.

2.4.6 QoS in Internet Commerce

Different parties interacting with an Internet Commerce system have different
views of its QoS and are directly affected by different aspects of the system's per¬

formance. Main stakeholders in an Internet Commerce system can be identified
as: Customers, system administrators and business owners. The QoS metrics
associated with each of them are described in this section.

Prom the customer perspective, three main QoS metrics can be identified which
are: response time, service time and request failure rate. Response and service
times are measures of the delay experienced by the customer when interacting
with the system. The difference between them is that response time includes
end-to-end delay covering network latency while service time only measures the
delay caused by the system. Request failure rate is another QoS metric that af¬
fects the customer's view of the system. It represents the rate at which customer

requests are not fulfilled successfully per unit time.
System resources utilisation is a main concern for Internet Commerce system ad¬
ministrators as they aim to ensure that there are no system bottlenecks degrad¬
ing performance and that all system resources are optimally exploited. Examples
of such resources include CPU and memory in different parts of the system.

Throughput per unit time is another QoS metric usually monitored by an admin¬
istrator as system performance is investigated. The request failure rate described
above could be controlled by an administrator to reduce system load in a state
of congestion by rejecting customer requests.
The Internet Commerce business owner's main measure of success is the system
revenue. This financial aspect of Internet Commerce QoS can be measured by
a profit per unit time metric. Certainly, such a metric is affected by the more

technical measures of system QoS described above.
Non-functional QoS of Internet Commerce, such as system usability and security,

16

are not considered in this thesis.

2.5 Summary
In this chapter, a general background on e-commerce systems was provided.
Different types of e-commerce systems were reviewed and it was clarified that
throughout this thesis, only Internet Commerce systems are considered, in par¬

ticular, the retailing model of Internet Commerce. The elements required in the
performance modelling of Internet Commerce systems were discussed including,
the business model, the system's architecture, workload characterisation and the
QoS metrics required to evaluate system performance.
In the next chapter, the design and implementation of ECBench, a general-
purpose e-commerce performance benchmarking tool is described. ECBench has
been developed to aid in the making of QoS-oriented decisions at early stages of
the system design process.

17

Chapter 3

ECBench: Design and
Implementation

3.1 Introduction

In many e-commerce systems, timely behaviour is crucial in order to maintain the
site owner's competitive edge: poor performance can quite literally translate into
lost revenue [10]. However, little systematic work has been done on analysing the
performance of such systems and their supporting technologies. In this chapter,
a tool, ECBench, is described which aims to provide a framework in which differ¬
ent e-commerce technologies and techniques can be easily benchmarked against
the standard TPC-W benchmark [3]. In contrast with other commercial tools
available such as e-TEST [46], ECBench is specialised in Internet Commerce,
rather than general web applications. Its modular design ensures that it provides
a general-purpose Internet Commerce performance benchmarking framework.

The TPC-W benchmark has been developed by the Transaction Processing Per¬
formance Council (TPC) as a response to the rise of e-commerce systems. It
specifies the behaviour of an online bookstore, including many of the elements
commonly found in e-commerce applications: a web-site supported by a web
serving component which can present both static and dynamic web pages; and a

relational database which is accessed from the web server to provide transaction

processing and decision support. Moreover the benchmark also specifies emulated
remote browsers for different classes of users, providing the workload on the sys¬

tem.

ECBench can aid an Internet Commerce application developer to choose between
alternative technologies based on their performance merits to achieve better over-

19

all performance. ECBench can also be used by a researcher to investigate and
analyse new techniques to improve e-commerce system performance.

ECBench is a flexible and extendable tool due to its modular design. Basing
the tool on the TPC-W specification ensures that it provides a realistic model
of an Internet Commerce system. The tool incorporates support for experiment
design, allowing the user to replicate runs of the benchmark and compare the
results obtained with different workload mixes.

Two papers [1], [2J on ECBench have been accepted and presented; the first at
the 18th UK Performance Engineering Workshop 2002 (UKPEW2002), in which
the design and implementation of ECBench are described. This chapter is an

extended version of this paper. The second paper was presented at the 10th In¬
ternational Conference on Analytical and Stochastic Modelling Techniques and
Applications 2003 (ASMTA2003). It includes a case study on the use of ECBench
to benchmark PHP and Java Servlets. A detailed description of the case study is
provided in Chapter 4

The rest of this chapter is structured as follows. In Section 3.2, the TPC-W spec¬

ification is reviewed. This is followed in Section 3.3 by a description of ECBench's
design objectives. An overview of the tool design is given in Section 3.4. This
is followed in Section 3.5 by a description of the tool's main control component.
The workload part of ECBench is then explained in Section 3.6. ECBench's
Web Server and Database Server are described in Section 3.7 and Section 3.8

respectively. In Section 3.9, implementation issues are discussed. Finally, in
Section 3.10, a chapter summary is provided.

3.2 The TPC-W Benchmark

The TPC-W benchmark has been developed by the Transaction Processing Per¬
formance Council (TPC) [3], a consortium of system and database vendors. His¬
torically, TPC has specified standard benchmarks (e.g. TPC-C, TPC-H) for
evaluating the performance of both transaction processing and decision support
database systems. One of its latest benchmarks is TPC-W, an e-commerce-

specific benchmark. TPC-W Version 1 specifies the behaviour of an on-line book¬
store, including the three main components of an e-commerce application: remote

browsing, web server and database server. TPC-W Version 2, due to be published

20

at the end of year 2004, focuses on B2B e-commerce systems. For the remainder
of this thesis, "TPC-kF" should be treated as synonymous with "TPC-WVer¬
sion i", unless otherwise stated.
TPC-W's remote browsing specifications are outlined next in Section 3.2.1. This
is followed in Section 3.2.2 by an overview of TPC-W's web server component.
TPC-W's database server specifications are then summarised in Section 3.2.3.

Finally in Section 3.2.4, the measurement intervals specified by TPC-W are out¬
lined.

3.2.1 Remote Browser Emulator

The workload component of ECBench is based on TPC-W's Remote Browser
Emulator (RBE), which is a specification for a set of Emulated Browsers (EBs).
EBs simulate the activities of concurrent web browsing e-commerce users, each
autonomously traversing bookstore web pages and making requests to a web
server. Each EB can represent one of three classes of users: a customer, a new

user or a site administrator.

As described in Section 3.2.2, TPC-W defines 14 web interactions which can be
requested by an EB. During its lifetime, an EB requests a sequence of these web
interactions moving from one interaction to the next, in the same way that a web
browsing user navigates a site, clicking one hypertext link after another. TPC-W
specifies the next possible navigation options that can be requested by an EB on

completion of each of the web interactions defined in the benchmark. Threshold

integer values between 1 and 9999 are specified for each navigation option (one
for each measurement interval, see Section 3.2.4). These threshold values can be
considered as defining probabilities governing the navigational pattern for a user

in the TPC-W model. Appendix C includes the navigational threshold values
for a TPC-W's ordering interval. To select its next request, an EB generates a

random number, from a uniform distribution between 1 and 9999. It then selects
the navigation option for which the threshold is equal to or most immediately
greater than the random number. The EB spends a random period of time
(Think Time) sleeping between subsequent web interactions. This emulates the
user's think time and is generated from an exponential distribution.
User-specific information must be maintained in an EB, including session tracking
details and customer identification.

21

3.2.2 Web Server

The TPC-W benchmark defines 14 web interactions to be supported by a web
server component which are: Home, Shopping Cart, Customer Registration, Buy
Request, Buy Confirm, Order Inquiry, Order Display, Search Request, Search
Result, New Product, Best Sellers, Product Detail, Admin Request and Admin
Confirm. The interactions vary in the amount of server-side processing they need.
Some require dynamically generated HTML pages and one or more database op¬

erations. Others are relatively lightweight, requiring only web serving of static
HTML pages and images. For each web interaction, TPC-W specifies its input
requirements, processing definition, response page definition and EB navigation
options which are the set of web interactions that can be selected by the EB on

completion of the interaction.
As described in Section 2.4.4, session tracking is vital to any e-commerce appli¬
cation in order to retain information such as shopping carts and customer IDs
from one HTTP request to another. TPC-W suggests two techniques for session
tracking which are URL-rewriting and cookies.

3.2.3 Database Server

The TPC-W benchmark defines the exact schema used for an on-line bookstore

database. The schema consists of eight tables: customer, address, order, order
line, credit card transaction, item, author and country. Additional tables may

be added to the schema. The size of the database depends on two factors: the
number of EBs that will be used as a workload and a scale factor, an integer with
a possible value of 1000; 10,000; 100,000; 1,000,000 or 10,000,000.

3.2.4 Measurement Intervals

Three distinct measurement intervals are specified by TPC-W: shopping interval,
browsing interval and ordering interval. They are distinguished by the ratio of
browsing-related web pages visited to ordering-related web pages visited during
the measurement interval. The shopping interval is intended to reflect a shopping
scenario, in which 80% of the pages the user visits are related to browsing and
20% are related to ordering. In a browsing interval, ordering pages visited go

down to 5% whereas in an ordering interval the ratio of browsing and ordering is
even.

22

3.3 ECBench Design Objectives
A set of design criteria were set, and met, in the design of ECBench. These
include the following:

• Realistic e-commerce modelling was an important design criterion. This was

ensured in the design by adopting TPC-W as a standard e-commerce spec¬

ification. Not only are different e-commerce site components represented
faithfully; the design also includes realistic workload generation capabilities
based on TPC-W's e-commerce access patterns.

• Developing a flexible, extendable tool was a major concern. This led to
a modular design in which incorporating a new technology/technique for
benchmarking just involves adding a new module to the tool.

• ECBench provides a set of performance metrics necessary for assisting e-

commerce technology/technique performance evaluators. Metrics such as

response time, frequency distributions of different web interactions, through¬
put, profit per second, CPU utilisation and memory utilisation can be anal¬
ysed and presented graphically.

• The tool provides experiment design features allowing the user to specify
a number of experiments. For each experiment, factor level combinations
such as size of workload driving the system, size of store and measurement
interval structure can be specified. The number of replications for each
experiment can also be specified.

• Ensuring that the analysis and presentation of experimental results have
minimal overhead was an objective from the early stages in the design,
thus preserving the practical usefulness of the tool. This resulted in a

local data collection strategy in the design. Experimental data results are

maintained locally by different parts of the system. Results are gathered at
the end of each experiment from different parts of the system for analysis
and presentation.

ECBench is novel in its provision of a performance benchmarking framework
specialised in Internet Commerce rather than general web applications. This is
ensured by basing the design of ECBench on the TPC-W standard specification
and supporting a comprehensive QoS metric set important to the performance
analysis of e-commerce applications. Experiment design, execution and result
analysis is facilitated by ECBench's experimentation features. The design of

23

ECBench as a general-purpose Internet Commerce tool is the other aspect of its
novelty. The modular design of ECBench makes it easily extendable to benchmark
new e-commerce technologies and techniques.

3.4 ECBench Design Overview
A block diagram illustrating ECBench design is shown in Figure 3.1. The tool is
composed of three main components: the server-side of an e-commerce system,
i.e. the System Under Test (SUT), a Remote Browser Emulator workload compo¬

nent (RBE) and a component controlling different parts of the tool (Control Unit).
The System Under Test (SUT) emulates the server side of a typical Internet Com¬
merce system consisting of a Web Server (which includes an Application Server)
and a Database Server. RBE is the component responsible for generating and
maintaining the workload on the SUT by emulating customers navigating an e-

commerce site. The final main component in ECBench is the Control Unit which
provides features for experimental design, data gathering and analysis. It is also
responsible for controlling the setup and maintenance of experiments on various
parts of the tool.

Figure 3.1: ECBench Overall Design

24

ECBench's Control Unit is described next in Section 3.5. This is followed in

Section 3.6 by a description of ECBench's workload part, the RBE. The Web
Server of the SUT, including the Application Server model used, is described in
Section 3.7. Finally, in Section 3.8 a description of the Database Server part of
the SUT is given.

3.5 Tool Control

The Control Unit is the central component of ECBench. In addition to allowing
the user to specify experiment setup via a GUI, the Control Unit is also respon¬

sible for setting up and maintaining the running of experiments, collecting and
analysing experiment results. It contains a controlling subcomponent for each
part of the tool. Thus, controlling a new extension to ECBench would require
only adding a new controlling subcomponent to the Control Unit, meeting the
flexiblity criterion described in Section 3.3.
Sub-components composing the Control Unit are illustrated in Figure 3.2. The Ex¬
perimental Design entity is used to store user experiment design details passed via
the GUI component. The Control Unit sends instructions to the controllers of dif¬
ferent parts of the benchmark including the RBE Controller, Web Server Controller
and Database Server Controller for the setup and maintenance of experiments.
After finishing an experiment run, the Control Unit requests the Result Analysis

Figure 3.2: Control Unit

25

Unit to collect data results from different parts of the system for analysis. The
Clock and its subcomponents are responsible for controlling time in the tool.
In the following subsections, we describe each of these subcomponents in more

detail.

ECBench: Experiment Setu - □ x

Technology 1 Name

Technology2 Name

Technology 1 Path

Technology 2 Path

Technology 1 Specify Parameters

Technology 2 Specify Parameters

Minimum #of EBs

Maximum # of EBs

EB Value Step

Database Scale

Double

IOOO

Time Interval Length (sec)

Measurement Interval Type

Sampling Rate (sec)

Shopping

of Replications

Investigate:

Average Throughput

Average Response Time

Individual Interactions Average Response Time

Failed Requests

Profit/Sampling Ftate

CPU + Memory Utilisation

All of the Above

Figure 3.3: ECBench Experiment Setup GUI

3.5.1 Experiment Design

ECbench provides experimental design capabilities for the user to be able to

specify values of different parameters in the simulation using the GUI component
shown in Figure 3.3. The Experimental Design component is responsible for hold¬
ing the experimental plan of the user. As the user is allowed to specify a number
of experiments which are run sequentially, Experimental Design consists of a set

26

of Experiment objects (see Figure 3.2), each holding the design details for one

experiment. The following parameters can be defined in an Experiment object:

• Technologies/techniques benchmarked, up to two e-commerce

technologies/techniques can be specified to be benchmarked in any exper¬

iment. Implementation locations of such technologies/techniques are re¬

quired.

• Specific parameters, a maximum of 10 specific parameters could be specified
for each technology/technique benchmarked.

• Number of replications, which is the number of times an experiment run is
repeated.

• Workload details including workload size which is the number of Emulated
Browsers (EBs) emulating customers generating requests to the SUT (as
described in Section 3.6). A lower and upper limit on the size of the work¬
load can be specified. The size could be varied across experiment runs or

gradually for each run (by a step size value specified by the user).

• Measurement interval which can be a shopping, a browsing or an order¬
ing interval (see Section 3.2.4). The time period of the interval must be
specified.

• Ramp up period specifying the time period that must be elapsed before mea¬

surements are recorded. This delay is required to ensure that the workload
has reached steady state before measurements are taken.

• Size of store which is a scale factor (with possible values of 1,000; 10,000;
100,000; 1,000,000; 10,000,000) contributing to the determination of the
bookstore database size (see Section 3.2.3).

• Performance metrics measured. A number of performance metrics could be
specified to be measured including average throughput, average response

time, individual interactions' average response time, failed requests, profit
per second, server CPU utilisation and server memory utilisation.

• Sampling rate: that is, the frequency at which measurements are taken in
an experiment run.

The Experimental Design component informs the Control Unit of the experiment

design details needed at each stage of the simulation. This would include ex¬

periment parameters for the experiment run to be performed next. The Control

27

Unit uses these parameters to configure different parts of the tool through their
respective controllers.

3.5.2 Experiment Results Analysis

ECBench provides analysis features for results obtained from performing an ex¬

periment composed of a set of experiment runs. The Result Analysis Unit (see
Figure 3.2) consists of a set of Experiment Results objects holding the results for
each experiment performed. Each Experiment Results object is associated with an

Experiment object and contains a set of Run objects holding the results of each
experiment run performed.
During an experiment run, experimental data is recorded locally by different parts
of the system minimising data recording overhead (cf. the minimum overhead cri¬
terion in Section 3.3). On completion of the run, the Result Analysis Unit receives
a request from the Control Unit to gather the experimental data which are then
stored in a Run object. Thus on completion of all runs for an experiment, the
Result Analysis Unit will have a collection of Run objects holding the results ob¬
tained from each run.

Data analysis is done after the completion of each experiment. Graphs are then
produced for each performance metric required.

3.5.3 Time Management

ECBench provides a dynamic continuous simulation where the state of the sim¬
ulation changes continuously with time. The Clock subcomponent of the Control
Unit (see Figure 3.2) is responsible for managing time in ECBench. It is the
central timing component in the tool which ensures the correct duration of ex¬

periment runs and distributes timing information to all parts of ECBench.

Other clocks are used to manage specific time-related activities in an ECBench
simulation. They include the Initial Delay Clock, Think Time Clock, Sampling Clock
and Load Control Clock and these inherit from the main Clock component. The
use of each specific clock is described below:

• Initial Delay Clock: used to ensure the ramp up period described in Sec¬
tion 3.5.1. The recording of measurements in an experiment run will start
only after the Initial Delay Clock delay elapses.

• Think Time Clock: the think time an e-commerce user spends making a

decision on the next navigation option to be taken is emulated as described

28

in Section 3.6.1. Think Time Clock ensures that the next navigation option
is not taken until the think time elapses. The period of the think time is
determined randomly by an exponential distribution.

• Sampling Clock: this clock manages the frequency at which measurements
are taken in an experiment run. Each time a sampling interval (specified in
the experiment design) elapses, the Sampling Clock triggers different parts
of ECBench to take measurements. It was decided to use fixed-interval

sampling rather than event-based to reduce the volume of samples taken in
order to minimise overhead.

• Load Control Clock: this clock manages the workload of the simulation.
It triggers the change in the workload size either toggling between low and
high load or gradually increasing the workload as specified in the experiment
design.

3.5.4 Workload Control

The workload part of ECBench is controlled by the Control Unit's RBE Con¬
troller subcomponent shown in Figure 3.2. RBE Controller interacts with the RBE
(through the Browsing Control unit described in Section 3.6) sending it configu¬
ration and control information from the Control Unit and receiving experiment
measurements collected by the RBE. It informs the RBE of relevant experiment
design details including:

• Implementation locations of the current technology/technique being bench-
marked.

• Any specific parameters that are related to the benchmarked
technology/technique.

• The size of the workload (in terms of the number of EBs) required at each
stage of the simulation.

• The ramp up period during which EBs should be created.

• Measurement-related details including the type of the current measurement

interval, workload-related performance metrics for which measurements are

required and the sampling rate at which measurements should be taken.

The RBE Controller also passes control signals to the RBE including the start/finish
of an experiment run and sampling signals. On completion of each experiment

29

run, measurements collected by the RBE are passed to the Control Unit through
the RBE Controller.

3.5.5 Web Server Control

As described in Section 3.7, the Web Server part of ECBench represents the first
part of the SUT. The Control Unit configures and manages the Web Server and its
Application Server using the Web Server Controller subcomponent (see Figure 3.2).
The Web Sever Controller communicates with the Web Server sending it experiment
design details and control signals and receiving experiment measurement collected
by the Web Server.
The following experiment design details are passed to the Web Server in the course

of an experiment:

• The e-commerce technology/technique to be used in the experiment and
the location of its implementation.

• Parameters which are related to the Web Server operations and specific to
the technology/technique being benchmarked.

• Measurement-related details including the performance metrics for which
measurement is required, the starting time of the measurement period, the
length of the measurement interval and the sampling rate.

On completion of each experiment run, measurements collected by the Web Server
are passed to the Control Unit through the Web Server Controller.

3.5.6 Database Control

The Database Server of ECBench represents the second part of SUT (see Sec¬
tion 3.7). It is controlled by the Control Unit via its Database Server Controller
subcomponent shown in Figure 3.2). It informs the Database Server of experiment
design details including:

• Information required to populate the database including the size of the
workload (number of EBs) and the scale factor.

• Specific parameters to the technology/technique being benchmarked which
are related to the Database Server operations.

• Measurement-related details including the performance metrics for which
measurement is required, the starting time of the measurement period, the
length of the measurement interval and the sampling rate.

30

On completion of each experiment run, measurements collected by the Database
Server are passed to the Control Unit through the Database Server Controller.

3.6 User Browsing Emulation

ECBench provides an Internet Commerce workload based on the TPC-W stan¬
dard described in Section 3.2.1. The RBE of ECBench is responsible for generat¬

ing and driving the tool's workload. As shown in Figure 3.4, it includes a set of
Emulated Browsers (EBs) emulating web browsing e-commerce users requesting
web interactions from a web server. The RBE also contains a Browsing Control
entity responsible for managing the creation and maintenance of EBs according
to instructions received from the Control Unit (see Section 3.5.4). The EB sub-

Figure 3.4: User Browsing Emulation

component is designed to emulate a web browser used by an e-commerce user

who can be a New User or a Customer. The Administrator user type is not

supported in ECBench workload as the number of administrator-related requests
can be neglected if compared to the number of requests generated by New User
and Customer users. As shown in Figure 3.4, an EB consists of three subcompo¬
nents, a Navigation Unit, a Request Unit and a User Session. Its Navigation Unit

31

emulates the user's navigational behaviour in an on-line bookstore. The EB's
User Session sub-module is designed to emulate the maintenance of e-commerce

user-specific information in a web browser including session tracking details and
customer identification. The sending and receiving of HTML content via HTTP
and TCP/IP over a network connection is emulated by the Request Unit.

EB's navigation is described next in Section 3.6.1. The way user session in¬
formation is maintained in an EB is discussed in Section 3.6.2. EB's emulation

of the sending and receiving of HTML content via a network connection is de¬
scribed in Section 3.6.3. Finally, the control and maintenance of EBs is reviewed
in Section 3.6.4.

3.6.1 Navigation

The navigational model used in ECBench is based on the TPC-W standard's
user access patterns described in Section 3.2.1. Figure 3.5 illustrates the user

navigation part of an EB. The Navigation Selector is the central component to
the EB's user navigation. It is composed of a set of Web Interaction objects, a

Threshold Generator and an instance of Think Time Clock which was described in

Section 3.5.3.

A web service that can be requested by the user is represented by the Web Inter¬
action component. Specific services inherit from Web Interaction including: Home,
Best Sellers, New Products, Search Request, Search Result, Product Detail, Shopping
Cart, Customer Registration, Buy Request, Buy Confirm, Order Inquiry and Order
Display. Each Web Interaction contains a list of Navigation Option objects repre¬

senting all possible next interactions that the user can request on completion of
the Web Interaction. Navigation Option maintains a threshold value (specified by
TPC-W) for each possible TPC-W measurement interval (browsing, shopping or

ordering as described in Section 3.2.4) required to determine the next web inter¬
action selected.

Navigation Selector contains one object from each of the Web Interaction's sub¬
classes. It also contains a Web Interaction object representing the current web
interaction being requested. Navigation Selector decides on the next interaction
to be requested using the algorithm shown in Figure 3.6. The algorithm is based
on the TPC-W threshold approach outlined in Section 3.2.1. At the start of the
navigation, the first selection is always the Home interaction. On completion of
each current interaction i, the Threshold Generator of the Navigation Selector (see

32

Threshold

Generator

Navigation
Unit

O
Navigation

Selector

currentlnteraction:
Weblnteraction

f N

Navigation
Option

type
threshold

O

Weblnteraction

type
url

changelnteractionQ

1...*

Home

/■ \

Best
Sellers
v y

r x

New
Products
v y

Search

Request
v y

y \

Search
Result

f X

Product
Detail

r \

Customer

Registration
V y

/" X

Shopping
Cart

/ \

Buy
Request
v y

Buy
Confirm
v y

Order

Display
Order

Confirm

Figure 3.5: ECBench's User Navigational Part

Figure 3.5) generates a random number Threshold value T from a uniform dis¬
tribution between 1 and 9999. T is subtracted from the current measurement

interval's threshold value for each Navigation Option in the list of next navigation
options for i. The Navigation Option with threshold equal or immediately greater
that T is selected as the next navigation option to be requested.

Part of user behaviour when navigating a web site is a think time delay between
web interaction requests. Formally, think time, TT, can be defined as follows:

TT = T1 - T2

33

Given that currentlnteraction of Navigation Selector is i and the next

Navigation Options for i are r^o, nn,..., ntj with thresholds Uo, tn,..., Uj
respectively:

if(first interaction)
select Home

else

generate a random Threshold value T between 1 and 9999
find tjj such that Uj — T is minimum and Uj — T > 0
select riij

Figure 3.6: Navigation Selection Algorithm (implemented in Web Interaction's
changeInteraction() method)

where T1 is the time measured after the last byte of the last web interaction is
received and T2 is the time measured before the first byte of the next interaction
request is sent.
The Think Time Clock shown in Figure 3.5 ensures that a time delay represent¬

ing the user think time elapses before the next interaction selected by Navigation
Selector is requested. As described in the time control part of ECBench (see Sec¬
tion 3.5.3), an exponential distribution is used to randomly generate the think
time between interactions. The processing time required to select the next inter¬
action is subtracted from the the think time value generated.
On completion of the think time delay, the type of the next interaction selected
is passed to EB's Request Unit to form and deliver a request for the interaction
and to handle the data returned (as described in Section 3.6.3).

3.6.2 User Session Tracking

As described in Section 2.4.4, session tracking is required in e-commerce systems
to retain customer information across different HTTP requests made in a user

session. In ECBench, it was decided to use cookies to enable session tracking.
The popularity of cookies compared with URL-rewriting is the main reason behind
this choice. The maintenance of cookies in web browsers is modelled in ECBench

by including a User Session sub-component in EB as illustrated in Figure 3.4.

34

The User Session is responsible for maintaining user-specific information which is
added to EB requests. The main piece of information held in User Session is the
Customer Id (C_Id) which is generated and maintained in the following way:

• If the type of the user is New User, there is no customer Id required for the
first interaction. The Application Server randomly generates a C_Id using a

non-uniform random function when the Customer Registration interaction is
requested (as described in Section 3.7.1). C_Id is then sent back to the EB
and stored in its User Session sub-component. In subsequent interactions,
C_Id is added to all requests made.

• If the user type is Customer, a customer Id is required for the first interac¬
tion. A non-uniform function is used to generate a value for C_Id which is
sent as a parameter to the first interaction (Home interaction described in
Section 3.7.1) and stored in User Session.

Following the TPC-W specification, the User Session also contains timing infor¬
mation to control the expiry of the User Session including:

• User Session Minimum Duration (USMD), which is the minimum duration
for which the User Session must last. USMD is generated randomly using
a negative exponential distribution.

• User Session Current Duration (USCD), which is the elapsed time from the
time just before the first request by the EB to the current time during the
User Session.

The User Session is terminated when the all of the following conditions are true:

• Think Time has just completed following the completion of a web interac¬
tion,

• The navigation option chosen by the Navigation Selector for the next web
interaction is the Home web interaction,

• and USCD >= USMD.

3.6.3 Request Unit

Part of web browser functionality is to form HTTP requests for web interactions
selected by the user. The web browser then establishes HTTP/TCP/IP connec¬

tions with a web server to fulfil such requests. The HTML documents returned,

35

Figure 3.7: Request Unit Block Diagram

which often include images, are displayed on the browser.
These operations are modelled in ECBench by the EB's Request Unit component.

Figure 3.7 illustrates the different parts composing the Request Unit. As described
in Section 3.6.1, the Navigation Unit decides on the next web interaction to be
requested. The decision is then passed to the Request Unit where its Producer
subcomponent forms a request for the web interaction selected. A request is
composed of the following:

• URL: Every web interaction has a URL which is specified by the user at
the experiment design phase as described in Section 3.5.1. It specifies the
location of the application server implementation of the current experiment.

• Input parameters and their values: Input parameters are required for each
Web Interaction supported by ECBench's Application Server as described
in Section 3.7.1. The values assigned to input parameters are generated
randomly according to the TPC-W specification.

• Request type: GET or POST.

• User session information: If required, user information maintained by the
User Session component of EB (see Section 3.6.2) is included in the request.

The Producer passes the request details to the Sender/Receiver sub-component for
the request to be made. The Sender/Receiver packages the request into HTTP

36

form. The HTTP/TCP/IP connection is then established for the request with the
Web Server part of ECBench (see Section 3.7). The connection is associated with
the User Session component of the requesting EB. The HTML document returned
is handled by the TextHandler and the ImageHandler sub-components shown in
Figure 3.7. TextHandler models the displaying of text on an internet browser by
printing to standard output. Images are handled by ImageHandler with the num¬

ber of images determined by the type of the web interaction.

The Request Unit's Log sub-component is responsible for gathering statistics on

the web interactions handled by the Request Unit. When instructed by the Control
Unit of ECBench (see Section 3.5.4), Log stores the following:

• Response time measurements of web interactions completed successfully
grouped by web interaction type;

• Throughput of web interactions completed successfully grouped by web in¬
teraction type;

• Number of failed web interactions.

Log stores data locally which is collected by the Control Unit (see Section 3.5.1)
at the end of the experiment, thus minimising overhead.

3.6.4 Browsing Control

In an ECBench experiment, the RBE contains a set of EBs representing the tool's
workload. The control of such workload is the responsibility of the RBE's Browsing
Control shown in Figure 3.4. Browsing Control is an interface to ECBench's Control
Unit (see Section 3.5.4) through which instructions are sent to the RBE, via the
RBE Controller described in Section 3.5.4.

The Browsing Control creates the required number of EBs gradually during the
ramp up period. When creating an EB, Browsing Control specifies the type of the
user represented by the EB: a New User or a Customer. The ratio of Customers
to New Users is maintained at 4:1 by the Browsing Control. Browsing Control
also informs the EB created of the type of the current measurement interval to
determine the navigational pattern of the EB. Instructions on the rate at which
measurements should be taken are also given.

During the operation of the EB, the Browsing Control sends start and stop signals
to the EB instructing it to start navigation or to stop navigation when a reduction
in the workload is required or if the measurement interval time has finished. A

37

resume signal can also be sent to the EB to instruct it to restart navigation after
being suspended.
At the end of each experiment, the Browsing Control collects the data gathered by
each of the EBs making the workload to be passed to the Control Unit for analysis.

3.7 Web Server

ECBench's web server models the web server component of an on-line bookstore
which interacts with a database server (emulated by the Database Server de¬
scribed in Section 3.8). Figure 3.8 is a block diagram of ECBench's Web Server.
Its Application Server handles EB HTTP requests for different web interactions
supported by the tool. The Web Server is controlled by the Web Server Control
sub-component shown in Figure 3.8.

The Application Server is described in Section 3.7.1 including the business logic
associated with each web interaction supported. This is followed in Section 3.7.2
by a description of the control of the Web Server.

Sampling
Clock

Home Best
Sellers

V. J

New
Products

Search

Request
Search
Result

v y

Product
Detail

V 7

Customer

Registration
V 7

Shopping
Cart

v y

/" N

Buy
Request

f

Buy
Confirm
v. y

Order

Display
Order

Confirm

Figure 3.8: ECBench's Web Server Component

Application
Server

38

3.7.1 Application Server

The Application Server includes the business logic required to provide support
for different web interactions in the bookstore e-commerce system defined in the
TPC-W specification. Support is provided for the 12 web interactions (excluding
administrator-related interactions) composing the Application Server, which are

illustrated in Figure 3.8. They are of two types: dynamic where the content of the
returned HTML page is generated on-the-fly using data obtained from database
queries and static interactions where the content of the HTML document returned
is fixed and the same HTML page is returned for all such requests. The HTML
document returned by each web interaction includes images which represent logos,
buttons for next navigation options and promotional thumbnails. The number of
images returned by each web interaction are listed in Table 3.1.

Web Interaction Number of Images
Home 9

Bestsellers 9

New Products 9
Search Request 5

Search Result 9

Product Detail 6

Shopping Cart 9
Customer Registration 4

Buy Request 3

Buy Confirm 2

Order Inquiry 3

Order Display 2

Table 3.1: Number of Images Fetched for each Web Interaction

It was decided to use a standard image file of size 7kb, an average size for buttons
and thumbnail images commonly displayed in on-line store web pages. Each
web interaction has a list of next interactions that can be requested after its
completion. Figure 3.9 illustrates the navigational sturcture of the server. Each
web interaction has a URL address, could require input parameters and could
involve database operations if it is a dynamic interaction. To keep the Application
Server general, no specific security or payment protocols are provided in any of
the server's interactions. The Application Server can be easily extended by an

ECBench user interested in benchmarking such protocols. The following is a

summary of each web interaction supported by the Application Server:

• Home: This is the first web interaction that is requested by an EB in a

39

session. If the EB user requesting Home is a Customer, a customer id
(C_Id) needs to be generated and passed by the EB with the Home request.
In this case, a database transaction is executed to get customer details. The
HTML code is then produced and returned to the EB.

• Best Sellers: A list of best seller items in a specific subject is returned to the
EB requesting this interaction. A subject input parameter is required by
this interaction which is used to make a database query to search for the 50
most sold items on that subject. The HTML document returned contains a

list of the items obtained with links to the Product Detail page of each item.

Figure 3.9: TPC-W's Navigational Structure (derived from [3])

40

• New Products: This interaction returns to the requesting EB a list of items
recently published on a specific subject. New Products requires an input
parameter subject generated randomly by the requesting EB. A database
query is executed to search for the 50 most recently published items on

that subject. The HTML document is returned contains a list of the items
obtained with links to the Product Detail page of each item.

• Search Request: This is a static web interaction which in a real e-commerce

site allows the user to enter search criteria in a form. No input parameters
are required and no database operations are executed in this interaction.

• Search Result: A list of items that match a search criterion is returned

by this interaction. Two input parameters are required, search-type and
search-string, which are generated randomly by the requesting EB. search-type
determines whether the search is by the book's author, title or subject. The
string to be matched in the search is provided by search-string. Given the
value of the above parameters, a database query is constructed and exe¬

cuted which returns 50 matching items. The HTML code for the page is
then generated containing a list of links to the matching items' Product
Detail pages.

• Product Detail: This web interaction returns information on a specific item.
The item id (Lid) is the only input parameter required by this interaction.
A database transaction is used to return details of the selected Lid including
book title, author name, publishing date, subject, cost, availability, image
for item, etc. The HTML code for the page is then generated containing
the item details.

• Shopping Cart: The cart associated with the shopping session of the user is
updated in this interaction. If there is no cart associated with the shopping
session, a new cart is created. New items can be added to the cart or

existing items can be updated. A list of (Lid, Qty) pairs are required as

input parameters to Shopping Cart which are pairs of an item to be added to
the cart or updated and its quantity, add-flag is another input parameter
which is required to specify whether the items in the list are to be added or

updated in the cart. If add-flag has value Y and the item list is not empty,
a database transaction is executed to retrieve the details of each item in

the pair item/quantity list. The details of each item is stored in the cart
together with the item quantity required. However, if add-flag has value N

41

and the item list is not empty, the quantities of the items already stored in
the cart which match items in the item/quantity list are updated with the
new quantities. If the quantity in an input parameter item pair has value
0, the corresponding item is removed from the cart. The HTML document
returned contains the updated cart.

• Customer Registration: This interaction returns a web page which is used to
register a new user or to authenticate a known customer. There are no input
parameters required by this interaction. The web page returned contains
a form similar to one that would be filled in by a new user giving their
personal details. If the EB requesting the interaction represents a known
customer, only a user name and a password would be required.

• Buy Request: This interaction registers a new user or confirms the details of
a known customer. One of the input parameters required by Buy Request is
returning-flag, distinguishing whether the EB making the request represents
a Customer or a New User. If a Customer, two additional input parame¬

ters are required uname and passwd which are generated randomly by the
requesting EB. A database query is used to check that the Customer's user

name and password are correct. However if the requesting EB represents a

New User, input parameters are required representing the personal details
of the user. The values of such parameters are generated randomly by the
requesting EB according to the TPC-W specification. A database transac¬
tion is used to add a new customer record in the database Customer table

(see Section 3.8.1). A user name and password are generated randomly by
the SUT. The Cart associated with the shopping session is updated with
the New Customer's personal details. The HTML code for the returned
page is then generated containing the customer details including billing ad¬
dress, the items the customer added to the Cart and details of the payment

required. For a New User, the newly generated user name and password
are also provided. In this page, the user will be asked to confirm that all
the details are correct, to provide a shipping address and to give credit card
details for payment.

• Buy Confirm: In this interaction, an order is constructed from the content
of the Cart associated with a registered user shopping session. The input
parameters required include credit card details and the customer shipping
address which are generated randomly by the requesting EB. The customer

personal details, the items stored in the Cart associated with the customer

42

shopping session, the shipping address and the credit card details are used
to construct a database transaction which creates an order record in the

Order table (see Section 3.8.1). For each item in the Cart, a record is added
to the OrderJine table (see Section 3.8.1). The order details are then used
to build the HTML document returned.

• Order Inquiry: The page returned by this interaction contains a form which
allows a returning customer to enter a user name and a password for au¬

thentication before viewing the customer's last order. No input parameters
are required by this interaction.

• Order Display: This interaction returns a web page which displays informa¬
tion on the status of the last order placed by the customer represented by
the requesting EB. Two input parameters are required, uname and passwd
which are provided by the requesting EB. A database query is used to
authenticate the user by finding a match for the uname and passwd in
ECBench database's customer table (see Section 3.8.1). If a match is found,
another database transaction is executed to return the details of the last or¬

der placed by the customer. The order details are then added to the HTML
document returned.

3.7.2 Controlling the Web Server

The configuration of the Web Server is done through the Web Server Control
sub-component shown in Figure 3.8. Web Server Control acts as an interface to
ECBench's Control Unit (see Section 3.5.5) through which instructions are passed
to the Web Server.

The Sampling Clock subcomponent of Web Server Control is responsible for con¬

trolling the logging of measurements given the performance metrics, measurement
interval structure and the sampling rate sent by the Control Unit.

3.8 Database Server

The server side of an e-commerce on-line store typically has a database server

containing a database populated with data such as the store catalogue, customer
details and information on the orders placed. The database server interacts with
the site's web server receiving queries and updates, and sending back data.

43

ECBench emulates the database server component through its Database Server il¬
lustrated in Figure 3.10. It consists of a DataBase Management System (DBMS)
which contains a populated database and a Database Server Control component.
The latter is responsible for controlling the server and populating the database.

The DBMS and the design of the database is described in Section 3.8.1. This
is followed in Section 3.8.2 by a description of database control and population.

Database
Server

DBMS

r r > f "> c

Item Customer Address Country Author Order Order line CC Xacts
Table Table Table Table Table Table

V V

Table Table

v y

Figure 3.10: ECBench's Database Server

3.8.1 DBMS

The DBMS component of the Database Server hosts the bookstore database which
follows the schema specified in the TPC-W specification. Figure 3.11 illustrates
the entities composing the database and the relationship between them. The

44

database consists of eight tables, summarised in Table 3.2, Item, Author, Cus¬
tomer, Orders, Order-line, Address, Country and CC-Xacts. A description of the
fields of each table is provided in Appendix A.

CUSTOMER ORDERS ORDER LINE ITEM

Figure 3.11: Database Entity-Relationship Diagram, from the TPC-W Specifica¬
tion [3]

Table Description
Item Maintains information on the books offered for sale by the store
Author Stores details of book authors
Customer Records registered customers information
Orders Contains general information on customer orders
Order-line Includes a break down of the items contained in each order
Address Stores customers' billing and shipping addresses
Country Contains different countries details
CC-Xacts Records customers' credit card details

Table 3.2: Bookstore Database Tables Summary

45

Table Size
Item Scale Factor
Author 0.25 * Number of rows in Item
Customer 2880 * Workload size
Orders 0.9 * Number of rows in Customer
Order-line 3 * Number of rows in Orders
Address 2 * Number of rows in Customer

Country 92 rows

CC-Xacts 1 * Number of rows in Orders

Table 3.3: Bookstore Database Table sizes

3.8.2 Database Server Control

The control of the Database Server is the responsibility of the Database Server Con¬
trol component illustrated in Figure 3.10. The latter receives control instructions
from ECBench's Control Unit as described in Section 3.5.6. Such instructions in¬

clude the information required to populate the database which are: the size of the
workload of the current experiment run and a scale-factor. The Database Popu¬
lation unit shown in Figure 3.10 uses these two parameters to determine the size
of each table in the database according to TPC-W specification as summarised
in Table 3.3.

The RandomMethods library shown in Figure 3.10 implements random functions
specified in TPC-W for producing the values of the fields in the database tables.
A summary of these functions is given in Appendix B. Sub-components inheriting
from Database Population are responsible of generating the data required to popu¬

late individual database tables. They use the RandomMethods library to generate
values of each field in the tables they are responsible for. The data generated is
stored in files and then loaded into database tables.

3.9 ECBench Implementation Issues

In this section, ECBench implementation issues are presented. Firstly, the deci¬
sion to implement the tool in the Java language is discussed in Section 3.9.1. The
use of Apache as the web server of the tool is then explained in Section 3.9.2.
Finally, in Section 3.9.3 the choice of MySQL to manage the bookstore database
is considered.

46

3.9.1 Implementation in Java

ECBench is implemented in Java (SDK Version 1.4.2) [47]. Being a pure object-
oriented programming language, Java naturally ensured the realisation of the
tool's modular design. The implementation in a portable programming language
like Java resulted in a platform-independent tool which can be deployed on ma¬

chines of different architectures across a network. Java comes with many packages
which could be exploited during the development of the tool. Java's java.net
package, with its URL and socket classes, provided a neat implementation of the
interactions between the EBs (see Section 3.6) and the Web Server (see Section 3.7)
components of the system. Java's Swing and AWT packages are used to construct
ECBench's experimental setup GUI. Chart2D [48], a library written in Java to
construct 2D graphs is used in ECBench to present experiment results. The reli¬
able System.currentTimeMillis() method, which is part of Java's java.lang
package is used to get timestamps from various parts of the system needed to pro¬

duce performance metrics. System.currentTimeMillis() is quick with almost
no overhead, thus enhancing the realistic nature of ECBench experiments.

3.9.2 Apache Web Server

Apache [49] is used as the web server of ECBench (see Section 3.7). It is a popular
high-performance freeware web server. Figure 3.12, is a graph from Netcraft
[4] summarising the result of surveying the market share of top web servers.
The graph shows how Apache has been gaining popularity since 1995 compared
to other web servers. Popularity and cheapness were not the only reasons for
choosing Apache as the ECBench's web server. The way Apache is designed is
another reason. It is built around an API which allows third-party programmers

to add new server functionality. Everything in Apache is implemented as one or

several modules, using the same extension API available to third parties.
Apache supports many e-commerce technologies where a module is implemented
for each technology making it a good choice to widen the range of technologies
that can be benchmarked by ECBench. Extending ECBench to support a new

e-commerce technology requires just adding a new module to Apache.

3.9.3 MySQL DBMS

MySQL [50] is used as the DBMS of ECBench. It is a free and popular DBMS
and works well with Apache for different e-commerce technologies. It hosts the
bookstore database described in Section 3.8.

47

— Apach*

— Microsoft

SunONE

NCSA

—— Other

Figure 3.12: The Market Share of Apache, from Netcraft [4]

3.10 Summary
In this chapter, ECBench, a tool to aid the performance benchmarking of Internet
Commerce technologies and techniques has been described. The tool is based on

the standard TPC-W specification emulating an on-line bookstore. The design of
different parts of ECBench were examined including its controlling component,

workload, web server and database server. Issues related to the implementation
of ECBench were also considered.

In the next chapter, the use of ECBench to benchmark application server pro¬

gramming technologies is discussed. Specifically, PHP and Java Servlets are con¬

sidered.

48

Chapter 4

Benchmarking Application
Server Technologies

4.1 Introduction

A vital component in an e-commerce system is its application server. As explained
in Section 2.4.4, the application server is a software component that provides the
business logic of an e-commerce system. It enables the interaction between the
web server and the database/transaction server of the system, where data is ma¬

nipulated and then presented by dynamically generating HTML pages.

Today, many programming environments exist for implementing application servers,

allowing the connection between web front-ends and databases and fulfilling the
need for dynamic HTML page generation. These include the Common Gateway
Interface (CGI) [51], Active Server Pages (ASP) [52], ColdFusion [53], Java Server
Pages (JSP) [54], Java Servlets [55] and PHP Hypertext Preprocessor (PHP) [56].

As explained in Chapter 3, ECBench is a general-purpose tool that enables the
performance benchmarking of different e-commerce technologies. In this chapter,
the use of ECBench to comparatively benchmark PHP and Java Servlets appli¬
cation server technologies is explained. The technologies were incorporated into
the tool and experiments were designed to investigate the scalability of the tech¬
nologies. Experiments were performed and results obtained were analysed using
ECBench. This work provides a demonstration of how an e-commerce applica¬
tion developer can use ECBench to comparatively investigate the performance of
alternative Internet Commerce technologies. Based on that, the developer can

make a decision on the technology that will achieve optimal performance given
the system requirements.

49

The rest of this chapter is structured as follows. In Section 4.2, an overview
of PHP is given. This is followed in Section 4.3 by a description of Java Servlets.
The benchmarking of PHP and Java Servlets using ECBench is described in Sec¬
tion 4.4. Experiment setup to compare the scalability of PHP and Java Servlets is
explained in Section 4.5 and analysis of results obtained is provided in Section 4.6.
Finally, in Section 4.7, a chapter summary is given.

4.2 PHP Overview

PHP [56] [57] is an open source, server-side, cross-platform, HTML embedded
scripting language. It was developed in 1994 by Rasmus Lerdorf to keep track of
visitors to his on-line resume. Since then, it has undergone several changes with
two versions released PHP3 and PHP4. PHP originally stood for Personal Home
Pages but the name was later altered to PHP Hypertext Preprocessor. As of June
2004, more than sixteen million domains worldwide use PHP [58].

PHP can be deployed to run as a server-side module in a web server such as

Apache. Embedding PHP code into HTML documents enables the generation
of HTML code dynamically. PHP borrows many concepts of common languages
such as C and Perl including syntax, datatypes and control structures. Many web
programming features are provided by PHP including form parameter handling
and session tracking techniques. Global arrays are created to hold HTTP request
details including form parameter and cookie values. These arrays are accessed in
the PHP script to fulfil the request.
PHP supports session tracking (see background Section 2.4.4) in two ways: using
cookies or a more complex built-in system. For cookies, PHP allows the user

to set different parameters in a cookie including name, value and expiry date.
Cookie details are retrieved using the global arrays explained above. PHP also
has built-in support for session tracking by providing a unique session ID for ev¬

ery new visitor. The session ID is stored in a cookie called PHPSESSION which
is persistent across user requests. Variables can be associated with the session ID
and stored in the session's allocated space.

Many relational Database Management Systems (DBMS) are supported by PHP
including MySQL, PostgreSQL and Oracle. Databases can be accessed in two

ways using PHP. The first is to use a database-specific extension with function

50

names, parameters and error handling specific to the required database. The other
way is to access the required database using the PEAR DB library which comes

with PHP. PEAR DB is a database-independent library which hides database
specifics allowing the same PHP script to access many DBMSs. One disadvan¬
tage of the PEAR DB method is that it can be too general, failing to support
features provided by a particular database. Another disadvantage of PEAR DB
code is that it can be slower than code written in database-specific extensions.

A sample PHP HTML embedded script is shown in Figure 4.1. The script allows
a customer to query the details of an item in a bookstore database given the item
ID. The example uses many of the concepts described earlier. PHP's built-in
session tracking system is used to keep track of the number of visits made by the
customer. The $_GET global variable is used to get the customer request's itemID
parameter. MySQL's extension functions are used to connect to the bookstore
database and query its item and author tables to get the item details. HTML
code is then generated which includes the data returned from the database query.

4.3 Java Servlets Overview

Java Servlets [55] are server-side Java code that are used to extend server capa¬
bilities. Since servlets are written in the highly portable Java language and follow
a standard framework, they provide a means to create sophisticated server exten¬
sions in a server and operating system independent way. Servlets are commonly
used to support HTTP requests in web applications implementing the application
server layer between a web server and a database server and providing dynamic
content for user requests. They can also be used in mail and FTP servers. Java
Servlets are part of the Java 2 Platform, Enterprise Edition (J2EE) [59] and the
Apache web server [49].

Figure 4.2 illustrates the hierarchy of HTTP Java Servlets. They are constructed
using classes in javax.servlet and javax.servlet.http Java standard extension pack¬
ages. All HTTP servlets must inherit Java's HTTPServlet class which is a subclass
of GenericServlet. The latter implements the Servlet interface.
Methods to control the life-cycle of a servlet are provided by the Servlet inter¬
face. Figure 4.3 illustrates the life-cycle of a HTTP servlet ServletA deployed in
a server. When a client makes a request to ServletA, the server checks whether
an instance of the servlet exists or not. If no instance is found, the server loads

51

<?php
// Starting/loading user session to keep track of number of visits
session_start();
session_register('visits');
++$visits;

?>

<HTMLXHEADXTITLE>

PHP Item Details Page
</TITLEX/HEAD>
<B0DY>

<H1> Item Details Page </Hl>

<?

// get itemID parameter contained in the request.
$itemld = $_GET[,itemID>];

// Get a Connection to the bookstore database.
$DBhost = "localhost";
$DBuser = "root";
$DBName = "bookstore";
mysql_connect($DBhost, $DBuser);
mysql_select_db($DBName);

// Execute a sql query getting item information from item and author tables.
$query = "Select i_title, a_fname, a_lname from item, author

where i_id= $itemld and i_a_id = a_id";
$result = mysql_query($query);

// Generate HTML code containing number of visits made by
// customer and item information,
echo "<H3>Number of Visits: Svisits, "</H3>";
echo "<H3>Item ID: $itemld, "</H3>";
echo "<H3>Book Title: mysql_result($result, 0, 'i.title'), "</H3>";
echo "<H3>Author First Name: ", mysql_result($result, 0, Ja_fname;), "</H3>";
echo "<H3>Author Last Name: ", mysql_result($result, 0, ,a_lname'), "</H3>";
mysql_close();

</B0DY>
</HTML>

Figure 4.1: PHP Sample Code

52

Figure 4.2: HTTP Java Servlet hierarchy

the ServletA class and instantiates it to create an instance of the servlet. The

server then initialises ServletA instance by calling the init() method of the Servlet
interface. ServletA should override the init() to customise the initialisation pro¬
cess. The service offered by a HTTP servlet should be implemented by overriding
the appropriate doMethod (e.g. doGet(), doPost()) of the GenericServlet class. To
fulfil the client request, the appropriate service method is called on ServletA. A
response is then constructed and returned to the client. Subsequent requests to
ServletA do not require its class to be loaded or the init() method to be called.
The service method of the servlet is called directly. If the servlet needs to be
removed, e.g. on server shutdown, the destroy() method of the Servlet interface is
called. ServletA should override this method if operations such as the release of
system resources are required on termination of the servlet.

Java HTTP servlets enable session tracking (see background Section 2.4.4) in
two ways, using cookies or a built-in session tracking system. Support for cookies
is provided in the Cookie class which is part of the javax.servlet.http package. It
contains methods to set and retrieve various cookie parameters. Java Servlets'
built-in session tracking mechanism is provided by the HttpSession interface of
javax.servlet.http. HttpSession is used by the server containing a HTTP servlet to
create a session and associate it with a particular user. Object-valued attributes
can be associated with a session by name and can also be retrieved.

53

Figure 4.3: HTTP Java Servlet Life-cycle

Java Servlets offer excellent connectivity with many DBMSs. This is ensured by
using Java Database Connectivity (JDBC) which enables the creation of database-
independent Java applications. Using JDBC, Java Servlets can communicate with
any DBMS as long as there is a JDBC driver specific to that DBMS.

The code for a sample Java Servlet ServletExample, which uses many of the fea¬
tures described in this Section, is listed in Figure 4.4. It implements the same item
details service as the PHP script described in Section 4.2 and listed in Figure 4.1.
ServletExample is a HTTP servlet inheriting the HttpServlet class. It supports
HTTP GET requests overriding GenericServlet's doGetQ service method. Java
Servlets' built-in session tracking mechanism is used to keep track of the number
of times the customer requested the servlet. The HTTPServletRequest object pa¬

rameter of doGet() is used to retrieve the item ID parameter. The JDBC driver
for the MySQL DBMS is loaded to connect to the bookstore database and get
the item details. All HTML code generated is added to the output stream of
doGetQ's HttpServletResponse object.

4.4 PHP and Java Servlets Benchmarking

To comparatively benchmark PHP and Java Servlets, both technologies were used
to implement ECBench's application server (see Section 3.7.1). Apache version

54

import java.io.*;
import java.sql.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ServletExample extends HttpServlet-C

public void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException{
int visits = 1;
PrintWriter out;

// Starting/loading user session to keep track of number of visits
HttpSession session = request.getSession(true);
if (session. isNewQM

session.putValue("visits", String.valueOf(visits));}
elsei

visits = Integer,parselnt((String) session.getValue("visits")) ;
session.putValue("visits", String.valueOf(++visits));

>

response.setContentType("text/html");
out=response.getWriter();
out. print In ("<HTMLXHEADXTITLE> ") ;
out.println("Servlet Item Details Page");
out. print In ("</TITLEX/HEAD>") ;

out.println("<B0DY>");
out.println("<Hl> Item Details Page </Hl>");

try-[
// get itemID parameter contained in the request.
String itemld = request.getParameter("itemID");

// Get a Connection to the bookstore database.

Class.forName("org.gjt.mm.mysql.Driver").newlnstance();
Connection conn = DriverManager.getConnection("jdbc:mysql://localhost/bookstore?user=root");

// Execute a sql query getting item information from item and author table.
PreparedStatement query = conn.prepareStatement("

Select i.title, a.fname, a_lname from item, author where i_id=? and i_a_id = a_id");
query.setInt(1,Integer.parseInt(itemld));
ResultSet rs = query .executeQueryO ;

// Generate HTML code containing number of visits made by customer and item information,
out.printIn("<H3>Number of Visits: " + visits + "</H3>");
out.println("<H3>Item ID: " + itemld + "</H3>");
out.println("<H3>Book Title: " + rs.getString("i_title") + "</H3>");
out.printIn("<H3>Author First Name: " + rs.getString("a_fname") + "</H3>");
out.println("<H3>Author Last Name: " + rs.getString("a_lname") + "</H3>");
conn.close();

out.println("</BODY>");
out.printIn("</HTML>");
out.close();

>
catch(Exception e){e.printStackTrace();}

}
>

Figure 4.4: Java Servlet Sample Code

55

1.3.31 [49] was used as ECBench's web server (see Section 3.9.2). MySQL version
3.23.45 [50] was used as ECBench's DBMS (see Section 3.9.3). Modules were
added to the Apache server to provide support for the PHP and Java Servlets
implementations of the application server.

In Section 4.4.1, the PHP application server is described. This is followed in
Section 4.4.2 by a description of the Java Servlets application server.

4.4.1 Benchmarking PHP

PHP 4.1.0 [60] was used in the implementation of the PHP application server.
It was configured to run as a module for ECBench's Apache web server and to
communicate with ECBench's MySQL DBMS. A PHP embedded HTML script
was constructed for each of the web interactions supported by ECBench and
described in Section 3.7.1. The scripts follow the sample code listed in Figure 4.1
and described in Section 4.2.

4.4.2 Benchmarking Java Servlets

Apache's JServ [61] (version 1.1.1) was used to incorporate the Java Servlets
application server implementation into ECBench's web server. Apache JServ is

designed using a three-tier model: the Apache web server, the mod-jserv Apache
module and Apache JServ server. When the Apache web server receives a HTTP
servlet request, it handles it through its mod_jserv module. mod_jserv translates
the request into Apache JServ Protocol (AJP) format and passes it on to the
Apache JServ servlet engine. Apache JServ is a standalone server implemented
in Java. It translates the AJP request into a HTTPServletRequest object, pro¬

cesses it creating a HTTPServletResponse which it passes back in AJP format to

mod_jserv. The AJP response is then translated by mod_jserv into a HTTP re¬

sponse and passed back to the client. Separating the web server from the servlet
engine avoids the scalability problem that could arise from running the Java Vir¬
tual Machine (JVM), needed to handle Java Servlets, in each Apache process.
A servlet was constructed for each of the web interactions supported by ECBench
and described in Section 3.7.1. All of the servlets implemented follow the Servle-
tExample code listed in Figure 4.4 and described in Section 4.3.

56

4.5 Experiment Setup

An experiment was designed and performed using ECBench to investigate the
scalability of PHP and Java Servlets application server implementations. In Sec¬
tion 4.5.1, the design of the experiment using ECBench's design features (see
Section 3.5.1) is discussed. This is followed in Section 4.5.2 by a description of
how ECBench was deployed during the experiment. Finally, in Section 4.5.3, the
way measurements were taken during the experiment is described.

4.5.1 Experiment Design

The aim of the experiment was to analyse and compare the scalability of PHP and
Java Servlets technologies. The application server implementations in both tech¬
nologies were incorporated into ECBench as explained in Section 4.4. ECBench
experiment design features (described in Section 3.5.1) were used to setup the
experiment's parameters. The independent parameter was the size of ECBench
workload which was varied by doubling the the number of EBs at each stage
with a minimum workload size of 1 EB and a maximum size of 1024. Thus, 11
workload size levels were examined: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 and 1024.
The scalability of PHP and Java Servlets was analysed by examining the effect
of workload size levels on different performance metrics including throughput,
number of failed requests, ECBench server processor utilisation, average response

time and individual web interactions average response time. A scale factor value
of 1000 was used to determine the size of ECBench's database as described in

Section 3.8.2. The total time duration of each experiment run was 400 seconds.
An initial Ramp up period of 200 seconds was used to allow for the workload
to reach a steady state. Initial experiments showed that 200 seconds is enough
to allow for all EBs composing the workload to become fully functional (for all
workload sizes ranging between 1 and 1024). The remaining 200 seconds was
the duration of the measurement interval. The type of measurement interval was

specified as Shopping reflecting a shopping scenario (described in Section 3.2.4).
A sampling rate of one minute was used to record system measurements.

Two sets of experiment runs were performed, one using the PHP implementation
of ECBench's application server and the other using the Java Servlets implemen¬
tation. For each workload level, three experiment runs were replicated averaging
the results obtained. Thus, a total of 66 experiment runs were performed in this
experiment.

57

4.5.2 ECBench Deployment

Initial experiments showed that having all EBs at high workload size on one

machine caused the results obtained to be dominated by the delay occurring
from the client preparing and making requests and receiving returned HTML
documents from the server. Having a large number of EBs on one machine also
contradicts a real system scenario where only one request is usually made at a

time per client machine. To keep the client processing delays to a minimum and
to be as realistic as possible, in high workload size runs the EBs were distributed
on multiple machines as summarised in Table 4.1. Each of the machines was

running Linux and had an Intel Pentium 4, 1.80GHz processor.

The Web Server component of ECBench including the PHP and Java Servlets
application servers were deployed on an Intel Pentium III 1GHz Linux machine.
The Database Server component of ECBench was deployed on the same machine.

Workload Size 1 2 4 8 16 32 64 128 256 512 1024
Number of Machines 1 1 1 1 1 1 2 4 8 16 32

Table 4.1: Workload Deployment

4.5.3 System Measurements

As described in Section 3.9.1, ECBench uses the System. currentTimeMillis()
method, which is part of Java's java. lang to get timestamp measurements. This
feature was used in the experiment to get measurements for response time metrics.

As ECBench was deployed on Linux machines during the experiment, the /proc/stat
file in Linux's proc filesystem [62] was used to get measurements needed to cal¬
culate processor utilisation on the ECBench server. The /proc/stat file contains
statistics on the number of jiffies (1/100 second) that the machine's cpu was in
user mode, user mode with low priority (nice) and system mode, since the ma¬
chine was booted. Using a sampling rate of one minute, the /proc/stat file was

read and the cpu jiffies were added. Subsequent measurements were subtracted
and the result was divided by 6000 to get the processor utilisation per minute.

4.6 Results Analysis
ECBench features, discussed in Section 3.5.2, were used to gather and analyse
results obtained from performing the experiment described in Section 4.5. As

58

explained, the aim of the experiment was to analyse the scalability of PHP and
Java Servlets application server implementations. On the completion of each ex¬

periment run, data measurements were gathered from different parts of ECBench.
At the end of the experiment, run results were averaged and analysed for each of
the experiment's metrics. Graphs were produced, visually combining PHP and
Java Servlets results.

The results with respect to different performance metrics are discussed in the

following subsections.

4.6.1 Effect of Varying Workload Size on Throughput

The throughput metric is considered as the total number of web interactions re¬

quested and completed successfully during the measurement interval. The reader
should note that throughput is not considered as a rate in this context. Table 4.2
and Figure 4.5 summarise the results obtained from examining the throughput
of PHP and Java Servlets when the size of the workload is varied between 1 and

1024. It can be seen that for both PHP and Java Servlets throughputs start

Workload Size PHP Java Servlets
1 901 1053
2 528 599

4 366 420

8 386 379
16 389 388
32 402 446

64 844 854

128 1159 1676
256 3045 3140
512 5934 3305

1024 11493 3209

Table 4.2: Throughput Metric (Total Number of Requests Completed Success¬
fully)

slightly high at workload size 1. This is due to the lack of contention as the
servers are handling one request at a time generated by the one EB making the
workload. The throughput starts to drop as the workload size increases due to
the contention delay. At workload size 16, the throughput starts to increases
slightly as the rate of requests handled by the servers becomes more dominant
than the contention effect. At workload size 64, a greater increase rate is noticed
for PHP and Java Servlets throughputs. This is due to the distribution of the

59

Figure 4.5: Workload Size vs. System Throughput

workload across more than one client machine as described in Section 4.5.2. At

this stage, the client overhead caused by the generation of requests and handling
of returned web pages becomes constant and the effect of increasing rate of re¬

quest on achieving more throughput becomes clearer. The throughput for PHP
continues to increase but drops for Java Servlets due to the reason described in
Section 4.6.6.

4.6.2 Effect of Varying Workload Size on Request Failure

An EB web interaction request is considered as a failed request if the EB receives
an error from ECBench's web server in response to that request. The request
failure metric represents the total number of failed requests in the measurement

interval. The request failure results at different levels of workload size are shown
in Table 4.3 and Figure 4.6. At low workload sizes, both PHP and Java Servlets
implementations provide failure-free support for web interaction requests. At
high load, the Java Servlet implementation suffers severely, especially at the 1024
workload size. The PHP implementation starts returning a few failed requests at
the 1024 workload size, but still significantly less than the Java Servlets imple¬
mentation at the 512 workload size.

60

Workload Size PHP Java Servlets
1 0 0

2 0 0

4 0 0

8 0 0

16 0 0

32 0 0

64 0 0

128 0 0

256 0 0

512 0 45

1024 4 454

Table 4.3: Request Failure Metric Results

V ECBench Re.sull Analysis - 5 *
Failed Requests

Failed Requests, 200 set. Shopping Measurement Interval

Figure 4.6: Workload Size vs. Number of Failed Requests

4.6.3 Effect of Varying Workload Size on Server Processor
Utilisation

The server processor utilisation metric is considered as the average processor util¬
isation during the measurement interval. As explained in Section 4.5.3, samples
of ECBench's server processor utilisation are taken every minute during the mea¬

surement interval. The samples (3 samples in this experiment) are averaged to
get a value for the metric over each experiment run. Table 4.4 and Figure 4.7
summarise the results obtained from examining the processor utilisation of the
ECBench server when the size of the workload is varied. The processor utilisation

61

Workload Size PHP Java Servlets
1 0.27 0.177

2 0.1 0.12

4 0.075 0.11

8 0.077 0.084
16 0.072 0.098

32 0.075 0.102

64 0.13 0.22

128 0.23 0.36
256 0.48 0.71

512 0.897 0.983

1024 0.997 0.999

Table 4.4: Processor Utilisation Metric Results

makes a slightly high start at workload size 1 for both PHP and Java Servlets
utilisation, due to the lack of database contention with one EB. This result is
consistent with the higher throughput readings at workload size 1 explained in
Section 4.6.1. At workload size 2, processor utilisation decreases for both PHP
and Java Servlets reflecting the effect of contention. The processor utilisation
then stays at almost a constant level until workload size 32. As the workload size
increases more and the EBs are distributed across more than one client machine,
the effect of increasing the request rate causes the utilisation to increase steadily
for both PHP and Java Servlets with the latter causing a higher utilisation. At

■PHP
□Java Servlets

Processor UtilisatiorT]

""

v ECBench Result Analysis - O *

Processor Utilisation, 200 sec. Shopping Measurement Interval

T r~ ■ ■ ■ ■ ill

2 A 8 16 32 64 128 256 512 1024

Workload Size

Figure 4.7: Workload Size vs. Server Processor Utilisation

62

the 1024 workload level, both PHP and Java Servlets utilisations are approaching
1 with Java Servlets again slightly higher.

4.6.4 Effect of Varying Workload on Average Response
Time

The response time of a web interaction is considered as the time elapsed from
the first byte sent by an EB to make a request until the last byte of the HTML
document received by the EB in response to the request. Thus, response time is
affected by:

• The overhead caused by contention on the client due to request generation,
sending and handling of web pages returned,

• and server delays in handling requests.

The average response time metric is considered as the total response time of
all web interactions completed successfully in the measurement interval divided
by the number of these interactions (throughput). Table 4.5 and Figure 4.8
summarise the results obtained from examining the average response time when
varying the workload size. At low loads, response time increases steadily and
almost following the same line for both PHP and Java Servlets. This steady
increase is primarily caused by client overhead due to contention. At workload
size 64, response time flatten off due to constant client overhead as EBs were

distributed equally across machines (as described in Section 4.5.2). At workload
size 256, the response time starts to increase sharply for Java Servlets and at a

slower rate for PHP caused by the delays on the server (see Section 4.6.6 for an

explanation on the sharp increase of Java Servlets' response time).

4.6.5 Effect of Varying Workload Size on Individual In¬
teractions Average Response Time

The average response time metric examined in Section 4.6.4 considers overall re¬

sponse time for all web interactions without distinguishing between the different
types. However, examining web interactions response time on an individual basis
could be useful, for example to find the web interaction with the highest response

time.

The average response time for an individual interaction is computed by totalling
the response time of all occurrences of that interaction and dividing that by the
number of times the interaction was requested and completed successfully. Graphs

63

Workload Size PHP Java Servlets
1 79.1 56.8

2 255.2 241.4

4 775.8 678.0
8 2194.8 2279.9

16 5441.8 5575.7

32 11629.8 11177.0

64 12104.8 12329.4

128 11841.5 11046.1

256 11487.6 11939.5

512 12608.5 23469.5

1024 13643.3 31153.4

Table 4.5: Overall Average Response Time Metric Results

X -« ECBench Result Analysis □ X

Average Response Time

40000

E 33333-

n ?nom-
a

13333

SI 6667
<

O

Average Response Time, 200 sec. Shopping Measurement Interval

16 32 64

Workload Size
128 256 512

■

1024

|PHP
|java Servlets

Figure 4.8: Workload Size vs. Overall Average Response Time

of the average response times for each web interaction supported by ECBench are

shown in Figure 4.9. Tables summarising the data obtained are included in Ap¬
pendix D. It can be seen that the overall average response time analysis provided
in Section 4.6.4 reflects, to a great extent, the individual web interaction response

times. Response time increases gradually, for both PHP and Java Servlets, until
the workload size of 32. Then it stays almost constant until workload size of 256.
At higher workload sizes, Java Servlets response time for all interaction starts to
increase sharply with a much lower increased rate for PHP.

64

4.6.6 Discussion

It can be seen from the analysis of different metrics that Java Servlets have
a scalability problem at high loads. At workload sizes higher than 256, Java
Servlets throughput, failed requests and response time start to degrade sharply
compared to the much slower degradation in PHP performance. Investigating
Apache server logs to find out the cause of the increase in the number of failed
requests at high load, I found errors of the form

[error] [client 129.215.18.34]

Premature end of script headers: /servlets/ShoppingCartServlet

EBs receiving failed responses were getting an Internal Server Error page. Inves¬
tigating the matter further, I found in the java-apache-users mailing list [63] posts
of two Java Servlets developers who encountered the same error at high workload
size. The JVM of the Apache JServ server (described in Section 4.4.2) hosting
the Java Servlets implementation can handle a limited number of objects. High
workload size translates into a large number of requests, thus an increase in the
number of database objects in the JVM since one object is created per dynamic
web interaction request. When the number of database objects exceeds the JVM
limit, garbage collection is called and the servlets are re-initialised. At this stage
the server can not fulfil requests causing errors to be logged and failed responses

to be sent back to clients. This causes the throughput of Java Servlets to drop
sharply. The re-initialisation of servlets and the logging of errors consume more

CPU cycles which slow the server down and cause the increase in web interaction
response times.
This scalability problem of Java Servlets can be overcome by re-using database
objects. This can be achieved by creating a database connection pool where con¬

nection objects are created at servlet initialisation and re-used across requests
rather than creating a connection per request. Sample code for a servlet that
uses connection pooling can be found in [55]. Evaluation of this solution was

considered to be beyond the scope of this thesis.
The use of ECBench validates the results described in this chapter. This is be¬
cause ECBench provides an emulation of a real Internet Commerce system. It
is based on the TPC-W specification regarded as the Internet Commerce system
standard. Verification was achieved by extensive debugging of ECBench ensuring
that the functionality of different parts of the system is correct.

4.7 Summary
The work described in this chapter provides a demonstration of the effective use

of ECBench to investigate the performance of different e-commerce technologies.
This aids the process of selecting the technology that optimally meets system

QoS requirements at early stages of system design rather than facing performance
problems when the system is fully implemented and online.
In the next chapter, CBAC is introduced, a novel cost-based admission control
policy to control QoS in e-commerce systems.

66

nS~
o 35

CD

3tfe. X P

(K?

O P O-
en

5'
03 <!

zn

C3

3 O- <' 51 3 P

03

i-<
P O o 3 w

>

C

03

>-i
P

CR

03

JS

03 03
t3

O 3

CO fD

H

3 3

ECBenchResultAnalysis

-ox

Home

HomeAverageResponseTime.200sec.ShoppingMeasurementInterval
o15000' a. * 10000 gi n %5000 <

0

|PHP |JavaServlets

124

1632641282565121024 WorkloadSize

vECBenchResultAnalysis

•ox

BestSellers 50000 41667 33333 25000 16667 8333

BestSellersAverageResponseTime.200sec.ShoppingMeasurementInterval
|PHP |JavaServlets

163264 WorkloadSize

53

s

3

aq'

3

CD

c

,—s

CD

O

HJ^

O 3

59

e-f

^

y

0

CD

0

*

3

C+"

r+-

XJ

pdmd,
o>o*

-—'>-j
E

o p
Q.

GO

n'

CD

<

CO

< 51 3 p 3

c+

P O

c-D
o" 3

CO

>

<!

p

On?
CD

P

Ct>
o 3

CO CD

o>

CD

3

5'

0q"

13 CT>

3

CD

ip

,s
O

o 3

3

o

gr

o 3
a.

CO

5" 3
05 h—H

3
B* <'

a!

3

h-H
3

C+
CD

P o

c-t~
o' p

Ul

>

<

(T> *-i
P

Crq

CD

&

<TD

Ul
O P

Ul a>

,̂i

«,ft

BuyRequest BuyRequestAverageResponseTime.200sec.ShoppingMeasurementInterval
40000■

CJ
P 120000. a

■PHP □JavaServlets

CJ

■I

a>
rj

!§6667' <

//

12481632641282S65121024 WorkloadSize

vECBenchResultAnalysis

ex

OrderInquiry OrderInquiryAverageResponseTime.200sec.ShoppingMeasurementInterval
E

33333
CJ

F

26667
Ol

c

20000
CL

CJ 4;

13333
CTi

CJ

6667
<

■PHP ■lavaServlets

163264128 WorkloadSize

vECBenchResultAnalysis-ox OrderDisplay OrderDisplayAverageResponseTime.200sec.ShoppingMeasurementInterval
S000041

E41667«— v p33333

12481632641282565121024 WorkloadSize

Chapter 5

Cost-Based Admission Control
for Internet Commerce QoS

Enhancement

5.1 Introduction

QoS enhancement methods can be applied to Internet Commerce systems which
are online and fully operating. This dynamic enhancement of QoS is required to

complement QoS-oriented decisions made during the system's design stage, given
the highly unpredictable nature of Internet performance and the changing char¬
acteristics of Internet Commerce workload. Different solutions have been used

to allow for this dynamic enhancement of QoS to provide system performance
guarantees and differentiated service. Hardware solutions are the most widely
used including server replication and caching. Such approaches can be expensive
financially and introduce complex technical problems including load balancing
and consistency. Software techniques such as web content adaptation and admis¬
sion control have also been considered. Three disadvantages can be identified in
such techniques. Firstly, such techniques usually rely on user request rejection
to avoid a system overload state. This undermines customer satisfaction and
thus the probability of return. Secondly, they usually consider only one aspect of
QoS, either to improve response time, maximise profit or enhance system resource

utilisation. A comprehensive framework for QoS enhancement is not considered.
Finally, very few techniques have been designed to specifically target Internet
Commerce systems, rather they focus on web QoS in general.

In this chapter, a Cost-Based Admission Control approach (CBAC) for Internet
Commerce systems is described. It is a software technique to dynamically enhance
QoS in an Internet Commerce system while the system is online. Without the

71

need to reject customer requests in a high-load situation a discount-charge model,
which is sensitive to system current load and navigational structure, is used to

encourage customers to postpone their requests. A scheduling mechanism with
load forecasting is used to schedule user requests in more lightly loaded time
periods. At high load, the aim of CBAC is to ensure that all main Internet Com¬
merce QoS metrics are considered. It provides service times competitive with low
load situations by ensuring that system load is distributed to less loaded future
time intervals. The charging element of CBAC and abandoning request rejection,
to increase customer satisfaction, is designed to maximise profit. Scheduling cus¬

tomer requests in lightly loaded time periods increases system utilisation, sustains

throughput and reduces request failure.

The rest of this chapter is structured as follows. A literature review of pre¬

vious work done on dynamic preservation of web QoS is given in Section 5.2.
This is followed in Section 5.3 by an overview of CBAC. The discount-charge
model, which is central to CBAC operation, is described in Section 5.4. The
way CBAC uses the system's navigational structure is explained in Section 5.5
by describing CBAC's navigational model. This model is required to get ser¬

vice time estimates which contribute to price calculation in the discount-charge
model. CBAC's scheduling of postponed customer requests is considered in Sec¬
tion 5.6. For a system to support CBAC, extra services must be introduced in
its application server. Modifications required to the system's application server

are considered in Section 5.7. The applicability of CBAC in different Internet
Commerce businesses is then discussed in Section 5.8. Finally, in Section 5.9, a

summary is given.

5.2 Related Work

Several approaches have been proposed to dynamically enhance QoS, handle sys¬

tem congestion and provide service differentiation in web applications. Some are

hardware solutions including web server replication and caching. Such solutions
can be expensive financially and they require a software layer for load balancing
and consistency. Pure software techniques have also been considered including
web server content adaptation and admission control. A common problem of
all the solutions mentioned above is that they rely on request rejection during
system overload, thus undermining customer satisfaction and the probability of
return. This in turn could translate into future profit loss. Another disadvantage

72

of the above solutions is that they do not provide a comprehensive improvement
to all QoS metrics of concern, e.g. response time, throughput, request failure
minimisation, system utilisation and system revenue. Rather, one QoS metric is
often considered. It is also noticeable that very little work targets specifically
Internet Commerce systems and takes into account their special characteristics
when studying QoS enhancement.
The rest of this section is structured as follow. The use of server replication to
enhance web QoS is discussed in Section 5.2.1. This is followed in Section 5.2.2 by
a description of how web caching can improve web server response time. The use

of content adaptation methods to improve web QoS is reviewed in Section 5.2.3.
Admission control techniques proposed to enhance the QoS of web applications
are described in Section 5.2.4. Finally in Section 5.2.5, a discussion is provided on

network congestion control and service differentiation methods with an emphasis
on pricing techniques.

5.2.1 Server Replication

A widely used hardware solution to reduce the latency of web applications is the
use of multiple servers to handle user requests. A variety of server replication
architectures exists [64]. The most common architecture is a cluster of servers in
a Local Area Network (LAN). Such an arrangement provides a single interface to
clients and requires techniques for dispatching client requests among servers in
the cluster. Dispatching techniques can be DNS-based (at layer-4 of the ISO net¬
work standard) or content-aware (at ISO layer-7). Client-based load balancing
techniques have also been considered. Another server replication arrangement
uses the mirrored sites approach in which web servers are distributed globally
on the Internet. The single image of the system is not supported in this setting
as the client uses a different Uniform Resource Locator (URL) to access each of
the mirrored sites. Different techniques devised for load balancing in replicated
servers are reviewed in this section.

A cluster-based web system was first proposed by Katz et al [65]. In their work,
a cluster of servers is used to ensure the scalability of the National Center for Su-
percomputing Applications (NCSA) web site. To dispatch HTTP requests among

servers, a DNS-based scheduling mechanism is used in which the URL name in
a request is mapped to clustered server IPs in a round-robin fashion. However,
caching of address mapping at the DNS server and the client can limit the effect
of DNS-based scheduling. This is due to the fact that a Time-to-live (TTL) pe-

73

riod is usually assigned to each cached mapping during which DNS scheduling is
bypassed. This disturbs the load balancing in the cluster causing some servers

to become overloaded. Several solutions have been proposed to overcome this
problem. In [66, 67], Colajanni and Yu advocate using adaptive TTL algorithms
to vary the TTL value for each request, based on client request rate and server

capacity. Their results show that such algorithms can reduce the imbalance be¬
tween servers when caching is used.
Cardellini et al [68] propose combining DNS scheduling with redirection request
mechanisms. Different redirection algorithms are presented in their work includ¬
ing centralised algorithms where the redirection is carried out by the DNS server

based on load information collected from the clustered web servers. Distributed

redirection is also considered where load information of web servers is maintained

by the DNS server and sent to overloaded servers upon request. The DNS server

uses a round-robin mechanism to distribute requests among servers. When an

overloaded web server is allocated a request, it uses the load information to redi¬
rect the request to a less loaded server. Cardellini et al also consider redirection
of requests for individual clients or for whole domains. Aversa and Bestavros

[69] propose another distributed redirection mechanism where the clustered web
servers exchange their load information without the need for a central component.
When the number of connections a web server is handling exceeds a threshold,
the web server starts redirecting request packets to other servers in the cluster
based on the load information it maintains.

Content-aware distribution is another method used to balance the load in a web

server cluster. Yang and Luo [70] and Zhang et al [71] propose a content place¬
ment scheme partitioning the content of a web site in different web servers. A
front-end server (distributor), interacting with clients, holds information on the
partitioning of content among back-end web servers. It distributes client requests
to the appropriate back-end web server based on the content-related information
it holds. In [72], Luo and Yang extend their content-aware request scheduling
with request redirection in the event of web server overload or failure. To min¬
imise the overhead of redirection, Cherkasova and Karlsson [73] propose taking
workload properties into account where files for popular web pages are contained
in each web server in the cluster and thus can be served by any of the servers

minimising redirection. Less popular pages are partitioned among all the servers.

Zhu et al [74] present a master/slave web cluster architecture in which static
pages are processed locally by the master while dynamic pages are redirected to

74

slaves to distribute the load. A more dynamic replication of content is advocated
by Pierre et al [75] in which replication strategies are applied dynamically and
on an individual basis to each document in the web site.

Research has also been done on combining both DNS and content-aware schedul¬
ing. Aron et al [76] apply the content-aware request scheduling mechanism to
a set of back-end web servers in a cluster. A front node uses DNS scheduling
to forward requests to back-end servers. If a web server does not have the re¬

quested content, it redirects the request to the web server that does. Dias et al
[77] suggest a web cluster architecture consisting of a set of front-end nodes and
a set of back-end nodes connected by a switch. DNS scheduling is used for load
balancing at the front-end nodes while the distribution of web site content at the
back-end nodes is used to balance their load. Chen and Iyengar [78] present a

similar two-tier web cluster but incorporate client information and server load
in the scheduling policy of the front-end nodes. Different versions of the web
site content varying in quality (e.g. text-only, minimum graphics, etc.), are dis¬
tributed at the back-end nodes.

Client-based approaches to distribute load among web servers in a cluster have
also been proposed. Casalicchio and Colajanni [79] and Ciardo et al [80] advocate
the use of client request size and its impact on web server load to distribute re¬

quests. The distance between the client and the web servers is examined by Sayal
et al [81] and Shaikh et al [82] as the method for load balancing. Delegating load
balancing to clients is an approach that has also been considered. Yoshikawa et al
[83] and Vingralek et al [84] use software agents residing on the client to choose
the web server that will provide the best response time. The use of a client proxy

for this task is proposed by Fei et al [85].

Other solutions have been developed for replicated servers which are distributed
geographically across a wide area network. These include network bandwidth
probing presented by Carter and Crovella [86] which focuses on examining the
bandwidth and congestion along paths to alternative web servers. Yu and Lin
[87] propose using a QoS broker to aid a client in negotiating with web servers for
QoS guarantees. Environments have also been developed to support distributed
web servers in terms of load balancing strategies and content replication [88] [89]
[90].

75

5.2.2 Caching

Web caching is a well-established approach to reduce the response time of web
servers. Research has found that a caching algorithm usually achieves a maxi¬
mum hit rate of 50% [91]. A cache miss would cause the web server response time
to increase due to the extra unbenefical cache processing. In this section, tech¬
niques to increase web cache hit rates are discussed including cache prefetching,
replacement policies and cooperative caching. Dynamic content caching is also
considered.

One way to increase a web cache hit rate is to predict the documents that are

likely to be requested and load them in the cache. Kroeger and Long [92] have
found that web caching combined with prefetching reduces latency by 60%. This
indicates the effectiveness of prefetching in increasing hit rates and thus reducing
the number of requests that are handled on the server. Padmanabhan and Mogul
[27] propose prefetching directly from a web server to a client. Their work is based
on a prediction algorithm which constructs a dependency graph of access patterns
to different files stored at the web server. A similar speculative framework which
is based on analysing accessed documents' dependencies has been presented by
Bestavros [28].
Work has also been done on prefetching between proxies and web servers. Markatos
and Chronaki [93] propose a prefetching technique in which a web server regularly
pushes its most popular documents to proxies. Those proxies can then forward
such documents to their clients. Chinen and Yamaguchi [94] advocate the use of
interactive prefetching in which a requested HTML document is parsed to gather
its references to other resources (HTML pages, images, etc). The referenced re¬
sources are then prefetched to reduce latency of subsequent requests.
Other work presented by Fan et al [95] considers prefetching between a browser
client and a proxy. Their technique takes advantage of the idle time between user

requests to a proxy in order to predict which cached documents are likely to be
requested. Those documents are then pushed to the user.

Another approach to maximise web cache hit rates is the use of effective web-
specific cache replacement policies. Traditional replacement policies exist includ¬
ing Least Recently Used (LRU) and Least Frequently Used (LFU). However, work
has been done on replacement policies which take cost into account when deciding
which documents should be replaced. Cao and Irani [96] has devised GreedyDual-
Size, a cache replacement algorithm which uses document size and latency cost

76

of loading a document into the cache as the criteria for replacement. LNC-R- W3
is another algorithm proposed by Scheuermann et al [97] which keeps the doc¬
uments requiring the longest delays to load into the cache. LNC-R-W3-U is an

extension to LNC-R-W3, devised by Shim et al [98], which additionally consid¬
ers validation of documents based on a time-to-live method. Document fetching
delay is also used in a replacement technique presented by Wooster and Abrams
[99] in addition to considering documents that are retrieved over low bandwidth
links. Niclausse et al [100] consider a replacement method that combines network
latency, documents' size, their access frequencies and time elapsed since their last
updates. A different cost-aware technique proposed by Tewari et al [101] consid¬
ers cache resource usage cost when replacing documents in the cache.

Cooperative caching is another approach that can be used to reduce web latency.
In this approach, a group of cache proxies cooperate to share cached objects.
Work has been done on devising techniques to facilitate this cooperation. Fan et
al [102] have devised Summary Cache, a protocol in which each proxy keeps a

summary of URLs cached at each of the cooperating proxies. On a cache miss, the
proxy checks those summaries for potential hits before sending queries to other
proxies. Rabinovich et al [103] present a technique in which a proxy experiencing
a cache miss uses a neighbourhood graph and a communication graph to query

proxies with the shortest distance. Another technique based on finding the near¬

est cache is presented by Zhang et al [104]. The authors propose organising web
servers and cache servers into clusters. Multicasting is used locally in a cluster
and across clusters to query a document. Song et al [105] present a web server
accelerator based on cooperative caching. Cache memory is distributed across the
accelerator nodes. Content-based and TCP-based routing are studied as possible
methods to find cached documents in the accelerator.

All the work discussed above focuses on static content. However, caching of
dynamic web content, which is typically part of an Internet Commerce system,
can have a greater effect in reducing the system's response time. This is because
dynamic content needs substantially more CPU time to be constructed. However,
a problem of caching dynamic content is ensuring cache consistency as dynamic
documents are updated. Holmedahl et al [106] implement a weak consistency
protocol for cached dynamic content which allows access to old cache content
for a period of time. The system administrator sets a TTL field for different
documents causing the cached document to expire after a period of time. This

77

lazy invalidation technique is convenient for web sites with infrequent updates
of documents. Zhu and Yang [107] propose a technique in which web pages are

grouped into classes based on page URLs and client information. Classes are in¬
validated on a group basis using lazy validation. The authors also consider using
page precomputation to prefetch popular dynamic pages when the server load is
low.

Dynamic content fragment caching has also been considered. Challenger et al
[108] propose Data Update Propagation which maintains data dependency infor¬
mation between cached objects and underlying data that frequently change and
affect cached objects' content (object fragments). On a change in the underlying
data, the system queries the dependency information to determine which objects
are affected. This contributes to making the decision of which documents should
be invalidated or updated. Ramaswamy et al [109] propose an automatic frag¬
mentation mechanism which detects fragments that are shared among different
dynamic pages and have long lifetime characteristics. Generated fragments are

considered as the best candidates for caching. Datta et al [110] exploit the fact
that dynamic pages have a content and layout dynamic properties. Based on

that, the authors propose caching dynamic content fragments in proxy caches
but querying the source site for dynamic document layout. The proxy fills the
cached content of the document as specified by the layout.
Active caching is another technique used for caching dynamic content. In this
scheme, a proxy cache can service a request by executing a query over the content
of the cache. Cao et al [111] propose Active Cache in which cached documents
at a proxy are attached to applets provided by the web server. On a cache hit, a

proxy executes the cache applet over the cached document it is associated with
and the result is returned to the client. A similar technique is presented by Meira
Jr. et al [112]. Luo and Naughton [113] propose a form-based active caching
technique that uses parameterised query definitions. Such query definitions are

instantiated with user requests' parameter values. Yuan et al [114] has found
that active caching can reduce latency by two to three folds.

5.2.3 Content Adaptation

Researchers have examined web content adaptation as a method to provide QoS
and service differentiation on the Web. Most work done on this approach is di¬
rected towards optimising response time and system utilisation. Different meth¬
ods have been considered ranging from statically providing different versions of a

web site to online adaptation. Content adaptation of dynamically generated web

78

pages has also been considered.

As a static method for content adaptation, Abdelzaher and Bhatti [115] pro¬

pose having different content trees for a web site ranging from full to minimum
content. The selection of the content tree from which a request is served depends
on the current web server utilisation. A similar approach is presented by Muntean
et al [116] in which several versions of a web site are provided. A class of users is
assigned to each web site version based on their performance requirements. Kr-
ishnamurthy et al [117] classify users according to their connection capabilities.
Given different content variations, users with poorer connections are provided
with a reduced content version.

Mechanisms for online adaptation of web page content have also been proposed.
Chandra et al [118] present a transcoding technique to vary the size of multimedia
web objects dynamically. In their work, a bandwidth is assigned to each group

of users and the transcoding done is proportional to that bandwidth. Wills et
al [119] focus on the packaging of embedded objects making web pages into bun¬
dles. They found that reducing the number of connections required to fetch web
objects individually reduces response time, network and server load. Work has
also been done on the use of compression to reduce the size of web pages in order
to provide better response time. Fox and Brewer [120] advocate a distillation
policy that exploits specific properties of datatypes in web pages. For instance,
an image is compressed by reducing its size and/or colour depth. Mogual et al
[121] apply delta-encoding and data compression to HTTP responses to reduce
response size and delay.

Other work has been done on the adaptation of dynamically generated web pages.

Mohapatra and Chen [122] describe WebGraph, a framework in which a graph is
managed for each dynamically generated web page. The graph consists of weblets
which represent static and dynamic objects in the web page. Using this graph,
only the parts of the page that have changed (dynamic objects) are recreated when
a request is made, thus reducing the latency. Ramaswamy et al [109] consider
the automatic fragmentation of dynamic web pages to benefit content generation.
They propose algorithms for detecting fragments that are shared among different
dynamic pages and have long lifetime characteristics, thus reducing the delays re¬

quired for content generation. Abdelzaher and Bhatti [115] propose using scripts
with varying complexity in their content trees approach described above.

79

Optimising the number of dynamically generated web pages needed to fulfil the
user's required service can reduce service time and system congestion. An ex¬

ample of such approach is Amazon.corn's one-click ordering patent granted in
1999 [123]. It is an alternative method to the typical shopping cart ordering
mechanism in Internet Commerce systems. If one-click ordering is enabled and a

client requests purchasing an item, client information (possibly maintained using
cookies), the required item information and an ordering button are bundled into
a web page which is sent to the client. One click by the client on the ordering
button causes the order to be placed.

5.2.4 Admission Control

Different admission control strategies have been proposed to enhance QoS in web
applications. Some adopt a feedback control approach while others are based on

avoiding handling requests that will not be completed successfully. Research on

admission control techniques that provide differentiated service for a set of user

classes is well-established. Request processing requirements is another criterion
considered as the basis for admission control. However, all admission control
policies proposed rely on request rejection as a way to reduce system load in the
state of system overload. Studies tend to consider individual QoS metrics such as

response time, throughput, system utilisation or system revenue without taking
a comprehensive approach to web QoS enhancement. Most researchers focus on

general web servers performance with some work on web hosting and multime¬
dia and very little work targets Internet Commerce specifically. In this section,
work done on applying admission control to different web applications is reviewed.

Work has been done on the use of feedback control theory as the basis for ad¬
mission control in web sites to provide QoS guarantees. Abdelzaher and Shin
[124] consider modelling a web server as a classical feedback control problem. A
software sensor is used to monitor the server's CPU utilisation. Measurements

obtained by the sensor are used to find optimal feedback controller parameters.
Admission control is implemented in an actuator which, based on controller pa¬

rameter values, reduces the current load of the system to avoid server load. The
reduction of load is achieved by dropping current requests or providing degraded
service for some requests. The authors provide a time-varying linear model of a

web server. In [125], Robertsson et al model a web server as an M/G/l queue.
The length of the queue is considered as a measure of system load. A controller
is used to reject requests when a maximum queue length is reached.

80

Multiple-Input Multiple-Output (MIMO) control theory has also been applied to
web server QoS admission control. This allows more than one control parameter
to be used in the feedback loop. Diao et al [126] consider a request rejection
and dropping admission control mechanism based on MIMO control with CPU
and memory utilisation as the control parameters. The authors argue that their
approach is more accurate (than single parameter feedback) as it captures the
interaction between the two parameters.
The feedback control approach reacts to performance degradation after it already
occurs. Combining system load prediction with feedback control to avoid server

performance degradation is a problem some researchers have focused on. Abdelza-
her et al [127] [128] [129] combine queueing theory with feedback control to predict
the resource allocation required to meet response time requirements for user re¬

quests. Feedback control combined with queueing is also used by Menasce et al
[130] to predict the optimal Internet Commerce system configuration required to
meet desired QoS levels. Request rejection is one of QoS metrics considered in
addition to response time and throughput.

Another web server admission control approach is based on avoiding serving user

requests that are likely to fail eventually. Using this approach, Iyer et al [131]
propose two schemes to handle web server overload. The first is to use an in¬

telligent Network Interface Card (NIC) to selectively drop packet requests when
the system is overloaded. The other scheme is to use traffic throttling in which
the overloaded server sends feedback messages to the request source requiring a

reduction in the rate requests are sent. Another technique studied by Cherkasova
and Phaal [132] uses a session-based admission control mechanism in which a user

request is accepted only if system capacity can handle all subsequent requests in
the user session. A simple rejection policy is used in which a request (and the
whole session) is rejected if a maximum number of connections is reached or if
the user tries to resend a request a certain number of times. A similar admission
control approach is proposed by Chen and Mohapatra [133].

Extensive work has been done on admission control techniques based on provid¬
ing differentiated service for multiple user classes. Most of the work has focused
on admission control for general web applications rather than specifically target¬

ing Internet Commerce systems. Bhatti and Friedrich [134] present a web server

admission control policy in which requests are classified according to the class of
the user making the request or the content required to fulfil the request. Given

81

the request classification, a request can be rejected or scheduled according to the
class priority. Voigt et al [135] propose three techniques to prioritise user requests.
The first technique is similar to Bhatti and Friedrich's work and gives priorities to

requests based on the content required. The second technique proposed by Voigt
et al drops user request packets based on the client's IP address. Jamjoom et al
[136] also suggest associating requests with user classes at the packet level using
a set of rules specified by the system administrator. Voigt et aVs third technique
uses a listen queue in which requests are re-ordered according to their priority
of service. A similar queueing technique is presented by Chen and Mohapatra
[137]. Vasiliou and Lutfiyya [138] schedule requests lor different user classes sep¬

arately and specify a limit on the number of requests accepted for each class. Li
and Jamin [139] present a bandwidth-based admission control technique which
allocates server bandwidth to user classes. A user request is rejected if the user's
allocated bandwidth is exceeded or the server is fully utilised.
Some researchers have considered a more flexible differentiated service admission

control for web servers which controls the bounds between different user classes

handling. The purpose of this is to avoid request starvation. Lee et al [140]
present a proportional-delay admission control technique in which relative time
delays are guaranteed for different user classes. Kanodia and Knightly [141] have
devised a technique which provides user class isolation, with a fraction of system
resources allocated to each user class. The technique proposed by the authors
allows a class to utilise unused resources of other classes. Chen et al [142] present
a technique in which user classes are dynamically allocated system resources by
estimating the request rate of tasks.

Shortest job first admission control has also been suggested. Crovella et al [143]
use connection length as the basis for admission control. Connections with short¬
est duration are given highest priority. Determination of connection length is
based on the size of the document requested (only static documents are consid¬
ered). A Shortest Remaining Processing Time First admission control is proposed
by Schroeder and Harchol-Batler [144]. Cherkasova [145] proposes a tunable ad¬
mission control strategy which can be adjusted between FIFO and shortest request
first.

Other researchers advocate applying admission control at different stages of a

service offered by a web server. Welsh et al [146] [147] consider a service as a

composition of stages. Requests are dropped at each stage to eliminate perfor-

82

mance bottlenecks. Carlstrom and Rom [148] present a similar approach in which
sessions are divided into stages and requests are queued for each stage. By con¬

trolling the resources allocated to each stage in the session, the authors focus on

maximising the profit of an e-commerce system.

The use of admission control for hosting services has also been considered. Verma
and Ghosal [149] propose an admission control technique to maximise profit of a

hosting service. Given a set of Service-Level Agreements (SLAs) and finite server

capacity, a subset of user requests are accepted so that profit is maximised. A
SLA contains reward and penalty parameters incurred by the system. A Short¬
est Remaining Job First (SRJF) admission control policy is used to prioritise
requests. Abdelzaher et al [150] [151] use the concept of QoS contract between
a web service provider and a user. Admission Control is applied at two levels:
when new contracts are accepted in addition to a request-level admission control
in which requests with a low priority contract are rejected in an overloaded situ¬
ation.

Admission Control techniques to enhance QoS have also been considered for mul¬
timedia servers. Chen and Li [152] propose an admission control strategy to
maximise the reward received by a multimedia web application. Vin et al [153]
propose a technique that exploits the variation in access times to media blocks
in disk and playback variations to improve utilisation of system resources and
provide QoS guarantees to individual users. Lee and Sabata [154] have devised
an algorithm which is based on setting aside a fraction of system resources as

reserved in a multimedia application. When the system is about to enter a con¬

gested state, the reserved system resources are used intelligently by distributing
small amounts of resources to user requests in order to maximise system benefit.
Adding admission control to a cluster of web servers has been considered by Zhu
et al [155]. In their work, the authors propose periodically repartitioning the
cluster in response to workload variations in order to provide differentiated ser¬

vice to a set of user classes.

Little work has focused on applying admission control specifically to Internet
Commerce systems. Menasce et al [156] [157] describe a priority-based resource

management policy to maximise profit. Customers navigating the e-commerce

site are classified based on session length and the accumulated money in their

shopping cart. A customer navigating the site for too long with not much value

83

in their shopping cart is given a low priority in terms of processor and disk use.

Another recent work presented by Elnikety et al [158] proposes Shortest Job First
admission control policy to reduce response time and sustain throughput in an

Internet Commerce system. Requests are rejected when a capacity threshold is
reached. Job execution costs are learned online.

5.2.5 Network QoS and Pricing

Research on congestion control, QoS assurance and service differentiation in net¬
works is well-established. Standards such as DiffServ [159] enrich the IP protocol
with a framework for enabling QoS-based service differentiation over the Inter¬
net. TCP modifications to achieve congestion control and service differentiation
are considered [160] [161] [162]. Measurement-based techniques to control traffic
congestion in networks have been studied [163] [164] [165] [166] [167]. Dynamic
pricing is another approach considered where usage price is varied to control con¬

gestion in a network. Exploiting price as a tool to control a congested resource

has influenced the development of CBAC which applies dynamic pricing in Inter¬
net Commerce QoS enhancement. In the rest of this section, work done on the
use of dynamic pricing to control network congestion is reviewed.

A study presented by Cocchi et al [168] concluded that a set of variable prices
exist that make every user more satisfied with the combined cost and performance
of a network. Mackie-Mason and Varian [169] [170] [171] describe an economic
analysis for pricing a congested network. They propose charging a congested-
switch-user a price reflecting the social cost that they will impose on other users,

i.e. the cost of preventing or slowing down other users' packets going through
the switch. Mackie-Mason and Varian describe an implementation of their ap¬

proach, the smart market, where each packet would have a bid field in its header
to indicate how much its sender is willing to pay. The network would admit all
packets whose bids exceed the current network threshold. Gibbens and Kelly [172]
show that the smart market approach can be realised by using a decentralised
mechanism where some packets in the network are marked indicating congestion.
Charging the end-user for each marked packet will motivate efficient use of the
network.

Shenker et al [173], through their edge pricing mechanism, propose determining
usage prices at network end-points by estimating the congestion along the ex¬

pected path of a packet between source and destination. This eliminates the need
for the distributed calculation of the price along the path. Wang and Schulzrinne

84

[174] describe an approach in which congestion charge is calculated using an itera¬
tive tatonnement process [175], an economic formula that determines the current
price based on demand, supply and the previous price. Odlyzko [176] presents
a simpler network pricing framework, Paris Metro Pricing. It is based on di¬
viding the network into separate logical channels and assigning a usage price for
each of those channels. Differentiated service is achieved as channels with higher
prices attract less traffic and thus provide better QoS. Leyton-Brown et al [177]
use probabilistic price variations to distribute network load across different time
slots.

5.3 An Overview of CBAC

CBAC is a novel approach to preserve QoS in Internet Commerce systems. It
is based on controlling system congestion by encouraging customers to postpone
their requests when the system is approaching overload. When the system is close
to a congested state, accepting more customer requests will make the situation
deteriorate. However, refusing requests will have a negative effect on customer
satisfaction. A solution is to postpone requests by encouraging customers to leave
the system at a time of likely congestion and come back at a later, less-loaded,
time. Dynamic pricing could be used to drive such customer encouragement.
CBAC follows the strategy explained above. It is an admission control technique
that manages congestion in Internet Commerce systems without rejecting cus¬

tomer requests. The novel technique is based on a discount-charge pricing model
to encourage customers to postpone their requests in a highly loaded situation.
Using this model, a customer is offered a discount on the services they are likely to

request in return for postponing such service requests until a less-loaded time in¬
terval. An extra charge is imposed on customer requests if the customer decides to

go ahead with the requests during the high load period. CBAC's discount-charge
model is sensitive to the following:

• The current system load when the service request is made.

• An estimation of service time to fulfil the customer's request and all subse¬
quent requests dependent on it.

• Service time estimation for the postponed requests already scheduled for
execution at the time the service request is made.

In order to estimate the service time of an incoming customer request and all
its subsequent requests in a dependent Internet Commerce service model, CBAC

85

includes a navigational model of the system it is applied to. This model provides
a framework for calculating the required time estimates. CBAC also includes a

scheduling mechanism with load forecasting which is used to schedule postponed
user requests in more lightly loaded time periods.

5.4 Discount-Charge Pricing Model
As described in Section 5.3, CBAC exploits service price variation in order to en¬

courage customers to postpone their requests to avoid Internet Commerce system
overload. A description of CBAC's discount-charge approach for price variation
is given in this section. The factors affecting the discount-charge model are first
described in Section 5.4.1. This is followed in Section 5.4.2 by a formal definition
of the model.

5.4.1 Factors Affecting the Model

When the system's used resources become equal or greater than a specified thresh¬
old e, CBAC is applied to every request received by the system. The reason behind
basing CBAC admission on user request-level rather than session-level is three¬
fold. Firstly, a faster and more direct reaction to changes in system congestion is
achieved when reducing CBAC's admission granularity. Basing CBAC admission
on the cumulative load of user sessions will cause a slower reaction in triggering
CBAC on and off. Secondly, using a user session admission policy will introduce
discrimination among users. This is because a selection criteria will then need to
be used to choose the user sessions CBAC should be applied to in order to reduce
system congestion. Finally, monitoring and maintaining the cumulative load of
each user session would be expensive in terms of system resource usage.

The amount of discount/charge, A, offered to the customer when CBAC is applied
is dependent on the following factors:

• The percentile of available system resources R, when 1 — R > e. A negative
coefficient should govern the relation between A and R. As the amount of
available resources decreases, the discount or charge offered should increase
encouraging a customer more strongly to leave the system at the time of
the request.

• The requested service estimated service time D. This includes the service
time of the current request and all subsequent requests the customer is

86

likely to request in a session. Estimation of service times can be obtained
by monitoring the system's service times at low load when the system is in
a non-congested state. A has a directly proportional relationship with D.
Customers requiring more system resources to execute their request should
be encouraged more strongly to leave the system. Estimation of service
time using CBAC's navigational model is described in Section 5.5.

• Finally, the service demand, S, for jobs already scheduled for execution in
the time interval a customer request is received. A has a directly propor¬

tional relationship with S. Customers should be encouraged more strongly
to leave the system if bigger jobs are scheduled to be executed at the time
the customer request is made. CBAC's postponed request scheduling is
described in Section 5.6.

Factors that provide user differentiation are not included in CBAC's pricing
model. CBAC is designed to provide a fair admission control policy among users

and thus factors such as the financial value in a user's interactions with the sys¬

tem are not considered in CBAC's pricing model. Only the effect of the user

interactions on the system's congested state is taken into account.

5.4.2 Formal Definition of the Model

Formally, A can be defined as:

A = f(R, D, S)

where /3, 5, a e R and 0 < /3, 6, a < 1. /?, <5, a are weights chosen to reflect
the required contribution of D, S and R respectively in determining A. Amax is
an upper bound for A. e is the used resources threshold. R represents the spare

capacity of the system bottleneck:

R — 100 — max[Ro, Ri,..., Rn]

where Ri is the utilisation of the ith system resource in percentile.

In the definition above, it is assumed that the amount of discount is always equal
to the charge offered to the customer. A charging factor C could be introduced
to the model in order to vary the amount of discount and charge offered:

min[|/5D + SS - aR\, Amax]

Ach = CA

87

Adis — A

where Ach is the amount of charge offered and AdiS is the amount of discount.
C values can be chosen to increase the charge imposed on a customer requiring
an immediate execution of a service request when CBAC is applied. Thus, the
urgency of customer requests is exploited to increase system profit.

Throughout this thesis, the linear function above is used to calculate A. How¬
ever, other types of functions could also be used such as exponential functions. As
described in Section 7.2, a future work direction is to make the discount/charge
function adaptable, not only to system load, but also to profit levels and market
demand-supply.

5.5 Internet Commerce Service Modelling

A common feature of Internet Commerce systems is offering dependent services.
A user usually interacts with an Internet Commerce system through a sequence

of dependent service requests forming a user session. After a service request in a

user session is fulfilled, the user is usually given the option to request from a set
of further services. The decision the user makes of which next service to request
is dependent on the outcome of the service requested previously.
Determining the service time for a given request in such a dependent service
model would require estimations of the service time of that request and also the
service times of all the services the user is likely to request in the remainder of the
session. The total estimated service time of such services contribute to CBAC's

discount-charge model as described in Section 5.4. In order to derive such esti¬
mates, CBAC includes a navigational model of the system to which it is applied.
This model is used as a framework to analyse the navigational dependencies in the
system. The model includes a formal method for service time estimation given
the current user request.

This section is structured as follows. In Section 5.5.1, an analysis of service depen¬
dencies in TPC-W's navigational pattern is given. This is followed in Section 5.5.2
by a description of a sample navigational structure derived from TPC-W's naviga¬
tional pattern. CBAC's navigational model is described in Section 5.5.3. Finally,
the use of the model in service time estimation is formalised in Section 5.5.4.

88

5.5.1 TPC-W, a Dependent Internet Commerce Service
Model Example

The TPC-W standard [3] is used to study the navigational structure of a typ¬
ical dependent Internet Commerce service model. As described in Section 3.2,
TPC-W's service model contains 14 dependent services with 3 alternative navi¬

gational patterns for browsing, shopping and ordering scenarios. The navigation
between different services is governed by the threshold mechanism described in
Section 3.2.1. To ease the understanding of dependencies between services, TPC-
W's threshold values can be converted to probabilities of navigation between
different services as follows:

Figure 5.1: TPC-W's Service Model Navigational Probabilities in an Ordering
Interval (derived from [3])

89

Given that the thresholds for navigating from service sc to services sq, si,. .., Si

are to, t\,..., respectively, where t0 < t\ <■ • ■ < Ui the probability of navigating
to service S{ from sc

P™ = *9999 1 ^ >

and the probability of navigating from sc to s0 is

That is, the probability of navigating to a service can be calculated by subtracting
the preceding service threshold from its threshold and dividing by 9999. Figure 5.1
shows the probabilities of navigation between TPC-W services in an ordering sce¬

nario where 50% of the interactions are browsing requests and 50% are ordering.
TPC-W's ordering scenario threshold values are included in Appendix C.

5.5.2 Navigational Structure Sample

TPC-W's navigational structure for an ordering scenario, shown in Figure 5.1, has
been modified and used as an input to CBAC's navigational model which will be
described in Section 5.5.3. The modifications made are designed to simplify TPC-
W's navigational structure while preserving its realistic characteristic in terms of
functionality and user navigation. Figure 5.2 illustrates the modifications which
are outlined below:

• In order to clearly mark the beginning of a session, it is assumed that the
user's first service request is always Home.

• The navigational structure is simplified so that the minimum number of
services are requested to place an order. Thus, services that are not re¬

quired as intermediate steps toward making an order are removed (and the
interactions they are involved in) including: Order Inquiry, Order Display,
Admin Request and Admin Confirm.

• Similarly, navigations that do not directly lead to making an order are

removed including navigations: Search Result —¥ Search Request, Product
Detail —> Search Request, Best Seller —»■ Search Request, New Product —»•

Search Request, Product Detail —» Product Detail and Customer Registra¬
tion —> Search Request. All navigations going back to Home from other
services are also removed.

90

Figure 5.2: Internet Commerce Navigational Structure Sample

• Shopping Cart is a central service in TPC-W's navigational structure as it
is involved in interactions with many other services. In order to simplify
the navigational structure, some of those interactions are removed while
keeping the two main objectives of a Shopping Cart service feasible, which
are: adding as many items as required to the cart and allowing the customer
to start the ordering process and go back to Shopping Cart if deciding
to make changes in the items to be purchased. The following navigations
involving shopping Cart are removed: Home —> Shopping Cart, New Product
—> Shopping Cart, Best Seller —> Shopping Cart, Search Result —> Shopping
Cart and Shopping Cart —> Shopping Cart. The Search Request —> Shopping
Cart navigation is replaced by Shopping Cart —> Search Request.

91

• It is assumed that a session always ends with a customer making an order
of purchase. This simplifies the profitability analysis of the system. Thus,
TPC-W's navigational structure is modified so that Buy Confirm is always
the last request in a session. The navigation Buy confirm —>■ Search Request
is removed. Requesting a Home service after a Buy Confirm should start a

new session.

The probabilities of navigation have been modified to reflect the changes in TPC-
W's navigational structure. The new probabilities are illustrated in Figure 5.2.

5.5.3 CBAC's Navigational Model

As described in Section 5.4, when CBAC is applied in a highly loaded system,
the estimated service time of a service request, and all subsequent requests in
the user session, contribute to determining the discount or charge the user is
offered for service fulfilment. To determine such an estimate in a dependent
Internet Commerce service model, an analysis of the navigational structure of
the system is required. This is achieved by constructing a CBAC Navigational
Model (CBAC-NM) of the system which provides a framework for calculating
service time estimates. The input to CBAC-NM is the system's navigational
structure including services, how they are interconnected and the navigational
probabilities between them. Estimates of service times of individual services are

also required. In CBAC-NM, services are categorised into two types: atomic and
composed. An atomic service is a service that a user can request in one interaction,
whereas a composed service consists of a cycle of atomic and composed services
that are requested in more than one interaction, atomic and composed service
properties include:

• Every individual service in the model is an atomic service.

• An atomic service can be part of a composed service but not vice versa.

• An atomic service can be directly part of one composed service only.

• An atomic service cannot be part of another atomic service.

• A composed service can be part of another composed service.

• A composed service cannot be part of more than one composed service.

The point of distinguishing composed services is to capture the pattern of inter¬
action where the user can repeatedly request a service loop consisting of a set of

92

services. As described in Section 5.5.4, this representation is used in CBAC-NM
to obtain time estimates for a service loop given the service time of the services
making up the composed service and the number of times the composed service
is requested (by requesting the services making it up).
Below is a summary of the steps required to construct a CBAC-NM of the CBAC-
enabled system:

1. Identify atomic services in the system.

2. Determine composed services by identifying loops in the system's naviga¬
tional structure.

3. Identify links between services and probabilities of navigation through those
links.

4. Estimate the service time required for each of the atomic services in the
model.

A graphical representation of CBAC-NM has been devised. Figure 5.3 illustrates
the representation's entities. An atomic service is represented by an ellipse con-

Composed Service Navigational information added
Atomic Service

Figure 5.3: CBAC-NM Graphical Representation Entities

taining the service's name. A rectangle represents a composed service with its
name in the rectangle's top right corner. The atomic services composing a com¬

posed service are included in the rectangle. An arrow linking two services denotes
a possible navigation in the arrow's direction with the probability of navigation
shown on the arrow. A dashed line extending a navigational arrow is used to
illustrate which atomic services of a composed service interact with external ser¬

vices.

A CBAC-NM has been derived for the sample navigational structure described in
Section 5.5.2 and shown in Figure 5.2. The graphical representation of the model
is depicted in Figure 5.4. The following atomic services have been identified:

93

Home, Best Seller, New Product, Search Request, Search Result, Product Detail,
Shopping Cart, Customer Registration, Buy Request and Buy Confirm. Two com¬

posed services are denoted CI and C2, corresponding to the two loops identified
in Figure 5.4:

• Cl: Search Request —» Search Result —¥ Product Detail —> Shopping Cart
—> Search Request.

• C2: Cl —¥ Customer Registration —> Buy Request —> Cl.

Navigational links between services and probabilities of navigations in the input
navigational structure are mapped to CBAC-NM. In and out external naviga¬
tions for composed services are assigned the probabilities of their atomic services
involved in such navigations. Probabilities of navigation should be obtained by
analysing the history of user access patterns. For CBAC-NM to be complete,
service time estimates are required for each of the atomic services identified. Such
estimates should be determined off-line by performing experiments to determine
the service time of each of the atomic services at low load.

Figure 5.4: CBAC-NM for Sample Navigational Structure Shown in Figure 5.2

94

5.5.4 Service Time Estimation

As described in Section 5.5.3, using CBAC-NM, service time estimation of a cus¬

tomer request and its possible subsequent requests can be determined. To obtain
such an estimate, CBAC-NM uses the recursive definition described below.

We assume a set of services so, Si,. ■ •, sm with estimated service times to, t\,...,

tm. Each service Sj has a list of next services n0,. .., rij with request probabilities
Pjo,..., Pij. If the last unfulfilled service request the user made is sr, then the
total estimated service time of the remaining services the system is likely to fulfil
for the user Tr is:

The service time of an atomic service Sj is just ti. However, if s, is a composed
service with a cycle of atomic and composed services a0)..., az, its estimated
service time would be:

where Li is the number of times the user is likely to request the composed service
Si and t0, U,..., tz are the service times corresponding to a0,..., az. One way

to determine the value of Li is to use information acquired from the user, when
starting a session, about the nature of the task required. Users could be asked
about the number of items they are likely to purchase. This provides a good esti¬
mate for Li as a user navigating an Internet Commerce site repetitively requests
the same group of services for each item they purchase, for example, requesting
Cl shown in Figure 5.4. Another approach to determining Li could be based on

analysing the system's access pattern logs to determine the average number of
times users requested each of the composed services in the navigational model.

5.6 Customer Postponed Request Scheduling

As described in Section 5.3, scheduling of a service request is required when the
requesting customer accepts a discount to postpone their service request. In this
section, CBAC's scheduling mechanism is explained. The scheduling problem
is formalised in Section 5.6.1. This is followed in Section 5.6.2 by a discussion
of the alternative scheduling strategies that could be used in CBAC. Then in
Section 5.6.3, a description is given of how system load forecast is used in CBAC's

3

Tr =tr + Prk * Tk

Z

95

scheduling. Finally, the scheduling contribution to the outcome of the discount-
charge pricing model, described in Section 5.4, is formalised in Section 5.6.4.

5.6.1 The Scheduling Problem

Suppose that time is split into discrete equal intervals 70, I\, h,---, In- Each
interval has duration a where n and a € N. Let jn be the set of service request jobs
scheduled to be executed in In. Also, let C(jn) be the system processing capacity
required to execute jn. A new service request for job jnew can be scheduled to be
executed in Tn if

C{jn) + C(jnew) + C(ln) <U*(J

where ln represents a forecast of possible incoming, not scheduled, service requests
in /„ (see Section 5.6.3). C(jnew) and C(ln) are the processing capacity required
to execute jnew and ln respectively, u is the processing capacity of the system per

unit time.

Thus, the available processing capacity of the system in In, u* a, should not be
exceeded by the processing capacity required to execute C(jn), C(ln) and C(jnew).
The processing capacity requirement is measured by the number of CPU cycles.
The processing capacity needed to execute a service is the number of busy CPU
cycles spent on executing a request of that service.
In practice, achieving a 100% CPU utilisation is not realistic. Abdelzaher and
Lu [178] have derived an upper utilisation bound for schedulability of requests
in a high-volume real-time service, such as a busy web server. They have found
that a set of scheduled tasks will meet their deadline if system utilisation does
not exceed 0.58. Thus, u * a in the equation above should be reduced to reflect
this practical consideration.

5.6.2 Scheduling Strategy

As described in Section 5.6.1, the jobs already scheduled in a time interval In and
the forecast of possible new requests in that interval are sufficient parameters to
decide whether it is possible to schedule a new job jnew with a specific service
time in In. However, what if jnew can also be scheduled in In+x, should jnew be
scheduled in In or in /n+i? A possible scheduling strategy could take into account
customer-oriented parameters in deciding when to schedule service requests. Such
parameters could include the history of customer visits pattern, customer time
zone and other customer details including age, occupation, etc. However, it was

decided in the current system to use a simpler strategy in which earliest time

96

intervals are given scheduling priority. This ensures that a postponed customer

request is executed (if the customer returns for discount offer fulfilment) as soon
as system resources can cope with such a request.

5.6.3 Forecasting System Load

As described in Section 5.6.1, forecasting of system load at a future interval is
taken into account when scheduling postponed jobs in that interval. For forecast¬
ing purposes, only system load caused by new customer requests is considered.
Load imposed on the system by scheduled customer requests returning for CBAC
offer fulfilment is not included. Such scheduled load is accounted for in solving
the scheduling problem using C(jn) as described in Section 5.6.1. In the rest of
this subsection, system load' is used to refer only to load caused by new customer

requests rather than scheduled requests.
Prediction of future system load is based on system load history. If time is split
into discrete equal (e.g. one hour in length) intervals

I—ni I—n+1 j I—n+2) • • • i lot • ■ •) In—1i In— 1 j -Li

where time represented by intervals to /_i is the history of system runtime,
Iq is the current time interval and intervals I\ to In are future intervals in which

jobs are scheduled.
As requests are executed in J0 a record of the system cumulative load h0 is main¬
tained, that is, the amount of processing capacity that has been required to
execute new requests arriving during that interval. h_n, h_n+1,..., h_i represent
records of cumulative load in the past intervals /_n+1,..., 7_i. It is assumed
that there is a repeating pattern of workload over a time period. System load in
a future interval is predicted from the cumulative load of a corresponding interval
in history. The correspondence between future and history intervals is determined
by CBAC's forecasting time period. For example, if CBAC's forecasting interval
is a week, then the difference between future and history intervals is a multiple
of seven days.
This repeating pattern behaviour is consistent with Internet Commerce work-
load's self-similarity property described in Section 2.4.5 where the traffic struc¬
ture is the same. Regarding load bursts, a pattern can also be found such as in
certain hours of the day, e.g. lunchtime. Load size variations can also be noticed
across days, e.g. a weekday load is usually different from that at the weekend.
The forecasting time period could be specified in CBAC setup to be a day, a week
or longer depending on the application and the nature of its workload.

97

5.6.4 Scheduling Contribution to Cost

Scheduling contributes to determining the amount of discount/charge A as de¬
scribed in Section 5.4. If a service request arrives in time interval /„, the jobs
scheduled for execution in this interval jn contribute to calculating A. The
scheduling factor S is defined as:

n ... Cjjn)
u* a

That is, the fraction of reserved processing capacity for executing jobs already
scheduled in In. Although C(ln), the system processing capacity required to ex¬

ecute forecasted (not scheduled) load is not included in the calculation of S, it
influences its value indirectly by contributing to the scheduling process as de¬
scribed in Section 5.6.1.

5.7 CBAC-specific Services

For an Internet Commerce system to support CBAC, a set of additional services
must be provided by its application server. They are CBAC-specific services
which are essential to support CBAC's operations. Three groups of CBAC-specific
services are required to:

• Send an offer containing alternative options to a customer.

• Capture the customer decision on the offer.

• Fulfil postponed requests.

The navigational pattern through such services is governed by customer behaviour
when interacting with CBAC.
Figure 5.5 illustrates the CBAC-specific services that should be offered by an In¬
ternet Commerce application that adopts CBAC. The Admission Control service
which is required for preparing and sending a CBAC offer to a customer is de¬
scribed in Section 5.7.1. This is followed in Section 5.7.2 by a description of the
services required to capture customer decision which are Accept Discount, Accept
Charge and Reject Offer. The Back for Offer and Fulfil Offer services, needed to
allow the customer to resume a postponed request, are discussed in Section 5.7.3.
Finally in Section 5.7.4, a discussion of customer behaviour when dealing with
CBAC is provided including how such behaviour can be modelled.

98

Customer Request

Figure 5.5: CBAC-specific Services

5.7.1 Making a CBAC Offer

The Admission Control front-end service shown in Figure 5.5 is responsible for
implementing CBAC's admission policy. By monitoring system load, it decides
whether CBAC is applied or not when each customer request is received. If the
system's used resources are less than CBAC's threshold e (see Section 5.4.2), the
customer request is executed directly without making any CBAC offer. How¬
ever, if the system's used resources are equal or greater than e, Admission Control
uses CBAC's discount-charge model, CBAC's navigational model and scheduling
mechanism, described in Section 5.4, Section 5.5.3 and Section 5.6 respectively,
to construct a CBAC discount/charge offer. The offer constructed is sent to the
customer as a response to their original request.

99

5.7.2 Capturing Customer Response
A CBAC offer gives the customer three options to choose from. Firstly, the cus¬

tomer can decide to accept the discount specified in the offer and postpone the
original request to a later offered scheduled time. The customer should use the
Accept Discount service shown in Figure 5.5 to select this option. A response is
then sent to the customer which includes an offer Id and a confirmation of the

scheduled time at which the customer should come back for offer fulfilment. A

possible extension to CBAC is to offer the customer a choice of return time with
different discounts based on the load of the future time interval offered or how far

it is in the future. For that, a more sophisticated scheduling mechanism should
be used which contributes to an extended version of the discount/charge model
described in Section 5.4.2.

Alternatively, the customer can choose to accept to pay an extra charge specified
in the offer to execute the original request immediately. The customer should
request the Accept Charge service shown in Figure 5.5 to select this choice. The
customer will then be allowed to proceed in interacting with the system starting
from the original request.
The last option given to the customer is to reject the offer completely. The cus¬

tomer selects this option by requesting the Reject Offer service shown in Figure 5.5.
Making this choice would cause the customer session to be terminated.

5.7.3 Fulfilling Postponed Offers
A customer who has chosen to accept the discount option of a CBAC offer can

resume interaction with the system by requesting the Back for Offer service shown
in Figure 5.5. It was decided to delegate the task of initiating the offer fulfilment
process to the customer, so that no extra load is introduced on the server re¬

minding customers of their return times to the site. Using the Back for Offer
service, the customer should enter the offer Id provided when the decision was

made to accept the discount. The Fulfil Offer service is then used to validate
the offer details for the given offer Id. If the offer details are validated, including
the return time for the customer, Fulfil Offer directs the customer to request the
original request and the customer navigation is resumed. However, if offer Id is
not validated or the offer scheduled time has passed, the customer is permitted
to request the Home service starting a new session and the offer claim is rejected.
When requesting fulfilment of an offer at a time that does not match the offer
scheduled time, the customer is not allowed to resume system navigation and is
informed to return at the right time if it is still to come.

100

5.7.4 Customer Behaviour

There are many psychological and social factors that could affect customers'
behaviour when interacting with a CBAC-enabled system. Customer personal
details such as age, gender, wealth, computer literacy, occupation and cultural
background are factors likely to influence customer reaction to CBAC. Investigat¬
ing such factors and how they determine customer access patterns when dealing
with CBAC is beyond the scope of this thesis and should be considered in further
research as outlined in Chapter 7.

The service offered by a CBAC-enabled system should have an effect on the
customer's behaviour when dealing with CBAC interactions. Different Internet
Commerce application types will result in different CBAC customer behaviour.
Thus for each type of application, the history of system navigation needs to be
analysed to tune CBAC parameters in order to improve customer reaction to
CBAC and thus achieve optimal performance. Due to the wide variety of Inter¬
net Commerce applications and thus the varying possible user reaction to CBAC,
scenarios of possible user reactions were assumed throughout this thesis to anal¬
yse CBAC performance effects. One CBAC access pattern scenario was assumed
to follow the navigation probabilities shown in Figure 5.5. It was assumed that
40% of customers accept a discount of which only 70% come back at the future
offer scheduled time for offer fulfilment. It was assumed that no customers return

for offer fulfilment at the wrong time or fail offer validation. 30% of customers
were assumed to select the accept charge option and 30% completely reject the
offer. As explained in Chapter 6, experiments were performed to investigate how
this navigation pattern and another variation of it affected performance metrics.

5.8 CBAC Applications

To determine the applicability of CBAC and its optimal parameters for an Inter¬
net Commerce system, a group of factors which are dependent on the application
type should be considered. Firstly, whether the application is of time-critical
nature or not. For example, consider a train booking Internet Commerce sys¬

tem. In such a system, the duration between train ticket purchase time and train
departure time should be taken into account when CBAC is used. Given such
timing constraints, CBAC's application-oriented scheduling could be used to en-

101

hance customer satisfaction. Business decisions need to be made on the extent to

which the urgency of user requests should be exploited to increase profit. Those
decisions and others will be reflected in choosing CBAC's parameter values.
Another factor that needs to be considered when using CBAC is the applica¬
tion's user population. User behaviour when dealing with CBAC offerings should
be taken into account when setting up CBAC. Customer background, age, sex,

etc. could aid in predicting navigational patterns through CBAC-specific services.
Customer behaviour can also be "learned" dynamically and CBAC parameters
could be adapted accordingly.
The type of application could also influence business managers considering adopt¬
ing CBAC. For CBAC to be used, changes in the application's business model are

required. The extent of those changes could vary depending on the characteristics
of the application under consideration.

5.9 Summary
In this chapter, CBAC, a dynamic software technique to enhance Internet Com¬
merce QoS, is described. Without relying on customer request rejection, it man¬

ages system congestion by using a dynamic pricing method, that is sensitive to
current system load and navigational structure, to encourage customers to post¬
pone their requests. CBAC provides a comprehensive framework for Internet
Commerce QoS enhancement in terms of the performance metrics it optimises.
It is designed to provide service times competitive with low load situations by
ensuring that system load is distributed to less loaded future time intervals. The
charging element of CBAC and abandoning request rejection, to increase cus¬

tomer satisfaction, is designed to maximise profit. Scheduling customer requests
in lightly loaded time periods increases system utilisation, sustains throughput
and reduces request failure.
In the next chapter, an investigation of CBAC performance is described. ECBench
is extended to support CBAC benchmarking. Experiments have been designed
and performed to examine the effect of CBAC on different Internet Commerce
QoS metrics.

102

Chapter 6

Investigating CBAC Performance

6.1 Introduction

This chapter provides an analysis of the QoS enhancement achieved by using
CBAC. The impact of CBAC on service time, system utilisation, throughput
and profit is investigated. The analysis was carried out using the ECBench tool
described in Chapter 3 and provides a demonstration of how the tool could aid
a researcher in understanding the performance impact of a novel technique such
as CBAC.

The rest of this chapter is structured as follows. The extension made to ECBench
to support CBAC benchmarking is discussed in Section 6.2. This is followed
in Section 6.3 by a description of the analysis done on CBAC's performance,
comparing it with a CBAC-disabled system and investigating the effect of different
CBAC parameters on performance. Finally, in Section 6.4, a summary is given.

6.2 ECBench Support for CBAC
To enable the analysis of CBAC's performance effect on an Internet Commerce
system, the ECBench tool has been extended to support the benchmarking of
CBAC. These extensions are described in the following subsections.

6.2.1 ECBench Server-side Extensions

ECBench's Application Server, implemented using Java Servlets and described in
Section 4.4.2, was extended to support CBAC. Figure 6.1 illustrates the main
servlet and non-servlet classes composing the CBAC extension. Central to the
extension is the CBACServlet component which is composed of two main parts,
the Service Map and Scheduler. Service Map implements the navigational model of
CBAC, CBAC-NM, described in Section 5.5.3, including its service time estima-

103

ServiceMap

Atomic
Service

o

-o CBACServlet

Z\

a Scheduler

Service

"ZX"

Composed
Service

AdmissionControl
Servlet

AcceptDiscount
Servlet

AcceptCharge
Servlet

RejectOffer
Servlet

BackForOffer
Servlet

FulfilOffer
Servlet

<>

Performance

Monitor

Figure 6.1: ECBench's Application Server Extension

tion described in Section 5.5.4. The AtomicService and ComposedService classes
inherit the Service class. A list of Service objects is held by the Service Map rep¬

resenting different services in CBAC-NM.
The Scheduler class is responsible for implementing CBAC's scheduling mecha¬

nism described in Section 5.6. It interacts with a simple CBAC database which is
hosted by ECBench's Database Server. An entity-relation diagram for the CBAC
database is shown in Figure 6.2. The Scheduler selects the time interval to be of¬
fered to a customer accepting a discount (during which the offer can be fulfilled).
If the customer then decides to accept the discount offer, the Scheduler updates
the database, adding a job to the JobsScheduled table. A job is identified uniquely
by a jobID which corresponds to the offer Id that is required for offer fulfilment.
Each job in the JobScheduled table is associated with a Schedulinglnterval table
record by setting time to reference the appropriate interval ID. The JobsScheduled
table contains other job information including the first service which the customer
will request when returning for offer fulfilment, the discount offered to the cus¬

tomer, the estimated number of CPU cycles required in the customer session and

104

Schedulinglnterval JobsScheduled

intervallD JobID
startTime time
duration startingService
scheduledLoad discount

accumulativeLoad
cpuCyclesEstimated
customerld

Figure 6.2: CBAC Database Entity-relationship Diagram

the customer identification. In order to minimise database interactions overhead,
the Scheduler maintains information about the scheduled load and historical load

for each time interval. These are required for deciding when to schedule a job.
Due to memory size limitations (especially if CBAC is used over a long time pe¬

riod), a persistent copy of such load information is maintained by periodically
updating the Schedulinglnterval table.
A Java Servlet is used to implement each of the CBAC-specific web interactions

described in Section 5.7. All the servlets inherit CBACServlet and thus share its

ServiceMap and Scheduler. A description of each servlet is given below:

• AdmissionControlServlet: As described in Section 5.7.1, all customer requests

go through this servlet to check whether CBAC is to be applied. The Admis¬
sionControlServlet implements CBAC's pricing model which was explained in
Section 5.4. Its Performance Monitor object periodically checks CPU usage

to determine when the threshold e is exceeded in order to activate CBAC.

The formation of CBAC offers is performed by the AdmissionControlServlet
querying the ServiceMap and the Scheduler for the information required to
calculate the discount/charge amount A and the proposed return time for
the discount part of the offer. Java Servlets' session tracking mechanism
(described in Section 4.3) is used to temporarily store the pending offer.

• AcceptDiscountServlet: This servlet is requested when a customer accepts
the discount part of an offer. The servlet examines the customer session to
check the offer details. The Scheduler is then informed to add a job, at the
offer scheduled interval, to the JobScheduled table of the CBAC database
described above. The JobID is sent to the customer as the offer Id to use

when coming back for offer fulfilment.

• AcceptChargeServlet: As in AcceptDiscountServlet, the offer details are re-

105

trieved from the customer session. The amount of extra charge that the
customer has to pay is kept in the customer session to be added later to the
customer's final bill. The customer is then allowed to proceed with their
original request.

• RejectOfferServlet: This servlet terminates the customer session and deletes
the offer pending details.

• BackForOfferServlet: This servlet contains a form to allow a returning cus¬

tomer, who was given and accepted a discount offer, to enter the offer Id.

• FulfilOfferServlet: This servlet requires offer Id in order to check the offer
validity by querying the CBAC database. If the offer is valid, the discount
amount offered is stored in the customer's session to be deducted from

the final bill. The customer is then directed to proceed with their original
request. If the offer is not validated, the customer will be permitted to start
a new session without any discount.

6.2.2 ECBench Workload Extension

The workload part of ECBench, described in Section 3.6, was extended to sup¬

port the handling of CBAC interactions. The following was added to the EB
component of ECBench's RBE:

• Several classes to represent CBAC-specific interactions including, Accept
Discount, Accept Charge, Reject Offer, Back For Offer and Fulfil Offer were

implemented. The classes inherit Web Interaction, described in Section 3.6.1,
which enables the EB to navigate through CBAC services according to a

specified access pattern determined by navigation thresholds.

• Another two classes inheriting Web Interaction were also added to EB: Offer
Decision and Terminate. They are dummy interactions that are never re¬

quested. OfferDecision represents the EB in the stage of making a decision
about whether to take the discount, accept the charge or reject the offer
according to specified navigation thresholds. Terminate represents the EB
at the end of the navigation session.

• Offer Details, representing details of a CBAC offer accepted including time
of return and offer Id. The EB uses the timing information to wait for the
required time before making a BackForOfferServlet request. The offer Id is
used in the offer fulfilment stage when the EB requests FulfilOfferServlet.

106

6.3 CBAC Performance Analysis

This section provides a description of the work done to investigate the feasibility
of CBAC and its effectiveness in enhancing QoS in an Internet Commerce system.
ECBench was used to carry out this investigation based on its extension described
in Section 6.2 and its Java Servlets application server implementation described in
Section 4.4.2. Table 6.1 is a shortlist of CBAC parameters derived from CBAC's
description provided in Chapter 5. These parameters are used throughout this
chapter in the analysis of CBAC performance.
The rest of the section is structured as follows. The design and deployment of
the experiments performed are described in Section 6.3.1. Analysis of the results
obtained with respect to service time, system utilisation, throughput and profit
metrics is provided in Sections 6.3.2, 6.3.3, 6.3.4 and 6.3.5 respectively. CBAC's
overhead is investigated in Section 6.3.6, and the effect of CBAC's load forecasting
is described in Section 6.3.7.

Parameter Description
e CBAC threshold.

(3 Delay weight.
6 Scheduling weight.
a Load weight.
4-^max Maximum limit on discount/charge offered.
c Charging factor controlling the ratio between charge

and discount.

Navigational structure Details of services offered by the system including how
they are connected, navigational probabilities between
them and estimations of the required service time for
each of them.

L The number of items the customer is likely to request.
CBAC access pattern Reflecting user behaviour when dealing with CBAC.

Probability of navigation through the following services
is required: Accept Discount, Accept Charge, Reject Offer,
Back For Offer and Fulfil Offer.

Workload The size and structure of workload.

Scheduling interval The length of the unit interval in which CBAC's
postponed requests are scheduled.

Forecasting period The length of the forecasting period over which history
data is re-used.

Table 6.1: Shortlist of CBAC Parameters

107

6.3.1 Experiment Design and Deployment

Six experiments were designed and performed, the first is CBAC-disabled in which
CBAC was not applied. In the other five experiments, CBACl, CBAC2, CBAC3,
CBAC4 and CBAC5, CBAC was applied with different parameter sets as detailed
in Table 6.3.

The duration of each of the experiments was 48 hours. Two day experiments
were performed to investigate the effect of one day load forecasting on CBAC
performance. In all experiments, ECBenclbs wuikluad was toggled every hour
between two levels, high and low, as illustrated in Figure 6.3. At high load, 248
EBs were used. Two EBs were used to represent the low load. In a real system,
a pattern can usually be found of high and low workload at certain times, e.g.

high load at lunchtime, low load after midnight, etc. The workload used in the
experiments represented an extreme case of such a repetitive pattern in which
the pattern is repeated every two hours. Such simplified workload was chosen to

analyse system performance when stressed at high intervals and during low load
intervals.

The workload used in the experiments represents a fixed user population. In
a high load interval, a total fixed population of 248 users were interested in the
service offered by the system at anytime during the experiment. Similarly in a

low load interval, the population of users was two. Such users were represented
by EBs continuously generating service requests, thus producing a large number
of jobs during the course of the experiment. Initially, at the start of each hour,
the number of active EBs is either 248 or 2 depending on the level of workload in
the hour. In the CBAC-disabled experiment, this user population was maintained
throughout the remainder of the hour. However, in CBAC experiments, when a

CBAC discount offer was accepted (in a high load interval), the EB through which
this acceptance occurred becomes inactive until the end of the interval. Thus,
the number of EBs through which a discount offer acceptance occurs are removed
temporarily from the original workload. It was decided to deactivate such EBs
in order to test the effect of CBAC's discount core feature and the reduction of

system workload it causes.

The navigational structure described in Section 5.5.2 and depicted in Figure 5.2
was used in all the experiments. A preliminary experiment was performed in
order to form service load estimates for each of the different interactions in the

108

X
Workload

ECBench Result Analysis □ X

248

T>
H3
O

O

5

Workload

9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47
Hours

Figure 6.3: Common Workload to All Experiments Performed

Service Total Time Estimate (s) Idle Time (s)
Home 0.147 0

Best Sellers 0.5 0.43

New Products 0.235 0.009

Search Request 0.12 0

Search Result 0.128 0.012

Product Details 0.125 0.001

Shopping Cart 0.131 0.012

Customer Registration 0.127 0

Buy Request 0.707 0.589

Buy Confirm 0.171 0.048

Table 6.2: Service Load Estimates

structure. By using a workload size of one EB, delays incurred by request queue-

ing were eliminated and thus, the time estimates acquired reflected the actual
service load of each interaction. For this experiment, the Java Servlets imple¬
mentation for the navigational structure interactions (described in Section 4.4.2)
was used and deployed in an Apache Tomcat web server. Both ECBench's Web
Server and Database Server were deployed on the same machine. ECBench's RBE,
which consisted of only one EB, was deployed on another machine. The time
estimates acquired for each web interaction are listed in Table 6.2. The Time
Estimate measurement was considered as the time elapsed between the server

receiving a web interaction request until a response is returned. Part of the
Time Estimate measurement is the Idle Time during which request processing
is suspended waiting for database operation to be completed. The Idle Time
component was measured for each of the web interactions. These time estimates

109

were used in the main experiments for three purposes:

• As delays to model the interactions and abstract their database transac¬

tions, HTML page construction and sending. The server multi-threading
behaviour was achieved by modelling the interactions' Idle Time. This was

implemented by suspending service requests (putting request threads into
sleep) for a duration equals to the service's Idle Time resulting in CPU
processing to alternate between different requests.

• Secondly, the estimates were used in the CBAC experiments (mapped to
CPU cycles) in order to get total time estimates, required for request
scheduling, as explained in Section 5.5.4.

• Finally, the estimates formed a set of service time QoS targets and were

used to assess system performance in the main experiments.

In CBAC experiments, the effect of varying the threshold parameter e, the charg¬
ing factor C and the CBAC-specific service access pattern was investigated. The
values of these parameters are listed in Table 6.3 for each experiment. In CBACl,
CBAC2, CBAC3, e was varied to examine the effect of CBAC's strictness in con¬

trolling system load. CPU utilisation was used as an indicator of system load.

Experiment e C Accept Accept Reject Back Not
Discount Charge For Offer Back

CBACl 0.58 3 0.4 0.3 0.3 0.7 0.3

CBAC2 0.7 3 0.4 0.3 0.3 0.7 0.3
CBAC3 0.78 3 0.4 0.3 0.3 0.7 0.3

CBAC4 0.78 3 0.4 0.5 0.1 0.9 0.1
CBAC5 0.78 6 0.4 0.5 0.1 0.9 0.1

Table 6.3: CBAC Experiments Varied Parameters

Parameter Value

P 0.33

6 0.33

a 0.33
4-rimax 1

L 1

Scheduling interval 1 hour

Forecasting period 1 day

Table 6.4: CBAC Experiments Common Parameters

110

A CPU reading was taken every 20 seconds to determine whether e had been
exceeded and whether to apply CBAC. Taking a CPU reading for every request
would have increased CBAC's overhead. In CBAC4, CBAC's customer access

pattern was varied increasing the percentage of customers accepting a charge,
reducing the offer rejection rate and increasing the percentage of customers com¬

ing back for a discount offer. In all CBAC experiments, the worst case scenario
was adopted in which all customers who rejected an offer immediately attempt
to request a new service. The effect of increasing the charging factor C on profit
was investigated in CBAC5. The rest of the CBAC parameters were common to
all CBAC experiments and are listed in Table 6.4.

In all experiments, ECBench's workload at high intervals was distributed equally
across four machines. Each of the machines was running Linux and had an Intel
Pentium 4, 1.80GHz processor. The server was deployed on an Apache Tomcat
server running on an Intel Pentium III 1GHz Linux machine. The same meth¬
ods described in Section 4.5.3 were used to collect system measurements. As a

scheduling interval of one hour is used in all CBAC experiments (see Table 6.4),
the amount of system resources available per scheduling interval on the server

machine was 3.6 * 1012 cycles. Such a resource estimate was required to decide
when to schedule postponed customer requests as described in Section 5.6.1. It
was assumed that only 3.6 * 109 cycles were the available resources each hour.
One reason for restricting the available resources for scheduling was because a

proportion of CPU cycles were consumed in system-related processes. However,
the main reason for this restriction was due to the limited size of workload in the

experiments performed and the large amount of available resources per schedul¬
ing interval. Under estimating the resources available at each interval enables the
distribution of scheduled jobs across future intervals and thus provides a better
distribution of the load.

Analysis was performed to investigate how far in the future a user request is
scheduled. Table 6.5 and Figure 6.5 show the number of jobs scheduled at each
scheduling interval in a CBAC experiment performed with the same parameters
as CBAC5 (see Table 6.3 and Table 6.4). The duration of the experiment was 30
hours. The workload of the experiment is shown in Figure 6.4. It is subject to the
same workload structure as the main experiments described in this chapter. The

scheduling strategy described in Section 5.6.2 was used in which the earliest time
intervals were given scheduling priority. This scheduling strategy was also used
in all other experiments described in this chapter. The variation in the number

111

Time Interval Workload Size No. of Jobs Scheduled
into this Interval

1 248 0

2 2 235
3 248 22

4 2 216

5 248 58
6 2 203

7 248 71

8 2 211

9 248 35
10 2 213

11 248 50
12 2 213
13 248 50
14 2 208

15 248 69
16 2 215
17 248 64

18 2 208

19 248 46
20 2 215
21 248 57
22 2 226
23 248 27

24 2 208

25 248 46
26 2 212

27 248 57
28 2 212

29 248 49
30 2 211

Table 6.5: Number of Jobs Scheduled in Each Hour

of jobs scheduled in each interval is due to the varying size of the jobs scheduled.
The size of each job is determined by the service time estimate of the request at
which a CBAC discount offer is accepted and all subsequent requests likely to be
requested (as described in Section 5.5.4). It can also be seen from Figure 6.5 that
the number of jobs scheduled at each of the low load intervals is not substantially
less than the load imposed on the system from the previous interval (a high load
interval). This indicates that a large proportion of jobs were scheduled in the
next interval. The cumulative scheduled jobs is depicted in Figure 6.6. It shows

that scheduling reaches a regularity quickly, three hours after the start of the
experiment.

X
i Workload

ECBench Result Analysis □ X

WorkloadSize D00 ■■
Workload

1 1 1 3 1
Ho

5 1
urs

7 1 9 2 1 3 2 S 2 7 9

Figure 6.4: Scheduling Effect Experiment Workload

ECBench Result AnalysisX -»

Jobs Scheduled

□ X

■o -MS'
Scheduling Effect

5 6 7 8 9 10 1! 12 13 14 15 16 17 IS 19 20 21 22 23 24 25 26 27 28 29 30
Hours

Figure 6.5: Jobs Scheduled at Each Interval

ECBench Result Analysis <3>
Cumulative Jobs Scheduled

39071

s 3256'
1 2605 I

3

^ 1954-
S
5 1302'
2
E
u 651.

0.

Scheduling Effect

Figure 6.6: Cumulative Jobs Scheduled

113

00hrj o~<§'
£

"2.g 13

OqC3 n

CL)

Co

9

so <s». Co

O-

c-~« CD

a-

8 O s Q

p 3
Cl

8 Q m

CD t-i
<1. O*

CD

H

B

CD

W

x^:
ECBenchResultAnalysis<5>

□X

40

X-«

ECBenchResultAnalysis<2>

□X

o

>-i

O5̂

1-8oq cn£
-ŷ

o»
"OCD "2.̂

3••
Oq—N

8

CDO ns

8

a,

c-s>. Co

a o-

e—- Cb

a-

8 o

X-M

ECBenchResultAnalysis<3>

□X

Cn

8 8

3 c-

8 O

Co CO
CD i-i

<_ o"

CD

H

3

CD
CD

X-w
ifCBAC31

ECBenchResultAnalysis<4>

□X

ShoppingCartServiceTime

25

221
«17 ^12

a;
u E8

aj
yi4

1

1

I

1

AlULi

1113

15

17

19

21

2325 Hours

27

2931

3335373941434547

X-M

ECBenchResultAnalysis<4>

□X

CBAC3
25

•21
17

ShoppingCartServiceTime

12

£

CD

Li

■i.

11

1315
2kj|»

Tt

-■....1

■U-.1i--I.■'

1

17

1921

232527 Hours

29

31333537
39

41

4345

47

X-w

ECBenchResultAnalysis

□X

6.3.2 Service Time

As explained in Section 6.3.1, service time estimates were used to model the delay
incurred on the ECBench server to fulfil each web interaction in the navigational
structure. As these delays were obtained under low workload, they represent a

desired QoS level in terms of the service time metric. The extent to which these
service times were achieved in the experiments performed is discussed in this sec¬

tion. The Shopping Cart interaction service time is used as a sample interaction
to illustrate this metric. Other interactions' mean service time and standard de¬

viation analysis is provided in Appendix E
Figure 6.7 depicts the results obtained from examining Shopping Cart's service
time in CBAC-disabled, CBACl, CBAC2 and CBAC3. It can be seen that there
is a substantial service time reduction in CBAC experiments compared with when
CBAC is disabled. CBAC service time tends to be high at the start of high
workload periods before CBAC is applied to reduce it. CBAC service time im¬
provement is reflected in the service time mean and standard deviation calculated
and shown in Table 6.6. The mean service time achieved in the CBAC-disabled

experiment was 5.4 seconds for Shopping Cart which was reduced about 18 fold
in CBACl and, in the worst case, about 11 fold in CBAC3. CBAC service time
results are much closer to the 0.131 seconds QoS service time target for Shopping
Cart explained in Section 6.3.1. Standard deviation values reflect the higher di¬
versity of service times in the CBAC-disabled experiment when compared to the
CBAC experiments.

The other observation that can be made from Figure 6.7 and Table 6.6 is the
variation in service times for CBACl, CBAC2 and CBAC3. As described in
Section 6.3.1, these experiments differ in the e threshold value which was varied
between 0.58, 0.7 and 0.78 in CBACl, CBAC2 and CBAC3 respectively. It can

be seen that increasing e causes service times to slightly increase. This is because,
at higher threshold values, CBAC is less strict in controlling the system's conges¬

tion state which is translated into slightly poorer service times.

Experiment CBA C-Disabled CBACl CBAC2 CBAC3 CBAC4
Mean (s) 5.4 0.3 0.37 0.47 0.41

Standard Deviation 5.88 0.89 0.98 1.2 1.02

Table 6.6: Mean and Standard Deviation Service Time Analysis for Shopping Cart

117

The effect of varying the CBAC services access pattern on service time is anal¬
ysed comparing the service time results obtained from CBAC3 and CBAC4- As
described in Section 6.3.1, the percentage of customers accepting a charge was

increased and the likelihood of CBAC offer rejection was reduced in CBAC4- This
caused a slight reduction in service time as illustrated in Figure 6.8 and Table 6.6.
The reason for this reduction is two fold. Firstly, higher rates of accepting the
charge mean that CBAC is applied more regularly as less requests are postponed
at each application (up to a maximum of every 20 seconds when a new CPU util¬
isation sample is taken). This causes service time to be reduced earlier in a high
workload interval. The second factor is related to the variation in the CBAC offer

rejection rate. As explained in Section 6.3.1, the worst case scenario is assumed
in which customers rejecting a CBAC offer return immediately to the site to start
a new session. The lower rejection rate in CBAC4 reduces the load introduced
by such customer returns which is reflected in a better service time performance.

6.3.3 CPU Utilisation

In all experiments, the average CPU utilisation of ECBench's server is sampled for
measurement every minute (this is different from CBAC's CPU sampling every
20 seconds required for its operation). The CPU utilisation results obtained
are depicted in Figure 6.9 for CBAC-disabled, CBACl, CBAC2 and CBAC3
experiments. In CBAC-disabled, it can be seen that CPU utilisation is just below
one in more than one instant and a high utilisation is maintained for the duration
of high load intervals. However, in the CBAC experiments, CPU utilisation is
reduced to below CBAC's e threshold, apart from at the start of high workload
intervals during the time in which CBAC is being applied. A slower reduction of
CPU utilisation can be noticed as e is increased in CBA C2 and CBA C3.

It can also be observed that CPU utilisation drops to a very low level at some time
intervals in CBAC experiments during which only system background processes

were running. The regularity of these intervals decreases as e is increased (only
occurring two times in CBAC3). During these periods, CBAC has scheduled
all workload to future intervals triggered by a previous sample in which CPU
utilisation exceeded e. This explains the reduction of such no-activity intervals
as e is increased. This observation illustrates the way CBAC exposes unused
capacity which can be exploited as the workload size is increased.

118

6.3.4 Throughput and Failed Requests

The throughput metric is considered to be the rate at which web interactions are

completed successfully in one minute. For the CBAC experiments, CBAC-specific
interactions are not included in the metric. The throughput results obtained for
CBAC-disabled, CBACl, CBAC2 and CBAC3 are shown in Figure 6.10 and
the total number of interactions completed during each experiment is shown in
Table 6.7. It can be seen that there is a decrease in throughput when CBAC is ap¬

plied. This is due to the fact that a percentage of requests handled by the system
are for CBAC-specific interactions. Another reason for the drop in throughput is
the occurrence of the no-activity periods described in Section 6.3.3. This explains
the increase in throughput in CBAC2 and CBAC3 when the CBAC threshold
e is increased. Requests scheduled for execution beyond the duration of CBAC
experiments also contribute to the overall reduction in throughput.

Request Failure is another metric considered in the analysis. The total num¬

ber of failed requests in CBAC-disabled, CBACl, CBAC2, CBAC3, CBAC4 and
CBAC5 is shown in Table 6.8. These request failures were caused by the server's
automatic rejection of requests when reaching an overloaded state. It can be
noticed that request failure drops dramatically when CBAC is used.

Experiment CBAC-
Disabled

CBACl CBAC2 CBAC3 CBAC4 CBAC5

Requests
Completed

1,044,902 460,482 522,294 744,540 704,984 732,718

Table 6.7: Total Number of Interactions Completed During Experiments

Experiment CBAC-
Disabled

CBACl CBAC2 CBAC3 CBAC4 CBAC5

Failed

Requests
80649 5813 5701 5626 5712 5778

Table 6.8: Total Number of Failed Requests During Experiments

6.3.5 Profit

A profit per minute metric was used to measure the system's profit, that is the
total amount of profit acquired every minute. It was assumed that the basic profit
gained on the completion of each customer session (i.e. executing the Buy Confirm

119

Crq

C

CD

X-*

ECBenchResultAnalysis
CBACDisabled

□X

CPUUtilisationperMinute

3 C C o

ZD
Q_

U

(nfo

d

<4

*

AY

M*

4

liiiinffl

d
■nJ

V

jLak rT'
-J

P*1

A

HP

JLMLLjljwtri
|Vv

WHw

*

57911131517192123252729313335373941434547 Hours

ECBenchResultAnalysis

□X

CBACl

CPUUtilisationperMinute

11

3 C C O

ZD
a.

U

J uAjLLyJ|dL<l|L| kcIkkkÛ

_■r-

-■■r~

1357911131517192123252729313335373941434547 Hours

o3
tOCrqêttr̂

o<*>

x-«

ECBenchResultAnalysis

□X

ECBenchResultAnalysis

□><

CPUUtilisationperMinute

p 3 C-

□X

CBACDisabled

Throughput

X-»

ECBenchResultAnalysis<2>

□X

CBAC1

Throughput
19212325

Hours

353739414345

2

erg' >-s ct>
05

Q

o 3

C+

8

Si- CO.
a cr- C--M ct>

a-

-§
tô

CÔ

o 8 Q

3 3
Q.

8 O

So

H

3J

>-i
O 3

Crq

3"

tJ

3

ECBenchResultAnalysis<3>
X-M CBAC3
ECBenchResultAnalysis

□><

Throughput

3941434547

service) is one. CBAC's discount is subtracted from the basic profit. A charge
is added to the basic profit in the case of a CBAC charge offer. As explained in
Section 6.3.1, the upper limit of CBAC's discount/charge Amax is one. However,
the overall CBAC charge can exceed this limit if the charging factor C is greater
than one.

Figure 6.11 illustrates the profit/minute results obtained for the CBAC-disabled,
CBACl, CBAC2 and CBAC3 experiments. The cumulative profit per minute is
depicted in Figure 6.12. The high profit at the start of high workload intervals
is due to CBAC's charge offers. However, overall, it can be seen that profit in
CBACl drops substantially when compared with CBAC-disabled's profit. One
factor which contributed to this drop is the higher rate of customers accept¬

ing a discount (40%) compared to the charge acceptance rate (30%). Customer
rejection of CBAC offers also contributed to the fall in profit. As discussed in
Section 6.3.1, it was assumed that all rejecting customers immediately return and
start a new session, which would put them further away (requesting the Home
interaction) from the point where they would bring profit to the system (request¬
ing the Buy Confirm interaction). However, the main factor which caused the
drop is the no-activity intervals explained in Section 6.3.3 due to the strictness
of CBACl (58% threshold). During these intervals, all the workload has been
scheduled for future execution and the current profit is zero. This factor becomes
less significant as CBAC's threshold e is raised in CBAC2 and CBAC3 which
improves the profit dramatically.

Comparing the results of CBAC3 and CBAC4 gives insight into the effect of
CBAC's access pattern on profit. Figure 6.13 depicts profit/minute results ob¬
tained for both experiments with the cumulative profit shown in Figure 6.12. It
can be seen that a higher profit was achieved in CBAC4- This is due to its higher
charge acceptance rate and the increased percentage of returning customers (for
discount offer fulfilment).

In CBAC5, CBAC's charging factor C was increased to six and the profit results
obtained are compared with CBAC4 (in which C—3) as shown in Figure 6.14 and
Figure 6.12. It can be seen that a substantial improvement in profit was achieved.
In addition, CBAC5's profit matches the profit obtained in CBAC-disabled and
slightly exceeds it in some time intervals.

124

Experiment CBAC-disabled CBAC2
Mean Service Time (s) 0.205 0.22

CBAC Overhead (s) 0.015

Table 6.9: CBAC Overhead Analysis at Low Workload Intervals

CBAC-Specific Interaction Mean Service Time (s)
Accept Discount 0.4

Back for Offer 0.1

Fulfil Offer 0.17

Accept Charge 0.25

Reject Offer 0.26

Table 6.10: CBAC-specific Services Delay

6.3.6 CBAC Overhead

Three elements contribute to CBAC's overhead delay when compared to a CBAC-
disabled setting. Firstly, the monitoring of system utilisation to determine when
CBAC is applied. In the CBAC experiments performed, the server's CPU utilisa¬
tion was sampled every 20 seconds, rather than per request, to minimise overhead
as explained in Section 6.3.1. Such overhead can be quantified by comparing the
mean service times in low workload intervals when CBAC is enabled and disabled.

Table 6.9 summarises the results obtained from performing such an analysis for
the CBAC-disabled and CBAC2 experiments. It can be seen that a small overhead
of 0.015 seconds is introduced in the CBAC experiment due to CPU sampling.
At high load, when CBAC is applied, another overhead is introduced in preparing
a CBAC offer for the customer. However this overhead can be neglected due to
the large service time gains achieved when CBAC is applied. A more substantial
CBAC overhead is introduced by the service time required to execute CBAC-
specific services. Table 6.10 summarises the mean service times for such services
obtained from the CBAC2 experiment. Three possible overhead values can be
introduced to the customer session given their CBAC access pattern. Accepting
a discount offer, a 0.67 seconds delay is incurred due to executing services Accept
Discount, Back For Offer and Fulfil Offer. This overhead is distributed between
the customer's first visit to the site and the second visit when the customer re¬

turns for offer fulfilment. A total overhead of 0.25 seconds is introduced if the

customer accepts CBAC's offer charge (Accept Charge service time). The Reject
Offer service time represents the overhead when the customer rejects the CBAC
offer.

125

6.3.7 CBAC Load Forecasting Effect
As described in Section 6.3.1, a one day forecasting period is used in CBAC
experiments to predict future system load which is required to determine when
postponed requests are to be scheduled. CBAC's load forecasting is based on the
history of system load as explained in Section 5.6.3. Thus, during the first day
of a CBAC experiment, load forecasting has no effect as there is no load history.
At the start of the second day, such forecasting starts to contribute to CBAC
scheduling. To investigate the forecasting effect, the mean service times (for
Shopping Cart) in the first and second days of CBAC experiments are calculated
and summarised in Table 6.11. It can be seen that there is an increase in the load

forecasting effect, reflected by a reduction in the second day mean service time.
This becomes more significant as CBAC's threshold e is increased in CBAC3 and
CBAC4- In CBAC3, the load forecasting reduces mean service time by about
50% in the second day. CBAC4 was less affected by load forecasting due to
the increase in CBAC's charge acceptance rate. The reason for load forecasting
having less impact in CBAC1 and CBAC2 could be due to the no-activity periods
described in Section 6.3.3 which disturb load prediction.

Experiment Overall Mean First Day Mean Second Day Mean Reduction
CBAC1 0.3 0.35 0.25 28.6%
CBAC2 0.37 0.43 0.31 28%
CBAC3 0.47 0.63 0.32 49.2%
CBAC4 0.41 0.51 0.31 39.2%

Table 6.11: Service Time Analysis per Day for CBAC Experiments

6.4 Summary
The experiments reported in this chapter provide a proof-of-concept for CBAC.
They show not just the feasibility of CBAC but also its great potential. Analysis
of the results of the experiments has illustrated CBAC's effectiveness in providing
a comprehensive enhancement framework for different Internet Commerce QoS
metrics.

Using CBAC, a desired system utilisation can be strictly achieved providing rig¬
orous control of system congestion. This is be accomplished without adopting a

customer request rejection policy. Rather, part of the system load is distributed
to future time intervals with a discount reward to improve customer satisfaction.
Service times are reduced dramatically when CBAC is used, achieving a decrease
by a factor of 18 compared with the performance of a CBAC-disabled system. An

126

even further reduction in service time can be achieved by increasing the strict¬
ness of CBAC (lowering e). The use of load forecasting in request scheduling
enhances CBAC's performance with a significant reduction in service time of
about 50% which is achieved only in the first interval forecasting is applied. The
load forecasting impact is likely to increase in later intervals as load history data
is accumulated.

A substantial decrease in request failure is accomplished when CBAC is activated
due to the improved distribution of system load. Reasonable throughput rates
are achieved and can be increased further with higher workload sizes to exploit
the unused system resources exposed by CBAC.
High profit is acquired with CBAC due to its charging of customers pursuing their
requests in highly congested intervals. This compensates for the profit loss caused
by CBAC's discount offers. Increasing the ratio between charge and discount us¬

ing CBAC's charging factor C raises the profit even further to levels above what
is achieved in CBAC-disabled systems.
All of the the above improvements to different QoS metrics are achieved with
minimum CBAC overhead.

The use of ECBench validates the results obtained as it provides an emulation of
a real Internet Commerce system as specified in the TPC-W specification. Ver-
fication was achieved by extensive debugging of the CBAC extensions made to
ECBench to ensure correct functionality.

127

Oq

C

CD

O

x-«

ECBenchResultAnalysis

□X

CBAtDisabled 260 717
3 C

173 130

4—'
It—

o

87

Q_

43

0

ProfitperMinute

11

13

15

17

19

21

2325 Hours

27

29

31

33

35

37

39

41

43

45

47

X-ta CBACl
ECBenchResultAnalysis

□X

260 217 173 130
O87 * 43

0

ProfitperMinute

i

1

^]fj

*■"■MJ'V
L-fL.

r

»ii.i .T1

-P-

u

*~i

-n

L~|

-p-

-C=

■>*»»»»!

Wv-rVif■
i r~

11

13

15

17

19

21

2325 Hours

27

29

31

33

35

37

39

41

43

45

47

o3
tooq

ju3 Oa

O*

o

o 3

C~t-

X-w

ECBenchResultAnalysis

□X

CBAC2

ProfitperMinute

260- *217" J173- £ 43«

*"U.

Lfc

|

r*1

L

S—

1|

hr

1—w

M

1r"

^

0"

i

3

5

7

9

11

13

15

17

19

21

2325 Hours

27

29

31

33

35

37

39

41

43

45

47

T)

i-s
o

35

Q

p 5'

CD

O-

8

«S5. C/3

© O-

ct>

§ O

oo
CO

8 Q

p 3 C-

ECBenchResultAnalysis
CBAC3

ProfitperMinute
1517192123252729313335373941434547 Hours

ECBench Result Analvsis
Cumulative Profit

■ CBAC Disabled
HCBAC1
□ CBAC2
BCBAC3
■ CBAC4
■ CBAC5

111111

S 00009
c

5

o

£ GGG6G

22222

133333

Cumulative Profit per Minute

Figure 6.12: Cumulative Profit

130

ECBenchResultAnalysis<2>

□X

ProfitperMinute
11131517192123252729313335373941434547 Hours

X-«

ECBenchResultAnalysis

□X

y.

cm"
c

>-i CD

Oi

I—i>
H

CD CD

Q ro > o

CO*
o

tr
e»

crq
CD

o

<T+-
o

1-1
o 3

TJ

i-i
O

tb

x-«

ECBenchResultAnalysis

□X

CBAC5

ProfitperMinute

523 436
4262 1174

a.

87

0

1I

1

V

i

i

i

1

fL~

p

1

H—

u__

—t

<-1

\

L-u_

II• _

u

—

1

H

U-J

_

„

791113
1517

1921232527 Hours

29

31

33353739
41

43

45

47

CO
to

X-w

ECBenchResultAnalysis<2>

□X

CBAC4

ProfitperMinute

Chapter 7

Conclusions

7.1 Thesis Overview

This section provides a summary of the work presented in the thesis outlining its
major contributions to the field and emphasising the work's novelty.

The first major contribution is the ECBench tool which enables the performance
benchmarking of different Internet Commerce technologies and techniques. At
the system design stage, ECBench can aid an Internet Commerce application
developer in making QoS design decisions by choosing between alternative tech¬
nologies based on their performance merits. The tool can also be used by a re¬

searcher investigating the performance of a new e-commerce technique. ECBench
is a novel tool in its provision of a performance benchmarking framework which
is specialised in Internet Commerce, rather than general web applications. This
specialism is reflected in its use of the standard TPC-W specification providing a

realistic emulation of an Internet Commerce system. ECBench also provides sup¬

port for a comprehensive set of QoS metrics that are important to the performance
analysis of Internet Commerce systems. It facilitates the analysis of system's
profit levels, resource utilisation and throughput. Analysis of customer satisfac¬
tion can also be performed by investigating the system's service time and request
failure rate. The other aspect of ECBench's novelty is that it is a general-purpose
Internet Commerce tool because its modular design makes it easily extendable
to benchmark new technologies and techniques. Using ECBench's experiment
features, a user can design and run a set of experiments and the results obtained
are analysed and presented graphically. As a case study on the use of ECBench,
PHP and Java Servlets application server technologies were comparatively bench-
marked using the tool.

133

CBAC is the second major contribution presented in this thesis. It is a novel
cost-based admission control approach to enhance QoS in Internet Commerce
systems. It is based on a discount-charge pricing model to encourage customers
to postpone their service requests (by offering them a discount) when the system
is approaching a highly loaded state. A customer is required to pay an extra
charge in order to pursue their requests when the system is approaching a con¬

gested state. The pricing model is sensitive to the system's current load and
navigational structure. A scheduling mechanism combined with load forecasting
is used to schedule user requests in less loaded time intervals.

Analysing CBAC's performance using ECBench has shown its great potential
and effectiveness in providing a comprehensive enhancement framework for dif¬
ferent Internet Commerce QoS metrics with minimum overhead. Using CBAC, a

required system utilisation can be strictly enforced by controlling system conges¬

tion without rejecting customer requests. The experiments showed that service
time can be reduced dramatically with reduction by factor of 18 achievable, when
compared with CBAC-disabled environments. Using one day of historical data in
load forecasting, when scheduling CBAC's postponed requests, achieved a 50%
reduction in service time compared with the first day CBAC was applied with
no system history available. CBAC causes a substantial drop in request failures
compared with CBAC-disabled systems. Throughput is maintained at reasonable
levels and can be increased further at higher workload scenarios. Experiment
CBAC5 showed that CBAC's charging element and increasing the ratio between
charge and discount can achieve profit levels that matches what is acquired in
CBAC-disabled systems and slightly exceeds it in some time intervals.
Taken together, these experimental results show that CBAC is an innovative and
effective software-based approach in maintaining all the vital Internet Commerce
QoS metrics when the system is online. This is in contrast with other approaches
studied and currently used. These usually try to optimise one aspect of the
system's QoS and tend to target general Web applications. Being a software ap¬

proach, CBAC is a financially cheaper way of load balancing than using more

hardware. Customer request rejection as a way to control system congestion is
another major problem with the techniques currently used and found in the lit¬
erature. CBAC does not rely on such a rejection approach; rather, customers are

encouraged to postpone their requests in return for a reward. In my opinion, this
improves customer satisfaction and increases the probability of continued use of
the system.

134

7.2 Future Work

The work presented in this thesis can be extended in many ways. This section
provides a review of possible future research directions.

There is scope for future work on different aspects of CBAC. One possible en¬

hancement is to add a feedback element to CBAC in which its threshold e is

changed dynamically based on current workload and the level at which QoS re¬

quirements are achieved. Such a feedback loop would enhance CBAC's sensitivity
and reaction to variations in site traffic and thus achieve even better performance
results. Another extension to CBAC's admission control pricing model is to make
its discount/charge function also adaptable, not only to the current demand, but
also to the business's stock supply. For example, more discount and less charge
should be offered by CBAC when the stock is full of goods that must be sold
in the near future. Introducing such demand-supply adaptive nature of CBAC
would enhance its role as a tool to keep the competitive edge of the business.

An important issue that needs to be studied is customer's reaction to CBAC
and how it is affected by different social factors. Age, gender, wealth, computer
literacy and cultural background are all potential factors that could influence cus¬

tomer behaviour when dealing with CBAC. Considering the simpler high street
store model and investigating whether customer's reaction to bargaining is similar
in an Internet Commerce system could be a good starting point. A framework
should be devised to reflect how factors affecting customer behaviour contribute
to the setting of CBAC parameters in order to achieve optimal performance.

Another interesting direction of future work is to investigate CBAC's security.
An assessment of potential security risks could be done and CBAC should be en¬

hanced to deal with such risks. One potential security hole is a denial of service
attack caused by customers rejecting CBAC offers and immediately coming back
to start a new session. A mechanism is required to prevent rejected customers
from returning to the system. Interesting issues arise from this such as, how long
a rejected customer should be blocked from using the services offered by the sys¬

tem for and how the system's current and forecasted load could be used to resolve
this matter.

CBAC already uses historical data for load forecasting in order to enhance the
scheduling of postponed requests. Such learning from system history could be

135

used to extend CBAC in different ways. Firstly, it could be used to learn the
optimal value of e as an alternative to the feedback loop discussed above. His¬
torical data could also be used to predict a customer navigation pattern which
is required for calculating time estimates when CBAC is applied. Rather than
querying the customer about the number of items they are likely to purchase (as
described in Section 5.5.4), system access logs could be used to derive such infor¬
mation. The analysis of system access logs could also be used to provide more

complex scheduling strategies for CBAC's postponed requests. The times of the
customer's previous visits could contribute to scheduling decisions. Scheduling
policies that take into account the time-critical nature of some Internet Com¬
merce applications should also be studied.

The scope of the experiments performed was limited by the available resources.

Having more resources would allow using higher workloads to investigate how per¬

formance can be enhanced by exploiting the server's unused resources exposed by
CBAC. Performing longer experiments to analyse the long term performance ef¬
fect of CBAC's load forecasting could also be done. Varying CBAC's forecasting
and scheduling intervals and analysing its effect on system performance could also
be investigated.

CBAC could be applicable to B2B e-commerce systems. A different service model,
with a lower degree of dependency level compared with Internet Commerce, would
need to be used to investigate CBAC's performance impact on such systems. A
different workload characterisation would also need to be used.

A portable implementation of CBAC, which can be easily integrated into e-

commerce systems, should be developed. One possible way to achieve this is to

implement CBAC as an Apache module which would make it feasible for CBAC
to be deployed in any installation of the highly popular web server.

ECBench could be extended to provide a performance benchmarking environ¬
ment for other Internet Commerce models including auction sites, portals and
Electronic Markets. Further extensions could also include support for B2B e-

commerce systems. Issues such as system architecture, workload characterisation
and the nature of the services offered in each model would need to be studied and

modelled. ECBench's GUI could be enhanced so that experiments' layout and
their progress are displayed graphically to the user.

136

Bibliography

[1] Abu Shaaban Y. N. and Hillston J. A TPC-W-based Tool for Benchmarking
E-commerce Programming Technologies. In UK Performance Engineering
Workshop, Glasgow, U.K., July 2002.

[2] Abu Shaaban Y. N. and Hillston J. Comparative Performance Evaluation
of E-Commerce Technologies: A TPC-W-based Benchmarking Tool. In
International Conference on Analytical and Stochastic Modelling Techniques
and Applications, Nottingham, U.K., June, 2003.

[3] TPC. http://www.tpc.org/tpcw. Web site, Transaction Processing Per¬
formance Council, 2004.

[4] Netcraft. http: //news . netcraft. com/archives/web_server_survey.
html. Web site, Netcraft LTD, 2004.

[5] Various Sources. Western Europe B2C E-Commerce Report. Technical
report, eMarketer Inc. http://www.emarketer.com/Report.aspx7west_
eur_b2c_jul04, 2004.

[6] U.S. Census Bureau. United States Department of Commerce News, http:
//www.census.gov/mrts/www/current.html. Web site, The U.S. Census
Bureau, 2004.

[7] Whiteley D. e-Commerce: Strategy, Technologies and Applications. Mc-
Graw Hill, 2000.

[8] Information Society. Electronic Commerce - An Introduction. Technical
report, European Commission, July 1998.

[9] Group of private sector experts on E-commerce. Sacher Re¬
port, Electronic Commerce: Opportunities and Challenges for Gov¬
ernment, http://www.oecd.org/LongAbstract/0,2546,en_2649_37441_
1893992_l_l_l_374°/t41, 00 .html. Web site, Organization for Economic
Cooperation and Development (OECD), 1997.

137

10] Menasce D. A. and Almeida V. A. Scaling for E-Business: Technologies,
Models, Performance, and Capacity Planning. Prentice Hall PTR, 2000.

11] Deitel H. M., Deitel P. J., and Steinbuhler K. e-Business and e-Commerce
for Managers. Prentice Hall Inc., 2001.

12] Ince D. Developing Distributed and E-commerce Applications. Addison
Wesley, 2002.

13] amazon.com. www.amazon.com. Web site, Amazon Co., 2004.

14] etoys.com. www.etoys.com. Web site, etoys Co., 2004.

15] ebay.com. www.ebay.com. Web site, ebay Co., 2004.

16] yahoo.com. www.yahoo.com. Web site, Yahoo Co., 2004.

17] Jain R. The Art of Computer Systems Performance Analysis. John Wiley
& Sons, Inc., 1991.

18] Freier A., Karlton P., and Kocher P. The SSL Protocol, http://wp.
netscape.com/eng/ssl3/draft302.txt. Web site, Netscape Communi¬
cations, 1996.

19] The SET Security Protocol, www.setco.org. Web site.

20] Kristol D. and Montulli L. HTTP State Management Mechanism, http:
//www. ietf . org/rfc/rf c2109 . txt. Web site, Network Working Group,
IETF, 1997.

21] Arlitt M. F. and Williamson C. L. Internet Web Servers: Workload Char¬
acterization and Performance Implications. IEEE/ACM Transactions on

Networking, 5(5):631-645, Oct. 1997.

22] Arlitt M. F. and Williamson C. L. Web Server Workload Characterization:
The Search for Invariants. In ACM SIGMETRICS on Measurement and

Modeling of Computer Systems, pages 126-137, Philadelphia, U.S., May
1996.

23] Crovella M. E. and Bestavros A. Self-similarity in World Wide Web Traffic:
Evidence and Possible Causes. IEEE/ACM Transactions on Networking,
5(6):835-846, Dec. 1997.

138

[24] Almeida V., Crovella M., Bestavros A., and Oliveira. Characterizing Ref¬
erence Locality in the WWW. In IEEE/ACM International Conference on

Parallel and Distributed Systems, pages 92-107, Florida, U.S., Dec 1996.

[25] Huberman B. A., Pirolli P. L. T., Pitkow J. E., and Lukose R. M. Strong
Regularities in World Wide Web Surfing. Science, 280(3):95-97, April 1998.

[26] Schechter S., Krishnan M., and Smith M. D. Using Path Profiles to Pre¬
dict HTTP Requests. ACM Computer Networks and ISDN Systems, 30(1-
7):457-467, 1998.

[27] Padmanabhan V. N. and Mogul J. C. Using Predictive Prefetching to
Improve World Wide Web Latency. ACM SIGCOMM Computer Commu¬
nication Review, 26(3):22-36, 1996.

[28] Bestavros A. Using Speculation to Reduce Server Load and Service Time on
the WWW. In A CM International Conference on Information and Knowl¬
edge Management, pages 403-410, Baltimore, U.S., Nov. 1995.

[29] Pitkow J. and Pirolli P. Mining Longest Repeating Subsequences to Predict
World Wide Web Surfing. In USENIX Symposium on Internet Technologies
and Systems, pages 11-14, Colorado, U.S., Oct. 1999.

[30] Deshpande M. and Karypis G. Selective Markov Models for Predicting Web-
page Accesses. ACM Transactions on Internet Technology, 4(2):163—184,
2004.

[31] Su Z., Yang Q., Lu Y., and Zhang H. WhatNext: A Prediction System
for Web Requests using N-gram Sequence Models. In International Confer¬
ence on Web Information Systems Engineering, pages 200-207, Hong Kong,
2000.

[32] Li I. T. Y., Yang Q., and Wang K. Classification Pruning for Web-request
Prediction. In International World Wide Web Conference (Poster), Hong
Kong, 2001.

[33] Arlitt M., Krishnamurthy D., and Rolia J. Characterizing the Scalability
of a Large Web-based Shopping System. ACM Transactions on Internet
Technology, 1 (1):44—69, 2001.

[34] Menasce D., Almeida V., and Riedi R. In Search of Invariants for E-business
Workloads. In ACM Electronic Commerce Conference, pages 56-65, Min¬
neapolis, U.S., Oct. 2000.

[35] Almeida V., Menasce D., Riedi R., Peligrinelli F., Fonseca R., and Meira Jr.
W. Analyzing Robot Behavior in E-business Sites. In ACM SIGMETRICS
on Measurement and Modeling of Computer Systems, pages 338-339, Cam¬
bridge, MA, U.S., 2001.

[36] Menasce D. and Almeida V. A Methodology for Workload Characterization
of E-commerce Sites. In ACM Electronic Commerce Conference, pages 119—
129, Denver U.S., 1999.

[37] Wang Q., Makaroff D. J., and Edwards H. K. Characterizing Customer
Groups for an E-commerce Website. In ACM Electronic Commerce Con¬
ference, pages 218-227, New York, U.S., May 2004.

[38] Yun C. and Chen M. Mining Web Transaction Patterns in an Electronic
Commerce Environment. In Pacific-Asia Conference on Knowledge Discov¬
ery and Data Mining, Current Issues and New Applications, pages 216-219,
Kyoto Japan, 2000. Springer-Verlag.

[39] Vallamkondu S. and Gruenwald L. Integrating Purchase Patterns and
Traversal Patterns to Predict HTTP Requests in E-commerce Sites. In
IEEE International Conference on E-commerce, pages 256-263, California,
U.S., 2003.

[40] SPECweb99 Whitepaper, http://www.specbench.org/osg/web99/docs/
whitepaper.html. Web site, Standard Performance Evaluation Corpora¬
tion (SPEC), July, 2000.

[41] WebStone 2.x Benchmark Description, http://www.mindcraft.com/
webstone/ws201-descr.html. Web site, Mindcraft Inc., 1998.

[42] Banga G. and Druschel P. Measuring the Capacity of a Web Server. In
USENIX Symposium on Internet Technologies and Systems, pages 61-72,
California, U.S., Dec. 1997.

[43] Mosberger D. and Jin T. httperf - A Tool for Measuring Web Server Perfor¬
mance. ACM SIGMETRICS Performance Evaluation Review, 26(3):31—37,
1998.

[44] Barford P. and Crovella M. Generating Representative Web Workloads for
Network and Server Performance Evaluation. In ACM SIGMETRICS on

Measurement and Modeling of Computer Systems, pages 151-160, Wiscon¬
sin, U.S., 1998.

140

[45] Kant K., Tewari V., and Iyer R. Geist: A Generator for E-commerce &;
Internet Server Traffic. In IEEE International Symposium on Performance
Analysis of Systems and Software, pages 49-56, Arizona, U.S., Nov. 2001.

[46

[47

[48

[49

[50

[51

[52

[53

[54

[55

[56

[57

[58

[59

[60

e-TEST suite, http://www.empirix.com. Web site, Empirix, 2004.

The Source for Java Developers, http://java.sun.com. Web site, Sun
Mircosystems Inc., 2004.

Simas J. Chart2d, http://chart2d.sourceforge.net. Web site, Free
Software Foundation, Inc., 1999.

Apache, http: //www. apache . org. Web site, The Apache Software Foun¬
dation, 2004.

MySQL, http://www.mysql.com. Web site, MySQLAB, 2004.

S. Gundavaram. CGI Programming on the World Wide Web. O'Reilly &
Associates, 1996.

Active Server Pages. http://msdn.microsoft.com/library/psdk/
iisref/aspguide .htm. Web site, Microsoft Corporation, 2004.

ColdFusion. ColdFusion Developer Center, http://www.macromedia.
com/devnet/mx/coldfusion/?promoid=home_dev_cf_082%403. Web site,
Macromedia, Inc., 2004.

Perry B. Java Servlet & JSP Cookbook. O'Reilly & Associates, 2004.

Hunter J. and Crawford W. Java Servlet Programming. O'Reilly & Asso¬
ciates, 2nd Edition, 2001.

Lerdorf R. and Tatroe K. Programming PHP. O'Reilly & Associates, 2002.

Welling L. and Thomson L. PHP and MySQL Web Development. SAMS,
2nd Edition, 2003.

PHP Usage, http://www.php.net/usage.php. Web site, The PHP Group,
2004.

Enterprise Edition (J2EE) Java 2 Platform, http://java.sun.com/j2ee.
Web site, Sun Microsystems Inc., 2004.

PHP. http://www.php.net. Web site, The PHP Group, 2004.

141

[61] Mazzocchi S. and Fumagalli P. Advanced Apache Jserv Techniques. In
ApacheCon, San Francisco, 1998.

[62] Red Hat Linux 9: Red Hat Linux Reference Guide, http://www. redhat.
com/docs/manuals/linux/RHL-9-Manual/ref-guide/. Web site, Red
Hat Inc., 2003.

[63] Servlet Problem, http://www.mail-archive.com/java-apache-users®
list. working-dogs . com/msg4/,07417 .html. Web site, java-apache-users
Mailing list, 2000.

[64] Cardellini V., Casalicchio E., Colajanni M., and Yu P. S. The State of the
Art in Locally Distributed Web-server Systems. ACM Computer Surveys,
34(2):263—311, June 2002.

[65] Katz E. D., Butler M., and McGrath R. A Scalable HTTP Server: The
NCSA Prototype. Computer Networks and ISDN Systems, 27(2):155-164,
1994.

[66] Colajanni M. and Yu P. S. Dynamic Load Balancing in Geographically
Distributed Heterogeneous Web Servers. In IEEE International Distributed
Computing Systems Conference, pages 295-302, Amsterdam, The Nether¬
lands, May 1998.

[67] Colajanni M. and Yu P. S. Adaptive TTL Schemes for Load Balancing
of Distributed Web Servers. ACM SIGMETRICS Performance Evaluation
Review, 25(2):36-42, 1997.

[68] Cardellini V., Colajanni M., and Yu P. S. Redirection Algorithms for Load
Sharing in Distributed Web-server Systems. In IEEE International Confer¬
ence on Distributed Computing Systems, pages 528-535, Texas, U.S., May
1999.

[69] Aversa L. and Bestavros A. Load Balancing a Cluster of Web Servers
Using Distributed Packet Rewriting. In IEEE International Performance,
Computing and Communications Conference, pages 24-29, Boston, U.S.,
2000.

[70] Yang C. and Luo M. A Content Placement and Management System for
Distributed Web-server Systems. In IEEE Distributed Computing Systems,
pages 691-698, Taipei, Taiwan, April 2000.

142

[71] Zhang X., Barrientos M., Chen J. B., and Seltzer M. HACC: An Architec¬
ture for Cluster-based Web Servers. In USENIX Windows NT Symposium,
pages 155-164, Seatle U.S., July 1999.

[72] Luo M. and Yang C. Constructing Zero-loss Web Services. In Annual Joint
Conference of the IEEE Computer and Communications Societies, pages

1781-1790, Alaska, U.S., 2001.

[73] Cherkasova L. and Karlsson M. Scalable Web Server Cluster Design with
Workload-Aware Request Distribution Strategy WARD. In IEEE Interna¬
tional Workshop on Advanced Issues of E-commerce and Web-based Infor¬
mation Systems, page 212, California, U.S., June 2001.

[74] Zhu H., Smith B., and Yang T. Scheduling Optimization for Resource-
intensive Web Requests on Server Clusters. In A CM Symposium on Parallel
Algorithms and Architectures, pages 13-22, Saint Malo, France, 1999.

[75] Pierre G., Steen M. V., and Tanenbaum A. S. Dynamically Selecting Op¬
timal Distribution Strategies for Web Documents. IEEE Transactions on

Computers, 51 (6) :637—651, 2001.

[76] Aron M., Sanders D., and Druschel P. Scalable Content-aware Request Dis¬
tribution in Cluster-based Network Servers. In USENIX Annual Technical

Conference, pages 323-336, California, U.S., June 2000.

[77] Dias D. M., Kish W., Mukherjee R., and Tewari R. A Scalable and Highly
Available Web Server. In IEEE International Computer Conference: Tech¬
nologies for the Information Superhighway, pages 85-92, California, U.S.,
1996.

[78] Chen H. and Iyengar A. A Tiered System for Serving Differentiated Con¬
tent. World Wide Web Journal, 6(4):331-352, 2003.

[79] Casalicchio E. and Colajanni M. A Client-aware Dispatching Algorithm
for Web Clusters Providing Multiple Services. In ACM World Wide Web
Conference, pages 535-544, Hong Kong, May 2001.

[80] Ciardo G., Riska A., and Smirni E. EQUILOAD: a Load Balancing Policy
for Clustered Web Servers. Performance Evaluation, 46(2-3):101-124, Oct
2001.

143

[81] Sayal M., Breitbart Y., Scheuermann P., and Vingralek R. Selection Al¬
gorithms for Replicated Web Servers. ACM SIGMETRICS Performance
Evaluation Review, 26(3):44-50, 1998.

[82] Shaikh A., Tewari R., and Agrawal M. On the Effectiveness of DNS-based
Server Selection. In Annual Joint Conference of the IEEE Computer and
Communications Societies, pages 1801-1810, Alaska, U.S., 2001.

[83] Yoshikawa C., Chun B., Eastham P., Vahdat A., Anderson T., and Culler
D. Using Smart Clients to Build Scalable Services. In USENIX Technical
Conference, pages 105-118, California, U.S., Jan 1997.

[84] Vingralek R., Breitbart Y., Sayal M., and Scheuermann P. Web+-1-: A
System For Fast and Reliable Web Service. In USENIX Annual Technical
Conference, pages 171-184, California, U.S., 1999.

[85] Fei Z., Bhattacharjee S., Zegura E. W., and Ammar M. H. A Novel Server
Selection Technique for Improving the Response Time of a Replicated Ser¬
vice. In Annual Joint Conference of the IEEE Computer and Communica¬
tions Societies, pages 783-791, California, U.S., 1998.

[86] Carter R. L. and Crovella M. E. Dynamic Server Selection Using Band¬
width Probing on Wide-area Networks. Technical Report BU-CS-96-007,
Computer Science Department, Boston University, 1996.

[87] Yu T. and Lin K. The Design of QoS Broker Algorithms for QoS-capable
Web Services. In IEEE International Conference on e-Technology, e-

Commerce and e-Service, pages 17-24, Taipei, Taiwan, 2004.

[88] Vahdat A., Anderson T., Dahlin M., Belani E., and Culler D. WebOS: Op¬
erating System Services for Wide Area Applications. In IEEE Symposium
on High Performance Distributed Computing, pages 52-63, Chicago, U.S.,
July 1998.

[89] Pierre G. and Steen M. V. Globule: A Platform for Self-Replicating Web
Documents. In International Conference on Protocols for Multimedia Sys¬
tems, pages 1-11, Enschede, The Netherlands, 2001. Springer-Verlag.

[90] Li Q. and Moon B. Distributed Cooperative Apache Web Server. In ACM
International World Wide Web Conference, pages 555-564, Hong Kong,
2001.

144

[91] Abrams M., Standridge C. R., Abdulla G., Williams S., and Fox E. A.
Caching Proxies: Limitations and Potentials. In International World Wide
Web Conference, Boston U.S., Dec. 1995.

[92] Kroeger T. M. and Long D. D. E. Exploring the Bounds of Web Latency Re¬
duction from Caching and Prefetching. In USENIX Symposium on Internet
Technologies and Systems, pages 13-22, California, U.S., Dec. 1997.

[93] Markatos E. P. and Chronaki C. E. A Top-10 Approach to Prefetching on

the Web. In Annual Conference of the Internet Society, Geneva, Switzer¬
land, July 1998.

[94] Chinen K. and Yamaguchi S. An Interactive Prefetching Proxy Server for
Improvement of WWW Latency. In Annual Conference of the Internet
Society, Kuala Lumpur, Malaysia, June 1997.

[95] Fan L., Cao P., and Jacobson Q. Web Prefetching Between Low-bandwidth
Clients and Proxies: Potential and Performance. In ACM SIGMETRICS

International Conference on Measurement and Modelling of Computer Sys¬
tems, pages 178-187, Atlanta, U.S., May 1999.

[96] Cao P. and Irani S. Cost-aware WWW Proxy Caching Algorithms. In
USENIX Symposium on Internet Technology and Systems, pages 193-206,
California, U.S., Dec. 1997.

[97] Scheuermann P., Shim J., and Vingralek R. A Case for Delay-conscious
Caching of Web Documents. Computer Networks and ISDN Systems, 29(8-
13):997-1005, 1997.

[98] Shim J., Scheuermann P., and Vingralek R. A Unified Algorithm for
Cache Replacement and Consistency in Web Proxy Servers. In Interna¬
tional Workshop on the the World Wide Web and Databases, pages 1-13,
Valencia, Spain, 1998. Springer-Verlag.

[99] Wooster R. P. and Abrams M. Proxy Caching that Estimates Page Load
Delays. In International World Wide Web Conference, pages 977-986, Cal¬
ifornia, U.S., 1997. Elsevier Science Publishers Ltd.

[100] Niclausse N., Liu Z., and Nain P. A New and Efficient Caching Policy for
the World Wide Web. In Workshop on Internet Server Performance, pages

119-128, Madison, U.S., June 1998.

145

[101] Tewari R., Vin H. M., Dan A., and Sitaram D. Resource-based Caching for
Web Servers. In SPIE/ACM Conference on Multimedia and Networking,
pages 191-204, California, U.S., Jan. 1998.

[102] Fan L., Cao P., Almeida J., and Broder A. Z. Summary Cache: A Scalable
Wide-area Web Cache Sharing Protocol. In ACM SIGCOMM Conference
on Applications, Technologies, Architectures and Protocols for Computer
Communication, pages 254-265, Vancouver, Canada, 1998.

[103] Rabinovich M., Chase J., and Gadde S. Not All Hits Are Created Equal:
Cooperative Proxy Caching Over a Wide-area Network. Computer Networks
and ISDN Systems, 30(22-23):2253-2259, Nov. 1998.

[104] Zhang L., Floyd S., and Jacobson V. Adaptive Web Caching. In NLANR
Web Cache Workshop, Colorado, U.S., June 1997.

[105] Song J., Iyengar A., Levy-Abegnoli E., and Dias D. Architecture of a Web
Server Accelerator. Computer Networks, 28(1):T5—97, 2002.

[106] Holmedahl V., Smith B., and Yang T. Cooperative Caching of Dynamic
Content on a Distributed Web Server. In IEEE International Symposium
on High Performance Distributed Computing, pages 243-250, Chicago, U.S.,
July 1998.

[107] Zhu H. and Yang T. Class-based Cache Management for Dynamic Web
Content. In Annual Joint Conference of the IEEE Computer and Commu¬
nications Societies, volume 3, pages 1215-1224, Alaska, U.S., April 2001.

[108] Challenger J. R., Dantzig P., Iyengar A., Squillante M. S., and Zhang L. Ef¬
ficiently Serving Dynamic Data at Highly Accessed Web Sites. IEEE/ACM
Transactions on Networking, 12(2):233-246, April 2004.

[109] Ramaswamy L., Iyengar A., Liu L., and Douglis F. Automatic Detection
of Fragments in Dynamically Generated Web Pages. In ACM World Wide
Web Conference, pages 443-454, New York, U.S., May 2004.

[110] Datta A., Dutta K., Thomas H., VanderMeer D., Suresha, and Ramam-
ritham K. Proxy-based Acceleration of Dynamically Generated Content
on the World Wide Web: An Approach and Implementation. In ACM
SIGMOD International Conference on Management of Data, pages 97-108,
Wisconsin, U.S., June 2002.

146

[111] Cao P., Zhang J., and Beach K. Active Cache: Caching Dynamic Contents
on the Web. Distributed Systems Engineering, 6(l):43-50, 1999.

[112] Meira Jr. W., Menasce D., Almeida V., and Fonseca R. E-representative:
a Scalability Scheme for E-commerce. In IEEE International Workshop on

Advanced Issues of E-commerce and Web-based Information Systems, page

168, California, U.S., 2000.

[113] Luo Q. and Naughton J. F. Form-based Proxy Caching for Database-backed
Web Sites. In International Conference on Very Large DataBases, pages

191-200, Roma, Italy, Sept. 2001. Morgan Kaufmann.

[114] Yuan C., Chen Y., and Zhang Z. Evaluation of Edge Caching/Offloading for
Dynamic Content Delivery. In ACM World Wide Web Conference, pages

461-471, Budapest Hungary, May 2003.

[115] Abdelzaher T. F. and Bhatti N. Web Server QoS Management by Adaptive
Content Delivery. In International Workshop on Quality of Service, London,
U.K., 1999.

[116] Muntean C. H., McManis J., Murphy J., and Murphy L. An Adaptive
Web Server Application. In International World Wide Conference (Poster),
Hawaii, U.S., May 2002.

[117] Krishnamurthy B., Zhang Y., Wills C. E., and Vishwanath K. Design,
Implementation, and Evaluation of a Client Characterization Driven Web
Server. In ACM International World Wide Web Conference, pages 138-147,
Budapest, Hungary, 2003.

[118] Chandra S., Ellis C. S., and Vahdat A. Differentiated Multimedia Services
Using Quality Aware Transcoding. In Annual Joint Conference of the IEEE
Computer And Communications Societies, pages 961-969, Tel Aviv, Israel,
2000.

[119] Wills C. E., Mikhailov M., and Shang H. N for the Price of 1: Bundling
Web Objects for More Efficient Content Delivery. In ACM International
World Wide Web Conference, pages 257-265, Hong Kong, May 2001.

[120] Fox A. and Brewer E. A. Reducing WWW Latency and Bandwidth Re¬
quirements by Real-Time Distillation. In International World Wide Web
Conference on Computer Networks and ISDN Systems, pages 1445-1456,
Paris, France, 1996. Elsevier Science Publishers B. V.

147

[121] Mogul J. C. Potential Benefits of Delta Encoding and Data Compression
for HTTP. In ACM SIGCOMM Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication, pages 181-194,
Cannes, France, 1997.

[122] Mohapatra P. and Chen Huamin. A Framework for Managing QoS and
Improving Performance of Dynamic Web Content. In IEEE GLOBECOM,
Texas, U.S., Nov. 2001.

[123] amazon.com. Method and system for placing a purchase order via a com¬
munications network. Technical report, United States Patent Number
5,960,411, Sept. 1999.

[124] Abdelzaher T. F. and Shin K. G. Performance Guarantees for Web Server
End-systems: A Control-theoretical Approach. IEEE Transactions on Par¬
allel and Distributed Systems, 13(1):80—96, Jan 2002.

[125] Robertsson A., Wittenmark B., and Kihl M. Analysis and Design of Ad¬
mission Control in Web-server Systems. In American Control Conference,
page 254, Colorado, U.S., 2003.

[126] Diao Y., Gandhi N., and Hellerstein J. L. Using MIMO Feedback Control
to Enforce Policies for Interrelated Metrics with Application to the Apache
Web Server. In IEEE/IFIP Network Operations and Management Sympo¬
sium, volume 8, pages 219-234, Florence Italy, April 2002.

[127] Abdelzaher T., Lu Ying, Zhang R., and Henriksson D. Practical Applica¬
tion of Control Theory to Web Services. In American Control Conference,
Boston, U.S., June 2004.

[128] Lu Y., Abdelzaher T., and Lu C. Feedback Control with Queueing-theoretic
Prediction for Relative Delay Guarantees in Web Servers. In IEEE Real¬
time and Embedded Technology and Applications Symposium, page 208,
Toronto, Canada, May 2003.

[129] Henriksson D., Lu Y., and Abdelzaher T. Improved Prediction for Web
Server Delay Control. In Euromicro Conference on Real-time Systems,
pages 61-68, Catania Italy, July 2004.

[130] Menasce D. A., Barbara D., and Dodge R. Preserving QoS of E-commerce
Sites Through Self-tuning: A Performance Model Approach. In ACM Elec¬
tronic Commerce Conference, pages 224-234, Florida, U.S., Oct. 2001.

148

[131] Iyer R., Tewari V., and Kant K. Overload Control Mechanisms for Web
Servers. In Performance and QoS of Next Generation Networks, pages 225-
244, Nagoya, Japan, Nov 2000.

[132] Cherkasova L. and Phaal P. Session Based Admission Control: A Mecha¬
nism for Improving Performance of Commercial Web Sites. IEEE Transac¬
tions on Computers, 51(6):669-685, June 2002.

[133] Chen H. and Mohapatra P. Session-based Overload Control in QoS-aware
Web Servers. In Annual Joint Conference of the IEEE Computer and Com¬
munications Societies, New York, U.S., June 2002.

[134] Bhatti N. and Friedrich R. Web Server Support for Tiered Services. IEEE
Network, 13:64-71, Sept-Oct 1999.

[135] Voigt T., Tewari R., Freimuth D., and Mehra A. Kernel Mechanisms for
Service Differentiation in Overloaded Web Servers. In USENIX Annual

Technical Conference, pages 189-202, Boston, U.S., June 2001.

[136] Jamjoom H., Reumann J., and Shin K. G. QGuard: Protecting Internet
Servers from Overload. Technical Report CSE-TR-427-00, Department of
Electrical Engineering and Computer Science, University of Michigan, 2000.

[137] Chen X. and Mohapatra P. Providing Differentiated Service from an Inter¬
net Server. In IEEE International Conference on Computer Communica¬
tions and Networks, Boston, U.S., 1999.

[138] Vasiliou N. and Lutfiyya H. Providing A Differentiated Quality of Service in
a World Wide Web Server. ACM Performance Evaluation Review, 28(2):22-
28, 2000.

[139] Li K. and Jamin S. A Measurement-based Admission-controlled Web
Server. In Annual Joint Conference of the IEEE Computer and Communi¬
cations Societies, volume 2, pages 651-659, Tel Aviv, Israel, 2000.

[140] Lee S. C. M., Lui J. C. S., and Yau D. K. Y. Admission Control and Dy¬
namic Adaptation for a Proportional-delay DiffServ-enabled Web Server. In
ACM SIGMETRICS International Conference on Measurement and Mod¬
eling of Computer Systems, pages 172-182, California, U.S., June 2002.

[141] Kanodia V. and Knightly E. W. Ensuring Latency Targets in Multiclass
Web Servers. IEEE Transactions on Parallel and Distributed Systems,

14(1):84—93, 2003.
149

[142] Chen X., Mohapatra P., and Chen H. An Admission Control Scheme for
Predictable Server Response Time for Web Accesses. In ACM International
World Wide Web Conference, pages 545-554, Hong Kong, May 2001.

[143] Crovella M. E., Frangioso R., and Harchol-Balter M. Connection Schedul¬
ing in Web Servers. In USENIX Symposium on Internet Technologies and
Systems, Colorado, U.S., Oct 1999.

[144] Schroeder B. and Harchol-Balter M. Web Servers Under Overload: How
Scheduling Can Help. Technical Report CMU-CS-020143, Carnegie Mellon
University, Pittsburgh, May 2002.

[145] Cherkasova L. Scheduling Startegy to Improve Response Time for Web Ap¬
plications. In International Conference and Exhibition on High Performance
Computing and Networking, pages 305-314, Amsterdam, The Netherlands,
April 1998. Springer-Verlag.

[146] Welsh M., Culler D., and Brewer E. SEDA: an Architecture for Well-
conditioned, Scalable Internet Services. In ACM Symposium on Operating
Systems Principles, pages 230-243, Alberta, Canada, Oct 2001.

[147] Welsh M. and Culler D. Adaptive Overload Control for Busy Internet
Servers. In USENIX Symposium on Internet Technologies and Systems,
Seattle, U.S., March 2003.

[148] Carlstrom J. and Rom R. Application-aware admission control and schedul¬
ing in web servers. In Annual Joint Conference of the IEEE Computer and
Communications Societies, volume 2, pages 506-515, New York, U.S., 2002.

[149] Verma A. and Ghosal S. On Admission Control for Profit Maximization
of Networked Service Providers. In ACM International World Wide Web

Conference, pages 128-137, Budapest, Hungary, May 2003.

[150] Abdelzaher T. F. and Shin K. G. QoS Provisioning with (/Contracts in Web
and Multimedia Servers. In IEEE Real-time Systems Symposium, pages 44-
53, Phoenix, U.S., 1999.

[151] Abdelzaher T. F., Shin K. G., and Bhatti N. User-level QoS-adaptive Re¬
source Management in Server End-systems. IEEE Transactions on Com¬
puters, 52(5):678-685, May 2003.

150

[152] Chen I. and Li S. A Cost-based Admission Control Algorithm for Handling
Mixed Workloads in Multimedia Server Systems. In IEEE International
Conference on Parallel and Distributed Systems, pages 543-548, KyongJu
City, Korea, 2001.

[153] Vin H. M., Goyal P., Goyal A., and Goyal A. A Statistical Admission Con¬
trol Algorithm for Multimedia Servers. In ACM International Multimedia
Conference, pages 33-40, San Francisco, U.S., Oct 1994.

[154] Lee W. and Sabata B. Admission Control and QoS Negotiations for Soft-
real Time Applications. In IEEE International Conference on Multimedia
Computing and Systems, volume 1, pages 147-152, Florence Italy, June
1999.

[155] Zhu H., Tang H., and Yang T. Demand-driven Service Differentiation in
Cluster-based Network Servers. In Annual Joint Conference of the IEEE
Computer and Communications Societies, pages 679-688, Alaska, U.S.,
2001.

[156] Menasce D., Almeida V., Fonseca R., and Mendes M. Busniess-oriented
Resource Management Policies for E-commerce Servers. Performance Eval¬
uation, 42(2-3):223-239, 2000.

[157] Menasce D. A., Almeida V. A., Fonseca R., Marco A., and Mendes M. A.
Resource Management Policies for E-commerce Servers. ACM Performance
Evaluation Review, 27(4):27-35, 2000.

[158] Elnikety S., Tracey J., Nahum E., and Zwaenepoel W. A Method for Trans¬
parent Admission Control and Request Scheduling in E-comemrce Web
Sites. In ACM World Wide Web Conference, pages 276-286, New York,
U.S., May 2004.

[159] Nichols K., Blake S., Baker F., and Black D. Definition of the Differentiated
Services Field (DS Field) in the IPv4 and IPv6 Headers. Technical report,
RFC 2474, Dec 1998.

[160] Jacobson V. and Karels M. J. Congestion Avoidance and Control. In ACM
SIGCOMM Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, pages 314-329, California, U.S.,
Aug. 1988.

151

[161] Gevros P. and Crowcroft J. Experimental Results on Weighted Proportional
TCP Throughput Differentiation. In International Workshop on High Per¬
formance Protocol Architectures, London, U.K., June 1998.

[162] Floyd S. A Report on Some Recent Developments in TCP Congestion
Control. IEEE Communications Magazine, 39(4):84-90, April 2001.

[163] Elek V., Karlsson G., and Ronngren R. Admission Control Based on End-
to-End Measurements. In Annual Joint Conference of the IEEE Computer
and Communications Societies, pages 623-630, Tel Aviv, Israel, 2000.

[164] Qiu J. and Knightly W. Measurement-based Admission Control with Aggre¬
gate Traffic Envelopes. IEEE/ACM Transactions on Networking, 9(2): 199-
210, April 2001.

[165] Jamin S., Danzig P. B., Shenker S. J., and Zhang L. A Measurement-
based Admission Control Algorithm for Integrated Service Packet Networks.
IEEE/ACM Transactions on Networking, 5(1):56—70, Feb 1997.

[166] Breslau L., Knightly E. W., Shenker S., Stoica I., and Zhang H. End-
point Admission Control: Architectural Issues and Performance. In ACM
SIGCOMM Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication, pages 57-69, Stockholm, Sweden,
2000.

[167] Breslau L. and Jamin S. Comments on the Performance of Measurement-
based Admission Control Algorithms. In Annual Joint Conference of the
IEEE Computer and Communications Societies, pages 1233-1242, Tel Aviv,
Israel, 2000.

[168] Cocchi R., Estrin D., Shenker S., and Zhang L. A Study of Priority Pricing
in Multiple Class Networks. In ACM SIGCOMM Conference on Applica¬
tions, Technologies, Architectures, and Protocols for Computer Communi¬
cation, pages 123-130, Zurich, Switzerland, Sept 1991.

[169] Mackie-Mason J. K. and Varian H. Pricing Congestible Network Resources.
IEEE Journal of Selected Areas in Communications, 13(7):1141—1149, Sept.
1995.

[170] Mackie-Mason J. K. and Varian H. Pricing the Internet. In Public Access
to the Internet, B. Kahin and J. Keller, Editors. MIT Press, 1995.

152

[171] Mackie-Mason J. K., Murphy L., and Murphy J. The Role of Responsive
Pricing in the Internet. In The Internet, Internet Economics, J. Bailey and
L. McKnight Editors. MIT Press, 1997.

[172] Gibbens R. and Kelly F. Resource Pricing and the Evolution of Congestion
Control. Automatica, 35:1969-1985, 1999.

[173] Shenker S., Clark D., Estrin D., and Herzog S. Pricing in Computer Net¬
works: Reshaping the Research Agenda. ACM Computer Communication
Review, 26(2):19-43, 1996.

[174] Wang X. and Schulzrinne H. Performance Study of Congestion Price Based
Adaptive Service. In International Workshop on Network and Operating
Systems Support for Digital Audio and Video, pages 1-10, North Carolina,
U.S., June 2000.

[175] Varian H. Microeconomics Analysis. W.W.Norton &; Co, 1993.

[176] Odlyzko A. Paris Metro Pricing for the Internet. In ACM Conference on
Electronic Commerce, pages 140-147, Colorado, U.S., 1999.

[177] Leyton-Brown K., Porter R., Venkataraman S., and Prabhakar B. Smooth¬
ing out Focused Demand for Network Resources. In ACM Electronic Com¬
merce Conference, pages 245-248, Florida, U.S., Oct 2001.

[178] Abdelzaher T. F. and Lu Chenyang. Schedulability Analysis and Utiliza¬
tion Bounds for Highly Scalable Real-Time Services. In IEEE Real-time
Technology and Applications Symposium, pages 15-25, Taiwan, 2001.

153

Appendix A

ECBench Database Table

Description

Field Type Description
LID Numeric, 10 digits Unique ID of item
LTITLE Variable text, size 60 Title of item

I_A_ID Numeric, 10 digits Author ID of item

I_PUB-DATE Date Date of release of the product
I-PUBLISHER Variable text, size 60 Publisher of item

I-SUBJECT Variable text, size 60 Subject of book
I-DESC Variable text, size 600 Description of item
LTHUMBNAIL Image Thumbnail image of item
I-SRP Numeric, (15,2) digits Suggested retail price
I-COST Numeric, (15,2) digits Cost of item
LAVAIL Date When item is available

I-STOCK Numeric, 4 digits Quantity in stock
LISBN Fixed text, size 13 Product ISBN
I-PAGE Numeric, 4 digits Number of pages of book
I-BACKING Variable text, size 15 Type of book, paper or hard back
I-DIMENSIONS Variable text, size 25 Size of book in inches

Table A.l: Item Table Fields Description [3]

155

Field Type Description
AJD Numeric, 10 digits Unique author ID
A_FNAME Variable text, size 20 First name of author

A.LNAME Variable text, size 20 Last name of author

A-MNAME Variable text, size 20 Middle name of author

A-DOB Date Date of birth of Author

A_BIO Variable text, size 500 About the author

Table A.2: Author Table Fields Description [3]

Field Type Description
CJD Numeric, 10 digits Unique ID per customer
C-UNAME Variable text, size 20 Unique user name for customer
C-PASSWD Variable text, size 20 User password for customer
C-FNAME Variable text, size 15 First name of customer

CJLNAME Variable text, size 15 Last name of customer

C-ADDRJD Numeric, 10 digits Address ID for customer

C-PHONE Variable text, size 16 Phone number of customer

C-EMAIL Variable text, size 50 For sending purchase information
C-SINCE Date Date of customer registration
C-LAST_VISIT Date Date of last visit

C-LOGIN Date and time Start of current customer session
C-EXPIRATION Date and time Current customer session expiry
C-DISCOUNT Numeric, (3,2) digits Percentage discount for customer
C-BALANCE Sign numeric, (15,2) digits Payment of customer
C-BIRTHDATE Date Birth date of customer

C_DATA Variable text, size 500 Miscellaneous information

Table A.3: Customer Table Fields Description [3]

Field Type Description
0_ID Numeric, 10 digits Unique ID per order
O-CJD Numeric, 10 digits Customer ID of order
O-DATE Date and time Order date and time
0_SUB_TOTAL Numeric, (15,2) digits Subtotal of all order-line items
O-TAX Numeric, (15,2) digits Tax over the subtotal
0_SHIP_TYPE Variable text, size 10 Method of delivery
0_SHIP_DATE Date and time Order ship date
0_BILL_ADDRJD Numeric, 10 digits Address ID to bill
0_SHIP_ADDRJD Numeric, 10 digits Address ID to ship order
O.STATUS Variable text, size 15 Order status

Table A.4: Orders Table Fields Description [3]

156

Field Type Description
OL_ID Numeric, 3 digits Unique order line item ID
OL-OJD Numeric, 10 digits Order ID of order line
OLJLID Numeric, 10 digits Unique item ID (I-ID)
OL_QTY Numeric, 3 digits Quantity of item
OL-DISCOUNT Numeric, (3,2) digits Percentage discount off of I_SRP
OL-COMMENTS Variable text, size 100 Special instructions

Table A.5: OrderJine Table Fields Description [3]

Field Type Description
ADDRJD Numeric, 10 digits Unique address ID
ADDR_STREET1 Variable text, size 40 Street address, line 1
ADDR.STREET2 Variable text, size 40 Street address, line 2
ADDR_CITY Variable text, size 30 Name of city
ADDR_STATE Variable text, size 20 Name of state

ADDR_ZIP Variable text, size 10 Zip code or postal code
ADDR_CO_ID Numeric, 4 digits Unique ID of country

Table A.6: Address Table Fields Description [3]

Field Type Description
CO _ID Numeric, 4 digits Unique country Id
CO-NAME Variable text, size 50 Name of country
CO-EXCHANGE Numeric, (6,6) digits Exchange rate to US Dollars
CO-CURRENCY Variable text, size 18 Name of currency

Table A.7: Country Table Fields Description [3]

Field Type Description
CX-OJD Numeric, 10 digits Unique order ID (0_ID)
CX.TYPE Variable text, size 10 Credit card type
CX_NUM Numeric, 16 digits Credit card number
CX-NAME Variable text, size 31 Name on credit card

CX-EXPIRY Date Expiration date of credit card
CX_AUTH_ID Fixed text, size 15 Authorisation for transaction amount

CX_XACT_AMT Numeric, (15,2) digits Amount for this transaction

CX_XACT_DATE Date and time Date and time of authorisation
CX-CO-ID Numeric, 4 digits Country where transaction originated

Table A.8: CC-Xacts Table Fields Description [3]

157

Appendix B

TPC-W Random Methods for
Database Population

Field Description
a-string Generates a string using an independent uniform

random distribution drawn from all letters, numerical
values and special characters.

n-string Generates a string of numeric characters using an
independent uniform random distribution drawn from
the set of all numeric digits.

random (x,y) Generates a random value independently selected and
uniformly distributed between x and y.

randomPermutation (x,y) Generates a sequence of numbers from x to y arranged
into a random order.

DigSyl(D,N) Returns a string which is the concatenation of
2-character syllables constructed by replacing each
digit in the decimal representation of D with the
corresponding 2-character syllable shown in Table B.2.

Table B.l: RandomMethods Library's Random Functions, Based on TPC-W [3]

Digit 0 1 2 3 4 5 6 7 8 9

Syllable BA OG AL RI RE SE AT UL IN NG

Table B.2: DigSyl Syllable Table, Based on TPC-W [3]

159

Appendix C

TPC-W's Navigational Pattern
Thresholds for an Ordering

Interval

Thresholds for tire Ordering Interval (YVtPSo)

To this

Web Interaction
?

Froiu this

Response Page AchninConfirm
1?
a

s
&

*3
A

< BestSellers BuyConfirm |1
as

£ CustomerRegist. Home NewProducts OrderDisplay OrderInquiry ProductDetail SearchRequest
2
•3
8
■

OS

1
S

</5 ShoppingCart
Admin Confirm 8348 9999

Admin Request 8999 9999

Best Sellers 1 333 9998 9999

Buy Confirm 2 9999

Buy Req uest 7999 9453 9999

Customer

Regis!.
9899 9901 9999

Home 499 999 1269 1295 9999

New Products 504 9942 9976 9999

Order Display 9939 9999

Order Inquiry 1168 9968 9999

Product Detail 99 3750 5621 6341 9999

Search Request 815 9815 9999

Search Results 186 7817 9998 9999

Shopping Cart 9499 9918 9999

Figure C.l: TPC-W's Thresholds for an Ordering Interval [3]

161

Appendix D

PHP and Servlets Benchmarking
Average response time results obtained, for all web interaction, when benchmark¬
ing PHP and Java Servlets application server implementations using ECBench.

Workload Size PHP Java Servlets
1 11.64 19.15

2 169.32 166.83

4 625.3 592.73

8 2366.5 2083.42

16 5401.1 5665.72

32 12935.5 11976.6

64 12486.9 13301.9

128 13008.9 10942.9

256 14511.9 13895.25
512 14079.8 19029.31

1024 14445.6 25214.72

Table D.l: Home Interaction Average Response Time (ms)

Workload Size PHP Java Servlets
1 344.5 451.8

2 535.7 855.5

4 1077.04 1653.95
8 2817.31 3336.42
16 7073.93 10734.32

32 13306.81 13654.9

64 14651.1 14302.38
128 11905.6 14273.1

256 15013.5 12093.22

512 14615.13 22365.61

1024 18281.14 40445.9

Table D.2: Best Sellers Interaction Average Response Time (ms)

163

Workload Size PHP Java Servlets
1 35.5 43.65

2 622.82 290.3

4 1233.83 589.1

8 3250.5 2522.2

16 6291.23 6588.7

32 12054.22 12853.65

64 15223.5 14132.9

128 13133.4 11115.8

256 11051.5 14350.3
512 14259.4 23677.1

1024 16191.1 37685.9

Table D.3: New Products Interaction Average Response Time (ms)

Workload Size PHP Java Servlets
1 7.6 17.1
2 141.1 184.1

4 497.33 561.1
8 1749.8 2105.2

16 5580.3 5275.63

32 12117.62 12188.42

64 11618.9 13291.7

128 12682.5 11272.6

256 11029.9 11869.1

512 10716.2 21049.0

1024 11450.43 29115.63

Table D.4: Search Request Interaction Average Response Time (ms)

Workload Size PHP Java Servlets
1 28.4 43.9

2 302.8 241.2

4 1174.15 665.4

8 2478.8 2203.75

16 5704.4 5533.65

32 12695.34 11864.8

64 13276.3 13335.4
128 12898.9 11515.8
256 11999.4 11925.4

512 14148.2 24400.21

1024 15174.7 31480.33

Table D.5: Search Result Interaction Average Response Time (ms)

164

Workload Size PHP Java Servlets
1 13.4 27.5

2 194.7 255.34

4 715.9 673.1

8 2212.92 2408.4
16 5265.43 5527.9

32 9610.44 9407.4

64 10238.2 10648.3

128 9414.6 9856.34

256 9759.2 10603.1

512 11069.31 25163.35

1024 12277.15 35283.42

Table D.6: Product Detail Interaction Average Response Time (ms)

Workload Size PHP Java Servlets
1 51.03 30.9

2 238.7 193.9

4 633.84 674.69

8 2034.5 2448.13
16 4896.12 4544.4

32 12641.1 12009.41

64 13785.4 13247.25

128 13348.5 11739.9

256 11138.65 12982.7
512 11345.2 24446.31

1024 13027.2 29868.32

Table D.7: Shopping Cart Interaction Average Response Time (ms)

Workload Size PHP Java Servlets
1 22.31 16.33
2 104.85 85.1

4 396.13 339.4

8 1176.92 1720.44

16 5063.4 4655.4

32 6840.7 7778.62

64 10225.7 7716.5

128 8332.1 6173.9

256 10906.8 9653.9

512 7633.1 15097.5

1024 9643.8 36080.94

Table D.8: Customer Registration Interaction Average Response Time (ms)

165

Workload Size PHP Java Servlets
1 234.6 251.9

2 423.13 360.71

4 973.53 826.1

8 1126.4 2162.93

16 2672.33 1971.26

32 4379.35 5593.13

64 6228.9 6010.2

128 6259.34 6909.22

256 6716.96 7673.54

512 7058.21 30333.68

1024 11633.24 30645.1

Table D.9: Buy Request Interaction Average Response Time (ms)

Workload Size PHP Java Servlets
1 249.66 61.8
2 266.38 213.95

4 666.13 404.6

8 1947.22 1940.36

16 1978.33 3021.94
32 6940.55 4015.35

64 4870.74 7001.18

128 6736.8 3586.11

256 6020.42 7605.5

512 10285.78 31231.0

1024 13749.11 32034.5

Table D.10: Buy Confirm Interaction Average Response Time (ms)

Workload Size PHP Java Servlets
1 9.42 22.1

2 340.16 124.0

4 20.4 675.66

8 1324.51 1642.97

16 1474.1 4338.27
32 7403.55 9073.1

64 7280.8 5766.77

128 12096.75 12277.13

256 8579.88 10923.0
512 11090.71 28933.14

1024 13978.36 31394.33

Table D.ll: Order Inquiry Interaction Average Response Time (ms)

166

Workload Size PHP Java Servlets
1 4109.21 382.74

2 1900.0 431.9

4 1389.5 998.77
8 3165.88 2257.52
16 3678.44 4141.1

32 5703.0 7856.1

64 4664.2 5119.66

128 6470.5 9753.94

256 6346.2 7649.4
512 9529.93 25271.61

1024 16934.33 42915.33

Table D.12: Order Display Interaction Average Response Time (ms)

167

Appendix E

Service Time Analysis for
CBAC-disabled and CBAC

Experiments

CBAC CBAC1 CBAC2 CBAC3 CBAC4
disabled

Interaction H (s) s [I (s) s H (s) s A (s) s A (s) s

Home 6.68 18.65 0.27 1.05 0.43 1.29 0.55 1.56 0.47 1.43

Search Request 6.27 14.8 0.31 0.81 0.37 1.1 0.5 1.34 0.44 1.42

Search Result 5.85 12.68 0.31 0.8 0.37 0.88 0.51 1.26 0.43 1.16

Product Detail 5.96 17.82 0.32 0.79 0.36 0.88 0.48 1.2 0.39 0.94

Shopping Cart 5.4 5.88 0.3 0.89 0.37 0.98 0.47 1.2 0.41 1.02

Customer Reg. 6.1 17.7 0.32 0.84 0.39 1.03 0.48 1.18 0.4 1.03

Buy Request 7.11 19.84 0.86 0.97 0.87 1.04 1.03 1.24 0.92 1.1

Buy Confirm 6.17 14.4 0.34 0.77 0.41 0.9 0.53 1.14 0.45 0.98

Best Sellers 7.85 7.91 1.25 1.81 0.8 1.76 0.93 1.86 0.79 1.8

New Products 7.92 18.37 0.78 1.42 0.53 1.24 0.71 1.6 0.6 1.44

Table E.l: All Web Interactions Mean and Standard Deviation Service Time

Analysis for CBAC-disabled and CBAC experiments

169

