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Abstract

Dmagnetic resonance imaging (d) is a technique that can be used to examine the

diffusion characteristics of water in the living brain. A recently developed application

of this technique is “tractography”, in which information from brain images obtained using

d is used to reconstruct the pathways which connect regions of the brain together. Proxy

measures for the integrity, or coherence, of these pathways have also been defined using

d-derived information.

The “disconnection hypothesis” suggests that specific neurological impairments can arise

from damage to these pathways as a consequence of the resulting interruption of information

flow between relevant areas of cortex. The development of d and tractography have

generated a considerable amount of renewed interest in the disconnectionist thesis, since they

promise a means for testing the hypothesis in vivo in any number of pathological scenarios.

However, in order to investigate the effects of pathology on particular pathways, it is necessary

to be able to reliably locate them in three-dimensional d images.

The aim of the work described in this thesis is to improve upon the robustness of existing

methods for segmenting specific white matter “tracts” from image data, using tractography,

and to demonstrate the utility of the novel methods for the comparative analysis of white

matter integrity in groups of subjects.

The thesis begins with an overview of probability theory, which will be a recurring theme

throughout what follows, and its application to machine learning. After reviewing the prin-

ciples of magnetic resonance in general, and d and tractography in particular, we then

describe existing methods for segmenting particular tracts from group data, and introduce a

novel approach. Our innovation is to use a reference tract to define the topological character-

istics of the tract of interest, and then search a group of “candidate” tracts in the target brain

volume for the best match to this reference. In order to assess how well two tracts match we

define a heuristic but quantitative tract similarity measure.

In later chapters we demonstrate that this method is capable of successfully segmenting

tracts of interest in both young and old, healthy and unhealthy brains; and then describe

a formalised version of the approach which uses machine learning methods to match tracts

from different subjects. In this case the similarity between tracts is represented as a matching

probability under an explicit model of topological variability between equivalent tracts in

different brains. Finally, we examine the possibility of comparing the integrity of groups of

white matter structures at a level more fine-grained than a whole tract.
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A note on notation

T  draws on elements of theory from clinical and nonclinical neuroscience, statis-

tics, physics and computer science; and as such it has been extremely difficult to maintain

consistency of notation throughout. Each field has its own conventions, and they are often

incompatible. It has therefore been necessary to reuse some notation—particularly adorn-

ments such as the hat (ˆ), tilde (˜) and asterisk (∗)—and occasionally to depart from standard

nomenclature. Short range (i.e. within-chapter) consistency has generally been favoured over

long range consistency where a choice needed to be made.

Nevertheless, we have endeavoured to stick to certain basic principles of notation. Scalar

variables and sets are generally labelled with italic Latin or Greek letters, as in x or φ. A vector

or tuple is written using bold notation, as in r, except in the sections on quantum mechanics

in chapter 3, which use the ket notation, |r〉. Matrices—and vectors, when they are used as

single column or single row matrices—are written using sans-serif font (M). In chapter 2, we

use calligraphic notation, as inA, to represent the sample space of a random variable.

In addition we sometimes use the shorthand {xi} to mean the set of values of xi for all

appropriate values of i; or {1..N} to mean the set of integers between (and including) 1 and N.

Vector literals are written using bracket notation, as in x = (1,2,3); and (xi) is the shorthand for

the indexed components of a vector. Matrix literals are written using square bracket notation,

like

M =


1 0 0

0 1 0

0 0 1

 .
Familiarity with common notation for operations on sets, vectors and sequences will be as-

sumed, as will a grasp of basic calculus.

Magnetic resonance images are generally shown as two-dimensional slices, using the radi-

ological convention whereby the subject’s left side appears on the right of the image.
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Introduction

T  brain is profoundly self-connected. Its hundred billion or so nerve cells, or

neurons, communicate with one another by means of around a quadrillion synapses; and

this mass intraconnectivity, as it were, is undoubtedly essential for the array of information

processing tasks that it is required to perform. The grey matter of the brain’s cortex—which

is composed primarily of neuron cell bodies—is often thought of as the part of the brain most

specialised for particular tasks, and therefore the tissue most likely affected when brain damage

impairs the ability of an individual to complete specific kinds of tests. This view became

popular in the early twentieth century due in part to the work of Korbinian Brodmann and

Alfred Walter Campbell, who divided the cortex into regions according to their microstructure

(see ffytche & Catani, 2005)—thereby displacing the connectionist school, primarily attributed

to Carl Wernicke, which came before it. It was the American neurologist Norman Geschwind

who, in 1965, reemphasised the role of white matter and the likely effect of its interruption,

cutting off normally connected cortical areas from one another (Geschwind, 1965a,b). Given

appropriate white matter lesions, Geschwind argued, this disconnection effect could lead

to a range of impairments such as aphasias (difficulties with speech), agnosias (failures of

recognition), or apraxias (problems with voluntary movement). The gist of Geschwind’s thesis

has come to be known as the disconnection hypothesis.

Figure 1.1: Engraving showing the gross anatomy of

the brain, relative to features of the skull and face. The

frontal lobes are coloured blue, the parietal lobes yellow,

the temporal lobes green, and the occipital lobes red.

Reproduced from Gray (1918).
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(a)

(b)

(c)
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CSF
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Figure 1.2: Magnetic resonance images of the brain, shown in sagittal (a), coronal (b) and axial (c)

planes, perpendicular to the left–right, anterior–posterior and superior–inferior directions respectively. The

high resolution axial image (d) shows clear contrast between the three main tissue types. By radiological

convention, the left side of the brain from the patient’s perspective is shown on the right side of all images.

Almost simultaneously, in the mid-1960s, the foundations of a method called diffusion

magnetic resonance imaging (d) were being laid, a technique which could be used to

characterise the diffusion of water in living tissue. This technique, in common with all magnetic

resonance imaging () methods, made use of an earlier discovery about the behaviour of

certain types of particles in a very strong magnetic field: the nuclear magnetic resonance

() phenomenon, which had been used for chemical analysis for some time before imaging

methods reached maturity. Both  and  won their respective pioneers Nobel prizes.

Felix Bloch and Edward Mills Purcell shared the 1952 physics prize for their work on the

former; while Paul Lauterbur and Peter Mansfield were awarded the prize in medicine in 2003

for developing , despite outstanding controversy over whether they were truly the first to

demonstrate the technique.

 is now routinely used to create images of almost every part of the body for clinical

diagnosis and prognosis, but it is particularly valuable for imaging the brain, whose details

are obscured for -rays by the bone of the skull. (The major regions, or lobes, of the brain are

shown relative to the skull in Fig. 1.1.) Since the method involves no ionising radiation, it

can also be used repeatedly on a single subject without fear of tissue damage. Imaging using

magnetic resonance not only allows clinicians and researchers to visualise brain structure at

a respectable resolution—on the order of 1 mm in each dimension—it can also be tailored to

enhance contrasts between different tissue types, or between healthy and unhealthy tissue. In

Fig. 1.2, for example, the distinction is quite clear between grey matter, white matter, and the

cerebrospinal fluid () in which the brain is bathed. With diffusion , image contrast is

related to the local magnitude of water diffusion.

The potential of d for studying white matter in particular was not immediately realised,

3



Chapter 1. Introduction

and it was not until Peter Basser, James Mattiello and Denis Le Bihan described a way of

measuring not just the magnitude but also the orientational structure of diffusion using 

(Basser et al., 1994a)—a method called diffusion tensor imaging—that this potential began to

be fully realised. With this new development established, methods for virtual reconstruction

of white matter structures—or tractography—quickly followed.

It has been possible for decades to examine the structure of connective tissue at the in-

dividual neuron level. Santiago Ramón y Cajal, often called one of the fathers of modern

neuroscience, created superbly detailed and quite beautiful drawings of a great variety of

complex neurons more than a hundred years ago (see Fig. 1.3), thereby earning him, and the

inventor of the staining technique he used, Camillo Golgi, the 1906 Nobel prize for medicine.

Moreover, histological methods have since improved to the point where tracing the routes of

axons—the projections of neurons which bundle into larger connective structures—can be per-

formed effectively and with impressive accuracy. Nonetheless, the development of a method

for probing the connectivity of living brains was no small achievement, despite its far coarser

resolution, since all the alternatives oblige the researcher to wait for his subject to die, or

to study animals which can be sacrificed. For the first time, it may be possible to test the

disconnection hypothesis in patients with appropriate disorders.

Theodor Meynert, a nineteenth century neuropathologist, was the first to distinguish white

matter structures, or fasciculi, into projection fibres, which connect cortical and subcortical grey

matter together; commissural fibres, which link the two brain hemispheres; and association

fibres, which connect distal cortical regions within a hemisphere. Fig. 1.4 shows examples of

important tracts in each category. The corpus callosum, in the commissural class, is the largest

white matter structure in the brain, connecting all the main lobes between hemispheres. What-

ever principle one uses to categorise the various fasciculi, it is to be expected that interrupting

different types of connection will have different effects; and so, conversely, it might be antici-

pated that different diseases affect different fasciculi. Indeed, Meynert described psychiatry as

simply the study of diseases of the forebrain.

Despite its relative immaturity, tractography already offers the possibility of examining

tract-specific effects of disease during the course of the illness; and at some point in the

future it may become possible to use this kind of d-derived information to inform the

prognosis of patients with white matter diseases. At present, however, the robust location and

characterisation of specific white matter tracts between subjects remains elusive. Tractography

algorithms are able to segment particular tracts, but they are typically very strongly dependent

on their initialisation, and principles for guiding the choice of starting condition are lacking.

This thesis aims to take steps in that direction.

1.1 Problem statement

In order to establish whether a certain disease may be detrimentally affecting a particular white

matter structure, it is typically constructive to compare the-visible characteristics of healthy

and unhealthy examples of the tract in question. Since there is usually substantial variability

in such characteristics even between normal individuals, due to imaging noise and genuine

4
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Figure 1.3: Drawing of Golgi-stained neu-

rons in auditory cortex by Santiago Ramón

y Cajal. A considerable variety of cell mor-

phologies is visible. Reproduced from Tex-

ture of the nervous system of man and the

vertebrates, translated and edited by Pedro

and Tauba Pasik.

Figure 1.4: Illustration of some major white

matter fasciculi, visualised using tractogra-

phy and categorised after Meynert. Repro-

duced from Catani & ffytche (2005).

localised, but rested on the mutual interaction of these
fundamental psychic elements mediated by means of
their manifold connections via the association fibres
(Wernicke, 1885).

This is the doctrine of Wernicke’s associationist school. Here
higher functions arise through associative connections and
disorders of higher function from their breakdown. Critically,
there was no place for cortical specializations beyond those
of primary sensory and motor functions in the classical asso-
ciationist account. This theoretical framework helped explain
distinctive patterns of language, praxis and vision deficits that,
today, are referred to collectively as classical disconnection
syndromes.

Conduction aphasia
Written at the age of 26 years, Wernicke’s MD thesis
‘The aphasic symptom-complex’ contained a description of
the disconnection syndrome that was to become the proto-
type for all others—conduction aphasia (Leitungsaphasie)
(Wernicke, 1874).

Wernicke held that the motor component of language (the
images of speech movements) was localized in a frontal region
(Broca’s area) and that the sensory component of language
(auditory images of words) was localized in the posterior part
of the superior temporal gyrus (later termedWernicke’s area).
Lesions of the Broca and Wernicke centres led, respectively,
to pure motor aphasia (impaired fluency but normal com-
prehension) and pure sensory aphasia (impaired comprehen-
sion but normal fluency). Wernicke hypothesized that lesions
of the association tracts connecting them led to a conduction
aphasia, a pure disconnection syndrome which, in its modern
view, consists of a repetition deficit and paraphasic speech
(the use of incorrect words or phonemes while speaking) with
intact comprehension and fluency. Although not a part of
Wernicke’s original description, in his later work he argued
that repetition deficits related to the failure of transfer of
heard words from Wernicke’s to Broca’s area. Paraphasia
was thought to relate to the loss of a higher internal moni-
toring function which relied on intact connections between
Wernicke’s and Broca’s areas, the ‘unconscious, repeated
activation and simultaneous mental reverberation of the
acoustic image which exercises a continuous monitoring of
the motor images’ (Wernicke, 1874). Figure 2 (top left) shows
a schematic representation of Wernicke’s proposed neuro-
anatomical explanation for conduction aphasia. Although
in his early work he proposed that frontal and temporal
language centres were connected through the insula, he
later argued that the important pathway was the arcuate
fasciculus and that lesions to this pathway would result in
conduction aphasia.

Agnosia
Wernicke’s contribution to classical disconnection syndromes
did not end with conduction aphasia, many key figures of
the associationist school being linked to his psychiatric clinic
in Breslau. Heinrich Lissauer (1861–91), an assistant in
Wernicke’s clinic, was one such figure. The year before he
died (at the age of 30), he published a detailed case report of an
80-year-old salesman who, following a loss of consciousness

Fig. 1 Meynert’s classification of white matter tracts visualized
with diffusion tensor tractography and superimposed on medial
and lateral views of the brain surface. Projection tracts
connect cortical to subcortical structures. The corona radiata
contains descending fibres projecting from the motor cortex to
basal ganglia, midbrain motor nuclei (corticobulbar tract) and the
spinal cord (pyramidal tract) and ascending fibres from the
thalamus to the cortical mantle (thalamic projections). The
fornix connects the medial temporal lobe to hypothalamic nuclei.
Commissural tracts connect the two hemispheres. The corpus
callosum is the largest white matter bundle and connects cortical
regions within frontal, parietal, occipital and temporal lobes. The
anterior commissure connects the left and right amygdalae and
ventromedial temporo-occipital cortex. Association tracts run
within each hemisphere connecting distal cortical areas. The
cingulum connects medial frontal, parietal, occipital, temporal and
cingulate cortices. The arcuate/superior longitudinal fasciculus
connects perisylvian frontal, parietal and temporal cortices. The
uncinate fasciculus connects orbitofrontal to anterior and medial
temporal lobes. The inferior longitudinal fasciculus connects the
occipital and temporal lobes. The inferior fronto-occipital
fasciculus connects the orbital and lateral frontal cortices to
occipital cortex (Catani et al., 2002).

2226 Brain (2005), 128, 2224–2239 M. Catani and D. H. ffytche
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Chapter 1. Introduction

biological disparity, the comparison needs to be performed statistically between groups of

subjects with similar clinical statuses. If a clear distinction is found, on aggregate, then this

information can be used to estimate how likely it is that a new subject falls into one or other of

the groups.

Under these circumstances, it is important to strive to minimise the impact of uncontrolled

factors which may mask or exaggerate the true differences between the groups (or lack thereof).

In statistical terms, an additional source of variance within the groups may lead to a falsely neg-

ative outcome, while a similar effect between groups may produce a falsely positive conclusion,

suggesting that there is a group difference when in fact there is not.

One potentially large source of variance in the comparative analysis of white matter comes

from segmentation. In order to compare a particular tract between groups, one must first

identify it in each individual brain volume; and this should be done as consistently as possible

to avoid introducing bias. Secondly, once comparable tracts have been identified in each

brain volume, it is desirable that measures used to quantify differences between the groups

be sensitive to white matter degradation whilst being relatively invariant to other nuisance

factors. Improvement of segmentation consistency and examination of within-group and

between-group variability in d-derived measures of white matter integrity are the joint

aims of the new work described in chapters 6–9.

The structure of the thesis is as follows. After outlining the general principles of probability

(in chapter 2) and the physics of nuclear magnetic resonance (in chapter 3), we go on to

discuss the nature of water diffusion in the brain. It is also explained, in chapter 4, how and

why d can be useful for probing white matter structure. Chapter 5 provides a survey of

the tractography literature, thereby giving a sense of the potential diversity of segmentation

methods, even within the general fibre tracking approach. Tractography is compared to other

segmentation approaches in the early part of chapter 6, after which we begin to describe our

novel take on the problem, whereby a reference tract is defined in advance to epitomise the

topology of the white matter structure of interest, and a segmentation is chosen from among a

number of candidates in each brain volume by comparing them algorithmically to the reference

and selecting the best match. The technique is demonstrated on healthy young and (in chapter

7) agèd and unhealthy subjects and shown to improve segmentation consistency compared to

a simpler alternative strategy. Certain limitations come to light, however, and so in chapter 8

the method is further developed, and its principles are formalised using a probabilistic model.

Techniques from machine learning are then applied to fitting the model parameters from data

and performing segmentation in complete data sets. Finally, in chapter 9, we describe an

attempt to compare a proxy measure for tract integrity between groups at a fine spatial scale,

and investigate how the measure varies between and within populations.

6



2

Probability and machine learning

principles

P will be a recurring theme throughout the thesis. Indeed, its influence is sur-

prisingly pervasive in the material making up the remaining chapters. The quantum

mechanical underpinnings of the  effect which are outlined in chapter 3 describe proba-

bilistic behaviours; the diffusion of water in the brain measured by d is fundamentally a

stochastic process; probabilistic sampling techniques are important to some of the tractogra-

phy methods described in chapter 5; and the machine learning methods that we apply to the

problem of tract selection in chapter 8 are probabilistic by their nature.

In this chapter we lay out the theory of probability and describe those machine learning

and inference methods upon which later chapters are dependent. General references for this

material include MacKay (2003) and Bishop (2006).

2.1 Fundamentals of probability theory

Consider a nondeterministic experiment, such as rolling a fair die. The result of this experiment

on any given trial will be one of exactly six possibilities, representing the number of spots on

the uppermost face of the die. Moreover, each of these possibilities is equally likely; so over a

very large number of trials, all six will occur an approximately equal number of times. This

kind of experiment is represented mathematically by a random variable, which we call X. The

set of possible outcomes, or sample space, relating to X is {1,2,3,4,5,6}. The probability of each

of these outcomes on a single trial is, of course, 1/6.

In general, we denote the sample space for a discrete random variable, X, as AX = {ai},

where each member of the set has a corresponding probability, pi. We write

Pr(x = ai) = pi ,

where “Pr” represents “the probability that”, and x represents a particular outcome. The result

x = ai is an example of an event, a concept which can generally encapsulate the occurrence of
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any subset of the sample space: if E is some subset ofAX, we have

Pr(E) = Pr(x ∈ E) =
∑
ai∈E

Pr(x = ai) . (2.1)

In the example of the die, if E = {1,2}, then Pr(E)—the probability that the outcome of a trial is

either 1 or 2—is the sum of Pr(x = 1) and Pr(x = 2), i.e. 1/3.

The basic axioms of probability state that the probability of any event is greater than or

equal to zero, with the latter representing an impossible event; and that the probability of the

whole sample space is unity—i.e. every outcome must be drawn from the space. That is,

∀E ⊆AX . Pr(E) ≥ 0 Pr(AX) = 1 . (2.2)

Naturally, Eq. (2.2) additionally implies that Pr(E) ≤ 1. In general, given any pair of events, E1

and E2, the probability of their union is given by

Pr(E1∪E2) = Pr(E1) + Pr(E2)−Pr(E1∩E2) . (2.3)

This third axiom follows straight from Eq. (2.1). In the special case in which Pr(E1∩E2) = 0,

the two events cannot occur simultaneously and are therefore mutually exclusive.

We now consider another experiment, represented by the random variable Y, which consists

of flipping a coin. The sample space for this variable can be represented asAY = {0,1}, where 0

represents a tail and 1 a head. If we perform both experiments together, what is the probability

that the die roll produces a 6 and the coin toss gives a head? We represent this joint probability

as Pr(x = 6, y = 1). Since the roll of the die and the coin toss can be assumed to have no influence

on each other, the two events are independent and the joint probability is simply the product of

the individual probabilities. For the case of two events that are not independent, we need to

introduce the concept of a conditional probability, which is defined by

Pr(x = ai | y = b j) ≡
Pr(x = ai, y = b j)

Pr(y = b j)
if Pr(y = b j) , 0 ,

and should be interpreted as “the probability that x = ai given that y = b j”. Hence, if we

omit the particular value of each outcome to indicate the general case, it follows by trivial

rearrangement that

Pr(x, y) = Pr(x | y)Pr(y) , (2.4)

which is called the product rule for probabilities. Consequently, the following are equivalent

statements of independence between X and Y:

Pr(x, y) = Pr(x)Pr(y) Pr(x | y) = Pr(x) .

Finally, given a group of joint probabilities, Pr(x, y), we can calculate the so-called marginal

probability, Pr(x), by summing over all possible values of y; an operation known as marginal-

isation:

Pr(x) ≡
∑

y∈AY

Pr(x, y) .

It follows from Eq. (2.4) that

Pr(x) =
∑

y∈AY

Pr(x | y)Pr(y) , (2.5)

a relationship which is called the sum rule for probabilities. These basic rules for combining

probabilities together are extremely important in machine learning.

8
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2.2 Probability distributions

Every random variable has associated with it a probability distribution, which can be used to

assign to some interval [α,β] over the set of real numbers,R, a probability that the correspond-

ing outcome will fall within that interval on any given trial. For the example of our fair die,

the distribution is easily defined as

P(x) =

 Pr(x) if x ∈AX

0 otherwise.
(2.6)

In this case, P(x) is called the probability mass function (p.m.f.) for X. It then follows from

Eqs (2.1) and (2.6) that

Pr(α ≤ x ≤ β) =
∑
ai≤β

P(ai)−
∑
ai<α

P(ai) =
∑
ai≤β

Pr(ai)−
∑
ai<α

Pr(ai) ,

where Pr(ai) is shorthand for Pr(x = ai), and ai ∈AX in all cases.

It may appear that the distribution function buys us nothing over the individual probabili-

ties for each outcome—after all, its only addition is to make explicit the fact that the probability

of an outcome outside of the sample space is zero, a fact which follows uncontroversially from

Eq. (2.2). However, the significance of probability distributions is far more obvious when we

deal with continuous random variables.

Consider a continuous analogue of the die-rolling scenario, in which the outcome can be

any real number in the interval [0,6]. The distribution for this continuous random variable is

now defined by a probability density function (p.d.f.); specifically

P(x) =

 1
6 if 0 ≤ x ≤ 6

0 otherwise.
(2.7)

Notice that this distribution, while similar to the p.m.f. for the discrete case, is nonzero at

an infinite number of points. As a result, the value of this p.d.f. at any given point does not

represent a probability—if it did, the sum of probabilities across the sample space would be

infinite, which defies the axioms of Eq. (2.2). Instead, the p.d.f. represents probability density,

which is related to probability through integration:

Pr(α ≤ x ≤ β) =

∫ β

α
P(x)dx .

Consequently, the probability of an outcome having any particular value—i.e. Pr(x = α)—is

zero for all values of α ∈ R, both within and outside the sample space, for any continuous

random variable.

Every interval over the real numbers is a subset of R, so the normalisation axiom in Eq.

(2.2) implies that ∫
∞

−∞

P(x)dx =

∫
AX

P(x)dx = 1 , (2.8)

since that part of the integral that is outside the sample space will be equal to zero.

The difference between the discrete and continuous versions of the distribution are most

easily illustrated by comparing their cumulative distribution functions (c.d.f.s), which map each

9
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Figure 2.1: Cumulative distribution functions for dis-

crete (black) and continuous (grey) uniform distribu-

tions. Open and closed circles indicate that each in-

terval with a particular cumulative probability is open

at one end and closed at the other; i.e. Pr(x ≤ α) = 1/6

for α ∈ [1,2), for the discrete case.

real number, α, to the probability that x is less than or equal to α. These functions are shown

graphically in Fig. 2.1. It can be seen that Pr(x ≤ α) increases in jumps for the discrete case

and smoothly for the continuous case; but for all integer values of α, the value of the c.d.f. is

the same in both cases. Note that the c.d.f. is zero for all values below the lower bound of the

sample space, and unity for all values above its upper bound, in each case.

Probability distributions are not only used in relation to static events—it is also common

to consider a sequence of random variables, (X(t)), which are parameterised by t, often repre-

senting time in some sense. This parameter may be discrete or continuous. Such a collection

of related variables, used to represent the state of some time-dependent system, is called a

stochastic process. The evolution of such a process over time is then described by conditional

distributions, such as P(X(t) |X(t−1),X(t−2), . . .) for the discrete-time case.

A final foundational concept with regard to probability distributions is that of the expecta-

tion of a random variable, which is essentially a weighted mean value over the sample space.

For a discrete random variable, X, it is defined as

〈X〉 =
∑

x∈AX

xP(x) , (2.9)

and equivalently, using an integral, for the continuous case. Note that the expectation is a

property of the random variable—or equivalently, its distribution—rather than of any outcome.

We can also find the expectation of a function of X with respect to its probability distribution:

〈 f (X)〉 =
∑

x∈AX

f (x)P(x) . (2.10)

If we know the distribution of a particular random variable, we can deduce the distribution

of other random variables related to it. Let us assume that X ∼ U(0,6), which is shorthand to

say that X is uniformly distributed over the sample space [0,6], as described by Eq. (2.7). We

now wish to know the distribution of the random variable

Y = 1−
√

X .

10
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We cannot find the distribution of Y by simply mapping the sample space accordingly, because

this nonlinear function of X cannot be expected to have a uniform distribution itself; and even

if it were linear, we would still need to ensure that the new distribution remains properly

normalised. Instead, the rules of integration by substitution (Riley et al., 2002) tell us that,

using the Leibniz notation,

dx =
∂x
∂y

dy = 2(y−1)dy ;

so from Eq. (2.8), ∫ 6

0

1
6

dx =

∫ 1−
√

6

1

2(y−1)
6

dy =

∫ 1

1−
√

6

1− y
3

dy = 1 .

The distribution for Y is thus P(y) = (1− y)/3, and the sample space isAY = [1−
√

6,1]. It should

be noted that substitutions for functions of more than one original variable are more complex,

requiring the calculation of a Jacobian matrix of partial derivatives.

This process of finding the distribution of one random variable from that of another is very

important when artificially sampling from a distribution. We sometimes wish to generate data

with a certain distribution without truly sampling the value of an appropriate random variable

many times; and while computing environments typically provide a method to generate

uniformly distributed pseudorandom numbers, an appropriate transformation is needed to

turn these into samples from the distribution of interest.

2.3 Inference and learning

So far we have talked about probabilities in terms of the chance of a particular event happening,

on average, as a result of running a trial of a particular experiment. This interpretation of

probability is the classical frequentist interpretation. However, there is an alternative, and

broader, interpretation of probability which includes the sense of a degree of belief. Consider,

for example, the relationship between the fact that the sky is cloudy and the fact that it is

raining. Intuitively, if we are told that the sky is cloudy then it seems much more likely

that it is raining than if we are told that the sky is clear, or if we know nothing at all about

state of the sky. However, the proposition “it is raining” cannot be strictly represented by a

random variable since the experiment required to find an outcome (for example, going outside

to look) is deterministic. Either it is raining or it isn’t—there can be no two ways about it. It

is also unrepeatable, since it is fixed to a particular time and we cannot sample the state of the

weather right now many times. However, if we allow the broader interpretation of probability,

we can admit a conditioned probability Pr(raining |cloudy), which represents how strongly we

believe our proposition, given the truth of another proposition which says “the sky is cloudy”.

Moreover, we can use a distribution over the state space, in this case {raining,not raining}, to

encapsulate the uncertainty we have about the proposition.

If this talk of using some propositions to inform others sounds like logical deduction, it

is no coincidence. Some authors who subscribe to this broader, Bayesian, interpretation of

probability—notably Jaynes (2003)—have been keen to frame it as a form of logical framework

for the uncertain propositions that are common in science.

11
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Note that before we are told about the state of the sky, it cannot influence our belief of

whether it is raining or not. As a result, the prior probability that it is raining, Pr(raining),

may be assumed to take the value 0.5, indicating total uncertainty. The distribution is then

uniform over the two outcomes, which is an uninformative prior distribution because it tells us

nothing except the size of the state space, which we already know. On the other hand, it may

be that assumptions and information unrelated to the sky conditions could be incorporated

into the prior distribution. Say, for example, that weather records tell us that it typically rains

20 per cent of the time—in that case we might instead use the prior Pr(raining) = 0.2. This

is a trivial case of inference, whereby we use sample data—the weather records—to infer the

nature of the distribution that is used to predict future weather. Note that we need to make an

assumption, that previous weather will be representative of the future, in order to do even this

simple an inference. In general, the making of assumptions is a prerequisite for inference.

Let’s say that we have encoded our prior knowledge in a distribution of some kind. Now,

introducing the knowledge that it is cloudy will alter the plausibility of the proposition that it

is raining, but how? Given the fact that joint probabilities are symmetric, i.e. P(x, y) = P(y,x),

the relationship between the prior probability and the conditioned posterior probability can

be established straight from Eq. (2.4). It is

Pr(raining |cloudy) =
Pr(cloudy |raining)Pr(raining)

Pr(cloudy)
.

This relationship is the extremely important result known as Bayes’ rule, after the 18th century

mathematician and clergyman, the Rev. Thomas Bayes. It is significant because it describes a

mathematical way to use relevant information to update the level of belief in a proposition—

that is, to learn.

It turns out that the rules for manipulating probabilities that we looked at earlier can be

applied to probability densities as well as probabilities, although showing that this is the case

requires a more formal exploration of probability in terms of measure theory, which is beyond

our scope here (see Kingman & Taylor, 1966). The same applies to Bayes’ rule, so we can write

in general,

P(x | y) =
P(y |x)P(x)

P(y)
. (2.11)

The denominator of this equation, known in this context as the evidence, is commonly ex-

panded using Eq. (2.5), in which the sum is replaced by an integral for the continuous case:

P(y) =

∫
AX

P(y |x)P(x) . (2.12)

At this point, having introduced the Bayesian interpretation of probability, we will drop

the notational distinction between distribution variables (including random variables) and

outcome variables which has been used so far. This is common practice in the literature, and

it helps to reduce the quantity of notation needed for dealing with more complex problems.

2.4 Maximum likelihood

We now have the tools in place to consider a more practically interesting example. Let us say

that we have a random variable, x. We suspect that x is approximately normally distributed;

12
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that is, x∼N(µ,σ2), where µ (the mean) and σ2 (the variance) are parameters of the distribution.

We do not know what these parameters are, but if we want to make predictions about x we

will need to know them. The definition of the normal, or Gaussian, distribution tells us that

P(x |µ,σ) =
1

√

2πσ2
exp

(
−

(x−µ)2

2σ2

)
. (2.13)

In order to make any progress towards establishing µ and σ, we need some information.

Let us assume that we have a data set, D = {di} for i ∈ {1..N}, of example values of x. Since we

are working on the assumption that x has the distribution given above, these data are assumed

to be samples from the distribution. We assume that each sample has no dependence on any

other, and that the values of µ and σ did not vary across the sample, a combination called the

assumption of independent and identically distributed (i.i.d.) data. Hence, the product rule gives

us a joint distribution for the whole sample data set:

P(D |µ,σ) =

N∏
i=1

P(di |µ,σ) . (2.14)

The distribution given in Eq. (2.14) may not appear to get us any closer to an actual estimate

for the parameters. But note that, from Eqs (2.11) and (2.12),

P(µ,σ |D) =
P(D |µ,σ)P(µ,σ)!

P(D |µ,σ)P(µ,σ)dµdσ
. (2.15)

Note that the distribution P(D |µ,σ), which is known as the likelihood of the parameters, is

meaningful in a frequentist sense, since the elements of the data set are sample outcomes of

the random variable x. However, the prior and posterior distributions over the parameters

possess only Bayesian significance, since their values are fixed but unknown.

It makes intuitive sense to use as an estimate of the parameters those values which sit

at the mode—that is, the point of maximal probability density—of the posterior distribution

P(µ,σ |D). This approach amounts to finding the most likely values of the parameters in light of

the sample data available. If we have no prior information about the parameters, so that P(µ,σ)

is uninformative, then maximising the posterior is equivalent to maximising the likelihood,

since the evidence is a normalisation factor that is not dependent on the values chosen for µ

and σ. Hence, we can find a maximum likelihood estimator for the parameters by maximising the

value of Eq. (2.14) with respect to them.

In practice, it is often mathematically easier to maximise the (natural) logarithm of the

likelihood. This is valid because lnn will always increase when n increases—we say that

the logarithm is a monotonically increasing function. Elementary calculus tells us that at the

maximum of a function its derivative is zero, so from Eqs (2.13) and (2.14), our estimator of µ

is given when

∂
∂µ

−1
2

N∑
i=1

ln2πσ2
−

1
2σ2

N∑
i=1

(di−µ)2

 = 0 .

Solving this equation gives us the value of the estimator for µ as

µ̂ =
1
N

N∑
i=1

di .
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Figure 2.2: Maximum likelihood estimation for a Gaussian distribution. (a) A set of sample data (black

points), the generating distribution (light grey line) and estimated distribution (dark grey line). (b) The

estimated mean approaches the generative mean as the size of the sample vector increases.

The “hat” notation is commonly used to indicate an estimate. Note that this maximum like-

lihood () estimate is exactly equal to the mean of the sample. The maximum likelihood

variance also turns out, in this case, to be the given by the (biased) variance of the sample, viz.

σ̂2 =
1
N

N∑
i=1

(di− µ̂)2 .

The two parameters can be estimated separately because µ̂ has no dependence on σ̂. It is

possible to demonstrate, by taking second derivatives, that these estimates really represent a

maximum in the likelihood function.

Let’s take a step back at this point and consider what we have done. We were given a

set of sample values of x. We hypothesised, and thereafter assumed, that the samples were

drawn from a Gaussian distribution with unknown mean and variance. In the language

of machine learning, this Gaussian distribution is our model for the data, and µ and σ are

parameters associated with that model. We have no direct way of establishing the values of

these parameters, but we used the observed data and Bayes’ rule, which can be summarised

in words as

posterior =
likelihood×prior

evidence
,

to learn the most likely estimate for the parameters given the observed data. Since our model

describes a distribution which could be used to generate data like D, it is called a generative

model.

The process is illustrated by Fig. 2.2(a). A sample of 25 points are shown in black—these

were sampled from a Gaussian distribution with mean 3 and variance 1, whose p.d.f. is shown

by the lighter curve. The learnt model distribution is the darker curve. It can be seen that the

peak of the distribution—the mode, which is equal to the mean for a Gaussian distribution—is

14
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slightly offset from that of the generating distribution, and the “broadness” of the curve—

which indicates the variance—is slightly less. Nevertheless, the estimated distribution may be

considered a satisfactory approximation, and thus useful for predicting the general behaviour

of the variable x. Not surprisingly, increasing the size of the sample vector will produce

maximum likelihood estimators that are closer, on average, to the generative parameters—as

demonstrated by Fig. 2.2(b). This effect is called the law of large numbers.

It should be remembered that the maximum likelihood method implicitly assumes that the

priors in Eq. (2.15) are uninformative. If, on the other hand, meaningful prior information is

available, and we wish to take a more firmly Bayesian approach, we can calculate the maximum

of the posterior distribution with the prior distribution incorporated into it. This more general

approach to choosing an estimate for the parameters is called the maximum a posteriori ()

method, and it allows us to influence the parameter estimate based on what we know in

advance.

2.5 Expectation–Maximisation

Unfortunately, it is quite easy to find cases in which simple maximum likelihood estimation

is insufficient to find an estimate for a set of parameters. Consider the two-dimensional, or

bivariate, version of the Gaussian distribution described by Eq. (2.13). It is

P(x, y |µ,σ) =
1

2πσ2 exp

− (x−µx)2 + (y−µy)2

2σ2

 . (2.16)

This is effectively a special case of Eq. (2.14), because we are treating the x and y dimensions as

independent. This will only be the case if the covariance between x and y is zero; but we make

that assumption here to avoid overcomplication. Note also that the mean, µ = (µx,µy), is now

a vector quantity since it has a component in each dimension. Consider now

P(x, y |θ) = aP1(x, y |θ) + (1− a)P2(x, y |θ) , (2.17)

where each of P1 and P2 have the distribution given in Eq. (2.16), and θ = {µ1,σ1,µ2,σ2} is a

collection of all the parameters of this model. Eq. (2.17) is called a Gaussian mixture model,

because it is made up of a combination of two independent Gaussian distributions over the

same parameter space. The parameter a, which must be in the interval [0,1] to ensure that the

overall distribution is properly normalised, is called the mixture coefficient. We include it in

the set φ = {µ1,σ1,µ2,σ2,a}, a superset of θ.

In a generative sense, any sample data point must be drawn from exactly one of the

component distributions, P1 and P2. We say there is a latent variable, which we denote zi,

associated with each data point, di. We can characterise this variable by defining

zi =

 1 if di was drawn from P1

0 otherwise.
(2.18)

By analogy with the maximum likelihood estimation process for a single Gaussian distri-

bution, we might expect to be able to infer the mean and variance of P1 according to
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µ̂1 =

∑N
i=1 zidi∑N

i=1 zi
σ̂2

1 =

∑N
i=1 zi ‖di− µ̂1‖

2∑N
i=1 zi

, (2.19)

where ‖ · ‖ is the Euclidean norm; and similarly for P2. (Note that
∑

i zi is equal to the number

of data points that were drawn from P1.) However, without any knowledge of the set Z = {zi},

Eq. (2.19) cannot be evaluated, and so no estimate for φ can be calculated. Conversely, if φ

were known then Z could be inferred, but we have neither.

The Expectation–Maximisation () method provides a way to estimate both φ and Z

simultaneously, thus sidestepping the problem of their mutual dependency (Dempster et al.,

1977). The method is initialised by choosing a first estimate, φ̂, for the parameters. After that,

an expectation step, or “-step”, and a maximisation step, or “-step”, are applied iteratively

until some termination criterion is met. Each -step calculates a posterior distribution for Z

based on the current parameter estimate, while the -step updates the parameters.

We once again assume that the elements of our data set, D = {di}, are i.i.d., and hence the

values of zi are also independent. As a result, the posterior over Z can be expanded to

P(Z |D, φ̂) =

N∏
i=1

P(zi |di, φ̂) , (2.20)

and so we can consider the posterior for each zi individually. Bayes’ rule gives us

P(zi |di, φ̂) =
P(di |zi, φ̂)P(zi | φ̂)∑
zi

P(di |zi, φ̂)P(zi | φ̂)
, (2.21)

where
∑

zi
is shorthand for the sum over the sample space of zi. Note that the distributions

over zi are discrete, so the prior P(zi = 1) is meaningful, and will in general be nonzero. Its exact

value will be given by the current estimate for the mixture coefficient, â, which is updated by

the -step below; and P(zi = 0) follows directly by normalisation.

Observe that the particular case P(di |zi = 1, φ̂) is equivalent to P1(di | θ̂), a fact that follows

straight from the definition of zi in Eq. (2.18). As a result, we can expand Eq. (2.21) by exhaustive

enumeration of the two outcomes, as follows.

P(zi = 1 |di, φ̂) =
âP1(di | θ̂)

âP1(di | θ̂) + (1− â)P2(di | θ̂)
(2.22)

P(zi = 0 |di, φ̂) =
(1− â)P2(di | θ̂)

âP1(di | θ̂) + (1− â)P2(di | θ̂)
(2.23)

The job of the -step is to refine our current estimate for φ̂. In order to do this, we need

concrete values for each zi. Since the -step has already calculated posterior distributions for zi

in Eqs (2.22) and (2.23), we simply take as our zi values the expectations of these distributions:

〈zi〉 =
∑

zi

ziP(zi) = P(zi = 1) .

Note that due to the nature of the definition of zi, this expectation is equal to the value of

P(zi = 1) calculated in Eq. (2.22). Hence, using these values for zi, we can update our estimates

for the means and variances of P1 and P2 with , according to Eq. (2.19).
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Figure 2.3: Results of applying Expectation–Maximisation to a Gaussian mixture model, after one iteration

(a) and at convergence (b). Each large circle represents a component distribution, centred at the mean and

with radius equal to one standard deviation. Data points with zi closer to 1 are more red, and those closer

to 0 are more blue. The generating distribution has parameters µ1 = (0.3,0.3), µ2 = (0.7,0.7), σ1 = σ2 = 0.1,

and a = 0.5.

All that remains for the -step is to update â, the remaining element of φ̂. Our estimate for

this parameter is the expected mean value of the set of latent variables, given by

â =

〈
1
N

N∑
i=1

zi

〉
=

1
N

N∑
i=1

〈zi〉 =
1
N

N∑
i=1

P(zi = 1) .

Fig. 2.3 shows a graphical representation of the process, in which each small filled circle

represents a data point. The posterior distribution over each latent variable, as calculated by

the -step, is indicated by a colour, with pure red indicating that P(zi = 1 |di, φ̂) = 1, and pure

blue indicating the opposite definite outcome. Hence, the shade of each data point represents

how likely it is to be drawn from each of the component distributions. It can be seen that after

a single iteration of the algorithm, the estimated component distributions, which are updated

by the -step, have a large variance and significant overlap; and as a result the assignment of

data to each component is uncertain, so all points appear in shades of purple. By contrast, after

11 further iterations, the algorithm has converged to a stable solution and most points appear

red or blue, since they are much more likely to be from one component distribution than the

other. There is just one point that remains ambiguous.

A useful way to gauge the progress of the algorithm is to plot the overall data log-likelihood

(), given by

lnP(D | φ̂) =

N∑
i=1

lnP(di | φ̂) =

N∑
i=1

ln

∑
zi

P(di |zi, φ̂)P(zi | φ̂)

 ,
which can be calculated after each iteration of the algorithm. The  gives us an idea of

how well the current model explains the data. Since  is a maximum likelihood technique—
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Figure 2.4: Typical plot of data log-likelihood as the

Expectation–Maximisation algorithm progresses.

differing practically from the simpler  estimation of §2.4 in that it can cope with models that

include latent variables—we might expect that the would be at its peak when the algorithm

terminates.

An example plot of  is shown in Fig. 2.4. The first -step produces a very large increase

in  (not shown), after which there is a general increase, ending with a final asymptotic

convergence on a maximum likelihood value. Note is that there is never a drop in  from one

iteration to the next. This is guaranteed by the theory of the method, which is beyond our

scope here (see Bishop, 2006).

2.6 Sampling methods

Up to this point we have dealt with very simple, analytically tractable model distributions;

and moreover we have been happy to work with a single estimate for the parameters of the

model. However, a maximum likelihood estimator for the parameters does not always exist;

and in practice it is often useful to be able to fully characterise a distribution over the model

parameter space—that is, the joint sample space of all parameters.

Consider a general case in which we have a scalar valued quantity, x, modelled by a distri-

bution with parameter set θ. The now-familiar Bayes’ rule defines the posterior distribution

for the parameter set according to

P(θ |x) =
P(x |θ)P(θ)

P(x)
, (2.24)

where

P(x) =

∫
Aθ

P(x |θ)P(θ)dθ . (2.25)

If we can evaluate the normalisation constant, Eq. (2.25), analytically then it will be possible

to characterise Eq. (2.24) exactly. The full posterior distribution over θ would then be able to

provide information on not only the most likely value of θ—i.e. the mode of the distribution—

but also on the extent to which such an estimate is likely to be valid or useful. For example,
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the distribution might have multiple modes, in which case taking a single estimate for the

parameters may be inappropriate.

The problem is that for a complicated likelihood function, the integral in Eq. (2.25) may

be impossible to evaluate analytically, putting exact marginalisation out of reach. Similar

problems occur when trying to find the expectation of a function with respect to a complex

distribution. In such cases, it may instead be practical to approximately infer the target density

over θ by drawing samples from it. Given a set of these samples, {θ(i)
} for i ∈ {1..N}, the

approximation is then a probability mass function of the form

P̂(θ) =
1
N

N∑
i=1

Pδ(θ |θ(i)) , (2.26)

where Pδ(θ) is a p.m.f. analogue of the Dirac delta function:

Pδ(θ |θ(i)) =

 1 if θ = θ(i)

0 otherwise.

This is the principle of so-called Monte Carlo () methods, which include the sampling

techniques described below (for a review see Andrieu et al., 2003). Of course, the approach

presupposes that it is possible to evaluate the distribution of interest, but this is the case

often enough for the assumption to be tenable for a wide range of practical problems. In

fact, it is sufficient to evaluate the target density to within a multiplicative constant, since

the approximating p.m.f., Eq. (2.26), is self-normalising. This is extremely useful, because it

obviates the need to evaluate the evidence term in Eq. (2.24) when sampling from the posterior

distribution.

Moreover, by the law of large numbers the expectation of some function, f , with respect

to P̂(θ) will converge towards the expectation of the same function with respect to the true,

continuous distribution for θ as N increases:

〈 f (θ)〉P̂(θ) =
1
N

N∑
i=1

f (θ)Pδ(θ |θ(i)) =
1
N

N∑
i=1

f (θ(i)) N→∞
−−−→ 〈 f (θ)〉P(θ) =

∫
Aθ

f (θ)P(θ)dθ .

The issue now becomes one of choosing samples: how can we efficiently generate pseu-

dorandom numbers which accurately represent the unknown target distribution? We are

generally primarily interested in regions of the parameter space in which P(θ) is relatively

large, but how can we identify such places without evaluating the distribution everywhere?

The naïve method of sampling at every point on a grid throughout the space will quickly

become unfeasible, especially if the space has high dimensionality—that is, if there are a large

number of parameters. The next most simple approach is to choose points randomly and

uniformly from the parameter space, and sample the distribution at those points. However,

since areas of high probability density are usually concentrated in a small region of the space,

the number of samples required to ensure that this typical set is reached at least a few times

will still often be prohibitively large.

2.6.1 Rejection sampling

A more sophisticated general approach to the sampling problem is to avoid sampling directly

from the unknown target density, P(x), and instead sample from a known, simpler proposal
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Figure 2.5: Rejection sampling for a univariate Gaussian mixture. (a) The target and proposal densities.

Samples from the proposal density will be accepted if ukQ(x∗) < P̃(x∗)—this corresponds to the shaded area

under the target curve. (b) Histogram of the accepted samples, overlaid with the exact target density. In this

case 51% of samples from the proposal density were accepted.

density. In particular, if we can evaluate P̃(x) = zP(x), where z is an unknown constant, and we

can find a proposal density, Q(x), and a finite positive real number, k, such that P̃(x) ≤ kQ(x) for

all real x, then we can apply a method known as rejection sampling.

Fig. 2.5(a) shows a situation in which this approach is appropriate. In this case the target

density is a Gaussian mixture with component means at x = 3 and x = 5; and the proposal

density is a simple Gaussian distribution, centred at x = 3.5, with k = 2. In a one-dimensional

case such as this, it is easy to see by inspection that the proposal density is always greater than

the target density.

The process for generating N samples from the target density is given by Algorithm 2.1.

Require: k ∈ (0,∞)

1: i← 0

2: repeat

3: Sample x∗ ∼Q(x) and u ∼U(0,1)

4: if ukQ(x∗) < P̃(x∗) then

5: i← i + 1

6: x(i)
← x∗ [Accept x∗]

7: else

8: Reject x∗

9: end if

10: until i = N

Algorithm 2.1: Rejection sampling for N samples.
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In common with most  methods, the rejection sampling algorithm involves the use of

(uniformly distributed) random numbers. At each step, a candidate sample, x∗, is generated

from the proposal distribution and a random number, u, is drawn from a uniform distribution

over [0,1]. Then, if

u <
P̃(x∗)

kQ(x∗)
,

the sample is “accepted” as a sample from P̃(x); otherwise it is rejected and another candidate

sample is drawn. The significance of this acceptance criterion is shown by Fig. 2.5(a): it

amounts to a test of whether the quantity ukQ(x∗), which is uniformly distributed between

zero and the value of the proposal density at x = x∗, falls below the target density. Thus more

samples will be accepted in regions where the two densities are very similar, and far fewer in

areas where P̃(x)� kQ(x). As a result, the technique is most efficient when the proposal density

closely approximates the target density. In particular, the two should have as large an overlap

in their typical sets as possible. This is certainly the case in our example: both densities are

defined for all real numbers, but the vast majority of the probability mass is in the interval [0,8].

A uniform proposal density is the worst case, in which case rejection sampling is equivalent to

uniform sampling.

After choosing 1000 samples from the proposal distribution, of which 51% were accepted,

Fig. 2.5(b) shows a histogram of the accepted samples for a single run of our example case. It

can be seen that the normalised histogram agrees quite well with the true target distribution,

which is overlaid.

The probability that any given candidate sample is accepted is given by the expectation of

the density ratio with respect to the proposal distribution:

Pr(accepted) =

∫
Ax

P̃(x)
kQ(x)

Q(x)dx =
1
k

∫
Ax

P̃(x)dx =
z
k
.

Hence in the example, where z = 1 and k = 2, we expect around half of samples to be ac-

cepted. However, this relationship highlights a crucial shortcoming of rejection sampling—as

k increases, fewer and fewer samples will be accepted, so the run time required to obtain a

reasonable sample size from the target density will also increase. For target distributions over

high-dimensional sample spaces, it may be hard to find an appropriate value for k at all; but

even if one can be found it will tend to be large, making the method impractical. In such cases,

it will be necessary to be more clever about the choice of sampling locations.

2.6.2 Markov chain Monte Carlo

A Markov chain is a particular type of discrete-time stochastic process in which the state of the

system at time t is dependent only on its state at the previous time step, t−1. That is,

P(x(t) |x(t−1),x(t−2), . . . ,x(0)) = P(x(t) |x(t−1)) ; (2.27)

the so-called Markov property. The distribution on the right hand side of Eq. (2.27) is called a

transition kernel.

A subclass of  techniques called Markov chain Monte Carlo () methods are de-

signed such that the set of samples drawn forms a Markov chain with the target density as
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1: Initialise x(0)

2: for i ∈ {1..N} do

3: Sample x∗ ∼Q(x |x(i−1)) and u ∼U(0,1)

4: if u < A(x∗,x(i−1)) then

5: x(i)
← x∗

6: else

7: x(i)
← x(i−1)

8: end if

9: end for

Algorithm 2.2: The Metropolis and Metropolis–Hastings algorithms. The difference between the two

methods is in the choice of acceptance function, A.

an invariant distribution. Details on how this is achieved can be found in more complete

treatments of methods, such as Neal (1993).

The Metropolis algorithm (Metropolis et al., 1953) is an early  method which assumes

that the proposal density from which candidate samples, x∗, are sampled is symmetric in the

sense that

Q(x∗ |x(i)) = Q(x(i)
|x∗) .

Under these circumstances a candidate sample drawn from this distribution is accepted with

probability

A(x∗,x(i)) = min
{

1,
P̃(x∗)
P̃(x(i))

}
, (2.28)

where P̃(x) is proportional to the target density, P(x), as before. If the candidate sample is

accepted then it becomes the new sample, x(i); if not, then the new sample is the same as

the previous one: x(i) = x(i−1). Thus the effect of rejecting a sample differs from the rejection

sampling approach in that a new sample is always created on each step of the algorithm.

It can be seen directly from Eq. (2.28) that if the value of the target density at x∗ is greater

than that at x(i), then the sample will always be accepted. On the other hand, if the proposed

new sample location represents a substantial drop in probability density, then it is very unlikely

to be accepted, and the chain is most likely to remain in its previous state. The result of this

policy is that the chain will spend most time in regions of the sample space where the target

density is high-valued, as we require.

The Metropolis algorithm was later generalised by W. Keith Hastings to include the case in

1: Initialise x(0)

2: for i ∈ {1..N} do

3: Sample x(i)
1 ∼ P(x1 |x

(i−1)
2 ,x(i−1)

3 , . . . ,x(i−1)
n )

4: Sample x(i)
2 ∼ P(x2 |x

(i−1)
1 ,x(i−1)

3 , . . . ,x(i−1)
n )

5: etc.

6: end for

Algorithm 2.3: Gibbs sampling over a vector quantity, x.
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which the proposal distribution is not symmetric (Hastings, 1970). In this case the acceptance

probability is given by

A(x∗,x(i)) = min
{

1,
P̃(x∗)Q(x(i)

|x∗)
P̃(x(i))Q(x∗ |x(i))

}
. (2.29)

Algorithm 2.2 describes the Metropolis and Metropolis–Hastings algorithms, given ap-

propriate forms for A. It is important to note that unlike the rejection sampling method,

Metropolis–Hastings generates correlated, rather than independent, samples. However, if a

subset consisting of, say, every 50th sample is taken, then these may be considered to be close

enough to independent for most practical purposes. The proportion of samples which may be

kept whilst retaining approximate independence will depend on the exact form of the proposal

density, as will the performance of the method in approximating its target. In particular, if

the variance of the proposal density is very large, few candidate samples will be accepted,

resulting in highly correlated samples; and if it is very small then some significant regions of

the parameter space may be left unexplored.

The extension of these methods to the multivariate case where each sample is a vector, x(i),

just requires that the proposal distribution be defined in the appropriate number of dimensions.

There is no change needed to the algorithms themselves. However, under a popular special

case of the Metropolis–Hastings algorithm called Gibbs sampling, each element of such a vector

is sampled from a different proposal distribution (Geman & Geman, 1984). This method

requires that the conditional distributions of each element in the sample vector given all other

elements be known, because these are used as the proposal distributions (see Algorithm 2.3). It

can be shown that under these circumstances, the acceptance probability for samples is unity,

and so this method is highly efficient.

2.7 Summary

In this chapter we have reviewed the basic principles of probability, and explained how the

strict, frequentist interpretation of probability can be broadened to encompass any proposition

with which uncertainty is associated. We have also looked at the basic mechanisms of inference

and learning from data, which typically involve the use of Bayes’ rule. The rationale for

maximum likelihood and maximum a posteriori parameter estimates has been explained, and

methods for calculating such estimates, including the Expectation–Maximisation approach,

have been outlined. Finally, we explored ways in which a probability distribution, whose

exact form cannot be calculated analytically, can be approximated efficiently from data. The

probabilistic perspective will appear commonly throughout the remainder of this thesis, and

we will outline techniques which rely on some of the tools and ideas marshalled above.
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3

Magnetisation, excitation and

relaxation

A   level, the  effect is reliant on spin, a phenomenon which, on the

scale of individual nuclei, is firmly in the realm of quantum mechanics. Population

differences in spin state amongst a very large number of these nuclei give rise to a residual

magnetisation, which in turn is the reason that we can retrieve a signal during an  scan.

By adding energy to a stable system of spins, we can provoke a change in the magnetisation

pattern of the system, which can be measured as the spins relax back to their resting states.

Moreover, by applying sequences of excitations to brain tissue, and fine-tuning the relaxation

process, images of the tissue can be recovered. This chapter provides a basic grounding in

these processes, to support the material that follows in later chapters.

3.1 State and spin

For a simple Newtonian system such as a moving ball, the dynamical state of the system

consists of such quantities as position and momentum, which can in principle be established

exactly, and which describe the instantaneous behaviour of the ball with certainty. In a quantum

mechanical system, on the other hand, dynamical variables such as position do not have well-

defined values at any given time; instead, quantum mechanical theory describes probability

distributions over these variables. A measurement of position, for example, is therefore a

nondeterministic experiment; and until such a measurement is made, the state of any single

quantum object is uncertain.

A form of notation introduced by Paul Dirac allows us to discuss quantum state in abstract

terms without concerning ourselves with the details of the particular system we are working

with. Using this bra-ket notation, quantum state can be described and manipulated using the

familiar principles of linear algebra (Dirac, 1958). Full details of the underlying physics, as

well as a far more detailed general introduction to quantum mechanics than the sketch which

follows, can be found in Bransden & Joachain (1989).

Under Dirac’s system, the instantaneous state of a quantum mechanical system is rep-

resented by a vector in some state space over the complex numbers, whose dimensionality
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depends on the characteristics of state in which we are interested. These vector elements of

the state space are known as ket vectors, or kets, and are written using the notation | ·〉, where

the dot is to be replaced by a label. The formulation is such that the direction of these vectors

is the only property that distinguishes one state from another; lengths are immaterial, and so

generally normalised. Consequently, |ψ〉= c |ψ〉 for any nonzero complex scalar, c. On the other

hand, some combination

|x〉 = x1|ψ1〉+ x2|ψ2〉

is, in general, different to each of the states |ψ1〉 and |ψ2〉. In fact, the composite ket, |x〉,

represents a superposition of the two constituent states. The significance of this will be explained

shortly.

If we assume that some set of ket vectors, {|ψi〉}, forms a basis for the state space we are

interested in, then any arbitrary ket can be represented as some linear combination of the set,

whose coefficients form a column vector (i.e. single-column matrix):

|x〉 =
n∑

i=1

xi |ψi〉 =


x1

x2
...

xn


Ψ . (3.1)

The matrix Ψ represents the whole basis set. We note briefly that every ket has a corresponding

bra, denoted 〈· |, which is formed by taking the adjoint of the ket vector, which is the combined

operation of matrix transposition and complex conjugation. Thus, a bra in matrix representa-

tion is a row vector whose coefficients are the complex conjugates of the elements of the ket.

That is,

〈x| = |x〉† = Ψ†
[

x1
∗ x2

∗ . . . xn
∗

]
,

where † represents the adjoint, and ∗ the conjugate. By multiplying together a bra and a ket,

we obtain

〈x | y〉 =
n∑

i=1

xi
∗ yi 〈ψi |ψi〉 ,

which simplifies to

〈x | y〉 =
n∑

i=1

xi
∗ yi (3.2)

because the basis kets, like all state kets, are normalised to unit length. Eq. (3.2) is exactly the

form of the inner product between |x〉 and |y〉.

That quantum state spaces are complex-valued is significant. Recall that the complex

number z = a + ib can be written in an alternative polar form, z = reiθ, such that

a = rcosθ b = rsinθ r = |z| =
√

a2 + b2

and i is the imaginary unit, with i2 = −1. The complex conjugate is then given by

z∗ = a− ib = re−iθ .

In polar form, r is sometimes referred to as the amplitude, and θ as the phase. It is precisely

the fact that quantum theory allows for phase effects which enables it to explain results such
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as Claus Jönsson’s double slit electron diffraction experiment, which demonstrated wavelike

behaviour in particles just as Thomas Young had done for light more than a century and a half

before (Jönsson, 1974).

It might be expected in such a system as this, where vector length has no physical implication

for the state represented by a particular ket, that eigenvectors are of significant importance;

and indeed they are central to quantum physics. Physical properties of quantum systems,

such as momentum or position, are associated with linear operators in the Dirac formalism. In

particular, these so-called observable operators are self-adjoint, so that A† = A; and as such their

eigenvectors are orthogonal and their eigenvalues are always real (Riley et al., 2002, §8.13.2).

As a result the eigenstates, |ε〉, which satisfy

A |ε〉 = λ |ε〉

for real scalar values of λ, make up a natural orthonormal basis set for the state space in which

the observable A operates.

One such observable property is spin, a quantum characteristic which is intrinsic to particles

such as protons and has no classical equivalent. These particles can be thought of as having

a natural angular momentum which causes them to spontaneously spin in place. Consider a

single component of this three-dimensional spin, along a direction which we will choose to be

the z axis of some physical space—in the case of protons, which are abundant in brain tissue,

the corresponding spin operator, Sz, has two eigenstates, which are called “spin up” and “spin

down” and may be thought of as analogous to clockwise and anticlockwise. The magnetic

quantum number of the proton, m, takes the value 1
2 for the spin up state, and − 1

2 for the spin

down. Since the eigenstates are orthonormal, the inner product of any pair of them is given by

the Kronecker delta. That is,

〈m |m′〉 = δmm′ =

 1 for m = m′

0 for m ,m′ .
(3.3)

As described in Eq. (3.1), an arbitrary spin state, |ψ〉, can then be described as a linear

combination of the spin up and spin down eigenstates:

|ψ〉 =
∑

m
pm |m〉 .

In these circumstances, where the basis vectors are a set of eigenstates, the coefficients, pm, are

called probability amplitudes, and have a specific practical significance: their squared moduli

represent the probability masses associated with each basis vector in the state |ψ〉. This prob-

ability mass function associated with the state of the system manifests itself when the state is

measured, such that

Pr(M = m) = |pm|
2 = pm

∗ pm , (3.4)

where M is the random variable representing the measured spin value.a It is important to

remember that a measurement of the spin of a proton can only yield one of the two values ± 1
2 ,

which make up the discrete sample space of M.
aThe process of measurement is a crucial and counterintuitively complex one in quantum mechanics. The question

of what constitutes a measurement is a controversial one, but the essential outcome is a sampling from the distribution
given by Eq. (3.4), and an apparent “collapse” of the system’s state into the eigenstate corresponding to the outcome,
so that repeated measurements will all produce this same outcome.
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Given this interpretation of the superposed state, we can immediately write down the

expected value of a spin measurement by referring back to Eq. (2.9). It is

〈M〉 =
∑

m
mP(m) =

∑
m
|pm|

2 m . (3.5)

The orthonormality of the eigenstates described by Eq. (3.3) allows us to expand this as∑
m

∑
m′

pm
∗ pm′m〈m |m′〉 ,

which can expanded in matrix form—provided that Sz is correctly constructed—to 〈ψ|Sz|ψ〉, a

full bracket, which is the way that expectation values are written in Dirac notation. Given an

obvious formulation of orthonormal eigenstates in this two-dimensional state space, viz.∣∣∣∣∣ 1
2

〉
or | ↑〉 =

 1

0

 ∣∣∣∣∣−1
2

〉
or | ↓〉 =

 0

1

 ,
this formulation works out correctly if we take as the spin operator

Sz =
1
2

 1 0

0 −1

 , (3.6)

which has no off-diagonal components and is therefore trivially self-adjoint.

3.2 Protons in a magnetic field

It is unlikely to come as a surprise that quantum state is not a time-invariant phenomenon.

The observable that determines the evolution over time for a quantum mechanical system is

energy, which is represented mathematically by a Hamiltonian operator, H. Given the appro-

priate Hamiltonian, the change in state of the system is described in general by the famous

time-dependent Schrödinger equation. In the special case where the Hamiltonian itself has

no time dependence, the general equation can be separated into two: the time-independent

Schrödinger equation, which takes the form of an eigenvalue equation; and a relationship

describing the time evolution of the system (Bransden & Joachain, 1989). Specifically, we get

H |ψ(t)〉 = E |ψ(t)〉 (3.7)

and

H |ψ(t)〉 = i~
∂
∂t
|ψ(t)〉 , (3.8)

where ~ is the reduced Planck constant, which corresponds to the size of a fundamental

quantum of energy. Integrating Eq. (3.8) leads directly to the solution

|ψ(t)〉 = exp
(
−iHt
~

)
|ψ(0)〉 . (3.9)

Now, we may note that if |ψ(0)〉 is an eigenstate of the Hamiltonian with eigenvalue E—as per

Eq. (3.7)—then H will be replaced by E in this solution, and the time evolution of the system

will amount to a mere multiplication of the eigenstate by a complex constant; which, as we

27



Chapter 3. Magnetisation, excitation and relaxation

know, has no effect on the physical state of the system. Consequently, a system that is in a state

that is an eigenstate of the Hamiltonian will stay in that state, unless some external influence

dislodges it.

Nuclei with spin, such as that of hydrogen (1H, which contains just a single proton), act like

tiny magnets. If all three components of the spin of a proton are represented by S, then it will

have a magnetic dipole moment of µ = γ~S, where γ is called the gyromagnetic ratio, which

varies from one species of nucleus to another. As a result of this dipole moment, an external

magnetic field will have a significant effect on these nuclei. The Hamiltonian corresponding

to the interaction with a static magnetic field applied in the z direction is given by

H = −γ~B0Sz , (3.10)

where B0 is the field strength (Callaghan, 1991). By substituting Eq. (3.10) into Eq. (3.7) and

rearranging, we obtain

Sz |ψ(t)〉 = −
(

E
γ~B0

)
|ψ(t)〉 ,

which is an eigenvalue equation for Sz. However, we already know that the eigenvalues of

this operator are ± 1
2 , so we can obtain immediately

−

(
E

γ~B0

)
= ±

1
2

;

and so

E = ∓
γ~B0

2
. (3.11)

Notice the signs: the energy of the spin up state is lower than that of the spin down state. It

is clear from Eq. (3.11) that the separation between the energy levels corresponding to the two

possible values of m is given by ∆E = γ~B0. This difference is called the Zeeman splitting, and

gives the magnitude of the energy quantum needed to excite a transition from one Zeeman

state to the other. The de Broglie relation, ∆E = ~ω, tells us that a photon with angular frequency

ω = γB0—the so-called Larmor frequency—would be able to supply the required energy.

We can also consider the time evolution of this system by substituting Eq. (3.10) into Eq.

(3.9), which gives

|ψ(t)〉 = exp(iγB0Szt) |ψ(0)〉 . (3.12)

The time evolution operator in equation Eq. (3.12)—the exponential term—represents a phase

rotation of the state about the z axis by an angle γB0t. Hence, all noneigenstates will precess

about the z axis (i.e. the direction of B0) at the Larmor frequency. This is illustrated in Fig. 3.1.

As a result of the difference in energy between the two eigenstates, the p.m.f. over spin

states for any given proton is not uniform at thermal equilibrium. Rather, a large population

of spins will be distributed amongst the Zeeman energy levels according to the Boltzmann

distribution, viz.

n↓/n↑ = exp(−∆E/kT) = exp(−γ~B0/kT) , (3.13)

where n↑ and n↓ are the number of spins parallel and antiparallel to the magnetic field respec-

tively, k is Boltzmann’s constant, and T is the absolute temperature. However, in a 1.0 T field

and at normal body temperature (310 K), the fractional excess of protons in the low energy state,
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Figure 3.1: A spin state that is not an eigenstate will

undergo spontaneous precession about the spin up

direction, thereby tracing out the pathway indicated

here by a dashed line.

|ψ(t)〉|↑〉

(n↑−n↓)/(n↑+ n↓), is only 3.295×10−6. Nevertheless, this small difference is significant, and in

a large population of spins within a some small region of space—known as an isochromat—it

is large enough to be measurable on a macroscopic scale.

The magnetisation of an isochromat at equilibrium, containing a net excess of N spins in the

positive z direction, is defined as M0 = Nµ, where µ is the proton magnetic moment discussed

above. It follows from Eq. (3.13), therefore, that the magnitude of this vector is approximately

given by

M0 = χB0 '
γ2~2B0(n↑+ n↓)

4kT
. (3.14)

The factor χ, which links the magnetisation of the isochromat with the static field strength, is

called its magnetic susceptibility.

It is clear from Eq. (3.14) that the magnetisation can be increased for a fixed group of spins,

thereby increasing sensitivity, by increasing the field strength or decreasing the temperature.

However, since the change would have to be substantial to make any significant difference, the

latter option is not very practical for in vivo !

At rest, the direction of the magnetisation vector, M0, is the same as that of the static

field. However, in a nonequilibrium state, this vector could have any arbitrary direction.

Whilst the underlying spins must always yield one or other of the eigenstates when measured,

the semiclassical representation of spin dipole moments as magnetisation is approximately

continuous, since it denotes the aggregate tendency of a large number of individual quantised

states.

3.3 The NMR signal

As we have seen, a nucleus with spin can be excited from the spin up to the spin down state

using electromagnetic radiation with an angular frequency corresponding to the appropriate

Larmor frequency. For 1H nuclei, this corresponds to a linear frequency of about 42.5 MHz T−1,

which is in the radiofrequency () range.

If a spin isochromat is excited so that half of the “excess” protons—which are responsible for

the residual magnetisation at equilibrium—are expected to be in each of the spin up and spin

down states, then clearly no magnetisation in the longitudinal (z) direction remains, because

there is no longer any net difference between the populations of spins in each state. However,

since the states of the spins are individually precessing about the z axis, as shown in Fig. 3.1,
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α
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M0
Figure 3.2: The effect of applying a radiofrequency

electromagnetic pulse to a spin isochromat at equilib-

rium is to “flip” the magnetisation vector, M, by an

angle α towards the transverse (x–y) plane.

a net magnetisation in the transverse (x–y) plane can arise if the spins are in phase with one

another, due to constructive interference. This is exactly the effect of applying an  pulse to

an isochromat at equilibrium (see Fig. 3.2). Since the initial magnetisation vector, M0, does not

precess, the spins will be in phase after the excitation has “flipped” the magnetisation towards

the transverse plane. The exact angle, α, by which the magnetisation vector is deflected will

depend on the power of the  pulse and the length of time over which it is applied; but these

parameters can be calibrated so as to produce predictably any flip angle required.

The evolution over time of the components of the magnetisation vector due to precession

is given by
dM
dt

= γM∧B , (3.15)

where ∧ is the vector cross product, and B is the total magnetic field. The latter primarily

consists of the static field, B0, but the  pulse also induces a small and fluctuating field, B1,

perpendicular to the longitudinal direction.

Eq. (3.15) does not, however, represent the whole picture. An excited isochromat will

not merely precess indefinitely at a fixed angle from the longitudinal direction; rather, its

magnetisation will gradually return to the equilibrium state. This relaxation is caused by

a combination of processes. Firstly, some of the excitation energy will be spontaneously

transferred to the environment as heat—an exponential decay process known as spin–lattice

relaxation. Evolution of the z component of the magnetisation is therefore more accurately

reflected by
dMz

dt
= γ(MxBy−MyBx)−

Mz−M0

T1
, (3.16)

where T1 is a time constant. The second relaxation process involves the transfer of energy

between excited spins, which causes their rates of precession to vary slightly from one to the

other. This in turn results in a dephasing of the spin states, so that the transverse component

of the magnetisation vector diminishes; again exponentially:

dMx

dt
= γ(MyBz−MzBy)−

Mx

T2

dMy

dt
= γ(MzBx−MxBz)−

My

T2
. (3.17)

This second time constant T2 is, in general, not equal to T1; but it cannot be larger. Eqs (3.16)

and (3.17) are collectively the Bloch equations for nuclear induction (Bloch, 1946).

Once the  pulse has been applied to excite the system it is switched off, leaving the z

component of B as the only nonzero one (the static field is still on). Under these conditions

we can therefore ignore all terms in the Bloch equations containing Bx or By. The resulting

30



Chapter 3. Magnetisation, excitation and relaxation

x

y

z

0 1 2 3 4 5

−1
.0

−0
.5

0.
0

0.
5

1.
0

t (a.u.)

M
y((

t))

(a) (b)

Figure 3.3: Effects of relaxation on the magnetisation vector after a 90◦ excitation pulse. (a) The vector

precesses around the z axis with a monotonically decreasing radius. (b) The y component of the relaxing

magnetisation vector (or equivalently, the x component) induces a decaying voltage in the receive coil. In

both subfigures, T1 = 2T2.

simplified differential equations can be integrated to give the solutions

Mx(t) =
(
c1 cos(γBzt) + c2 sin(γBzt)

)
e−t/T2

My(t) =
(
c2 cos(γBzt)− c1 sin(γBzt)

)
e−t/T2

Mz(t) = M0 + c3 e−t/T1


, (3.18)

where c1, c2 and c3 are constants; although there is no loss of generality in taking c1 = 0, so

we will do so. The x and y components of the magnetisation will then trace out a circle of

radius c2 e−t/T2 with angular frequency γBz, which is the Larmor frequency for the main field.

This radius is itself dependent on time, clearly, and will monotonically decrease as relaxation

proceeds; as shown in Fig. 3.3(a).

If an electrically conducting coil is placed around the subject in the transverse plane, the

rotating transverse magnetisation component will induce a voltage in it—just as in an electrical

generator—whose magnitude will decay exponentially due to relaxation (see Fig. 3.3(b)). It

is this phenomenon, known as a free induction decay (), which forms the signal for an

 experiment. Note that Mx and My differ only in phase, and they make up the real and

imaginary components of the complex-valued oscillating function Mxy(t) = c2 e−t/T2 eiωt, where

ω = γBz above. It is often convenient to work with the transverse magnetisation in these terms.
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3.4 Pulse sequences

The relaxation time constants, T1 and T2, are not invariant throughout the brain; or, indeed,

the body (de Certaines et al., 1993). Moreover, there can be systematic differences in these

parameters between healthy and pathological tissue of the same basic type. It is therefore

constructive from a clinical point of view to devise -based protocols for measuring rates

of relaxation; or at least, for creating contrast between regions whose rates differ. This aim can

be achieved by applying carefully designed sequences of  pulses to brain tissue.

A simple pulse sequence for weighting the signal by the value of T1 is called inversion

recovery. At its simplest, this sequence consists of a pulse inducing a flip angle of 180◦,

followed after a time  by a 90◦ pulse. The first of these—the inversion pulse—will flip an

isochromat at equilibrium so that all of the magnetisation is antiparallel to the static field. The

system will then decay back towards the equilibrium state according to

Mz(t) = M0
(
1−2e−t/T1

)
, (3.19)

until the second pulse is applied to convert the remaining longitudinal magnetisation into

measurable transverse magnetisation. Note that Eq. (3.19) is a special case of Eq. (3.18) in

which c3 = −2M0, the choice that produces the correct boundary conditions. By measuring the

 amplitude for several values of the inversion time, , one can infer the value of T1 in a

sample.

The same pair of pulses in the opposite order can be used to give T2-weighting, in a

technique known as spin-echo (Hahn, 1950). The spins are allowed to dephase for a time /2,

after which the magnetisation is flipped. After another time period of /2 the spins, which

are now dephasing in the opposite sense, will return to being in phase with one another, thus

producing a measurable signal. Once again, the constant T2 can be recovered by repeating the

experiment with several values of the echo time, . A significant benefit of this approach is

that the separate dephasing effects of small local variations in the main static field—which are

always present to some degree—will cancel out at the time the  amplitude is measured.b

The transverse magnetisation component will therefore evolve according to

Mxy(t) = M0 e−t/T2 eiωt , (3.20)

a version of Eq. (3.18) with c2 = M0. This is valid as long as all of the equilibrium magnetisation

is initially flipped into the transverse plane. In order to ensure that this is the case, the repetition

time, , between successive 90◦ pulses in a train of spin-echoes must be sufficiently large to

allow the longitudinal magnetisation to recover fully.

The inversion recovery and spin-echo pulse sequences are illustrated in Fig. 3.4, in a

schematic representation called a pulse sequence timing diagram.

In order to make the move from  to, we need the ability to localise a signal in space.

Spatial information can be encoded in the signal by applying magnetic gradients—that is, static

magnetic fields whose strength varies (linearly) across a region of space. The magnitude

bIn fact, this is only true under the (naïve) assumption that spins do not move during the experiment. In practice,
there is movement within the field between the 90◦ pulse and the signal measurement; a fact which is exploited by
diffusion , as we will see in chapter 4.
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Figure 3.4: Pulse sequence timing diagrams for inversion recovery (a) and spin-echo (b) sequences. The

axis represents time, but pulse and signal widths are not to scale.

of these gradients is small compared to that of the main field—typically on the order of

10−2 T m−1—but they are large enough to provoke variation in the angular frequency at which

local magnetisation vectors precess. A gradient with magnitude and orientation described by

a vector G = (Gx,Gy,Gz) will produce a local frequency shift, relative to the Larmor frequency,

described by

ω(r) = γG · r = γ(Gxrx + Gyry + Gzrz) ,

where r = (rx,ry,rz) represents location in the brain. After applying a 90◦  pulse to create a

measurable , the signal from a small volume of tissue is therefore given by

dA(G, t) = ρ(r)exp(iγtG · r)dr . (3.21)

We ignore the effects of spin–spin (T2) relaxation for simplicity, but in a real experiment its

effect needs to be quantified. Morris (1986) provides a detailed explanation of the impact it

has on the signal. The scalar field ρ(r) represents the number of spins per unit volume at each

location in the brain. This spin density is proportional to the initial magnetisation, M0, as we

saw in Eq. (3.14); and it is this property that we wish to recover in our experiment. The signal

value denoted by the left hand side of Eq. (3.21) is therefore not exactly the  described by

the Bloch equations, but it is closely related to it. Now, introducing

k =
1

2π
γGt ,

the signal over the whole brain is given by integrating Eq. (3.21):

A(k) =

∫
ρ(r)exp(i2πk · r)dr . (3.22)

Eq. (3.22) describes a Fourier relationship between the spin density throughout the brain,

ρ(r), and the measured signal in the presence of magnetic gradients; and it is therefore the

fundamental relationship in . If we sample the signal at a number of locations in k-space,

we can recover the spin density using a discrete Fourier transform.

There are a number of schemes for traversing k-space with various advantages and disad-

vantages, but we will just describe a relatively straightforward one to give the idea. Fig. 3.5
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Figure 3.5: The spin-warp imaging sequence. A phase encoding gradient is applied, typically along the y

axis, for a time τ; after which a frequency encoding gradient is applied along the x axis, and the FID signal is

sampled. This process is repeated a number of times with different magnitudes of phase encoding to build

up a full three-dimensional brain volume. The sequence is shown as a pulse sequence timing diagram (a)

and in terms of its characteristic trajectory in k-space (b).

shows a sequence called spin-warp (Edelstein et al., 1980). It should be noted that this is an

imaging sequence using gradients, which is quite independent from the sequences of  pulses

which are used to affect contrast.

The timing diagram in Fig. 3.5(a) shows that after the  pulse is applied, a gradient is

applied for a certain time, τ, along the y axis. The effect is to apply a phase offset to the

magnetisation vectors, γτGyry, which depends on their position in the y direction—thereby

encoding position information in the phase of the signal. Immediately afterwards, another

gradient is applied in the x direction, and is maintained while the signal is sampled. In this

case, the frequency of precession of the magnetisation vectors as time progresses is altered

by an amount γGxrx—as we saw above—which depends on the location of the tissue along

the x axis. This combination of frequency and phase encoding allows one to spatially locate

the source of parts of the signal within a two-dimensional plane. Localisation in the third

dimension of space is achieved by selective excitation: that is, only a single “slice” of a certain

thickness is excited at a time, and the 3- image is then built up from a series of these 2- slices.c

A slice selection gradient is applied at the same time as the  pulse.

As a trajectory through k-space, the sequence is easily represented. Fig. 3.5(b) shows it in

these terms. The phase encode step, along with the application of a negative gradient in the

frequency encode direction at the same time, moves us to the “leftmost” position in the space

for some value of ky. Then, during the application of the frequency encoding gradient, the

trajectory moves in the positive x direction, and all the signal data for this phase encode level is

recorded. This process is repeated for several different magnitudes of phase encode gradient,

and k-space is thereby sampled line-by-line.

The spin-warp sequence requires a separate  pulse for each line of k-space, which limits
cThis is the most common arrangement, but it is possible to use phase encoding in two dimensions, in which case

selective excitation is unnecessary.
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the rate at which images can be acquired. On the other hand, an influential alternative technique

called echo-planar imaging () is able to reconstruct an entire 2- slice image using a single

excitation pulse or “shot” (Mansfield, 1977). This method is now widely used because of its

speed advantages, especially in studies that require a large number of brain volumes to be

imaged, such as those using diffusion  or functional .

3.5 On ghosts and pile-ups

Magnetic resonance images are susceptible to various different types of artefacts, which ad-

versely affect their qualitative and quantitative interpretability and therefore need to be avoided

or corrected for whenever possible (see for example Pusey et al., 1986). We describe here the

three most significant artefacts for diffusion .

Firstly, there is the problem that the subject, which is usually a living and unsedated human

patient or volunteer, may move during the scan. Even if there is no wholesale movement of the

head, localised movement can occur as the subject swallows or moves his eyes. The ventricles,

which are full of cerebrospinal fluid, typically exhibit spontaneous pulsatile movement; and

dilation and contraction of the carotid arteries during the cardiac cycle can also be a source

of this kind of artefact. The effect of motion during the sequence is to shift the phase of the

signal originating from a particular location, which causes blurring and ghosting—that is, the

appearance of nonphysical objects, or of a physical object several times. Motion artefacts can

be alleviated by using a sequence that acquires images very quickly—generally —and by

“gating” image acquisition so that each slice is collected at the same point in the cardiac cycle

(Lanzer et al., 1984).

Whilst  is less sensitive to motion effects than other imaging sequences, it is considerably

more vulnerable than other methods to two other types of artefact: eddy current induced

distortions and susceptibility effects. We will describe these separately.

Eddy currents are tiny circulating electric current loops which are induced by the applied

gradient fields, particularly when they are large in magnitude or switched rapidly. These in

turn act as electromagnets with magnetic fields that oppose the effect of the gradient field,

causing magnification, translation and shearing in the phase encoded direction of the image.

The gradients used for diffusion imaging are particularly prone to produce this kind of artefact.

One way to significantly reduce their effects is to use a twice-refocussed spin-echo sequence,

as described by Reese et al. (2003).

Susceptibility effects occur at boundaries between materials with significantly different

magnetic susceptibilities—as defined by Eq. (3.14). In the brain this is most obvious near di-

viding lines between soft tissue and air—around the sinuses, for example. At such boundaries,

the field is locally distorted and therefore rendered inhomogenous; and as a result signal can

“drop out” of some areas while “piling up” in others. Strong susceptibility effects can also be

seen if a subject has a small piece of metal near her head, like a hair clip.

Fig. 3.6 illustrates the effects of these different types of artefact. Image (b), which illustrates

the distorting effect of eddy currents, is a diffusion-weighted image—as we will see in chapter

4, these images are particularly vulnerable to this sort of artefact. Image (d) is an extreme
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grase, and magnetization prepared turbo-spin-echo and
turbo gradient echo sequences. The PROPELLER MRI
method is well suited for imaging moving objects, due to its
inherent ability to remove some of the in-plane motion,
reject some of the artifact from through-plane motion, and
its inherent averaging of the remaining data inconsisten-
cies. The collection requires an additional factor of !/2
imaging time over conventional scans, due to redundant

sampling of k-space, but the oversampling also results in
increased SNR. The ability to use real-valued reconstruc-
tion, when appropriate, further increases SNR.

It is expected that PROPELLER MRI will also work well
for multishot diffusion MRI, similar to that discussed by
Butts et al. (13). As long as the motion-related phase from
the diffusion gradients is slowly varying, the data from
individual strips may be added together with minimal

FIG. 5. Axial images of a head with a conventional turbo-spin-echo sequence both without (a) and with (b) motion, and the PROPELLER

sequence both without (c) and with (d–i) motion. Data for PROPELLER with motion are shown after (d) no correction, (e) phase correction,

(f,g) rotation correction (image and k-space, respectively), (h) shift correction, and (i) correlation (through-plane) correction. Magnitude data

(g) are raised to the 0.2 power for display purposes.
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(a) (b)

(c) (d)

Figure 3.6: Examples of various types

of MRI artefact. Eddy currents in-

duce a distortion in (b) which results

in this circular “phantom” appearing

squashed relative to a reference im-

age (a). (Note that the increased noise

level in subfigure (b) is not caused by

eddy currents.) A susceptibility effect

near the ear canals produces signal

pile-up and drop-out (c), resulting in

artefactual bright and dark patches in

the image. Motion by the subject can

produce major blurring and ghosting

effects (d). Subfigures (a–c) are cour-

tesy of Dr Susana Muñoz Maniega;

subfigure (d) is reproduced from Pipe

(1999).

example of a motion artefact, which makes this image totally unusable.

Whilst not strictly an artefact, there is a further imaging issue which is important when it

comes to interpreting  data. In practice, the  is not retained in its original, continuous

form, but rather sampled at regular intervals by an analogue-to-digital convertor. As a result

the signal in the final image is discretised into spatial units with a fixed volume called voxels.d

The larger the dimensions of these voxels, the higher the signal to noise ratio of the image;

but at boundaries between tissue types, the inhomogeneous signal will be averaged across the

region represented by the voxel. This implicit averaging is called a partial volume effect. These

effects make images hard to interpret, since one cannot easily tell what contribution white and

grey matter, or healthy and unhealthy tissue, had to the measured signal value.

3.6 Summary

Beginning with a single proton, we have described in this chapter how the stochastic behaviour

of atomic nuclei can be usefully represented at the macroscopic scale in terms of magnetisation.

We have also demonstrated how this phenomenon may be manipulated using radiofrequency

radiation, and then measured during relaxation to elucidate characteristics of living tissue.

These techniques usually culminate, for clinical purposes, in the creation of images, whose

formation we have also discussed. Finally, we have seen that the quality of magnetic resonance

images can be affected by a number of artefacts, which arise as side-effects of the scanning

process. It should be emphasised that  pulse sequence design, and artefact avoidance and

correction, are both substantial fields in their own right; and many problems and solutions

exist which have not been touched upon at all in the brief coverage of the last two sections.

dThe word “voxel” is short for “volume element”, by analogy with “pixel”, which abbreviates “picture element”.
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In the following chapter we will focus on the specific application of the  effect to the

measurement of diffusion.
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4

Diffusion magnetic resonance

imaging

T  resonance application that the rest of this thesis will be concerned with is that

of diffusion magnetic resonance imaging (d). This chapter provides a brief description

of diffusion and how it can be examined in the brain with d. Mathematical models for

diffusion in the brain are also presented, along with their theoretical and practical benefits and

limitations. Finally, we look at some of the clinical uses of d.

4.1 The Einstein picture

Diffusion is a spontaneous phenomenon in any fluid whose temperature is greater than absolute

zero (0 Kelvin). The molecules making up the fluid possess kinetic energy and are therefore

constantly moving—the greater the energy, the faster the movement. The direction of this

movement is random, and will typically change regularly as molecules collide with one another.

Diffusion is often thought of as the process by which concentration gradients are flattened out,

and we will initially describe it in these terms; but the principle is equally applicable to the

movement of molecules within a fluid composed of a single type of molecule—in the latter

case, the process is known as self-diffusion. Diffusion is well described by classical mechanics,

so we will not need to make another foray into the quantum domain.

Consider first a one-dimensional example. We denote the concentration of some molecule

at location x and time t with C(x, t). The flux, or rate of movement of the molecules normal to

the concentration gradient, is then given by

F = −D
∂C
∂x

, (4.1)

where D is a constant known as the diffusivity of the fluid. As a result of this flux, however,

the local concentration gradient will decrease, and so a time-dependent aspect needs to be

introduced to describe the picture more fully. The equation

∂C
∂t

= D
∂2C
∂x2 (4.2)
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was first arrived at by Adolf Fick, and so Eqs (4.1) and (4.2) are called Fick’s Laws of diffusion

(Fick, 1855; reprinted in translation in Fick, 1995).

If we assume that there are n molecules in total, all of which are at the location x = 0 at time

t = 0—so that C(x,0) is a Dirac δ-function—then diffusion will proceed such that

C(x, t) =
n

√
4πDt

exp
(
−

x2

4Dt

)
, (4.3)

as described by Einstein (1905). If we divide Eq. (4.3) by n, we obtain a properly normalised

p.d.f. that describes the distribution of the molecules in the x dimension—or rather, since the

distribution is dependent on t, a continuous-time stochastic process. In particular, we can see

by inspection that the distribution P(x | t) is a Gaussian distribution with µ = 0 and σ2 = 2Dt.

If the diffusion process is isotropic, or homogeneous across all orientations, then the gener-

alisation to three dimensions is straightforward. Diffusion collinear with each of the vectors i, j

and k—the orthonormal unit vectors in the x, y and z directions respectively—is independent,

and so the joint distribution is given by

P(r |r0, t) =
1

(4πDt)3/2
exp

(
−

(r− r0)2

4Dt

)
, (4.4)

where r = xi + yj + zk, and r0 is the initial location of the molecules, which is not assumed to

be zero in this general case. The mean of the distribution is now a vector, µ = r0 = (x0, y0,z0),

while the variance is just as it was before: σ2 = 2Dt.

The dependence of the description above on a concentration gradient does not present

a problem for the case of self-diffusion. The fluid molecules may all be of a single species

under these circumstances, but we can mentally label a molecule with initial position r0 as

being (uniquely) of interest; and thereafter treat it as distinct from the rest of the fluid. The

mean-squared distance that this molecule will travel during a diffusion time t is given by〈
|r− r0|

2
〉

=
〈
(x−x0)2 + (y− y0)2 + (z− z0)2

〉
=

〈
(x−x0)2

〉
+

〈
(y− y0)2

〉
+

〈
(z− z0)2

〉
,

which is equivalent to the sum of the variances along each dimension, since µx = x0 and so on.

We therefore easily arrive at 〈
|r− r0|

2
〉

= σ2
x +σ2

y +σ2
z = 6Dt . (4.5)

Note that this equation for the mean-squared diffusion distance has no dependence on r0

since the fluid is assumed to be homogeneous, so that diffusion from all starting locations is

statistically identical. Wherever a particular molecule starts, its diffusion distance from that

point will be the same on average.

In general, diffusion is not isotropic. In a bowl of water it will be very close to isotropic,

but in brain tissues—which contain large amounts of water but also various impermeable or

semipermeable structures—diffusivity will vary from one direction to another. The Gaussian

displacement distribution at time t therefore has in general the covariance matrix

Σ = 2Dt =


2Dxxt 2Dxyt 2Dxzt

2Dxyt 2Dyyt 2Dyzt

2Dxzt 2Dyzt 2Dzzt

 , (4.6)
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DTI essentially provides two types of information about
the property of water diffusion; the extent of diffusion
anisotropy and its orientation. By assuming that the
largest principal axis of the diffusion tensor aligns with
the predominant fiber orientation in an MRI voxel, we
can obtain 2D or 3D vector fields that represent the fiber
orientation at each voxel. The 3D reconstruction of tract
trajectories, or tractography, is a natural extension of
such vector fields. Before further describing tractogra-
phy, it is important to discuss what exactly DTI measures
and how the data relate to the tract trajectories we are
trying to derive from the measurement.

In typical DTI measurements, the voxel dimensions are
on the order of 1–5 mm and DTI measures the averaged

diffusion properties of water molecules inside it. This
voxel size is usually small enough to distinguish white
and gray matter [Fig. 1(A)]. The white matter consists of
tracts that are running along various directions and are
large enough to discern visually [Fig. 1(B) and (C)]. Very
often, image resolution is sufficiently high for the white
matter tracts to contain several voxels. The white matter
tracts, in turn, consist of densely packed axons (neuronal
projections) in addition to various types of neuroglia and
other small populations of cells [Fig. 1(D)]. Inside the
voxel, water molecules are distributed between these cell
types and the extracellular space (80–85% are intracel-
lular). Thus, even a voxel within a single white matter
tract consists of very inhomogeneous environment, and
water molecules are likely to experience high anisotropy
as judged from the cytoarchitecture of the axon [Fig. 1(D)
and (E)]. Inside an axon, water molecules are surrounded
by high concentration of neuronal filaments, which are
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Figure 4.1: The linear microstructure of neural white matter. The axons and glia which make up connective

tissue at the micron scale, and the neuronal filaments which are present at the nanometre scale, are mainly

collinear, producing a consist bias in the local self-diffusion of water. Adapted from Mori & van Zijl (2002).

which is symmetric, like any covariance matrix. The diffusivity values making up the matrix

D are the components of a three-dimensional diffusion tensor, relative to the particular or-

thonormal basis set, {i, j,k}.a The special case of isotropic diffusion is then equivalent to the

conditions

Dxx = Dyy = Dzz = D Dxy = Dxz = Dyz = 0 .

In the brain, the main diffusing molecular species is water; and since a molecule of

water contains two hydrogen nuclei it is visible to . Anisotropic—that is, directionally

inhomogeneous—diffusion is associated primarily with white matter, due to the highly lin-

earised structure of this type of tissue (see Fig. 4.1), which is such that the local self-diffusion of

water molecules is restricted to a far greater degree across a white matter tract than it is along

it. Grey matter, by contrast, lacks any coherent linear structure, and so diffusion around that

kind of tissue is much closer to isotropic.

4.2 Diffusion tensor imaging

Diffusion sensitisation can be added to the standard spin-echo pulse sequence described in

§3.4 by adding a symmetric pair of diffusion weighting gradients either side of the refocussing

(180◦) pulse, as shown in Fig. 4.2. The first of these gradients will offset the phase of the spins

by an amount that depends on their location, and the second will provide equal and opposite

rephasing if the spins have not moved. Since in practice the spins do move, and randomly,

an isochromat will become dephased as the component spins spread out. The further the

water molecules have diffused during the time, ∆, between applications of the gradient, the

less perfect this rephasing will be, resulting in a smaller magnitude of final signal. Greater

diffusivity is therefore indicated by a more greatly attenuated signal. It should be noted that

aA tensor is an abstract mathematical construction which is independent of the coordinate frame being used.
However, relative to any given set of basis vectors, it can simply be represented as a matrix of numbers. Further details
would be superfluous here, but can be found in Riley et al. (2002).
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this effect differs from coherent motion or flow, which will produce a phase shift in the spin

isochromats, but will not attenuate the signal as random motion does.

It was shown by Stejskal & Tanner (1965), who first proposed the sequence, that for a

diffusion weighting gradient of maximal magnitude G, applied for a time δ, the log-ratio

between the signal, A, after the full echo time, , and that produced by the initial 90◦  pulse

is given by

ln
(

A(b)
A0

)
= −γ2δ2

(
∆−

δ
3

)
G2Deff = −bDeff , (4.7)

where b, which incorporates the relevant characteristics of the diffusion gradients, is known as

the diffusion weighting factor—a notation introduced by Le Bihan et al. (1986).

It is generally the case that diffusivity appears to vary with time rather than being constant,

so Eq. (4.7) describes an effective diffusivity, Deff, averaged over the diffusion time of the

experiment. In tissue with an anisotropic diffusion profile, this “constant” will also vary with

the orientation of the diffusion gradient applied to the sample (Moseley et al., 1991; see also

Fig. 4.3); and so we need to measure the whole diffusion tensor if we wish to characterise this

situation more accurately. The extension of the principles described above to diffusion tensor

imaging () was described by Basser et al. (1994a). In this case, Eq. (4.7) generalises to

ln
(

A(b)
A0

)
= −γ2δ2

(
∆−

δ
3

)
G2RTDeffR = −

∑
i

∑
j

bi jDeff
i j , (4.8)

where R is a normalised column vector describing the direction of the applied gradient, and bi j

are the elements of a symmetric matrix, b, which is analogous to the scalar weighting factor in

Eq. (4.7). The elements of this weighting matrix encode various interactions between diffusion

and imaging gradients, which can be quite complex and which vary from one type of sequence

to another (the  case is described in Mattiello et al., 1997). The equivalent scalar diffusion

weighting factor to b is given by the trace of the matrix.

Since knowledge of the pulse sequence design is sufficient to establish the b matrix for any

given acquisition, Eq. (4.8) represents a system of linear equations that can be solved for the six

independent components of the tensor given values of A for six noncollinear diffusion gradient

directions, plus the T2-weighted signal, A0.b However, in practice it is usual to apply more
bRecall from chapter 3 that the basic spin-echo sequence is T2-weighted, and this is the only factor in a sequence

with diffusion gradients of zero magnitude.

δ
Δ

90º

180º

RF

Signal

Gradient

δ
TE

Figure 4.2: Pulse sequence timing diagram for a

diffusion-weighted spin-echo experiment. Two

diffusion sensitisation gradients are applied ei-

ther side of the 180◦ pulse. They are switched

on for a time δ in each case, and separated by a

time ∆.
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Figure 4.3: Diffusion-weighted MR images acquired with diffusion sensitisation along three orthogonal axes.

The level of signal attenuation in some areas (such as those indicated with arrows) is evidently dependent

on this direction. Images courtesy of Dr Susana Muñoz Maniega.

(a) (b) (c)

Figure 4.4: Ellipsoids representing isotropic (a), oblate (b) and prolate (c) diffusion profiles.

than six different gradient directions, since  signal measurements are noisy, and then to fit

the tensor statistically using multivariate linear regression.

There has been some debate in the literature over the particularities of optimising the choice

of gradient scheme for various purposes (Hasan et al., 2001; Papadakis et al., 1999; Skare et al.,

2000), particularly the calculation of tensor-derived scalar metrics, which are described below.

Broadly speaking, it is as well to acquire data for as many gradient directions as possible

(Jones, 2004); and these are commonly arranged to coincide with the vertices of an icosahedron

(Batchelor et al., 2003), or to minimise the electrostatic repulsion force when the gradients are

treated as point chargesc (Conturo et al., 1996; Jones, 2004).

Once the effective diffusion tensor has been estimated, it can be used to characterise local

diffusion at each voxel in the brain in various ways. Since the matrix representing the tensor

is symmetric in any coordinate frame, its eigenvectors are orthogonal and its eigenvalues real.

We can therefore construct a local coordinate system from the eigenvectors, {ε1,ε2,ε3}, which

are arranged by convention such that the largest eigenvalue is λ1—corresponding to ε1—and

the smallest is λ3 (Basser et al., 1994b).

The general shape of the diffusion tensor is commonly visualised using ellipsoids whose

cThe inspiration here is the behaviour of electrons in atomic orbitals, which are equally charged and therefore repel
one another. They spontaneously space themselves out as a result.
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radii along each eigenvector direction are given by the square root of the corresponding

eigenvalue (see Fig. 4.4). Thus, the case of isotropic diffusion (λ1 = λ2 = λ3) is represented

by a sphere, while oblate diffusion (λ1 = λ2 > λ3) appears disc-shaped, and prolate diffusion

(λ1 > λ2 = λ3) appears cigar-shaped.

The average magnitude of the diffusion along the three eigenvectors can be calculated in a

rotation-invariant way by taking the trace of the tensor matrix; or equivalently, the sum of the

eigenvalues. This quantity is known as the mean diffusivity ():

 = 〈D〉 =
Tr(D)

3
=
λ1 +λ2 +λ3

3
. (4.9)

This quantity gives no indication of the anisotropy of the tensor, since it takes into account only

the mean of the eigenvalues. There is, moreover, no single obvious way to index anisotropy.

Three scalar valued measures that have been proposed are fractional anisotropy (), relative

anisotropy () and the volume ratio (), which are defined as follows (cf. Basser & Pierpaoli,

1996; Pierpaoli & Basser, 1996).

 =

√
3
2

√
(λ1−〈D〉)2 + (λ2−〈D〉)2 + (λ3−〈D〉)2

λ2
1 +λ2

2 +λ2
3

(4.10)

 =
1
√

3

√
(λ1−〈D〉)2 + (λ2−〈D〉)2 + (λ3−〈D〉)2

〈D〉
(4.11)

 =
λ1λ2λ3

〈D〉3
(4.12)

A  of unity represents isotropic diffusion, whereas  and  are zero when all three eigenval-

ues are equal. At the other end of the scale,  and  are maximal when λ2 = λ3 = 0, whereas

 is zero when any of the eigenvalues is zero. Of the three,  gives the highest signal to noise

ratio (Papadakis et al., 1999), and is by far the most commonly used in the literature.

4.3 A more general displacement distribution

The tensor model makes the assumption that diffusion at the scale of a voxel is essentially

Gaussian, which allows us to use the generalised Einstein equation—with covariance matrix

given by Eq. (4.6)—as an appropriate model of the underlying process. However this assump-

tion, as we will see later, is not always appropriate; and it is particularly prone to fail in regions

where white matter tracts cross one another. Alternative models of diffusion which have been

developed with the particular application of fibre tracking in mind will be discussed in chapter

5, but we will describe here an alternative which predates such applications substantially.

The origins of q-space can be traced back to the work of Edward Stejskal, who described

how a special case of the Stejskal–Tanner pulse sequence (Fig. 4.2) could be used to infer an

arbitrary local displacement distribution. If the time during which the diffusion gradient is

applied, δ, is made to be very short—in particular so that δ� ∆—then the signal attenuation

ratio of the experiment is given in general by

A(G,∆)
A0

=

∫
P(r0)

∫
P(r |r0,∆)exp(−iγδ(r− r0) ·G)drdr0 , (4.13)
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where the vector G embodies the direction and magnitude of the diffusion gradient (Stejskal,

1965). Under the assumption of local homogeneity P(r0), which represents the initial distribu-

tion of diffusing molecules within the volume of interest, is uniform; and so the outer integral

can be ignored. Stejskal also showed that if the Gaussian displacement distribution given by

Eq. (4.4) were used for P(r |r0,∆), then Eq. (4.13) becomes equivalent to Eq. (4.8), albeit with

∆−δ/3 replaced by ∆ due to the narrow gradient pulse assumption.

Callaghan et al. (1988) later proposed that the direction, magnitude and duration properties

of the diffusion gradient be parameterised as

q =
1

2π
γδG ,

by direct analogy with the k vector that is so central to magnetic resonance imaging theory (cf.

§3.4). Using this notation, and taking r0 = 0, which gives no loss of generality if we assume

local homogeneity, the attenuation ratio becomes

A(q,∆)
A0

=

∫
P(r |∆)exp(−i2πq · r)dr , (4.14)

which represents a Fourier transform of the displacement distribution. By the Fourier inversion

theorem (Riley et al., 2002), we can therefore recover the distribution by means of the inverse

transform

P(r |∆) =
1

A0

∫
A(q,∆)exp(i2πq · r)dq . (4.15)

By sampling signal values from a series of locations in q-space—typically achieved by in-

crementally stepping up the gradient strength and changing its direction—one can therefore

capture the diffusive behaviour of water molecules in the brain at different length scales and

over various diffusion times.

The appeal in acquiring a model-free estimate of the diffusion displacement distribution

is clear—modelling assumptions are avoided, and so one need not worry about their validity.

However, the narrow gradient pulse assumption made by q-space theory is itself problematic.

Whilst δmust be small enough so that the pulse can be approximated by a Dirac delta function,

the time integral of the pulse given by δG must be finite, otherwise q will be zero and there

will be no signal attenuation at all. As a result, the magnitude of the gradient pulse needs to be

very large. Such gradient strengths are attainable using modern hardware—although they are

out of the reach of most clinical  scanners—but they are very demanding to generate and

may have adverse effects on the subject. Hence, studies that have closely approximated the

narrow pulse assumption (e.g. Biton et al., 2006, who used the parameters δ = 2 ms, ∆ = 50 ms,

Gmax = 500 mT m−1) have worked with excised (ex vivo) rather than living (in vivo) tissue.

4.4 The role of registration

Since all but the simplest of d experiments require multiple image acquisitions with different

gradient directions, the basic data from which information will be derived is a series of brain

volumes. Although motion within volumes will be minimised by using an -based pulse

sequence, one cannot rule out the possibility that the subject will move during the whole
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experiment, particularly if the number of gradient directions is large. Moreover, the varying

orientations of the diffusion gradients will result in differing eddy current induced distortion

effects from one volume to another. It is therefore unwise to assume that the subject’s brain is

positioned consistently in the field of view throughout a scanning session.

The process of realigning the three-dimensional images is registration. Image registration

is usually framed as an optimisation problem in which an algorithm attempts to find a global

transformation which minimises some cost function indicating the “distance” between two

images. A number of cost functions have been used for this purpose, typically based on the

correlation or mutual information between image intensity data; but a more divisive issue

is the scope of the transformations allowed by the algorithm. The number of degrees of

freedom varies from six for a rigid-body transformation—translation by a vector L = (Lx,Ly,Lz)

and rotation by angles φ, θ and ψ about the x, y and z axes—up to hundreds or thousands

for a complex nonlinear approach, which may involve local as well as global optimisation.

Nonlinear methods have the advantage of providing a better match between the original

image and the target image, but are slower due to having to optimise over a much larger

parameter space, and pose a risk of overfitting.

General purpose linear registration algorithms optimise over affine transformations (Friston

et al., 1995; Jenkinson & Smith, 2001; Woods et al., 1998), which incorporate the rigid-body

parameters as well as a scaling vector, S = (Sx,Sy,Sz), and three shear terms: Hxy, Hxz and Hyz.

The resulting affine transformation matrix is therefore composed of the product

T =


1 0 0 Lx

0 1 0 Ly

0 0 1 Lz

0 0 0 1




1 0 0 0

0 cosφ sinφ 0

0 −sinφ cosφ 0

0 0 0 1




cosθ 0 −sinθ 0

0 1 0 0

sinθ 0 cosθ 0

0 0 0 1


×


cosψ sinψ 0 0

−sinψ cosψ 0 0

0 0 1 0

0 0 0 1




1 Hxy Hxz 0

0 1 Hyz 0

0 0 1 0

0 0 0 1




Sx 0 0 0

0 Sy 0 0

0 0 Sz 0

0 0 0 1

 .
This composite matrix may then be used to transform directly the grid of voxel locations,

making up the native space in which the original image is acquired, to their equivalent points

in the target space. The image data must then be interpolated onto this new grid. The

interpolation scheme for this final step may need to be chosen to suit the particular application,

but a trilinear scheme is often adequate.

Affine registration of diffusion-weighted images to a T2-weighted reference image from the

same scanning session is an effective way to correct for eddy current induced distortions in

the former, and it simultaneously transforms all of the individual scans into a common space

so that the correspondence between voxels in each volume is improved. Registration is never

perfect, however, and it should be borne in mind that the data used to fit a diffusion tensor

(for example) at each voxel cannot truly be said to be taken from a single fixed location in the

brain. Some inaccuracy is inevitable.

For comparative studies involving multiple subjects, a popular strategy is to register each
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(a) (c)(b)

Figure 4.5: Registration of a T2-weighted EPI image (a) to a T1-weighted standard brain volume (b) produces

a version of the original in standard space (c). Note that the general orientation and scale of subfigure (c)

correspond to those of (b), but the details of the image do not match perfectly. The different contrast types

of subfigures (a) and (b) is not a problem if the cost function is chosen appropriately.

(a) (b) Figure 4.6: Images taken from a patient 11 hours

after stroke onset. The T2-weighted image (a)

is normal in the lesion region, but the averaged

diffusion-weighted image (b) shows significantly

reduced diffusion compared with the equivalent

region in the contralateral hemisphere. Images

courtesy of Dr Susana Muñoz Maniega.

subject’s reference image to an established standard image such as that described by Evans

et al. (1993), thus transforming them all into a common standard space (see Fig. 4.5). In this

case, since no two brains are merely stretched and sheared versions of one another, linear

registration is strictly inadequate. The approximation suffices, however, for some purposes.

4.5 Diffusion MRI in the clinic

Le Bihan et al. (1986) were the first to demonstrate the clinical potential of d. They showed

that the presence of astrocytomas (a type of tumour originating in astrocytes) or oedema

(swelling due to the accumulation of excess fluid) produced measurable differences in effective

diffusivity, when compared with normal tissue. They also demonstrated reduced diffusivity in

normal white matter compared to grey matter, which is now established as a standard finding.

Diffusion imaging has been widely used to study acute ischaemic stroke (damage to the

brain resulting from a blockage in its blood supply), and has been shown to provide useful

information beyond that which is available to structural T1- or T2-weighted  (Baird &

Warach, 1998). In particular, reduced diffusivity can be observed in ischaemic tissue very soon

after the stroke onset, while T2 relaxation times are largely unaffected until oedema develops,

which takes place much later (Knight et al., 1991; see also Fig. 4.6).

The advent of  has made it possible to examine the effects of disease on the diffusion

properties of anisotropic tissues—i.e. white matter. With mean diffusivity acting as a proxy for
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overall water content, and anisotropy indices—in practice, almost invariably —indicating the

degree of “coherence” or “integrity” of the linear structure intrinsic to white matter, various low

level pathological processes such as oedema, neurotoxicity or Wallerian degeneration might

plausibly be expected to have some -visible impact. These d-derived measures have

therefore been applied to investigate the effects of a diverse array of diseases such as multiple

sclerosis, amyotrophic lateral sclerosis and Alzheimer’s disease (Horsfield & Jones, 2002); as

well as psychiatric disorders like schizophrenia, alcoholism and geriatric depression (Lim &

Helpern, 2002). More pathologies are being studied year on year.

There has also been significant interest in the effects of normal ageing on white matter

(Moseley, 2002; Sullivan & Pfefferbaum, 2006). Anisotropy has been found to be higher in

young adults than children (Klingberg et al., 1999), but it then tends to reduce with time through

adulthood and into old age (Pfefferbaum et al., 2000), presumably representing the processes

of maturation and then degradation of connective tissue. The gradual decline in white matter

integrity is accompanied by a tendency for subjects’ performance on mental tasks, particularly

those using working memory, to decrease with time; and may represent its cause. Moreover, it

has been shown that statistically compensating for mental ability in childhood—as measured

with an  test at age 11—substantially attenuates the relationship, at age 83, between  and

cognitive test performance (Deary et al., 2006), suggesting that childhood may have a bearing

on white matter integrity later in life.

Another interesting aspect of normal ageing which has been investigated with d is

the phenomenon of leukoaraiosis—also known, rather less concisely, as periventricular white

matter hyperintensity—which manifests itself as regions of abnormally high signal on T2-

weighted images, and which occurs in many healthy older subjects as well as some stroke

patients. Jones et al. (1999) demonstrated higher diffusivity and lower anisotropy in areas of

leukoaraiosis than in normal tissue, and showed that a map of  highlights the distinction

between leukoaraiosis and the ventricles better than a T2-weighted image. More recently,

Bastin et al. (2007) further demonstrated that  correlates strongly with magnetisation transfer

ratiod in regions of leukoaraiosis, but not in comparable normal-appearing white matter,

indicating that the loss of white matter integrity in such regions may be tied to a breakdown

in myelination.

Due to the demands of q-space imaging on  hardware, it has been used far less than

other forms of d in the clinical domain. Those studies that have employed the technique

have been required to essentially abandon the narrow gradient pulse requirement—Assaf

et al. (2002, 2005) used the parameters δ = 65 ms and ∆ = 71 ms, at a b-value equivalent of

14,000 s mm−2; compared with 353,000 s mm−2 in a true q-space experiment (Biton et al., 2006),

and just 1000 s mm−2 in a typical  acquisition. However, it has been shown that even

under these circumstances, meaningful information about the displacement distribution can

be recovered (Lori et al., 2003).

Although d is unique as a technique for studying structural connectivity and white

matter integrity, functional magnetic resonance imaging (f), which gives an indication of

dThe magnetisation transfer ratio is a metric derived from magnetisation transfer, a method which has not been
described above. It is sensitive to changes in large molecules such as myelin.
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the level of activity across the brain, provides complementary information. By looking for

consistent patterns of correlated activity in different parts of the brain, a degree of functional

connectivity between regions can be inferred. There have been a number of attempts to

combine f and d data acquired from the same subject together (e.g. Cherubini et al.,

2007; Guye et al., 2003; Staempfli et al., 2008), and this is likely to remain an active research area

for some time.

4.6 Summary

We have discussed the physical process of diffusion, and the means by which diffusion dis-

placement distributions of varying complexity can be indirectly measured with. A number

of scalar indices indicating the shape of the diffusion tensor have been described—notably the

widely used fractional anisotropy. The uses to which these methods have been put in the clinic,

including studies of ageing and stroke, have also been briefly surveyed. The existence and

measurability of anisotropic diffusion in the white matter of the brain are crucial prerequisites

for d-based tractography; and it is to that application that we turn next.
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White matter fibre tracking

T  white matter orientation information provided indirectly by d can be used

to reconstruct the pathways of major white matter structures through the brain. This

reconstruction process is known as fibre tracking, or tractography. A considerable number

of tractography algorithms have been put forward, however, which differ in the ways that

they interpret the original data, how they handle uncertainty, and how they represent the

reconstructed tract. In some cases nontensorial models of diffusion have been employed to

handle some of the degeneracies that the diffusion tensor model faces.

In this chapter we review a number of different types of tractography algorithm, describe

their relative advantages and disadvantages, and discuss some of the uses to which fibre

tracking methods have been applied. We also mention some of the limitations that still apply

to the state of the art algorithms.

5.1 Streamlines

We have seen in chapter 4 that the tensor model of diffusion provides an indication of the

principal orientation and magnitude of diffusion at a point, in the form of the first eigenvector

and associated eigenvalue. This information can be visualised simply by drawing a line,

whose orientation and length indicate these two properties, at each location where the model

is evaluated—typically a voxel. The components of this representation in a single axial (x–y)

plane are shown in Fig. 5.1(a). It can be seen by inspection from this figure that there is a fairly

smooth curvature in successive principal diffusion direction vectors as they progress across,

in this case, the corpus callosum splenium. The most intuitive way to reconstruct a tract is,

then, to link these directions together to form a streamline. This is the approach taken, in some

form, by a majority of tractography algorithms.

Fig. 5.1(b) demonstrates the tract reconstruction process of the Fibre Assignment by Contin-

uous Tracking () algorithm, which was first demonstrated for fixed rat brain tissue (Mori

et al., 1999; Xue et al., 1999). Beginning at the centre of a seed voxel, the algorithm moves in

the direction of the principal diffusion orientation until reaching the boundary with another

voxel, at which time the direction of the reconstructed tract changes to match the orientation of

diffusion in the voxel it is entering. This process continues until a termination criterion is met,

and is then repeated in the opposite direction from the seed point. It should be noted that the
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with the largest eigenvalue was assumed to represent the
direction of a local axonal fiber within the laboratory
reference frame. This data processing provided the 3D-
vector field from which the fibers were reconstructed. In
addition a cylindrical anisotropy index was obtained,
defined as Acyl ! ("1 # ("2 $ "3)/2)/( "1 $ "2 $ "3).

MR Experiment

As mentioned above, the acquisition of high-resolution 3D
data is necessary to relate diffusion anisotropy information
to 3D axonal projections and to avoid dominant orienta-
tional averaging within voxels containing multiple tracts.
The long scanning time associated with such a high
resolution complicates diffusion measurements, which are
inherently susceptible to motion artifacts. In order to
accomplish both the resolution and motion objectives, we
designed a modified rapid 3D diffusion MRI technique (18)
with a real time motion monitoring scheme based on the
navigator echo approach (18–20). A data size of 128 % 64 %
32 was acquired over a field-of-view of 28 %20 % 16 mm,
after which zero-filling to the final resolution of 256 %
128 % 64 was performed (nominal voxel size of 109 %
156 % 250 µm). By using a repetition time of 1 sec, two
scans per phase encoding, and acquisition of four echoes
per excitation, each diffusion-weighted image could be
acquired within 17 min. From seven diffusion-weighted
images along six independent axes, six independent vari-
ables in a diffusion tensor were calculated using a multi-
variant linear fitting as described by Basser et al. (7). The
total data size was 59 MB and the data processing time was
30 min on a Silicon Graphics ONYX workstation (Moun-
tain View, CA).

Fiber Tracking

Fibers were reconstructed using a method dubbed FACT
(16). In this method, tracking is started through the selec-
tion of an arbitrary voxel in 3D space, afterwhich an axonal
projection is traced in both the orthograde (forward) and
retrograde (backward) directions. Even though the 3D-
vector field obtained from the DTI consists of discrete
voxels, the tracking is made in a continuous number field.
Namely, a line is propagated from the center of the initial
voxel along the direction of the vector until the line exits to
the next voxel (Fig. 1). In this approach, the starting point
in the next voxel is the intercept of the previous voxel.
Once the line is propagated, voxels through which the line
passes are connected to represent the fiber projection. The
tracking is terminated when it enters a region where the
average of the inner products with the vectors of the three
closest voxels is smaller than 0.75. For the tracking of a
certain projection, the white matter region is identified
using the Acyl image or a T2-weighed image using anatomi-
cal landmarks, after which a group of voxels is defined.
The FACT analysis is then performed from each voxel
(10–20 voxels depending on the size of the region of
interest).

RESULTS

The results of the in vivo 3D-fiber tracking are shown in
Fig. 2. Eight well-known fiber projections, genu and

splenium of corpus callosum, internal and external cap-
sule, fimbria, anterior commissure, optic tract, and stria
terminalis were tracked. Two-dimensional slices are shown
in Fig. 3 with the corresponding levels in a rat brain atlas
(21). The tracking of the genu and splenium of the corpus
callosum began from the points indicated by arrows. Fibers
in the genu (light blue) were followed laterally into the
external capsules of both hemispheres, while fibers in the
splenium (pink) were tracked posteriorly into the occipital
poles. Fibers in the fimbria (blue) were traced ipsilaterally
to the alveus of CA1-CA2 and also contralaterally through
the ventral hippocampal commissure (hc) into the fimbria
of the contralateral hippocampus. Internal capsule (red),
optic tract (green), and stria terminalis (peach)were closely
clustered in the slice shown in Fig. 3E. However, their
overall structures were very different, and our tracking
precisely reflects them. Fibers initially identified in the
internal capsule extended in one direction to caudate-
putamen (CPu); in the other direction they passed through
the cerebral peduncle (cp) of the midbrain and into the
longitudinal fasciculus of the pons (lfp). The optic tract
was identified at the point where it first contacted the base
of the diencephalon (Fig. 3F) and then traced to its
termination in the dorsal lateral geniculate body (Fig. 3C).
At that point, however, some of the tracking started to
follow fibers in fimbria, a problem described previously
(16). Fibers in the stria terminalis looped around the
thalamus and connected the hypothalamus (HT) and the
amygdala (Amg) (Fig. 3E). Fibers in the anterior commis-
sure (yellow) were not only traced caudally and across the
midline but also rostrally into the olfactory bulbs. Some of
the tracts in the anterior commissure and splenium of
corpus callosum seem to exit the brain. This is because the
3D-rendering scheme filtered out low intensity regions,

FIG. 1. A schematic diagram of the fiber tracking by the fiber

assignment by continuous tracking (FACT) program. Short arrows

represent vector directions of the largest principal axis. A tracking (a

long arrow) is started from a center of a selected voxel and a line is

propagated by observing the vector direction of each voxel. The

voxels through which the line passes are connected. Examples of the

tracking from voxels numbered 1 and 2 are shown. Note that the two

trackings which lead to the labeling of two different fiber paths share

the same voxels indicated by shading (for more detail, please see the

Discussion section).

1124 Xue et al.(b)(a)

Figure 5.1: (a) Visualisation of the principal orientations and magnitudes of diffusion at each voxel in part

of a dMRI image. (b) Reconstructing fibre pathways using the FACT algorithm. Subfigure (b) is reproduced

from Xue et al. (1999).

arrowheads shown at each voxel are present for the benefit of interpretation only—they have

no physical significance, since diffusion orientation information is directionally nonspecific.

The differences between the early tractography algorithms are primarily in the choice of

termination criteria and sampling policy. While  samples a trajectory direction exactly once

per voxel, other approaches interpolate the original data to obtain local orientation information

at a shorter scale, with the reconstruction typically involving short steps of a fixed distance

(Basser et al., 2000; Conturo et al., 1999)—a strategy which results in smoother tract pathways

than the  one. Meanwhile, anisotropy and tract curvature thresholds are commonly used

as termination criteria for the reconstruction process, both of which help avoid tracking into

grey matter or cerebrospinal fluid regions. Further discussion of these issues can be found in

a review of fibre tracking methods by Mori & van Zijl (2002).

The simplest fibre tracking algorithms are completely deterministic—the principal eigen-

vector of the diffusion tensor is assumed to be a reliable and noise-free indicator of the local

white matter trajectory. The problem, of course, is that the principal diffusion direction is

neither of these things. Its reliability is never perfect, and will be affected by the number of

gradient directions applied to the sample and any registration errors that occurred during the

alignment of the component images, while noise is in fact omnipresent and will tend to “cause

a computed trajectory to hop from tract to tract”, as Basser et al. (2000) have pointed out. More-

over, noise errors will accumulate as one moves further and further from the seed point. One

way to try to circumvent this issue is to impose constraints on the tract reconstruction process

which are informed by a priori knowledge about the geometry or topology of the underlying

fasciculi (Conturo et al., 1999; Poupon et al., 2000). The benefit of these methods—as well as the

extent of the problem that they attempt to tackle—is, however, difficult to predict in general

terms, since the effects of noise (say) will depend on the particular protocol used to acquire

the data, the shape of the tract, the signal-to-noise ratio, the anisotropy characteristics of the

tissue, and so on. The final streamline itself gives no indication of the level of confidence that

one can expect in the reconstruction.

More recently, streamline-based algorithms have been developed that attempt to indicate

the variability that can result, when tracking from a single seed point, due to noise and
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Full data set Sample 1 Sample 2

A(1)
1 A(2)

1 · · · A(6)
1 A(2)

1 A(4)
1

A(1)
2 A(2)

2 · · · A(6)
2 A(5)

2 A(4)
2

A(1)
3 A(2)

3 · · · A(6)
3 A(1)

3 A(1)
3

A(1)
4 A(2)

4 · · · A(6)
4 A(2)

4 A(6)
4

...
...

...
...

...︸                       ︷︷                       ︸ ︸︷︷︸ ︸︷︷︸
regression ↓ ↓ ↓

D̂ D(1) D(2)

Table 5.1: Illustration of the application of bootstrapping to a dMRI data set containing repeated measure-

ments. We denote the ith signal measurement using the kth gradient direction as A(i)
k .

uncertainty in the data. Some of these techniques are parametric, using a model to explain the

data, while others are nonparametric, and therefore implicitly take any source of variability

in the results into account. Fundamentally, however, all of these probabilistic approaches are

based on the idea of replacing the single principal diffusion direction with a distribution over

orientations, which indicates the uncertainty associated with the data at each voxel. One can

then generate a family of streamlines from a single seed point using a Monte Carlo approach,

sampling from these local distributions each time a new tracking direction is needed. Early

work in this vein was published by Lazar & Alexander (2002) and Parker et al. (2003), who

used the tensor shape to choose the variance of the orientation distributions. The approach

demonstrated by Parker et al. was later developed further by Cook et al. (2004).

Bootstrap approaches to tractography are an example of a nonparametric statistical ap-

proach. Bootstrap is a resampling method, which requires that multiple measurements of the

diffusion-weighted signal be taken for each diffusion gradient direction. Then, rather than us-

ing all of these data to fit a single diffusion tensor—which is the maximum likelihood approach

taken by more simplistic algorithms—a subset of the data is sampled, with replacement, from

the multiple measurements, and the tensor is calculated from this subset. A large number of

these subsets are then extracted from this original data set, producing an empirical distribution

over each of the free parameters in the diffusion tensor model. A general approach to using

bootstrap to characterise uncertainty in d data was put forward by Pajevic & Basser (2003),

with applications to tractography following later (Jones & Pierpaoli, 2005; Lazar & Alexander,

2005).

Let us assume, for the sake of argument, that we have made six signal measurements for

each of the gradient directions applied during a d experiment. The diffusion tensor, D, can

then be estimated from various subsets of these data, provided that at least the minimum six

noncollinear gradient directions, plus a measurement with no diffusion weighting, contribute

data to each subset. This is the principle employed by Jones (2003), and illustrated by Table 5.1.

The maximum likelihood tensor is denoted by D̂, while those estimated by sampled subsets of
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confidence intervals, and how to visualize both fiber ori-
entation and uncertainty concurrently. Since this tech-
nique provides an objective measure of reproducibility of
fiber orientation, it could be used to provide objective
comparison of the performance of different DT-MRI data
acquisition strategies in terms of their reproducibility of
fiber orientation.

This technique could also be used to compare the effi-
cacy of different tensor smoothing and regularization tech-
niques (10,14–16) which aim to eliminate variations in
estimates of eigenvectors due to noise while preserving
true anatomical variations. The optimal scheme would be
that which resulted in the smallest cone of uncertainty
while, at the same time, introducing minimum perturba-
tion of the most probable fiber orientation (i.e., the most
likely fiber orientation in the unsmoothed/unregularized
data).

Both Figs. 1 and 2 show low uncertainty in fiber orien-
tation estimates in the splenium of the corpus callosum, a
structure that is much favored in the tractography litera-
ture. It is perhaps unsurprising, therefore, that results ap-

FIG. 2. Cones of uncertainty (showing the
95% confidence angle) at the level of the
splenium of the corpus callosum. a: Frac-
tional anisotropy. b: Cones of uncertainty in
the region indicated by the dashed lines in a.
This region is further magnified in c. The
zoomed area highlights a region where fibers
cross and the uncertainty in !1 is large.

FIG. 3. Plot of 95% confidence interval in fiber orientation vs. Clinear.
The data for each voxel in the entire 60-slice volume are plotted on
a pair-wise basis.
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confidence intervals, and how to visualize both fiber ori-
entation and uncertainty concurrently. Since this tech-
nique provides an objective measure of reproducibility of
fiber orientation, it could be used to provide objective
comparison of the performance of different DT-MRI data
acquisition strategies in terms of their reproducibility of
fiber orientation.

This technique could also be used to compare the effi-
cacy of different tensor smoothing and regularization tech-
niques (10,14–16) which aim to eliminate variations in
estimates of eigenvectors due to noise while preserving
true anatomical variations. The optimal scheme would be
that which resulted in the smallest cone of uncertainty
while, at the same time, introducing minimum perturba-
tion of the most probable fiber orientation (i.e., the most
likely fiber orientation in the unsmoothed/unregularized
data).

Both Figs. 1 and 2 show low uncertainty in fiber orien-
tation estimates in the splenium of the corpus callosum, a
structure that is much favored in the tractography litera-
ture. It is perhaps unsurprising, therefore, that results ap-

FIG. 2. Cones of uncertainty (showing the
95% confidence angle) at the level of the
splenium of the corpus callosum. a: Frac-
tional anisotropy. b: Cones of uncertainty in
the region indicated by the dashed lines in a.
This region is further magnified in c. The
zoomed area highlights a region where fibers
cross and the uncertainty in !1 is large.

FIG. 3. Plot of 95% confidence interval in fiber orientation vs. Clinear.
The data for each voxel in the entire 60-slice volume are plotted on
a pair-wise basis.

10 Jones

Figure 5.2: Orientation uncertainty in dMRI data, visualised as cones showing the 95% angular confidence

interval at each voxel. Subfigure (b) corresponds to the area of (a) indicated with a box; likewise the further

enlarged image (c). Reproduced from Jones (2003).

the data are denoted D(1) and so on. The latter can be used to estimate the uncertainty associated

with the principal eigenvector, which is visualised in Fig. 5.2. Each set of sampled tensors for

a given brain volume can then be used, in turn, to generate a single streamline from a chosen

seed point, using a normal deterministic algorithm. The result will be a set of streamlines with

a spatial distribution that reflects the variability encountered by the streamlining algorithm

across the sample set—as shown in Fig. 5.3.

There are some interesting characteristics of the uncertainty elucidated in this way. Firstly,

we can see by immediate inspection of Fig. 5.2 that the width of the 95% confidence interval

on the principal diffusion orientation, which is depicted there, is highly variable between

voxels. Near the middle of the corpus callosum splenium the confidence interval is extremely

narrow. In this region, the maximum likelihood tensor would provide a reliable indication

of the trajectory of this white matter structure. By contrast, the uncertainty is huge in areas

which are composed primarily of —like near the bottom right of subfigure (b)—where

diffusion is close to isotropic. Less predictable, however, is the effect of fibre crossings, which

can be observed near the centre of (c). In this case, diffusion is approximately oblate, with two

relatively large eigenvectors and one smaller one; and so the principal direction is less certain.

The cone metaphor reflects this.

The necessity of acquiring multiple signal measurements for each diffusion gradient direc-

tion represents a problem for the basic bootstrap paradigm, because it will result in considerably

extended scanning times without the improvement in angular resolution that would result from

spending this time sampling more directions. Long scan times are particularly problematic in

the clinical domain, since patients cannot be expected to remain still for long periods of time.

Furthermore, the bootstrap method can substantially underestimate the degree of uncertainty

in the tensor components when the number of repeated acquisitions is small (Chung et al.,

2006). However, a method known as the wild bootstrap offers to remove the need for multiple

acquisitions when estimating the uncertainty in d data (Whitcher et al., 2007).

The wild bootstrap differs from “ordinary” bootstrapping in that it works with the residuals

from a diffusion tensor fit to the signal data. If we describe a vector of unknown parameters,
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cle. The utility of the visitation count maps is further
demonstrated in Fig. 3, in which pathways emanating
from a point placed in the cingulum are shown. The tract
reconstructions are very compact along the central third of
the cingulum. This portion of the tract is in local isolation

and there are no “alternative ” routes/fasciculi in proxim-
ity for the stream particle to follow. However, as the
streamlines proceed further from the seed point, the tracts
begin to deviate and can pick up artifactual false-positive
tracts, e.g., connections to the contralateral hemisphere.

FIG. 1. Bootstrap results obtained from
three seed points placed in the body of the
corpus callosum. The location of the seed
point is indicated by a red asterisk.

FIG. 2. Results obtained from a seed
point placed in the right cerebral pedun-
cle. (a) The “raw” bootstrap trajectories;
(b) the percentage visitation count. The
color bar is in 5% intervals, with dark blue
corresponding to the lowest visitation
count (at least 1 visitation), while red cor-
responds to all 5000 bootstrapped tracts
passing through the voxel. The data are
overlaid on slices showing the fractional
anisotropy (FA). The seed point location is
indicated by the cross-hairs.
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Figure 5.3: Results of applying the

bootstrap method to tractography of

the corticospinal tract. From a sin-

gle seed point, which is indicated on

each subfigure, a number of sample

streamlines are produced (top). The

proportion of the streamlines visiting

each voxel can be counted to form

a “visitation map” (bottom). Repro-

duced from Jones & Pierpaoli (2005).

x = (Dxx,Dyy,Dzz,Dxy,Dxz,Dyz, ln A0)—where Dxx (and so on) are the tensor components, and

A0 is the signal without diffusion weighting—then the linear model used to estimate these

components can be written out as

A = Bx +ε ,

where A is a vector of observed log-signal values, B is a matrix describing the diffusion gradient

directions applied, and ε is a vector of error terms. Thus we can evaluate an estimate for the

parameters, x̂, using least-squares regression and our knowledge of A and B. As with other

bootstrap methods, we do not need an explicit model for the errors, which are caused by

noise and misregistration and so on. However, we subsequently use them to generate samples

according to

A(i)
k = Bk · x̂ + hk s(i)

k εk , (5.1)

where Bk and εk are the elements of B and ε corresponding to the kth direction, and s(i)
k has the

simple probability mass function

Pr
(
s(i)

k = s
)

=

 1
2 for s = ±1

0 otherwise
∀k, i . (5.2)

The constant hk in Eq. (5.1) is used to ensure that the sampled residuals have the covariance

structure required by the method (see Chung et al., 2006, for details). Rather than repeatedly

measure Ak, therefore, we instead resample the data by randomly permuting the signs of the

residuals—i.e. by sampling from Eq. (5.2) for each value of i and k. Thus, only a single set of

real measurements need be made, keeping scanning time short.

5.2 BEDPOST

It should be noted that the wild bootstrap introduces a dependence on the diffusion tensor

model which is not present using ordinary bootstrap. Since the acquired data must be fitted to

some kind of model for residuals to be available, the wild bootstrap is by nature a model-based

resampling method. However, while the signal measured for each diffusion gradient applied

is modelled using the diffusion tensor formalism, no model is used to explain the variability

itself.
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It is possible to go further, and model the observed data including their inherent uncer-

tainty. This is the aim of another category of tractography algorithms, including the 

algorithm (Bayesian Estimation of Diffusion Parameters Obtained using Sampling Techniques;

see Behrens et al., 2003b), which has been used for most of the practical parts of this thesis.

By way of illustration of a fully model-based approach to tractography, and because of its

centrality to work described later, this algorithm is fully described below.

The  algorithm uses Markov chain Monte Carlo sampling to estimate diffusion 

parameters. As above, the algorithm works with a vector of observed log-signal data, A, and

a model parameter vector, x. However, because the diffusion tensor model can only usefully

describe a single principal diffusion direction—since the second eigenvector is constrained

to be orthogonal to the first—similar information can be embodied in a simpler model. In

particular, Behrens et al. assume that the diffusion displacement distribution is a mixture of

two Gaussians, in which one “compartment” is isotropic and the other is perfectly anisotropic,

describing a single local tract orientation. The signal for the kth diffusion direction, µk, is then

given by

µk = A0
(
(1− f )exp(−bkD) + f exp(−bkDGT

k RMRTGk)
)
, (5.3)

where bk is the kth scalar b-value, Gk is the kth diffusion encoding direction represented as a

column vector,

M =


1 0 0

0 0 0

0 0 0

 ,
and R rotates M to align with the fibre direction in the voxel, which requires two implicit

angles (θ, φ). Compare Eq. (5.3) with the standard d formulations in Eqs (4.7) and (4.8).

The natural index of anisotropy arising from this model is the mixture coefficient, f , which we

refer to as the anisotropic volume fraction (). Note that the model provides no information

about anisotropy perpendicular to the direction encoded by R; but then such information is

not directly relevant to streamline tractography.

Under the generative model of local diffusion described by Eq. (5.3) and the assumption

that noise is independent and identically distributed for each measurement, the likelihood of

the observed data is given by

P(A |x) =
∏

k

P(Ak |x) , (5.4)

where

P(Ak |x) ∼N(µk,σ
2) ; (5.5)

and so the full parameter vector is x = (A0,D, f ,θ,φ,σ). The posterior distribution over these

parameters is given by Bayes’ rule:

P(x |A) =
P(A |x)P(x)∫

P(A |x′)P(x′)dx′
. (5.6)

For the purposes of fibre tracking, however, the most important parameters at each voxel are

the angles which provide tract orientation information. If we wish to obtain distributions over

x1 = (θ,φ), we will need to calculate the marginal distribution given by

P(x1 |A) =

∫
P(x |A)dx2 , (5.7)
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where x2 = (A0,D, f ,σ), a vector consisting of the remaining parameters. Both the evidence term

in the denominator of Eq. (5.6) and the marginal distribution of Eq. (5.7) require the evaluation

of complex integrals, however, and cannot be expected to be soluble analytically. We therefore

turn to  sampling to evaluate them empirically.

The priors, P(x), in Eq. (5.6) are chosen by the authors to be uninformative, except where

ensuring positivity is appropriate: in A0 and f . Initialisation for the Markov chains is provided

by performing a normal least-squares diffusion tensor fit to the data at each voxel, and using

tensor analogues of each parameter. Samples for σ are generated using a Gibbs sampler,

and all other parameters are sampled using the Metropolis–Hastings algorithm. Proposal

distributions for the latter are zero-mean Gaussians whose variance is tuned to maintain an

acceptance rate of 0.5.

The generative model for the noisy data, Eq. (5.5), takes the form of a normal distribution

with known mean—given knowledge of the partial parameter vector x3 = (A0,D, f ,θ,φ)—and

unknown variance. This is a common and therefore well-characterised situation. Using a

gamma prior distribution for the precision, τ = 1/σ2, viz.

P(τ |α,β) = Gamma(α,β) =
τα−1 βα e−βτ

Γ(α)
,

where Γ(·) is the gamma function, the posterior over τ given data A is another gamma distri-

bution:

P(τ |α,β,A,x3) = Gamma

α+
K
2
, β+

1
2

∑
k

(Ak−µk)

 ,
where K is the total number of gradient directions acquired. This is used by  as the

conditional distribution for the Gibbs sampler, although the authors do not explicitly state how

they chose the prior hyperparameters α and β.

The marginal distribution for x1 is trivially extracted from the samples over x by considering

only θ and φ from each sample vector. The tractography part of the algorithm—which the au-

thors call ProbTrack—then uses these samples to reconstruct a set of “probabilistic streamlines”

using a normal streamlining approach. Given a seed voxel, a, the process is as follows.

1. Start with the current “front” of the streamline set to a.

2. Select a random sample, (θ,φ), from P(θ,φ |A) at the streamline front.

3. Move the front some small distance in the direction of (θ,φ).

4. Return to step 2, and repeat until a stopping criterion is met.

The stopping criteria are not strict, stipulating only that a streamline is not allowed to curve

by more than about 80◦, and that a streamline will be terminated if it leaves the brain or enters

an area that it has already visited.

To evaluate the direction of propagation at any location in the brain, not just those that

coincide with voxel centre points, some kind of interpolation scheme is required. The authors

use a probabilistic analogue of trilinear interpolation, in which a sample is drawn from one
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(a)

(b)

(c)

Figure 5.4: Example discretised spatial

distribution from the BEDPOST/ProbTrack

tractography algorithm, showing the corti-

cospinal tract in axial (a), coronal (b) and

sagittal (c) maximum intensity projections.

The underlying greyscale image shows AVF

in the slice in-plane with the seed point in

each case. White indicates that nearly all

streamlines pass through the local voxel,

while red means that very few do. The full

colour scale is shown.

of the two adjacent voxels in each dimension according to how close the sample location is to

each of them. Indexing in voxel steps, the sample location is taken from the p.m.f.

Pr(x = v) =

 ceil(x)−x for v = floor(x)

x−floor(x) for v = ceil(x),

where floor and ceil are the usual floor and ceiling functions. If x = floor(x)—that is, x falls

exactly on a voxel location—then the sample is taken from that voxel with unit probability.

This procedure for generating streamlines is repeated a large number of times (typically

5000) for a particular seed point, generating a spatial distribution for the tract running through

the seed point at a. This distribution may be usefully discretised by counting up the number of

streamlines passing through each voxel and associating this count with the voxel volume. An

example of the result is shown in Fig. 5.4. These data can be interpreted as confidence bounds

on the location of the most probable tract passing through the seed point.

Behrens et al. showed, in their paper, that the levels of uncertainty estimated by their

method are comparable with those estimated by the bootstrap approach described by Jones

(2003)—thus justifying, to some extent, the additional assumptions that they make in their

fully model-based approach. The advantage of this added model specificity, meanwhile, is an

improved sensitivity.

A standard implementation of  is freely available as part of the  package of

software tools (Smith et al., 2004), which is written and maintained by the  centre at the

University of Oxford.

A number of variations on, and extensions of, the  method have been proposed.

Friman et al. (2006) describe another alternative model for diffusion at a voxel, which is essen-

tially the tensor model, but with the two smaller eigenvalues constrained to be equal—that is,

λ2 = λ3 = α—thereby producing the form

µk = A0 exp(−αbk)exp
(
−(λ1−α)bkGT

k RMRTGk

)
. (5.8)

The authors also use a more theoretically justified noise model, whose variance depends on

the signal value; and they use point estimates for the “nuisance” parameters in the model in

order to reduce its computational demands.
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Figure 5.5: Front propagation in fast march-

ing tractography. The speed function, F, is

designed so that the front of the spreading

region grows most quickly where its normal

vector, n, aligns closely with the principal

eigenvector of the local diffusion tensor, ε1.

Thus the front will move fastest along paths

with smoothly varying principal diffusion

orientation. Arrowheads on the eigenvec-

tors are notional. After Parker et al. (2002b).

grey matter

x′ x

tractε1
n

front

Neither the compartment model described by Eq. (5.3) nor the constrained model of Eq.

(5.8) can account for more than one fibre orientation at a voxel. Rather, multiple fibre orienta-

tion information is manifested as increased uncertainty in the single orientation that they can

represent. However, both models can be generalised to handle this case, which occurs com-

monly in the brain at typical imaging resolution—the compartment model by adding extra

anisotropic compartments (Behrens et al., 2007), and the constrained case by modelling addi-

tional tensors (Hosey et al., 2005). It is generally wise to use the simplest model that explains

the data satisfactorily at each voxel, rather than simply to fit multiple fibre orientations at every

location in the brain. Hosey et al. achieve this by fitting one and two tensor models at each

voxel and using probabilistic model selection to choose between the results, while Behrens et al.

fit a single, complex model but apply a technique known as automatic relevance determination

(see MacKay, 1995, §7) to factor out unneeded parameters.

5.3 Fast marching

Streamline generation is not the basis for all fibre tracking algorithms; although it is, as we

have mentioned, the most common. One alternative general approach is to propagate a 3-

surface or front in all directions from the seed point at once, such that its speed is faster in some

directions than in others—a method called fast marching tractography (; see Parker et al.,

2002b). A speed function is used to define how fast the front moves as it progresses through

the brain. Parker et al. (2002a) use the speed function

F(x) = min
{
|ε1(x) ·n(x)|, |ε1(x′) ·n(x)|, |ε1(x) ·ε1(x′)|

}
, (5.9)

where n(x) is the local normal to the front at point x, and ε1(x) is the first eigenvector of the

local diffusion tensor. The point x′ represents the position of a neighbouring voxel that has

already been passed by the front. These terms are visualised in Fig. 5.5.

As we follow this propagating front out from the seed point, we can establish a “time of

arrival” for each voxel in the brain. Wherever the front moves fastest, the time of arrival to

voxels along its route will be low. One can do target-based tractography by then performing a

gradient descent in a time of arrival map, from the target voxel back to the seed. Exploratory

tractography from a seed point is also possible by using every other voxel in the brain as
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a target point in turn, and retaining those pathways which are most plausible under some

criterion, such as the minimum or average value of the speed function along them.

The performance of  hinges on the choice of speed function. Parker et al. (2002b) discuss

alternative forms for the speed function, although they limit themselves to the case where the

first tensor eigenvector can be considered a reliable indicator of tract direction. Since then,

however, Staempfli et al. (2006) have described a set of four speed functions, from among

which their  algorithm selects, depending on the tensor shape at x and x′. This allows their

method to track through regions in which diffusion has an oblate, rather than prolate, profile.

5.4 High angular resolution methods

A number of models of diffusion have been developed for the purpose of elucidating the

orientations of multiple fibre populations within a voxel. Some of these are direct extensions

of simpler models, as we have already seen, while others were designed from the outset to

work with crossing fibres.

The need for more complex models than the tensor model in tractography has been touched

upon earlier in this chapter, but Fig. 5.6 demonstrates the issue explicitly (see also Frank, 2001).

With a single fibre orientation per voxel, the tensor model is an adequate model, effectively

representing the diffusion profile expected for this case, as in subfigure (a). On the other hand,

we would like to be able to recover a profile encapsulating two fibre orientations when this

is justified (b), but instead the tensor can only represent a directionally nonspecific profile (c).

In order to track effectively through regions of crossing fibres, however, the structure in the

inherent diffusion profile must be retained.

The first requirement for successful elucidation of crossing fibre architectures is, then, a

diffusion model that is capable of representing their relatively complex structure; but there

are also commensurate acquisition requirements. Since more complex models have more

parameters, and in particular because they aim to more fully represent the diffusion profile,

larger numbers of gradients must be applied to improve the angular resolution of the scan. For

this reason, the modelling and acquisition techniques that aim to represent complex intravoxel

architectures are called high angular resolution diffusion imaging () methods. Secondly,

in order to produce strong enough contrast between the signal effects of each fibre population,

greater diffusion weighting—corresponding to greater values of b, the weighting coefficient—

is usually applied. This can be achieved by increasing gradient strength or diffusion time.

The effect on angular contrast of increasing the b-value is shown in Fig. 5.7, and described in

Alexander et al. (2001). It should be borne in mind that unfortunately, higher b-values also

produce less overall signal—since the weighting factor determines the level of attenuation in

the signal due to diffusion effects—so the signal-to-noise ratio of the acquisition is lower.

One way to handle multiple fibre directions is to use multiple tensors (Tuch et al., 2002)—an

approach we have already seen employed, in a constrained form, by Hosey et al. (2005). Under

this model, the diffusion displacement distribution is assumed to be a mixture of Gaussians

with different covariance structures. Two tensors are able to faithfully represent the situation

shown in Fig. 5.6(b), although a third tensor would need to be used for the case of three fibre
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(a)
(b) (c)

Figure 5.6: Visualisation of diffusivity as a function of gradient orientation. When there is a single fibre

population within a voxel, it produces a diffusivity profile like the one in (a), which is well represented by

the diffusion tensor model. In the presence of two orthogonal populations, the true profile is something like

(b), but a single diffusion tensor is only capable of representing the ambiguous case shown in (c).

(a) b = 500 s mm-2 (b) b = 1000 s mm-2 (c) b = 3000 s mm-2

Figure 5.7: Dependence of the signal on b-value. Multiple fibre orientations are better contrasted at higher

levels of diffusion weighting. Peak diffusivity in each of the two component tensors was 7.5×10−4 mm2 s−1.
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populations, and it is often not possible to know a priori how many fibre populations are

expected within a given voxel.

It should be noted that a multiple tensor model assumes that the diffusing water molecules

do not move between fibre populations during the course of the experiment. This is known

as the assumption of slow exchange, and it is a typical assumption in the analysis of crossing

fibre structure. Since the root-mean-squared diffusion distance for a typical d protocol is of

the order of 10 µm, compared to a typical axon diameter of a few microns, this assumption is

thought to be a reasonable one for most purposes. Fibre tracts consist of bundles of hundreds

of axons, and so diffusion over the width of a few axons will rarely exchange between bundles.

5.4.1 Using q-space

An alternative general approach to the crossing fibre problem is to employ q-space diffusion

imaging. As we saw in §4.3, q-space imaging allows us to recover an arbitrary displacement

distribution in a model-free manner, by taking a Fourier transform of  signal information

acquired using an appropriate scheme. A scheme suitable for recovering crossing fibre ori-

entations was described by Wedeen et al. (2005), using 515 q-vectors and a maximal b-value

equivalent of 17,000 s mm−2. Having recovered a spatial displacement distribution, P(r), an

orientation distribution function () can be calculated by projecting the distribution onto the

unit sphere. That is,

Ψ(r̂) =

∫
∞

0
P(ρr̂)ρ2 dρ , (5.10)

where r = ρr̂. In this case the authors use the squared vector length, ρ2, as a weighting factor.

The  then provides the information needed to perform tractography, using a streamline

method or otherwise, in the region. (It should be noted, however, that the  has no proba-

bilistic interpretation because it is not properly normalised.) This approach is called diffusion

spectrum imaging ().

The biggest problem with  is its acquisition requirements. The protocol makes no real

attempt to satisfy the narrow gradient pulse assumption, so the demands it makes on gradient

hardware are not extreme; but because it samples q-space quite thoroughly, imaging a brain

volume at a reasonable resolution takes far longer than a comparable  protocol.

A step towards reduction of the q-space sampling requirements of  was taken by the

development of so-called q-ball imaging (Tuch et al., 2003; Tuch, 2004). In this case, the length

of the sampled q-vectors is fixed so that they lie on a sphere. The authors show that an  can

then be recovered directly by means of an integral transform called the Funk–Radon transform,

which has its roots in computed tomography, a medical imaging technique using -rays. The

authors also describe a method for calculating this transform that is reasonably simple and

computationally inexpensive. Fast marching tractography has since been demonstrated using

the q-ball  as a speed function (Campbell et al., 2005).

It has been shown that the q-ball method produces  information that is in fairly good

agreement with standard, invasive tracing work (see Fig. 5.8), and certainly provides more

useful information for tractography in crossing fibre regions than the tensor model (Fig. 5.9).

Note that in Fig. 5.9(a) the first tensor eigenvector represents a more or less arbitrary orientation
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Figure 5.8: Results from q-ball imaging and

comparison with invasive tracing. The q-

ball reconstruction of fibre orientations ef-

fectively represents the fanning out of path-

ways emerging from part of the corpus cal-

losum, which can be seen in an atlas of

the central nervous system (Niewenhuys,

1996). Reproduced from Tuch et al. (2003).

Neuron
888

Figure 2. Comparison of DTI, QBI, and Nieuwenhuys Atlas

Comparison of DTI (top row), low-frequency QBI (q ! 670 cm"1) (middle row), and a histological tracing (bottom row) from the Niewenhuys
atlas (Niewenhuys, 1996). The Niewenhuys tracing is taken from approximately the same level as the MRI. The DTI map is rendered as a
cuboid field, where each cuboid is oriented in the direction of the principal eigenvector of the diffusion tensor within that voxel. The QBI map
is rendered as multicuboid field where the cuboids represent the peaks of the ODF within that voxel. The cuboids are color-coded according
to the red-green-blue scheme described in Figure 1 and are scaled by the fractional anisotropy for the DTI map and by the generalized
fractional anisotropy for the QBI map.
The region-of-interest images (right column) are taken from the three-way intersection between the CR, SLF, and projections from the CC.
At the intersection, DTI only shows the CR, whereas the QBI resolves the crossing between the CC, CR, and SLF. The intersection is shown
in more detail in Figure 3. The projections of the SLF can be seen to extend as far superior as the level of the PCL. Also, the SLF intersects
the projections to SFG. The fanning projections from the CC to PreCG and PoCG are clearly resolved. This fanning pattern is consistent within
the histological results shown in the Niewenhuys figure (bottom row). In contrast, on the DTI (top row) the striations of the CC are obscured
by the ascending CR. In the absence of the CC projections, PreCG and PoCG appear to receive no inputs. Abbreviations: CC, corpus callosum;
CR, corona radiata; CG, cingulate gyrus; SLF, superior longitudinal fasciculus; PCL, paracentral lobule; PoCG, postcentral gyrus; PreCG,
precentral gyrus; SFG, superior frontal gyrus.

in regions where the crossing occurs. This is consistent with the degenerate representation

expected under this model (cf. Fig. 5.6).

Jansons & Alexander (2003) describe an alternative to an orientation distribution function

called persistent angular structure (). As with the  formulation, the aim is to capture the

orientation information in the signal which is important for tractography, whilst discarding

the less salient radial information. The radial part of the diffusion displacement distribution is

therefore factored out and represented by a Dirac δ-function, viz.

P(r) =
p(r̂)δ(|r| −ρ)

ρ2 ,

where the function p(r̂) is the , the angular component of the distribution. Here, ρ is

a parameter that has to be chosen independently. By means of an optimisation which is

constrained by the relationship between the data and the displacement distribution—embodied

in Eq. (4.13)—the authors arrive at the maximum entropy solution

p(r̂) = exp

λ0 +
∑

j

λ j exp(iq j ·ρr̂)

 , (5.11)

where {λ j} are constants to be found. The maximum entropy solution is the most uninformative

function possible, subject to the constraints imposed by the data. The intuition of this approach

coil, an eight-channel acquisition system, and an eight-

channel head surface coil. Data were reconstructed using a

sum of squares algorithm.

We note that we used a standard scanner in order to

validate QBI with a diffusion phantom under clinical imaging

conditions, which is a challenging aspect of this work

compared with DSI validation achieved in Lin et al. (2003),
which was realized with a micro-gradient coil delivering up to

1000 mT mK1.

As described previously, echoplanar acquisition cannot be

carried out on the diffusion phantom owing to the presence of

small air bubbles yielding large susceptibility artefacts.

Therefore, we used a standard pulsed gradient spin echo

sequence with conventional Stejskal–Tanner diffusion sensit-

ization (Stejskal & Tanner 1965; Tanner & Stejskal 1968;

figure 3).

Sequence parameters were as follows. The field of view

was set to 19 cm. The slice thickness was set to 3 mm,

including enough layers of rayon fibres crossing at 908. We

used a 128! 96 acquisition matrix, interpolated during

reconstruction to 256! 256, leading to 0.74! 0.74!
3 mm3 voxels, and we selected 4 interleaved axial slices

parallel to the plane containing fibre bundles. Data were

reinterpolated to 128! 128 matrix yielding 1.5! 1.5!
3 mm3 voxels.

Echo time, TE, was set to its minimum possible value

52 ms and repetition time, TR, was chosen considering T1

estimation inside fibres and set to 1000 ms. The total scan

time for the dataset was exactly 5 h 36 min.

Diffusion sensitization settings were chosen within the

constraints of both hardware limitations and characteristics of

the anisotropic structure to be measured. Water solution is

characterized by an ADC close to 2.2!10K9 m2 sK1 at

25 8C. This value is approximately three times the value of

ADC inside white matter and clinical QBI of the brain

requires b-values greater than 3000 s mm2 to obtain correct

high angular ODF. Therefore, we decided to use a b-value
equal to 1000 s mm2. The gradient coil specifications of

the system lead to the following Stejskal–Tanner parameters:

dZ21.52 ms; DZ26.064 ms; and GZ40 mT mK1 that cor-

respond to the spatial modulation jqjZ(g/2p)dGZ3.58!
104 mK1 (g is the gyromagnetic ratio, G is the diffusion

gradient magnitude corresponding to the nominal maximal

gradient strength).

As the diffusion sensitization parameters are known, one

can compute the free average displacement sZ
ffiffiffiffiffiffiffiffiffi
2Dt

p
Z

9:12 mm with the diffusion time tZDKd/3Z18.89 ms. This

9.12 mm average displacement must be compared to the fibre

spacing achievable with rayon fibres of 17 mm diameter and

manual packing technique. A greater displacement sensitivity

(a)

(c)

(b)

(d)

Figure 7. Axial maps of diffusion phantom corresponding to diffusion tensor model. (a) T2-weighted map of an axial slice
located inside fibre bundles; (b) fractional anisotropy map revealing the anisotropy of the underlying structure; (c) Red–green–
blue colour map asserting the presence of one fibre bundle oriented along the horizontal x-axis (red colour) and one fibre bundle
oriented along the vertical y-axis (green colour); (d ) map of the main eigenvector of diffusion tensor superimposed on the T2-
weighted image. Note the mixture of red and green colour on the RGB map at the location corresponding to fibre crossing, and
the wrong corresponding eigenvectors.
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fibres, we defined three regions of interest, two regions
inside x- and y-bundles, and a third located inside the
crossing area (figure 10). The deviation angles (table 1)
for each of the three regions were evaluated as
a1Z19.18 for the bundle oriented along the x-axis
(ROI1), a2Z15.58 for the bundle oriented along the
y-axis (ROI2) and a3Z29.88 for fibre crossing (ROI3).

The samemeasurements were taken using the tensor
model yielding the following results: the deviation
angles for each of the three regions were evaluated to
a1Z10.38 for the bundle oriented along the x-axis
(ROI1), a2Z10.08 for the bundle oriented along the
y-axis (ROI2) and a3Z53.48 for fibre crossing (ROI3).

In the case of single population regions of interest,
DTI seems to give better resolution than QBI. This is
not surprising since the DTI model is reconstructed

from a robust fit involving the only six coefficients of
the tensor matrix, while QBI reconstruction is analyti-
cally model free, and, consequently, more sensitive to
the presence of noise. We must keep in mind that
imaging of diffusion phantoms is always more difficult
than in vivo brain imaging, so the difference should be
less striking with in vivo experiments. However, fibre-
crossing locations clearly highlight the net contribution
of QBI in comparison with DTI for describing multi-
modal configurations in the case of ex vivo experiments
(figures 7d and 11). However, the reliability of QBI in
vivo has yet to be proved.

4. DISCUSSION
This study aimed to demonstrate the capability of QBI
to describe the structural anisotropy of tissue more
effectively than conventional DTI, by providing an
accurateODF, even in the context of clinical scanner use
where imaging conditions are much less advantageous
than for high gradient strength, short field of view MR
systems, as used by Lin et al. (2003). Consequently,
although it is not possible to reach orientation accuracy
down to the degree order, QBI is sufficiently precise to
allow studies of tissue orientation such as white matter
fibre tracking or cytoarchitectony studies.

This accuracy relies primarily on scanner perform-
ance, phantom design and the QBI method.

The hardware limitations of the gradient coil in terms
of maximum strength and slew-rate leads to an echo
time not smaller than half of the T2 relaxation time,
which directly decreases the SNR by a factor of two.

Phantom design also plays an important role in the
SNR decrease. First, rayon fibres are permeable, but
they do not have a tubular structure, such as
myelinated axons. Therefore, the diffusion is largely
restricted to the external cavity made up of the space
between filaments. Consequently, the spin density of
a voxel is drastically reduced compared with that of
tubular structure, and the observed anisotropy
remains low (fractional anisotropy was evaluated to
0.2 on FA map; figure 7b) because fibres were
manually tightened. This manual operation does not
allow for controlling of the average distance
between fibres. Therefore, the average free random
walk sZ

ffiffiffiffiffiffiffiffiffi
2Dt

p
Z9:12 mm may be too short compared

with measuring a stronger anisotropy. The only
possible action for improving this random walk
observation is to increase the diffusion time t.
However, after several experiments, this potential
solution was discarded because it also required
increasing the echo time, resulting in a significant
decline in SNR. Nevertheless, we were able to
consistentently measure the anisotropy of the fibre-
crossing structure on the diffusion phantom
(figures 9–11). Such results confirm the efficiency of
the QBI method for characterizing the structural
orientation of tissue. Furthermore, it should be noted
that white matter tissue is more suitable than textile
fibres for diffusion imaging. This means that the
quadratic angular error is probably much better than
the 308 we reached with the diffusion phantom.

The QBI method itself affects the theoretical angular
accuracy of the ODF. First, the number of diffusion

Figure 11. Main orientations of ODF calculated from QBI
model. Red is used for representing orientations of ROI1,
green for orientations of ROI2 and blue for orientations of
ROI3. Vectors for ROI1 and ROI2 are aligned with the x- and
y-axis, respectively. ODF belonging to the fibre-crossing area
present two main lobes, leading to both different orientations
of the diffusion process that are globally consistent with the
orientations of rayon fibres. This result must be compared
with the eigenvector map of tensor model depicted in figure 7.

Table 1. Quadratic average deviation angle between the
primary orientation of the ODF and the x- or y-laboratory
axis in regions containing one single-fibre population (ROI1
and ROI2), or between the primary and second orientations
of the ODF and both x- and y-axes in regions containing fibre
crossing (ROI3).
(q-Ball deviation angles can be compared with results
obtained with diffusion tensor model.)

ROI, a priori
orientation(s)

q-ball deviation
angle (deg)

DTI deviation
angle (deg)

ROI1: ux 19.1 10.3
ROI2: uy 15.5 10.0
ROI3: (ux, uy) 29.8 53.4
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(a) DTI (b) q-ball

Figure 5.9: Fibre orientation

information reconstructed using

DTI and q-ball methods for a

specially constructed phantom,

mimicking orthogonal crossing

fibre populations. Adapted from

Perrin et al. (2005).
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Chapter 5. White matter fibre tracking

is to encode just the angular structure “reported” by the acquired data, without introducing

extra information by making additional assumptions.

A big—perhaps the biggest—advantage of - is its modest acquisition requirements.

Jansons & Alexander use a scheme involving just 54 nonzero q-vectors, compared to hundreds

for a typical or q-ball experiment. The trade-off, however, comes in computation time. Since

the , Eq. (5.11), is a nonlinear combination of functions, reconstruction times for - are

typically orders of magnitude longer than those required by the other, linear techniques. With

present computing power, the time needed to fully process a large data set could be prohibitive.

5.4.2 Spherical deconvolution

A further subcategory of methods use a technique called spherical deconvolution, which

allows one to recover an  without relying on the Fourier relationship between the d

signal and the displacement distribution, which is anyway only approximate since the narrow

gradient assumption is not fulfilled. Instead, the fundamental assumption here is that the

signal arises from the convolution of an  with a “response function”, which is assumed

to be invariant across all white matter in the brain, with partial volume effects accounting for

all nonorientational variability (Tournier et al., 2004). Slow exchange is also assumed. We

therefore write, for a particular b-value,

A(θ,φ) =
∑

i

fi Ri S(θ) = Ψ(θ,φ)⊗S(θ) , (5.12)

where θ represents the polar angle and φ the azimuthal angle in spherical polar coordinates,

fi is the volume fraction of the ith fibre population, and Ri is a rotation matrix representing its

orientation. The symbol ⊗ represents convolution on the unit sphere. We note that the unit

vector r̂ used above as the  parameter is related to the two angles by

r̂ = (sinθ cosφ, sinθ sinφ, cosθ) .

The response function, S, is a function only of θ because it is taken to be axially symmetric.

Given the knowledge of an appropriate response function, the can therefore be deconvolved

out of the signal profile, at least in principle.

It is worth noting that the spherical deconvolution model is related to the anisotropic

component of the  partial volume model, Eq. (5.3). In that case the response function

represents Gaussian diffusion along a single orientation, and the  is a δ-function whose

orientation corresponds to that of the modelled fibre pathway. - can also be framed as a

deconvolution (Alexander, 2005).

Tournier et al., by contrast, use an  which can represent multiple directions; and they

represent it, along with the response function, in terms of a set of functions known as the

spherical harmonics (Riley et al., 2002). These functions form an orthonormal basis set over the

sphere, and their use in general spherical deconvolution problems has been described by Healy

et al. (1998). Representation of the signal profile, A, using these basis functions had already

been described (Alexander et al., 2002; Frank, 2002). Under this parameterisation, the  can

be recovered by means of a straightforward set of matrix multiplications, given knowledge of
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Figure 5.10: Results of applying the spherical deconvolution method

in a region of fibre crossing in the pons. The two fibre orientations

appear quite distinct from one another and are qualitatively accu-

rate representations of the underlying architecture. Reproduced from

Tournier et al. (2004).

SNR0 = 30, hsep = 608, nmax = 8 with filtering), the standard
deviation in the estimated angle is approximately 98. Note however
that there is a bias in the estimated orientations, whereby the
estimated orientations of the two fibers are dpushed apartT slightly
by approximately 0.78. This bias is due to the limited angular

resolution of the technique and can be reduced by using a higher
value of nmax (results not shown). The bias also decreases to zero
as the separation angle hsep approaches 908 (data not shown). As

might be expected, the standard deviation in the estimated
orientations decreases as SNR0 increases, but the bias remains
constant. The volume fractions tend to be overestimated in the
presence of noise, but this bias disappears at high SNR. As

expected, the standard deviation in the estimated volume fractions
decreases as a function of SNR0. In both cases, the bias in the
estimated values is much less than their standard deviation for the

range of feasible SNR0 values.
Fig. 5 shows the dependence of the spherical deconvolution

technique on the b value used (b value increases from left to right

of figure). At low b values, the angular dependency of the signal
profile in the plane containing both fiber orientations is relatively
small, and the fiber ODF reconstruction is very noise sensitive. At

high b values, the angular dependency is much more pronounced,
but the signal attenuation is so large that the noise begins to
dominate. Intermediate b values produce better results, because
they introduce the strong angular dependence necessary to resolve

the fiber orientations, without attenuating the signal down to the
noise level. For SNR0 = 30, the results indicate that the optimal b
value lies between 3000 and 4000 s/mm2.

If the response function R(h) used to deconvolve the signal
attenuation profile does not correspond exactly to the signal
attenuation profile of the underlying fibers, their volume fractions

will be incorrectly estimated. For example, for a system consisting
of two fiber populations crossing at 908, with both underlying
anisotropies FA1 = FA2 = 0.7 and volume fractions f1 = 0.3, f2 =
0.7, the volume fractions estimated using a response function with

anisotropy set to FAR = 0.8 are f1 = 0.19, f2 = 0.44 (assuming no
noise and nmax = 8). However, although the actual volume fractions
are incorrect, their intensities relative to each other are preserved,

as are the estimated fiber orientations (data not shown). Note also
that the sum of the volume fractions is no longer unity.

On the other hand, if the two fiber populations present have

different underlying anisotropies, their relative volume fractions
will not be preserved, regardless of the response function used. For
example, for a system similar to that above, consisting of two fiber

populations crossing at 908, with underlying anisotropies FA1 = 0.7

and FA2 = 0.8 and volume fractions f1 = 0.5, f2 = 0.5, and the
response function anisotropy set to FAR = 0.7, the volume fractions

estimated are f1 = 0.49, f2 = 0.81 (assuming no noise and nmax = 8).

Fig. 5. The effect of b value on the estimation of the fiber ODF using the spherical deconvolution method. Top: the noiseless signal attenuation profile S(h,/)
in the plane of the fibers for a system consisting of two fiber populations (FA1 = FA2 = FAR = 0.7) crossing at 908. Bottom: the corresponding fiber ODFs for

SNR0 = 30. As before, the mean fiber ODF is depicted by the opaque surface, and the mean F SD by the transparent surface. Left to right: b value increasing

from 1000 to 5000 s/mm2 in increments of 1000 s/mm2. Other parameters: Nenc = 60, nmax = 8 with filtering.

Fig. 6. Fiber ODFs reconstructed from the in vivo data for adjacent voxels

in the pons. Top left: an axial FA map at the level of the pons. Bottom left: a

magnified section of the FA map, colored according to the anatomic

direction of the major eigenvector of the diffusion tensor (red: left–right,

green: anterior–posterior, blue: inferior–superior). Right: the fiber ODFs

reconstructed from the voxels highlighted in the direction map, also colored

according to orientation. Note that the fiber ODFs are displayed as coronal

projections to highlight the presence of two distinct fiber orientations and

that any negative lobes in the fiber ODFs have been discarded. (For

interpretation of the references to color in this figure legend, the reader is

referred to the Web version of this article.)

J.-D. Tournier et al. / NeuroImage 23 (2004) 1176–1185 1181

the response function—which the authors establish by observing the signal profile in strongly

anisotropic parts of the brain.

The method has been demonstrated to work well for resolving fibre crossings in simu-

lations and in real data acquired with a modest 60 gradient directions at a b-value of about

3000 s mm−2 (see Fig. 5.10). The authors estimate that using these acquisition parameters,

two fibre orientations with a separation of 60◦ can be recovered with a standard deviation of

around 9◦. The minimum resolvable separation is estimated to be about 40◦.

The validity of the assumption of equivalent response throughout the brain is hard to

establish, but the most significant shortcoming of the method is probably its sensitivity to

artefacts caused by noise. Recently developed methods for regularising the  (Sakaie &

Lowe, 2007; Tournier et al., 2007) promise to mitigate this issue significantly, however—even

when the signal-to-noise ratio is low. Thus it may be possible to apply the method to recover

useful orientation information even at the lower b-values commonly used in  experiments.

A parametric version of the spherical deconvolution method has also been recently developed,

allowing Bayesian statistics to be used to infer an  (Kaden et al., 2007).

5.5 Applications and challenges

Given the increasingly formidable array of ideas and innovations which have been thrown at

the fibre tracking problem, it is natural to ask what scientific uses there may be for reliable

tractography methods once they have been developed. At present, there are two general

categories of application for these algorithms which have appeared in the literature.

The first application might be loosely described as connectivity analysis. Despite the fact

that tractography is still very much a field in its infancy, it is already beginning to provide

information about the brain’s internal connections which are corroborating the findings of

more well established—and more invasive—neuroscientific techniques. In an impressive piece

of work, Behrens et al. (2003a) demonstrated, using tractography, that voxels in the thalamus
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can be effectively categorised by the targets of their most likely projections into cortex. The

resulting thalamic parcellations are in close agreement with atlas data (see Fig. 5.11), and have

been further reinforced by functional results (Johansen-Berg et al., 2005). Similar principles

have been applied to the corpus callosum (Huang et al., 2005), and used to identify boundaries

between cortical regions based on their connectivity (Johansen-Berg et al., 2004).

The second category of application encompasses the segmentation and visualisation of

specific tracts. The emphasis in this case is more clinical than neuroscientific, since segmenting

a particular tract is often a precursor to comparative analysis of anisotropy—or some other

indicator of pathology—between a patient group and controls. We will not expand further

on the segmentation application here, however, because it will be the focus of the next three

chapters; and therefore will be described fully elsewhere. Tract visualisation can be useful in its

own right as a preoperative surgical planning tool, since any invasive treatment will naturally

try to minimise damage to important connective pathways—although at present it is highly

advisable to avoid setting too much store by tractographic results in such critical applications

(Kinoshita et al., 2005).

Notwithstanding their increasing popularity and promising early results, tractography

methods have some outstanding theoretical and practical limitations. The problem of handling

crossing fibres cannot be said to be fully solved, especially in the relatively high noise and low

angular resolution regime which is common in clinical scanning. There is also an additional

degeneracy which is widely recognised, but whose impact has not yet been fully characterised:

the problem of “kissing” fibres (Basser et al., 2000). From a fibre tracking point of view, it is

important to be able to distinguish the two intravoxel architectures shown in Fig. 5.12, but a

recovered will usually not provide enough information to do so.

However plausible the reconstructed tracts may appear to be, the issue of validation is a

significant one. Efforts to validate tractography methods have recently increased, and include

computer simulation work (as in Hosey et al., 2005) and studies with physical phantoms

designed to mimic biological white matter (Campbell et al., 2005; Perrin et al., 2005). In addition,

Bürgel et al. (2006) have generated maps of the routes of a number of fasciculi, based on

postmortem histology, for comparison with tractography results. We saw, in Fig. 5.8, evidence

of qualitative agreement between the q-ball  and fasciculus crossing information derived

invasively; and in a similar way Schmahmann et al. (2007) demonstrated a very respectable

Figure 5.11: Thalamic parcellation using proba-

bilistic tractography. Dividing the human brain

into major cortical regions (a) and colour coding

thalamic voxels according to their most probable

projection into cortex using tractography (c,d)

yields results broadly in good agreement with in-

formation obtained using invasive methods (b).

Reproduced from Behrens et al. (2003a).
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Figure 5.12: Kissing and crossing fibre architectures.

In (a) the two fibre populations bend away from one

another, whilst in (b) they cross or interdigitate. Since

the angular information intrinsic to each of these sce-

narios is very similar, it is hard to tell them apart from

their ODFs.
(a) kissing (b) crossing

agreement between -based tractography and histology in the monkey brain. The matches

are still far from perfect, however; and are often demonstrated in rather idealised conditions.

The  scan used by Schmahmann et al., for example, was performed on a 4.7 T system and

took 25 hours to complete. Such protocols are clearly useless to the clinician.

5.6 Summary

In this chapter we have attempted to provide a sense of the spectrum of extant approaches

to the fibre tracking problem. We have focussed on giving a sense of the breadth of the

alternatives, to avoid provoking informational indigestion in the reader (or the author), and

have therefore omitted one or two notable techniques due to their similarity to other methods.

It should be evident that the range of proposed solutions is wide, although they differ with

respect to a fairly small number of core principles. Streamline-based tracking methods are

the most widespread, but the model of orientation density is an important factor. There is,

as yet, no clear reason to use one particular technique over all others, and studies based on

tractography would be well advised to justify their choice of algorithm according to the nature

of their aims.
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Neighbourhood tractography

I  of communication between regions of the brain is indeed a significant factor in

cognitive impairments, as the disconnection hypothesis posits, then d and tractography

are surely apt for studying this kind of pathology. But for the potential of the technique to

be fully realised, its ability to provide proxy measures for white matter integrity such as 

will not be sufficient—it is also important that robust methods exist to compare such measures

between normal and abnormal conditions, and to spatially localise any reproducible differences

whenever possible.

In this chapter, we review the methods that have been applied to the localised study of

white matter with d, and describe a novel and automated approach to the issue. Our

method treats segmentation as an a posteriori tract matching problem. We define a reference

tract in a single brain volume, and then use a tract similarity measure to select from a number

of candidate tract segmentations based on their topological resemblance to the reference. We

demonstrate that this approach improves the consistency of segmentation results in a group

of healthy young volunteers, thus reducing the impact of one source of within-group variance

on anisotropy measurements.

6.1 Group comparison in white matter

Approaches to the identification and localisation of systematic differences between the white

matter of two or more populations fall into two broad categories. One can either use a

technique that is itself capable of highlighting local regions where differences are focussed; or

hypothesise where such regions may be, a priori, and then study those target areas specifically.

Tractography, when applied as a segmentation technique, provides a white matter-specific tool

for implementing the latter approach. However, we begin here by examining those methods

which work with the whole brain.

Voxel-Based Morphometry () is a whole brain technique which was originally conceived

to find areas of structural difference between groups (Wright et al., 1995), but has since been

generalised to voxelwise comparison of many types of medical image data (Ashburner &

Friston, 2000; Good et al., 2001). Uptake of the technique in the clinical d literature has been

significant over the past few years, particularly in the study of schizophrenia, whose effect on
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shows voxels with FA greater than 0.3 (in the actual schizophrenia
results shown later, we used a threshold of 0.2). The number of white

matter voxels (which equals the volume in mm3 at this resolution) in
the MNI152 segmentation is 455,154. The total number of skeleton
voxels is 289,562; however, the number within the MNI152 white

matter mask is 77,374, a sixfold reduction compared with the
number in the mask. This reduction reflects the aim of reducing the
FA data to being most robustly and informatively represented by just
the centres of white matter tracts (though see also the comments in

the final discussion relating to the option of also using other
measures such as integrated FA or tract width as statistics of interest).
With respect to the effect of thresholding, the number of skeleton

voxels with FA less than 0.2 is 148,218, of which 146,151 (99%) lie
outside theMNI152white matter mask. Furthermore, of the skeleton
voxels inside the MNI152 white matter mask, over 97% have a FA

greater than 0.2. These figures show clearly that the general effect of
thresholding (at, e.g., 0.2) is to distinguish between areas that are on
average grey matter and those that are on average white matter.

Fig. 11 shows the variation in aligned FA images relative to
the mean FA skeleton, from a second dataset—15 subjects who

stutter and 11 controls. It can clearly be seen that the skeleton
lies within or near WM tracts in the great majority of subjects.

Projecting individual subjects’ FA onto the skeleton

Fig. 12 shows the search results in part of an axial slice taken
from analysis of 18 normal subjects. For each subject a set of arrows
from the skeleton to that subject’s (aligned) FA image is shown. It
can be seen that where there is slight misalignment of a subject’s

warped FA image with the skeleton (derived from the mean FA
image), the search strategy appears to be correctly taking values
from the true centre of the nearest tract. (Note that the search is in 3D

so these 2D cross-sectional cuts through the image, and the search
vectors do not quite show the whole story.)

In order to show qualitatively an example relationship between

tractography output and a mean FA skeleton, we took the
reproducibility data (see later) and derived several tracts for a single
subject (note: not the same subject as that used as the nonlinear

registration target). The tractography was run using FDT (Behrens et
al., 2003b; Smith et al., 2004); two masks were defined such that
(tract-following) samples were seeded from each mask and accepted
only if they passed through the other. After passing through the

second mask, the tract following was terminated for clarity of
display. Masks were placed by hand in the left and right upper
cingulum, optic radiation, cortico-spinal tract and in the genu of the

corpus callosum. Fig. 13 shows the 8-subject group mean FA
skeleton underneath the tractography output from one of the
subjects. On the basis of these images, one would be fairly confident

that a perpendicular search from the skeleton voxels will intersect the
correct tract appropriately, and it is also clear that the search is
necessary to correct the slight misalignment between the tract centre
and the skeleton, in several places.

Testing for Gaussianity

As discussed above, it is of interest to test whether projecting
data onto the mean FA skeleton improves the Gaussianity of the
cross-subject distribution of FA values. In Jones et al. (2005), it

was shown that there was a large number of voxels whose cross-

Fig. 9. FA skeletons created using 3 different target subjects for nonlinear registration. (A) All 3 skeletons overlaid. (B) target subject from all 33 subjects. (C)

Target subject from just the 20 controls. (D) Target subject from just the 13 ALS patients. All colour maps show FA values from 0.3:1.

Fig. 10. Mean FA skeleton from 36 controls and 33 schizophrenics,

thresholded into three ranges: green = 0:0.2, red = 0.2:0.3, blue = 0.3:1.

Underneath is the tissue-type segmentation (into grey,white andCSF) derived

from the population-average segmentation priors used by SPM and FSL.

S.M. Smith et al. / NeuroImage 31 (2006) 1487–1505 1497

shows voxels with FA greater than 0.3 (in the actual schizophrenia
results shown later, we used a threshold of 0.2). The number of white

matter voxels (which equals the volume in mm3 at this resolution) in
the MNI152 segmentation is 455,154. The total number of skeleton
voxels is 289,562; however, the number within the MNI152 white

matter mask is 77,374, a sixfold reduction compared with the
number in the mask. This reduction reflects the aim of reducing the
FA data to being most robustly and informatively represented by just
the centres of white matter tracts (though see also the comments in

the final discussion relating to the option of also using other
measures such as integrated FA or tract width as statistics of interest).
With respect to the effect of thresholding, the number of skeleton

voxels with FA less than 0.2 is 148,218, of which 146,151 (99%) lie
outside theMNI152white matter mask. Furthermore, of the skeleton
voxels inside the MNI152 white matter mask, over 97% have a FA

greater than 0.2. These figures show clearly that the general effect of
thresholding (at, e.g., 0.2) is to distinguish between areas that are on
average grey matter and those that are on average white matter.
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stutter and 11 controls. It can clearly be seen that the skeleton
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subject (note: not the same subject as that used as the nonlinear
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al., 2003b; Smith et al., 2004); two masks were defined such that
(tract-following) samples were seeded from each mask and accepted
only if they passed through the other. After passing through the

second mask, the tract following was terminated for clarity of
display. Masks were placed by hand in the left and right upper
cingulum, optic radiation, cortico-spinal tract and in the genu of the

corpus callosum. Fig. 13 shows the 8-subject group mean FA
skeleton underneath the tractography output from one of the
subjects. On the basis of these images, one would be fairly confident

that a perpendicular search from the skeleton voxels will intersect the
correct tract appropriately, and it is also clear that the search is
necessary to correct the slight misalignment between the tract centre
and the skeleton, in several places.

Testing for Gaussianity

As discussed above, it is of interest to test whether projecting
data onto the mean FA skeleton improves the Gaussianity of the
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was shown that there was a large number of voxels whose cross-
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(a) (b)

Figure 6.1: A typical FA skeleton created by

the TBSS technique with data from 10 healthy

subjects. The skeleton and underlying standard

brain image are shown in axial (a) and coronal

(b) planes. Reproduced from Smith et al. (2006).

the brain is thought to be diffuse (e.g. Ardekani et al., 2003; Burns et al., 2003; Park et al., 2004).

In these applications, the analysis is typically performed on  maps, and the comparison is

between patient and control groups.

A typical  pipeline involves spatially normalising the set of images by transforming

them into a common space, filtering the normalised images with a Gaussian smoothing kernel,

and then performing a statistical comparison of intensity at each voxel. The smoothing process

confers several benefits for both sensitivity and specificity: it improves the signal to noise ratio

in the data; it makes correction for multiple comparisons less onerousa; and it helps to avoid

false positives due to misregistration between images (Ashburner & Friston, 2001). However,

the choice of filter size is a problematic issue. Ideally the full width at half maximum ()

for the filter should be approximately equal to the size of features of interest, but the spatial

extent of population differences in anisotropy is usually not known in advance; and no other

principled method for choosing the filter size has been established for d data. As a result,

kernels with s of between 3 mm and 16 mm have been applied to maps, usually without

any explicit justification; but it has been shown that the eventual conclusion drawn from a data

set can depend directly on this choice (Jones et al., 2005a). Moreover, even when smoothing

is applied, spurious “results” due to registration errors persist to some extent. Unfortunately,

these two drawbacks represent significant limitations to the method.

The difficulty of choosing a filter  illustrates an important general point. If one

is interested in contrasting one group of subjects against another, at whatever scale, one

must compare like with like. Consistency is a crucial prerequisite. But for findings to be

meaningful and reproducible, the techniques they employ must additionally be robust. A

strong dependency of a result on the value of any methodological parameter is strongly

undesirable, particularly if there is no principled way to choose that parameter.

Concern over the limitations of , as well as its lack of specificity to diffusion data,

motivated the recent development of another whole brain method called tract-based spatial

statistics (; see Smith et al., 2006), which is just beginning to be applied to clinical data

(Anjari et al., 2007; Kochunov et al., 2007; Rouw & Scholte, 2007).

The key innovation of the  method is its use of an anisotropy “skeleton”—a ridge of

locally maximal  running through the brain’s white matter structures—to establish voxel

homology for comparison (see Fig. 6.1). This approach allows one to perform voxelwise

aSmoothing with a Gaussian kernel allows one to use the theory of Gaussian random fields to perform a multiple
comparisons correction which is less conservative than a Bonferroni-type correction. However, the extent to which
the assumptions of this approach are met in  images may be limited (for details see Jones et al., 2005a).
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statistics without relying on the accuracy of image registration methods alone. By focussing on

areas of the brain which can be confidently classified as white matter, the method additionally

reduces the number of comparisons that need to be performed, thus improving the statistical

power of any given data set. It is assumed that local variation in anisotropy across a tract is

entirely attributable to partial volume effects.

Given a suitably preprocessed d data set, the full  pipeline consists of the following

four steps.

1. Perform nonlinear registration of each individual  map to the most typical one—that

is, the one requiring the smallest average displacement. Resample each registered map

to a standard resolution of 1×1×1 mm.

2. Average the registered maps and generate an  skeleton for this average map, by finding

the voxel with maximal  along lines perpendicular to local tract directions. Threshold

this skeleton at an  value of around 0.2 to 0.3.

3. Search each individual  map for locally maximal values in the same way, and project

each separate skeleton onto the average one, thus establishing voxel homology.

4. Perform voxelwise comparisons within the skeleton.

Note that there is no direct spatial smoothing involved in this process—although the average 

map used for step 2 will be implicitly smoothed to some degree by registration inaccuracies—so

the problem of choosing a filter width does not occur.

The capacity of whole brain analysis techniques like  and  to obviate the need for

predefined brain areas of interest can be an invaluable one, particularly for exploratory studies

where detailed a priori information is simply not available. However, just as the increased

specificity of  provides gains in statistical power over , the advantage of making

more detailed hypotheses is that subtler effects can be found more easily. Hence, when prior

information regarding the likely location of interesting effects is at hand, methods for studying

a particular fasciculus come into their own.

6.2 Tract-specific comparison

Perhaps the simplest method for searching for tract-specific differences between populations

involves manually superimposing regions of interest (s) with fixed dimensions onto an 

image with high grey matter–white matter contrast. Indices of white matter integrity such as

 can then be averaged within these regions and compared between the subject groups of

interest. This practice was employed in many of the first clinical comparative studies that used

 (e.g. Ellis et al., 1999; Jones et al., 1999), and it is still far from obsolete.

Manual placement of s has several advantages, many of which stem from its simplicity.

Computational run time is trivial. There is no complex relationship between the “original”

(i.e. native space)  data and those values which are used for comparison, as there is in

the common-space comparisons of  and . Depending on the level of specificity of

the hypothesis, it may not be necessary to find congruent regions in each brain—placing an
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 in the correct structure with high confidence is often sufficient. Smoothing and multiple

comparisons correction are typically minimal or unnecessary; and averaging within each region

reduces the effects of noise. On the other hand, the method is not without its limitations. The

choice of  size is arbitrary—too large and partial volume effects will be considerable; too

small and noise will be a problem—although the relationship between this choice and the

results is likely to be less complex than that of ’s filter width. Study of any given fasciculus

is limited to a very small and arbitrary portion of its length, and the region of the tract in which

the  is placed will tend to depend on where it is most easy to fit it. Consequently, some

tracts may be wholly excluded from this type of study because they are never wide enough to

receive an  of the chosen size.

Probably the biggest drawback of manual -based comparison, though, is its subjectivity.

Although it requires almost no computational effort, the number of man-hours required to place

the required regions in a typical data set is considerable; and it is hard to justify the particular

placement choices made by any given observer. The related approach of segmenting an entire

white matter structure by hand is not only time consuming; it is also extremely difficult to do

well, since tracts are three-dimensional and can have highly irregular shapes.

Tractography provides an alternative. It is both objective and specific to white matter;

and it lends itself directly to the segmentation of whole tracts, thus minimising noise issues

whilst still focussing on a single fasciculus. The complex shape of white matter structures

is not a problem. Of course, the caveats that apply to fibre tracking in general also apply to

this application, but as problems such as crossing fibre degeneracy are handled better by new

algorithms, so segmentation accuracy can be expected to improve.

The problem is then one of choosing seed points. Since the output of tractography algo-

rithms is usually highly sensitive to the particular choice of starting location, care must be

taken to ensure that a study is truly comparing like with like. Indeed, however sophisticated

tractography algorithms become, the question of how best to initialise the tract reconstruction

process is likely to remain an important one, especially in segmentation applications where

consistency is important. Nevertheless, relatively little work has been done to date towards

a principled and practical approach to seed point placement. Seeds are sometimes placed by

hand, but average  measured in tracts segmented in this way has been shown to vary quite

widely between observers, and particularly between scans, even for a single subject (Ciccarelli

et al., 2003a). Some of this variation will be due to noise, but subjectivity remains a major

confound if one is looking for group differences.

Seed points can be placed in some standard space and then transferred to each subject’s

native space using an image registration algorithm. The assumption is that if the transformation

between spaces is accurate then the seed points are congruous, and so the same fasciculus will

be segmented in each brain volume. There is a very real risk, however, that registration errors

and anatomical variation between subjects will make this assumption unsafe. Performance

can be improved by weighting the registration cost function so as to maximise the importance

of aligning white matter regions well, but we will see that this approach, which we will refer to

as the registration method, still has problems. On the other hand, it has the advantage of being

semiautomatic, and so reducing the effect of observer bias—although the choice of registration
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Figure 6.2: The two regions of interest constraint

can separate disparate tracts which pass close to

one another, in this case in the corpus callosum

splenium. (a,b) Two and three-dimensional illus-

trations of the two tract trajectories, the former

in axial projection. (c) The location of subfigure

(a) in the brain. Reproduced from Conturo et al.

(1999).

points in the absence of noise) (23–25, 29). Associated with a
given ellipsoid is a symmetric 3 ! 3 diffusion tensor (D) having
three eigenvectors (the ellipsoid axes) and three eigenvalues
(D along these axes). The eigenvector corresponding to the
largest eigenvalue is the direction of fastest diffusion and
indicates fiber direction.

DT-MRI and Anatomical MRI. Single-shot echo-planar
(30) imaging pulse sequences with diffusion tensor encoding
were implemented on a Siemens Vision 1.5 Tesla MR system

(Erlangen, Germany). We applied Stejskal–Tanner diffusion-
sensitizing gradients (31) along four tetrahedral and three
orthogonal directions (25, 26) and acquired contiguous mul-
tislice images (45–51 slices, 2.5-mm isotropic voxels recon-
structed to 1.25 ! 1.25 ! 2.5-mm pixels) in four normal male
human subjects (24–49 yr). Image acquisition was repeated up
to 10 times in each subject for averaging (29-min total scan
time). Anatomical images weighted by the longitudinal relax-
ation time (T1) were also acquired (2-hr total session, includ-

d

RL

Ant.
L R

a

c
RL

b
Sup.

Ant.

FIG. 1. Diffusion tracking of commissural fibers. 3D projection views (a and b) of diffusion tracks (red and blue) in the splenium of the corpus
callosum selected with ellipsoid filtering volumes (black). Tracks are viewed from above (a) and from the anterior-right direction (b). In c, the general
anatomical location of tracks and ellipsoids is shown in 2D overlay (see Methods) on a brain slice that cuts through the splenium (T1-weighted slice
156). Magnified 2D overlays (d) of tracks and ellipsoids onto selected slices (interpolated slices numbered superior-to-inferior with 24 slices/cm).
The green boxed region surrounding the 3D projections (a and b) corresponds to the green squared regions on 2D anatomical overlays (c and d).
Tracks were selected by ellipsoid filtration of whole-brain diffusion data (computed at an anisotropy threshold of A! " 0.19). Tracks that passed
through the splenium were observed to divide into two groups laterally and were color coded based on passage into lateral ellipsoids (black circles
on all images). Tracks projected to the occipital lobes (red tracks) and parietal lobes (blue tracks), and had a topological relation within the splenium
best seen in a and slice 156 in d. The oblique 3D view (b) shows the more superior projection of the parietal tracks (blue). Tracks were thinned
by a factor of 8 for 3D display.

Neurobiology, Applied Physical Sciences: Conturo et al. Proc. Natl. Acad. Sci. USA 96 (1999) 10423

algorithm and its parameters will of course affect the outcome.

Choosing a single seed point a priori is not the only way to use tractography for white matter

segmentation. One could instead seed at a number of voxels, which raises the questions of

which seeds in particular to use and what to do with the multiple tracts that result.

There are several answers to these questions available in the literature, and the spectrum

of supported responses is still tending to enlarge rather than shrink. Probably the most

well established method is to constrain the tractography algorithm so that all reconstructed

pathways must pass through two or more “waypoint” s (Conturo et al., 1999). The use

of this constraint is illustrated in Fig. 6.2. Seeding near the middle of the corpus callosum

splenium, in this case, may produce a streamline that projects posteriorly into occipital cortex

(coloured red) or one that projects anteriorly (coloured blue). Since the pathways run very

close to one another, the reconstruction will be highly sensitive to the exact location of the seed

point. However, if one seeds in a number of locations in the splenium and then retains only

those streamlines which pass through the two posterior s, it is assured that the anterior

projection will be ignored. Although these s are often placed by hand or using registration-

based transformation, they can often be far wider than the tract of interest—unlike regions

used directly for segmentation—and their exact placement may therefore not be crucial. This

kind of method is applicable to any streamline-based tractography algorithm, deterministic or

probabilistic; and has been applied to group tractography (Abe et al., 2004). There are some

limitations, however, which we will discuss later in the chapter.

Another alternative is to seed throughout the brain. The advantages and disadvantages of

this are obvious: on the one hand, choosing seed points is no longer an issue; on the other,

a large proportion of the results are irrelevant to the study of any given fasciculus. A two

 constraint can be applied, or one can use clustering techniques to divide up a brainful of

streamlines into related bundles. Various distance metrics have been proposed for streamline

clustering (Brun et al., 2004; Corouge et al., 2006; Maddah et al., 2005; O’Donnell & Westin,

2005), but one has still to identify the bundle or bundles of interest, and the general approach

is not directly applicable to probabilistic tract representations.

The remainder of this chapter is dedicated to describing a novel perspective on the seeding

problem, and applying it to some real-world data. We then compare the new method, which

we refer to as neighbourhood tractography (), with region of interest-based alternatives.
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6.3 Similarity and matching

Rather than modify tractography output to suit a particular criterion, the aim of the follow-

ing work is to improve the consistency of tractography-based segmentation in group data by

refining the initialisation of the algorithm; i.e. the seed point. In order to eliminate observer

subjectivity, the method is to be automated. Our approach is to choose, from a group of “candi-

date” seed points, that point which produces the best output. In order to quantitatively define

what constitutes “good” or “correct” output, we develop a novel tract similarity measure,

based on the shape and length of two tracts being compared (first described in Clayden et al.,

2006a). To validate the measure, and demonstrate that it provides useful information, we use

it to quantify similarity between independently generated comparable and disparate tracts in

a group of volunteers. Finally, we define a series of reference tracts, and apply the measure to

the problem of consistent seed point placement across this subject group, and show that the

set of tracts thus derived are more visually similar to one another than the set produced by the

registration method (cf. Clayden et al., 2006b, from which Figs 6.3–6.8 are taken).

Since there is a diverse array of tractography algorithms available, and studies may wish

to use different algorithms depending on the nature of the problem or hypothesis that they are

working on, it is desirable that the process of tract matching be as independent as possible of

the choice of algorithm. However, different algorithms produce different tract representations,

as we saw in chapter 5, which creates a problem when we want to compare them using a single

method. The solution is to use a common representation for all tracts, for the purposes of

matching only. The “field of connection likelihoods” representation of a tract that is natural

for probabilistic algorithms such as /ProbTrack can easily be generated by spatial

discretisation of a deterministic streamline, so for the purposes of our tract similarity measure,

we will assume that the tractography algorithm takes as input a single seed point, and produces

voxelised, quantitative output. Hence we can define a tract r as the ordered pair

r = (ar,φr(x)) , (6.1)

where φr(x) is a discrete scalar field denoting the likelihood of a path from the seed point, ar,

running through the voxel at location x in the native acquisition space of the subject. These

two data elements are tied together because they represent both the input and output of the

tractography algorithm. If ar changes, then φr will change too.

We will work on the principle that the characteristics of interest when comparing white

matter tracts are length and shape. That is, if two tracts have the same shape and have the same

length, then they are considered identical. For the purposes of comparison, we will make a

distinction between reference and candidate tracts. There is no structural difference between

the two, with both having the form given in Eq. (6.1), but similarity is always calculated for a

candidate tract relative to a reference tract, rather than vice versa.

The following algorithm, which is based on a simplification and specialization of a general

curve alignment algorithm (Sebastian et al., 2003), provides sensitivity to the shapes of both

the reference tract, r, and the candidate tract, c. Its output also depends on the length of

the shorter of the two tracts. It moves along the two tracts simultaneously, voxel by voxel,

finding a maximum likelihood pathway through the data, φr and φc, subject to certain path
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direction constraints. The output of the algorithm is a scalar value, σ(r,c). The calculation

is asymmetric, so that in general, σ(r,c) , σ(c,r). The algorithm tacitly assumes that the seed

points are equivalently located in the two tracts.

1. Initialise two sets of visited voxel locations, Vr and Vc, to the empty set.

2. Set tract pointers to the seed point location in each tract.

3. Add the current pointer position in the reference tract to the set Vr, and the position in

the candidate tract to Vc.

4. Check the voxel values, from the field of connection likelihoods, φr, of the 26 voxels

forming a cube around the current pointer location in the reference tract, and choose the

largest valued neighbouring voxel not in Vr. Note the step vector, vr, required to move

to this new location.

5. Prohibiting movement at any angle greater than or equal to 90◦ from the chosen step

direction in the reference tract, find the largest valued neighbour to the pointer in the

candidate tract that is not in Vc. Note the step vector used here, vc.

6. Add the normalised inner product of the two step vectors to the result, σ(r,c).

7. Move in the directions of the chosen steps and update the pointers in each tract.

8. Return to step 3, and repeat until there are no unvisited, nonzero voxels adjacent to one

of the pointers. At this point, the algorithm has followed the reference tract to its end in

one direction.

9. Return to step 2, and repeat until there are no unvisited, nonzero voxels adjacent to one

of the starting points. The algorithm has now followed the reference tract to its end in all

directions.

The normalised inner product calculated in step 6 is given by

vr ·vc

‖vr‖‖vc‖
, (6.2)

which is equivalent to the cosine of the angle between the two step vectors. The formulation

of step 5 may seem to be excessively restrictive, but it simply ensures that the result is not

undervalued due to the pointers drifting in opposite directions along the tract. This is an

important issue because seed points are rarely placed at tract extremities—since such areas

tend to be associated with high directional uncertainty—and so traversal away from the seed

point can usually be in two, almost equally likely, directions. Note that there is no angle

restriction in step 4.

The value of the σ function is translation invariant; but because we compare the local

absolute directions of the tracts relative to the d acquisition coordinate system, rather than

curvature, it is not rotation invariant. This is desirable, since we do not want to produce

spurious matches between rotationally symmetric tracts such as the corpus callosum genu and

splenium, or bilateral pairs.
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Figure 6.3: Two-dimensional illustration of the shape

similarity algorithm, as applied to two identical tracts.

In (a), the boxes with bold borders represent the

starting point, which has been marked visited. The

shaded voxels in the reference tract indicate those

nonzero, unvisited locations that the algorithm may

legally move into, and the line represents the chosen

step vector, from the current pointer location (circle

head) to the next location (arrow head). In (b), move-

ment in the candidate tract is restricted to those voxels

whose angle from the chosen step direction in the ref-

erence tract is less than 90◦. Since the voxel values

are identical, the same direction is chosen. In (c),

the next step in the reference tract cannot be back to

the previous pointer location, since it is marked vis-

ited. In each diagram, numbers represent connection

likelihood values at each voxel.

6.3.1 The reduced tract

Tract data of the form given by Eq. (6.1) are not constrained to be a single voxel wide, and

in general they will not be. Moreover, since the algorithm ceases stepping through the data

when either tract terminates, the exact path taken through a reference tract can vary, and may

be different during comparisons with different candidate tracts. This makes establishing an

upper bound on the value of σ(r,c) extremely difficult.

In order to alleviate this problem, we define a reduced version of the tract r to include

that subset of the nonzero data in φr which is visited during the comparison of r with itself, a

process that is illustrated, for a two-dimensional case, in Fig. 6.3. Parts (a) and (c) of the figure

represent two consecutive iterations of step 4 of the algorithm, and part (b) illustrates step 5.

The shaded squares in the figure represent those voxels that the algorithm is allowed to move

into, and the boxes with bold borders indicate visited voxels. After this calculation of σ(r,r),

the reduced tract, r̃, is defined as

ar̃ = ar φr̃(x) =

 φr(x) if x ∈ Vr

0 otherwise,
(6.3)

where Vr is the set of visited voxel vectors calculated by the algorithm above. While r and r̃

are generally not identical, they are equivalent to the σ function in the sense that

σ(r,r) = σ(r̃, r̃) = σ(r, r̃) = σ(r̃,r) , (6.4)

because all voxel locations whose data value is nonzero in r but not in r̃ are never visited. It

must be remembered here that the tract data r includes the seed point, ar, since this property

will not hold if the same voxel data but different seed points were to be passed to the σ function.

When comparing a tract to itself the inner product calculated in step 6 of the algorithm will

always be unity, and so the algorithm is merely counting the number of steps taken. Thus,
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the value of σ(r,r) is exactly equal to the number of nonzero voxels in r̃ (excluding the seed

point), and since each nonzero voxel can be visited at most once, producing a maximum score

contribution of one, we can establish the bounds

0 ≤ σ(r̃,c) ≤ σ(r,r) ∀c . (6.5)

The restriction that the pointer in the candidate tract can never move in a direction opposite to

the reference tract ensures that all inner products are positive, and this fixes the lower bound

in Eq. (6.5) at 0. Equivalently, 0 ≤ σ(r, c̃) ≤ σ(c,c) for any r.

6.3.2 A similarity measure

Using the tract comparison algorithm described above, we now develop measures of shape

and length similarity, and then combine them together to form an overall similarity score.

We first approximate the length, Lr, of tract r as the number of voxels visited when it is

compared to itself, excluding the seed point, which is given by

Lr ≡ σ(r,r) . (6.6)

This length value is unchanged in the reduced tract, r̃, as shown by Eq. (6.4). Note that when

comparing a tract to itself, shape is irrelevant because the local directionality of the reference

and candidate tracts is always the same. If there are no nonzero voxels adjacent to the seed

point, the data represents a “point tract”, with length zero.

Given the definition of length in Eq. (6.6), and having calculated its value for the reference

and candidate tracts, we establish the similarity of these two numbers using the symmetric

normalised difference given by

S1(r,c) = 1−
∣∣∣∣∣Lr−Lc

Lr + Lc

∣∣∣∣∣ =
2 ·min{Lr,Lc}

Lr + Lc
= S1(c,r) . (6.7)

This measure has the value zero if either Lr or Lc is zero, and unity if the lengths are equal.

The other component of the similarity measure, the similarity in shape between the reference

and candidate tracts, can be established using the asymmetric formulation

S2(r,c) =
σ(r̃, c̃)

min{Lr,Lc}
, S2(c,r) . (6.8)

The denominator in Eq. (6.8) removes the length dependence of the σ function. The bounds

on the σ function that were established above ensure that the value of Eq. (6.8) is always in the

interval [0,1].

Finally, the two score components given by Eqs (6.7) and (6.8) are combined to form the

overall similarity score,

S(r,c) ≡
√

S1(r,c) ·S2(r,c) =

√
2 ·σ(r̃, c̃)
Lr + Lc

, (6.9)

the geometric mean of the two components. A higher value of Eq. (6.9) indicates a better match,

and a lower value indicates a worse match. The score will be 1 if r and c are the same tract.

It will be 0 if either r or c is a point tract. The geometric mean lends a far stronger influence
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Figure 6.4: Qualitative demonstration of the ef-

fect on the two score components, S1 (length)

and S2 (shape), of different types of relationship

between the reference tract (fixed, and on the left

in each case) and the candidate tract (variable,

and on the right). The seed points are assumed

to be in the centre of each tract throughout.

(a) (b) (c) (d)

S1 = 1
S2 = 1
(S = 1)

S1 = 1
S2 < 1
(S < 1)

S1 < 1
S2 = 1
(S < 1)

S1 < 1
S2 < 1
(S < 1)

to very small values in one score component than does the arithmetic mean when finding the

“average” similarity of c to r, and in particular, if either score component is 0 then the overall

score is also 0. This formulation emphasises that both length and curvature must be similar for

the candidate tract to be considered a likely equivalent to the reference.

Fig. 6.4 shows four examples of tract pairs and their associated score components. In each

case the reference tract is on the left, and the seed points are assumed to be placed exactly in the

middle of each tract. These are idealised, and continuous rather than voxelised, tract curves;

but they illustrate how the two score components will be affected in various scenarios. In (a),

the candidate tract is identical to the reference tract. This is equivalent to the case in Fig. 6.3. In

(b), the candidate is a reflected copy of the reference. Note that the shapes of these two curves

are considered different. In (c), the candidate is a central segment from the reference, so the

shape is considered identical, but the lengths differ. It should be noted that this case represents

a truncation rather than a scaling of the reference tract, as the latter would not produce an S2

score of 1. Finally, in (d), the tracts are different in both shape and length.

6.4 Validation and application

Six normal volunteers (2 male, 4 female; mean age 27±3.4 years) were recruited for this study.

Each subject underwent a d protocol on a  Signa  1.5 T clinical scanner, consisting of a

single-shot spin-echo echo-planar imaging sequence with 51 noncollinear diffusion weighting

gradient directions at a b-value of 1000 s mm−2, and 3 T2-weighted scans. 48 contiguous axial

slice locations were imaged, with a field of view of 220× 220 mm, and a slice thickness of

2.8 mm. The acquisition matrix was 96×96 voxels in-plane, zero filled to 128×128. was 17 s

per volume and was 94.3 ms.

In order to investigate the variation in similarity scores between acquisitions, 2 of the sub-

jects were scanned twice, and 3 were scanned three times. Those subjects that went through the

protocol three times were taken out of the scanner between the second and third acquisitions,

and the slice locations were repositioned for the third acquisition without reference to those

chosen for the first two.

The data were initially preprocessed to remove skull data and eddy current induced dis-

tortion effects from the images, using  tools. The underlying tractography algorithm used

in this study was the /ProbTrack algorithm (Behrens et al., 2003b). It should be re-

membered that the  model of the d signal is a partial volume model assuming a

single anisotropic diffusion direction at each voxel, and the measure of anisotropy it uses is
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the anisotropic volume fraction (), rather than the more common, diffusion tensor-based

fractional anisotropy (). However, the two measures are closely related.

The aim of our first experiment was to validate the similarity measure described above,

by investigating whether the measure could differentiate between comparable and disparate

tracts in the group of volunteers. A series of 8 seed points were placed in major white matter

fasciculi on a Montréal Neurological Institute () standard brain (Evans et al., 1993), and

transferred to each subject’s native space using the  registration algorithm (Jenkinson &

Smith, 2001), with thewhite matter map used as a weighting volume (Clayden et al., 2005).

The specific seed regions chosen were genu and splenium of corpus callosum (), right and

left anterior limb of internal capsule (), right and left posterior limb of internal capsule

(), and right and left sagittal stratum (). Whilst the accuracy of seed point placement

using this registration method may be limited, it provides an independent mechanism for

generating groups of tracts that can be expected to be more or less similar to one another. The

ProbTrack tractography algorithm was run with each of these points as a seed, and similarity

scores were calculated for various tract pair permutations. Comparisons between equivalent

seed regions on the left and right of a single brain volume (e.g. left  versus right ) were

labeled “bilateral”, and all other comparisons within a single volume (e.g. left  versus right

) were labeled “nonbilateral”. Comparisons across subjects for a single seed region (e.g.

left  in subject 1 versus left  in subject 2) were labeled “intersubject”; and additional

similarity scores were calculated between 1st and 2nd scans (“inter-”b) and 2nd and 3rd

scans (“interscan”), where available, within each subject and seed region. We expect that

similarity scores will be lowest for the nonbilateral comparisons, and highest for the interscan

and inter- cases where the two tracts are from the same seed region and same subject. For

every pair of tracts thus compared, similarity scores were calculated using each in turn as the

reference tract.

A second experiment was then performed, aimed at applying the similarity approach to

the problem of improving the robustness of seed point placement across a group of scans.

For each seed region, a representative reference tract was chosen from a single scan. For

each other scan, a 7× 7× 7 cube of voxels around, and including, the voxel suggested by

the registration method—hereafter the “original” seed point—for each fasciculus of interest

were used as seed points for the tractography algorithm, except where the voxel  was less

than 0.2, an empirically chosen threshold used to avoid seeding in cerebrospinal fluid or grey

matter. The tract with the highest similarity score when compared to the relevant reference

tract was then selected as the “best” tract from each brain volume. We refer to this technique

as neighbourhood tractography.

In all of the experiments described above, reference and candidate tract data (i.e. the fields

φr and φc) were thresholded at the 1% level before similarity scores were calculated. This was

done to avoid inclusion of very low confidence paths in the comparisons.

Fig. 6.5 shows the results of the first experiment as a box-and-whisker plot. The mean (±

one standard deviation) similarity score for each group of tract comparisons was 0.14 (±0.13)

bThe acronym , for “number of excitations”, is commonly used to denote the number of times an imaging
sequence was applied to the subject.
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Figure 6.5: Box-and-whisker plot showing the

range of similarity scores for the five different

categories of comparison in the first experiment.

The thick horizontal line across each box repre-

sents the median, the box shows the interquartile

range, the whiskers show the extent of the bulk of

the data, and circles show outliers more than 1.5

interquartile ranges from the box. The n values

indicate the number of scores making up the data

for each plot. The data demonstrate appropriate

score increases across the different test condi-

tions, suggesting that the score provides mean-

ingful and useful information.

Figure 6.6: Two-dimensional axial

projections of the tracts generated

by the ProbTrack algorithm using the

original seed points chosen by the

registration method, overlaid on AVF

maps of the slice in plane with the

seed in each case. White indicates

high AVF and black low. In the tracts,

yellow indicates high likelihood of

connection to the seed point, and red

low. The green stars indicate the seed

point locations. The similarity score

to the reference tract (f) is shown in

each case.
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Subject Scan 1 Scan 2 (inter-) Scan 3 (interscan)

1 (a) (b) (c)

2 (d) (e)

3 (f) (g) (h)

4 (i) (j) (k)

5 (l) (m)

6 (n)

Table 6.1: Correspondence between the different scans and the subfigure labels used in Figs 6.6 and 6.7.

for nonbilateral, 0.31 (±0.13) for bilateral, 0.38 (±0.12) for intersubject, 0.47 (±0.09) for interscan,

and 0.46 (±0.12) for inter-. Two sample, two tailed t-tests showed significant differences

between nonbilateral and bilateral scores (P < 10−9), between bilateral and intersubject scores

(P = 0.005), and between intersubject and interscan scores (P < 10−6). There was no significant

difference between interscan and inter- similarity scores (P = 0.89).

Results from the second experiment are shown visually in Figs 6.6 and 6.7. The correspon-

dence between the letters labeling each subfigure and the different scans is shown in Table

6.1. Fig. 6.6 shows the tract fields produced by seeding ProbTrack at the original seed point

in splenium of corpus callosum, and thresholding the results at the 1% level. This seed region

was chosen as the example because considerable variation in tract shape can be seen across the

group: the resultant tracts demonstrate pathways running anterior (d, e, h, k), posterior (a–c,

f, g, j, l–n) or both (i) from the edges of the corpus callosum itself (cf. Fig. 6.2). Fig. 6.7 shows

the tracts chosen by the neighbourhood tractography approach, after the same 1% threshold

has been applied. Both figures also show the similarity scores associated with each tract, using

(f), which is the same in both cases, as the reference tract. In Fig. 6.7, similarity scores are

necessarily greater than or equal to the corresponding score in Fig. 6.6, and only two tracts (i, l)

remain that do not project in the posterior direction from the corpus callosum. These two tracts

have the two lowest similarity scores in the figure. Tract (g), which has the highest score apart

from the reference tract, is found in the same subject as the reference tract, so the fasciculus it

represents is identical.

Fig. 6.8 shows examples of “reduced” reference and candidate tracts, in the sense described

in §6.3.1. It shows how the reduction affects the tracts. In this case, the reference tract is simply

slightly narrower than its unreduced equivalent, Fig. 6.6(f). The candidate tract is truncated at

the edge of the splenium, where the unreduced version, Fig. 6.6(h), had an ambiguous branch.

The mean and standard deviation of the similarity scores for the tracts chosen before and

after applying neighbourhood tractography for each seed region, across all subjects and acqui-

sitions, are given in Table 6.2. The figures for the “best” tracts—as chosen by neighbourhood

tractography—represent narrow and seed-specific score distributions, whose coefficients of

variation (s, the standard deviations divided by the means) are in the range 3.0–5.7%. By

comparison, the original scores, generated by the registration method, are invariably lower

with wider standard deviations. Their s are in the range 11.5–66.9%.

In the second experiment, 63% of seed points chosen by neighbourhood tractography were
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Figure 6.7: Projections of the tracts

chosen as the “best” (highest similarity

to the reference tract), using a 7×7×7

seeding neighbourhood around the

original seed point. Individual simi-

larity scores are also shown. Tract (f)

is the reference tract.

Figure 6.8: Examples of reduced reference and candi-

date tracts, produced from two of the unreduced tracts

shown in Fig. 6.6.

Seed  point  score mean  score s.d.  score mean  score s.d.

 genu (8,22,14) 0.488 0.056 0.597 0.018

 splen. (−6,40,14) 0.354 0.106 0.542 0.031

right  (18,10,6) 0.529 0.098 0.651 0.026

left  (−16,10,6) 0.463 0.099 0.644 0.027

right  (36,−54,10) 0.329 0.220 0.680 0.023

left  (−36,−54,10) 0.365 0.077 0.516 0.024

right  (22,−14,10) 0.405 0.096 0.570 0.030

left  (−22,−14,10) 0.444 0.054 0.594 0.025

Table 6.2: Mean and standard deviation of similarity scores for all tracts chosen by neighbourhood trac-

tography (NT) in each of the 8 seed regions, determined from the 6 volunteers (14 scans). The means and

standard deviations for tracts chosen by the registration method (RM) are given for comparison. The position

of the seed point in MNI standard space is given in millimetres.
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not more than 2 voxels from the original seed point in any direction. This proportion is high

enough to suggest that a 7× 7× 7 search neighbourhood is generally sufficiently large. Run

time for the method might be expected to increase with the cube of the neighbourhood width,

although in practice it may be that more of the extra seed points are rejected by the anisotropy

threshold, and so the scale factor may be a little less.

6.5 How many seeds?

To date, it has not been explicitly shown that tractography-based segmentation using a single

seed point cannot yield consistent results, and we see no reason that this should be the case,

particularly as the sophistication of tractography algorithms continues to improve. However

it is certainly true, as we saw in §6.2, that choosing a single point so as to obtain useful results is

hard. We have described here a method which emulates a process for selecting an appropriate

seed that might be used by a human observer: the expected topology of the tract is clearly

defined—in this case in terms of a reference tract—and then we try seeding at several plausible

locations until a good match is found. Unlike the human observer, though, the algorithm is

completely consistent in its assessment of candidate tracts and has no difficulties working in

three dimensions. The selection process is also far faster using the algorithm: comparing each

candidate tract with the reference tract takes only a second or so on a typical workstation.

The relationship between the neighbourhood tractography method, as we have presented

it here, and region of interest-based methods is simple to explain. Let us assume that a

plausible but suboptimal seed point has been selected in the native space of the subject using

the registration method. This seed point could then be used directly for tractography, or

one could grow an  around it and seed at every point therein, possibly subject to an

anisotropy threshold. Neighbourhood tractography then performs all-but-one rejection of

these seed points based on a posteriori tract similarity, whereas a multiple  method would

combine results from the whole seed region, subject to the waypoint constraint on individual

streamlines. Another option is to simply retain all the results with no constraints: this is a

single method. Selection between these strategies is therefore partly a question of deciding

how many seed points should be used to generate the final tract representation.

It should be noted that the two  constraint, as demonstrated by Fig. 6.2, is effectively a

modification of the tractography algorithm that it is applied to. A deterministic streamlining

algorithm, thus modified, will return either a streamline passing through the seed point and the

waypoint regions, or nothing. In the probabilistic case, the effect is to add an extra conditional

dependency on the  locations to the connection likelihoods, making it somewhat more

difficult to interpret the results.

Fig. 6.9 shows the results of applying the different strategies in a single scan, corresponding

to Fig. 6.6(c), using 5000 streamline samples per seed point in each case. If the reference tract

in Fig. 6.6(f) is taken to represent the pathway we are attempting to find in this scan, then Fig.

6.9(a) surely shows poor correspondence. Its projection into cortex is further anterior than it

ought to be, and the reconstructed tract appears to cross the interhemispheric plane posterior

to the splenium, which is definitely nonphysical. By constrast, tract (b) shows neither of these
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(a) (b)

(e) (f) (g) (h)

(c) (d)

Figure 6.9: Illustrative results using

various seeding strategies for the cor-

pus callosum splenium in a single

subject, ignoring potential seed points

with AVF of less than 0.2 throughout.

(a,e) Single seed point placed using

the registration method. (b,f) Single

seed point chosen using neighbour-

hood tractography. (c,g) Full seeding

throughout the neighbourhood, with

additive combination of results. (d,h)

Full seeding, but with additional bilat-

eral waypoint ROIs placed posterior to

the splenium. (a–d) are thresholded

at the 1% level; (e–h) are unthresh-

olded. The colour scale is not consis-

tent in meaning between subfigures.

problems. It can be seen in the unthresholded version of this tract, (f), that a very small number

of probabilistic streamlines (less than 1%) do project anteriorly from the splenium, but the main

trajectory of the tract is consistent with the reference.

Full seeding in the 7× 7× 7 voxel neighbourhood yields tract (g), which is very widely

spread out and heavily affected by thresholding—compare tract (c). These two effects are

related. A very large number of probabilistic streamlines are generated in this case (570,000 in

total), but since they are very widely spread out no more than 80,710 pass through any single

voxel in the brain. As a result, only 5.2% of nonzero voxels from (g) survive the threshold,

compared to 21.5% from (f). Worse, the threshold scales with the volume of the neighbourhood,

but the visit counts at each voxel do not keep pace (see Fig. 6.10), making the application of

this kind of threshold undesirably sensitive to neighbourhood size. This effect is even more

pronounced if an anisotropy threshold is not used to cull unpromising seeds from the seeding

region. It seems, then, that tract (c) should be treated with caution, while (g) is too nonspecific

to be of much use. Nevertheless, by carefully placing a smaller  well within the tract, a

single seeding region can be practical (Kanaan et al., 2006).

Finally, tracts (d) and (h) show the result of using two constraint s in addition to the

seeding . In order to yield a tract as similar as possible to (b), we used information from

the latter to place the constraint regions. The centres of the waypoint s in the left and

right hemispheres were placed at the locations with the greatest voxel value, in (b), within a

plane normal to the anterior–posterior axis that is shown in green. The size of the constraint

s was 7× 7× 7 voxels, as with the seeding region. The effect of thresholding in this case

is far more modest than without the constraints, but again the segmentation appears to be

passing between hemispheres twice, suggesting that the use of two waypoint regions may not

be sufficient to ensure a plausible segmentation. One can attempt to rectify this by adding

more constraints—in a recent reproducibility study, up to five constraint s of four different
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Figure 6.10: The effect of thresholding on connection

likelihood when using a single ROI strategy. The im-

pact of the threshold, expressed as a fixed proportion

of the total number of streamlines initiated in each

case, is more significant as the seeding ROI increases

in size.

types were used to segment each of the fasciculi of interest (Heiervang et al., 2006)—but all

such restrictions are simultaneously absolute and independent of the actual data, and so risk

undermining the very advantages of using tractography for segmentation. The logical limit of

the process of adding constraints, after all, is the case in which tracts are simply outlined by

hand.

It is interesting to note that even though the neighbourhood tractography result was used

to inform the placement of waypoint s, the result is very different in shape. The pathway

segmented in (b) is present in (h), of course, but the projection is so “unlikely”, given the

seed mask and waypoint constraints, that its end points in occipital cortex are absent from the

thresholded version. Instead, the tract projection in (d) represents the most visited pathway

from (g) that passes through the waypoints. It is very difficult to decide which of these results

is more anatomically correct. Validation of tractography output is a complex issue in its own

right, as we discussed in §5.5. However, we would certainly claim that the tracts shown in Fig.

6.7 are more similar to the reference tract—which is chosen for illustration—than those in Fig.

6.6. If the nature of the reference tract were later to be found to be inappropriate, it could be

updated and neighbourhood tractography repeated without change. The method would then

find the best match to the new reference tract.

Although we have focussed on probabilistic tractography in this comparison, our obser-

vations are just as valid in the deterministic—or maximum likelihood—case, where only one

streamline is generated per seed point. However, a connection likelihood threshold would not

then be relevant.

Multiple seed points for tractography need not necessarily be adjacent to one another in

a neighbourhood. We have described, in separate work, an iterative approach in which each

seed point is chosen from the tractography output for the previous seed such that it is as far

as possible from its predecessor whilst still having high likelihood of connection to it (Clayden

et al., 2005). This can help the segmentation to recover, to some extent, from a poor starting

seed point; but the choice of each seed point is not very strongly principled in that case, and

the method is likely to be rather too scattershot for general purpose use.
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Ultimately, the question of which seeding strategy generates the most useful segmentation

of the fasciculus of interest will depend on the application. The all-but-one rejection approach

of neighbourhood tractography offers the greatest specificity whilst providing a strong prefer-

ence—as opposed to an enforced constraint—for tracts with topologies similar to the reference

tract. methods, meanwhile, offer to segment the full width of the fasiculus if they are given

a large enough seeding region. The latter may be desirable, or it may be problematic due to the

larger expected role of partial volume effects. Of course, these two techniques are not mutually

exclusive, and it may be that in some cases a combination is the most successful.

6.6 Evaluation of the similarity measure

While tract shape has been studied before (Batchelor et al., 2006; Corouge et al., 2004; Ding

et al., 2003), previous work has been aimed at modelling individual tracts, rather than doing

pairwise similarity scoring. The kinds of tract characteristics that these previous studies have

worked with, such as curvature and torsion, could in principle be applied to the tract matching

problem; but as far as we are aware, the work described above represents the first actual

attempt at using a quantitative tract similarity measure to improve segmentation consistency.

The results from our first experiment provide evidence that the similarity measure described

above produces higher scores for a single seed region across a range of healthy subjects, than it

does for a range of seed regions within a single subject, as demonstrated by higher intersubject

than bilateral and nonbilateral similarity scores. Behaviour of this nature is clearly crucial

for any tract similarity measure that is intended to be used as a basis for the identification

of comparable tracts across a group of subjects. It is not surprising to find that comparisons

between bilateral seed regions (such as left versus right ) produce generally higher scores

than other comparisons (such as left  versus right ), since comparable white matter

fasciculi in the two hemispheres can be expected to have similar lengths and related shapes.

Nevertheless, even the bilateral scores are significantly smaller than the intersubject scores.

The finding that interscan and inter- scores are indistinguishable is an interesting one.

It suggests that repositioning of the slice positions introduces no consistent bias to the results

of the similarity measure, demonstrating a useful robustness to subtle changes in the slice

locations. It is also reassuring to see that both these sets of scores are significantly higher than

the intersubject scores, since the underlying fasciculi are the same across acquisitions, rather

than merely comparable as they are in the intersubject case.

The narrowness of the score distributions for each seed point—as shown in Table 6.2—

seems to indicate that the scoring algorithm is quite strongly influenced by the nature of the

reference tract. This may be because the part of each tract near the seed point in each direction

is relatively reproducible, whereas the spatially uncertain regions near the ends of tracts are

very unlikely to produce a perfect match with the reference tract. The combination of these

two factors may effectively impose reference tract-specific upper and lower score bounds.

A major advantage of the  approach is that no spatial manipulation of each individual

brain volume is required before tractography can be performed, and so potentially interesting

anatomical variation across the group need not be averaged away or otherwise distorted.
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However, we have made no alterations or corrections for factors such as natural variation in

brain size and shape, or head rotation; even for the purposes of tract comparison. In fact, a

correction based on a transformation of the candidate tract into the space of the reference tract

would have problems of its own, since interpolating the tract data could alter its structure in

undesirable ways. For example, local duplication of voxel values—which would arise from

a nearest neighbour interpolation scheme—would be strongly suboptimal for our similarity

algorithm. The difficulty with registration also makes simple field-based distance measures

such as the sum of squared differences between voxels highly problematic for comparing tracts.

Since differences in head rotation and head size between scans will have a complex, non-

linear effect on the similarity measure, and may affect different tracts differently, it is not

straightforward to establish the impact of these variates, nor to recommend upper bounds on

acceptable rotations or scalings. Moreover, working with simulated data would add another

image processing step, which may be a source of variance, and would introduce similar in-

terpolation issues to a correction. However, interscan rotations for single subjects are present

in our data set. Linear registrations between pairs of T2-weighted images suggest that the

median rotation between a subject’s first scan and their third was 1.5◦ (4.3◦ about the left–right

axis, 0.6◦ about the anterior–posterior, and 1.1◦ about the superior–inferior). Hence, some

variance due to rotation is incorporated into the results from our first and second experiments;

but it should be remembered that in the first experiment, inter- and interscan scores were

statistically indistinguishable, despite much smaller rotations in the former case (median of

0.3◦), suggesting a certain robustness to such effects.

The similarity measure described above aims to be relatively simple whilst capturing impor-

tant characteristics of the two tracts that we wish to compare. This simplicity aids portability.

Whilst probabilistic tractography algorithms tend to produce tract data of the form given by

Eq. (6.1), some other approaches, particularly streamline-based algorithms, instead produce a

single line of infinitesimal thickness through the seed point. In these cases, the principle of

our similarity calculation would still be applicable, and in fact the method would become even

simpler because there would no longer be any need to produce a reduced tract.

There is an obvious limitation of comparing shape at the voxel scale, which is that voxel

sizes vary between data sets and have no intrinsic physiological significance at all. Moreover,

since voxels are often not equal in width in all dimensions, a step of “one voxel” may represent

a different real-world distance depending on the orientation of the step.

The main weakness of the similarity measure presented here is that the termination criterion

in step 8 of the algorithm (see page 72) can be met prematurely if a local “loop” of relatively

high valued voxels is encountered. This leads to underscoring or false negatives, and is

likely to be at least a contributor to the problem of narrow score distributions for a particular

reference tract, and the reason that tract (l) is less visually similar to (f) in Fig. 6.7 than in Fig.

6.6. That result, when taken in context with the rest of the data, suggests that while a high

score seems to indicate a good match between tracts, a low score may not reliably indicate a

bad match. Indeed it is plausible, even likely, that in some cases better matching tracts than

those selected by this similarity measure were available but were underscored and therefore

disregarded. This substantial issue could perhaps be alleviated by biasing the algorithm in
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favour of continuing in the same direction as its previous step, and introducing some fuzziness

into the choice of local maximum voxel in step 4 of the algorithm. However, these changes

would render the algorithm nondeterministic, and care would have to be taken to ensure that

the maximum and minimum scores remain tractable. A different approach may be preferable.

6.7 The next step

This chapter began with a look at how segmentation and comparative analysis in white matter

can be approached using either a tract-specific or a whole brain starting point, the choice

between which should depend on the specificity of one’s hypothesis. We saw that segmentation

using tractography is typically subjected to constraints based on a number of “waypoint”

regions of interest, which are described in advance. This multiple  approach is one way to

incorporate prior knowledge into the fibre tracking process, but it represents a hard constraint

which complicates the interpretation of the resulting tract. The novelty of the neighbourhood

tractography method, as an alternative approach, is that it allows prior information to be

introduced in the form of a reference tract, but rather than constraining tractography directly,

the reference is used to select from a number of candidate segmentations generated with

different seed point initialisations.

We have demonstrated here that  can work as intended, although we have also identified

some shortcomings in the particular similarity measure that we used. As well as considering

how these issues might be overcome, it is important to investigate how successful the method

is when applied to data of clinical interest, where there may be more confounding factors than

are present in scans from healthy young volunteers. The latter will be the focus of the next

chapter.
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Applications

T  of neighbourhood tractography is to facilitate comparative analysis between sub-

ject groups in clinical studies, in a tract-specific manner. The brains of unhealthy or agèd

individuals are, however, often substantially different from those of healthy young volunteer

subjects. It is therefore important to confirm that the topological tract matching principle by

which  works remains valid in these cases. This chapter describes the application of  to

the clinical study of normal ageing and schizophrenia, and demonstrates that gains in seg-

mentation consistency can be obtained even when the reference tract is drawn from a different

population to the candidate tracts. The work described here was completed collaboratively

with Jakub Piątkowski and Dr Susana Muñoz Maniega.

7.1 Tractography in the ageing brain

We discussed in §4.5 that normal ageing is a significant area of clinical interest in which d

has already begun to make a useful contribution. Early  studies of the effects of ageing

on white matter, such as those by Pfefferbaum et al. (2000) and O’Sullivan et al. (2001), used

manual segmentation of large white matter regions of interest, and demonstrated negative

correlations between diffusion anisotropy and age. O’Sullivan et al. found a particularly strong

effect in anterior white matter—a finding which has since been reproduced by Head et al.

(2004); and for the corpus callosum genu in particular, by Abe et al. (2002). Kochunov et al.

Figure 7.1: Relationships between

age and FA in schizophrenics (red

triangles) and healthy controls (blue

circles). Points are averages over

eight tracts. R2 values for linear fits

are given in each case. Reproduced

from Jones et al. (2006).
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(a) (b)
Figure 7.2: The brain of a young adult (a) differs most

obviously from that of a healthy elderly subject (b) in

the volume of the ventricles. This difference is clearly

visible in these AVF maps.

(2007) have additionally shown, using the  technique, that  in the genu shows a more

robust association with other indices of structural health in the brain—such as average grey

matter thickness—than does anisotropy in other white matter regions. Evidence for similar

frontal effects in ageing monkeys has also been recently demonstrated (Makris et al., 2007).

Considering this increasing body of evidence that suggests that d-based indices such as

may be useful for studying ageing, it is surprising that studies employing tractography-based

segmentation for examining specific tracts appear to be almost nonexistent. Such tract-specific

information, obtained in a more objective manner than is possible with manual segmentation,

could be particularly helpful for confirming or contradicting the suggestion that frontal white

matter decline is particularly marked during normal ageing. Jones et al. (2006) provided evi-

dence that the relationship between anisotropy and age appears to be different in schizophrenic

patients to controls in general (see Fig. 7.1), but their tract-specific measurements relate only

to the effects of schizophrenia, and are therefore not especially helpful in understanding the

impact of ageing in the healthy population.

Tractography in the agèd brain encounters additional challenges, compared to similar

tracking in young adults. Firstly, since anisotropy is generally lower, the level of uncertainty

associated with d estimates of fibre orientation can be expected to be higher. This may

make consistent segmentation of particular tracts intrinsically more difficult. Secondly, the

morphology of older brains usually differs from younger ones—in particular, grey matter

volume tends to shrink and the -filled ventricles become larger (see Fig. 7.2). If this effect

turns out to be highly variable among a population of agèd brains, then using a reference tract

to guide tract matching may not be as reliable as in younger brains.

To test the performance of  in an agèd population, 27 healthy volunteers aged over 65

were subjected to a d protocol using a single-shot spin-echo echo-planar imaging sequence

with 64 noncollinear diffusion weighting gradient directions at a b-value of 1000 s mm−2, and

7 T2-weighted scans. 53 contiguous axial slice locations were imaged, with a field of view

of 240× 240 mm, and a slice thickness of 2.5 mm. The acquisition matrix was 96× 96 voxels

in-plane, zero filled to 128× 128.  was 13.5 s per volume and  was 75 ms. It should be

noted that these parameters differ a little from those used for the study described in chapter 6,

although all subsequent image preprocessing steps were the same.

These data were acquired as part of a study called , whose principal investigator is

Dr Alasdair MacLullich, a Lecturer in Geriatric Medicine at the University of Edinburgh. All

image preprocessing, tractography and reference tract selection for this section was carried out

by Jakub Piątkowski, with assistance from Dr Mark Bastin and the author.

87



Chapter 7. Applications

(c) 20,-18,0

(b) -6,-2,34

(a) 8,-2,34

(d) -20,-18,0

(e) -2,32,0

(f) -6,-40,14

Figure 7.3: Reference tracts used for

the ageing study, representing right (a)

and left (b) cingulum bundle, right (c)

and left (d) corticospinal tract, genu

(e) and splenium (f). Coordinates of

the original seed points in MNI space

are given in each case, and native

space seeds are marked with green

crosses. Images courtesy of Jakub

Piątkowski.

The fasciculi of interest that were used for testing  in this agèd cohort were the genu

and splenium of the corpus callosum; the corticospinal tract (, left and right)a; and the

cingulum bundle (, left and right). The registration method for seed point placement was

used to transfer a single point for each tract from  standard space (Evans et al., 1993) to

each individual’s brain. A reference tract was then selected by hand from the set of native

space tracts, whenever an acceptable segmentation was available. In the corpus callosum genu,

however, none of the tracts generated in this way was satisfactory, and so a seed point was

hand selected in a single subject’s brain volume to give a good match—which was then used

as the reference tract—and the seed was transferred to standard space using the inverse of the

usual transformation. The resulting set of six reference tracts are illustrated in Fig. 7.3. The

genu and splenium tracts were drawn from a single subject, the two cingulum bundles from

another subject, and the two s from two more subjects.

was applied in each remaining subject for each fasciculus, using a neighbourhood size of

7×7×7 voxels. Tracts segmented using the registration method and were inspected by eye

to establish whether or not they were anatomically plausible representations of the relevant

fasciculus in each case. Finally, using the field of connection probabilities associated with the

selected candidate tract, φ(x), as a set of voxel weightings, tract-averaged values of ,  and

were calculated according to

F =

∑
xφ(x) f (x)∑

xφ(x)
, (7.1)

where f (x) is a scalar field encapsulating the values of  (and so on) at each voxel in the

brain. Since we are hoping to make group contrasts more robust for comparative studies, we

would hope that the variability of these measures would be smaller within this group using

 than with the registration method.

Table 7.1 shows the subjective results of examining each tract by eye to determine whether

or not it represents an anatomically plausible segmentation of the relevant fasciculus. The table

also shows the percentages of tracts whose segmentations were deemed better or worse using

neighbourhood tractography, irrespective of whether or not the  segmentation was actually
aThe corticospinal tract is the fasciculus that was segmented by seeding in the posterior limb of the internal capsule

in chapter 6.
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good enough to be considered acceptable. Table 7.2 shows the coefficients of variation (s)

for each metric, calculated using Eq. (7.1) from the single tracts selected with registration or

. All selected tracts contributed to these values, whether or not they were found to represent

acceptable segmentations.

The subjective and objective results largely corroborate one another. Coefficients of vari-

ation for each of the three d metrics are generally lower using  than they are with the

registration method, except in the right corticospinal tract—which was also the only tract in

which  was judged to have worsened more tract segmentations than it improved. The s

for  in the left cingulum and left  were also higher using neighbourhood tractography,

but the differences in these cases were so small as to be negligible. It is clear, however, that

there was considerable variation among the fasciculi in the proportions of tracts found to be

acceptable, and in the variability of tract metrics as indicated by the  values. There are even

substantial differences between bilateral pairs of tracts: twice as many tracts representing the

left  were successfully segmented using either of the two methods, for example, as for the

right . This lack of consistency between comparable tracts across the data set may be a

genuine characteristic of the data, but it is more likely that differences in reference tract quality

are the main source of the effect. This is an issue that we will return to later.

7.2 Old versus young

We have described the effects of neighbourhood tractography in reducing the variability of

diffusion metrics within a single population, but we have yet to demonstrate that this is

helpful in performing group contrasts. To this end, the genu reference tract used for the study

described above was used to perform  in a group of eight young adults (mean age 25.8±3.7

years), using the same neighbourhood size of 7× 7× 7 voxels. The acquisition protocol for

these subjects was described in §6.4. The three metrics of interest were calculated for the tract

selected as the best match by , according to Eq. (7.1). These were then compared with the

data from the 22 agèd subjects (mean age 75.7± 5.3 years) whose genu segmentations using

% Right  Left  Right  Left  Genu Splenium Total

 acceptable 18.5 18.5 22.2 37.0 51.9 3.7 25.3

 acceptable 44.4 48.1 14.8 40.7 81.5 74.1 50.6

Either acc. 48.1 59.3 29.6 59.3 100.0 74.1 61.7

Neither acc. 51.9 40.7 70.4 40.7 0.0 25.9 38.3

 better 59.3 55.6 11.1 37.0 48.1 81.5 48.8

 worse 11.1 14.8 48.1 22.2 18.5 0.0 19.1

Table 7.1: Proportions of tracts generated by applying the registration method (RM) or neighbourhood

tractography (NT) to the agèd cohort which are considered “acceptable” matches, expressed as percentages.

Proportions of tracts which were deemed better or worse matches after applying NT are also given. The

reference tracts are included in this analysis.
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Metric Method Right  Left  Right  Left  Genu Splenium

  0.274 0.328 0.080 0.098 0.362 0.256

 0.165 0.260 0.117 0.086 0.167 0.198

difference 0.109 0.068 −0.037 0.012 0.195 0.058

  0.242 0.298 0.075 0.095 0.282 0.159

 0.152 0.229 0.113 0.083 0.141 0.136

difference 0.090 0.069 −0.038 0.012 0.141 0.023

  0.296 0.484 0.053 0.042 0.293 0.296

 0.073 0.489 0.059 0.049 0.105 0.204

difference 0.223 −0.005 −0.006 −0.007 0.188 0.092

Table 7.2: Coefficients of variation for each metric and fasciculus, across the agèd cohort, using the

registration method (RM) and neighbourhood tractography (NT). Differences are positive where the CV is

greater using the registration method.

Metric Method Agèd mean Young mean p-value

  0.341 0.362 0.238

 0.336 0.402 0.002*

  0.429 0.447 0.359

 0.427 0.492 0.006*

  8.99 8.52 0.275

(×10−4)  9.16 8.42 0.053

*p < 0.01

Table 7.3: Comparisons of the three tract metrics for the corpus callosum genu, between the agèd and young

groups, using only visually acceptable segmentations. p-values were calculated using two-tailed t-tests.
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 were considered acceptable. Equivalent values were also computed using the registration

method.

The results are tabulated in Table 7.3, and illustrated graphically in Fig. 7.4. We observe

that the mean  and  is significantly different between the groups using , according to a

standard two-tailed t-test; but not with the registration method. In line with the results of Abe

et al. (2002) and others, anisotropy is found to be higher in the younger group. The difference

between means also approaches significance using , with p = 0.053. It therefore appears

that  does help with this type of contrastive analysis in specific tracts.

The box-and-whisker plots additionally give a sense of the variance in each group. We

note that for both  and b the interquartile range is similar for the two groups, but the

full data range is considerably wider for the agèd group. The greater age variation within the

agèd group is a plausible cause of these longer-tailed distributions, but further analysis did not

reveal any significant age effect (see Fig. 7.5). Hence we can only conclude that there are some

uncontrolled covarying factors which differ more within the older group than the younger one.

7.3 Improving the reference tracts

Although we have demonstrated in the previous section that a reference tract can be success-

fully used for segmenting tracts in multiple data sets acquired with different d protocols, it

must be admitted that the “hit rate”, as indicated by the proportions of tracts deemed accept-

able in Table 7.1, is not especially high in the agèd cohort. This will be partly due to lower data

quality in this group: the reduced anisotropy will mean that orientational uncertainty is higher,

and so tracking will be less reliable and more prone to diverge from the expected trajectory.

Another factor is anatomical differences between subjects such as variation in ventricle size,

which may tend to make the placement of the neighbourhood in native space inappropriate

in some cases. A possible remedy for this is to increase the neighbourhood width. The refer-

ence tract itself, however, is an extremely important aspect of the neighbourhood tractography

process; and by selecting a tract more or less arbitrarily from the data set under study we are

neglecting to ensure the quality of the reference, either as a typical example of the fasciculus it

represents or in terms of its optimality for the neighbourhood tractography algorithm.

In the following work, which was conducted jointly with Dr Susana Muñoz Maniega, we

describe a method for defining reference tracts based on a published human white matter

atlas (Mori et al., 2005). These references aim to be both independent of any particular data

set and carefully constructed so as to minimise ambiguity for the tract matching algorithm.

This will hopefully maximise the transferability of the reference tracts, which is a major ben-

efit of the general  approach. In the following section we apply these references to data

from the Edinburgh High Risk study (principal investigator Prof. Eve Johnstone), which in-

volves schizophrenics and relatives considered to be at high risk of becoming schizophrenic

themselves.

We begin by explaining our motivation more explicitly. The aim of a reference tract is

to epitomise the topological characteristics of the fasciculus which we wish to segment in an

bThe equivalent plot for  (not shown) closely resembles the  plot, since the two measures are closely related.
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Figure 7.4: Box-and-whisker plots of weighted mean FA and MD in the genu of the agèd and young subject

groups. The thick horizontal lines represent the medians for each group.
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Figure 7.5: Scatter plots of age against genu FA and MD within the agèd subject group. Least-squares linear

regression lines are shown in grey for information, but there is no significant correlation.
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(a) (b) (c) (d) (e)

Figure 7.6: The steps of atlas-based reference tract generation, demonstrated on the right uncinate fasciculus.

Each image is shown as a sagittal maximum intensity projection, overlaid on the slice of theMNI single subject

template in-plane with the seed point. The seed is shown in green.

individual brain volume. Naturally, the shape and length of the correct segmentation in any

given subject’s brain will not be identical to those of any reference tract, but the tract similarity

metric that we described in chapter 6 is designed to allow us to maximise the correspondence,

given the constraints imposed by the data. There is, in effect, a distribution over tract topologies,

from which the fasciculus of each individual is drawn. In order to maximise the effectiveness

of the neighbourhood tractography method, the reference tract should represent a topology

that is as close as possible to the mode of this distribution; thus ensuring that the greatest

possible proportion of “correct” segmentations are considered good matches to it. A reference

tract chosen from a single subject may in fact sit within the tails of the distribution—i.e. it may

be an atypical outlier—even if it is appropriate for that subject, and appears to be plausible.

To create a separate reference tract for each data set would also involve an undesirable and

unnecessary increase in the work required to apply  to new studies. On the other hand, atlas

representations of white matter tracts are typically based on data from several subjects, and

therefore give a sense of the underlying distribution.

With reference to the white matter atlas created by Mori et al. (2005), we manually seg-

mented, in the  single subject template brain (Holmes et al., 1998), the whole region corre-

sponding to the tract of interest. We then resampled this region to correspond to the resolution

of the native space in which the data for the High Risk study were acquired. Note that only a

scale transformation is applied here, so this resampling process is quite subject-independent.

An example of the tract region at this stage, overlaid on an appropriately resampled image

of the  single subject, is shown in Fig. 7.6(a). The tract in this case is the right uncinate

fasciculus. This region represents all voxels in the brain through which the tract may pass,

but it is considerably wider than any single tract would be. It is therefore unrepresentative,

and it is also heavily suboptimal for the  similarity algorithm, because there is no unique

maximum intensity pathway through it. Our final aim is a very narrow pathway running

through the centre of this region, which should be a good approximation to the mode of the

spatial distribution over tracts, and unambiguous for the purposes of matching. We achieve

this by first binarising the image, giving all nonzero voxels the same value (b); smoothing

with a Gaussian kernel with standard deviation of 2 mm, thereby encoding at each voxel the

distance to edge of the region (c); and then skeletonising the result using the same principle that
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the  technique uses for skeletonising maps (d). The latter skeletonisation process works

by finding local maxima in image intensity (cf. §6.1). What remains is a “core” of the original

region, from which a reduced tract is calculated (cf. §6.3.1), producing the final reference

tract (e), which has single voxel thickness along its length and is therefore unambiguous in

orientation at each step of the matching algorithm. Seed points for these reference tracts

are placed to avoid regions where fibres are expected to cross, or where contaminating tract

orientation information might otherwise be expected to be present.

7.4 A schizophrenia study

Evidence from functional imaging has led to the suggestion that schizophrenia may be a

disconnection syndrome, in which interaction between frontal and temporal regions is par-

ticularly abnormal (Friston & Frith, 1995). As a result, there is a considerable literature of

white matter studies in schizophrenia, and d methods are now commonly applied as part

of them. Voxel-based analyses have provided evidence of d-visible changes in the uncinate

and arcuate fasiculi (Burns et al., 2003) and cingulum bundle (Kubicki et al., 2003), amongst

other regions. Park et al. (2004) also demonstrated consistent hemispheric asymmetries in the

anisotropy of a number of white matter structures, in both healthy and schizophrenic subjects.

The use of tractography in studies of schizophrenia has so far been limited. Kanaan et al.

(2006) and Price et al. (2007) both use tractography methods to demonstrate reduced corpus

callosum  in schizophrenics, while Jones et al. (2006) examine a number of tracts but find a

significant difference in  only in the left superior longitudinal fasciculus.c

In preparation for this study, reference tracts for the two cingulum bundles, arcuate fasciculi

(), uncinate fasciculi () and anterior thalamic radiations () were created as described

above. The latter fasciculus connects prefrontal cortex to the thalamus through the anterior

limb of the internal capsule—its pertinence is due to evidence of reduced anterior thalamic grey

matter density in schizophrenia (McIntosh et al., 2004), which might be linked to a breakdown

of connectivity between this part of thalamus and cortex.

27 schizophrenic patients (mean age 36.5±9.2 years), 20 healthy subjects at an enhanced risk

of becoming schizophrenic due to having relatives with the disorder (mean age 30.2±2.9 years)

and 50 healthy controls (mean age 35.3±10.9 years) underwent the d protocol described in

§6.4. These data were acquired by Dr Dominic Marjoram and Dr Andrew McIntosh. For each

of the eight tracts of interest, neighbourhood tractography was applied to each subject, using a

neighbourhood width of 7×7×7 voxels as before. The proportions of visually plausible tracts

were recorded in each case, and for these acceptable segmentations, a weighted mean  value

was calculated as per Eq. (7.1). For each tract, a one way analysis of variance () was

applied to establish whether there was any effect of group membership on anisotropy. We also

examined the relationship between age and anisotropy, averaged over all tracts, for each group

individually.

 results are given in Table 7.4. We observe that mean  in controls is higher than

cThe superior longitudinal fasciculus and arcuate fasciculus are closely related structures, and the names are often
used interchangeably; although recent work suggests that they should not be considered identical (Makris et al., 2005).
It is not clear what definition of the fasciculus is being used by Jones et al. in this context.
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Tract % acceptable Control mean  mean  Schiz. mean  p-value

Right  73.2 0.407 0.384 0.406 0.407

Left  83.5 0.430 0.413 0.390 0.111

Right  70.1 0.418 0.423 0.406 0.395

Left  83.5 0.444 0.419 0.437 0.028*

Right  94.8 0.364 0.354 0.347 0.258

Left  92.8 0.380 0.357 0.357 0.059

Right  71.1 0.355 0.347 0.342 0.719

Left  77.3 0.389 0.367 0.362 0.096

*p < 0.05

Table 7.4: Bilateral results based on weighted FA values calculated in the cingulum bundles (CB), arcuate

fasciculi (AF), uncinate fasciculi (UF) and anterior thalamic radiations (ATR). Group means were calculated

for control, high risk (HR) and schizophrenic subjects and compared using a one way ANOVA. p-values given

are derived from a standard F-test.

Figure 7.7: Cumulative frequency plots of

weighted mean FA in the left arcuate fasciculus of

each group. Bonferroni corrected t-tests found a

significant difference between high risk subjects

and controls only.
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Figure 7.8: Scatter plot of age against mean FA across

all of the tracts used in this study.
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the other two groups in seven of the eight tracts—the right arcuate fasciculus is the only

exception—but there is a significant effect of group membership only in the left arcuate. This

result is consistent with the findings of Jones et al. (2006), but post-hoc t-tests applied to these

data showed that the significant difference was between controls and the high risk group,

with a Bonferroni corrected p-value of 0.036. The mean in the schizophrenic population was

considerably higher than the high risk mean for this tract. The lack of significance between

schizophrenics and controls might be related to greater variance in the former population,

but a cumulative frequency plot (Fig. 7.7) does not bear this hypothesis out. The general

steepness of the curve—which hints at the spread of the data—is similar between the control

and schizophrenic populations. There is perhaps a tendency for  values below the group

median to be lower in schizophrenics than controls, but in general the two curves are genuinely

very similar. The high risk curve, by contrast, is consistently shifted towards lower  values.

We additionally note, in common with Park et al. (2004), that there is a noticeable later-

alisation effect in mean s, which are invariably higher, on average, in the left hemispheric

versions of each tract.

Fig. 7.8 shows a scatter plot of age against the average  across all tracts. Our set of

eight tracts was not identical to those used by Jones et al. (2006), but we nevertheless failed to

find evidence of the general age effect described in that study. Of the three groups, only the

schizophrenics yielded a statistically significant relationship (Spearman’s ρ = −0.43, p = 0.024),

but the correlation was negative in this case, not positive as in Fig. 7.1.

There are any number of reasons that might help to explain why relationships between

clinical status and tract  were not more numerous. There may be genuinely little effect on

white matter;  may not be sensitive to the kinds of physiological abnormality associated

with schizophrenia, or only inconsistently so; or the effect may be so small that it is masked

by noise. Jones et al. (2006) suggest that the age of onset of schizophrenic symptoms may be a

relevant covarying factor to include in a more complex analysis. Since there was no difference

between controls and schizophrenics in the left arcuate fasciculus, it is difficult to interpret the

finding of difference between the control and high risk groups. Because the latter was not very

strongly significant, it may be simply coincidental.

Despite a paucity of clinical findings under the relatively simple analysis that we have

applied here, the considerably higher acceptance rates—reaching up to 95%—for tracts seg-

mented using atlas-based reference tracts are encouraging. Of course, it would be necessary to

use these tracts in the agèd cohort in order to make a direct comparison between the two types

of reference—the subjects involved in this study are, after all, noticeably younger. However,

even if the improvement is robust, it is not yet large enough to allow us to dispense with

manual checking of the selected tracts; and in small subject groups the rejection rate may

still be considered unacceptably high. The limitations of the similarity measure discussed

in §6.6 remain in any case. There is certainly room for improvement in the neighbourhood

tractography method itself.
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7.5 Conclusions

Despite some evidence of greater variability among the older volunteer population that we

studied in the first half of this chapter, compared to the younger volunteer group, we have

found that a reference tract drawn from one group can be used to successfully guide the

selection of candidate tracts in the other. However, the proportions of tracts successfully

segmented using a reference drawn from the data set, as estimated by a human observer, was

somewhat lower than might be hoped. A marked improvement was found using reference

tracts based on a white matter atlas—although different raters were involved in these two

studies, so some of the difference may be attributable to inconsistency in acceptance criteria.

The discussion of intersubject distributions over tracts in this chapter raises the possibility

of using a formal probabilistic model to represent this variability. With proof of concept for

neighbourhood tractography in place, refinement of the method is our next priority.

97



8

Model-based tract matching

T  of neighbourhood tractography described in chapter 6 has several intrinsic

limitations, and it is also relatively inscrutable because of its essentially heuristic formu-

lation. In this chapter we describe an attempt to formalise the principle of neighbourhood

tractography into a probabilistic model, and use machine learning methods to find matching

tracts from a set of candidate tracts.

We move to representing tracts in terms of single lines, and describe explicit probability

distributions to encapsulate the variability in shape and length across subjects. The parameters

of the resulting model are fitted using maximum likelihood from a number of hand-picked

training tracts, and then used to select matching tracts in separate test cases. We later go on

to describe a similar but unsupervised method, which negates the need for separate training

data. These approaches are found to overcome the main limitations of the heuristic method.

8.1 B-splines

This chapter will make use of -splines, which are a type of parametric curve commonly used

in computer graphics, and a generalisation of the Bézier curve (Böhm et al., 1984; de Boor, 1978).

Both -splines and Bézier curves are linear combinations of polynomial basis functions, whose

general form can be expressed as

r(t) =

p∑
i=0

PiBi,n(t) , (8.1)

where Bi,n are the basis functions of degree n and the coefficients, Pi, for i ∈ {0..p}, are called

control points. The parameter t is conventionally taken to be in the normalised interval [0,1].

The curve can be defined in as many dimensions as are required, by providing control point

vectors of the appropriate dimensionality.

In the relatively simple case of a Bézier curve, the basis functions are the family of polyno-

mials given by

Bi,n(t) =

(
n
i

)
ti(1− t)n−i ,

where
(n

i
)

is a binomial coefficient, n is the degree of the polynomial, and i ∈ {0..n}. An example

of a two-dimensional curve built up from this basis, with n = 3, is given in Fig. 8.1. Note that
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y Figure 8.1: Two-dimensional cubic Bézier curve (thick

line) with control points indicated with open circles.

the first and last control points coincide with the line, while the others guide its direction and

curvature. Any Bézier curve with degree n has exactly n+1 control points; so p = n in Eq. (8.1).

There are a number of advantages in representing a smooth curve in this way. Firstly, given

any particular choice for the degree of the basis functions, the control points are sufficient

to specify the path of the curve exactly—a far more efficient and scalable representation of

the curve than a series of very short straight lines connected together (the piecewise linear

representation). Secondly, the curve can be translated or rotated by applying the required

transformation to the control points.

-splines follow a similar principle, but introduce the additional notion of a knot. Any

given -spline is associated with a sequence of knot points, (t j), with j ∈ {0..m}. This sequence

is constrained to be nondecreasing, so that t j ≤ t j+1 for all appropriate values of j. The basis

functions are defined iteratively, with the base case

B j,0(t) =

 1 if t j ≤ t < t j+1

0 otherwise.
(8.2)

The recursive definition for all basis functions of higher degree is then given by

B j,n(t) =
t− t j

t j+n− t j
B j,n−1(t) +

t j+n+1− t
t j+n+1− t j+1

B j+1,n−1(t) . (8.3)

Unfortunately it is far from obvious exactly what form the basis functions take, given this

method of defining them; a problem that is exacerbated by the fact that the functions themselves

depend on the knot locations, t j, in the spline. So rather than explicitly expanding the functions

for a particular case, we note their most important properties below.

• The function B j,n(t) is defined over the interval [t j, t j+n+1). It is zero everywhere else.

• B j,n(t) is made up of n + 1 polynomials of degree n, which meet at the knot points.

• The basis functions of any given degree always sum to unity:
∑

j B j,n(t) = 1.
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Figure 8.2: Cubic B-spline approximation to the 2-D

parametric function (et,cos2 5t) over the interval [0,1],

using four internal knots. The thick black line is the

spline curve, filled circles represent knot points and

open circles control points. The true function is shown

in grey, but it is barely visible because the B-spline

approximates it very closely.

• If t j is always strictly less than t j+1, then B j,n(t) is n−1 times differentiable at knot points.

This means that a linear -spline is continuous only in value at knot points, while a

quadratic -spline is also continuous in gradient, and so on.

The first of these represents a notable difference between a -spline and a Bézier curve: the

shape of the latter is affected everywhere by all control points, whereas the -spline’s control

points affect the curve only locally. To clarify, then: a knot marks a boundary between basis

functions, whilst a control point guides the shape of the spline.

If two or more consecutive knots fall on exactly the same value of t, the last of the properties

described above is no longer true. Rather, if there are k copies of a particular knot value, then

the curve is differentiable only n− k times at that point. The knot sequence is often arranged

such that the first n+1 knots are 0, and the last n+1 knots are 1. This makes the curve not only

nondifferentiable, but also discontinuous, at its extrema; and as a result the first and last control

points directly define the curve’s start and end points, as for the Bézier case. The remaining

knot points are known as internal knots. A -spline with no internal knots is a Bézier curve.

An example of a -spline is shown in Fig. 8.2. In this case the spline has four internal

knots and four repeated knots at each end, for a total of twelve. There are m−n cubic basis

functions—i.e. eight in this case—and therefore eight control points can be seen in the figure,

two of which coincide with the repeated knots at the curve extrema. It can be seen that

the curve approximates two nonpolynomial functions to a high degree of accuracy, and the

approximation could be improved still further by adding additional knots, each of which will

increase the number of control points and thus the degrees of freedom of the parameterisation.

If the knot vector is known then the control points are sufficient to reconstruct the complete

spline curve. For a uniform -spline, where the internal knot points are equally spaced across

the range of t values, the knot vector is highly constrained and even less information is therefore

required to recover the curve.
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8.2 Tract representation revisited

It is desirable, as we discussed in §6.3, that the tract representation chosen for the purpose

of matching be as independent as possible of the fibre tracking algorithm used to generate

the tract. In our original formulation of neighbourhood tractography, we chose to work with

tracts represented as a scalar field over the native space of each subject, with an associated

seed point—a form amenable to both probabilistic and deterministic algorithms. However,

two of the greatest limitations of the matching algorithm outlined there arise from this choice:

the difficulty of correcting for gross rotation and scaling differences between subjects, and the

risk of premature termination due to local directional uncertainty in the reference or candidate

tract. The process of calculating a reduced tract is also susceptible to this latter problem.

In the following work, we use a -spline tract representation instead. This choice necessi-

tates some loss of information when the original tract was made up of many sample streamlines,

but this loss is only for the purpose of matching, so it need not entail major difficulties pro-

vided that sufficient information remains to meaningfully compare the shape and length of a

candidate and a reference tract.

To recap: whether a reconstructed tract consists of a single line running through a seed point,

or a number of sample streamlines with the seed point in common, the process for generating

streamlines is typically to choose a local tract orientation—starting at the seed point—move

a short distance in the corresponding direction, and repeat until some termination criterion

is met. This process has to be performed twice to reconstruct the complete streamline, since

all d-derived tract orientation information is directionally nonspecific. As a result, each

streamline can be conceptually split at the seed point into two sets of points, representing what

we will refer to as the “left” and “right” substreamlines. The streamline can therefore be said

to have a “left length”, N1—the number of points on its left side, excluding the seed point

itself—and a “right length”, N2. Note that the names left and right are used for convenience

only, and have no strict significance.

In order to be able to model single streamlines and distributions of probabilistic streamlines

in the same way, we must first find a single line, in the latter case, which epitomises the shape

of the whole set of lines. We do this by calculating a median streamline whose left and

right lengths, Ñ1 and Ñ2, are the ξ-quantiles of the individual streamline lengths, where ξ

is a parameter to be chosen. (For ξ = 0.9, for example, distal spatial information would be

discarded from the longest 10% of streamlines.) Then, beginning at the seed point and moving

outwards in each direction in turn, the x, y and z components of the median point location are

calculated at each step from all unterminated streamlines. The resultant set of median points

is a single line tract representation r = (xi), where i ∈ {−Ñ1,−Ñ1 +1, . . . ,Ñ2−1,Ñ2} and the point

x0 is the seed point. (Alternatively, a single streamline could be extracted from the data set by

minimising any of the the distance metrics mentioned in §6.2 within the set.)

Unlike in the individual streamlines, where the distance between successive points is fixed,

the median line, as a composite streamline, is not in general made up of equally spaced points.

In fact, since the number of streamlines drops as one moves away from the seed point, and the

median location is calculated from only unterminated streamlines, it may occasionally move
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Figure 8.3: Graphical representation of a full

set of probabilistic streamlines representing the

corpus callosum splenium (grey, shown at 10%

opacity), the median line and B-spline knot

points (black), here projected into a plane nor-

mal to the superior–inferior (z) axis. ξ = 0.99.

The seed point is indicated with an arrow.

a large distance in a single step. Nevertheless, the real world length of this piecewise linear

median line can, of course, be calculated by summing the actual point spacings.

Finally, the path of the median line is represented in terms of a three-dimensional cubic

-spline curve, parameterised by the distance along the line, t. For any uniform cubic -spline

with m+1 knots in total, there are κ = m−7 equally spaced internal knots; and in this case they

are arranged so that one of them falls on the seed point. The final tract parameterisation then

becomes

r(t) =

m−4∑
j=0

P jB j,3(t) , (8.4)

a particular case of Eq. (8.1), where B j,3 are the cubic -spline basis functions.

The free parameter, m, is not chosen directly. Instead, the control point coefficients are

calculated for the reference tract data using a model with one internal knot (i.e. κ = 1, m = 8),

and the residuals, ρi, at each point, i, on the median line are used to calculate the residual

standard error, according to

Eκ =

√ ∑
iρ

2
i

Ñ1 + Ñ2−κ−3
. (8.5)

(The denominator of Eq. (8.5) represents the residual degrees of freedom, which is affected by

the number of points on the median line and the number of internal knots.) The number of

knots is then incremented and the residual standard error recalculated until the mean of the

three components of Eκ is less than some threshold value, η. The knot separation distance for

this fit is then fixed for each candidate tract, so the number of knot points in each case depends

on—and is uniquely determined by—the length of each median line.

Fig. 8.3 demonstrates the process described above. A set of 5000 probabilistic streamlines

is shown in grey: these represent all of the information about the connectivity distribution

provided by the tractography algorithm for a single seed point. The black line represents

the median, and the black filled circles represent the -spline knot points in the final tract

parameterisation. Note that, although we favour methods that produce a distribution of

streamlines due to the greater amount of information they provide about spatial uncertainty, if
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a tractography algorithm had been used that generates only a single streamline for each seed

point, then calculating the median line would be unnecessary, but the -spline parameterisation

would still be valid. This parameterisation is used in order to reduce the dimensionality of

the data and emphasise topological tract features at a scale that is not determined by voxel

dimensions.

8.3 Comparing spline tracts

With the reference and candidate tracts represented as -splines, we can now define a model

for the topological relationships between them. We consider a finite set of candidate tracts,

among which there is assumed to be a single tract that best matches the reference tract, which

has been chosen in advance. We introduce a variable, µ, which can take any value in {1..N},

where N is the number of candidate tracts in the set, to indicate that the corresponding tract

is the best match. Given a set of data, D, describing a group of candidate tracts, we wish to

establish a model for the distribution P(µ |D); and hence to find the most likely value of µ.

For a tract, i, which has L1 internal knot points on its left side and L2 internal knots on its

right side—excluding the seed point in each case—we consider the vectors that link successive

knots together such that they are always directed away from the seed point. We denote these

vectors vi
u, where u indexes over knot points such that it is negative on the left side of the

tract and positive on the right side. The cosine of the angle between a contiguous pair of these

vectors is given by

ci
u = cosθi

u =
vi

u ·wi
u

‖vi
u‖‖wi

u‖
(8.6)

where ‖ · ‖ is the usual Euclidean norm and

wi
u =


vi

u+1 if u < −1

−vi
−u if u = ±1

vi
u−1 if u > 1.

These continuity angles give an indication of the local curvature of the tract. By introducing

the notation v∗u for the uth vector in the reference tract, we can describe another cosine value,

si
u = cosφi

u =
vi

u ·v∗u
‖vi

u‖‖v∗u‖
, (8.7)

which indicates the local directional similarity between the reference and candidate tracts.

— reference
— candidate

v−1

v−2

θ1
θ2

φ1
Figure 8.4: Illustration of the different angles rel-

evant to our model. Filled circles here represent

successive knot points in the reference and can-

didate tracts. The ringed knot is the seed point,

which is common to the two tracts.
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Fig. 8.4 illustrates, in two dimensions, the continuity angles, θu, and the similarity angles,

φu. The cosine function is a priori uniform in the sense that the distribution of cosines between

pairs of vectors generated from a spherically symmetric distribution is uniform; and it is

therefore convenient to model the continuity and similarity cosines, as described by Eqs (8.6)

and (8.7), rather than directly modelling the angles themselves.

The tract data that are relevant to our matching model are its continuity and similarity

cosines and its left and right lengths: di = (Li
1,L

i
2,c

i,si), where ci = (ci
u) and si = (si

u). The full

data set, D, then consists of all the di plus the left and right lengths of the reference tract, L∗1
and L∗2. The principle of the model is that in regions where there is directionality information

available from the reference tract, that information should provide the best predictor for the

direction of a matching candidate tract. If the candidate tract is longer than the reference tract,

however, then in the region beyond the end of the reference, the only predictor of the tract’s

direction at any given step is its direction at the previous step. Hence, the full matching model

is given by

P(µ = i |D) ∝ P(Li
1 |L
∗

1)P(Li
2 |L
∗

2)
Ľi

1∏
u=1

P(si
−u)

Ľi
2∏

u=1

P(si
u)

Li
1∏

u=Ľi
1+1

P(ci
−u)

Li
2∏

u=Ľi
2+1

P(ci
u) , (8.8)

where Ľi
1 = min{Li

1,L
∗

1}, and equivalently for Ľi
2. The inclusion of the continuity cosine dis-

tributions expresses a preference for candidates that are not atypical in their curvature in

regions unconstrained by the reference tract; it thus provides some assurance of “tract qual-

ity”. It is implicitly assumed here that all unmatched tracts are equiprobable. The constant of

proportionality in Eq. (8.8) is given by normalising over all values of i.

There are some constraints that can be applied to this model in order to reduce the number

of parameters that need to be estimated. To this end, we assume that the curvature properties

of tracts do not vary along their length, implying that all continuity cosines are drawn from

a single distribution. We cannot, however, assume the same for the similarity cosines: Fig.

8.3 demonstrates that there is generally far more spatial uncertainty—as shown by the spread

of the streamline set—near the ends of tracts than there is near the middle, so considerable

local deviation from the reference tract can be expected near the ends of even well-matched

candidate tracts. Hence, we make the weaker assumption that there is no inherent difference

between the left and right sides of the tract, with distributions over similarity cosines varying

only with distance from the seed point. That is,

P(ci
u) = P(ci

v) = P(c) ∀u,v, i

P(si
u) = P(si

−u) = P(su) ∀u>0, i.
(8.9)

We must finally give specific forms for the distributions in Eq. (8.8). The length distributions

are modelled as regularised multinomial distributions, subject to a maximum length cutoff.

Fitting such a model from a data set using maximum likelihood is almost trivial: one simply

counts the number of times each length value occurs in the data set, adds a small constant

value to each count to regularise the distribution, and then normalises. The regularisation

ensures that the matching probability is not zero for a tract whose exact left and right lengths

were not in the training data set, which would be a strong and unjustified imposition.
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The cosine distributions are less straightforward. If there were no relationship between the

reference and candidate tracts then the similarity cosines would be approximately uniformly

distributed, as we discussed above. However, if smaller deviations from the reference tract

are assumed to be far more common than larger ones, as we expect for matching tracts, then

the distribution over cosines will be strongly biased towards the higher end. A standard

distribution that is able to represent this kind of relationship over a fixed interval is the beta

distribution, whose general p.d.f. is given by

P(x |α,β) =
Γ(α+β)
Γ(α)Γ(β)

xα−1(1−x)β−1 for 0 ≤ x ≤ 1 ,

where Γ(·) is the gamma function, and α and β are parameters. However, since small angles are

always assumed to be the most common, we can fix β = 1. We also need to rescale the cosine

values into the interval [0,1] over which the distribution is defined. Finally, in order to ensure

that the model does not grossly underestimate matching probabilities when larger angles occur,

we add a uniform component to regularise the distribution, resulting in the mixture model

P(x) =
1
2

(
ε+ (1−ε)α

(x + 1
2

)α−1)
(8.10)

for both the continuity and similarity cosines. This distribution becomes uniform when either

α = 1 or ε = 1, and is strongly biased for small ε and large α.

To find maximum likelihood estimates for α and ε given some data vector of rescaled

cosine values, x, we use a simple Expectation–Maximisation algorithm. Associated with each

data value, x j, is a latent variable, ζ j, indicating whether the value came from the uniform

distribution (ζ j = 0) or the beta distribution (ζ j = 1). Given some starting estimates for the

distribution parameters, α̂ and ε̂, the -step of the algorithm calculates

P(ζ j = 0 |x j) =
ε̂

ε̂+ (1− ε̂) α̂x α̂−1
j

and

P(ζ j = 1 |x j) =
(1− ε̂) α̂x α̂−1

j

ε̂+ (1− ε̂) α̂x α̂−1
j

for each value of j. The -step then updates the parameter estimates according to

α̂ =
−
∑

j P(ζ j = 1 |x j)∑
j P(ζ j = 1 |x j) lnx j

and

ε̂ =
P(ζ j = 0 |x j)

P(ζ j = 0 |x j) + P(ζ j = 1 |x j)
,

and the algorithm repeats until convergence.

8.4 Training and using the model

The data used for testing this approach were those acquired for the original neighbourhood

tractography experiments, taken from 14 d scans of 6 individual subjects. The  acqui-

sition protocol can be found in §6.4. Preprocessing to extract the brain and correct for eddy

current induced distortions was performed as described there.
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Figure 8.5: Histograms of rescaled (a) continuity cosines (n = 962) and (b) similarity cosines (u = 7, n = 18)

from the splenium training data. The appropriate density functions from the model are overlaid.

For the purposes of this study, the white matter structures of interest were the corpus callo-

sum splenium and corticospinal tract. All tracts were generated using the /ProbTrack

algorithm (Behrens et al., 2003b) with its default parameters. The result was a set of 5000

probabilistic streamlines for each tract, with a fixed separation distance of 0.5 mm between

successive points. Median lines were then calculated using ξ = 0.99, and transformed into the

space of the reference tract, using the  registration algorithm (Jenkinson & Smith, 2001) to

register together T2-weighted (b = 0) volumes from each scan. Using a residual error threshold,

η, of 0.1 mm, the -spline parameterisation was calculated for the splenium reference tract, and

all candidate tract splines were fitted using the resulting knot separation distance of 6.1 mm.

If any two successive median line points were more than this distance apart, the median line

was truncated to avoid creating multiple knots, which would result in discontinuities in the

spline.

In addition to the reference, nine other splenium tracts were chosen by hand from different

brain volumes to form a training set of matching tracts, and the parameters of the model per-

taining to the length and similarity cosine distributions were fitted using maximum likelihood

as described above. Specifically, three splenium tracts were taken from subject 1, two from

subject 2, two from subject 3, and one each from subjects 4 and 5. The reference tract was

taken from a third scan of subject 2. No more than one training tract was taken from any given

scan. The continuity cosine distribution, P(c), was fitted from 50 tracts generated by seeding

randomly in a single brain volume, subject to an anisotropy threshold used to ensure that

each seed point was in white matter. This policy is appropriate given the assumption that the

continuity properties of all tracts are broadly similar, and it has the significant advantage of

increasing the quantity of training data available.

Fig. 8.5 shows histograms of the cosine distributions, P(c) and P(su)—the latter for a sample

value of u. In (a), there are data from the full domain of (rescaled) cosine values, and the

final estimate for ε reflects this. In (b), however, there are no cosine data below 0.9, and

so the ε parameter has shrunk to zero. In fact, all of the similarity cosine distributions had

ε = 0, although the α parameter—which affects the steepness of the right hand sides of the
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distributions—varied considerably, being 112.6 for u = 1 and only 6.1 for u = 14, the largest

value of u for which a distribution was defined.

The whole process was applied in the same manner for the corticospinal tract, using an

appropriate reference. The model parameters were retrained for this case, using a training set

of five tracts.

Having used the training data to learn its parameters, the model described by Eq. (8.8)

represents a way of assessing a set of novel tracts for their respective similarities to the reference

tract. In order to create such a set, the seed point used to generate the reference tract was

transferred to a new brain volume, from which no training data had been taken. Tractography

was then performed for all points within a 7×7×7 voxel region centred at this location, subject

to an anisotropy threshold, and each candidate seed point was processed as follows.

1. Run the tractography algorithm and recover a set of probabilistic streamlines.

2. Calculate the median line and transform it into the space of the reference tract as described

above.

3. Using the fixed knot spacing chosen, fit a cubic -spline along the median line.

4. Calculate continuity and similarity angles for the interknot vectors, as depicted in Fig.

8.4.

5. Evaluate the right hand side of Eq. (8.8) using the length and angle distributions fitted

from the training data.

This allows us to select the “best” seed point a posteriori by finding the starting location which

generates the best matching tract.

In order to test the robustness of the method to small differences in the reference tract,

the corpus callosum reference was substituted for its equivalent taken from a different scan

of the same subject (see Fig. 8.6). These two tracts do, of course, represent the same physical

fasciculus, imaged in two consecutive scans. The model parameters were then recalculated for

this alternative reference tract, and the experiment was repeated.

Fig. 8.6 shows the results of applying the model to tract—and hence seed point—selection.

In this figure, all tracts are shown as maximum intensity projections; splenium tracts in a plane

normal to the superior–inferior (z) axis, and corticospinal tracts normal to the left–right (x)

axis. These perspectives are used because they show the two axes of greatest spatial variation

and highlight the most common gross reconstruction inconsistencies in each case. Each tract is

shown colour-coded according to the proportion of probabilistic streamlines that pass through

each image voxel, thresholded at the 1% level. (This threshold is approximately equivalent to

the use of ξ = 0.99 above in calculating the median line.) The underlying greyscale image in

each case is the slice of the anisotropy map in-plane with the seed point.

According to the model, tracts (a) and (b) are the two most likely matches to the reference

tract adjacent to them. The point at the centre of the seeding neighbourhood generated

tract (c), which is visually far less similar to the reference tract. Its matching probability

is commensurately smaller, by many orders of magnitude, than those for (a) and (b). The

candidate set contained 220 tracts in total, after thresholding on anisotropy.
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reference (a) 0.952 (b) 0.018 (c) 4.88 x 10-48

reference (d) 0.959 (e) 0.037

100%

1%

reference (f) 0.434 (g) 0.426 (h) 6.71 x 10-206

50%

Figure 8.6: The two most likely matches

to the original (top row) and the alterna-

tive (middle row) splenium reference tract,

shown in axial projection with their asso-

ciated matching probabilities. The tract

generated from the neighbourhood centre

point is shown with its matching probabil-

ity (c), for comparison. Results for the cor-

ticospinal tract, in sagittal projection, are

shown in the bottom row. It should be re-

membered that tracts (a–h) are taken from

different subjects to the reference tracts.

Colours represent the proportion of prob-

abilistic streamlines passing through each

voxel, as indicated by the colour bar.

For comparison, tracts (d) and (e) are the two best-matching tracts from the same neighbour-

hood, using the alternative reference tract. In this case the model parameters were relearned,

but the knot separation distance under this very similar reference tract was only slightly smaller

than the old one, at 6.0 mm. Tracts (a) and (d) are in fact the same tract, so the most likely

match is the same with both reference tracts.

Similarly, tracts (f) and (g) are much better matches to the corticospinal reference tract than

the tract generated from the centre seed, (h). Once again the matching probabilities reflect this.

Since there is no normalisation or standardisation of matching probabilities between dif-

ferent sets of candidate tracts, these values are not directly comparable between data sets or

reference tracts. They simply represent the probability of each candidate tract matching the

given reference relative to the other candidates. There is no guarantee that the most likely match

is a good match in any absolute sense. In order to provide an indication of absolute goodness-

of-match, the log-ratio between the matching likelihood—the right hand side of Eq. (8.8)—of

the best match and the matching likelihood of the reference tract to itself was calculated.

Fig. 8.7 shows the results of calculating log-ratios using the original reference tract for the

splenium. The more negative this log-ratio, the less good a fit is compared to the “benchmark”

of the reference tract itself.

Figure 8.7: Log-ratios between matching

likelihoods of the tracts shown and the

matching likelihood of the reference tract.

The reference tract has a log-ratio of zero

by definition; (a) is the alternative reference

tract; (b) is the best match in the novel can-

didate set; and (c) is the tract generated

from the neighbourhood centre point.

reference (a) -2.1 (b) -12.3 (c) -121.2
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8.5 Advantages and limitations

Compared to the simpler methods of placing single seed points by hand or using image-

registration-based transformation, our method offers advantages with respect to consistency

and reproducibility. As with all neighbourhood tractography methods, reference tracts can be

directly transferred between studies with minimal modification; and since there is no need for

observer interaction, presentation of an identical data set to the method described above will

always yield an identical result.

The present model-based approach to assessing tract similarity—which we first described

in Clayden et al. (2007a), from which Figs 8.3–8.7 are taken—also has advantages over the

heuristic method described in chapter 6. The first benefit is a general matter of principle:

explicitly describing a tract matching model and its assumptions makes the method more

scrutable than otherwise. Secondly, and more substantially, the median line representation of

a tract can undergo affine transformation without complications; whereas the previously used

field representation of a tract cannot be transformed without creating interpolation issues.

This is helpful because it allows us to easily correct for gross head size or rotation differences

between the reference and candidate tracts using standard affine image registration—as we

have done above. Thirdly, the results from our previous approach to tract matching were

quite strongly affected by the particular nature of the reference tract, and had a very narrow

dynamic range. By contrast, Fig. 8.6 demonstrates that two very similar reference tracts

do produce comparable—although not identical—results under the current model, while the

matching probabilities assigned to dissimilar candidate tracts vary by orders of magnitude.

Tracts (a), (b), (d) and (e) all represent appropriate matches to either splenium reference tract,

and the fact that the best match under the original reference tract was also the best match under

the alternative reference, out of a set of more than 200 candidates, does suggest a beneficial

lack of sensitivity to small alterations in the reference tract.

The greater dynamic range and probabilistic interpretation of the present approach to tract

matching also suggest alternative uses for the likelihood data. Note that Eq. (8.8) describes

a discrete matching distribution over a neighbourhood in each subject’s native space. The

neighbourhood tractography method that we have employed so far is a maximum likelihood

one, since we retain exactly the one tract which matches best under the model. For probabilistic

tracts, the voxelwise likelihood of connection is then taken straight from the result of seeding

at this single point. An alternative strategy is to find the expected value with respect to the

matching distribution,

φ̂(x) =

N∑
i=1

P(µ = i |D)φi(x) , (8.11)

for each voxel location, x, in the brain; thereby forming a weighted average field of connection

likelihoods for any particular scan.

Fig. 8.8 shows the effect of applying this strategy for the corticospinal tract example we

looked at earlier. To save computation time, only the tracts with matching probabilities of

greater than 0.01, of which there are five, were included in this weighted average. The images

of the  tract (a,b) and those of the weighted average tract (c,d) appear only subtly different,
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Figure 8.8: Maximum likelihood corticospinal tract images in coronal (a) and sagittal (b) projections, and

equivalent images for the weighted average tract data (c,d), all thresholded at the 1% level. Histograms of

connection log-likelihoods for the maximum likelihood (plain) and weighted average (shaded) images are

also shown (e).

and their general trajectories are clearly very similar indeed. Nevertheless, there are notable

differences. Firstly, the weighted average tract is wider than the  one, giving more complete

coverage of the voxels that are likely to represent the physical corticospinal tract. After

thresholding at 1% there are 414 nonzero voxels in the average tract, as opposed to 321 in the

 version. As a result more data will be included in downstream tract-averaged comparisons

of anisotropy across subjects, lending greater power to any statistical tests. Secondly, the

distribution of connection likelihoods is markedly altered in the averaged tract, as shown by

Fig. 8.8(e). It can be seen that the general trend in both tracts is for the larger connection

likelihoods to occur less frequently, but in the  tract—shown with unshaded bars—there is

a significant upturn at the very top end of the range, representing an uncharacteristically large

number of voxels that are very likely to be connected to the seed point. These are a direct result

of the tight spatial distribution of streamlines near to the seed point, and are heavily seed point

dependent (cf. Fig. 8.3). The average tract, on the other hand, incorporates data from several

seed points and is therefore less affected by this problem. It can be seen from the histograms

that the downward trend continues over the whole range of voxel values in this case. Only

7% of suprathreshold connection likelihood values are greater than 0.5 in the average tract,

against 13% in the  tract. It should be noted that calculating this kind of weighted average

would be highly problematic using our earlier, heuristic similarity measure, owing to the very

small differences in similarity that we found across sets of candidate tracts. Data from even

very poorly matching tracts would consequently be well represented in the average tract.

Our model does have limitations, however. The median line cannot represent branches

in the original set of streamlines; and as a result, the model cannot discriminate against such

tracts, which may be considered desirable. (This, of course, will not be an issue in cases where

the tractography algorithm produces a single streamline representation of a tract.) Secondly,

the nature of Eq. (8.8) is such that the reference tract itself does not have the highest possible
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matching likelihood, and so the log-ratio calculated in Fig. 8.7 could be positive for some

tracts. Moreover, since there is very little training data available for the length distributions,

and so they are heavily affected by their regularisation terms, they do not fully compensate for

the likelihood-increasing effects of the continuity cosines in very long tracts. Additionally, of

course, any limitations and sensitivities to data quality that the chosen tractography algorithm

may have will apply in turn to our method.

The use of s to constrain the paths that probabilistic streamlines may take (Conturo et al.,

1999; Heiervang et al., 2006) is not precluded by our method. Indeed, a two- constraint

could be applied to ameliorate problems with branches in the tracts if they proved significant,

although we would advocate the avoidance of  constraints wherever possible.

8.6 An unsupervised approach

We have shown that it is possible to capture the variability in shape and length between

comparable tracts in different brain scans using a well-defined probabilistic model. However,

the supervised approach that we have used up to now, whereby the model parameters are

fitted using a group of training tracts chosen by hand, represents a rather suboptimal use

of available information. We generated a small number of specialist training tracts, whilst

some 200 candidate tracts were created for each test scan and then largely discarded. The

hand-selection of training tracts also reintroduces an element of observer subjectivity into the

process, albeit a reasonably minor one. On the other hand, if we could use the candidate tracts

themselves to train the model whilst simultaneously finding a good match, then separate

training data may not be required at all.

An unsupervised approach to the problem that uses the candidate tracts in this way could

be constructed using , once again, with two generative models—one for matching tracts,

and one for nonmatching tracts. We can then introduce a latent variable, zi, indicating whether

tract i matches the reference tract (zi = 1) or not (zi = 0). The “one best match” assumption that

we have made up to this point can then be described by the equation∑
i

P(zi = 1) = 1 . (8.12)

Only one tract would therefore be drawn from the matching distribution, while all others are

drawn from the nonmatching distribution. However, we introduce the additional possibility

z0 = 1, to mean that none of the candidate tracts represents a suitable match. Given an estimate

for the model parameters, ω̂, the -step of the algorithm would then involve calculating the

posteriors

P(zi = 1 |D) =
P(zi = 1)P(di

|ω̂,zi = 1)
∏

j,i P(d j
|z j = 0)

P(D)
(8.13)

for each candidate tract—the likelihood of the tract in question under the matching model,

multiplied by the likelihoods of all other tracts under the nonmatching model. The probability

of no match among the candidates is given by

P(z0 = 1 |D) =
P(z0 = 1)

∏
j P(d j

|z j = 0)

P(D)
, (8.14)
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the normalised likelihood for every tract under the assumption that it does not match the

reference. The evidence is

P(D) =
∑

i

P(zi = 1)P(di
|zi = 1)

∏
j,i

P(d j
|z j = 0) + P(z0 = 1)

∏
j

P(d j
|z j = 0) . (8.15)

The choice of priors for these calculations is not entirely straightforward. We may assume that

each candidate tract is a priori equiprobable, say P(zi = 1) = γ for i ∈ {1..N}, which then gives us

P(z0 = 1) = 1−Nγ. The difficulty is in the choice of γ, since it is hard to estimate in advance the

chance of there being no match in the data. One option is to use γ = 1/(N + 1), which makes

the prior probability of no match the same as the prior for each candidate being the match,

although this is an unprincipled position.

Our generative models for the matching and nonmatching tract data can be defined simi-

larly to the single model that we used earlier. Since we found that the uniform component of

the distributions over similarity cosines tended to always shrink to zero, we can use—for the

matching model—just a simple beta distribution for modelling similarity cosines. That is,

P(si
u |αu,zi = 1) =

αu

2

(
si

u + 1
2

)αu−1

∀i,u > 0 .

The equivalent distributions for the nonmatching model can simply be uniform, and therefore

quite independent of the reference tract. That is,

P(si
u |z

i = 0) =
1
2
∀i,u .

The length distributions remain multinomial for both models. The data likelihood under each

model can therefore be written out as

P(di
|ω,zi = 1) = P(Li

1 |L
∗

1,z
i = 1)P(Li

2 |L
∗

2,z
i = 1)

Ľi
1∏

u=1

P(si
−u |αu,zi = 1)

Ľi
2∏

u=1

P(si
u |αu,zi = 1) , (8.16)

and

P(di
|zi = 0) = P(Li

1 |z
i = 0)P(Li

2 |z
i = 0)

(1
2

)Ľi
1+Ľi

2
, (8.17)

where the parameter vector, ω, incorporates all of the αu.

We now step back from this mathematical deluge to discuss the meaning of these models

in intuitive terms. As before, the matching tract is guided by the reference tract such that small

deviations from the reference in its local direction are considered the most likely. The remain-

ing tracts, which are not generated using the reference tract, use an uninformative distribution

over similarity cosines, and so they may step in any direction with equal probability. Since

we implicitly assumed that all unmatched tracts were equiprobable in our supervised method,

this model is approximately analogous—although it does use (informative) multinomial dis-

tributions for the lengths. Beyond the end of the reference tract the two models effectively treat

the tract in the same way, and so any contribution to the likelihoods from these regions will

simply cancel out. They are therefore ignored in practice.

It follows from Eq. (8.13) that some tract, i, will be assigned a higher posterior matching

probability than tract j, assuming equal priors, exactly when

P(di
|ω,zi = 1)

P(di |zi = 0)
>

P(d j
|ω,z j = 1)

P(d j |z j = 0)
, (8.18)
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since the contributions from all other tracts cancel out. A suitable tract should therefore be a

likely match, but also a relatively unlikely nonmatch. This makes sense since we are performing

a model comparison; although, because only tract length affects the nonmatching likelihoods

in the formulation we have given here, the impact of the nonmatching distributions will be

small.

Eq. (8.18) does, however, explain why some other possible models are problematic. For

example, it might seem more appropriate to use the continuity cosines to form a nonmatching

model, so that the candidate tract is guided by itself in the absence of a reference tract. The

problem, however, is that it is quite possible for a tract to be a good match to the reference and to

be highly smooth; whereas, by Eq. (8.18), a smooth matching tract would be penalised relative

to an unsmooth alternative using this form of nonmatching model. The implicit assumption of

mutual exclusivity between the models is therefore not fulfilled. Hence, the continuity cosines

are ignored altogether for present purposes.

The -step of the algorithm is now relatively straightforward. The multinomial distribu-

tions can be updated as usual, using the matching posteriors as weights for each contributory

tract length. The maximum likelihood estimator for α in each similarity cosine distribution is

given by

α̂u =
−2

∑
i>0 P(zi = 1 |D)∑

i>0 P(zi = 1 |D) lnxi
u
, (8.19)

where

xi
u =

(
si
−u + 1

2

)(
si

u + 1
2

)
.

(In fact, Eq. (8.19) is not always quite accurate, since not all tracts will contribute a similarity

cosine from both their left and right sides for every value of u; but it conveys the intention.)

In addition, since we wish to incorporate similarity cosine information from across a full data

set, the sums over i in Eq. (8.19) will in practice be over all tracts for all subjects; although the

-step above is performed for each volume individually.

At this stage we have a complete  algorithm for unsupervised tract matching. There

is, however, one outstanding issue. A consequence of the single best match assumption, Eq.

(8.12), is that the final parameterisation of the model at convergence risks being very strongly

customised to capture the characteristics of a small number of tracts, while matching all other

tracts extremely poorly. We would expect this effect to be particularly noticeable when the

number of contributing scans is comparable to the number of parameters in the model, since the

algorithm then has a wide “choice” of tracts from which to select a small number of matches. To

get around this issue, we can introduce a prior distribution over each α parameter to regularise

the likelihood function, and then take the maximum a posteriori estimate

α̂ = argmax
α

{
lnP(α |x)

}
= argmax

α

∑
i

lnP(xi
|α) + lnP(α)

 .
For the prior, we use an exponential distribution with mean 1/λ, defined by P(α) = λe−λα. This

prior will favour smaller values of alpha, thereby counteracting the upward tendency of model

overfitting when there is little data available. The  estimator is then given by

α̂u =
−2

∑
i>0 P(zi = 1 |D)∑

i>0 P(zi = 1 |D) lnxi
u−λ

. (8.20)
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Figure 8.9: Best matching splenium tracts from a full data set of 18 scans, selected using the EM approach to

neighbourhood tractography and thresholded at 1%. The numbers indicate the subject number from which

each scan was taken. The reference tract was taken from another scan of subject 3.
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Unlike Eq. (8.19), which is unbounded, Eq. (8.20) has an upper bound in the case where all

the similarity cosines are maximal. Using a total of V volumes, and assuming that a good

match can be found in each case—so that the null-match posterior, P(z0 = 1), is negligible—the

numerator of Eq. (8.20) is approximately −2V, and so the upper bound will be given by 2V/λ.

Hence, the larger the number of brain volumes used for matching, the higher the bound and

the smaller the impact that the prior distribution will have. This is appropriate since the risk

of overfitting would also be diminished. We will take λ = 1.

We applied the technique to modelling and matching the corpus callosum splenium in 18

brain volumes collected from eight healthy young volunteers. The best matching tract in each

volume under the resulting model is shown in Fig. 8.9. It can be seen that all tracts are plausible

segmentations of the splenium; and there is also a high degree of topological similarity between

tracts segmented from multiple scans of the same individual. Segmentations for subjects 1, 3,

4 and 7 are particularly alike between scans. This consistency is highly valuable for groupwise

comparative analysis work. Posterior matching probabilities for these tracts ranged from 0.44

to greater than 0.99, using λ = 1. Without this regularisation, however, the posteriors were far

greater, and in no case smaller than 0.98. In practice, these unregularised results are likely to

be overly confident, due to the relatively small size of the data set.

There are a number of advantages of this method over the supervised approach. Firstly,

of course, the removal of the need for training tracts allows a data set of any given size to be

used to its fullest advantage, and reduces the time investment and subjectivity involved in

creating a model for a particular tract. Only a reference tract need be defined a priori. Secondly,

the existence of an explicit posterior probability of no match in a given volume is valuable. It

should be stressed that this probability is conditional on assumptions implicit in the method

and therefore care should be taken not to attach too much significance to it—but imposing

thresholds on its value may nevertheless be a useful way to discard poor matches, or as an

indication that the neighbourhood size should be increased. Indeed, the possibility exists of

increasing the neighbourhood width incrementally until the null-match posterior drops below

a certain level; and this can be done subject by subject since there is no requirement that each

brain volume contribute equal numbers of candidate tracts.

The creation of a new model for each data set will be advantageous when one is dealing

with, say, ageing brains. As we saw in chapter 7, there is evidence for greater variability

among such brains, and this would be automatically allowed for by a model generated from

an agèd cohort. There is still the option of creating standardised models where this is deemed

appropriate. Making the model more complex—most obviously by relaxing the assumption

that the similarity cosine distributions are symmetric about the seed point, embodied by Eq.

(8.9)—would also be possible for a large enough data set, and through its greater flexibility,

this approach may result in even better matches.

The  algorithm is not computationally demanding. It takes only around a minute to run

using the 18 brain volumes from our experiment, and is expected to scale up linearly for larger

data sets. Creating the set of -spline tracts for each subject remains the most time-consuming

part of the process, although this may be improved by reducing the number of probabilistic

streamlines from which the median line is produced. Further testing would be needed to
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examine the impact of this kind of policy.

8.7 Conclusions

We have demonstrated in this chapter a formalised approach to neighbourhood tractography,

whereby we explicitly represent the variability between subjects—relative to a reference tract—

using probabilistic models, then learn parameters for those models, and finally use them for

tract matching. We began with a supervised approach to model fitting, and then described a

more complex variation that uses Expectation–Maximisation to learn appropriate parameters

without the requirement for separate training data. Significantly, these models are able to allow

for variability in the shape of candidate tracts in regions where it is most expected: particularly

near where they terminate in grey matter.

We have not yet had the time to test these new  techniques on clinical data sets, and

this remains as future work. The results illustrated by Fig. 8.9 do, however, suggest that

performance is considerably better than we obtained using the heuristic similarity measure

(cf. Fig. 6.7). In the following chapter, we turn to look at a way to compare anisotropy—or

other measures—downstream from the fibre tracking process, which does not simply involve

averaging within the segmented region.
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Anisotropy profiling

I  such as neighbourhood tractography were to enable the robust segmentation

of tracts representing equivalent fasciculi from a group of brain volumes, the question then

arises, “What links or differentiates these tracts?” From a clinical perspective, we might be

interested in looking for general differences in tract integrity between a healthy population

and one affected by pathology. The work described in this chapter, which was completed

under the supervision of Prof. David Laidlaw, attempts to look at integrity—as indicated by

fractional anisotropy—on a fine-grained level, profiled along the length of a tract. The aim is

to facilitate the testing of hypotheses about integrity at the within-tract level, and to investigate

the behaviour and variability of anisotropy along a tract. This problem is separate to the one

that neighbourhood tractography tries to solve, and is treated as such. We find evidence to

suggest that although within-subject and within-group variance is large when  is examined

point-by-point, there can be sufficient regional differences between groups to ensure that subtle

effects may well be masked by considering only mean  values.

9.1 A single profile

To the extent that tractography is used at present for comparative clinical study, the most

common approach is to average within the region segmented by the algorithm (e.g. Kanaan

et al., 2006), which may be represented by a line or a field. Region-averaged —however the

region of interest is established—is a simple and useful way to study the effect of pathology on

white matter integrity whilst controlling noise issues. On the other hand, ever greater numbers

of studies are finding reduced  effects in all kinds of pathologies, making such observations

increasingly nonspecific; and since d is the only available technique for studying structural

white matter connectivity in vivo, independent corroboration or refutation of these results is

extremely difficult. A partial list of scenarios in which reductions in  have been observed

could include schizophrenia (Ardekani et al., 2003), multiple sclerosis (Ciccarelli et al., 2003b),

ischaemic leukoaraiosis in lacunar stroke (Jones et al., 1999), epileptic patients after corpus

callosotomy (Concha et al., 2006), ischaemic stroke (Muñoz Maniega et al., 2004) and normal

ageing (O’Sullivan et al., 2001).

For this study, six normal volunteers and five patients with vascular cognitive impairment
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Figure 9.1: Example of a splenium streamtube set, segmented

by placing a large region of interest near each end of the struc-

ture and retaining tubes passing through both. The shade of

each streamtube indicates the local FA value. The blue structure

represents the ventricles.

(; a type of cognitive deficit which affects white matter and is quite common in elderly

people) underwent a  protocol on a Siemens 1.5 T clinical scanner, with 12 noncollinear

diffusion weighting gradient directions at a b-value of 1000 s mm−2. The tractography infras-

tructure used for this work, BrainApp, uses a diffusion tensor-based deterministic streamlining

algorithm, and visualises the results in terms of streamtubes and streamsurfaces (Zhang et al.,

2003). It uses whole brain seeding—which is possible in a reasonable time using a deterministic

tractography algorithm—and thus avoids the selection constraint implicit to a neighbourhood

or  seeding strategy. Simple streamline-based tractography lends itself very naturally to

linear anisotropy profiling.

A streamtube is simply a piecewise linear streamline represented by a series of cylinders,

whose local radii may be constant or may be used to represent some characteristic of interest.

A similar visualisation method has been used in other studies, such as Jones et al. (2005b).

Working with tracts represented by single lines—rather than fields—is helpful for this work

because it removes the need to linearise each tract before an anisotropy profile can be created.

Ignoring its width, a streamtube, ti, is therefore made up of piecewise linear line segments

connecting a sequence of points, (pi,a), with a ∈ {1..Ni}, in the native acquisition space of the

subject. The distance between successive points, di, is fixed in this space. Each of these tubes

has a seed point, but unlike in the probability field output generated by  ProbTrack, the

location of the seed point is not significant for the interpretation of the results, so we will not

give it special treatment.

We first need to establish which tubes are of interest. Since BrainApp seeds throughout the

brain, some kind of restriction is needed in order to focus on a specific white matter structure.

Whatever method is chosen should be reproducible, however, so that it can be carried forward

to comparative profiling between subjects. We used a two region of interest constraint to select

the splenium of the corpus callosum, our tract of interest, with one  placed near the left end

of the splenium tract and the other placed near the right end. These s are symmetric, as per

Conturo et al. (1999)—that is, they are treated identically, so swapping them would have no

effect on the segmentation. This is not generally the case when one  provides the set of seed

points, as in Abe et al. (2004) and some other studies. When working with streamtubes, this

strategy amounts to taking the intersection of the set of tubes passing through  one, with

the set of tubes passing through  two. An example of the result is shown in Fig. 9.1.
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Figure 9.2: Pointwise mean FA along

the set of splenium tubes segmented

using the two ROI method in a single

subject. The error bars indicate the

mean plus or minus one standard de-

viation. The dashed line indicates the

mean FA of the profile.

Since we have been critical of multiple  methods in earlier chapters, we will take a

moment to justify this strategy. The important factors here are that the tractography algorithm

being used to generate the streamtubes is deterministic, and that the seed points that generate

the relevant streamtubes cannot be expected to form a compact neighbourhood, due to the

whole brain seeding policy. Our objection about the effect of  constraints on interpretability

due to the addition of extra conditional dependencies (cf. §6.5) only applies to output with a

probabilistic significance. Constraining the algorithm by the selection of seed points is less

relevant here; and neighbourhood tractography, which works on that principle, is not directly

applicable. Ultimately, since the splenium is a coherent bundle with a distinctive shape, and

is reasonably distinct from the rest of the corpus callosum and other nearby tracts in terms of

the regions it connects together, the two method is quite specific and reproducible enough.

Moreover, it simply selects a set of streamtubes, just as choosing a number of seed points or

clustering the streamtubes would. The effects are equivalent in essence.

Having “selected” the structure of interest, we can then plot the  value, fi,a, at each point

on a tube, pi,a, thus forming an profile along the tube. (These values are interpolated from the

 data available at each voxel location.) Since all of these tubes are defined in the same space,

aligning them is quite straightforward: we simply choose a plane which each streamtube must

cross and consider the crossing points in each tube to be equivalent. We then examine the

variability across the set of tubes at each point. This process produces a streamtube-averaged

profile like the one shown in Fig. 9.2. In this case the distance between successive points, di,

is 1 mm for all tubes. It should be noted that the alignment will handle differences in length

well, but large shape differences, including kinks in some tubes, will render it inappropriate

in some regions; and this is increasingly likely to occur as one moves away from the landmark

plane.

Fig. 9.2 highlights two things in particular. Firstly, it is clear that the standard deviations

are large to very large, relative to the means. Note, however, that on the left side of the graph

in particular, the standard deviations are very large in a region near the middle of the tract,

where the alignment plane was placed, and then shrink again further from the middle. This
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suggests that the variability is not primarily due to misalignment. One likely alternative cause

is variation in the extent of partial volume effects. Some tubes will be nearer to the edge of the

bundle than others, and the anisotropy at these locations is therefore more likely to be affected

by proximity to grey matter or .

9.2 The median tube

Comparative profiling introduces some further issues. The questions of tube selection and

alignment need to be reexamined, and differences in brain size must be compensated for in

some way. We cannot simply use every tube selected in each brain, since the number of tubes

selected is not fixed so bias would occur. We can’t align tubes naïvely to a plane because each

brain is represented in its own independent native space. And brain size cannot be neglected

because it will affect the curvature of the structure and so the point homology.

Our approach to the first problem is to work only with the median tube from each brain;

that is, the tube that minimises the average distance to all other tubes in the set. So, for a

single subject whose splenium tube set contains N tubes, the median tube, tm, is identified by

calculating

m = argmin
j

 1
N−1

N∑
i=1;i, j

D(ti, t j)

 , (9.1)

where D(ti, t j) is the distance between streamtube i and streamtube j, given by the average

distance from the points on the longer tube to the shorter tube, viz.

D(ti, t j) =


1

Ni

∑Ni
a=1 d(pi,a, t j) if Ni ≥N j

1
N j

∑N j

b=1 d(p j,b, ti) otherwise.

The point-to-tube distance, d(pi,a, t j), is given by the minimum distance between the point

and a line segment delimited by successive points in tube t j. The point-to-segment distance, in

turn, depends on the spatial arrangement of the point and segment (see Fig. 9.3). Mathemat-

ically, we parameterise the bth line segment as s j,b(t) = p j,b + t l j,b, where l j,b = p j,b+1 −p j,b and

t ∈ [0,1]. The projection of the point pi,a onto the line segment—which forms the closest point

between the two—is then given by p j,b + u l j,b, where

u =
l j,b · (pi,a−p j,b)

l j,b · l j,b
. (9.2)

The point and the line segment must, of course, be in the same space as one another. Now,

u ∈R, and the distance between the point and the segment is calculated differently depending

on whether the projection actually falls within the segment—i.e. u ∈ (0,1)—or not. Specifically,

d̂(pi,a,s j,b) =


‖pi,a−p j,b‖ if u ≤ 0

‖pi,a− (p j,b + u l j,b)‖ if 0 < u < 1

‖pi,a−p j,b+1‖ if u ≥ 1.

(9.3)

We then have

d(pi,a, t j) = min
b
{d̂(pi,a,s j,b)} . (9.4)
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Figure 9.3: The calculation of the distance, d̂, between a

point and line segment depends on whether the projection

of the point onto the segment direction crosses the segment

itself. In (a), the projection crosses the segment (0 < u < 1),

while in (b) and (c) it does not; and in these latter cases the

shortest distances to the segment (dashed lines) are to one

of its end points. The dotted extension of the line segment

is shown for illustration.

pj,b
(t = 0)

pj,b+1
(t = 1)

(b)

(a)
(c)

This is a standard formulation of the distance between a point and a line segment, but unfor-

tunately it is a case in which the maths makes a simple concept look complicated. Eq. (9.2) is

mathematical infrastructure for Eq. (9.3), which embodies the fact that if the line orthogonal to

the line segment and passing through the point pi,a does not cross the line segment, then the

nearest point on the segment is in fact one of the end points. Fig. 9.3 illustrates this, for all three

cases in Eq. (9.3). Note that if the next line segment, from p j,b+1 to p j,b+2, were to be collinear

with the one illustrated, then the distance from point (c) to that segment would be lower than

the distance shown, affecting the value of Eq. (9.4) appropriately.

Thus—finally—Eq. (9.1) is fully defined, and we can find the median tube in this way for

each subject. This arrangement has the advantage that the median will tend to be towards

the physical centre of a bundle of tubes, and therefore any partial volume effects should be

relatively small. Incidentally, this justification differs slightly from that given for using the

median streamline for tract matching in chapter 8, where the median was used simply because

it epitomises the shape of a set of streamlines.

9.3 Intersubject tube alignment

As we have already mentioned, the tube sets representing the splenium of each subject’s corpus

callosum are necessarily each defined in their own space; and so absolute point locations are

not directly comparable between subjects. In order to work around this complication, we

observe that the splenium, being an interhemispheric fasciculus, always crosses the brain’s

midsagittal divide. (In fact, the placement of the s guarantees this, since one is in the left

hemisphere and one in the right.) This divide can be acceptably approximated by a plane.

A number of methods have been proposed for automatically extracting this plane (e.g. Hu &

Nowinski, 2003; Volkau et al., 2006), but for this work we established its location in each subject

manually, by placing four points, r1 to r4, on the midsagittal divide by eye—thus marking the

corners of a trapezium. Since three points are sufficient to establish a plane, the distance of the

fourth point to the plane was used as a simple error measurement to gauge the consistency of

the placement. This distance is given by

δ = n · (r4− r1) ,

where

n =
(r2− r1)∧ (r3− r1)
‖(r2− r1)∧ (r3− r1)‖

,
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the unit vector normal to the plane on which the points r1 to r3 lie. The mean placement error

across all subjects, 〈δ〉, was 0.90 mm.

Having established this midplane, we can find the location where each subject’s median

tube crosses the plane by first working out in which line segment the crossing occurs, and

then finding the exact intersection of that segment with the plane. If the relevant line segment

passes through the points r5 and r6, it can be expressed as

s(t) = r5 + t(r6− r5) ,

and a bit more geometry yields the value of t where the line segment crosses the plane to be

given by the ratio of determinants

t = −

det


1 1 1 1

x1 x2 x3 x5

y1 y2 y3 y5

z1 z2 z3 z5


det


1 1 1 0

x1 x2 x3 x6−x5

y1 y2 y3 y6− y5

z1 z2 z3 z6− z5



,

where r1 = (x1, y1,z1) and so on. We then translate the co-ordinate system of each native space

so that this intersection point is at the origin. Finally, on the assumption that the point where

the median tube crosses the midsagittal divide is equivalent across brains, we treat all of these

translated spaces as being equivalent. It is now possible to combine the median tubes from all

subjects into an intersubject tube set, and find an intersubject median tube from this set.

Correcting for translational differences between subjects is not sufficient, however, since the

shapes of the different subjects’ spleniums will still vary due to differences in brain size. One

approach to this problem is to use the intersubject median-of-medians tube, tM, as a spatial

reference, and take an  value, f ′, for each tube at each point on this median by finding the

nearest neighbour point on each separate tube. That is,

f ′i,a = fi,b̃ ,

where

b̃ = argmin
b
‖pM,a−pi,b‖ ;

so the ath  value from tube i is the value at that point on ti that is closest to the ath point

on tM, with i now indexing over subjects. This gives us a one-dimensional  profile of fixed

length for all subjects.

9.4 Comparative profiling

Fig. 9.4 shows the result of performing the whole process described above on a full data set.

We located the splenium, using the two  method, in each subject. We then calculated a
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single intersubject median tube by combining all subjects’ individual medians together; but

subsequently separated them into patient and control groups once more for generating the

averaged profiles shown in the figure. The intersubject median’s  data was not included,

reducing the number of  subjects contributing to four. These initial results were first

presented in Clayden et al. (2007b).

In Fig. 9.4, red stars indicate significant (P < 0.05) differences between the groups using a

two tailed t-test on f ′ data at each point. Since no correction for multiple comparisons was

performed, these differences are tentative results at best, but they are somewhat informative

nevertheless. Since the significant points are clustered into two (almost) contiguous regions, it

seems unlikely that the differences are due to random noise effects; although the combination

of interpolation and the nearest neighbour process makes successive points somewhat interde-

pendent. It is interesting to note that while the grand mean , indicated by dashed horizontal

lines, is lower for the  group than for the normal group—although this difference was not

significant—the two regions differing between the profiles are not consistent in the sign of the

difference between the groups. The region at the right hand end of Fig. 9.4 shows lower  in

the  group, which is the most common finding in pathological groups, while the region on

the left side of the graph shows higher  in . This may be because the region represents

an area of crossing fibres. If one of the two fibre populations were to preferentially suffer a

loss of integrity, an increase in  would be expected. To the left of the significant region, 

is decreased relative to the normal population again, although the error bars are too large for

this to be significant.

The large nearest neighbour distances in this latter region may be responsible for the large

variability which is particularly noticeable at the left hand end of the profiles. The blue curve

indicates the mean and standard deviation of the distances from the intersubject median tube

to each subject’s individual median. This is zero by definition at the midplane—indicated with

a vertical dotted line—and tends to increase as one gets further from there. The greater this

distance becomes, the greater the divergence of the median tubes from one another; but it is

not clear whether, or to what extent, an increase in divergence makes the profiled  values

intrinsically less comparable.

9.5 Discussion

The approach to anisotropy profiling described above has allowed us to explore some of the

issues involved with this kind of comparative analysis, and to get a sense of the variability

in anisotropy along a major tract. There are, however, evident reasons that this technique

would not be very widely useful in its current state. Firstly, not all tracts in the brain cross the

midsagittal divide, so using this landmark for intersubject alignment will not be possible in all

cases. Secondly, the use of nearest neighbours for establishing a point homology between tubes

is not robust, and the performance of the technique will depend on the shape of the tract of

interest. One possible way of avoiding both of these issues is to use registration for alignment

of median tubes between subjects. This would solve the problem of handling differences in

brain size at the same time as annulling translational misalignment. It would be less tract-
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Figure 9.4: An example of comparative profiling between groups of subjects. The red line with green error

bars shows the average (plus or minus one standard deviation) value of f ′, averaged across all subjects

with VCI, at each point on the intersubject median tube. The black line shows the mean across the normal

subjects. Appropriately coloured horizontal dashed lines show the profile mean FA. The blue line with blue

error bars indicates the mean (plus or minus one standard deviation) distance from the intersubject median

tube to its nearest neighbour at each point, across all subjects. The vertical dotted line shows the location

of the midplane.
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specific than the combination of techniques described in §9.3, and so if it worked well enough

it would be applicable, in theory, to any tract of interest in the brain. Another possible avenue

would be to use the probabilistic neighbourhood tractography methods described in chapter

8 to select a representative line for each subject, rather than taking the median. This would

circumvent the limitations of the two method in more complex tracts than the splenium.

In addition to dealing with these systematic limitations, we would need to apply the

profiling process to more data to get a clearer picture of its effectiveness, or to draw any serious

clinical conclusions. In particular, it would be interesting to study differences in the profiles

between scans of a single subject, and between two normal populations. We would also need

to look at other tracts. It may be that the full  profile is actually too noisy a representation to

be generally useful; but it is nevertheless suggested by the results so far that the mean  along

a streamtube, or group of tubes, is only a perfunctory summary of the available information.

Fig. 9.2 shows that even allowing for large error bounds the  along a tract in a single subject

is not well encapsulated by the mean, and Fig. 9.4 demonstrates potential regions of difference

between healthy and possibly abnormal profiles despite there being no significant difference

in the means. We have also done some work in which the profiles were filtered for high

frequency noise by convolving them with a Gaussian smoothing kernel—which has not been

shown here—but it remains unclear whether or not this would be beneficial. It may be that one

could use this kind of smoothing to make multiple comparisons correction less of a problem,

as  does, but the choice of variance for the smoothing kernel might be hard to justify. All

of this is left as future work.

The ability to meaningfully compare anisotropy—or diffusivity, or any other measure of

interest—between groups at a fine-grained but tract-specific level could be very useful for

comparative analysis in white matter, but for the moment there are, as we have discussed, a

number of hurdles in the way of the profiling approach we have described here.
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Conclusions

T  of this thesis were to develop methods to facilitate the robust segmentation of

specific white matter structures from multiple d brain volumes, and the subsequent

comparative analysis of the segmented regions. In this final chapter we review the extent to

which the work described in the previous chapters has met these aims, and discuss the work

that still needs to be done.

10.1 Tract segmentation

As we described in the introduction, the study of structural human brain connectivity in vivo

really only began with the invention of  in the mid-1990s. Over the course of less than a

decade, since the possibility of using tensor-derived metrics to probe white matter integrity

took hold, a sizeable clinical literature based on the method has amassed; but the techniques are

still quite immature. Ideally, one would begin studying a disease in which a loss of connective

efficacy is a suspected factor by applying a whole-brain analysis technique such as  to

suggest regions of localised contrast between patient and control populations. A replication

study might then hope to characterise the effect on any implicated white matter structures

more clearly, and look for evidence that particular white matter degradation is specifically

linked to the pathology in question. Unfortunately the reality is less straightforward.

When applied to maps of diffusion anisotropy, the  method is not robust. As we

discussed in §6.1, the choice of smoothing kernel can have a very substantial effect on the

results—not just quantitatively, but qualitatively too, with regions of contrast appearing in

quite different brain areas as the kernel width is altered. Since this parameter of the method

is usually chosen for each individual study without recourse to any firm principles, the scope

for spurious and misleading results is unsettling. Moreover, it is easy—although unwise—to

forget that  itself has limitations as a proxy for integrity. We discussed in §9.4 that  would

be expected to increase if one of a pair of crossing fibre populations were to be preferentially

degraded, and therefore it cannot necessarily be trusted as a reliable indicator of disease in

crossing fibre regions. Even if this shortcoming did not exist, the expressiveness of a single

scalar parameter will always be limited.

Tract-based spatial statistics may in practice take over as the method of choice when looking
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for localised differences between populations with limited or no prior knowledge. Its only overt

parameter is an  threshold that is applied to the skeletonised anisotropy maps, which will

usually affect the results only quantitatively due to its impact on the number of voxels surviving

to the multiple comparisons correction stage. The technique does perform time-consuming

nonlinear registration of each subject’s brain volume to every other, which makes it scale badly

to large data sets, but the introduction of a standardised template skeleton might be possible to

remove this issue.  is certainly an attractive approach, although it is not truly “tract-based”

since the skeletonisation process will find any ridge in the anisotropy map and has no concept

of white matter structure or connectivity. For most purposes, the approximation is however

an adequate one.

On the other hand, automated methods for tract-specific segmentation and comparative

analysis are more or less nonexistent. Regions of interest can be defined in standard space

and then transferred to native space using registration, and used to constrain tractography;

but this multiple  approach has a number of drawbacks, as we discussed in §6.5. Like any

registration-based transformation, this one will engender some inaccuracy in the placement of

the s in native space; but in any case these s encode prior knowledge about the topology

of tracts in an unintuitive manner, which is informed primarily by experience with tractography

rather than direct knowledge of anatomy. The use of “termination” and “removal” masks by

Heiervang et al. (2006), for example, is presumably founded on past experience, during which

the authors observed some pathways straying into these regions and deemed them aberrant

or undesirable. The problem is that the s might need to be redrawn for use with a different

tractography algorithm.

We would argue that our representation of prior knowledge about tract topology in terms of

reference tracts is more intuitive, more transferrable and ultimately more reliable. Information

about the expected route of the tract is given along its entire length, but this richer prior

information is not used to directly constrain the fibre tracking algorithm—rather, it guides the

choice of tractography results from among a number of candidate seed points. The combined

process of matching tracts to a reference and choosing a segmentation a posteriori based on these

matches is neighbourhood tractography, a largely automated approach that we have invented

and refined over the course of the thesis.

In chapter 6, we described a heuristic similarity measure for matching tracts and outlined

the principle of . We demonstrated that the method improved segmentation consistency

over a naïve alternative method in a group of healthy volunteers; and then, in chapter 7,

we found similar benefits in a healthy agèd cohort. We were able to use a reference tract

taken from an agèd brain to successfully select tracts from the younger group, and thereby to

show anisotropy differences between the groups in a specific tract where previous whole-brain

studies have suggested that one might be present. We have also discussed how standardised

reference tracts can be generated from a white matter atlas, and used these references in a

practical study.

To ameliorate some of the shortcomings of our simple first approach to tract matching

for , we reformulated the problem in formal probabilistic terms in chapter 8, and took a

machine learning perspective toward its solution. The models that we used to represent the
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relationships between matching tracts were parameterised such that the extent of deviation

from the route of the reference tract can vary along its length, meaning that large variability

within the data used to fit the model will result in only small penalties for straying from the

reference. To learn suitable parameters, we initially took a supervised maximum likelihood

approach, in which a group of training tracts is selected by hand in addition to the reference

tract; but later showed that an  algorithm could be used to successfully find matches in a

data set without a separate training phase.

The main parameter of  methods is the neighbourhood width. If this is set too small

then no appropriate match to the reference will be found, and if it is set too large then the

process will take a very long time to run. The limiting case of seeding throughout the brain

is theoretically optimal in the sense that if a matching tract can be produced then it should be

found this way—unless there happens to be another fasciculus with very similar shape and

length in another part of the brain—but the practical consideration of run time makes this an

unwise strategy. In any case, the use of tract similarity measures or matching models gives us

an indication of the acceptability of the best match that we can use to our advantage. As we

mentioned in §8.6, the null-match posterior probability that is available in the unsupervised

probabilistic case could be used as the basis of a rejection criterion. To minimise run time, the

neighbourhood width could be chosen separately for each brain volume, being increased in

steps until the null-match posterior drops below a certain level. Nonetheless, a proper analysis

of the effect of neighbourhood width would be a useful avenue for future work.

Other parameters arising in the model-based methods, such as the residual error thresh-

old, η, and the streamline length quantile, ξ, may also have some effect on the outcome. But

the former is relevant only to the reference tract, and we have found no reason to vary the

latter from one brain volume to another, so in practice there should be little reason for them to

vary between studies and therefore become a point of weakness in any results.

We have not yet had time to apply the probabilistic model-based variants of  to clinical

data sets, or to develop atlas-based reference tracts for use with them; and these are important

areas for future work. With them in place, however, we feel that the approach could represent

a useful, robust and automated technique for the segmentation of specific tracts.

10.2 Comparative analysis

Once similar regions are segmented from a number of brain volumes, the simplest approach

to comparative analysis between groups is to average a scalar measure of interest within

each region and statistically compare the range of values thus obtained. This average can

be weighted using the voxelwise likelihoods of connection to the seed point produced by an

algorithm such as  ProbTrack—as we did in chapter 7. Using probabilistic neighbourhood

tractography, we can also include data derived from multiple seed points, weighting according

to the corresponding matching posteriors as in §8.5. It would be constructive to examine the

benefits (or otherwise) of these weighting schemes more closely than we have done above.

In chapter 9, we explored the possibility of profiling anisotropy along tracts rather than

simply averaging its value within the regions representing the relevant fasciculus. This raises
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some difficult questions about point homology in different brain volumes, but our initial

results nevertheless suggest that this kind of approach may be able to yield some additional

meaningful information.

Ultimately, comparing anisotropy between populations—however it is done—is only going

to take in vivo white matter studies so far. Mean diffusivity is a mathematically independent

measure for characterising diffusion, but in practice it is generally negatively correlated with

. Combination of diffusion data with information from other magnetic resonance methods

may prove more fruitful: spatially localised brain “activation” data from functional , or

metrics derived from magnetisation transfer imaging (which was briefly mentioned in §4.5)

may help, if the concomitant coregistration issues can be worked out. Even more broadly, there

is scope for incorporating data from fields such as genetics into advanced studies.

10.3 Final remarks

It is our hope that the methodological developments set out in this thesis will be helpful for on-

going work investigating whether connective changes are systematically linked to outwardly

visible pathology. We believe that we have made useful progress towards robust segmentation

of tracts of interest, which, so long as it remained problematic, has been a distracting prerequi-

site for meaningful investigation of the differences and similarities between comparable white

matter structures.

As its resolution and noise properties improve, the potential of d should continue to

increase, although these developments will probably bring new challenges as well. Methods

for examining connectivity may need to become more sophisticated, but a definitive test of the

disconnection hypothesis could be at hand in the foreseeable future.
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List of abbreviations

The following table describes the significance of various abbreviations and acronyms used

throughout the thesis. The page on which each one is defined or first used is also given.

Nonstandard acronyms that are used in some places to abbreviate the names of certain white

matter structures are not in this list.

Abbreviation Meaning Page

 anisotropic volume fraction 54

 Bayesian Estimation of Diffusion Parameters Obtained using

Sampling Techniques

54

c.d.f. cumulative density function 9

 cerebrospinal fluid 3

 coefficient of variation 78

d diffusion magnetic resonance imaging 3

 diffusion spectrum imaging 60

 diffusion tensor imaging 41

 Expectation–Maximisation 16

 echo planar imaging 35

 fractional anisotropy 43

 Fibre Assignment by Continuous Tracking 49

 ’s Linear Image Registration Tool 76

f functional magnetic resonance imaging 47

 Centre for Functional Magnetic Resonance Imaging of the
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Abbreviation Meaning Page

 maximum a posteriori 15

 Monte Carlo 19

 Markov chain Monte Carlo 21

 mean diffusivity 43

 maximum likelihood 14

 Montréal Neurological Institute 76

 magnetic resonance imaging 3

 nuclear magnetic resonance 3

 neighbourhood tractography 70

 orientation distribution function 60

 persistent angular structure 61

p.d.f. probability density function 9

p.m.f. probability mass function 9

 radiofrequency 29

 region of interest 68

 tract-based spatial statistics 67

 echo time 32

 inversion time 32

 repetition time 32

 voxel-based morphometry 66

 vascular cognitive impairment 118
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26(11):1555–1561.
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