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Abstract

A well known performance bottleneck in computer architecture is the so-called mem-

ory wall. This term refers to the huge disparity between on-chip and off-chip access

latencies. Historically speaking, the operating frequency of processors has increased at

a steady pace, while most past advances in memory technologyhave been in density,

not speed. Nowadays, the trend for ever increasing processor operating frequencies

has been replaced by an increasing number of CPU cores per chip. This will continue

to exacerbate the memory wall problem, as several cores now have to compete for

off-chip data access. As multi-core systems pack more and more cores, it is expected

that the access latency as observed by each core will continue to increase. Although

the causes of the memory wall have changed, it is, and will continue to be in the near

future, a very significant challenge in terms of computer architecture design.

Prefetching has been an important technique to amortize theeffect of the memory

wall. With prefetching, data or instructions that are expected to be used in the near

future are speculatively moved up in the memory hierarchy, were the access latency is

smaller. This dissertation focuses on hardware data prefetching at the last cache level

before memory (last level cache, LLC). Prefetching at the LLC usually offers the best

performance increase, as this is where the disparity between hit and miss latencies is

the largest.

Hardware prefetchers operate by examining the miss addressstream generated

by the cache and identifying patterns and correlations between the misses. Most

prefetchers divide the global miss stream in several sub-streams, according to some

pre-specified criteria. This process is known as localization. The benefits of local-

ization are well established: it increases the accuracy of the predictions and helps

filtering out spurious, non-predictable misses. However localization has one important

drawback: since the misses are classified into different sub-streams, important chrono-

logical information is lost. A consequence of this is that most localizing prefetchers

issue prefetches in an untimely manner, fetching data too far in advance. This behavior

promotes data pollution in the cache.

The first part of this thesis proposes a new class of prefetchers based on the novel

concept of Stream Chaining. With Stream Chaining, the prefetcher tries to recon-

struct the chronological information lost in the process oflocalization, while at the

same time keeping its benefits. We describe two novel Stream Chaining prefetching

algorithms based on two state of the art localizing prefetchers: PC/DC and C/DC. We
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show how both prefetchers issue prefetches in a more timely manner than their non-

chaining counterparts, increasing performance by as much as 55% (10% on average)

on a suite of sequential benchmarks, while consuming roughly the same amount of

memory bandwidth.

In order to hide the effects of the memory wall, hardware prefetchers are usually

configured to aggressively prefetch as much data as possible. However, a highly ag-

gressive prefetcher can have negative effects on performance. Factors such as prefetch-

ing accuracy, cache pollution and memory bandwidth consumption have to be taken

into account. This is specially important in the context of multi-core systems, where

typically each core has its own prefetching engine and thereis high competition for

accessing memory. Several prefetch throttling and filtering mechanisms have been

proposed to maximize the effect of prefetching in multi-core systems. The general

strategy behind these heuristics is to promote prefetches that are more likely to be used

and cause less interference. Traditionally these methods operate at thesourcelevel,

i.e., directly into the prefetch engine they are assigned tocontrol.

In multi-core systems all prefetches are aggregated in a FIFO-like data structure

called the Prefetch Request Queue (PRQ), where they wait to be dispatched to mem-

ory. The second part of this thesis shows that a traditional FIFO PRQ does not promote

a timely prefetching behavior and usually hinders part of the performance benefits

achieved by throttling heuristics. We propose a novel approach to prefetch aggressive-

ness control in multi-cores that performs throttling at thePRQ (i.e.,global) level, using

global knowledge of the metrics of all prefetchers and information about the global

state of the PRQ. To do this, we introduce the Resizable Prefetching Heap (RPH), a

data structure modeled after a binary heap that promotes timely dispatch of prefetches

as well as fairness in the distribution of prefetching bandwidth. The RPH is designed as

a drop-in replacement of traditional FIFO PRQs. We compare our proposal against a

state-of-the-art source-level throttling algorithm (HPAC) in a 8-core system. Unlike

previous research, we evaluate both multiprogrammed and multithreaded (parallel)

workloads, using a modern prefetching algorithm (C/DC). Our experimental results

show that RPH-based throttling increases the throttling performance benefits obtained

by HPAC by as much as 148% (53.8% average) in multiprogrammedworkloads and

as much as 237% (22.5% average) in parallel benchmarks, while consuming roughly

the same amount of memory bandwidth. When comparing the speedup over fixed de-

gree prefetching, RPH increased the average speedup of HPACfrom 7.1% to 10.9% in

multiprogrammed workloads, and from 5.1% to 7.9% in parallel benchmarks.
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Chapter 1

Introduction

1.1 Motivation and Focus of this Dissertation

The term Memory Wall [15, 16] refers to the well known performance gap between

processor speed and memory access latency. Nowadays off-chip memory requests have

a latency of a few hundred processor cycles. Historically, technology has enabled a

steady increase in processor operating frequencies while the most significant advances

in memory technology have been related to density and not speed, thus creating an

ever widening performance gap. At the present time the trendfor increasing operating

frequency in processors has flattened out. However, this trend has been exchanged for

an increasing number of cores per chip. This has the consequence of more concurrent

memory accesses and, therefore, an increase in the average off-chip access latency as

observed by each core. As a result, even though the difference between processor and

memory speed has not been increasing as steeply as in the past, the memory wall is

expected to grow bigger.

Several techniques have been proposed to mask the big latencies related to off-chip

memory access. Some try to exploit inherent Instruction Level Parallelism (ILP) in

order to keep the processor busy with work while the requireddata arrives. Examples

of these techniques include out-of-order execution, register renaming and speculative

execution. The level of ILP varies, however, wildly across programs and even between

program phases.

Prefetching is another technique historically successfulin reducing the observed

memory latency. In hardware prefetching, a set of hardware units observe the current

memory access patterns. Based on this information, data that is likely to be needed in

the future is fetched from memory and placed in one of the cache memory levels. In

1
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software prefetching, the compiler uses static program analysis to interleave prefetch

instructions throughout the program.

Both hardware and software prefetching have their benefits and drawbacks. In soft-

ware prefetching there are no timing constraints for the execution of the prefetching

algorithm, allowing the application of sophisticated prediction heuristics. However,

software prefetching is mostly limited by static program analysis. On the other hand,

hardware prefetching algorithms have access to the run-time information of the pro-

gram, which is very valuable for predicting future accesses. Additionally, hardware

prefetching is universally applicable (i.e., it is available to every program being run),

whereas software prefetching requires recompilation or atleast modification of the

program binary. By contrast to software prefetching, hardware prefetching algorithms

cannot be arbitrarily complex, and their run time has to fit into the timing constraints

imposed to the hardware.

In this dissertation we will focus on hardware data prefetching into the lowest on-

chip data cache level (typically the L2). This is in accordance to most recent research.

There are three reasons for concentrating our study in this cache level:

• The miss latency on higher cache levels is usually quite small and processors can

tolerate them without too much degradation in performance.

• The time constraints for implementing prefetching algorithms at the lowest level

are much more lenient. This allows us to design more sophisticated algorithms

that would be simply unrealistic to implement at a higher cache level

• Finally, the lowest on-chip cache level has the highest miss penalty, since data

requests must use the much slower memory interface. Therefore it is on this

level were a good, sophisticated prefetching algorithm is expected to provide the

greatest returns on investment.

Although hardware prefetching has been shown to improve significantly the per-

formance of the memory subsystem, it is not a technique without problems. An inac-

curate prefetcher can generate copious amounts of wastefulmemory traffic that will

pollute the cache and produce, in the worst case, performance degradation compared

to a configuration without prefetching. Simple hardware prefetchers can not capture

the complex memory access patterns present in nowadays applications and therefore

suffer from low coverage. On the other hand, many of the more complex prefetch-

ing algorithms proposed by previous research are too complicated or require too many
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hardware resources to be implemented in current commercialarchitectures. While

accurate prefetchers with good coverage are desirable, research on prefetching has tra-

ditionally focused almost exclusively on these two metrics, sidetracking the equally

important aspect of improving prefetch timeliness (i.e., dispatching prefetches at the

most optimal moment). Finally, the move to multi-core systems has emphasised the

need for good prefetch throttling algorithms that can arbitrate and restrict the traffic

coming from a growing number of prefetching units.

1.2 Main Contributions

1.2.1 Improving Prefetching Timeliness With Stream Chaini ng

Virtually all modern prefetching algorithms use past cachemiss history information

to base their predictions. However, in its original form, the global stream of past

miss history contains interleaved misses from several sources (i.e, different streams of

memory accesses interleaved by ILP mechanisms within the CPU). This interleaving

usually leads to poor predictability of the global miss stream.

In order to tackle the poor predictability of the global missstream, modern prefetch-

ers usually resort to a process calledlocalization. Localization refers to a clustering

process in which misses are classified according to some property. The expectation is

that the resulting sub-streams, calledlocalized streams, will be more predictable than

the global miss stream. When a new miss is registered in a localizing prefetcher, it is

first localized (i.e., classified) and added to its corresponding localized stream. The

prefetcher then performs its access prediction using only the miss information con-

tained in the localized stream. This way, in a localizing prefetcher, random or noisy

(i.e., non-predictable) accesses can be distinguished from regular, predictable mem-

ory access streams. Similarly, two predictable streams that appear interleaved in the

global miss stream (therefore leading to poor or no predictability) appear now in two

separate localized streams. Several criteria can be used toperform localization. Com-

mon strategies that have proven to work well across a varietyof applications include

the address of the missing instruction or the region in memory referred by the miss

address.

Although localization is an useful mechanism that improvesthe predictability of

the global miss stream, it also carries some negative side effects. In the process of

localization, important chronological information aboutthe misses is lost. While lo-
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calization keeps the time ordering information for misseswithin a single stream, there

is no time correlation between misses from different streams. As a consequence, cur-

rent localizing prefetchers have no way of knowing how many misses from different

streams might be interleaved between two misses that are stored consecutively in a

given stream. Additionally, current prefetching mechanisms make use of aggressive

prefetch degrees in order to hide as much as possible the effects of the memory wall.

This, combined with the lack of inter-stream chronologicalinformation, leads to two

undesirable effects: 1) decreased prefetching accuracy; and 2) decreased prefetch time-

liness. Both effects can be attributed to the same root cause: the prefetcher issues too

many prefetches for a single stream, too soon in advance. As aprefetcher predicts fur-

ther into the same stream, the risk of “overrunning” the stream (i.e., predicting accesses

past the natural end of the stream) and issuing wrong prefetches increases, therefore

lowering the overall accuracy. Furthermore, even if all prefetches issued for a single

stream are correct predictions, they might have been issuedin an untimely manner

(i.e., too soon) and might pollute the cache or be replaced byother misses or prefetch

requests.

In order to overcome this problem, we introduce the concept of Stream Chaining,

the first main contribution of this dissertation. The goal ofstream chaining is to intro-

duce another layer of correlation that exposes the order of activation of the different

miss streams as they are used by a localizing prefetcher. This is done by linking miss

streams in such a way that it reflects the core flow of misses of the application. In this

context, a link between two streams implies a temporal correlation between the misses

of both streams (e.g., if streamA is linked to streamB, this means that a miss local-

ized in streamA is usuallyfollowed by a streamB miss). This way, for each miss, the

prefetcher has two sources of information: intra-stream miss history and inter-stream

activation information. The latter allows the prefetcher to predict the stream the next

miss will belong to. This information can be used by the prefetcher to achieve a more

balanced and timely dispatch of prefetches, issuing requests not only from the current

miss stream but also from the miss streams that are predictedto be activated next.

The key to effective stream chaining lies in finding an heuristic that links the

streams in such a way that it reflects the common path of misses(or stream activations)

caused by the application, while at the same time leaving outspurious misses. In this

dissertation we provide a concrete implementation of stream chaining we denoteMiss

Graph (MG) Prefetching. MG prefetching uses past stream activation information to

generate a graph of the common stream activation paths for the current program phase.
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Furthermore, the graphs generated by MG prefetchers are lightweight and can be stored

in hardware with low storage requirements. Therefore, current localizing prefetchers

can be adapted with minimal changes to use MG prefetching. Weprovide details

of implementation of MG prefetching for two modern localizing prefetchers: PC/DC

and C/DC. We name the resulting MG prefetchers PC/DC/MG and C/DC/MG. In the

last part of this contribution we evaluate in detail the performance of these prefetch-

ers against their non-chaining counterparts. We show how stream chaining with miss

graphs significantly improves the performance of localizing prefetchers while keeping

the complexity of the data structures involved low and well within hardware imple-

mentation constraints.

1.2.2 Prefetching in Multi-Core Systems with Resizable Pre fetch

Heaps

In the second part of this dissertation we explore prefetching in multi-core systems.

As mentioned in the introduction, in the recent years the trend for increasing processor

frequencies has been exchanged for an increased number of cores per processor. In

virtually all multi-core architectures prefetching is performed on a per-core basis (i.e.,

each core has a dedicated prefetcher). This presents a new set of challenges for hard-

ware prefetching, one of the most prominent ones being how toarbitrate access to the

memory channel between an increasing number of independentprefetching engines.

Past research has produced a few prefetch throttling and filtering algorithms that

regulate the aggressiveness of the prefetcher based on performance metrics and avail-

able memory bandwidth. In spite of this, only recently the problem of prefetching

interference and arbitration has been researched within the context of multi-core sys-

tems. Furthermore, all past research on prefetcher arbitration in multi-core systems

has focused on regulating prefetch aggressiveness at thesourcelevel, that is, directly

setting the prefetch degree of each prefetch engine.

We introduce the concept ofResizable Prefetch Heaps(RPH), a novel way of ar-

bitrating prefetches in multi-core systems at the PrefetchRequest Queue (PRQ) level,

with global knowledge of the state and metrics of all prefetching engines in the sys-

tem. In multi-core systems, the PRQ is the data structure that holds all the prefetch

requests issued by the prefetchers that have not yet been issued by the memory con-

troller. Traditionally, this structure is implemented as aFIFO circular queue, where

prefetch requests are extracted in the same order they were inserted.



Chapter 1. Introduction 6

The RPH is designed as a drop-in replacement of a traditionalFIFO PRQ that,

by contrast, works as a priority queue. In the RPH, prefetch requests are assigned a

priority based on several metrics, both local to the issuingprefetcher and global to the

multi-core system. This priority is used by the RPH to define an order of extraction

of prefetch requests. As a result, the RPH is able to prioritize the issue of important

prefetch requests over those not deemed as crucial or urgent. Additionally, instead of

regulating the prefetch aggressiveness of each prefetch engine locally, we make the

decision of whether to insert or drop each prefetch request at the RPH PRQ level.

Another feature of the RPH is its ability to change its size inresponse to the uti-

lization of the memory bus. At times when the memory channel is saturated by de-

mand requests, the RPH seamlessly shrinks in order to not flood the channel with

more prefetching requests. Similarly, when the memory utilization is low, the RPH

expands in order to be able to issue as many prefetch requestsas possible.

The operation of the RPH is thus defined by two heuristics: howto assign priorities

to prefetch requests and how to resize the RPH based on the current memory channel

utilization. For assigning priorities, we partially base our heuristic in the principles

behind a state-of-the-art throttling algorithm known as HPAC (Hierarchical Prefetcher

Aggressiveness Control). We describe in detail how we construct a priority assign-

ment formula backed by some of the operating principles of HPAC. We describe our

RPH resizing heuristic, which is based solely on memory channel utilization and can

be implemented with minimal hardware modifications. Additionally, we give imple-

mentation details and analyze the run-time complexity of the new hardware.

In order to evaluate the performance of the RPH, we use a selection of benchmarks

in both multi-programmed and multi-threaded configurations. In contrast to previous

research, we use a state-of-the-art, accurate prefetcher (C/DC) that reflects the cur-

rent development of prefetching algorithms. We compare theperformance of the RPH

throttling against HPAC, a conventional modern throttlingalgorithm. We show that

throttling prefetches with the RPH improves significantly the performance improve-

ment achieved by throttling in multi-programmed and multi-threaded configurations.

1.3 Thesis Structure

Chapter 2 provides background on the current state-of-the-art in prefetching. In this

chapter we introduce the basic concepts behind hardware prefetching and the metrics

used to evaluate its performance. We then survey several prefetching methods, from the
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fundamental and basic algorithms used in the past to the current state-of-the-art. We

describe hardware implementation details such as the hardware data structures used to

implement prefetching and the architectural organizationof prefetching in single and

multi-core systems. Additionally, we also provide information on the techniques used

to throttle and filter useless prefetches.

In Chapter 3 the first main contribution of this thesis,Stream Chaining, is intro-

duced. We start by setting the context and pointing out some deficiencies in current lo-

calizing prefetching methods. We then introduce the general concept of Stream Chain-

ing, and a concrete implementation for it we callMiss Graph Prefetching. In the rest of

this chapter we describe two new prefetching algorithms that use Miss Graph Prefetch-

ing to improve the timeliness and accuracy of their prefetches: PC/DC/MG and C/D-

C/MG. In Chapter 4 we evaluate the performance of Stream Chaining prefetching. We

start by discussing the evaluation methodology and then evaluate in detail both PC/D-

C/MG and C/DC/MG against their non-chaining counterparts:PC/DC and C/DC.

In Chapter 5 we introduce the second main contribution of this thesis:Resizable

Prefetch Heaps(RPH). First we motivate our study by characterizing the concept of

prefetch throttling as a generalization of the well-known producer-consumer problem.

We also describe in detail a state-of-the-art throttling mechanism known as HPAC, on

which we will base some of the heuristics of the RPH. We end this chapter introducing

the RPH and giving detailed information about its operationand implementation de-

tails. The performance of the RPH is evaluated in Chapter 6. As with Stream Chaining,

we start by describing our evaluation methodology. We then evaluate in detail the per-

formance of RPH compared to HPAC. We introduce the concept ofPrefetch Fairness,

a metric that allows us to evaluate the variance in prefetching performance introduced

by prefetch throttling algorithms. Lastly, we evaluate theprefetch fairness of the RPH

and HPAC prefetch throttling methods.

We end this dissertation with a conclusion in Chapter 7. In it, we summarize the

main findings and results presented in this thesis, as well aspoint out future lines of

work and possible further research associated with the topic. After it, we provide an

Appendix with a description of all the benchmarks used in theevaluation of this work

and the Bibliography referenced throughout the main text.



Chapter 2

Background

2.1 Memory Hierarchies

All but the simplest computer architectures have their memory systems composed of

several layers, forming what is called amemory hierarchy. Each layer in the hierarchy

has different characteristics regarding speed of access, density, capacity and power

consumption. Generally speaking, the faster a memory technology is, the more costly it

is as well. Therefore, the capacity and speed specificationsof any memory technology

are usually inversely correlated.

Most programs tend to access only a small portion of their address space at any

given time, and they usually tend to access repeatedly the same set of memory lo-

cations. This property, called locality of reference, is crucial for understanding the

usefulness of memory hierarchies. The aim of a memory hierarchy is to place the

most frequently used data objects as close as possible to theelement that is going to

consume them, the processor. For this, fast (but costly and small) memory layers are

put very close to the processor. As we move away from the processing core, we find

incrementally bigger (and slower) memory layers, until finally reaching the hard disk.

Another important property of memory hierarchies is that they hide most of their

implementation details to the programmer. With the exception of the hard disk, which

usually requires the intervention of the operating system,and the register file, which is

part of the instruction set architecture, most data flow between layers of the hierarchy

is handled automatically in hardware.

Figure 2.1 shows the memory hierarchy for a conventional computer architecture,

annotated with typical access latencies for each level of the hierarchy. From that figure

it can be seen that as we move further away from the processor,access latencies grow

8
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Figure 2.1: Standard memory hierarchy with typical access latencies.

larger. Conversely, memory capacities also increase as we progress further down the

hierarchy. The access latency to any on-chip element is moderately small, with laten-

cies of up to tens of cycles for the L2 cache. However, on-chipmemory levels do not

hold large amounts of data, with the L2 cache having capacities in the low-megabyte

order.

The main memory is the first memory level which has enough capacity to store

most (if not all) of the data needed by applications. The price to pay for this large

capacity is a much slower access time, in the order of hundreds of cycles. This is

mainly due to two factors: its off-chip placement and the useof a different memory

technology (DRAM, as opposed to SRAM), needed to achieve such big capacities.

This great difference in access latency is referred to as thememory wall, and it is

explained further in Section 2.2.

The last memory layer of the hierarchy shown in Figure 2.1. This is the first non-

volatile (i.e., retains data after power-off) layer of memory. Regardless of the technol-

ogy used (magnetic, solid-state memory, etc.) its access latency is several orders of

magnitude greater than any of the other levels in the hierarchy. Similarly, its capac-

ity is also much greater than all the other levels combined, up to the terabyte range

nowadays.
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2.2 Prefetching

The term prefetching refers to the process of speculativelymoving objects (usually

instructions or data) up in the memory hierarchy before theyget referenced by the

processor. The main idea behind prefetching is to hide as much as possible the latency

penalty associated by missing in one level of the memory hierarchy. While at higher

levels this penalty is relatively minor (in the order of a fewtens of cycles nowadays)

as we move down the hierarchy it increases considerably (Figure 2.1). Of special

importance is the so-calledmemory wall, which refers to the big disparity between on-

chip and off-chip access latencies (i.e., to memory). Up until recently this gap in speed

had been growing steadily, although in the recent years it has flatten out. However,

the move to multicore processors has put new stress in off-chip communication, and

with more accesses to memory being served concurrently, thememory access latency

as observed by each core is expected to grow again.

Data prefetching has long been considered a successful technique to overcome the

memory wall. The benefits of prefetching techniques have been recognized at least

since the mid-sixties. Early studies of cache design [4] showed the advantages of

fetching adjacent lines from the main memory into the cache.This is nothing but an

early form of prefetching, where unreferenced lines are fetched in the hope of taking

advantage of the spatial locality of the program. The IBM 370/168 (introduced in

1972) and the Amdahl 470V (introduced in 1975) were among thefirst architectures

to implement data prefetching in hardware [5].

Prefetching can be initiated either by software or hardware. In hardware prefetch-

ing, a hardware module adjacent or included in the cache monitors the miss stream gen-

erated by the program, makes predictions about future accesses and issues prefetching

requests based on those predictions. Software prefetchingcan be achieved by insert-

ing prefetchinstructions by the compiler (inline prefetching) or by running prefetch

instructions in a separate thread (precomputational thread orp-thread) [18]. Addition-

ally, software prefetching with helper threads can be used to perform dynamic trace

analysis and insertion of prefetch instructions in the mainthread [54]. This is particu-

larly relevant in the context of execution optimization in virtual machines, where both

trace analysis and instruction injection mechanisms are readily available.

Compared to software data prefetching, hardware data prefetching has two impor-

tant advantages:

• It works universally and without the need of modification tothe program. Soft-
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ware data prefetching requires recompilation of source code.

• Hardware data prefetching has access to runtime information about the program,

whereas inline software data prefetching is limited by the scope of static source

code analysis. Prefetching with p-threads can have access to some runtime in-

formation about the program but with the added difficulty that the prefetching

system has to always monitor the prefetching threads for divergence from the

original computation path.

On the other hand, hardware data prefetchers are limited by their hardware imple-

mentation. Since they are hardware modules, they are subject to the same constraints

in size, complexity and timing as all the other CPU components.

Prefetching is not exclusively applied to move data objectsfrom memory to the

last level cache. In the context of computer architecture, prefetching techniques have

been used to improve the performance of instruction caches [19], I/O [20] or the TLB

[9]. Moreover, data prefetching can be applied to all levelsof the memory hierarchy.

Current microprocessors have prefetching engines at everycache level, and frequently

several specialized ones per level. However, in this dissertation we will focus on hard-

ware prefetching operating at the last level cache (the lastcache before memory). The

reason for concentrating on this level is two-fold. Firstly, misses from this cache level

have a higher penalty than misses from caches higher in the hierarchy, and therefore

prefetching is more important for hiding the memory latency. Secondly, operating at

the last level cache means that misses to it are less frequent, making timing constraints

for the prefetcher less strict. This allows designing more sophisticated prefetching

algorithms that realistically could not be implemented at higher cache levels.

2.3 Basic Operation of a Hardware Data Prefetcher

The prefetch module is conceptually placed between the cache it will prefetch to and

the lower memory level where misses from the cache are serviced from. The prefetcher

is notified of the misses generated by the cache (themiss stream). The miss stream is

used by the prefetcher to look for predictable sequences of addresses. When one such

sequence is found, the prefetcher issues a number of prefetch requests to the lower

memory level. The number of prefetch requests issued is known as theprefetch degree,

and it defines the aggressiveness of the prefetcher.
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Once the prefetched data has arrived from memory, it can be either inserted di-

rectly into the cache or kept in a dedicated prefetch buffer,as proposed in [2] [7] [3].

In the latter option, any access to the cache is done in parallel with a prefetch buffer

lookup. In case of a cache miss but a prefetch buffer hit, the data is moved into the

cache. This has the advantage of reducing cache pollution, as useless prefetches (that

are never referenced) are eventually overwritten and nevermove into the cache. How-

ever, for performance reasons, prefetch buffers are implemented as a fully-associative

memory. Therefore their size is relatively small compared to the cache and thus there

are more chances of valid prefetched data being overwrittendue to lack of space in the

buffer. Nowadays most microprocessors opt for inserting prefetched data directly into

the cache, as it simplifies the cache and prefetcher design.

To minimize interference by the prefetcher, prefetch requests are normally given

lower priority than demand misses from the cache. Additionally, the prefetched data

are usually tagged with a prefetch bit to distinguish them from normal demand miss

data. A prefetch bit per cache line is kept in the cache to marklines prefetched but not

yet used. When a prefetched block is accessed for the first time, a “fake miss” signal

is sent to the prefetcher and the prefetch bit is cleared. This notifies the prefetcher that

a miss would have happened had it not prefetched that block ofdata. This mechanism

keeps the miss stream seen by the prefetcher intact and independent of the amount of

data prefetched. Moreover, it allows the prefetcher to continue issuing prefetch re-

quests even if no real L2 misses occur (i.e., as long asfake misssignals keep activating

the prefetcher).

2.4 Prefetching Metrics

Typically three metrics are used to evaluate the performance of a prefetcher: accuracy,

coverage and timeliness.

Accuracy measures the ratio of useful (i.e., eventually used by the program) prefetches

to the total number of prefetches issued.

Accuracy=
Used Prefetches
Issued prefetches

(2.1)

Since it is a normalized metric, accuracy will range between0 and 1 (or 0 and

100%). When defining this metric, the term “used prefetches”has to be clarified to
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indicate whether we consider a prefetch useful from the moment it is issued or from

the time it reaches the cache. In the first case, we include in this metric the portion

of prefetch requests that are used before they reach cache (also known ashalf-misses),

and therefore failed to completely cover the memory latency. In the latter case, only

prefetch requests that were in the cache at the point of beingused are accounted in the

metric. In this dissertation we use the latter definition of used prefetches (i.e., only

those which were in the cache at the time of being used) for theaccuracy metric.

Besides accuracy, another important metric to characterize a prefetcher is its cov-

erage. The coverage of a prefetcher gives an upper bound of the fraction of misses

that could be eliminated by the prefetcher operation. Coverage is defined as the ratio

of issued prefetches to the total number of misses produced by the program with no

prefetching.

Coverage=
Issued prefetches

Misses without prefetching
(2.2)

Note that prefetching can generate new misses and generallywill change the orig-

inal miss stream of the application. Additionally the number of prefetches issued may

be higher than the total number of misses without prefetching. For these reasons cov-

erage, unlike accuracy, does not necessarily have to range between 0 and 1.

Timeliness is more difficult to quantify precisely. Untimely prefetch requests are

those that arrive too early or too late to the cache. If a prefetch request arrives too early

it might pollute the cache, as it could replace data that could be needed before it. A

prefetch request issued too late will not be useful in hidingmemory latency, as it will

not return from memory in time to be used by the program. It could be said that a

timely prefetch request is one that arrives to the cache early enough to be useful to the

program but not as early as to provoke the eviction of blocks that will be referenced

before it.

2.5 Hardware Prefetching Methods

2.5.1 Localization

One common issue all prefetchers have to deal with is high entropy in the global miss

stream, where cache misses from several sources may be interleaved randomly, lead-

ing to poor predictability. Additionally, some of these miss sources might not be pre-

dictable at all, whereas others might. With aggressive out-of-order CPU cores being

the norm nowadays, misses coming from different sources areusually interleaved and
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serviced simultaneously by the cache. Consider the following code fragment for a

vector sum:

void sumV ( i n t *A, i n t *B , i n t * r e s u l t ) {

f o r ( i =0; i < 10000; i ++) {

r e s u l t [ i ] = A[ i ] + B[ i ] ;

}

}

Normally accesses alone to vectorA (or B) would generate a predictable stream of

missesA,A+n,A+2n, ... (B,B+n,B+2n, ...), for a cache block size ofn. However,

when both vectors are accessed the global miss stream as observed by the prefetcher is

A,B,A+n,B+n,A+2n,B+2n, ..., which in is not as easy to predict.

In order to cope with this issue, modern prefetchers normally resort tolocalization.

With localization, misses are grouped according to some property with the expectation

that the resulting sub-streams are more predictable than the global miss stream. The

three main classes of localization areexecution context localization, spatial localiza-

tion andtemporal localization(Figure 2.2).

Execution context localization groups misses according tothe instructions that gen-

erated the miss. A commonly used method in this class is grouping the misses accord-

ing to the Program Counter (PC) of the missing instruction. In the above example, PC

localization of the global miss stream would result in two sub-streams that are easily

predictable:A,A+n,A+2n, ... andB,B+n,B+2n, ... PC localization gives good re-

sults and has been used in several popular prefetching algorithms, such as the Stream

Prefetcher [2] [3], the Stride Prefetcher [6] and the PC/DC prefetcher [10].

Spatial localization groups misses according to the memoryregion they point at.

Localization based on concentration zones (CZones) was proposed in [11] as an alter-

native to PC localization in the C/DC and AC/DC prefetchers.These prefetchers sep-

arate the stream of misses according to memory address ranges of the misses. C/DC

uses memory regions of fixed size whereas AC/DC adaptively changes the size of those

regions. The predictor in [13] also uses spatial localization.

Temporal localization was defined in [12] in the context of directory-based shared-

memory multiprocessor systems. In this type of systems, temporal localization groups

consecutive misses based on the fact that they appear in one node of the system at

a time period defined by the start and end of a sequence ofcoherentread (i.e., to

shared memory) misses. Although it defines a way of grouping misses based on their

temporal properties, this type of localization is mostly relevant when localizing misses
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from different processing sources, such as nodes in a multiprocessor system.
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Figure 2.2: Execution context, spatial and temporal localization.

2.5.2 Correlation

Correlation is the process by which a prefetching algorithmpredicts future misses

based on previous historical miss information. Naturally there are several kinds of cor-

relation heuristics. Sequential methods, described in Section 2.5.2.1, utilize minimal

historical miss information and instead rely on prefetching sets of continuous memory

blocks. Complex correlation methods (Section 2.5.2.2) usemore detailed historical

miss information that allows them to be more selective on what they prefetch. While

prefetching more intelligently than sequential methods, complex correlation methods

require more complex hardware implementations.

2.5.2.1 Sequential Methods

The earliest prefetch algorithms were sequential in nature, prefetching lines consec-

utive to the one that caused the miss. In doing so, sequentialmethods try to take

advantage of thespatial localityof programs, which states that if a program references

a certain memory location, it is probable that it will also reference locations nearby.
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The simplest sequential prefetching algorithm requests, on a given miss, the block

adjacent consecutive to the one that caused the miss [5]. This technique is sometimes

called One Block Lookahead (OBL). One obvious drawback of this technique is that,

in the case of a purely sequential access pattern, OBL will only prefetch every other

miss (since it is necessary to have a miss in order to prefetchanother cache block). This

can be overcome tagging the prefetched blocks in the cache, as explained in Section

2.3.

OBL prefetching might not be enough to stop a processor from stalling, since only

one block of data is prefetched at a time. More complex sequential methods usually

prefetch more than one block at a time. Let us recall that the number of prefetched

blocks in a single prefetcher activation is referred to as the prefetch degree (Section

2.3). One problem with prefetching with large degrees is thepossibility of polluting

the cache with unused prefetched data blocks. This problem is especially acute with

sequential prefetching, as they do not discriminate much which blocks to prefetch. In

Section 2.7 we survey methods to adaptively change the degree of prefetching and filter

out cache polluting prefetches.

In [2], a variation of sequential prefetching is proposed whereK blocks are brought

from memory to a FIFO queue calledstream buffer, a specialized version of aprefetch

buffer (Section 2.3). When a demand miss references the block in thehead of the

queue, it is transferred to the cache and another prefetch request is sent, to be later

enqueued at the tail of the queue. In [3] the usage of several stream buffers was studied

as a possible replacement for second level caches. The conclusion of this analysis is

that for the benchmarks evaluated, a collection of 8 streams(allocated with a LRU

policy) and a prefetch degree of 2 is sufficient to predict between 50% and 90% of all

the accesses to a second level cache.

The contributions in [2] and [3] form the basis of thestream prefetcher, a version

of sequential prefetching with stream buffers that can be implemented with a simple

FSM. A stream prefetcher can track several streams of memoryreferences at the same

time. Each stream is defined by an initial miss to the cache anda distance to that

miss, called theprefetch distance. The prefetcher monitors misses to the cache that

fall within the range of each stream (i.e., between the initial miss of the stream and

its prefetch distance). In case of a miss being detected in that range, the prefetcher

requests from memory the blocks[A+P,A+P+K] ([A−P−K,A−P] in a descending

stream), whereA is the initial miss registered for that stream,K represents the prefetch

distance andP is the prefetch degree. Note that in the case of the stream prefetcher,
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both the prefetch distance and the prefetch degree control the aggressiveness.

Thanks to their simple implementation and relatively good performance when deal-

ing with simple access patterns, stream prefetchers have been implemented in several

commercial microprocessors, such as in IBM’s POWER4 [40] and POWER5 [41] mi-

croarchitectures. Of historical interest is Cray’s decision of replacing second level

caches with dedicated stream buffers and prefetchers in their T3E supercomputer [39].

2.5.2.2 Complex Correlation Methods

Complex correlation prefetching methods use past cache miss information to make

predictions about future misses. Most current prefetchingalgorithms can be classified

as belonging to this group. One of the most straightforward,known as Address Cor-

relation ([10]) or Temporal Correlation ([12] [14]), keepsa (limited) history of past

misses, chronologically sorted. When a new miss occurs, thepredictor looks back in

the miss history to determine if that miss has been seen before. In the affirmative case,

the miss addresses recorded in the miss history as happeningafter this address are

prefetched (Figure 2.3). Simple Address Correlation predictors only use the current

miss in order to search the miss history, whereas more sophisticated methods may use

a bigger context (past two or three misses for example) to improve the accuracy of the

predictions at the cost of lower coverage. Address Correlation does a good job in cap-

turing spatially irregular miss patterns that repeat in a predictable fashion. However

one of its drawbacks is that it requires keeping a fairly longhistory of past misses in

order to be effective.

A1  A2  A3  A4  A5  A4  A5  A4  A8 A2

Last miss

Miss stream

Prefetch

Figure 2.3: Example of Address Correlation.

Markov Prefetching generalizes Address Correlation. The concept behind Markov
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Prefetching is that for a given miss address, sometimes different correlations are pos-

sible. For example, given a miss addressA, the prefetcher will search the past miss

history and see that in the most recent case, addressB missed the cache afterA. How-

ever, the miss history also indicates that there was anotherprevious miss to addressA

in which the consecutive missing address wasC. Markov prefetching approaches this

situation modelling the miss history information as a Markov chain, hence the name.

In case of successful correlation, for a given miss the Markov Prefetcher will have sev-

eral records of addresses that followed it. These addresseswould be prefetched starting

with the most recent one (Figure 2.4).

A1  A2  A3  A2  A4  A4  A2  A4  A3 A2

Last miss

Miss stream

A1 A2

A4A3

1

0.3

1

0.3

0.60.3

0.3

Prefetch: A2 A4 A3

0.3

Figure 2.4: Example of Markov Prefetching.

Another way of generalizing address correlation consists of using the cache tags

instead of the miss address. This idea was proposed in theTag Correlating Prefetcher

[46]. The main principle behind Tag Correlating Prefetching is that by using cache tags

instead of addresses in the correlation, several address sequences can be generalized.

The authors show that tag miss sequences (i.e., the sequenceof cache tags of the cache

misses) are highly repetitive, allowing the construction of a generalized predictor that

requires less storage for miss information than address correlation.

Constant Stride correlation [6] aims at capturing spatially predictable miss pat-

terns. Constant Stride predictors look at the past few misses in order to see if a pattern

of constant strides is forming. If so, the prefetcher determines the stride length and

starts prefetching data situated at stride multiples of thecurrent miss address (Figure

2.5). One of the advantages of Constant Stride correlation is that it is very simple to
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implement in hardware, as well as space efficient. The prefetching logic can be imple-

mented with a very simple Finite State Machine (FSM), and thestorage requirements

are minimal: two registers to store the last miss address andthe hypothesized stride

length, and some FSM state bits per localized miss stream. Onthe other hand, Constant

Stride predictors can only predict very simple miss addresspatterns.

Last miss

Miss stream

Strides A10 − A9 == D4 ?

A1  A2  A3  A4  A5  A6  A7  A8  A9

yes Prefetch A10 + D4
Prefetch A10 + 2xD4
Prefetch A10 + 3xD4
.....

D1  D2  D3  D4  D4  D4  D4  D4

A10

Figure 2.5: Example of Constant Stride correlation.

Delta Correlation [10] generalizes Address and Markov correlation methods. This

method is based on the distance prefetching for TLB entries proposed in [9]. Like

Constant Stride correlation, Delta Correlation works withthe strides (deltas) between

consecutive addresses in the miss stream. The Delta Correlator will try to match the

last two deltas observed with the ones seen before in the delta history, much in the

same way Address Correlation works. Delta Correlation is considered a generalization

of Address and Markov correlations because it can predict all the accesses these two

methods can, plus some other patterns. The Delta Correlatorcan also predict all the

patterns predicted by the Constant Stride correlator, as they are just a special case of

delta correlation where all the deltas are the same.

Since Delta Correlation reduces addresses to deltas, it canpredict accesses to new

areas of memory, as long as the access pattern is the same as one observed before.

This situation can happen frequently. Normally a program will access data types or

objects in a predictable manner, but these objects are scattered all around memory,

depending on how or when they were allocated. Figure 2.6 shows an example of

Delta Correlation that illustrates this point. Although the addressA10 has never been

encountered before by the prefetcher (within its miss history), using Delta Correlation

it is possible to match its context ofaddress deltas D2,D3 within the miss history. As
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a result, the Delta Correlator can predict future references to(A10+D4), (A10+D4+

D5) even though the strides are not homogeneous (which will confuse the Constant

Stride correlator) and the miss addressA10 is new to the prefetcher (which will make

an Address Correlator fail).

Last miss

Miss stream

Deltas / Strides

A1  A2  A3  A4  A5  A6  A7  A8  A9 A10

D1  D2  D3  D4  D5  D5  D1  D2 D3

Prefetch A10 + D4
Prefetch A10 + D4 + D5
Prefetch A10 + D4 + D5 + D5

A2 − A1 = D1
A3 − A2 = D2
A4 − A3 = D3
A5 − A4 = D4
A6 − A5 = D5
A7 − A6 = D5
A8 − A7 = D1
A9 − A8 = D2
A10−A9 = D3

Figure 2.6: Example of Delta correlation

2.5.3 Other Approaches to Data Prefetching

Other ways to prefetch data have been proposed besides sequential and correlation

based methods. InContent Based Prefetching[17] the prefetcher scans the data blocks

brought from memory for possible addresses. Data is prefetched from those addresses

in a recursive manner (i.e., newly brought prefetched data is scanned again for more

addresses). The rationale behind content based prefetching is to provide an effective

way to prefetch pointer-chasing irregular workloads with non-predictable spatial or

temporal patterns. The content based prefetcher uses a shadow TLB which it queries

in order to determine if a portion of the data block refers to avalid address.

Dead-Block Correlating Prefetchers(DBCP) [48] aim to identify which cache

blocks will no longer be used and therefore are subject to eviction (“dead blocks”).

Furthermore, once a dead block is detected, DBCP predicts which cache block will

replace it and prefetches it. Dead blocks are predicted by tracking instruction traces
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for each cache block. This is done using a fixed-size, compacttrace signature based on

truncating addition. These signatures form the predictionhistory, to which a scheme

similar to address correlation is applied in order to detectwhen a block could be dead

(this is, when the end of a previously recorded signature is detected again). Informa-

tion about which block succeeds the dead block is also stored, and used for prefetching

once the dead block state is reached.

Lastly, recent work in [56] tackles specifically the problemof timely dispatch of

prefetch requests. In it, a new technique called Stream Timing is used to predict when

the next miss of each stream will happen. A modified stride prefetcher, called Time-

Aware Stride (TAS), then schedules prefetch requests to different streams depending

on the predicted miss time.

2.6 Hardware Structures for Data Prefetching

In this section we describe the hardware data structures involved in hardware prefetch-

ing. In Section 2.6.1 we survey the data structures used by the prefetcher to store

and retrieve past miss history information. In Section 2.6.2 we describe the Prefetch

Request Queue (PRQ), the data structure that holds prefetchrequests before being dis-

patched to memory.

2.6.1 Miss History hardware data structures

Traditionally prefetching algorithms have used tables to implement localization of the

global miss stream. The table is accessed with a key such as the program counter of

the miss instruction or the address of the miss. Each entry inthe table contains miss

information about a localized miss sub-stream. Figure 2.7 shows the table structure for

the PC/DC prefetcher.

The main benefit of using tables is their simplicity in terms of implementation.

They are a well understood structure that is used in other parts of the architecture such

as branch prediction. On the other hand, tables are inefficient in the sense that they

pre-allocate a fixed amount of history space per entry [10]. Additionally, entries in

the table that are not used frequently are at risk of becomingstale and mislead the

prefetcher into prefetching wrong data.

An alternative data structure, called the Global History Buffer (GHB), was pro-

posed in [10] to overcome the deficiencies of storing miss information in tables. The
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PC
Tag

History Table

Prefetch
algorithm

addresses
Prefetch

Address delta history

Figure 2.7: Table structure for the PC/DC prefetcher

GHB is a FIFO-like structure that stores past cache miss addresses in chronological or-

der. It is usually implemented as a circular buffer, with a global Head Pointer pointing

to the last (i.e., most recent) element on the queue.

Each entry in the GHB contains a pointer field that allows GHB entries to be con-

nected in time-ordered linked lists forming the different localized miss streams. One

possible problem due to the FIFO nature of the GHB is that an entry pointer field might

point to old data that has been overwritten by newer data. This is solved by using over-

sized pointers, where the least significant bits are used to point to other entries of the

queue and the most significant bits are used to distinguish between old and new entries

[10] [11].

An Index Table (IT) is used to access the most recent address for each stream.

The IT is indexed using a key appropriate for the localization scheme used (e.g., the

PC of the memory access instruction that generated the miss), which allows for the

implementation of different localization schemes. Figure2.8 shows an example GHB

for the PC/DC prefetcher [10].

The main advantage of the GHB lies in its FIFO queue-like behavior. Since the

data structure always keeps the most recent misses and discards old entries, it solves

the problem of stale entries commonly found in table-based implementations. Another

advantage of the GHB is its flexibility. In [10] the authors show how the GHB can

be used to implement several table-based correlation prefetchers such as the stride

prefetcher, Markov prefetcher or the PC/DC delta correlation prefetcher. In [11] the

authors implement two spatially-localized prefetching algorithms also using the GHB.

One drawback of using the GHB is that accessing the elements of a miss stream

takes several cycles, as the hardware must navigate the linked list of GHB entries. This

disallows its use in prefetchers at the highest cache levels, where the timing constraints
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Figure 2.8: GHB for the PC/DC prefetcher.

are quite strict and the frequency of misses high. However the time between misses at

lower cache levels, and specially at the last level cache, isbig enough to permit a GHB

hardware implementation [10] [11] [29].

2.6.2 The Prefetch Request Queue

In most architectures, prefetching requests are inserted into a hardware data structure

called the prefetch queue (PRQ). The PRQ is located between the prefetcher1 and the

memory controller. This data structure holds the prefetch requests until the memory

bus is free from regular memory requests, as judged by the memory controller. In

this way, preference is given to demand memory requests and interference on demand

requests from prefetch requests is minimized. While concrete details from commercial

architectures is hard to obtain, the current consensus is that prefetch queues in current

multi-cores are organized as FIFO queues and implemented ascircular buffers [42,

43, 55]. This FIFO organization is also assumed by virtuallyall academic research in

the topic of prefetching. In case of overflow, the oldest entries are dropped, and the

remaining entries are (logically, but not physically) shifted to make room for the new

requests.

In Chapter 5 we introduce a new PRQ organization calledResizable Prefetch Heaps

(RPH). The RPH PRQ assigns each prefetch request a priority that reflects their relative

1Note that in the context ofmulti-core systems each core usually has its own prefetch engine.
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value among the pool of pending requests. The priority of each prefetch request is then

used to make decisions at the time of dispatch to the memory controller, as well as for

replacement in case of overflow. This effectively turns the RPH into a logical priority

queue.

2.7 Adaptive Prefetch Throttling and Filtering

In order to hide as much as possible the effects of memory latency, modern proces-

sors usually resort to aggressive hardware prefetching techniques. While beneficial

for many applications, aggressive prefetching can lead to cache pollution and wasted

bandwidth. This issue is even more relevant in multi-core systems, where prefetch-

ing from one core can interfere and degrade the performance of programs running on

other cores. A number of approaches have been proposed to limit these side effects,

usually in the form of prefetching throttlers (that adjust the prefetching aggressiveness

depending on current conditions) and prefetch filters (thatcancel prefetch requests that

are unlikely to be beneficial). We review the current state ofthe art of these methods in

this section, paying special attention to multi-core systems. We focus our discussion

on techniques that apply for Last Level Cache (LLC) data prefetching. When we talk

about multi-core systems, we refer to a general configuration where the LLC is shared

among all cores, and where each core has its own prefetching engine.

2.7.1 Prefetch Throttling Techniques

Prefetch Throttling refers to the adaptive mechanisms under which the aggressiveness

of a prefetcher is adjusted according to a given heuristic. This heuristic can factor in

several aspects of the current system status: prefetch performance metrics, memory

bandwidth consumption, prefetch pollution to the cache, interference to other cores

in the case of a multi-core system, etc. The general idea behind prefetch throttling

is to increase the accuracy and benefits of prefetching by adjusting its aggressiveness

to its most optimal value. Naturally this increases the hardware complexity of the

prefetch system, since not only we have to add the logic to implement the throttling

heuristic, but also now our prefetching engine has to support dynamic reconfiguration

of its aggressiveness.

Prefetch throttling mechanisms have been proposed for eventhe simplest prefetch-

ing methods. In [21], the authors propose a throttling mechanism for sequential prefetch-
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ing in shared-memory multiprocessor systems. This mechanism tracks the number of

prefetches issued as well as the fraction of those that have been used. When the num-

ber of issued prefetches reaches a certain threshold, the number of used prefetches is

compared to an static threshold and a new prefetch degree is set. Therefore this method

relies on prefetching accuracy to set the aggressiveness ofa sequential prefetcher.

More recently, [22] proposes a probabilistic technique that tunes the aggressiveness

of a stream prefetcher based on an estimated spatial locality metric. They work on a

setup with a stream prefetcher residing in an on-chip memorycontroller. Using a data

structure known as the Stream Length Histogram (SLH), they characterize the typical

stream length (i.e., the length of a series of references that access consecutive blocks)

for a given epoch of the running program. Then this information is used to adjust the

stream prefetcher’s prefetch distance and degree. Unfortunately this technique is only

relevant to stream prefetchers.

A more general technique was proposed in [23]. This technique, known as Feed-

back Directed Prefetching (FDP), adjusts the aggressiveness of each core’s prefetcher

based on its accuracy and pollution side effects. The designof Feedback Directed

Prefetching is general enough to be applied to different prefetching algorithms.

The Hierarchical Prefetch Aggressiveness Control (HPAC) was proposed in [24]

as a generalization of FDP. Whereas FDP only takes into account metrics relevant to

each prefetcher, HPAC adds another decision layer that takes into account global inter-

actions between prefetchers. This global feedback layer tries to minimize the possible

negative side effects that prefetching in one core could have for other cores. This way,

HPAC is organized as a two-layer decision system, where firstthe global interactions

between prefetchers are analyzed. If one prefetcher is found to be impacting nega-

tively the performance of other cores (due to excessive bandwidth consumption, cache

pollution) it is throttled down. In all other cases the global layer passes down control

to the local control layer, which uses metrics local to the prefetcher to adapt its aggres-

siveness. This local layer can be any of other local-information throttling mechanisms

such as FDP.

2.7.2 Prefetch Filtering Techniques

Prefetch filtering is a technique that evaluates the prefetches generated by a prefetch

engine and discards those that are unlikely to be beneficial before they are sent to

memory. Like Prefetch Throttling, the main aim of Prefetch Filtering is to increase the
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quality of the prefetches and reduce wasted memory traffic. Unlike Prefetch Throttling,

Prefetch Filtering acts independently of the prefetch engine and therefore requires little

or no modifications to it.

One of the earliest prefetch filters was described in [25]. The authors describe a

mechanism called Static Filter, which relies on a software profiling phase that identifies

the load instructions that are likely to trigger the most successful prefetches. These

loads are then put into a hardware table, which enables prefetching only for these set

of instructions.

In [26], a filtering mechanism based on density vectors was proposed. Density

vectors are bit vectors that track the access pattern withina region of memory at the

block level. These vectors can be used to measure the predictability of spatial locality

in programs. The authors show that when used in conjunction with Scheduled Re-

gion Prefetcher [8], a significant fraction of all useless prefetches can be filtered out.

However, one disadvantage of this technique is that is tightly coupled with the men-

tioned Scheduled Region Prefetcher and is difficult to generalize for its use with other

prefetching techniques.

More recently, a prefetching filter was proposed in [27] thatis general enough to

be used with most prefetching algorithms. This mechanism isbased on history tables

that hold the recent effectiveness of the prefetch requests(using 2-bit counters that

track the number of times prefetch requests are referenced). For any given miss, the

filtering mechanism decides whether to proceed with prefetching or not depending

on the information contained in these tables. The authors propose two methods of

addressing the filtering tables: by the load miss address or the PC of the instruction that

generated the miss. Additionally, in order to improve the accuracy of the prediction,

this lookup can be combined with context information of the Branch History Register.

2.8 Prefetching in Multi-Core Systems

In this section we introduce the organization of a generic multi-core architecture with

focus on the prefetching system. We will base our study of prefetching in multi-core

systems (Chapter 5) on this design. We consider an architecture with the logical orga-

nization shown in Figure 2.9(a), where a number of cores withprivate L1 caches share

a common L2 cache. Note that the physical organization mightconsist of physically

distributed L2 banks, or a NUCA L2, or even some other dynamicscheme for sharing

private L2 caches. Moreover, any variation in L2 access times incurred by such phys-
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ical organizations is secondary to our study as we focus on the large off-chip memory

access penalty.
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Figure 2.9: (a) Overall logical organization of a multi-core architecture; (b) Logical or-

ganization of L2 prefetchers.

In this system, a hardware prefetch engine is attached to theL2 cache and issues

prefetch requests to the memory subsystem. As in most multi-cores today, the prefetch

engine is logically a collection of prefetch engines, one for each processor in the sys-

tem, as shown in Figure 2.9(b). In this way, each prefetch engine maintains a separate

miss history for its own processor and generates prefetch requests for it, which allows

each prefetcher to lock onto the individual access patternsfor the application running

on its processor. Each prefetch engine is associated with a prefetch throttler, that limits

the rate of prefetching on each core to avoid performance degradation in case of bad

prefetching behavior or scarce memory bandwidth. Again in line with current multi-

cores, we assume that the prefetch engine feeds a prefetch queue, which traditionally is

logically organized as a single linear (i.e., FIFO) queue, as explained in Section 2.6.2.

In Chapter 5 we study in depth the design of both throttlers and the prefetch queue.
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Stream Chaining

3.1 Introduction

This chapter introduces Stream Chaining, the first main contribution of this disserta-

tion. Stream Chaining provides a way to record chronological information regarding

the order of activation of each miss stream in a localizing prefetcher. This information

is then used to implement a more timely dispatch of prefetches and therefore increase

accuracy. Overall, Stream Chaining adds a new level of design that can be used to

improve current localizing prefetchers.

The rest of this chapter is organized as follows: In Section 3.2 we explain why cur-

rent localizing prefetchers exhibit poor timely behavior in their prefetches. In Section

3.3 we introduce the concepts ofStream Chainingand an implementation for it that

we call Miss Graph Prefetching. In Section 3.4 we introduce two new Miss Graph

prefetchers based on the popular PC/DC [10] and C/DC [11] prefetching algorithms .

We call these new algorithms PC/DC/MG (3.4.1) and C/DC/MG (3.4.2).

3.2 Accuracy and Timeliness in Localizing Prefetchers

As outlined in Section 2.5.1, localization is an useful strategy for organizing past miss

history. Grouping misses according to a pre-set criterion helps filter out spurious ac-

cesses, which in turn translates to better correlations andhigher coverage ratios.

It is important to note, however, that in the process of localizing misses impor-

tant chronological information is lost. Entries from the same miss stream are ordered

chronologically, but there is no time ordering between misses belonging to different

miss streams.

28
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To illustrate this problem let us assume a 100% correct idealprefetching algorithm

that uses the Program Counter (PC) for localizing misses. When this algorithm issues

a number of prefetching requestsPC1
i ,PC2

i ...PCn
i for a miss streamPCi (i.e., the set

of all misses generated by the instruction with Program Counter PCi), it is expected

that these pieces of data will be consumed in the order they have been issued. That

is, PC1
i will be needed beforePC2

i , which in turn will be needed beforePC3
i and so

forth. On the other hand, due to the intrinsic nature of localization, there could be an

indeterminate number of cache misses between any twoPCk
i andPCk+1

i , as long as

these requests are localized to any miss streamPCj 6= PCi . Crucially, this means that

the time between any two misses for a given stream can be arbitrarily large.

As the prefetch degree increases, this problem becomes moreacute. Unfortunately,

prefetchers often have to resort to high prefetching degrees in order to amortize high

memory latencies. In this scenario two undesirable effectscan be observed:

• Decreased accuracy:Since many prefetches are issued for the same miss stream,

the risk of some of these being incorrect increases. The prefetcher can “overrun”

the actual miss stream and begin issuing incorrect prefetches. This can be be-

cause the pattern of memory accesses changes at some point orsimply because

the working set of the stream has been prefetched to completion.

• Decreased timeliness:Even if all the prefetches issued are correct and needed,

they might be issued too far in advance. These data can pollute the cache, evict-

ing other useful lines that will be needed before the prefetches and thus creating

additional misses. Even if the prefetched lines do not evictuseful data, since

they will not be used for a long time, the chances of them beingreplaced by

other prefetches or demand misses increases significantly.

In summary, prefetching too deep into the same miss stream might result in a waste

of memory bandwidth and possible pollution to the cache. This will hinder the effec-

tiveness of the prefetcher and can even result in application slowdown compared to

setups without prefetching.

3.3 Stream Chaining

As already mentioned, the main problem with localizing prefetching schemes is that

there is no chronological information relating the miss streams. This can lead to
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prefetches sometimes being triggered along streams whose memory accesses appear

too far apart in time, leading to untimely (premature) prefetches. Simple localization

implementations, such as those based on tables (i.e., whereeach stream is stored as a

row in a table), do not store stream activation chronology. The GHB (Section 2.6), a

more advanced data structure, does contain the total timingrelation among individual

memory accesses of all streams. However this information isnot in a format that can

be readily used: the chronological miss information is stored in the GHB FIFO data

structure, whereas each stream description is stored in theIT table. This means that in

order to obtain the recent miss stream activation order, it is first necessary to join the

information contained in both data structures. This is a costly procedure that requires

at least one pass through all the GHB FIFO entries and severalIT table lookups.

To overcome this problem, we introduce the concept ofStream Chaining. The idea

behind stream chaining is to link miss streams in a way thatpartially reconstructs the

chronological information in the global miss stream, such that the result corresponds

directly to thecommon path of missesfollowed by the application. Note that in this

way, what is reconstructed are sequences ofstreams, which are different from the com-

plete sequence ofindividual missesthat is found in the complete global miss stream.

Typically, localizing prefetchers have two levels of operation: a correlation heuris-

tic to predict future misses and a localization mechanism that clusters misses in sepa-

rate miss streams (Section 2.5). Stream Chaining adds an additional third level of oper-

ation, orthogonal to the other two, that models the chronological interactions between

different localized miss streams. To accommodate this new level of operation, we ex-

tend the taxonomy introduced in [10] with a third term, so that prefetching schemes

are denoted by the tripleX/Y/Z , whereX denotes the localization algorithm,Y is the

correlation heuristic and the new termZ is the method used to link streams into groups.

Another way of thinking about stream chaining is that it attempts to predict what

miss stream will be activated next in program order. In this way, a three-level prefetcher

with stream chaining can predict not only the expected next misses from the current

miss stream but also the expected next misses from the expected next miss streams

to be activated in program order. Thus, such a prefetcher hasan extra level of flex-

ibility and can adapt to situations both in which missing memory accesses from the

same miss stream are too far apart and in which missing accesses in consecutive miss

streams in program order are too near. This additional levelof adaptiveness can poten-

tially improve both timeliness and accuracy with respect totraditional deep two-level

prefetching.
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The key to reconstructing appropriate timing information across streams is to pro-

vide a suitable stream chaining algorithm. Based on our empirical results, the flow of

missing memory access instructions commonly follows stable and repeatable patterns.

These patterns can be represented by a directed graph where nodes correspond to lo-

calized miss streams and edges establish a temporal order ofactivation between two

streams, indicating that a miss in one stream is likely to be followed by a miss in the

other stream. Figure 3.1 shows an example of stream chaining. In this example, we use

the PC of the missing instruction to localize the global missstreams (Figure 3.1b). We

then show one possible chaining of them (Figure 3.1c) thatapproximatesthe stream

activation order found in the global miss stream (Figure 3.1a).
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Figure 3.1: Example of Stream Chaining applied to PC localization: (a) global miss

stream, (b) localized streams according to the PC of the missing instruction; and (c)

one possible chaining of the localized streams.

While simple in nature, generating graphs that represent the core flow of missing

memory access instructions and excludes spurious stream activations, either in infre-

quent control paths or that generate only occasional misses, is not trivial and is the

key to a good stream chaining prefetcher. In the example fromfigure 3.1 linking the

streams ofPCA andPCB could be deemed inappropriate by the algorithm, as it corre-

sponds to an infrequent flow of misses.

Therefore, the resulting graph in a stream chaining prefetcher does not contain all

the possible links from the total miss sequence informationin the global miss stream,

but only a carefully selected set of those. Constructing thecomplete graph is both
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impractical from the point of view of storage and processingtime and yields too much

information that can distract the algorithm from finding themost likely miss patterns.

The fact that the memory access chaining algorithm cannot and should not keep all

links results in the graphs being disconnected or some graphs being acyclic. Note that

in this way, using the information about linked streams to predict the next miss stream

(and therefore, the next missing memory access) along the link may or may not be the

same as predicting the next miss. However, with a good streamchaining algorithm, we

have a fair amount of confidence in the fact that the stream predicted by the graph to

be activated next will in fact be activated soon enough, spurious or infrequent misses

not-withstanding.

In the example shown in figure 3.1, the given chaining of streams allows a prefetcher

on a miss fromPCA to prefetch not only the next values to be consumed byPCA itself

but also the next value(s) to be consumed byPCD (the next instruction likely to miss)

or evenPCE. Alternatively, sincePCA is in a cyclic graph, if the distance between its

consecutive instances is too large then it could simply relyon a peer (such asPCD and

PCE) to prefetch the data it will need next.

3.4 Miss Graph Prefetching

In this section we introduce two new prefetchers that use thestream chaining approach.

Both are based on popular localizing prefetchers: PC/DC [10] and C/DC [11]. Both

new prefetchers use the same heuristic to chain streams. We call this heuristic Miss

Graph Prefetching (MG) and therefore, using the triplet naming convention introduced

in the past section, we refer to the resulting new prefetchers as PC/DC/MG and C/D-

C/MG.

We use the GHB data structure to implement both the baseline prefetchers (PC/DC

and C/DC) and their stream chaining counterparts (PC/DC/MGand C/DC/MG). The

main reason for using the GHB is its flexibility; not only can it be used to implement

different localization and correlation schemes, but implementing a stream chaining

algorithm on top of it requires only trivial modifications. Moreover, in [10] and [11],

it was shown that GHB-based prefetchers outperform their table-based counterparts

thanks to better miss history management and elimination ofstale data.

Every stream chaining prefetcher has to deal with two implementation issues: how

to link streams and how to use the resulting graph to issue prefetches. For PC/DC/MG,

we address these issues in Section 3.4.1 The operation of C/DC/MG is very similar,
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although some aspects of the heuristic had to be modified to accommodate for the

different behavior of C/DC. These changes are detailed in Section 3.4.2.

3.4.1 PC/DC/MG

PC/DC/MG is an extended version of the popular PC/DC algorithm [10]. PC/DC

uses the Program Counter of the instruction that generated the miss to localize misses.

Therefore each miss stream in PC/DC contains the list of misses that a given instruction

(identified by its PC value) has recently generated.

3.4.1.1 Graph Construction

The key to effective stream chaining is the choice of which links to use and which to

ignore. In fact, with a large enough GHB the complete chronological reconstruction of

the miss stream would result in an unmanageable graph. In this section we present a

simple scheme to stream chaining that results in relativelysmall graphs that capture the

majority of miss sequences in steady-state execution. The scheme can also be easily

implemented using the GHB structure.

In GHB-based prefetchers the Index Table (IT) holds pointers to every localized

stream in the GHB (Section 2.6). Thus, chaining streams corresponds to linking entries

in the IT. To do this, we extend the IT by adding a new pointer toeach IT entry –

NextIT – which points to the IT entry corresponding to the stream that is expected

to be activated next. TheNextIT field also includes an additional bit to signal if this

pointer is valid. To identify strong (i.e., stable) links, we also add a saturating counter

to each IT entry –Ctr . We consider a link to be stable if its associatedCtr counter is

equal or greater than 3 (strong link threshold), and set thesaturation limitof Ctr to 5

(both values have been determined experimentally). The operation of this counter and

the role of thestrong link thresholdandsaturation limitis explained next. Finally, we

also add a new global register to the IT –PreviousIT – which is also a pointer to an

IT entry. Figure 3.2a shows the GHB extensions in grey.

The Miss Graph algorithm builds a graph of past (temporal) correlations between

localized streams as follows. Initially,NextIT is invalid andCtr is set to zero on all

entries of the IT. As misses occur, the IT and the GHB are populated as described in

Section 2.6 and [10]. The newPreviousIT pointer is left pointing to the last stream to

suffer a miss (i.e., last IT entry used). Then for a subsequent miss that activates the IT

entry IT[cur] , we check the previous IT entry usingIT[PreviousIT] and perform
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the following operations:

// Check the NextIT pointer of the previous IT entry

if IT[PreviousIT]→NextIT is invalid then

// Invalid pointer. We set it to the current entry

IT[PreviousIT]→NextIT = IT[cur]

IT[PreviousIT]→Ctr = 1

else

// Valid pointer. Adjust counters depending if miss/match

if IT[PreviousIT]→NextIT == IT[cur] then

IT[PreviousIT]→Ctr++ (saturating increment)

else

IT[PreviousIT]→Ctr−−

end if

// If too many misspredictions, change NextIT pointer

if IT[PreviousIT]→Ctr == 0 then

IT[PreviousIT]→NextIT = IT[cur]

IT[PreviousIT]→Ctr = 1

end if

end if

PreviousIT = cur

By following these operations, theNextIT pointers in the IT form a directed graph,

which can be cyclic or acyclic, can be disconnected, and in which there is only one out-

going edge from each node but possibly more than one incomingedge to a node. Fig-

ure 3.2a shows the state of theNextIT pointers, theCtr counters, and thePreviousIT

pointer just before the miss toA4 is processed. The corresponding graph is shown

in Figure 3.2b. Note that, as explained in Section 3.4.1.2, we do not explicitly repre-

sent and store the graph separately; it is just shown explicitly in Figure 3.2b for clarity.

Figure 3.3 shows two real examples of miss graphs from benchmarks in which we eval-

uate PC/DC/MG (Chapter 4). These examples were taken mid-execution and show a

snapshot of the IT table graph structure, with only strong links considered (i.e., those

that have aCtr value greater than or equal to thestrong link threshold, which we have

empirically determined to be 3).

The graph constructed with this algorithm shows a history ofcorrelations between

localized miss streams (i.e., Program Counters of instructions generating a miss),

showing which IT entry followed which in the past. The role ofthe saturating counters
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Figure 3.2: (a) PC/DC/MG extensions to the GHB. (b) Resulting Miss Graph from the

example miss stream.

Ctr is to provide hysteresis and protection from noise from sporadic misses: by setting

a minimum threshold toCtr we obtain a graph with only the most stable transitions

between localized streams. Next we explain in more detail how PC/DC/MG uses the

extended GHB entries to prefetch along nodes in the graph.

3.4.1.2 Prefetch Operation

With the extended entries in the IT representing the miss graph, PC/DC/MG oper-

ates as follows. First, the prefetcher identifies the current miss stream, which simply

involves searching the IT for an entry that matches the PC of the current missing mem-

ory access instruction. Here, unlike PC/DC, which would follow the IT pointer into

the corresponding GHB stream, PC/DC/MG identifies the next stream to prefetch for

by following theNextIT pointer in the current IT entry. So, for instance, a miss from

a memory access instruction atPCA in Figure 3.2 will first follow the corresponding

NextIT pointer to the stream ofPCD. For every stream that the prefetcher attempts to

prefetch for, it follows the IT pointer into the corresponding GHB stream and then fol-

lows the links in the GHB entries to attempt to establish a correlation among the miss

addresses. PC/DC/MG, like PC/DC, usesdelta correlationon the addresses. If a cor-

relation is found along the stream the prefetcher issues oneprefetch along this stream.

Thus, for each stream, PC/DC/MG behaves as a PC/DC with a prefetch degree of one.
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Figure 3.3: PC/DC/MG Miss Graph examples from real applications: (a) bzip2 with 2MB

L2. (b) dealII with 256KB L2 (right).

After issuing a prefetch for a given stream, the prefetcher again follows theNextIT

pointer to the next stream to prefetch for and repeats the steps for prefetching for this

stream. This process is repeated for a number of times equal to the prefetching degree

parameter. In order to avoid following “weak” links into newstreams, we impose a

minimum threshold on theCtr value below which the prefetcher will not follow the

NextIT and will stop prefetching from further streams.

The graph construction described in Section 3.4.1.1 leads to graphs where the out-

going edge degree is no greater than one and graphs can be cyclic. Thus, starting from

some node, the chains withprefetching degreenodes created by following the opera-

tions just described are either a linear sequence of distinct nodes or a cycle. Further,

the linear sequences can either have a number of distinct nodes greater than or equal to

the prefetching degree plus one, or a number of distinct nodes smaller than the degree

plus one (the “plus one” comes from the fact that we skip the initial node). Figure 3.4

shows the three possible cases of graphs.

For graphs as in Figure 3.4a the operation of the prefetcher as described above is

complete. For the other two cases of graphs the operation must be slightly extended.

For graphs as in Figure 3.4b if we want to issue as many prefetches as the degree

allows us, we would have to follow an edge back to some streamsfor which we have

already issued a prefetch. The problem in this case is that the prefetcher would have

to remember, for every revisited stream, the correlation used the last time around and
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Figure 3.4: PC/DC/MG Miss Graph cases: (a) non-cyclic chain longer than the prefetch

degree (8); (b) cyclic chain shorter than the prefetch degree; and (c) non-cyclic chain

shorter than the prefetch degree.

the resulting address prefetched, in order to find the next delta and to compute the next

address to prefetch. Instead, a simpler solution is to add a pre-pass stage where we

quickly follow the “strong”NextIT pointers to identify whether the graph is cyclic or

a long enough sequential chain. Then, if the graph is cyclic we perform the steps above

except that we compute the correlations and issue more than one prefetch per stream,

where each stream gets an equal share of the prefetch degree (or nearly equal when the

number of nodes in the chain does not divide the prefetch degree). For graphs as in

Figure 3.4c we can simply convert them to the case of Figure 3.4b by pretending that

there is a back edge from the end of the chain to its beginning.Finally, if the graph

consists of only the entry node then instead of starting fromthe next stream (which is

unavailable) we simply prefetch for the current stream, basically reverting to PC/DC

behavior.

The following pseudocode describes a possible implementation of the prefetch op-

eration described above, using a pre-pass stage:
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deg = [PREFETCHING DEGREE]

cur = [INDEX OF THE STREAM THAT GENERATED THE MISS]

chainLen = 0

visited[] // Bit array to keep track of visited streams. Set to zero initially

i = cur

// Pre-pass stage to calculate the prefetch chain length

while chainLen< degAND visited[i] == falsedo

visited[i] = true

if IT[i] →Ctr < CtrThresholdthen

break// CtrThreshold is the counter threshold for valid links between streams

end if

chainLen = chainLen + 1

i = IT[i] →NextIT

end while

// Prefetching stage

if chainLen == 0then

Prefetch(cur, deg)// Revert back to normal PC/DC prefetching behaviour in caseof

no stream chains

end if

degPerNode =⌈deg/chainLen⌉ // How much to prefetch per node

totalPref = 0// How much we have prefetched so far

while totalPref< degdo

cur = IT[cur]→NextIT // Advance one node

Prefetch(cur, degPerNode)// Prefetch some items for this stream

totalPref = totalPref + degPerNode

end while

Since the prefetches for the different streams are generated in a single prefetcher

activation, one optimization that is possible in the cases of Figures 3.4b and 3.4c is

to issue the prefetches to the memory sub-system such that prefetches to consecutive

streams are interleaved. Thus, for instance, in the case of Figure 3.4b we can order

the prefetch requests such that the first prefetch request for PCC appears right after the

first request forPCB and the second prefetch request forPCC appears after the second

prefetch request forPCB. This ordering is likely to be a better match to the order in

which the prefetched data will be needed.

One possible advantage of three-level prefetchers with stream chaining is that given
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a fixed prefetching degree budget one can divide this budget in different ways between

width – i.e., the number of streams prefetched for – anddepth– i.e., the number of

prefetches along each stream. For instance, if deeper prefetching gives diminishing

returns due to too early prefetches or decreasing accuracy,then the prefetcher can issue

fewer prefetches from more streams. Alternatively, if the links between streams are too

weak then the prefetcher can issue more prefetches from fewer streams. Also, we only

classify links as “strong” or “weak”, but one could considerfiner classifications and

adapt the depth for each stream depending on the “strength” of the links followed.

Like with other prefetching schemes, in order to avoid prefetched data modifying

the natural stream of misses from the program a 1-bit prefetch tag is added to each

cache line. This bit is set to one only in lines that come into the cache from a prefetch

request and it remains set as long as the line has not yet been used. When such a line is

used, a “fake” miss signal is sent to the prefetcher and the bit is reset. The prefetcher

then updates its internal data structures as if it were a realmiss, but no prefetch request

is issued.

3.4.1.3 Hardware and Operation Complexity

As described here, PC/DC/MG uses an extension to the GHB structure. The additional

storage our prefetcher requires are theNextIT andCtr for each IT entry and a single

PreviousIT register. As observed in [10] and in our own experience, bothan IT and

a GHB with 512 entries each are sufficient to capture the prefetching working set of

most applications. In this case, eachNextIT and thePreviousIT consist of 9 bits,

as do the other pointers in the original IT and GHB, includingthe Head Pointer. Our

experiments show that small saturation limits forCtr are sufficient to capture stable

links between streams and we use 3 bits.

Assuming a 32 bit PC the total hardware storage requirementsof the original PC/DC

algorithm are:

• IT table: 512 entries, each with a 32 bit PC field and a 9 bit GHBpointer. We

can use the special PC 0 to indicate an invalid entry. 512∗ (32+9) = 20992 bits

(2624 bytes).

• GHB FIFO queue: 512 entries, each with a 32 bit address field and a 9 bit GHB

pointer. 512∗ (32+9) = 20992 bits (2624 bytes).

• 9 bit GHB head pointer.
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• Total: 20992+20992+9= 41993 bits, 5250 bytes or approximately 5.1 KB.

For PC/DC/MG, the hardware storage requirements are:

• IT table: 512 entries, each with a 32 bit PC field, a 9 bit GHB pointer, a 9 bit

NextIT pointer and a 3 bit saturating counter. 512∗ (32+ 9+ 9+ 3) = 27136

bits (3392 bytes).

• GHB FIFO queue: Same requirements as PC/DC. 512 entries, each with a 32 bit

address field and a 9 bit GHB pointer. 512∗ (32+9) = 20992 bits (2624 bytes).

• 9 bit GHB head pointer and 9 bitPrevIT pointer.

• Total: 27136+ 20992+ 9+ 9 = 48146 bits, 6019 bytes or approximately 5.9

KB.

Therefore, the additional storage requirements for PC/DC/MG compared to PC/DC

are less than 1KB.

One drawback of GHB-based prefetchers is the time it takes tofollow links to es-

tablish a correlation. With stream chaining, a prefetcher requires following links in

multiple streams, which may further increase prefetcher operation time. The increase

in operation time in comparison with the single-stream counterpart will depend on

the common number of nodes in the miss graph, which in turn depends on the ap-

plication. Our results suggest that the number of nodes is relatively small in practice

(Section 4.4.4). In case this overhead does become a bottleneck, we note that it is

possible to search for correlations in some number of streams in parallel, at the cost of

replicated hardware logic. In our experiments, however, wesearched for correlations

from each stream sequentially.

3.4.2 C/DC/MG

C/DC/MG is the stream chaining modification of the C/DC prefetching algorithm [11].

C/DC divides the memory space into equal sized regions called CZones. The global

miss stream is then localized according to the CZone in whichthe misses lay. A vari-

ant of C/DC called AC/DC was proposed in [11]. AC/DC adds adaptive resizing of

the CZones according to the program behavior. This heuristic, while beneficial, is

completely orthogonal to the modifications proposed in thisdissertation, and is not

considered further here.
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3.4.2.1 Graph Construction

A key difference between PC and CZone localization is the number of consecutive

misses localized to the same miss stream that can occur at anygiven time. With PC

localization it is not common for two consecutive (chronologically speaking) misses to

be localized in the same miss stream, since that would mean that a single instruction

has generated two consecutive misses1. On the other hand, with CZone localization

having several consecutive misses belonging to the same CZone can happen much

more frequently than with PC localization. This is due to thespatial locality of the

program. Said in another way, if a program is accessing a certain area of memory it

is quite probable that it will access adjacent areas too, which normally will fall within

the same CZone. Naturally this behavior is more common as we increase the CZone

size.
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Figure 3.5: CZone transitioning problem: (a) global miss stream, PC localization and

CZone localization; (b) Miss Graphs for PC and CZone localizations using the original

PC/DC/MG graph construction algorithm.

1In the context of a RISC instruction set. With a CISC instruction set, instructions may have both
operands referencing memory locations. However modern dayCISC processors translate CISC instruc-
tions to RISC micro-ops before executing.
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While the graph construction algorithm described in Section 3.4.1.1 could be ap-

plied to a C/DC prefetcher, the high frequency of consecutive misses localized to the

same CZone would generate a graph with only trivial transitions between CZones (i.e.,

from each CZone to itself). This strategy would render the stream chaining variant

useless, with no performance gains compared to a regular C/DC algorithm, as there

would be effectively no stream chaining effect.

Figure 3.5 illustrates this problem. In 3.5a, an example miss stream is shown,

as well as the result of performing both PC and CZone localization to it. In Figure

3.5b, the graph construction algorithm used for PC/DC/MG isapplied for PC and

CZone localization schemes. As explained in Section 3.4.1.1, this algorithm filters

out infrequent transitions with the use of a saturating counter. With this algorithm,

the transition between CZone 1 and CZone 2 would be considered weak, since it only

happens once compared to the multiple transitions from CZone 1 to itself and from

CZone 2 to itself.

One possible solution for this problem could be to just use the transitions between

different CZones to construct the graph (i.e., ignore consecutive misses to the same

CZone). While this strategy effectively captures the CZonetransition behavior, we

lose an important piece of chronological information: how many misses were as-

signed to each CZone. This information is vital, since afterall the main difference

between CZone and PC localization is thenon-trivial number of consecutive same-

CZone stream activations.

The solution we propose to tackle the CZone transition problem consists of a small

modification of the graph construction algorithm for PC/DC/MG (Section 3.4.1.1).

As with PC/DC/MG, we augment each GHB IT entry with aNextIT pointer and a

Ctr counter, which have the same meaning as in Section 3.4.1.1. We also introduce

two additional counters: the Current Repetition Counter (CRC) and Last Repetition

Counter (LRC). Both counters keep track of how many repetitions (i.e., consecutive

misses localized to the same CZone) happen to each CZone. Figure 3.6a shows the

design of the GHB for C/DC/MG, with the proposed extensions in grey.

When a miss to a new CZone is registered by the prefetcher, theLRC is initialized

to zero and theCRCis set to one. As consecutive misses localized to the same CZone

occur, theCRCis incremented accordingly. When a CZone transition occurs(i.e., a

miss from a CZone different from the one targeted by recent misses), theCRCis copied

to the LRC and then reset back to zero. The transition between different CZones is

treated as the transition between PCs in the PC/DC/MG algorithm.
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Figure 3.6: (a) C/DC/MG extensions to the GHB. (b) Resulting Miss Graph from the

example miss stream.

With this scheme, the graphs constructed capture both the number of repetitions

on each CZone as well as the transitions between different CZones. TheLRCcounter

stores how many repetitions happened to this CZone last timeit was activated. The

CRCcounter is used to guide the prefetcher in how many elements to prefetch for each

CZone at any given time. The details of the operation of the prefetch mechanism are

discussed in Section 3.4.2.2.

As with PC/DC/MG, we provide a detailed specification of the graph construction

mechanism of C/DC/MG with pseudocode:
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// Check the NextIT pointer of the previous IT entry

if IT[PreviousIT]→NextIT is invalid then

// Invalid pointer. We set it to the current entry

IT[PreviousIT]→NextIT = IT[cur]

IT[PreviousIT]→Ctr = 1

else

// Check if we are in a CZone repetition phase

if PreviousIT == curthen

// Yes. Increase the CRC

IT[cur]→CRC ++

else

// No, apply CZone transition logic

// Save the CRC into the LRC

IT[cur]→LRC = CRC

IT[cur]→CRC = 0

// Adjust counters depending if miss/match

if IT[PreviousIT]→NextIT == IT[cur] then

IT[PreviousIT]→Ctr++ (saturating increment)

else

IT[PreviousIT]→Ctr−−

end if

// If too many misspredictions, change NextIT pointer

if IT[PreviousIT]→Ctr == 0 then

IT[PreviousIT]→NextIT = IT[cur]

IT[PreviousIT]→Ctr = 1

end if

end if

end if

PreviousIT = cur

3.4.2.2 Prefetch Operation

C/DC/MG issues prefetches in a similar way to PC/DC/MG (Section 3.4.1.2), but tak-

ing into account theCRCandLRC counters. The difference between theLRCandCRC

indicates the number of CZone repetitionsexpectedto come for this CZone. We refer

to this as theprefetch potentialof a node. The prefetch potential of each node is used
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Figure 3.7: C/DC/MG Miss Graph examples from real applications: (a) bzip2 with 2MB

L2; (b) dealII with 256KB L2.

by the prefetcher to issue several prefetches per node. The prefetching potential of a

chain of nodes is simply the sum of the potentials of each node.

The graph construction algorithm proposed in Section 3.4.2.1 generates graphs

similar to those generated for PC/DC/MG (Section 3.4.1.1).Therefore, there are three

main operation cases C/DC/MG has to take into account (Figure 3.8).
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Figure 3.8: C/DC/MG Miss Graph cases. The numbers adjacent to each node show the

CRC/LRC counters. (a) non-cyclic chain with prefetch potential bigger than or equal to

the prefetch degree (16); (b) cyclic chain with lower prefetch potential than the prefetch

degree; and (c) non-cyclic chain with lower prefetch potential than the prefetch degree.

We assume a prefetch degree of 16, with the current miss localized to CZoneCZA.

The general case is shown in figure 3.8a. The prefetcher starts at the IT entry corre-

sponding to CZoneCZA. At that entry,LRC - CRC= 4−2= 2 prefetches are issued for

CZoneCZA. The prefetcher then jumps to the next IT entry, where it repeats the same

operation, issuing this time 4 prefetches for CZoneCZB. The operation continues up
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until CZoneCZD, where the last 2 prefetches are issued. Note that, unlike PC/DC/MG,

we do not skip the initial node unless the prefetch potentialis equal to or less than zero

(indicating that we do not expect any more misses for this CZone soon).

In 3.8b, we have a cyclic chain with less prefetching potential than the prefetch

degree. In this case we act in a similar way to PC/DC/MG. We usea pre-pass stage

to compute the prefetching potential of the chain. We use this number for calculating

a multiplier for the prefetch potential of each node. In the example outlined in 3.8,

the prefetch potential of the chain is 4. Since we attempt to issue 16 prefetches, we

prefetch 4 times as many in each node. This solution is analogous to the one used for

PC/DC/MG (Section 3.4.1.2). Similarly, we convert the casein Figure 3.8c to that in

Figure 3.8b by adding a “virtual” back edge fromCZD to CZA.

Lastly, in the case of no graph information, C/DC/MG revertsback to standard

C/DC behavior.

As with PC/DC/MG, we summarise the prefetching operation for C/DC/MG with

the following pseudocode:
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deg = [PREFETCHING DEGREE]

cur = [INDEX OF THE STREAM THAT GENERATED THE MISS]

prefPot = 0// Prefetch potential

visited[] // Bit array to keep track of visited streams. Set to zero initially

i = cur

// Pre-pass stage to calculate the prefetch potential

while prefPot< degAND visited[i] == falsedo

visited[i] = true

prefPot = prefPot + (IT[i]→LRC - IT[i]→CRC)// Note we do not skip the first node

in C/DC/MG

if IT[i] →Ctr < CtrThresholdthen

break// CtrThreshold is the counter threshold for valid links between nodes

end if

i = IT[i] →NextIT

end while

// Prefetching stage

if prefPot == 0then

Prefetch(cur, deg)// Revert back to normal C/DC prefetching behaviour in case of no

stream chains

end if

prefMult = deg / prefPot// For cases when the prefetch potential is smaller than the

degree, prefetch more on each node

totalPref = 0// How much we have prefetched so far

while totalPref< degdo

cur = IT[cur]→NextIT // Advance one node

nodePref = IT[i]→LRC - IT[i]→CRC

Prefetch(cur, nodePref*prefMult)

totalPref = totalPref + nodePref

end while

3.4.2.3 Hardware and Operation Complexity

As with PC/DC/MG, we assume that a 512 entry GHB with 512 IT entries is enough

to capture the prefetching working set of most applications. Consequently we use 9

bits to implementNextIT , PreviousIT and the original GHB pointers.

From experimentation we have determined that C/DC/MG requires a smallerCtr

threshold counter to capture stable CZone transitions. Formost cases a 1 bitCtr
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counter performs best. The repetition behavior of each CZone can be captured with

a CRCandLRCof 3 bits each. Additionally, we have determined that a CZonesize of

64KB gives the best all-round performance in our benchmarks. Therefore each CZone

can be stored in 16 bits. Lastly, we have to add a valid bit for each IT entry. This was

not needed in PC/DC(/MG) as the PC 0 could be used to signal an invalid entry.

The hardware storage cost for C/DC implemented using the GHBis:

• IT Table: 512 entries, each with a 16 bit CZone field, 9 bits for the GHB pointer

and a valid bit. 512∗ (16+9+1) = 13312 bits (1664 bytes).

• GHB FIFO queue: 512 entries, each with a 32 bit address and a 9bit GHB

pointer. 512∗ (32+9) = 20992 bits (2624 bytes)

• 9 bit GHB head pointer

• Total: 13312+20992+9= 34313 bits, 4290 bytes or about 4.2 KB

For C/DC/MG, the storage requirements are:

• IT Table: 512 entries, each with a 16 bit CZone field, 9 bits for the GHB pointer,

9 bits for theNextIT pointer, 1 bit for theCtr counter, 3 bits for theCRCcounter,

3 bits for theLRCcounter and a valid bit. 512∗ (16+ 9+ 1+ 9+ 3+ 3+ 1) =

21504 bits (2688 bytes)

• GHB FIFO queue: 512 entries, each with a 32 bit address and a 9bit GHB

pointer. 512∗ (32+9) = 20992 bits (2624 bytes)

• 9 bit GHB head pointer and 9 bitPreviousIT pointer

• Total: 21504+20992+9+9= 42514 bits, 5314 bytes or 5.2 KB

Therefore the storage requirements of C/DC/MG are 1 KB more than C/DC.

Similar to PC/DC/MG, C/DC/MG typically correlates on several streams per prefetcher

activation. This increases the average operation time of the prefetcher compared to its

non-chaining counterpart. However, in the case of C/DC/MG,the time complexity of

the prefetch operation is not only determined by the size of the stream chain but also by

how many prefetches to issue per stream: the more prefetches

C/DC/MG issues per stream, the less transitions between streams it will perform (for
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a given prefetch degree). This translates to a lower time overhead, since it is faster to

issue additional prefetches for the same miss stream than tostart a new correlation on

a new miss stream.

Our results show that although on average the graphs createdby C/DC/MG are

larger than the ones created by PC/DC/MG, the average numberof nodes in each

chain (i.e., a connected component within the graph) is, as with PC/DC/MG, rela-

tively small (Section 4.5.5). This, along with the fact thatC/DC/MG transitions less

often between streams, contributes to an overall lower operational complexity than

PC/DC/MG. Lastly, as with PC/DC/MG, this operational overhead can be lowered

even more at the cost of replicated hardware logic.

3.4.3 Table-based Alternative Implementations of PC/DC/M G and

C/DC/MG

In this section we discuss an alternative implementation for PC/DC/MG and C/DC/MG

that uses lookup tables instead of the GHB as the underlying hardware data structure.

As described in [10], all the information needed to implement PC/DC or C/DC can

be stored in a lookup table where the rows are indexed by the PCof the operation

that generated the miss. As discussed in [10] and earlier in this chapter, table-based

implementations have two important disadvantages: 1) theyare more prone to contain

stale miss history; and 2) they require more storage space and use it less efficiently. On

the other hand they require a simpler hardware implementation.

3.4.3.1 Table-based Localizing Prefetchers

Figure 3.10 shows the design for a table-based implementation of the PC/DC prefetcher.

The localization mechanism only defines how to index the prefetcher table, and there-

fore this design is also applicable to the G/DC prefetcher.

The history table of the prefetcher contains a fixed number ofrows, which are ad-

dressed depending on the localization mechanism. In this way, the history table is

similar to the index table of the GHB data structure. Differing from the GHB design,

the miss history is stored directly in each table row, which can hold a predefined num-

ber of addresses. When a new miss address is to be inserted in afull row, the oldest

address is discarded.

The storage requirements of a table-based prefetcher are mainly determined by two

parameters: the number of rows in the history table and the number of miss addresses
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Figure 3.9: Design of a table-based PC/DC prefetcher.

stored per row. For the sake of comparison with the GHB based implementation, we

set the number of rows in the table to 512, and use the parameter Mr to denote the

number of miss addresses stored per row. The valueMr determines how much miss

history to store per stream. This should be big enough to holdenough miss history

to perform correlation on the most active (in terms of missesreceived) streams, even

though this means storage space is wasted on streams that arenot as active. For this

analysis, we will useMr = 64.

3.4.3.2 Table-based PC/DC/MG

Figure 3.10 shows the extensions needed to implement PC/DC/MG on table-based

prefetcher hardware. As with the GHB data structure (Section 3.4.1.1), we augment the

lookup table with theNextIT andCtr fields, and add a new global registerPreviousIT .

The working mechanism and logic behind these new registers is the same as with the

GHB based PC/DC/MG (Section 3.4.1.2), withNextIT andPreviousIT referencing

rows in the history table.

The storage requirements for a table-based PC/DC/MG implementation, with 64

miss address entries per row, are as follows:

• History Table: 512 entries, 32 bit PC field, 64 32 bit addresses, 9 bits for the

NextIT field and a 3 bitsCtr saturating counter. 512∗ (32+64∗32+9+3) =

1071104 bits (133888 bytes)

• 9 bit PreviousIT pointer.

• Total: 1071104+9= 1071113 bits, 133890 bytes or about 130.8KB
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Figure 3.10: (a) PC/DC/MG extensions to the history table. (b) Resulting Miss Graph

from the example miss stream.

By contrast, a table-based PC/DC implementation with the same specifications

would require 512∗ (32+64∗32) = 1064960 bits (133120 bytes, 130.0KB). The stor-

age overhead of a table-based PC/DC/MG is 770 bytes.

3.4.3.3 Table-based C/DC/MG

Figure 3.11 shows the hardware extensions extensions needed to implement C/DC/MG

on table-based prefetcher hardware. As with the table-version of PC/DC/MG, C/D-

C/MG on table-based prefetchers uses the same hardware additions than its GHB-

based version (Section 3.4.2.1), and the same working logic(Section 3.4.2.2).

The storage requirements for a table-based C/DC/MG implementation, with 64

miss address entries per row, are as follows:

• History Table: 512 entries, each with a 16bit CZone field, 6432 bit miss ad-

dresses, 9 bitNextIT pointer, 3 bits for each of theCRCandLRCcounters, 1 bit

for the Ctr counter and 1 bit to indicate if the entry is in use. 512∗ (16+ 32∗

64+9+3+3+1+1) = 1065472 bits (133184 bytes).

• 9 bit PreviousIT pointer.

• Total: 1065472+9= 1065481 bits, 133186 bytes or about 130KB
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Figure 3.11: (a) C/DC/MG extensions to the history table. (b) Resulting Miss Graph

from the example miss stream.

A table-based C/DC implementation would require 512∗ (16+ 64∗ 32+ 1) =

1057280 bits (132160 bytes, about 129KB). Therefore the storage overhead of C/D-

C/MG is 1026 bytes, just over one kilobyte.
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Evaluation of Stream Chaining

Prefetchers

4.1 Simulation Setup

We use SESC [30] for all our simulations. SESC is a fast cycle-accurate architectural

simulator that can be extended easily thanks to a modular design implemented in C++.

SESC does not provide full system simulation; programs haveto be recompiled with a

customized cross-compiler that constructs tailor-made binaries suitable for simulation.

System calls are trapped and executed in the host system, with the results sent back to

the simulation environment. Cross-compiler tools provided in the SESC environment

allow compilation of C, C++ and Fortran 77 programs.

For evaluating stream chaining prefetchers, we simulate a 4-issue out-of-order su-

perscalar processor with separate L1 instruction and data caches, and a unified L2

cache on chip. All simulated caches are non-blocking. Table4.1 lists the architectural

parameters of the simulated system. We simulate mainly two L2 cache sizes: 256KB

and 2MB. The former is representative of the cache share expected in a fully loaded

multi-core setup. The latter reflects the case when only a single processor is active.

We fast forward each simulation by one billion instructionsand then we simulate

in detail and collect statistics for the next one billion instructions. Special care was

taken to confirm that the first billion instruction fast-track is enough to skip the data

loading phases of the benchmarks, thus making sure that the detailed simulation starts

in a relevant computation phase.

53
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Parameter Value

Core Frequency 5GHz

Fetch/Issue/Retire Width 6/ 4/ 4

I-Window/ROB 80/ 152

Branch Predictor 64Kbit 2BcgSkew

BTB/RAS 2K entries, 2-way/ 32 entries

Minimum misprediction 20 cycles

Ld/St queue 108

L1 ICache 64KB, 2-way, 64B lines, 2 cycles

L1 DCache 64KB, 4-way, 64B lines, 2 cycles

L1 MSHR’s 4

L1-L2 bus 64bits

L2 Cache 256KB/2048KB, 8-way, 64B lines, 13/18 cycles

L2-Memory Bus 64bits, 1.25Ghz

Main Memory 400 cycles

Prefetch degree 1/4/8/16

IT 512 entries, 1 cycle

GHB 512 entries, 5+1*hop cycles

Table 4.1: Simulated architectural parameters.

4.2 Benchmarks

For evaluating the prefetchers we use benchmarks from SPEC CPU2006 [31] and the

BioBench benchmark suite [32]. Due to limitations with the simulator tools, not all of

the benchmarks can be cross-compiled for use with SESC. A detailed description of

the benchmarks used in this evaluation is provided in Appendix A.

All benchmarks were compiled with the GNU compiler GCC v3.4 using the O3

optimization level. They were run using the supplied reference input data set with

the exception ofclustalw from BioBench, for which the larger input data from the

benchmarkhmmer(also from BioBench) was used.

4.3 Benchmark Characterization

4.3.1 L2 Cache Size Sensitivity

Figure 4.1 shows the performance without prefetching for various cache sizes. Besides

256KB and 2048KB, we include results for a 512KB L2 to gain further insight into

the working set size of each benchmark. The performance results are given as IPC

(Instructions per Cycle) normalized to the IPC obtained with an ideal L2 cache (i.e., a

cache with 100% hit rate). Figure 4.2 shows the L2 cache Read Hit Rate (RHR) for the

same set of cache sizes. Lastly, we show in Figure 4.3 the number of accesses (hits or
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misses) the L2 cache receives. Since this metric is fairly independent of the L2 cache

size (results for all cache sizes evaluated here differ 1% orless), we show results using

a perfect L2 cache.

Figure 4.1: L2 cache size sensitivity for 256KB, 512KB and 2MB L2 caches.

For a cache size of 256KB, 3 out of the 20 benchmarks (sjeng, fasta, phylip) are

within 10% of the performance of an ideal L2. These benchmarks are the less likely to

benefit from prefetching. Bothsjengandfastashow a high RHR (75.4% and 84.3%),

which explains their performance close to an ideal L2. On theother hand, the high

performance but relatively low RHR ofphylip (55.3%) is explained by its very low

L2 usage: 31 accesses per 1K instructions, as shown in Figure4.3. Doubling the

cache size to 512KB only adds another benchmark to this list (h264ref), and in general

only improves the performance of two benchmarks in a considerable manner (gromacs,

gobmk). This suggest that for the scenario that a 256KB L2 cache represents (multi-

core environment with several processors competing for cache space) doubling the size

of the cache helps but does not cause a radical performance improvement.

For a cache size of 2048KB, 12 benchmarks (fromsphinx3to phylip, in the order

shown in Figure 4.1) achieve performance within 10% of a perfect L2 cache. However,

the IPC improvement of increasing the cache from 256KB to 2048KB is below 30%

except for two benchmarks:hmmer(45.1%) andsoplex(89.9%). The L2 RHR stays

above 80% for this group of benchmarks.

In 6 out of 20 benchmarks (milc, lbm, libquantum, zeusmp, clustalw, perlbench)
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Figure 4.2: L2 cache Read Hit Rate for 256KB, 512KB and 2MB L2 caches.

we observe performance below 60% of an ideal cache, even witha large 2048KB L2

cache size. Naturally these benchmarks are the ones that aremore likely to benefit

from prefetching. All these benchmarks exceptperlbenchshow very low cache RHR.

Althoughperlbenchshows a high RHR, even for the smaller of the cache sizes, this

benchmark shows a very high number of accesses to the L2: 191 per 1K instructions

executed (Figure 4.3), more than double the average of all the benchmarks (87 L2 ac-

cesses per 1K instructions). Inmilc andlbm there is little improvement in the hit rate as

we increase the size of the L2, indicating a memory footprintthat is not easily captured

by a cache memory.libquantum, zeusmpandclustalwshow significant increases in hit

rates for larger L2 sizes, but even with the largest cache size the RHR is around 10%

at best. This indicates that these benchmarks operate with avery large working set.

4.3.2 Miss Distances

One characteristic that helps understand the behavior of non-chaining and chaining

prefetch schemes is the distances between consecutive misses. Using an execution

without prefetching, we measure the number of cycles between consecutive misses,

coming from any instruction (global miss distance), from the same instruction in-

struction (PC miss distance) or targeting the same CZone (CZonemiss distance). For

the latter metric we use 64KB CZones. Figures 4.4 and 4.5 showthe miss distances
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Figure 4.3: Number of L2 cache accesses per 1K instructions.

grouped by ranges of number of processor cycles for 256KB and2MB L2 cache sizes,

respectively.

From this figure we can see that often a large fraction of L2 misses occur thousands

or even hundreds of thousands of cycles apart. Moreover, thefraction of such distant

misses often increases with cache sizes. More importantly,the fraction of such distant

misses is significantly larger when we consider PC or CZone miss distances. Again,

these results suggest that PC/DC and C/DC with large degreesof prefetching, while

still being able to eliminate some more misses, may issue such deep prefetches too

early. Lastly, CZone average distances tend to be shorter than per-PC distances due

to the skewing effect of CZone repetition (as explained in Section 3.4.2.1), but this

distance can be much higher when transitions between CZonesoccur.

4.4 PC/DC/MG

4.4.1 Performance and Traffic

Figures 4.6 and 4.7 show the performance improvement (gray portion of each bar)

of PC/DC and PC/DC/MG for 256KB and 2048KB L2 caches sizes, respectively. A

prefetch degree of 16 was used. Performance is given as IPC normalized to the IPC

obtained with an ideal L2 cache. Since prefetching usually involves an increase of
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memory bandwidth, we also show this metric in the same plot (line plot with right

Y axis). We measure the total bus traffic (reads and writes, command and data chan-

nels) and plot it as a percentage of the traffic observed with aconfiguration without

prefetching.

From both graphs it can be seen that the majority of applications benefit from

prefetching. The exception isomnetpp, for which prefetching actually degrades per-

formance with a 256KB L2.

As expected, the configuration with a lower cache size benefits more from prefetch-

ing. However even with the large 2048KB L2 several applications experience large

speedups.

For a cache size of 256KB, PC/DC/MG outperforms its non stream chaining variant

in 14 out of 20 benchmarks. For thesjengbenchmark, prefetching does not improve

performance regardless of the algorithm used. PC/DC and PC/DC/MG both slightly

benefitfasta, but being so close to the ideal L2 performance there is little room for im-

provement. Inomnetpp, as mentioned before, prefetching degrades performance, with

the degradation being slightly worse with PC/DC/MG. Only two benchmarks,tiger and

hmmer, benefit more from PC/DC than from PC/DC/MG. However, the performance

degradation is small: 1.1% intiger and 2.1% inhmmer.

With respect to traffic, both PC/DC and PC/DC/MG have similaroverhead, with

two exceptions. The benchmarklbm sees a substantial decrease in memory traffic

when using PC/DC/MG. This is due to a notable reduction in L2 writeback traffic in

PC/DC/MG (the read traffic stays the same in PC/DC and PC/DC/MG in this case).

On the other hand,omnetppshows a significant increase in memory traffic when using

PC/DC/MG compared to PC/DC. With both PC/DC and PC/DC/MG, prefetching in-

creases the memory traffic to about 200% percent of the non-prefetching configuration,

without giving any performance benefits.

Similar to the 256KB L2 configuration, with a cache size of 2MB, PC/DC/MG

outperforms PC/DC in 14 out of 20 benchmarks. As it is expected, a bigger cache size

pushes the performance without prefetching of most applications closer to that of an

ideal L2 cache. The benchmarksh264ref, fastaandphylip are too close to an ideal

L2 performance to benefit from any prefetching. As with a 256KB L2, the benchmark

sjengdoes not benefit from either prefetching algorithm. Different to the 256KB L2

case,omnetpp’s performance is not degraded by prefetching. In this case,PC/DC

prefetching does not improve performance but PC/DC/MG does, bringing it very close

to the ideal L2 mark. Lastly, onlyhmmerbenefits (very slightly) more from PC/DC
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Figure 4.4: Miss distances for 256KB L2. Figure shows global (left), per PC (middle)

and per CZone (right) miss distances.



Chapter 4. Evaluation of Stream Chaining Prefetchers 60

Figure 4.5: Miss distances for 2MB L2. Figure shows global (left), per PC (middle) and

per CZone (right) miss distances.
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Figure 4.6: PC/DC (left bar) and PC/DC/MG (right bar) performance and traffic. 256KB

L2 cache.
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Figure 4.7: PC/DC (left bar) and PC/DC/MG (right bar) performance and traffic. 2MB

L2 cache.
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than from PC/DC/MG. However, the performance degradation compared to PC/DC is

only 0.5%.

Not surprisingly, the traffic increase due to prefetching issignificantly lower in the

2MB L2 configuration. Lower number of L2 misses (compared to a256KB L2) trans-

late into lesser prefetcher activations. Both PC/DC and PC/DC/MG exhibit roughly

the same increase in bus traffic, with two exceptions. First,the benchmarklbm sees

a substantial decrease in memory traffic when PC/DC/MG is used. This is due to the

same causes as with the 256KB L2 cache (decreased L2 writeback traffic). Secondly,

the total traffic inh264ref rises from 104% (of the non-prefetching traffic) for PC/DC

to 117% for PC/DC/MG. However, the total memory traffic generated by this bench-

mark is already very low (thus it is very close to the ideal L2 performance), therefore

a small number of additional prefetch requests (as is the case with PC/DC/MG) will

alter the traffic increase numbers significantly.

4.4.2 Coverage and Accuracy

Figures 4.8 and 4.9 show the coverage of PC/DC and PC/DC/MG with prefetch de-

grees of 1, 4, 8 and 16. Naturally, the coverage varies acrossbenchmarks, but overall

PC/DC/MG often offers higher coverage for the same degree. This increased coverage

is mainly due to the cross-stream nature of PC/DC/MG. When PC/DC cannot corre-

late a stream, no prefetches are generated and this lowers the overall coverage of the

prefetcher. By contrast, PC/DC/MG correlates across different streams, increasing the

chances that at leastsomeprefetches are issued for one of the streams.

Figures 4.10 and 4.11 show the accuracy of PC/DC and PC/DC/MGfor the same

set of prefetch degrees. In the vast majority of the cases theaccuracy of PC/DC/MG is

significantly higher than that of PC/DC. The accuracy of PC/DC/MG prefetches tends

to remain stable or decrease only slightly with increasing prefetch degree. On the other

hand, PC/DC’s accuracy usually becomes worse as the prefetch degree increases.

Indeed PC/DC’s “deep” prefetches (within a single stream) tend to have lower

accuracy and lead to wasted bandwidth. For a single prefetchoperation in PC/DC,

the “tail” elements to be prefetched (e.g., the 15th and 16th prefetched blocks for a

prefetching degree of 16) will refer to data that may not be referenced for a long time

(recall that an indeterminate number of misses belonging toother streams may hap-

pen between two consecutive misses in the same stream, Section 4.3.2). The longer

a prefetched block stays unreferenced in the cache, the higher the probability that it
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Figure 4.8: Prefetching coverage of PC/DC and PC/DC/MG. 256KB L2 cache.

will be replaced by other data. Therefore, the tail prefetches in PC/DC have higher

probability of being replaced before being used at all.

By contrast, PC/DC/MG issues prefetches in a much more timely manner, increas-

ing the chances of them being referenced before an eventual replacement. The tail

prefetch elements of a PC/DC/MG activation will be used, in case of a correct predic-

tion, much sooner; in the best case, thenth prefetched element will be used in exactly

n misses.

We can correlate the accuracy and coverage against the performance results shown

in Figures 4.6 and 4.7. It can easily be seen that where PC/DC/MG significantly out-

performs PC/DC, this is due to an important increase in coverage, accuracy or indeed

both. Inlbm, libquantum, dealII andgobmk, PC/DC/MG shows much better accuracy

and coverage, whereas inperlbenchandnamd the lesser accuracy of PC/DC/MG is

compensated by a much larger coverage. Lastly, the PC/DC/MGresults inclustalw

are due to a higher coverage while at the same time maintaining roughly the same

accuracy as PC/DC.
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Figure 4.9: Prefetching coverage of PC/DC and PC/DC/MG. 2MB L2 cache.

4.4.3 PC Stream Prediction Accuracy

For a stream chaining prefetcher to work well, it is fundamental that it can predict

accurately the next streams to be activated. Figures 4.12 and 4.13 show the accuracy

of the predictions made by PC/DC/MG for 256KB and 2MB L2 cachesizes. We show

the accuracy for various prediction windowsw. A prediction is deemed correct if the

stream predicted is activated in the nextw misses. Naturally the accuracy increases as

w increases. We consider prediction windows of up to 4 misses;any prediction that

does not occur after that many misses is likely to be wrong, orof little use for our

stream chaining approach.

In the 256KB L2 cache configuration the prediction accuracy of PC/DC/MG is

already quite high forw = 1, with 15 out of 20 benchmarks above 80% and all except

one above 65%. This indicates that the miss graph approach succeeds in capturing

the most common transitions between PCs. The worst performer is sjeng, with an

accuracy of 49% forw = 1. However, once we consider a window of two misses,

the prediction accuracy for all benchmarks goes above 70%, with an average of 91%.
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Figure 4.10: Prefetching accuracy of PC/DC and PC/DC/MG. 256KB L2 cache.

Further increasing the prediction window tow = 4 results in an overall accuracy of

95%, with no benchmark going below 80%. The results for the 2MB L2 cache are

very similar to the 256KB configuration, with the only significant difference being an

increase in prediction accuracy forsjeng(49% to 66% forw = 1).

Overall, the largest increase in stream prediction accuracy is from w = 1 to w = 2.

One important factor that helps explain this behavior is theoccurrence of spurious

misses. As explained in 3.4.1.1, PC/DC/MG uses a saturationcounter to avoid mod-

ifying too often the miss graph due to infrequent “noisy” misses. When we increase

the stream prediction window fromw = 1 to w = 2, we discount the effect that these

spurious misses have in stream prediction by allotting space for them in the prediction

window.

4.4.4 Miss Graph Characterization

Here we seek to gain more insight into the behavior of a streamchaining prefetcher by

analyzing statistics about the miss graphs generated by PC/DC/MG. Table 4.2a char-
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Figure 4.11: Prefetching accuracy of PC/DC and PC/DC/MG. 2MB L2 cache.

acterizes the graphs generated by the prefetcher. We obtained these statistics taking

snapshots of the IT table (where the miss graph structure is built) every 1000 prefetch

events. We also evaluated snapshots at equal intervals of L2accesses and the results

were very similar. At each snapshot we build the graph described by following the

IT NextIT pointers. As explained in 3.4.1.2 we only consider those edges with aCtr

value of 3 or higher. From our experiments we have found that every snapshot con-

tains a collection of several Connected Components (CC). These are subgraphs that

are linked by edges.

In Table 4.2aUnique Subgraphsrefers to the percentage of unique CC across the

observed samples.Snapshotrefers to the range and average number of nodes per

snapshot (sample).CC refers to the range and average number of nodes per connected

component in each graph.

The Unique Subgraphscolumn allows us to measure how stable the miss graphs

are across the execution of the program. Stable miss graphs are key for the success of a

stream chaining prefetcher. If the graphs are unstable or change too often the prefetcher

will not have enough leverage to issue good, timely prefetches. Because comparing
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Figure 4.12: PC/DC/MG accuracy in predicting the next PC to appear in the next w

misses. 256KB L2 Cache.

the CC subgraphs across the very large number of snapshots taken is prohibitively

expensive, we use a comparison window of 30 snapshots ahead.This window size was

determined empirically, and larger windows do not affect the results significantly. We

classify every CC subgraph from every snapshot as eithersimilar to at least one other

CC in one other snapshot in the comparison window, orunique, meaning that there

is no other similar CC in the window. We deem two CC X and Y similar if X is a

subgraph of Y and X’s nodes correspond to no less than 75% of Y’s nodes, or if Y is a

subgraph of X and Y’s nodes correspond to no less than 75% of X’s nodes. Note that

by this definition, two CC that are exactly the same will be classed as “similar”.

In columns 2 and 3 of Table 4.2 we show the fraction of unique CCsubgraphs for

256KB and 2MB L2 cache sizes. The fraction of unique subgraphs seen is very small

for most benchmarks. For a 256KB L2, only 11.8% of the observed CC are unique

on average, with just 4 out of 20 benchmarks showing more than15% of different

subgraphs. For a 2MB L2, 16.5% of the CC are unique, with 7 benchmarks having

more than 15% of unique subgraphs. The higher percentage of different subgraphs seen

in the 2MB L2 configuration can be explained by the buffer effect a bigger cache has

on the global miss stream, capturing more of the more frequent request and increasing

the entropy of the misses. In any case, both configurations show a high number of

similar subgraphs. This suggests that the graphs constructed by PC/DC/MG are stable
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Unique Nodes GHB hops

Benchmark Subgraphs (%) Snapshot CC PC/DC PC/DC/MG

256KB 2MB 256KB 2MB 256KB 2MB 256KB 2MB 256KB 2MB

milc 4.7 3.0 [2, 15] 7.7 [2, 15] 7.9 [1, 7] 3.6 [1, 7] 3.5 43 43 55 55

lbm 22 12 [2, 20] 7.9 [2, 18] 6.7 [2, 18] 3.7 [2, 18] 4.2 7.7 8.8 9.2 11

libq 0.8 1.3 [2, 23] 19 [1, 24] 21 [1, 18] 7.0 [1, 18] 7.4 52 57 49 51

zeusmp 11 10 [2, 18] 11 [2, 15] 8.8 [2, 9] 4.4 [2, 10] 4.1 31 34 371 384

clustalw 1.1 7.2 [3, 10] 9.3 [2, 9] 6.7 [2, 10] 8.2 [1, 9] 6.6 9.5 11.6 31 31

perl 11 7.1 [1, 16] 8.6 [2, 18] 9.9 [1, 9] 3.3 [1, 9] 3.6 19 25 94 143

namd 21 23 [2, 8] 5.8 [2, 8] 6.0 [2, 8] 5.0 [2, 8] 5.8 37 38 353 352

soplex 2.8 12 [1, 30] 12 [1, 11] 6.2 [1, 10] 3.6 [1, 6] 3.0 79 55 101 60

sphinx3 11 9.6 [4, 16] 13 [2, 11] 7.1 [1, 15] 5.7 [1, 5] 3.4 118 131 123 137

bzip2 5.6 15 [1, 38] 20 [1, 25] 13 [1, 9] 3.8 [1, 7] 3.7 202 104 215 109

tiger 5.4 6.7 [7, 41] 30 [6, 34] 23 [1, 18] 4.2 [1, 14] 3.8 27 31 109 60

hmmer 12 9.4 [15, 50] 38 [13, 36] 28 [1, 33] 5.4 [1, 26] 4.5 19 57 131 158

gromacs 15 42 [2, 25] 13 [4, 13] 9.8 [1, 12] 3.6 [1, 7] 4.4 76 44 86 70

sjeng 45 29 [2, 13] 7.7 [2, 14] 8.4 [2, 13] 5.1 [2, 12] 5.2 64 95 148 332

dealII 6.4 43 [1, 25] 14 [1, 9] 4.7 [1, 11] 4.1 [1, 7] 3.1 85 94 116 97

gobmk 20 31 [1, 10] 5.2 [2, 13] 9.3 [1, 5] 3.4 [1, 9] 4.5 124 106 136 116

omnetpp 6.2 1.6 [1, 9] 3.7 [3, 14] 4.8 [1, 4] 3.0 [1, 3] 1.8 306 55 313 67

h264ref 14 22 [1, 7] 4.6 [1, 9] 8.0 [1, 4] 2.9 [1, 4] 2.8 18 47 30 63

fasta 8.9 8.9 [8, 19] 15 [8, 17] 15 [1, 16] 5.4 [1, 9] 3.9 24 12 28 14

phylip 13 37 [8, 36] 26 [8, 14] 11 [1, 24] 5.1 [1, 10] 4.6 52 49 76 44

Average 11.8 16.5 13.5 10.7 4.5 4.1 69 54 128 117

(a) (b)

Table 4.2: PC/DC/MG: miss graphs statistics (a) and GHB hop counts (b).
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Figure 4.13: PC/DC/MG accuracy in predicting the next PC to appear in the next w

misses. 2MB L2 Cache.

and do not change much over time. These results are in line with the good next stream

prediction accuracy shown in Section 4.4.3.

Table 4.2a also shows - in columns 4 to 7 - the average and rangeof number of

nodes both per snapshot and per CC. The number of nodes per snapshot, and specially,

per CC is not so large that managing the graphs - and, thus, operating the stream

chaining mechanism - becomes too expensive.

Table 4.2b shows the average number of GHB lookups (“hops”) required by each

prefetcher to establish delta correlations on a miss event,for a prefetch degree of 16.

The number of GHB hops is larger in PC/DC/MG than in PC/DC. This can be ex-

plained by the fact that PC/DC/MG visits several streams everytime it is activated.

However, this number of hops is not large enough to hinder theperformance of the

prefetcher and is within the time constraints offered by a typical L2 cache.

4.5 C/DC/MG

4.5.1 Performance and Traffic

Figures 4.14 and 4.15 show the performance improvement and traffic variation for

C/DC and C/DC/MG. As with the results for PC/DC/MG, we plot performance results
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normalized to the IPC obtained with an ideal L2 cache. We use 64KB CZones in

both prefetchers, since by experimentation we have found that they provide the best

all-around performance in our benchmark set.

Figure 4.14: C/DC (left bar) and C/DC/MG (right bar) performance and traffic. 256KB

L2 cache.

For a L2 cache size of 256KB, C/DC/MG improves significantly the performance

of C/DC in 9 of the 20 benchmarks. The greatest improvement happens in the bench-

marksoplex, where C/DC achieves a normalized IPC of 0.50 and C/DC/MG records

a normalized IPC of 0.65, an improvement of 30.1%. Other benchmarks that benefit
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significantly from C/DC/MG arelbm (0.34 to 0.39 normalized IPC, a 16.6% improve-

ment),clustalw(0.67 to 0.75 normalized IPC, a 11.6% improvement)hmmer(0.75 to

0.81 normalized IPC, a 8.5% improvement). The lowest improvement that is above

1% corresponds to theperlbenchbenchmark (2.1%). The rest of the benchmarks do

not show any significant improvement (i.e., above 1%) by using C/DC/MG instead of

C/DC. However, and unlike PC/DC/MG, C/DC/MG never degradesthe performance

compared to its non-stream chaining algorithm.

Figure 4.15: C/DC (left bar) and C/DC/MG (right bar) performance and traffic. 2MB L2

cache.
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For a 2MB L2 cache size, C/DC/MG improves significantly the performance of

C/DC in 6 of the 20 benchmarks. The highest improvement is in the benchmarklbm,

where C/DC/MG improves the normalized IPC from 0.35 to 0.41,a 15.6% increase

in performance. The next two greatest improvements are inclustalw (0.69 to 0.76,

a 9.7% improvement) andmilc (0.31 to 0.33, a 5.8% improvement). The lowest im-

provement that is above 1% happens inperlbench(2.8%). Similarly to the 256KB L2

case, there is no performance penalty for using C/DC/MG. As with PC/DC/MG, the

2MB L2 configuration pushes more benchmarks closer to the ideal L2 performance,

so obtaining any performance improvement in these cases is difficult. For example, 3

benchmarks that benefited from C/DC/MG in the 256KB configuration (soplex, hmmer

andtiger) surpass the 0.9 normalized IPC mark with C/DC prefetching in the 2MB L2

configuration.

Both C/DC and C/DC/MG show low traffic increase on most benchmarks. In the

256KB configuration the benchmark with the highest traffic increase ish264ref, with

122% and 124% of the original traffic with no prefetching for C/DC and C/DCMG

respectively. For a 2MB L2 cache the benchmark that shows thehighest traffic increase

is milc, with 105% (C/DC and C/DC/MG) of the original traffic. As withPC/DC and

PC/DC/MG, we observe a significant decrease in bus traffic with the benchmarklbm.

This is also due to a strong reduction in the L2 writeback traffic.

Overall, the results of C/DC/MG show that, in some benchmarks, significant im-

provements can be achieved with stream chaining, even with aspatial localization al-

gorithm. Spatial localization algorithms tend to group misses in such a way that there

are fewer miss stream transitions for a given period of time.This is due to spatial lo-

cality in the program (i.e., if a program references an area of memory, it will tend to

reference as well nearby areas). Fewer stream transitions means shorter miss graphs

and, therefore, less opportunities for stream chaining to improve the timeliness of the

prefetch stream.

4.5.2 Coverage and Accuracy

Figures 4.16 and 4.17 show the coverage of C/DC and C/DC/MG for 256KB and 2MB

L2 caches. In all benchmarks C/DC/MG’s coverage is equal to or larger than C/DC.

For a 256KB cache, the most significant increases in coverage(measured at prefetch-

ing degree 16) are in the benchmarkshmmer(60.4% to 80.9%),clustalw (54.7% to

70.6%) andsoplex(54.6% to 67.1%). In the 2MB L2 configuration, the largest cover-
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Figure 4.16: Prefetching coverage of C/DC and C/DC/MG. 256KB L2 cache.

age increases happen in theclustalw(55.1% to 69.3%),hmmer(59.7% to 72.2%) and

tiger (70.4% to 78.8%) benchmarks.

Overall the results show not only that the coverage of C/DC/MG is generally higher

than that of C/DC, but also that this increase becomes largeras the prefetch degree

increases. As with PC/DC/MG, this is due to increased opportunities for prefetch-

ing: some CZones might not have enough miss data to predict more than a small

number of misses, but with the Stream Chaining strategy we can correlate over sev-

eral CZones. This increases the number of prefetches issuedper prefetcher activation,

therefore achieving a higher coverage.

In Figures 4.18 and 4.19 we show the accuracy of both prefetchers for 256KB and

2MB L2 caches. Overall, the accuracy of C/DC and C/DC/MG is roughly the same,

with a few exceptions with the 256KB L2 cache. For this configuration C/DC/MG

suffers significant accuracy degradation in the benchmarkh264ref (96.4% to 79.2%),

and moderate to small degradation in the benchmarkslbm (80% to 74.4%) andhmmer

(95.3% to 91.1%). However, two of these benchmarks (h264ref andhmmer) already

perform close to an ideal L2 without prefetching. All these benchmarks, however,
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Figure 4.17: Prefetching coverage of C/DC and C/DC/MG. 2MB L2 cache.

perform better with C/DC/MG than C/DC, so this decrease in accuracy is compensated

by higher coverage and better prefetch timeliness.

4.5.3 CZone Transition Prediction Accuracy

In Figures 4.20 and 4.21 we show the accuracy of C/DC/MG in predicting the next

CZone to be activated. This data refers only to transition between different CZones;

the accuracy of predicting consecutive misses to the same CZone is analyzed in Section

4.5.4.

As with PC/DC/MG, we establish a windoww of 1, 2 or 4 misses. In this context,

this window size refers to the number of misses to different CZones.

For a windoww = 1, 10 out of the 20 benchmarks present prediction accuracies

above 70% for a 256KB L2. With the exception oflbmandsphinx3, the prediction re-

sults show little variation with respect to the window size.For w = 4, 12 benchmarks

show accuracies over 70%, 4 between 40% and 70% and the remaining 4 have accu-

racies lower than 40%. For a 2MB cache, 9 out of the 20 benchmarks have prediction
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Figure 4.18: Prefetching accuracy of C/DC and C/DC/MG. 256KB L2 cache.

accuracies above 70%. Moving to a larger window sizew = 4, 13 benchmarks show

accuracies over 70%, 4 present accuracies in the 40% - 70% range1 and the remaining

3 show accuracies less than 40%. Like with a 256KB cache, there is little variability

when changing the window size with the exception oflbmandsphinx3.

Overall the prediction results show that CZone transitionsare more difficult to

predict than PC transitions. This is expected, since whereas the PC miss graphs are

due to a inherently structured source (the program), the CZone miss graphs are highly

dependent on the spatial patterns of the miss address stream.

4.5.4 CZone Repetition Prediction Accuracy

Figures 4.22 and 4.23 show the accuracy of the C/DC/MG in predicting how many

consecutive misses will each CZone receive (CZone repetitions). Data is given as

the frequency that the predictor is right plus or minusd = {0,1,2} misses. The data

for d = 0 shows the number of occasions C/DC/MG predicted the exact number of

1We includedlibquantumin this group, with aw = 4 accuracy of 39.82%



Chapter 4. Evaluation of Stream Chaining Prefetchers 77

Figure 4.19: Prefetching accuracy of C/DC and C/DC/MG. 2MB L2 cache.

repetitions,d = 1 represents the data for when the prediction was off by plus or minus

1 miss and similarlyd = 2 represents the data for predictions that are off by 2 misses.

For both cache sizes the C/DC/MG makes exact predictions (d = 0) more than 70%

of the time in 12 out of the 20 benchmarks. For a cache size of 256KB andd = 1, 18

benchmarks show prediction accuracies above 70% and 13 of them have accuracies

over 90%. For a 2MB L2 cache andd = 1, 16 benchmarks have prediction accuracies

above 70% and 12 of them above 90%. The data ford = 2 shows a smaller increment

in accuracy for both cache sizes, indicating that most C/DC/MG predictions are either

right within one miss (the majority), or off by more than two misses.

As with the CZone transition predictions, the results are very similar for 256KB

and 2MB caches, suggesting that the mechanism is robust enough to be independent

of the cache size.
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Figure 4.20: C/DC/MG accuracy in predicting the next CZone to appear in the next w

misses. 256KB L2 Cache.

4.5.5 Miss Graph Characterization

Table 4.3 characterizes the miss graphs used by C/DC/MG. As with PC/DC/MG, we

calculate the percentage of unique graphs2 (columns 2 and 3), the average size of

the graphs on each snapshot (columns 4 and 5), the average size of the Connected

Components (CC) of each snapshot (columns 6 and 7) and the average number of

GHB hops for C/DC and C/DC/MG (Table 4.3b).

Overall, the results show that with C/DC/MG the percentage of unique graphs is

higher on average than with PC/DC/MG. Comparing the size of the graphs with the

CZone prediction accuracy, we can see that all the benchmarks that show poor accu-

racies (i.e.,libquantum, soplex, bzip2, sjengandomnetpp, for a 256KB L2) have also

a high proportion of unique graphs. This indicates that in these benchmarks there is

high variability in the structure of the graphs, and this affects their predictability. On

the other hand, some benchmarks with a high percentage of unique graphs (perlbench,

tiger, fastaandphylip) show good CZone prediction accuracies.

The average number of nodes in each graph snapshot is much higher than with

PC/DC/MG. On the other hand, the average size of each CC is on average less than in

PC/DC/MG. This means that C/DC/MG captures more different transitions between

2We use the same procedure described in Section 4.4.4.
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Unique Nodes GHB hops

Benchmark Subgraphs (%) Snapshot CC C/DC C/DC/MG

256KB 2MB 256KB 2MB 256KB 2MB 256KB 2MB 256KB 2MB

milc 5.6 5.9 [12, 424] 336 [12, 423] 332 [2, 330] 7.6 [2, 338] 7.9 35 35 38 37

lbm 1.9 2.1 [4, 339] 271 [4, 366] 265 [2, 42] 3.3 [2, 40] 3.4 56 52 72 80

libq 25 26 [8, 375] 236 [2, 373] 211 [2, 95] 3.1 [2, 72] 2.9 8.8 9 30 22

zeusmp 2.8 2.2 [10, 315] 207 [12, 383] 249 [2, 42] 3.2 [2, 37] 3.1 33 36 63 70

clustalw 2.9 3.4 [3, 139] 124 [3, 137] 121 [2, 17] 3.4 [2, 23] 3.7 7.7 9.5 30 43

perl 26 21 [37, 159] 115 [35, 86] 64 [2, 99] 5.1 [2, 40] 2.7 4.7 4.1 5.8 5.9

namd 16 19 [40, 122] 93 [44, 109] 89 [2, 22] 4.0 [2, 35] 5.0 39 32 42 33

soplex 19 11 [2, 75] 19 [2, 129] 73 [2, 34] 2.8 [2, 31] 2.9 20 18 54 20

sphinx3 9.8 13 [8, 77] 57 [8, 82] 57 [2, 21] 2.8 [2, 21] 3.5 14 16 25 28

bzip2 22 30 [7, 30] 16 [7, 35] 20 [2, 12] 2.4 [2, 19] 3.0 8.8 8.8 13 13

tiger 13 13 [5, 286] 95 [5, 83] 58 [2, 112] 2.5 [2, 67] 6.4 39 30 63 46

hmmer 8.4 15 [5, 105] 62 [5, 101] 65 [2, 44] 4.6 [2, 53] 6.9 16 11 24 18

gromacs 16 12 [8, 42] 29 [8, 77] 57 [2, 17] 2.8 [2, 23] 3.0 68 33 90 44

sjeng 46 56 [4, 115] 43 [10, 90] 42 [2, 5] 2.1 [2, 6] 2.1 3.3 3.2 3.3 3.2

dealII 14 17 [8, 33] 24 [6, 120] 73 [2, 13] 3.1 [2, 28] 3.1 59 44 62 45

gobmk 33 38 [6, 40] 27 [7, 37] 24 [2, 15] 2.9 [2, 12] 2.8 48 25 50 25

omnetpp 13 17 [82, 151] 125 [62, 307] 173 [2, 28] 3.3 [2, 70] 2.6 11 60 13 64

h264ref 46 32 [6, 24] 14 [11, 71] 44 [2, 9] 2.5 [2, 20] 2.9 27 39 38 50

fasta 23 11 [6, 43] 25 [6, 72] 40 [2, 9] 3.3 [2, 8] 3.3 40 51 41 51

phylip 25 25 [6, 43] 23 [8, 53] 34 [2, 20] 3.2 [2, 23] 3.2 70 91 71 109

Average 18.4 18.5 97.0 105.3 3.4 3.7 30 30 41 40

(a) (b)

Table 4.3: C/DC/MG: miss graphs statistics (a) and GHB hop counts (b).
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Figure 4.21: C/DC/MG accuracy in predicting the next CZone to appear in the next w

misses. 2048KB L2 Cache.

streams than PC/DC/MG, but the individual transition chains are on average shorter.

This is reflected as well on the number of GHB hops (Table 4.3b), close on average to

the GHB hop count of C/DC.

4.6 Comparison of PC/DC/MG, C/DC/MG and G/DC

Having analyzed the performance of both our Stream Chainingprefetchers against

their non-chaining counterparts, we now compare them against G/DC. G/DC is a sim-

ple prefetcher that does not perform any localization and instead operates on the global

miss stream. As all the other prefetchers analyzed in this chapter, it uses Delta Corre-

lation for detecting memory patterns and predicting futurememory accesses.

Since G/DC does not perform localization, all the prefetches it generates are based

on the global miss stream and therefore are expected to be very timely. On the other

hand, because of the lack of localization mechanisms, it will not be able to detect

interleaved memory patterns that are typical of complex benchmarks. By contrast, our

Stream Chaining prefetchers do support localization and atthe same time they promote

a timely dispatch of prefetches.

Figures 4.24 and 4.25 show the performance and traffic results of PC/DC/MG,

C/DC/MG and G/DC for 256KB and 2MB L2 caches. The first thing tonote is that no
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Figure 4.22: CZone repetition accuracy. 256KB L2 cache.

prefetcher gives the best performance in all benchmarks. This is expected, as differ-

ent benchmarks show different memory patterns that are captured best with different

localization schemes (or no localization).

For a 256KB L2 cache, the Stream Chaining prefetchers perform better than G/DC

in 11 of the 20 benchmarks:milc, lbm, libquantum, zeusmp, clustalw, perlbench, so-

plex, sphinx3, gromacs, gobmkandomnetpp. G/DC obtains better results in 2 bench-

marks:namd(1.9% over C/DC/MG) andhmmer(5.7% over PC/DC/MG). Two bench-

marks show significant and roughly equal improvements with the Stream Chaining and

G/DC prefetchers:tiger (19.2% over non-prefetching baseline for PC/DC/MG, 19.6%

for G/DC) anddealII (16.6% for PC/DC/MG and 14.1% for G/DC). Lastly, the 5

remaining benchmarks (bzip2, sjeng, h264ref, fastaandphylip) show little or no im-

provement in performance with prefetching, be it Stream Chaining or G/DC.

As expected, the results for a 2MB L2 cache show less benefits from prefetching.

In 7 of the 20 benchmarks our Stream Chaining Prefetchers obtained better perfor-

mance improvements than G/DC:milc, lbm, libquantum, zeusmp, clustalw, soplexand

sphinx3. G/DC performed better in two benchmarks:perlbenchandnamd. Lastly,

the remaining 10 benchmarks (tiger, hmmer, gromacs, sjeng, dealII, gobmk, omnetpp,

h264ref, fastaandphylip) showed small or no improvements with prefetching.
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Figure 4.23: CZone repetition accuracy. 2MB L2 cache.
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Figure 4.24: Comparison of Stream Chaining prefetchers and G/DC. 256KB L2 cache.
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Figure 4.25: Comparison of Stream Chaining prefetchers and G/DC. 2MB L2 cache.



Chapter 5

Resizable Prefetch Heaps

5.1 Introduction

This chapter introduces the concept ofResizable Prefetch Heaps(RPH), the second

main contribution of this dissertation. The RPH is a novel organization of the Prefetch-

ing Request Queue (PRQ, Section 2.6.2) that allows prefetchthrottling (Section 2.7) in

multi-core systems (Section 2.8) to be performed at the PRQ level. In order to do so,

prefetch requests are assigned a priority that reflects their relative value among the pool

of pending prefetch requests. Prefetch requests are extracted from the queue accord-

ing to their priority, effectively turning the PRQ into a logical priority queue. In case

of overflow, requests already in the PRQ are only overwrittenif the incoming request

has greater priority (i.e., they arejudgedto be more valuable). In addition to this, the

size of the RPH PRQ is adaptively changed according to the current memory channel

utilization.

Prefetch throttling is especially important in multi-coresystems, where each core’s

prefetcher competes with the other prefetchers for memory bandwidth. Because of

this, we assume in this chapter a multi-core architecture with prefetching as described

in Section 2.8.

The rest of this chapter is organized as follows: Section 5.2characterizes prefetch

throttling as a producer-consumer problem; Section 5.3 describesHPAC, a state-of-

the-art prefetch throttling mechanism on which we base partof the behavior of the

RPH; finally Section 5.4 introduces theRPHPRQ and describes in detail its operation.

85
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5.2 Prefetch Throttling as Producer-Consumer Problem

The problem of prefetch throttling can be viewed as a generalization of the well known

producer-consumer problem. Prefetch requests are generated by one or more produc-

ers, the prefetch engines. In a simple single-core system there will be just one producer,

while on more sophisticated systems and in multi-core systems there will be a group

of producers. On the other hand, typically we have just one consumer: the memory

controller, although more sophisticated systems might have more than one memory

controller and, thus, more than one consumer. The memory controller is in charge

of consuming the prefetch requests generated by the producers as soon as conditions

allow. Normally memory controllers will wait for the memorybus to be idle before

dispatching any prefetch requests, as these are usually given lower priority than normal

memory requests. A temporary data store called the PrefetchRequest Queue (PRQ,

Section 2.6.2) sits between the consumer and the producers,in order to allow queueing

of pending prefetch requests.

An important difference between this setup and the traditional producer-consumer

problem is that not all the data items produced need to reach the consumer. In fact,

the main objective of a prefetch throttling system is to ensure that only the prefetch re-

quests that are thought to be more desirable do reach the memory controller. Note that

in the most general formulation of this problem, the “desirability” of a prefetch request

is re-assessed at every time step and is measured considering all the currently pending

prefetch requests. Obviously, such ideal control is not practical and compromises have

to be made.

Viewed in this light, it is clear that current prefetch throttling mechanisms (Section

2.7) work only on the producer side of the problem. Be it by filtering out prefetch re-

quests or reducing the prefetch degrees, these mechanisms operate before the prefetch

has reached the PRQ, at each prefetching source (the producer in our analogy). Once a

prefetch request has passed all the filtering and throttlingmechanisms, it is enqueued

in a simple linear FIFO and consumed in turn. By not tackling the consumer side

of this problem, throttling mechanisms ignore two important aspects of the producer-

consumer problem: how to consume the prefetch requests in the most effective manner

and how to discard elements in case the prefetching queue fills up. As a consequence,

most prefetch throttling algorithms err by being too cautious in the type of prefetches

that they let through. Since each prefetch request that is inserted in a conventional

FIFO-like PRQ may overwrite other possibly more important requests, or be put in
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front of more time-critical requests (disturbing their timeliness), current throttling al-

gorithms cut down prefetch requests for which there are not enough guarantees that

they will be beneficial. This binary good/no good approach leads to lost opportunities

in prefetching.

In this chapter, we describe a way to throttle prefetchers that works both on the

producer and consumer side of the problem. With RPH throttling, each prefetch is

graded in such a way that obviously good prefetches are always dispatched, possibly

good prefetches are dispatched if there is enough resourcesfor them, and bad prefetch

requests (i.e., those that clearly degrade performance) are filtered out. We also provide

a mechanism that manages overflow in the PRQ and discards the prefetch requests

judged possibly less beneficial. Lastly, we include a globalthrottling down mecha-

nism that reduces the number of prefetch requests at times where the memory bus is

saturated, regardless of other metrics.

Before delving into the details of operation of the RPH, we first set the context of

prefetch throttling in the next section, describing a state-of-the-art prefetch throttling

mechanism known as HPAC.

5.3 Case Study: The Hierarchical Prefetch Aggressive-

ness Control

Traditionally prefetch throttling algorithms have used metrics local to the prefetcher

being throttled in order to make decisions about its aggressiveness. This local-metrics-

only approach may be suitable for single-core architectures, but in a multi-core system

it ignores important issues such as inter-core prefetchingpollution and bandwidth shar-

ing. Only very recently there have been proposals to take global metrics into account.

In this chapter we describe HPAC [24] one of such prefetch throttling algorithms that

uses global and local metrics to make throttling decisions.When we introduce the

RPH PRQ in Section 5.4 we use some of the basic principles behind HPAC to build

our prefetch throttling strategy.

The HPAC throttling mechanism is tiered in two decision layers. In the first layer, a

set of rules watch for harmful interactions of prefetchers from different cores. In such

case, the interfering prefetcher(s) is(are) throttled down to avoid global performance

degradation. On the other hand, if no such interferences arefound, control is passed to

a local decision layer which runs a set of rules based on localmetrics (accuracy, local
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Decision layer ACC i BWC i POL i BWOC i Action

Global

low - low high

Global throttle down

low low high low

low high high low

low - high high

high high high high

Local

low high low low

Local throttle down decisionhigh high high low

high low high high

Any other case Local decision

Table 5.1: HPAC decision rules

pollution, etc.) and regulates the aggressiveness of each prefetcher accordingly.

Table 5.1 summarizes the rules used in HPAC throttling. Thisset of rules is eval-

uated periodically, once per core in the system. At evaluation time, four basic metrics

are used:ACCi , the accuracy of the prefetcheri; BWCi , the bandwidth consumed by

core i; POLi , a measure of the pollution caused by prefetcheri to other coresj 6= i 1

andBWOCi, the sum of bandwidth needed by all coresj 6= i.

As it can be seen in table 5.1, the global and local decision layers can spawn three

types of actions. The first group of actions, activated by theglobal decision layer, is

run when HPAC detects severe inter-core interference from one prefetcher. HPAC then

reduces the aggressiveness of that prefetcher in order to alleviate the situation. The

local decision layer can run two type of actions. The first onecorresponds to a border-

line interference scenario. In this case the local decisionlayer role is to avoid a given

prefetcher to transition to a severe interference scenario. For this, the local decision

layer rule set is run to possibly throttle down (based on local metrics) but never throttle

up the prefetcher. Lastly, when there is no detectable inter-core interference, the local

decision rule set is run to adjust the prefetcher aggressiveness based on metrics local

to that prefetcher. HPAC usesFeedback Directed Prefetching[23] as the local prefetch

control heuristics.

The throttle down and up actions lower and increase respectively the aggressive-

ness of a prefetcher. This is done increasing or decreasing the prefetch degree, and, in

the case of thestream prefetcher(Section 2.5.2.1), the prefetch distance. For practical

reasons, the values the prefetch degree can be set to are usually limited to a reduced set

1This refers to the number of cache lines belonging to other cores that have been evicted this core
prefetches and later referenced again.
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of possible values (for example, uniformly sampling the configuration space from the

least aggressive setting to the most). Therefore, in this context, increasing (or decreas-

ing) the prefetch degree implies setting it to the immediately next higher (or lower)

value from the set of degrees. Since the exact composition ofthe set of prefetching

degrees is implementation dependent, throughout this Chapter we will refer only to the

throttle up or down operations and not to the particular degree the prefetch is adjusted

to.

5.4 Resizable Prefetch Heaps

In this section we present our proposal for throttling prefetches in a multi-core. The

key idea of the proposal is to performglobal throttling, which is achieved through a

novel organization for the prefetch queue: theResizable Prefetch Heap (RPH). The

RPH employs two new techniques for prefetch throttling: prioritization of prefetch

requests according to prefetch metrics and resizing of the RPH according to available

bandwidth.

5.4.1 Introduction

The key novel infrastructure proposed in this dissertationto achieve global throttling is

the Resizable Prefetch Heap (RPH). The RPH is designed as a drop-in replacement for

ordinary FIFO prefetch queues. As its name suggests, the RPHis based on the binary

heap data structure, explained in Section 5.4.1.1. The RPH works as a priority queue,

where each prefetch request has an associated priority. At de-queue time (performed

by the memory controller), the prefetch request with highest priority is selected and

extracted from the RPH.

Another property of the RPH is the ability to resize itself according to the current

memory channel utilization. At times where the memory channel is saturated by de-

mand requests from the processor cores, the RPH shrinks in size, reducing the number

of prefetch requests sent to memory and acting as a global throttling mechanism. The

RPH is implemented logically as a linear array of queue elements (Sections 5.4.1.1 and

5.4.1.2). Therefore resizing the RPH can be done seamlesslyby storing in a register

the current size of the heap, and ignoring elements in the array past this limit.
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(a)

(b)

Figure 5.1: Logical view of a binary heap: (a) as a tree; and (b) as an array.

5.4.1.1 Binary Heaps and Priority Queues

Binary heaps are well known data structures [1]. They are array objects that can be

viewed as a nearly complete binary tree (Figure 5.1a), with possibly the lowest level

incomplete. Each node in the tree corresponds to one elementin the array. This map-

ping is done in the following way: the root of the tree is the first element of the array,

and for each elementA[i] in the array its two children in the tree are the array nodes

A[2∗ i] andA[2∗ i +1] (Figure 5.1b).

An important property of binary heaps is that, viewed in treeform, each node is

equal to or bigger than any of its children2 (for some definition of equal to or bigger

than previously established). This property allows heaps to be used as an efficient im-

plementation of priority queues. Queueing and de-queueingfrom a heap-based priority

queue can be done efficiently inO(log2n) operations, wheren is the size of the queue.

The basic method of insertion in a heap consists in insertingthe element at the bottom

of the heap (the lowest level of the tree) and successively swapping this element with

its parent until the heap property is restored. Extraction from a heap-based priority

queue is done by removing the root element from the tree and putting in its place the

bottom-right (last element in the array) element of the tree. Then the new root ele-

2More precisely this defines max-heaps, where the biggest element in the heap is the root of the tree.
Conversely, in min-heaps the root of the tree contains the smallest value in the heap.
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Figure 5.2: Heap array split into priority and satellite data arrays.

ment is again successively swapped with one of its children until the heap property is

restored.

5.4.1.2 Hardware Implementation of Binary Heaps

Binary heaps are suited for hardware implementation because of their array represen-

tation. In hardware, a binary queue with up to a few hundred items can be directly

implemented with just a normal array store and combinatorial circuits [37]. Each item

in the array store contains two elements: a priority field anda data field. The prior-

ity field is used to organize each item within the queue, whilethe data field contains

the satellite information associated with each element. Since binary heap operations

require swapping elements in the array, this hardware organization might not be con-

venient if the data field is relatively large. This can be solved by using an additional

satellite data array that holds the data. In this case the heap array only holds the prior-

ity and a pointer to the satellite data array, as shown in Figure 5.4.1.2. Compared to a

circular FIFO queue, the hardware overhead of binary heaps is minimal.

One possible issue with the use of binary heaps in hardware isthat insertion and

deletion from them are no longer constant-time operations,but logarithmic. We do

not anticipate this to be a problem. In our proposed use, we will model a queue with

a maximum of 256 entries. This would mean that insertion or deletion in the queue

would take a maximum oflog(256) = 8 operations. Note that, although each opera-

tion requires one comparison and one swap step, these do not necessarily need to be

performed sequentially. An optimized hardware implementation can take advantage

of the fact that, when inserting into the heap, all comparisons performed, except the

last one, have the same sign. Therefore such optimized implementation can perform

the swap and comparison steps in parallel in one cycle, with the caveat that when
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the comparison changes sign, the last swap was unnecessary and needs to be undone.

Thus, inserting into the queue can be done in at mostlog2(256)+ 1 = 9 cycles, well

within the timing constraints for current L2 caches. Furthermore, with this optimized

implementation, insertion operations can be pipelined: incase of having two or more

consecutive insertions into the heap, each insertion can start just two cycles after the

preceding one3. Lastly, if strict constant-time insertion and deletion are needed, this

can be achieved by placing one set of comparators for each element in the array store

and implementing a sorting network [38], which would perform all the comparison in

parallel. As with most hardware implementations, there is aperformance/cost trade-off

that must be taken into account.

Even if a non-optimized hardware implementation is used, note that binary heaps

are in fact almost-full binary trees. As such, approximately 50% of the elements of the

heap will be leaves of the tree (a full binary tree with 2n−1 elements has 2n−1 leaf

nodes), and 75% of all elements are located within the first two bottom levels of the

tree. Therefore, when inserting a new element into the heap,it is likely that it will move

only a few levels upwards the heap, requiring on average manyfewer compare-swap

operations than the worst-caseO(logn).

Extraction in an unoptimized binary heap is likely to carry alonger latency than

insertion. This should not be a problem because extraction has more lenient timing

constraints, since the requests are being dispatched to memory by the memory con-

troller, which will give priority to regular cache misses over prefetch requests. Even

so, there are some extraction optimizations that can be performed. First, extraction can

be divided in two separate and independent tasks: 1) extraction of the value (the root

of the tree); and 2) heap rebuilding. The first task can be completed immediately, since

the root of the tree is the first element of the heap array. Therefore the extraction proce-

dure can return a prefetch request to the memory controller in just one cycle, with the

caveat that the next extraction can not happen until the heapis rebuilt, which can take

up to 8 cycles in our case4. Moreover, the top two levels of the tree contain only three

elements. An optimized implementation could simply perform a parallel comparison-

swap between them in one step instead of two. This could even be extended to the next

level at the cost of more complicated comparison hardware.

3A space of two cycles is needed to allow for the last swap-undostep corresponding to the preceding
operation

4Note that extraction and insertion can run in parallel, so there is no need to lock the queue while the
extraction heap rebuilding is happening.
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Memory utilization CSR

≤ 30% Hardware Size (HS)

≤ 50% 0.5×HS

≤ 70% 0.3×HS

≥ 70% 1

Table 5.2: Memory utilization scale used to resize the RPH.

5.4.2 Prefetch Throttling with RPHs

RPHs are basically a hardware implementation of a binary-heap max-priority queue

with adaptive resizing. Extraction from the queue gives back the element with the

highest priority in it. Insertion in a full queue only modifies it if the priority of the

item to be inserted is greater than the lowest priority stored in the queue. Therefore,

the behavior of an RPH is governed by two main design decisions: how to assign a

priority to each prefetch request and how to perform the adaptive resizing.

5.4.2.1 Adaptive Resizing

Resizing of the RPH is done by storing in a register the current size of the heap. We call

this the Current Size Register (CSR). The contents of the CSRcan be equal to or less

than the maximum storage size of the queue (Hardware Size, HS). Insert and extract

operations take into account CSR and do not consider array positions bigger than it. We

recalculate the CSR in interval windows of a million cycles.At the end of each interval

we calculate the utilization of the memory channel and change the CSR according to

a scale (Table 5.2). In order to calculate the memory channelutilization, we count

how many misses we register during the window (not includingprefetch requests) and

normalize it to the maximum possible number of misses duringthat period.

5.4.2.2 Priority Assignment

Assigning priorities to prefetch requests defines the main throttling behavior of the

RPH. For this, we base our prefetch control heuristics on those used by the state-of-

the-art throttling mechanism HPAC [24]. Moreover, we use the same set of rules as

HPAC (Table 5.1). However, crucially, we construct a systemof prefetch priorities that

allow any prefetch request to be potentially added to our RPHPRQ. For this, we assign

each prefetch request a priority based on the following formula:
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Prio(Wn,Pctr,Acc,Allow,O f f set) =







(32−Wn)−Pctr −Offset+AccBonus if Allow== true

0 otherwise
(5.1)

AccBonus=



















5 if Acc ≥ 0.9

3 if Acc ≥ 0.6

0 otherwise

(5.2)

For any given prefetch request, we calculate its priority based on five pieces of

information:Wn, the prefetch wave number;Pctr, the prefetch activation counter;Acc,

the accuracy of the prefetcher issuing the request;Allow, a boolean variable that is fed

back from the throttling heuristics; andOff, an optional offset explained bellow.

Clearly not all prefetch requests should be enqueued into the RPH PRQ, no matter

how low their priority. More concretely, those prefetches deemed harmful by the global

control layer should be removed. This is what theAllow boolean variable implements.

This variable is fed back from the global control layer of ourthrottling heuristics and is

set to zero when one prefetch request is deemed harmful or causing severe interference.

We calculate prefetch request priorities using Equations 5.1 and 5.2. In the case of

Allow= 0, the prefetch request is given priority zero, which is treated as a special case

meaning that it should be ignored and not inserted in the queue. The prefetch wave

number is simply the relative ordering of a prefetch requestwithin a single prefetcher

activation (i.e., the set of prefetch requests issued by oneprefetcher after a given miss).

For each prefetcher activation, the first prefetch issued would have a wave number 1,

the next one would have a wave number 2, and so on up to the prefetch degree. The

prefetch activation counter (Pctr) stores the total count of prefetcher activations (in any

core) in the system. Lastly the accuracy of the prefetcher isstored normalized to 1.

Term by term formula analysis: Below we describe the rationale behind each

term in the priority assignment formula.

• (32−Wn) → Wave ordering:In almost every prefetcher the accuracy of the

prefetch requests diminishes as the wave number increases,since we are predict-

ing further and further into the future. Therefore, we subtract the wave number

from 32 (the maximum prefetch degree we consider in our evaluation) so that

prefetch requests with lower wave numbers have higher priority than requests

with higher wave numbers.

• −Pctr → Time ordering: In order to avoid data stalling issues, we relate each
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prefetch request to the prefetch activation number. By subtracting this number

from the priority we achieve a gradual prioritization of older requests in the

queue: since this is an ever increasing counter, older requests will progressively

have more priority than newer requests5.

• −Offset→ Prefetch classing:We permit certain classes of prefetches to have an

overall lower priority than the rest of requests. We do so to distinguish between

prefetches that the throttling heuristics judge surely beneficial to other prefetches

which are onlypossibly beneficial. For the first class we use Offset= 0 while for

the second class we use a suitable large value (Offset= 100 in our experiments).

• AccBonus→ Accuracy bonus:Based on experimental results, we have deter-

mined that promoting highly accurate prefetches improves the overall prefetch-

ing performance of the system. For this reason we use AccBonus, which is a

variable that contains a priority boost of 5, 3 or 0 dependingon the accuracy of

the given prefetcher (values determined empirically).

Overall formula behavior: The main objective of the priority assignment for-

mula is to interleave prefetching requests from several cores in such a way that, in case

of competition between prefetchers, no single prefetcher can completely overtake all

the space in the PRQ. Within a single prefetch activation we enforce the time ordering

in which the prefetch requests were generated. When two or more prefetcher activa-

tions insert several requests into the queue, our priority assignment maintains a general

interleaving of requests while gradually promoting (and flushing) older requests over

new ones. Prefetchers that show high accuracy are slightly promoted over the rest,

but the effect of this promotion is limited (the maximum priority boost of 5 means a

request can “jump” up to five places in the queue) and the general interleaving is still

enforced. Lastly we allow a class of “optional” prefetch requests that have lower over-

all priority than primary requests but whose dispatch is still interleaved (within their

class) in the same way.

5.4.2.3 Integration with Throttling Heuristics

So far we have discussed how an individual prefetch is assigned a priority according

to the priority assignment formula, which in turn depends onfive signals or variables

5In order to prevent overflow, this counter should be reset at context switch time.
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Decision layer HPAC action RPH action

Global Global throttle down
ReduceDlimit and possiblyD

by one step

Local
Local throttle down decision Local reduceD decision

Local decision SetD andDlimit

Table 5.3: RPH throttling actions.

Figure 5.3: Role of D and Dlimit registers. Wn denotes the prefetch request wave num-

ber.

(Wn, Pctr, Acc, Allow andOffset). In this section we describe how to integrate the HPAC

throttling heuristics with the RPH so they drive these signals.

In a conventional system throttled by HPAC heuristics, the global decision layer

has the power to limit the aggressiveness of a given prefetchin case it is causing ex-

cessive inter-core interference or pollution. To do this, it throttles down such prefetcher

with a clear cut on the degree. Similarly, we do not allow clearly harmful prefetches

in the RPH. For this we use a register calledDlimit, which stores the maximum wave

number for which theAllow signal is set; any other prefetch requests afterDlimit are

effectively discarded, as per the priority assignment formula (Equation 5.1). In this

aspect, both RPH throttling and conventional HPAC throttling work in a similar way.

Thus, unlike HPAC, we also allow for some deeper prefetches to conditionally make

it into the queue, depending on the priority values of the other requests already in the

PRQ. This allows for a more graceful global control. Additionally we use another reg-

ister calledD: any prefetch whose wave number is greater thanD activates theOffset

signal, which marks this prefetch request as “optional” andgives it a lower priority. In

summary, comparing the wave number withD andDlimit permits calculating theOffset

andAllow signals, which in companion with thePctr counter and the accuracy metric

of the prefetcher, are sent to the priority calculation hardware. Figure 5.3 illustrates

the role ofD andDlimit for setting the signals used in priority calculation.
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We modify the throttling heuristics to operate onD andDlimit instead of actuating

directly over the prefetcher (Figure 5.3). If the global decision layer rules are triggered,

the RPH reduces the value ofDlimit (by choosing the immediate next lower value from

the prefetch degree set). If, as a result of this,D is greater thanDlimit, D is set back to

the same value asDlimit. Once in the local decision layer, there are two alternatives. In

the borderline scenario, where the local decision rules arerun to possibly throttle down

a prefetcher, we reduce instead the value ofDlimit (again, by choosing the immediate

next lower value from the degree set). Similarly to the global layer case, we resetD

to Dlimit if as a result of this action it would remain bigger than it. Inany other case,

the local layer rules set the value ofD. Dlimit is in this case set to the immediate next

higher degree in the prefetch degree set.



Chapter 6

Evaluation of Resizable Prefetch

Heaps

6.1 Simulation Setup

As with the evaluation of Stream Chaining prefetchers (Chapter 4), we use SESC[30]

for all our simulations. We simulate a modern multi-core system with aggressive out-

of-order cores and an unified L2 cache. We focus our experiments on a 8-core system

with limited bandwidth, which we consider representative of future multi-core designs,

where the number of cores is expected to grow more rapidly than the memory tech-

nology bandwidth. Table 6.1 summarizes the architectural parameters of the simulated

system.

We skip the data loading phase of each benchmark. For the PARSEC benchmarks

(Section 6.2), this is done skipping until theparsec_roi_end segment is found. For

all the other benchmarks, this point was found inspecting the source code. We then

simulate in detail and collect statistics for the next 1 billion instructions/core1.

6.2 Benchmarks

We use a mixture of workloads from the PARSEC and ALPBench benchmarks suites,

as well as a popular stand-alone parallel compression program (pbzip2) and a purely

scientific generic workload from the NAS parallel benchmarks (Conjugate Gradient

calculation,CG) . We chose these workloads for two reasons: they offer a goodsample

1In the parallel benchmarks we actually stop simulation at the next synchronization point after 1
billion instructions/core.

98
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Parameter Value

Core Frequency 5GHz

Fetch/Issue/Retire

Width

6/ 4/ 4

I-Window/ROB 80/ 152

Branch Predictor 64kbit 2BcgSkew

BTB/RAS 2k entries 2-way/ 32 entries

Minimum mispredic-

tion

20 cycles

Ld/St queue 8

L1 ICache 2-way, 64B lines, 2 cycles

L1 DCache 64KB, 4-way, 64B lines, 2 cycles

L1 MSHR’s 4

L1-L2 bus 64bits

Prefetch Algorithm C/DC (64KB CZones)

Prefetch degree 32

IT 512 entries, 1 cycle

GHB 512 entries, 5+1*hop cycles Access is

mutually exclusive and preemptive: new

requests drop in-execution requests

Parameter Value

Number of cores 8

L2 cache 4MB. 64B lines

L2 associativity 16

L2 MSHR’s 32

Prefetch Request

Queue

FIFO, RPH

PRQ size 256 slots

Prefetch throttling HPAC, RPH

Memory latency 400 cycles

Memory bandiwth 12.5 Gbps

Table 6.1: Architectural parameters: Per core (left) and system-wide (right).

of current engineering, scientific and media processing applications in use nowadays

and they are available in parallel and sequential versions.

Because of limitations in the simulator used, some benchmarks could not be ported

to our simulation environment. Appendix A gives a detailed description of all the

benchmarks evaluated, as well as the reference input data sets used.

We consider two scenarios: parallel and multi-programmed execution. In the par-

allel scenario we run the parallelized version of each workload with 8 threads. Most

workloads were parallelized with the explicit use of a threading library, with the excep-

tion of bodytrack, CGandfreqmine, which were parallelized using OpenMP directives.

To simulate the multi-programmed scenario we use 10 random groupings of 8 pro-

grams from the benchmark suites described above. Each program runs in sequential

mode, and therefore there is no communication or synchronization of any kind between

cores. Table 6.2 lists the programs we run on each multi-programmed workload.

6.3 Prefetch Mechanism and Throttling Strategies

Current research in throttling and filtering algorithms hasfavored the Stream Prefetcher

[23, 24, 27] in their evaluations, as it is the prefetching algorithm most frequently im-

plemented in current hardware. This is due to its simplicityand relative good perfor-

mance. However, stream prefetchers cannot prefetch complex memory patterns and are

prone to high cache pollution when they misspredict. On the other hand, research in
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Workload Benchmarks

MP8 1 CG, blackscholes, ferret, fluidanimate, freqmine, streamcluster, tachyon, x264

MP8 2 CG, MPGdec, MPGenc, blackscholes, dedup, ferret, fluidanimate, streamcluster

MP8 3 blackscholes, dedup, ferret, fluidanimate, freqmine, streamcluster, tachyon, x264

MP8 4 MPGdec, blackscholes, dedup, ferret, freqmine, streamcluster, tachyon, x264

MP8 5 blackscholes, canneal, dedup, ferret, fluidanimate, pbzip2, streamcluster, tachyon

MP8 6 MPGdec, MPGenc, canneal, ferret, freqmine, pbzip2, swaptions, x264

MP8 7 CG, MPGdec, MPGenc, fluidanimate, pbzip2, streamcluster, tachyon, x264

MP8 8 CG, MPGenc, canneal, fluidanimate, freqmine, pbzip2, swaptions, tachyon

MP8 9 MPGenc, blackscholes, dedup, ferret, fluidanimate, pbzip2, swaptions, tachyon

MP8 10 MPGenc, canneal, dedup, fluidanimate, freqmine, streamcluster, swaptions, x264

Table 6.2: Multi-programmed workloads.

prefetching algorithms has offered a variety of more complex methods. As the transis-

tor count increases in each new processor generation, we expect that future processors

will implement more sophisticated (and more accurate) prefetching algorithms. For

this reason we use the C/DC [11] prefetcher implemented using the Global History

Buffer [10] for our evaluation. C/DC is a modern accurate prefetcher that is less likely

to pollute the cache than the stream prefetcher.

We implement two throttling strategies for our experiments. In our baseline throt-

tling configuration we simulate theHierarchical Prefetcher Aggressiveness Control

(HPAC, [24]) with a conventional FIFO-based PRQ. We comparethis to an RPH con-

figuration with prefetch throttling enabled in the PRQ. Bothstrategies are described

in detail in Chapter 5. In both cases the size of the PRQ is 256.In order to modify

prefetcher aggressiveness, HPAC can vary the prefetch degree of each prefetcher to

one of the following values:{1,4,8,16,32}. RPH throttling is run with the prefetchers

set to the most aggressive setting (degree 32), but as explained in Section 5.4 the actual

number of prefetch requests accepted for inclusion in the RPH PRQ depends on their

priority.

For implementing the RPH, we simulate a hardware binary heapwith separate pri-

ority/satellite arrays, pipelined insertions, and split extraction procedure, as explained

in Section 5.4.1.2. Additionally, we collect statistics onthe number of comparison-

swap steps needed to insert and extract elements from the queue without the insertion

and extraction optimizations.
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6.4 Metrics

We evaluate our results against three main metrics: performance increase, memory bus

traffic increase and prefetch fairness.

6.4.1 Performance

For multi-programmed workloads we measure performance as theHarmonic Speedup

of IPCsagainst a configuration with no prefetching (Equation 6.1).

HarmonicSpeedup=
N

N
∑

i=1

IPCNoPre f
i

IPCPre f
i

(6.1)

For parallel applications we measure the execution time of the application be-

tween two synchronization points and calculate the speedupagainst a configuration

with no prefetching. We also calculate the benefits of a baseline throttling configura-

tion (HPAC with a conventional FIFO PRQ) compared to a medium-aggressive fixed-

degree prefetching configuration. We then calculate the percentage increase of this

metric when we use RPH.

6.4.2 Traffic

We measure the total memory bus traffic in the several prefetching strategies we sim-

ulate. We then compare the increase in traffic against a configuration with prefetching

disabled.

6.4.3 Prefetch Fairness

With this metric we aim to quantify how well a prefetch delivery mechanism maintains

the benefits of prefetching for a certain processor core in the presence of other com-

peting prefetches for other cores. In other words, we try to measure the variance in

prefetching performance improvement for a given application in the context of other

applications running on other cores (with other prefetching engines) in a multi-core

system. Note that this is different from the metrics proposed in [28], which measure

the variance in execution time of a thread in the presence or absence of other threads

that share the same cache. We discount the effect of cache sharing fairness in our met-

ric by measuring variance from the same multi-programmed configuration with and

without prefetching enabled.
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To do this, we evaluate the performance (measured in number of cycles needed

to execute a certain number of instructions) of a sequentialapplication running with

no prefetching in several multi-programmed configurationsC1,C2,C3, ...Cn. We de-

note each timing measurementTNP
C1

,TNP
C2

,TNP
C3

, ...,TNP
Cn

. Next, we measure the perfor-

mance of the same workload, this time with prefetching enabled, across the same multi-

programmed configurations. We denote these timing measurementsTP
C1

,TP
C2

,TP
C3

, ...,TP
Cn

.

We define the Prefetching Fairness of that sequential application as the minus standard

deviation of the set of pairwise differences between the timing measurements with and

without prefetching. That is:

∆i = TNP
Ci

−TP
Ci

∀i ∈ [1..n] (6.2)

PrefetchFairness= −stdev(∆1,∆2,∆3, ...,∆n) (6.3)

Note that the measurements used in Equation 6.2 are for a specific application within

a multi-programmed workload. By measuring pairwise differences between the same

multi-programmed workload we aim to single-out the only factor different between

them: prefetching. Furthermore, by measuring the performance contribution of prefetch-

ing for the same application across several multi-programmed workloads we aim to

isolate the effects of the prefetch delivery mechanism.

As an example to illustrate how prefetch fairness is calculated, Table 6.3 shows

how to calculate this metric for the benchmarkfluidanimateusing samples from 5 dif-

ferent multi-programmed configurations. For each multi-programmed configuration,

we obtain the number of cycles in whichfluidanimateran without prefetching (second

column), the number of cycles for HPAC throttling (third column), the number of cy-

cles for RPH throttling (fourth column) and the pairwise differences between the latter

two and the non-prefetching configuration (fifth and sixth columns). We perform these

measurements for 5 multi-programmed configurations, and take the minus standard

deviation of the pairwise differences. Note that we make thestandard deviation neg-

ative for convenience, since it is more intuitive to say thatthe greater the number, the

greater the fairness is. Finally, we observe from the results that the prefetch fairness

of RPH throttling is bigger (i.e., less negative) than the prefetch fairness with HPAC

throttling.

Therefore, a prefetching mechanism that exhibits homogeneous speedups for a

given application regardless of the multi-programmed execution context will have a

higher (i.e., less negative) Prefetch Fairness metric thananother prefetching mecha-

nism in which the performance gains are more context dependent and thus show higher



Chapter 6. Evaluation of Resizable Prefetch Heaps 103

i TNP
i THPAC

i TRPH
i ∆HPAC

i = TNP
i −THPAC

i ∆RPH
i = TNP

i −TRPH
i

1 836264098 759717270 756869338 76546828 79394760

2 836264098 760077974 756065441 76186124 80198657

3 841791881 784396068 772753219 57395813 69038662

4 823475874 750566810 747058237 72909064 76417637

5 817074014 753770645 748542295 63303369 68531719

−stdev(∆1,∆2,∆3,∆4,∆5) -8523860 -5597396

Table 6.3: Example Prefetch Fairness calculation.

variance. Note that although the effects of cache pollutionand interference from other

cores contribute to make the measurements∆n in equation 6.2 different for each multi-

programmed configuration, they remain constant across two system configurations in

which we only vary the prefetch delivery mechanism.

6.5 Benchmark Characterization

We start our study with a characterization of the parallel benchmarks and multi-programmed

workloads used throughout this evaluation. In Section 6.5.1 we analyze the sensitivity

of benchmarks and workloads to the L2 cache. This is a good indicator to distinguish

which benchmarks will likely benefit more from prefetching.We expand this analysis

in Section 6.5.2, where we show the Hit Rate of the L2, as well as its usage, measured

in number of accesses per million cycles.

6.5.1 L2 Cache-Performance Sensitivity

Figures 6.1 and 6.2 show the performance sensitivity of multi-programmed and parallel

workloads to the L2 cache. In both cases the performance withan ideal (i.e., 100% hit

rate) L2 cache is compared against the performance obtainedusing a normal L2 cache

with no prefetching. As explained in Section 6.4.1, we use the harmonic speedup

for multi-programmed workloads and a regular speedup for parallel benchmarks. We

plot the performance speedup obtained using an ideal L2 cache compared to that of

a regular L2 cache, with the objective of determining how tied is the performance of

each benchmark to the performance of the L2 cache.

The multi-programmed workloads show an evenly distributedrange of behaviors.

The workloadsMP8 1, MP8 5 andMP8 8 are the ones that most benefit from an ideal
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Figure 6.1: Cache sensitivity in multi-programmed workloads.

cache, with harmonic speedups of 1.64 for the first two and 1.63 for the latter. These

are the workloads that are most likely to benefit from prefetching, as their performance

is highly tied to the performance of the L2 cache. On the otherside of the spectrum,

the workloadMP8 6 only achieves a 1.25 speedup when using a perfect L2 cache,

indicating less dependence to the L2 cache.

The parallel benchmarks show great variance in the performance speedup obtained

using an ideal L2 cache. The benchmarkscanneal, streamclusterand CG benefit

greatly from using an ideal cache, with speedups of 460%, 367% and 349%. On

the other hand, the benchmarksblackscholes, bodytrack, x264andswaptionsare com-

pletely L2-oblivious, showing speedups of less than one percent. The rest of the bench-

marks show a moderate dependence from the L2, with speedups ranging from 2.2%

(x264ref) to 13% (fluidanimate).

6.5.2 L2 Cache Hit Rates and Usage

Figures 6.3 and 6.5 show the L2 Read Hit Rate (RHR) for multi-programmed work-

loads and parallel benchmarks respectively. We complementthis information with the

average number of accesses to the L2 per million cycles executed, shown in Figure 6.4

for multi-programmed workloads and Figure 6.6 for parallelbenchmarks.

For the multi-programmed workloads, we can see that in general there is a cor-

relation between the L2 RHR and the performance sensitivityto the L2 cache. The
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Figure 6.2: Cache sensitivity in parallel benchmarks.

exception to this is the workloadMP8 5, which shows a significantly higher RHR than

other similarly performing benchmarks such asMP8 1 andMP8 8. This benchmark

however performs a high number of L2 accesses per million cycles (the second highest

for multi-programmed workloads), which explains why its performance is limited by

the L2 in spite of a relatively higher RHR.

Figure 6.3: L2 Read Hit Rate for multi-programmed workloads.
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Figure 6.4: Number of accesses to the L2 cache per million cycles for multi-programmed

workloads.

The parallel benchmarks show on average a high L2 RHR, with the exception of the

benchmarkscanneal, streamcluster, fluidanimateandMPGdec. The higher L2 RHR

in parallel benchmarks compared to multi-programmed workloads can be explained

by increased data sharing in the former: most parallel applications share a common

programming structure, replicated in each thread. In this case, a significant portion of

the data used in computation is either shared between threads (which reduces signifi-

cantly the memory requirements) or contiguously stored in memory (which facilitates

caching). Multi-programmed workloads do not have the advantage of this kind of data

sharing.

The low RHRs of the benchmarkscannealand streamclusterexplain the high

speedups they obtain when using a perfect L2 cache (Figure 6.1). The benchmark

MPGenchas as well a low RHR, but this is compensated by its extremelylow number

of accesses to the L2 per million cycles (the lowest overall), and therefore does not

make it L2-bound. Lastly, we note that the benchmarkCGhas a high RHR but overall

obtains the third biggest speedup when using a perfect L2 cache. This is due to the

very high number of the L2 accesses it shows, the highest among all benchmarks and

workloads.
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Figure 6.5: L2 Read Hit Rate for parallel benchmarks.

Figure 6.6: Number of accesses to the L2 cache per million cycles for parallel bench-

marks.

6.6 Prefetching Performance

Figures 6.7 and 6.8 show the performance of multi-programmed and parallel bench-

marks for four prefetching strategies: fixed degree of 24 (medium-aggressive prefetch-

ing, PREF24), fixed degree of 32 (aggressive prefetching,PREF32), HPAC throttling
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and RPH throttling.

Figure 6.7: Prefetching performance of multi-programmed workloads.

From the multi-programmed workloads results we see that in general throttling

gives the best performance results while the aggressive prefetching configurationPREF32

is consistently the worst performer. In five cases (MP8 1, MP8 3, MP8 5, MP8 7 and

MP8 9) fixed degree prefetching actually decreases performance compared to a non-

prefetching configuration. We evaluate the benefits of HPAC and RPH throttling us-

ing PREF24as our baseline. Conventional HPAC throttling increases onaverage the

speedup ofPREF24by 7.1%, while RPH increases thePREF24speedup by 10.9%

on average, a 53.8% increase in speedup. In 7 out of the 10 benchmarks the RPH im-

proves the performance increase of HPAC, sometimes by as much as 148% (MP8 8,

3.1% to 7.6%). In the remaining three benchmarks (MP8 4, MP8 6 andMP8 10) both

HPAC and RPH obtain similar speedups compared toPREF24.

The parallel benchmarks do not benefit as much from prefetch throttling. We at-

tribute this to two main causes: a) the parallel benchmarks do not stress significantly

the L2, due to increased data sharing, as explained in Section 6.5.2; and b) most paral-

lel workloads are composed of similar threads that operate on different portions of data

(i.e., threads are arranged basically in a SIMD mode of operation), which forces similar

memory access patterns in all cores, leading to similar prefetch accuracy, interference

and cache pollution metrics. This translates into a reducedexploration space where

a prefetch throttling algorithm ends up effectively adjusting the aggressiveness of all

prefetch engines at the same time. Even so, prefetch throttling has a significant per-
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Figure 6.8: Prefetching performance of parallel benchmarks.

formance impact on three benchmarks:dedup, streamclusterandCG. In dedupHPAC

increases the performance ofPREF24by 5.1%, while RPH does so by 7.9%, a 55.2%

increase in speedup. InstreamclusterHPAC increases the performance ofPREF24by

17% and RPH increases it by 26.8%, a speedup increase of 57.4%. Lastly, the biggest

improvement of RPH over HPAC is inCG, where HPAC obtains an increase of 22.6%

over PREF24while RPH increases the baseline performance by 76.1%, a 237% in-

crease in speedup. On the other hand, RPH shows a slight decrease in performance in

fluidanimate, where HPAC increases the speedup ofPREF24by 5.9% and RPH does

so by 5.2%. On average RPH increases the throttling benefits of HPAC by 22.6%

6.7 Bandwidth Usage

Figures 6.9 and 6.10 show the bus bandwidth increase due to the different prefetch-

ing strategies evaluated for multi-programmed and parallel workloads. For the multi-

programmed workloads it can be seen that one of the main advantages of throttling is a

considerable reduction in bandwidth usage. Both HPAC and RPH throttling achieve a

similar reduction in bandwidth compared to fixed-degree prefetching configurations,

with the only significant difference being in the parallel benchmarkdedup, where

HPAC shows a 48.3% increase in traffic (compared to a configuration with no prefetch-

ing) and RPH records a 19% increase.

In the parallel benchmarks the reduction in bus bandwidth ismore moderate, with
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the exception ofdedup, fluidanimateandstreamcluster. This is expected, since most

parallel benchmarks evaluated are primarily CPU-bound.

Figure 6.9: Prefetching bandwidth increase in multi-programmed workloads.

Figure 6.10: Prefetching bandwidth increase in parallel benchmarks.

6.8 Prefetch Fairness

In order to gain further insight into the advantages of prefetch throttling with RPHs

over conventional HPAC we evaluate the prefetch fairness (Section 6.4) of both throt-
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tling strategies. We evaluate the benchmarks used to produce the multi-programmed

workloads, excludingblackscholes, bodytrackand canneal, whose non-prefetching

performance is already under 1% of the performance obtainedwith a perfect L2 cache

(CPU-bound benchmarks). Each benchmark is evaluated in 10 different multi-programmed

configurations.

Figure 6.11 compares prefetch fairness of RPH against conventional HPAC throt-

tling.

Figure 6.11: RPH throttling prefetch fairness normalized to HPAC prefetch fairness.

In table 6.3, we show an example fairness calculation for thebenchmarkfluidan-

imate. From those results, we see that fairness (the minus standard deviation of the

performance variation in cycles) for this benchmark is -5597396 cycles when RPH

is used, and -8523860 cycles when HPAC throttling is used. InFigure 6.11 we plot

how much smaller the fairness metric is for HPAC compared to RPH; in the case of

fluidanimatethis number is 1.52, since 1.52∗ (−5597396) = −8523860.

From the results it can be seen that RPH throttling promotes amore fair dispatch

of prefetches, with a 23% higher prefetch fairness on average than conventional HPAC

throttling.

6.9 Influence of Adaptive Resizing

The two main techniques used in RPH throttling are prioritization of prefetch requests

and adaptive resizing of the prefetch request queue. We quantify the effect of adaptive
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resizing in the overall performance of the RPH. To do this we create a new prefetch

throttling configuration calledPH which essentially consists of an RPH without any

adaptive resizing capabilities. Figures 6.12 and 6.13 showthe performance ofPH

throttling compared to conventional HPAC throttling and RPH throttling.

Figure 6.12: Results with and without adaptive resizing in multi-programmed workloads.

Figure 6.13: Results with and without adaptive resizing in parallel benchmarks.

The results show that the contribution of adaptive resizingto the overall RPH per-

formance improvements varies by benchmark. In the multi-programmed scenario,
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adaptive resizing contributes significantly in the overallperformance of the RPH, and

avoids performance degradation (compared to HPAC throttling) in two cases (MP8 4

andMP8 10). In the parallel benchmarks the performance ofPH is similar to the per-

formance ofRPH, with the exception of theCG benchmark. This is expected, since

the parallel benchmarks exercise less memory traffic and therefore the need for global

prefetch throttling is less pronounced.

6.10 Characterization RPH Queues

In this section we seek to gain further insight into the behavior of RPH PRQs by look-

ing at how they behave

6.10.1 Average Number of Comparisons per Queue Operation

Figures 6.14 and 6.15 show the average number of comparisonsneeded to insert or ex-

tract an element from the RPH. As described in Section 5.4.1.1, to extract or insert an

element from a binary heap, a number of comparison-swap steps over the heap array

are performed sequentially. Furthermore, as explained in Section 5.4.1.2, optimized

hardware implementations can perform one comparison-swapstep per cycle. There-

fore the number of comparisons needed to insert or extract anelement into the RPH

gives a good estimate of the overall run-time complexity of the queue operations for

the set of benchmarks and workloads evaluated.
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Figure 6.14: Average number of comparisons per RPH insertion/extraction operation in

multi-programmed workloads.

Figure 6.15: Average number of comparisons per RPH insertion/extraction operation in

parallel benchmarks.

Recall that we use a 256-entry RPH queue for all the simulations (Table 6.1) and

that both insertion and extraction from the RPH take a maximum of log2(256) = 8

steps. However, for both multi-programmed and parallel benchmarks, the average

number of comparisons needed per queue operation is much lower than the theoretical
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maximum. This is expected. Firstly, the theoretical maximum number of comparison-

swap steps only applies to the case of a full PRQ queue, situation that does not happen

continuously. Secondly, the RPH resizes itself according to the utilization of the mem-

ory channel (Section 5.4.2.1), which involves a lower number of steps to insert and

extract from the binary heap. Lastly, it can be shown that insertion operations in a bi-

nary heap can be considered to carry an average constantO(1) time complexity, since

most of the elements in the queue reside at the lower levels ofthe tree (Section 5.4.1.2).

6.10.2 Scaling States Histogram

Table 6.10.2 shows the histogram of time spent by the RPH in each of its four possible

sizes state: full size queue, 50% size, 30% size and 1 elementqueue. The RPH scales

to one of these states depending of the global usage of the memory channel (Chapter

5.4.2.1).

RPH size

Workload 100% 50% 30% 1

MP8 1 91.5 4.5 3.3 0.7

MP8 5 85.3 14.2 0.2 0.3

MP8 8 78.6 14.3 7.1 0

MP8 7 95.1 2.9 1.4 0.6

MP8 2 78.1 10.9 9.7 1.3

MP8 10 95.4 1.7 0.8 2.1

MP8 3 96.9 2.3 0.8 0

MP8 4 96.2 1.8 0.1 1.9

MP8 9 92.1 3 2.6 2.2

MP8 6 99.1 0.9 0 0

RPH size

Benchmark 100% 50% 30% 1

canneal 0 4.8 95.2 0

streamcluster 7.4 92.1 0 0.5

CG 80.3 12.7 4.1 2.9

fluidanimate 92.0 5.5 2.5 0

dedup 98.2 1.5 0.3 0

freqmine 97.4 0 2.6 0

ferret 62.5 29.2 0 8.3

tachyon 95.4 2.7 1.1 0.8

MPGdec 100 0 0 0

MPGenc 99.3 0.1 0.5 0.1

x264 89.1 5.1 2.1 3.7

pbzip2 86.7 6.7 6 0.6

bodytrack 100 0 0 0

blackscholes 100 0 0 0

swaptions 100 0 0 0

Table 6.4: Scaling states histogram for multi-programmed workloads (left) and parallel

benchmarks (right)

On both multi-programmed workloads and parallel benchmarks, the majority of

time is spent with the prefetching queue at its maximum size.However, most parallel

benchmarks and all multi-programmed workloads resize the RPH a significant portion

of the time. The exception to this behavior are the parallel benchmarksMPGdec,
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bodytrack, blackscholesandswaptions, which are mostly CPU-bound (Section 6.5.1)

and therefore do not saturate the memory channel.

In general, the more memory-bound a benchmark or a workload is, the more usage

of the resizing capability of the RPH is observed. In the two most memory-bound

parallel benchmarks (canneal, streamcluster), the majority of the time the queue stays

in a resized state (30% forcanneal, 50% forstreamcluster). This indicates frequent

periods of high memory activity. Multi-programmed workloads tend to have a more

homogeneous behavior.

Comparing the data in table 6.10.2 with the performance obtained with and without

adaptive resizing (Section 6.9), it is clear that although resizing is used frequently on

both configurations, only the multi-programmed workloads benefit clearly from it on

all situations. Multi-programmed workloads tend to have more continuous memory

traffic than the parallel benchmarks. This is because data loading on parallel bench-

marks tends to happen at the same time on all threads (due to the fact that they are

usually composed of a collection of identically programmedthreads), whereas on

the multi-programmed workloads data loading and computation is usually interleaved

across time, owing to its heterogeneous composition. Therefore, parallel benchmarks

tend to do data loading in short, intense bursts, a situationnot captured well by the re-

sizing mechanism, as it bases its decisions on aggregating behavior in time windows.

Additionally, with the exception of the top 3 benchmarks, parallel benchmarks are

much less memory-bound than the multi-programmed workloads (Section 6.5.1).



Chapter 7

Summary of Contributions and

Concluding Remarks

7.1 Summary of Contributions of this Thesis

In this dissertation we have explored several mechanisms toimprove the efficiency of

hardware data prefetchers. In the first part of this thesis wehave studied in detail the

behavior of state-of-the-art localizing prefetching algorithms. We have established that

localizing prefetchers suffer from timeliness problems. This is because, in the process

of localization, important chronological information that relates the order of activation

of misses from different localized streams is lost. As a result, localizing prefetchers

tend to issue prefetch requests too far in advance, resulting in decreased timeliness and

increased cache pollution. To tackle this problem we propose the novel concept of

Stream Chaining, a new level of correlation that allow prefetchers to reconstruct the

chronological information lost during localization whileat the same time filtering out

spurious or infrequent misses. With Stream Chaining, the localized miss streams are

linked in such a way that it is possible to reconstruct thecore flowof misses in the

application.

Based on the general concept of Stream Chaining, we propose aconcrete imple-

mentation called Miss Graph prefetching. Miss Graph prefetching implements Stream

Chaining using small weighted graphs that capture the core flow of miss stream acti-

vations in a manageable, low-complexity way. We implement Miss Graph prefetch-

ing in two popular localizing prefetchers: PC/DC and C/DC. We name the resulting

new prefetchers PC/DC/MG and C/DC/MG, respectively. We provide implementation

details for these new prefetchers. We use the Global HistoryBuffer as the underly-

117



Chapter 7. Summary of Contributions and Concluding Remarks 118

ing data structure to implement both chaining and non-chaining prefetchers. For the

Stream Chaining prefetchers we show that the hardware modifications required are

small and feasible to do with little added logic. We justify this by giving detailed stor-

age and run-time complexity analysis. Finally we evaluate PC/DC/MG and C/DC/MG

against their non-chaining counterparts. We show how thesenew prefetchers improve

the timeliness, accuracy and coverage and therefore overall performance in most cases.

In the second part of this dissertation we have focused on prefetching in multi-core

systems. We concentrate our research on the topic of prefetch throttling and arbitration,

a relevant issue given the growing number of cores per chip. We have established

that current prefetch throttling mechanisms either do not take advantage of the global

metrics or, the few that do, do not leverage this advantage completely. We propose a

new way of performing prefetch throttling at the PRQ (Prefetch Request Queue) level,

with global knowledge of the metrics and state of each prefetching unit in the system.

Our approach, which we call Resizable Prefetch Heaps (RPH),allows prioritization

of prefetch requests based on their relative importance compared to other requests

in the queue. To do so, we derive a formula that assigns a numeric priority to each

prefetch request based on several local and global metrics.The RPH works as a priority

queue, extracting at each time the request with the highest priority. Additionally, we

allow the RPH to shrink and enlarge dynamically, depending on the utilization of the

memory channel. In contrast with previous research on the topic, in our evaluation of

RPH throttling we use both multi-programmed and parallel benchmarks. We evaluate

the performance of fixed degree aggressive prefetching, a state-of-the-art conventional

throttling algorithm (HPAC) and RPH throttling. We introduce a metric for prefetch

fairness, which relates the variance in performance of a prefetcher in the presence of

other competing prefetchers. We show how RPH throttling improves the performance

of HPAC in both multi-programmed workloads and parallel benchmarks.

7.1.1 Future Work

Since both main contributions presented in this thesis are based in new heuristics, there

is ample space for further research into them. Regarding Stream Chaining, the two

main areas that are more likely to produce interesting research results are new heuris-

tics for chaining streams and new prefetch issuing policies(i.e., how to navigate the

graph of linked streams and how many prefetches to issue per stream). For the former,

further research into modelling the core flow of misses in an application is needed, as
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the key for successful Stream Chaining lies into correctly identifying the core repeti-

tions in miss stream activations. For the latter, research into more adaptive prefetch

issuing techniques is likely to improve even more the timeliness of Stream Chaining

prefetchers. Although more complex heuristics are promising, one of the main chal-

lenges future research will likely face is keeping the run time of such algorithms within

the timing constraints of the cache memory.

Regarding Resizable Prefetch Heaps, considerable furtherresearch can be aimed

towards priority assignment formulas. Resizable PrefetchHeaps are versatile and can

simulate a wide range of queuing behaviors with just modifying the priority assign-

ment formula. This opens the door to several interesting research scenarios, such as

Quality of Service support, reconfigurable prefetch assignment formulas and integra-

tion into the operating system process prioritization scheme. Furthermore, the resizing

algorithm itself is subject to improvements and more research. Resizing the prefetch

request queue acts as a gradual global throttle to prefetching in the whole system.

Further research could tackle the problem of understandingwhen is it more benefi-

cial to adjust this global throttle instead of limiting eachprefetcher individually. As

with Stream Chaining, new research should also take into account the hardware timing

constraints. In this area, future research could focus on new priority queue implemen-

tations specially designed for prefetch request queues.

7.2 Concluding Remarks

The memory wall is a well known performance limitation that affects past and current

hardware architectures. In the past, the memory wall was specially obvious due to the

great disparity in growth between processor and main memoryoperating frequencies.

Nowadays, this trend for ever-increasing processor speedshas been exchanged for an

increasing number of cores per processor. This continues toexacerbate the memory

wall problem, since now several cores have to compete for memory access. Therefore,

although the memory wall is now an old problem, it is becomingclear that there will

be no immediate absolute remedy for it in the short-medium term.

Hardware prefetching is a proven technique to alleviate theeffects of the memory

wall. On one hand, hardware prefetching, as opposed to software prefetching, has

the advantage of being able to access run-time information of the program, as well as

being universally applicable without the need of recompilation. On the other hand, it

is limited by the scope and complexity of the prediction heuristics that can be feasibly
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implemented in hardware. Hardware prefetching at the last level cache (i.e., the last

on-chip cache) is specially effective, since this is where the latency disparity between

a miss and a hit is the greatest.

In the design of hardware prefetching algorithms there is aninherent performance/-

cost trade-off. Trivial or very simple prefetching algorithms can be implemented with

minimal hardware modifications and cost. However such prefetchers will not obtain

significant performance benefits on any but the simplest memory access patterns. By

contrast, several very sophisticated algorithms have beenproposed previously in the

literature. These algorithms, capable of tracking complicated data structure access pat-

terns such as the transversal of linked lists, come at the cost of complicated hardware

implementations and huge storage overheads. Traditionally, the industry has favored

prefetching algorithms closer to the simple but easy to implement end of the spectrum,

opting to use the increasing number of transistors yielded by improved manufactur-

ing technology to build bigger cache memories. Academia, onthe other hand, has

typically concentrated on the more sophisticated, but not necessarily practical, type of

prefetching algorithms. A medium ground must be found that favors the development

of more efficient and complex prefetching methods, while at the same time making

sense from the return-on-investment perspective. Throughout this dissertation I have

focused on technologies and algorithms that I believe lay inthis middle ground.

Another pressing issue in the research of hardware prefetching algorithms has been

the move to multi-core architectures. The problem of prefetcher coordination in such

environments has become, in my opinion, as important as the development of new

prefetching heuristics. The effects of a badly behaving prefetching engine on just a sin-

gle core can degrade the performance of the whole system. This is even more relevant

as we are - slowly but surely - migrating from a traditionallysequential programming

perspective to a multi-threaded/multi-programmed throughput-computing paradigm.

In this scenario, obtaining modest but consistent performance improvements over the

whole system will become clearly much more valuable than achieving irregular high

sequential speedups.



Appendix A

Benchmark Descriptions

A.1 SPEC CPU2006 benchmarks

SPEC CPU is a collection of CPU and memory intensive benchmarks from the Stan-

dard Performance Evaluation Corporation (SPEC), a non-profit organization formed

by hardware and software vendors, universities, research institutions and other repre-

sentatives of industry and academia. SPEC periodically releases updated versions of

its benchmark suite, named after the year the release was made. In this dissertation we

evaluate a selection of benchmarks from the latest releasedversion: SPEC CPU2006.

All SPEC CPU benchmarks are written in C, C++ or Fortran. Benchmarks are

typically broadly classified according to the functional unit they stress the most (integer

or floating point). SPEC CPU does not include synthetic benchmarks, and therefore all

its benchmarks come from applications and workloads found in the real world. Each

benchmark consists of a customized (and usually stripped-down) version of a program

representative of workloads found in scientific or commercial computing.

Below is a list of all the SPEC benchmarks used for the evaluation, along with a

brief description of their purpose and the data used in the reference input. We list for

each benchmark its SPEC code as well as its mnemonic.

A.1.1 Integer Benchmarks.

400.perlbench: Workload consisting of a cut-down version of the popular Perl

interpreter (v. 5.8.7). This benchmark also includes several third party modules. The

main part of the workload performs text processing and parsing (spam filtering, HTML

parsing, message-digest calculation, string manipulation, etc.). Source code written in
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C.

401.bzip2:Benchmark for performing lossless data compression. This benchmark

consists of a modified version of Julian Seward’sbzip2program. All processing is done

in main memory and no file I/O is done other than reading the fileat the beginning

of the execution. The reference input set contains several kinds of data files: JPEG

images, a program binary, program source code and HTML text.Source code written

in C.

429.mcf: Combinatorial optimization program. This workload is a streamlined

version of the MCF program by Andreas Löbel. MCF optimizes single depot vehicle

scheduling in public mass transport systems. It implementsthe well-known simplex

algorithm. The reference input set contains a large vehiclescheduling problem. Source

code written in C.

445.gobmk: Artificial intelligence / Game theory simulation. This benchmark

evaluates and plays several games of Go. Based on the popularGNU Go engine. The

reference input file contains a series of Go game descriptions and several commands

to evaluate and play the next move. Source code written in C.

458.sjeng:Artificial intelligence / Game theory simulation. This workload is based

on the Sjeng chess engine v. 11.2. It uses a combination of game tree search (alpha-

beta search with several pruning and priority heuristics) and pattern recognition tech-

niques to evaluate several chess moves. The code has been modified for SPEC to

better reflect the workloads found nowadays in game theory applications. Source code

written in C.

462.libquantum: Quantum computing simulation benchmark. This workload is

implemented using the libquantum library by Björn Butscher and Hendrik Weimer.

libquantum is a library to simulate quantum computers. The reference input set sim-

ulates the Shor’s factoring algorithm for quantum machines. Source code written in

C.

464.h264ref: Video compression benchmark based on the reference H.264 video

codec implementation by Karsten Sühringet al. The benchmark compresses video to

the H.264 format. The reference input set contains two uncompressed sequences, one

from real life video at 176x144 resolution and another from avideo game at 520x320

resolution. Source code written in C.

471.omnetpp: Benchmark that performs network simulations. This workload is

based on the OMNeT++ discrete event simulation system by András Varga and Omnest

Global Inc. The reference workload simulates a large Ethernet backbone with several
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ancillary LANs connected to it. The model simulated contains about 8000 computers,

900 switches and hubs and several Ethernet technologies (10baseT, 100MB half/full

duplex, Gigabit, etc.). Source code written in C++.

A.1.2 Floating Point Benchmarks

433.milc: Physics simulation program, for use in quantum chromodynamics. This

workload is a serial version of the su3imp program by Steven Gottlieb from Indiana

University. This code is in use extensively (millions of node-hours) at the United States

Department of Energy and National Science Foundation supercomputers. All the input

sets refer to the same problem, with different grid sizes. Source code written in C.

434.zeusmp:Computational fluid dynamics code based on ZEUS-MP, developed

by the Laboratory for Computational Astrophysics (part of NCSA) at the University of

Illinois - Urbana Champaign. The reference input set solvesa 3D blast-wave simulated

along the presence of a magnetic field. Source code Written inFortran 77.

435.gromacs:Molecular dynamics chemistry simulation workload. Derived from

the popular molecular dynamics package GROMACS. All SPEC input sets simulate

the same scenario: the protein Lysozyme in a solution of water and ions, with the only

difference being the number of simulation steps performed (6000 for the reference

input set). Source code written mostly in C, with the inner loop computation written

in Fortran 77.

444.namd: This workload isolates the serial inner loop of the NAMD parallel

program, used for the simulation of large biomolecular systems. All the input data

sets use the same simulation scenario, with the only difference being the number of

simulation iterations (38 for the reference input set). Source code written in C++.

447.dealII: Partial differential equation solver using the Adaptive Finite Element

Method. This benchmark uses the deal.II library of equationsolvers, which in turn

uses state of the art C++ programming paradigms and techniques, including the pop-

ular Boost library of data structures and algorithms. The reference input data set is

generated on the fly by the program, and solves a Helmholtz-type equation, which of-

ten arises in the study of physics problems that involve partial differential equations.

Source code written in C++.

450.soplex:Linear programming workload, based on the SoPlex program version

2.1 by Roland Wunderling, Thorsten Koch and Tobias Achterberg. It uses the Simplex

Method to solve a linear programming problem. Due to the nature of the problem, sev-
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eral computational algebra algorithms for sparse matricesare used. In particular sparse

LU factorization and algorithms for triangular equation systems are used extensively.

The reference input set uses the test case “rail2586” from the netlib package. Source

code written in C++

470.lbm: Computational fluid dynamics benchmark based on the code written by

Thomas Pohl. This program implements the “Lattice Boltzmann Method” (LBM) for

simulation of incompressible fluids. The reference input data set simulates the shear

flow driven by a “sliding wall” boundary condition for 3000 timesteps. Source code

written in C.

482.sphinx3:Speech recognition benchmark based on the popular Sphinx-3speech

recognition package from Carnegie Mellon University. The reference input set con-

tains several audio files in raw format to be processed by the speech recognition engine.

Source code written in C.

A.2 BioBench Benchmarks

BioBench [32] is a benchmark suite for Bioinformatics applications. Bioinformatics

is a composite research field that encompasses Informatics,Biology and Medicine. It

uses computationally intensive techniques to gain better understanding of biological

and biochemical processes. Data-mining, pattern recognition and machine learning

techniques are commonly used in Bioinformatics, with the difference that the backing

database from which they operate models some kind of biological process or structure.

Biobench was created as the result of a collaboration of the University of Mary-

land with Intel Corporation in 2006. It consists of a representative set of data-mining

algorithms and applications currently relevant in the fieldof Bioinformatics.

Due to limitations in our simulation environment, it was notpossible to compile the

BLASTandmummerbenchmarks. The rest of the BioBench workloads are described

below.

clustalw: Multiple sequence alignment benchmark based on the CLUSTALpack-

age. Multiple sequence alignment is the process of aligningmore than two nucleotide

sequences to find regions of similarity. We use the input dataset from the benchmark

hmmer, described below. Source code written in C.

tiger: This workload is the TIGR assembler suite v.2 from the Institute for Ge-

nomic Research, Rockville. Sequence assembly is a technique used to generate full

sequence data from small overlapping partial sequences produced by DNA sequencing
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hardware. The reference input file contains 24190 partial RNA sequences fromPicea

sitchensis. Source code written in C.

hmmer: Sequence profile search benchmark based on the HMMER software from

the Washington University in St. Louis. This workload uses Hidden Markov Models

(HMM) to search for similarities in a DNA database. The reference input data searches

a collection of small protein sequences against the SwissPROT protein database. Source

code written in C.

phylip: Phylogenetic analysis benchmark based on the PROTPARS toolfrom the

PHYLIP software package (University of Washington). Phylogenetic analysis tries

to find out how a group of related protein sequences were derived from a common

ancestor. In order to do this, the program uses a hierarchical data structure called the

Phylogenetic tree. Source code written in C.

fasta: Sequence similarity search based on University of Virginia’s FASTA suite

v.3.4t21. Similarity search looks for similarities between DNA or protein sequences,

or search for certain subsequences in large sequence databases. The reference input

data set consists of two databases: a 170MB DNA database fromNCBI GeneBank

and the entire SwissPROT protein database (70MB), along with their corresponding

search sequences. Source code written in C.

A.3 Parallel Benchmarks

For the evaluation of Resizable Prefetch Heaps (Section 6) we use benchmarks from

the PARSEC [33] and ALPBench [34] benchmark suites, as well as two stand-alone

parallel programs:pbzip2, a parallel compression program that processes files using

the popularbzip2compression algorithm andCG, a synthetic scientific workload.

For each benchmark we give a short description about its purpose, a description

of the input data set used, how the program was parallelized and what language is the

source code written in. Most benchmarks were parallelizedexplicitly, that is, with

the explicit creation of threads and use of (POSIX) synchronization primitives. We

include, however, three benchmarks which were parallelized implicitly with the use

of OpenMP directives (bodytrack, freqmineandCG), and one benchmark that, while

using standard thread creation primitives, it uses atomic operations and therefore has

no synchronization (canneal).
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A.3.1 PARSEC benchmarks

Due to limitations in our simulation environment, the PARSEC benchmarksfacesim,

raytrace and vips could not be cross-compiled. This is because these benchmarks

have strong dependencies to external libraries that were impossible to cross-compile

or mock, such as the X-Windows library.

We use thesimlargeinput data sets, the largest ones that can be feasibly be used

for architectural simulation.

blackscholes:Financial benchmark from the Intel Financial Services Application

Benchmarks. Computes the prices of a portfolio of stock options using the Black-

Scholes partial differential equation. The reference input data consists of 65,536 op-

tions, which are loaded into memory before any computation starts. Explicit paral-

lelization with standard synchronization primitives. Source code written in C.

bodytrack: Computer vision benchmark from the Intel RMS (Recognition,Min-

ing and Synthesis) program [36]. Tracks the pose of a tracker-less human body in 3D,

using an annealed particle filter to detect edges and the bodysilhouette. The input

data set consists of 4 frames from 4 cameras, 4,000 particlesand 5 annealing layers.

Parallelized with OpenMP directives. Source code written in C++.

canneal: Chip routing benchmark. Developed by Princetown University, it uses

cache-aware simulated annealing to optimize the routing ofa chip design. The al-

gorithm employed performs random swaps between chip elements and evaluates the

resulting routing. The input data sets optimizes routing ina 400,000 netlist, perform-

ing 15,000 swaps per temperature step and starting with a temperature of 2,000°. This

benchmark uses fine grained parallelism, performing element swaps atomically and in

a lock-free manner. Source code written in C++.

dedup: Deduplication and compression benchmark, based on a kerneldeveloped

by Princetown University. Deduplication is a method used inbackup and large storage

systems where multiple copies of data are replaced by references to an unique copy.

The reference input data set consist of an archive of 184MB, which contains diverse

types of files. Parallelized explicitly with standard synchronization primitives Source

code written in C.

ferret: Benchmark for content-based similarity search in large, feature-rich mul-

timedia databases. Based on theFerret toolkit, developed by Princetown University.

The reference input data set consists of a database of 34,973images, on which 256

queries to find the top 10 most similar images are done. Explicitly parallelized with
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standard synchronization primitives. Source code writtenin C.

fluidanimate: Fluid dynamics simulation benchmark part of Intel RMS suite. The

input data set consists of 300,000 particles, which are simulated for 5 frames. Par-

allelized explicitly with standard synchronization primitives. Source code written in

C++.

freqmine: Data mining benchmark originally developed by Concordia University.

This benchmarks implementsFrequent Itemset Mining, which is the basis ofAsso-

ciation Rule Mining, a common data mining problem which aims to learn relations

between variables in large databases. Association Rule Mining is used in diverse fields

such as bioinformatics, financial data mining or log analysis. The input data set con-

sists of an anonymized webserver logfile from a Hungarian news portal, containing

990,000 click streams. Parallelized with OpenMP directives. Written in C++.

streamcluster: Computing kernel developed by Princetown University to solve the

online clusteringproblem: for a stream of input points, find a pre-establishednumber

of median points in such a way that every point of the stream ends up associated to its

nearest median point. The input data set consists of 16,384 128-dimensional points,

for which 10 to 20 median points are sought. Parallelized explicitly with standard

synchronization primitives. Source code written in C++.

swaptions: Financial analysis benchmark part of the Intel RMS workloads . It ap-

plies the Heath-Jarrow-Morton framework to set the price toa portfolio of swaptions.

A swaption is a type of financial option which grants its ownerthe right to perform a

financial swap operation. The input data set consists of 64 swaptions, on which 20,000

simulations are performed. Parallelized explicitly with standard synchronization prim-

itives. Source code written in C++.

x264: Parallel H.264 video encoder. The input data set is a 640× 360 pixels

movie with 128 frames. Parallelized explicitly with standard synchronization primi-

tives. Source code written in C++.

A.3.2 ALP Benchmarks

The ALPBench[34] benchmark suite is a collection of multimedia-oriented parallel

benchmarks developed by the University of Illinois at Urbana-Champaign with support

from Intel, AMD and the National Science Foundation. All benchmarks are explicitly

parallelized using standard POSIX synchronization primitives. Due to limitations in

our simulation environment, theSpeechRecbenchmark could not be compiled.
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MPGdec: MPEG-2 decoding benchmark. This is a parallel version of theref-

erence implementation provided by the MPEG Software Simulation Group (MSSG).

The input data set consists of a HDTV 1440× 1080 pixels public domain video stream

(http://www.archive.org/details/ligouHDR-HC1_japan ). Parallelized explic-

itly with standard synchronization primitives. Source code written in C.

MPGenc: MPEG-2 encoding benchmark. LikeMPGdec, this is a parallelized

version of the original reference implementation providedby the MSSG. The input

data set is the decoded stream used in theMPGdecbenchmark. Source code written in

C.

Raytrace/tachyon: Ray-tracing benchmark. This benchmark is the Tachyon par-

allel raytracer (http://jedi.ks.uiuc.edu/˜johns/raytracer/ ) unmodified. The

input data set is the sample input file (bundled with the source code)820spheres.dat ,

concatenated 35 times for a total of 28,700 objects to render. Parallelized explicitly

with standard synchronization primitives. Source code written in C.

A.3.3 Standalone programs

CG: Synthetic scientific benchmark part of NASA’s NAS parallel benchmarks

suite [35]. Computes the conjugate gradient of a given matrix. The input used is the

“C” synthetic data set. Parallelized implicitly with OpenMP directives. Source code

written in C.

pbzip2: Parallel compression program that uses the popularbzip2algorithm. To

parallelize the compression, the input data is divided across the threads. Synchroniza-

tion in the master thread enforces that the compressed data is written back in the correct

order. The input data to compress is the same used by the401.bzip2SPEC2006 bench-

mark (Section A.1.1). Parallelized explicitly with standard synchronization primitives.

Source code written in C.



Bibliography

[1] J. W. J. Williams. “Algorithm 232 Heapsort”.Communications of the ACM, Vol 7(6), pages 378-

348, June 1964.

[2] N. Jouppi. “Improving Direct-Mapped Cache Performanceby the Addition of a Small Fully-

Associative Cache and Prefetch Buffers.”Intl. Symp. on Computer Architecture,pages 364-373,

May 1990.

[3] S. Palacharla and R. E. Kessler. “Evaluating Stream Buffers as a Secondary Cache Replacement.”

Intl. Symp. on Computer Architecture,pages 24-33, May 1994.
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