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ABSTRACT 

 
 
Cannabinoid receptors play an important role in regulating bone mass and bone 

turnover. Studies in our laboratories have shown that young mice lacking type 1 

cannabinoid receptor (CNR1-/-) had increased bone mass and were resistant to 

ovariectomy-induced bone loss. Other workers have reported that type 2 cannabinoid 

receptor knockout mice (CNR2-/-) develop age-related osteoporosis. The aim of this PhD 

thesis was to further investigate the role of CNR2 in bone metabolism in vitro and in 

vivo, using genetic and pharmacological approaches.  

 

This study showed that CNR2-/- mice had normal bone mass and bone turnover at 3 

months of age, but following ovariectomy, CNR2-/- mice were partially protected from 

bone loss, because of a mild defect in osteoclast formation and bone resorption. In 

keeping with this, studies in vitro showed that RANKL-stimulated bone marrow cultures 

from CNR2-/- mice had fewer osteoclasts than cultures from wild type littermates. The 

CNR2-selective antagonist/inverse agonist AM630, inhibited osteoclast formation in 

wild type bone marrow cultures in vitro and prevented ovariectomy-induced bone loss in 

wild type mice in vivo. In contrast, osteoclast cultures from CNR2-/- mice were resistant 

to the inhibitory effects of AM630 at low concentrations and CNR2-/- ovariectomised 

mice did not respond to its protective effects at low doses, consistent with a CNR2-

mediated effect. These results indicate that CNR2 regulates bone loss under conditions 

of increased bone turnover, such as ovariectomy, by affecting osteoclast differentiation 

and function.  

 

CNR2-deficient mice developed accelerated age-related osteoporosis and by 12 months 

of age they had a significant reduction in osteoblast numbers and bone formation, 
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whereas osteoclast numbers remained comparable to wild type littermates. In agreement 

with this, osteoblasts derived from bone marrow of CNR2-/- mice had reduced PTH-

stimulated alkaline phosphatase activity and ability to form bone nodules, when 

compared with wild type cultures. The CNR2-selective agonist, HU308, stimulated bone 

nodule formation in wild type calvarial osteoblast cultures in vitro and reversed 

ovariectomy-induced bone loss in wild type mice in vivo. HU308 had blunted effects on 

bone nodule formation in cultures from CNR2-/- mice and no significant effects on 

ovariectomy-induced bone loss in CNR2-/- mice, indicating a CNR2-mediated effect. 

These studies demonstrate that CNR2 protects against age-related bone loss by mainly 

enhancing osteoblast differentiation and bone formation. 

 

In conclusion, type 2 cannabinoid receptors protect from bone loss by maintaining bone 

remodelling at balance. In addition, type 2 cannabinoid receptor agonists show evidence 

of anabolic activity, whereas antagonists/inverse agonists show evidence of anti-

osteoclastic activity in vitro and in vivo. 
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1 INTRODUCTION 
 
1.1 BONE 
 
Bone is a dynamic, and specialized connective tissue that together with joint tissues such 

as cartilage and synovium, makes up the skeleton. In conjunction with muscles, bone 

supports body structures, protects internal organs, functions as a reservoir for 

calcium/phosphate ions and facilitates movement (Murray J.Favus [Editor], 2006). 

 

Two types of bone are recognised according to the mechanism of development. Long 

bones such as tibia, femur, radius and humerus, are derived from endochondral 

ossification, whereas flat bones such as clavicle, mandible and skull bones are derived 

from intramembranous ossification. The main difference between these two processes of 

bone development is the presence of a cartilaginous phase in the former (Murray J.Favus 

[Editor], 2006).  

 

Long bones have a cylindrical structure with a central medullary cavity hosting the main 

haemopoietic organ, the bone marrow (Figure 1.1). The bony tube is the diaphysis and is 

attached to wider edges, the epiphyses. The zone between the diaphysis and the 

epiphyses is called the metaphysis. During growth, there is strict separation between the 

metaphyseal and epiphyseal part of the bone by a layer of hyaline cartilage, known as 

the growth plate and is the growing portion of long bones. At the end of the growing 

period the growth plate is replaced by mineralised bone, leaving behind just the 

epiphyseal line. Flat bones are composed of two thin layers of bone enclosing a flattened 

medullary cavity with bone marrow (Murray J.Favus [Editor], 2006).  

 

According to its structure, bone is classified into two types: cortical or compact bone and 

trabecular or cancellous bone (Figure 1.1). 
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Cortical bone is dense with a low remodelling rate per unit volume (Murray J.Favus 

[Editor], 2006). It constitutes 85% of the skeleton and is found in the diaphysis of long 

bones and the outer layer of flat bones (Murray J.Favus [Editor], 2006). In large 

mammals, the cortical bone is composed of repeating patterns of collagen fibres, 

organised into concentric lamellae which in turn are organised into cylindrical 

structures, collectively known as osteons or Haversian systems. In the centre of such 

systems are the Haversian canals that carry blood vessels and nerve fibres (Figure 1.1).   

 

Trabecular bone has a spongy appearance and consists of interconnected trabeculae 

filled with bone marrow, which makes it metabolically more active than cortical bone 

(Murray J.Favus [Editor], 2006). Trabecular bone makes up the remaining 15% of the 

skeleton and is present mainly in flat bones and the ends of long bones (Murray J.Favus 

[Editor], 2006). Trabecular bone is also composed of Haversian systems with lamellar 

organisation of collagen fibres, but here the lamellae run parallel to each other (Figure 

1.1). 

 

Bone matrix comprises organic and inorganic parts. The most prominent organic 

element is type I collagen fibres which constitute 90% of the total protein of bone matrix 

(Murray J.Favus [Editor], 2006). The remaining 10% of bone matrix proteins include 

non-collagenous proteins, such as osteopontin (OPN), osteocalcin (OCN), osteonectin 

(OSN), bone sialoprotein (BSP) and proteoglycans, all thought to play a role in 

ossification and osteoblast adhesion to the matrix (Murray J.Favus [Editor], 2006). 

Mineralised matrix, is composed of type I collagen fibres and crystals of hydroxyapatite 

[3Ca3(PO4)2(OH)2], the main inorganic component of bone.  
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1.2 CELLS IN THE BONE MICROENVIRONMENT 
 

The main cells of bone are osteoblasts (the bone-forming cells), osteoclasts (the bone-

resorbing cells), lining cells and osteocytes. All four types of cells play an important role 

in the bone remodelling cycle, the process that continuously renews existing bone in a 

sequence of resorptions, reversals, bone formations and quiescence states (Murray 

J.Favus [Editor], 2006).  

 

1.2.1 Osteoblasts 
 
Osteoblasts are mononucleated cells responsible for bone formation. At a microscopic 

level, mature osteoblasts have a cuboidal shape, a round nucleus, an elaborate 

endoplasmic reticulum and a large Golgi complex reflecting their high biosynthetic and 

secretory activity for the production of matrix constituents (Murray J.Favus [Editor], 

2006). 

 

Osteoblasts are derived from pluripotent progenitor cells, called mesenchymal stem cells 

(MSCs) found in the bone marrow. MSCs can differentiate into several cell types 

including osteoblasts, chondrocytes, adipocytes and myocytes (Katagiri and Takahashi, 

2002). The lineage determination of MSCs is controlled by a combination of 

transcription factors, hormones and growth factors (Figure 1.2). 

 

Runt-related transcription factor (Runx2), also known as core-binding factor α1 

(Cbfα1), is the major transcription factor responsible for the commitment and 

differentiation of MSCs towards the osteoblastic lineage (Karsenty and Wagner, 2002). 

Studies have shown that Runx2-deficient mice die of respiratory failure shortly after 

birth and lack mature osteoblasts and bone formation (Komori et al., 1997; Otto et al., 

1997). Osteoprogenitor cells are differentiated further into osteoblasts by Osterix (Osx), 

a zing finger transcription factor acting downstream of Runx2. Conversely, peroxisome 

proliferator-activated receptor γ2 (PPARγ2) transcription factor induces adipocyte 
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differentiation and reduces osteoblast differentiation from MSCs (Lecka-Czernik et al., 

1999; Oyajobi et al., 1999). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The endocrine involvement in osteoblast differentiation, survival and function is 

explained by the expression of receptors such as parathyroid hormone (PTH), oestrogen, 

glucocorticoid, and 1,25-dihydroxyvitamin D3 (1,25-(OH)2 vitamin D3) receptors on 

mature osteoblasts (Marie, 2008). PTH enhances osteoblast differentiation by 

phosphorylating and activating Runx2, increasing Osx and reducing PPARγ2 expression 

in osteoprogenitors and by activating the Wnt/β-Catenin pathway (Krishnan et al., 2003; 

Wang et al., 2006; Tobimatsu et al., 2006). 

MSC

Osteoprogenitor cell

Runx2

Runx2
Osx

PPARγ2

Sox 5,6,9

Osteoblast

Adipocyte

Chondrocyte

Osteocyte

Apoptotic OB

Lining cell

Runx2

β-catenin/
LEF

MSC

Osteoprogenitor cell

Runx2

Runx2
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PPARγ2

Sox 5,6,9

Osteoblast

Adipocyte

Chondrocyte

Osteocyte

Apoptotic OB

Lining cell

Runx2

β-catenin/
LEF

Figure 1.2: Role of transcription factors in lineage determination. See text for more details. 
Abbreviations: MSC, mesenchymal stem cell; Runx, runt-related transcription factor; Osx, osterix; 
PPARγ, peroxisome proliferator-activated receptor γ; Sox, DNA-binding SRY box found in Sox-
family members; LEF, lymphoid-enhancer binding factor . 
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Oestrogen on the other hand stimulates Runx2 expression and Wnt/β-Catenin-mediated 

osteoblast survival (McCarthy et al., 2003). Furthermore, 1,25-(OH)2 vitamin D3 up-

regulates the expression of Runx2 and down-regulates PPARγ2 expression (Paredes et 

al., 2004; Duque et al., 2004). Glucocorticoids have a dual effect on bone formation 

depending on the duration of the treatment. Short glucocorticoid treatment promotes 

expression of Runx2 whereas long-term treatment inhibits canonical Wnt signalling and 

hence has a negative effect on osteoblast differentiation (Smith and Frenkel, 2005).  

 

Osteoblastogenesis is also controlled by growth factors, such as bone morphogenetic 

proteins (BMPs), transforming growth factor-β (TGF-β), fibroblast growth factors 

(FGFs), insulin like growth factors (IGFs) and Indian hedgehog (Ihh) [reviewed in 

(Marie, 2008)]. BMPs, particularly BMP2, promote Osx expression in osteoblastic cells 

(Lee et al., 2003b) and Runx2 expression in osteoprogenitors and osteoblastic cells (Lee 

et al., 2000; Lee et al., 2003a). BMP2-deficient mice (BMP2-/-) are embryonic lethal, but 

limb-specific conditional BMP2-/- showed spontaneous fractures that did not heal with 

time (Tsuji et al., 2006), indicating that BMP2 is important for normal skeletal function. 

TGF-β stimulates bone formation by increasing the expression of Runx2 and 

simultaneously decreasing PPARγ2 expression (Ahdjoudj et al., 2002). Ihh increases 

Runx2 expression in MSCs (Shimoyama et al., 2007) and IGF-1 promotes Osx 

expression in osteoblastic cells (Celil and Campbell, 2005).  
 

Osteoblasts are responsible for synthesising and secreting osteoid, the unmineralised 

bone matrix consisting of type I collagen and specialised bone matrix proteins such as 

OCN, OPN, and BSP (Katagiri and Takahashi, 2002). Osteoblasts also express alkaline 

phosphatase (ALP), which is involved in mineralisation of bone, by breaking down 

inhibitors of mineralisation such as pyrophosphate. In addition, osteoblasts express 

OCN, which appears to be involved in regulating bone formation. Levels of ALP and 

OCN are used as serum markers of osteoblast activity (Murray J.Favus [Editor], 2006).  
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Osteoblasts have receptors for prostaglandins, integrins and cytokines and produce 

cytokines, such as, macrophage colony-stimulating factor (M-CSF), the receptor 

activator of nuclear factor κB (NF-κB) ligand (RANKL) and interleukin 1 (IL-1). Both 

RANKL and M-CSF, are essential for the cross-talk between osteoblast and osteoclasts 

and once expressed they induce osteoclastogenesis in a paracrine manner. Osteoblasts 

also secrete osteoprotegerin (OPG), a decoy RANK receptor that inhibits 

osteoclastogenesis (Murray J.Favus [Editor], 2006). 

 

Figure 1.3 shows some of the receptors and signal transduction pathways in osteoblasts.  
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Figure 1.3: Schematic illustration of receptors and signal transduction pathways in osteoblasts. 
See text for descriptions. Abbreviations: VDR, 1,25-(OH)2 vitamin D3 receptor; ER, oestrogen 
receptor; PTH, parathyroid hormone; PTH1R, PTH receptor; PKC, protein kinase C; PGE2, 
prostaglandin E2; EP2, PGE2 receptor; ERK, extracellular signal-regulated kinase; PKA, protein 
kinase A; BMP, bone morphogenetic protein; BMPR, BMP receptor; AP1, activator protein 1; 
CREB, cAMP response element binding protein; Runx, Runt-related transcription factor.   
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1.2.2 Osteocytes 
 
Osteocytes are the most abundant cell type in bone (Mullender et al., 1996). Osteocytes 

are terminally differentiated cells of the osteoblast lineage. During bone formation about 

10-20% of mature osteoblasts become embedded in newly formed mineralized bone and 

differentiate into osteocytes (Murray J.Favus [Editor], 2006), while others differentiate 

into flattened, quiescent cells lining the bone surface (c.f. Figure 1.2, page 6). The 

transformation of osteoblasts to osteocytes has been hypothesised to be controlled by 

osteocytes themselves, possibly by producing signals that decrease bone apposition rate 

of osteoblasts and facilitate their differentiation into osteocytes (Marotti, 1996). 

 

Osteocytes lie in lacunae and are connected to one another, and with lining cells, 

through an elaborate network of cytoplasmic filapodial processes that run through 

canaliculi. Together they form the lacuna/canalicular system in bone (Murray J.Favus 

[Editor], 2006; Noble, 2008; Palumbo et al., 1990). Although osteocytes were originally 

considered to be non-migratory because of their location in bone, recently it has been 

proposed that they might be motile within the lacuna/canalicular system (Bonewald, 

2007). It is thought that fluid flows through the canalicular system and the flowing rate 

is restricted by the size of the lacuna and the canals (Su et al., 2006). Such fluid flow, 

together with the continuum between lining cells and osteocytes might explain the 

mechanosensor ability of osteocytes to transduce stress signals in response to 

mechanical loading (Murray J.Favus [Editor], 2006). 

 

The functional role of osteocytes is still under investigation. Although initially it was 

proposed that osteocytes were involved in bone resorption (Belanger et al., 1967), it is 

now clear that they are implicated in mineral homeostasis by modifying the local matrix 

environment (Aarden et al., 1996). The expression of the Wnt antagonist sclerostin 

(SOST) in osteocytes, suggests that these cells might have a potential role in inhibiting 

bone formation (Keller and Kneissel, 2005; Robling et al., 2006). Osteocytes also play a 
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key role in mineralisation and phosphate metabolism by secreting dentin matrix protein 1 

(DMP1), PHEX (phosphate-regulating gene with homologies to endopeptidases on the X 

chromosome) and fibroblastic growth factor 23 (FGF23) (Strom and Juppner, 2008). 

 

It has been proposed that osteocytes might also regulate recruitment and function of 

osteoclasts by producing anti-resorptive signals, such as TGF-β (Heino et al., 2002) or 

pro-resorptive signals, such as RANKL and M-CSF (Zhao et al., 2002).  

 

Osteocytes can remain healthy for long periods in bone that is not turned over (Murray 

J.Favus [Editor], 2006). However, empty lacunae are indicative of apoptotic osteocytes. 

Osteocyte apoptosis has been associated with regions of microdamage suggesting that 

through death osteocytes might generate a signal that targets the resorption process 

(Noble et al., 2003). Others suggested that this association may be indicative of the 

necessity of viable osteocytes in order to inhibit osteoclastic resorption (Tatsumi et al., 

2007).  

 

1.2.3 Osteoclasts 
 
Osteoclasts are large multinucleated cells of haematopoietic origin that are formed by 

fusion of mononuclear precursor cells from the myeloid lineage (Murray J.Favus 

[Editor], 2006). Osteoclasts have been described as terminally differentiated cells from 

macrophages or myelin precursors (Vaananen and Laitala-Leinonen, 2008), and thus far 

there is no solid evidence showing a subsequent re-differentiation of osteoclasts to other 

cells of monocyte/macrophage lineage (Vaananen and Laitala-Leinonen, 2008). 

Osteoclasts are responsible for bone resorption, a process that involves dissolving 

hydroxyapatite and degrading the organic bone matrix (Murray J.Favus [Editor], 2006) 

(Figure 1.4).  
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Differentiation of precursor cells to functional osteoclasts requires the presence of two 

essential cytokines, M-CSF and RANKL. Together, these cytokines have the capacity to 

drive haematopoietic cells to osteoclasts at any stage of their differentiation pathway 

[reviewed in (Vaananen and Laitala-Leinonen, 2008; Boyce and Xing, 2008)]. M-CSF, 

which is secreted by osteoblasts or expressed on their membrane, binds to a membrane 

receptor (c-Fms) expressed on early and committed osteoclast precursors, as well as 

mature osteoclasts (Weir et al., 1993). This interaction provides signals for osteoclast 

differentiation and osteoclast survival (Teitelbaum, 2000; Takayanagi, 2005). RANKL is 

Figure 1.4: Schematic illustration of the differentiation of osteoclasts. See text for descriptions. 
Abbreviations: CFU-GM, colony forming unit-granulocyte-macrophage; M-CSF, macrophage 
colony stimulating factor; c-Fms, M-CSF receptor; RANK, receptor activator of nuclear factor 
κB; RANKL, RANK ligand. 
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a membrane-bound cytokine expressed on osteoblasts, dendritic cells, mature T cells, 

and haematopoietic precursors. In osteoblasts and activated CD4+ and CD8+ T cells 

RANKL is also produced in a soluble form (Jones et al., 2002). Upon binding to the 

RANK receptor found on osteoclast precursors, RANKL induces their differentiation 

into multinucleated osteoclasts (Takayanagi, 2005; Teitelbaum, 2000) (Figure 1.4).   

 

The interaction of RANKL with RANK receptor is blocked by OPG, a soluble decoy 

receptor for RANKL (Kong et al., 1999). Therefore, the rate of osteoclast differentiation 

is determined by the ratio of RANKL to OPG (Horowitz et al., 2001). Inflammatory 

cytokines such as IL-1β and tumour necrosis factor α (TNF-α) are known to affect 

osteoclast formation, resorption and survival (Pfeilschifter et al., 1989). Moreover, IL-6, 

and IL-11 act directly on osteoclast progenitors to stimulate proliferation and inhibit 

apoptosis (Jilka, 1998). Prostaglandins and in particular prostaglandin E2 (PGE2), 

stimulate osteoclast formation by acting directly on osteoclast precursors (Lacey et al., 

1995) or immature osteoblast (Kanematsu et al., 2000), and stimulate bone resorption 

(Fuller and Chambers, 1989). However, PGE2 was also reported to inhibit osteoclast 

differentiation and M-CSF production in human bone marrow stromal cells (Besse et al., 

1999). 

 

Figure 1.5 illustrates some of the receptors and signal transduction pathways in 

osteoclasts. 
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Osteoclasts are usually in a close vicinity to mineralised matrix and once attached to the 

bone surface they become polarised and start resorbing bone (Murray J.Favus [Editor], 

2006). During resorption there is an extensive cytoskeletal modulation which is tightly 

linked to membrane polarisation.  The membrane of a resorbing osteoclast is divided 

into four particular domains: the sealing zone, which is a ring-shape zone securing the 

osteoclast to the underlying mineralised bone referred to as Howship's lacuna but 

commonly refer to as resorption lacuna; the ruffled border membrane, which is the main 

resorbing organelle (Murray J.Favus [Editor], 2006); the basolateral membrane at the 

non-bone facing side of the osteoclast; and finally the functional secretory domain found 

at the top of the basal surface (Salo et al., 1996). 

 

At the initial step of resorption, there is an accumulation of podosomes that form actin 

rings (Murray J.Favus [Editor], 2006; Vaananen and Laitala-Leinonen, 2008). 

Attachment of podosomes to the matrix is mediated by aνβ3−integrin, whereas the final 

tight sealing is mediated by proteins such as CD44 (Chabadel et al., 2007). The essential 

role of aνβ3−integrin in matrix degradation is supported by the fact that mice with 

targeted deletion of the β3 chain had dysfunctional osteoclasts (McHugh et al., 2000) 

and in vitro osteoclast cultures from these mice showed defective resorption (Faccio et 

al., 2003). Microtubules and microfilaments mediate vesicular transport to and from the 

ruffled border (Mulari et al., 2003).  Microtubules also reach the functional secretory 

domain of the basal membrane, transferring bone resorption products by transcytosis 

into the extracellular space (Salo et al., 1996) (Figure 1.6). 

 

An important function of the osteoclast is to dissolve hydroxyapatite crystals and this 

requires lowering of the pH. This is achieved by secretion of protons and chloride ions 

through the ruffled border (Sundquist et al., 1987; Blair et al., 1989; Vaananen et al., 

1990). Generation of protons within osteoclasts is mediated by a cytosolic carbonic 

anhydrase II (CA II) (Sundquist et al., 1987). This enzyme forms carbonic acid (H2CO3) 

from water and carbon dioxide, which dissociates spontaneously into protons (H+) and 
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bicarbonate ions (HCO3
-). Mice deficient in CA II show growth retardation and renal 

tubular acidosis, but their bone mass remains unaffected (Lewis et al., 1988). 

Bicarbonate ions are released from the osteoclast via an anion exchanger whereas the 

protons are used by the ATP-consuming proton pump known as vacuolar ATPase (V-

ATPase) (Blair et al., 1989; Vaananen et al., 1990). V-ATPases are present in 

intracellular vesicles and ruffled border of osteoclasts (Blair et al., 1989; Vaananen et 

al., 1990). Mutation in the a3 subunit of V-ATPase causes malignant osteopetrosis in 

human (Kornak et al., 2000) and genetic inactivation of a3 subunit in mice produces 

severe osteopetrotic phenotype (Li et al., 1999). Chloride ions are then passively 

transported into the resorption lacunae mainly via the CIC-7 chloride ion channel, a 

process that maintains normal intracellular pH (Teti et al., 1989; Schaller et al., 2005). 

Loss of CIC-7 causes osteopetrosis in human and mice (Kornak et al., 2001). Protons 

and chloride ions initiate the resorption process in Howship's lacunae. Only after 

dissolution of bone mineral has occurred will degradation of the organic matrix occur. 

Matrix metalloproteinases (MMPs) and cathepsins, mainly cathepsin K, are responsible 

for the degradation of organic matrix (Figure 1.6). It has been shown that the genetic 

inactivation of cathepsin K in mice leads to osteopetrosis (Gowen et al., 1999) due to the 

failure of osteoclasts to break down type I collagen (Votta et al., 1997). MMP-9 

knockout mice exhibit an abnormal pattern of skeletal growth plate vascularization and 

ossification indicating the role of MMPs in skeletal maturation (Vu et al., 1998). 
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Tartate resistant acid phosphatase (TRAcP) and specifically the isoform TRAcP5b is 

used as a cellular marker for osteoclastic resorption activity. However, there is still a 

dispute about the function of TRAcP in osteoclasts since this gene is also highly 

expressed in dendritic cells (Hayman et al., 2001). Some studies suggest that in dendritic 

cells TRAcP might be involved in antigen processing and similarly in osteoclasts it 

could have a role in preventing autoimmunity against bone, rather than play a role in 

resorption directly [reviewed in (Vaananen and Laitala-Leinonen, 2008)]. TRAcP-

knockout mice showed mild osteopetrosis, deformity of the long bones, impairment of 

macrophage function and abnormal immunomodulatory cytokine responses, confirming 

that the TRAcP gene plays a role in both the immune system and skeleton (Hayman and 

Cox, 2003; Hayman et al., 2001). 

 

1.2.4 Adipocytes 
 
Adipocytes are derived from multipotent MSCs, in a process known as adipogenesis. 

The adipogenic transcription factors such as CCAAT-enhancer-binding proteins 

(C/EBPs) and PPARγ are expressed by MSCs in addition to osteogenic factors such as 

Runx2 and Osx already mentioned in section 1.2.1, page 5. In an undifferentiated state, 

the effects of specific lineage factors in MSCs counteract each other (Rosen and 

MacDougald, 2006; Marie, 2008) until appropriate conditions disrupt this balance. For 

example PPARγ down-regulates Runx2 expression and favours adipogenesis at the 

expense of osteogenesis, whereas Runx2 and Osx suppress adipogenesis (c.f. Figure 1.2, 

page 6). 

 

PPARγ has been described as the adipogenic ‘master regulator’ because adipogenesis 

cannot occur in its absence. PPARγ is crucial not only for adipogenesis but also for the 

viability and survival of adipocytes in the differentiated state (Tamori et al., 2002). 

There are two protein isoforms, PPARγ1 and PPARγ2, but only PPARγ2 is specifically 

expressed by adipocytes.  
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Other pro-adipogenic transcription factors involved in adipocyte differentiation are 

signal transducer and activator of transcription-5α, cyclic AMP (cAMP) response 

element-binding protein (CREB); Krüppel-like factors (KLFs), apart from KLF2 and 

KLF7 that are both anti-adipogenic factors; KROX20, also known as early growth 

response protein; early B-cell factor 1 (EBF1) and many more [reviewed in (Rosen and 

MacDougald, 2006)].  

 

1.2.5 Chondrocytes 
 
Chondrocytes are also cells of mesenchymal origin and are the first skeleton-specific 

cells to appear during embryonic development (c.f. Figure 1.2, page 6). The master 

transcription factor of chondrogenesis is the sex determining region Y (SRY)-box 9 

(Sox9) (Bi et al., 1999). Sox9 induces the condensation and differentiation of MSCs into 

chondrocytes (Bi et al., 1999) and activates the expression of two major structural 

components of cartilage matrix, aggrecan and type II collagen (Ng et al., 1997). Sox9 

also stimulates the expression of type XI collagen and cartilage-derived retinoic acid-

sensitive protein (CD-RAP) (Ng et al., 1997; Xie et al., 1999). Sox5 and Sox6 are also 

involved in the differentiation of non-hypertrophic chondrocytes, by binding to Sox9 

and enhancing its transactivation function (Lefebvre et al., 1998).  

 

As skeletogenesis proceeds, proliferating chondrocytes at the metaphysis of long bone 

progressively become hypertrophic and express type X collagen. Chondrocyte 

hypertrophy is positively regulated by the transcription factors Runx2 and Runx3 

(Yoshida et al., 2004). However, in perichondrium, the connective tissue surrounding 

the cartilage of developing bone, Runx2 stimulates the expression of fibroblast growth 

factor 18 (FGF18), which in turn inhibits chondrocyte hypertrophy (Hinoi et al., 2006). 

So while Runx2 promotes chondrocyte hypertrophy at the beginning to prepare cells for 

following events of skeletogenesis, it subsequently inhibits any further chondrocyte 

proliferation to avoid premature bone formation [reviewed in (Karsenty, 2008)]. 
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Fully differentiated hypertrophic chondrocytes secrete angiogenic factors which induce 

vascular invasion from the perichondrium. The invading blood vessels carry osteoblasts, 

osteoclasts and haemopoietic cells, which together form the primary ossification centres. 

Within these centres, hypertrophic chondrocytes undergo apoptosis and the cartilage 

matrix is replaced by bone extracellular matrix, rich in type I collagen. This process of 

bone development is known as endochondral ossification. In regions of the craniofacial 

skeleton and the clavicle, the mesenchymal condensations bypass the cartilaginous 

intermediary step and differentiate directly into osteoblasts which produce 

intramembranous bone. This process of bone development is known as intramembranous 

ossification [reviewed in (Olsen et al., 2000; Karsenty and Wagner, 2002; Karsenty, 

2008)]. 
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1.3 BONE REMODELLING 
 
The skeleton is nearly completely modelled during embryonic development. Throughout 

life, the skeleton undergoes continuous remodelling in response to local or systemic 

stimulation, mechanical stresses, after physical exercise or mechanical loading (Raisz, 

1999). Bone remodelling is a dynamic process of bone resorption and bone formation 

where osteoclasts and osteoblasts closely collaborate in what is called a basic 

multicellular unit (BMU) to maintain the integrity of the skeleton. The remodelling 

process consists of three consecutive phases: resorption, reversal and formation (Figure 

1.7) (Murray J.Favus [Editor], 2006; Hadjidakis and Androulakis, 2006; Lerner, 2006). 

 

1.3.1 Bone resorption 
 
The bone surface is lined with quiescent osteoblasts which are known as bone lining 

cells. After a prolonged resting period, a new remodelling cycle is initiated through a 

process that may involve osteocytes, lining cells or pre-osteoblasts in the bone marrow 

(Hadjidakis and Androulakis, 2006). The first stage of bone resorption is the recruitment 

of osteoclast precursors from bone marrow and their targeting to bone. Osteoblast/lining 

cells are thought to secrete a variety of proteolytic enzymes, namely MMPs, collagenase 

and gelatinase (Meikle et al., 1992), which degrade a thin layer of osteoid that lines the 

bone surface and eventually facilitate the access of osteoclast precursors to the 

underlying mineralised bone.  

 

Expansion of the osteoclast progenitor pool, development into multinucleated 

osteoclasts, survival and activation are controlled by the combined action of RANKL 

(Boyce and Xing, 2008; Hsu et al., 1999), OPG (Boyce and Xing, 2008; Hofbauer and 

Schoppet, 2004) and M-CSF (Umeda et al., 1996), which are mainly produced by cells 

of the osteoblastic lineage.  
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In response to these signals, osteoclasts attach to the bone surface and the next step 

involves recognition of extracellular bone matrix proteins and osteoclast polarisation. It 

has been suggested that this occurs via members of the integrin superfamily of adhesion 

receptors, in particular the ανβ3 vitronectin receptor (Lakkakorpi et al., 1991). The 

vitronectin receptor binds to the extracellular matrix proteins, such as vitronectin, 

fibronectin and type I collagen, at an Arg-Gly-Asp tripeptide (RGD) exposed on the 

surface of the underlying mineralised bone. Once bound to bone extracellular matrix, 

osteoclasts polarise and form the ruffled border and the sealing zone (Roodman, 1996). 

 

The sealing zone is the region of the cytoplasm that is rich in F-actin filaments known as 

actin rings (Hill, 1998). Actin rings together with integrin receptors form focal adhesions 

or podosomes which are responsible for the tight sealing of the space beneath, where the 

ruffled border expands and bone matrix is dissolved.  

 

The ruffled border is the functional resorbing domain of the active osteoclast that 

enables the transport of protons and chloride ions by means of V-ATPases and chloride 

channels respectively. Within the sealed resorption cavity, protons and ions create an 

acidic environment necessary for the demineralisation and degradation of the bone 

matrix. The demineralised organic matrix of bone is subsequently degraded by 

proteolytic enzymes including cathepsin K and MMP-9 (Hill, 1998). Both enzymes are 

highly expressed in osteoclasts and secreted across the ruffled border into the resorption 

lacuna during bone resorption. MMP-9 releases the carboxyterminal telopeptide of type 

I collagen, and cathepsin K releases the carboxyterminal cross-linked peptide of type I 

collagen (Parikka et al., 2001), both of which are used as biochemical markers of bone 

resorption. 

 

Bone degradation products, both organic and inorganic, are endocytosed from the ruffled 

border membrane and transported in vesicles through the cell to the functional secretory 
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domain found at the top of the basal surface (Salo et al., 1996), where they get 

exocytosed into the extracellular space (Salo et al., 1997).  

 

Ultimately osteoclasts undergo apoptosis and are rapidly removed by phagocytes, at the 

interface between the resorption and reversal phase.  

 

1.3.2 Reversal phase 
 
Following bone resorption, there is the reversal phase. During this period mononuclear, 

macrophage-like cells appear in the lacunae and remove residual organic matrix (Hill, 

1998; Lerner, 2006). The cement line that marks the limit of resorption and acts to 

cement together the old and the new bone is formed during the reversal phase (Murray 

J.Favus [Editor], 2006). 

 

1.3.3 Bone formation 
 
Bone formation is initiated by the recruitment of osteoblast precursors at the freshly 

resorbed sites. It has been suggested that this process is mediated by local, chemotactic 

factors produced during the resorption process (Mundy et al., 1982). Such factors are 

thought to include TGF-β or insulin growth factor 1 (IGF-1), both which are abundant in 

the extracellular matrix of bone and which are released during the resorption process. 

Structural proteins such as type I collagen and OCN could also play an important role in 

this process, since they have been also shown to have chemotactic effects (Lerner, 

2006). 

 

The next event involved in the bone formation phase is the proliferation and 

differentiation of osteoprogenitor cells into committed osteoblast precursors and then 

into mature osteoblasts. This process is also mediated by factors released during the 

resorption phase and by osteoblast-derived growth factors. Candidate factors that may 

mediate this process include members of the TGF-β family, IGF-1 and 2, fibroblast 



Chapter 1: INTRODUCTION 

 24

growth factors (FGFs) and platelet-derived growth factors (PDGFs) (Hill, 1998).  In this 

context, the factors which are involved in the recruitment and activation of osteoblasts in 

basic multicellular units are referred to as ‘coupling factors’ which link bone resorption 

to bone formation (Lerner, 2006).  

 

Differentiated mature osteoblasts produce large amounts of type I collagen (Ducy et al., 

2000b; Mackie, 2003) and together with other non-collagenous proteins, such as OPN, 

OCN, OSN, BSP and proteoglycans, form the extracellular matrix (Murray J.Favus 

[Editor], 2006). This bone matrix is initially unmineralised and known as osteoid until 

the mineralisation process is completed. For this, mature osteoblasts secrete ALP, which 

degrades inhibitors of mineralisation such as pyrophosphates and also releases 

membrane bound bodies known as matrix vehicles at random sites within the collagen 

scaffold. These matrix vehicles contain proteins, acidic phospholipids, calcium and 

phosphate that induce hydroxyapatite formation. Hydroxyapatite crystal deposition turns 

osteoid into mature mineralised matrix and gives bone its rigidity and stiffness (Murray 

J.Favus [Editor], 2006; Ducy et al., 2000b; Katagiri and Takahashi, 2002).  

 

The cessation of osteoblast activity is probably mediated by negative regulators of bone 

formation such as SOST (Sutherland et al., 2004), or due to induction of osteoblast 

apoptosis by mechanisms that are poorly understood. The average lifespan of osteoblasts 

is three months, after which approximately 65% of functioning osteoblasts undergo 

apoptosis (Jilka et al., 1998). The remaining osteoblasts are either buried within the bone 

matrix as osteocytes or converted into flat, lining cells giving bone surfaces their 

quiescent nature (Murray J.Favus [Editor], 2006). Bone lining cells remain quiescent 

until they are activated once again in the next bone remodelling cycle. 
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1.4 MOLECULAR CONTROL OF BONE REMODELLING 
 
1.4.1 OPG/RANKL/RANK 
 
The receptor activator of NF-κB (RANK) together with its ligand, RANK ligand 

(RANKL) and the decoy receptor for RANKL called osteoprotegerin (OPG), have been 

identified as members of the tumour necrosis factor (TNF)/TNF-receptor superfamily 

proteins. The OPG/RANKL/RANK system has been recognised as the dominant 

regulator of osteoclastogenesis (Murray J.Favus [Editor], 2006).  

 

OPG was discovered independently by two groups, the Amgen Inc. group while 

searching for TNF-receptor related molecules (Simonet et al., 1997), and the Snow 

Brand Milk group while searching for osteoclast stimulatory and inhibitory factors 

(Yasuda et al., 1998a). Later it became clear that both groups isolated cDNA clones 

encoding the same protein, OPG. OPG is initially synthesized as a 401-amino acid 

peptide which is cleaved into a mature protein of 380 amino acids (Simonet et al., 1997; 

Yasuda et al., 1998a). Unlike all the other TNF receptor superfamily members, OPG 

lacks transmembrane and cytoplasmic domains and instead is secreted as a soluble 

protein. OPG mRNA was found to be expressed in various tissues, including lung, heart, 

kidney, liver, stomach, intestine, brain, spinal cord, thyroid gland and bone (Simonet et 

al., 1997; Yasuda et al., 1998a). However, the major biologic actions of OPG are to 

protect bone from excessive osteoclastic resorption by inhibiting osteoclast 

differentiation and activity (Murray J.Favus [Editor], 2006; Boyce and Xing, 2008), and 

to protect from vascular calcification (Van Campenhout and Golledge, 2008). Mice 

lacking OPG exhibited severe osteoporosis due to enhanced osteoclastogenesis (Mizuno 

et al., 1998). 

 

Soon after the characterisation of OPG, both above-mentioned groups identified the 

OPG ligand (Lacey et al., 1998; Yasuda et al., 1998b), which was identical to what was 

already known as TNF-related activation-induced cytokine (TRANCE) (Wong et al., 
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1997), and receptor activator of NF-κB ligand (RANKL) (Anderson et al., 1997). 

RANKL exists as a membrane-bound, 316-amino acid long homotrimeric protein found 

typically on osteoblasts, and as a soluble protein, derived by cleavage of the full-length 

form (Lacey et al., 1998). RANKL mRNA is expressed mainly in bone and bone 

marrow, as well as in lymphoid tissues (Wong et al., 1997; Anderson et al., 1997). 

RANKL is necessary and sufficient for osteoclast formation, activation and survival. In 

addition, RANKL is required for immune responses such as, activation of c-Jun N-

terminal kinase (JNK) in T cells (Wong et al., 1997), inhibition of apoptosis of dendritic 

cells (Wong et al., 1997), lymph node development (Dougall et al., 1999) and B cell 

maturation (Franzoso et al., 1997). RANKL knockout mice suffer from severe 

osteopetrosis with defects in tooth eruption and differentiation of T and B cells (Kong et 

al., 1999). In human, RANKL mutations were also associated with osteopetrosis due to 

lack of osteoclasts. These individuals showed no improvement following haematopoietic 

stem cell transplantation but seemed to be cured with exogenous RANKL administration 

(Sobacchi et al., 2007). 

 

The receptor for RANKL was identified to be RANK (Anderson et al., 1997). RANK is 

a 616-amino acid transmembrane protein with an N-terminal extracellular domain and a 

large C-terminal cytoplasmic domain (Anderson et al., 1997). It is mainly expressed on 

cells of macrophage/monocytic lineage, T and B cells, dendritic cells and fibroblasts 

(Anderson et al., 1997; Hsu et al., 1999). Mice deficient in RANK suffer from profound 

osteopetrosis since they lack specific signals for the differentiation of myeloid derived 

osteoclasts (Dougall et al., 1999; Kapur et al., 2004). Such mice also lacked peripheral 

lymph nodes and had defective B and T cell maturation similarly to RANKL knockouts. 

 

The unravelling of the OPG/RANKL/RANK system explained the precise mechanism of 

osteoblast-osteoclast coupling and the regulatory role of OPG as a RANKL decoy 

receptor that blocks the effects of RANKL (Figure 1.8). Potential alterations in this 
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system result in disorders such as age-related osteoporosis, familial Paget’s disease and 

familial expansile osteolysis [reviewed in (Khosla, 2001)]. 

 

Other crucial components of the OPG/RANK/RANKL signalling pathway include 

factors belonging to the TNF family such as TNF receptor-associated factors (TRAFs), 

the inhibitor of κB kinase (IKK) complex (comprising IKKα, β and γ) and nuclear factor 

κB (NF-κB), which consists of a family of transcription factors that are important for the 

regulation of cell growth and survival [reviewed in (Wada et al., 2006)] (c.f. Figure 1.5, 

page 13 and 1.9, page 29). Genetic experiments have shown that mice deficient in 

TRAF6, IKKβ or the NF-κB p50 and p52 proteins suffer from severe osteopetrosis 

(Lomaga et al., 1999; Iotsova et al., 1997; Ruocco et al., 2005). The RANKL/RANK 

signalling pathway is illustrated in Figure 1.9, page 29. 
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Figure 1.8: Schematic illustration of osteoclast differentiation and cross-talk with osteoblasts. 
See text for descriptions.  Abbreviations: RANK, receptor activator of nuclear factor κB; 
RANKL, RANK ligand; M-CSF, macrophage colony stimulating factor; c-Fms, M-CSF 
receptor; OPG, osteoprotegerin; IL, interleukin; VitD3, vitamin D3.  
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1.4.2 M-CSF 
 
Macrophage colony stimulating factor (M-CSF) is a disulphide-linked dimeric 

glycoprotein with a molecular weight ranging from 45 to 100kDa depending on the 

glycosylation pattern (Maier et al., 2000). M-CSF can either be secreted into the 

circulation or expressed as a membrane spanning glycoprotein on the surface of M-CSF 

producing cells (Cerretti et al., 1988). Osteoblasts produce soluble and cell-surface 

forms of M-CSF, which function synergistically in stimulating osteoclast formation 

(Yao et al., 2002).  

 
M-CSF was revealed to be an essential factor for osteoclastogenesis since not only it 

induces the proliferation of osteoclast precursor cells, but also supports their survival 

and up-regulates the RANK expression which is essential for osteoclast precursor cells 

(Arai et al., 1999). M-CSF signalling is also associated with the expression of the anti-

apoptotic protein Bcl-2 in the osteoclast lineage and thereby is involved in prolonging 

osteoclast lifespan (McGill et al., 2002). 

 

The effects of M-CSF are mediated by the M-CSF receptor which is encoded by the c-

fms, a proto-oncogene (Stanley et al., 1983). Mice with a mutation in the coding region 

of gene encoding for M-CSF are osteopetrotic (op/op) and defective in production of 

functional M-CSF. These mice are severely deficient in mature macrophages and 

osteoclasts (Yoshida et al., 1990), have very low numbers of tissue macrophages (Usuda 

et al., 1994) and no multinuclear osteoclasts, although small numbers of TRAcP-positive 

mononuclear cells, i.e. pre-osteoclasts, were observed (Umeda et al., 1996). Likewise, 

targeted disruption of the c-fms gene resulted in osteopetrosis, mononuclear phagocyte 

deficiency and increased primitive haematopoietic progenitor cells (Dai et al., 2002).  

 

Figure 1.9 illustrates the RANKL/RANK and M-CSF/c-Fms signalling pathways. 
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Figure 1.9: RANKL/RANK and M-CSF/c-Fms signalling pathways. A. Activation of receptor 
activator of nuclear factor (NF)-κB (RANK) with membrane-bound (mRANKL) or soluble RANK 
ligand (sRANKL) induces the recruitment of factors belonging to the tumour necrosis factor (TNF) 
family such as TNF receptor-associated factor 6 (TRAF6), which consequently recruits and 
phosphorylates other intracellular signalling proteins, including inhibitor of the κB (IκB) kinase 
(IKK) complex comprising IKKα, β and γ (1). IKKα and β phosphorylate IκB proteins and target 
them for proteolytic degradation. This activates NF-κB for nuclear translocation, where it induces the 
transcription of osteoclast-specific genes including TRAcP, RANK and Cathepsin K (Asagiri and 
Takayanagi, 2007). TRAF6 function leads to calcium signalling and the induction of NFATc1, which 
is necessary for osteoclast formation (2) (Takayanagi et al., 2002). B. Binding of macrophage colony 
stimulating factor (M-CSF) to its receptor (c-Fms) recruits the adaptor protein growth factor receptor 
bound protein 2 (Grb2) which subsequently recruits the small GTPase Ras to the plasma membrane. 
This complex then generates prolonged signalling through the subsequent Raf/MEK/ERK cascade. 
ERK is a kinase, which phosphorylates and activates, among other proteins, transcription factors 
regulating the expression of target genes (Ross, 2006). Phosphatidylinositol-3-Kinase (PI3K) also 
interacts with c-Fms and activates the anti-apoptotic protein Akt [also known as protein kinase B 
(Borgatti et al., 2000)] which regulates the transcription of target genes (Ross, 2006). 
Abbreviations: ERK, extracellular signal-regulated kinase; MEK, mitogen activated protein kinase 
(MAPK) kinase/ERK kinase; NFATc1 (NFAT2), nuclear factor of activated T cells; AP1, activator 
protein 1. 
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1.4.3 Oestrogen 
 
Oestrogen belongs to the gonadocorticoid class of steroid hormones, and is produced by 

the adrenal cortex and ovary. The effects of oestrogen in reproductive function include 

the development of female secondary sexual characteristics, the regulation of menstrual 

cycle, the timing of ovulation in pre-menopausal women and maintenance of pregnancy 

(Ruggiero and Likis, 2002). The skeleton is one of the main targets of oestrogen as it 

regulates bone growth and remodelling in both men and women. Decreased levels of 

oestrogen in post-menopausal women is the main cause of osteoporosis (Ruggiero and 

Likis, 2002; Riggs et al., 2002; Hawse et al., 2008). Oestrogen replacement has therefore 

been used for treatment of menopausal symptoms and for the prevention of osteoporosis 

(Rozenberg et al., 1995). 

 

Two oestrogen receptor isoforms have been identified, ERα and ERβ, with different 

tissue distributions. Bone cells express both oestrogen receptors and it has been shown 

that oestrogen treatment of cultured cells has effects on osteoblast and osteoclast 

differentiation (Turner et al., 1994). However, the oestrogen receptor isoforms and the 

stage of differentiation influence the response of human osteoblasts to oestrogen (Waters 

et al., 2001), because these two receptors regulate distinct sets of genes in osteoblasts 

(Stossi et al., 2004; Monroe et al., 2005). Deletion of both oestrogen receptors results in 

profound decrease of trabecular bone volume in female mice and significant defects in 

the cortical bone and bone mineral density (BMD) equally in both sexes (Sims et al., 

2002).  

 

It is believed that oestrogen prevents bone loss mainly by reducing bone resorption 

rather than affecting bone formation.  However, it has been shown that oestrogen 

suppresses the production of the osteoclast-stimulating cytokines IL-6 (Girasole et al., 

1992), TNF-α (Srivastava et al., 1999) and M-CSF (Srivastava et al., 1998) in cells of 

the bone marrow stromal/osteoblastic lineage. Moreover, oestrogen stimulates the 
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expression of the anti-osteoclastogenic factor OPG in osteoblasts (Hofbauer et al., 

1999b), which acts as a decoy receptor of RANKL and hence interrupts 

osteoclastogenesis. The indirect inhibitory action of oestrogen on bone resorption is also 

observed in its stimulatory effect for the production of TGF-β, which subsequently 

induces osteoclast apoptosis (Hughes et al., 1996).  

 

Loss of oestrogen following ovariectomy is associated not only with increased 

resorption but also with increased numbers of osteoblast progenitors and higher levels of 

the bone formation marker OCN (Jilka, 1998). However, in vitro experiments have 

shown that addition of oestrogen suppresses osteoblast apoptosis (Kousteni et al., 2001) 

and increases cell differentiation and collagen type I production (Jilka, 1998). 

 

1.4.4 Vitamin D 
 
Vitamin D is a steroid hormone produced in the skin following exposure to sunlight 

(Murray J.Favus [Editor], 2006). Vitamin D3 is also found in oily fish, fish liver oils or 

foods fortified with vitamin D. In order to become biologically active, Vitamin D3 

undergoes two successive hydroxylations in the liver and kidney and transforms into the 

hormonally active form 1,25-(OH)2 vitamin D3. 

 

The main biological effect of 1,25-(OH)2 vitamin D3 is to help maintain the serum 

calcium at physiological levels. This is achieved by: a) inducing the expression of the 

TRPV6 epithelial calcium channel in the small intestine (Song et al., 2003),  b) 

stimulating osteoclastogenesis and c) facilitating the movement and transfer of calcium 

through the cytoplasm and finally across the basolateral membrane into the circulation 

(Murray J.Favus [Editor], 2006; Christakos et al., 2003).  

 

In the bone microenvironment, 1,25-(OH)2 vitamin D3 interacts with its nuclear receptor 

Vitamin D receptor (VDR) and regulates the transcription of specific genes involved in 
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bone formation, such as type I collagen and ALP (Owen et al., 1991), osteocalcin (Breen 

et al., 1994) and osteopontin (Safran et al., 1998), or genes that play a role in 

osteoclastogenesis, such as RANKL and IL-1β (Lee et al., 2002). In vitro studies 

showed that VDR signalling in chondrocytes promotes osteoclastogenesis by regulating 

FGF23 production in osteoblasts (Masuyama et al., 2006) and stimulates the expression 

of vascular endothelial growth factor (VEGF) (Lin et al., 2002). 

 

Amongst these target genes 1,25-(OH)2 vitamin D3 also induces the expression of the 

gene encoding the enzyme responsible for its degradation, 25-hydroxyvitamin D-24-

hydroxylase (CYP24A1),  which helps the regulation of Vitamin D homeostasis (Makin 

et al., 1989). 

 

1.4.5 Parathyroid hormone and parathyroid hormone-related peptide 
 
Parathyroid hormone (PTH) is released from the parathyroid glands and is the principle 

regulator of calcium homeostasis. In response to a hypocalcaemic stimulus, PTH is 

secreted and while it enhances calcium re-absorption from the kidney [reviewed in 

(Friedman, 2000)], it also increases the activity of the epithelial calcium channel TRPV5 

(van Abel et al., 2005). Moreover, PTH enhances the conversion of vitamin D to its 

biologically active metabolite 1,25-(OH)2 vitamin D3 in the kidney, which in turn 

increases calcium absorption from the intestine.  

 

Increased secretion of PTH in primary hyperparathyroidism leads to an increase in 

osteoclast cell number and activity (Murray J.Favus [Editor], 2006). For this reason, 

endogenous PTH has been considered to be a catabolic agent for bone. However, 

exogenous PTH when administered intermittently has the property to increase bone mass 

(Tam et al., 1982; Nishida et al., 1994), because bone formation in this case is 

predominant over bone resorption. 
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PTH shares sequence homology with the N-terminal domain of PTH-related peptide 

(PTHrP), which was initially discovered as the cause of humoral hypercalcaemia of 

malignancy syndrome (Ikeda et al., 1988; Kemp et al., 1987). Although PTH functions 

as a circulating endocrine factor, PTHrP acts as an autocrine/paracrine regulator of bone 

formation [reviewed in (Murray J.Favus [Editor], 2006; Goltzman, 2008)]. PTH and 

PTHrP bind to the same transmembrane spanning receptor, type 1 PTH/PTHrP receptor 

(PTHR1) (Mannstadt et al., 1999). PTHR1 is most abundantly expressed in PTH target 

tissues, such as kidney and bone. PTHR1 is also found in other foetal and adult tissues 

but similarly to VDR, it is found at particularly high concentrations in growth plate 

chondrocytes (Murray J.Favus [Editor], 2006). In tissues other than kidney and bone 

PTHR1 mediates the paracrine/autocrine actions of PTHrP rather than the endocrine 

actions of PTH (Murray J.Favus [Editor], 2006). 

 

1.4.6 Calcitonin 
 
The calcitonin family consists of calcitonin and the calcitonin gene-related peptides 

(CGRP), α-CGRP and β-CGRP. Calcitonin and α-CGRP are transcripts of the same 

gene, known as Calca gene, whereas a different gene, Calcb encodes for β-CGRP 

[reviewed in (Huebner et al., 2008)]. Calcitonin is a hormone produced by thyroid C-

cells and is responsible for lowering the level of calcium in blood (COPP and CHENEY, 

1962). The calcitonin molecule has been identified in the mid 1980’s as a 32-amino acid 

long polypeptide that becomes active following a proteolytic cleavage (Le Moullec et 

al., 1984). 

 

The calcitonin receptor is a G-protein coupled receptor (Lin et al., 1991) and is mainly 

expressed in the kidney, neurons of the central nervous system (CNS), placental cells 

and lymphocytes [reviewed in (Huebner et al., 2008)]. Osteoclasts express high levels of 

calcitonin receptor as well, reflecting the main skeletal effect of calcitonin, which is the 

inhibition of osteoclastic bone resorption (Nicholson et al., 1986; Moonga et al., 1992). 
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Upon administration, calcitonin prevents osteoclast precursor fusion, disrupts actin ring 

formation and hence reduces osteoclast activity (Suda et al., 1997). Simultaneously, 

calcitonin causes cAMP production and increase of cytosolic calcium in the osteoclast 

(Suda et al., 1997; Inzerillo et al., 2002) (c.f. Figure 1.5, page 13).  

 

Calcitonin and α-CGRP knockout mice (Calca-/-) showed high bone mass phenotype 

due to increased bone formation rate. However, in mice deficient solely for the α-CGRP 

peptide, α-CGRP-/- mice, bone formation rate was decreased (Hoff et al., 2002; Huebner 

et al., 2006). In view of this it has been suggested that calcitonin is an inhibitor of bone 

formation rather than of bone resorption. However, this is still under investigation. 

 
A summary list of the above-mentioned hormones and cytokines, together with some 

additional systemic and local factors regulating bone remodelling, is shown in Table 1.1.  
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↑ or ↓↑PGE2
↔↑PDGF
↑↑IGF-1

↑ or ↓↑TGF-β
↓↔IFN-γ
↑↔IL-18
↑↔IL-15
↑↔IL-6
↑↓IL-1β
↑↓TNF-α
↑↔M-CSF
↓↔OPG
↑↔RANKL

Local cytokines and growth factors

↑ or ↔↓***Glucocorticoids
↓↓**Calcitonin
↓↑Sex hormones (Oestrogen/Androgen)
↑↑Vitamin D
↑↑*PTH

Systemic hormones

BONE RESORPTIONBONE FORMATIONHORMONE/CYTOKINE

↑ or ↓↑PGE2
↔↑PDGF
↑↑IGF-1

↑ or ↓↑TGF-β
↓↔IFN-γ
↑↔IL-18
↑↔IL-15
↑↔IL-6
↑↓IL-1β
↑↓TNF-α
↑↔M-CSF
↓↔OPG
↑↔RANKL

Local cytokines and growth factors

↑ or ↔↓***Glucocorticoids
↓↓**Calcitonin
↓↑Sex hormones (Oestrogen/Androgen)
↑↑Vitamin D
↑↑*PTH

Systemic hormones

BONE RESORPTIONBONE FORMATIONHORMONE/CYTOKINE

Table 1.1 Systemic and local factors regulating bone remodelling. For simplicity other 
growth factors are excluded as these mediators have complex actions on both bone resorption 
and bone formation. * PTH has an anabolic effect when given intermittently at low doses. ** 
The effect of calcitonin on bone formation is still under investigation. *** Long-term 
treatment with glucocorticoids has catabolic effects. See text for references. ↑, increase; ↓,
decrease; ↔, unchanged.
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1.5 BONE DISEASES 
 
1.5.1 Osteoporosis 
 
Uncoupling of bone formation from bone resorption in favour of resorption, leads to a 

reduction of bone mass and a deterioration in bone microarchitecture with a consequent 

increase in bone fragility and susceptibility to fractures. These are characteristics of 

osteoporosis, a common bone metabolic disorder [reviewed in (Karasik, 2008)]. 

Osteoporotic fractures are estimated to affect 75 million people across Europe, the US, 

and Japan (Karasik, 2008). 

 

Bone turnover during menopause is accelerated and there is an imbalance between the 

processes of bone resorption and formation, with net bone loss (Manolagas et al., 2002; 

Bonnick, 2006; Karasik, 2008). The most important factor for the development of 

osteoporosis at menopause is the loss of ovarian function, which leads to oestrogen 

deficiency (Manolagas et al., 2002). Oestrogen deficiency in post-menopausal women 

promotes the expression of IL-1β and TNF-α in bone marrow cells and monocytes 

(Pacifici, 1999), and IL-6 in stromal cells and osteoblasts (Girasole et al., 1992). These 

cytokines increase RANKL expression and stimulate bone resorption. A contributing 

factor to increased bone resorption during menopause is the reduced expression of TGF-

β which has anti-proliferative and pro-apoptotic effects in osteoclasts (Hughes et al., 

1996; Chenu et al., 1988). 

 

The effect of oestrogen on osteoblasts is less-well-understood, but it has been suggested 

that during oestrogen deficiency there is decreased osteoblast differentiation due to 

reduced-expression of TGF-β (Oursler et al., 1991) and IGF-1 (Ernst et al., 1989) and a 

decreased osteoblast function due to lower expression of COLIA1 (Ernst et al., 1989). 

Moreover, it has been observed that oestrogen can decrease osteoblast apoptosis and 

hence increase osteoblast lifespan (Manolagas, 2000). In humans, oestradiol implants 
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increased bone density (Studd et al., 1994) and also in rats, 17β oestradiol increased 

mass markedly (Tobias et al., 1993b), confirming oestrogen’s anabolic function.  

 

The most common form of secondary osteoporosis is glucocorticoid-induced 

osteoporosis (Mazziotti et al., 2006). Glucocorticoids are widely prescribed for 

inflammatory disorders including rheumatoid arthritis, asthma and inflammatory bowel 

disease [reviewed in (Mazziotti et al., 2006)]. Although glucocorticoids might 

ameliorate bone loss by suppressing inflammation in rheumatoid arthritis, they also have 

direct negative effects on bone which predispose to osteoporosis (Di Munno and Delle, 

2008). 

 

At a cellular level, glucocorticoids act directly to inhibit osteoblast function. At 

pharmacological concentrations, glucocorticoids divert the differentiation of MSCs 

towards the adipogenic lineage (Canalis et al., 2007b) and inhibit osteoblast cell 

differentiation by reducing BMP-2 expression (Luppen et al., 2003). At a functional 

level, glucocorticoids inhibit the synthesis of type I collagen by osteoblasts, by 

decreasing the amount of bone matrix that is available for mineralisation (Canalis, 

2005). The effects of glucocorticoids on osteoclasts are contradictory but it has been 

reported that glucocorticoids increase expression of RANKL and decrease expression of 

OPG in stromal and osteoblastic cells (Hofbauer et al., 1999a), contributing to the 

excessive bone loss that follows long-term glucocorticoid treatment. Other extraskeletal 

effects of glucocorticoids that may affect bone metabolism are calcium malabsorption 

from the gastrointestinal tract and suppression on gonadal function in men and women 

[reviewed in (Mazziotti et al., 2006)].  

 

Osteoporosis in men has also been recognised as an important public health issue 

although for a long time it was neglected and not considered to be a major threat for 

men’s mobility or independence. Osteoporosis in men is often due to secondary causes, 

such as corticosteroid use, excessive alcohol use, and hypogonadism (Ebeling, 1998; 
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Fink et al., 2006). Trabecular bone loss in men occurs at an early stage and is associated 

with changes in IGF-1, whereas cortical bone loss occurs later and is linked to decreased 

bioavailability of testosterone and oestrogen (Riggs et al., 2008). 

 

Increases in life expectancy have led to the ageing of world’s population. Taking into 

consideration that fracture risk increases with age, it is predicted that the frequency of 

osteoporotic hip fractures will increase significantly on a global basis in the years to 

come (Karasik, 2008).    

 

1.5.2 Rheumatoid arthritis 
 
Rheumatoid arthritis is a chronic, inflammatory, autoimmune disorder. The pathogenesis 

of rheumatoid arthritis remains unknown but T cells, B cells, macrophages, osteoclasts, 

neutrophils and synovial fibroblasts have been recognised as key participants in this 

disease [reviewed in (Firestein, 2003)]. In rheumatoid arthritis patients, these cells 

accumulate in synovium and stimulate the release of degradative enzymes such as 

MMPs, serine proteases, and aggrecanases which digest the extracellular matrix and 

destroy the articular structure (Andersson et al., 2008; Firestein, 2003). Moreover, many 

pro-inflammatory cytokines are produced within the rheumatoid joint, such as TNF-α, 

IL-1, IL-6, IL-15, IL-17, IL-18 and granulocyte-macrophage colony stimulating factor 

(GM-CSF) (Firestein et al., 1990) that maintain the inflammation and stimulate 

additional cytokine and MMP production from synovial cells.  

 

Various signal transduction pathways, including NF-κB and mitogen activated protein 

kinase (MAPK), are activated in rheumatoid arthritis synovium, and this contributes to 

inflammation by up-regulating the cytokine and MMP production. For this reason, these 

pathways are potential therapeutic targets in rheumatoid arthritis.  
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1.5.3 Osteoarthritis 
 
Osteoarthritis (OA) is a chronic joint disease that leads to the destruction of articular 

cartilage and bone (Samuels et al., 2008). OA risk factors include mechanical stress, 

associated with pathologies such as obesity, joint misalignment or trauma, as well as 

biochemical abnormalities, such as genetic predisposition (Samuels et al., 2008). 

 

There are varying degrees of synovial inflammation in OA patients (Doherty, 1999), 

often mild compared to that observed in rheumatoid arthritis, and confined to areas 

adjacent to pathologically damaged cartilage and bone (Samuels et al., 2008). In such 

areas, destruction of the articular surfaces is mediated by a variety of cytokines such as 

TNF-α and IL-1β, which in turn increase the level of production of proteases including 

MMPs, and other inflammatory mediators such as IL-6, prostaglandin E2 (PGE2) and 

nitric oxide (NO) (Samuels et al., 2008). Recently, it has been shown that MAPK, AP-1 

and NF-κB signalling pathways are involved in the up-regulation of PGE2 and NO 

release from chondrocytes cultured with IL-1β (Chowdhury et al., 2008). 

 

Current studies focus on the development of biomarkers that could be used as tools to 

understand the pathophysiologic process of cartilage loss, to characterise the status of 

the disease or its prognosis, and to measure treatment response (Felson and Lohmander, 

2009).  

 

1.5.4 Cancer-associated bone disease 
 
Bone cancer is caused by an abnormal and uncontrolled growth of cells within the bone. 

Primary bone cancers originate in the bone, such as multiple myeloma, whereas 

secondary bone tumours include metastatic tumours which have spread from other 

organs, such as the breast and prostate (Roodman, 2004). 
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Multiple myeloma is a neoplasm of marrow origin and is characterised by the 

development of a destructive osteolytic bone disease. Multiple myeloma is associated 

with lytic lesions, bone pain, pathological fractures on the long bones, osteoporosis and 

compression fractures in the spine [reviewed in (Terpos et al., 2007; Edwards et al., 

2008)]. 

 

The principle mechanism responsible for osteolytic lesions in multiple myeloma is 

increased osteoclastic bone resorption and decreased bone formation (Edwards et al., 

2008). Myeloma cells secrete local inflammatory factors such as TNF-α (Lichtenstein et 

al., 1989), IL-1 (Lichtenstein et al., 1989), IL-3 (Lee et al., 2004) and IL-6 (Kawano et 

al., 1988), which act directly on osteoclasts, increasing their recruitment and activation. 

Osteoclast activity in patients is further stimulated by an increase in RANKL expression 

by stromal cells (Pearse et al., 2001) and malignant cells (Farrugia et al., 2003). 

Myeloma cells also inhibit the expression of OPG from stromal cells of patients, which 

favours bone resorption (Pearse et al., 2001). 

 

Myeloma cells have also been shown to suppress bone formation [reviewed in (Terpos et 

al., 2007)]. Studies reported that serum levels of Dickkopf (Dkk1), one of the inhibitors 

of Wnt/β-Catenin signalling pathway, are increased in patients with multiple myeloma 

(Politou et al., 2006), and that Dkk1 from human myeloma cells inhibits the 

differentiation of osteoblast precursors in vitro (Tian et al., 2003). Most recently, it has 

been shown that treatment of multiple myeloma-bearing mice with anti-Dkk1 antibody, 

inhibited Dkk1 and prevented the suppression of bone formation, which in turn protected 

against osteolytic bone disease (Heath et al., 2009). These data offer a potential 

therapeutic approach for the treatment of myeloma.    

 

While a considerable number of malignant tumours arise from bone and cartilage, the 

most common cancers with adverse skeletal effects are bone metastases from breast 

cancer and prostate cancer (Coleman, 2008). 
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According to the radiographic appearance of the lesions, bone metastases are referred to 

as osteolytic, ostoblastic or mixed (Coleman, 2008). Skeletal metastases resulting from 

breast cancer are most often osteolytic (Rose and Siegel, 2006). Once in bone, breast-

cancer cells produce factors, such as PTHrP, IL-6, PGE2, TNF-α and M-CSF, which 

increase the expression of RANKL that directly induces osteoclast formation and 

function. The enhanced resorption releases factors including TGF-β, IGFs, FGFs, PDGF 

and BMP which stimulate tumour growth and enhance the production of PTHrP by 

tumour cells leading to further bone destruction (Roodman, 2004). Such local 

interactions between bone and breast-cancer cells result in a ‘vicious circle’ that 

underlies the development of skeletal osteolytic metastases (Roodman, 2004).  

 

Skeletal metastases from prostate cancer tend to have an osteoblastic phenotype 

(Logothetis and Lin, 2005). Prostate cancer cells affect bone homeostasis by secreting 

factors such as BMP2, TGF-α, IGF, PDGF, VEGF, endothelin-1 (ET1), the bone 

metastasis factor MDA-BF-1, urokinase-type plasminogen activator (uPA) and prostate-

specific antigen (PSA) (Logothetis and Lin, 2005). These factors support osteoblast 

proliferation and promote matrix deposition, resulting in increased numbers of irregular 

bone trabeculae (Roodman, 2004). In addition to factors that enhance bone 

mineralisation, prostate cancer cells produce factors that promote osteoclastogenesis and 

bone resorption, such as RANKL (Zhang et al., 2001). This evidence emphasises the 

role of osteoclast activity in the establishment of bone metastases, even in typical 

osteoblastic metastases developed from prostate cancer [reviewed in (Keller and Brown, 

2004; Coleman, 2006)]. 

 

1.5.5 Paget’s disease of bone 
 
Paget’s disease of bone (PDB) is a chronic condition that is characterised by focal areas 

of increased and disorganised turnover, causing bones to expand and become deformed. 
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These abnormalities are accompanied by bone pain, pathological fractures and 

osteoarthritis [reviewed in (van Staa et al., 2002; Ralston, 2008)].  

 

Pagetic bone lesions have increased numbers of osteoclasts, containing 3 to 5 times 

more nuclei than normal osteoclasts and they also contain characteristic intranuclear 

inclusion bodies [reviewed in (Reddy et al., 2001; Ralston, 2008)]. In response to the 

increased bone resorption, osteoblasts are recruited to increase bone formation. 

However, due to the rapidity of this process new collagen fibres are laid down in a 

disorganised manner creating a mosaic pattern in bone, the so-called woven bone, which 

is mechanically weak. 

 

The cause of PDB remains incompletely understood. The presence of inclusion bodies 

that resembled viral nucleocapsids in pagetic osteoclasts, led to the hypothesis that PDB 

could be triggered by a paramyxovirus infection (Rebel et al., 1974). However, the 

results of experimental studies regarding this remain conflicting (Ralston et al., 2008). 

Other environmental factors that could potentially contribute to PDB are low dietary 

calcium intake or vitamin D deficiency (Ralston et al., 2008). 

 

Family studies have demonstrated that genetic factors play a key role in PDB. Key 

susceptibility genes include TNFRSF11A, which encodes RANK (Hughes et al., 2000; 

Whyte and Hughes, 2002); TNFRSF11B, which encodes OPG (Cundy et al., 2002; 

Daroszewska et al., 2004; Wuyts et al., 2001); VCP, which encodes p97 (Watts et al., 

2004; Lucas et al., 2006); and SQSTM1 which encodes p62 (Laurin et al., 2002; Hocking 

et al., 2002). All these genes are involved in the RANK/NF-κB signalling pathway 

which regulates the formation, survival and activity of osteoclasts [reviewed in (Soysa 

and Alles, 2009)]. 
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1.6 TREATMENTS FOR BONE DISEASES 
 
The prerequisites for treatment and prevention of bone disease include general lifestyle 

measures, non-pharmacologic and pharmacologic therapy. Sufficient calcium and 

vitamin D intake together with physical activity can help to diminish the impact of 

menopause and age on bone mass (Papapoulos and Makras, 2008). Non-

pharmacological interventions aim to prevent or reduce the impact of falls. Finally, 

pharmacological therapy targets bone directly, affecting osteoblasts, osteoclasts or both 

cell types (Blahos, 2007; Papapoulos and Makras, 2008). Inhibitors of bone resorption 

and turnover include bisphosphonates, oestrogens and selective oestrogen-receptor 

modulators, whereas stimulators of bone formation include the parathyroid hormone 

(Papapoulos and Makras, 2008). Other agents such as strontium ranelate act by 

mechanisms that are incompletely defined (Papapoulos and Makras, 2008). 

 

1.6.1 Bisphosphonates 
 
Bisphosphonates are analogues of pyrophosphate, an endogenous substrate that prevents 

calcification, where the oxygen atom of pyrophosphate has been replaced by a carbon 

atom to which are attached various side chains [reviewed in (Coleman, 2008; 

Redzepovic et al., 2008)]. Different side chains change the potency and side effect 

profile of the compound.  Clodronate and etidronate contain simple alkyl side chains and 

are known as first-generation bisphosphonates. Nitrogen-containing bisphosphonates 

such as alendronate and pamidronate are called aminobisphosphonates, and are referred 

to as second-generation bisphosphonates. Aminobisphosphonates with a cyclic side-

chain such as risedronate, zoledronate and ibandronate are known as third-generation 

bisphosphonates (Blahos, 2007; Rodan and Fleisch, 1996).  

 

All bisphosphonates bind strongly to hydroxyapatite, and especially at sites of high bone 

turnover (Jung et al., 1973). Bisphosphonates are then released and internalised by the 

resorbing osteoclasts. Once within the osteoclast, bisphosphonates disrupt a number of 
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biochemical processes necessary for osteoclast function and typically result in cell 

apoptosis [reviewed in (Rogers, 2003; Rodan and Fleisch, 1996)]. 

 

At the tissue level, bisphosphonates reduce bone turnover by inhibiting bone resorption. 

At the cellular level, the effects of bisphosphonates are greater in osteoclasts. They 

inhibit osteoclast recruitment and activity on the bone surface or shorten osteoclasts’ life 

span. At the molecular level, different bisphosphonates have different mechanisms of 

action [reviewed in (Rodan and Fleisch, 1996)]. Nitrogen-containing bisphosphonates 

inhibit farnesyl disphosphatase and other enzymes of the mevalonate pathway, whereas 

non-nitrogen-containing bisphosphonates induce osteoclast apoptosis through the 

generation of cytotoxic ATP analogues [reviewed in (Roelofs et al., 2006)].  

 

Bisphosphonates have become the standard care for the management and treatment of 

post-menopausal osteoporosis and for the prevention of skeletal complications 

associated with bone metastasis (Coleman, 2008). However, a major limiting factor of 

bisphosphonates is their potential to cause adverse effects. Gastrointestinal upset is the 

most common complain, with oesophagitis being a potentially serious side effect of 

bisphosphonate therapy [reviewed in (Blahos, 2007)]. Renal abnormalities have been 

reported with intravenous administration of high doses of bisphosphonates [reviewed in 

(Diel et al., 2007)]. Osteonecrosis of the jaw (ONJ) is an extremely rare adverse event 

related to bisphosphonate therapy. The relationship between bisphosphonate use and 

ONJ remains uncertain although it is believed that the over-suppression of bone turnover 

in the jaw and inhibition of angiogenesis by high doses of aminobisphosphonates are 

possible contributing factors [reviewed in (Coleman, 2008)].  

 

Although it has been reported that bisphosphonates stimulate bone nodule formation in 

vitro and promote differentiation of MSCs into osteoblasts (Giuliani et al., 1998; Duque 

and Rivas, 2007), there is evidence suggesting that some bisphosphonates inhibit bone 

formation (Tobias et al., 1993a) and blunt the anabolic effects of PTH (Delmas et al., 
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1995; Ettinger et al., 2004). In agreement with this, recent studies from our group and 

others have also shown that nitrogen-containing bisphosphonates cause osteoblast 

apoptosis and inhibit bone nodule formation in vitro (Idris et al., 2008a; Orriss et al., 

2009). This evidence is a cause for a potential concern for the long-term use of 

bisphosphonates in the management of osteoporosis.  

 

1.6.2 Hormone replacement therapy 
 
Hormone replacement therapy (HRT) is used for the management of problems and 

symptoms associated with oestrogen deficiency, such as vasomotor symptoms, 

urogenital symptoms such as vaginal dryness, osteoporosis and fractures. HRT refers to 

the application of oestrogen-alone therapy or oestrogen combined with progesterone 

therapy (Blahos, 2007). 

 

Oestrogen has been used for a number of years in the prevention and treatment of post-

menopausal osteoporosis. The effectiveness of this therapy comes from the fact that 

oestrogen binds to and activates oestrogen receptor α and β, expressed in both osteoclast 

and osteoblasts, thereby regulating bone turnover (Lerner, 2006). Activation of 

oestrogen receptors in osteoblasts inhibits the production of cytokines that stimulate 

osteoclast formation, whereas activation of oestrogen receptors in terminally 

differentiated osteoclasts, decreases bone-resorbing activity and increases apoptosis 

(Lerner, 2006). One of the most commonly used oestrogens in HRT is 17β oestradiol 

(Rodan and Martin, 2000). Studies have shown that 5 years of HRT decreases the risk of 

vertebral fractures by 50-80% and the risk of hip, wrist and other fractures by 25% 

(Blahos, 2007).  

 

However, oestrogen alone is also associated with an increased risk of breast cancer, and 

with an increased risk of uterine cancer in women that have not undergone hysterectomy 

or progesterone therapy (Blahos, 2007). Furthermore, the application of 
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oestrogen/progesterone combination therapy consistently demonstrated an increased risk 

of stroke (Grodstein et al., 2000) and venous thromboembolism (Miller et al., 2002). 

 

1.6.3 Selective oestrogen-receptor modulators 
 
Oestrogen receptors can also be activated by selective oestrogen-receptor modulators 

(SERMs). These compounds act as partial agonists at oestrogen receptors and inhibit 

bone resorption (Oseni et al., 2008). Although these compounds retain some of the 

beneficial effects of HRT, they act as antagonists of oestrogen receptors in other organs, 

such as the breast, functioning as anti-cancer agents (Oseni et al., 2008). 

 

Tamoxifen is an oestrogen antagonist in the breast, which is widely used for the 

treatment of breast cancer and for the prevention of osteoporosis in high risk pre-

menopausal women (Jordan, 2003). However, in the uterus tamoxifen acts as an agonist 

and increases the risk of endometrial cancer in post-menopausal women (Jordan and 

Morrow, 1994). The desire to find other SERMs that have a similar chemopreventive 

profile to tamoxifen but with a less undesirable side effect profile, led to human trials 

with the compound raloxifene (Black et al., 1983). Raloxifene is a polyphenol and is 

prescribed for both prevention and treatment of osteoporosis (Meier, 1998). It has been 

shown to have oestrogen agonist effects on bone, and oestrogen antagonistic effects on 

breast and endometrium, eliminating the associated cancer risk not only to the breast but 

also in the endometrium (Blahos, 2007).  

 

Recently, it has been discovered that naturally occurring compounds known as 

phytoestrogens have similar effects to SERMs. These compounds are plant derivatives, 

but bear structural similarity to 17β oestradiol and act in a similar manner (Oseni et al., 

2008). 
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1.6.4 Calcitonin 
 
Calcitonin was discovered in the early 1960’s, as a systemic hormone that lowers 

calcium level (COPP and CHENEY, 1962). A decade later it was developed as a drug 

for the treatment of Paget’s disease of bone (Douglas et al., 1981). Direct effects of 

calcitonin on osteoclast function were demonstrated later, in the early 1980’s [reviewed 

in (Zaidi et al., 2002)]. During these forty years, calcitonin from pig, salmon and human, 

has been used in treating Paget’s disease of bone, osteoporosis, painful vertebral 

fractures and hypercalcaemia (Zaidi et al., 2002). 
 

Parenteral administration of calcitonin to patients with Paget's disease has been reported 

to be effective in relieving bone pain associated with the disease (Reginster and Lecart, 

1995). Intramuscular injection of calcitonin significantly reduces bone turnover in 

patients with osteoporosis (Gonzalez et al., 1986). However, injectable formulations of 

calcitonin are effective for less than 24 hours, they cause systemic side effects and may 

be unpleasant and inconvenient for the patient (Zaidi et al., 2002). Therefore, alternative 

routes of calcitonin delivery have been explored, such as intranasal administration. The 

efficacy of intranasal calcitonin formulation has been well-documented and confirmed 

by meta-analysis of randomized control trials (Cardona and Pastor, 1997). However, 

others proposed that intranasal administration of calcitonin produces modest effects at 

best, especially when compared with the newer potent bisphosphonates (Zaidi et al., 

2002). 

 

1.6.5 Parathyroid hormone 
 
PTH has been introduced into clinical practice for the treatment of severe osteoporosis 

as an anabolic agent. Unlike agents that prevent bone loss by inhibiting bone turnover, 

PTH enhances bone mass through stimulation of bone formation during the bone 

remodelling cycle (Canalis et al., 2007a; Girotra et al., 2006). The difference in kinetic 

of changes between biochemical markers of bone turnover with PTH treatment, 
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demonstrated that there is an ‘anabolic window’ when PTH affects bone formation to a 

greater extent than it stimulates bone resorption. During this period the actions of PTH 

are believed to be maximally anabolic (Rubin and Bilezikian, 2003). 

 

PTH is currently provided for clinical use in two forms. The recombinant human PTH(1-

34) fragment known as teriparatide, available throughout most of the world, and the full-

length molecule, human recombinant PTH(1-84), available only in Europe (Girotra et 

al., 2006).  

 

The effects of teriparatide on bone metabolism have been studied in post-menopausal 

women and men with osteoporosis. Subcutaneous daily injections of teriparatide, 

increased vertebral and femoral BMD and reduced the incidence of fractures at vertebral 

and non-vertebral sites, over a 21-month period (Neer et al., 2001). Histomorphometric 

analysis of bone-biopsy specimens from patients treated with PTH, displayed increases 

in trabecular bone volume, connectivity, bone microarchitecture and biomechanical 

properties of bone (Dempster et al., 2001). 

 

Discontinuation of PTH leads to a rapid decline in BMD. For this reason, it is 

recommended that an anti-resorptive agent, is administered after treatment with 

teriparatide, in order to maintain the densitometric gains achieved with PTH (Black et 

al., 2005). 

 

Concomitant use of PTH and anti-resorptive agents, such as OPG and alendronate, has 

been reported to augment the anabolic action of PTH in ovariectomised mice 

(Samadfam et al., 2007). Others however, reported that co-treatment of teriparatide with 

alendronate in human, rather inhibits the anabolic effects of PTH (Finkelstein et al., 

2003; Ettinger et al., 2004). Nevertheless, the combination therapy using teriparatide and 

raloxifene in human (Deal et al., 2005; Ettinger et al., 2004) or teriparatide and 

calcitonin in ovariectomised rats (Washimi et al., 2007), was reported to be associated 
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with increased improvement in BMD and better preservation of the trabecular 

microarchitecture than single-drug therapy using teriparatide alone (Deal et al., 2005; 

Ettinger et al., 2004; Washimi et al., 2007). Moreover, biphenyl carboxylic acid 

derivatives, such as ABD350, have been recently identified by our group, as novel anti-

resorptive agents that prevent ovariectomy-induced bone loss in vivo, without impairing 

the anabolic response to PTH (Idris et al., 2009).   

 

Possible adverse events with teriparatide include mild hypercalcaemia, whereas with 

full-length PTH a higher incidence of hypercalcaemia and hypercalciuria have been 

reported (Canalis et al., 2007a). 

 

1.6.6 Strontium ranelate  
 
Strontium ranelate is a novel therapy for the treatment of post-menopausal osteoporosis, 

which is currently approved only in Europe. Under the drug name Protelos, strontium 

ranelate seems to have a unique mechanism of action. On the basis of biochemical 

marker data it has been suggested to increase bone formation and reduce bone resorption 

(Canalis et al., 2007a). The anabolic and anti-resorptive actions of strontium ranelate 

have been reported particularly in preclinical models (Marie, 2006). In clinical trials 

strontium ranelate, reduced vertebral and non-vertebral fractures and increased BMD 

(Meunier et al., 2004; Reginster et al., 2005). However, bone-biopsy specimens from 

these patients treated with strontium ranelate showed a reduction in bone resorption but 

no evidence of increased bone formation. Strontium ranelate has side effects such as 

nausea, diarrhoea and headache, but it has also been associated with a slight increase in 

venous thrombosis (Canalis et al., 2007a). Moreover, it has been suggested that 

strontium ranelate can compete and replace calcium, particularly if the skeleton is 

deprived of adequate calcium intake (Fuchs et al., 2008). In keeping with this, high 

doses of strontium have been found to reduce the amount of calcium in bone and lead to 

hypocalcaemia (Morohashi et al., 1994) and rickets (Ozgur et al., 1996). 
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1.7 NEUROGENIC AND SYSTEMIC REGULATORS OF BONE 
REMODELLING 

 
Apart from local factors and systemic hormones produced by peripheral endocrine 

glands, which together regulate bone mass through cell-autonomous effects (c.f. section 

1.4, page 25), there are also molecules that modulate bone turnover through a central 

relay. The existence of such neurogenic factors has introduced the concept of a ‘neural 

arm’ regulating bone remodelling along with bone resorption and bone formation 

(Elefteriou, 2008).    

 
1.7.1 Glutamate  
 
Glutamate is one of the 20 amino acids commonly found in animal protein and the 

primary excitatory neuromediator in the central and peripheral nervous system (Mayer 

and Westbrook, 1987). Studies showing the presence of glutamate-nerve processes in 

bone (Serre et al., 1999), as well as the N-methyl-d-aspartate (NMDA) receptor subtype 

of glutamate receptors in osteoblasts and osteoclasts (Chenu et al., 1998; Laketic-

Ljubojevic et al., 1999), suggested that glutamate might be involved in the regulation of 

bone homeostasis as a neurotransmitter. This hypothesis was supported by later studies 

showing that glutamate is involved in osteoclastic differentiation, possibly by activating 

the NF-κB pathway, through the NMDA glutamate receptors expressed on osteoclast 

precursors (Merle et al., 2003). Glutamate signalling has also been reported to be 

necessary for normal osteoblast function, since blockade of glutamate receptors in 

primary osteoblast cultures inhibited bone formation [reviewed in (Taylor, 2002)].  

 

1.7.2 Nitric oxide 
 
Nitric oxide (NO) is a signalling molecule produced by NO synthase (NOS) and plays 

an important role in many pathological and physiological processes (Hou et al., 1999). 

All isoforms of NOS, the endothelial isoform (eNOS), the inducible isoform (iNOS) and 
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the neuronal isoform (nNOS), are important regulators of bone cell function (van't Hof 

and Ralston, 2001). 

 

The nNOS isoform is highly expressed in the CNS, but even so mice with targeted 

inactivation of the nNOS gene have increased bone mass due to decreased bone turnover 

(van't Hof et al., 2004). nNOS expression in bone cells is very low and hence its local 

effect on bone cell activity seems unlikely (van't Hof et al., 2004). This led to the 

speculation that nNOS isoform might influence bone metabolism by a neurogenic relay. 

However, the exact mechanism by which nNOS regulates bone mass and bone turnover 

remains unclear. 

 

1.7.3 Thyroid stimulating hormone and follicle stimulating hormone 
 
Thyroid stimulating hormone (TSH) and follicle stimulating hormone (FSH) are 

systemic hormones released from a central endocrine gland and have been reported to 

exert a direct effect on bone metabolism (Blair and Zaidi, 2006; Abe et al., 2003). 

 

TSH is a peptide hormone, released from the thyrotrope cells in the pituitary gland. TSH 

has been reported to have direct effects on bone turnover. It was shown that high TSH 

levels suppress osteoclast formation and survival by attenuating JNK/c-jun and NF-κB 

signalling. Furthermore, TSH inhibits osteoblast differentiation and type 1 collagen 

expression by down-regulating Wnt signalling (Abe et al., 2003). The effects of TSH are 

mediated via the TSH receptor (TSHR) found on osteoblast and osteoclast precursors. 

This explains why a 50% reduction in TSHR expression produces profound osteoporosis 

together with focal osteosclerosis, in TSHR+/- mice (Abe et al., 2003). Controversial 

studies have shown that the hypothalamic-pituitary-thyroid axis regulates skeletal 

development via thyroid hormone receptor α (Bassett et al., 2007) or thyroid hormone 

excess (Bassett and Williams, 2008; Bassett et al., 2008) and not via TSH circulating 
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levels. Nonetheless, additional studies are required to distinguish independent effects of 

thyroid hormones and TSH on bone turnover.  

 

Follicle stimulating hormone (FSH) is a hormone synthesised and secreted by 

gonadotropes in the anterior pituitary gland. Elevated serum levels of FSH have been 

traditionally used as an early indicator of menopause, because high circulating levels of 

FSH go in tandem with low levels of oestrogen [reviewed in (Cromer, 2008)]. Sun and 

colleagues identified FSH receptors (FSHR) on osteoclasts and their precursors that 

activate MAPK kinase/extracellular regulated kinase (MEK/ERK), NF-κB, and Akt 

signalling pathways, enhancing osteoclast formation and function in response to 

stimulation with FSH (Sun et al., 2006). Furthermore, they showed that FSH is required 

for hypogonadal bone loss, since FSHR null mice do not have bone loss despite severe 

hypogonadism (Sun et al., 2006). Goltzman's group however, found that secretory 

ovarian products, mainly oestrogen, can alter bone homeostasis independent of FSH 

action (Gao et al., 2007). The proposal that FSH is required for hypogonadal bone loss 

was also challenged by Seibel and colleagues who found that sex steroids alone, and not 

FSH, influence bone mass (Seibel et al., 2006).  

 

1.7.4 Neuropeptide Y 
 
Neuropeptide Y (NPY) is a neurotransmitter peptide, expressed widely in the CNS and 

peripheral nervous systems (Benarroch, 2009). In human, NPY acts via five known G 

protein-coupled receptors referred to as Y receptors (Y1, Y2, Y3, Y4, and Y5) all of which 

are mainly expressed in the hypothalamus (Benarroch, 2009). Germline deletion of Y2 

receptor and hypothalamus-specific Y2 receptor deletion in mice led to increased 

osteoblast activity and a high bone mass phenotype, suggesting that Y2 receptors are 

involved in the central regulation of bone metabolism by inhibiting bone formation and 

without affecting bone resorption (Baldock et al., 2002). Further in vitro studies reported 

that absence of Y2 receptor increases bone formation by increasing mesenchymal 
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progenitor numbers and down-regulating Y1 receptor mRNA in stromal cells and bone 

tissue (Lundberg et al., 2007). A complementary report explained that Y1 receptors are 

also expressed in osteoblasts, they interact with Y2 receptors and inhibit bone formation 

with potentially direct effects on bone tissue (Baldock et al., 2007). 

 

1.7.5 Leptin 
 
Leptin has also been identified as a regulator of bone mass acting through a central relay 

[reviewed in (Takeda and Karsenty, 2008)]. Leptin is a hormone mainly expressed and 

secreted by white fat cells and is part of a homeostatic loop responsible for controlling 

food intake and energy expenditure [reviewed in (Whitfield, 2001)]. Once delivered in 

the brain, leptin binds at the satiety centre of the hypothalamus and reduces appetite. 

There are six isoforms of leptin receptors (ObRa-f) and are mainly located in the 

hypothalamus, although one of these isoforms, ObRb, is also found in other cells 

including osteoblasts [reviewed in (Petzel, 2007)].  

 

Leptin knockout mice showed profound, early onset obesity, decreased energy 

expenditure, insulin resistance and hypogonadism (Zhang et al., 1994; Strobel et al., 

1998). Considering that gonadal failure is a major cause of bone loss leading to 

osteoporosis (Riggs and Melton, III, 1986), it was hypothesised that bone mass, gonadal 

function and body weight are players in a common pathway, where leptin could play a 

crucial role. 

 

This hypothesis was tested by studying the bone phenotype of leptin-deficient and leptin 

receptor-deficient mice (Ducy et al., 2000a). Despite the fact that both mutant mice 

models showed hypogonadism and hypercortisolism, two conditions that are expected to 

favour osteoporosis, the resulting phenotype in both mutant models was high bone mass 

due to increased bone formation (Ducy et al., 2000a). These data together with the fact 

that specific deletion of leptin receptor gene in osteoblasts did not affect bone 
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remodelling or bone mass (meaning that leptin does not affect osteoblasts directly) (Shi 

et al., 2008), established the fact that leptin is a physiological regulator of bone mass 

acting through a neuronal pathway. 

 

Recent studies have shown that the sympathetic nervous system (SNS) mediates leptin 

inhibition of bone formation, via β2-adrenergic receptors (Adrb2), the only adrenergic 

receptor expressed in osteoblasts (Takeda et al., 2002). The mechanism whereby this 

anti-osteogenic function occurs is by inhibition of osteoblast proliferation and function 

(Takeda et al., 2002; Elefteriou et al., 2005). In addition, it has been suggested that bone 

resorption is also controlled by leptin-regulated neural pathways. Independent studies 

showed that sympathetic Adrb2 signalling promotes osteoclast differentiation (Elefteriou 

et al., 2005; Aitken et al., 2009) by increasing the expression of RANKL in osteoblast 

progenitor cells (Elefteriou et al., 2005).  

 

An alternative leptin target in the hypothalamus are the endocannabinoids (Di, V et al., 

2001). Endocannabinoids and type 1 cannabinoid receptors (CNR1) are known to be 

expressed in the hypothalamus (Gonzalez et al., 1999) and the effect of cannabinoids on 

food intake is also well-established [reviewed in (Mechoulam et al., 1998)]. In view of 

these studies, Di Marzo et al. showed that hypothalamic endocannabinoids are regulated 

by leptin signalling and also demonstrated that deletion of CNR1 in mice reduced food 

intake (Di, V et al., 2001). These findings together suggested that food intake is 

stimulated by the endocannabinoid system possibly under the control of leptin (Di, V et 

al., 2001). An obvious hypothesis bearing in mind these studies was that 

endocannabinoids and their receptors might also be implicated in the regulation of bone 

remodelling. 
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1.8 THE ENDOCANNABINOID SYSTEM 
 
Several hypotheses were explored as to the mechanisms by which endocannabinoids 

exert their physiological effects in the CNS. It was suggested that endocannabinoids act 

via prostaglandin receptors (Milne, Jr. and Johnson, 1981), secretin receptors (Roth et 

al., 1984), or α-adrenergic and muscarinic cholinergic receptors (Howlett, 1984). The 

first clue to the likely mechanism of cannabinoid action came from the observation that 

cannabinoids decreased prostaglandin-induced cAMP in neuroblastoma cells (Milne, Jr. 

and Johnson, 1981). Then using membrane preparations from neuroblastoma cells it was 

shown that pertussis toxin blocked cannabimimetic responses by attenuating the 

inhibition of adenylate cyclase (Howlett, 1985; Howlett et al., 1986). Knowing that 

pertussis toxin is able to block receptor-mediated inhibition of adenylate cyclase and 

also that it can block enzyme inhibition via a guanine nucleotide-binding protein 

complex (Gi), it seemed logical to propose that the cannabimimetic action requires a 

functional Gi-protein coupled receptor that could be referred to as a ‘cannabinoid 

receptor’. 

 

1.8.1 Cannabinoid receptors 
 
In 1990, Matsuda and colleagues reported the cloning and expression of a cDNA 

encoding for a G protein-coupled receptor (GPCR) that inhibited adenylate cyclase 

activity in a dose-dependent and pertussis toxin-sensitive manner, and also responded to 

psychoactive rather than non-psychoactive cannabinoids (Matsuda et al., 1990). This 

was the cDNA of the brain-abundant cannabinoid receptor that was later known as type 

1 cannabinoid receptor or CNR1.  

 

CNR1 are primarily found on neurones in the brain, spinal chord and peripheral nervous 

system (Pertwee, 1997). Within the CNS, CNR1 distribution is not homogeneous. 

Significant numbers of CNR1 are found in cerebral cortex and hippocampus, where they 

affect cognition and short-term memory, as well as in basal ganglia and cerebellum, 
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affecting motor function and movement (Pertwee, 1997). Although present in lower 

abundance than in CNS, CNR1 is also expressed in spleen, tonsils, immune cells, 

reproductive tissues, gastrointestinal tissues, heart, lung and adrenal gland (Pertwee, 

1997; Schatz et al., 1997). 

 

Additionally there is evidence for the existence of a CNR1 subtype in mammalian tissue. 

A splice variant of CNR1 cDNA from a human lung cDNA library has been isolated 

(Shire et al., 1995). This variant, CNR1A, is predicted to translate into an amino-

terminal modified isoform of CNR1 (Shire et al., 1995), but its mRNA distribution 

pattern is the same as that of CNR1 mRNA (Pertwee, 1997). The full extent to which 

cannabinoid pharmacology is influenced by the presence of cannabinoid CNR1 receptor 

subtype remains to be established. 

 

The clinical application of cannabinoid compounds was rather limited because these 

agents were highly psychoactive and their peripheral effects had an unknown 

mechanism of action. At this point it seemed possible that the peripheral effects of 

cannabinoids were either indirect or mediated via an alternative pathway (Reichman et 

al., 1991; Martin, 1986).  

 

In light of these observations, a novel GPCR was cloned in the early 1990’s from cDNA 

prepared from the human promyelocytic leukemic cell line HL60 (Munro et al., 1993). 

The newly found cDNA clone, named type 2 cannabinoid receptor or CNR2, showed 

only 44% sequence homology with CNR1 but their resemblance in the transmembrane 

region reached 68% (Munro et al., 1993). 

 

CNR2 mRNA is mainly expressed in cells of the immune system, such as B cells, 

natural killer cells, CD8+ cells, monocytes and CD4+ cells (Pertwee, 1997). CNR2 

mRNA, although in far smaller amounts, is also found in thymus gland, bone marrow, 

adrenal gland, heart, lung, prostate gland, uterus, pancreas, ovary and testis (Galiegue et 
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al., 1995). Recent studies have reported that CNR2 is also expressed in cerebellar white 

matter (Nunez et al., 2004; Ashton et al., 2006), in Purkinje neurones (Skaper et al., 

1996) as well as in the vagus nerve in the brainstem (Van Sickle et al., 2005).  

 

1.8.2 Signal transduction pathways associated with cannabinoid receptors 
 
Both cannabinoid receptors are GPCRs and interact with the pertussis toxin-sensitive Gi 

class of G proteins (Pertwee, 1997), which initiate several intracellular responses. 

 

Both receptors share some common signal transduction pathways, including; the 

inhibition of adenylate cyclase leading to a reduction of cAMP (Pertwee, 1997); 

stimulation of MAPK (Bouaboula et al., 1997); activation of protein kinase B 

(PKB)/Akt (Gomez et al., 2000); activation of inwardly rectifying K+ channels (Mackie 

et al., 1995; Ho et al., 1999); and activation of phospholipase C (PLC), which catalyses 

the production of inositol triphosphate (IP3) leading to the release of intracellular Ca2+ 

(Sugiura et al., 1996; Sugiura et al., 1997; Zoratti et al., 2003) (Figure 1.10). 

 

In addition, CNR1 has been shown to affect ion channels. For instance, activation of 

CNR1 inhibits certain types of Ca2+ channels (Caulfield and Brown, 1992; Mackie and 

Hille, 1992; Mackie et al., 1995) and enhances voltage-sensitive outwardly rectifying K+ 

channels (Deadwyler et al., 1993). Other CNR1-induced cellular effects include 

activation of the JNK cascades via a common upstream mechanism (Rueda et al., 2000) 

and ERK (Bouaboula et al., 1997). 
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1.8.3 The endocannabinoids 
 
Initially the term ‘cannabinoid’ was used to describe a group of structurally related 

substances found in the plant Cannabis sativa (Burstein et al., 1995). Among them, the 

only cannabinoid that is both highly psychoactive and present in large amounts, is Δ9-

tetrahydrocannabinol (Δ9-THC) (Dewey, 1986). However, the discovery of the 

cannabinoid receptors raised the possibility that endogenous cannabinoid ligands 

(endocannabinoids) may exist.  

 

Mass spectrometry and nuclear magnetic resonance spectroscopy identified a ligand that 

exhibited competitive behaviour for the binding site of cannabinoid receptors on 

synaptosomal membranes of porcine brain (Devane et al., 1992). This was identified as 

arachidonyl ethanolamide (AEA) (Devane et al., 1992). Shortly after, a second 

endogenous cannabinoid, 2-arachidonyl glycerol (2-AG) was isolated from canine gut 

(Mechoulam et al., 1995). Both endocannabinoids were also considered to be 

eicosanoids since they are metabolites of arachidonic (eicosatetraenoid) acid and their 

biosynthetic pathways are common to other members of the eicosanoid family (Burstein 

and Hunter, 1995). 

 

With the use of gas chromatography – mass spectrometry (GC-MS), endocannabinoids 

have been detected both in central (Schmid et al., 1995; Schmid et al., 1997) and 

peripheral tissues, such as heart, spleen, liver, kidney and testis (Martin et al., 1999; 

Schmid et al., 1997; Goutopoulos and Makriyannis, 2002). Endocannabinoids 

concentrations in blood are very low (Monteleone et al., 2005), and plasma levels of 2-

AG are slightly lower than plasma levels of AEA (Martin et al., 1999).  

 

AEA acts only as a partial cannabinoid receptor agonist, whereas 2-AG is a full 

cannabinoid receptor agonist (Savinainen et al., 2001). Although both endocannabinoids 

exhibit greater affinity for CNR1 than CNR2 (Appendix 4, page 275), 2-AG differs from 
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AEA in exhibiting higher-efficacy in mediating CNR2- and probably CNR1-dependent 

G-protein signalling (Pertwee and Ross, 2002; Hanus et al., 2001; Pertwee, 1999; 

Gonsiorek et al., 2000). Both endocannabinoids may serve as neurotransmitters or 

neuromodulators as there is evidence that they mediate retrograde signalling from post-

synaptic neurons to pre-synaptic terminals via cannabinoid receptors (Ohno-Shosaku et 

al., 2001; Wilson and Nicoll, 2001). 

 

1.8.4 Endocannabinoid metabolism 
 
Endocannabinoids are arachidonic acid derivatives (Burstein and Hunter, 1995) that are 

synthesised and extracellularly released ‘on demand’ (Pertwee and Ross, 2002). AEA is 

formed from pre-existing N-arachidonoyl phosphatidylethanolamine (NArPE) through 

the action of a specific phospholipase D (PLD) (Di, V et al., 1994). 2-AG can be formed 

from arachidonic acid-enriched membrane phospholipids, such as inositol phospholipids 

through the actions of phospholipase C and diacyl glycerol lipase (Sugiura et al., 1995) 

(Figure 1.11).  

 

Endocannabinoids are removed from the extracellular space via a membrane transport 

molecule, the ‘AEA’ membrane transporter (AMT) (Di, V et al., 1994; Maccarrone et 

al., 2000; De Petrocellis et al., 2004). This process however, is yet to be fully 

characterised. Once inside the cell, the endocannabinoids are hydrolysed by a 

membrane-bound enzyme known as fatty acid amide hydrolase (FAAH) (Cravatt et al., 

1996). FAAH degrades anadamide and 2-AG to arachidonic acid and ethanolamine or 

glycerol, respectively (Sugiura et al., 2002). 2-AG breakdown is also catalysed by 

another hydrolase, the monoacylglycerol lipase (MGL) (Di, V et al., 1999; Karlsson et 

al., 1997) (Figure 1.11). Both hydrolases are expressed in brain regions where CNR1 

receptors are also highly expressed (Egertova et al., 1998).  
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The cannabinoid receptors and the family of endogenous ligands, together with the 

molecular machinery for the endocannabinoid synthesis, transport and metabolism, are 

collectively known as the endocannabinoid system. 
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1.8.5 Synthetic cannabinoid receptor ligands 
 
In addition to endocannabinoids, synthetic cannabinoid receptor ligands are widely used 

in cannabinoid research. Some of these compounds are mixed CNR1/CNR2 receptor 

Figure 1.11: Schematic illustration of endocannabinoid synthesis and breakdown. In blue are 
the enzymes involved in the endocannabinoid synthesis and in red are the enzymes involved in 
their breakdown. Abbreviations: NArPE, N-arachidonoyl phosphatidylethanolamine; NAPE-
PLD, N-acyl phosphatidylethanolamine phospholipase D; AEA, arachidonoyl ethanolamide; 
PLC, phospholipase C; AcAG, sn-1-diacyl arachidonoyl glycerol; DAGL, sn-1-diacyl glycerol 
lipase; 2-AG, 2-arachidonoyl glycerol; FAAH, fatty acid amide hydrolase; MGL, 
monoacylglycerol lipase. See text for descriptions.  
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agonists, meaning that they activate CNR1 and CNR2 receptors with approximately 

equal potency, such as CP55940 (Griffin et al., 1998). Other synthetic cannabinoid 

receptor ligands are CNR1-selective, like arachidonyl-2´-chloroethylamide (ACEA) and 

arachidonyl-cyclopropylamide (ACPA) (Hillard et al., 1999). Potent CNR2-selective 

cannabinoid receptor agonists include the synthetic compounds JWH133 (Huffman et 

al., 1999) and HU308 (Hanus et al., 1999), both which are very attractive therapeutic 

agents as they can be applied without any undesirable psychotropic effects. Another 

group of synthetic cannabinoid receptor ligands have the capacity to block the effects of 

cannabinoid receptor agonists and exert the opposite pharmacological effects on 

downstream signalling pathways (Pertwee, 1999). These compounds are referred to as 

cannabinoid receptor antagonists/inverse agonists and include the cannabinoid receptor 

ligands AM251 and AM630, which are selective for CNR1 and CNR2 cannabinoid 

receptors, respectively. CNR1 and CNR2 binding properties of these compounds are 

summarised in Appendix 4, page 275.  

 

1.8.6 Alternative cannabinoid binding sites 
 
Cannabinoid effects might also be mediated through other non-cannabinoid receptors, 

including the transient receptor potential vallinoid type 1 (TRPV1) (De Petrocellis et al., 

2000; Smart et al., 2000; Hermann et al., 2003), the orphan G-protein coupled receptor 

GPR55 [reviewed in (Begg et al., 2005; Brown, 2007)] and other receptors collectively 

known as non-CNR1/CNR2 receptors [reviewed in (Begg et al., 2005; Brown, 2007)].  

 

The TRPV1 is a non-selective cation channel with high calcium permeability (Pingle et 

al., 2007). Ligands for TRPV1 include capsaicin, olvanil and resinoferatoxin, but also 

the endocannabinoid, anandamide (Smart et al., 2000). The fact that CNR1/CNR2 and 

TRPV1 are frequently co-expressed in neural and non-neural cells provided further 

evidence about the cross-talk between these receptors (De Petrocellis et al., 2000; 

Hermann et al., 2003; Ahluwalia et al., 2003; Rossi et al., 2009). Recent studies have 
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also shown that osteoclast formation and osteoclastic bone resorption are regulated by 

TRPV receptors (Rossi et al., 2009; van der Eerden et al., 2005). 

 

GPR55 is an orphan receptor that is mainly expressed in brain but also found in spleen 

(Sawzdargo et al., 1997). Evidence for the association between GPR55 and cannabinoids 

was initially provided in 2001, using yeast host strains that co-expressed yeast/human 

chimeric proteins [reviewed in (Brown, 2007)]. This and other studies showed that 

GPR55 is activated by Δ9-THC, AEA, 2-AG, CP55940 and AM251 (Brown, 2007; 

Ryberg et al., 2007). Recently it has been reported that GPR55 is expressed in human 

and mouse osteoblast and osteoclasts and that treatment of GPR55 with a synthetic 

ligand stimulates osteoclast function in vitro (Whyte et al., 2009). The same group has 

also shown that GPR55-/- mice have increased trabecular volume and trabecular 

thickness as well as increased numbers of morphologically-inactive osteoclasts (Whyte 

et al., 2009).  These results together suggest that endocannabinoid action that was 

previously considered to be mediated via CNR1/CNR2 mechanism may actually be 

mediated via GPR55 mechanism. 

 

Endocannabinoids have multiple in vivo sites-of-action additional to CNR1, CNR2 and 

TRPV1, referred to as non-CNR1/CNR2 sites. Most extensively-studied non-

CNR1/CNR2 sites occur in the vasculature, the CNS and immune cells [reviewed in 

(Brown, 2007)].  

 

1.8.7 Role of the endocannabinoid system  
 
Extensive research on the main aspects of the endocannabinoid system has revealed that 

it is a ubiquitous lipid signalling system, with a profound impact on the main 

physiological systems that control body functions. It appears that the endocannabinoid 

system is a modulator of physiological functions in the central and autonomous nervous 

system (Di, V et al., 1998), the immune system (Cabral et al., 2008), the gastrointestinal 



Chapter 1: INTRODUCTION 

 64

tract (Izzo et al., 2001), and in the microcirculation (Kunos et al., 2002). It has also been 

shown that the endocannabinoid system has a pathophysiological role in the modulation 

of pain (Calignano et al., 2001; Pertwee, 2001) and a homeostatic control over the 

motivation for appetite stimuli, including food (Di, V et al., 2001), drugs (Navarro et al., 

2001) and alcohol (Rodriguez et al., 2005). Recent studies indicate that the 

endocannabinoid system is also involved in the regulation of bone homeostasis (section 

1.9).  
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1.9 THE ENDOCANNABINOID SYSTEM AND BONE 
 
1.9.1 Presence of endocannabinoid system in bone 
 
Several components of the endocannabinoid machinery have been detected in the 

skeleton. Recently CNR1 and CNR2 were found to be expressed in bone marrow 

derived osteoclasts and osteoblasts (Idris et al., 2005; Ofek et al., 2006), RAW 264.7-

derived osteoclast-like cells (Ofek et al., 2006), MC3T3 E1 osteoblast-like cells (Ofek et 

al., 2006) and osteocytes (Lian et al., 2004). In addition, the endocannabinoids AEA and 

2-AG, have been detected in bone and MC3T3 E1 osteoblasts (Tam et al., 2008), in 

cultured mouse osteoblasts and osteoclasts (Ridge et al., 2007) and in cultured human 

osteoclasts (Rossi et al., 2009). The fact that 2-AG is present in bone at similar levels to 

those found in the brain (Tam et al., 2008) but the blood 2-AG levels are negligible 

(Monteleone et al., 2005), confirmed that 2-AG is synthesised locally in bone (Bab et al., 

2008). 

 

1.9.2 Type 1 cannabinoid receptor and bone 
 
The earliest investigation on the role of the endocannabinoid system on bone 

metabolism was performed by Idris and colleagues, using both genetic and 

pharmacological approaches (Idris et al., 2005). They showed that young CNR1 

knockout (CNR1-/-) mice on an ABH background [congenic strain from CD1 (Ledent et 

al., 1999)], had an increased BMD and were resistant to bone loss induced by 

ovariectomy due to a reduction in osteoclast activity. Ageing experiments have shown 

that CNR1-/- mice a CD1 genetic background also have increase peak bone mass but 

develop age-related osteoporosis due to increased accumulation of adipocytes in bone 

marrow at the expense of osteoblasts (Idris et al., 2008b). 

 

In vitro studies showed that osteoblasts from CNR1-/- mice had reduced expression of 

RANKL mRNA, which lead to a reduction in osteoclast formation in osteoblast-bone 

marrow co-cultures from CNR1-/- mice (Idris et al., 2008b). In addition, bone marrow 
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stromal cells from CNR1-/- mice had increased mRNA levels of the adipogenic 

transcription factor PPARγ, explaining the increased adipocyte accumulation in bone 

marrow of 12-month old CNR1-/- mice (Idris et al., 2008b). 

 

Pharmacological approaches showed that cannabinoid receptor antagonists/inverse 

agonists selective for CNR1 or CNR2 prevented bone loss in C57BL/6 mice following 

ovariectomy in a dose-dependent manner by inhibiting bone resorption (Idris et al., 

2005). In RANKL-stimulated osteoclast cultures, cannabinoid receptor 

antagonists/inverse agonists inhibited osteoclasts by stimulating apoptosis and inhibiting 

the release of osteoclast survival factors (Idris et al., 2005). As expected, osteoclast 

cultures generated from CNR1-/- mice were resistant to the inhibitory effects of the 

CNR1 selective antagonist AM251 on osteoclast survival confirming a CNR1-mediated 

effect (Idris et al., 2005). On the other hand, the CNR2 selective antagonist/inverse 

agonist AM630 was equally potent in inhibiting osteoclast formation in cultures 

generated from both wild type and the CNR1-/- mice. This was early evidence that the 

effect of the endocannabinoid system on bone metabolism may be mediated by central 

as well as peripheral cannabinoid receptors (Idris et al., 2005).  

 

Tam and colleagues studied CNR1-deficient mice on C57BL/6 and CD1 genetic 

backgrounds (Tam et al., 2006). It was illustrated that CNR1-/- mice backcrossed to a 

C57BL/6 background had lower bone mass than their wild type littermates. In both 

genders the CNR1 knockout on a C57BL/6 background had decreased bone formation 

and increased osteoclast numbers (Tam et al., 2006). Nevertheless, CNR1-/- mice on a 

CD1 background demonstrated different findings. Young female CNR1-/- mice had a 

normal trabecular bone volume while male CNR1-/- mice displayed a high bone mass 

phenotype with increased trabecular thickness in agreement with the work of Idris and 

colleagues (Idris et al., 2005). These observations led the authors to suggest that CNR1 

signalling regulates bone mass differentially in different mouse strains. 
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The effects of CNR1 were partly attributed to the regulation of norepinephrine release 

from sympathetic nerve fibres. Sympathetic fibres are abundant in trabecular bone 

(Mach et al., 2002) and norepinephrin released from them has the property to inhibit 

bone formation and stimulate bone resorption (Elefteriou et al., 2005). Because 

sympathetic CNR1 signalling inhibits norepinephrine release, it was suggested that the 

absence of CNR1 in bone might increase sympathetic tone and decrease bone formation 

(Tam et al., 2006). However, a recent study from our group showed that although 

norepinephrin indeed stimulates osteoclast formation and bone resorption, it does not 

have a direct effect on bone formation or osteoblast function (Aitken et al., 2009).  

 

1.9.3 Type 2 cannabinoid receptor and bone 
  
A study by Ofek and colleagues showed that the peripheral CNR2 also regulates bone 

mass (Ofek et al., 2006). This study demonstrated that CNR2-deficient (CNR2-/-) mice 

on a C57BL/6 genetic background, suffer from accelerated age-related trabecular bone 

loss and cortical expansion, unlike their wild type littermates. These changes were 

thought to be the consequence of increased bone remodelling, especially affecting the 

trabecular compartment of the bone. All these phenotypic characteristics were 

considered to be similar to post-menopausal osteoporosis in humans. In fact, genetic 

association studies reported the involvement of CNR2, but not CNR1, in inherited 

human osteoporosis (Karsak et al., 2005; YAMADA et al., 2007), suggesting that CNR2 

is a susceptibility gene for reduced bone mineral density.    

 

Ofek et al. have also shown that the CNR2-selective non-psychotropic agonist HU308 

stimulated osteoblast number and activity in the endocortical part of the bone, whereas 

osteoclastogenesis in the trabecular region was reduced (Ofek et al., 2006). Moreover, in 

ovariectomy experiments it was shown that HU308 prevented bone loss resulting from 

oestrogen deficiency, possibly by inhibiting osteoclast formation, and stimulating bone 

formation in the endocortical region (Ofek et al., 2006). Overall, it was suggested that 
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HU308 has pro-osteoblastic and anti-osteoclastic activities in vitro and it was regarded 

as a possible candidate for the treatment of post-menopausal osteoporosis (Ofek et al., 

2006). 

 

Although the two distinct studies with CNR1-/- and CNR2-/- mice implicate that 

pharmacological modulation of the endocannabinoid system has a role in regulating 

bone mass and bone turnover in vivo, their results are rather contradictory (Idris et al., 

2005; Ofek et al., 2006). The contrasting phenotypes in CNR1-/- and CNR2-/- mice 

indicate that these receptors affect bone metabolism in different ways. Whether this 

inconsistency is due to the different genetic background strains of these knockouts or a 

consequence of the absence of CNR1 or CNR2 only, remains unclear. 

 

The current models of the regulation of bone remodelling by the endocannabinoid 

system are summarised in Figure 1.12. 
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Figure 1.12: Schematic representation of the current models of the regulation of bone remodelling by 
cannabinoid ligands. A. Endocannabinoids (CNR-L) act on type 1 and type 2 cannabinoid receptors 
(CNR) expressed on immature osteoblasts from bone marrow, thereby enhancing osteoblast 
differentiation and function. Cytokines released from mature osteoblasts (RANKL and M-CSF) 
stimulate osteoclast formation, an event which is enhanced by the activation of cannabinoid receptors 
(B). C. Endocannabinoids are also able to regulate bone formation indirectly by inhibiting the 
production of norepinephrine, an inhibitor of osteoblast differentiation and function. Reproduced and 
adapted from (Idris, 2008). 
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1.10 TREATMENT OF BONE DISEASES WITH CANNABINOID RECEPTOR 
LIGANDS 

 
In the last couple of decades cannabis has been used for both recreational and medical 

purposes due to its psychoactive, analgesic, anti-anxiety, anti-emetic and anti-

inflammatory properties (c.f. section 1.8.7, page 63).  

 

1.10.1 Treatment of inflammatory bone diseases with cannabinoid ligands 
 
Cannabis-based drugs have been reported to have immunomodulatory effects and 

therefore their potential for treatment of inflammatory diseases is being assessed 

[reviewed in (Idris, 2008; Klein, 2005; Klein et al., 2003)]. Studies reported 

contradictory roles for the effect of cannabinoid ligands on cytokine production. Earlier 

studies suggested that cannabinoid receptor agonists may have anti-inflammatory 

qualities and hence could be applied for arthritis therapy. For example, work by Baldwin 

and colleagues, showed that lipopolysaccharide-stimulated alveolar macrophages from 

habitual marijuana smokers, produced lower than normal levels of cytokines such as 

TNF-α, GM-CSF and IL-6 (Baldwin et al., 1997). Similarly Smith et al. showed that 

cannabinoid receptor agonists prevented the lipopolysaccharide-induced production of 

TNF-α and IL-12 in mice (Smith et al., 2000). Moreover, Malfait et al. (Malfait et al., 

2000) demonstrated that cannabidiol, the major non-psychoactive component of 

cannabis, suppressed the progression of collage-induced arthritis (CIA) in arthritic mice, 

by inhibiting TNF-α production from synovial cells (Malfait et al., 2000). In addition a 

randomised, double-blind, placebo-controlled trial of Sativex [a drug consisting of 

tetrahydrocannabinol (THC) and cannabidiol (CBD)] for treatment of pain due to 

rheumatoid arthritis, showed that Sativex treatment significantly improved pain in 

movement, pain at rest and quality of sleep in comparison with placebo treatment (Blake 

et al., 2006). 

 

http://encyclopedia.thefreedictionary.com/tetrahydrocannabinol
http://encyclopedia.thefreedictionary.com/cannabidiol
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However, other studies showed that endocannabinoids may posses pro-inflammatory 

qualities. For example, the endocannabinoid 2-AG was reported to increase the 

production of chemokines in human promyelocytic leukaemia HL-60 cells (Kishimoto et 

al., 2004), and activation of the type 2 cannabinoid receptor in vitro up-regulated genes 

involved in the synthesis of cytokines (Derocq et al., 2000). In keeping with this, the 

expression of RANKL mRNA was found to be reduced in osteoblasts from CNR1-/- mice, 

indicating the role of cannabinoid receptor signalling in cytokine production (Idris et al., 

2008b). Finally, the CNR2-selective inverse agonist Sch.036 reversed bone damage in 

arthritic rats (Lunn et al., 2008). These studies together suggest that cannabinoid ligands 

may have pro-inflammatory qualities, whereas inverse agonists may have therapeutic 

properties for the treatment of inflammatory bone diseases. However, further work is 

required to address the role of cannabinoid ligands in inflammation.    

 

1.10.2 Treatment of cancer-associated bone disease with cannabinoid ligands 
 
Bone is the most common site for metastasis in patients with advanced tumours arising 

from breast and prostate cancer (Coleman, 2008). Studies have shown that cannabinoids 

have the potential to become novel chemotherapeutic agents for suppression of tumour 

growth and metastasis. The earliest evidence related to this was in the 1970’s when Δ9-

THC was shown to inhibit growth of lung adenocarcinoma (Munson et al., 1975). 

Subsequent studies showed that plant-derived, synthetic and endogenous cannabinoids 

had anti-proliferative effects in prostate, breast, lung, skin and pancreatic cancer cells 

[reviewed in (Guzman, 2003; Bifulco et al., 2008; Sarfaraz et al., 2008)]. Thus far, 

cannabinoids are thought to exert their anti-tumour effects by different mechanisms 

including modulation of main survival pathways for tumour cells, such as MAPK/ERK 

and PI3K/Akt; stimulation of ceramide synthesis which can then induce apoptosis and 

cell-cycle arrest; reduction of VEGF expression, which results in inhibition of tumour 

angiogenesis and metastasis (Guzman, 2003; Bifulco et al., 2008; Sarfaraz et al., 2008) 

and also by induction of autophagic death in cancer cells (Salazar et al., 2009). On the 
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contrary, other groups reported that cannabinoids stimulate the growth and metastasis of 

cancer cells (Hart et al., 2004; McKallip et al., 2005), possibly by suppressing the anti-

tumour immune response (McKallip et al., 2005).  

 

Although the precise mechanism of cannabinoid action in cancer cells still needs to be 

fully clarified, evidence thus far suggests that cannabinoids may represent a potential 

new drug therapy for the treatment of cancer.  
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1.11 HYPOTHESIS AND AIMS OF THIS STUDY 
 
This thesis was designed to test the hypothesis that type 2 cannabinoid receptors (CNR2) 

are involved in regulating bone metabolism, by affecting both osteoclastic bone 

resorption and osteoblastic bone formation. 

 

The general aim of this study was to use genetic and pharmacological approaches to 

examine the role of CNR2 in bone metabolism in vitro and in vivo. 

 

The specific aims of the work reported in this thesis were: 

• To examine the expression of CNR2 and other components of the 

endocannabinoid machinery in the bone microenvironment.  

• To investigate the effect of CNR2 genetic inactivation on bone mass of C57BL/6 

mice at age 3, 6 and 12 months. 

• To define the functional role of CNR2 in osteoclast formation in vitro and to 

investigate the effect of a CNR2-selective antagonist/inverse agonist on 

ovariectomy-induced bone loss in vivo. 

• To analyse the functional role of CNR2 in osteoblast differentiation and function 

in vitro and to examine the effect of a CNR2-selective agonist on ovariectomy-

induced bone loss in vivo.  
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2 MATERIALS AND METHODS 
 
2.1 PREPARATION OF CANNABINOID COMPOUNDS TESTED 
 
The cannabinoid receptor ligands AEA, 2-AG, JWH133, AM251, and AM630 were 

purchased from Tocris Bioscience (UK). HU308 was a kind gift from Dr. Roel J. Arends 

(Organon). For in vitro studies the compounds were dissolved in dimethyl sulfoxide 

(DMSO) or absolute ethanol according to the manufacturer’s instructions at a 

concentration of 10mM. Once made into solutions, the commercially available 

compounds were stored at -20oC and the HU308 solution was stored at 4oC. For in vivo 

studies the compounds were dissolved in the minimum possible volume of DMSO (i.e. 

1mg AM630 in 47.2μl DMSO, 1mg HU308 in 200μl DMSO) and then made up in corn 

oil (AM630) or in a solution of 5% (w/v) mannitol and 0.5% (v/v) gelatine in distilled 

H2O (dH2O) (HU308) to obtain doses of 0.1 or 1.0mg/kg. The solutions of AM630 in 

corn oil vehicle were stored at room temperature, whereas the suspension of HU308 in 

mannitol/gelatine vehicle was stored at 4oC. Fresh solutions and suspensions were 

prepared weekly.  

 

2.2 TISSUE CULTURE 
 
2.2.1 Cell culture medium and standard conditions 
 
Murine calvarial osteoblasts and bone marrow cells were cultured in alpha-Minimum 

Essential Medium (αMEM) supplemented with 10% foetal calf serum (FCS), 5% L-

Glutamine, 100U/ml penicillin and 100μg/ml streptomycin (standard αMEM). All 

cultures were kept under standard conditions of 5% CO2 : 95% air at 37oC in a 

humidified atmosphere, unless stated otherwise. All media preparation and cell culture 

work was performed in a laminar flow hood, which was sprayed with 70% (v/v) ethanol 

prior to use. All solutions were warmed to 37oC before use and plastic-ware was bought 

pre-sterilised or autoclaved prior to use. A phase-contrast microscope was used regularly 

during the culture period, to assess confluence or contamination of cultures. 



Chapter 2: MATERIALS AND METHODS 

 76

2.2.2 Bone marrow macrophage cultures 
 
Bone marrow cells were isolated from the long bones (tibia and femur) of 6-10 week-old 

mice sacrificed by cervical dislocation according to Schedule 1 of the Animals 

(Scientific Procedures) Act. The isolation procedure was performed under tissue culture 

conditions with sterilised equipment. Using sterile scissors, the legs were isolated and 

transferred to universals containing ice-cold sterile PBS. Once in the laminar flow 

cabinet, the legs were placed in a Petri dish and the soft tissue that surrounds the bone 

was removed using a scalpel. The isolated bones were transferred to a fresh Petri dish 

containing standard αMEM. Bone marrow cells were flushed out with standard αMEM 

using a syringe fitted with a 25-gauge (G) needle. To achieve a homogenous cell 

suspension the mixture of bone marrow cells and αMEM was pushed through needles of 

decreasing size (19G – 25G) prior to centrifugation. Following a 3-minute centrifugation 

at 300g, bone marrow cells were resuspended in standard αMEM supplemented with 

100ng/ml M-CSF and plated in Petri dishes. Cultures were kept under standard 

conditions for 48 hours when adherent cells were scraped off the Petri dish using a 

rubber-tipped scraper. Mouse macrophages were plated in 96-well plates at 15 x 103 

cells/well in 125μl of standard αMEM supplemented with 25ng/ml M-CSF. The plates 

were kept under standard conditions for 72 hours. Then the cultures were treated with 

the desired compounds while changing 50% of the medium. Cultures were terminated 

24-48 hours following treatment. 

 

8-week old mouse

M-CSF

Macrophage
culture

Isolate
tibiae and femurs

Flush out bone 
marrow in αMEM

8-week old mouse

M-CSF

Macrophage
culture
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Flush out bone 
marrow in αMEM  

 
Figure 2.1: Schematic illustration of isolation of bone marrow cells. See text under section 
2.2.2 for more details. 
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2.2.3 Bone marrow osteoclast cultures 
 
Bone marrow macrophages generated as described in section 2.2.2, were plated in 96-

well plates at 15 x 103 cells/well in αMEM supplemented with 100ng/ml human 

recombinant RANKL and 25ng/ml M-CSF, in order to generate osteoclasts. The plates 

were cultured under standard conditions for 72 hours and treated with the desired 

compounds for 24-48 hours, while changing 50% of the medium supplemented with M-

CSF and RANKL. 

 

2.2.4 Fixation and Tartrate-resistant Acid Phosphatase (TRAcP) staining 
 
Upon termination of osteoclast cultures the culture medium was removed and the 

adherent cells were rinsed twice with PBS. Cells in 96-well plates were then incubated 

with 150μl of 4% (v/v) formaldehyde in PBS for 10 minutes at room temperature. 

Following fixation, cells were rinsed twice with sterile PBS and stored at 4oC in 70% 

(v/v) ethanol until further use. 

 
Multinucleated osteoclasts in mouse bone marrow cultures were identified using TRAcP 

staining as previously described by van’t Hof et al. (van't Hof et al., 1995). Following 

fixation the adherent cells were rinsed twice with PBS and then incubated with TRAcP 

staining solution (Appendix 2.1, page 271) at 37oC for 45 minutes. Subsequently, the 

cultures were rinsed with PBS and then stored at 4oC in 70% (v/v) ethanol. TRAcP 

positive multinucleated cells were manually counted on a Zeiss Axiovert light 

microscope using a 10x objective lens.   

 

2.2.5 Calvarial osteoblast cultures 
 
Primary calvarial osteoblasts were isolated from the calvarial bones of 2 day-old mice 

sacrificed by decapitation according to Schedule 1 of the Animals (Scientific 

Procedures) Act. The calvariae were removed, washed thoroughly in Hank’s balanced 

salt solution (HBSS) and transferred to a sterilised universal tube containing 2ml of 
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collagenase type 1 (1mg/ml) in HBSS and incubated for 10 minutes at 37oC in a shaking 

water bath. The supernatant was discarded and the calvariae were incubated in 4ml of 

collagenase type 1 (1mg/ml) in HBSS for 30 minutes. The cell suspension was removed 

and mixed with 6ml of standard αMEM (cell suspension 1). The remaining tissues were 

washed in PBS and treated for 10 minutes with 4ml of ethylenediaminetetraacetic acid 

(EDTA) (4mM) in PBS. The cell suspension was removed and mixed with 6ml of 

standard αMEM (cell suspension 2). The remaining tissues were incubated in 4ml of 

collagenase type 1 (1mg/ml) in HBSS for 20 minutes. The cell suspension was removed 

and mixed with 6ml of standard αMEM (cell suspension 3). Cell suspensions were 

pooled and centrifuged at 300g for 3 minutes. The supernatant was discarded and cell 

pellets were resuspended in standard αMEM. The cell suspension was cultured under 

standard conditions in 75cm2 tissue culture flasks at a density of 3 calvariae per flask. 

The medium was changed 24 hours after seeding to remove non-adherent cells, and then 

every 48 hours until cells reached 100% confluence.   

 
When osteoblasts reached confluence, the tissue culture medium was removed from the 

flasks and the osteoblast monolayer was carefully rinsed with sterile PBS to remove any 

traces of serum. The adherent cells were incubated with Trypsin (4ml/75cm2 flask) for 3 

minutes at 37oC after which microscopic examination was performed to ensure cell 

detachment. To inactivate Trypsin, 6ml of standard αMEM was added to the flask. The 

cell suspension was transferred to a fresh tube and centrifuged at 300g for 3 minutes. 

The pellet was resuspended in standard αMEM and osteoblasts were plated in 96- or 12-

well plates at 8 x 103 cells/well in 100μl of standard αMEM, or 100 x 103 cells/well in 

1ml standard αMEM, respectively. The plates were incubated for 72 hours. Cell cultures 

in 96-well plates were then treated with the desired compounds while changing 50% of 

the medium and finally terminated 24 hours following treatment. From day 3, cell 

cultures in 12-well plates were treated with the desired compounds while replacing the 

medium with standard αMEM supplemented with 50μg/ml Vitamin C and 3mM beta-



Chapter 2: MATERIALS AND METHODS 

 79

glycerophosphate (β−GP) (osteogenic medium). The cultures were kept under standard 

conditions and the medium was refreshed three times per week. The cultures were 

finally fixed in 70% (v/v) ethanol in week 3. 
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2.2.6 Bone marrow osteoblast cultures 
 
Osteoblasts were generated from bone marrow which was flushed out from murine long 

bones as previously described in section 2.2.2, page 76. Following a 3-minute 

centrifugation at 300g, bone marrow cells were resuspended in standard αMEM 

supplemented with 50μg/ml Vitamin C and 3mM β−GP (osteogenic medium) and plated 

in Petri dishes at a density of 1 mouse per Petri dish. Cultures were kept under standard 

conditions for 72 hours when non-adherent cells were removed. Adherent cells were 

maintained under standard conditions in osteogenic medium for 5 to 7 days and 

considered to consist of osteoblast precursors. These cells were trypsinised, plated and 

treated as described previously for calvarial osteoblasts in section 2.2.5, page 77. 

 

Figure 2.2: Schematic illustration of isolation of mouse calvarial osteoblasts. See text under 
section 2.2.5 for more details. 
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2.2.7 Alizarin Red staining and quantitative destaining procedure 
 
Mineralisation nodules were detected using Alizarin Red S staining, which is a common 

histochemical technique used to detect calcium deposits in mineralised tissues and 

cultures (Chang et al., 2000; Coelho et al., 2000). Alizarin Red reacts with calcium via 

its sulfonate and hydroxyl groups and forms an Alizarin Red-calcium complex during a 

chelation process. Calcium ions then precipitate and form brick-red deposits. 

 

Alizarin Red was dissolved in dH2O to a final concentration of 40mM. The solution was 

mixed well and the pH was adjusted to 4.1-4.3 with 10% (v/v) ammonium hydroxide. 

Fixed osteoblasts in 12-well plates were rinsed with dH2O to remove traces of 70% (v/v) 

ethanol and then incubated with 0.8ml/well of Alizarin Red staining solution for 20 

minutes with gentle rocking at room temperature. Unincorporated stains were rinsed off 

with dH2O three times. Excess of dH2O was removed by inverting the plates on several 

layers of paper towels three times. Plates were then left to air-dry overnight.  

 
Images of the stained cultures were taken using a standard scanner. To destain and 

quantify the mineralised nodules, a destaining solution made of 10% (w/v) 

cetylpyridinium chloride in 10mM sodium phosphate (pH 7.0) was used. Plates with 

destaining solution were kept at room temperature for 30 minutes. Alizarin Red 

concentration was determined by absorbance measured at 562nm on a Bio-Tek Synergy 

HT plate reader using an Alizarin Red standard curve (concentration range 0-10mM) in 

the same solvent.  

 

2.2.8 Alamar Blue viability assay 
 
The viability of osteoblasts and macrophages was determined using the Alamar Blue 

assay. This assay is based on the use of an oxidation/reduction (redox) growth indicator 

which fluoresces and changes colour in an appropriate range relating to the metabolic 

reduction of the growing medium caused by cell growth (alamarBlueTM Assay Protocol). 
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The amount of the redox indicator that changes from oxidised (non-fluorescent, blue) to 

a reduced form (fluorescent, red) is directly proportional to the number of the viable, 

active cells that maintain a reduced environment (Ahmed et al., 1994).  

 

AlamarBlueTM reagent equal to 10% of the volume of the medium per well was added in 

cultured cells and left for 2 hours under standard conditions. Fluorescence was measured 

using a plate reader at an excitation wavelength of 540nm and an emission wavelength 

of 590nm. Data were corrected for background fluorescence by repeating the assay in 

wells containing medium but lacking cells or treatment.  

 
2.2.9 Alkaline phosphatase assay 
 
The Alkaline Phosphatase (ALP) assay is based on the conversion of p-nitrophenol 

phosphate (colourless) into p-nitrophenol (yellow) by the enzyme ALP, which is mainly 

expressed by cells of the osteoblastic lineage.  

 

Cells were cultured in 96-well plates at 8 x 103 cells per well in 100μl of standard 

αMEM for 72 hours. The cell monolayer was rinsed with PBS and then incubated with 

150μl ALP lysis buffer (Appendix 2.2, page 272) for 20 minutes. A standard curve was 

generated by preparing series of dilutions of p-nitrophenol (1.25 – 30nM). In a fresh 96-

well plate, 50μl of the standard solutions and test samples were plated in triplicate and 

an equal amount of substrate solution was added. A plate reader was used to measure the 

absorbance readings at 405nm, with reference at 960nm, at 2 minute intervals for 20 

minutes. ALP activity was determined from the slope of the linear part of the kinetics 

curve and was expressed as fold stimulation over the vehicle control. 
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2.3 GENE EXPRESSION USING QUANTITATIVE REAL-TIME PCR 
 
Quantitative real-time PCR (qPCR) was used to detect expression of genes of interest in 

brain, bone marrow and bone cell cultures.   

 

2.3.1 RNA extraction 
 
Macrophages and osteoblasts were cultured under standard conditions in 12-well plates, 

until confluence was reached. Osteoclasts were also cultured in 12-well plates until a 

large number of osteoclast precursors or osteoclasts were visible in each well. The 

culture medium was removed and cells were washed with 500μl of cold PBS. Then 

500μl of Total RNA Isolation (Trizol®) reagent was used to lyse the cells in each plate 

by sequentially transferring it from well to well. To ensure that all cells were lysed 

another 500μl aliquot of Trizol® reagent was used to rinse all 12-wells of the same plate 

and then combined with the first Trizol® reagent aliquot. Bone marrow was directly 

flushed out with 1ml of Trizol® reagent. Brain was initially frozen and then 

homogenised with a pestle and mortar prior to total RNA extraction with TRizol® 

reagent (1ml TRizol® per 50-100mg of brain tissue).  

 

All lysates were transferred into Diethyl Pyrocarbonate (DEPC)–treated 1.5ml 

Eppendorf tubes and mixed thoroughly by pipetting up and down. The homogenised 

sample was incubated for 5 minutes at room temperature. 200μl of chloroform was 

added to each lysate and mixed by shaking vigorously for 15 seconds. The mixture was 

then incubated at room temperature for 3 minutes before the samples were centrifuged at 

12000g for 15 minutes at 4oC. The aqueous phase was transferred carefully into a fresh 

DEPC-treated 1.5ml Eppendorf tube. For RNA precipitation, 500μl of isopropanol was 

added to each sample and mixed by inverting. The mixture was incubated for 10 minutes 

at room temperature and then centrifuged at 12000g for 10 minutes at 4oC. The 

supernatant was discarded and the RNA pellet was washed once with 1ml of 75% (v/v) 

cold ethanol and then centrifuged at 7500g for 5 minutes at 4oC. After removing the 
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supernatant, the RNA pellet was air-dried for 5 minutes. 25μl of cold DEPC-treated 

water was added into each sample and the pellet was allowed to dissolve while on ice for 

10 minutes. After the pellet had completely dissolved, samples were heated at 65oC for 5 

minutes. All RNA samples were stored at -80oC. 

 

2.3.2 Measuring RNA concentration 
 
The RNA concentration was determined using the Molecular Probes RiboGreen kit. A 

standard curve was generated by preparing a series of dilutions of an RNA standard 

(0.3125 - 2ng/μl) in Tris EDTA (TE) buffer. In a fresh black 96-well clear bottom plate, 

50μl of the standard dilutions and 50μl of RiboGreen dye (1:200 diluted in TE buffer) 

were mixed to generate the standard curve. In the same plates RNA samples (1:4000 and 

1:5000 diluted in TE buffer) were plated in duplicate and an equal amount of RiboGreen 

dye added. The fluorescence was measured using a plate reader, at an excitation 

wavelength of 485nm and an emission wavelength of 528nm.  

 

2.3.3 Reverse Transcription 
 
The RNA samples were then used for the production of cDNA by reverse transcription. 

The following 20μl reaction volume was used for 10pg-5μg of total RNA in a nuclease-

free microcentrifuge tube: 

 

 Xμg of total RNA  

1μl of oligo(dT)20 (50μM) 

 1μl of 10mM dNTP mix (10mM each) 

 Topped up to 13μl with DEPC-treated H2O  

 

The mixture was heated to 65oC for 5 minutes and then incubated on ice for at least 1 

minute. After a brief centrifugation to spin down samples, the following components 

were added: 
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 4μl of 5X first-strand buffer 

 1μl of 0.1M DTT 

 1μl of RNaseOut Recombinant RNase Inhibitor (40U/μl) 

 1μl of SuperScript III Reverse Transcriptase (200U/μl) 

 

For the negative control reaction, SuperScript III Reverse Transcriptase was eliminated 

and replaced by dH2O. All reagents were mixed by pipetting gently up and down. The 

mixtures were incubated at 50oC for 60 minutes in a MJ Research cycler, and then the 

reaction was terminated by heating at 70oC for 15 minutes.  

 

2.3.4 qPCR amplification using a fluorescent probe 
 
Polymerase chain reactions (PCR) were performed on the cDNA using mouse targeted 

primer/probe combination sets (Table 2.1) designed following the Roche Universal 

Probe Library (UPL) method (www.universalprobelibrary.com). Intron-spanning 

primers were mainly designed in order to prevent amplification of contaminating 

genomic DNA (Table 2.2). In the absence of introns, an intron spanning assay could not 

be designed. Instead, non-intron spanning solutions suggested by the UPL Assay Design 

Center were used (Table 2.2). The Roche universal probes have two labels, a fluorescent 

reporter and a quencher. During the extension phase of PCR, the polymerase cleaves the 

probe from its target sequence, separating reporter and quencher. The unquenched 

reporter emits a fluorescent signal which is automatically quantified. 

 

 

 

 

 

 

http://www.universalprobelibrary.com/
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Table 2.1: qPCR primers and the universal probe library number and sequence 

GENE Universal Probe Library (UPL) 
Forward and Reverse Primer 

Probe no. 
(UPL) 

Probe seq. 
(UPL) 

CNR1 GAC GGT GTT TGC CTT CTG TAG 
GAG CAT AGA TGA TGG GGT TCA 40 GCC TGC TG 

CNR2 GGC AGT GTG ACC ATG ACC TT 
GGT CAA CAG CGG TTA GCA G 110 AGC CTC TG 

NAPE-PLD CAT GGC CAA CAT GGA AAA A 
GGA GCT CTT TGT CAA GTT CCT C 58 CTC CAT CC 

DAGLα GAG CAC CAA GCC CAA ATG 
AGC TCC GAC TTG GGG ATA C 49 GGC CAC CA 

DAGLβ AGG ATT GGT GGC GAC TGT 
TGG TCA CCT TCC ACT GCA T 21 CAG AGC CA 

FAAH CGC TTG GAC TCC ACC ATC 
CAC GAA GGG GTC GAG AAC T 52 GGG AGG AG 

MGL TTC TGG CAT GGT CCT GAT TT 
ATT GAG CAG TTT GGC AGC A 93 TCT GGT CC 

 

 
Table 2.2: Amplicon length and the sequence identification number (ID) for each gene 

GENE Amplicon 
length (nt) 

Length of intron 
spanned (nt) 

Sequence ID (EMBL/GenBank, 
Ensembl, RefSeq) 

CNR1 68 No intron spanned BC079564 

CNR2 61 No intron spanned ENSMUST00000068830.2 

DAGLα 63 1091 NM_198114 

DAGLβ 62 2467 NM_144915.3 

NAPE-PLD 111 7051 AB112350 

FAAH 70 1250 NM_010173 

MGL 88 9123 NM_011844.3 
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The PCR reaction was set up as following: 

 

 Master mix        Final concentration 

 25μl of 2X SensiMix(dT) Taq polymerase    → 1X 

 0.5μl of Universal ProbeLibrary Probe (10μM)   → 100nM 

 0.5μl of Forward Primer (20μM)       → 200nM 

 0.5μl of Reverse Primer (20μM)     → 200nM 

 1μl of MgCl2 (50mM)         → 4mM 

 17.5μl of RNase-free H2O 

  

5μl of cDNA template was added to each well of the microplate and then the master mix 

was aliquoted in volumes of 45μl per well. The amplification of all fragments was 

performed in a MJ Research Chromo 4 Real Time PCR thermocycler. The thermal 

cycling protocol consisted of an initial incubation for 10 minutes at 95oC, followed by 

35 cycles of 15 seconds at 95oC, then 30 seconds at 60oC and 15 seconds at 72oC.  

 

The qPCR products yielding the highest signal with no noise during qPCR optimising 

runs, were cleaned using the QIAquick PCR Purification Kit and then loaded on gel to 

verify the successful amplification of the cDNA into clean amplicons of the expected 

size (Figure 2.3). The amount of these products was quantified using the Quant-iTTM 

PicoGreen® assay following the manufacturer’s instructions. 

 

The copy number of the products was calculated using the following formula: 

[amplicon size (bp) x (330 Da x 2 nucleotide/bp)] / 6.022 x 1023 = g/molecule. 

Knowing the concentration of these products and their copy number is possible to 

calculate the precise number of molecule in each reaction as follows: Concentration of 

product (g/μl)/copy number (g/molecule) = molecule/μl. Results were plotted as mean 

percentages of maximal mRNA expression from one experiment. 
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Standard curves were generated by serial 10-fold dilutions of the quantified cDNA 

products and were run alongside samples during the qPCR. The copy number of each 

sample was calculated according to fluorescence intensity using the programme Opticon 

Monitor version 3. Briefly, each standard curve was plotted in a linear plot of the 

logarithm of the amount of DNA against the cycle number (C(T) cycle) (Figure 2.4B) at 

which the fluorescence intensity reached a set cycle threshold (dashed lined in Figure 

2.4A). The copy numbers of the unknown samples should lie within the range of the 

dilutions used to fit the standard curve (grey dots in Figure 2.4D).  

 

Figure 2.3: qPCR products. Lane 1: Low Molecular Weight DNA ladder; lane 2: DAGLα, 
lane 3:DAGLβ; lane 4: MGL; lane 5: NAPE-PLD.  



Chapter 2: MATERIALS AND METHODS 

 88

 

A

D

B

C

A

D

B

C

 
 

 

 

 

 

 
2.3.5 Normalisation 
 
The housekeeping gene 18S ribosomal RNA was investigated as reference gene for 

normalisation of relative gene expression levels. 18S ribosomal RNA standard curve 

dilutions and cDNA samples were run alongside. 

 

The PCR reaction was set up as following:  

5μl of template 

25μl of 2X SensiMix(dT) Taq polymerase     

 2.5μl of TaqMan® Gene Expression Assay Mix for 18S ribosomal RNA  

 1μl of MgCl2         

 16.5μl of RNase-free H2O 

C(T) Control graph Quantitation graph 

Figure 2.4: Amplification plots and standard curve from Opticon Monitor 3. A. Sigmoidal-shaped 
amplification plot of standard dilutions, in which fluorescence is plotted against the number of cycles. 
The dashed line indicates the threshold cycle (C(T) cycle) in which the first significant increase in 
fluoresce is detected. B. Standard curve plot, in which the logarithm of the amount of DNA is plotted 
against the C(T) cycle. C. Amplification plot of unknown samples. D. The range of concentrations in the 
unknown samples (pointed by red arrows) lies within the range of the standard dilutions.     
 

y = -0.2971x + 9.30; r2 = 0.997 
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The amplification procedure and the copy number calculation were performed as 

described in section 2.3.4, page 84. 

 
 



Chapter 2: MATERIALS AND METHODS 

 90

2.4 WESTERN BLOT 
 
2.4.1 Preparation of cell lysates 
 
Cells were cultured in 6-well plates at 250 x 103 cells/well in 2.5ml of standard αMEM 

until they reached 80% confluence. Then the medium was removed and the monolayer 

was rinsed with ice-cold PBS. Adherent cells were then gently scraped in 150μl of RIPA 

lysis buffer (Appendix 2.3, page 272) supplemented with 2% (v/v) protease inhibitor 

cocktail and 0.4% (v/v) phosphatase inhibitor cocktail and left on ice for 10 minutes. For 

preparation of bone marrow cell lysates, bone marrow cells were isolated from long 

bones of mice as described in section 2.2.2, page 76. Following a 3-minute 

centrifugation at 300g, bone marrow cells were washed twice in PBS, then resuspended 

in 250μl of RIPA lysis buffer supplemented with 2% (v/v) protease inhibitor cocktail 

and 0.4% (v/v) phosphatase inhibitor cocktail, and left on ice for 10 minutes. All lysates 

were transferred to a centrifuge tube and centrifuged at 12000g for 10 minutes at 4oC. 

The supernatant was collected and stored at -20oC until further use. 

 

2.4.2 Measuring protein concentration 
 
The protein concentration was determined using the bicinchoninic acid (BCA) Pierce 

protein assay. A standard curve was generated with dilutions of bovine serum albumin 

(BSA) (2000μg/μl). In a fresh 96-well plate, 10μl of standard dilutions and protein 

samples (1:5 diluted in H2O) were plated in duplicates. 200μl of copper (II)-sulfate 

(diluted 1:50 with BCA) were added in each well and incubated for 15 minutes at 37oC. 

The absorbance was measured at 562nm on a plate reader and the protein concentration 

in each sample was calculated from the BSA standard curve. 

 

2.4.3 Gel electrophoresis 
 
Gel electrophoresis was performed using CriterionTM XT BioRad (12% Bis-Tris) pre-

cast gels, which were placed into a vertical electrophoresis tank filled with 
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electrophoresis running buffer (Appendix 2.4, page 272). Cell lysates were mixed with 

the appropriate volume of 5X sample loading protein buffer (Appendix 2.4, page 272), 

heated at 100°C for 3 minutes and loaded carefully into the well. A Kaleidoscope pre-

stained standard and a Magic Marker XP western standard were used to identify 

molecular weights. Gels were run at constant voltage of 200V for 40 minutes.  

 

2.4.4 Electrophoretic transfer 
 
This procedure allows the recovery of proteins from the polyacrylamide gel to a solid 

protein-binding membrane. The gel was removed from the pre-cast gel cassette and 

immersed into transfer buffer (Appendix 2.4, page 272) for 5 minutes. Meanwhile, a 

Hybond™-P membrane was cut to the size of polyacrylamide gel, immersed in 100% 

methanol and then allowed to equilibrate in transfer buffer for 5 minutes. A blotting 

sandwich was prepared with the following successive layers; pre-soaked extra thick blot 

paper, membrane, polyacrylamide gel, pre-soaked extra thick blot paper. The sandwich 

was orientated to ensure that the negatively charged proteins was moved out of the 

polyacrylamide gel and transferred across to the membrane. The transfer was carried out 

at a constant current of 90mA for 2.5 hours. 
 

2.4.5 Immunostaining and antibody detection 
 
The polyvinyliden difluoride (PVDF) membrane was incubated at room temperature for 

1 hour in blocking solution [5% (w/v) dried non-fat milk in TBST (Appendix 2.4, page 

272)]. This step is essential to ensure blocking of non-specific binding sites. Once 

completed, the membrane was washed in TBST for 30 minutes, while changing the 

buffer every 10 minutes. Membranes were incubated overnight at 4°C with continuous 

agitation, with a CNR2 polyclonal antibody developed in rabbit, at a concentration of 

1:2000 in 3% BSA in TBST. The membrane was washed three times in TBST for 15 

minutes and incubated with an anti-rabbit secondary antibody at a concentration of 

1:5000 in 5% w/v dried non-fat milk in TBST for 1 hour at room temperature. 
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Membranes were again washed three times with TBST. To visualise immunoreactivity 

the Pierce SuperSignal® West Dura Extended Duration chemiluminescent detection 

system was used and the signal was detected on a Syngene Genegnome Bio Imaging 

System. The intensities of the bands were quantified using the GeneSnap software from 

Syngene. 

 

Membranes were then incubate in stripping buffer (Appendix 2.4, page 272) for 15 

minutes at 50°C in order to remove all antibodies, then blocked and re-probed with an 

actin primary antibody developed in rabbit [1:1000 in 5% (w/v) dried non-fat milk in 

TBST] and an anti-rabbit secondary antibody [1:5000 in 5% (w/v) dried non-fat milk in 

TBST] as described above. Immunoreactivity was visualised and bands were quantified 

as described above. 
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2.5 ANIMAL EXPERIMENTATION 
 
All experimental protocols were approved by the Ethics Committee at the University of 

Edinburgh and were conducted in accordance with the UK Home Office regulations 

(personal licence number 60/10983, project licence number 60/3981). 

 

2.5.1 Animals 
 
C57BL/6 mice were housed in a designated animal facility, in pathogen-free rooms 

maintained at constant temperature, with 12 hours light/12 hours dark cycles. All 

animals had free access to water and pelleted standard commercial diet (SDS, Special 

Diets Service). 

 

Mice with CNR2 deficiency (CNR2-/-) were obtained from Dr. Susana Winfield at the 

National Institutes of Health and were generated from an 129 embryonic stem cell line 

carrying a targeted knockout of the CNR2 gene, as previously described (Buckley et al., 

2000). To create a congenic strain on a C57BL/6 background, these mice had been 

crossed with wild type C57BL/6 mice for at least 10 generations. The CNR2-/- mice used 

in this study were generated by mating heterozygote breeding pairs.  

 

2.5.2 Genotyping Methods 
 
Genomic DNA was extracted from murine ear snips using the commercially available 

Invisorb® Spin Tissue Mini Kit according to the manufacturer’s instructions. The purity 

of the extracted DNA was determined from the A260/A280 ratio and the concentration was 

determined using UV-transparent plates and a plate reader. The extracted DNA was 

stored at −20oC. 

 

Genotyping of mice was carried out by PCR analysis of genomic DNA. All PCR 

reactions were performed in 96-well plates and consisted of the following reagents. The 

volume for each reaction was adjusted to 50μl with sterile dH2O. 
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5.0μl of 10x Taq buffer mix 

 2.0μl of dNTPs 

 1.0μl of MgCl2 

 6.0μl of Primer mix (10μM each of forward and reverse primers) 

 1.0μl of Taq Polymerase  

 0.5 – 2.0μl of Genomic DNA  

 

Identifying CNR2-deficient mice 
 
CNR2-deficient mice have the neomycin (NEO) gene incorporated into their genome, 

which has replaced 391 base pairs (bp) of the 3’ end of the coding sequence (CDS) of 

exon 2 of the CNR2 gene. The disruption of the CNR2 gene by the NEO gene eliminated 

part of intracellular loop 3 (i3), the transmembrane domains 6 and 7 (TM6 and TM7), 

and the carboxy terminus (Buckley et al., 2000) (Figure 2.5). 
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Figure 2.5: Mouse cannabinoid receptor 2 protein (CNR2). CNR2 is a single polypeptide with 
seven transmembrane α-helices and has an extracellular N-terminus and an intracellular C-terminus. 
The residues in red indicate the deleted part of the protein following the NEO gene insertion. e1-e3 are 
the extracellular loops 1-3; i1-i3 are the intracellular loops 1-3; TM1-TM7 are the transmembrane 
domains 1-7. The image is adapted from Klein et al. (Klein et al., 1998).  
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To identify this mutation, a 643bp fragment was generated, encoding entirely part of the 

NEO gene, using the following primers: 5’-TTGGGTGGAGAGGCTATTCGGCTATG-

3’ and 5’-GCCCATTCGCCGCCAAGCTCTT-3’. To identify wild type mice in the 

same PCR reaction, a 790bp fragment encoding part of the CNR2 gene coding sequence 

was generated using the following primers: 5’-GAGGGATGCCGGGAGACAGAA 

GTGACC-3’ and 5’-CATGAGAGCCAGTGCAGGGAACCAGC-3’. The latter primer 

was binding on the region of CDS of exon 2 of the CNR2 gene that was deleted upon 

insertion of the NEO gene (Figure 2.6). Genomic DNA from heterozygote mice was 

expected to yield both fragments after amplification. 
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Figure 2.6: PCR design for identifying CNR2-deficient mice. A. The coding sequence (CDS) for the 
CNR2 gene is on exon 2, is 1041bp long and is translated into a functional CNR2 protein of 347 amino 
acids. B. Primers (1) and (2) annealed within the region of the CDS. Amplification of a 790 bp product 
was successful in animals having at least one intact copy of the CNR2 gene, i.e. in wild type mice and 
heterozygotes for the CNR2 mutation. C. Primers (3) and (4) annealed within the NEO gene sequence 
which replaced only the 3’ end of the CNR2 CDS, leaving only 650bp from the original CDS 
sequence. Amplification of a 643 bp fragment was successful in mice having at least one copy of 
mutant CNR2 gene, i.e. in homozygote (CNR2-/-) or heterozygote (CNR2+/-) mice for the CNR2 
mutation. 
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Amplification of both fragments was performed in a MJ Research thermocycler. The 

thermal cycling protocol consisted of an initial incubation for 2.5 minutes at 95oC, 

followed by 30 cycles of 20 seconds at 95oC and 3 minutes at 68oC and then by a final 

extension step at 68oC for 5 minutes in the last cycle (Figure 2.7).  
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2.5.3 SNP genotyping of wild type and CNR2-deficient mice 
 
A genome scan was performed to compare the genotypes of wild type and CNR2-/- 

C57BL/6 mice to pure C57BL/6 genotypes provided by Illumina Inc. DNA was 

extracted from mouse tails using the commercially available Invisorb® Spin Tissue Mini 

Kit. Genotyping services were provided by the Wellcome Trust Clinical Research 

Facility (WTCRF, Western General Hospital, Edinburgh, UK), using a commercially 

available medium density linkage panel to genotype 1449 evenly distributed single 

nucleotide polymorphisms (SNPs) with a uniform coverage across the mouse genome.  

Figure 2.7: Gel electrophoresis analysis to identify CNR2-deficient mice. Lane 1: 1kb DNA 
ladder; lane 2: Control; lane 4: wild type; lane 7: heterozygote for the CNR2 mutation; lane 9: 
homozygote for the CNR2 mutation. 
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2.5.4 Ovariectomy and sham operations 
 
Eight week-old female mice, weighing approximately 20g underwent bilateral 

ovariectomy or sham operation as previously described by Idris et al. (Idris et al., 

2008c). Briefly, anaesthesia was induced by an intraperitoneal injection of ketamine 

hydrochloride (Vetalar, 76mg/kg) and medetomidine hydrochloride (Dormitor, 1mg/kg) 

cocktail. Anaesthesia was reached once the animal did not response to gentle pressure on 

the hind paws. Before operating, the fur over the lumbar spine was wiped with 70% 

(v/v) ethanol. Using autoclaved sharp scissors a midline dorsal incision of 10mm was 

made at the bottom of the rib cage and the skin at each side of the cut was separated 

from the underlying muscle. To gain access to the two ovaries that were lying under the 

thin muscle layer, a 5mm incision was made on each side of the peritoneal wall. The 

edge of the incision was held open with autoclaved tooth forceps and the ovarian fat pad 

surrounding the ovaries were retracted with blunt forceps making the ovary identifiable. 

The exposed ovaries and part of the oviduct were carefully removed. The same 

procedure was followed for sham operations except that the ovaries were identified and 

placed back. The skin cut was closed using metal clips. Anaesthesia was reversed by an 

intraperitoneal injection of atipamezole hydrochloride (Antisedan, 1mg/kg). Animals 

were left undisturbed in a warm, quiet place for recovery. They were housed in groups 

of 8 in large cages, at constant temperature and free access to water and standard 

laboratory diet.  

 

2.5.5 Treatment regiments 
 
After a two-day recovery period all ovariectomised and sham-operated animals, received 

a 100μl intraperitoneal injection on a daily basis that consisted of either vehicle or the 

designated drug prepared as described in section 2.1, page 75. All animals also received 

two 0.2% (w/v) calcein injections, 4 days apart, with the last injection administered on 

the second-last day of the experiment. The intraperitoneal injection volume of calcein 

was 200μl. Mice from all groups were sacrificed by cervical dislocation on day 21.  
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2.5.6 Posterior vena cava blood collection for serum 
 
Blood was collected from the posterior vena cava of mice as previously described (Hoff, 

2000). Mice were killed by CO2 asphyxiation and the abdominal cavity was immediately 

opened by making a V-cut through the skin and abdominal wall. The intestines and liver 

were pushed to one side and the widest part of posterior vena cava was located (between 

the kidneys). A 25G needle and a 1ml syringe were used to collect blood from the 

posterior vena cava by carefully inserting the needle into the vein and drawing blood 

slowly until no more blood was available.  

 
Blood samples were transferred to Eppendorf tubes and placed on ice until sera were 

separated by a 10-minute centrifugation at 4oC. Sera were collected and stored at -20oC 

until further use. 

 

2.5.7 PINP and CTX serum assays 
 
The PINP serum assay is an enzyme immunoassay for the quantitative determination of 

N-terminal propeptide of type I procollagen (PINP), which are released during collagen 

synthesis. The PINP assay is considered to be a specific and sensitive marker of bone 

formation and is used for determining the bone formation rate from serum samples. The 

commercially available PINP kit is a competitive enzyme immunoassay using a 

polyclonal rabbit anti-PINP antibody coated onto the inner surface of microtitre wells. 

According to manufacturer’s instructions, controls, calibrators and samples were added 

into the wells followed by biotin-labelled PINP, and incubated for 1 hour at room 

temperature before aspiration and washing. Horseradish peroxidase (HRP)-labelled 

avidin was added to the wells and bound selectively to complexed biotin. After a wash 

step, colour was developed using the aqueous formulation of tetramethylbenzidine 

(TMB) and hydrogen peroxide as a chromogenic substrate. The reaction was stopped by 

0.5M hydrochloric acid and the absorbance of each well was measured at 450nm using a 
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plate reader. The colour intensity developed was inversely proportional to the 

concentration of PINP. 

 

The CTX serum assay is an enzyme immunoassay used for the quantitative 

determination of C-terminal telopeptide fragments of type I collagen (CTX), released in 

circulation during bone matrix degradation. Thus, serum CTX is used as a marker of 

osteoclastic bone resorption. The CTX kit is a competitive enzyme immunoassay using a 

polyclonal antibody raised against a synthetic peptide having a sequence specific for a 

part of the C-terminal telopeptide α1 chain of rat type I collagen (CTX antigen). During 

the pre-incubation step, biotinylated CTX antigen was added and immobilised in 

streptavidin-coated microtitre wells for 30 minutes at room temperature. After aspiration 

and washing, standards, control and samples were added into the wells followed by a 

solution of the polyclonal rabbit antibody mentioned above. Following an overnight 

incubation at 4oC wells were emptied and washed. In the second incubation step a 

solution of goat anti-rabbit antibody conjugated with peroxidase was added into the 

wells for 1 hour at room temperature. After washing, the chromogenic substrate solution 

TMB was added. After a 15-minute incubation at room temperature the colour reaction 

was stopped by 0.18M sulphuric acid. The absorbance was measured at 450nm using a 

plate reader and was inversely proportional to the concentration of CTX antigens in the 

samples. 

 

2.5.8 Micro computed tomography (μCT) 
 
Animals were sacrificed by cervical dislocation and hind legs were isolated, fixed in 4% 

(v/v) parafolmadehyde in PBS and stored in 70% (v/v) ethanol. Left tibias were 

dissected and gently cleaned from the surrounding muscle tissue using a scalpel. The 

tibia was separated from the fibula and cut at the tibial crest using a Dremel rotary tool. 

Each bone was tightly wrapped in parafilm to avoid desiccation and placed in an upright 

position in 1ml syringe with both ends cut. Each wrapped sample was pushed to the 
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bottom of the hollow tube using a plunger, allowing 5 or 6 samples to fit in at once. 

Whole 2 day-old mouse neonates were carefully but loosely wrapped in parafilm and 

placed in a 15ml falcon tube with both ends cut. 

 
The μCT was performed on the left proximal tibial metaphysis and diaphysis for 

trabecular and cortical bone analysis respectively, or on 2 day-old whole mouse neonates 

using a SkyScan 1172 scanner. Stacks of 5 or 6 dissected tibias (Figure 2.8A) and mouse 

neonates one at a time were fixed in an upright position on a platform within the 

scanner. Using SkyScan scanner μCT software, the x-ray radiation source was set at 

60kV and 150μA. A 0.5mm aluminium filter was added for a 180 degree scan with a 

rotation step of 0.6 degrees. The pixel size was set at 5μm for scanning tibias and 10μm 

for scanning mouse neonates.  

 
The 3D image stacks were reconstructed from the rotation image projections, using the 

NRecon software by SkyScan and a 5-piece computer cluster. The reference line was 

chosen at the growth plate. For measurements at the proximal tibial metaphysis, which 

comprises mainly trabecular bone, 500 frames distal to the growth plate at baseline were 

chosen to be reconstructed (Figure 2.8Bi). For measurements of proximal diaphysis, 

which comprises mainly cortical bone, 100 frames lying 700 frames distal to the 

reference line were selected to be reconstructed (Figure 2.8Bii). Images for the entire 2 

day-old mouse neonates were reconstructed. Reconstruction settings involved the 

parameters shown in Table 2.3. All reconstructed images were saved as .bmp files.  

 
Table 2.3: Reconstruction parameters by NRecon software 

Parameter Description Setting 

Smoothing Smoothes images and removes noise Width; 1 pixel 
Beam Hardening 
factor correction 

Corrects for the absorption of lower 
energy x-ray on the outside of specimen  9% 

Ring correction 
level 

Corrects for the non-linear behaviour of 
pixels causing ring artifacts 3 
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The reconstructed images were analysed using the CTAn software by SkyScan. The 

region of interest (ROI) was selected using a free-hand drawing tool at 3-7 different 

levels. Auto-interpolation between these levels produced the total ROI. 

 

The reference line for the trabecular bone was set at the point where the calcified 

cartilage ridges of growth plate fuse together. Measurements were performed on 200 

frames distal to the reference point, 5μm apart, at the trabecular bone specified by ROI 

(Figure 2.8Ci). For cortical bone analysis ROI was specified by an 8-figure drawing, 

which included only the cortex as a hollow tube (Figure 2.8Cii). Measurements were 

performed on all 100 frames selected previously for 3D-reconstruction. These 

reconstructed frames were also subjected to a total bone analysis at the cortical level 

(Figure 2.8Ciii). For the analysis of 2 day-old mouse neonates, ROI stretched along the 

entire reconstructed skeleton images. Analysing parameters such as smoothing, 

threshold, despeckle, 3D-analysis and configuration, were set as shown in Table 2.4.  

 
 

Table 2.4: Analysing parameters by CTAn software 

Parameter Description Setting 

Smoothing Smoothes images and removes 
noise Median filter; 2D space, radius 1 

Threshold Segments the foreground from 
background to binary images Global; low level 100, high level 255 

Despeckle Removes speckles from binary 
images 

Image; remove white speckles <150 
voxels 

3D-Model Creates a 3D surface from 
binary images Adaptive rendering; file saved as .p3g

3D-Analysis Calculates 3D parameters of 
binary images 

Requested for basic values, trabecular 
thickness, number and separation 
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Analysis was performed on trabecular bone volume, trabecular thickness, trabecular 

separation, trabecular number and trabecular pattern factor as shown in Table 2.5. 

Cortical bone analysis was performed on cortical bone volume, cortical thickness, 

cortical diameter, medullary cavity diameter and cross-sectional diaphyseal area. All 

calculations were saved as .csv files. 3D models of tibias and 2 day-old pup skeletons 

were visualised using the CTVol software by SkyScan (Figure 2.8D).  

 

 
Table 2.5: Analysing parameters and abbreviations 

Parameter Abbreviation (unit) 

Trabecular bone volume BV/TV (%) 

Trabecular Thickness Tb.Th (μm) 

Trabecular Separation Tb.Sp (μm) 

Trabecular Number Tb.N (1/mm) 

Trabecular Pattern factor  Tb.Pf (1/mm) 

Cortical bone volume Ct.BV (mm3) 

Cortical Thickness Ct.Th (μm) 

Cortical diameter Ct.Dm (μm) 

Medullary cavity diameter Med.Cav.Dm (μm) 

Cross-sectional diaphyseal area Ct.Ar (mm2) 

 
 
 
The μCT scanning procedure is summarised in Figure 2.8. 
 
 



Chapter 2: MATERIALS AND METHODS 

 103

 
A

D

C

B i. ii.

iii.i. ii.

i. ii.

A

D

C

B i. ii.

iii.i. ii.

i. ii.

 
 
 
 
 
 
 
 
 
 
 
2.5.9 Bone histomorphometric analysis 
 
Left proximal tibia, including metaphysis and part of diaphysis, were carefully dissected 

and fitted into an embedding basket (Figure 2.9Ai) which in turn was placed in a vial 

with PBS. The vial was then placed in a Leica automatic tissue processor at room 

temperature for about 28 hours (Figure 2.9Aii). During this period the samples 

underwent various stages of dehydration with ethanol dilutions and defatting with xylene 

as shown in Table 2.6. 

 

 

 

 

Figure 2.8: μCT scan procedure. A. Scanning of dissected tibiae in groups of 6 bones. B. 
Reconstruction of a tibia at the proximal tibial metaphysis (i) or proximal diaphysis (ii) in scout view. 
C. Selection of region of interest (ROI) in a cross sectional view. The ROI for the proximal tibial 
metaphysis is the trabecular bone (i), whereas for the proximal diaphysis could be the cortical bone 
including the medullar cavity (ii) or simply the cortex (iii). D. 3D model viewings of trabecular bone 
(i) or cortical bone (ii) in cross sectional view. 
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Table 2.6: Stages and reagents for Leica tissue processor programme 

Stage Reagent Time (hours) 

1 PBS 45min 

2 50% Ethanol 02.00 

3 70% Ethanol 02.00 

4 80% Ethanol 02.00 

5 96% Ethanol 02.00 

6 100% Ethanol 03.00 

7 100% Ethanol 03.00 

8 Xylene 01.00 

9 Xylene 12.00 

 
 
 
Following processing, the samples were placed in freshly-prepared methyl methacrylate 

(MMA)-based infiltration solution (Appendix 2.5, page 273). The samples were kept in 

an air-tight vacuum desiccator, at 4oC for 1 week (Figure 2.9Bi). 

 
Once infiltrated, the samples were transferred individually into embedding molds and 

covered with 3ml of MMA-based embedding solution which had been stored for 1 week 

at 4oC. The molds were then shut airtight and immersed in a water bath at 30oC. 

Polymerisation of MMA-based resin was completed within 9-15 hours. Resin blocks 

were then mounted on embedding rings using a quick-hardening mounting medium 

made of 2 parts of dibenzoylperoxide (powder) and 1 part of N,N-dimethyl-p-toluidine 

(liquid). 

 
Each resin block was clamped onto an appropriate holder and with a low speed 

microtome steel knife, the specimens were trimmed to a bone-section width of 600-

1000μm depending on the size of the bone, reaching approximately the sagittal plane of 
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the tibia (Figure 2.9Ci). The specimens were then cut into 5μm thick sections. Sections 

were collected and placed on a drop of 96% (v/v) ethanol on a silane coated microscope 

slide and then covered with Kisol foil. The excess ethanol was removed using a small 

piece of filter paper and to improve adhesion of the sections they were left to dry under 

pressure at 37oC for 1-2 days.  

 
Prior to resin removal, the Kisol foil was carefully removed from the slide. Then the 

slides were immersed into 2-Methoxyethyl acetate (MEA) for 20 minutes. This was 

repeated three times using fresh MEA each time. Slides were then immersed twice into 

xylene, for 10 minutes each time. For rehydration the sections were washed in a series of 

ethanol solutions of decreasing concentration, i.e. 100% (twice), 96%, 80%, 70%, and 

50% (v/v) ethanol. Finally the slides were washed in dH2O. 

 
The sections were initially stained with Von Kossa. Sections were immersed in 1.5% 

(v/v) aqueous silver nitrate and incubated in the dark for 5 minutes. Following the 

incubation period, sections were carefully rinsed in three changes of dH2O and then 

immersed in 0.5% (w/v) aqueous hydroquinone for 2 minutes. Finally, all sections were 

washed in three changes of dH2O.      

 
Following Von Kossa staining, the sections were counterstained with Paragon stain, a 

1:5 mixture of Paragon solution : Borax buffer solution (Appendix 2.5, page 273) and 

incubated at room temperature for 1 minute. Once stained, all sections were washed in 

three changes of dH2O. 

 
After counterstaining, sections were air dried in a fume hood and then immersed in 

xylene for up to 5 minutes. Excess xylene was removed by a paper towel and finally the 

sections were coverslipped with DPX mounting medium (Figure 2.9Cii). 

 

The process of bone histology is summarised in Figure 2.9. 
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2.5.10 Image analysis 
 
Tibial sections of the proximal metaphysis distal to the epiphysial growth plate were 

visualised at 10x magnification using a Zeiss Axio Imager microscope fitted with a 

QImaging Retiga 4000R camera (Figure 2.9D). Static and dynamic bone 

histomorphometry was performed on the trabecular bone in the area between 0.1mm and 

1.0mm distal to the growth plate, using a custom software developed by Dr. Rob J. van’t 

Hof using the Aphelion Image Analysis tool kit (Adcis SA, Hérouville-Saint-Clair, 

France) as previously described (van’t Hof et al., 2004) (Figure 2.10). Parameters such 

as bone volume, active resorption area, osteoclast and osteoblast number, bone 

formation rate and mineral apposition rate, were calculated according to the ASBMR 

Histomorphometry Nomenclature Committee (Parfitt et al., 1987) and are shown in 

Table 2.7. 

 

 

Figure 2.9: Histology and histomorphometry procedures. A. Dissected tibias were placed in baskets 
(i) and then in a tissue processor (ii) for dehydration and defatting. B. Samples were kept in MMA-
based infiltration solution in a vacuum desiccator at 4oC for a week. Infiltrated samples were 
embedded in MMA-based embedding solution which polymerised into resin blocks (not shown). C. 
Blocks were trimmed and cut into 5μm thick sections using a microtome steel knife (i). Sections were 
placed on silane coated microscope slides and then went through Von Kossa and Paragon staining (ii). 
D. Sections were analysed using a Zeiss Axio Image microscope. 
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Figure 2.10: Static and dynamic histomorphometric analysis. Ai. Von Kossa and Paragon stained 
section at 5X magnification. ii. Arrows and arrowheads point to osteoblasts and osteoid, respectively 
(x40 magnification). iii. Arrow points to an osteoclast at x40 magnification. B. Picture of calcein 
labelling visualised by fluorescent microscope at x20 magnification (monochrome capture) (i). 
Trabecular bone surface is selected (ii) and traced in blue, indicating unlabelled surface, in green, 
indicating single labelled surface, or in red, while filling the space between the two lines, indicating 
double labelled surface (x20 magnification).  
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Table 2.7: Static and dynamic bone histomorphometric parameters 

Parameter Abbreviation (unit) Calculation/Expression 

Bone Volume per Total 
Volume BV/TV (%) Value x 100 

Active resorption area per 
Bone Surface Oc.S/BS (%) Value x 100 

Osteoclast Number per 
Bone Surface 

Oc.N/BS 
(# of cells/mm) 

Osteoclast 
number/Bone surface 

Osteoblast Number per 
Bone Surface 

Ob.N/BS 
(# of cells/mm) 

Osteoblast 
number/Bone surface 

Osteoclast Number per total 
section area 

Oc.N/T.Ar 
(# of cells/mm2) 

Osteoclast 
number/Section area 

Osteoblast Number per total 
section area 

Ob.N/T.Ar 
(# of cells/mm2) 

Osteoblast 
number/Section area 

Single Labelled Surface sLS (μm) Calculated by software 

Double Labelled Surface dLS (μm) Calculated by software 

Bone Surface BS (μm) sLS + dLS + 
unlabelled surface 

Labelled Width  L.Wi (μm) Calculated by software 

Mineral Apposition Rate MAR (μm/day) L.Wi /# of days 

Mineralising Surface per 
Bone Surface MS/BS (ratio) (dLS + sLS/2)/BS 

Bone Formation Rate (at 
bone surface level)  BFR (μm2/μm/day) MAR*(MS/BS) 
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2.6 DATA ANALYSIS 
 
Statistical analysis was performed using SPSS version 13.0. Differences between mean 

scores for drug-treated cultures and control cultures were analysed for significance by 

one-way analysis of variance (ANOVA) followed by Dunnett’s post hoc test. Significant 

differences between groups were assessed using ANOVA followed by Tukey’s post hoc 

test (for equal variances) or Games-Howell post hoc test (for unequal variances). 

Differences between wild type and CNR2-/- mice, or cultures derived from wild type and 

CNR2-/- mice were analysed by independent-samples t test. All data are presented as 

means ± standard error of means (sem) unless stated otherwise. Values of p less than 

0.05 were considered significant. 

 

The half maximal effective concentration (EC50) and half maximal inhibitory 

concentration (IC50) values were calculated by non-linear regression analysis using the 

equation for a sigmoidal concentration-response curve (GraphPad Prism version 4.0).  
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3 ENDOCANNABINOID SYSTEM IN BONE CELLS 
 
3.1 SUMMARY 
 
Type 1 (CNR1) and type 2 (CNR2) cannabinoid receptors have been previously reported 

to be expressed on mouse osteoblasts and osteoclasts. Shortly after, studies showed that 

bone cells also expressed some of the enzymes critically involved in the metabolism of 

AEA and 2-AG. The expression of CNR2 and enzymes involved in the endocannabinoid 

biosynthesis and degradation in the bone microenvironment was concurrently 

investigated by our group, using qPCR and Western blot analysis. 

 

CNR2 mRNA and protein levels were found to be expressed in bone marrow, M-CSF-

stimulated macrophages, M-CSF- and RANKL-stimulated osteoclasts and calvarial 

osteoblasts. CNR2 protein levels were found to be expressed in two different forms most 

likely representing a glycosylated and a non-glycosylated form of CNR2. Bone marrow 

and calvarial osteoblasts mainly expressed the non-glycosylated form of CNR2 whereas 

macrophages and osteoclasts mainly expressed the glycosylated CNR2 form. Regardless 

whether CNR2 was glycosylated or not, it was most highly expressed in bone marrow 

and osteoclasts suggesting a possible role of CNR2 in osteoclast differentiation and 

function. In bone marrow-derived osteoblasts, CNR2 mRNA expression increased 

progressively as cells differentiated from osteoblast precursors to mature osteoblasts, 

indicating a potential role of CNR2 in osteoblast differentiation. In addition, bone cells 

were found to express NAPE-PLD and DAGLs (α and β), enzymes involved in the 

biosynthesis of AEA and 2-AG respectively, and FAAH and MGL, enzymes involved in 

endocannabinoid degradation, at comparable levels to those expressed in the brain. 

 

In conclusion, cells within the bone microenvironment express CNR2 mRNA and 

protein, as well as mRNA levels of the enzymes responsible for the biosynthesis and 

degradation of endocannabinoids.  
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3.2 INTRODUCTION 
 
The endocannabinoid system comprises two known receptors; the type 1 cannabinoid receptor 

(CNR1) and the type 2 cannabinoid receptor (CNR2), a family of endogenous ligands and a 

molecular machinery for ligand synthesis, transport and inactivation [reviewed in (Goutopoulos 

and Makriyannis, 2002; Griffin et al., 2000; Howlett, 2002; Lutz, 2002)].  

 

The CNR1 and CNR2 receptors exhibit 44% homology at the protein level and share common 

signal transduction pathways (Lutz, 2002; Schatz et al., 1997) (c.f. Figure 1.10, page 58). Both 

cannabinoid receptors are G protein-coupled receptors and are highly expressed in the brain 

(CNR1), immune system (CNR2) and in a number of other peripheral tissues (Pertwee, 1997). 

Osteoclasts, osteoblasts, osteocytes and bone marrow have been recently reported to express 

CNR1 and CNR2, with CNR2 being higher than CNR1 [reviewed in (Idris, 2008; Bab and 

Zimmer, 2008; Bab et al., 2008)].  

  

Two well-characterised endocannabinoids, arachidonoyl ethanolamide (AEA) and 2-

arachidonoyl glycerol (2-AG), have also been detected in the brain and peripheral tissues 

(Schmid et al., 1997). Recent studies have shown that bone cells express endocannabinoids at 

levels similar to those found in the brain [reviewed in (Bab et al., 2008)]. Finally, the presence of 

enzymes involved in the endocannabinoid metabolism (c.f. Figure 1.11, page 61), in osteoclasts, 

osteoblasts, osteocytes and bone lining cells, provided further evidence for the existence of a 

skeletal endocannabinoid system (Tam et al., 2008; Bab and Zimmer, 2008; Rossi et al., 2009). 

 

The aim of the work reported in this chapter was to investigate further the presence and 

distribution of CNR2 and other components of the endocannabinoid system, such as enzymes 

involved in the synthesis/breakdown of endocannabinoids, in the bone microenvironment. 

mRNA expression levels of the endocannabinoid machinery components and CNR2 protein 

levels were measured by means of qPCR and Western blot analysis, respectively. 
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3.3 RESULTS 
 
3.3.1 Osteoclasts and osteoblasts express type 2 cannabinoid receptors 
 
The expression of CNR2 mRNA was measured in M-CSF- and RANKL-generated 

osteoclasts and calvarial osteoblasts, using Reverse Transcription PCR (RT-PCR) (c.f. 

section 2.3.3, page 83) followed by quantitative real time PCR (qPCR) (c.f. section 

2.3.4, page 84). As shown in Figure 3.1 the CNR2 mRNA expression was most abundant 

in osteoclasts, which exceeded that in calvarial osteoblasts by 4-fold.  
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To determine the protein level of CNR2 in bone cells, Western blot analysis was used 

(c.f. section 2.4, page 90). CNR2 protein was detected in M-CSF- and RANKL-

generated osteoclasts and calvarial osteoblasts in two different forms, most likely 

representing a non-glycosylated and a glycosylated form of the receptor (Figure 3.2Ai). 

Both bone cell types expressed a 41kDa peptide. In addition, a second peptide with the 

molecular weight of 45kDa was mainly expressed by osteoclasts (Figure 3.2Ai). 

Figure 3.1: mRNA expression of CNR2 in osteoclasts and osteoblasts. CNR2 mRNA expression 
in M-CSF- and RANKL-stimulated osteoclasts (OC) and calvarial osteoblasts (OB). The amount of 
total RNA used for cDNA synthesis was 25ng. mRNA levels were expressed as a percent of values 
from maximal expression. Values are means ± sem from 3 independent experiments. *p < 0.05 
from OB. 



Chapter 3: ENDOCANNABINOID SYSTEM IN BONE CELLS 

 114

Following protein normalisation to the 42kDa actin, the expression of the 41kDa CNR2 

peptide in osteoclasts and osteoblasts was not significantly different (Figure 3.2B), 

whereas the 45kDa CNR2 peptide in osteoclasts was clearly more abundant than in 

osteoblasts, where this peptide was expressed in far smaller amounts (Figure 3.2C).  
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Figure 3.2: CNR2 protein expression in osteoclasts and osteoblasts. A. CNR2 (i) and actin 
(ii) expression in M-CSF- and RANKL-stimulated osteoclasts (OC) and calvarial osteoblasts 
(OB). Lanes are replicates from 3 mice (for OC) or 3 litters (for OB). Quantification of 41kDa 
CNR2 peptide (B) and 45kDa CNR2 peptide (C) in OC and OB expressed as a ratio of CNR2 
over actin. The amount of total protein used for western blotting was 47μg. Values in B and C 
are means ± sem from 3 independent experiments. *p < 0.001 from OB. 
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3.3.2 Bone marrow-derived macrophages and osteoclasts express type 2 cannabinoid 
receptors 

 
To determine the mRNA levels of CNR2 in bone marrow cells differentiating towards 

osteoclasts, qPCR was performed on bone marrow and bone marrow-derived 

macrophages (treated with M-CSF) and osteoclasts (treated with M-CSF and RANKL) 

(c.f section 2.3.4, page 84). As shown in Figure 3.3, there was decreasing CNR2 mRNA 

expression from bone marrow to macrophages to osteoclasts. The mRNA levels of 

CNR2 in bone marrow exceeded those in macrophages by almost 2-fold and those in 

osteoclast by 6-fold.  
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To determine the protein level of CNR2 in bone marrow cells differentiating towards 

osteoclasts, Western blot analysis was performed on bone marrow, M-CSF-stimulated 

macrophages and M-CSF- and RANKL-stimulated osteoclasts (c.f. section 2.4, page 

90). Consistent with section 3.3.1, page 113, Western blot analysis yielded two forms of 

CNR2, most likely representing a non-glycosylated and a glycosylated form of the 

Figure 3.3: mRNA expression of CNR2 in bone marrow and bone marrow-derived 
macrophages and osteoclasts. CNR2 mRNA expression in bone marrow (BM), M-CSF-
stimulated macrophages (MΦ) and M-CSF- and RANKL-stimulated osteoclasts (OC). The 
amount of total RNA used for cDNA synthesis was 25ng. mRNA levels were expressed as a 
percent of values from maximal expression. Values are means ± sem from 3 independent 
experiments. *p < 0.05 from all samples, **p<0.05 from OC. 
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receptor (Figure 3.4Ai). Bone marrow mainly expressed a 41kDa peptide of CNR2, 

whereas macrophage and osteoclasts mainly expressed a CNR2 peptide with the 

molecular weight of 45kDa (Figure 3.4Ai). Following protein normalisation to actin, the 

expression of the 41kDa CNR2 peptide in bone marrow exceeded the expression in 

macrophages and osteoclasts by at least 10-fold (Figure 3.4B). The 45kDa CNR2 

peptide was expressed in increasing order from bone marrow to macrophages to 

osteoclasts (Figure 3.4C). However, regardless of the glycosylation state of the receptor, 

this data shows that bone marrow and osteoclasts express comparable protein levels of 

CNR2, which are significantly higher than those expressed in macrophages. 
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Figure 3.4: CNR2 protein expression in bone marrow and bone marrow derived-
macrophages and osteoclasts. A. CNR2 (i) and actin (ii) expression in bone marrow (BM), 
M-CSF-stimulated macrophages (MΦ) and M-CSF- and RANKL-stimulated osteoclasts (OC). 
Lanes are replicates from 3 mice. Quantification of 41kDa CNR2 peptide (B) and 45kDa 
CNR2 peptide (C) in BM, MΦ and OC expressed as a ratio of CNR2 over actin. The amount of 
total protein used for western blotting was 47μg. Values in B and C are means ± sem from 3 
independent experiments. *p < 0.05 from all samples, **p < 0.05 from BM. 
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3.3.3 Bone marrow-derived mature osteoblasts express high levels of CNR2 mRNA  
 
To investigate the presence of CNR2 in differentiating osteoblasts, CNR2 mRNA 

expression was also analysed in bone marrow-derived stromal cells grown in medium 

supplemented with 50μg/ml Vitamin C and 3mM β-GP (osteogenic medium) (c.f. 

section 2.2.6, page 79). Expression of CNR2 mRNA increased progressively during the 

culture period of 20 days (Figure 3.5). The mRNA levels of CNR2 were much lower 

when bone marrow-derived stromal cells were grown in non-osteogenic medium for 20 

days (Figure 3.5). At the end of the culture period, CNR2 mRNA expression in cultures 

propagated with osteogenic medium for 20 days was 4-fold higher than in cultures in 

non-osteogenic medium (Figure 3.5). 
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Figure 3.5: mRNA expression of CNR2 in bone marrow-derived osteoblasts. CNR2 mRNA 
expression in bone marrow-derived osteoblasts (BM-OB) in non-osteogenic medium (NOM) 
for 20 days and in medium supplemented with Vitamin C and β-GP [osteogenic medium – 
(OM)] for 10 or 20 days. The amount of total RNA used for cDNA synthesis was 100ng. 
mRNA levels were expressed as a percent of values from maximal expression. Values are 
means ± sem from 3 independent experiments. *p < 0.05 from all samples. 
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3.3.4 Bone cells express the mRNA of endocannabinoid synthesising and breakdown 
enzymes 

 
To investigate the presence of other components of the endocannabinoid machinery in 

bone cells, qPCR was used to investigate the mRNA expression of enzymes involved in 

the synthesis and breakdown of the endocannabinoids AEA and 2-AG. The mRNA 

levels of these enzymes in the bone microenvironment were of the same order of 

magnitude as in the brain (Figure 3.6, 3.7 and 3.8).   

 
The mRNA levels of the AEA-synthesising enzyme, N-acyl phosphatidylethanolamine 

phospholipase D (NAPE-PLD), in osteoclasts exceeded those in brain by 3-fold and 

those in bone marrow, macrophages and osteoblasts by almost 4-fold (Figure 3.6).  
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Figure 3.6: mRNA expression of the enzyme involved in the synthesis of AEA in brain 
and bone microenvironment. NAPE-PLD mRNA expression in brain, bone marrow (BM), 
macrophages (MΦ), osteoclasts (OC) and calvarial osteoblasts (OB). The amount of total RNA 
used for cDNA synthesis was 5μg. mRNA levels were expressed as a percent of values from 
maximal expression. Values are means ± sem from 3 independent experiments. *p < 0.05 from 
all samples, **p < 0.05 from BM, MΦ and OB. 
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Two enzymes are involved in 2-AG synthesis, sn-1-diacyl glycerol lipase α (DAGLα) 

and DAGLβ. Unlike DAGLβ, DAGLα was most abundant in the brain. Bone marrow had 

extremely low levels of DAGLα mRNA compared to bone cells which expressed 

DAGLα mRNA in increasing order from macrophages to osteoclasts to osteoblasts 

(Figure 3.7A). DAGLβ however, was more highly expressed in the bone 

microenvironment than in brain. Macrophages and bone marrow had the highest mRNA 

levels of DAGLβ, whereas osteoclasts and osteoblasts expressed DAGLβ mRNA at 

similar levels as brain (Figure 3.7B).   
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Figure 3.7: mRNA expression of enzymes involved in the synthesis of 2-AG in brain and 
bone microenvironment. DAGLα (A) and DAGLβ (B) mRNA expression in brain, bone 
marrow (BM), macrophages (MΦ), osteoclasts (OC) and calvarial osteoblasts (OB). The 
amount of total RNA used for cDNA synthesis was 5μg. mRNA levels were expressed as a 
percent of values from maximal expression. Values are means ± sem from 3 independent 
experiments. *p < 0.05 from all samples, **p < 0.05 from OC and OB.



Chapter 3: ENDOCANNABINOID SYSTEM IN BONE CELLS 

 120

The mRNA of both enzymes responsible for endocannabinoid breakdown, fatty acid 

amide hydrolase (FAAH) and monoacylglycerol lipase (MGL), were most abundant in 

brain and at levels at least twice as high as in the bone microenvironment (Figure 

3.8A,B). Expression of FAAH mRNA in bone marrow was 2-fold higher than in 

osteoclasts and 4-fold higher than in osteoblasts. In macrophages FAAH mRNA was 

found to be expressed in far smaller amounts (Figure 3.8A). In the bone 

microenvironment, MGL mRNA was most highly expressed in bone marrow, where 

levels were twice as high as in osteoblasts. The expression of MGL mRNA in 

macrophages and osteoclasts was very low (Figure 3.8B). 
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 Figure 3.8: mRNA expression of enzymes involved in the breakdown of AEA and 2-AG in 

brain and bone microenvironment. FAAH (A) and MGL (B) mRNA expression in brain, 
bone marrow (BM), macrophages (MΦ), osteoclasts (OC) and calvarial osteoblasts (OB). The 
amount of total RNA used for cDNA synthesis was 5μg. mRNA levels were expressed as a 
percent of values from maximal expression. Values are means ± sem from 3 independent 
experiments. *p < 0.05 from all samples, **p < 0.05 from MΦ, OC and OB, ***p < 0.05 from 
MΦ and OC. 
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3.4 DISCUSSION 
 
The discovery of the central type 1 cannabinoid receptor (CNR1) (Matsuda et al., 1990) 

was followed by the characterisation of the peripheral type 2 cannabinoid receptor 

(CNR2) (Munro et al., 1993). A search of endogenous ligands for cannabinoid receptors 

led to the identification of AEA and 2-AG (Devane et al., 1992; Mechoulam et al., 

1995). Cannabinoid receptors, their endogenous ligands and enzymatic systems for their 

biosynthesis and degradation together form the endocannabinoid system. 

 

CNR1 is highly expressed in brain tissue and to lesser extent in peripheral tissues 

(Matsuda et al., 1990; Bouaboula et al., 1993), whereas CNR2 is mainly expressed by 

immune and haematopoietic cells (Munro et al., 1993; Schatz et al., 1997). In this study 

CNR2 mRNA expression was detected in bone marrow, macrophages and osteoclasts. 

This was in agreement with previous findings of our group and others showing that 

CNR2 mRNA was expressed in mouse osteoclasts (Idris et al., 2005; Ofek et al., 2006), 

in RAW 264.7-derived osteoclast-like cells (Ofek et al., 2006) and in human osteoclasts 

(Rossi et al., 2009). The detection of CNR2 mRNA in cells of the osteoclast lineage 

suggests that CNR2 could mediate the effects of cannabinoid ligands on osteoclast 

formation and function.  

 

Western blot analysis yielded two bands corresponding to CNR2.  Bone marrow mainly 

expressed a 41kDa peptide that could correspond to the predicted size of the CNR2 

protein based on its amino acid sequence. Macrophages and osteoclasts mainly 

expressed a second CNR2 peptide with an apparent molecular weight of 45kDa, most 

likely to represent a glycosylated form of CNR2 as previously detected in human 

dendritic cells (Matias et al., 2002) and in Sf21 insect cells expressing human CNR2 

using the baculovirus expression system (Filppula et al., 2004). 
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Glycosylation is a common structural feature of G protein-coupled receptors (GPCRs) 

(Howlett et al., 1991). Murine CNR2 contains one potential glycosylation site in the 

extracellular N-terminal domain (Olson et al., 2003). N-glycosylation is a post-

translational modification occurring as a series of enzymatic reactions initiated in the 

endoplasmic reticulum and completed during transport through the Golgi apparatus 

[reviewed in (Duvernay et al., 2005)]. N-glycosylation in GPCRs may be absolutely 

necessary for their cell-surface expression, may facilitate their transport to the cell 

surface, or may have no effect on their expression at all (Duvernay et al., 2005). For 

cannabinoid receptors it has been shown that oligosaccharide groups are not necessary 

for agonist-binding or the subsequent inhibition of adenylate cyclase, suggesting that 

glycosylation is unimportant for cannabinoid receptor activity (Howlett et al., 1991). 

However, the authors mentioned that the rate of receptor synthesis and degradation had 

not been taken into consideration (Howlett et al., 1991). With no more evidence 

regarding the role of glycosylation in cannabinoid receptors, it has been accepted that 

glycosylation modification yields different forms of cannabinoid receptors, but does not 

affect the receptor expression at the cell surface, or receptor activity. The expression of 

different forms of CNR2 in bone marrow and bone marrow-derived cells suggests that 

CNR2 may be subjected to different post-translation modifications in distinct cell 

populations. Whether these modifications are important for the rate of CNR2 synthesis 

or degradation is yet to be established. 

 

Regardless of the glycosylation state of the receptor, it was obvious that bone marrow 

and osteoclasts had comparable CNR2 protein levels, while macrophages had 4 times 

lower levels. This data suggest a possible role of CNR2 in osteoclast formation, 

maturation and function. However, these results were not entirely reflected by 

quantitative real time PCR (qPCR) analysis, which showed that CNR2 mRNA 

expression was least abundant in osteoclasts. Taking into consideration that qPCR 

analysis can only predict the amount of a protein according to the mRNA levels at the 



Chapter 3: ENDOCANNABINOID SYSTEM IN BONE CELLS 

 123

exact time of RNA isolation, Western blot analysis is believed to be a more suitable 

method for determining the presence/absence or levels of a protein.  

 

CNR2 mRNA expression in calvarial osteoblasts was very low but in bone marrow-

derived osteoblasts grown in osteogenic medium, mRNA levels of CNR2 were 

progressively increased as previously described (Ofek et al., 2006). These results 

indicate that CNR2 mRNA expression is increased as osteoblasts mature and start 

forming bone matrix, suggesting a possible role of CNR2 in osteoblast differentiation.  

 

Western blot analysis showed that calvarial osteoblasts mainly expressed the non-

glycosylated form of CNR2. The detection of CNR2 in calvarial osteoblasts together 

with the increasing expression of CNR2 mRNA levels in differentiating bone marrow-

derived osteoblasts, suggest that CNR2 could mediate the effects of cannabinoid ligands 

on osteoblast differentiation and function. Due to the difficulty in recovering adequate 

amount of protein from mature bone marrow-derived osteoblasts grown in osteogenic 

medium, Western blot analysis was not repeated in these cells. 
 

Previous studies have shown that AEA and 2-AG are produced in the bone 

microenvironment (Tam et al., 2008; Bab et al., 2008; Ridge et al., 2007; Rossi et al., 

2009). This chapter shows that the mRNA of the enzymes involved in the 

endocannabinoid synthesis (NAPE-PLD, DAGLα and DAGLβ) and degradation (FAAH 

and MGL) are expressed in cells of the bone microenvironment at levels comparable to 

those expressed in the brain, in agreement with previously studies (Tam et al., 2008; Bab 

and Zimmer, 2008; Rossi et al., 2009). 

 

Throughout this study qPCR analysis was carried out without normalisation. Although 

control genes can be used to correct sample-to-sample variation within the same cell 

type, they are not always relevant for normalisation between distinct cell types 

(SUGAHARA et al., 2006). Recent and previous work from our group showed that the 
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mRNA expression levels of 18S rRNA, β-actin and GAPDH were variable among bone 

marrow-derived cells and significantly affected with M-CSF and RANKL treatment 

(Landao-Bassonga, E., personal communication). In view of this, qPCR data in this 

chapter were not normalised to house keeping genes, but instead a sensitive method for 

measuring RNA concentration was used (c.f section 2.3.2, page 83). However, for 

Western blot analysis, actin was used as a loading control. The second protein detected 

alongside the 42kDa actin in bone marrow samples could be attributed to the likely 

presence of impurities in total bone marrow lysates. When this experiment was repeated 

with bone marrow mononuclear cells isolated by density centrifugation using Ficoll 

[previously described in (Majumdar et al., 1998)], no additional peptide was detected 

adjacent to actin (data not shown). 

 

In conclusion, this chapter reports that CNR2 expression is enhanced in mature 

osteoclasts and osteoblasts indicating a significant role of this receptor in both osteoclast 

and osteoblast differentiation and function. Moreover, cells of the bone 

microenvironment also express the enzymatic machinery involved in the synthesis and 

breakdown of endocannabinoids, providing evidence for the existence of a skeletal 

endocannabinoid system. 
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4 SKELETAL PHENOTYPE OF CNR2-DEFICIENT MICE 
 
4.1 SUMMARY 
 
Recent studies have shown that the endocannabinoid system plays a key role in 

regulating bone turnover. Mice lacking CNR2 (CNR2-/-) were previously reported to 

have reduced bone mass, but the mechanisms responsible remain poorly understood.  

 

Analysis by μCT showed that CNR2-/- neonates had normal skeletal development and 3-

month old CNR2-/- mice had normal peak trabecular bone volume (BV/TV). Further 

analysis on bone morphometric parameters showed that 3-month old CNR2-/- female 

mice had significantly lower trabecular number and significantly higher cortical bone 

volume and cross-sectional diaphyseal area than wild type littermates. Nonetheless, 

histomorphometric analysis demonstrated that young CNR2-/- male and female mice had 

normal bone turnover. At 12 months of age CNR2-/- mice developed accelerated 

osteoporosis. Comparison between 12-month old wild type and CNR2-/- female mice 

showed that CNR2-/- female mice had significantly lower BV/TV and trabecular number 

and significantly higher trabecular thickness and trabecular separation. Twelve-month 

old CNR2-/- male mice showed the same trend for all morphometric parameters. 

Histomorphometric analysis showed that 12-month old CNR2-/- mice had significantly 

lower osteoblast number than wild type controls. In keeping with this, 12-month old 

CNR2-/- male mice had significantly lower serum PINP levels than wild type littermates, 

but surprisingly there was no difference in serum PINP levels between wild type and 

CNR2-/- female mice. No difference was observed in osteoclast number or serum CTX 

levels between wild type and CNR2-/- mice. 

 

This chapter shows that type 2 cannabinoid receptors protect against accelerated age-

related bone loss mainly by regulating osteoblast numbers and bone formation. 
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4.2 INTRODUCTION 
 
Over recent years, there has been increasing interest in the role that neurotransmitters 

play in the regulation of bone remodelling (Patel and Elefteriou, 2007). Reflecting this 

fact, the endocannabinoid system has recently been implicated as a potentially important 

regulator of bone turnover and bone mass (Idris et al., 2005; Ofek et al., 2006; Tam et 

al., 2006; Tam et al., 2008).  

 

The expression of cannabinoid receptors together with other components of the 

endocannabinoid system in bone cells (Chapter 3), indicates that signalling through 

cannabinoid receptors may be involved in the regulation of bone mass. Previous work 

from our group showed that genetic inactivation of CNR1 in young ABH mice, resulted 

in high bone mass phenotype at several skeletal sites (Idris et al., 2005). We and others 

also reported that young CNR1-/- mice on a CD1 background also exhibited high bone 

mass phenotype (Idris et al., 2008b; Tam et al., 2006), but mice with CNR1 deficiency 

on a C57BL/6 background had low bone mass (Tam et al., 2006). Finally, ageing 

experiments showed that 12-month old CD1 CNR1-/- mice suffered from age-related 

osteoporosis due to reduced osteoblast numbers and increased accumulation of 

adipocytes in bone marrow (Idris et al., 2008b). These results indicate that CNR1 is 

involved in regulating bone mineral density and age-related bone loss but genetic 

differences between background strains may influence the effects of CNR1 on bone 

(Tam et al., 2006). 

 

Evidence for the involvement of CNR2 in regulating bone remodelling and bone mass 

was reported by Ofek et al. (Ofek et al., 2006). This study showed that 8-week old 

female CNR2-/- mice on a C57BL/6 genetic background, had a low bone mass phenotype 

with significantly reduced trabecular number and cortical expansion, as a result of 

increased bone turnover. Ageing experiments showed that 12-month old CNR2-/- mice 

had a progressive trabecular bone loss accompanied with transition from plate- to rod-
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like trabecular structures, associated with a net increased of bone resorption (Ofek et al., 

2006). On the basis of these observations, Ofek and colleagues suggested that an 

important function of CNR2 is to suppress bone turnover and regulate osteoblast-

osteoclast coupling (Ofek et al., 2006; Bab and Zimmer, 2008). 

 

The aim of the work reported in this chapter was to investigate the effects of CNR2 

deletion in C57BL/6 mice at ages 3, 6 and 12 months. Structural parameters and cellular 

changes at the tibial metaphyses of these mice and wild type age-matched controls were 

measured by means of μCT and histomorphometric analysis.  
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4.3 RESULTS 
 
4.3.1 Wild type and CNR2-deficient mice are 96% identical to ‘pure’ C57BL/6 mice 
 
To investigate the level of similarity between the congenic mouse strain used in this 

study (C57BL/6 background and 129 embryonic stem cell line) and a pure C57BL/6 

reference strain provided by Illumina Inc., SNP genotyping was performed using a 

commercially available mouse medium-density linkage panel (c.f. section 2.5.3, page 

96). The congenic wild type and CNR2-/- mice used in this study were 96% identical to 

pure C57BL/6 mice (Appendix 5, page 276), whereas wild type and CNR2-/- littermates 

derived from heterozygote breeding pairs were 98% identical among themselves. None 

of the SNPs tested that differed between pure C57BL/6 mice and wild type and CNR2-/- 

littermates lay in the CNR2 locus. 

 

4.3.2 CNR2-deficient mouse neonates have normal bone volume 
 
To establish the role of CNR2 on skeletal development during embryogenesis, the bone 

volume of 2-day old wild type and CNR2-/- mouse neonates was examined using μCT 

analysis (c.f. section 2.5.8, page 99). As shown in Figure 4.1A, CNR2-/- mouse neonates 

had normal bone volume.  
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Figure 4.1: CNR2-deficient mouse neonates have normal bone volume. A. Bone volume 
(BV) of wild type and CNR2-/- mouse neonates at 2 days of age assessed by μCT. B. 
Representative μCT images showing the lateral view of wild type and CNR2-/- mouse neonates. 
Values are means ± sem from 6 neonates per group.  
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4.3.3 CNR2-deficient mice exhibit normal peak trabecular bone mass 
 
Structural parameters of trabecular bone are normal in young CNR2-deficient mice  
 
To investigate the role of CNR2 in bone mass of young mice, bone architectural 

parameters were measured within isolated tibiae from wild type and CNR2-/- mice at 3 

months of age (c.f. section 2.5.8, page 99). μCT analysis showed that trabecular bone 

from CNR2-/- mice did not significantly differ from wild type mice of the same gender 

with regard to standard morphological structure parameters such as trabecular bone 

volume (BV/TV), trabecular thickness (Tb.Th) or trabecular pattern factor (Tb.Pf) 

(Figure 4.2). However, in CNR2-/- female mice the trabecular number (Tb.N) was 

significantly reduced (Figure 4.2C) and in CNR2-/- male mice the trabecular separation 

(Tb.Sp) was significantly increased over wild type controls (Figure 4.2D), suggesting 

that CNR2-/- mice have a modest bone phenotype at young age.  

 

Comparison of the above-mentioned morphometric parameters between the two genders 

showed that female C57BL/6 mice had lower trabecular bone volume and trabecular 

number than male mice of the same strain, as shown previously (Glatt et al., 2007) 

(Figure 4.2A,C). Consequently, trabecular separation and hence trabecular pattern factor 

in male were significantly lower than in female specimen, indicating better trabecular 

connectivity (Figure 4.2D,E). Trabecular thickness was also different by gender, higher 

in male than in female mice, but this was less noticeable (Figure 4.2B).  

 
No defective bone turnover in young CNR2-deficient mice 
 
To establish whether CNR2 deletion has an effect on cellular events occurring at the 

trabecular compartment of the bone, histomorphometric analysis was performed at the 

tibial metaphysis of 3-month old wild type and CNR2-/- mice (c.f. section 2.5.9, page 

103). As shown in Figure 4.3A,C, no significant differences with respect to osteoblast 

numbers, osteoclast numbers or active resorption surfaces were observed between wild 

type and CNR2-/- mice at 3 months of age.  
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Figure 4.2: Trabecular bone mass in 3-month old wild type and CNR2-deficient mice. A. 
Trabecular bone volume (BV/TV) in wild type and CNR2-/- mice, of both genders at 3 months 
of age, assessed by μCT of the tibia. Trabecular thickness (Tb.Th) (B), trabecular number 
(Tb.N) (C), trabecular separation (Tb.Sp) (D), and trabecular pattern factor (Tb.Pf) (E) of the 
same experiment. F. Representative μCT images from the tibial metaphysis of wild type and 
CNR2-/- mice, of both genders. Values are means ± sem from 7-8 mice per group. *p < 0.05 
from wild type mice of same gender. 
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Figure 4.3: Bone histomorphometry in 3-month old wild type and CNR2-deficient mice. 
Summary tables of bone histomorphometry from male and female mice are shown in A and C, 
respectively. BV/TV, trabecular bone volume (%); Ob.N/T.Ar, osteoblast number/total area 
(cells/mm2); Oc.N/T.Ar, osteoclast number/total area (cells/mm2); Oc.S/BS, osteoclast 
surface/bone surface (%). Values are expressed as means ± sem from 4 mice per group. 
Representative sections of the proximal tibia from wild type and CNR2-/- male (Bi,ii) and 
female (Di,ii) mice, stained with von Kossa/Paragon staining (c.f. section 2.5.9, page 103). The 
areas of the photomicrographs in high-power images are indicated by boxes in lower-power 
images.  
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4.3.4 CNR2-deficient female mice exhibit higher cortical bone volume and cross-
sectional diaphyseal area 

 
To examine the role of CNR2 in cortical bone of young mice, cortical architectural 

parameters were studied at the tibial proximal diaphysis of wild type and CNR2-/- female 

mice at 3 months of age (c.f. section 2.5.8, page 99). μCT analysis showed that CNR2-/- 

female mice had significantly higher cortical bone volume (Ct.BV) (Figure 4.4A) and 

cross-sectional diaphyseal area (Ct.Ar) (Figure 4.4B) compared to wild type controls, 

whereas cortical thickness (Ct.Th) was not significantly different between wild type and 

CNR2-/- female mice (Figure 4.4C). 

 

Fe
m

al
e 

C
t.B

V
(m

m
3 )

A B

Fe
m

al
e 

C
t.A

r(
m

m
2 )

*

0.43
0.44
0.45
0.46
0.47
0.48
0.49
0.50
0.51
0.52

WT CNR2-/-

*

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
8.0
8.1

WT CNR2-/-

180

185

190

195

200

205

210

215

220

WT CNR2-/-

C D

Fe
m

al
e 

C
t.T

h
(μ

m
)

WT CNR2-/-

Fe
m

al
e 

C
t.B

V
(m

m
3 )

A B

Fe
m

al
e 

C
t.A

r(
m

m
2 )

*

0.43
0.44
0.45
0.46
0.47
0.48
0.49
0.50
0.51
0.52

WT CNR2-/-

*

0.43
0.44
0.45
0.46
0.47
0.48
0.49
0.50
0.51
0.52

WT CNR2-/-

*

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
8.0
8.1

WT CNR2-/-

*

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
8.0
8.1

WT CNR2-/-
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
8.0
8.1

WT CNR2-/-

180

185

190

195

200

205

210

215

220

WT CNR2-/-
180

185

190

195

200

205

210

215

220

WT CNR2-/-

C D

Fe
m

al
e 

C
t.T

h
(μ

m
)

WT CNR2-/-WT CNR2-/-

 
 

Figure 4.4: Cortical bone in 3-month old wild type and CNR2-deficient female mice. 
Cortical bone volume (Ct.BV) (A), cross-sectional diaphyseal area (Ct.Ar) (B) and cortical 
thickness (Ct.Th) (C) of wild type (WT) and CNR2-/- female mice at age 3 months, assessed by 
μCT of the tibial proximal diaphysis. D. Representative μCT images from the proximal 
diaphysis of wild type and CNR2-/- female mice at 3 months of age. Values are means ± sem 
from 7-8 mice per group. *p < 0.05 from wild type controls.  
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4.3.5 CNR2-deficient mice develop a low bone mass phenotype with age 
 
To investigate the role of CNR2 in bone mass of ageing mice, μCT analysis was 

performed on tibial metaphysis of wild type and CNR2-/- mice aged 6 and 12 months.  

 

Results showed that increasing age was associated with trabecular bone loss in wild type 

and CNR2-/- mice (Figure 4.5). At 6 months of age, CNR2-/- male mice had significantly 

higher trabecular bone volume than wild type littermates (Figure 4.5A). Trabecular bone 

volume of CNR2-/- female mice at 6 months of age was not different from age-matched 

wild type female mice (Figure 4.5B). 

 

However, 12-month old CNR2-/- female mice had significantly lower trabecular bone 

volume than wild type controls (Figure 4.5B,D). In comparison to peak levels, CNR2-/- 

female mice experienced 74% trabecular bone loss, whereas wild type female mice 

experienced only 57% loss (Figure 4.5B,D). The trabecular bone loss with ageing in 

male mice was not significantly different between genotypes (Figure 4.5A,C). 

Nevertheless, male CNR2-/- mice showed a trend towards reduced trabecular bone 

volume compared to wild type controls. In comparison to peak levels, male CNR2-/- 

mice experienced 62% trabecular bone loss, while wild type male mice experienced 53% 

loss (Figure 4.5A,C).  

 

Regardless of genotypic differences in bone mass with age, CNR2-/- mice were healthy 

and their size and weight were indistinguishable from age-matched wild type littermates 

throughout their lives (Appendix 6, page 278).   
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Figure 4.5: CNR2-deficient mice develop age-related osteoporosis. A,B. Trabecular bone 
volume at age 3, 6 and 12 months of wild type and CNR2-/- mice of both genders, assessed by 
μCT of tibial metaphysis. C,D. Representative μCT images showing the trabecular bone of 
wild type and CNR2-/- mice at age 3, 6 and 12 months of both genders. Values are means ± sem 
from 7-8 mice per group. *p < 0.05 from age-matched wild type mice, +p < 0.05 from 6 and 
12-month old mice of same genotype. 
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To examine the role of CNR2 in cortical bone of ageing mice, μCT analysis was 

performed at the proximal tibial diaphysis of wild type and CNR2-/- female mice aged 3, 

6 and 12 months (c.f. section 2.5.8, page 99).  

 

μCT analysis showed a trend towards decreased cortical bone volume (Ct.BV) with age, 

whereas cross-sectional diaphyseal area (Ct.Ar) remained unchanged (Figure 4.6A,B). 

Analysis of cortical bone from CNR2-/- female mice displayed a trend towards increased 

values for both parameters throughout ageing compared to age-matched controls (Figure 

4.6A,B). Although CNR2-/- female mice at 3 months of age had significantly higher 

cortical volume (Figure 4.6A) and higher cross-sectional diaphyseal area compared to 

wild type controls (Figure 4.6B), at 6 and 12 months of age, this difference between wild 

type and CNR2-/- female mice was blunted. 
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Figure 4.6: Cortical bone of wild type and CNR2-deficient female mice. Cortical bone 
volume (Ct.BV) (A) and cross-sectional diaphyseal area (Ct.Ar) (B) of wild type (WT) and 
CNR2-/- female mice at age 3, 6 and 12 months, assessed by μCT of tibial proximal diaphysis. 
Values are means ± sem from 7-8 mice per group. *p < 0.05 from age-matched wild type mice. 
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With ageing, there was also a trend towards reduced cortical thickness (Ct.Th). Although 

this was not significant in wild type female mice, it was significant for CNR2-/- female 

mice between the age of 6 and 12 months (Figure 4.7A).  In keeping with this, the 

medullary cavity diameter (Med.Cav.Dm) remained unchanged in ageing wild type 

mice, whereas in 12-month old CNR2-/- female mice the medullary cavity diameter 

increased, but due to large error bars this was not statistically significant (Figure 4.7B).  

Although the analyses of cortical thickness and medullary cavity diameter in 12-month 

old mice suggested that CNR2-/- female mice may experience greater endocortical bone 

resorption than wild type littermates, this was not accompanied by a significant 

difference in cortical diameter (Figure 4.7C). 

 

0 3 6 12

Fe
m

al
e 

C
t.T

h
(μ

m
)

Fe
m

al
e 

C
t.D

m
(μ

m
)

A

B

C

D

0 3 6 12

WT

CNR2-/-

Age (months) Age (months)

Age (months)

0 3 6 12
10

20

30

40

50

60

70

80

Fe
m

al
e 

M
ed

.C
av

.D
m

(μ
m

)

WT CNR2 -/-

3 
m

on
th

s
6 

m
on

th
s

12
 m

on
th

s

180
185
190
195
200
205
210
215
220
225

+
430

435

440

445

450

455

460

0 3 6 12

Fe
m

al
e 

C
t.T

h
(μ

m
)

Fe
m

al
e 

C
t.D

m
(μ

m
)

A

B

C

D

0 3 6 12

WT

CNR2-/-

WT

CNR2-/-

Age (months) Age (months)

Age (months)

0 3 6 12
10

20

30

40

50

60

70

80

10

20

30

40

50

60

70

80

Fe
m

al
e 

M
ed

.C
av

.D
m

(μ
m

)

WT CNR2 -/-

3 
m

on
th

s
6 

m
on

th
s

12
 m

on
th

s

WT CNR2 -/-

3 
m

on
th

s
6 

m
on

th
s

12
 m

on
th

s

180
185
190
195
200
205
210
215
220
225

+
430

435

440

445

450

455

460

430

435

440

445

450

455

460

 
 Figure 4.7: Cortical bone of wild type and CNR2-deficient female mice. A. Cortical thickness 

(Ct.Th) of wild type (WT) and CNR2-/- female mice at age 3, 6 and 12 months, assessed by μCT of 
tibial proximal diaphysis. Medullary cavity diameter (Med.Cav.Dm) (B) and cortical diameter 
(Ct.Dm) (C) of the same experiment. D. Representative μCT images from the proximal diaphysis 
of wild type and CNR2-/- female mice at age 3, 6, and 12 months. Values are means ± sem from 7-
8 mice per group. +p < 0.05 from 6-month old mice of same genotype.  
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4.3.6 Changes in bone mass at 6 months of age 
 
Male CNR2-deficient  mice are protected from age-related osteoporosis at 6 months of 
age 
 
Detailed μCT analysis of tibial morphometric parameters from 6-month old wild type 

and CNR2-/- mice revealed that CNR2-/- male mice had increased trabecular bone 

volume, trabecular thickness and trabecular number over wild type controls (Figure 

4.8A,B,C). In addition, the trabecular connectivity in CNR2-/- male mice was better than 

in wild type mice (Figure 4.8E). No significant differences were observed in trabecular 

bone volume or trabecular number across wild type and CNR2-/- female mice (Figure 

4.8A,C). However, the trabeculae of CNR2-/- female mice were thicker (Figure 4.8B) and 

more dense (Figure 4.8D) but not as well connected as the trabeculae in wild type 

controls (Figure 4.8E). 

 

Comparison across gender showed that female mice at 6 months of age had lower 

trabecular bone volume and trabecular number than male mice regardless of genotype 

(Figure 4.8A,C). The reverse was true for trabecular separation, indicating less dense 

trabeculae in female cancellous bone (Figure 4.8D), whereas the differences in 

trabecular thickness by gender were less noticeable (Figure 4.8B).  
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Figure 4.8: Trabecular bone mass in 6-month old wild type and CNR2-deficient mice. A. 
Trabecular bone volume (BV/TV) in wild type and CNR2-/- mice, of both genders at 6 months 
of age assessed by μCT of the tibia. Trabecular thickness (Tb.Th) (B), trabecular number 
(Tb.N) (C), trabecular separation (Tb.Sp) (D), and trabecular pattern factor (Tb.Pf) (E) of the 
same experiment. F. Representative μCT images from the tibial metaphysis of wild type and 
CNR2-/- mice, of both genders. Values are means ± sem from 7-8 mice per group. *p < 0.05 
from wild type mice of same gender.   
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Increased osteoblast numbers and decreased active resorption surfaces in 6-month old 
CNR2-deficient male mice 
 
Bone histomorphometry showed that trabecular bone from CNR2-/- male mice at 6 

months of age had significantly higher osteoblast numbers and fewer active resorption 

surfaces (Figure 4.9A). This suggests that the increased trabecular bone volume of 

CNR2-/- male mice observed from μCT and histomorphometric analysis (Figure 4.8A 

and 4.9A) was a result of a combined effect of increased osteoblast function and reduced 

osteoclast activity.  

 

Bone histomorphometric analysis on tibias from adult female mice at 6 months of age 

showed that trabecular bone volume was slightly but not significantly decreased in 

CNR2-/- mice (p > 0.05) (Figure 4.9C). No significant differences were observed in 

osteoblast or active resorption surfaces across wild type and CNR2-/- female mice. 

However, there was a trend towards reduced osteoclast numbers in CNR2-/- female mice 

(Figure 4.9C). 
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Figure 4.9: Bone histomorphometry in 6-month old wild type and CNR2-deficient mice. 
Summary tables of bone histomorphometry from male and female mice are shown in A and C, 
respectively. BV/TV, trabecular bone volume (%); Ob.N/T.Ar, osteoblast number/total area 
(cells/mm2); Oc.N/T.Ar, osteoclast number/total area (cells/mm2); Oc.S/BS, osteoclast 
surface/bone surface (%). Values are expressed as means ± sem from 4 mice per group. 
Representative sections of the proximal tibia from wild type and CNR2-/- male (Bi,ii) and 
female (Di,ii) mice, stained with von Kossa/Paragon staining. The areas of the 
photomicrographs in high-power images are indicated by boxes in lower-power images. *p < 
0.05 from wild type mice of same gender. 
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4.3.7 Changes in bone mass at 12 months of age 
 
Female CNR2-deficient mice develop accelerated age-related osteoporosis 
 
μCT analysis of tibiae from 12-month old male and female mice demonstrated that wild 

type C57BL/6 mice at this age suffer from severe trabecular bone loss, regardless of 

genotype (Figure 4.10A, c.f. Figure 4.5, page 135). However, CNR2-/- female mice had a 

more aggressive osteoporotic phenotype when compared to their wild type littermates, 

with significantly lower trabecular bone volume and trabecular number (Figure 

4.10A,C), and significantly higher trabecular thickness and trabecular separation (Figure 

4.10B,D). Moreover, CNR2-/- female mice had poorer trabecular connectivity than wild 

type controls (Figure 4.10E). Although there was a trend towards reduced trabecular 

bone volume and trabecular number in CNR2-/- male mice, it was not significant (Figure 

4.10A,C). No significant differences were observed in trabecular separation between 

wild type and CNR2-/- male mice (Figure 4.10D). 

 

Gender comparison of male and female mice at 12 months of age showed that female 

mice had lower trabecular bone volume and trabecular number than male mice (Figure 

4.10A,C). However, the reverse was true for trabecular thickness and trabecular 

separation, indicating that trabeculae in female mice were thicker and further apart from 

one another than in male mice (Figure 4.10B,D). 

 

Decreased osteoblast numbers in 12-month old CNR2-deficient mice 
 
Bone histomorphometric analysis showed that CNR2-/- mice had significantly lower 

osteoblast numbers than wild type controls, whereas osteoclast numbers were not 

significantly different (Figure 4.11A,C). However, active resorption surfaces in CNR2-/- 

female mice appeared to be significantly higher than in wild type littermates (Figure 

4.11C). The same pattern was also observed in male CNR2-/- mice, but this was not 

significant (Figure 4.11A). A summary table of the histomorphometric data from 3, 6 

and 12-month old mice is shown in Figure 4.12. 
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Figure 4.10: Trabecular bone mass in 12-month old wild type and CNR2-deficient mice. 
A. Trabecular bone volume (BV/TV) in wild type and CNR2-/- mice, of both genders at 12 
months of age assessed by μCT of the tibia. Trabecular thickness (Tb.Th) (B), trabecular 
number (Tb.N) (C), trabecular separation (Tb.Sp) (D), and trabecular pattern factor (Tb.Pf) (E) 
of the same experiment. F. Representative μCT images from tibial metaphysis of wild type and 
CNR2-/- mice, of both genders. Values are means ± sem from 7-8 mice per group. *p < 0.05 
from wild type mice of same gender.   
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Figure 4.11: Bone histomorphometry in 12-month old wild type and CNR2-deficient 
mice. Summary tables of bone histomorphometry from male and female mice are shown in A 
and C, respectively. BV/TV, trabecular bone volume (%); Ob.N/T.Ar, osteoblast number/total 
area (cells/mm2); Oc.N/T.Ar, osteoclast number/total area (cells/mm2); Oc.S/BS, osteoclast 
surface/bone surface (%). Values are expressed as means ± sem from 4 mice per group. 
Representative sections of the proximal tibia from wild type and CNR2-/- male (Bi,ii) and 
female (Di,ii) mice, stained with von Kossa/Paragon staining. The areas of the 
photomicrographs in high-power images are indicated by boxes in lower-power images. *p < 
0.05 from wild type mice of same gender.  
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Figure 4.12: Summary tables for bone histomorphometry in 3, 6 and 12-month old wild 
type and CNR2-deficient male (A) and female (B) mice. BV/TV, trabecular bone volume 
(%); Ob.N/T.Ar, osteoblast number/total area (cells/mm2); Oc.N/T.Ar, osteoclast number/total 
area (cells/mm2); Oc.S/BS, osteoclast surface/bone surface (%). Values are expressed as means 
± sem from 4 mice per group. *p < 0.05 from wild type mice of same age, +p < 0.05 from 3-
month old mice of same genotype.  



Chapter 4: SKELETAL PHENOTYPE OF CNR2-DEFICIENT MICE 

 146

4.3.8 Low serum levels of bone formation marker in CNR2-deficient male mice 
 
To establish whether CNR2 deletion also affects biochemical markers of bone turnover, 

serum levels of amino (N)-terminal propeptides of type I procollagen (PINP) (a marker 

of bone formation) and cross-linked carboxy (C)-telopeptides of type I collagen (CTX) 

(a marker of bone resorption) were measured using commercially available kits (c.f. 

section 2.5.7, page 98).  

 

Serum levels of PINP in CNR2-/- male mice were significantly lower than in wild type 

age-matched controls, but this was not observed between wild type and CNR2-/- female 

mice (Figure 4.13A). Further analysis showed a trend towards reduced CTX serum 

levels in CNR2-/- male and female mice but this was not significant (Figure 4.13B). 
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 Figure 4.13: Biochemical markers of bone turnover in 12-month old wild type and CNR2-
deficient mice. Amino (N)-terminal propeptides of type I procollagen (PINP) serum 
concentration (A) and cross-linked carboxy (C)-telopeptides of type I collagen (CTX) serum 
concentration (B) in wild type and CNR2-/- mice of both genders. Values are means ± sem from 
5-6 mice per group. *p < 0.05 from wild type mice of same gender.  
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4.4 DISCUSSION  
 
Recent studies have shown that the endocannabinoid system plays a vital role in bone 

remodelling and that mice with deficiency in type 2 cannabinoid receptor (CNR2-/- mice) 

have low bone mass phenotype and accelerated age-related bone loss (Ofek et al., 2006). 

In view of this, the aim of this chapter was to further characterise the effects of CNR2 

deletion in ageing mice.  

 

This chapter demonstrates that CNR2-/- mouse neonates have normal bone volume and 

that CNR2-/- mice had normal peak trabecular bone mass. Further bone morphometric 

analysis showed that 3-month old CNR2-/- female mice had significantly lower 

trabecular number in agreement with Ofek and colleagues (Ofek et al., 2006). Although 

young CNR2-/- female mice in the Ofek et al. study were also reported to have a low 

bone mass phenotype with greater total diaphyseal and medullary cavity diameters (Ofek 

et al., 2006), such differences were not observed between young wild type and CNR2-/- 

female mice in the study described here. Instead, young CNR2-/- female mice in the 

present study had indistinguishable trabecular bone volume to that of wild type mice, a 

significantly higher cortical bone volume and a greater cross-sectional diaphyseal area, 

compared to wild type controls. The fact that Ofek and colleagues performed trabecular 

and cortical analysis on different skeletal sites than us [femurs (Ofek) vs. tibiae (current 

study)] may have contributed to the differences observed. Regarding the trabecular 

structure in young male CNR2-/- mice, there was significantly higher trabecular 

separation than wild type littermates and a trend towards reduce trabecular number, in 

accordance with what was previously published by Ofek et al. (Ofek et al., 2006).  

 

At 6 months of age variable effects were found depending on gender. Although 

trabecular bone volume appeared to be normal in female CNR2-/- mice, males showed a 

high bone mass phenotype resulting from increased trabecular thickness and increased 

trabecular number. Histomorphometric analysis revealed that CNR2-/- male mice at 6 
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months of age had significantly higher osteoblast numbers than wild type littermates. 

Although no difference was observed in osteoclast numbers between wild type and 

CNR2-/- male mice, active resorption surfaces were shown to be significantly lower in 

CNR2-/- mice. Considering that bone surface was significantly increased in CNR2-/- male 

mice due to increased trabecular number, the ratio of active resorption surface resulting 

from osteoclast numbers over bone surface, is expected to be greater in CNR2-/- male 

mice than in wild type littermates. A gender bias was also observed in the skeletal 

phenotype of CNR1-/- mice on a CD1 genetic background (CD1CNR1-/-) (Tam et al., 

2006). Young male CD1CNR1-/- mice (~3 months old) had increased bone mass compared 

to wild type controls, whereas no differences were observed between female CD1CNR1-/- 

and wild type littermates (Tam et al., 2006). Yet this model targets a different receptor, 

CNR1 rather than CNR2, and it is on a different genetic background than CNR2-/- mice, 

CD1 rather than C57BL/6, therefore no clear conclusions can be drawn about the 

relevance of these comparisons. 

 

Twelve-month old CNR2-/- female mice developed accelerated osteoporosis, 

characterised by decreased trabecular bone volume and trabecular number and increased 

trabecular thickness and trabecular separation when compared to wild type littermates. 

Overall, there was poorer trabecular connectivity in CNR2-/- female mice indicated by 

the increased trabecular pattern factor compared to wild type littermates. Although 

CNR2-/- male mice also showed a trend towards reduced trabecular bone volume and 

trabecular number compared to wild type littermates, differences were less significant. 

Bone histomorphometric analysis at 12 months of age showed that CNR2-/- mice had a 

low bone mass phenotype as a result of decreased osteoblast numbers, even though 

active resorption surfaces appeared to be significantly higher in female CNR2-/- mice 

than in wild type controls at this age. Such outcome was expected, since osteoclast 

numbers were indistinguishable between wild type and CNR2-/- female mice, but there 

was a marked drop in trabecular bone volume, and hence in bone surface, of CNR2-/- 

female mice compared to wild type controls. Therefore, the ratio expressing active 
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resorption surfaces in CNR2-/- female mice, i.e. osteoclast number over bone surface, 

appeared to be significantly higher than in wild type controls. Male CNR2-/- mice also 

showed a trend towards increased active resorption surfaces compared to wild type 

littermates at 12 months of age, but this was not significant. 

 

Serum analysis using biochemical markers of bone turnover, was in agreement with the 

histomorphometric analysis. CNR2-deficient male mice at 12 months of age had 

significantly lower serum levels of PINP (a marker of bone formation) than wild type 

littermates, whereas serum levels of CTX (a marker of bone resorption) were not 

significantly different between wild type and CNR2-/- controls. These results together 

support the idea that CNR2 protects from age-related bone loss mainly by regulating 

osteoblastic bone formation. Unexpectedly, serum levels of biochemical markers of 

bone turnover in female mice did not display the same pattern, since neither PINP or 

CTX levels were significantly different between wild type and CNR2-/- female mice. 

This could be attributed to the fact that serum samples were taken from non-fasting 

female mice, which most likely were at different phases of the oestrous cycle. These are 

two well-documented factors that strongly influence serum levels of bone turnover 

markers (Calvo et al., 1996). 

 

Collectively, histomorphometry and biochemical markers of bone turnover showed that 

low bone mass phenotype in 12-month old CNR2-/- mice was the result of decreased 

osteoblast numbers and decreased bone formation. These results were in agreement with 

previous findings from our group showing that CNR1-/- mice on a CD1 background 

suffered from severe osteoporosis at 12 months of age due to reduced osteoblast 

numbers and increased marrow fat accumulation compared to wild type littermates (Idris 

et al., 2008b). While Ofek and colleagues also reported that CNR2-/- mice at 12 months 

of age suffered from accelerated osteoporosis compared to wild type littermates, such 

phenotypic changes were attributed to high bone turnover (Ofek et al., 2006). 

Nevertheless, this assumption was based on histomorphometric measurements carried 
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out on young, 8-week old mice and not on 12-month old mice, perhaps explaining the 

discrepancy of the histomorphometric data between the two studies.  

 

Regardless of the mechanism through which CNR2 regulates bone mass and bone 

turnover in mice, the concept that CNR2 protects from age-related bone loss is well-

established by us and others. Given that the C57BL/6 background strain of the CNR2-/- 

mice used in this study is associated with age-related osteopenia, regardless of gender 

(Ferguson et al., 2003), CNR2-/- mice have been backcrossed to the CD1 strain which 

does not experience substantial bone loss with age (Beamer et al., 1996). With these 

mice in hand, additional experiments will be conducted in the near future to gain further 

insight into the mechanism by which CNR2 deficiency affects bone mass.  

 

In conclusion, this chapter demonstrates that CNR2-/- mice have normal peak bone mass 

but suffer from age-related osteoporosis due to decreased osteoblast numbers and 

defective bone formation. Therefore, type 2 cannabinoid receptor protects from bone 

loss with ageing by regulating osteoblast numbers and bone formation. 
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5 ROLE OF CNR2 IN OSTEOCLAST DIFFERENTIATION AND 
FUNCTION 

 
5.1 SUMMARY 
 
Conflicting results have been reported with regard to the role of cannabinoid receptors in bone 

resorption and osteoclast function. Our group has previously shown that the endocannabinoid 

AEA stimulates osteoclast formation, whereas the CNR1-selective antagonist/inverse agonist 

AM251 is a potent inhibitor of osteoclast formation and bone resorption in vitro and in vivo. 

However, others reported that the CNR2-selective agonist HU308 inhibits osteoclast formation 

in vitro and in vivo. In view of this, the aim of this chapter is to investigate the role of CNR2 in 

regulating bone mass and osteoclast function, using a combination of pharmacological and 

genetic approaches. 

 

The CNR2-selective agonists HU308 and JWH133 stimulated osteoclast formation and 

nuclearity in vitro, whereas the CNR2-selective antagonist/inverse agonist AM630 inhibited 

osteoclast formation in a concentration-dependent manner. Osteoclasts generated from CNR2-/- 

mice were resistant to the stimulatory effects of HU308 and JWH133 and to the inhibitory 

effects of AM630, consistent with a CNR2-mediated mechanism. Furthermore, AM630 rescued 

ovariectomy-induced bone loss in wild type mice, by preventing the increase in osteoclast 

numbers and active resorption surfaces and without affecting osteoblast numbers.  CNR2-/- mice 

were partly protected from ovariectomy-induced bone loss as a result of reduced osteoclast 

number compared to wild type littermates. Moreover, CNR2-/- ovariectomised mice were not 

responsive to the protective effects of AM630 at a low dose (0.1 mg/kg/day), suggesting a 

CNR2-mediated effect. However, at a higher dose (1.0 mg/kg/day), AM630 was equally 

effective in preventing ovariectomy-induced bone loss in CNR2-/- mice and wild type littermates, 

indicating a non-CNR2 mediated mechanism. 

 

These observations indicate that CNR2 regulates osteoclast formation in vitro and contributes to 

ovariectomy-induced bone loss in vivo, and demonstrate that cannabinoid receptor 

antagonists/inverse agonists have anti-osteoclast activities. 
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5.2 INTRODUCTION 
 
Cannabinoid receptor ligands have been shown to be important for the regulation of 

bone resorption/formation balance in vivo and in vitro (Idris et al., 2005; Ofek et al., 

2006; Ridge et al., 2007; Rossi et al., 2009). However, conflicting results have been 

reported regarding their effects on osteoclast formation and function (Idris et al., 2005; 

Ofek et al., 2006). This chapter investigates the in vitro and in vivo effects of 

pharmacological activation and blockade of CNR2 on osteoclast differentiation and 

function.  

 

Cannabinoid receptor agonists such as AEA, 2-AG and Δ9-tetrahydrocannabinol bind to 

the cannabinoid receptors causing inhibition of adenylate cyclase, activation of ERK 

kinases and initiation of other intracellular responses (Demuth and Molleman, 2006) (cf. 

Figure 1.10, page 58). Cannabinoid receptor antagonists/inverse agonists such as 

AM251 and AM630, block the effects of cannabinoid receptor agonists and exert 

opposite pharmacological effects (Pertwee, 1999). AM251 shows selectivity for CNR1, 

whereas AM630 shows selectivity for CNR2 (Pertwee and Ross, 2002). 

 

A recent study from our group, has shown that the endocannabinoid AEA increased 

osteoclast formation, whereas blockade of cannabinoid receptors with AM251 and 

AM630 inhibited RANKL-induced osteoclast formation in a concentration dependent 

manner (Idris et al., 2005). Cultures prepared from CNR1-/- mice were resistant to the 

inhibitory effects of AM251 on osteoclast formation, when compared with wild type 

cultures, whereas AM630 was equally potent in wild type and CNR1-/- cultures (Idris et 

al., 2005). These results indicate that CNR1 mediates the effects of AM251, the CNR1-

selective antagonist/inverse agonist. Furthermore, in vivo experiments showed that 

AM251 rescued ovariectomy-induced bone loss in a dose-dependent manner, by 

inhibiting bone resorption (Idris et al., 2005). Together these results demonstrate that 

cannabinoid receptor antagonists/inverse agonists inhibit osteoclast formation and bone 
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resorption in vitro and in vivo. Conversely, the CNR2-selective agonist HU308, was 

reported to have anti-osteoclastic effects in vitro, and anti-resorptive properties in 

ovariectomised mice (Ofek et al., 2006). Likewise, the CNR1-selective agonist ajulemic 

acid has been shown to suppress osteoclastogenesis in vitro, at concentrations in the 

micromolar range (George et al., 2008). In contrast to the earlier study by Idris and 

colleagues, the latter two studies suggest that cannabinoid receptors agonists, and not 

antagonists/inverse agonists, have an inhibitory effect on osteoclast formation. 

 

Although all studies suggest that pharmacological modulation of the endocannabinoid 

system has a role in regulating bone mass and bone turnover, the CNR2 signalling 

mechanism and its role in bone resorption are poorly-understood. The aims of the work 

reported in this chapter were to investigate further the role of CNR2 in osteoclast 

formation in vitro by means of pharmacological activation/inactivation of the receptors, 

to analyse the effect of a CNR2-selective antagonist/inverse agonist on ovariectomy-

induced bone loss in vivo and to examine the potential use of this ligand as an anti-

resorptive agent in conditions of increased bone turnover.    
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5.3 RESULTS 
 
5.3.1 Bone marrow cultures from CNR2-deficient mice have less osteoclasts 
 
To investigate whether defective CNR2 in bone cells affects osteoclast formation in 

vitro, wild type and CNR2-/- monocyte cultures were stimulated with 25ng/ml M-CSF 

and 0-200ng/ml RANKL for 4 days (c.f. section 2.2.3, page 77). Osteoclast numbers 

were assessed by counting multinucleated TRAcP-positive cells with three or more 

nuclei (c.f. section 2.2.4, page 77). CNR2-/- cultures stimulated with 100 and 200ng/ml 

of RANKL had 15-20% fewer TRAcP-positive osteoclasts than wild type cultures. With 

RANKL concentrations lower than 100ng/ml there was also a trend towards fewer 

osteoclasts in CNR2-/- cultures, but this was not statistically significant (Figure 5.1).  
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Figure 5.1: M-CSF- and RANKL-stimulated bone marrow cultures from wild type and 
CNR2-deficient mice. A. Number of multinucleated TRAcP-positive osteoclasts (OC) in wild 
type and CNR2-/- bone marrow cultures stimulated with M-CSF (25ng/ml) and RANKL at the 
indicated concentrations, for 4 days. B. Representative photomicrographs of wild type and 
CNR2-/- bone marrow cultures stimulated with M-CSF (25ng/ml) and RANKL (0-200ng/ml) 
stained for TRAcP. Values are means ± sem and were obtained from 3 independent 
experiments. *p < 0.05 from wild type cultures of same RANKL-treatment, +p < 0.05 from 
same genotype cultures treated with 12.5ng/ml of RANKL.  
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5.3.2 Bone marrow cultures from CNR2-deficient mice have normal macrophage 
viability 

 
To examine whether the defective osteoclast formation in CNR2-/- bone marrow cultures 

was the result of defective osteoclastogenesis or the consequence of limited availability 

of osteoclast precursors/macrophages, wild type and CNR2-/- monocyte cultures were 

stimulated with 5-100ng/ml M-CSF for 4 days (c.f. section 2.2.2, page 76). Macrophage 

number was determined by the Alamar Blue assay as previously described in section 

2.2.8, page 80. Throughout the concentration range of M-CSF (5-100ng/ml), the 

viability of wild type and CNR2-/- bone marrow-derived macrophages was 

indistinguishable (Figure 5.2). Together with section 5.3.1, these data suggest that 

CNR2-/- bone marrow cultures experience defective osteoclastogenesis, in the presence 

of normal macrophages. 
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 Figure 5.2: M-CSF-stimulated bone marrow cultures from wild type and CNR2-deficient 

mice. A. Number of macrophages (MΦ) in wild type and CNR2-/- bone marrow cultures 
stimulated with M-CSF at the indicated concentrations for 4 days, as assessed by Alamar Blue 
assay. B. Representative photomicrographs of wild type and CNR2-/- macrophage cultures from 
A. Values are means ± sem and were obtained from 3 independent experiments. +p < 0.05 from 
same genotype cultures treated with 5ng/ml of M-CSF. 



Chapter 5: ROLE OF CNR2 IN OSTEOCLAST DIFFERENTIATION AND FUNCTION 

 157

5.3.3 Cannabinoid receptor ligands regulate osteoclast formation in vitro 
 
To examine the effect of cannabinoid receptor ligands on osteoclast formation, bone 

marrow cultures treated with 25ng/ml M-CSF and 100ng/ml RANKL for 72 hours were 

exposed to the CNR2-selective agonists, HU308 and JWH133, the endocannabinoids, 

AEA and 2-AG, and the cannabinoid receptor antagonists/inverse agonists, AM251 and 

AM630, at concentrations varying from 0.1nM to 10μM, for 24-48 hours (c.f. section 

2.2.3, page 77). Osteoclasts were identified by TRAcP staining (section 2.2.4, page 77). 

 

The CNR2-selective agonists HU308 and JWH133, significantly enhanced osteoclast 

formation at concentrations as low as 0.25nM for JWH133 and 1nM for HU308 (Figure 

5.3A). JWH133 increased osteoclast numbers by about 100% over the concentration 

range 0.5nM-10μM. HU308 reached maximal stimulation at 30nM, and increased 

osteoclast numbers by about 70%. No significant stimulatory effects were observed at 

concentrations of HU308 higher than 300nM. Surprisingly, HU308 at 10μM 

significantly inhibited osteoclast formation (Figure 5.3A). The mean ± SEM 

concentration of HU308 and JWH133 that half-maximally increased osteoclast 

formation (EC50) was 0.23±0.11nM and 0.19±0.09nM, respectively.  The mean ± SEM 

concentration of HU308 that half-maximally inhibited osteoclast formation (IC50) was 

4.2±2.4μM. The endogenous cannabinoid receptor agonists, AEA and 2-AG, also 

stimulated osteoclast formation at concentrations as low as 0.25nM (Figure 5.3B). Their 

stimulatory effect on osteoclast formation remained constant up to 10μM. The mean ± 

SEM EC50 values of AEA and 2-AG were 0.16±0.06nM and 0.12±0.06nM, respectively.   

 

Exposure of M-CSF- and RANKL-stimulated bone marrow cultures to the cannabinoid 

receptor antagonists/inverse agonists AM251 (CNR1-selective) and AM630 (CNR2-

selective) inhibited osteoclast formation in a concentration-dependent manner (Figure 

5.3C). The mean ± SEM IC50 values of AM251 and AM630 were 819±317nM and 

175±67nM, respectively. 
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Figure 5.3: Effect of cannabinoid receptor ligands on osteoclast formation in vitro. 
A. Number of multinucleated TRAcP-positive osteoclasts (OC) in bone marrow cultures 
stimulated with M-CSF (25ng/ml) and RANKL (100ng/ml) for 72 hours and then exposed to 
vehicle (V), HU308 or JWH133, at the indicated concentrations for 24 hours. Changes in 
osteoclast number were expressed as a percent of values in vehicle-treated cultures. Osteoclast 
number in cultures exposed to vehicle, AEA or 2-AG (B) for 24 hours, or to vehicle, AM251 or 
AM630 (C) for 48 hours, from similar experiments, expressed in the same way. D. 
Representative photomicrographs of osteoclasts stained for TRAcP from cultures in A, B and 
C. E. Summary table of EC50 or IC50 values of the cannabinoid receptor ligands tested for 
osteoclast formation in vitro. Values in A, B and C are means ± sem and were obtained from 3 
independent experiments. *p < 0.05 from vehicle-treated cultures, $p < 0.05 from HU308-
treated cultures. Abbreviations: n/a, not applicable. 
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5.3.4 Cannabinoid receptor ligands influence osteoclast fusion 
 
To establish whether cannabinoid receptor ligands have an effect on osteoclast fusion, 

osteoclasts with more than 20 nuclei from cultures in section 5.3.3, were counted. Both 

CNR2-selective agonists, HU308 and JWH133 (30nM), significantly increased 

osteoclast size and nuclearity such that the proportion of cells with more than 20 nuclei 

rose from about 7% in vehicle-treated cells to 14% in HU308-treated cells and from 

14% to 27% in JWH133-treated cells (Figure 5.4A,B). The endocannabinoids, AEA and 

2-AG (30nM) also increased osteoclast nuclearity and raised the proportion of cells with 

more than 20 nuclei from 13% in vehicle-treated cells to 17% in AEA-treated cells, and 

from 14% to 26% in 2-AG-treated cells (Figure 5.4C,D). 
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Figure 5.4: Effect of cannabinoid receptor agonists on osteoclast nuclearity. A. Number of 
multinucleated TRAcP-positive osteoclasts (OC) per well with 20 or more nuclei in bone 
marrow cultures stimulated with M-CSF (25ng/ml) and RANKL (100ng/ml) for 72 hours and 
then exposed to vehicle (V) or HU308 (30nM) for 24 hours. Changes in OC number were 
expressed as a percent of total OC number. Number of OC with more than 20 nuclei in cultures 
exposed to vehicle, JWH133 (B), AEA (C) or 2-AG (D) at the indicated concentrations, from 
similar experiments, expressed in the same way. Representative photomicrographs of large OC 
stained for TRAcP from the cultures in A, B, C and D. Values are means ± sem and were 
obtained from 3 independent experiments. *p < 0.05 from vehicle-treated cultures.  
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Conversely, AM251 and AM630 (300nM and 1000nM) significantly reduced osteoclast 

size and nuclearity in a concentration-dependent manner following a 48 hour-treatment. 

As shown in Figure 5.5A and B, the proportion of cells with more than 20 nuclei 

decreased from 20% in vehicle-treated cells to 12% and 8% in cells treated with AM630 

at 300nM and 1000nM, respectively; and from 16% in vehicle-treated cells to 9% and 

7% in cells treated with AM251 at 300nM and 1000nM, respectively. 
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Figure 5.5: Effect of cannabinoid receptor antagonists/inverse agonists on osteoclast 
nuclearity. A. Number of multinucleated TRAcP-positive osteoclasts (OC) per well with 20 or 
more nuclei in bone marrow cultures stimulated with M-CSF (25ng/ml) and RANKL 
(100ng/ml) for 72 hours and then exposed to vehicle (V) or AM630 at the indicated 
concentrations for 48 hours. Changes in osteoclast number were expressed as a percent of total 
osteoclast number. B. Number of osteoclasts with more than 20 nuclei in cultures exposed to 
vehicle or AM251 at the indicated concentrations, from similar experiments, expressed in the 
same way. Representative photomicrographs of large osteoclasts stained for TRAcP from the 
cultures in A and B. Values are means ± sem and were obtained from 3 independent 
experiments. *p < 0.05 and **p < 0.005 from vehicle-treated cultures. 
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5.3.5 Effect of cannabinoid receptor ligands on macrophage viability  
 
To determine whether cannabinoid receptor ligands are affecting directly the process of 

osteoclastogenesis or the viability of monocytic osteoclast precursors, macrophage 

cultures generated from bone marrow cells stimulated with M-CSF (25ng/ml) for 72 

hours, were exposed to a concentration range of cannabinoid receptor ligands for 24-48 

hours (c.f. section 2.2.2, page 76). 

 

As shown in Figure 5.6A and B, none of the CNR2-selective agonists, HU308 and 

JWH133, or the endocannabinoids, AEA and 2-AG, had an effect on macrophage 

viability at the concentration range of 0.25nM - 10μM.  
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Figure 5.6: Effect of cannabinoid receptor agonists on macrophage number.  
A. Macrophage (MΦ) number in bone marrow cultures stimulated with M-CSF (25ng/ml) for 
72 hours and then exposed to vehicle (V), HU308 or JWH133, at the indicated concentrations 
for 24 hours, as assessed by Alamar Blue assay. Changes in macrophage number were 
expressed as a percent of values in vehicle-treated cultures. Macrophage number in cultures 
exposed to vehicle, AEA or 2-AG (B) from similar experiments, expressed in the same way. C. 
Representative phase contrast photomicrographs from the cultures in A and B. Values are 
means ± sem and were obtained from 3 independent experiments.  
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Likewise, neither of the cannabinoid receptor antagonist/inverse agonists, AM251 

(CNR1-selective) or AM630 (CNR2-selective) had an effect on macrophage viability at 

the concentration range of 0.25nM - 3μM, as shown in Figure 5.7A. Even at the highest 

concentration tested of 10μM, AM630 did not have an effect on macrophage number. 

Surprisingly, the CNR1-selective antagonist/inverse agonist AM251, significantly 

increased macrophage number at 10μM (Figure 5.7A). Whether this is a noteworthy 

result or an irrelevant consequence of the extremely high concentrations of AM251, is 

still to be determined. 
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Figure 5.7: Effect of cannabinoid receptor antagonists/inverse agonists on macrophage 
number. A. Macrophage (MΦ) number in bone marrow cultures stimulated with M-CSF 
(25ng/ml) for 72 hours and then exposed to vehicle (V), AM251 or AM630, at the indicated 
concentrations for 48 hours, as assessed by Alamar Blue assay. Changes in macrophage 
number were expressed as a percent of values in vehicle-treated cultures. B. Representative 
phase contrast photomicrographs from the cultures in A. Values are means ± sem and were 
obtained from 3 independent experiments. *p < 0.05 from vehicle-treated cultures. 



Chapter 5: ROLE OF CNR2 IN OSTEOCLAST DIFFERENTIATION AND FUNCTION 

 163

5.3.6 Effects of cannabinoid receptor ligands on osteoclasts from bone marrow of wild 
type and CNR2-deficient mice 

 
To establish whether the effects of cannabinoid ligands on osteoclast number were 

mediated via the CNR2, osteoclast formation was assessed in cultures generated from 

wild type and CNR2-/- mice. These cultures were treated with M-CSF (25ng/ml) and 

RANKL (100ng/ml) for 72 hours and then exposed to cannabinoid receptor ligands for 

24-48 hours (c.f. section 2.2.3, page 77).  

 

As shown in Figure 5.8, vehicle-treated bone marrow cultures from CNR2-/- mice have 

significantly fewer osteoclasts than wild type cultures as already mentioned in section 

5.3.1, page 155. The CNR2-selective agonists, HU308 and JWH133, stimulated 

osteoclast formation, with maximal stimulation at 30nM for HU308 and 30-1000nM for 

JWH133, in cultures derived from wild type but not from CNR2-/- mice. Cultures 

prepared from CNR2-/- mice were resistant to the stimulatory effects of HU308 and 

JWH133 at all concentrations tested, confirming a CNR2-mediated mechanism (Figure 

5.8A,B). 

 

The endocannabinoid AEA stimulated osteoclast formation in both wild type and CNR2-

/- bone marrow cultures. Although AEA increased the osteoclast numbers significantly 

from concentrations as low as 30nM in wild type cultures, in CNR2-/- cultures AEA had 

a stimulatory effect only at a 10-fold higher concentration (Figure 5.8C). AEA had a 

maximal stimulatory effect at 300nM, causing 60% increase in osteoclast numbers in 

both wild type and CNR2-/- cultures (Figure 5.8C). 

 

The endocannabinoid 2-AG stimulated osteoclast formation in CNR2-/- cultures in a 

manner indistinguishable from wild type cultures. The stimulatory effect of 2-AG on 

osteoclast number was significant from the concentration of 30nM, with maximal 

stimulation at 100nM in both wild type and CNR2-/- cultures (Figure 5.8D).  
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Figure 5.8: Effect of cannabinoid receptor agonists on osteoclasts from wild type and 
CNR2-deficient mice. A. Number of multinucleated TRAcP-positive osteoclasts (OC) in wild 
type and CNR2-/- bone marrow cultures stimulated with M-CSF (25ng/ml) and RANKL 
(100ng/ml) for 72 hours and then exposed to vehicle (V) or HU308 at the indicated 
concentrations for 24 hours. Changes in osteoclast number were expressed as a percent of 
values in wild type, vehicle-treated cultures. Osteoclast number in cultures exposed to vehicle, 
JWH133 (B), AEA (C) or 2-AG (D), from similar experiments, expressed in the same way. 
Representative photomicrographs of osteoclasts stained for TRAcP from the cultures in A, B, C 
and D. Values are means ± sem and were obtained from 3 independent experiments. *p < 0.05 
from vehicle-treated cultures of same genotype, +p < 0.05 from wild type cultures treated in the 
same way.    
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The CNR2-selective antagonist/inverse agonist AM630 significantly inhibited osteoclast 

formation in wild type bone marrow cultures from concentrations as low as 30nM. 

Increasing concentrations of AM630 further inhibited osteoclast number in a 

concentration-dependent manner (Figure 5.9A). CNR2-/- bone marrow cultures were not 

responsive to the inhibitory effects of AM630 at concentrations up to 300nM, but at 

higher concentrations of 1-3μM, AM630 inhibited osteoclast formation in a 

concentration dependent manner as in wild type cultures (Figure 5.9A). The IC50 of 

AM630 in wild type cultures was 199 ± 55nM, whereas in CNR2-/- cultures it 

significantly increased to 1713 ± 804nM. The CNR1-selective antagonist/inverse agonist 

AM251 was less potent than AM630, but inhibited osteoclast formation in CNR2-/- 

cultures to a similar extent as in wild type cultures (Figure 5.9B). The IC50 of AM251 in 

wild type and CNR2-/- cultures was 1165 ± 598nM and 1500 ± 788nM, respectively. 
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 Figure 5.9: Effect of cannabinoid receptor antagonists/inverse agonists on osteoclasts 

from wild type and CNR2-deficient mice. Number of multinucleated TRAcP-positive 
osteoclasts (OC) in wild type and CNR2-/- bone marrow cultures stimulated with M-CSF 
(25ng/ml) and RANKL (100ng/ml) for 72 hours and then exposed to vehicle (V), AM630 (A) 
or AM251 (B) at the indicated concentrations for 48 hours. Changes in osteoclast number were 
expressed as a percent of values in vehicle-treated cultures. Values are means ± sem and were 
obtained from 3 independent experiments. *p < 0.05 from vehicle-treated cultures of same 
genotype, +p < 0.05 from wild type cultures treated in the same way.    
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5.3.7 Cannabinoid receptor ligands have no effect on macrophage viability from bone 
marrow of wild type or CNR2-deficient mice 

 
The effect of cannabinoid receptor ligands was also tested on M-CSF (25ng/ml) 

generated macrophage cultures from bone marrow of wild type and CNR2-/- mice (c.f. 

section 2.2.2, page 76). As shown in Figure 5.10, none of the CNR2-selective ligands, 

HU308 and JWH133, or the endocannabinoids, AEA and 2-AG, had an effect on 

macrophage viability in cultures derived either from wild type or CNR2-/- mice. 
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Figure 5.10: Effect of cannabinoid receptor agonists on macrophages from wild type and 
CNR2-deficient mice. A. Number of macrophages (MΦ) in wild type and CNR2-/- bone 
marrow cultures stimulated with M-CSF (25ng/ml) for 72 hours and then exposed to vehicle 
(V) or HU308 at the indicated concentrations for 24 hours, as assessed by Alamar Blue assay. 
Changes in macrophage number were expressed as a percent of values in vehicle-treated 
cultures. Macrophage number in cultures exposed to vehicle, or JWH133 (B), AEA (C) or 2-
AG (D), from similar experiments, expressed in the same way. E. Representative phase 
contrast photomicrographs of macrophages from the cultures in A, B, C and D. Values are 
means ± sem and were obtained from 3 independent experiments.  
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Similarly, the CNR2-selective antagonist/inverse agonist AM630 and the CNR1-seletive 

antagonist/inverse agonist AM251, did not have an effect on macrophage viability in M-

CSF-stimulated cultures from wild type or CNR2-/- mice at the concentrations tested 

(Figure 5.11).  

 

 

M
Φ

 n
um

be
r

(%
 c

on
tro

l)

A B

AM251 (nM)

AM251 1000nMAM630 1000nMVehicle

C
N

R
2-

/-
W

T

C

AM630 (nM)

M
Φ

 n
um

be
r

(%
 c

on
tro

l)

V 300 1000
0

20
40
60
80

100
120

WT
CNR2-/-

0
20
40
60
80

100
120

V 300 1000

M
Φ

 n
um

be
r

(%
 c

on
tro

l)

A B

AM251 (nM)

AM251 1000nMAM630 1000nMVehicle

C
N

R
2-

/-
W

T

C

AM630 (nM)

M
Φ

 n
um

be
r

(%
 c

on
tro

l)

V 300 1000
0

20
40
60
80

100
120

WT
CNR2-/-

0
20
40
60
80

100
120

0
20
40
60
80

100
120

V 300 1000

 
 

 Figure 5.11: Effect of cannabinoid receptor antagonists/inverse agonists on macrophages 
from wild type and CNR2-deficient mice. Number of macrophages (MΦ) in wild type and 
CNR2-/- bone marrow cultures stimulated with M-CSF (25ng/ml) for 72 hours and then 
exposed to vehicle (V), AM630 (A) or AM251 (B) at the indicated concentrations for 48 hours, 
as assessed by Alamar Blue assay. Changes in macrophage number were expressed as a 
percent of values in vehicle-treated cultures. C. Representative phase contrast 
photomicrographs of macrophages from cultures in A and B. Values are means ± sem and were 
obtained from 3 independent experiments.  
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5.3.8 CNR2-deficient mice are partially protected from ovariectomy induced bone loss 
 
Genetic inactivation of CNR2 partially rescues bone loss in ovariectomised mice  
 
To determine the role CNR2 in bone mass due to oestrogen deficiency, 8-week old wild 

type and CNR2-/- female littermates were subjected to ovariectomy or sham operation 

(c.f. section 2.5.4, page 97). Following a 3-week period, mice were sacrificed and μCT 

analysis was performed at the trabecular compartment of isolated tibiae (c.f. section 

2.5.8, page 99).  

 

As shown in Figure 5.12A, ovariectomised CNR2-/- mice were partly protected from 

ovariectomy-induced bone loss, since they experienced less trabecular bone loss than 

wild type littermates. Although CNR2-/- female mice also experienced less trabecular 

number loss than wild type controls, this difference did not achieve statistical 

significance (Figure 5.12C). Wild type ovariectomised mice suffered from loss of 

trabecular thickness (Figure 5.12B) and a subsequent increase in trabecular separation 

(Figure 5.12D), while in CNR2-/- littermates trabecular thickness and trabecular 

separation were reserved (Figure 5.12B,D). Moreover, trabecular pattern factor was 

lower in CNR2-/- mice than in wild type mice following ovariectomy, indicating better 

trabecular connectivity (Figure 5.12E). 

 

The actual values of all parameters from ovariectomised and sham-operated wild type 

and CNR2-/- mice are shown in Appendix 7, page 279. 
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Figure 5.12: Effect of ovariectomy (Ovx) on trabecular bone in wild type and CNR2-
deficient mice. A. Trabecular bone volume (BV/TV) in wild type and CNR2-/- littermates 
subjected to ovariectomy or sham operation for 3 weeks, assessed by μCT of the tibia. Changes 
in BV/TV were normalised to those in sham operated mice of the same genotype and expressed 
as percent change. Trabecular thickness (Tb.Th) (B), trabecular number (Tb.N) (C), trabecular 
separation (Tb.Sp) (D), and trabecular pattern factor (Tb.Pf) (E) of the same experiment, 
expressed in the same way. F. Representative μCT images from the tibial metaphysis of wild 
type and CNR2-/- mice, subjected to ovariectomy or sham operation. Values are means ± sem 
from 7-8 mice per group. *p < 0.05 from wild type ovariectomised mice. 
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Genetic inactivation of CNR2 partially rescues bone loss in ovariectomised mice due to 
low osteoclast number 
 
To investigate the cellular events at the trabecular compartment of the bone, 

histomorphometric analysis was performed at the tibial metaphysis of wild type and 

CNR2-/- ovariectomised mice (c.f. section 2.5.9, page 103). As shown in Table 5.1 

osteoblast and osteoclast numbers increased in wild type mice following ovariectomy. 

However, in CNR2-/- ovariectomised mice osteoclast numbers and active resorption 

surfaces were indistinguishable from sham-operated mice (Table 5.1), indicating a 

significant inhibition on osteoclast formation and function. Osteoblast numbers on the 

other hand, increased in CNR2-/- mice following ovariectomy compared to sham-

operated mice, but this increase did not achieve statistical significance. These results 

suggest that CNR2-/- female mice are partially protected from ovariectomy-induced bone 

loss due to reduced osteoclast numbers and defective bone resorption (Table 5.1).  
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Table 5.1: Effect of ovariectomy (Ovx) on static histomorphometry in wild type and 
CNR2-deficient mice. BV/TV, trabecular bone volume (%); Ob.N/BS, osteoblast 
number/bone surface (cells/mm); Oc.N/BS, osteoclast number/bone surface (cells/mm); 
Oc.S/BS, osteoclast surface/bone surface (%). Values are expressed as means ± sem from 3-4 
mice per group. ap < 0.05 from sham-operated mice, bp < 0.05 from wild type ovariectomised 
mice. 
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Genetic inactivation of CNR2 does not affect body weight gain in ovariectomised mice 
 
To investigate whether lack of CNR2 has an effect on body weight gain after loss of 

ovarian function, ovariectomised and sham-operate wild type and CNR2-/- mice were 

weighed at the beginning and the end of the 3-week period. As shown in Figure 5.13, all 

mice in this study showed an increase in body weight regardless of genotype or type of 

operation. As expected, weight gain was greater in both wild type and CNR2-/- 

ovariectomised mice compared to sham-operated mice. However, no significant 

difference in body weight gain was observed among wild type and CNR2-/- mice 

subjected to the same type of operation (Figure 5.13). 
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Figure 5.13: Effect of ovariectomy on body weight gain in wild type and CNR2-deficient 
mice. Actual gain in body weight of wild type and CNR2-/- mice subjected to ovariectomy or 
sham operation for 3 weeks. Values are means ± sem from 7-8 mice per group. *p < 0.05 from 
sham-operated mice of same genotype. 
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Genetic inactivation of CNR2 does not affect uterine or spleen weights in 
ovariectomised mice 
 
The success of the ovariectomy operation was confirmed by comparing the uterine 

weight from sham-operated and ovariectomised mice. As shown in Figure 5.14A, 

ovariectomy significantly reduced the weight of uterus in wild type and CNR2-/- mice by 

approximately 70% compared to the respective sham-operated mice. No significant 

difference in spleen weight was observed between the groups (Figure 5.14B).  
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Figure 5.14: Effect of ovariectomy on uterine and spleen weights in wild type and CNR2-
deficient mice. Weight of uterus (A) and spleen (B) isolated from wild type and CNR2-/- mice 
subjected to ovariectomy or sham operation for 3 weeks. Values are means ± sem from 7-8 
mice per group. *p < 0.05 from sham-operated mice of same genotype. 
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5.3.9 Effect of the CNR2-selective antagonist/inverse agonist AM630, on ovariectomy-
induced bone loss 

 
In view of the anti-osteoclast activities of the CNR2-selective antagonist/inverse agonist 

in vitro, and the genetic inactivation of CNR2 in vivo, the effects of AM630 were also 

studied in 8-week old wild type and CNR2-/- female mice subjected to ovariectomy (c.f. 

section 2.5.4, page 97). Mice received daily intraperitoneal injections of either vehicle, 

0.1 or 1.0mg/kg of AM630 for 3 weeks (c.f. section 2.5.5, page 97). Mice were then 

sacrificed and μCT analysis was performed on isolated tibiae (c.f. section 2.5.8, page 

99). 

 
Pharmacological inactivation of CNR2 protects from ovariectomy-induced bone loss 
 
As shown in Figure 5.15A, treatment of wild type mice with the CNR2-selective 

antagonist/inverse agonist AM630, rescued ovariectomy-induced bone loss at a dose as 

low as 0.1mg/kg. Wild type mice treated with AM630 at 0.1mg/kg lost 65% less 

trabecular bone volume than vehicle-treated mice (p<0.05), and with AM630 treatment 

at 1.0mg/kg, wild type mice lost 55% less trabecular bone volume compared to vehicle-

treated controls (p<0.05) (Figure 5.15A). 

 

CNR2-/- female mice were resistant to the protective effects of AM630 at a low dose of 

0.1mg/kg. However, at a higher dose of 1.0mg/kg, AM630 rescued ovariectomy-induced 

bone loss in CNR2-/- mice to a similar extent as in wild type mice. The maximum rescue 

of bone loss in CNR2-/- mice following treatment with AM630 at 1.0mg/kg was 65% 

when compared to the vehicle-treated CNR2-/- mice (p<0.05) (Figure 5.15A). 
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Further μCT analysis showed that the CNR2-selective antagonist/inverse agonist 

AM630, rescued trabecular bone loss in wild type mice at a dose as low as 0.1mg/kg, by 

reversing the loss of trabecular number (Figure 5.16B) and moderately protecting 

trabecular thickness (Figure 5.16A). Accordingly, the trabecular separation of wild type 

mice treated with AM630 at 0.1 and 1.0mg/kg was rescued to levels that were 

significantly lower from those in vehicle-treated ovariectomised controls (Figure 5.16C). 

Overall, AM630 treatment increased the trabecular connectivity in wild type mice, as 

indicated by the reduction in trabecular pattern factor (Figure 5.16D).  

 

The trabecular thickness of CNR2-/- mice did not significantly change after AM630 

treatment and was indistinguishable from wild type controls at all times (Figure 5.16A). 

However, the trabecular number of CNR2-/- mice treated with AM630 at 1.0mg/kg was 

rescued to levels that were no longer significantly different from wild type littermates, 

unlike CNR2-/- mice treated with the low dose of AM630 (Figure 5.16B). Similarly, 

ovariectomised CNR2-/- mice treated with AM630 at 0.1mg/kg had significantly higher 

trabecular separation than wild type controls and CNR2-/- mice treated with AM630 at 

1.0mg/kg after ovariectomy (Figure 5.16C). Nonetheless, the trabecular connectivity in 

AM630-treated CNR2-/- mice did not significantly change from vehicle-treated controls, 

but at 1.0mg/kg AM630 treatment trabecular connectivity was reduced to levels that 

were no longer statistically different from sham-operated CNR2-/- mice (Figure 5.16D). 

 

The actual values of all μCT parameters for the trabecular bone analysis of 

ovariectomised and sham-operated wild type and CNR2-/- female mice treated with the 

CNR2-selective antagonist/inverse agonist AM630, are shown in Appendix 8, page 280.  
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Pharmacological inactivation of CNR2 protects from ovariectomy-induced bone loss by 
inhibiting osteoclasts and bone resorption  
 
Bone histomorphometric analysis (c.f. section 2.5.9, page 103) at the trabecular 

compartment of tibial metaphyses from wild type ovariectomised mice showed that 

AM630 blocked the increase in osteoclast numbers and active resorption surfaces that 

usually follow ovariectomy, without affecting osteoblast numbers (Table 5.2). These 

data indicate that prevention of ovariectomy-induced bone loss with AM630 was due to 

an inhibitory effect on osteoclasts and bone resorption rather than an effect on 

osteoblasts and bone formation. 
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Table 5.2: Static histomorphometry in wild type mice following ovariectomy (OVX) and 
AM630 treatment at 0.1 and 1.0mg/kg for 3 weeks. BV/TV, trabecular bone volume (%); 
Ob.N/BS, osteoblast number/bone surface (cells/mm); Oc.N/BS, osteoclast number/bone 
surface (cells/mm); Oc.S/BS, osteoclast surface/bone surface (%). Values are expressed as 
means ± sem from 4-5 mice per group. ap < 0.05 from sham-operated mice; bp < 0.05 from 
vehicle-treated ovariectomised mice. 
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Pharmacological inactivation of CNR2 does not affect body weight gain in 
ovariectomised mice 
 
To establish whether pharmacological inactivation of CNR2 with the CNR2-selective 

antagonist/inverse agonist AM630, has an effect on body weight gain following 

ovariectomy, the weight of all mice used in this study was measured before the operation 

and 3 weeks after when mice were sacrificed. As shown in Figure 5.17, no significant 

difference in body weight gain was observed between wild type and CNR2-/- mice 

subjected to the same type of operation and same drug treatment. As expected, all 

groups subjected to ovariectomy, regardless of treatment, had at least a 2-fold increase in 

body weight gain when compared with sham-operated mice (Figure 5.17). 
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Figure 5.17: Effect of ovariectomy and AM630-treatment on body weight gain in wild 
type and CNR2-deficient mice. Actual gain in body weight of wild type and CNR2-/- mice, 
treated with vehicle or AM630 (0.1 and 1.0mg/kg), following ovariectomy or sham operations 
for 3 weeks. Values are means ± sem from 7-8 mice per group. +p < 0.05 from sham-operated 
mice of the same genotype. 
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Pharmacological inactivation of CNR2 does not affect uterine or spleen weights 
 
The mean uterine weight from all ovariectomised groups was reduced by about 75% 

compared to the respective sham-operated mice, indicating that ovariectomy was carried 

out successfully (Figure 5.18A). Although all mice remained healthy throughout the 

treatment period, all ovariectomised groups had slightly heavier spleens than sham 

operated mice, possibly due to an inflammatory response after surgery (Figure 5.18B). 
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Figure 5.18: Effect of ovariectomy and AM630-treatment on uterine and spleen weights 
in wild type and CNR2-deficient mice. Weight of uterus (A) and spleen (B) isolated from 
wild type and CNR2-/- mice treated with vehicle or AM630 (0.1 and 1.0mg/kg), following 
ovariectomy or sham operations for 3 weeks. Values are means ± sem from 7-8 mice per 
group. +p < 0.05 from sham-operated mice of the same genotype, *p <0.05 from wild type 
mice subjected to the same treatment. 



Chapter 5: ROLE OF CNR2 IN OSTEOCLAST DIFFERENTIATION AND FUNCTION 

 180

5.4 DISCUSSION 
 
We and others have previously reported that endocannabinoids and cannabinoid receptor 

agonists stimulate osteoclast formation (Idris et al., 2005; Ridge et al., 2007), whereas 

Ofek and colleagues proposed that the CNR2-seletive agonist HU308 inhibits osteoclast 

formation in vitro and in vivo (Ofek et al., 2006). In view of these observations, the aim 

of this chapter was to further investigate the role of CNR2 on osteoclast formation in 

vitro and ovariectomy-induced bone loss in vivo. 

 

This chapter demonstrates that although bone marrow macrophages from CNR2-/- mice 

responded normally to M-CSF, they have a defect in RANKL-induced osteoclast 

formation. In keeping with this, the two cannabinoid receptor antagonists/inverse 

agonists, AM251 and AM630, selective for CNR1 and CNR2 respectively (Pertwee and 

Ross, 2002), inhibited osteoclast formation and nuclearity in a concentration-dependent 

manner, with AM630 being more potent than AM251. Conversely, the 

endocannabinoids AEA and 2-AG, as well as the CNR2-selective agonists HU308 and 

JWH133, stimulated osteoclast formation with an EC50 of <1nM, and increased 

nuclearity at concentrations in the nanomolar range. Although AEA, 2-AG and JWH133 

had a stimulatory effect on osteoclast formation even at 10- and 100-fold higher 

concentrations, HU308 did not increase osteoclast numbers at concentrations higher than 

100nM and caused osteoclast inhibition at 10μM with an IC50 value of 4.2μM. However, 

HU308 concentration of 10μM, is approximately 2000 times greater than the 

concentration of HU308 required for CNR2-mediated adenylyl cyclase inhibition in 

CNR2-transfected cells (Hanus et al., 1999). This suggests that the inhibitory effects of 

HU308 at these concentrations may have been non-specific and mediated by an 

interaction with pathways other than CNR2. The stimulatory effects of HU308 and 

JWH133 on osteoclast formation are consistent with previous work which has shown 

that non-selective cannabinoid receptor agonists including AEA, 2-AG and CP55940 

stimulate osteoclast formation and bone resorption in vitro at nanomolar concentrations 
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(Idris et al., 2005; Ridge et al., 2007). However, the observations reported in this chapter 

differ from previous work of Ofek and colleagues, who found that HU308 caused 

osteoclast inhibition at concentrations in the nanomolar range (Ofek et al., 2006). These 

differences cannot be readily explained but it should be noted that the observations of 

Ofek et al. were based in part on studies of RAW 264.7 cells rather than primary 

osteoclasts. Although Ofek et al. also studied M-CSF- and RANKL-stimulated bone 

marrow cultures, the numbers of osteoclasts generated were very low (an average of 15 

cells per culture), and cannabinoid agonist treatments were kept for a long period of time 

(6 days) (Ofek et al., 2006). These factors might have also contributed to the differences 

observed between the two studies. 

 

Because all pharmacological ligands used in this study are non-specific and can interact 

with both CNR1 and CNR2 (Appendix 4, page 275), further studies were conducted 

with osteoclasts derived from wild type and CNR2-/- mice to determine whether the 

effects of these ligands on osteoclast activity were truly mediated by CNR2. The 

stimulatory effect of HU308 and JWH133 on osteoclast formation was only observed in 

wild type cultures, since neither of these compounds increased osteoclast differentiation 

in cultures from CNR2-/- mice. However, cultures from both wild type and CNR2-/- mice 

responded to the endocannabinoids AEA and 2-AG, probably because of their well-

documented activity towards CNR1 (Pertwee and Ross, 2002) (Appendix 4, page 275). 

Moreover, endocannabinoids are likely to have a stimulatory effect on osteoclast 

formation, via the transient receptor potential vallinoid type 1 (TRPV1) (De Petrocellis 

et al., 2000; Smart et al., 2000; Hermann et al., 2003; Rossi et al., 2009), or other G-

protein coupled receptors such as GPR55 (Whyte et al., 2009). Further studies showed 

that osteoclasts generated from CNR2-/- mice were resistant to the inhibitory effects of 

AM630 at low concentrations but inhibited osteoclast formation in cultures from CNR2-/- 

mice at higher concentrations. In contrast, the CNR1-selective antagonist/inverse agonist 

AM251 was an equally potent inhibitor of osteoclast formation in cultures from wild 
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type and CNR2-/- mice, showing that its effects are mainly mediated by CNR1 or other 

available receptors, such as GPR55. 

 

To confirm that pharmacological or genetic inactivation of CNR2 indeed leads to 

osteoclast inhibition, osteoclastogenesis should also be studied in co-cultures of 

osteoblast and bone marrow. Such system will enable the mixing and matching of cell 

populations from wild type and CNR2-/- mice in order to determine whether osteoblasts 

lacking CNR2 or osteoclast precursors from bone marrow of CNR2-/- mice are most 

likely to be responsible for the defective osteoclastogenesis observed. Defective 

osteoclast formation could be due to the fact that bone marrow from CNR2-deficient 

mice is less responsive to osteoclastogenic stimuli, as also seen in RANKL and M-CSF 

stimulated bone marrow cultures, or that osteoblasts from CNR2-/- mice cannot support 

osteoclast formation due to reduced production of osteoclastogenic cytokines, as 

previously shown with osteoblasts derived from CNR1-/- mice (Idris et al., 2008b). Such 

experiments will be performed in the near future.  

 

Oestrogen deficiency was studied in ovariectomised mice, a well-established model of 

post-menopausal osteoporosis (Turner, 1999). Unlike ageing experiments, which allow 

the study of hormonal changes and the natural transition from cycling to acycling mice 

(Nelson et al., 1981; Felicio et al., 1984; Nelson and Felicio, 1990), ovariectomy 

addresses the transition phase of bone loss due to oestrogen deficiency (Kalu, 1991). 

CNR1-/- female mice were previously shown to be resistant to trabecular bone loss 

following ovariectomy (Idris et al., 2005). Consistent with this, 8-week old CNR2-/- 

female mice subjected to ovariectomy in the current study were partly protected from 

bone loss, due to defective osteoclast formation. These results suggested that CNR2 

plays a role in regulating bone loss after ovariectomy and that genetic inactivation of 

CNR2 may protect from bone loss following ovariectomy. 
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To determine whether pharmacological inactivation/blockade of CNR2 can also prevent 

bone loss resulting from oestrogen deficiency, the effects of the CNR2-selective 

antagonist/inverse agonist AM630 were studied on ovariectomy-induced bone loss in 

wild type and CNR2-/- mice. Administration of AM630 in ovariectomised wild type mice 

at a dose of 0.1 and 1.0mg/kg prevented ovariectomy-induced bone loss, with identical 

results to those observed with the CNR1-selective antagonist/inverse agonist AM251 as 

previously reported (Idris et al., 2005). Analysis of bone histomorphometry showed that 

AM630 blocked the increase in osteoclast numbers and active resorption surfaces that 

followed ovariectomy, demonstrating that prevention of bone loss with AM630 was due 

to an inhibitory effect on osteoclast and bone resorption rather than an effect on 

osteoblast and bone formation. This findings together with Idris et al. (Idris et al., 2005) 

indicate that CNR1 or CNR2 blockade prevent ovariectomy-induced bone loss by 

inhibiting osteoclast formation and function. Mice lacking CNR2 were resistant to the 

protective effects of AM630 at a low dose (0.1mg/kg), consistent with a CNR2-mediated 

mechanism. However, at higher dose of 1.0mg/kg, AM630 was equally effective at 

preventing ovariectomy-induced bone loss in CNR2-/- mice and wild type littermates, 

possibly through non-specific binding on CNR1. 

 

In summary, the results reported in this chapter indicate that type 2 cannabinoid 

receptors regulate osteoclast differentiation in vitro and ovariectomy-induced bone loss 

in vivo. Antagonists/inverse agonists of cannabinoid receptors inhibit osteoclast 

differentiation and bone resorption by a CNR2 mediated pathway as well as interacting 

by CNR1 as previously reported (Idris et al., 2005). Conversely, it appears that the 

stimulatory effects of CNR2-selective agonists on osteoclast formation, at the 

concentrations tested here, are mediated only by an interaction with CNR2. These data 

suggest that cannabinoid receptor antagonists/inverse agonists may have potential value 

as anti-resorptive drugs.  
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CHAPTER SIX
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6 ROLE OF CNR2 IN OSTEOBLAST DIFFERENTIATION AND 
FUNCTION  

 
6.1 SUMMARY 
 

Cannabinoid receptor agonists stimulate osteoclast formation in vitro, but paradoxically, the 

CNR2-selective agonist HU308 has also been found to partially protect against ovariectomy-

induced bone loss in vivo. In an attempt to resolve these discrepancies, the role of CNR2 in 

osteoblast differentiation and function was investigated further using a combination of 

pharmacological and genetic approaches. 

 

Bone marrow-derived osteoblasts and calvarial osteoblasts from CNR2-/- mice, showed defective 

bone nodule formation in comparison to wild type osteoblasts even though they proliferated 

normally. Bone nodule cultures with different cell seeding densities showed that calvarial 

osteoblasts from CNR2-/- neonates are slower in becoming matrix-secreting osteoblasts than wild 

type osteoblasts, suggesting a defect in differentiation. The CNR2-selective agonists HU308 and 

JWH133 stimulated bone nodule formation in wild type osteoblast cultures at concentrations of 

10 and 30nM. Partial stimulatory effects were also observed in cultures from CNR2-/- mice, 

indicating that the enhancement of bone nodule formation was mediated by CNR2 dependent 

and independent effects. Studies in vivo showed that administration of HU308 (0.1 and 

1.0mg/kg) in wild type mice, reversed ovariectomy-induced bone loss and preserved trabecular 

number in a dose-dependent manner. This was accompanied by an increase in osteoblast 

numbers and bone formation rate but no change in osteoclast numbers or bone resorption. 

Administration of HU308 in CNR2-/- mice at 0.1mg/kg had no significant effect on ovariectomy-

induced bone loss, consistent with a CNR2-mediated effect. Treatment with HU308 at a higher 

dose (1.0mg/kg) had a moderate but yet not significant effect on bone loss in CNR2-/- mice. 

 

In conclusion, these data shows that CNR2-selective agonists stimulate nodule formation in vitro 

and prevent ovariectomy-induced bone loss in vivo by promoting bone formation. Therefore, the 

CNR2 pathway may have an anabolic effect on bone, raising the possibility that CNR2 agonists 

might be of value as new treatments for osteoporosis. 
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6.2 INTRODUCTION 
 
Recent studies have shown that the endocannabinoid system is implicated in bone 

remodelling via osteoclastic and osteoblastic CNR1 and CNR2 signalling. Idris and 

colleagues have previously shown that CNR1 mediates the effects of cannabinoid 

receptor ligands on osteoclast activity (Idris et al., 2005), whereas Ofek et al. reported 

that CNR2 regulates bone mass by stimulating osteoblasts and inhibiting osteoclasts 

(Ofek et al., 2006). This chapter investigates further the role of CNR2 in osteoblast 

differentiation and function, in vitro and in vivo. 

 

The CNR2-selective agonist HU308, has previously been found to inhibit osteoclast 

formation in vitro and to partially protect from ovariectomy-induced bone loss in vivo, 

by inhibiting bone resorption and stimulating  endocortical bone formation (Ofek et al., 

2006). In addition, HU308 was found to stimulate growth and proliferation of primary 

osteoblasts from wild type mice but not from CNR2-/- mice. And finally, HU308 was 

shown to stimulate nodule formation in wild type calvarial osteoblast cultures kept in 

osteogenic medium, whereas CNR2-/- cultures showed no response to HU308 (Ofek et 

al., 2006). Together these results suggested that the CNR2-selective agonist HU308, 

enhances osteoblast differentiation and activity in vivo and in vitro, and suppresses 

trabecular osteoclastogenesis via a CNR2 mediated mechanism (Ofek et al., 2006). 

 

The aim of the work reported in this chapter was to investigate further the role of CNR2 

in osteoblast number, differentiation and function in vitro by pharmacological activation 

and inactivation of CNR2 in wild type and CNR2-deficient primary osteoblasts cutures. 

In addition, the activation of type 2 cannabinoid receptors with a CNR2-selective agonist 

was used to study the role of CNR2 on ovariectomy-induced bone loss and the potential 

use of CNR2-selective agonists as anabolic agents. 
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6.3 RESULTS 
 
6.3.1 Osteoblasts from bone marrow of CNR2-deficient mice are defective in PTH-

induced differentiation 
 
To investigate the effects of CNR2 on osteoblastogenesis, osteoblast differentiation and 

growth were investigated, using the Alkaline phosphatase (ALP) assay (c.f. section 

2.2.9, page 81) and Alamar Blue assay (c.f. section 2.2.8, page 80), respectively. 

Osteoblasts were generated from bone marrow in medium supplemented with 50μg/ml 

Vitamin C and 3mM β-GP (osteogenic medium) for 8-10 days. Cells were then re-plated 

and allowed to proliferate for 72 hours, before they were exposed to PTH for 24 hours 

(c.f. section 2.2.6, pages 79). 

 

As shown in Figure 6.1A, ALP activity (a marker of osteoblast differentiation) increased 

with PTH treatment in a concentration-dependent manner in cultures from wild type 

mice. However, ALP activity in cultures from CNR2-/- mice was not significantly 

increased, suggesting that bone marrow osteoblasts from CNR2-/- mice were 

unresponsive to PTH treatment and hence defective in differentiation (Figure 6.1A). 

Figure 6.1B, shows that the proliferation of osteoblasts derived from bone marrow of 

wild type and CNR2-/- mice was similar and increased in the same manner following 

treatment with increasing concentrations of PTH (25-100nM).  

 

To study the role of CNR2 on osteoblast function, nodule formation was investigated in 

osteoblast cultures from bone marrow of wild type and CNR2-/- mice. Cultures were kept 

in osteogenic medium for up to 3 weeks (c.f. section 2.2.6, page 79) and mineralised 

nodules were detected with Alizarin Red staining (section 2.2.7, page 80). As shown in 

Figure 6.1C, bone nodule formation was diminished in cultures from CNR2-/- mice when 

compared with wild type cultures. This was not a consequence of difference in cell 

numbers between wild type and CNR2-/- bone marrow osteoblast cultures as shown in 

Figure 6.1D.  
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Figure 6.1: Bone marrow osteoblasts from CNR2-deficient mice have reduced ALP activity 
and defective bone nodule formation. A. Alkaline phosphatase (ALP) activity of bone marrow 
osteoblasts from wild type and CNR2-/- mice exposed to PTH (25-100nM) for 24 hours, assessed by 
ALP assay. ALP levels were normalised to cell number and expressed as a percent of values in wild 
type vehicle-treated cultures.  B. Number of bone marrow osteoblasts from cultures in A, assessed 
by Alamar Blue assay. Changes in osteoblast number were expressed as a percent of values in wild 
type vehicle-treated cultures. C. Quantification of Alizarin Red concentration from bone nodules of 
bone marrow osteoblast cultures from wild type and CNR2-/- mice, grown in osteogenic medium for 
3 weeks. D. Number of bone marrow osteoblasts from cultures in C, determined by Alamar Blue 
assay. Representative photomicrographs of mineral staining with Alizarin Red (E) and phase 
contrast images (F) of wild type and CNR2-/- bone marrow osteoblasts. Values are means ± sem and 
were obtained from 3 independent experiments. *p < 0.05 from wild type cultures, +p < 0.05 and 
++p < 0.005 from vehicle-treated cultures of the same genotype. 
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6.3.2 Calvarial osteoblasts from CNR2-deficient mice form defective bone nodules 
 

The role of CNR2 in osteoblast function was also studied in nodule assays using 

calvarial osteoblasts from wild type and CNR2-/- mouse neonates (c.f. section 2.2.5, page 

77). Osteoblasts were cultured in osteogenic medium for 3 weeks (c.f. section 2.2.5, 

page 77) and mineralised nodules were stained with Alizarin Red (section 2.2.7, page 

80). Figure 6.2A,C shows that CNR2-/- calvarial osteoblast cultures formed fewer bone 

nodules and had a slower nodule formation rate over the period of 3 weeks, compared to 

wild type cultures. Alamar Blue assay showed that osteoblast numbers in wild type and 

CNR2-/- cultures did not vary significantly ruling out the possibility that the difference in 

nodule formation was secondary to a difference in cell number (Figure 6.2B).  
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Figure 6.2: Calvarial osteoblasts from CNR2-deficient mice form defective bone nodules.  
A. Quantification of Alizarin Red staining concentration from bone nodules of calvarial osteoblasts 
from wild type and CNR2-/- neonates, grown in osteogenic medium over the period of 3 weeks. 
Changes in Alizarin Red staining concentration were expressed as a percent of values in wild type 
(WT)-week 1 cultures. B. Number of calvarial osteoblasts in bone nodule cultures from wild type and 
CNR2-/- neonates, assessed by Alamar Blue assay. Changes in osteoblast number were normalised to 
those of wild type-week 1 cultures. C. Representative photomicrographs of mineral staining with 
Alizarin Red. Values are means ± sem and were obtained from 3 independent experiments. *p < 0.05 
from wild type cultures, +p < 0.05 from week 1 cultures of same genotype. 
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6.3.3 Nodule formation by calvarial osteoblasts from CNR2-deficient mice is defective 
as a result of defective osteoblast differentiation 

 
To investigate the role of CNR2 on osteoblast differentiation, calvarial osteoblasts 

isolated from wild type and CNR2-/- mouse neonates (c.f. section 2.2.5, page 77) were 

cultured in 4 different cell seeding densities (50, 100, 200 and 300 x 103 cells/well) in 

12-well plates, with 50μg/ml Vitamin C and 3mM β-GP (osteogenic medium) for the 

period of 3 weeks. Bone nodule formation was detected with Alizarin Red staining (c.f. 

section 2.2.7, page 80). 

 

As shown in Figure 6.3A, CNR2-/- osteoblast cultures starting from a low seeding 

density, such as 50 or 100 x 103 cells/well, had defective nodule formation compared to 

wild type osteoblast cultures. However, CNR2-/- cultures starting with higher seeding 

densities than 100 x 103 cells/well, that is at 200 and 300 x 103 cells/well, had normal 

nodule formation (Figure 6.3A). These results suggest that at low seeding densities, 

when cells were at a sub-confluent state, CNR2-/- calvarial osteoblasts were slower in 

differentiating to matrix-secreting osteoblasts than wild type osteoblasts. However, when 

cells were seeded at higher and nearly confluent seeding densities, matrix deposition 

occurred simultaneously in wild type and CNR2-/- cultures, allowing CNR2-/- osteoblasts 

to form bone nodules at the same extent as wild type osteoblasts. Alamar Blue assay 

showed that after 3 weeks, all cultures had similar cell number regardless of the initial 

cell seeding density (Figure 6.3B), suggesting that the variability in nodule formation 

was not due to difference in cell number. 

 

Together these data indicate that calvarial osteoblasts from CNR2-/- mice experience 

defective differentiation which leads to defective nodule formation. 
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Figure 6.3: Calvarial osteoblasts from CNR2-deficient mice are defective in 
differentiation. A. Quantification of Alizarin Red staining concentration from bone nodules of 
calvarial osteoblasts from wild type and CNR2-/- mouse neonates at different seeding densities 
(50, 100, 200 and 300 x 103 cells/well in 12-well plates), grown in osteogenic medium for 3 
weeks. Changes in Alizarin Red staining concentration were expressed as a percent of values in 
wild type (WT) cultures at 50 x 103 cells/well seeding density. B. Number of calvarial 
osteoblasts in bone nodule cultures from wild type and CNR2-/- mice at different seeding 
densities, assessed by Alamar Blue assay. C. Representative photomicrographs of cultures in A, 
stained with Alizarin Red. Values are means ± sem and were obtained from 3 independent 
experiments. *p < 0.05 from wild type cultures, +p < 0.05 from cultures at 50 x 103 cells/well 
seeding density of same the genotype.  
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6.3.4 Cannabinoid receptor ligands do not affect calvarial osteoblast differentiation or 
growth 

 
To examine the effect of cannabinoid receptor ligands on osteoblast differentiation or 

growth, calvarial osteoblasts isolated from wild type neonates (c.f. section 2.2.5, page 

77) were cultured for 72 hours and then exposed to the CNR2-selective agonists, HU308 

and JWH133, the endocannabinoids, AEA and 2-AG, and the cannabinoid receptor 

antagonists/inverse agonists, AM251 and AM630, at concentrations varying from 0.5nM 

to 1μM, for 24 hours (c.f. section 2.2.5, page 77). Osteoblast differentiation and growth 

were investigated, using the Alkaline phosphatase (ALP) assay (c.f. section 2.2.9, page 

81) and Alamar Blue assay (c.f. section 2.2.8, page 80), respectively. 

 

As shown in Figure 6.4A,B, none of the cannabinoid receptor agonists, HU308, 

JWH133, AEA or 2-AG, had an effect on osteoblast ALP levels and hence 

differentiation, throughout the entire concentration range. The CNR2-selective 

antagonist/inverse agonist AM630, also did not affect the ALP activity (and hence 

differentiation) of osteoblasts at all concentrations tested (Figure 6.4C). Although 

nanomolar concentrations of AM251 also did not have an effect on osteoblast ALP 

levels, at 1μM, AM251 significantly reduced ALP activity and thus differentiation of 

calvarial osteoblasts as shown in Figure 6.4C. The significance of these results is still to 

be determined. Alamar Blue assay performed on the same cultures showed that the 

CNR2-selective agonists HU308 and JWH133, the endocannabinoids AEA and 2-AG, 

and the cannabinoid receptor antagonists/inverse agonists AM251 and AM630, did not 

have an effect on osteoblast number at any of the concentrations tested (Figure 6.5). 

 

The cannabinoid receptor ligands HU308, JWH133, AEA and AM630, did not have an 

effect on differentiation or growth of calvarial osteoblasts from CNR2-/- mice either, 

shown by the ALP assay and Alamar Blue assay performed simultaneously on calvarial 

osteoblasts from wild type and CNR2-/- mice (Appendix 9, pages 281).  
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Figure 6.4: Effect of cannabinoid receptor ligands on ALP activity of calvarial 
osteoblasts. A. Osteoblast (OB) ALP activity in cultures exposed to vehicle (V), HU308 or 
JWH133, at the indicated concentrations for 24 hours. ALP levels were normalised to cell 
number and expressed as a percent of values in vehicle-treated cultures. Osteoblast ALP 
activity in cultures exposed to vehicle, AEA or 2-AG (B), or to vehicle, AM251 or AM630 (C), 
from similar experiments, expressed in the same way. Values are means ± sem and were 
obtained from 3 independent experiments. *p < 0.05 from vehicle-treated cultures. 
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Figure 6.5: Effect of cannabinoid receptor ligands on calvarial osteoblast number. A. 
Osteoblast number in cultures exposed to vehicle (V), HU308 or JWH133, at the indicated 
concentrations for 24 hours. Changes in number were expressed as a percent of values in 
vehicle-treated cultures. Osteoblast number in cultures exposed to vehicle, AEA or 2-AG (B), 
or to vehicle, AM251 or AM630 (C), from similar experiments, expressed in the same way. D. 
Representative phase contrast photomicrographs from the cultures in A, B, and C. Values are 
means ± sem and were obtained from 3 independent experiments. 



Chapter 6: ROLE OF CNR2 IN OSTEOBLAST DIFFERENTIATION AND FUNCTION 

 195

6.3.5 Cannabinoid receptor agonists stimulate nodule formation in calvarial 
osteoblast cultures 

 
To investigate the effect of cannabinoid receptor agonists on osteoblast function, 

calvarial osteoblasts (100 x 103 cells/well in 12-well plates) were cultured in 50μg/ml 

Vitamin C and 3mM β-GP (osteogenic medium) and exposed to cannabinoid receptor 

ligands (10 - 100nM) for up to 3 weeks (c.f. section 2.2.5, page 77). As shown in Figure 

6.6, treatment of calvarial osteoblasts with the endocannabinoid AEA, or the CNR2-

selective agonists, HU308 and JWH133, at a concentration range of 10-100nM, 

stimulated bone nodule formation by 10-34% with AEA (p<0.05), 28-48% with HU308 

(p<0.05) and 9-20% with JWH133 (p<0.05) (Figure 6.6A). In contrast, the CNR2-

selective cannabinoid receptor antagonist/inverse agonist AM630, had no significant 

effect in nodule formation (Figure 6.6A). Alamar Blue assay showed that these cultures 

had equal number of osteoblasts (Figure 6.6B) indicating that the increase in nodule 

formation with cannabinoid receptor agonists was due to a stimulatory effect on 

osteoblast function, rather than cell number. 
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Figure 6.6: Effect of cannabinoid receptor ligands on bone nodule formation from 
calvarial osteoblasts. A. Quantification of Alizarin Red staining concentration of stained bone 
nodules from calvarial osteoblast cultures grown in osteogenic medium and exposed to vehicle 
(V), AEA, HU308, JWH133 and AM630 at the indicated concentrations for 3 weeks. Changes 
in concentration were expressed as percent changes from vehicle-treated cultures. B. Number 
of osteoblasts in cultures from A, assessed by Alamar Blue assay. This is only a representative 
experiment. Identical experiments were repeated 3 times. Values are means ± sd. *p < 0.05 
from vehicle-treated cultures. 
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6.3.6 Effect of cannabinoid receptor agonists on bone nodule formation in calvarial 
osteoblast cultures from wild type and CNR2-deficient mice 

 
To investigate whether the effects of cannabinoid receptor agonists on osteoblast 

function were mediated via the CNR2, bone nodule formation was assessed in cultures 

generated from wild type and CNR2-/- mouse neonates (c.f. section 2.2.5, page 77). 

These cultures were maintained in medium supplemented with 50μg/ml Vitamin C and 

3mM β-GP (osteogenic medium) and exposed to cannabinoid receptor agonists (10 and 

30nM) for up to 3 weeks (c.f. section 2.2.5, page 77).  

 

The CNR2-selective agonists, HU308 and JWH133, stimulated nodule formation in wild 

type calvarial osteoblast cultures from concentrations as low as 10nM (Figure 6.7). The 

stimulatory effects of both CNR2-selective agonists on nodule formation at 10nM 

concentration, were blunted in osteoblast cultures from CNR2-/- mouse neonates (Figure 

6.7A,B,E,F). These results suggest that the stimulatory effect of HU308 (10nM) and 

JWH133 (10nM) on nodule formation and hence osteoblast function were mediated via 

the CNR2. Treatment of CNR2-/- osteoblast cultures with HU308 at a concentration of 

30nM, significantly increased bone nodule formation, yet to a lesser extent than in wild 

type cultures (p < 0.05) (Figure 6.7A).  Alamar Blue assay confirmed that cell numbers 

of wild type and CNR2-/- osteoblast cultures were comparable at all times (Figure 

6.7C,D).  
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Figure 6.7: Effect of CNR2-selective agonists on nodule formation in calvarial osteoblast 
cultures from wild type and CNR2-deficient mice. A,B. Quantification of Alizarin Red 
staining concentration of bone nodules from wild type and CNR2-/- calvarial osteoblast cultures 
grown in osteogenic medium and exposed to vehicle (V), HU308 (A) or JWH133 (B) at the 
indicated concentrations for 3 weeks. Changes in concentration were expressed as percent 
changes from vehicle-treated cultures. C,D. Number of osteoblasts in cultures from A and B, 
assessed by Alamar Blue assay. E,F. Representative photomicrographs of mineral staining with 
Alizarin Red from cultures in A and B. These are only representative experiments. Identical 
experiments were repeated 3 times. Values are means ± sd. *p < 0.05 from vehicle-treated 
cultures of same genotype, +p < 0.05 from wild type cultures with the same treatment. 
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Nodule-forming cultures were also treated with the endocannabinoid AEA. In contrast to 

HU308 and JWH133 that had an effect mainly on wild type osteoblasts, AEA stimulated 

bone nodule formation in both wild type and CNR2-/--derived calvarial osteoblast 

cultures (Figure 6.8A,C).  This is probably due to the fact that AEA activates both 

cannabinoid receptors (Appendix 4, page 275), and is likely to enhance mineralisation 

via CNR1 and CNR2. These cultures had equal numbers of osteoblasts as shown by the 

Alamar Blue assay (Figure 6.8B) and therefore the increase in nodule formation was due 

to an effect on osteoblast function, rather than cell number. 
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Figure 6.8: Effect of the endocannabinoid AEA on nodule formation in calvarial 
osteoblast cultures from wild type and CNR2-deficient mice. A. Quantification of Alizarin 
Red staining concentration of bone nodules from wild type and CNR2-/- calvarial osteoblast 
cultures grown in osteogenic medium and exposed to vehicle (V) and AEA at the indicated 
concentrations for 3 weeks. Changes in concentration were expressed as percent changes from 
vehicle-treated cultures. B. Number of osteoblasts in cultures from A, assessed by Alamar Blue 
assay. C. Representative photomicrographs of mineral staining with Alizarin Red from cultures 
in A. This is only a representative experiment. Identical experiments were repeated 3 times. 
Values are means ± sd. *p < 0.05 from vehicle-treated cultures of same genotype. 
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6.3.7 Effect of the CNR2-selective agonist HU308, on ovariectomy-induced bone loss 
  

To investigate the role of CNR2 activation on osteoblast function and bone formation in 

vivo, 8-week old wild type and CNR2-/- female mice were subjected to ovariectomy (c.f. 

section 2.5.4, page 97), and then treated with the CNR2-selective agonist HU308 

(intraperitoneal injections) at daily doses of 0.1 and 1.0mg/kg for 3 weeks (c.f. section 

2.5.5, page 97). Mice received also two calcein injections 4 days apart towards the end 

of the treatment period (c.f. section 2.5.5, page 97). Mice were then sacrificed and μCT 

analysis was performed on isolated tibiae (c.f. section 2.5.8, page 99). 

 

CNR2-selective agonist HU308, protects from ovariectomy-induced bone loss 
 
As shown in Figure 6.9, treatment of wild type mice with the CNR2-selective agonist 

HU308, at a dose of 0.1 and 1.0mg/kg partially prevented ovariectomy induced bone 

loss in a dose-dependent manner. These mice lost 34% and 51% less (p < 0.05) 

trabecular bone volume than the vehicle-treated group, when treated with 0.1 and 

1.0mg/kg of HU308 respectively (Figure 6.9A). 

 

Conversely, CNR2-/- mice were resistant to the protective effects of HU308 at 0.1mg/kg, 

but responded moderately to the higher dose of HU308 at 1.0mg/kg. Although the 

maximal rescue of trabecular bone loss in these mice was about 50% when compared to 

the vehicle-treated group, such rescue did not achieve statistical significance, most likely 

due to high variability between samples (Figure 6.9A). 
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Further μCT analysis showed that the loss of trabecular thickness across all wild type 

ovariectomised groups did not significantly vary (Figure 6.10A). However, the loss of 

trabecular number among wild type groups was reduced with HU308 treatment, in a 

dose-dependant manner (Figure 6.10B). Accordingly, trabecular separation in wild type 

mice was also rescued in a similar manner. At 0.1mg/kg, HU308 reduced trabecular 

separation to levels that were no longer significantly different from sham-operated 

controls and at 1.0mg/kg of HU308 trabecular separation was significantly lower than in 

vehicle-treated mice (Figure 6.10C). Overall, HU308 significantly increased trabecular 

connectivity, indicated by the dose-dependant decrease in trabecular pattern factor 

(Figure 6.10D). 

 

Treatment of CNR2-/- ovariectomised mice with HU308 had simply subtle effects on 

trabecular parameters. Although HU308 did not significantly rescue trabecular number 

compared to vehicle-treated controls, at high dose of 1.0mg/kg HU308 reserved 

trabecular number to levels that were not significantly different from sham-operated 

mice (Figure 6.10B). However, this was not accompanied by any changes in trabecular 

separation (Figure 6.10C). Although there was a trend towards reduced loss in trabecular 

thickness of CNR2-/- mice treated with 1.0mg/kg HU308, this was not statistically 

significant (Figure 6.10A). Finally, HU308 did not have an effect on trabecular pattern 

factor of CNR2-/- mice, which was already significantly lower than wild type vehicle-

treated mice, indicating better trabecular connectivity (Figure 6.10D). 

 

The actual values of all μCT parameters for the trabecular bone analysis of 

ovariectomised and sham-operated wild type and CNR2-/- female mice treated with the 

CNR2-selective agonist HU308 are shown in Appendix 10, page 282. 
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CNR2-selective agonist HU308 does not have an effect on cortical bone of 
ovariectomised wild type and CNR2-deficient mice 
 

To investigate the role of CNR2 activation on cortical bone, μCT analysis (c.f. section 

2.5.8, page 99) was also performed at the proximal diaphysis of tibiae isolated from wild 

type and CNR2-/- mice subjected to ovariectomy and treatment with the CNR2-selective 

agonist HU308 (0.1 and 1.0mg/kg) for 3 weeks. 

 

μCT analysis showed that although there was a trend towards increased cortical bone 

volume (Ct.BV) in wild type mice treated with HU308 compared to vehicle-treated 

ovariectomised mice, this was not statistically significant (Figure 6.11A). However, 

HU308 at 0.1mg/kg increased cortical bone volume to levels that were significantly 

different from sham-operated controls (Figure 6.11A). Cortical bone volume in CNR2-/- 

mice did not vary at all with HU308, but at 0.1mg/kg HU308 treatment cortical bone 

volume was significantly lower than in wild type mice (Figure 6.11A). Cortical thickness 

(Ct.Th) and medullary cavity diameter (Med.Cav.Dm) of wild type mice did not change 

with HU308 treatment, contrasting what was previously published (Ofek et al., 2006) 

(Figure 6.11B,C). Although there was a trend towards reduced cortical thickness and 

increased medullary cavity diameter in CNR2-/- mice treated with 0.1mg/kg HU308 

compared to vehicle-treated ovariectomised CNR2-/- mice, this was not statistically 

significant (Figure 6.11B,C). However, the medullary cavity diameter of CNR2-/- mice 

treated with 0.1mg/kg HU308 was significantly higher than in wild type mice (Figure 

6.11C). Overall, cortical diameter did not change with HU308 treatment neither in wild 

type nor in CNR2-/- mice (Figure 6.11D). 

 

The actual values of all μCT parameters for cortical bone analysis of ovariectomised and 

sham-operated wild type and CNR2-/- female mice treated with the CNR2-selective 

agonist HU308 are shown in Appendix 11, page 283. 
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Figure 6.11: Effect of HU308 on cortical bone of wild type and CNR2-deficient mice 
following ovariectomy. A. Cortical bone volume at the proximal diaphysis in wild type and 
CNR2-/- littermates subjected to ovariectomy or sham operation and treated with vehicle or 
HU308 (0.1 and 1.0mg/kg) for 3 weeks, assessed by μCT analysis. Changes in cortical bone 
volume were normalised to those in sham operated mice of the same genotype and expressed 
as percent change. Cortical thickness (Ct.Th) (B), medullary cavity diameter (Med.Cav.Dm) 
(C) and cortical diameter (Ct.Dm) (D) of the same experiment, expressed in the same way. D. 
Representative μCT images from the proximal diaphysis of wild type and CNR2-/- mice of this 
experiment. Values are means ± sem from 7-8 mice per group. *p < 0.05 from wild type mice 
#p < 0.05 from sham-operated mice of the same genotype. 
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6.3.8 CNR2-selective agonist HU308 partially rescues ovariectomy-induced bone loss 
by increasing osteoblast numbers 

 
Bone histomorphometric analysis (c.f. section 2.5.9, page 103) at the trabecular 

compartment of tibial metaphyses confirmed that HU308 rescued ovariectomy-induced 

bone loss only in wild type mice, whereas CNR2-/- mice were not responsive to its 

protective effects even at 1.0mg/kg HU308 (Table 6.1). Furthermore, histomorphometry 

showed that osteoblast numbers increased with HU308 treatment in wild type 

ovariectomised mice, while in CNR2-/- mice osteoblast numbers were not significantly 

different from vehicle-treated controls. Although osteoclast numbers and active 

resorption surfaces were slightly reduced in HU308-treated wild type groups, these 

changes were not significantly different from vehicle-treated controls (Table 6.1). 

Surprisingly, osteoclast numbers and active resorption surfaces were significantly 

increased in CNR2-/- mice treated with 1.0mg/kg HU308, but this is a non-CNR2 

mediated effect (Table 6.1).     

 

Dynamic histomorphometric analysis showed that although there was a trend towards 

increased mineral apposition rate (MAR) with 1.0mg/kg HU308 treatment in wild type 

mice, such increased did not achieve statistical significance. Nonetheless, there was a 

concentration-dependant increase in bone formation rate (BFR) with HU308 treatment 

in wild type mice but not in CNR2-/- mice, consistent with a CNR2-mediated effect 

(Table 6.1).  

 

These data together suggest that HU308 partially protects from ovariectomy-induced 

bone loss, most likely by promoting osteoblast differentiation from precursors rather 

than stimulating osteoblast function.  
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CNR2-selective agonist HU308 does not affect body weight gain in ovariectomised mice 
 
To establish whether pharmacological activation of CNR2 with the CNR2-selective 

agonist HU308, has an effect on body weight gain following ovariectomy, the weight of 

all mice used in this study was measured before the operation and 3 weeks after when 

mice were sacrificed. As shown in Figure 6.12, no significant difference in body weight 

gain was observed between wild type and CNR2-/- mice subjected to the same type of 

operation and same drug treatment (Figure 6.12). However, all groups subjected to 

ovariectomy had at least a 2-fold increase in body weight gain than sham-operated mice 

(Figure 6.12).  
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Figure 6.12: Effect of ovariectomy and HU308-treatment on body weight gain in wild 
type and CNR2-deficient mice. Actual gain in body weight of wild type and CNR2-/- mice, 
treated with vehicle or HU308 (0.1 and 1.0mg/kg), following ovariectomy or sham operation. 
Values are means ± sem from 7-8 mice per group. +p < 0.05 from sham-operated mice of the 
same genotype. 
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CNR2-selective agonist HU308 does not affect uterine or spleen weights 
 
The mean uterine weight from ovariectomised mice was reduced by about 75% 

regardless of genotype compared to the respective sham-operated mice, indicating that 

ovariectomy was carried out successfully (Figure 6.13A). Although operations were 

carried out without any infections and mice remained healthy throughout the treatment 

period, two groups of wild type ovariectomised mice had slightly heavier spleens than 

sham-operated wild type mice, possibly due to inflammation response after surgery 

(Figure 6.13B).  
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Figure 6.13: Effect of ovariectomy and HU308-treatment on uterine and spleen weights in 
wild type and CNR2-deficient mice. Weight of uterus (A) and spleen (B) isolated from wild 
type and CNR2-/- mice subjected to ovariectomy or sham operation and treated with HU308 
(0.1 and 1.0mg/kg). Values are means ± sem from 7-8 mice per group. +p < 0.05 from sham-
operated mice of the same genotype. 
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6.4 DISCUSSION 
 
Cannabinoid receptor agonists were previously shown to stimulate osteoclast formation 

(Idris et al., 2005; Ridge et al., 2007), whereas the CNR2-selective agonist HU308, was 

reported to inhibit bone resorption and stimulate endocortical bone formation in vivo 

(Ofek et al., 2006). In view of this, the aim of this chapter was to investigate further the 

role of CNR2 on osteoblast differentiation and function in vitro and ovariectomy-

induced bone loss in vivo. 

 

The study presented here showed that although primary osteoblast from CNR2-/- mice 

have normal growth, they are defective in differentiation. This was portrayed as reduced 

ALP activity from CNR2-/- bone marrow osteoblasts (early-stage differentiated 

osteoblasts) when cultures were exposed to PTH, and as defective nodule formation 

from CNR2-/- calvarial osteoblasts (mature osteoblasts) starting from low seeding 

densities. The fact that ALP activity of mature calvarial osteoblasts from CNR2-/- mice 

was no different from wild type osteoblasts (data shown in Appendix 12, page 284) and 

that CNR2-/- osteoblast cultures starting from fully confluent cell layers have normal 

nodule formation, suggested that CNR2 is involved in osteoblast differentiation. The 

PTH-resistance of bone marrow-derived osteoblasts from CNR2-/- mice compared to 

wild type osteoblasts, does not mean that PTH has a direct effect on CNR2, but that they 

may have a common mechanistic pathway. Bearing in mind that both PTH receptor 1 

(PTH1R) and CNR2 are G-protein coupled receptors and regulate adenylate cyclase 

activity, might explain why genetic inactivation of CNR2 on bone marrow-derived 

osteoblasts, affect their response to PTH. In any case, further work is needed to 

investigate this. 

 

Activation/inhibition of CNR2 with cannabinoid receptor agonists, such as HU308, 

JWH133, AEA and 2-AG, and the CNR2-selective antagonist/inverse agonist AM630, 

did not have a significant effect on osteoblast growth or differentiation. However, the 
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effect of CNR2-selective agonists on osteoblast proliferation should be assessed by 

BrdU incorporation assays in addition to Alamar Blue assay, and the effect of these 

cannabinoid ligands on differentiation should also be studied on early-stage differentiate 

osteoblasts from bone marrow, using ALP assay. Such experiments will be performed in 

the near future.   

 

Pharmacological activation of type 2 cannabinoid receptors with the CNR2-selective 

agonists HU308 and JWH133 and the endocannabinoid AEA, stimulated nodule 

formation in calvarial osteoblast cultures at concentrations in the nanomolar range. To 

investigate whether the increase in nodule formation was a CNR2-mediated effect, 

further studies were performed on nodule-forming cultures from wild type and CNR2-/- 

calvarial osteoblasts. The stimulatory effect of the CNR2-selective ligands HU308 and 

JWH133 on nodule formation was clearly evident in wild type cultures, but was blunted 

in CNR2-/- calvarial osteoblast cultures. The CNR2-mediated effect of HU308 is 

consistent with previous work showing that osteoblast proliferation and nodule 

formation was increased with HU308 treatment only in calvarial osteoblasts cultures 

from wild type mice (Ofek et al., 2006). Conversely, both wild type and CNR2-/- 

calvarial osteoblast cultures responded to the stimulatory effects of AEA, because AEA 

behaves as a cannabinoid receptor agonist with affinity for CNR1 and CNR2 (Pertwee 

and Ross, 2002). It is also likely that the stimulatory effects of AEA on osteoblast 

function may have been mediated via other G-protein coupled receptors, such as GPR55 

(Whyte et al., 2009). The attempt to examine the role of CNR2 receptors in nodule 

formation using bone marrow-derived osteoblasts isolated from C57BL/6 mice, was not 

successful since cell layers were too thick and before the end of the third week of 

treatment they would break or detach from the bottom of the well. 

 

Chapter 5 reported that the CNR2-selective antagonist/inverse agonist AM630 had a 

protective effect on ovariectomy-induced bone loss due to an inhibitory effect on 

osteoclasts and bone resorption. Here, the pro-osteoblastic potential of the CNR2-
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selective agonist HU308 seen in vitro, was also tested in ovariectomised mice to 

determine whether pharmacological activation of CNR2 can also prevent bone loss 

resulting from oestrogen deficiency. Administration of HU308 in ovariectomised wild 

type mice at a dose of 0.1 and 1.0mg/kg partially rescued ovariectomy-induced bone loss 

in a dose-dependent manner. Further μCT analysis showed that HU308 preserved bone 

volume, rescued trabecular number and increased trabecular connectivity, consistent 

with its anabolic effects in vitro. Analysis of bone histomorphometry showed that during 

the period of 3 weeks, HU308 treatment in wild type mice increased osteoblast numbers 

markedly, while it increased bone formation rate (BFR) slightly and did not significantly 

change mineral apposition rate (MAR). Considering that MAR reflects the rate at which 

new bone is deposited (Robling et al., 2001) (and hence osteoblast function), and that 

BFR depends on MAR and osteoblast surface area (Eklou-Kalonji et al., 1999) (and 

hence osteoblast number), these results together suggest that in vivo pharmacological 

activation of CNR2 with the agonist HU308, mainly promotes osteoblast differentiation 

from precursors rather than stimulates osteoblast function. Conversely, CNR2-/- mice 

responded moderately to the protective effects of HU308 even after the high-dose 

treatment, consistent with a CNR2-mediate effect. These results were in agreement with 

the in vitro data showing that genetic inactivation of CNR2 caused a defective 

differentiation in CNR2-/- bone marrow-osteoblast precursors and defective bone nodule 

formation from CNR2-/- mature osteoblasts at sub-confluent densities. 

 

Moreover, treatment of ovariectomised wild type mice with HU308 slightly reduced 

osteoclast numbers and bone resorption surfaces, but this effect did not exhibit statistical 

significance. In contrast, Ofek and colleagues reported that HU308 successfully 

attenuated trabecular bone loss following ovariectomy by reducing osteoclast-mediated 

bone resorption (Ofek et al., 2006). The differences observed between the two studies 

could be explained partly by the different dose of HU308 administered to mice, which in 

the study by Ofek and colleagues was 10-fold higher (Ofek et al., 2006) than in the study 

reported here. Taking into account that micromolar concentrations of HU308 may 
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inhibit osteoclast formation in vitro (Chapter 5), it is possible that in vivo accumulation 

of HU308 may display anti-osteoclast qualities, partly explaining the observations 

reported here and in the Ofek study. Furthermore, the fact that the study by Ofek et al. 

was performed on C3H mice (Ofek et al., 2006) whereas the mice used here were on a 

C57BL/6 genetic background, might also have contributed to the differences observed. 

 

Analysis of cortical bone at the proximal diaphysis showed that cortical bone volume, 

cortical thickness and medullary cavity diameter of tibiae from wild type and CNR2-/- 

mice were not significantly affected by HU308 treatment. This finding, contradicted 

previous published data by Ofek and colleagues, suggesting that HU308 stimulated 

endocortical bone formation in femoral diaphysis (Ofek et al., 2006).  The fact that 

cortical analysis in the current study was performed on distinct skeletal sites than in the 

Ofek study [femurs (Ofek) vs. tibiae (current study)], could be the explanation of this 

discrepancy. In addition,  the lack of cortical bone increase with HU308 treatment, 

opposed well-accepted effects observed with the intermitted treatment of PTH, the 

anabolic agent used for the management of osteoporosis [reviewed in (Compston, 

2007)]. It is likely that continuous and intermitted treatment with HU308 has biphasic 

effects on bone, as previously exemplified by the case of PTH, where continuous 

treatment is catabolic while intermittent treatment is anabolic (Tam et al., 1982). 

Therefore, to investigate further the effects of CNR2-selective agonists on bone mass, 

ovariectomised mice should also be treated intermittently with HU308. Such treatment 

may exhibit greater evidence for the in vivo anabolic activity of HU308. Finally, in 

addition to the protective effects of HU308 in preventing bone loss after induced-

oestrogen deficiency, the anabolic properties of this agent should be examined in the 

context of protecting from age-related bone loss. Such experiments will be performed in 

the near future. 

 

In summary, the results reported in this chapter indicate that type 2 cannabinoid 

receptors regulate osteoblast differentiation and function in vitro and ovariectomy-
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induced bone loss in vivo. CNR2-selective agonists show evidence of anabolic activity 

in vitro and in vivo by a CNR2 mediated pathway. These data suggest that such 

compounds might be of value as new treatments for osteoporosis. 
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7 DISCUSSION AND CONCLUSIONS 
 
Over recent years there has been increasing interest on the role of the endocannabinoid 

system in the regulation of bone metabolism. Previous studies from our group have 

shown that mice lacking the type 1 cannabinoid receptors (CNR1-/-) had increased bone 

mass and were resistant to ovariectomy-induced bone loss (Idris et al., 2005). We have 

also shown that a CNR1-selective antagonist/inverse agonist caused osteoclast inhibition 

and prevented ovariectomy-induced bone loss in wild type mice (Idris et al., 2005). In 

contrast with these observations, other workers have reported that type 2 cannabinoid 

receptor knockout mice (CNR2-/-) developed marked age-related osteoporosis, and that a 

CNR2-selective agonist inhibited osteoclast formation in vitro and rescued ovariectomy-

induced bone loss in vivo (Ofek et al., 2006). In view of this, the aim of this PhD thesis 

was to investigate further the role of CNR2 in bone metabolism in vitro and in vivo, 

using genetic and pharmacological approaches. 

 

Prior to beginning this study, the only indication about the existence of a skeletal 

endocannabinoid system was limited to findings of our group reporting the expression of 

type 1 and type 2 cannabinoid receptors in mouse osteoclasts (Idris et al., 2005). As the 

present CNR2 study was initiated, Ofek and colleagues reported that CNR2 is expressed 

in bone, in primary bone marrow-derived osteoblasts and osteoclasts as well as in 

MC3T3 E1 osteoblastic cells and in RAW 264.7 osteoclast-like cells (Ofek et al., 2006). 

Given that the presence of the cannabinoid receptors in bone microenvironment was 

well-established, the current CNR2 study was aiming to provide further evidence about 

the existence of more skeletal endocannabinoid machinery components, such as the 

enzymes involved in the metabolism of the endocannabinoids AEA and 2-AG. The data 

presented here demonstrate that apart from the mRNA and protein expression of CNR2 

in bone marrow, macrophages, osteoclasts and calvarial osteoblasts, mRNA of enzymes 

involved in the synthesis (NAPE-PLD for AEA and DAGLα/DAGLβ for 2-AG) and 

degradation (FAAH for AEA and 2-AG, and MGL for 2-AG alone) of endocannabinoids 
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was also detected in the bone microenvironment at comparable levels to those found in 

the brain. These findings were in agreement with concurrent studies showing the 

expression of DAGLα and DAGLβ in bone, in MC3T3 E1 osteoblastic cells and in RAW 

264.7 osteoclast-like cells (Tam et al., 2008), and the expression of FAAH and NAPE-

PLD in cultured human osteoclasts (Rossi et al., 2009). Moreover, the detection of both 

endocannabinoids in cultured mouse osteoblasts and osteoclasts (Ridge et al., 2007), in 

bone and MC3T3 E1 osteoblasts (Tam et al., 2008) and in cultured human osteoclasts 

(Rossi et al., 2009), completed the picture of a skeletal endocannabinoid system. 

 

In order to establish the role of CNR2 in bone development an in vivo mouse model of 

CNR2 deficiency was used. CNR2-/- mice on a C57BL/6 genetic background were 

followed throughout their life and their skeletal development was studied using a variety 

of techniques. μCT analysis showed that CNR2-/- mice have regular bone volume at 2-

days of age and normal peak bone mass compared to wild type littermates. However, 

when female wild type and CNR2-/- mice were subjected to ovariectomy-induced 

oestrogen deficiency, CNR2-/- mice lost less bone than wild type controls because of a 

subtle defect in osteoclastic bone resorption. Likewise, the pharmacological blockade of 

CNR2 with the CNR2-selective antagonist/inverse agonist AM630, prevented 

ovariectomy-induced bone loss in wild type ovariectomised mice by blocking the 

increase in osteoclast numbers and bone resorption triggered by ovariectomy. Similar 

results were previously observed from studies in our group, with CNR1-/- mice on an 

ABH genetic background. CNR1-/- female mice were completely resistant to bone loss 

induced by ovariectomy, and pharmacological blockade of CNR1 with the CNR1-

selective antagonist/inverse agonist AM251, prevented ovariectomy-induced bone loss 

in wild type mice, by inhibiting osteoclastic bone resorption (Idris et al., 2005). These 

results together indicate that CNR1 and CNR2 blockade in adult mice prevents 

ovariectomy-induced bone loss by inhibiting osteoclast formation and bone resorption. 

In keeping with this, in vitro experiments with bone marrow from wild type and CNR2-/- 

mice showed that although there was normal growth of M-CSF-generated macrophages 
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in CNR2-/- cultures, in the presence of RANKL there was defective osteoclastogenesis 

with smaller number of osteoclast than in wild type cultures. Although a similar trend 

was also observed in the data published by Ofek and colleagues, no comments were 

made (Ofek et al., 2006). In agreement with the inhibitory effects of CNR2 genetic 

inactivation on osteoclast formation in vitro, pharmacological blockade of CNR2 with 

AM630 in bone marrow cultures also inhibited osteoclast formation in a concentration-

dependent manner as previously described (Idris et al., 2005). While AM630 at high 

concentration (micromolar range) inhibited osteoclast formation in cultures generated 

from wild type and CNR2-/- mice, possibly as a result of non-specific binding to sites 

other than the CNR2 (i.e. CNR1), at low concentrations (nanomolar range), AM630 

prevented osteoclast formation only in cultures generated from wild type mice consistent 

with a CNR2-mediated effect. These results together show that CNR1 and CNR2 play a 

role in regulating osteoclast function and bone loss resulting from oestrogen deficiency. 

Moreover, this data also suggests that cannabinoid receptor antagonists/inverse agonists 

may have potential value as anti-resorptive drugs for the treatment of bone diseases 

associated with enhanced osteoclastic bone resorption, such as osteoporosis.  

 

Along with the fact that cannabinoid receptor antagonists/inverse agonists caused 

osteoclast inhibition, the endocannabinoids AEA and 2-AG, and the CNR2-selective 

agonists HU308 and JWH133, significantly increased osteoclast formation in vitro from 

concentrations at the nanomolar range. Although AEA, 2-AG and JWH133 had a 

stimulatory effect on osteoclast formation even at concentrations as high as 10μM, 

HU308 had stimulatory effects only up to 100-fold lower concentrations, i.e. at 100nM. 

Furthermore, unlike the endocannabinoids and JWH133, HU308 caused osteoclast 

inhibition at 10μM. Bearing in mind that this is 2000 times higher concentration than 

what is required for CNR2-mediated adenylyl cyclase inhibition (Hanus et al., 1999), it 

is likely that the inhibitory effects of HU308 at this concentration were mediated via 

pathways other than CNR2. Further studies conducted on bone marrow cultures from 

wild type and CNR2-/- mice showed that CNR2-/- osteoclasts were resistant to the 
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stimulatory effects of HU308 and JWH133 at nanomolar concentrations, indicating a 

CNR2-mediated effect. Nonetheless, the endocannabinoids AEA and 2-AG had a 

stimulatory effect on osteoclast formation in cultures from both wild type and CNR2-/- 

bone marrow, since they bind with high affinity to CNR1 as well (Pertwee and Ross, 

2002). These results together indicate that CNR1 and CNR2 activation stimulates 

osteoclast formation. Although Ofek and colleagues showed that the effects of HU308 

are indeed mediated via the CNR2, they reported that it inhibits osteoclast differentiation 

in vitro contradicting previous findings about the effect of cannabinoid agonists on 

osteoclast formation (Idris et al., 2005; Ridge et al., 2007).     

 

To investigate the role of HU308 on bone mass in vivo, the ovariectomised mouse model 

was used. This study showed that HU308 inhibits ovariectomy-induced bone loss in a 

dose-dependent manner in agreement to previous work (Ofek et al., 2006). However, the 

protective effect of HU308 was blunted in CNR2-/- ovariectomised mice, consistent with 

a CNR2-mediated effect. Histomorphometric analysis showed that the protective effect 

of HU308 was attributable to the increase in osteoblast numbers and bone formation rate 

to levels higher than those measured in ovariectomised mice, without significantly 

affecting osteoclast numbers or resorption surfaces. In relation to this, the CNR2-

selective agonists HU308 and JWH133 stimulated nodule formation in calvarial 

osteoblasts cultures from wild type mice. However, the stimulatory effect of CNR2-

selective agonists was blunted in cultures from CNR2-/- mice, suggesting a CNR2-

mediated effect. In contrast, calvarial osteoblast cultures from wild type and CNR2-/- 

mice were equally sensitive to the stimulatory effects of AEA on nodule formation, 

probably due to binding to CNR1 (Pertwee and Ross, 2002). Although the CNR2-

selective antagonist/inverse agonist AM630 did not have an effect on bone nodule 

formation at concentrations at the nanomolar range, it inhibited nodule formation at 

concentrations at the micromolar range (Idris, A.I., personal communication). Along the 

same lines, primary osteoblast cultures from CNR2-/- mice had lower levels of ALP 

activity when treated with PTH and formed defective nodules, suggesting a role of 
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CNR2 signalling on osteoblast differentiation and function. These results together 

suggest that CNR2 may mediate anabolic effects on bone and that CNR2 agonists might 

be of value as new treatments for osteoporosis. 

 

In disagreement with the results reported here, Ofek and colleagues proposed that 

HU308 treatment on ovariectomised mice rescued bone loss by reducing osteoclast-

mediated bone resorption, supported by in vitro evidence mentioned above, and by 

stimulating endocortical bone formation (Ofek et al., 2006). The discrepancy between 

the two studies cannot be readily explained but it should be noted that differences such 

as: a) the strain of mice used (Ofek and colleagues curried out ovariectomy experiments 

on C3H mice unlike the present study which was done with C57BL/6 mice), b) the 

dosage of HU308 administered (Ofek et al. used 10-fold higher HU308 dose than the 

dose used in the current study) and c) the analysis on different skeletal sites (Ofek et al. 

analysed femoral bones whereas this study analysed tibial bones), might have 

contributed to the different outcomes observed. 

 

Regardless of differences in pharmacological effects observed on ovariectomised mice 

after HU308 treatment, ageing experiments by both groups showed that 12-month old 

CNR2-/- mice developed profound osteoporosis, exceeding bone loss that C57BL/6 mice 

normally suffer from with age (Ferguson et al., 2003; Glatt et al., 2007). The present 

study described this as a result of decreased osteoblast numbers and defective bone 

formation, in line with our recent findings indicating that 12-month old CNR1-/- mice 

showed reduction in osteoblast numbers leading to age-related bone loss (Idris et al., 

2008b). However, these observations differ from those of Ofek and colleagues, who 

suggested that the accelerated osteoporosis seen in CNR2-/- mice was the outcome of 

high bone turnover (Ofek et al., 2006). According to the data provided by Ofek and 

colleagues, it seems that their explanation of the severely osteoporotic CNR2-/- mice was 

based on detailed analysis performed on young mice only (Ofek et al., 2006). However, 

as it has been demonstrated by the present CNR2 study, it is possible that different 
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components of bone turnover cycle might appear to be defective at different ages. That 

is, defective osteoclasts were noticeable in young CNR2-/- mice, whereas defective 

osteoblasts became more obvious later with ageing. 

 

In view of the fact that type 2 cannabinoid receptor protects against age-related 

osteoporosis, a CNR2-deficient mouse model should be studied on a background strain 

that does not undergo considerable bone loss with age, such as CD1 or C3H strain 

(Beamer et al., 1996). In contrast, the background strain of CNR2-/- mice, C57BL/6, has 

the lowest value for any given bone parameter (Beamer et al., 1996). For that reason 

CNR2-/- mice have been backcrossed to a CD1 strain and will be used to carry out further 

experiments in the near future. Moreover, due to the fact that pharmacological ligands 

currently available are not completely specific and can interact with both CNR1 and 

CNR2, additional experimentation will be conducted on a double knockout CNR1-/-

/CNR2-/- mouse model on a CD1 genetic background to determine the effects of 

complete absence of cannabinoid receptor type 1 and type 2 on bone. 

 

The results reported in this thesis clearly demonstrate that type 2 cannabinoid receptors 

contribute to the osteoclast and osteoblast differentiation in vitro, up-regulate bone 

remodelling in the ovariectomised mouse model in vivo and also protect from age-

related bone loss by affecting both osteoclast and osteoblast function. Moreover, this 

thesis reports that CNR2-selective agonists have anabolic activities in vivo, whereas 

CNR2-selective antagonists/inverse agonists have potential value as anti-resorptive 

drugs. These findings together with evidence showing that the CNR2 chromosomal 

region is implicated in osteoporosis (Devoto et al., 2005) and that there is strong 

association of CNR2 polymorphisms with osteoporosis in human (Karsak et al., 2005; 

YAMADA et al., 2007), imply that CNR2 presents a molecular target for the diagnosis 

and treatment of osteoporosis and other bone diseases including rheumatoid arthritis, 

Paget’s disease and bone metastases. 
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APPENDIX 1. MATERIALS, REAGENTS, APPARATUS and SOFTWARE 
 
All materials and reagents used in this study are listed in the table below in alphabetical order. 
 

Materials and reagents Supplier 
1.5ml eppendorf tubes with cap Greiner Bio-One Inc, Gloucestershire, UK 
10mM dMTP Mix  Invitrogen, Paisley, UK 
1ml pasteur pipette Fisher Scientific, Leicestershire, UK 
2-AG Tocris Biosciences, Bristol, UK 
2-methoxyethyl acetate (MEA) Sigma Aldrich, Dorset, UK 
2-Propanol Sigma Aldrich, Dorset, UK 
5X first-strand buffer Invitrogen, Paisley, UK 
99.7-100% AnalaR Ethanol VWR International LTD, Leicestershire, UK 
Acetic Acid Glacial Sigma Aldrich, Dorset, UK 
AEA Tocris Biosciences, Bristol, UK 
alamarBlueTM reagent Invitrogen, Paisley, UK 
Alizarin Red S Sigma Aldrich, Dorset, UK 
AM251 Tocris Biosciences, Bristol, UK 
AM630 Tocris Biosciences, Bristol, UK 
Amersham HybondTM-P GE Healthcare Life Sciences, Buckinghamshire, UK
Basic fuchsin Sigma Aldrich, Dorset, UK 
Bicinchoninic acid (BCA) protein assay Sigma Aldrich, Dorset, UK 
Borax Taab Lab, Berkshire, UK 
Boric Acid Taab Lab, Berkshire, UK 
Bovine serum albumin Sigma Aldrich, Dorset, UK 
Bromophenol Blue BDH Laboratory Supplies, Poole, Dorset, UK 
Calcein Sigma Aldrich, Dorset, UK 
CB2 receptor (CNR2) polyclonal antibody Cayman Chemical (Europe), Tallinn, Estonia 
Centrifuge tubes (15 and 50ml) Fisher Scientific, Leicestershire, UK 
Cetyl pyridinium chloride monohydrate Sigma Aldrich, Dorset, UK 
Chloroform Sigma Aldrich, Dorset, UK 
Collagenase (type 1A) Sigma Aldrich, Dorset, UK 
Copper (II)-sulfate Sigma Aldrich, Dorset, UK 
Cover slips Scientific Laboratory supplies Ltd, Hessle, UK 
CriterionTM XT pre-cast gels (12% Bis-Tris) Bio-Rad Laboratories, Hertfordshire, UK 
CTX serum assay (RatLapsTM EIA) Immunodiagnostic Systems Ltd. (IDS), Boldon 

Colliery, UK 
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DEPC Treated Water Invitrogen, Paisley, UK 
Dibenzoylperoxide Leica Microsystems, Milton Keynes, UK 
Dibutyl Phthalate Sigma Aldrich, Dorset, UK 
Diethanolamin Sigma Aldrich, Dorset, UK 
DL-Dithiothreitol (DTT) Sigma Aldrich, Dorset, UK 
DMSO Sigma Aldrich, Dorset, UK 
DNA Ladder 1kb New England Biolabs, Hitchin, Hertfordshire, UK 
dNTPs Promega, Southampton, UK 
DPX mounting medium Sigma Aldrich, Dorset, UK 
DTT Invitrogen, Paisley, UK 
EDTA Sigma Aldrich, Dorset, UK 
Electronic Pipette Starlab, Milton Keynes, UK 
Electrophoresis power supply Anachem, Bedfordshire, UK 
Embedding baskets Leica Microsystems, Milton Keynes, UK 
Embedding molds Custom-made by the University workshop 
Embedding rings Leica Microsystems, Milton Keynes, UK 
Ethanol Absolute Fisher Scientific, Leicestershire, UK 
EU One-piece, non-skirted thin wall plate natural Genetic Research Instrumentation Ltd (GRI), Essex, 

UK 
EU One-piece,sub-skirted Thin wall plate white Genetic Research Instrumentation Ltd (GRI), Essex, 

UK 
EU OP flat cap thin wall 8-cap strip Genetic Research Instrumentation Ltd (GRI), Essex, 

UK 
Extra thick blot papers Bio-Rad Laboratories, Hertfordshire, UK 
Fetal calf serum (FCS) Fisher Scientific, Leicestershire, UK 
Filter Paper Fisher Scientific, Leicestershire, UK 
Filter Tips Axygen Thistle Scientific, Glasgow, UK 
Forceps watchmaker’s Fisher Scientific, Leicestershire, UK 
Fuchsin Acid Taab Lab, Berkshire, UK 
Gelatin Sigma Aldrich, Dorset, UK 
Glycerol 2 phosphate Sigma Aldrich, Dorset, UK 
Glycine BDH Laboratory Supplies, Poole, Dorset, UK 
Hanks buffer (HBSS) Sigma Aldrich, Dorset, UK 
HistoResin Mounting Medium (solution and powder) Leica Microsystems, Milton Keynes, UK 
HU308 Gift from Dr. Roel J. Arends (Organon) 
Human recombinant RANKL Gift from Dr. Patrick Mollat (Proskelia SASU) 
Hydrochloric acid BDH Laboratory Supplies, Poole, Dorset, UK 
Hydroquinone Taab Lab, Berkshire, UK 



APPENDICES 

 266

Invisorb® Spin Tissue Mini Kit Thistle Scientific, Glasgow, UK 
Isopropanol Sigma Aldrich, Dorset, UK 
Jackson ImmunoResearch Anti-rabbit secondary ab  Stratech Scientific Unit, Newmarket Suffolk, UK 
JWH133 Tocris Biosciences, Bristol, UK 
Kaleidoscope Bio-Rad Laboratories, Hertfordshire, UK 
Kisol foil Taab Lab, Berkshire, UK 
Knife 16cm long tungsten carbide tipped profile D Leica Microsystems, Milton Keynes, UK 
Knife Holder NZ Leica Microsystems, Milton Keynes, UK 
L-Glutamine Invitrogen, Paisley, UK 
Low molecular weight DNA ladder New England Biolabs, Hitchin, Hertfordshire, UK 
Magic Marker Invitrogen, Paisley, UK 
Magnesium chloride Sigma Aldrich, Dorset, UK 
Mannitol BDH Laboratory Supplies, Poole, Dorset, UK 
M-CSF mouse recombinant R & D Systems, Abingdon, UK 
Medium density linkage panel Illumina Inc., California, US 
Methanol Fisher Scientific, Leicestershire, UK 
Methyl Methacrylate Sigma Aldrich, Dorset, UK 
Mettler Toledo Titrator Fisher Scientific, Leicestershire, UK 
Microtubes (0.5, 1.5, 2ml) Sarstedt Ltd, Leicester, UK 
N,N-Dimethylformamide Fisher Scientific, Leicestershire, UK 
N,N-dimethyl-p-toluidine Leica Microsystems, Milton Keynes, UK 
Napthol-AS-BI-phosphate Sigma Aldrich, Dorset, UK 
Needles (19, 21 and 25G) Fisher Scientific, Leicestershire, UK 
Neubauer Haemocytometer Hawksley, Lancing, UK 
Nitrile gloves Fisher Scientific, Leicestershire, UK 
Novoscave or Scavenger Novochem, Nieuwegein, The Netherlands 
Oligo(dt)20 Primer Invitrogen, Paisley, UK 
Orange G loading dye Sigma Aldrich, Dorset, UK 
Paraformaldehyde Taab Lab, Berkshire, UK 
Pararosanilin Sigma Aldrich, Dorset, UK 
PBS tablets Invitrogen, Paisley, UK 
PCR lid strip Fisher Scientific, Leicestershire, UK 
PCR microplate 96 well and lids Fisher Scientific, Leicestershire, UK 
PCR primers Invitrogen, Paisley, UK 
PCR microtubes  Fisher Scientific, Leicestershire, UK 
Penicillin/Streptomycin Invitrogen, Paisley, UK 
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Perkadox 16 Akzo Nobel Polymer Chemicals, Amersfoort 
The Netherlands 

Petri Dishes Becton Dickinson, Berkshire, UK 
Pierce SuperSignal® West Dura Extended Duration 
Substrate 

Fisher Scientific, Leicestershire, UK 

PINP serum assay (Rat/Mouse PINP EIA) Immunodiagnostic Systems Ltd. (IDS), Boldon 
Colliery, UK 

Pipette tips (all sizes) Starlab, Milton Keynes, UK 
p-Nitrophenol Sigma Aldrich, Dorset, UK 
p-Nitrophenol-phosphate Sigma Aldrich, Dorset, UK 
Polysciences Silane coated microscope slides Park Scientific Ltd., Northampton, UK 
PTH Sigma Aldrich, Dorset, UK 
QIAquick PCR Purification Kit Qiagen (UK), West Sussex, UK 
Quant-iTTM PicoGreen® assay Invitrogen, Paisley, UK 
Rabbit Anti-Actin (AA20-33) IgG Sigma Aldrich, Dorset, UK 
RiboGreen RNA Quantitation Kit Invitrogen, Paisley, UK 
RNase-free water Invitrogen, Paisley, UK 
RnaseOut Recombinant Rnase Inhibitor Invitrogen, Paisley, UK 
Scalpel, disposable VWR International LTD, Leicestershire, UK 
Scissors (fine points and spring bow handles) S Murray & Co Ltd, Surrey, UK 
SensiMix(dT) Taq polymerase GC Biotech, Alphen aan den Rijn, The Netherlands 
Silver nitrate Sigma Aldrich, Dorset, UK 
Slide press cover slips Taab Lab, Berkshire, UK 
Sodium acetate unhydrous Sigma Aldrich, Dorset, UK 
Sodium barbiturate BDH Laboratory Supplies, Poole, Dorset, UK 
Sodium chloride Sigma Aldrich, Dorset, UK 
Sodium dodecyl sulphate (SDS) Bio-Rad Laboratories, Hertfordshire, UK 
Sodium hydroxide VWR International LTD, Leicestershire, UK 
Sodium phosphate Sigma Aldrich, Dorset, UK 
Sodium tartrate dibasic �ehydrate Sigma Aldrich, Dorset, UK 
Sodium tetraborate BDH Laboratory Supplies, Poole, Dorset, UK 
Steel Knife 16cm “c” Leica Microsystems, Milton Keynes, UK 

Sterile filter (0.45μm) Sartorius Mechatronics UK Ltd., Epsom Surrey, UK
Stripettes (5, 10, 25 and 50ml)  Sarstedt Ltd, Leicester, UK 
SuperScript III Reverse Transcriptase Invitrogen, Paisley, UK 
SYBR Safe DNA gel stain Invitrogen, Paisley, UK 
SYBR Safe Invitrogen, Paisley, UK 
Syngene BIO imaging system Fisher Scientific, Leicestershire, UK 
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Syringes (all sizes) Becton Dickinson, Berkshire, UK 
Taq DNA Polymerase Invitrogen, Paisley, UK 
TaqMan® Gene Expression Assay Mix for 18S rRNA Applied Biosystems, Cheshire, UK 
TBE buffer 10X Invitrogen, Paisley, UK 
Tissue culture 75cm2 flasks Fisher Scientific, Leicestershire, UK 
Tissue culture microplates (6, 12, 24, 48 and 96-well 
plates) 

Fisher Scientific, Leicestershire, UK 

Toluidine Blue Sigma Aldrich, Dorset, UK 
Tris Bio-Rad Laboratories, Hertfordshire, UK 
Tris-EDTA buffer Sigma Aldrich, Dorset, UK 
Triton X-100TM Sigma Aldrich, Dorset, UK 
Trizol reagent Invitrogen, Paisley, UK 
Trizol® Reagent Invitrogen, Paisley, UK 
Trypsin/EDTA Sigma Aldrich, Dorset, UK 
Tween-20 Bio-Rad Laboratories, Hertfordshire, UK 
Ultraclear Xylene Taab Lab, Berkshire, UK 
UPL probes Roche Diagnostics Ltd., East Sussex, UK 
UV 96 well plates for plate reader Fisher Scientific, Leicestershire, UK 
Vacuum desiccator Fisher Scientific, Leicestershire, UK 
Vitamin C (Ascorbic acid) BDH Laboratory Supplies, Poole, Dorset, UK 
XT-MOPS Bio-Rad Laboratories, Hertfordshire, UK 
Xylene Sigma Aldrich, Dorset, UK 

α−Minimum Essential Medium (αMEM) Sigma Aldrich, Dorset, UK 

β-glycerophosphate disodium Sigma Aldrich, Dorset, UK 
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All apparatus used in this study are listed in the table below in alphabetical order.  
 

Apparatus Supplier 
AA Hoefer® protein transfer apparatus Fisher Scientific, Leicestershire, UK 
Astec Bioquell Monair 5 fume cabinet Jencons PLS, East Grinstead, UK 
Automatic tissue processor Leica Microsystems, Milton Keynes, UK 
AxioImager A1 upright research microscope Carl Zeiss Ltd., Hertfordshire, UK 
Axiovert 200 inverted research Microcope Carl Zeiss Ltd., Hertfordshire, UK 
Axiovert 40 CFL inverted microscope Carl Zeiss Ltd., Hertfordshire, UK 
Balancer Fisherbrand Fisher Scientific, Leicestershire, UK 
Bench-top centrifuge SciQuip, Shropshire, UK 
Bench-top Eppendorf centrifuge Fisher Scientific, Leicestershire, UK 
Bio-Tek Synergy HT plate reader Fisher Scientific, Leicestershire, UK 
Envair Bio2 safety cabinets  H&V Commissioning Services Ltd., Ayrshire, UK 
Grant OLS 200 water bath Thistle Scientific, Glasgow, UK 
Horizontal electrophoresis tanks Fisher Scientific, Leicestershire, UK 
Hotplate/stirrer Thistle Scientific, Glasgow, UK 
Ika Vortex Thistle Scientific, Glasgow, UK 
MJ Research Chromo 4 Real Time PCR thermocycler Genetic Research Instrumentation Ltd (GRI), Essex, 

UK 
MJ Research Tetrad Thermal cycler Genetic Research Instrumentation Ltd (GRI), Essex, 

UK 
Nichiryo America Inc. Pipettes (2, 10, 100, 200 and 
1000μl) 

Thistle Scientific, Glasgow, UK 

NoAir Class II Biological safety cabinet TripleRed Ltd., Buckinghamshire, UK 
Origo PSU-400/200 power supply for electrophoresis Anachem, Bedfordshire, UK 
PowerPac basicTM Bio-Rad Laboratories, Hertfordshire, UK 
QImaging Retiga 4000R CCD camera Media Cybernetics UK, Berkshire, UK 
Rotary Microtome Leica Microsystems, Milton Keynes, UK 
Rotary tool Dremel UK, Uxbridge, UK 
SkyScan 1172 X-ray Microtomography system SKYSCAN, Kontich, Belgium 
Syngene GeneGenius Gel Bio-Imaging system Fisher Scientific, Leicestershire, UK 
SynSyngene GeneGnome Bio-Imaging system for 
chemiluminescence 

Fisher Scientific, Leicestershire, UK 

Vertical CriterionTM gel tanks  Bio-Rad Laboratories, Hertfordshire, UK 
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All software used in this study are listed in the table below in alphabetical order.  
 

Software Supplier 
Aphelion Image Analysis tool kit ADCIS, Hérouville-Saint-Clair, France 
Bio-Tek Gen5TM plate reader software Fisher Scientific, Leicestershire, UK 
GraphPad Prism (version 4) GraphPad Software Inc., California, US 
Opticon Monitor analysis software version 3 Genetic Research Instrumentation Ltd (GRI), Essex, 

UK 
QCapture Pro software Media Cybernetics UK, Berkshire, UK 
Skyscan 1172 MicroCT software SKYSCAN, Kontich, Belgium 
Skyscan CTAn analysis software SKYSCAN, Kontich, Belgium 
Skyscan CTVol software SKYSCAN, Kontich, Belgium 
Skyscan NRecon reconstruction system SKYSCAN, Kontich, Belgium 
SPSS version 13 SPSS Ltd. UK, Surrey, UK 
Syngene GeneSnap software Fisher Scientific, Leicestershire, UK 
Syngene GeneTool software Fisher Scientific, Leicestershire, UK 
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APPENDIX 2. SOLUTIONS 

Appendix 2.1 Solutions for TRAcP staining 

 
Naphthol-AS-BI-phosphate 
10mg/ml Naphthol-AS-BI-phosphate in Dimethylformamide 
  
Veronal buffer 
1.17g sodium acetate anhydrous and 2.94g sodium barbiturate both dissolved in 100ml 
of dH2O 
 
Acetate buffer 
0.82g sodium acetate anhydrous dissolved in 100ml of dH2O and pH adjusted to 5.2 
with 0.6ml glacial acetic acid made up to 100ml with dH2O 
  
Pararosanilin 
1g Pararosanilin dissolved in 20ml of dH2O and 5ml of 5M HCl added to it 
The solution was heated carefully whilst stirring and filtered after cooling. 
 
TRAcP Staining Solution 
The TRAcP staining solution was freshly prepared by mixing solution A and B as 
outlined below. 
 
Solution A 
150ml of Napthol-AS-BI-phosphate 
750ml of Veronal buffer 
900ml Acetate buffer 
900ml Acetate buffer with 100mM Sodium Tartate 
 
Solution B 
120ml of Pararosanilin 
120ml of Sodium Nitrate (4% w/v) 
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Appendix 2.2 Solutions for ALP assay 

 
Diethanolamine (DEA)/MgCl2 buffer 
1M DEA and 1M MgCl2 made up in 100ml dH2O and pH adjusted to 9.8. Left at room 
temperature for 24 hours 
 
ALP Lysis buffer 
0.05% Triton X-100 added to DEA/MgCl2 buffer 
 
p-Nitrophenol standard solution 
p-Nitrophenol standards (1.25 – 30nM) prepared in lysis buffer 
 
Substrate solution 
20mM p-nitrophenol-phopshate made up in DEA/MgCl2 buffer and pH adjusted to 9.8  
 
 

 

 

Appendix 2.3 Solution for cell Lysis  

 
RIPA Lysis buffer 
1% Triton 100X, 0.5% (w/v) Sodium Deoxycholate, 0.1% (w/v) Sodium Dodecyl 
Sulphate (SDS), 50mM Tris-HCl (pH 7.4) and 150nM Sodium Chloride were dissolved 
in dH2O.  
 
 

 

 

Appendix 2.4 Solutions for PAGE and western blot 

 
Electrophoresis running buffer 
50ml of XT-MOPS (20X) in 1000ml of dH2O 
 
Samples loading protein buffer (5X stock) 
5.2ml of 1M Tris-HCl pH adjusted to 6.8, 1g of DL-Dithiothreitol (DTT), 3g SDS, 
6.5ml glycerol and 130μl of 10% (w/v) Bromophenol Blue. Stored at -20°C.   
 



APPENDICES 

 273

Transfer buffer 
3.63g of Tris, 14.4g of Glycine, 200ml of Methanol and 3.75ml of 10% (w/v) SDS made 
up to 1000ml with dH2O. Stored at room temperature. 
 
TBS 
1M of Tris and 1M Tris-HCl. pH adjusted to 7.9 prior to addition of 3M Sodium 
Chloride. Stored at room temperature. 
 
TBST 
0.1% (v/v) Tween-20 in TBS. Stored at room temperature. 
 
Stripping buffer 
1mM DTT, 2% (w/v) SDS and 62.5mM Tris-HCl (pH 6.7). Stored at room temperature. 
 
 

 

Appendix 2.5 Solutions for Histology 

 
Infiltrating solution 
89g MMA, 10g Dibutyl phthalate, 1g Perkadox 16, and 0.01g Novoscave for 100g of 
infiltration solution 
 
Embedding solution 
Same as infiltration solution but 1 week old 
 
Paragon staining solution 
0.625g basic fuchsin and 1.875g toluidine blue in 250ml 30% (v/v) ethanol 
 
Borax buffer 
6g boric acid and 2g sodium tetraborate in 500ml dH2O 
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APPENDIX 3. The chemical structures of endocannabinoids, cannabinoid receptor 

agonists and antagonists/inverse agonists 

 
 

AEA

2-AG JWH133

HU308 AM630

AM251

Arachidonic acidΔ9-Tetrahydrocannabinol (THC)

AEA

2-AG JWH133

HU308 AM630

AM251

Arachidonic acidΔ9-Tetrahydrocannabinol (THC)  
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APPENDIX 4. Ki values of endocannabinoids, CNR1- and CNR2-selective ligands. 

Adjusted from Pertwee, R.G. (Tocris Bioscience review series). 

 
 
 

37189N-(2-Hydroxyethyl)-5Z,8Z,11Z,14Z-eicosatetraenamide AEA

Endocannabinoids

AM251

CNR1-selective antagonist/inverse agonist

AM630

CNR2-selective antagonist/inverse agonist

JWH133

HU308

CNR2-selective agonists 

2-AG

Compound

22.7>100004-[4-(1,1-diemethylheptyl)-2,6-dimethoxyphenyl]-6,6-
dimethylbicyclo[3.1.1]hept-2-ene-2-methanol

22907.49N-(Piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophen yl)-4-
methyl-1H-pyrazole-3-carboxamide 

31.251526-Iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indol-3-y l](4-
methoxyphenyl)methanone 

3.4677(6aR,10aR)-3-(1,1-Dimethylbutyl)-6a,7,10,10a-tetrahydro -
6,6,9-trimethyl-6H-dibenzo[b,d]pyran 

1400472(5Z,8Z,11Z,14Z)-5,8,11,14-Eicosatetraenoic acid, 2-hydroxy-1-
(hydroxymethyl)ethyl ester 

CNR2
Ki value

(nM)

CNR1
Ki value 

(nM)
Chemical Name

37189N-(2-Hydroxyethyl)-5Z,8Z,11Z,14Z-eicosatetraenamide AEA

Endocannabinoids

AM251

CNR1-selective antagonist/inverse agonist

AM630

CNR2-selective antagonist/inverse agonist

JWH133

HU308

CNR2-selective agonists 

2-AG

Compound

22.7>100004-[4-(1,1-diemethylheptyl)-2,6-dimethoxyphenyl]-6,6-
dimethylbicyclo[3.1.1]hept-2-ene-2-methanol

22907.49N-(Piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophen yl)-4-
methyl-1H-pyrazole-3-carboxamide 

31.251526-Iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indol-3-y l](4-
methoxyphenyl)methanone 

3.4677(6aR,10aR)-3-(1,1-Dimethylbutyl)-6a,7,10,10a-tetrahydro -
6,6,9-trimethyl-6H-dibenzo[b,d]pyran 

1400472(5Z,8Z,11Z,14Z)-5,8,11,14-Eicosatetraenoic acid, 2-hydroxy-1-
(hydroxymethyl)ethyl ester 

CNR2
Ki value

(nM)

CNR1
Ki value 

(nM)
Chemical Name
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APPENDIX 5. Comparison of wild type and CNR2-deficient mice of this study to 

‘pure’ C57BL/6 mice  

 

   WT mice CNR2-/- mice 

SNP ID SNP Pure C57BL/6 
(Reference) 1 2 3 1 2 3 

rs3695988 [T/G] AA AA AA AA AA -- AA 
rs6191076 [T/G] AA -- -- -- -- -- -- 
rs3723062 [T/C] BB BB -- -- BB BB BB 
rs13476003 [G/C] AA AA AA AA AA -- AA 
rs3685919 [T/C] BB BB -- -- BB BB BB 
rs13466711 [A/G] AA -- -- -- -- -- -- 
rs13477019 [A/T] BB AA AA AA AA AA AA 
rs6301139 [T/A] NN -- -- -- -- -- -- 
rs13477439 [A/G] BB BB -- -- BB BB BB 
rs13477448 [T/A] BB -- BB -- BB BB BB 
rs6355837 [A/C] AA AA AA AA BB BB BB 
UT_4_132.137715 [T/G] AA AA AA AA BB BB BB 
rs3663950 [T/C] AA AA AA AA BB BB BB 
rs4224864 [A/G] BB -- -- -- -- -- -- 
rs3700706 [T/G] AA AB AB AA AB AA AB 
rs6215373 [T/C] BB AB AB AB AA AA AA 
rs13478223 [T/G] BB AB AB AB AA AA AA 
rs3659933 [T/G] BB -- -- -- -- -- -- 
CEL-5_45872918 [C/G] BB AB AB AB AA AA AA 
rs6192958 [T/C] AA AB AB AB BB BB BB 
rs3664008 [A/G] AA AB AB AB BB BB BB 
mCV23125912 [A/G] BB AB AB AB AA AA AA 
CEL-5_56167948 [T/C] AA BB BB BB BB BB BB 
rs3090667 [T/C] BB AA AA AA AA AA AA 
rs6340166 [T/C] BB AB AB AB AB AB -- 
rs13478617 [A/C] AA AA AA AA AA AA -- 
rs13478783 [A/G] AA BB BB BB BB BB BB 
rs13478971 [C/G] BB BB AB AA AA AA AA 
rs6401637 [T/C] AA AA AB BB BB BB BB 
mCV23042866 [T/G] AA AA AB BB BB BB BB 
rs3695724 [T/A] AA BB BB BB BB BB BB 
gnf06.122.747 [A/G] BB BB BB -- BB BB BB 
rs13479522 [A/G] AA BB BB BB BB BB BB 
rs3711570 [T/G] AA AA AA AA -- -- AA 
rs3719401 [A/G] BB AB AA AB AB AA AB 
CEL-8_51607005 [T/C] BB BB AB BB AB AA AB 
rs13479776 [G/C] AA AA AB AA AB BB AB 
rs3725286 [T/C] BB BB AB BB AB AA AB 
rs3706149 [A/C] BB BB BB AB BB BB BB 
rs3669235 [A/G] AA AA AA AB AA AA AA 
rs13479956 [T/C] BB BB BB AB BB BB BB 
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gnf08.108.032 [A/G] AA AA AA AB AA AA AA 
rs3662808 [A/G] AA AA AA AB AA AA AA 
rs6237645 [A/G] AA AA AA AB AA AA AA 
rs13479995 [A/C] AA AB AA BB AA AA AA 
rs3705725 [T/C] AA AA AA AA -- -- -- 
rs13480122 [A/G] AA BB BB BB BB BB BB 
rs6174757 [T/G] BB BB -- -- BB BB BB 
rs3721056 [A/G] BB BB -- -- BB BB BB 
rs13480619 [A/G] AA BB BB BB BB BB BB 
CEL-10_58149652 [T/C] BB AA AA AA AA AA AA 
rs13480759 [T/C] BB AA AA AA AA AA AA 
rs3676330 [T/A] BB -- -- -- -- -- -- 
rs3654344 [T/G] AA AA AB AA AB AA AB 
rs13481009 [C/G] BB AB AB BB AB BB AB 
rs13481014 [T/C] AA BB BB BB BB BB BB 
rs6199956 [A/C] AA AB AB AA AB AB AB 
rs13481033 [A/G] AA AA AA AA AA -- AA 
rs4228731 [A/G] AA AB AB AA AB AB AB 
rs3684076 [A/G] BB AB AB BB AB AB AB 
rs13481297 [A/G] AA -- -- -- -- -- -- 
rs13481445 [A/G] AA AA AA AA AA -- AA 
rs13481588 [T/C] BB -- -- -- BB BB BB 
rs13481734 [A/G] AA BB BB BB BB BB BB 
CEL-14_116404928 [T/C] BB AA AA AA AA AA AA 
CEL-15_4222769 [A/G] BB BB BB -- BB BB BB 
rs13482661 [A/G] BB -- -- -- -- -- -- 
rs6276391 [A/C] AA -- -- -- -- -- -- 
rs13482744 [A/G] BB BB BB BB BB -- BB 
rs4165065 [T/C] AA BB BB BB AA AB AB 
rs4165279 [A/G] AA AA AA AA -- -- AA 
rs3680665 [G/C] BB BB -- BB BB BB BB 
rs13483055 [T/C] AA AA AA AA AB BB AA 
CEL-18_60214752 [T/C] BB BB BB -- BB BB BB 
CEL-X_59515625 [T/G] AA AA AA AA -- -- AA 
CEL-X_66015326 [T/C] AA -- -- -- -- -- -- 
rs13483921 [A/G] BB BB BB -- BB BB BB 

CEL-X_117683749 [T/C] BB BB -- BB -- -- BB 

No. of different SNPs/1449 SNPs 40/1449 52/1449 53/1449 64/1449 55/1449 49/1449 

Appendix 5: A display of SNP sites where wild type (in yellow) or CNR2-/- mice (in blue) 
have different genotypes from pure C57BL/6 mice (reference genotypes provide by Illumina 
Inc.), across 1449 SNP loci.  
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APPENDIX 6. CNR2-deficient mice have normal body weight throughout their 

lives.   
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Appendix 6: Body weight of wild type (WT) and CNR2-/- male (A) and female (B) mice at age 
3 months, 6 months and 12 months. Values are means ± sem from 7-8 mice per group. +p < 
0.05 from 6 and 12-month old mice of same genotype.  
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APPENDIX 7. Table with actual values of μCT analysis of trabecular bone from 

wild type (WT) and CNR2-deficient mice following ovariectomy (OVX) or sham 

operation. 

 
 
 

262.6 ± 7.122.29 ± 0.147.4 ± 0.710.9 ± 0.2

Tb.Th
(μm)

233.3 ± 9.42.46 ± 0.246.2 ± 0.311.4 ± 0.7

Tb.Sp
(μm)

Tb.N
(1/mm)

BV/TV
(%)

SHAM

SHAM

282.6 ± 7.121.80 ± 0.148.3 ± 1.08.7 ± 0.2

298.6 ± 21.21.79 ± 0.144.3 ± 0.67.9 ± 0.4OVX

OVX

W
T

C
N

R
2-

/-

23.9 ± 0.3

23.7 ± 1.1

Tb.Pf
(1/mm)

28.3 ± 0.6

31.6 ± 0.8

262.6 ± 7.122.29 ± 0.147.4 ± 0.710.9 ± 0.2

Tb.Th
(μm)

233.3 ± 9.42.46 ± 0.246.2 ± 0.311.4 ± 0.7

Tb.Sp
(μm)

Tb.N
(1/mm)

BV/TV
(%)

SHAM

SHAM

282.6 ± 7.121.80 ± 0.148.3 ± 1.08.7 ± 0.2

298.6 ± 21.21.79 ± 0.144.3 ± 0.67.9 ± 0.4OVX

OVX

W
T

C
N

R
2-

/-

23.9 ± 0.3

23.7 ± 1.1

Tb.Pf
(1/mm)

28.3 ± 0.6

31.6 ± 0.8

 
 
 
 
 
 
 
 
 
 
 

Appendix 7: BV/TV, trabecular bone volume (%); Tb.Th, trabecular thickness (μm); Tb.N, 
trabecular number (1/mm); Tb.Sp, trabecular separation (μm); Tb.Pf, trabecular pattern factor 
(1/mm). Values are expressed as means ± sem from 7-8 mice per group.  
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APPENDIX 8. Actual values of μCT analysis of trabecular bone from wild type 

(WT) and CNR2-deficient mice following ovariectomy (OVX) and AM630 

treatment. 

 

 

239.0 ± 4.82.48 ± 0.0846.6 ± 1.211.5 ± 0.4

Tb.Th
(μm)

211.6 ± 3.22.78 ± 0.0846.4 ± 0.912.9 ± 0.5

Tb.Sp
(μm)

Tb.N
(1/mm)

BV/TV
(%)

241.8 ± 7.12.43 ± 0.0546.3 ± 0.711.3 ± 0.4

253.2 ± 9.32.01 ± 0.0843.0 ± 0.68.6 ± 0.3

24.9 ± 0.9

21.9 ± 1.0

Tb.Pf
(1/mm)

25.9 ± 0.7

23.3 ± 0.6

SHAM
Vehicle

OVX
Vehicle

W
T

OVX
AM630 0.1mg/kg

OVX
AM630 1.0mg/kg

311.2 ± 17.01.82 ± 0.1148.8 ± 1.78.8 ± 0.4

227.7 ± 2.42.52 ± 0.0548.3 ± 0.412.2 ± 0.3

255.2 ± 11.22.22 ± 0.0849.4 ± 1.411.0 ± 0.7

277.9 ± 9.82.04 ± 0.0947.0 ± 0.89.6 ± 0.5

27.7 ± 0.7

23.0 ± 0.5

26.0 ± 0.9

26.9 ± 1.0

SHAM
Vehicle

OVX
Vehicle

C
N

R
2-/-

OVX
AM630 0.1mg/kg

OVX
AM630 1.0mg/kg

239.0 ± 4.82.48 ± 0.0846.6 ± 1.211.5 ± 0.4

Tb.Th
(μm)

211.6 ± 3.22.78 ± 0.0846.4 ± 0.912.9 ± 0.5

Tb.Sp
(μm)

Tb.N
(1/mm)

BV/TV
(%)

241.8 ± 7.12.43 ± 0.0546.3 ± 0.711.3 ± 0.4

253.2 ± 9.32.01 ± 0.0843.0 ± 0.68.6 ± 0.3

24.9 ± 0.9

21.9 ± 1.0

Tb.Pf
(1/mm)

25.9 ± 0.7

23.3 ± 0.6

SHAM
Vehicle

OVX
Vehicle

W
T

OVX
AM630 0.1mg/kg

OVX
AM630 1.0mg/kg

311.2 ± 17.01.82 ± 0.1148.8 ± 1.78.8 ± 0.4

227.7 ± 2.42.52 ± 0.0548.3 ± 0.412.2 ± 0.3

255.2 ± 11.22.22 ± 0.0849.4 ± 1.411.0 ± 0.7

277.9 ± 9.82.04 ± 0.0947.0 ± 0.89.6 ± 0.5

27.7 ± 0.7

23.0 ± 0.5

26.0 ± 0.9

26.9 ± 1.0

SHAM
Vehicle

OVX
Vehicle

C
N

R
2-/-

OVX
AM630 0.1mg/kg

OVX
AM630 1.0mg/kg

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix 8: BV/TV, trabecular bone volume (%); Tb.Th, trabecular thickness (μm); Tb.N, 
trabecular number (1/mm); Tb.Sp, trabecular separation (μm); Tb.Pf, trabecular pattern factor 
(1/mm). Values are expressed as means ± sem from 7-8 mice per group.  
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APPENDIX 9. Effect of cannabinoid receptor ligands on calvarial osteoblast 

growth and differentiation from wild type and CNR2-deficient mouse neonates.  
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Appendix 9: A-D. Number of calvarial osteoblasts (OB) in cultures from wild type and CNR2-/-

mice, exposed to vehicle (V), HU308 (A), JWH133 (B), AEA (C) and AM630 (D) at the indicated 
concentrations for 24 hours, assessed by Alamar Blue assay. Changes in osteoblast number were 
expressed as a percent of values in vehicle-treated cultures. E-H. ALP activity of calvarial 
osteoblasts in cultures from wild type and CNR2-/- mice, exposed to vehicle (V), HU308 (E), 
JWH133 (F), AEA (G) and AM630 (H) at the indicated concentrations for 24 hours, assessed by 
ALP assay. ALP levels were normalised to cell number and expressed as a percent of values in 
wild type vehicle-treated cultures. Values are means ± sem and were obtained from 3 independent 
experiments.  
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APPENDIX 10. Actual values of μCT analysis of trabecular bone from wild type 

(WT) and CNR2-deficient mice following ovariectomy (OVX) and treatment with 

HU308. 

 
 
 

235.2 ± 8.32.34 ± 0.1043.0 ± 1.010.1 ± 0.5

Tb.Th
(μm)

211.6 ± 3.22.78 ± 0.0846.4 ± 0.912.9 ± 0.5

Tb.Sp
(μm)

Tb.N
(1/mm)

BV/TV
(%)

228.0 ± 7.32.46 ± 0.1244.0 ± 1.010.8 ± 0.4

253.2 ± 9.32.01 ± 0.0843.0 ± 0.68.6 ± 0.3

24.5 ± 1.5

21.9 ± 1.0

Tb.Pf
(1/mm)

25.5 ± 0.7

29.8 ± 0.6

SHAM
Vehicle

OVX
Vehicle

W
T

OVX
HU308 0.1mg/kg

OVX
HU308 1.0mg/kg

282.0 ± 18.32.01 ± 0.1044.3 ± 0.58.9 ± 0.4

227.7 ± 2.42.52 ± 0.0548.3 ± 0.412.2 ± 0.3

267.0 ± 7.32.27 ± 0.1248.7 ± 1.211.0 ± 0.6

277.9 ± 9.82.04 ± 0.0947.0 ± 0.89.6 ± 0.4

28.4 ± 0.4

23.0 ± 0.5

24.9 ± 1.3

26.9 ± 1.0

SHAM
Vehicle

OVX
Vehicle

C
N

R
2-/-

OVX
HU308 0.1mg/kg

OVX
HU308 1.0mg/kg

235.2 ± 8.32.34 ± 0.1043.0 ± 1.010.1 ± 0.5

Tb.Th
(μm)

211.6 ± 3.22.78 ± 0.0846.4 ± 0.912.9 ± 0.5

Tb.Sp
(μm)

Tb.N
(1/mm)

BV/TV
(%)

228.0 ± 7.32.46 ± 0.1244.0 ± 1.010.8 ± 0.4

253.2 ± 9.32.01 ± 0.0843.0 ± 0.68.6 ± 0.3

24.5 ± 1.5

21.9 ± 1.0

Tb.Pf
(1/mm)

25.5 ± 0.7

29.8 ± 0.6

SHAM
Vehicle

OVX
Vehicle

W
T

OVX
HU308 0.1mg/kg

OVX
HU308 1.0mg/kg

282.0 ± 18.32.01 ± 0.1044.3 ± 0.58.9 ± 0.4

227.7 ± 2.42.52 ± 0.0548.3 ± 0.412.2 ± 0.3

267.0 ± 7.32.27 ± 0.1248.7 ± 1.211.0 ± 0.6

277.9 ± 9.82.04 ± 0.0947.0 ± 0.89.6 ± 0.4

28.4 ± 0.4

23.0 ± 0.5

24.9 ± 1.3

26.9 ± 1.0

SHAM
Vehicle

OVX
Vehicle

C
N

R
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Appendix 10: BV/TV, trabecular bone volume (%); Tb.Th, trabecular thickness (μm); Tb.N, 
trabecular number (1/mm); Tb.Sp, trabecular separation (μm); Tb.Pf, trabecular pattern factor 
(1/mm). Values are expressed as means ± sem from 7-8 mice per group.  
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APPENDIX 11. Actual values of μCT analysis of cortical bone from wild type (WT) 

and CNR2-deficient mice following ovariectomy (OVX) and treatment with HU308. 

 
 

452.6 ± 5.6189.5 ± 3.70.49 ± 0.01

Ct.Th
(μm)

455.7 ± 1.9187.9 ± 3.00.43 ± 0.01

Ct.Dm
(μm)

Ct.BV
(mm3)

458.4 ± 2.2189.2 ± 4.1046 ± 0.01

440.6 ± 16.5187.3 ± 3.60.44± 0.01

SHAM
Vehicle

OVX
Vehicle

W
T

OVX
HU308 0.1mg/kg

OVX
HU308 1.0mg/kg

479.0 ± 1.3183.1 ± 5.00.46 ± 0.01

457.3 ± 1.9192.3 ± 3.70.47 ± 0.01

451.7 ± 6.2192.1 ± 3.60.48 ± 0.01

454.7 ± 2.1189.7 ± 4.50.47 ± 0.01

SHAM
Vehicle

OVX
Vehicle

C
N

R
2-/-

OVX
HU308 0.1mg/kg

OVX
HU308 1.0mg/kg

73.7 ± 7.2

79.9 ± 6.0

Med.Cav.Dm
(μm)

79.9± 8.5

66.0 ± 13.5

108.5 ± 15.1

72.5 ± 7.4

67.6 ± 11.7

75.3 ± 8.0
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Med.Cav.Dm
(μm)

79.9± 8.5
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Appendix 11: Ct.BV, cortical bone volume (mm3); Ct.Th, cortical thickness (μm); Ct.Dm, 
cortical diameter (μm); Med.Cav.Dm, medullary cavity diameter (μm). Values are expressed 
as means ± sem from 7-8 mice per group.  
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APPENDIX 12. Growth and alkaline phosphatase activity of calvarial osteoblasts 

from wild type and CNR2-deficient mice. 

 

Alkaline phosphatase (ALP) assay (c.f. section 2.2.9, page 81) demonstrated that CNR2-

/- calvarial osteoblasts, unlike CNR2-/- bone marrow-derived osteoblasts (section 6.3.1, 

page 187), responded to PTH treatment (25-100nM) in a similar manner to that seen in 

wild type cultures, and showed increased ALP activity compared to vehicle-treated 

cultures (Figure below). Alamar Blue assay (c.f. section 2.2.8, page 80), showed that 

wild type and CNR2-/- calvarial osteoblasts demonstrated a comparable growth, which 

was not significantly affected following PTH treatment, regardless of genotype (Figure 

below, panel B). 
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Appendix 12: ALP activity and growth of calvarial osteoblasts from wild type and CNR2-
deficient mice. A. Alkaline phosphatase (ALP) activity of calvarial osteoblasts from wild type 
and CNR2-/- mouse neonates exposed to PTH (25-100nM) for 24 hours, assessed by ALP 
assay. ALP levels were normalised to cell number and expressed as a percent of values in wild 
type vehicle-treated cultures. B. Number of calvarial osteoblasts from cultures in A, assessed 
by Alamar Blue assay. Changes in osteoblast number were expressed as a percent of values in 
wild type vehicle-treated cultures. C. Representative phase contrast photomicrographs of wild 
type and CNR2-/- calvarial osteoblasts. Values are means ± sem and were obtained from 3 
independent experiments. +p < 0.05 from vehicle-treated cultures of same genotype. 
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