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Abstract 

Major depressive disorder (MDD) is a highly prevalent and disabling condition with a 

heritability of around 37%. Key symptoms of MDD include low mood and 

psychological distress, but the mechanisms underlying MDD and its symptoms are 

unclear. Genetic and neuroimaging techniques are important methods with which to 

better understand the aetiology and mechanisms of depression. Recently, through 

the availability of the UK Biobank and ENIGMA datasets, it has been possible to 

conduct well-powered imaging studies of heterogeneous traits like MDD, with 

genome-wide genetic data. These genetic data can act as causal instruments and 

can be utilised to identify differences in neurobiological mechanisms. 

The current thesis presents neurobiological associations with depressive symptoms 

and genetic risk for MDD using data from the UK Biobank imaging project (N range 

from 5,000 to 12,000). My overall aims were to investigate the neurobiological basis 

of MDD status, depressive symptoms and MDD polygenic risk. 

First, MDD case-control differences in subcortical volumes and white matter 

microstructure indexed by fractional anisotropy and mean diffusivity, are presented 

using the largest structural neuroimaging samples to date. MDD was associated 

with worse white matter microstructure in the thalamic-radiation subset and forceps 

major (posterior corpus callosum). No group difference was found for the volume of 

any subcortical structure.  

Next, associations between depressive symptom severity (including longitudinal and 

cross-sectional measures) with white matter microstructure were tested. Over 8,000 

participants had repeated measure of depressive symptoms assessed on 2-4 

occasions across 5.89 to 10.69 years. I found several novel associations between 

measures of depressive symptom severity (at the time of imaging, their variance 

within individuals over time, and with longitudinal increasing depression severity) all 

associated with lower white matter microstructure in the thalamic radiations. This 

was the first study of this size looking at imaging associations with longitudinal 

symptom measures and demonstrates consistent findings implicating 

thalamocortical connections. 

The third study presents results of phenotype wide association (‘PheWAS’) analysis 

of polygenic risk for MDD, including imaging and other available phenotypes. In 
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total, 1,744 phenotypes were tested, covering sociodemographic, physical health, 

mental health, subcortical volumes, white matter microstructure assessed with FA 

and MD (mean diffusivity) and resting-state connectivity. I found that MDD polygenic 

risk was associated with MDD-related phenotypes including severity of depression 

and neuroticism, sleep, smoking, subjective well-being as well as neurobiological 

phenotypes including white matter microstructure and resting-state connectivity. 

In my final data chapter, neurobiological associations with cognition, as an important 

risk factor of major depressive disorder, were also reported. I found that higher 

connectivity related to the default mode network was associated with better 

cognitive performance.  

These studies suggest two features of neurobiology related to MDD traits and 

genetic risk. First, they implicate microstructure of thalamic white matter connections 

as an important biomarker for MDD risk, psychological distress and genetic risk, as 

reflected by its consistent associations with depressive status, depressive 

symptoms, within-subject variability of depression and MDD polygenic risk. 

Secondly, the aberrant connections within the default mode network were related to 

MDD phenotypes and polygenic risk. These findings, therefore, provide evidence 

that these features may play a key role in MDD-related neuroarchitecture.  
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Lay Summary 

Major Depressive Disorder (MDD) is the leading cause of disability worldwide. 

Approximately 322 million people worldwide live with depression, affecting all age 

ranges, ethnicities and countries. Genetic studies of psychiatric disorders including 

MDD have indicated the importance of large sample sizes for such complex disorders. 

Until recently, however, due to the expense, neuroimaging studies have been largely 

restricted to sample sizes of often less than 200 people, which has led to inconsistent 

and contradictory findings. 

This thesis has therefore used the largest neuroimaging cohort currently available, 

(initially n=5,000, then 12,000 people with further releases of data), to explore 

differences in brain structure and function in individuals with and without depression. 

Other advantages of this cohort data include longitudinal assessment of depressive 

symptoms and the availability of genetic data.  

The main findings indicate that in white matter, the structural connections between the 

thalamus and other parts of the brain are associated with having major depression, 

with higher level of psychological distress, and with greater genetic risk. In terms of 

functional brain changes, ‘over connectedness’ of regions within a circuit called the 

‘default mode network’ was also associated with higher genetic risk of depression. The 

default mode network has greater synchrony of activity at rest and is involved in 

internalized thought processing, rumination and negative thoughts.  

In conclusion, imaging findings may be important biomarkers for depression, which can 

potentially give clinical insights into its mechanisms, eventually leading to potentially 

more informative early diagnosis. 
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Chapter 1: Introduction 

Major Depressive Disorder (MDD) 

1 Epidemiology of MDD 

MDD is one of the most crucial health concerns in the world (Vigo et al. 2018). In a recent 

report by World Health Organization in 2015 conducted on 138, 602 people interviewed 

in 10 low-income and 14 high-income countries across five continents, the prevalence of 

lifetime MDD was 11.2% (Kessler et al. 2015), ranking at a high tier of prevalence among 

major psychiatric illnesses (Sullivan et al. 2012). Approximately 322 million people 

worldwide are living with depression, with wide coverage across age ranges and 

ethnicities (World Health Organization 2017). The reported prevalence for lifetime 

depression has had a significant increase over the last two decades. Taking the statistics 

for United States as an example, the rate of lifetime depression was 5.2% in 1996 

(Weissman 1996), 16.2% in 2003 (Kessler et al. 2014), and 20.6% in 2018 according to 

the most recent national survey of 36,309 US adults (Hasin et al. 2018). This could due 

to a true increase in the number of affected individuals, or a higher level of awareness of 

the disease.  

MDD is severe in terms of its impact on educational attainment (Ritsher et al. 2001; Bulik-

Sullivan et al. 2015), job performance (Ritsher et al. 2001; Gavin et al. 2010), mental 

health of off-spring (Ensminger et al. 2003; Lewinsohn et al. 2005), and even mortality 

(Kessler et al. 1996). By the year 2017, suicide deaths caused by MDD has reached a 

number close to 800,000 per year (World Health Organization 2017). According to the 

most up-to-date national survey of the US published in 2018, mean age of onset for 

depression was 29.05 years, indicating that a large proportion of MDD cases suffer from 

the negative impacts of the disorder impacting long-term life course trajectories (Hasin 

et al. 2018).    
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According to a systematic review by Geddes et al. (2003), 16-18% of patients relapse in 

a year after one to six months’ treatment, with the relapse rate increasing to 24-33% after 

two years (Geddes et al. 2003). A very recent meta-analysis by Cipriani et al. (2018) 

reportedly analysed the responses of 21 anti-depressant drugs on 116,477 adult patients. 

Low to moderate odds ratio for response rate for active drugs versus placebo were 

reported (ranged from 1.37 to 2.13), and high variability of treatment efficiency was 

observed for all anti-depressants. Among all the major anti-depressant, only Fluoxetine 

and Agomelatine showed lower dropout rates than placebo (Cipriani et al. 2018). These 

findings reflect the uncertainty in MDD treatment. One of the major causes for the 

uncertainty is the individual variations among MDD cases, which is reflected on both 

drug response and depressive symptomology. Various reasons such as side effects and 

individual differences of drug response hinder individual-level interventions. The first step 

to meet the imminent need for effective treatment is to find reliable empirical evidence to 

help us understand the underlying mechanism of MDD.  

One big challenge for understanding MDD is its inherent heterogeneity. According to the 

definitions for MDD in DSM-V (Diagnostic and Statistical Manual of Mental Disorders, 

5th Edition) and ICD-10 (International Classification of Diseases: 10th revision), MDD 

can be diagnosed if five of nine symptoms were met. However, some of those symptoms 

are antagonistic. For example, psychomotor retardation, hypersomnia and weight gain 

are opposite to psychomotor agitation, insomnia and weight loss. This may result in 

having people with almost opposite symptoms diagnosed under the same category. 

There are two approaches that can potentially empower the interpretations for the 

underlying mechanism of MDD, bearing with the difficulties brought by its heterogeneity. 

First, we need to have reliable, replicable findings on case-control differences to help 

understand the general aetiology of MDD, because the heterogeneity of the trait hinders 

drawing confident conclusions based on small samples. Large cohort studies are 

therefore needed to find neurobiological and genetic associations of MDD, of which small 

effect sizes are expected due to a variety of manifestations in the sample. Second, 



Chapter 1: Introduction 

3 
 

stratification of subtypes of depression having different biological mechanisms would 

largely benefit future studies to test whether specifying subtypes would help to undertake 

personalised treatments. The second approach again would require large statistic power 

to allow subgrouping populations that have MDD. 

 

2 Definition of MDD and its major risk factors 

MDD is a clinical status that is marked by depressed mood with excessive severity, 

assessed according to the impact and duration. According to major diagnostic criteria 

such as DSM-V, MDD is expressed in mainly four categories  (Fava and Kendler 2000; 

Sullivan et al. 2012). (i) Declined mood health, reflected by constant and prolonged 

psychological distress, higher mood variability. (ii) Disrupted neurogenerative functions, 

mainly observed as a rapid and substantial change of appetite or sleep. (iii) Irrational 

cognition, such as unnecessary guilt, shame and worthlessness. Finally, (iv) abnormal 

psychomotor activity, presented as either overly active (agitation) or lack of activity 

(tiredness).  

The onset of MDD is contributed by mixed effects from genetic, neurobiological and 

social factors (Yirmiya et al. 2015). One of the most consistently found risk factor is family 

history, which incorporates variances contributed by genetic variants (Wray et al. 2018) 

and familial environment (Ensminger et al. 2003). Higher prevalence of MDD is also 

found in females (Kessler et al. 2014), people with childhood trauma (Heim, Newport, et 

al. 2008), social deprivation (World Health Organization 2017), people with lower 

educational attainment (Ensminger et al. 2003), cardiovascular conditions (Davidson et 

al. 2005) and obesity (Heo et al. 2006),  

Biological factors include genetic risk and neurobiological disruptions. For 

neurobiological factors, various mood disorders, including MDD, have been reported by 

some studies to be the outcome of brain tumours/lesions, especially in emotion-related 
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brain regions (Starkstein et al. 1987; Sharpe et al. 1990; Fornito et al. 2015) – a summary 

of the neuroimaging literature is described below. In terms of genetic risk, the latest 

genome-wide association studies (GWAS) found 44 genetic loci associated with lifetime 

onset of depression, most of which are associated with neural development and have 

high levels of expression in brain tissues (Wray et al. 2018). In the remainder of this 

chapter, major biological models for MDD are introduced. 

 

3 Biological mechanisms 

In this section, four main models/mechanisms are introduced. The first and second 

described are neurobiological models underpinning emotional processing and emotion 

regulation respectively. Vulnerable brain regions and network utilities involved in these 

two types of processes in MDD are discussed. The third is the Hypothalamic-Pituitary-

Adrenal-axis (HPA-axis) model. HPA-axis through its role in neuroendocrine function is 

particularly involved in the stress response and regulation of other physiological 

responses including immune function and circadian timing. The interaction and possible 

mediation effect of HPA-activity with brain development and behaviour patterns (such as 

circadian rhythm) are discussed. Finally, the fourth mechanism introduced is the 

polygenic model relating to the genetic effects contributed by common genetic variants. 

This part describes the causal relationship between genetic risk and the presence of 

MDD, as well as and the overlapping genetic aetiology between MDD and other heritable 

traits. I have selected these main models to introduce key concepts underlying studies 

presented in the thesis.  

3.1 Cognitive models for emotion processing (Model 1) and emotion regulation 

(Model 2) in MDD 

Emotion is cognitive, subjective and highly associated with brain and hormonal activities 

(Etkin et al. 2015). Normally, emotion is a responsive activity, elicited by given 
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environmental stimuli (Dolan 2002). A positive stimulus triggers positive emotional 

processes and leads to repetitive behaviour to continue seeking similar stimuli, and a 

negative stimulus processed by negative emotional systems, triggers a “fight-or-flee” 

response, in order to either eliminate or avoid future negative stimuli. Emotional 

processing thereby involves a complex series of steps including an established past 

memory of the environment, the evaluation of current input stimuli, the regulation and 

response to current inputs, and finally the updating of memory and cognitive systems 

associated with emotional processing (Etkin et al. 2015).  

One important network associated with emotion processing is the limbic system. It 

includes regions involved in negative emotion processing like amygdala, thalamus, 

insula, and regions that relate to emotional memory including hippocampus and para-

hippocampus, and finally, positive-emotion/reward-related areas include caudate, ventral 

striatum and nucleus accumbens (Dalgleish 2004). These have a key role in primary 

emotion evaluation for negative or positive stimuli and attention allocation (Dalgleish 

2004). Prefrontal and cingulate cortex are also important regarding executive control and 

down-stream regulation (Bush et al. 2000; Etkin et al. 2015). These regions have 

complex interactions and often work in a synchronous network manner (Etkin et al. 2015). 

These networks can be roughly categorised into: networks within the limbic system itself 

for processing of different attributes of emotions (Dalgleish 2004; Russo and Nestler 

2013), and networks involving anatomically distant regions including high-level 

integrative and regulative regions like prefrontal and cingulate cortex, connecting to the 

limbic system (Etkin et al. 2015) (see Figure 1). 
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Figure 1. Brain regions related to emotional processing and emotional regulation in the brain 

(Dalgleish 2004). 

In terms of MDD, aberrance of emotional processing often manifests in two ways: (1) 

biased cognitive processing of emotional stimuli (Disner et al. 2011), and (2) aberrant 

emotion regulation (Etkin et al. 2015). Though these two aspects may have different 

behavioural expressions, they could involve similar neural pathways. For example, the 

attention regulation pathway that mainly involves the activity of dorsal lateral prefrontal 

cortex (DLPFC) and limbic system, may be activated in paradigms like reappraisal that 

require spontaneous emotion regulation to deactivate negative emotional processing 

(Wager et al. 2008). Also, when discussing the neural basis of these two networks, 

although the regionally segregated functions are important for interpretation, network 

integration (functional/structural connectivity) is important for forming a complete 

behavioural pattern. More details about how networks could associate with emotion 

processing and regulation are described and discussed below in the sections for each 

model. 
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3.1.1 Model 1: Biased cognitive processing of emotional stimuli in MDD 

In many studies, MDD cases typically show pessimistic processing of emotional stimuli, 

expressed as hypersensitivity to negative stimuli and an attenuated response to positive 

ones. This could be explained by biased attention, biased evaluation, and biased 

memory (see Figure 2). 

 

Figure 2. The cognitive model of emotional processing in MDD (Disner et al. 2011). 

3.1.1.1 Biased attention in MDD 

Biased attention in MDD could be explained by (1) over-loaded allocation of attention to 

negative stimuli (Posner and Rothbart 2000; Gotlib and Krasnoperova 2004), and/or (2) 

or a lack of ability to detach attention from negative stimuli (Mitterschiffthaler et al. 2008; 

Eugène et al. 2010). Behaviourally, individuals with MDD typically show much faster 

reaction time and higher recall rate of negative stimuli compared with positive/neutral 

ones (Mitterschiffthaler et al. 2008).  

On the neuronal level, activations in the superior parietal cortex (involved in coordinating 
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shifts in gaze), ventral lateral prefrontal cortex (allocating attention), anterior cingulate 

cortex (conflict detection and executive regulation to downstream brain regions), and 

dorsal lateral prefrontal cortex (executive control and integrating sensory information 

from downstream brain regions) have been reported to be the main putative regions that 

may have key roles in such biased attention (Corbetta et al. 1998; Kastner et al. 1998). 

In addition, reduced functional connectivity between the regions has been found 

associated with the inability of balancing attention allocation and disengaging from 

negative stimuli, which has been found as one of the major funcitonal deficits in patients 

with MDD (Fales et al. 2008). 

3.1.1.2 Biased emotion processing in MDD 

Biased emotional processing, which is also referred to as ‘biased evaluation’ of emotional 

stimuli in some articles, is mainly expressed in patterns of: biased valence, abnormal 

arousal levels, and unusual durations (Dolan 2002; Bressler and Menon 2010; Etkin et 

al. 2015). Behaviourally, individuals with MDD have higher ratings for negative visual 

stimuli and pain (Leppa 2006; Bylsma et al. 2008), and higher neuronal arousal to 

negative scenarios revealed by a greater N2 component in event-related potential 

(Proudfit et al. 2015). MDD patients are also more likely to interpret ambiguous or neutral 

inputs as negative in various experimental contexts, such as short scenarios and 

emotional pictures (Mogg et al. 2006; Moser et al. 2012).  

Brain regions found to be associated with biased evaluations of emotional stimuli include 

those involved in reaction to negative stimuli (amygdala, thalamus and subgenual 

cingulate (Dalgleish 2004) and those associated with reward processing (ventral 

tegmental area, ventral striatum and putamen (Dalgleish 2004; LeDoux 2012)). In 

individuals with MDD, it is typically reported that there is hyperactivity of negative 

systems along with blunted activation in the reward system (Grimm et al. 2011). The 

negatively biased process is presented in both self-related scenarios, and other-related 

circumstances, which is reflected by, for instance, stronger empathy with other people’s 
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physical and emotional pain (Schreiter and Pijnenborg 2013; Fujino et al. 2014). Blunted 

reward-response has also been abundantly found to be associated with treatment 

response (Dichter et al. 2012; Pechtel et al. 2013). Balanced evaluations of emotional 

stimuli also require sufficient regulation from dorsal lateral prefrontal cortex (DLPFC) and 

dorsal anterior cingulate cortex (ACC). Both DLPFC and ACC receive inputs from the 

limbic system and give mainly suppressive feedback when cognitive regulation is 

necessary (Bush et al. 2000; Bae et al. 2006; Kolling et al. 2016).  

3.1.1.3 Biased ruminative thoughts in MDD 

Previous studies have found that MDD demonstrates negative-biased memory and 

excessive self-referent cognition of negative stimuli. These lead to rumination of negative 

thoughts seen clinically in patients with MDD patients (Spasojević and Alloy 2001).  

Putative brain regions involved in these biased processings include: (1) hippocampus, 

related to memory, (2) amygdala and subgenual cingulate, responsible for negative 

emotion processing, especially for stressful stimuli, (3) medial prefrontal cortex (MPFC), 

involved in self-related cognition, and finally (4) DLPFC and ventral lateral prefrontal 

cortex (VLPFC), responsible for executive control and information integration (Denson 

et al. 2009; Cooney et al. 2010). Hyperactivity of the hippocampus, amygdala, subgenual 

cingulate and MPFC would therefore be hypothesised in patients with MDD 

(Ray  Ochsner, K.N., Cooper, J.C., Robertson, E.R., Gabrielle, J.D.E. & Gross, J.J. 2000; 

Denson et al. 2009; Cooney et al. 2010). The activity of DLPFC and VLPFC and 

attenuated connectivity between these regions and limbic system were found associated 

with recalls of negative memories and self-referent rumination in MDD under episodic 

memory paradigms (Gusnard et al. 2001; Cooney et al. 2010). 

 

To summarise, therefore, the above neurocognitive models of MDD mainly imply the 

involvement of two main brain systems: (1) the limbic system, responsible for primary 
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emotional processes, and (2) the executive system located in DLPFC and ACC, 

providing down-stream regulation to the limbic system. The above model gives insights 

into the main cognitive components of MDD and gives a broad summary based on 

numerous cognitive paradigms for MDD. However, this model gives a very limited 

explanation of down-stream regulation and the complex structural and functional 

connectivity between DLPFC/ACC and limbic system. Emotion regulation is complex 

because it is not always explicit and whether consciousness processing is involved may 

indicate different patterns of neuronal connectivity. More details of emotion regulation will 

be explained in the next section where the emotion regulation model proposed by Etkin 

et al. is introduced and discussed (Etkin et al. 2015). 

3.1.2 Model 2: Emotion regulation model 

Emotion regulation involves in chains of decisions, which can be either conscious 

(explicit) or unconscious (implicit), to achieve desired emotional status (Etkin et al. 2015).  

Explicit emotion regulation is top-down, conscious, effort-demanding and relatively slow 

compared to primary sensory processing and implicit emotion regulation (Etkin et al. 

2015). Main regions involved in this process include the DLPFC, ventral lateral prefrontal 

cortex, parietal cortex and pre-supplementary motor area. The DLPFC, in particular, has 

been most consistently found associated with executive control (Wagner et al. 2001). 

Anatomically, DLPFC is connected to the limbic system through cortico-cortical white 

matter tracts, for instance, superior longitudinal fasciculus and anterior thalamic radiation 

(see Figure 3) (Mori et al. 2002). Functionally, activity in DLPFC connects to the thalamus, 

and DLPFC studies found that enhanced activity in DLPFC leads to higher activations in 

limbic systems such as amygdala and thalamus (Meyer-lindenberg et al. 2005; Fox et al. 

2012). 
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Figure 3. Demonstration of association and commissural fibres. White matter tract maps 

were generated based on the first release of UK Biobank imaging data. 

The importance of the DLPFC to MDD patients has been emphasised by studies on 

treatment and treatment prediction (Meyer-lindenberg et al. 2005; Fox et al. 2012). For 

example, some recent studies reported that anti-depressant treatment and Cognitive 

Behavioural Therapy for MDD patients results in strengthened regulatory functional 

connectivity from DLPFC to limbic regions (Rosenblau et al. 2012; Shou et al. 2017).  

Further, a meta-analysis of 60 studies in which 1,569 MDD cases were included showed 

that antidepressant medication increased the activity in DLPFC (Ma 2015). Enhancing 

effects of transcranial manipulation such as transcranial direct current stimulation and 

transcranial magnetic stimulation on DLPFC have also been used to strengthen 

emotional regulation, showing a behavioural improvement of emotion regulation and 

stronger regulatory connectivity between DLPFC and amygdala (Rosenblau et al. 2012; 

Shou et al. 2017). Improvements were also surprisingly shown in drug-resistant patients 

using these transcranial methods to enhance activity in the DLPFC (Palm et al. 2012). 

The above studies suggest that DLPFC may serve as the emotion stabiliser in subjects 

that particularly suffer from excessively variable mood (Brunoni et al. 2013). Aberrant 

functions and connectivity related to this region, either in white matter or grey matter, 

indirectly influences downstream regulation. The structural changes may be 

hypothesised to be caused by various factors such as early developmental deficits of 

maturation of myelination, degeneration of cortical functionality and structure due to 
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premature or accelerated ageing, and excessive neuronal pruning (Dolan 2002; Bressler 

and Menon 2010).  

 

Figure 4. The explicit and implicit emotional regulation model proposed by Etkin et al., 2014 (Etkin 

et al. 2015). 

Implicit emotion regulation indicates non-conscious modulation in emotional processing 

areas. Important regions for this type of emotional regulation are anterior cingulate cortex 

(ACC) and ventral medial prefrontal cortex (VMPFC) (Etkin et al. 2015). They are 

responsible for the detection of emotion evaluation, integrating conflicting inputs, 

monitoring unexpected stimuli (Botvinick et al. 2004). All these functions are mainly 

conducted in an automated, relatively fast, bottom-up manner. Another important role for 

implicit emotion regulatory regions is to moderate between DLPFC and primary sensory 

processing system in limbic areas (Rosenblau et al. 2012). ACC integrates the upstream 
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regulatory signal from DLPFC and downstream inputs from primary processing systems. 

Therefore, activity in ACC helps neurobiological response to antidepressants to expand 

across neural networks (Ho et al. 2017). 

Functions of the above brain regions and pathways are not restrictively associated to 

processes involves in emotion, but also highly important in broader aspects such as 

decision making (Glimcher and Rustichini 2004; Fehr and Camerer 2007), in which the 

involvement of emotions is much more implicit and subtle compared with classical 

emotion regulation paradigms. Healthy performance in these regions ensures optimal 

goal-directed decisions, which enables the inference for the functionality of emotion 

regulation system to reach to a much broader context (Glimcher and Rustichini 2004; 

Fehr and Camerer 2007). Social decision making takes place on a daily basis. Quality of 

decisions broadly influences whether subjects have desirable social interactions and 

whether they are able to maintain a reciprocal inter-personal environment. Many studies 

suggest that social support is one of the most important interventions of MDD (Leskelä 

et al. 2006).In addition, the symptoms of depression, including decreased enthusiasm 

and poor social decision making in MDD patients, contribute to a reduction of social 

support, leading to a spiral of negative influences (Meyer-Lindenberg and Tost 2012). 

Improvements in emotion regulation may, therefore, help to break away from the effect 

of the vicious spiral caused by impaired social interactions in MDD patients. 

The above two models mainly intend to explain the affective abnormalities associated 

with MDD. However, MDD is far more complex than mere affective symptomology. 

Cognitive and somatic symptoms may be strong contributors to MDD condition, but their 

roles are not explained in the above models. For some somatic symptoms, such as 

weight gain, are not well studied in the field of neuroscience. Take body mass index as 

an example, which has been consistently found associated linearly with MDD condition, 

showed linear association with white matter microstructure in some studies (Xu et al. 

2013; Mazza et al. 2017), but also showed a non-linear association in some others, 
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indicating that high body mass index may be protective of brain integrity in some groups 

(Stanek et al. 2011). These unclear associations may indicate that some of the somatic 

symptoms may have contributions to the presence of MDD, independent from direct 

neurobiological mechanism or having regulatory influence to the association between 

brain phenotypes and the presence of MDD. 

Another limitation of these two models is that psychological factors may not be the only 

reasons for brain alterations. Functional signals have local heterogeneity in the brain, 

largely defined by the vascular localisation in some areas of the brain heavier than the 

other regions. One example is posterior cingulate cortex (PCC), although has been found 

involved in psychological activities, has a naturally high level of BOLD signal (especially 

at a low frequency) even without explicit tasks. It has been suggested that the dense 

vessel layout in this region may contribute to this phenomenon (Szikla et al. 2012), which 

can potentially reflect individual differences of cardiovascular conditions (Szikla et al. 

2012). 

In general, the above limitations suggest a need for other models that give explicit 

explanations about the behavioural patterns and physical conditions that associate with 

MDD symptomology. One of the most well studied of these models is the HPA-axis model, 

which will be introduced in the following section. 

3.2 Model 3: the HPA-axis model 

The hypothalamic pituitary adrenal (HPA) axis is the central stress response system and 

therefore of key importance to MDD since onset is often linked with stressful life events 

(Pariante and Lightman 2008). Compared with other biological models, since HPA axis 

is highly associated and sensitive to behavioural patterns such as sleep, the model gives 

particular insights for linking behavioural patterns with neurobiological activities and the 

presence of mood disorder. The activity of HPA axis consists of the release of 

adrenocorticotrophic hormone releasing factor and vasopressin from the hypothalamus, 
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adrenocorticotrophic hormone from the pituitary (regulated by adrenocorticotrophic 

hormone releasing factor), and glucocorticoids from the adrenal cortex (regulated by 

adrenocorticotrophic hormone) (see Figure 5). One such glucocorticoid in humans is 

cortisol. Secretion of cortisol has a negative feedback mechanism to hypothalamic and 

pituitary activities therefore to remain homeostasis within the system (Pariante and 

Lightman 2008).  

HPA axis has an anatomical basis in the brain and is also highly associated with 

hormonal activities in the peripheral nervous system. Cortisol, in particular, is one of the 

few hormones that can pass the brain-blood barrier. HPA axis forms a key component 

linking psychiatric symptoms and physiological patterns like sleep, appetite and addiction 

(Nemeroff and Vale 2005). Compared with previous brain functional models which were 

found mainly in specific behavioural paradigms, the activity in HPA axis is broadly 

associated with various complex behavioural patterns (Yehuda et al. 2004; Heim, 

Newport, et al. 2008). This system has rapid response to acute stress stimuli and has a 

circular regulate-feedback mechanism to sustain allostasis. Allostatic overload is often 

considered to contribute to the pathophysiology of mood disorders, particularly when the 

overloaded status remains unsustainably long/strong (Pariante and Lightman 2008; 

Rilling 2013). 

There is substantial evidence to suggest that elevated activation of the HPA axis is 

presented in MDD patients, consistently supported by evidence of high cortisol level 

(Brown et al. 2004). Though HPA axis is directly associated with acute stress response, 

exposure to stressful life events such as childhood trauma/early adversity can cause 

aberrantly hypersensitive HPA-axis activity, with long-term consequences extending into 

adolescence and adulthood (Heim, Mletzko, et al. 2008). These indicate that aberrant 

HPA-axis activity may not only be a feature of MDD but also a vulnerability factor (Heim 

and Nemeroff 2002).  

Dysfunction in the negative feedback pathway from cortisol to hypothalamus and pituitary 
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is the most consistently found contributor of HPA-axis hyperactivity (Pariante 2006). This 

failed inhibition mechanism can be caused by insufficient binding between cortisol and 

glucocorticoid/mineralocorticoid receptor (Pariante 2006) and lack of affinity of cortisol to 

P-glycoprotein as the carrier of cortisol and antidepressant across the blood-brain barrier 

(Uhr et al. 2008). Deficit in these mechanisms overlay with metabolic and immune 

system abnormality as expressed as peripheral inflammation (Gordon et al. 2015) and 

disrupted circadian and ultradian rhythm (Stetler and Miller 2011; Scheiermann et al. 

2013). 

Neurobiologically, glucocorticoid and mineralocorticoid receptors are located mainly in 

the limbic system and particularly enriched in hypothalamus and hippocampus (Gordon 

et al. 2015). Abnormality of these receptors is often associated with abrupted regional 

functions of these brain regions, which could explain the behavioural patterns in 

depressed individuals, expressed as impaired spatial memory in rodents, and worsened 

verbal and episodic memory in human MDD patients (Vythilingam et al. 2004; Gandy et 

al. 2017). This is supported by a recent meta-analysis from the ENIGMA consortium 

project (Enhancing Neuro Imaging Genetics Through Meta-Analysis, 

http://enigma.ini.usc.edu/), incorporating 15 international studies of 1,728 MDD cases 

and 7,199 controls, which found that, in the eight major subcortical structures, only 

hippocampal volume was associated with lifetime MDD (Schmaal et al. 2017). This study 

further supports that the brain alterations which may suggest HPA-axis abnormality could 

be an important biomarker expressed in neurogenesis and neural development. 
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Figure 5. HPA-axis system and its hormonal regulations, adapted from Pariante et al., 2008 

(Pariante and Lightman 2008). 

The main brain regions associated with HPA-axis model, to some extent, overlap with 

models for emotional processing, because the limbic system is important for both types 

of models (HPA-axis hormones are enriched in the limbic system, and limbic system is 

important for primary emotional processing). However, compared with models for 

emotional processing, HPA-axis model gives more insight into how depression is related 

to lifestyle, cardiovascular and metabolic traits like sleep patterns and activity in the 

immune system such as inflammation, and how these factors may associate with the 

limbic system. Therefore, the additional information provided by HPA-axis model may 

give further insights into how shared genetic architecture between MDD, HPA-axis and 

metabolic/immune system interact, and enrich understandings of possible biological 

pathways between neural development and MDD genetic risk, and how this pathway can 

be mediated by HPA-axis related physical and behavioural patterns, such as circadian 

rhythm and cardiovascular conditions. 
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3.3 Model 4: Polygenic model 

Genome-wide association studies (GWAS) has made great contributions to the 

understandings of genetic markers for MDD (Wray et al. 2018). However, variance 

explained by single SNPs is small, therefore the potential of using those significant hits 

to predict and understand the genetic contribution of predicting MDD based on common 

variances is limited (Wray et al. 2014). Gandal et al. summarised that the genetic 

variance of MDD is mainly contributed by common genetic variants. Also, the effects of 

the genetic variants are largely additive (Gandal et al. 2016). Therefore another approach 

was introduced as “polygenic risk profiling”, which takes whole-genome variances into 

account, at a less stringent significance level compared to that of traditional genome-

wide level studies (Wray and Maier 2014; Bulik-Sullivan et al. 2015; Wray et al. 2018). 

To calculate polygenic risk scores, summary statistics of a GWAS conducted on a training 

sample of a given trait is applied on genomic profile for each individual in a test sample, 

and the effect sizes of each genetic variants were treated as weights. The weighted sum 

of whole-genome variances is the polygenic risk score of the trait. A higher score for a 

person indicates a higher whole-genome-level genetic risk (Wray et al. 2014). 

Transferability of the technique was also successfully validated by a cross-ethnicity study 

which successfully used a European training sample to predict MDD status of Han 

Chinese woman (Edwards et al. 2018). The increased sample sizes of MDD GWAS have 

significantly contributed to the increased accuracy of MDD polygenic risk profiling, as 

many more genome-wide significant genetic risk variants have been found in recent 

studies (Wray et al. 2018), which indicate increasingly better estimates for the effects of 

MDD compared than smaller samples used previously (Wray et al. 2013). 

Polygenic risk of MDD is associated with various traits, such as neuroticism (Navrady et 

al. 2018), psychological distress (Musliner et al. 2015), comorbidity for/with and 

childhood trauma (Peyrot et al. 2018). Higher risk scores of MDD is also associated with 

physical conditions like pain (McIntosh et al. 2016) and body mass index (Clarke et al. 
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2015), cognitive performance and educational attainment (Hagenaars et al. 2016). 

However, very little literature has investigated the relationship between MDD polygenic 

risk score and wider phenotypes including brain measures. There are several reasons 

for this: first, under-powered training samples may introduce a significant amount of 

uncertainty for the estimation of SNP effects, (Wray et al. 2013); and second, only 

recently, large neuroimaging cohorts that also include genetic data have been available 

(Elliott et al. 2018); finally, though meta-analyses had significantly larger power 

compared with traditional small-sample studies, more flexible phenotypes such as 

resting-state connectome data would be extremely hard to merge based on inconsistent 

protocols between sites. However, biologically, it is extremely important to investigate 

this association, as most of the depressive symptoms like sleep, anhedonia and mood 

variability may be more relevant to contemporaneous brain activity, along with the less 

temporally fluctuating structural brain changes. Many of the top hits found in a recent 

GWAS were associated with brain phenotypes and some directly expressed in brain 

tissue (Wray et al. 2018), along with the evidence that many structural and functional 

brain phenotypes can have heritability up to 80% (Elliott et al. 2018), these facts together 

suggest that potentially there is an association between brain features and genetic risk 

for MDD. 

4 Limitations of the above models and questions to ask in the present thesis 

The biggest limitation of the above neurobiological models is the inconsistency of 

previous findings. Although MDD is one of the most severe and disabling diseases, its 

aetiology is largely ambiguous, not simply because of the paucity of data, but results are 

heterogeneous or even contradictory. A massive number of regions, including the lateral 

and medial side of the prefrontal cortex, sensorimotor regions, parietal cortex that 

associate with attention and finally visual cortex in the occipital cortex have all been 

found in some studies associating with MDD case-control differences. If all these results 

were true associations, the conclusion may be that MDD is related to whole-brain 
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disturbance, which has no specific neurobiological basis and is contradictory to the 

nature of the brain with regional functionality. A very likely explanation for the overly wide 

coverage of brain structure and activities appeared in previous studies, is that there may 

be a very large number of false positive results. It is likely due to the fact that most of the 

previous studies are underpowered, limited to sample sizes of less than 50 MDD cases 

(Linden 2012). MDD is highly prevalent and heterogeneous. It would be extremely 

difficult to represent the overall population of MDD well enough if only less than 50 people 

were selected. It is likely that a small number of severe cases in such studies may be 

able to drive the effects to reach statistical significance, nonetheless, noise may be 

introduced as those individuals that brought the largest effects may only be a particular 

subtype of MDD, therefore the results would reflect their own particular symptoms only. 

Despite these hypothetic inferences that previous findings may contain many false 

positive findings, previous findings have indeed shown results in opposite directions. For 

example, Eijndhoven et al. tested the differences in cortical thickness between 

medication-naïve patients and medication-free remitted patients. They found that 

patients with current symptoms had greater thickness in the temporal pole and anterior 

cingulate cortex (van Eijndhoven et al. 2009). Some found the depressive symptoms 

were exclusively associated with the limbic system (Nebes et al. 2001), whereas others 

report associations in lateral prefrontal cortex only (Taylor et al. 2004). In addition to 

these studies, Lenze et al. found no significant group difference either in white matter 

hyperintensity or grey matter volume (Lenze et al. 1999). Previous heterogeneous 

findings, to some extent, led the hypothesis overly broad and spread across the whole 

brain, as can be seen in the models introduced above. Though the models above give 

detailed descriptions of MDD-related cognition/affection biases, genetic factors and 

hormonal reactivities, an overall additive effect of biased attention, evaluation and 

rumination on the brain is needed to build up learn-able models to help predict symptoms, 

liability and treatment outcomes. As a first step however, reliable estimation of the 

associations between depressive symptoms and brain structures and functions are 
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required. 

Second, investigations and models for mood variability is needed. The above biased 

emotional processing is often investigated based on one-shot trials (i.e. unrelated 

events). Studies of cognitive learning models, which describe the dynamics of updating 

emotional inputs based on previous history of both negative and positive stimuli (Forbes 

and Dahl 2012; Whitton et al. 2015), show that longitudinal mood variation could be 

another important component of MDD symptoms. Longitudinal variation can be 

presented in different forms such as longitudinal linear progression and over-time 

variability. Studying the fluctuating nature of mood status may therefore give particular 

insights into emotion-reaction dynamics in MDD in the long run (McFarland and Klein 

2009; Forbes and Dahl 2012; Pechtel et al. 2013). 

Another limitation is that it is unclear whether structural and functional connectivity is 

associated with genetic risk of depression. Previous studies have provided evidence that 

using genetic risk of a brain-related disorder to directly predict brain phenotypes is a 

reasonable path. For example, the latest GWAS by Wray et al. and Howard et al. 

revealed that top genome-wide significant SNPs (Single-nucleotide polymorphism) 

associated with MDD condition were expressed in brain regions (Howard, Adams, Shirali, 

et al. 2018; Wray et al. 2018). Other examples are family studies that found some 

evidence that corticolimbic connectivity was altered in people with familial risk, although 

whether it remains true when only genetic effect is taken into account needs further 

investigation (Pariante 2009; Huang et al. 2011; Meyer-Lindenberg and Tost 2012). The 

above evidence is not yet enough, because the brain is highly integrated as a network, 

a single alteration that can be potentially caused by gene expression associated with a 

disorder may not result in a single region (Bressler and Menon 2010). Also, 

compensatory mechanisms against neurobiological deficits, such as enhanced activity 

in DLPFC in high-functioning groups (Cabeza et al. 2002), can be found in people that 

show disease resilience, therefore gene expression may not necessarily end up having 
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phenotypic impact on the phenotypes in a matured brain. The gap of understanding of 

genetic risk factor to brain structural and functional connectivity associated with emotion 

regulation is mainly due to a lack of samples that contain both genetic and neuroimaging 

data. The opinion of this thesis is that the linkage between the brain and genetic risk of 

depression may enrich the interpretation of the genetic architecture of MDD and lead to 

better understandings of the multifactorial relationship between behavioural patterns, 

brain phenotypes and MDD condition. According to previous studies using polygenic risk 

of MDD to predict physical/behavioural traits such as smoking and body mass index 

(BMI), a sample of at least thousands of participants were used in these studies (Wray 

et al. 2013; Musliner et al. 2015; Mistry et al. 2018). This scale of sample sizes, however, 

has been rarely seen in neuroimaging studies. 

To investigate the above challenges, I have used data from UK Biobank project and 

particularly focused on brain phenotypes such as white matter microstructure, resting-

state connectivity and their associations with behavioural and genotyping data. UK 

Biobank is a project that was established in 2006 (Matthews and Sudlow 2015), between 

then and 2010, 500,000 volunteers from 40 to 70 years old were recruited (Muñoz et al. 

2016; Bycroft et al. 2017a). To date, over 90% of all participants have been genotyped 

and part of the sample was selected to attend imaging assessments. The imaging project 

started in 2015, and data collection is still on-going (Miller et al. 2016). The first release 

covered approximately 5,000 people, and the most up-to-date release in 2018 covered 

around 12,000 people. Behavioural and part of physical measures were assessed both 

at the initial assessment and at the same time with the later imaging assessment. This 

cohort has several advantages despite its impressive sample size. Genetic and 

neuroimaging data were quality-checked under standard protocols, and the biology data 

was in general assessed in depth, as revealed by a larger number of genetic variants 

assessed compared to other large cohorts such as PGC and 23andMe (Howard et al., 

2018), and a large range of different types of neuroimaging data was collected, including 

T1, DTI (diffusion tensor imaging), T2, and resting-state functional data (Miller et al. 
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2016). Especially the imaging data has exceptionally good data quality compared with 

other big cohorts because all data were collected in a single scanner. Homogeneity of 

imaging data, on the other hand, is expected to be able to provide larger statistic power. 

Another advantage is the longitudinal clinical data. A large proportion of the self-reported 

physical and mental health conditions were assessed at multiple time points, which 

makes UK Biobank a unique dataset with large-scale longitudinal assessments that may 

cover up to thousands of people. For other features of the dataset, details will be 

introduced in the data chapters. 
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White Matter Microstructure and MDD 

1 White Matter Microstructure 

Early developments of neuroimaging techniques, especially MRI, have largely enriched 

our understanding of the brain maps for regional functions (Soares and Mann 1997). 

However, more recent studies found that many psychiatric diseases are ‘connectome 

disorders’. Rather than the structural deficit of a single segregated region, the lack of 

healthy integrated connections is proposed to contribute to disrupted psychological 

functions (Rubinov and Bullmore 2013).  

White matter (WM) fibres construct the structural bridges within the brain. The most 

popular method to test the integrity of these structures is diffusion tensor imaging (DTI), 

which captures the diffusion of water molecules. In oriented environments such as WM, 

diffusion is anisotropic (see Figure 6). Reduced directionality of diffusion is, in general, 

associated with worse psychiatric symptoms and worse connectome caused by lesions 

(Denk et al. 2012).  

Conventional DTI measures include FA (fractional anisotropy) and MD (mean diffusivity) 

(see Figure 6). These two measures are both derived from direct observations of 

diffusion in three spatial axes (L1 to L3). FA describes the fractional directionality, and 

MD is the mean diffusion of L1 to L3. By definition, higher FA would usually be interpreted 

as better/increased white matter integrity, whereas lower MD would be interpreted and 

decreased integrity. These two measures are both sensitive to white matter 

microstructure, and each of them has its own advantages and limitations. FA is much 

more restricted to the variances in WM (see Figure 6), whereas MD is comparatively 

more easily influenced by partial-volume contamination and the boundaries between WM 

and grey matter. The generalised sensitivity over all tissues for MD has its advantage 

however for areas of cross-over fibres, where FA is typically less sensitive (Jones et al. 

2013). Therefore, although FA and MD usually have opposite directions, it does not 
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necessarily mean that they are measures that only differ in polarisation, but rather two 

validated methods for representing white matter microstructural variations. In the present 

thesis, both FA and MD results were reported for transparency. 

 

Figure 6. Comparison of whole brain maps between T2W, FA and MD images. 

FA and MD are general microstructure variances that describe the pathway features of 

white matter tracts. However, different structural changes could contribute independently 

to FA and MD variation, such as intensity loss which contributes to white matter 

disconnection, the proportion of myelin, which has different diffusive attributes compared 

with neurons (Jones et al. 2013).  

The newly developed neurite orientation dispersion and density imaging (NODDI) 

measures provide complementary data to explore cellular contributors of FA and MD 

differences analysis (see Figure 7). These include ICVF (intercellular volume fraction, 

describing neurite density), ISOVF (isotropic of free water volume fraction, i.e. 

extracellular water proportion describing the proportion of water outside of cellular space) 
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and OD (orientation dispersion index, describes morphology of tract organisation, for 

instance, fanning and bending of axon bundles) (Zhang et al. 2012). There is increasing 

interest in the use of NODDI measures as complementary dMRI measures, in addition 

to FA and MD, since these measures depict additional sources of FA and MD variations 

which conventional DTI measures cannot distinguish (Beaulieu 2002). These NODDI 

measures are relatively new but are encouragingly robust (Zhang et al. 2012), and 

importantly have been shown to demonstrate distinct sensitivity to different biological 

processes, for example in relation to healthy aging (Cox, Ritchie, et al. 2016) and 

between clinical samples (Rae et al. 2017). The analysis in this thesis therefore 

incorporates these NODDI measures along with the traditional FA and MD variables to 

provide deeper insights into the pathophysiology of MDD.  

2 White Matter Microstructure and MDD 

Higher FA and lower MD in structural connections between prefrontal cortex and limbic 

system have been associated with MDD (Liao et al. 2013). For specific tracts categorised 

in this subset, worse FA microstructure in anterior thalamic radiation has been observed 

in MDD patients according to a meta-analytic study (Liao et al. 2013). This tract connects 

thalamus and bilateral dorsal prefrontal cortex. Functional connection between them 

involves in top-down emotional regulation and executive control (Mamah et al. 2010; 

Coenen et al. 2012). Other prefrontal-cortex-related tracts include superior and inferior 

longitudinal fasciculus (Huang et al. 2011). These structures also show significant 

associations with cognition, which implies that these regions may have associations 

concerning MDD-related cognitive deficit (Karlsgodt et al. 2008; Mamah et al. 2010; Cox, 

Bastin, et al. 2015). However, it is not always the case that white matter microstructure 

linking prefrontal cortex is found. For example, Gutman et al. found FA changes in MDD 

only located in limbic regions (Gutman et al. 2009).  

NODDI measures have been used in clinical studies but the number of studies is limited 

as it is a relatively new technique. Recent studies on mental illness, such as first-episode 
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psychosis and dementia, revealed that for mood disorders, neurite density, as measured 

by ICVF, is the main contributor for microstructural variances (Mahoney et al. 2014; Rae 

et al. 2017). On the other hand, neurodegenerative mental illnesses, such as Parkinson’s, 

has been associated with poorer ISOVF (Kamagata et al. 2017). So far there is no study 

that directly investigates MDD-related NODDI changes, and this topic will be studied and 

discussed in the present thesis (chapter 3). 

  



Chapter 1: Introduction 

28 
 

 

Figure 7. Comparison between FA and neurite orientation dispersion and density imaging 

(NODDI) measures. NODDI measures described here include: ICVF (intercellular volume 

fraction, describing neurite density, therefore also referred to as ND in the figure), ISOVF 

(isotropic of free water volume fraction, referred to as ISO in the figure) and OD (orientation 

dispersion index, referred to as ODI in the figure). The figure was adapted from Rae et al., (Rae 

et al. 2017).  
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Resting-state connectivity and MDD 

1 Resting-state fMRI 

Structural and event-related fMRI studies have consistently identified prefrontal brain 

regions as having the strongest associations with general cognitive ability (Kievit et al. 

2014; Rosenberg et al. 2016). These regions play a crucial role in executive control 

(Koechlin and Summerfield 2007) and multisensory integration (Wunderlich et al. 2011), 

and can be assessed using various task-based paradigms (MacDonald et al. 2000; 

Weissman et al. 2006; Goldin et al. 2008). However, it has recently been demonstrated 

that the brain is highly active in the absence of experimental stimuli, i.e. when it is in 

‘resting state’. The activity of the brain under resting state is metabolically demanding 

and topologically efficient; it has been proposed that this actively maintains neural 

signalling in preparation for quick adaptions (Bullmore and Sporns 2012; Hahn et al. 

2012). Such spontaneous modulations at rest are temporally correlated between distant 

brain regions, forming the linkage known as functional connectivity.  

The spatial patterns of functional connectivity are known as resting-state networks (RSN). 

It is well established that these RSN can be robustly extracted from fMRI data (Power et 

al. 2011), and they have been consistently verified in several independent cohorts (Fox 

et al. 2006; van den Heuvel et al. 2008; Braun et al. 2012). The RSN approach provides 

a non-invasive, task-free way of studying such a distributed functional dynamics of the 

brain (Turk-Browne 2013). In addition to its broad practicability, functional networks found 

under resting-state are spontaneous, and they are therefore free from confounding 

effects due to external input (Sporns 2014). This approach therefore provides the 

possibility of examining the simultaneous involvement of multiple networks, whose 

temporal organisation is relevant to MDD which is associated with various high-level, 

integrative mechanisms that involve in emotional and cognitive processing (Cocchi et al. 

2013; Sporns 2014). 
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Major RSN include the default mode network (DMN) and various of task-relevant 

networks such as the salience, executive control, sensorimotor, dorsal attention and 

visual networks (see Figure 8) (Buckner and Krienen 2013). The DMN is a network 

mainly consist of medial prefrontal cortex, posterior cingulate cortex and temporal-

parietal junction, was first discovered to be deactivated while the brain is engaged in a 

goal-directed task and activated under resting-state (Raichle 2015). This network has 

been hypothesised to be associated with thought rumination and various automated 

processes (Raichle 2015). The task-relevant networks, on the other hand, were found 

associated with the functions that they were named after (Buckner and Krienen 2013). 

 

Figure 8. Major resting-state networks (Buckner and Krienen 2013). 
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2 Resting-state networks and MDD 

Early studies of resting-state networks involved largely the low-frequency BOLD-signal 

(blood-oxygen-level dependent) amplitudes in networks of interest (Zou et al. 2008; Han 

et al. 2011). MDD patients typically showed hyperactivity in DMN in task-related phase 

when DMN activity is normally suppressed (Sambataro et al. 2014). Inference for the 

abnormally active DMN is that the network involves spontaneous processes, such as 

rumination of negative thoughts (Hamilton et al. 2011). Studies about cognition have 

shown that DMN deactivation in resting-state is associated with lower global network 

efficiency (Hearne et al. 2016). Therefore the activity of DMN is essential for remaining 

whole-brain alertness (Greicius et al. 2008), and overly activated DMN may lead to 

disrupted performance in task-related networks (Bartova et al. 2015).  

 

Figure 9. Connectivity between bulk resting-state networks that associate with the onset of MDD 
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based on a meta-analysis of resting-state connectivity (Kaiser et al. 2015). In the figure, 

FN=frontoparietal network, DAN=dorsal attention network, DN=default mode network, 

AN=affective network, and VAN=ventral attention network. The white arrow means hyper-

connectivity in MDD, black arrows indicate weaker connections in MDD, and grey arrows 

represent inconsistent weakening/strengthening in MDD from different studies. 

 

Other than early discussions about arousal level of resting-state networks, topology of 

functional connectivity in resting-state brings much more dynamic and biologically 

interpretable phenomenon that can implicate clinically significant inferences. 

Resting-state network properties can be presented in several ways. The most widely 

used measure is functional connectivity, which describes the temporal correlation 

between remote brain regions (van den Heuvel and Hulshoff Pol 2010) (see Figure 9). 

MDD case versus control differences has been shown in bulk network connections 

between DMN and salience network (Bressler and Menon 2010). Studies suggest that 

the salience network has a mediating role in facilitating the dynamic switch between DMN 

and the executive control network (see Figure 11). Aberrant connection between DMN 

and salience network may indicate impaired ability to suppress DMN when goal-directed 

tasks are involved, therefore hyper-activation in DMN may become a counter-active lever 

for task-positive networks (Bressler and Menon 2010). 

Other properties of resting-state include regional homogeneity (Zhu et al. 2008) and 

graph-theory topologies, such as small-worldness and global degree (van den Heuvel et 

al. 2008; Braun et al. 2012). Higher regional homogeneity and global degree were shown 

in dorsal lateral prefrontal network and temporal-parietal networks in healthy people 

compared with MDD, which may indicate higher efficiency within networks themselves, 

and it serves for better functionality (Wu et al. 2011). Previous resting-state studies about 

MDD suffer from common disadvantages like structural studies that lack statistic power. 

An additional gap is the extremely limited understanding between the activity of 
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functional network and genetic risk of MDD, which so far, to our knowledge, has not been 

investigated in cohort data. 

 

 

Figure 10. The counterbalanced relationship between DMN and central-executive network, 

and the lever-like role of salience network (Bressler and Menon 2010). 
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Chapter 2: 

Subcortical volume and white matter integrity abnormalities in major 

depressive disorder: findings from UK Biobank imaging data 

 

1 Chapter introduction 

This chapter presents a study of group differences between MDD cases and controls in 

subcortical volumes and white matter microstructure, using the first release of UK 

Biobank imaging data that includes 1,157 and 1,089 people for subcortical and white 

matter microstructural measures respectively. Previous studies on MDD case-control 

differences often used small samples (N<100), therefore led to heterogeneous results. 

This study aimed to employ a very large sample and investigate the MDD case-control 

differences, which has been summarised in a published paper entitled, “Subcortical 

volume and white matter integrity abnormalities in major depressive disorder: findings 

from UK Biobank imaging data” (Shen et al. 2017), in which I was the first author. I 

conceived the hypotheses, conducted data analyses and wrote the manuscript under 

supervision. 

2 Paper 

2.1 Abstract 

Previous reports of altered grey and white matter structure in Major Depressive 

Disorder (MDD) have been inconsistent. Recent meta-analyses have, however, 

reported reduced hippocampal grey matter volume in MDD and reduced white matter 

integrity in several brain regions. The use of different diagnostic criteria, scanners and 

imaging sequences may, however, obscure further anatomical differences. In this 

study, we tested for differences in subcortical grey matter volume (n=1157) and white 

matter integrity (n=1089) between depressed individuals and controls in the subset of 

8590 UK Biobank Imaging study participants who had undergone depression 

assessments. Whilst we found no significant differences in subcortical volumes, 

significant reductions were found in depressed individuals versus controls in global 

white matter integrity, as measured by fractional anisotropy (FA) (β=-0.182, p=0.005). 

We also found reductions in FA in association/commissural fibres (β=-0.184, 

pcorrected=0.010) and thalamic radiations (β=-0.159, pcorrected=0.020). Tract-specific FA 

reductions were also found in the left superior longitudinal fasciculus (β=-0.194, 
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pcorrected=0.025), superior thalamic radiation (β=-0.224, pcorrected=0.009) and forceps 

major (β=-0.193, pcorrected=0.025) in depression (all betas standardised). Our findings 

provide further evidence for disrupted white matter integrity in MDD. 

2.2 Introduction 

Major Depressive Disorder (MDD) is a common psychiatric illness, affecting between 5 

and 30% of the population which accounts for around 10% of all days lived with 

disability(Marcus et al. 2012). There is therefore an urgent need to identify the 

mechanisms underlying MDD and human in vivo MRI has been widely applied in this 

search(Gamazon et al. 2015). 

Many brain imaging studies have measured grey matter volume differences between 

healthy individuals and, predominantly clinically ascertained, individuals with MDD. 

Prefrontal cortex and limbic areas are fundamental to emotion processing and mood 

regulation(DeRubeis et al. 2008), and these areas have also been consistently 

implicated in imaging studies of MDD(Bora et al. 2012; Maller et al. 2014; Meng et al. 

2014). As the use of automated methods such as voxel-based morphometry(Soriano-

Mas et al. 2011; Wagner et al. 2011) and Freesurfer(Sacchet et al. 2015) have 

increased, this has expanded the search across the whole brain. In general, structural 

abnormalities have been reported across diverse brain networks in MDD. Regions 

including the thalamus(Nugent et al. 2013), amygdala(Bora et al. 2012), 

insula(Soriano-Mas et al. 2011), caudate(Sacchet et al. 2015), anterior cingulate 

cortex(Bora et al. 2012), along with prefrontal areas such as orbital prefrontal cortex 

(OFC)(Fried and Kievit 2015) and dorsal lateral prefrontal cortex (PFC)(Amico et al. 

2011) have been reported to be smaller in MDD versus healthy controls. However, 

other studies have found conflicting results(Kong et al. 2014; Sacchet et al. 2015), or 

have reported null findings(Wagner et al. 2011). This inconsistency may be due to 

limited sample sizes and other sources of heterogeneity such as sample 

characteristics, recruitment criteria, data acquisition and image processing(Arnone et 

al. 2012). 

The lack of a single anatomically circumscribed abnormality in MDD has led many to 

suggest that the disorder might be due to abnormalities of brain networks affecting 

connections between several regions. In support of this, findings from individual studies 

of white matter structure in MDD have shown patterns of alteration using diffusion 
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tensor imaging (DTI). Proxy measures of white matter integrity, including fractional 

anisotropy (FA) and mean diffusivity (MD), have been used to infer connectivity 

differences between groups. Decreased FA indicates lower directionality of water 

molecule diffusion along fibre pathways and is a proxy of decreased tract integrity, 

whilst increased MD indicates less constrained water molecule diffusion and a proxy for 

lower integrity. 

White matter integrity of frontal-limbic tracts have been suggested to underlie clinical 

features in MDD due to a lack of frontal cortical control over brain regions that involve 

in emotion processing(Korgaonkar et al. 2014). Studies have reported altered water 

diffusivity of white matter tracts in MDD compared to healthy controls, but the tracts 

identified are often inconsistent. Some studies reported decreased white matter 

integrity in tracts that connect prefrontal areas (e.g. fronto-occipital fasciculus, superior 

longitudinal fasciculus) (Sexton et al. 2012) . While some studies using similar sample 

sizes also found consistent results (Liao et al. 2013), other groups reported FA deficits 

in limbic areas (e.g. posterior thalamic radiation, posterior corona radiata) (Korgaonkar 

et al. 2014). Similar to the studies of subcortical volumes described above, DTI 

investigations of MDD have often used relatively small sample sizes (Murphy and Frodl 

2011; Liao et al. 2013). 

Meta-analytic methods may help to overcome issues related to small sample sizes and 

are also able to quantify and test for between-study heterogeneity. A recent meta-

analysis of subcortical structures by Schmaal et al. tested over 1650 MDD patients and 

around 7000 healthy controls across 15 studies, and reported hippocampal grey matter 

volume reductions in MDD. No other case-control differences were found (Schmaal et 

al., 2016a). Meta-analyses of white matter integrity measures in MDD have also 

reported FA reductions in superior longitudinal fasciculus, fronto-occipital fasciculus, 

and thalamic radiations (Murphy and Frodl 2011; Liao et al. 2013). These studies, 

however, often require the combination of imaging data from different scanners, using 

different ascertainment criteria and methodology, different clinical instruments and 

have differing levels of phenotypic data to pursue further research questions. Meta-

analytic findings therefore highlight the pressing need to measure brain structural 

abnormalities in MDD using larger single-scanner samples where robust conclusions 

can be made in the absence of differing study methodologies. 
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In the current study, we examined the volumetric structural imaging data of subcortical 

brain structures and tract-specific white matter integrity measures from the UK Biobank 

imaging study. UK Biobank is a study of 500,000 subjects recruited from across the 

United Kingdom (Sudlow et al. 2015). The dataset used in the current study is the 

latest release of imaging data on 8590 participants who participated in the brain 

imaging assessment (Miller et al. 2016). For our current purposes this included 

354/342 MDD and 803/762 controls respectively who provided usable for T1-

weighted/DTI data from a single scanner, along with available data regarding 

diagnostic and phenotypic information. The scanning protocol and pre-processing 

pipelines were devised by UK Biobank, with consistent, compatible setting of scanner 

parameters and participant-friendly experimental procedures. This data therefore 

allowed us to explore structural changes associated with depression in a single large 

population-based sample using data from an individual study source with unified 

depression classification, and with scanning sequences and image processing 

procedures applied consistently across all subjects, all of whom were imaged on a 

single MRI scanner. 

 

2.3 Methods 

Participants 

In the latest release of imaging data from UK Biobank, 5797 people completed the 

subcortical brain structural MRI measurements and 5171 completed DTI assessment 

(Fig S1). The study has been approved by the National Health Service (NHS) 

Research Ethics Service (approval letter dated 17th June 2011, reference: 

11/NW/0382), and by the UKB Access Committee (Project #4844). Written informed-

consent was obtained from each subject. All assessments were performed in 

accordance with the regulations and protocols from the committees. 

Individuals from the initial pilot phase of imaging using different acquisition parameters 

were excluded from the current study, as were those that did not complete pre-

processing quality checks conducted by UK Biobank. In addition, scans from 

individuals that were identified by our internal quality check as having a structural 

measure that lay more than three standard deviations from the sample mean were 

excluded (Appendix 1: Fig S2, S3, Table S1). Any participants that had a diagnosis of 
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Parkinson’s Disease, bipolar disorder, multiple personality disorder, schizophrenia, 

autism or intellectual disability were also excluded from the current analysis (ICD-10/9 

or self-report). This resulted in data from 5397 participants with T1-weighted subcortical 

volumes and 4590 participants with DTI measures. Mean ages were 55.47 +/- 7.49 

years for those with T1-weighted, grey matter data and 55.46 +/- 7.41 years for those 

with DTI, white matter integrity. The proportions of male participants are were similar in 

both datasets (45.78% for those providing T1-weighted data and 47.12% for those with 

DTI measures). Details of data exclusions are detailed within supplementary materials 

(Method, Participants; Fig S1). 

MDD definitions 

The definition of MDD used in the current study was generated based on the putative 

MDD category summarized previously by Smith et al., as presented in supplementary 

materials (Fig S4) (Smith et al. 2013). They generated the criteria of single episode 

major depression, recurrent major depression (moderate), recurrent major depression 

(severe) and those who were absent of depression. This category was benchmarked 

by testing its prevalence in the sample, and by testing for association with a number of 

traits, such as neuroticism (Jylha et al. 2009), that have previously been associated 

with MDD (Kendler et al. 2004). However, since the category is based on hospital 

admission data and depressive symptoms, which were both self-reported, rather than 

more formal ICD/SCID criteria, cases should be considered ‘probable’ MDD rather than 

operationally defined on the basis of an interview. 

We generated two definitions of probable MDD. One was the principal MDD definition 

that compared all MDD patients (recurrent and single episode) with healthy controls, 

while the other was based on recurrence and compared recurrent MDD patients with 

non-recurrent and non-MDD individuals. 

The principal MDD definition therefore included those who were categorised in single 

and multiple episode major depression as cases. The corresponding control group 

contained participants that were absent of depression according to the putative MDD 

category described by Smith et al (Smith et al. 2013). For the recurrent MDD definition, 

the case group only included recurrent major depression. The corresponding control 

group therefore referred to the participants without recurrent MDD, which included 

single episode major depression, those who were absent of depression and those who 
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reported depressive symptoms but not enough to be specified as MDD. Participants 

who did not answer one or more of the questions necessary for classification were 

excluded from this analysis.  

For each definition of probable MDD, the participants with subcortical volume data 

consisted of 354 MDD cases and 803 controls and 261 MDD cases and 1196 controls 

respectively for principal and recurrent definitions. Participants with DTI data consisted 

of 335 MDD cases and 754 controls and 242 MDD cases and 1113 controls for 

principal and recurrent definitions respectively. Method used to derive the samples into 

analyses were presented in supplementary materials, Fig S1. 

The descriptions and demographic characteristics of each MDD definition are shown in 

supplementary materials (Appendix 1: Table S2, S3). For the purposes of the current 

analysis, we used the principal definition of depression as the main definition as it most 

closely resembles the general application of typical clinical criteria. We also report 

results of the recurrent definition of MDD to highlight differences associated with a 

more severe recurrent MDD diagnosis. (Appendix 1: Supplementary materials, Table 

S3). 

MRI acquisition and analyses 

We used the imaging-derived phenotypes (IDPs) generated by UK Biobank. The MRI 

acquisition, pre-processing and imaging analysis for subcortical volumes and FA 

values of white matter tracts were all conducted by UK Biobank using standard 

protocols(Miller et al. 2016), see supplementary material. Briefly, all imaging data was 

collected on a Siemens Skyra 3T scanner 

(https://www.healthcare.siemens.com/magnetic-resonance-imaging) and was 

preprocessed using FSL packages. For T1-weighted data, segmentation of brain was 

conducted in two steps: firstly, a tissue-type segmentation using FAST (FMRIB's 

Automated Segmentation Tool)(Zhang et al. 2001) was applied to extract cerebrospinal 

fluid, grey matter and white matter; then subcortical structures are extracted using 

FIRST (FMRIB's Integrated Registration and Segmentation Tool)(Patenaude et al. 

2011). For DTI data, parcellation of tracts were conducted using AutoPtx (De Groot et 

al. 2013). 

https://www.healthcare.siemens.com/magnetic-resonance-imaging
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The summary data contained volumes of grey matter, white matter, cerebrospinal fluid, 

thalamus, putamen, pallidum, hippocampus, caudate, brain stem, amygdala and 

accumbens (Fig S2). DTI data provided tract-averaged FA for 27 major tracts (12 

bilateral tracts in both hemispheres and 3 tracts that pass across brain): (a) association 

and commissural fibres: forceps major and minor, inferior fronto-occipital fasciculus, 

uncinate fasciculus, cingulum bundle and superior longitudinal fasciculus; (b) thalamic 

radiations: anterior, superior and posterior thalamic radiations; (c) projection fibres: 

corticospinal tract, acoustic radiation, medial lemniscus, middle cerebellar peduncle. 

Scans with severe and obvious normalization problems were excluded by UK Biobank. 

In addition we also excluded observations that were more than three standard 

deviation from the sample mean for the analysis of subcortical volumes. For DTI 

measures, participants with at least one outlier of tract-averaged FA from the sample 

mean were excluded for that measure. Descriptions of the sample were reported in 

supplementary materials (Method, MRI preprocessing; Fig S1-3). For transparency, the 

results without excluding outliers are also presented in the supplementary materials. 

Statistical methods 

Subcortical volumes: First, differences in global intracranial volume (ICV) associated 

with a probable MDD diagnosis were examined by modelling ICV as dependent 

variable, controlling for age, age2, sex and assessment centre. ICV was measured by 

adding up volumes of white matter (WM), grey matter (GM) and cerebrospinal fluid 

(CSF). For bilateral subcortical volumes, age, age2, sex, hemisphere, assessment 

centre and ICV were set as covariates in a repeated-effect linear model to test for an 

association between both probable MDD definitions on subcortical volumes, adjusted 

for whole brain size. For unilateral structures, a general linear model was applied as 

above, without controlling for hemisphere. We also examined the interaction of 

hemisphere and MDD definitions on bilateral structures. Where there was a significant 

MDD by hemisphere interaction, analyses on both lateralised structures were 

conducted separately. All subcortical volumes were rescaled into zero mean and 

unitary standard deviation in order that effect sizes represent standardized scores. 

False Discovery Rate (FDR) multiple comparison correction was applied for tests of the 

8 subcortical volumes plus additional tests on ICV, conducted separately for the two 

probable MDD definitions (Fig 1, Table 1, S5). 
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White matter integrity: In order to test for an association between probable MDD and 

FA, as above we used a general linear model with age, age2, sex and assessment 

centre as covariates and the definition of MDD as a fixed factor. First we examined for 

the effects of diagnosis on global whole brain white matter integrity. The brain’s white 

matter tracts have been shown to share a considerable proportion of variance in their 

microstructural properties in this (Cox, Ritchie, et al. 2016) and other samples (Penke 

et al. 2010, 2012). Global integrity was determined using standardised approaches by 

applying principal component analysis (PCA) on the 27 tracts to extract a latent 

measure (Cox, Ritchie, et al. 2016). Scores of the first un-rotated component of FA 

were extracted and set as the dependent variable of the general linear model to test 

the effect of probable MDD diagnosis (variance explained=36.5%). Then we separately 

examined three subsets of white matter tracts: (a) association and commissural fibres 

which include tracts connecting cortex to cortex, (b) projection fibres which consist of 

tracts connecting cortex to spinal cord and brainstem, as well as sensory tracts that 

connect cortex to thalamus and (c) thalamic radiations that connect thalamus with 

cortical areas (Cox, Ritchie, et al. 2016). Scores of the principal un-rotated component 

for each subset was extracted (variance explained=44.1%, 60.1% and 38.1% 

respectively for A/CF, TR and PF) for further general linear modelling as with the global 

latent measure. Loadings and scree plot of PCA analyses are in supplementary 

materials (Appendix 1: Table S10, Fig S5). Finally, we examined the effects of 

depression on each tract individually. Repeated-effect linear models were used for the 

measures of bilateral white matter tracts correcting for hemisphere as above, while 

random-effect general linear models were used for the unilateral midline tracts. Both 

the main effect of MDD definition and its interaction with hemisphere were tested. 

Where the interaction was significant, tests were applied individually for left and right 

sides separately. FDR correction was individually applied over the three subsets of 

white matter tracts as well as individual tracts (Benjamini et al. 1995). 

 

2.4 Results 

The effect of MDD definitions on subcortical volumes 

We found no significant group effect for ICV based on the principal definition of MDD 

(β=-0.046, puncorrected=0.341). There were also no significant differences between groups 

based on the principal definition of MDD for any of the subcortical brain regions, 
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including the hippocampus (βs=-0.050~0.064, psuncorrected>0.199, pscorrected>0.834); see 

Fig. 1, Table 1. No region demonstrated significant interaction of hemisphere, therefore 

no region was examined separately on different hemispheres. 

The same models were also applied to compare recurrent MDD and controls, see 

above. No subcortical regions reached significance in this definition of recurrent cases 

versus controls. The largest nonsignificant effect size was observed for the caudate 

(β=0.064, puncorrected=0.231). 

 

Figure 1. (A) Subcortical structures of interest in left, inferior and anterior view. (B) The effect of 

principal definition of probable MDD on subcortical volumes. Linear models were conducted, 

controlling the effect of age, age2, sex, assessment centre and intracranial volume (and 

hemisphere for the regions that have bilateral values). The x-axis shows the standardised effect 

size of MDD definition, and y-axis is the layout of the subcortical structures. The error bar 

represents standard deviation of mean. 
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The effect of probable MDD on measures of white matter integrity 

Firstly we tested the effect of probable MDD on general white matter FA (gFA). For 

both the principal and recurrent definitions, gFA was lower in probable MDD cases 

versus controls (β=-0.182, p=0.005; β=-0.160, p=0.022 respectively). 

We then examined tracts categorised into association/commissural fibres (gAF), 

thalamic radiations (gTR) and projection fibres (gPF). We found effects of probable 

MDD on measures of FA in two of the three groups of tracts. Probable MDD at principal 

and recurrent definitions showed smaller values in gAF (Probable MDD: β=-0.184, 

pcorrected=0.010; Recurrent MDD: β=-0.170, pcorrected=0.045) and gTR (Probable MDD: 

β=-0.159, pcorrected=0.020; Recurrent MDD: β=-0.141, pcorrected=0.068). No effect was 

found for gPF (Probable MDD: β=-0.115, pcorrected=0.073; Recurrent MDD: β=-0.057, 

pcorrected=0.401). The above findings were checked in self-declare depression, and the 

results were found to be similar (see supplementary materials, MDD definitions). 

We then proceeded to compare FA values in the individual tracts between cases and 

controls. Initially, we tested the tracts controlling for hemisphere effects. Then we 

tested the interaction of hemisphere and probable MDD definitions on bilateral tracts to 

identify any lateralised effects. There was a significant interaction of hemisphere in 

superior longitudinal fasciculus for recurrent definition of probable MDD (β=0.117, 

pcorrected=0.026). The left and right superior longitudinal fasciculi were therefore tested 

separately. 

We found reduced FA in the left superior longitudinal fasciculus for both definitions of 

MDD versus controls (Probable MDD: β=-0.194, pcorrected=0.025; Recurrent MDD: β=-

0.221, pcorrected=0.025) (Fig. 2, Table 2). No significant association was found with right 

superior longitudinal fasciculus (Principal MDD: Probable MDD: β=-0.057, 

pcorrected=0.379; Recurrent MDD: β=-0.029, pcorrected=0.684). Significant FA decrease 

was found in superior thalamic radiation and forceps major, but only for principal MDD 

definition (Probable MDD: β=-0.224, pcorrected=0.009; β=-0.193, pcorrected=0.025. 

Recurrent MDD: β=-0.179, pcorrected=0.080; β=-0.133, pcorrected=0.150 respectively for the 

two tracts). In order to check whether the decreased FA in the above tracts was due to 

global changes in gFA, the effect of MDD definitions was tested again with gFA 
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included as a covariate (Appendix 1: Table S6). Left superior longitudinal fasciculus 

remained significant in both definitions (Probable MDD: β=-0.194, pcorrected=0.038; 

Recurrent MDD: β=-0.221, pcorrected=0.025). Forceps major showed decreased FA in 

probable MDD definition (β=-0.193, pcorrected=0.038) but not in recurrent MDD (β=-0.133, 

pcorrected=0.350). The effect MDD definitions on superior thalamic radiation didn’t reach 

significance after correcting for gFA (Probable MDD: β=-0.110, pcorrected=0.162; 

Recurrent MDD: β=-0.077, pcorrected=0.568). The above results of individual tracts turned 

null if outliers weren’t excluded, but the standard effect sizes were in similar trend 

(Appendix 1: Table S7). 

 

Figure 2 (see the next page). (A) White matter tracts in each anatomical subset in left, posterior 

and anterior view. (B) The effect of principal definition of probable MDD on FA value of tracts. 

Linear models were conducted, controlling the effect of age, age2, sex and assessment centre 

(and hemisphere for the tracts that have bilateral values). Left superior longitudinal fasciculus 

was presented because there was a significant interaction between recurrent MDD definition 

and hemisphere. Follow-up analysis showed a lateral effect of probable MDD definition on left 

superior longitudinal fasciculus. The x-axis shows the standardised effect size of MDD 

definition, and y-axis is the layout of the white matter tracts. The error bar represents standard 

deviation of mean.
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2.5 Discussion 

In the current study, we sought to determine whether MDD was associated with 

differences in subcortical grey matter volume or white matter integrity in a large 

imaging dataset from a single scanner of more than 8000 people, and among them 

over 1000 were included as cases and controls in the analyses for the present study. 

The sample sizes of MDD cases and controls included in the analysis of white matter 

integrity is by far the largest to our knowledge. Also, the present study considered two 

important brain structural modalities in two highly overlapping samples. Whilst we did 

not find any statistically significant subcortical volumetric differences between 

unaffected participants and individuals with probable MDD (using any of the definitions 

with increasing severity), we did find substantial evidence of reduced white matter 

integrity in MDD. This was seen globally, in two of the three categories of tracts 

(association/commissural fibres and thalamic radiation tracts), and in individual tracts 

(bilateral superior thalamic radiation, forceps major and left superior longitudinal 

fasciculus). Similar patterns of findings were seen for both principal and recurrent 

definition of depression with generally greater effect sizes in recurrent cases, with the 

exception of the localised differences in the superior thalamic radiation and forceps 

major. 

Our study notably did not find evidence for bilateral hippocampal volume reduction as 

previously reported in the large collaborative meta-analysis of MDD(Schmaal et al. 

2016). We also did not find evidence of reductions in hippocampal volume when 

looking at recurrent MDD as published in the same study. The lack of subcortical 

volumetric differences associated with probable MDD diagnoses in the current study 

therefore does not support the widely held belief that there are subcortical volumetric 

changes associated with the disorder. There are several potential explanations for this. 

Firstly, the UK Biobank dataset included only community-dwelling, ambulant individuals 

who could independently complete the health and cognitive assessments, and attend 

the follow-up imaging assessments. This approach arguably selected MDD groups that 

were more well/better functioning but equally more representative of the general 

population than purely clinically ascertained samples. We also used a composite 

‘probable’ MDD diagnosis that was based on self-report symptoms and hospital 

admission statistics, and the cases were selected based on self-report lifetime 

experience of probable depression. In contrast, many other studies previously used a 
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structured clinical interview schedule, such as the Structured Clinical Interview for 

DSM-IV (SCID), to define MDD according to standard criteria. Some studies have 

specifically studied people who were certainly experiencing depression at the time of 

imaging assessment(Turner et al. 2012). Whilst the probable MDD definitions used in 

the current paper were not based on an interview, they showed many of the same 

epidemiological and risk-factor associations as clinically defined cases (Smith et al. 

2013; Okbay et al. 2016).  

Although we do not report subcortical volume differences, we did find substantive 

evidence for robust deficits in both global and local white matter integrity. We found 

that MDD patients had global loss of FA which was also found to be reduced in 

association and commissural fibres as well as in thalamic radiations, but not in 

projection fibres. FA in these structures was also more severely reduced in the 

recurrent MDD patients. The above results indeed reflect previous findings from 

previous small-sample and meta-analytic studies (Sexton et al. 2009; Liao et al. 2013; 

Chen et al. 2016), while extending them to a more generalizable population-based 

cohort excluding potential methodological confounds as associated with the previous 

studies. A previous meta-analytic study that compared 231 MDD patients with 261 

healthy participants found reduced FA in inferior longitudinal fasciculus, inferior fronto-

occipital fasciculus, posterior thalamic radiation and corpus callosum, which belong to 

the association/commissural fibres and thalamic radiations(Liao et al. 2013). Following 

the above study, another two recent meta-analyses found integrity reductions in the 

same categories, i.e. dorsal lateral PFC area, commissural fibres (Wen et al. 2014; 

Chen et al. 2016). The global loss of FA in these regions could be the result of general 

neurodevelopmental alterations in MDD patients (Korgaonkar et al. 2011), and findings 

within defined subsets of white matter tracts could reflect the neurological basis of 

MDD as a disconnection within an integrated network of cortex-cortex and cortical-

limbic pathways (Veer 2010). The general FA reductions in groups of tracts is also 

consistent with findings from resting-state fMRI studies, which reported abnormalities in 

MDD populations in regional networks rather than just individual regions or structures 

(Greicius et al. 2007; Meng et al. 2014). The networks that derive from prefrontal cortex 

and thalamus has been found largely contribute to emotional and social cognition 

processes (Korgaonkar et al. 2011). The reduced integrity in these groups of tracts 

may therefore reflect the repeatedly found impairment of emotion regulation (Kanske et 
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al. 2012; Heller et al. 2013), reward processing (Gradin et al. 2011) and executive 

control (Snyder 2013) in MDD populations. 

In the tests of single white matter tracts, we found significantly altered integrity in left 

superior longitudinal fasciculus and superior thalamic radiation both in the overall MDD 

population and recurrent MDD patients. Reduction of left superior longitudinal 

fasciculus was notably larger in recurrent MDD patients. Reduction of integrity in 

forceps major was also found in MDD compared with healthy subjects, however 

showed no specific change of FA in recurrent MDD. 

Superior longitudinal fasciculus, as a part of association fibres, connects prefrontal 

cortex and other lobes (Huang et al. 2011). Small-sample studies have specifically 

reported reduced integrity in superior longitudinal fasciculus in various depressive 

samples, including elderly patients with depression (Sheline et al. 2008; Korgaonkar et 

al. 2011), depressive adolescents (Cullen et al. 2010) and adolescents with familial risk 

for depression (Huang et al. 2011), compared with controls. Meta-analytic studies (de 

Schotten et al. 2011; Chen et al. 2016) and a review (Sexton et al. 2009) also 

ascertained that the reduction of white matter integrity specifically in superior 

longitudinal fasciculus may be an important biomarker of the presence of depression. A 

recent study combined genetic and neuroimaging techniques found that people with 

higher polygenic risk of depression have greater loss of FA in superior longitudinal 

fasciculus (Whalley et al. 2013), suggesting that it may also therefore be a useful trait-

related marker of risk. Loss of integrity in superior longitudinal fasciculus has also 

previously been reported to be associated with various cognitive dysfunctions, like 

working memory (Karlsgodt et al. 2008) and attention (de Schotten et al. 2011). 

Severity of depressive symptoms was also found correlate with FA loss in superior 

longitudinal fasciculus (Lai and Wu 2014). There is increasingly convincing evidence 

therefore that reduced integrity in superior longitudinal fasciculus might be an important 

feature of the neurobiology of MDD and may underlie impaired emotional process and 

cognitive abilities in MDD population (Murphy and Frodl 2011). 

Another strength of the present study is that cross-modality assessment was 

conducted on both subcortical volumes and white matter integrity. Though the findings 

were largely found in white matter integrity instead of subcortical volumes, this is 

consistent with another cross-modality study by Sexton et al.(2012), which presented 

that no significant group difference was found between late-life depression and healthy 
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control, whereas white matter integrity was reduced in many regions (Sexton et al. 

2012). Another study on 358 people similarly found that depressive symptoms of 

elderly subjects also showed significant deficit in white matter, but not in grey matter 

measures (Allan et al. 2016). The age range for the present study is from 40 to 70, 

which covers a notable range of elderly participants. This feature of our sample could 

be the reason why it showed similar contrast of findings between white matter and grey 

matter measurements. 

Potential limitations of the current study should be considered, these include the 

absence of a face-to-face structured diagnostic interview schedule and the lack of 

hospital-based sampling. The large sample size may, however, overcome some of 

these difficulties and community based population sampling may yield more 

generalizable findings than those based on clinically ascertained samples alone 

(Benedetti et al. 2011; Soriano-Mas et al. 2011). The current investigation, by avoiding 

the combination of clinically and methodologically diverse samples, may also have 

ameliorated several important confounds such as differences due to different 

healthcare systems and illness related conditions including age of onset and duration 

of illness. Another factor of interest for future studies is the effect of hospital treatment. 

As studies have reported changes of depressive symptoms caused by medication or 

cognitive treatment (DeRubeis et al. 2008), investigates on the neurological effect of 

treatment should be conducted. The prevalence of the present study is lower than 

10%, which is less than the prevalence of ~20% in overall sample of the cohort in the 

study by Smith et al. (2013) (Smith et al. 2013). This was mainly due to the difference 

of sizes between the two samples. There were ~5500 participants in the sample with 

T1-weighted/DTI data, whereas over 30 times of people were included in the full cohort 

(N=172,751). This difference therefore supports the necessity of studying MDD in a 

large sample to minimise the bias of selecting study sample. A further potential 

limitation is that for the volumetric analysis we only focused on the subcortical volumes 

in the current study. We can therefore not exclude the possibility of cortical differences 

in MDD, including regional volume differences, as well as measures of cortical 

thickness and gyrification for example.  

Our study presents a comprehensive comparison of brain structural changes related to 

MDD using the largest single sample available to date from a single scanner with 

uniform methodologies for clinical categorisation and scanning. We mainly report 
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reductions of white matter FA in general latent measures of association and 

commissural fibres as well as thalamic radiations, and in left superior longitudinal 

fasciculus both in MDD and recurrent MDD. Future work would be potentially focusing 

on structural changes in cortical areas as well as richer stratification of MDD into 

informative biologically-based subgroups. 
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Table 1. The effect of MDD definition on the volumes of subcortical regions and brain matters.  

Subcortical regions 

 Principal definition   Recurrent definition 

Effect size 
Standard 

deviation 
t value p value pcorrected  

Effect 

size 
Standard deviation t value p value pcorrected 

Accumbens -0.010  0.049  -0.211  0.833  0.838   -0.018  0.052  -0.348  0.728  0.819  

Amygdala -0.045  0.050  -0.896  0.371  0.834   0.038  0.053  0.711  0.477  0.819  

Caudate 0.064  0.053  1.198  0.231  0.834   0.025  0.056  0.453  0.650  0.819  

Hippocampus -0.034  0.050  -0.682  0.495  0.838   -0.040  0.053  -0.758  0.449  0.819  

Pallidum 0.019  0.051  0.372  0.710  0.838   -0.022  0.054  -0.414  0.679  0.819  

Putamen 0.018  0.047  0.386  0.700  0.838   -0.008  0.049  -0.162  0.871  0.871  

Thalamus -0.050  0.039  -1.284  0.199  0.834   -0.059  0.041  -1.428  0.154  0.819  

Brain stem -0.011  0.053  -0.205  0.838  0.838   0.045  0.056  0.794  0.428  0.819  

ICV -0.046  0.048  -0.953  0.341  0.834   -0.049  0.051  -0.959  0.338  0.819  
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Table 2. The effect of MDD definition on FA values of DTI tracts. 

 

DTI tracts 

Principal definition   Recurrent definition  

Effect size 
Standard 

deviation 
t value p value pcorrected 

 
Effect size 

Standard 

deviation 
t value p value pcorrected 

Acoustic radiation -0.083 0.059 -1.410 1.59E-001 0.231  -0.094 0.063 -1.485 1.38E-001 0.221 

Anterior thalamic radiation -0.077 0.063 -1.221 2.22E-001 0.254  -0.065 0.067 -0.973 3.31E-001 0.441 

Cingulate gyrus part of cingulum -0.131 0.059 -2.213 2.71E-002 0.085  -0.102 0.064 -1.601 1.10E-001 0.195 

Corticospinal tract -0.077 0.058 -1.321 1.87E-001 0.236  -0.049 0.062 -0.795 4.27E-001 0.488 

Inferior fronto-occipital fasciculus -0.091 0.061 -1.489 1.37E-001 0.219  -0.059 0.065 -0.901 3.68E-001 0.453 

Inferior longitudinal fasciculus -0.122 0.062 -1.983 4.76E-002 0.109  -0.124 0.066 -1.891 5.89E-002 0.150 

Medial lemniscus -0.133 0.062 -2.148 3.19E-002 0.085  -0.141 0.066 -2.155 3.14E-002 0.100 

Parahippocampal part of cingulum -0.040 0.058 -0.683 4.94E-001 0.494  -0.018 0.060 -0.304 7.61E-001 0.761 

Posterior thalamic radiation -0.080 0.061 -1.306 1.92E-001 0.236  -0.089 0.065 -1.373 1.70E-001 0.247 

Superior longitudinal fasciculus 

(bilateral) -0.142 0.063 -2.246 2.49E-002 0.085 

 

-0.151 0.068 -2.229 2.60E-002 0.100 

Superior longitudinal fasciculus (left) -0.194 0.066 -2.951 3.23E-003 0.025  -0.221 0.070 -3.165 1.59E-003 0.025 

Superior thalamic radiation -0.224 0.065 -3.461 5.58E-004 0.009  -0.179 0.069 -2.580 9.99E-003 0.080 

Uncinate fasciculus -0.105 0.058 -1.810 7.06E-002 0.141  -0.107 0.062 -1.718 8.60E-002 0.172 

Forceps major -0.193 0.068 -2.834 4.69E-003 0.025  -0.133 0.072 -1.842 6.57E-002 0.150 

Forceps minor -0.112 0.065 -1.723 8.52E-002 0.152  -0.159 0.070 -2.266 2.36E-002 0.100 

Middle cerebellar peduncle -0.066 0.064 -1.024 3.06E-001 0.326  0.039 0.068 0.576 5.65E-001 0.602 
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3 Chapter conclusion 

We found that MDD case-control differences were mainly shown in white matter 

microstructure measured by FA in general variance of thalamic radiations, the tract-

specific variance in superior longitudinal fasciculus, forceps major and superior 

thalamic radiation. The results provided evidence that significant MDD case-control 

difference has a moderate Cohen’s d of 0.1 to 0.3 in a population-based sample. This 

very large sample confirmed the important role of white matter connecting to 

connecting to the prefrontal cortex. 
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Chapter 3: 

White matter microstructure is related to the mean and within-subject 

variance of depressive symptoms 

 

1 Chapter introduction 

Following the findings of MDD case-control differences in white matter microstructure, 

the study in this chapter investigated how white matter microstructure was associated 

with depressive symptoms measured at multiple time points, of which the importance 

has been discussed in Chapter 1. The longitudinal measures of depressive symptoms 

were assessed on 2-4 occasions across 5.89 to 10.69 years. Over 8,000 people had 

data for two or more assessments. Using the longitudinal data, three types of longitudinal 

measures were derived: (1) variability of depressive symptoms, (2) mean depressive 

level over time and (3) longitudinal trajectory of depressive symptoms. The 

neurobiological associations in white matter microstructure with these different cross-

sectional measures were assessed, and the differences and similarities across 

measures of depressive symptoms were discussed. 

This study is presented as a paper entitled, “White matter microstructure is related to the 

mean and within-subject variance of depressive symptoms”. It is now ready for 

submission. As the first author of the paper, I conceived the idea, ran the data analyses, 

and wrote the manuscript independently under supervision. 

2 Paper 

2.1 Abstract 

Background: Assessments of white matter integrity in depression typically show 

reductions in depressed individuals but are frequently limited by small sample sizes 

and the absence of longitudinal measures of depressive symptoms. We sought to test 

if greater levels of depressive symptoms or an individual’s propensity to emotional 

variability over time are associated with reductions in white matter microstructure.  

Methods: We sought to address the cross-sectional and longitudinal relationships 

between depressive symptoms and white matter microstructure using the UK Biobank 

Imaging Study. Depressive symptoms were assessed on 2-4 occasions using the 
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PHQ-4 across 5.89 to 10.69 years and imaging data was collected at a single time 

point. Depressive symptom measures were available in approximately 8,660 

individuals on at least two occasions, and in approximately 1,940 individuals on 4 

occasions. We tested the associations between depressive symptoms (cross-sectional, 

mean and within-subject variability in depressive symptoms over time) with white 

matter microstructure (Fractional Anisotropy, FA; Mean Diffusivity; MD) in 27 major 

tracts.  

Results: We found that greater mean diffusivity (MD) of the thalamic radiations was 

associated with increased depressive symptom levels measured at the imaging 

assessment, increased variability of depressive level, and also with increasing 

depressive symptoms over time (β>0.024, pcorr<0.043). Greater MD in association 

fibres that connect prefrontal areas was associated with increasing levels of depression 

over time (β=0.050, pcorr=0.034). In contrast, increased projection fibre MD in the brain 

stem, cortex and connected limbic areas (β=0.045, pcorr=0.001) was associated with 

greater variability in depressive symptoms. No association was found in FA (pcorr>0.11). 

Conclusions: Our results provide evidence that higher MD in thalamic radiations is 

associated with a higher number, variability and increasing trajectory of depressive 

symptoms. Variability and longitudinal change showed separate associations with 

projection fibres and association fibres, respectively. This suggests that white matter 

microstructure may be selectively important for aspects of the pathophysiology and 

progression of depressive symptoms. 

 

2.2 Introduction 

Major depressive disorder (MDD) is a disabling disorder with a high heritability (Sullivan 

et al. 2000; Vos et al. 2012) and prevalence (Kessler et al. 2003). It is a heterogeneous 

illness (Howard, Clarke, et al. 2017; Whalley et al. 2018), often studied in modest 

sample sizes (Liao et al. 2013). These limitations have led to diverse findings (Fava 

and Kendler 2000) and to an uncertain relationship between quantitative measures of 

depressive symptoms and associated neurobiology.  

A possible contributor to the heterogeneous imaging findings in MDD is the longitudinal 

variability of depressive symptoms (Kendler and Gardner 2011). Although MDD is often 
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diagnosed based on a single assessment in most studies, depressive symptoms are 

inherently dynamic (Kendler and Gardner 2016). For instance, some people may have 

a highly variable mood state but have a low mean level of depressive symptoms, 

whereas others may show higher mean levels of depressive symptoms, or a 

progressively increasing level of symptoms over time. Observations based on multiple 

assessments of depressive symptoms would therefore allow the mean, variance and 

longitudinal pattern of depressive symptoms to be assessed. Recent studies found 

data-driven clusters based on different patterns of trajectories of depressive symptoms, 

suggesting a possibility of stratifying depression according to dissociated patterns on 

the basis of fluctuations over time (Lin et al. 2016). 

Recent cohort studies found emerging evidence for the association between mood 

disorders and reductions of white matter microstructure in thalamic radiations (Shen et 

al. 2017; Barbu et al. 2018), which contains important tracts involved in emotional 

processing (Hall et al. 2008) and regulation (Phillips et al. 2008). Deficits in these 

functions is associated with the onset and severity of MDD (Leppa 2006). However, 

these studies used diagnosis limited to one occasion or lifetime diagnosis (Liao et al. 

2013). The present study aims to use so far the largest neuroimaging cohort with 

longitudinal depressive symptoms assessed, to test whether measures of the mean, 

variability, and longitudinal pattern of depressive symptoms show shared or different 

associations with white matter microstructure, and thereby to provide a better 

understanding of the neurobiological mechanisms of depression based on 

prospectively collected longitudinal data. 

In this study, depressive symptoms were assessed on up to four separate occasions 

and across a maximum time span of 5.89 to 10.69 years. One depressive symptom 

assessment coincided with an MRI imaging assessment. Based on these repeated 

measurements, we generated four measures, which include an assessment of 

depressive symptoms at the same time as the imaging assessment, the mean level of 

depressive symptoms and their variance (i.e. variability of depressive symptoms), and 

finally, the slope of depressive symptoms within individuals over time, as a measure of 

longitudinally worsening of depressive symptoms. 

In the current study, we tested for associations between these 4 depressive symptom 

measures and white matter microstructure in the UK Biobank Imaging Study of 8,837 

people(Miller et al. 2016). Within this database, more than 8,000 people provided 
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useable data for at least one time point for both depressive symptoms and white matter 

microstructure. 

 

2.3 Methods 

Participants 

The UK Biobank team recruited ~500,000 people across the United Kingdom (Sudlow 

et al. 2015) and an ongoing imaging assessment was undertaken for a subset of 

11,293 participants (Miller et al. 2016). For the current analyses, the most recent 

release of imaging data was used which included  8,837 individuals who provided data 

that passed the quality check performed by UK Biobank imaging team after data 

preprocessing(Alfaro-Almagro et al. 2018). In this total sample, the mean age was 

62.53 years (standard deviation=7.42) and 47.52% were men. We then conducted 

further data quality control of the removing outliers, and then the imaging data was 

merged with other data (steps listed below and presented in Figure S1).  

UK Biobank data acquisition was approved by Research Ethics Committee (reference 

11/NW/0382). The analysis and data acquisition for the present study were conducted 

under application #4844. Written consent was obtained for all participants. All the 

imaging preprocessing was undertaken under the protocol released from UK Biobank 

(https://biobank.ctsu.ox.ac.uk/crystal/docs/brain_mri.pdf). 

Depressive symptoms 

Depressive symptoms were measured by a 4-item physical health questionnaire (PHQ-

4)(Batty et al. 2016). PHQ-4 has an AUC (area under the curve) of 0.79 for its 

correlation with depression diagnosis (Khubchandani et al. 2016). This measure also 

shows association with measures of disability (Kroenke et al. 2009) and risk factors for 

depression (Löwe et al. 2010; Batty et al. 2016). See more details in the URL: 

http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100060, and items in supplementary 

methods. 

PHQ-4 was assessed repeatedly up to a maximum of four times. Time points included: 

(a) the first assessment visit (2006-2010, N=8,782), (b) a repeat visit on a sub-sample 

(2012-2013, N=2663), (c) the imaging visit (2014-2017, N =8,309) and finally the (d) 

https://biobank.ctsu.ox.ac.uk/crystal/docs/brain_mri.pdf
http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100060
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online follow-up (2015-2017, N =6,676). Further details can be found on UK Biobank 

website: http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100060.  

Based on the repeated PHQ-4 measures, we generated four measures of depressive 

symptoms (Figure 1, S2): (i) First, a single PHQ-4 score measure acquired at the same 

time as the imaging assessment. (ii & iii) Then the mean and variability of depressive 

symptoms across all available assessments, where the mean depressive level was the 

average of PHQ-4 over at least two time points, and variability of depressive symptoms 

was the standard deviation of PHQ-4 scores over a minimum of three time points. (iv) 

Finally, we estimated the longitudinal slope of depressive symptoms within each 

individual with all four PHQ-4 assessments, using a linear growth curve model. A 

positive slope indicated depressive symptoms becoming more severe over time, and a 

negative slope when they reduced over time. Details of the growth curve model 

estimation are detailed in the supplementary methods. Descriptive statistics for the 

above PHQ-4 measures were presented in Figure S1, Table S1 and supplementary 

results.  

 

Figure 1. The measures for depressive symptoms generated for this study. There were four 

measures generated: (1) fundamental one-time measurement for depressive symptoms 

acquired with imaging assessment, (2) mean of depressive symptoms generated based on at 

least two multiple assessments, (3) variability of depressive symptoms which was the standard 

deviation of at least three time-points, and finally (4) linear growth curve denoting longitudinal 

trajectory of depressive symptoms derived from all four time-points. 

 

 

http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=100060
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Imaging data 

We used IDPs (imaging-derived phenotypes) for DTI data release by UK Biobank 

Imaging Study. Data acquisition, data preprocessing, estimation of white matter 

microstructure and quality check after the above steps were conducted by UK Biobank 

imaging team using a standard protocol described in the Primary Brain Imaging 

Documentation (URL: https://biobank.ctsu.ox.ac.uk/crystal/docs/brain_mri.pdf) and two 

protocol papers(Miller et al. 2016; Alfaro-Almagro et al. 2018). The major procedures 

are described in brief below. 

All imaging data were acquired using a 3T Siemens Skyra (software platform VD13) 

machine, using a standard (“monopolar”) Stejskal-Tanner pulse sequence. FSL 

packages were used for data preprocessing and microstructure estimation (Andersson 

et al. 2007b). Preprocessing included correction for eddy currents, head-motion and 

gradient distortion, using the Eddy tool(Andersson and Sotiropoulos 2015a). Five dMRI 

microstructure measures were estimated after preprocessing. DTI measures including 

FA and MD were generated using DTIFIT (Anthofer et al. 2015). These are the 

measures that were used as main proxies and reported in the main text. Three newly 

developed neurite orientation dispersion and density imaging (NODDI) measures were 

also generated using AMICO tool (Daducci et al. 2015). These measures depict 

additional sources of variation to FA and MD such as neurite density, extracellular 

water proportion, and morphology of tract organization. For completeness, findings 

using these measures are detailed in the supplementary materials and briefly 

discussed where necessary (Appendix 2: Figures S3 and S4). 

The processed data was then fed into AutoPtx package from FSL 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/AutoPtx), which uses probabilistic-tractography 

based method to map 27 major tracts over the whole brain(Miller et al. 2016). The 

processed tracts included 12 bilateral and 3 unilateral tracts (Figure 2 and Appendix 2: 

supplementary methods). FA data was used for mapping and the masks of tracts for 

each individual were used to locate the tracts on MD and NODDI measures. Weighted 

means of DTI measures for each tract were generated. 

https://biobank.ctsu.ox.ac.uk/crystal/docs/brain_mri.pdf
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/AutoPtx
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Figure 2. Illustration of WM tracts. The tracts were defined by tractography mapping on FA 

(fractional anisotropy) data using AutoPtx (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/AutoPtx). They 
were categorised into three subsets as shown in the figure. Forceps major, forceps minor and 
uncinate fasciculus are unilateral structures and the rest are bilateral. For the purpose of clear 
illustration, bilateral structures were shown identically in both hemispheres. 
 

 

Statistical methods 

Before any analysis was performed, outliers were first removed (Shen et al. 2017). This 

was achieved by performing separate PCA for each DTI measure on the overall 

sample of 8,837 people, and those who were outside of +/- 3 standard deviations from 

mean were removed (Shen et al. 2017). This resulted in ~8,780 people remaining (see 

Appendix 2: Figure S1) for further analysis. Results for the sample without outliers 

removed can be found in Appendix 2: Figure S5.  

First, we tested the associations between the measures for depressive symptoms i) 

quantified at the imaging assessment as a single time point, ii) as the overall mean 

depressive level, (iii) as the variability of depressive level and (iv) as the slope of 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/AutoPtx
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longitudinal trajectory with global WM microstructure changes (trajectory modelled by a 

growth curve model, see supplementary methods). For each of the DTI measures, we 

performed PCA on all the tracts and three major subsets of WM tracts that included 

association and commissural fibres, thalamic radiations and projection fibres (Shen et 

al. 2017). These three subsets are distinct in both anatomy and function (Cox, Ritchie, 

et al. 2016). Association fibres are the tracts that connect cortical areas, thalamic 

radiations connect thalamus with other parts of the brain, and finally projection fibres 

are the tracts associated with subcortical/spinal cord. Categorisation of the subsets can 

be found in Figure 2. The scores of the first un-rotated principal component for each 

microstructural metric were then extracted to index the common properties of white 

matter microstructure shared across tracts, denoted as gTotal, gAF, gTR and gPF. In 

our previous published papers on the same cohort (Cox, Ritchie, et al. 2016; Shen et 

al. 2017), there was a substantial component of shared variance across white matter 

tracts for each microstructural parameter (Appendix 2: Figure S6 and Table S2). 

Following the analysis of the g variations, we tested the associations of microstructure 

of individual tracts and four types of measures for depressive symptoms. 

We used “glm” function in R to test the above associations (Chatfield et al. 2010). Age, 

age2, gender were set as covariates. Other covariates include: head position in the 

scanner (on x, y and z axis) to control for systematic unevenness of static field in the 

scanner, smoking status and alcohol consumption at the time of imaging assessment 

to control for depression-related behaviour patterns that may influence brain structure, 

and finally stressful life events occurring within 2 years before imaging test to control 

for response bias to PHQ-4. Each of the covariates are described in supplementary 

materials (Appendix 2: supplementary methods and Table S1, S5 and S6). For 

completeness, we also reported results that did not control for smoking status, alcohol 

consumption, stressful life events (Figure S7). FWE correction was applied on each set 

of measures with a whole brain as a unit by using “p.adjust” function using FDR 

method in R (q-value<0.05) (Benjamini et al. 1995). The effect sizes reported are all 

standardised. 

 

2.4 Results 

Associations between white matter microstructure and depressive symptoms at 

the imaging assessment 
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Global differences (g) of MD over all tracts (gTotal), and tracts separated into the 

categories of association fibres (gAF) and thalamic radiation (gTR) were positively 

associated with depressive symptoms measured at the time of imaging assessment (β 

ranged from 0.023 to 0.029, pcorr<0.032, see Appendix 2: Figure 3, Table S3). In 

individual tracts, higher MD in the anterior thalamic radiation (β=0.036, pcorr=0.002), 

cingulate part of cingulum (β =0.027, pcorr=0.025), corticospinal tract (β =0.031, 

pcorr=0.022) and superior thalamic radiation (β =0.024, pcorr=0.030) were all associated 

with higher depressive symptoms at the imaging assessment. No significant 

associations were found either globally (pcorr>0.114), or regionally in individual tracts 

(pcorr>0.148) between FA and depressive symptoms  at the time of the imaging 

assessment.  

Associations between white matter microstructure and mean and variability of 

longitudinal depressive symptoms  

No association was found between global or subset measures of MD (all pcorr>0.126) 

and mean depressive symptoms. However, MD in thalamic radiations (β=0.024, 

pcorr=0.043) and in projection fibres (β=0.045, pcorr=0.001) were both positively 

associated with within-subject measures of variability in depressive symptoms. 

For specific tracts, higher MD in anterior thalamic radiation was significantly associated 

with higher mean depressive symptoms (β=0.032, pcorr=0.013). Higher MD in anterior 

thalamic radiation (β=0.032, pcorr=0.015), and middle cerebellar peduncle (β=0.045, 

pcorr=0.003) were associated with greater variability of depressive symptoms. 

No association was found for FA (all pcorr>0.199) in any global or tract-specific measure 

and any measure of depressive symptoms. 

Associations between the longitudinal slope of depressive symptoms and WM 

microstructure 

Higher global, association fibres and thalamic radiations MD were each associated with 

progressively increasing levels of depressive symptoms (β ranged from 0.050 to 0.056, 

pcorr<0.031). No significant individual tract-wise analysis reached significance after 

multiple correction. However, forceps major (β=0.053, pcorr=0.073), superior thalamic 

radiation (β=0.052, pcorr=0.073) and corticospinal tract (β=0.050, pcorr=0.073) were 
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nominally significant. No association for FA was found for either g measures or tracts 

(pcorr>0.450).  

Associations between the measures for depressive symptoms and NODDI 

measures 

Among all the NODDI measures, ISOVF showed similar results with MD. Detailed 

statistics of the results were shown in Appendix 2: Figure S4 and S5, Table S4, and 

supplementary results. 

 

 

 

Figure 3. Associations between cross-sectional depressive symptoms and dMRI (heatmap) and 

the map for significant regions (brain map). FA=fractional anisotropy, MD=mean diffusivity. 

Depre=one-time assessment of depressive symptoms, Depre.mean=mean depressive level, 

Depre. variability=variability of depressive symptoms, and Depre.longitudinal=slope of growth 

curve model trajectory of depressive symptoms. Colour depth represents the standard effect 

size of a measure. As FA has negative direction with MD, here in this figure, the effect sizes for 

FA was reversed (×-1). The results were separated in two sections. The upper sections were the 

results for g measures and the lower sections showed the results of individual tracts. To aid 

comprehension, the lower part where results of tracts were shown, checks were divided into 

three categories by dashed lines as the tracts were in different subsets, i.e. association fibres, 

thalamic radiations and projection fibres (see Methods). Significant associations after FWE 

correction on 15 tracts/four g measures (pcorr<0.05) were marked with an asterisk. Significant 

associations in the g measures may not necessarily result in associations in individual tracts, as 

shown in the columns for Depre.longitudinal. 

 (see Figure 3 in the next page)
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Figure 4. Venn graph for results of g measures for the distress measures that showed significant results in g measures. The overlapping association 

was shown in thalamic radiations (gTR) for all three distress measures. Dissociated effects were shown in association fibres (gAF) for depressive 

symptoms based on one-time assessment and slope of longitudinal trajectory, and projection fibres (gPF) was significant for variability of depressive 

symptoms.  
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2.5 Discussion 

We found several novel associations between greater depressive symptom measures 

and ostensibly poorer WM microstructure as indexed by higher MD. Higher depressive 

symptoms at the time of the imaging assessment and a higher mean and variance of 

depressive symptoms over time were both associated with higher MD in the ATR. 

Higher general thalamic radiation (gTR) MD was also associated with higher 

depressive symptoms at the time of the assessment, higher variability in depressive 

symptoms over time, and with worsening depressive symptoms over time. Lower 

association fibre microstructure in MD was found in association with greater depressive 

symptoms at the time of the imaging assessment and with a longitudinal trajectory of 

worsening depressive symptoms over time. The association fibres subset includes 

tracts that localise to the prefrontal cortex and its connections. Higher MD in projection 

fibres, which locate in or connect to limbic areas, were also associated with high 

variability of depressive symptoms (Figure 4). The above results in MD were confirmed 

by ISOVF. 

Lower microstructure of the anterior thalamic radiation has appeared repeatedly in 

association with the presence of several psychiatric illnesses, including depression 

(Coenen et al. 2012), psychosis (Sprooten et al. 2009) and schizophrenia (Young et al. 

2000). The linkage built by ATR between prefrontal regions and thalamus is an 

important path of executive control and emotion regulation (Royall et al. 2002; Cheon 

et al. 2011). It is particularly interesting that ATR has been repeatedly found in patients 

in their adolescence or early adulthood (Lai and Wu 2014).  Thalamic radiations as a 

tract category subset also showed significant effect of one-time measure, cross-

sectional longitudinal variability and trajectory of depressive symptoms. Consistent 

associations of thalamic radiations with different distress measures may due to 

environmental impacts that had influenced neuronal maturation in early life (Voineskos 

et al. 2012), and thus the developmental gaps prolonged into adulthood. Alternatively, 
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those with early life psychiatric disorders may be subject to a different clinical 

mechanism which is influenced by gene structures (Frodl et al. 2012), and therefore 

lasts through-out the lifespan. These findings are also supported by a recent study that 

found thalamic radiations were associated with the polygenic risk profile derived from 

NETRIN-1 pathway, which was found in various genetic pathway studies for MDD 

(Barbu et al. 2018). 

Deficit of microstructure in association fibres was associated with greater depressive 

symptoms at the time of the imaging assessment and with worsening depressive 

symptoms over time. The largest effect sizes were seen for a worsening longitudinal 

trajectory of depressive symptoms. Association fibres pathways are robustly associated 

executive cognition (Voineskos et al. 2012; Zheng et al. 2014; Cox, Ritchie, et al. 2016) 

and connections to the prefrontal cortex have been closely related to psychological 

resilience (Walsh et al. 2007). This could contribute to both temporary depressive 

status and longitudinal decline in mental well-being (Bachmann et al. 2005). Deficit in 

these pathways may reflect a declined capacity of psychological ‘bounce-back’, thus 

causes the accumulated deficit associated with longitudinal increase of depressive 

symptoms.  

Variability of depressive symptoms showed a distinctive association with projection 

fibres. Projection fibres mainly locate in the limbic system or link limbic system with the 

cortex (Wakana et al. 2004). Previous fMRI studies found that depressive patients 

showed biased processing of emotional stimuli in both a negative emotional system 

including structures such as the amygdala and thalamus (Dalgleish 2004; Young et al. 

2004), and the reward system located in the basal ganglia and mid-brain (Gradin et al. 

2011). Variability of depressive symptoms can be the result of deficits in primary 

process for emotional input to the brain (Lammel et al. 2014; Polter and Kauer 2014). 

This may explain the treatment resistance for some MDD patients, as the conventional 

psychological treatment showed brain alterations mainly in prefrontal regions, which 



Chapter 3: white matter and longitudinal depressive symptoms 

73 
 

may be less effective to those cases whose major concern was variability of depressive 

symptoms (Young et al. 2004). The distinct neurobiological associations between 

variability and mean depressive level indicate that dissociating psychological/biological 

treatment based on their different symptoms over time may help achieve better results. 

Most of the results were presented in MD rather than FA. Despite the differences in the 

level of significance, MD and FA presented in the directions of effects and the scales 

were similar for the most robust findings, especially in thalamic radiations (Appendix 2: 

Table S3). Also, our findings in MD have shown similar patterns with a NODDI 

measure, ISOVF, which is related to neuronal loss (Kamagata et al. 2017). The 

discordance between MD and FA may be rooted in differential sensitivity of MD and FA 

to a variety of complex degenerative processes via a range of distinct neurobiological 

features. Changes in FA, which could result from increased transverse diffusion due to 

myelin and axonal disruption (Jones et al. 2013), may be masked by co-occurring 

processes such as fibre reorganisation and glial reactivity; in such instances where all 

three eigenvectors of the diffusion tensor experience proportional change, it is plausible 

that MD would offer greater sensitivity (Acosta-Cabronero et al. 2010). MD reportedly 

exhibits greater sensitivity to ageing than FA (Cox, Ritchie, et al. 2016) which notably 

included poorer microstructure in ATR (Cox, Ritchie, et al. 2016). Furthermore, higher 

MD in the absence of FA differences have been found in studies of cortisol reactivity to 

mild cognitive stress in older age (Cox, Bastin, et al. 2015; Cox, MacPherson, et al. 

2015), and in ageing-associated disorders such as Alzheimer’s disease and small 

vessel disease (Acosta-Cabronero et al. 2010; Maniega et al. 2015). Altogether, the 

current observations could therefore reflect an acceleration of normal or pathological 

ageing processes in the brain resulting from, or predisposing to, adverse effects of 

depressive symptoms on the brain. 

In the present study, we used a very large single site imaging sample of over 8,000 

people. Though the sample size of longitudinal change of depressive symptoms was 
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much lower (~2,000), it is still much larger than most neuroimaging studies, especially 

considering the data is longitudinal and covers up to ten years. All of this provides high 

statistical power to reliably detect modest associations (Smith and Nichols 2018). 

However, a limitation for the present study is that the time lag between adjacent 

assessments may vary from one year to six years. Though we did adjust the difference 

by controlling for the age of each time point and the growth curve models showed good 

fit (see supplementary methods), noise can be further reduced by controlling more 

finely on time lag for future experimental design or increasing time points. Another 

limitation is that the variability of depressive symptoms we derived would not be able to 

depict all types of variations for depressive symptoms and may be very different from 

variations in a short period (e.g. diurnal mood swing). These other measures of mood 

variability would have substantial biological meaning but potentially different 

neurobiological basis. 

Our results provide evidence that deficit in WM microstructure is related to greater 

mean, variability and longitudinal deterioration of depressive symptoms. The 

longitudinal findings point towards associations between white matter integrity and 

depressive symptoms, and further causal conclusions will require examination using 

methods that are able to test for causal inferences in observational datasets.  
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3 Chapter conclusion 

MD in thalamic radiations, especially in anterior thalamic radiation, was associated with 

variability and mean depressive level. Variability of depression exclusively showed 

association with MD in projection fibres. This study provided evidence that thalamic 

radiations are important not only for MDD case-control differences, as found in chapter 

2, but also present as a common component associated with various longitudinal 

measures for depressive symptoms here in this chapter. The differences of associations 

between cross-sectional measures indicate that cross-sectional measures may provide 

information for heterogeneity of MDD. 
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Chapter 4: 

Phenotype-wide association study of 212 behavioural and 1,532 

neuroimaging phenotypes in UK Biobank using polygenic risk scores for 

depression 

 

1 Chapter introduction 

Several questions remain unanswered regarding neuroimaging features of polygenic risk 

for depression. First, whether white matter microstructure is associated with depression 

polygenic risk score is under-explored. Second, no study has been conducted that the 

author is aware of that had examined the association between resting-state connectivity 

and the polygenic risk scores for depression. Finally, whether brain phenotypes mediate 

the effect of depression polygenic risk on complex behavioural traits.  

To answer these questions, a well-powered sample for finding associations with 

moderate effect sizes would be needed. Another important factor is to include a wide 

range of phenotypes, including behavioural and neuroimaging variables. This study used 

the UK Biobank imaging dataset release in May 2018, containing 14,506 people who 

attended imaging assessment. Polygenic risk scores of depression were derived using 

a meta-analysis combining data from UK Biobank, PGC (Psychiatric Genomics 

Consortium) and 23andme. A data-driven phenotype-wide association study was 

conducted to test the associations between the polygenic risk scores of depression and 

212 behavioural plus 1,532 neuroimaging phenotypes.  

The paper under preparation for submission. I independently conducted the analyses 

and completed the manuscript under supervision. 

2 Paper 

2.1 Abstract 

Depression is a leading cause of disability worldwide but there is uncertainty regarding 

its genetic, neural and behavioural associations, hindering the discovery of its causes 

and mechanisms. Depression is highly heritable and polygenic, and the increasing 

availability of replicated genetic associations provides a timely opportunity to identify 
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traits that are genetically correlated with depression in UK Biobank, where there is a 

wide range of potentially relevant traits in a large number of consistently phenotyped 

individuals. We estimated polygenic risk scores for depression in 14,506 genotyped 

participants and examined their association with 212 behavioural and 1,532 

neuroimaging phenotypes. Higher polygenic risk of depression (depression-PGRS) 

was associated with lower white matter microstructure (absolute standardised β: 0.027 

to 0.036, p: 8.08×10-5 to 1.57×10-3), hyper-connectivity under resting-state in the 

default mode network, and weaker connectivity in the prefrontal cortex (absolute β: 

0.031 to 0.046, p: 7.86×10-6 to 1.64×10-3). Other behavioural traits such as sleep, 

smoking, cardiovascular conditions and body mass were also found to be associated 

with depression-PGRS (absolute β: 0.031 to 0.017, p: 1.13×10-37 to 1.64×10-3). In order 

to address the direction of the associations between depression PRS, behaviour and 

brain, we then conducted mediation analyses of all the traits previously found to be 

associated with depression-PGRS. Sleep, smoking and general physical health 

mediated the association between polygenic risk and the presence of depression to the 

greatest extent (proportion of direct effect mediated > 6%, p: 8.55×10-9 to 8.70×10-4). 

We also found that white matter microstructure mediated the associations of 

depression-PGRS to subjective well-being, the number of major psychiatric illnesses 

diagnosed, and smoking behaviour (proportion of direct effect mediated>2.7%, p 

ranged from 4.51×10-4 to 0.021). These findings suggest that sleep, smoking and 

poorer physical health may mediate the association between genetic risk and 

depression and that the effects of genetic risk on behaviour may be partly mediated 

through disrupted functional/structural brain connectivity. 

 

2.2 Introduction 

Major Depressive Disorder (MDD) is a major contributor to the overall global burden of 

disease, affecting 322 million people worldwide, and a leading cause of disability 

(World Health Organization 2017). MDD has a high heritability estimated around 37% 

based on twin studies(Sullivan et al. 2000), approximately 25% of the genetic 

contribution can be explained by single nucleotide polymorphisms (SNP) (Lee et al. 

2013). This indicates that common genetic variants of small effect contribute a 

substantial proportion of the total genetic effect. For polygenic traits, polygenic risk 

profiling provides a way to investigate the additive common genetic risk (International 

and Consortium 2009; Wray et al. 2014). Uses allele effect weights estimated from an 
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independent genome-wide association study (GWAS), polygenic risk scores are 

generated for each individual in a second independent dataset from the product of 

allele dosages and effect sizes, summed across the genome (Howard, Adams, Shirali, 

et al. 2018; Wray et al. 2018). 

Polygenic risk for MDD is associated with heritable behavioural traits, such as other 

major psychiatric disorders like bipolar disorder and schizophrenia, neuroticism, lower 

general cognitive function, lower educational attainment and socioeconomic status, and 

a higher risk of obesity (Clarke et al. 2015; Hagenaars et al. 2016). MDD is widely 

believed to result from perturbed brain function and is associated with many 

neuroimaging phenotypes such as white matter microstructure, regional brain volumes 

and functional connectivity (Disner et al. 2011; Russo and Nestler 2013; Shen et al. 

2017). GWAS and heritability analyses conducted on brain phenotypes reveal 

significant heritability of up to 60% (Elliott et al. 2018), providing an opportunity to study 

the genetic overlap between neuroimaging phenotypes and other heritable traits with 

MDD (Glahn et al. 2007; Jahanshad et al. 2013; Kochunov et al. 2015; Centre et al. 

2017), and test for directional causal relationships between these traits.  

The associations between MDD polygenic risk and brain phenotypes have, so far, been 

poorly studied. Based on previous studies, small to moderate effect sizes are expected 

(Wray et al. 2014) and therefore most neuroimaging studies will be underpowered to 

investigate the genetic associations between depression and brain and behavioural 

phenotypes (Button et al. 2013). Higher sampling costs for MRI (magnetic resonance 

imaging) scanning, differences between functional imaging paradigms and 

inconsistencies in both quality control and statistical inferences across studies make 

meta-analysis challenging and suggest the need for single large samples and 

consistently applied methods of acquisition processing and analysis (Kaiser et al. 

2015). 

The latest neuroimaging data release from the UK Biobank imaging project (Miller et al. 

2016) includes a maximum of 11,006 people, which is the largest cross-modality 

imaging dataset up to date. Summary statistics from the meta-analysis combining three 

big cohorts: PGC, UK Biobank and 23 and me, were used to produce depression 

polygenic risk scores (depression-PGRS). There are also a wide variety of other 

phenotypes available allowing for comparisons and mediation tests between traits, 

such as structural equational modelling for the associations of gene-behaviour-health 
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and gene-brain-behaviour relationships. In the current study, building upon UK 

Biobank’s large sample size and detailed phenotyping, we conducted a phenotype-

wide association test with depression-PGRS. The phenotypes available included 

contain ten categories (Np indicates number of phenotypes): early life factors (Np=10), 

sociodemographic measure (Np=4), lifestyle (Np=69), physical measures (Np=68), 

mental health (Np=57), cognition (Np=4), intracranial/subcortical volume (Np=9), white 

matter microstructure (Np=38) and resting-state functional connectivity (Np=1485). 

 

2.3 Methods 

Participants 

A total of 14,506 people participated in the UKB Data release included in the current 

study. Data came from the latest release of the ongoing UK Biobank Imaging Project 

(released in May 2018, where age at the imaging assessment ranged from 44.58 to 

80.25 years, mean age=62.69, standard deviation=7.48, and 47.91% were men). In 

total, 500,000 people were initially recruited for UK Biobank project. A subset was 

selected to attend a neuroimaging assessment following the initial visit. Behavioural 

and neuroimaging data acquisition were conducted under standard protocols (Sudlow 

et al. 2015; Miller et al. 2016). Written consents were acquired from all participants. 

Data acquisition and analyses in the present study were conducted under UK Biobank 

Application #4844. 

Depression-PGRS 

Polygenic risk scores were calculated using the summary statistics from a meta-

analysis of depression genome-wide association study (GWAS) from three cohorts, 

including 33 out of the 35 cohorts of the Psychiatric Genomics Consortium (PGC) 

analysis of major depression (Wray et al. 2018), the 23andMe discovery sample in the 

Hyde et al. analysis of self-reported clinical depression (Hyde et al. 2016), and a broad 

depression phenotype from UK Biobank non-imaging sample (Howard, Adams, Clarke, 

et al. 2018). This meta-analysis provided a total of 793,627 individuals (241,166 cases 

and 552,461 controls) with further details of this meta-analysis provided in a paper of 

meta-analysis (Howard et al., 2018). The broad depression phenotype used in UK 

Biobank, though was self-declared and comparatively lenient, showed very strong 
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genetic correlation with clinically defined MDD with a high genetic correlation of 

0.79(Howard, Adams, Shirali, et al. 2018). Training and testing datasets were ensured 

to have no overlap or relatedness (see methods in the meta-analysis in Howard et al., 

2018). In order to maximize replicable genetic variants derived from the training 

dataset, the summary statistics only included genetic variants that co-exist across all 

three cohorts, leaving 8,899,213 genetic variants left in the training sample. 

We used PRSice 2.0 (incorporating PLINK 1.9) (Euesden et al. 2015) to calculate the 

depression-PGRS. Related or non-European-ancestry people and imaging subjects 

that were included in PGC, 23&me and UK Biobank MDD GWAS were removed from 

all following analysis. All sample sizes reported below will be the numbers after this 

data removal. Genotyping and quality control were conducted by UK Biobank as 

described in a protocol paper (Bycroft et al. 2017b). Eight p-value thresholds were 

applied to select genetic variants included in calculating polygenic risk scores, as 

p<0.0005, p<0.001, p<0.005, p<0.01, p<0.05, p<0.1, p<0.5 and p<1. Details of SNP 

quality control and imputation can be found elsewhere (Barbu et al. 2018). 

Behavioural phenotypes 

The behavioural phenotypes consisted of seven broad categories, containing 212 items 

in total, sample sizes included in brackets (see Table 1 for summary and Table S1 for 

full explanations): (1) Sociodemographic measures (N=8,318 to 10,260), (2) Early life 

factors (N=7,742 to 11,020), containing physical factors such as birth weight, and 

environmental variables like adoption and maternal smoking, (3) Life style (N=2,880 to 

11,020), which include sleep, smoking, alcohol consumption and diet, (4) Physical 

health (N=2,227 to 11,020), consisting of self-declared medical conditions such as 

pain, cancer, operations, heart and artery disease and other major illnesses, and also 

machine assessed medical record for blood pressure, arterial stiffness and hand-grip 

strength, (5) Cognitive performance (N=5,247 to 6,075), which included four tests with 

acceptable biological reliability and a general measure derived based on these tests, 

(6) Mental health (N=3,788 to 8,340), including self-reported symptoms of major 

psychiatric conditions and diagnosis of major psychiatric illness under classifications of 

ICD-10 (10th revision of the International Statistical Classification of Diseases and 

Related Health Problems) based on systematic interview.  
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All of the behavioural phenotypes, with the exception of mental health items derived 

from online-follow up questionnaires and diagnosis from a systematic interview (see 

table 1), were acquired at the same time as the imaging assessment. For those who 

had absent behavioural data at the instance of imaging assessment but provided data 

at the initial visit, data from the initial visit was interpolated to fill the absent data at the 

imaging assessment where applicable. Sample sizes and descriptions for all the 

behavioural phenotypes used can be found in Appendix 3: Table S1. 

Where summary data were available (e.g. neuroticism total score), the individual items 

used to derive the summary data were not included. Further, phenotypes with less than 

2,000 people were excluded before the analyses. 

Neuroimaging phenotypes 

Neuroimaging data was consisted of: (1) intracranial/subcortical volume (N=11,006); 

(2) white matter microstructure, indexed by fractional anisotropy (FA, N=9,699) and 

mean diffusivity (MD, N=9,671); and finally, (3) resting-state connectivity (N=10,112). 

All four types of data consisted of the imaging-derived phenotypes (IDPs) provided by 

UK Biobank. Images were acquired, pre-processed and quality controlled by UK 

Biobank using FMRIB Software Library (FSL) packages by a standard protocol (URL: 

https://biobank.ctsu.ox.ac.uk/crystal/docs/brain_mri.pdf), which was also described in 

two protocol papers(Miller et al. 2016; Alfaro-Almagro et al. 2018). All pilot study data 

with inconsistent scanner settings and data that did not pass the initial quality 

assessment conducted by UK Biobank imaging team were not included in the analysis. 

All imaging data were collected using a 3T Siemens Skyra (software platform VD13) 

machine. For clarity, major steps of pre-processing were described below for each 

modality. 

T1 data was processed to estimate intracranial and subcortical volumes. First, total 

volumes for white matter, grey matter and peripheral cerebrospinal fluid were 

calculated, and the sum of the three was the derived intracranial volume. Then 

volumes for thalamus, caudate, putamen, pallidum, hippocampus, amygdala, 

accumbens and brain stem (with 4th ventricle) were estimated. 

DTI data pre-processing included correction for eddy currents and head motion, outlier-

slices correction and grand distortion correction. FA and MD maps were generated and 

https://biobank.ctsu.ox.ac.uk/crystal/docs/brain_mri.pdf
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FA maps were used to generate tract masks, using probabilistic tractography analysis 

by AutoPtx package from FSL(Mori et al. 2002). 27 tracts were generated (12 bilateral 

and 3 unilateral tracts, see supplementary Figure S1 and Table S1)(Wakana et al. 

2004). Weighted mean FA and MD were then calculated for each tract. To determine 

general variances in DTI measures and main subsets, as have validated in previous 

papers that weighted mean DTI measures for major white matter tracts are highly 

correlated, which makes generating general variances possible(Cox, Ritchie, et al. 

2016; Shen et al. 2017), we performed principal component analyses on (1) FA/MD of 

all 27 tracts (gTotal), (2) FA/MD on association/commissural fibres (gAF), which 

connect the prefrontal cortex to other cortexes, (3) FA/MD on thalamic radiations 

(gTR), consisted of tracts that link the thalamus to the cortex, and (4) FA/MD on 

projection fibres (gPF), locating within brain stem or spinal cord or link them to the 

cortex. The scores for the first unrotated principal component were used as the indices 

for general variants of total variance and variances in three major subsets. In order to 

control for the effects driven by outliers, subjects with a total gFA/MD outside of +/-3 

standard deviation from mean were excluded.  

Resting-state data was pre-processed through FSL-style motion correction, grand-

mean intensity normalisation, high-pass temporal filtering, EPI unwarping and grand-

distortion-correction unwarping. A group-level independent component analysis was 

conducted on the first 4,100 people to reduce data dimension(Alfaro-Almagro et al. 

2018). The brain was therefore parcellated into 100 independent components, and 55 

of them were left for further analyses after 45 discarded as being identified manually as 

noise components. The timeseries data for nodes was then used to calculate functional 

connectivity between node pairs. It was achieved by estimating partial Pearson 

correlation with an L2 regularisation applied (rho set as 0.5 in FSLNets). All r-scores 

were then Fisher-transformed into z-scores. This resulted in a 55*55 correlation matrix 

of functional connectivity for each participant. In order to aid comprehension, all 

connectivity values were transformed into absolute strength by multiplying the sign of 

group-mean value for each of the connection (Shen et al. 2018) (see supplementary 

materials). Group-mean maps for each node can be found in a URL: 

http://www.fmrib.ox.ac.uk/datasets/ukbiobank/group_means/rfMRI_ICA_d100_good_no

des.html.  

 

http://www.fmrib.ox.ac.uk/datasets/ukbiobank/group_means/rfMRI_ICA_d100_good_nodes.html
http://www.fmrib.ox.ac.uk/datasets/ukbiobank/group_means/rfMRI_ICA_d100_good_nodes.html
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Statistic models 

The GLM function in R was used to test the PheWAS associations(Nelder and Baker 

2004), and the LME function from nlme package in R(Pinheiro et al. 2007) was used to 

test bilateral brain structures where hemisphere as a within-subject variable needed to 

be controlled for. Depression-PGRS were set as factors, and behavioural and 

neuroimaging phenotypes were set as dependent variables. depression-PGRS at 

different p thresholds were tested independently. Overall, 1,744 phenotypes (212 

behavioural phenotypes + 9 intracranial/subcortical volumes + 38 white matter 

microstructural measures + 1485 rsfMRI connectivity) * 8 depression-PGRS (under 8 p 

thresholds) = 13,952 tests across phenotypes and depression-PGRS p thresholds 

were corrected altogether by FDR-correction(Benjamini and Hochberg 2000) using 

p.adjust function in R (q<0.05). 

Common covariates for all association tests included sex, age, age2, the first 15 genetic 

principal components to control for population stratification and genotyping array 

(Howard, Adams, Shirali, et al. 2018). Scanner positions on x, y and z axis were also 

included in the models for all brain phenotypes to control for static-field 

heterogeneity(Smith and Nichols 2018). Mean motion was set as an additional 

covariate for the rsfMRI connectivity data (Bijsterbosch et al. 2017; Shen et al. 2018). 

Subcortical volumetric tests additionally controlled for intracranial volume (Schmaal et 

al. 2016; Shen et al. 2017). Hemisphere was controlled for where applicable in bilateral 

brain structural phenotypes(Shen et al. 2017). A list of covariates for each type of 

phenotype can be found in Table 1. 

 

Table 1. Summary of phenotypes. 209 behavioural phenotypes (6 categories) and 1,586 

neuroimaging variables (4 modalities) were included (see the next page). 
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Category General description 
Number of 

traits 

Range of sample 

sizes 

Median sample 

size 

UK Biobank data 

modality 

Covariates for regression 

model 

Early life factor 

Self-declared early life factors. Mainly derived based on another study in 
ref X. Items include developmental factors such as birth weight and 
comparative weight and height at early ages. Parental factors such as early 

parental death were included too. 

10 7,742-11,020 10,880 
Touchscreen; Online 

follow-up 
Sex, age, age2, genetic PCs and 
genotyping array 

Sociodemographic 
Items include education, household income, ethnicity and immigration 
status 

4 8,318-10,260 9,152 Touchscreen 
Sex, age, age2, genetic PCs and 
genotyping array 

Life style 
Self-declared life-style questions. Mainly include sleep patterns, smoking, 
alcohol consumption, electronic device usage, food and beverage intake, 
appearance, and social activities. 

69 2,880-11,020 11,020 Touchscreen 
Sex, age, age2, genetic PCs and 

genotyping array 

Physical 

This category contains data from self-declared physical conditions from the 
'touchscreen' data modality and measured physical data from the 'physical 

measures' modality. Self-declared items include overall physical health rate, 
limb pain which is related to suspicious claudication and peripheral artery 
disease, other types of pain, cardiovascular problems, general diabetes and 

cancer problems, and bone fractures. Measured physical data contains 
general and regional body mass/fat index, impedance and hand grip 
strength. 

68 2,227-11,020 10,880 Touchscreen 
Sex, age, age2, genetic PCs and 
genotyping array 

Cognition 

Three tasks were selected for having acceptable reliability, which include 

trail making task, digit substitution, numeric memory. A variable of g score 
derived from the three tasks was added. 

4 5,247-6,075 5,740 
Touchscreen; Online 

follow-up 
Sex, age, age2, genetic PCs and 
genotyping array 

Mental health 

Mental health questionnaires from touchscreen's mental health section, 
questions from online follow-up and diagnostic results were included. 

Diagnostic results were based on systematic review was conducted based 
on ICD-10 (International Classification of Disease). Items include major 
psychiatric illness. 

57 3,788-8,340 8,340 
Touchscreen; Online 

follow-up 
Sex, age, age2, genetic PCs and 
genotyping array 

Intracranial/subcortical volume 
Measures were derived from T1 data. Seven subcortical regions were 
mapped and measured. Intracranial volume was derived by adding grey 

and white matter total volumes and ventricular cerebrospinal fluid. 

9 11,006 -- Brain imaging 

Sex, age, age2, genetic PCs, 
genotyping array, scanner 

position, intracranial volume 
(for subcortical volumes), and 
hemisphere (for bilateral 

measures) 

White matter microstructure 

Weighted-mean fractional anisotropy (FA) and mean diffusivity (MD) of 
major tracts were derived for 27 major tracts (12 bilateral and 3 unilateral). 

Tracts were mapped using probabilistic tractography. We used general 
measures derived from PCA and measures for individual tracts respectively. 

38 
FA: 9,699 

MD: 9,671 
-- Brain imaging 

Sex, age, age2, genetic PCs, 
genotyping array, scanner 

position and hemisphere (for 
bilateral measures) 

Resting-state functional 

connectivity 

Two-two paired, partial correlation matrix of 55 parcellated nodes 
generated by group-ICA was estimated and used as a measure for 
functional connectivity. 

1485 10,121 -- Brain imaging 
Sex, age, age2, genetic PCs, 
genotyping array, scanner 
position and mean motion 
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Throughout the present study, we report standardised effect sizes (β) and uncorrected 

p values. All the reported p values were significant after FDR correction. When effect 

sizes of different signs were presented together, a range of absolute effect sizes was 

reported.  

Following the PheWAS, investigations on endophenotypes were conducted using 

structural equational modelling with ‘lavaan’ package in R (Oberski 2014). Two types of 

mediation tests were conducted: (1) Mediation effect of traits that mediate the direct 

path between depression-PGRS and depression (x=depression-PGRS, m=other traits, 

and y=depression). Mediators were the phenotypes (imaging and behavioural) that 

were associated with depression-PGRS at minimum two thresholds. (2) Mediation 

effect of neuroimaging phenotypes that mediate the path between depression-PGRS 

and behavioural traits (x=depression-PGRS, m=neuroimaging phenotypes, and 

y=behavioural phenotypes). The mediators and outcome variables were associated 

with depression-PGRS at minimum two thresholds. Depression definitions were not 

included in the outcome variables for the second set of mediation tests. A full list of 

phenotypes included for these analyses can be found in Table S1 in Appendix 3. 

Mediation models were conducted separately for each set of three traits (i.e. 

x=depression-PGRS, m=g.MD.Total and y=insomnia). Before multiple correction, tests 

that had low model fits (CFI<0.9/TLI<0.9/prmsea<0.05) or with the absent association 

between mediator and outcome (nominal p>0.05) were removed. This step was 

conducted to remove redundant tests and to exclude unreliable estimates. After this, p 

values were FDR-corrected. 

In both types of mediation analyses, we used the traits that were significant in the 

PheWAS as mediators/outcomes and tested in independent models. Age, age2 and 

sex were set as covariates for all phenotypes. In addition to these variables, 

depression-PGRS had genetic principal components and genotyping array controlled 

for as well. Covariates for neuroimaging phenotypes additionally included scanner 

position variables (position x, y and z), and where applicable, hemisphere, mean 

motion, and intracranial volume were corrected for. 
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2.4 Results 

PheWAS 

We found that 91 (66 behavioural and 25 neuroimaging phenotypes) out of 1744 

examined phenotypes (212 behavioural and 1532 neuroimaging) showed significant 

associations with depression-PGRS at a minimum of two p thresholds after correction 

for multiple comparisons (absolute β: 0.024 to 0.141, p: 9.63×10-38 to 2.10×10-3). 

Overall results for selected depression-PGRS of p thresholds at 1 and 0.01 are 

presented in Figure 1. Associations for significant phenotypes are shown in Figure 2.  

Overall, the largest effect sizes were presented in mental health traits (Figure 3). 

Lifestyle and mental health showed the strongest agreements across depression-

PGRS p thresholds. Other than neuroimaging phenotypes, all other traits showed an 

overall trend of having a larger effect when the depression-PGRS p threshold was 

higher. However, for neuroimaging phenotypes, optimal thresholds were at lower p 

thresholds, such as pT<0.01 for white matter microstructure, and pT<0.1 for resting-

state amplitude and connectivity. Here in this section, we present the main results and 

the full list of significant results can be found in Figure 2. 

Depression-PGRS were associated with MDD definitions and symptomology, as 

well as other psychiatric disorders 

Higher depression-PGRS were associated with the presence of depression based on 

four definitions, including depression-broad, which was a self-declared definition of 

whether had depression, though most lenient but had the largest statistic power (β: 

0.074 to 0.141, p: 1.13×10-37 to 1.89×10-11), MDD-smith defined by Smith et al. (Smith 

et al. 2013), which was derived from self-declared symptoms of major depression and 

hospital admission history (β: 0.045 to 0.104, p: 2.24×10-18 to 1.40×10-4), MDD-ICD 

based on International Classification of Disease (ICD-10) using systematic review, with 

the smallest sample size (β: 0.055 to 0.073, p: 1.83×10-6 to 2.89×10-4), and MDD-CIDI 

based on self-answered questions from the structured Composite International 

Diagnostic Interview (β: 0.060 to 0.115, p: 3.55×10-23 to 2.48×10-7). 

Other than MDD definitions, significant associations were found in MDD symptoms, 

assessed by PHQ-4 (Patient Health Questionnaire) and CIDI questionnaires, and other 
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self-reported traits including self-harm, subjective well-being, not worth living and 

neuroticism (absolute β: 0.083 to 0.122, p: 3.31×10-27 to 2.09×10-4).  

Higher depression-PGRS were also associated with presence of other psychiatric 

illnesses based on results for diagnosis of major psychiatric illnesses such as 

psychosis (β: 0.035 to 0.066, p: 1.95×10-9 to 1.64×10-3), anxiety (β: 0.051 to 0.105, p: 

3.51×10-22 to 4.05×10-6), bipolar disorder (β: 0.036 to 0.038, p: 7.21×10-4 to 1.22×10-3) 

and post-traumatic stress disorder (β: 0.036 to 0.104, p: 1.10×10-21 to 1.25×10-3). 

 

Figure 1. Significance plot for all phenotypes at depression-PGRS p thresholds (pT) at pT<1 (top 

figure) and pT<0.01 (bottom figure). The x-axis represents phenotypes, and the y-axis shows the 

-log10 of uncorrected p values. Each dot represents one phenotype, and the colours indicate their 

according categories. The dashed lines indicate the threshold to survive FDR-correction. FDR-

correction was applied over all the traits and all depression-PGRS (see Methods). From left to 

right on the x-axis, categories were shown by the sequence of: early life risk factors, 

sociodemographic measures, lifestyle measures, physical conditions, cognition, mental health 

measures, intracranial/subcortical volume, white matter microstructure and resting-state 

connectivity. Representative top findings are annotated in the figure. For those findings replicated 

in both left and right panels are only annotated in the left panel. (see the next page) 
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Figure 2. Heatmap for the traits that were significantly associated with depression-PGRS at minimum two p 

thresholds. Shades of cells indicate the standardised effect sizes (β). A larger effect size was indicated by a 

darker colour. Cells with an asterisk were significant after FDR-correction. Descriptions in detail can be found 

in Table 1 and Appendix 3: S1. 
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Figure 3. Mean effect sizes for each category. The figure shows the mean effect sizes across all eight depression-PGRS at different p thresholds. 

Phenotypes included were the ones that were significant at minimum one depression-PGRS. Other than effect sizes, transparency of the dots 

indicates the proportion of significant tests within their categories. A darker dot means that at this depression-PGRS, a higher proportion of 

traits/tests were significant under the category. 
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Associations were found between depression-PGRS and white matter 

microstructure 

Brain structural phenotypes in white matter microstructure were associated with 

depression-PGRS. General changes of higher global MD (β: 0.032 to 0.037, p: 

8.08×10-5 to 6.82×10-4), higher MD in association fibres (β: 0.031 to 0.036, p: 1.35×10-4 

to 1.14×10-3) and higher MD in thalamic radiations (β: 0.028 to 0.030, p: 5.24×10-4 to 

1.57×10-3) were associated with higher depression-PGRS. For each tract in specific 

(Figure 4), significant associations with depression-PGRS was presented in FA in 

medial lemniscus (β: -0.028 to -0.027, p: 1.02×10-3 to 1.38×10-3) and forceps major (β: -

0.034 to -0.033, p: 5.76×10-4 to 8.92×10-4), and MD in inferior fronto-occipital fasciculus 

(β: 0.031 to 0.032, p: 4.68×10-4 to 6.59×10-4), superior longitudinal fasciculus (β: 0.030 

to 0.034, p: 1.99×10-4 to 1.13×10-3) and forceps minor (β: 0.030 to 0.036, p: 1.19×10-4 

to 1.34×10-3).  

 

Figure 4. Brain maps for the significant associations between depression-PGRS and white 

matter microstructure in mean diffusivity (MD) and fractional anisotropy (FA) of major tracts. The 

shade of each tract represents the effect size (β). A darker shade indicates a greater β. From 

left to right are from anterior, superior and right view. For clarity purpose, among the tracts 

presented in Figure 2, the ones that showed consistent associations across at least two 

depression-PGRS p thresholds are presented. β for the selected tracts were the mean β across 

all depression-PGRS. Results for each depression-PGRS can be found in Appendix 3: Figure 

S2. 
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Depression-PGRS were associated with resting-state functional connectivity 

Novel associations were found between depression-PGRS and resting-state functional 

connectivity (absolute β: 0.031 to 0.046, p: 7.86×10-6 to 1.64×10-3). High depression-

PGRS were also correlated with hyper-connectivity in the ‘default-mode network’ areas 

such as clusters in bilateral posterior cingulate cortex (peak coordination: -10, -60, 18, 

cluster size=5,236, peak intensity=0.168) and right medial prefrontal cortex (peak 

coordination: 10, 48, -10, cluster size=22, peak intensity=0.063). Other regions 

involved in hyper-connectivity associated with higher depression-PGRS include: 

bilateral hippocampus (peak coordination: 24, -20, -16, cluster size=333, peak 

intensity=0.103), right mid-insula (peak coordination: 36, -6, 14, cluster size=130, peak 

intensity=0.010), bilateral mid-frontal gyrus (left: peak coordination: -22, 28, 40, cluster 

size=1,930, peak intensity=0.177; right: peak coordination: 26, 32, 34, cluster 

size=1,575, peak intensity=0.144). Weaker connectivity involved in orbito-superior 

frontal gyrus (peak coordination: 18, 64, -6, cluster size=13,359, peak intensity=-

0.010), inferior parietal gyrus (peak coordination: -30, -46, 38, cluster size=1,207, peak 

intensity=-0.071) and right anterior insula (peak coordination: 32, 22, 10, cluster 

size=565, peak intensity=-0.089) (Figure 5). A full list of regions was reported in 

Appendix 3: Table S3 and S4. 

 



Chapter 4: PheWAS of depression-PGRS 

94 
 

Figure 5. Brain maps for regions involved in significant associations between resting-state 

functional connectivity and depression-PGRS. In this figure, among the results presented in 

Figure 2, the ones that show consistent associations across at least two depression-PGRS p 

thresholds are presented. β for the selected tracts are the mean β across all depression-PGRS, 

regardless of whether the association was significant for each depression-PGRS.. Visualisation 

of results is achieved by calculating the mean of ICA maps, weighted by their mean β, 

respectively for positive and negative β. For clarity, the brain maps shown below have a 

threshold applied on, that values over 50% of highest intensity are shown. The shade of 

red/green represents the intensity. Maps in the top row had a cut-up at x=-1/1. The maps on the 

bottom are from left/right lateral view. 

 

Higher depression-PGRS were associated with sleep problems, smoking and 

poorer physical health 

In terms lifestyle, sleep problems (absolute β: 0.035 to 0.068, p: 3.42×10-10 to 1.66×10-

4) and smoking (absolute β: 0.033 to 0.062, p: 1.13×10-9 to 8.63×10-4) were found 

associated with depression-PGRS. 

Physical health items associated with depression-PGRS can be summarised as the 

following four categories: (1) overall health level including self-reported general health 

condition (β: 0.037 to 0.077, p: 5.68×10-16 to 1.06×10-3) and condition of long-standing 

illnesses (β: 0.040 to 0.052, p: 2.60×10-8 to 3.53×10-5), (2) pain (β: 0.032 to 0.084, p: 

1.41×10-18 to 1.25×10-3), (3) cardiovascular/heart problem (β: 0.031 to 0.040, p: 

8.54×10-4 to 3.43×10-5), and (4) body mass and weight change (β: 0.017 to 0.041, p: 

1.15×10-7 to 1.61×10-3). 

 

Mediation analysis: from depression-PGRS, via non-mental-health traits, to 

depression 

We tested the mediation effects of 57 non-mental-health traits that were significant in 

the PheWAS at minimum one depression-PGRS p threshold. In order to cut down 

redundant tests, we chose two depression-PGRS at thresholds pT<1 and pT<0.01, and 

MDD-nerves as the major definition of depression. 

There were 29 and 25 traits showed significant mediation effect for depression-PGRS, 

respectively at pT<1 and pT<0.01 (proportion of direct effect mediated (Δc): 1.11 to 
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7.57%, p: 4.08×10-6 to 8.70×10-4). Results for the two depression-PGRS pTs were 

similar, as in Figure 6. Therefore, we reported the statistics from depression-PGRS 

pT<1 below. Highest Δc were shown in overall self-declared physical health rating 

(Δc=7.57%, p=1.11×10-8) and whether there was any sleep problem (Δc=7.16%, 

p=8.55×10-9). Phenotypes related to sleep problems such as insomnia and sleep too 

much rank relatively high in terms of the proportion of direct effect mediated (Δc: 3.23 

to 6.62%, p: 4.08×10-6 to 8.70×10-4). Mediation effect of smoking (Δc: 2.79 to 2.90%, p: 

1.20×10-4 to 1.67×10-4) and physical variables including pain, long-standing illness and 

cardiovascular condition (Δc: 1.15 to 6.36%, p: 2.90×10-9 to 0.029) ranked relatively 

middle and had high variance. Body mass variables explained the least proportion of 

direct effect between depression-PGRS and MDD compared to other significant traits 

(Δc: 1.20 to 1.86%, p: 1.27×10-3 to 0.019). 
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Figure 6. Proportion of direct association between depression-PGRS and MDD explained by mediators (x=depression-PGRS, y=MDD-nerve). The left 

side is the results for depression-PGRS at pT<0.01. The four absent bars are either having insignificant mediation effect or the mediation model has 

poor fits. 
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Mediation analysis: from depression-PGRS, via neuroimaging phenotypes, to 

behavioural traits 

Mainly in white matter microstructure showed a significant mediation effect between the 

direct path of depression-PGRS at pT<0.01 and behavioural traits (p: 4.51×10-4 to 

0.029). No significant mediation effect was found for the path between depression-

PGRS at pT<1 and behavioural traits (minimum p=4.74×10-3, corrected p=0.264). 

The effect between depression-PGRS and behavioural traits including subjective well-

being score (Δc: 3.56 to 3.95%, p: 8.32×10-3 to 0.021), overall number of psychiatric 

illnesses diagnosed (Δc: 1.40 to 1.50%, p: 0.016 to 0.018), smoking status (Δc: 2.70 to 

4.58%, p: 2.14×10-3 to 0.012), and ever had cardiovascular/heart problem (Δc: 7.00 to 

10.20%, p: 4.51×10-4 to 2.60×10-3) were generally mediated by multiple white matter 

microstructural variables. Global MD and MD in association fibres negatively mediated 

the effect between depression-PGRS at pT<0.01 and body mass (p: 1.63×10-3 to 

0.010). This was due to an association that higher MD was associated with higher body 

mass. We further found that it was caused by the quadratic relationship between body 

mass and MD, indicating that worse white matter microstructure was associated with 

either being under- or over-weight. When the linear terms for body mass were replaced 

by quadratic terms, then the mediation effect became insignificant (see Table S7). 

 

Table 2. Results for neuroimaging phenotypes mediating the direct association between 

depression-PGRS and behavioural phenotypes (x=depression-PGRS, m=neuroimaging 

phenotypes, and y=behavioural phenotypes). CFI=Comparative Fit Index, TLI= Tucker-Lewis 

Index, and prmsea is the p statistic of whether RMSEA was significantly different from 0. All the 

results below are significant after FDR-correction (see the next page). 
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Table 2. Results for neuroimaging phenotypes mediating the direct association between depression-PGRS and behavioural phenotypes (x=depression-

PGRS, m=neuroimaging phenotypes, and y=behavioural phenotypes). CFI=Comparative Fit Index, TLI= Tucker-Lewis Index, and prmsea is the p statistic 

of whether RMSEA was significantly different from 0. All the results below are significant after FDR-correction. 

 

Predictor Mediator Outcome Category c' 
standard 
error of c' 

p pcorr 
Proportion 

of effect 
mediated 

CFI TLI RMSEA prmsea 

d
ep

re
ss

io
n

-P
G

R
S 

(p
T<

0
.0

1
) 

g.
M

D
.A

F 

Well-being score Mental health -0.002  0.001  0.012  0.029  0.034  1.000  1.000  0.001  1.000  

Past tobacco smoking Life style -0.001  0.001  0.013  0.029  0.029  0.977  0.960  0.010  1.000  

Smoking status Life style 0.001  0.001  0.012  0.029  0.026  0.970  0.948  0.011  1.000  

Ever vascular heart problem 
diagnosed 

Physical 0.002  0.001  0.001  0.020  0.068  0.959  0.929  0.015  1.000  

Arm fat mass left Physical -0.001  0.000  0.019  0.034  -0.062  0.950  0.913  0.016  1.000  

Arm fat mass right Physical -0.001  0.000  0.015  0.032  -0.065  0.951  0.915  0.016  1.000  

Arm fat percentage left Physical -0.001  0.000  0.006  0.022  -0.077  0.983  0.970  0.019  1.000  

Arm fat percentage right Physical -0.001  0.000  0.005  0.022  -0.071  0.983  0.971  0.019  1.000  

Body fat percentage Physical -0.001  0.000  0.002  0.020  -0.084  0.983  0.970  0.019  1.000  

Leg fat mass left Physical -0.001  0.000  0.007  0.022  -0.062  0.983  0.970  0.016  1.000  

Leg fat mass right Physical -0.001  0.000  0.008  0.024  -0.060  0.982  0.969  0.016  1.000  

Leg fat percentage left Physical -0.001  0.000  0.001  0.020  -0.072  0.990  0.983  0.021  1.000  

Leg fat percentage right Physical -0.001  0.000  0.002  0.020  -0.069  0.989  0.981  0.021  1.000  

Trunk fat mass Physical -0.001  0.001  0.009  0.024  -0.064  0.945  0.905  0.015  1.000  

Trunk fat percentage Physical -0.002  0.001  0.003  0.020  -0.090  0.969  0.947  0.017  1.000  

Whole body fat mass Physical -0.001  0.001  0.009  0.024  -0.059  0.955  0.922  0.016  1.000  

g.
M

D
.T

o
ta

l Well-being score Mental health -0.002  0.001  0.007  0.023  0.038  1.000  1.005  0.000  1.000  

Overall ICD-10 psychiatric 
conditions 

Mental health 0.002  0.001  0.018  0.034  0.014  0.996  0.992  0.005  1.000  

Ever smoked Life style 0.001  0.001  0.015  0.031  0.030  0.972  0.951  0.012  1.000  
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Past tobacco smoking Life style -0.002  0.001  0.004  0.020  0.039  0.983  0.971  0.010  1.000  

Smoking status Life style 0.002  0.001  0.003  0.020  0.037  0.978  0.962  0.011  1.000  

Addiction.ever (Self-
reported) 

Life style 0.001  0.001  0.027  0.041  0.038  0.988  0.980  0.008  1.000  

Long standing illness, 
disability or infirmity 

Physical 0.001  0.001  0.021  0.036  0.032  0.996  0.993  0.005  1.000  

Ever vascular heart problem 
diagnosed 

Physical 0.003  0.001  0.000  0.020  0.094  0.967  0.943  0.015  1.000  

Overall health rating Physical 0.001  0.001  0.013  0.029  0.032  0.984  0.972  0.009  1.000  

Arm fat percentage left Physical -0.001  0.000  0.018  0.034  -0.059  0.983  0.971  0.019  1.000  

Arm fat percentage right Physical -0.001  0.000  0.018  0.034  -0.053  0.984  0.972  0.019  1.000  

Body fat percentage Physical -0.001  0.000  0.006  0.022  -0.067  0.983  0.971  0.019  1.000  

Leg fat mass left Physical -0.001  0.000  0.021  0.036  -0.047  0.984  0.972  0.016  1.000  

Leg fat mass right Physical -0.001  0.000  0.025  0.039  -0.045  0.983  0.971  0.016  1.000  

Leg fat percentage left Physical -0.001  0.000  0.004  0.021  -0.055  0.990  0.983  0.021  1.000  

Leg fat percentage right Physical -0.001  0.000  0.006  0.022  -0.052  0.989  0.981  0.021  1.000  

Trunk fat mass Physical -0.001  0.001  0.023  0.038  -0.053  0.955  0.922  0.015  1.000  

Trunk fat percentage Physical -0.001  0.001  0.006  0.022  -0.075  0.972  0.951  0.017  1.000  

Whole body fat mass Physical -0.001  0.000  0.024  0.039  -0.047  0.962  0.933  0.016  1.000  

g.
M

D
.T

R
 

Well-being score Mental health -0.002  0.001  0.009  0.024  0.036  1.000  1.004  0.000  1.000  

Overall ICD-10 psychiatric 
conditions 

Mental health 0.002  0.001  0.016  0.033  0.015  0.998  0.996  0.005  1.000  

Ever smoked Life style 0.002  0.001  0.006  0.022  0.036  0.982  0.968  0.013  1.000  

Past tobacco smoking Life style -0.002  0.001  0.003  0.020  0.045  0.989  0.980  0.010  1.000  

Smoking status Life style 0.002  0.001  0.002  0.020  0.046  0.986  0.976  0.011  1.000  

Addiction.ever (Self-
reported) 

Life style 0.001  0.001  0.029  0.043  0.035  0.993  0.987  0.008  1.000  

Overall health rating Physical 0.002  0.001  0.004  0.020  0.043  0.991  0.984  0.009  1.000  

Ever vascular heart problem 
diagnosed 

Physical 0.003  0.001  0.001  0.020  0.101  0.976  0.958  0.016  1.000  

Long standing illness, 
disability or infirmity 

Physical 0.001  0.001  0.008  0.024  0.039  0.997  0.995  0.005  1.000  
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Other serious medical 
condition diagnosed by 

doctor 
Physical 0.001  0.000  0.024  0.039  0.054  0.995  0.992  0.006  1.000  

N30_N23 
Easy to get up in the 

morning 
Life style -0.001  0.001  0.015  0.031  0.041  0.951  0.915  0.011  1.000  
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2.5 Discussion 

Associations between depression-PGRS, behavioural and neuroimaging phenotypes 

were found in the present study using the largest independent imaging cohort so far. 

Strongest associations were found between depression-PGRS and mental health. 

Novel associations were found that higher depression-PGRS correlated with lower 

white matter microstructure, hyper resting-state connectivity in default-mode network, 

weaker resting-state connectivity in the sensorimotor and dorsal lateral prefrontal 

cortex. Associations with MDD polygenic risk was also shown in worse sleep, smoking, 

presence of cardiovascular conditions and obesity. Sleep and general physical health 

mediated the largest proportion of the association between depression-PGRS and self-

reported MDD, and white matter microstructural variation mediated the effect of 

depression-PGRS to smoking, subject well-being, an overall number of psychiatric 

illness diagnosed and ever had heart or cardiovascular problems. 

Novel effects of depression-PGRS were found in both structural and functional 

connectivity in the brain. Recent GWAS suggest that MDD is a brain disorder based on 

gene expression results from the genome-wide significant hits (Howard, Adams, 

Shirali, et al. 2018), and our results further provided evidence for a robust association 

between the brain and subthreshold common polygenic variation (International and 

Consortium 2009). Especially, the associations involved in resting-state connectivity is, 

to our knowledge, the first to date. Findings from both DTI and resting-state data 

revealed the importance of prefrontal cortex, which is a hub for emotion regulation and 

executive control (Miller 2000; Etkin et al. 2015). Consistent with previous findings on 

MDD case-control differences (Kaiser et al. 2015; Shen et al. 2017), white matter 

anisotropic reduction and lack of functional strength involved in the prefrontal cortex 

were observed in our DTI and resting-state results respectively. The second main 

association was found in white matter alterations in thalamic radiations and FA 
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reduction in the brain stem, implying deficits in the limbic system for the processing of 

negative emotional stimuli and reward signals (Disner et al. 2011; Russo and Nestler 

2013; Etkin et al. 2015). depression-PGRS were also associated with hyper-

connectivity in the default-mode network areas (Raichle 2015), which was also found 

relevant to spontaneous rumination of negative thoughts and imbalanced goal-directed 

processing (Bartova et al. 2015; Kaiser et al. 2015; Posner et al. 2015). Compared to 

other phenotype categories, both white matter and resting-state data showed the 

largest effect sizes in lower p thresholds for MDD (for example pT<0.01 for white 

matter), along with the findings from GWAS that top-hits express in the brain (Howard, 

Adams, et al. 2017; Howard, Clarke, et al. 2017; Wray et al. 2018), these converging 

evidence indicate a heterogeneous genetic architecture for MDD, and that variation in 

the brain may be relevant to SNPs which have moderate to high effect sizes. In the 

present study, neuroimaging phenotypes generally showed smaller effect sizes 

compared to some behavioural traits such as sleep and smoking status. A major 

reason may be that self-reported lifestyle and physical conditions are likely to be 

directly associated with MDD diagnostic criteria. The importance of the associations 

found in neuroimaging phenotypes is supported by various facts. Firstly, findings in 

neuroimaging phenotypes associating with MDD is well replicated. Secondly, 

compared to behavioural patterns, neuroimaging phenotypes are much more directly 

related to currently available drugs and psychological interventions. Finally, brain 

structural and functional measures have a more certain role as endophenotypes, 

whereas it is much more difficult to define whether behavioural patterns such as self-

reported patterns of sleep and smoking are the causes or outcomes of MDD. 

Sleep, pain, smoking behaviour and whether there is any heart/cardiovascular 

condition mediated the association between depression-PGRS and self-reported MDD, 

and sleep specifically mediated by the largest proportions. Sleep disturbance is a major 

somatic symptom of MDD and an important reference of anti-depressant response 
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(Chen 1979; Winokur et al. 2003). Behavioural traits like sleeping pattern, smoking and 

pain have a significant impact or reciprocal association with activities in the 

hypothalamic-pituitary-adrenal axis (Pariante and Lightman 2008), which is responsible 

for stress response and possesses a regressive feedback system to maintain 

homeostasis (Gordon et al. 2015). Disruption of stasis in this system is a vulnerability 

factor for the onset of MDD (Pariante and Lightman 2008), and it is associated with 

brain development and synaptic formation (Maret et al. 2011; Stickgold et al. 2011). 

Mediator effect of white matter microstructure on the association between depression-

PGRS, smoking and heart/cardiovascular condition then suggest that the relationship 

between depression-PGRS and phenotypic presence of MDD may have a multi-

layered endophenotypic structure. 

The findings from the mediation models provided insights for shared variances of 

depression-PGRS related phenotypes. These tests were partially hypothesis-driven, as 

neurobiological variability is in general believed to be less biologically distant to genetic 

effects, compared with complex traits on the behavioural level. However, our results 

and the method structural equational modelling itself would not rule out other 

possibilities for directionality. Though our results give limited information about 

causality, they narrowed down the spectrum of traits for future studies on causal 

inference using a longitudinal design or statistical methods like Mendelian 

Randomisation (Lawlor et al. 2008). 

To conclude, the association tests revealed relationships between MDD polygenic risk 

and various behavioural and neuroimaging variables. These primary results were also 

accompanied by mediation analyses revealing shared variances of sleep, smoking, 

white matter microstructure and MDD polygenic risk. These findings altogether give 

insights of neurobiological and genetic mechanism of MDD, implying a multi-modality 

architecture for the biological inferences of its onset. 
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3 Chapter conclusion 

This study provided a large scale of association tests, containing various behavioural 

and neuroimaging traits. Novel results were found that white matter microstructure and 

resting-state connectivity were associated with polygenic risk scores for depression. 

Mediation tests revealed that sleep, smoking behaviour, cardiovascular conditions and 

body mass mediated the effect of polygenic risk on the presence of depression. The 

study gave a broad presentation of major associations between behavioural, 

neuroimaging phenotypes and polygenic risk score. 
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Chapter 5: 

Resting-state connectivity and its association with cognitive performance, 

educational attainment, and household income in UK Biobank (N = 3,950) 

1 Chapter introduction 

Cognition, educational attainment, and socioeconomic status have been found 

associated with polygenic risk of depression and the presence of various mood disorders. 

These variables are also important factors for phenotypic variances in the brain. Although 

task-relevant fMRI studies have been conducted broadly on these traits, resting-state 

connectivity and its association with the above variables has had limited investigations. 

The study in this chapter investigated resting-state connectivity and its associations with 

cognition, educational attainment, and household income. This paper was also one of 

first papers using UK Biobank imaging data testing the association between resting-state 

connectivity and behavioral patterns. 

This study has been published as a journal paper entitled, “Resting-state connectivity 

and its association with cognitive performance, educational attainment, and household 

income in UK Biobank (N = 3,950)” (Shen et al. 2018). I conducted the analyses and 

drafted the manuscript with supervision, as the first author. 

2 Paper 

2.1 Abstract 

Background: Cognitive ability is an important predictor of lifelong physical and mental 

well-being and impairments are associated with many psychiatric disorders. Higher 

cognitive ability is also associated with greater educational attainment and increased 

household income. Understanding neural mechanisms underlying cognitive ability is of 

crucial importance for determining the nature of these associations. In the current 

study, we examined the spontaneous activity of the brain at rest to investigate its 

relationships with not only cognitive ability, but also educational attainment and 

household income.  

Methods: We used a large sample of resting-state neuroimaging data from UK 

Biobank (N=3,950).  
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Results: Firstly, analysis at the whole-brain level showed that connections involving 

the default mode network (DMN), frontoparietal network (FPN) and cingulo-opercular 

network (CON) were significantly positively associated with levels of cognitive 

performance assessed by a verbal-numerical reasoning test (standardized β ranged 

from 0.054 to 0.097, pcorrected<0.038). Connections associated with higher levels of 

cognitive performance were also significantly positively associated with educational 

attainment (r=0.48, N=4,160) and household income (r=0.38, N=3,793). Further, 

analysis on the coupling of functional networks showed that better cognitive 

performance was associated with more positive DMN-CON connections, decreased 

cross-hemisphere connections between the homotopic network in CON and FPN, and 

stronger CON-FPN connections (absolute β ranged from 0.034 to 0.063, 

pcorrected<0.045).  

Conclusion: The present study finds that variation in brain resting state functional 

connectivity associated with individual differences in cognitive ability, largely involving 

DMN and lateral prefrontal networks. Additionally, we provide evidence of shared 

neural associations of cognitive ability, educational attainment, and household income. 

 

2.2 Introduction 

General cognitive ability is positively associated with higher educational attainment 

(Marioni et al. 2014), better workplace performance (Deary 2012), and with reduced 

risk of several mental and physical diseases (Deary 2012; Lencz et al. 2014; Calvin et 

al. 2017; Russ et al. 2017). Identifying the associated neural mechanisms will help 

better understand the causes of these associations. 

Studies have been conducted to explore the relationship between resting-state network 

and cognitive ability (Dosenbach et al. 2007; Sheffield et al. 2015; Wen et al. 2018). 

Resting-state networks (RSN) involving lateral prefrontal cortex, such as executive 

control network and frontal-parietal network, have been previously reported to have 

positive associations attention and executive control (Deary et al. 2010). Newer 

evidence suggested that, other than prefrontal networks, the default mode network 

(DMN) is an important neurobiological marker for higher network efficiency as it is a 

metabolic and neural network hub for the whole brain (Broyd et al. 2009; Smith et al. 

2015), and it is associated with a large number of positive sociodemographic variables 
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(Smith et al. 2015). However, prefrontal networks and DMN show distinctive metabolic 

activity (Raichle et al. 2001), and in certain tasks, they can be neuroanatomically 

antagonistic (Raichle 2015). The ambiguity of biomarkers for cognitive performance 

therefore limits the potential of using neural-network modeling for practical purposes 

like assisting clinical diagnoses and identifying the regional targets for neuronal 

interventions. 

The variability of results in previous studies (Spreng et al. 2010; Cole et al. 2012; Smith 

et al. 2015) may be due to relatively small sample sizes, often limited to 100 

participants or fewer. This limitation is difficult to overcome using meta-analysis, as 

methods of extracting functional networks may vary considerably between studies. 

Therefore, there is a need for large-scale studies using a single scanner and consistent 

methods of estimating the association of RSN activity with consistently-collected social 

and psychological phenotypes to determine the relationship between resting functional 

connectivity and cognitive ability. 

In the current study, we examined resting-state data from the first release of the UK 

Biobank imaging project (Cox, Ritchie, et al. 2016; Miller et al. 2016). Participants from 

40 to 75 years old were recruited widely across the United Kingdom (Matthews and 

Sudlow 2015; Hill, Davies, et al. 2016; Miller et al. 2016). For the resting-state fMRI (rs-

fMRI) data used in the current study, 3,950 subjects underwent the cognitive 

assessment using a test of verbal-numerical reasoning (VNR; referred to in UK 

Biobank as a test of “fluid intelligence”). This measurement is genetically and 

phenotypically representative to the latent component of general cognitive performance 

(Davies et al. 2016; Hagenaars et al. 2016). This test had a test-retest reliability of 0.65 

between the initial assessment visit in 2006-2010 and the first repeat assessment visit 

in 2012-2013 (Davies et al. 2016; Lyall et al. 2016). It also shows a significant genetic 

correlation with childhood general cognitive ability (r=0.81) (Hagenaars et al. 2016). 

In addition to the utility of analyzing a large sample, the present study benefited from 

examining the neural associations between educational attainment and household 

income. The rs-fMRI data were available for educational attainment and household 

income on samples of 4,160 and 3,793 subjects, respectively. Both education and 

household income show phenotypic correlations and shared genetic architecture with 

cognitive ability (Davies et al. 2016; Hill, Hagenaars, et al. 2016); however, the 
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associations between cognitive ability and these two variables with respect to 

functional connectivity remain unclear.  

In order to address the above issues, our analyses were conducted following the order: 

(1) We examined whole-brain resting-state connectivity using a very large sample, to 

identify functional networks associated with cognitive performance (2) We then tested 

which resting-state connections were associated with educational attainment and 

household income, as these two traits are highly relevant to cognitive performance. (3) 

to determine which regions are involved with the above three traits, pairwise correlation 

analyses were conducted between neural associations of cognitive performance, 

educational attainment and household income on all connections over the whole brain. 

For these three steps, we conducted the analysis on a correlation matrix derived from 

high-resolution brain parcellation. Finally, (4) we moved on to examine the coupling 

between bulk resting-state networks based on a low-resolution parcellation, focussing 

on networks identified by the previous two whole-brain analyses. 

 

2.3 Methods 

Participants 

The study was approved by the National Health Service (NHS) Research Ethics 

Service (reference: 11/NW/0382), and by the UK Biobank Access Committee (Project 

#4844). Written consent was obtained from all participants. 

In total, 4,162 participants undertook a rs-fMRI assessment and passed the quality 

check undertaken by UK Biobank 

(http://www.fmrib.ox.ac.uk/ukbiobank/nnpaper/IDPinfo.txt) (Mean Age=62.20+/-7.56 

years, Male=47.48%, 3576 (85.92%) White, 142 (3.41%) Asian, 31 (0.74%) Black and 

142 (3.41%) mixed).   

Imaging data 

We used the network matrices from the IDPs (imaging-derived phenotypes) which were 

processed by the UK Biobank imaging project team (Miller et al. 2016). The detailed 

methods of the UK Biobank imaging processing can be found in a previous protocol 

paper (Miller et al. 2016). For clarification, these processes are described briefly below. 

http://www.fmrib.ox.ac.uk/ukbiobank/nnpaper/IDPinfo.txt
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All imaging data were obtained on a Siemens Skyra 3.0 T scanner (Siemens Medical 

Solutions, Germany, see http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=2367). 

Data pre-processing, group-ICA parcellation and connectivity estimation were carried 

out using FSL packages (http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=1977) by UK 

Biobank. Briefly, pre-processing included motion correction, grand-mean intensity 

normalization, high-pass temporal filtering, EPI unwarping, gradient distortion 

correction unwarping and removal of structured artefacts (Miller et al. 2016). 

Group-ICA were then performed on the preprocessed sample of 4,162 people, and two 

different ICAs were performed with the dimensionality (D) set as 100 and 25. The D 

determines the number of distinct ICA components. The dimensionality of D=100 infers 

a parcellation of high-resolution, whilst setting D=25 results in low-resolution 

parcellation, and larger functional networks that can be extracted as a single 

component(Smith et al. 2015; Miller et al. 2016). After the group-ICA, noise 

components were discarded; this resulted in 55 components in 100-D ICA and 21 

components in 25-D ICA that remained for further analysis. The maps of both ICAs can 

be seen at: http://www.fmrib.ox.ac.uk/datasets/ukbiobank/index.html. 

Finally, connections between pairs of ICA components for each subject were 

estimated. We used the partial correlation matrices calculated using the FSLNets 

toolbox: http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets. A partial correlation matrix was 

generated by controlling for the strength of other connections. The normalized 

estimation of partial correlation was conducted with an L2 regularization applied 

(rho=0.5 for Ridge Regression option in FSLnets). More details can be found in Miller 

et al.(2016) (Miller et al. 2016) and the URL: 

https://biobank.ctsu.ox.ac.uk/crystal/docs/brain_mri.pdf.  

The final 55*55 and 21*21 partial correlation matrices were used as measurements of 

functional connections. The two matrices are different. A 100*100 matrix has a much 

higher spatial resolution, therefore gives better spatial details in terms of identifying 

what regions involve in significant connections. On the other hand, a 25*25 matrix has 

a low spatial resolution, but it allows us to estimate the temporal synchronization 

between bulk networks that are well-known, such as DMN. Hence, the functional 

networks that were found in the whole-brain analysis were selected from the 21*21 

matrix as NOI, connections between the NOI were tested.  

http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=2367
http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=1977
http://www.fmrib.ox.ac.uk/datasets/ukbiobank/index.html
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets
https://biobank.ctsu.ox.ac.uk/crystal/docs/brain_mri.pdf
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Cognitive performance 

A test of verbal-numerical reasoning (VNR) was carried out by UK Biobank according 

to the standard protocol (Parr et al. 2015; Davies et al. 2016; Keyes et al. 2016). 

Questions of the test can be found in the Touch-screen fluid intelligence test protocol 

document: http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=100231). The data used in 

the present study were collected at the time of imaging assessment (N=3,950, 

Age=62.07+/-7.54, Male=47.47%). Descriptive statistics is presented in supplementary 

results and Figure S1.  

Educational attainment and household income 

Educational attainment and household income phenotypes were self-reported. The 

details are reported in the study website 

(http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=100471, 

http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=100256). Descriptive statistics of 

educational attainment and household income are presented in supplementary results 

and Figure S1. 

For educational attainment, we used a proxy which was validated in previous 

studies(Davies et al. 2016; Hagenaars et al. 2016). We created a binary variable was 

created to indicate whether or not university/college level education was achieved. This 

proxy covered 4,160 participants (Age=62.20+/-7.56, Male=47.48%). 

Household income was determined by the average total income before tax received by 

the participant’s household in five levels (see supplementary methods). This measure 

had 3,793 non-empty responses (Age=61.98+/-7.57, Male=49.04%). 

Statistical methods 

We used the partial correlation matrix as a measurement of functional connectivity. 

Values in the matrix are normalized correlation coefficients. A higher absolute value 

means stronger strength of connection, and the sign indicates whether the connection 

is positive/negative. To enable clearer interpretation of the results, the values of the 

connections were transformed into connection strength. This was achieved by 

multiplying the raw connection values with the signs of their mean value. This approach 

was used in a previous study by Smith et al.(2015) (Smith et al. 2015).  

http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=100231
http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=100471
http://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=100256
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Analyses were performed in the following sequence: (1) A whole-brain analysis of the 

association between cognitive performance (VNR) and resting-state functional 

connectivity using the connectivity matrix derived from high-resolution parcellation. (2) 

Two separate whole-brain analyses on educational attainment and household income, 

respectively. (3) We then performed correlation analyses on the global functional 

connections predicted by the three phenotypic variables over all the connections in the 

55*55 matrix over the whole brain, that is, testing whether the standardized effect sizes 

for the VNR score’s link to functional connections were correlated with the 

corresponding effect sizes for educational attainment and household income. Two 

correlation analyses were then performed respectively on (a) the effect sizes of 

cognitive performance and educational attainment and (b) the effect sizes of cognitive 

performance and household income. (4) Network of interest. This method has been 

validated in various previous studies as well as in the protocol paper for UK Biobank 

imaging project (Reineberg et al. 2015; Miller et al. 2016). 

The associations between brain connections and cognitive performance, educational 

attainment, and household income were tested by separate models using the linear 

GLM function in R (https://stat.ethz.ch/R-manual/R-devel/library/stats/html/glm.html). 

Each trait was set as the independent variable in their individual models, and the 

connectivity matrix (high/low-resolution matrices, 55*55 for whole-brain analysis and 

the selected networks in 21*21 matrix for network-of-interest analysis) was set as the 

dependent variable. All of the models were adjusted for age, age2, and sex. 

False Discovery Rate (FDR) (Benjamini et al. 1995) correction was applied over each 

set of test over the whole brain as a unit (Ntest=1,485 for 55*55 matrix, Ntest=16 for 

connections of bulk networks) using the p.adjust function in R setting q<0.05 for 

significance level (https://stat.ethz.ch/R-manual/R-

devel/library/stats/html/p.adjust.html). All β-values reported in the results are 

standardized effect sizes. 

 

2.4 Results 

Whole-brain test of the association of cognitive performance with functional 

connectivity 

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/glm.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/p.adjust.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/p.adjust.html
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A group-ICA was applied to parcellate the whole brain into 55 components, and the 

pair-wise functional connectivity between the components was estimated using 

FSLnets (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets). The 55*55 partial correlation 

matrix was used for whole-brain analysis. To enable clearer interpretation of the 

results, the values of the connections were transformed into connection strength(Smith 

et al. 2015). 

 

Figure 1. (A) Connections that showed significant associations with cognitive performance. The 

ICA components were clustered into five categories according to the group-mean full correlation 

matrix for better illustration and interpretation of the results. This clustering gives a data-driven, 

gross overview of the structure of the components, consistent with previous studies (ref 26 and 

30). The clusters roughly represent the resting state networks (RSNs) of: default mode network 

(red), extended default mode network and cingulo-opercular network (purple), executive control 

and attention network (green), visual network (blue) and sensorimotor network (orange). Red 

lines are the connections where strength was positively associated with cognitive performance; 

blue lines denote negative associations with cognitive performance. The width of lines indicates 

the effect sizes of the associations between connection strength and cognitive performance 

(bigger width indicates a larger absolute effect size). The significant connections were mostly 

involved in the categories of default mode network, executive control/attention network and 

cingulo-opercular network. (B) The spatial map of regions involved with connections in (A). The 

spatial maps for the ICA nodes that involved in the significant connections were multiplied by 

their effect sizes, then the spatial map in (B) was generated by summing up the weighted maps. 

To better illustrate the regions involving in significant connections, a threshold of 50% of the 

highest intensity was applied, so the regions with intensity higher than the threshold would show 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets


Chapter 5: Resting-state and cognition 

113 
 

on the map. 

 

Better performance in VNR was significantly associated with 26 connections (absolute 

β ranged from 0.054 to 0.097, all pcorrected<0.05, puncorrected<6.73×10-4, see 

Supplementary Table S1). These include 18 connections that showed higher strength 

with higher VNR, and 8 connections that had lower strength of connection in people 

with higher VNR (Supplementary Table S1). The 18 connections largely involved the 

DMN, which includes bilateral posterior cingulate cortex (PCC), bilateral medial 

prefrontal cortex (PFC) and right temporal-parietal junction (TPJ), see Figure 1. 

Additional areas of right inferior PFC, dorsal anterior cingulate cortex (ACC) bilateral 

anterior insula and visual cortex were also involved. The connections that were weaker 

with better cognitive performance included bilateral lateral postcentral gyrus and 

superior ACC (Figure 1). 

We then conducted permutation test on an updated sample of unrelated people 

(N=7,749). Half-sized samples (N=3,572) were selected and tested the distributions of 

the p values for the significant connections found in our initial findings. After 1,000 

times of randomly selecting half of our sample, conducting analyses on them, and then 

compared the distributions of p values for the significant connections with the p values 

for the rest of connections (see supplementary materials). Two connections’ p values 

were higher (t>6.95, p<6.62×10-12), and all others’ were lower, which takes up 92.3% of 

the connections that were significant in the initial findings (all t ranged from -1076.88 to 

-2.21, all p<0.028, see in Appendix 4: Figure S7). 

Whole-brain tests on the association of educational attainment and household 

income with functional connectivity 

There were 33 connections that showed significant associations with educational 

attainment (absolute β ranged from 0.103 to 0.161, all pcorrected<0.05, 

puncorrected<8.53×10-4 see Supplementary Table S2). Of these, the strength of 21 

connections was stronger with higher educational attainment, whereas 12 were 

weaker. The regions involved in connections that were stronger with better educational 

attainment included regions in DMN and dlPFC. A large area of ACC was also 

involved. Connections that were weaker with higher educational attainment were 

located in the Inferior part of PCC and lingual gyrus (Figure 2). 
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Figure 2. The connections that showed significant associations with educational attainment and household income. Red lines are the connections of 

which the strength was positively associated with cognitive performance, and the blue lines are the ones having negative associations. The width of 

lines indicates the effect sizes of the strength of the connections, see the legend of Figure 1. The categorisation of components of brain regions in the 

circular brain network illustration is identical with Figure 1. Again like Figure 1, A threshold of 50% of the highest value was applied for better illustration 

of the projection of brain regions on MNI template. 
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For household income, 15 connections were significant, 11 of which were stronger with 

higher household income and 4 showed weaker connections (absolute β ranged from 

0.060 to 0.082, all pcorrected<0.05, puncorrected<4.27×10-4 Appendix 4: Table S3). The 

regions of the connections that were stronger for higher household income again fell in 

similar regions as in tests of educational attainment and cognitive performance, which 

included PCC, medial PFC, ventral lateral PFC and dorsal lateral PFC (Figure 2). The 

areas that showed weaker connections for higher household income were smaller, 

which mainly included superior temporal lobe. Full lists of regions for the above results 

are presented in Table S4. 

The spatial maps for the results of cognitive performance in VNR, educational 

attainment, and household income overlapped substantially (Figures 2 and 3). By 

performing correlation analysis at the standardized effect sizes of the whole brain (see 

Methods, Statistical methods), we found a correlation of r=0.47 (df=1,483, p<2Χ10-16) 

between the global effect sizes for cognitive performance and educational attainment. 

The correlation between the effect sizes of cognitive performance and household 

income was r=0.38 (df=1,483, p<2Χ10-16) (Figure 3). 

Similar to the permutation test performed on VNR, the distributions of p values for 

93.3% of the significant connections found in for educational attainment were lower 

than the mean p value for the rest of connections (all t ranged from -1429.77 to 11.54, 

all p<4.22×10-4, Figure S8) and all for household income were lower (all t ranged from -

704.07 to -5.49, all p<4.97×10-8, see Appendix 4: Figure S9). 
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Figure 3. Correlations of the effect sizes of (A) cognitive performance and educational 

attainment and (B) cognitive performance and household income on whole-brain connections 

using 55*55 partial correlation matrix as the proxy. Regression line with 95% confident intervals 

(shaded) are shown. 

 

Network-of-interest (NOI) test on VNR, educational attainment, and household 

income  

The whole-brain tests showed that the connections associated with cognitive 

performance in VNR, educational attainment and household income were 

predominantly located within the DMN (covering medial PFC, PCC and TPJ), cingulo-

opecular network (CON, covering ventral lateral PFC, and dorsal ACC) and 

frontoparietal network (FPN, covering dorsal lateral PFC and posterior parietal cortex). 

Therefore, DMN, CON, and FPN were selected as NOI from another group-ICA of 

lower resolution so these networks could be fully extracted (see Methods). The 

pairwise between-network coupling of these five networks (DMN was unilateral, and 

CON and FPN were separately extracted on each hemisphere) were tested to 

determine their association with cognitive performance, educational attainment, and/or 

household income. The above components can be viewed in Figure S2. The valence 

and values for the coupling of the above NOI were shown in Table 1. Similar with the 

analyses at whole-brain connectivity, the values of the connections were transformed 

into coupling strength before they were fed into the model. 
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There were 8 coupling between functional networks significantly associated with VNR 

performance out of 10 connections tested (all pcorrected<0.05, puncorrected<0.035. βreported 

below). For educational attainment, 3 connections were significant, and none was 

found significantly associated with household income.  

For the coupling between DMN and networks involving with lateral PFC, better VNR 

performance was associated with stronger positive connections between DMN and 

bilateral CON (stronger positive connection between DMN and left CON: β=0.061, 

pcorrected=6.7Χ10-3; weaker negative connection of DMN with right CON: β=-0.045, 

pcorrected=0.011).  

On the other hand, greater strength of coupling within the networks involving with 

lateral PFC was significantly associated with better cognitive performance. Stronger 

positive CON-FPN connection was also associated with higher VNR score. In the same 

hemisphere, people with better cognitive performance showed stronger positive CON-

FPN connections (left CON-left FPN: β=0.044, pcorrected=0.011; right CON-right FPN: 

β=0.051, pcorrected=0.005), whilst across hemispheres, stronger negative CON-FPN 

connections were higher (left CON-right FPN: β=0.034, pcorrected=0.044; right CON-left 

FPN: β=0.043, pcorrected=0.011). Finally, higher VNR scores were associated with 

weaker cross-hemisphere connections between the homotopic network components 

(left-right FPN: β=-0.040, pcorrected=0.018. left-right CON: β=-0.063, pcorrected=6.7Χ10-4). 

The above results are presented in Table 1 and Appendix 4: Figure S3. 

Educational attainment and household income had generally smaller associations with 

network coupling, and fewer significant connections were found. People with higher 

educational attainment showed a stronger positive connection between DMN and right 

FPN (β=0.104, pcorrected=0.004) and lower positive connection between DMN and right 

CON (β=-0.149, pcorrected=1.99Χ10-5). A stronger positive connection between right FPN 

and CON was associated with better educational attainment (β=0.086, 

pcorrected=6.24Χ10-3). No significant association between household income and the 

coupling of networks was found (all pcorrected>0.124). 

For the connections that were significant for both cognitive performance and 

educational attainment, we performed mediation analysis using Lavaan in R to test 

whether the effect between educational attainment and bulk network connections were 

mediated by cognitive performance (Appendix 4: Figure S6). Network connectivity was 

set as the predictor, and cognitive performance as the dependent variable. Educational 
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attainment was specified as the mediator. We found that the association between 

rFPN-rCON and rCON-DMN connectivity and educational attainment was mediated by 

cognitive performance (18.4% and 76.2% of direct path mediated by indirect path 

respectively for each model, CFI = TLI = 1, see Appendix 4: Figure S6). 
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Table 1. The significant associations between the connections of networks of interest and cognitive performance (verbal-numerical reasoning) 

and educational attainment. The values of connections were transformed into strength before conducting the analyses, by multiplying the 

connection values with the signs of their means. This approach was consistent with ref 28. Mean values and their 95% confident intervals of 

connections reported here are the values before being transformed into strength. 

 

 

Verbal-Numerical Reasoning 

Type Connections Beta 
Standard 

error 
t.value p pcorrected 

Mean value of 

connection 

95% confident interval of 

value of connection 

inter-

hemisphere 

left FPN - right FPN -0.040 0.016 -2.493 1.27E-02 0.018 1.156 1.127 1.185 

right CON - left CON -0.063 0.016 -3.923 8.89E-05 6.67E-04 0.379 0.356 0.402 

          

CON - FPN 

left CON - right FPN 0.034 0.016 -2.106 3.52E-02 0.044 -1.359 -1.387 -1.330 

right CON - left FPN 0.043 0.016 -2.714 6.68E-03 0.011 -2.088 -2.122 -2.054 

left CON - left FPN 0.044 0.016 2.732 6.33E-03 0.011 1.043 1.018 1.067 

right CON - right FPN 0.051 0.016 3.200 1.38E-03 0.005 0.648 0.620 0.676 

          

DMN-related 
left CON - DMN 0.061 0.016 3.824 1.33E-04 6.67E-04 0.675 0.652 0.698 

right CON - DMN -0.045 0.016 2.797 5.18E-03 0.011 -0.275 -0.300 -0.250 

          

Educational attainment 

Type Connections Beta 
Standard 

error 
t.value p pcorrected 

Mean value of 

connection 

95% CI of value of 

connection 

CON - FPN right CON - right FPN 0.086 0.031 2.736 6.24E-03 0.021 0.648 0.620 0.676 

          

DMN-related 
right FPN - DMN 0.104 0.031 -3.335 8.59E-04 0.004 -0.710 -0.738 -0.682 

right CON - DMN -0.149 0.031 4.761 1.99E-06 1.99E-05 -0.275 -0.300 -0.250 
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2.5 Discussion 

In the present study, we utilized a large population-based sample of ~4,000 

participants and found that strength of connections involved with DMN regions, anterior 

insula, dorsal lateral prefrontal cortex in FPN and inferior frontal gyrus in CON were 

positively associated with performance in a verbal-numerical reasoning test. The brain 

regions associated with cognitive performance also overlapped with those related to 

educational attainment and household income. These above results were validated in a 

bigger updated sample of N>7,000 people. For cognitive performance in particular, 

better cognitive functioning was marked by a more strongly positive DMN-CON 

connection, weaker cross-hemisphere connections of the left-right CON and left-right 

FPN, and stronger CON-FPN connections. 

We used a large sample and provided evidence that, in addition to the broadly 

suggested idea of lateral PFC, which involves dorsal lateral prefrontal cortex in FPN 

and inferior frontal gyrus in CON, playing a crucial role in cognitive processing, DMN 

was also associated with cognitive performance (β of connections positively associated 

with cognitive ability ranged from 0.054 to 0.097) (Bunge et al. 2005; Kievit et al. 2014; 

Parr et al. 2015). Previous studies showed that DMN serves as a hub for the whole 

brain (Raichle 2015). In comparison with other functional networks, DMN showed a 

higher metabolic rate in resting-state (Raichle et al. 2001), stronger connections with 

the rest of the whole brain in both task-free and task-engaging situations (Buckner et 

al. 2009), and a key role in maintaining basic levels of wakefulness/alertness in the 

brain (Sämann et al. 2011). Higher efficiency within the DMN was reported to be 

associated with various cognitive functions, including memory (Shapira-Lichter et al. 

2013), theory of mind (Spreng and Grady 2010), working memory (Sambataro et al. 

2010), and performance in general intelligence tests (van den Heuvel et al. 2009). The 

high-level cognitive abilities mentioned above often involve the activity of multiple, 

spatially distant brain regions (Corbetta et al. 2008; Shapira-Lichter et al. 2013). 
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Therefore the DMN, as a communicative hub, contributes to functional efficiency over 

the whole brain (van den Heuvel et al. 2009), potentially producing better integration 

and cooperation in core regions that are important for cognitive tasks.  

Additionally, the present study tested the coupling between networks of interest. 

Stronger positive DMN-CON coupling was associated with better cognitive ability 

(absolute β>0.045). In addition to the well-recognised task-positive lateral prefrontal 

cortex (therefore anti-correlated with the DMN), our findings in this large single-scanner 

sample lend substantial credence to increasing evidence that the CON itself (Fox et al. 

2006; Vossel et al. 2014), and its positive coupling with the DMN in both resting-state 

(Anticevic et al. 2012) and event-related studies (Bluhm et al. 2011)) is highly pertinent 

for important aspects of cognitive performance. The role of the CON was related to 

maintaining task-engaging status (Fox et al. 2006; Petersen and Posner 2012) and 

flexibly switching between the DMN and central executive network based on 

experimental context (Cocchi et al. 2013; Goulden et al. 2014). The experimental 

context in which CON and DMN were found to be simultaneously activated was often 

about goal-directed cognition (Cocchi et al. 2013), which involves self-driven retrieval of 

memory or learned experience and self-regulatory planning (Spreng et al. 2010). As 

the DMN is associated with self-referential processing (Raichle 2015) and self-driven 

cognition like retrieval of personal experience (Kamourieh et al. 2015) and planning 

(Spreng et al. 2010; Gerlach et al. 2011), positive coupling of the CON and DMN may 

indicate recruitment of self-referential and goal-oriented activity. Therefore successful 

DMN-CON coupling may be useful in maintaining internal mechanisms that support 

cognitive processing and long-term learning (Cocchi et al. 2013).  

The connections between networks involving lateral PFC showed that better cognitive 

performance was associated with stronger CON-FPN connections (absolute β>0.034). 

This result is consistent with previous structural and functional findings that support the 

key role of prefrontal areas on cognitive performance (Higgins et al. 2007; Kievit et al. 
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2014). We also found that better cognitive performance was related to between-

hemisphere dissociation within networks (absolute β>0.040). Whereas this is the first 

time to our knowledge that this has been examined in a study of a large sample, such 

reduced structural connection between the left and right lateral PFC has been 

observed in schizophrenic patients with impaired cognitive performance(Wheeler et al. 

2014). More lateralization of the brain is associated with better cognitive performance 

(Toga and Thompson 2003; Gotts et al. 2013), whereas, less lateralization, especially 

in prefrontal cortex, is related with reduced specialization of brain functions across 

hemispheres, therefore the advantageous anti-correlated connection we report here 

potentially denotes increased brain efficiency (Toga and Thompson 2003; Hyodo et al. 

2016).  

The whole-brain connection map for cognitive performance overlaps substantially with 

those from educational attainment and household income. Further analyses showed 

that there were global correlations of cognitive ability with educational attainment 

(r=0.47) and with household income (r=0.38). GWAS studies found that cognitive 

performance and educational attainment share a similar genetic architecture (r=0.906) 

(Marioni et al. 2014; Hagenaars et al. 2016). There was, in particular, an overlapping 

finding for educational attainment and cognitive performance in rFPN-rCON 

connection, and rCON-DMN connection. We found that cognitive performance 

significant mediated the association between NOI connectivity and educational 

attainment (Figure S6). The right-hemisphere connection for the two prefrontal 

networks (FPN and CON) may therefore reveal the association between education and 

executive control abilities, which was shows consistently associated with right lateral 

prefrontal cortex (Mohr et al. 2016). Early life intelligence (relatively stable across the 

life-course (Deary et al. 2012; Deary 2014)) and educational attainment show partially 

overlapping associations with some structural brain measures in older age (Cox, 

Dickie, et al. 2016). Taken together, one interpretation of these data is that the 

functional hallmarks of a more ‘intelligent’ and better-educated brain are related to 
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income by virtue of these temporally preceding factors. It could equally be the case that 

income confers additional lifestyle benefits that also influence these cerebral 

characteristics; the causal direction that gives rise to the highly overlapping functional 

connectivity reported here would be more adequately addressed with longitudinal multi-

modal data. 

A limitation for the current study is that the verbal-numerical reasoning test, as a brief 

measure, may not confer the same level of reflection on general cognitive ability as 

other longer, in depth general cognitive measures. The test-retest reliability was 

moderate, mainly because rather than the usual short time period between test and 

retest, this was performed in UK Biobank between 2-5 years which may contribute to 

the relatively low value. However, as previous studies found that verbal-numerical 

reasoning shared significant genetic and phenotypic correlation with the latent 

component of general cognitive performance (Davies et al. 2016; Hagenaars et al. 

2016), it therefore confers adequate representativeness of general cognitive ability. 

Another limitation is that the sample covers an older age range, and there is potential 

bias to healthy, better-educated people. A notable strength of the present study is that 

we used a large sample, providing compelling evidence that both dorsal prefrontal 

areas and DMN were associated with cognitive ability, educational attainment and 

household income. To disentangle how multiple networks involved in the cognitive 

ability, we examined functional connectivity by estimating connections between brain 

components derived in two different resolutions, giving us another strength of studying 

both the connections over the whole brain and the connections of bulk intrinsic 

functional networks within a single dataset. Finally, in addition to visual checking of 

overlapping regions of the significant connections, we statistically compared the 

functional connectivity associated with cognitive ability, educational attainment and 

household income over the whole brain, giving a magnitude of neural associations 

among them.  
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2.6 Conclusion 

The present study used a large, population-based sample, who provided multi-

dimensional rs-fMRI data, and found substantial evidence for functional neural 

associations cognitive ability (verbal-numerical reasoning) both in whole-brain 

dynamics and the coupling for intrinsic functional networks. The findings also 

characterized the degree of rs-fMRI overlap between cognitive ability and educational 

and socioeconomic level, providing evidence of the overlapping biological associations 

on the neurological level. 

 

 

3 Chapter conclusion 

The main finding of the study is the huge neurobiological overlap across cognition, 

educational attainment, and household income. The big sample also allowed further 

permutation tests validated the results in the updated data that contained a different set 

of 4,000 people. The results showed the importance of both the central executive 

system and the default mode network. 
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Chapter 6: Discussion 

The present thesis investigated the relationship between neurobiological traits and 

MDD in four aspects: MDD case-control differences, neurobiological associations with 

longitudinal depressive symptoms, with polygenic risk for depression (in association 

with other wider traits), and with depression related traits (such as cognition). Very 

large samples from the on-going UK Biobank imaging project were used (initially n= 

5,000, then 12,000 people with further releases of data). 

1 Summary of main findings in the present thesis 

1.1 white matter microstructure in thalamic radiations is a key marker for MDD 

One of the main findings in this thesis was the repeated implication of thalamic 

connections in association with MDD. The thesis found lower general FA in thalamic 

radiations in a large sample of MDD cases compared with controls in chapter 2. 

Higher general MD in thalamic radiations was associated with greater variability of 

depressive symptoms, a steeper slope of worsening trajectory of depressive 

conditions in chapter 3, and higher polygenic risk of depression in chapter 4. There 

was a significant mediation effect of general MD in thalamic radiations between 

depression polygenic risk and subjective well-being, and the number of psychiatric 

conditions diagnosed.  

The thalamus is directly associated with negative emotional processing and decision 

making in goal-directed context and is an important part of the wider limbic system. 

Compared with other subcortical regions, the thalamus has its special role, because 

it is highly associated with various behavioural patterns that show robust relations to 

depression. For example, the thalamus is a key region that is sensitive to sleep and 

causally mediates the effect of sleep deprivation to the activity in anatomically 

downstream regions like the brainstem (Krause et al. 2017), and the firing activities of 
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the region is correlated with the transition of sleep phases (Gent et al. 2018). It is also 

highly associated with wakefulness and consciousness (Krause et al. 2017). It is a 

main amplifier of pain (Fischer and Waxman 2010) and highly associated with various 

of addictions (Sullivan et al. 2003; Almeida et al. 2008; James and Dayas 2013).  

One reason why it is so broadly associated with various complex traits relevant to 

depression originates back to its anatomic position as a hub. Thalamus is located at 

the top of the brainstem, with axons generating from dorsal thalamus to amygdala, 

striatum and hippocampus, and a rich amount of fibres projecting from thalamus to 

the anterior, superior and posterior cerebral cortex (Sullivan et al. 2003). The special 

location of the thalamus makes it a hub of the limbic system and the bridge from the 

limbic system to the cortex, especially to prefrontal cortex where emotion regulation 

is involved. Depression is a complex trait, with additive effects contributed by 

abnormal brain cognitive and emotional processes, disrupted HPA-axis activity, 

genetic risks, and various interacting effects from the environment such as traumas, 

parenting styles and lack of education and social support. The impacts of these wide 

ranges of complex and possibly antagonistic factors being associated with thalamus 

and thalamocortical connection, the so-called ‘grand incoming station’ which bears 

the additive effects from the global interactions in the brain, is therefore not completely 

unexpected. The absence of associations of depression with other brain 

regions/connections may due to the counterbalancing effect of various factors that 

contribute to depression, or even subtypes of depression of which the neurobiological 

associations may possibly show opposite effects (Kohler et al. 2010). The important 

role of thalamic radiations being found is largely due to the generous sample sizes, 

which not only allow for heterogeneity, as a big sample is able to cover a large range 

of population-based cases, and the heterogeneity can be overcome by statistic power, 

and therefore the most consistent neurobiological associations with depression can 

be found.  
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1.2 White matter microstructural alterations were associated with not just 

current symptoms, but also cross-sectional symptomology such as variability, 

mean depressive level and longitudinal trajectory, as well as polygenic risk 

Various traits have been tested, including case-control difference, variability and 

longitudinal progression of depression, as well as polygenic risk. Although these traits 

are self-correlated, they differ in which white matter tracts are associated with. Here 

the insights of neurobiological heterogeneity of different depression-related traits are 

summarised. 

First, the largest amount of significant findings were found in the associations between 

white matter microstructure, measured by mean diffusivity (MD), and depressive 

symptoms at the imaging assessment, rather than cross-sectional and lifetime traits. 

Many studies have found white matter microstructural changes related to current 

depressive symptoms, however, comparing cross-sectional and longitudinal 

measures is rare. The reason why we found the largest scale of associations in MD 

may due to that this measure is sensitive to myelination. This notion was supported 

by NODDI findings in chapter 3, where ICVF showed a similarly large scale of 

associations with current depressive symptoms. ICVF is a measure of neurite density, 

highly correlated with myelin development. These indicate that (1) current symptom 

is an unneglectable contributor to white matter microstructural variation, and (2) it is 

important to consider variations of depressive symptoms assessed at different 

occasions, which can potentially contribute to heterogeneity or different levels of 

severity. 

Second, white matter microstructure in MD can be associated with lifetime and cross-

sectional measures of depression or depressive symptoms. Although current 

symptoms of depression showed the association with white matter structure in the 

largest number of tracts, white matter microstructure did not associate with temporal 
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depressive status only. Along with the findings from a recent GWAS study on UK 

Biobank imaging phenotypes, revealing that white matter probabilistic tractography 

has a high heritability of around 20-60% (Bycroft et al. 2017a), these together indicate 

that there is a potential of looking for genetic overlap between psychiatric traits and 

brain imaging phenotypes. 

1.3 Novel associations found between polygenic risk of depression and 

resting-state connectivity 

Resting-state connectivity has been believed to be a more transient measure of the 

brain’s network. However, recent findings suggest that some resting-state connectivity 

and slow-frequency amplitude of the blood-oxygen-level dependent (BOLD) signal 

can have significant heritability, comparable to that of structural measures like white 

matter microstructure and subcortical volumes (Bycroft et al. 2017a). The 

unexpectedly high heritability is likely due to the discrepancy between the former 

understanding of the flexibility of BOLD signal and what temporal correlations of the 

BOLD signal in resting state actually mean in terms of its neurobiological basis. 

Studies suggest that functional connectivity, especially in important networks such as 

the default mode, salience and executive control networks, is formed by joint efforts 

from white matter linkage and a shared metabolic mechanism (Greicius et al. 2009; 

Bero et al. 2011). For instance, Bero et al. found that a protein called amyloid β may 

be the by-product of the metabolic activities in the default mode network, as the 

activity of the network showed a causal impact on its concentration (Bero et al. 2011). 

Another study by Hahn et al. showed that serotonin-1A receptors explained a 

significant amount of individual variability of the synchronised activity in the default 

mode network (Hahn et al. 2012). These indicate that resting-state connectivity is not 

merely an external outcome of white matter structures, but rather a different set of 

measures, of which the biological mechanism is yet to be disentangled. 
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The difference between white matter microstructure and resting-state connectivity is 

also shown in our results. Decreased white matter microstructural integrity was in 

general associated with higher polygenic risk of depression. However, there are 

several regions where hyperconnectivity on resting state is associated with higher 

polygenic risk. One important finding is that the hyper-connectivity in default mode 

network was found associated with higher polygenic risk for depression. This is 

consistent with previous studies that found depressive patients showed hyperactivity 

or stronger connectivity within the default mode network. The connectivity in the 

default mode network has a potentially non-linear relationship with cognitive 

performance and mental health. Lack of activity in the work has been found 

associated with reduced wakefulness and global connectivity (Greicius et al. 2008; 

Krause et al. 2017), whereas extensive strength or duration of the activity in the 

default mode network may cause a higher concentration of interstitial fluid amyloid-β 

which is associated with atrophy (Bero et al. 2011). More studies on the causes of 

individual differences in resting-state network are needed for a clearer conclusion. 

1.4 Depression is likely to be mainly a “connectome-driven” disorder 

Schmaal et al. using ENIGMA data found that the largest difference between MDD 

cases versus controls was shown in the volume of hippocampus (Schmaal et al. 2016). 

However, in our findings, associations for subcortical volumes were absent for all 

depression-related measures, including current symptoms and cross-sectional 

depressive symptoms. This may due to a relatively older age range (age ranged from 

40 to 75 years). In other studies that recruited middle-aged participants, they also 

found that subcortical volumetric differences were null (see Discussion in Chapter 2). 

Despite that the results are different in subcortical differences between ENIGMA and 

UK Biobank, structural and functional connectivity showed much larger effect sizes 

compared to subcortical volumes. Associations presented in white matter 

microstructure and resting-state connectivity for various depression-related traits in 
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UK Biobank have Cohen’s d at around 0.23, and standardised regression coefficients 

were around 0.025 to 0.036. The Cohen’s d found for subcortical volumes in the 

ENIGMA sample was 0.15 for the only significant MDD case-control difference shown 

in the hippocampus (Schmaal et al. 2016). An alternative explanation for the different 

effect sizes could be that ENIGMA in generally still has larger samples compared to 

UK Biobank imaging project, therefore the effect sizes derived from UK Biobank 

imaging data may be comparatively inflated. However, according to our findings 

employing from the first release of around 5,000 people to the latest release of around 

12,000 people, the regression coefficients for significant linear associations stably 

remained around 0.025 to 0.03, regardless of the changes of the sample structure 

and changes in the standard deviations. If the effect sizes estimated by UK Biobank 

imaging project was inflated, it is more likely to observe large variations between 

sample releases, which is contradictory with what we found. Hence, there could be a 

truly larger association of depression with functional/structural connectivity than with 

subcortical volumes. However, a more definite conclusion should be drawn based on 

a replication study when UK Biobank collected similar-sized sample to ENIGMA, or 

that ENIGMA or other large cohorts reveal similar advantageous correlation of 

depression with structural connectivity.  

Another contribution from the studies in the present thesis is that they give a robust 

estimation of effect sizes for the associations between functional/structural 

connectivity and depressive symptoms in a population-based sample. Large variance 

explained can be achieved due to sample bias, chance, or a combination of both 

(Wray et al. 2013). The effect sizes estimated in the present thesis using very large 

cohort data therefore to provide tools for power estimation of new studies for which 

the sample size needs to be pre-defined.  
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2 Limitations and indications of future work 

One limitation for most of the phenotypic studies conducted in the present thesis is 

the depth of phenotyping. MDD definitions and depressive symptoms were assessed 

mainly based on self-reported questionnaires, which are in general shorter than other 

studies (e.g. PHQ-4 instead of PHQ-9 used for self-assessment of depression in the 

National Health Service of the UK, and broad definition of depression was acquired 

based on a simple self-declaration of whether had depression or not). Cognitive 

performance in verbal-numeric reasoning was assessed using a brief questionnaire 

consisting of 12 questions. The rationale is that the depth of phenotyping and the 

scale of phenotypes/sample sizes are two counterbalancing factors. A reasonable 

balance between the two should be able to allow for a large sample to be collected, 

therefore to overcome the noise introduced by the coarseness of phenotypes, as long 

as the phenotypes show acceptable agreement with traditional assessments. 

Acceptably rough phenotyping, though the depth was compromised to some extent, 

allows for more space to fit in more assessments so that data-driven association tests 

as in the PheWAS in chapter 4 can be conducted. It means that it is possible to have 

a large scale of people assessed, especially for longitudinal assessments, which is 

important for heterogeneous conditions such as depression. Thus, the main concern 

for the UK Biobank-style phenotypes is whether they deliver a good estimation of traits 

of interest, in comparison with traditional phenotypes collected in small-sample 

studies. The answer to this question is affirmative. Genetic correlation between self-

declared depression and clinically defined MDD showed a very high correlation with 

a rg=0.79 (Howard, Adams, Shirali, et al. 2018), and the brief assessment of 

depressive symptoms from PHQ-4 showed very high correlation with the full 

questionnaire PHQ-9 with an AUC (area under the curve) at 0.8 (Khubchandani et al. 

2016). 
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Sample selection in UK Biobank has been recently discussed and identified as a 

limitation. The age range did not cover adolescence and early adulthood since the 

study was conceived to investigate neurodegenerative disorders. UK Biobank 

participants typically have higher household income and are relatively better educated 

compared to the overall UK population. The selection bias is a limitation that needs to 

be acknowledged and taken into account when interpretations are made. This bias 

could also be part of the reason for observing the non-conventional prevalence of 

depression in our sample. Although big data is a cutting-edge trend in the recent 

academic world, some carefully balanced studies with very specific hypothesis would 

be extremely helpful for confirming the findings that came from big samples. Having 

acknowledged this, the opinion of this thesis is that UK Biobank imaging project, as 

one of the largest neuroimaging projects so far, and is still on-going, has the 

advantages of very large sample size which still deserves to be appreciated over the 

potential impact of sample biases.  

Another limitation is that larger sample sizes are still needed for studies regarding 

genetic overlaps between psychiatric illness and neuroimaging phenotypes. Even 

though over ten thousand people with both in-depth genotyping and neuroimaging 

phenotyping was un-thinkable within a decade ago, now the hope is given by very 

large cohorts like UK Biobank, ENIGMA, Human Connectome Project and some new 

cohorts like the Adolescent Brain Cognitive Development Study. Though it is 

encouraging to have these large samples, an increase of sample size is still needed 

for other analyses such as GWAS and Mendelian Randomisation. Especially for 

Mendelian Randomisation, which is an important tool for making causative inferences, 

having reliable genetic associations utilising well-powered samples is the primary 

requirement for conducting such analyses. Enlarging sample sizes by including 

independent cohorts may also allow us to conduct replication studies, of which the 

importance has been much more acknowledged in genetic fields, but yet to be more 



Chapter 6: Discussion 

133 
 

appreciated in the cross-discipline field that looks at the associations between 

genetics, neuroimaging and psychiatry. 

In the present thesis, medication information has been used to rule out medication 

effects on the brain. However, medication usage in UK Biobank largely relies on self-

reported information. Future possibilities of data linkage between UK Biobank 

participants and health care services may be able to provide in-depth information that 

aid analyses of drug effect on the brain and drug efficiency in MDD population. 

The fifth limitation is that the neuroimaging phenotypes used in the thesis are bulk 

illustrations, and more detailed phenotypes such as voxel-wise measures and graph-

theory measures may be able to reveal some other biologically meaningful results, 

and they may potentially have a much higher spatial resolution. However, this does 

not necessarily mean that the bulk measures used in the thesis are inferior compared 

to voxel-wise measures. The latter may include more noise introduced by pre-

processing steps and may likely to survive at a higher chance. 

The findings from the thesis demonstrate the benefits of large sample sizes, 

particularly for such a heterogeneous condition like MDD. These studies are 

beginning to suggest reliable deficits associated with MDD condition in 

thalamocortical connections and resting-state connectivity in the disorder. Taking 

these findings further, in terms of future work, the current studies could be used to 

guide further focussed studies on younger individuals. For example, large cohorts 

such as the Adolescent Brain Cognitive Development study could provide the 

opportunity to determine whether the neuroimaging differences associated with adult 

MDD are apparent earlier in life and whether there are any mechanisms that could 

lead to discoveries of potential early interventions and preventions.  

One important future direction may be using the biomarkers found in the present 

studies, combining machine learning methods to predict MDD status and classify 
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MDD cases. So far, in the present thesis, key biomarkers have been primarily 

identified as whole-genome polygenic risk, white matter microstructure in thalamic 

radiations and superior longitudinal fasciculus, resting-state connectivity in the 

default-mode network and behavioural patterns that associate with HPA-axis activity. 

The relationships between these biomarkers – whether they share a common latent 

component that drives the MDD case-control differences, whether they each provide 

an additive risk of having MDD, and whether these factors have significant interactions 

within themselves – remain largely unknown. After more empirical evidence has been 

provided based on large samples that help disentangle the MDD-related phenotypes, 

future studies should use these biomarkers to identify subtypes of MDD and related 

drug response of the identified subgroups. Successful attempts may largely benefit 

prediction of clinical outcomes, therefore lead to more efficient diagnoses and 

treatments. 

Finally, several questions relating to the biological mechanism of individual differences 

of brain structure and functions have been raised from the findings from the present 

thesis. Firstly, how much genetic effect of common genetic variants may have on brain 

phenotypes, especially the ones that are associated with MDD, is an imminent 

question that should be soon investigated. The recently released genetic and 

neuroimaging data from ENIGMA and UK Biobank may allow for genetic association 

studies to be conducted on brain phenotypes. Studies using these up-to-date datasets 

have shown that some brain phenotypes have very high SNP heritability up to 80% 

(Elliott et al. 2018). However, the earliest attempts were mainly made to investigate at 

a general level about which brain phenotypes are heritable. More sophisticated 

studies on the heritable features of brain phenotypes should be conducted to find out 

the localised genetic effects, especially for the disease-related ones. Secondly, the 

genetic studies on brain phenotypes are restricted to bulk phenotypes, genetic 
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association studies on high spatial resolution data and graph-theory features in 

functional and structural MRI data may possess large potentials in future studies.  

 

3 General conclusions 

MDD poses a major challenge in both genetic and neuroimaging fields, due to its 

clinical and causal heterogeneity, its complex genetic architecture and interactions of 

environmental associations. The small effect sizes reported for both imaging and 

genetic studies suggest a need for better diagnosis and stratification of the disorder. 

However, before any clear stratifying variable is identified, there is a necessity of using 

big samples to give robust findings in relation to the liability of the trait. The findings 

in the present thesis provided evidence of robust neurobiological associations with 

the presence of depression, depressive symptoms and polygenic risk of depression 

in white matter microstructure and resting-state connectivity, indicating a shared 

genetic aetiology of MDD and brain structural/functional connectome. Our findings 

also indicate that neurobiological alterations may be able to explain variances of 

behaviour influenced by the genetic risk, which allow more in-depth inferences 

compared with previous studies finding mere associations. Based on the findings 

presented in the thesis, finding the causal relationship between the brain’s neural 

networks, genetic risk and environmental factors should be explored in future studies. 
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Appendix 1: 

Supplementary Materials of Chapter 2: Subcortical volume and white 

matter integrity in Major Depressive Disorder (MDD): findings from UK 

Biobank imaging data 

 

Method 

MRI acquisition 

MRI data were acquired using a Siemens Skyra 3T scanner running VD13A SP4, 

with a Siemens 32-channel RF receive head coil 

(https://www.healthcare.siemens.com/magnetic-resonance-imaging). The sequence 

for the T1-weighted data was a standard 3D MPRAGE scan (Resolution = 1×1×1 

mm, FoV = 208×256×256 matrix, TR = 2000ms, TE = 2.01ms, Orientation = sagittal, 

in-plane acceleration = 2, Filter = prescan-normalise). The overall duration of T1-

weighted scanning was 5 minutes. For the DTI data, the diffusion preparation was a 

standard (“monopolar”) Stejskal-Tanner pulse sequence (Resolution = 2×2×2 mm, 

FoV = 104×104×72 matrix, TR = 3600ms, TE = 92.00ms, SE-EPI with x3 multislice 

acceleration, in-plane acceleration = off, fat saturation = on). Ten baseline volumes 

were collected (b = 0 s/mm2), with 50 b=1000 s/mm2 and 50 b=2000s/mm2. The 

overall duration was 7 minutes. 

MRI preprocessing 

The MRI preprocessing of both T1-weighted and DTI data were run by UK Biobank 

(https://ww5.aievolution.com/hbm1601/index.cfm?do=abs.viewAbs&abs=3664). 

Images were preprocessed and analysed with the FMRIB Software Library (FSL) 

(http://www.fmrib.ox.ac.uk/fsl). The IDPs from UK Biobank was released in 

September, 2016, which covered more than 8000 participants. 

To prepare the T1-weighted volumes for standard pre-processing procedures, the 

face area was removed to maintain anonymity. Following this, gradient distortion 

https://www.healthcare.siemens.com/magnetic-resonance-imaging
https://ww5.aievolution.com/hbm1601/index.cfm?do=abs.viewAbs&abs=3664
http://www.fmrib.ox.ac.uk/fsl
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correction was applied for the whole image using BET (Brain Extraction Tool) (Smith 

2002) and FLIRT (FMRIB's Linear Image Registration Tool) (Jenkinson and Smith 

2001; Jenkinson et al. 2002). The brain was non-linearly warped to the MNI152 

"nonlinear 6th generation" standard-space T1-weighted volume template, and the 

brain area of the images was then extracted using FNIRT (FMRIB's Nonlinear 

Image Registration Tool) (Andersson et al. 2007a) for segmentation. Segmentation 

of brain was conducted in two steps: firstly, a tissue-type segmentation using FAST 

(FMRIB's Automated Segmentation Tool) (Zhang et al. 2001) was applied to extract 

cerebrospinal fluid, grey matter and white matter; then subcortical structures are 

extracted using FIRST (FMRIB's Integrated Registration and Segmentation Tool) 

(Patenaude et al. 2011). The volumes of ICV, thalamus, putamen, pallidum, 

hippocampus, caudate, brain stem, amygdala and accumbens were calculated for 

further analysis. 

DTI data was initially corrected by the Eddy tool for eddy currents, head motion 

and outlier-slices (Andersson and Sotiropoulos 2015b), and the following gradient 

distortion correction was applied in the same way as it is applied on T1-weighted 

volumes. The corrected b=1000 s/mm2 shell was then used for modeling whole 

brain water diffusivity biomarkers using DTIFIT, thereby creating the FA (fractional 

anisotropy) maps.  

The DTI data we used was processed by UK biobank using a probabilistic 

tractography based method. FA maps were initially warped to standard space, and 

then the BEDPOSTx tool (Bayesian Estimation of Diffusion Parameters Obtained 

using Sampling Techniques) was used to generate the fibres derived from major 

anatomical seeds (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT/UserGuide). This maps 27 

major tracts (12 bilateral tracts in both hemispheres and 3 tracts that went across 

brain) by utilizing the standard-space start/stop ROI masks defined by AutoPtx (De 

Groot et al. 2013). 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT/UserGuide
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Statistical methods 

We used lme function in nlme package of R (Bliese 2016) to conduct repeated-effect 

linear model on the structures with bilateral measures, as hemisphere was a within-

subject variable, whereas all other covariates and the variable of interest are 

between-subject variables. The general linear model of unilateral structures was 

conducted using the default glm function of R. Choices of covariates were based on 

the recent meta-analytic studies on big samples of psychiatric illnesses (Schmaal et 

al. 2016; van Erp et al. 2016).  

Participants 

The acquisition and preprocessing were conducted by UK biobank. 5724 

participants finished T1 image acquisition and the scans were preprocessed, while 

4941 participants’ DTI images were acquired and preprocessed. After the outliers 

were excluded, there were 5403 with T1 images and 4594 with DTI images. Outlier 

exclusion was conducted within the overall sample with according imaging data 

available, therefore this step of exclusion is unbiased against the final samples 

which were consisted of only MDD cases and healthy controls. For transparency, 

the results of the main models that tested the effect of MDD definitions, with or 

without excluding outliers, were both presented in the tables below (Table S4, S5, 

S7, S8). Then the participants that had a diagnosis of Parkinson’s disease, bipolar 

disorder, multiple personality disorder, schizophrenia, autism or intellectual disability 

were also excluded.  

After the applying the filters described above, cases and controls for MDD 

definitions were chosen according to their self-reported depressive symptoms and 

hospital admission history (see below in Method, MDD definitions). Details of the 

sample and exclusions were listed in Table S3. 

MDD definitions 
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The putative MDD category summarized by Smith et al. was based on depressive 

symptoms and hospital admission history reported by participants. Self-report 

symptoms included whether they had ever been depressed or had anhedonia, 

whether they experienced a depressive period of over two weeks, and how many 

depressive episodes they had. Hospital admission history was also self-reported by 

answering whether they have seen a GP or psychiatrist for nerves, anxiety, tension or 

depression. As described in Figure S4, people were categorized into four groups: 

single episode major depression, recurrent major depression (moderate), recurrent 

major depression (severe) and absent of depression. These MDD categories were 

tested over phenotypes of lifestyle, demographics, social states, overall health 

condition and emotion disorder related personality. The results showed similar 

patterns with clinical ascertained samples (Smith et al. 2013). The tests were 

conducted in the sample of 172,751 participants of UK Biobank. Though participants 

who had imaging assessments were recruited within this pretested sample, we 

compared neuroticism level between cases and controls in the current, smaller 

sample to validate the MDD definitions we used as below. 

In addition to their MDD categories, we added another category as unspecified group. 

They reported depressive symptoms or relative hospital admission history, but did not 

meet the criteria to be categorized as MDD. They either reported of having had at 

least two weeks duration of low mood or anhedonia, and at least 2 episodes of 

depression, but had not seen a GP/psychiatrist; or reported of having had seen a 

GP/psychiatrist and had at least two weeks duration of low mood or anhedonia, but 

didn't know episodes or duration.  

For the principal definition of MDD, cases included recurrent and single-episode MDD, 

and controls included only those who were identified of being depression absent. For 

the definition of recurrent MDD, cases were only recurrent MDD, whilst the controls 

included the rest of the categories, which included single-episode MDD, depression 
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absent participants and participants who weren’t identified as MDD but self-reported 

of having had depressive symptoms or had hospital admission history of seeing a GP 

or a psychiatrist for nerves, anxiety, depression. See Figure S4. The participants who 

did not respond to any of the questions used as criteria for categorization were 

excluded. 

In the sample with T1-weighted data, MDD cases have significantly higher 

neuroticism level in both principal and recurrent MDD definition, β = 0.678, p < 2e-16; 

β = 0.555, p = 2e-16 respectively. The differences remained the same if age, age2, 

sex were set as covariates, β = 0.600, p < 2e-16; β = 0.480, p = 2.84e-13. 

Comparisons were again conducted within the sample with DTI data. They similarly 

showed that cases were more neurotic than controls in both definitions, with or without 

controlling sex and age, βs = 0.550~0.717, ps < 7.36e-16. The above neuroticism 

scores were calculated using the same method in the prevalence study by Smith et 

al (Smith et al. 2013). 

We tested separately in both MDD definitions on group differences of gender, age 

and level of education between cases and controls. Level of education was coded 

as below: A levels/AS levels = 6, O levels/GCSEs = 5, CSEs = 4, NVQ or HND or 

HNC = 3, Other qualifications =2, No respond/refuse to answer = 1. Gender 

differences were significant in both definitions (χ2
probable = 35.43, df = 1, pprobable = 

2.64e-9; χ2
recurrent = 4.74, df = 1, precurrent = 0.030 respectively for probable and 

recurrent definition for T1-weighted sample. χ2
 probable = 30.90, df = 1, pprobable = 

2.72e-8; χ2
 recurrent = 12.90, df = 1, precurrent = 3.29e-4 for DTI sample). Age differences 

were also significant (T1-weighted sample: βprobable = -0.296, pprobable = 1. 57e-6; 

βrecurrent = -0.242, precurrent = 2.57e-4; DTI sample: βprobable = -0.302, pprobable = 3.20e-6; 

βrecurrent = -0.278, precurrent = 6.81e-5). Difference of education level was not significant 

(T1-weighted sample: βprobable = 0.001, pprobable = 0.984; βrecurrent = 0.061, precurrent = 

0.387; DTI sample: βprobable = 0.012, pprobable = 0.861; βrecurrent = 0.063, precurrent = 
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0.387), and the differences were even lower when age and sex were set as 

covariates (ps > 0.369). Many previous meta-analyses included only age and sex as 

covariates, and the recent protocol paper of UKB brain imaging phenotypes stated 

that sex and age could largely influence tests. The above descriptive statistics also 

reassured that the differences of age and sex between cases and controls were 

significant, while education differences were not robustly large. Therefore, we set 

sex, age, age2 and assessment centre as covariates in all the models, whereas 

additional model to test the effect of MDD definitions on FA values included 

education level and number of release as covariates was tested, and the results 

remained the same (Table S10). 

For the findings on the PCA scores on FA, association/commissural fibres, thalamic 

radiations and projection fibres, we similarly checked the effect of self-declare 

depression. Among the DTI-data sample, there were 239 self-declare depression 

cases and 4349 controls. We found that self-declare depression cases showed 

decreased gFA (β=-0.14, p=0.026), gAF (β=-0.14, p=0.032) and gTR (β=-0.17, 

p=0.009). This self-declare status was collected based on a general report of non-

cancer illnesses on data field 20002 of UK Biobank touchscreen-assessment data 

(http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20002). This question was a general 

question to which participants were to recall all non-cancer illnesses that they had, 

and no hospital admission record was considered. Therefore was only used in 

validation tests on the findings of PCA components. 

http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20002
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Figure S1. Sample size change after each step of exclusion. The boxes with grey outline were kept for the next step. For the steps “went 

through UKB preprocess” and “After excluding outliers” , number of participants with imaging data and the numbers of subjects included as a 

case or control in both definitions were stated separately.
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Figure S2. Standardised data of subcortical volumes. Each data point represents one person/region. The number of participants excluded as 

outliers was state in Figure S1. The error bars represent +/-3 standard deviation. 
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Figure S3. Standardised data of white matter integrity. Each data point represents one person/region. The number of participants excluded as 

outliers was state in Figure S1. The error bars represent +/-3 standard deviation. 
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Figure S4. Principal definition of MDD and the definition of recurrent MDD. The 

categorization of moderate and severe recurrent major depression, single episode 

major depression and depression absent were summarized by Smith et al. (2013). An 

additional group of participants who self-reported of having had depressive 

symptoms or hospital admission history of nerves, anxiety or depression were 

categorized as ‘unspecified’. The principal definition of MDD compared all MDD 

cases with those who were depression absent, and the definition of recurrent MDD 

compared recurrent MDD verses single-episode MDD, participants who were 

depression absent and the unspecified group.
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Table S1. Descriptive statistics of imaging phenotypes. The statistics were concluded 

from the samples with imaging data regardless of MDD definitions (see Figure S1). 

Briefly, the raw T1-weighted data included 5724 people, and there were 5403 

remained after the QC. Raw DTI data included 4941 people, and 4594 remained 

after the QC. 

 

T1-weighted data: 

Tract 
Raw data  Data after QC 

Mean SD  Mean SD 

thalamus (left) 7799.39  752.42   7781.45  709.95  

thalamus (right) 7603.63  728.01   7586.65  689.60  

caudate (left) 3396.74  421.10   3382.02  399.54  

caudate (right) 3573.61  440.54   3555.72  416.01  

putamen (left) 4815.74  604.28   4808.70  567.80  

putamen (right) 4859.38  586.82   4848.13  552.87  

pallidum (left) 1763.60  243.70   1751.53  217.47  

pallidum (right) 1809.15  244.23   1798.13  218.11  

hippocampus (left) 3813.23  474.68   3817.03  438.50  

hippocampus (right) 3925.20  485.96   3926.84  450.72  

amygdala (left) 1277.81  248.99   1273.88  237.74  

amygdala (right) 1246.91  276.44   1243.24  266.44  

accumbens (left) 507.55  120.42   506.79  115.44  

accumbens (right) 402.64  111.31   402.37  107.82  

brain stem 22857.44  2764.28   22772.54  2635.68  

ICV 1203924.85  115196.69   1199108.04  110698.23  

 

DTI data: 

Tract 
Raw data   Data after QC 

Mean SD   Mean SD 

acoustic radiation (left) 0.423  0.024   0.424  0.022  

acoustic radiation (right) 0.414  0.023   0.415  0.021  

anterior thalamic radiation (left) 0.401  0.020   0.401  0.017  

anterior thalamic radiation (right) 0.393  0.019   0.394  0.017  

cingulate gyrus part of cingulum (left) 0.537  0.036   0.538  0.033  

cingulate gyrus part of cingulum (right) 0.498  0.035   0.499  0.033  

parahippocampal part of cingulum (left) 0.312  0.031   0.315  0.027  

parahippocampal part of cingulum (right) 0.311  0.033   0.314  0.028  

corticospinal tract (left) 0.547  0.025   0.548  0.022  

corticospinal tract (right) 0.541  0.026   0.542  0.022  

forceps major 0.582  0.029   0.583  0.026  

forceps minor 0.466  0.023   0.467  0.020  

inferior fronto occipital fasciculus (left) 0.476  0.025   0.477  0.020  

inferior fronto occipital fasciculus (right) 0.466  0.022   0.467  0.019  

inferior longitudinal fasciculus (left) 0.461  0.022   0.462  0.019  
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inferior longitudinal fasciculus (right) 0.452  0.021   0.453  0.018  

middle cerebellar peduncle 0.477  0.034   0.479  0.030  

medial lemniscus (left) 0.418  0.025   0.419  0.023  

medial lemniscus (right) 0.421  0.025   0.422  0.024  

posterior thalamic radiation (left) 0.458  0.022   0.459  0.020  

posterior thalamic radiation (right) 0.454  0.022   0.456  0.019  

superior longitudinal fasciculus (left) 0.442  0.023   0.443  0.020  

superior longitudinal fasciculus (right) 0.425  0.022   0.426  0.019  

superior thalamic radiation (left) 0.423  0.020   0.424  0.018  

superior thalamic radiation (right) 0.422  0.020   0.423  0.018  

uncinate fasciculus (left) 0.391  0.025   0.392  0.023  

uncinate fasciculus (right) 0.391  0.022    0.392  0.020  
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Table S2. Major depressive disorder criteria summarized by Smith et al. (2013) 

Category Criteria 

Single probable 

episode of major 

depression 

Ever depressed/down for a whole week, plus at least two weeks 

duration, plus only one episode, plus ever seen a GP or a 

psychiatrist for nerves, anxiety, depression. 

OR 

Ever anhedonia (unenthusiasm/uninterest) for a whole week, plus 

at least two weeks, plus only one episode, plus ever seen a GP or 

a psychiatrist for nerves, anxiety, depression 

Probable recurrent 

major depression 

(moderate) 

Ever depressed/down for a whole week, plus at least two weeks 

duration, plus at least two episodes, plus ever seen a GP (but not 

a psychiatrist) for nerves, anxiety, depression 

OR 

Ever anhedonia (unenthusiasm/uninterest) for a whole week, plus 

at least two weeks, plus at least two episodes, plus ever seen a 

GP (but not a psychiatrist) for nerves, anxiety, depression 

Probable recurrent 

major depression 

(severe) 

Ever depressed/down for a whole week, plus at least two weeks 

duration, plus at least two episodes, plus ever seen a psychiatrist 

for nerves, anxiety, depression 

OR 

Ever anhedonia (unenthusiasm/uninterest) for a whole week, plus 

at least two weeks, plus at least two episodes, plus ever seen a 

psychiatrist for nerves, anxiety, depression 

Depression absent 1. Mood question answered 'no' 

2. Reported symptoms but duration was too short. 

3. Reported symptoms but period was below threshold. 

4. Had not seen GP or psychiatrist and did not self-report 

depression 

Note: Participants needed to meet all four criterion to be categorized as depression absent. 
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Table S3. Demographic features of samples with T1-weighted and DTI data. The 

descriptive statistics below are summarised based on the samples that were 

analysed in the present study (see the final sample size in Figure S1). 

 

Subjects with T1-weighted data: 

 

Subjects with DTI data: 

 Principal MDD definition  Recurrent MDD definition  

 Case Control N Case Control N 

Sample size 354 803 -- 261 1196 -- 

Age (Mean±SD) 54.97±7.38 57.19±7.14 1157 54.99±7.33 56.80±7.21 1457 

Number of Male 123 433 1157 97 593 1457 

Proportion of Male (%) 34.75 53.92 37.16 49.58 

Average Education level 4.74 4.74 1157 4.78 4.69 1157 

College or University degree 

(%) 
45.48 40.72 

-- 
46.36 39.38 

-- 

A levels/AS levels (%) 13.28 15.82 -- 14.94 15.05 -- 

O levels/GCSEs (%) 18.36 21.30 -- 16.09 21.57 -- 

CSEs (%) 5.93 4.23 -- 6.13 4.68 -- 

NVQ or HND or HNC (%) 5.65 5.48 -- 5.75 5.77 -- 

Other qualifications (%) 5.65 4.61 -- 5.36 4.85 -- 

No respond/refuse to answer 

(%) 
5.65 7.85 

-- 
5.36 8.70 

-- 

 Principal MDD definition  Recurrent MDD definition  

 Case Control N Case Control N 

Sample size 335 754 -- 242 1113 -- 

Age (Mean±SD) 54.83±7.40 57.07±7.24 1089 54.63±7.34 56.69±7.24 1355 

Number of Male 119 408 1089 91 563 1355 

Proportion of Male (%) 35.52 54.11 37.60 50.58 

Average Education level 4.74 4.72 1089 4.78 4.69 1355 

College or University degree () 46.27 39.66 -- 47.93 38.90 -- 

A levels/AS levels () 12.84 16.71 -- 14.05 15.45 -- 

O levels/GCSEs () 19.10 21.22 -- 16.94 21.56 -- 

CSEs () 5.97 3.98 -- 6.20 4.58 -- 

NVQ or HND or HNC () 5.37 5.44 -- 5.37 5.84 -- 

Other qualifications () 5.97 4.91 -- 5.79 4.67 -- 

No respond/refuse to answer () 4.48 8.09 -- 3.72 8.98 -- 



Appendix 1: Supplementary materials of Chapter 2 

151 
 

Table S4. The effect of MDD definition on the volumes of subcortical regions and brain matters (without excluding outliers). The same model 

was conducted with age, age2, sex and assessment centre set as covariates. Hemisphere was also set as a covariate when appropriate. 

Sample sizes were Ncase=381, Ncontrol=849 and Ncase=280, Ncontrol=1260 for principal and recurrent definitions respectively. 

Subcortical regions 
 Principal definition   Recurrent definition 

Effect size Standard deviation t value p value pcorrected 
 Effect size Standard deviation t value p value pcorrected 

Accumbens 0.013  0.048  0.277  0.782  0.879   -0.012  0.051  -0.247  0.805  0.913  

Amygdala -0.032  0.049  -0.658  0.511  0.879   0.026  0.052  0.497  0.620  0.913  

Caudate 0.047  0.050  0.923  0.356  0.879   0.017  0.053  0.329  0.742  0.913  

Hippocampus -0.036  0.049  -0.724  0.469  0.879   -0.056  0.051  -1.089  0.276  0.829  

Pallidum 0.014  0.051  0.277  0.782  0.879   0.006  0.054  0.110  0.913  0.913  

Putamen 0.020  0.046  0.429  0.668  0.879   -0.006  0.047  -0.119  0.905  0.913  

Thalamus -0.058  0.038  -1.543  0.123  0.879   -0.067  0.040  -1.695  0.090  0.813  

Brain stem -0.007  0.051  -0.134  0.893  0.893   0.043  0.054  0.797  0.425  0.913  

ICV -0.058  0.045  -1.287  0.198  0.879   -0.062  0.048  -1.295  0.196  0.829  
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Table S5. The interaction between MDD definition and hemisphere on the volumes of subcortical regions and brain matters. In this model, 

again age, age2, sex and assessment centre were set as covariates. MDD definition, hemisphere and the interaction between MDD definition 

and hemisphere were also included in the model. As brain stem and ICV were unilateral structure/measure, therefore these two measure were 

not tested in this model. 

Subcortical regions 
 Principal definition   Recurrent definition 

Effect size Standard deviation t value p value pcorrected 
 Effect size Standard deviation t value p value pcorrected 

Accumbens -0.014  0.056  -0.250  0.803  0.907   -0.064  0.059  -1.088  0.277  0.879  

Amygdala 0.066  0.070  0.936  0.349  0.907   -0.011  0.074  -0.143  0.886  0.945  

Caudate 0.011  0.028  0.388  0.698  0.907   -0.008  0.030  -0.280  0.779  0.945  

Hippocampus 0.034  0.054  0.633  0.527  0.907   0.004  0.059  0.070  0.945  0.945  

Pallidum -0.006  0.048  -0.117  0.907  0.907   -0.015  0.051  -0.290  0.772  0.945  

Putamen -0.047  0.034  -1.383  0.167  0.907   -0.047  0.036  -1.312  0.190  0.879  

Thalamus 0.015  0.023  0.671  0.502  0.907   0.022  0.024  0.884  0.377  0.879  
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Table S6. The effect of MDD definition on FA values of DTI tracts (gFA included as a convariate). In order to test whether the significant effect of 

MDD definitions remains significant when general FA change was controlled, this model included gFA score as a covariate. The method to 

extract gFA score was stated in the main text (Methods-Statistical methods-White matter integrity). 

 

DTI tracts 

Principal definition   Recurrent definition  

Effect size 
Standard 

deviation 
t value p value pcorrected 

 
Effect size 

Standard 

deviation 
t value p value pcorrected 

Acoustic radiation 0.030 0.043 0.707 4.80E-001 0.849  0.006 0.046 0.136 8.92E-001 0.946 

Anterior thalamic radiation 0.062 0.039 1.572 1.16E-001 0.372  0.056 0.042 1.349 1.78E-001 0.568 

Cingulate gyrus part of cingulum -0.026 0.046 -0.563 5.74E-001 0.849  -0.008 0.049 -0.173 8.63E-001 0.946 

Corticospinal tract 0.003 0.051 0.053 9.58E-001 0.958  0.023 0.055 0.415 6.78E-001 0.946 

Inferior fronto-occipital fasciculus 0.029 0.031 0.928 3.53E-001 0.808  0.007 0.032 0.221 8.25E-001 0.946 

Inferior longitudinal fasciculus 0.017 0.032 0.548 5.84E-001 0.849  -0.010 0.032 -0.316 7.52E-001 0.946 

Medial lemniscus 0.007 0.056 0.117 9.07E-001 0.958  0.018 0.058 0.312 7.55E-001 0.946 

Parahippocampal part of cingulum -0.012 0.054 -0.218 8.27E-001 0.958  0.010 0.057 0.171 8.64E-001 0.946 

Posterior thalamic radiation 0.037 0.045 0.808 4.19E-001 0.839  0.013 0.047 0.265 7.91E-001 0.946 

Superior longitudinal fasciculus (bilateral) 0.006 0.035 0.174 8.62E-001 0.958  -0.021 0.038 -0.566 5.72E-001 0.946 

Superior longitudinal fasciculus (left) -0.194 0.066 -2.951 3.23E-003 0.038  -0.221 0.070 -3.165 1.59E-003 0.025 

Superior thalamic radiation -0.110 0.051 -2.168 3.03E-002 0.162  -0.077 0.053 -1.442 1.50E-001 0.568 

Uncinate fasciculus 0.013 0.040 0.330 7.42E-001 0.958  -0.003 0.043 -0.068 9.46E-001 0.946 

Forceps major -0.193 0.068 -2.834 4.69E-003 0.038  -0.133 0.072 -1.842 6.57E-002 0.350 

Forceps minor -0.112 0.065 -1.723 8.52E-002 0.341  -0.159 0.070 -2.266 2.36E-002 0.189 

Middle cerebellar peduncle -0.066 0.064 -1.024 3.06E-001 0.808  0.039 0.068 0.576 5.65E-001 0.946 
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Table S7. The effect of MDD definition on FA values of DTI tracts (Without excluding outliers). The same model for Table 2 was conducted, with 

age, age2, sex and assessment centre controlled and hemisphere also controlled when appropriate. Sample sizes were Ncase=367, Ncontrol=803 

and Ncase=269, Ncontrol=1188 for principal and recurrent definitions respectively. The standard effect sizes of significant tracts found within the 

sample that outliers were excluded remained in similar trend. Significant tracts included left superior longitudinal fasciculus, forceps major and 

superior thalamic radiation. 

 

DTI tracts 

Principal definition   Recurrent definition  

Effect size 
Standard 

deviation 
t value p value pcorrected 

 
Effect size 

Standard 

deviation 
t value p value pcorrected 

Acoustic radiation -0.055 0.052 -1.053 2.92E-001 0.425  -0.032 0.065 -0.488 6.26E-001 0.807 

Anterior thalamic radiation -0.042 0.055 -0.759 4.48E-001 0.506  -0.002 0.069 -0.024 9.81E-001 0.981 

Cingulate gyrus part of cingulum -0.072 0.054 -1.348 1.78E-001 0.376  -0.021 0.064 -0.322 7.48E-001 0.854 

Corticospinal tract -0.091 0.056 -1.626 1.04E-001 0.376  -0.071 0.061 -1.151 2.50E-001 0.807 

Inferior fronto-occipital fasciculus -0.038 0.053 -0.715 4.75E-001 0.506  0.013 0.068 0.192 8.47E-001 0.904 

Inferior longitudinal fasciculus -0.049 0.056 -0.866 3.87E-001 0.490  -0.033 0.069 -0.472 6.37E-001 0.807 

Medial lemniscus -0.083 0.054 -1.537 1.24E-001 0.376  -0.063 0.068 -0.922 3.57E-001 0.807 

Parahippocampal part of cingulum 0.014 0.053 0.258 7.96E-001 0.796  0.047 0.062 0.767 4.43E-001 0.807 

Posterior thalamic radiation -0.046 0.054 -0.845 3.98E-001 0.490  -0.044 0.067 -0.648 5.17E-001 0.807 

Superior longitudinal fasciculus (bilateral) -0.066 0.056 -1.188 2.35E-001 0.376  -0.039 0.069 -0.569 5.69E-001 0.807 

Superior longitudinal fasciculus (left) -0.107 0.058 -1.836 6.66E-002 0.355  -0.092 0.071 -1.302 1.93E-001 0.807 

Superior thalamic radiation -0.148 0.056 -2.656 8.01E-003 0.089  -0.079 0.070 -1.122 2.62E-001 0.807 

Uncinate fasciculus -0.064 0.053 -1.195 2.32E-001 0.376  -0.029 0.064 -0.447 6.55E-001 0.807 

Forceps major -0.151 0.059 -2.544 1.11E-002 0.089  -0.086 0.072 -1.197 2.31E-001 0.807 

Forceps minor -0.070 0.057 -1.226 2.21E-001 0.376  -0.066 0.072 -0.922 3.57E-001 0.807 

Middle cerebellar peduncle -0.079 0.058 -1.364 1.73E-001 0.376  0.034 0.067 0.501 6.16E-001 0.807 
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Table S8. The interaction between MDD definition and hemisphere on FA values of DTI tracts. The results below were for follow-up model to 

test whether there was a lateralised effect of MDD definition (see main text, section Methods-Statistical methods-White matter integrity). 

Forceps major and minor and middle cerebellar peduncle were not included in this analysis as they were unilateral tracts. A significant effect of 

the interaction between recurrent definition and hemisphere was found in superior longitudinal fasciculus, therefore individual tests on the FA 

values on each hemisphere of superior longitudinal fasciculus was conducted. As the effect of MDD definitions were significant on left superior 

longitudinal fasciculus, the results were added in Table 1, S6 and S7. 

 

DTI tracts 

Principal definition   Recurrent definition  

Effect size 
Standard 

deviation 
t value p value pcorrected 

 
Effect size 

Standard 

deviation 
t value p value pcorrected 

Acoustic radiation -0.108 0.063 -1.712 8.72E-002 0.348  -0.069 0.067 -1.034 3.01E-001 0.932 

Anterior thalamic radiation -0.061 0.038 -1.631 1.03E-001 0.348  -0.026 0.041 -0.631 5.28E-001 0.932 

Cingulate gyrus part of cingulum -0.026 0.063 -0.411 6.81E-001 0.894  -0.002 0.067 -0.036 9.71E-001 0.971 

Corticospinal tract -0.088 0.060 -1.459 1.45E-001 0.348  -0.033 0.066 -0.494 6.21E-001 0.932 

Inferior fronto-occipital fasciculus 0.005 0.047 0.110 9.12E-001 0.933  0.038 0.050 0.753 4.51E-001 0.932 

Inferior longitudinal fasciculus 0.012 0.038 0.325 7.45E-001 0.894  0.024 0.041 0.582 5.61E-001 0.932 

Medial lemniscus 0.021 0.036 0.579 5.63E-001 0.894  0.031 0.039 0.801 4.23E-001 0.932 

Parahippocampal part of cingulum -0.044 0.071 -0.628 5.30E-001 0.894  -0.008 0.075 -0.111 9.12E-001 0.971 

Posterior thalamic radiation -0.071 0.047 -1.517 1.30E-001 0.348  -0.008 0.050 -0.151 8.80E-001 0.971 

Superior longitudinal fasciculus 0.069 0.036 1.939 5.27E-002 0.348  0.117 0.038 3.076 2.14E-003 0.026 

Superior thalamic radiation -0.003 0.036 -0.085 9.33E-001 0.933  0.023 0.038 0.596 5.51E-001 0.932 

Uncinate fasciculus 0.021 0.057 0.369 7.12E-001 0.894  -0.005 0.062 -0.075 9.40E-001 0.971 

 

  



Appendix 1: Supplementary materials of Chapter 2 

156 
 

Table S9. The effect of MDD definition on FA values of DTI tracts (education level and release included as covariates). There was no significant 

effect of education level and number of release on the definitions of MDD (see supplementary materials, Methods-MDD definitions). However, 

in order to double check whether the results would remain the same when these factors were included, a validation test was conducted. The 

regions that were found significant in the section of results in the main text remained significant (left superior longitudinal fasciculus, forceps 

major and superior thalamic radiation). 

 

DTI tracts 

Principal definition   Recurrent definition  

Effect size 
Standard 

deviation 
t value p value pcorrected 

 
Effect size 

Standard 

deviation 
t value p value pcorrected 

Acoustic radiation -0.080 0.058 -1.371 1.71E-001 0.227  -0.089 0.062 -1.428 1.53E-001 0.239 

Anterior thalamic radiation -0.075 0.063 -1.195 2.32E-001 0.266  -0.062 0.067 -0.926 3.55E-001 0.464 

Cingulate gyrus part of cingulum -0.130 0.059 -2.198 2.82E-002 0.090  -0.100 0.063 -1.575 1.15E-001 0.205 

Corticospinal tract -0.079 0.058 -1.351 1.77E-001 0.227  -0.052 0.062 -0.832 4.06E-001 0.464 

Inferior fronto-occipital fasciculus -0.088 0.060 -1.457 1.45E-001 0.227  -0.055 0.065 -0.847 3.97E-001 0.464 

Inferior longitudinal fasciculus -0.120 0.062 -1.959 5.04E-002 0.115  -0.121 0.065 -1.849 6.47E-002 0.171 

Medial lemniscus -0.131 0.062 -2.127 3.36E-002 0.090  -0.138 0.065 -2.119 3.43E-002 0.110 

Parahippocampal part of cingulum -0.040 0.058 -0.696 4.87E-001 0.487  -0.019 0.060 -0.315 7.53E-001 0.753 

Posterior thalamic radiation -0.081 0.061 -1.327 1.85E-001 0.227  -0.090 0.065 -1.392 1.64E-001 0.239 

Superior longitudinal fasciculus (bilateral) -0.140 0.063 -2.220 2.66E-002 0.090  -0.147 0.067 -2.185 2.91E-002 0.110 

Superior longitudinal fasciculus (left) -0.192 0.066 -2.927 3.49E-003 0.027  -0.217 0.069 -3.127 1.80E-003 0.029 

Superior thalamic radiation -0.225 0.065 -3.464 5.53E-004 0.009  -0.178 0.069 -2.571 1.02E-002 0.082 

Uncinate fasciculus -0.104 0.058 -1.787 7.43E-002 0.149  -0.104 0.062 -1.679 9.33E-002 0.187 

Forceps major -0.188 0.067 -2.809 5.06E-003 0.027  -0.127 0.071 -1.784 7.47E-002 0.171 

Forceps minor -0.111 0.065 -1.702 8.91E-002 0.158  -0.156 0.070 -2.233 2.57E-002 0.110 

Middle cerebellar peduncle -0.070 0.064 -1.093 2.75E-001 0.293  0.035 0.068 0.518 6.05E-001 0.645 
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Table S10. Loadings of first latent factor of PCA on global FA, 

association/commissural fibres, thalamic radiations and projection fibres. The 

individual tracts included for these four PCA were stated in the main text (Methods-

Statistical methods-White matter integrity). All the PCA were performed on the overall 

sample after outliers were excluded to maximize the accuracy of the models in the 

largest sample possible (N=4594).  

 

Tracts 

PCA analyses 

Global FA 
Association/ 

Commissural fibres 

Thalamic 

radiations 

Projection 

fibres 

Cingulate gyrus part of cingulum (left) 0.583 0.663 -- -- 

Cingulate gyrus part of cingulum (right) 0.544 0.629 -- -- 

Inferior fronto-occipital fasciculus (left) 0.817 0.820 -- -- 

Inferior fronto-occipital fasciculus (right) 0.836 0.824 -- -- 

Inferior longitudinal fasciculus (left) 0.808 0.798 -- -- 

Inferior longitudinal fasciculus (right) 0.839 0.815 -- -- 

Parahippocampal part of cingulum (left) 0.408 0.415 -- -- 

Parahippocampal part of cingulum (right) 0.356 0.356 -- -- 

Superior longitudinal fasciculus (left) 0.798 0.788 -- -- 

Superior longitudinal fasciculus (right) 0.820 0.796 -- -- 

Uncinate fasciculus (left) 0.657 0.678 -- -- 

Uncinate fasciculus (right) 0.673 0.687 -- -- 

Forceps major 0.539 0.551 -- -- 

Forceps minor 0.784 0.782 -- -- 

Anterior thalamic radiation (left) 0.762 -- 0.784 -- 

Anterior thalamic radiation (right) 0.759 -- 0.809 -- 

Posterior thalamic radiation (left) 0.645 -- 0.761 -- 

Posterior thalamic radiation (right) 0.641 -- 0.794 -- 

Superior thalamic radiation (left) 0.636 -- 0.744 -- 

Superior thalamic radiation (right) 0.610 -- 0.744 -- 

Acoustic radiation (left) 0.607 -- -- 0.536 

Acoustic radiation (right) 0.626 -- -- 0.610 

Corticospinal tract (left) 0.554 -- -- 0.782 

Corticospinal tract (right) 0.552 -- -- 0.800 

Medial lemniscus (left) 0.237 -- -- 0.475 

Medial lemniscus (right) 0.232 -- -- 0.490 

Middle cerebellar peduncle 0.325 -- -- 0.571 
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Figure S5. Scree plot of the four PCA analyses on global FA (FA), 

association/commissural fibres (A/CF), thalamic radiations (TR) and projection fibres 

(PF). Variance explained were stated in the results of the main text. 
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Appendix 2: 

Supplementary materials of Chapter 3: White matter 

microstructure is related to the mean and within-subject variance of 

depressive symptoms 

 

Supplementary methods 

PHQ-4 questionnaire 

PHQ4 questions include: “Frequency of depressed mood in last 2 weeks”, 

“Frequency of unenthusiasm/disinterest in last 2 weeks”, “Frequency of 

tenseness/restlessness in last 2 weeks” and “Frequency of tiredness / lethargy in 

last 2 weeks”. This questionnaire assesses depression-related symptoms within a 2-

week timeframe. The sum of the score was calculated to indicate depressive 

symptoms. 

The mean time lag between the first and second occasion was 4.25 years with a 

standard deviation of 0.93 years. Between the second and third occasion, mean 

time lag was 2.59 years with a standard deviation of 0.64 years. Between the third 

and the final occasion, mean time lag was 0.95 years with a standard deviation of 

0.60 years.  

For each measure of depressive symptoms derived from cross-sectional 

assessments, mean time lag of mean level of depressive symptoms was 7.91 years 

(sd=0.97 years), variability of depressive symptoms was 7.91 years (sd=0.97 years), 

and slope of longitudinal trajectory was 7.92 years (sd=0.97 years). No significant 

difference was found for the time lags between cross-sectional assessments 

(p>0.05). Also the correlations between cross-sectional measures and time lag was 
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very small and therefore this variable was not included in the main model (r ranged 

from 0.012 to 0.032). 

dMRI measures 

The processed tracts included 12 bilateral tracts that has a value for each brain 

hemisphere (acoustic radiation, anterior thalamic radiation, cingulate gyrus part of 

cingulum, corticospinal tract, inferior fronto-occipital fasciculus, inferior longitudinal 

fasciculus, medial lemniscus, parahippocampal part of cingulum, posterior thalamic 

radiation, superior longitudinal fasciculus, superior thalamic radiation and uncinate 

fasciculus) and 3 unilateral tracts (forceps major, forceps minor and middle 

cerebellar peduncle). 

Depressive symptoms 

For the growth curve model, we used the ‘growth’ function from lavaan package 

(http://lavaan.ugent.be/tutorial/growth.html) in R (Rosseel 2012). Scaled age at each 

assessment was controlled for. The growth curve model showed good fit to the data 

(CFI = 0.989, TLI = 0.986, RMSEA = 0.031, SRMR = 0.023, Chi-square (17) = 99.419 

with a p<0.001). Longitudinal change within the whole population was in a negative 

direction but did not reach to significance (β = -0.110, p = 0.220). Both the intercept 

(β= -0.029, p = 0.007) and variance (β=0.053, p < 0.001) of the mean slope of growth 

curve model was significant. Each individual’s slope of longitudinal trajectory was 

estimated for further analysis. 

Depression-related phenotypes 

These include ‘MDD self’ (self-reported history of whether has seen a 

doctor/psychiatrist for nerves, anxiety, tension or depression , see in: 

http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=2010), ‘MDD status’ definition 

according to Smith et al (based on self-reported depressed symptoms and hospital 

http://lavaan.ugent.be/tutorial/growth.html
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=2010
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admission history, http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20126) and CIDI -

based MDD (derived from Composite International Diagnostic Interview results, UK 

Biobank used the questions but the results were self-reported, 

http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=138). CIDI MDD is the most clinical 

definition, whilst MDD broad is the most lenient and has the biggest sample size. 

Other phenotypes include MDD severity assessed by CIDI and length of depression 

(years from first to last episode). Other phenotypes include onset age for the first 

episode (http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20433) and whether had 

self-harm behaviour (http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20480). 

Coefficients for MDD phenotypes are odds ratios, and for other phenotypes are 

standardised effect sizes of glm models, and age, age2 and gender were set as 

covariates for mean depressive level and temporal change. Only gender was 

controlled for slope of longitudinal trajectory because the measure was derived 

controlling for age in the growth curve model. All MDD definitions and self-harm 

behaviour were binary variables, and other phenotypes were continuous. 

Covariates 

In addition to age, age2 and gender, we also included scanner positions for all three 

axis, alcohol consumption, smoking status and stressful life events. The covariates 

except for age and gender will be explained in detail below. All the covariates 

described here were acquired with the imaging assessments. See also Table S1, S5 

and S6. 

The scanner position was used for controlling for systematic change in the static 

magnetic field (the last four fields in: 

http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=110). These proxies for scanner 

position showed minimal correlation with our white matter phenotypes, but in order 

to achieve a better estimated model, we chose to include them in our models. 

http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20126
http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=138
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20433
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20480
http://biobank.ctsu.ox.ac.uk/crystal/label.cgi?id=110
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Alcohol consumption was self-reported weekly consumption which was used in a 

published paper on the overall UK Biobank sample of about 500k people (Clarke et 

al. 2017). We used a slightly different approach to exclude impossible numbers. In 

the referenced study, they excluded values over 5 standard deviations from mean, 

and we employed their values as upper and low thresholds instead of calculating our 

own standard deviations and mean in the sub sample with imaging data, because 

we have much smaller sample, which may introduce more noise and exclude 

excessive amount of people. 

For smoking status, we used the self-reported smoking status information 

(http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20116). Participants could chose 

from one of the four options: (a) current smoker, (b) previous smoker, (c) non-

smoker and (d) prefer not to answer. There were NAs for those did not answer. As 

the number of people who chose ‘prefer not to answer’ was very small, we did not 

transfer this into NA so to maximize our sample size. We treated this covariate as a 

categorical variable in our model. For the sensitivity analysis shown in Table S1, S4 

and S5, in order to make it easier for demonstration, we transferred it into a numeric 

variable (current smoker = 2, previous smoker =1, non-smoker = 0, prefer not to 

answer = NA). This still represent the effects of smoking to depressive symptoms 

and white matter microstructure, as it is generally believed that there should be a 

gradient effect from current smoker to non-smoker. 

Stressful life events described the number of events happened within 2 years before 

scanning session (http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=6145). Items 

include: serious illness, injury or assault to oneself, death of a close relative, death 

of a spouse or partner, marital separation/divorce and financial difficulties. 

 

  

http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=20116
http://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=6145
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Supplementary results 

Associations between measures of depressive symptoms and NODDI 

measures 

One-time assessment of depressive symptoms 

No general variation for NODDI measures was found associated with one-time 

assessment of depressive symptoms (absolute β ranged from 0.002 to 0.022, all 

pcorr > 0.159). No tract association was found either for ICVF or OD (absolute β 

ranged from 0.003 to 0.019, all pcorr > 0.191). However, ISOVF in anterior thalamic 

radiation was significantly associated with depressive symptoms (β =0.043, pcorr = 

2.49×10-4), as was the cingulate gyrus part of cingulum (β =0.028, pcorr = 0.022). 

The mean and variability of depressive symptoms derived from multiple 

assessments 

No associations were found between ISOVF, ICVF or OD (all pcorr > 0.143) and 

mean of depressive symptoms. ISOVF was associated with greater variability in 

depressive symptoms in total variance (β = 0.031, pcorr = 0.013), thalamic radiations 

(β = 0.024, pcorr = 0.030), and projection fibres (β = 0.047, pcorr = 5.11×10-4). No 

other measures were associated with variability of depressive symptoms (all pcorr > 

0.875). 

Tract-wise analysis showed that ISOVF of anterior thalamic radiations (β = 0.055, 

pcorr = 8.07×10-7), cingulate gyrus part of cingulum (β = 0.032, pcorr = 0.007) and 

uncinate fasciculus (β = 0.029, pcorr = 0.020) were associated with higher mean 

depressive symptoms. ISOVF of anterior thalamic radiation (β = 0.053, pcorr = 

1.45×10-5), cingulate gyrus part of cingulum (β = 0.036, pcorr = 0.002), superior 

thalamic radiation (β = 0.032, pcorr = 0.003), forceps major (β = 0.031, pcorr = 0.003) 
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and middle cerebellar peduncle (β = 0.048, pcorr =5.29×10-4) were both associated 

with variability. 

Longitudinal trajectory of depressive symptoms 

No general variances found associated with slope of longitudinal growth curve for all 

measures (all pcorr > 0.087). Tract-wise, superior thalamic radiation in ISOVF (β = 

0.068, pcorr = 0.004) was associated with worsening depressive symptoms over time. 

Additional analysis comparing temporal change and longitudinal change 

General variations of association fibres (gAF) was associated with both one-time 

assessment of depressive symptoms and longitudinal trajectory (see results, Figure 

3 in the main text). One-time depressive level should be contributed by (1) mean 

level and (2) temporal deviation at the time of assessment. Therefore we derived a 

proxy for temporal deviation by calculating the residuals of one-time depressive level 

from mean level. This proxy has a N of 8,309.  

We then conducted GLM using temporal change of depressive level as a factor on 

the g measures. On the other hand, longitudinal change showed association with 

gAF, gTR and gTotal in both MD and ISOVF (see Figure S3, S4 and Table S7). 

We then further conducted analysis of structural equational modelling to test how 

much variance was mediated by NODDI measures. NODDI measures include ICVF 

(intercellular volume fraction, describing neurite density), ISOVF (isotropic of free 

water volume fraction, i.e. extracellular water proportion describing the proportion of 

water outside of cellular space) and OD (orientation dispersion index, describes 

morphology of tract organisation) (Zhang et al. 2012). There are increasing interests 

on the use of NODDI measures as complementary dMRI measures in addition to FA 

and MD since these measures depict additional sources of FA and MD variations 

which conventional DTI measures cannot distinguish (Beaulieu 2002). These 
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NODDI measures are relatively new but are encouragingly robust (Zhang et al. 

2012) , and importantly have been shown to demonstrate distinct sensitivity to aging 

(Cox, Ritchie, et al. 2016) and within clinical samples (Rae et al. 2017).  

NODDI measures were set as mediators, g of white matter microstructure was the 

outcomes, and finally temporal and longitudinal changes of depressive symptoms 

were the predictors. Results were shown in Figure S6. 

Though both temporal and longitudinal change showed associations with gAF, gTR 

and gTotal, temporal change had associations with ICVF for these g measures, 

whereas the associations for longitudinal change was shown in ISOVF. Although 

both one-time measure and longitudinal trajectory had association with gAF in MD, 

they showed distinct effects in NODDI measures. We conducted an additional 

analysis for temporal change at the one-time assessments in relation to mean level 

across time (supplementary methods) to compare the differences between temporal 

and longitudinal changes in NODDI measures. We found that neurite density (ICVF) 

were more associated with temporal change, and reduced isotropic water proportion 

(ISOVF) was associate with longitudinal change (Figure S9). Neurite density is 

closely related to changeable brain structural features like myelination(Rae et al. 

2017), whereas reduced ISOVF may reflect a more severe level of the dispersed 

structure in neuronal tissue. It therefore indicate that temporal deviation at the one-

time assessment and longitudinal change may have distinct neurobiological 

reversibility and severity(Kamagata et al. 2017).  

Measures of depressive symptoms and their associations with MDD 

phenotypes 

Association with age and gender 

Depressive symptoms at the imaging assessment, as well as the mean and 

variability over time, all showed a negative association with age (β ranged from -
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0.212 to -0.143, p<1X10-6). Each measure was higher in females (Cohen's d ranged 

from -0.197 to -0.150, p<2.35X10-12, male=1, female=0), except for longitudinal 

slope of depressive symptoms (Cohen's d=-0.048, p=0.296). Its association with 

age was not tested because for better estimation of growth curve, age was 

controlled for in each time point of assessment. 

Association with MDD phenotypes 

We then tested the associations between the four measures of depressive 

symptoms and phenotypes for life-time MDD (MDD-self, MDD-status and MDD-

CIDI), (see legend of Table S8 and supplementary methods). All four measures for 

depressive symptoms were positively associated with all MDD phenotypes (odds 

ratios for a standard deviation change in each measure ranged from 1.153 to 3.414, 

p<6.15×10-16). Among the three measures, mean depressive symptoms level 

showed the largest effect sizes for association with major depression, and 

longitudinal slope showed the smallest (Table S8). Correlations between them were 

shown in Table S2. 

Effect of partial-volume contamination to FA and MD 

We observed differences of results for FA and MD. To control for possible effects of 

partial-volume contamination related to structural atrophy, we have included age 

and age2 as covariates(Smith and Nichols 2018). We also conducted an additional 

analysis including brain size as one of the covariates and the results remained 

significant for MD except for one association turned null (Figure S8). 
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Figure S1. Description of sample sizes and changes due to each step of data merging or 

outlier removal. Depre = depressive level at the imaging assessment, depre.mean = mean 

level of depressive symptoms based on multiple assessments for at least two times, 

depre.instability = standard deviation of depressive level of multiple assessments for at least 

three times, and depre.longitudinal = slope of longitudinal changes over all four times of 

assessments. 
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Figure S2. Distributions PHQ-4 and derived measures for depressive symptoms. (a) Density map for all four time points of assessments for PHQ-4. 

Instance 2 was for imaging assessment, and the depressive level acquired from this instance was used as a baseline, one-time measure for 

depressive symptoms. The mean depressive level over a minimum of two time points of assessment was also presented in this sub-figure 

(Depre.mean). (b) Density map for instability of depressive symptoms (Depre.instability). (c) Density map for the distribution of slope for longitudinal 

trajectory of depressive level over four instances (Depre.longitudinal). 
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Figure S3. Results for the main model, including results for NODDI measures. More 

descriptive statistics were shown in Table S2 and S3, results in the main text and 

supplementary results. In the heatmaps, each colour theme represents one dMRI measure. 

For the measures of depressive symptoms: depre = depressive level at the imaging 

assessment, depre.mean = mean level of depressive symptoms based on multiple 

assessments for at least two times, depre.instability = standard deviation of depressive level 

of multiple assessments for at least three times, and depre.longitudinal = slope of 

longitudinal changes over all four times of assessments. As the measures of FA, ICVF and 

OD have negative direction with MD and ISOVF, here in this figure, the effect sizes for FA, 

ICVF and OD were reversed (×-1). Significant associations after FWE correction on 15 

tracts/four g measures (pcorr<0.05) were marked with a single asterisk.  

 

  



Appendix 2: Supplementary materials of Chapter 3 

170 
 

Figure S4. Results for the main model using two different multiple correction methods. More 

descriptive statistics were shown in Table S2 and S3, results in the main text and 

supplementary results. In the heatmaps, each colour theme represents one dMRI measure. 

For the measures of depressive symptoms: depre = depressive level at the imaging 

assessment, depre.mean = mean level of depressive symptoms based on multiple 

assessments for at least two times, depre.instability = standard deviation of depressive level 

of multiple assessments for at least three times, and depre.longitudinal = slope of 

longitudinal changes over all four times of assessments. As the measures of FA, ICVF and 

OD have negative direction with MD and ISOVF, here in this figure, the effect sizes for FA, 

ICVF and OD were reversed (×-1). Significant associations after FWE correction on 15 

tracts/four g measures (pcorr<0.05) were marked with a single asterisk, and significant 

associations after FDR-correcting on all the tests within a dMRI measure (15 tracts * 4 

measures for depressive symptoms=60 tests) were marked by a double asterisk.  
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Figure S5. Results for including outliers in the sample. Outlier exclusion procedures were 

shown in methods in the main text. Significant associations appeared in this sample 

including outliers but did not in the main results described in the main text were marked with 

blue squares. No association was exclusively in the main results from which the sample 

excluded outliers. For the abbreviations and multiple correction methods, see the legend of 

Figure S2. 
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Figure S6. Variance explained by the principal components of PCA on total and subsets of 

white matter tracts. 
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Figure S7. Results for the secondary model without controlling for stressful life events, 

smoking status or alcohol consumption. Significant associations appeared in this secondary 

model but did not in the main model were marked with blue squares. Yellow squares are the 

significant associations exclusively appeared in the main model. The results may indicate 

that controlling for the four covariates helped to remove confounding/mediating factors rather 

than creating bias (more blue squares than yellow ones). More descriptive statistics were 

shown in Table S1,4 and 5. For the abbreviations and multiple correction methods, see the 

legend of Figure S2. 
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Figure S8. Results for adding brain size as a covariate. The yellow square indicates the 

significant associations exclusively appeared in the main model. No other associations 

turned null after controlling for brain size. 
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Figure S9. Mediation analysis for temporal and longitudinal change of depressive symptoms. 

Details for the analysis were stated in supplementary methods. (a) the path for mediation 

analysis. (b) mediation effect for ICVF. TC = temporal change, and LC = longitudinal change. 

(c) mediation effect for ISOVF. Bars marked by asterixis showed significant indirect effect 

through mediation. 

 

 

 

Table S1. Correlation matrix for all measures for depressive symptoms, smoking status, 

alcohol consumption, stressful life events, neuroticism and age range (time lag) for the 

multiple assessments used for generating mean level of depressive symptoms. For the 

measures of depressive symptoms: depre = depressive level at the imaging assessment, 

depre.mean = mean level of depressive symptoms based on multiple assessments for at 

least two times, depre.instability = standard deviation of depressive level of multiple 

assessments for at least three times, and depre.longitudinal = slope of longitudinal changes 

over all four times of assessments. All r>0.3 were highlighted in bold. Measures for 

depressive symptoms were correlated with one another. None of the covariates or age range 

was correlated with measures for depressive symptoms apart from neuroticism. This justifies 

that controlling for smoking status, alcohol consumption, stressful life events (SLE) would 
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serve for adjusting the effects rather than creating bias (Figure S3). For neuroticism, we did 

not find any significant association with any of the dMRI measures in the overall IDP sample 

after outliers were removed (N~=8,200, sample size varies according to the dMRI measure, 

see Table S4,5).  
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Distress 1 0.804 0.528 0.566 0.038 

-

0.015 

0.164 -- -- 

Distress.instability 0.804 1 0.732 0.447 0.056 

-

0.027 

0.19 

-

0.027 

0.032 

Distress.mean 0.528 0.732 1 0.305 0.034 

-

0.034 

0.119 

-

0.064 

0.012 

Distress.longitudinal 0.566 0.447 0.305 1 0.01 

-

0.008 

0.102 -- 0.022 

Smoking 0.038 0.056 0.034 0.01 1 0.196 -0.01 0.012 0.024 

Alcohol 

-

0.015 

-

0.027 

-

0.034 

-

0.008 

0.196 1 

-

0.057 

0.017 0.022 

SLE 0.164 0.19 0.119 0.102 -0.01 

-

0.057 

1 0.001 0.033 

N of occassions -- 

-

0.027 

-

0.064 

-- 0.012 0.017 0.001 1 -0.029 

Time lag -- 0.032 0.012 0.022 0.024 0.022 0.033 

-

0.029 

1 
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Table S2. Correlation loadings of each tract of PCA. For each dMRI measure, PCA on all tracts, association fibres, thalamic radiations and projection fibres were 

performed respectively. The loadings were reported as correlation loadings. 

 

Tract 

FA MD ICVF ISOVF OD 

gTotal gAF gTR gPF gTotal gAF gTR gPF gTotal gAF gTR gPF gTotal gAF gTR gPF gTotal gAF gTR gPF 

Parahippocampal part of cingulum 0.363 0.363 -- -- 0.47 0.575 -- -- 0.619 0.627 -- -- 0.577 0.821 -- -- 0.724 0.864 -- -- 

Parahippocampal part of cingulum 0.412 0.423 -- -- 0.444 0.55 -- -- 0.637 0.648 -- -- 0.584 0.832 -- -- 0.669 0.831 -- -- 

Forceps major 0.544 0.557 -- -- 0.502 0.562 -- -- 0.796 0.795 -- -- 0.272 0.267 -- -- 0.185 0.1 -- -- 

Cingulate gyrus part of cingulum 0.558 0.634 -- -- 0.653 0.611 -- -- 0.792 0.806 -- -- 0.419 0.248 -- -- 0.251 0.183 -- -- 

Cingulate gyrus part of cingulum 0.585 0.662 -- -- 0.657 0.626 -- -- 0.795 0.81 -- -- 0.396 0.261 -- -- 0.251 0.178 -- -- 

Uncinate fasciculus 0.654 0.675 -- -- 0.675 0.727 -- -- 0.801 0.818 -- -- 0.47 0.404 -- -- 0.48 0.445 -- -- 

Uncinate fasciculus 0.694 0.709 -- -- 0.762 0.791 -- -- 0.845 0.862 -- -- 0.531 0.427 -- -- 0.519 0.491 -- -- 

Forceps minor 0.805 0.806 -- -- 0.731 0.678 -- -- 0.912 0.928 -- -- 0.473 0.215 -- -- 0.384 0.255 -- -- 

Superior longitudinal fasciculus 0.822 0.813 -- -- 0.866 0.813 -- -- 0.933 0.935 -- -- 0.672 0.373 -- -- 0.431 0.193 -- -- 

Superior longitudinal fasciculus 0.836 0.818 -- -- 0.849 0.789 -- -- 0.93 0.93 -- -- 0.682 0.378 -- -- 0.449 0.197 -- -- 

Inferior longitudinal fasciculus 0.827 0.821 -- -- 0.872 0.872 -- -- 0.939 0.942 -- -- 0.696 0.453 -- -- 0.511 0.407 -- -- 

Inferior fronto-occipital fasciculus 0.817 0.824 -- -- 0.865 0.854 -- -- 0.942 0.948 -- -- 0.68 0.439 -- -- 0.477 0.379 -- -- 
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Inferior longitudinal fasciculus 0.852 0.833 -- -- 0.91 0.892 -- -- 0.946 0.944 -- -- 0.753 0.48 -- -- 0.561 0.458 -- -- 

Inferior fronto-occipital fasciculus 0.853 0.843 -- -- 0.912 0.884 -- -- 0.953 0.956 -- -- 0.708 0.45 -- -- 0.516 0.401 -- -- 

Superior thalamic radiation 0.661 -- 0.75 -- 0.778 -- 0.853 -- 0.881 -- 0.923 -- 0.626 -- 0.708 -- 0.512 -- 0.902 -- 

Superior thalamic radiation 0.645 -- 0.752 -- 0.74 -- 0.829 -- 0.87 -- 0.918 -- 0.598 -- 0.698 -- 0.52 -- 0.911 -- 

Posterior thalamic radiation 0.681 -- 0.778 -- 0.762 -- 0.86 -- 0.877 -- 0.9 -- 0.64 -- 0.867 -- 0.41 -- 0.287 -- 

Posterior thalamic radiation 0.683 -- 0.805 -- 0.778 -- 0.882 -- 0.879 -- 0.905 -- 0.675 -- 0.888 -- 0.429 -- 0.349 -- 

Anterior thalamic radiation 0.78 -- 0.806 -- 0.841 -- 0.864 -- 0.906 -- 0.936 -- 0.624 -- 0.618 -- 0.536 -- 0.587 -- 

Anterior thalamic radiation 0.775 -- 0.818 -- 0.833 -- 0.87 -- 0.898 -- 0.931 -- 0.629 -- 0.651 -- 0.557 -- 0.669 -- 

Medial lemniscus 0.267 -- -- 0.501 0.209 -- -- 0.169 0.49 -- -- 0.721 0.349 -- -- 0.262 0.223 -- -- 0.288 

Medial lemniscus 0.287 -- -- 0.534 0.183 -- -- 0.137 0.481 -- -- 0.719 0.36 -- -- 0.258 0.292 -- -- 0.328 

Middle cerebellar peduncle 0.359 -- -- 0.545 0.305 -- -- 0.975 0.53 -- -- 0.738 0.331 -- -- 0.972 0.345 -- -- 0.781 

Acoustic radiation 0.623 -- -- 0.553 0.512 -- -- 0.241 0.876 -- -- 0.867 0.317 -- -- 0.039 0.324 -- -- 0.355 

Acoustic radiation 0.646 -- -- 0.619 0.546 -- -- 0.199 0.873 -- -- 0.874 0.366 -- -- -0.007 0.37 -- -- 0.361 

Corticospinal tract 0.566 -- -- 0.809 0.59 -- -- 0.237 0.787 -- -- 0.852 0.351 -- -- 0.039 0.425 -- -- 0.629 

Corticospinal tract 0.574 -- -- 0.828 0.593 -- -- 0.237 0.771 -- -- 0.843 0.412 -- -- 0.075 0.454 -- -- 0.654 
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Table S3. Main results for DTI measures (FA and MD). Betas were standardised effect sizes. P values were un-corrected p values. All pcorrected<0.05 were 

marked by asterixis. FDR correction was applied on subsets of brain measures within a unit of a whole brain (n=15 for tract analysis, and n=4 for g 

analysis). For the measures of depressive symptoms: depre = depressive level at the imaging assessment, depre.mean = mean level of depressive 

symptoms based on multiple assessments for at least two times, depre.instability = standard deviation of depressive level of multiple assessments for at 

least three times, and depre.longitudinal = slope of longitudinal changes over all four times of assessments. 

 

    Depre Depre.mean Depre.instability Depre.longitudinal 

Tract name Measure Beta p Beta p Beta p Beta p 

g.Total 

FA -0.011 (0.011) 0.315 -0.004 (0.011) 0.735 -0.01 (0.012) 0.394 -0.022 (0.023) 0.341 

MD 0.028 (0.01) 0.008* 0.015 (0.011) 0.146 0.022 (0.011) 0.046 0.056 (0.023) 0.014* 

g.AF 

FA -0.009 (0.011) 0.393 -0.003 (0.011) 0.8 -0.007 (0.012) 0.531 -0.024 (0.023) 0.302 

MD 0.023 (0.011) 0.032* 0.011 (0.011) 0.323 0.016 (0.011) 0.172 0.05 (0.023) 0.026* 

g.TR 

FA -0.024 (0.011) 0.029 -0.02 (0.011) 0.072 -0.023 (0.012) 0.052 -0.021 (0.023) 0.361 

MD 0.029 (0.01) 0.003* 0.021 (0.01) 0.031 0.024 (0.01) 0.022* 0.053 (0.022) 0.016* 

g.PF 

FA 0.003 (0.011) 0.802 0.012 (0.011) 0.262 -1.41e-04 (0.012) 0.99 -0.004 (0.022) 0.873 

MD 0.013 (0.011) 0.259 0.012 (0.011) 0.3 0.045 (0.012) 2.05e-04* 0.034 (0.022) 0.122 

          

Acoustic radiation FA 0.003 (0.01) 0.784 0.009 (0.01) 0.333 0.003 (0.01) 0.783 -0.019 (0.019) 0.336 
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MD 0.016 (0.01) 0.102 6.63e-04 (0.01) 0.945 0.005 (0.01) 0.646 0.023 (0.019) 0.225 

Anterior thalamic radiation 

FA -0.021 (0.01) 0.05 -0.018 (0.011) 0.091 -0.017 (0.011) 0.145 -0.018 (0.022) 0.413 

MD 0.036 (0.01) 1.48e-04* 0.032 (0.01) 8.90e-04* 0.032 (0.01) 0.002* 0.05 (0.022) 0.024 

Cingulate gyrus part of cingulum 

FA 4.43e-04 (0.01) 0.964 0.006 (0.01) 0.546 0.004 (0.011) 0.702 -0.01 (0.02) 0.614 

MD 0.027 (0.01) 0.005* 0.013 (0.01) 0.193 0.02 (0.011) 0.057 0.03 (0.02) 0.13 

Parahippocampal part of cingulum 

FA -0.003 (0.01) 0.749 -4.52e-04 (0.01) 0.964 -0.004 (0.011) 0.741 -0.014 (0.02) 0.476 

MD 0.006 (0.01) 0.541 -0.004 (0.01) 0.676 -0.001 (0.011) 0.919 0.025 (0.02) 0.195 

Corticospinal tract 

FA 0.003 (0.01) 0.759 0.01 (0.01) 0.343 0.003 (0.011) 0.758 0.007 (0.021) 0.735 

MD 0.031 (0.01) 0.003* 0.02 (0.011) 0.055 0.021 (0.012) 0.075 0.049 (0.02) 0.016 

Inferior fronto occipital fasciculus 

FA -0.009 (0.011) 0.405 -0.004 (0.011) 0.683 -0.01 (0.011) 0.387 -0.019 (0.022) 0.384 

MD 0.021 (0.01) 0.037 0.01 (0.01) 0.319 0.015 (0.011) 0.171 0.036 (0.021) 0.094 

Inferior longitudinal fasciculus 

FA -0.013 (0.01) 0.212 -0.01 (0.011) 0.332 -0.011 (0.011) 0.343 -0.017 (0.022) 0.455 

MD 0.019 (0.01) 0.056 0.007 (0.01) 0.473 0.009 (0.011) 0.414 0.036 (0.021) 0.097 

Medial lemniscus 

FA -0.001 (0.009) 0.897 0.004 (0.01) 0.656 0.002 (0.01) 0.852 0.006 (0.019) 0.76 

MD -0.002 (0.01) 0.841 -0.011 (0.01) 0.255 -0.007 (0.011) 0.493 0.018 (0.019) 0.356 

Posterior thalamic radiation 

FA -0.026 (0.01) 0.01 -0.026 (0.01) 0.013 -0.021 (0.011) 0.054 -0.019 (0.021) 0.365 

MD 0.017 (0.01) 0.07 0.009 (0.01) 0.344 0.013 (0.01) 0.218 0.04 (0.021) 0.055 
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Superior longitudinal fasciculus 

FA -0.013 (0.011) 0.217 -0.005 (0.011) 0.61 -0.011 (0.011) 0.332 -0.031 (0.022) 0.162 

MD 0.022 (0.01) 0.036 0.01 (0.01) 0.342 0.014 (0.011) 0.209 0.039 (0.022) 0.08 

Superior thalamic radiation 

FA -0.007 (0.011) 0.488 -6.68e-04 (0.011) 0.951 -0.016 (0.012) 0.183 -0.011 (0.022) 0.609 

MD 0.024 (0.009) 0.008* 0.016 (0.009) 0.081 0.02 (0.01) 0.041 0.051 (0.02) 0.013 

Uncinate fasciculus 

FA 0.002 (0.01) 0.859 0.008 (0.01) 0.41 0.003 (0.011) 0.8 -0.012 (0.021) 0.572 

MD 0.018 (0.009) 0.053 0.013 (0.01) 0.159 0.014 (0.01) 0.165 0.04 (0.02) 0.047 

Forceps major 

FA -0.014 (0.011) 0.189 -0.023 (0.011) 0.04 -0.025 (0.012) 0.035 -0.023 (0.022) 0.298 

MD 0.017 (0.011) 0.128 0.025 (0.011) 0.027 0.03 (0.012) 0.012 0.052 (0.022) 0.018 

Forceps minor 

FA -0.017 (0.011) 0.132 -0.005 (0.011) 0.655 -0.007 (0.012) 0.557 -0.006 (0.023) 0.801 

MD 0.014 (0.011) 0.183 -0.001 (0.011) 0.897 0.002 (0.011) 0.831 0.024 (0.022) 0.263 

Middle cerebellar peduncle 

FA 0.002 (0.011) 0.841 0.008 (0.011) 0.505 -0.013 (0.012) 0.301 -0.009 (0.023) 0.702 

MD 0.009 (0.011) 0.412 0.012 (0.011) 0.305 0.045 (0.012) 2.05e-04* 0.028 (0.022) 0.207 
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Table S4. Main results for NODDI measures (ICVF, ISOVF, and OD). Betas were standardised effect sizes. P values were un-corrected p values. All 

pcorrected<0.05 were marked by asterixis. FDR correction was applied on subsets of brain measures within a unit of a whole brain (n=15 for tract 

analysis, and n=4 for g analysis). For the abbreviations of measures for depressive symptoms, see the legend of Table S2. 

 

    Depre Depre.mean Depre.instability Depre.longitudinal 

Tract name Measure Beta p Beta p Beta p Beta p 

g.Total 

ICVF -0.016 (0.011) 0.157 -0.003 (0.011) 0.8 -0.002 (0.012) 0.858 -0.031 (0.023) 0.19 

ISOVF 0.021 (0.01) 0.04 0.022 (0.011) 0.036 0.031 (0.011) 0.006* 0.045 (0.022) 0.044 

OD -0.009 (0.011) 0.406 -2.83e-04 (0.011) 0.979 -4.74e-04 (0.012) 0.967 -0.028 (0.021) 0.2 

g.AF 

ICVF -0.014 (0.011) 0.2 -0.001 (0.011) 0.909 -0.002 (0.012) 0.875 -0.032 (0.023) 0.175 

ISOVF 0.017 (0.011) 0.119 0.016 (0.011) 0.144 0.012 (0.012) 0.302 0.02 (0.023) 0.376 

OD 0.002 (0.011) 0.825 0.012 (0.011) 0.278 0.007 (0.012) 0.552 -0.013 (0.022) 0.533 

g.TR 

ICVF -0.022 (0.011) 0.044 -0.012 (0.011) 0.259 -0.008 (0.012) 0.48 -0.03 (0.023) 0.188 

ISOVF 0.015 (0.01) 0.117 0.017 (0.01) 0.078 0.024 (0.011) 0.022* 0.047 (0.021) 0.025 

OD -0.016 (0.01) 0.124 -0.014 (0.01) 0.176 -0.003 (0.011) 0.754 -0.035 (0.021) 0.097 

g.PF 

ICVF -0.008 (0.011) 0.484 0.007 (0.011) 0.506 0.008 (0.012) 0.502 -0.019 (0.023) 0.387 

ISOVF 0.007 (0.011) 0.516 0.01 (0.011) 0.39 0.047 (0.012) 1.28e-04* 0.025 (0.023) 0.27 
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OD -0.012 (0.011) 0.275 -0.011 (0.011) 0.319 -0.011 (0.012) 0.356 -0.013 (0.022) 0.541 

          

Acoustic radiation 

ICVF -0.009 (0.011) 0.39 0.006 (0.011) 0.587 0.004 (0.012) 0.746 -0.028 (0.022) 0.213 

ISOVF 0.01 (0.009) 0.302 0.004 (0.01) 0.662 0.007 (0.01) 0.497 0.012 (0.019) 0.539 

OD -0.018 (0.009) 0.051 -0.008 (0.009) 0.41 -0.003 (0.01) 0.756 -0.006 (0.018) 0.756 

Anterior thalamic 

radiation 

ICVF -0.015 (0.01) 0.157 -0.005 (0.01) 0.612 -0.004 (0.011) 0.706 -0.029 (0.023) 0.204 

ISOVF 0.043 (0.01) 1.66e-05* 0.055 (0.01) 5.38e-08* 0.053 (0.011) 9.65e-07* 0.051 (0.021) 0.016 

OD -0.015 (0.01) 0.151 -0.007 (0.01) 0.475 -0.012 (0.011) 0.262 -0.037 (0.021) 0.078 

Cingulate gyrus part 

of cingulum 

ICVF -0.004 (0.01) 0.733 0.01 (0.01) 0.351 0.01 (0.011) 0.398 -0.024 (0.022) 0.268 

ISOVF 0.028 (0.009) 0.003* 0.032 (0.01) 9.93e-04* 0.036 (0.01) 4.60e-04* 0.003 (0.019) 0.895 

OD -0.008 (0.009) 0.398 -0.005 (0.009) 0.552 -0.011 (0.01) 0.26 -0.007 (0.018) 0.681 

Parahippocampal 

part of cingulum 

ICVF 0.007 (0.01) 0.474 0.021 (0.01) 0.043 0.01 (0.011) 0.362 -0.028 (0.021) 0.174 

ISOVF 0.011 (0.01) 0.261 0.007 (0.01) 0.452 0.002 (0.01) 0.815 0.008 (0.019) 0.686 

OD 0.009 (0.009) 0.302 0.018 (0.009) 0.058 0.012 (0.01) 0.221 -0.001 (0.019) 0.954 

Corticospinal tract 

ICVF -0.01 (0.011) 0.351 0.003 (0.011) 0.819 0.005 (0.012) 0.678 -0.005 (0.021) 0.799 

ISOVF 0.02 (0.01) 0.053 0.017 (0.01) 0.092 0.019 (0.011) 0.081 0.052 (0.021) 0.011 

OD -0.013 (0.01) 0.195 -0.019 (0.01) 0.059 -0.01 (0.011) 0.36 -0.021 (0.02) 0.286 
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Inferior fronto 

occipital fasciculus 

ICVF -0.018 (0.011) 0.095 -0.006 (0.011) 0.572 -0.005 (0.012) 0.643 -0.031 (0.023) 0.166 

ISOVF 0.002 (0.01) 0.88 0.01 (0.01) 0.339 0.017 (0.011) 0.13 0.015 (0.021) 0.484 

OD -0.027 (0.01) 0.007 -0.019 (0.01) 0.064 -0.01 (0.011) 0.354 -0.042 (0.02) 0.039 

Inferior longitudinal 

fasciculus 

ICVF -0.017 (0.011) 0.117 -0.006 (0.011) 0.585 -0.006 (0.012) 0.596 -0.029 (0.023) 0.207 

ISOVF 0.007 (0.01) 0.529 0.009 (0.011) 0.416 0.006 (0.011) 0.582 0.021 (0.022) 0.337 

OD -0.024 (0.01) 0.018 -0.011 (0.01) 0.286 -0.011 (0.011) 0.313 -0.051 (0.02) 0.013 

Medial lemniscus 

ICVF 0.003 (0.009) 0.735 0.014 (0.01) 0.139 0.015 (0.01) 0.142 -0.004 (0.019) 0.824 

ISOVF -0.004 (0.01) 0.645 -0.01 (0.01) 0.332 -0.004 (0.011) 0.718 0.011 (0.02) 0.581 

OD 0.023 (0.01) 0.023 0.027 (0.01) 0.01 0.019 (0.011) 0.093 -0.016 (0.02) 0.43 

Posterior thalamic 

radiation 

ICVF -0.025 (0.011) 0.021 -0.019 (0.011) 0.085 -0.014 (0.012) 0.239 -0.033 (0.022) 0.136 

ISOVF 0.002 (0.01) 0.8 0.001 (0.01) 0.904 0.007 (0.011) 0.51 0.024 (0.02) 0.232 

OD -0.01 (0.01) 0.303 0.003 (0.01) 0.777 9.53e-04 (0.01) 0.927 -0.038 (0.02) 0.053 

Superior 

longitudinal 

fasciculus 

ICVF -0.016 (0.011) 0.136 -0.005 (0.011) 0.648 -0.005 (0.012) 0.702 -0.022 (0.023) 0.342 

ISOVF 0.019 (0.01) 0.051 0.019 (0.01) 0.065 0.021 (0.011) 0.056 0.052 (0.02) 0.012 

OD -0.009 (0.009) 0.31 -0.009 (0.009) 0.344 -0.002 (0.01) 0.817 5.94e-04 (0.019) 0.974 

Superior thalamic 

radiation 

ICVF -0.02 (0.01) 0.055 -0.01 (0.011) 0.369 -0.004 (0.011) 0.711 -0.02 (0.023) 0.375 

ISOVF 0.019 (0.009) 0.03 0.022 (0.009) 0.014 0.032 (0.009) 7.43e-04* 0.068 (0.019) 2.66e-04* 
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OD -0.012 (0.01) 0.241 -0.014 (0.01) 0.169 4.93e-04 (0.011) 0.964 -0.023 (0.02) 0.255 

Uncinate fasciculus 

ICVF -0.009 (0.01) 0.36 -9.03e-04 (0.01) 0.931 -0.004 (0.011) 0.699 -0.031 (0.022) 0.147 

ISOVF 0.022 (0.01) 0.028 0.029 (0.01) 0.004* 0.025 (0.011) 0.022 0.015 (0.019) 0.444 

OD -0.015 (0.009) 0.12 -0.016 (0.01) 0.092 -0.016 (0.01) 0.121 -0.03 (0.019) 0.119 

Forceps major 

ICVF -0.018 (0.011) 0.119 -0.013 (0.011) 0.245 -0.01 (0.012) 0.406 -0.041 (0.024) 0.079 

ISOVF 0.011 (0.011) 0.313 0.025 (0.011) 0.021 0.031 (0.012) 0.009* 0.044 (0.022) 0.045 

OD -0.019 (0.011) 0.077 -0.004 (0.011) 0.728 0.002 (0.012) 0.876 -0.014 (0.021) 0.501 

Forceps minor 

ICVF -0.015 (0.011) 0.172 -0.002 (0.011) 0.843 -3.67e-04 (0.012) 0.975 -0.02 (0.023) 0.379 

ISOVF 0.006 (0.01) 0.559 0.006 (0.01) 0.597 0.011 (0.011) 0.339 0.006 (0.021) 0.76 

OD -0.01 (0.011) 0.342 -0.012 (0.011) 0.278 -0.008 (0.012) 0.483 -0.045 (0.022) 0.04 

Middle cerebellar 

peduncle 

ICVF -0.003 (0.011) 0.75 0.003 (0.011) 0.782 0.006 (0.011) 0.624 -0.02 (0.02) 0.332 

ISOVF 0.008 (0.011) 0.455 0.012 (0.011) 0.299 0.048 (0.012) 7.06e-05* 0.024 (0.023) 0.292 

OD -0.006 (0.011) 0.568 -0.007 (0.011) 0.553 -0.013 (0.012) 0.296 0.002 (0.023) 0.942 
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Table S5. The effects of stressful life events (SLE), neuroticism, smoking status and alcohol consumption as covariates for DTI measures. The test 

was conducted on the full sample of IDP from UK Biobank imaging team, without outlier exclusion or phenotypic data merging (N~=8,200). Betas 

were standardised effect sizes. P values were un-corrected p values. All pcorrected<0.05 were marked by asterixis. FDR correction was applied on 

subsets of brain measures within a unit of a whole brain (n=15 for tract analysis, and n=4 for g analysis). 

 

    SLE Smoking Alcohol 

Tract name Measure Beta p Beta p Beta p 

g.Total 

FA -0.015 (0.015) 0.318 -0.025 (0.019) 0.18 -3.03e-04 (7.61e-04) 0.691 

MD 0.01 (0.015) 0.514 0.034 (0.018) 0.057 0.004 (7.26e-04) 1.01e-06* 

g.AF 

FA -0.02 (0.015) 0.187 -0.028 (0.019) 0.139 -7.39e-04 (7.58e-04) 0.329 

MD 0.013 (0.015) 0.401 0.023 (0.018) 0.207 0.003 (7.40e-04) 4.76e-04* 

g.TR 

FA -0.002 (0.016) 0.921 -0.04 (0.019) 0.034 -0.001 (7.69e-04) 0.058 

MD 0.009 (0.014) 0.525 0.053 (0.017) 0.001* 0.004 (6.74e-04) 2.70e-11* 

g.PF 

FA -0.003 (0.015) 0.867 6.36e-04 (0.019) 0.973 0.002 (7.56e-04) 0.001* 

MD -0.003 (0.016) 0.859 0.078 (0.019) 4.63e-05* 0.004 (7.79e-04) 7.85e-07* 

        

Acoustic radiation FA -0.028 (0.014) 0.042 0.015 (0.017) 0.359 9.89e-04 (6.72e-04) 0.141 
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MD 0.011 (0.013) 0.417 -0.028 (0.017) 0.092 3.57e-04 (6.67e-04) 0.592 

Anterior thalamic radiation 

FA -0.006 (0.015) 0.689 0.009 (0.018) 0.636 -0.002 (7.28e-04) 0.008* 

MD 0.001 (0.013) 0.919 0.012 (0.016) 0.476 0.003 (6.63e-04) 6.98e-07* 

Cingulate gyrus part of cingulum 

FA -0.015 (0.014) 0.287 -0.036 (0.017) 0.033 -8.71e-04 (6.78e-04) 0.199 

MD 0.003 (0.014) 0.829 0.016 (0.017) 0.333 5.62e-04 (6.76e-04) 0.406 

Parahippocampal part of cingulum 

FA -0.014 (0.014) 0.308 -0.025 (0.017) 0.146 0.001 (6.82e-04) 0.081 

MD 0.016 (0.014) 0.24 0.022 (0.017) 0.19 4.79e-05 (6.70e-04) 0.943 

Corticospinal tract 

FA 0.007 (0.015) 0.614 -0.02 (0.018) 0.267 0.002 (7.22e-04) 5.90e-04* 

MD -0.004 (0.015) 0.79 6.30e-04 (0.018) 0.972 0.002 (7.27e-04) 0.022* 

Inferior fronto occipital fasciculus 

FA -0.002 (0.015) 0.895 -0.023 (0.018) 0.214 -1.61e-04 (7.32e-04) 0.825 

MD 0.002 (0.014) 0.871 0.022 (0.018) 0.205 0.003 (7.07e-04) 2.35e-05* 

Inferior longitudinal fasciculus 

FA -0.009 (0.015) 0.544 -0.029 (0.018) 0.113 -3.95e-04 (7.28e-04) 0.588 

MD 0.008 (0.014) 0.584 0.013 (0.018) 0.454 0.003 (7.07e-04) 4.01e-06* 

Medial lemniscus 

FA 0.006 (0.013) 0.646 -0.002 (0.016) 0.887 5.77e-04 (6.61e-04) 0.383 

MD -0.032 (0.014) 0.018 0.001 (0.017) 0.933 6.84e-04 (6.79e-04) 0.314 

Posterior thalamic radiation 

FA -0.01 (0.014) 0.481 -0.073 (0.018) 3.65e-05* -0.001 (7.09e-04) 0.037 

MD 0.017 (0.014) 0.222 0.069 (0.017) 3.17e-05* 0.004 (6.71e-04) 3.82e-11* 
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Superior longitudinal fasciculus 

FA -0.027 (0.015) 0.071 -0.011 (0.018) 0.559 -2.87e-04 (7.35e-04) 0.696 

MD 0.006 (0.014) 0.662 0.012 (0.018) 0.497 0.002 (7.16e-04) 0.001* 

Superior thalamic radiation 

FA 0.005 (0.015) 0.748 -0.036 (0.019) 0.053 5.97e-04 (7.53e-04) 0.428 

MD 0.005 (0.013) 0.71 0.045 (0.016) 0.004* 0.003 (6.31e-04) 1.17e-05* 

Uncinate fasciculus 

FA -0.024 (0.014) 0.089 2.29e-04 (0.017) 0.989 -8.46e-04 (6.87e-04) 0.218 

MD 0.002 (0.013) 0.859 -0.008 (0.016) 0.623 0.002 (6.58e-04) 4.13e-04* 

Forceps major 

FA -0.041 (0.015) 0.009 -0.014 (0.019) 0.456 4.88e-05 (7.65e-04) 0.949 

MD 0.026 (0.015) 0.094 0.015 (0.019) 0.43 0.002 (7.62e-04) 0.034* 

Forceps minor 

FA -3.77e-04 (0.015) 0.981 -0.016 (0.019) 0.41 -0.002 (7.66e-04) 0.049 

MD -0.002 (0.015) 0.882 0.031 (0.018) 0.09 0.002 (7.36e-04) 0.005* 

Middle cerebellar peduncle 

FA -0.007 (0.016) 0.676 0.006 (0.019) 0.776 0.002 (7.79e-04) 0.007* 

MD -0.001 (0.016) 0.935 0.084 (0.019) 1.38e-05* 0.004 (7.81e-04) 1.91e-06* 
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Table S6. The effects of stressful life events (SLE), neuroticism, smoking status and alcohol consumption as covariates for NODDI measures. The test was 

conducted on the full sample of IDP from UK Biobank imaging team, without outlier exclusion or phenotypic data merging (N~=8,200). Betas were 

standardised effect sizes. P values were un-corrected p values. All pcorrected<0.05 were marked by asterixis. FDR correction was applied on subsets of brain 

measures within a unit of a whole brain (n=15 for tract analysis, and n=4 for g analysis). 

 

    SLE Smoking Alcohol 

Tract name Measure Beta p Beta p Beta p 

g.Total 

ICVF -0.014 (0.015) 0.368 -0.027 (0.019) 0.16 -0.002 (7.62e-04) 0.002* 

ISOVF 7.46e-04 (0.015) 0.959 0.016 (0.018) 0.385 0.003 (7.27e-04) 3.76e-05* 

OD 0.015 (0.015) 0.334 0.028 (0.018) 0.133 -0.003 (7.46e-04) 4.04e-06* 

g.AF 

ICVF -0.015 (0.015) 0.329 -0.024 (0.019) 0.203 -0.002 (7.63e-04) 0.002* 

ISOVF 0.008 (0.015) 0.586 3.25e-04 (0.019) 0.986 3.19e-04 (7.64e-04) 0.676 

OD 0.015 (0.015) 0.327 0.038 (0.018) 0.038 -0.002 (7.42e-04) 0.001* 

g.TR 

ICVF -0.011 (0.015) 0.466 -0.03 (0.018) 0.105 -0.003 (7.45e-04) 2.78e-04* 

ISOVF 0.008 (0.014) 0.553 0.043 (0.017) 0.01* 0.004 (6.82e-04) 5.39e-11* 

OD -0.003 (0.014) 0.823 0.02 (0.018) 0.25 -0.002 (7.12e-04) 7.06e-04* 

g.PF ICVF -0.009 (0.015) 0.571 -0.025 (0.019) 0.185 -6.51e-04 (7.61e-04) 0.392 
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ISOVF -0.007 (0.016) 0.638 0.08 (0.019) 3.60e-05* 0.004 (7.79e-04) 1.75e-06* 

OD 0.002 (0.015) 0.913 -0.023 (0.019) 0.211 -0.004 (7.57e-04) 2.71e-07* 

        

Acoustic radiation 

ICVF -0.018 (0.015) 0.217 -0.019 (0.018) 0.304 -0.001 (7.40e-04) 0.073 

ISOVF 0.003 (0.013) 0.85 -0.043 (0.016) 0.009* -1.76e-04 (6.59e-04) 0.789 

OD 0.022 (0.013) 0.084 -0.034 (0.016) 0.031 -0.002 (6.38e-04) 0.012* 

Anterior thalamic radiation 

ICVF -0.011 (0.014) 0.46 -0.002 (0.018) 0.89 -0.002 (7.15e-04) 0.002* 

ISOVF -0.012 (0.014) 0.388 0.017 (0.017) 0.334 0.003 (6.90e-04) 1.35e-05* 

OD 0.007 (0.014) 0.638 -3.21e-04 (0.018) 0.985 1.74e-04 (7.11e-04) 0.807 

Cingulate gyrus part of cingulum 

ICVF -0.017 (0.015) 0.238 -0.024 (0.018) 0.175 -0.001 (7.20e-04) 0.156 

ISOVF -0.017 (0.013) 0.21 -0.001 (0.016) 0.951 1.10e-04 (6.56e-04) 0.866 

OD 0.01 (0.013) 0.442 0.027 (0.016) 0.084 1.44e-04 (6.31e-04) 0.819 

Parahippocampal part of cingulum 

ICVF -0.01 (0.014) 0.507 -0.018 (0.018) 0.301 -8.63e-04 (7.10e-04) 0.224 

ISOVF 0.012 (0.013) 0.379 0.016 (0.016) 0.34 -3.81e-04 (6.65e-04) 0.567 

OD 0.009 (0.013) 0.472 0.025 (0.016) 0.112 -0.002 (6.41e-04) 0.01* 

Corticospinal tract 

ICVF -0.012 (0.015) 0.423 -0.037 (0.019) 0.051 -5.42e-04 (7.62e-04) 0.477 

ISOVF -0.008 (0.014) 0.567 -0.015 (0.017) 0.389 0.001 (7.03e-04) 0.051 

OD -0.02 (0.014) 0.155 0.01 (0.017) 0.544 -0.004 (6.97e-04) 2.59e-07* 
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Inferior fronto occipital fasciculus 

ICVF -0.011 (0.015) 0.46 -0.028 (0.019) 0.133 -0.002 (7.48e-04) 0.002* 

ISOVF -0.011 (0.015) 0.462 -0.013 (0.018) 0.482 0.002 (7.18e-04) 0.002* 

OD -0.003 (0.014) 0.831 4.89e-04 (0.017) 0.978 -0.003 (7.01e-04) 4.13e-05* 

Inferior longitudinal fasciculus 

ICVF -0.011 (0.015) 0.461 -0.026 (0.019) 0.158 -0.002 (7.54e-04) 0.003* 

ISOVF -0.001 (0.015) 0.931 -0.015 (0.018) 0.411 0.002 (7.21e-04) 5.48e-04* 

OD 0.002 (0.014) 0.882 0.015 (0.017) 0.402 -0.003 (7.05e-04) 6.46e-06* 

Medial lemniscus 

ICVF 0.016 (0.013) 0.228 -0.006 (0.016) 0.72 0.002 (6.52e-04) 0.012* 

ISOVF -0.022 (0.014) 0.106 0.002 (0.017) 0.897 0.001 (6.79e-04) 0.053 

OD -0.002 (0.014) 0.912 0.026 (0.018) 0.135 7.01e-04 (7.12e-04) 0.325 

Posterior thalamic radiation 

ICVF -0.007 (0.015) 0.636 -0.047 (0.018) 0.011 -0.002 (7.44e-04) 0.002* 

ISOVF 0.017 (0.014) 0.213 0.052 (0.017) 0.002* 0.004 (6.70e-04) 1.07e-09* 

OD 0.005 (0.013) 0.712 0.027 (0.017) 0.103 -0.002 (6.68e-04) 0.011* 

Superior longitudinal fasciculus 

ICVF -0.014 (0.015) 0.352 -0.019 (0.019) 0.312 -0.002 (7.56e-04) 0.009* 

ISOVF -0.006 (0.014) 0.677 -0.006 (0.017) 0.724 0.002 (6.95e-04) 0.015* 

OD 0.029 (0.013) 0.029 -0.006 (0.016) 0.722 -0.003 (6.47e-04) 1.46e-05* 

Superior thalamic radiation 

ICVF -0.014 (0.015) 0.351 -0.039 (0.018) 0.032 -0.002 (7.29e-04) 0.002* 

ISOVF -0.007 (0.012) 0.587 0.027 (0.015) 0.069 0.002 (6.07e-04) 9.54e-04* 
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OD -0.008 (0.014) 0.558 0.016 (0.017) 0.342 -0.003 (6.94e-04) 2.39e-04* 

Uncinate fasciculus 

ICVF -0.015 (0.014) 0.283 -0.014 (0.018) 0.43 -0.003 (7.13e-04) 4.18e-04* 

ISOVF -0.014 (0.014) 0.316 -0.023 (0.017) 0.186 6.85e-04 (6.87e-04) 0.319 

OD 0.016 (0.013) 0.221 0.005 (0.016) 0.739 -8.15e-04 (6.61e-04) 0.217 

Forceps major 

ICVF -0.026 (0.016) 0.099 -0.029 (0.019) 0.131 -0.002 (7.82e-04) 0.005* 

ISOVF 0.021 (0.015) 0.171 5.21e-04 (0.019) 0.978 5.53e-04 (7.60e-04) 0.467 

OD 0.044 (0.015) 0.004 -0.022 (0.019) 0.245 -0.002 (7.50e-04) 0.003* 

Forceps minor 

ICVF -0.007 (0.015) 0.662 -0.013 (0.019) 0.497 -0.002 (7.60e-04) 0.003* 

ISOVF -0.008 (0.015) 0.561 0.016 (0.018) 0.382 9.63e-04 (7.21e-04) 0.182 

OD 0.005 (0.015) 0.721 0.004 (0.019) 0.841 -0.001 (7.59e-04) 0.188 

Middle cerebellar peduncle 

ICVF -5.21e-05 (0.015) 0.997 -0.014 (0.019) 0.439 -5.33e-04 (7.48e-04) 0.476 

ISOVF -0.003 (0.016) 0.834 0.081 (0.019) 2.92e-05* 0.004 (7.80e-04) 6.90e-06* 

OD 0.004 (0.016) 0.784 -0.037 (0.019) 0.055 -0.003 (7.74e-04) 8.81e-04* 



Appendix 2: Supplementary materials of Chapter 3 

195 
 

Table S7. The associations between temporal change of depressive level at the imaging 

assessment compared with mean level and g measures in MD, ISOVF and ICVF. P values 

were uncorrected. Significant p value after FDR correction were marked by asterixis. 

 

g measure 

MD ISOVF ICVF 

Beta std p Beta std p Beta std p 

g.Total 0.027  0.010  0.007*  0.005  0.010  0.598  -0.025  0.011  0.017*  

g.AF 0.025  0.010  0.015*  0.006  0.011  0.586  -0.025  0.011  0.019*  

g.TR 0.022  0.009  0.019*  0.002  0.009  0.832  -0.023  0.010  0.029*  

g.PF 0.006  0.011  0.558  -0.001  0.011  0.923  -0.026  0.011  0.013*  
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Table S8. Measures for depressive symptoms and MDD-related phenotypes. MDD phenotypes include three definitions of life-time MDD status (Howard, 

Adams, et al. 2017). These include MDD self (self-reported status of ever had depression or not), smith’s MDD definition (based on self-reported 

depressed symptoms and hospital admission history) and CIDI MDD (derived from Composite International Diagnostic Interview results). CIDI MDD is the 

most clinical definition, whilst MDD self is the most lenient and has the biggest sample size. Other phenotypes include MDD severity assessed by CIDI, 

whether had self-harm behaviour ever in the life time and length of depression (years from first to last episode). Coefficients for MDD phenotypes and 

gender are odds ratios, and for other phenotypes are standardised effect sizes of glm models, and age, age2 and gender were set as covariates for depre, 

depre.mean and depre.instability. Only gender was controlled for depre.longitudinal because the measure was derived controlling for age in the growth 

curve model. All MDD definitions and self-harm behaviour were binary variables, and other phenotypes were continuous. 

 

  Depre Depre.mean Depre.instability Depre.longitudinal 

Dependent variable Coefficient std p Coefficient std p Coefficient std p Coefficient std p 

MDD self 1.867 0.029 <1.00E-16 2.239 0.03 <1.00E-16 1.797 0.026 <1.00E-16 1.27 0.049 4.64E-07 

MDD smith 1.59 0.027 <1.00E-16 1.824 0.029 <1.00E-16 1.654 0.026 <1.00E-16 1.148 0.053 6.87E-03 

MDD CIDI 2.514 0.042 <1.00E-16 4.096 0.052 <1.00E-16 2.363 0.037 <1.00E-16 1.808 0.068 <1.00E-16 

Self harm 1.581  0.041 <1.00E-16 1.714  0.041 <1.00E-16 1.507  0.039 <1.00E-16 1.325 0.089 1.56E-03 

Age of onset -0.102 0.015 2.10E-11 -0.128 0.015 <1.00E-16 -0.057 0.015 1.97E-04 -0.029 0.026 0.266 

             

             

  Depre Depre.mean Depre.instability Depre.longitudinal 

Factor Coefficient std p Coefficient std p Coefficient std p Coefficient std p 

Age -0.173  0.011  <1.00E-16 -0.212  0.011  <1.00E-16 -0.152  0.011  <1.00E-16 -- -- -- 

Gender -0.155  0.022  1.59E-12 -0.197  0.021  <1.00E-16 -0.142  0.021  3.67E-09 -0.048  0.045  0.285  
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Appendix 3: 

Supplementary materials of Chapter 4: Phenotype-wide association 

study of 212 behavioural and 1,532 neuroimaging phenotypes in UK 

Biobank using polygenic risk scores for depression 

 

Figure S1. Scree plots for PCA on white matter microstructure 
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Figure S2. Manhatan-like plot for PheWas results at all eight MDD-pgrs. 
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Figure S3. Quantile-quantile plot of PheWAS 
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Figure S4. Manhatan-like plot for MDD-pgrs*MDD interaction 
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Table S1. All phenotypes used in the study. 

 

Category Phenotype Modality Field ID N Note 

Early life factor Breast fed Touchscreen 1677 8173 
 

Early life factor Bodysize at age=10 Touchscreen 1687 10878 
 

Early life factor Height at age=10 Touchscreen 1697 10902 
 

Early life factor Adopted Touchscreen 1767 11006 
 

Early life factor Maternal smoking Touchscreen 1787 9633 
 

Early life factor Multiple birth Touchscreen 1777 10872 
Question asked: Are you a twin, triplet or other 

multiple birth? 

Early life factor Age father death Touchscreen 1807 9180 
if age<40 then coded as 1, age<=40 then 

coded as 0 

Early life factor Age mother death Touchscreen 3526 7742 
if age<40 then coded as 1, age<=40 then 

coded as 0 

Early life factor Birth weight Interview 20022 11017 
 

Early life factor Cancer early Interview 20007 11017 
if age<30 then coded as 1, age<=30 then 

coded as 0 

Sociodemographic Household income Touchscreen 738 9964 
 

Sociodemographic Education Touchscreen 6138 10258 
 

Sociodemographic Ethnicity Touchscreen 21000 8318 
Dimensions were reduced down to: White, 

Black, Asian, Chinese, Mixed and others 

Sociodemographic Migrant status Touchscreen 1647 8339 
 

Sociodemographic 
Townsend Deprivation 

Index tertiles 
Touchscreen 189 8333 

 

Life style 
Length of mobile phone 

use 
Touchscreen 1110 11014 
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Life style 
Weekly usage of mobile 

phone in last 3 months 
Touchscreen 1120 10350 

 

Life style 

Hands free device 

speakerphone use with 

mobile phone in last 3 

month 

Touchscreen 1130 10360 

 

Life style 

Difference in mobile phone 

use compared to two 

years previously 

Touchscreen 1140 10358 

 

Life style 
Usual side of head for 

mobile phone use 
Touchscreen 1150 10344 

 

Life style Plays computer games Touchscreen 2237 11017 
 

Life style Sleep duration Touchscreen 1160 11017 
 

Life style 
Easy to get up in the 

morning 
Touchscreen 1170 11017 

 

Life style Morning or evening person Touchscreen 1180 10586 
 

Life style Nap during the day Touchscreen 1190 11017 
 

Life style Insomnia Touchscreen 1200 11017 
 

Life style Snoring Touchscreen 1210 10814 
 

Life style Daytime dozing sleeping Touchscreen 1220 11017 
 

Life style Sleep too much Touchscreen 20534 3231 
 

Life style Sleep trouble start Touchscreen 20533 3231 
 

Life style Sleep trouble end Touchscreen 20535 3231 
 

Life style Sleep any problem Touchscreen 20517 8327 
 

Life style Ever smoked Touchscreen 20160 11017 
 

Life style Smoking status Touchscreen 20116 11017 
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Life style Current tobacco smoking Touchscreen 1239 11017 
 

Life style Past tobacco smoking Touchscreen 1249 10778 
 

Life style 
Light smokers at least 100 

smokes in lifetime 
Touchscreen 2644 4057 

 

Life style 
Age started smoking in 

former smokers 
Touchscreen 2867 2995 

 

Life style 
Type of tobacco previously 

smoked 
Touchscreen 2877 2995 

 

Life style 
Number of cigarettes 

previously smoked daily 
Touchscreen 2887 2880 

 

Life style Age stopped smoking Touchscreen 2897 2995 
 

Life style 
Ever stopped smoking for 

6 months 
Touchscreen 2907 2963 

 

Life style 
Number of unsuccessful 

stop smoking attempts 
Touchscreen 2926 2993  

Life style 
Likelihood of resuming 

smoking 
Touchscreen 2936 2971  

Life style 
Smoking smokers in 

household 
Touchscreen 1259 10775  

Life style 
Exposure to tobacco 

smoke at home 
Touchscreen 1269 10782  

Life style 
Exposure to tobacco 

smoke outside home 
Touchscreen 1279 10782  

Life style Cooked vegetable intake Touchscreen 1289 11017  

Life style 
Salad raw vegetable 

intake 
Touchscreen 1299 11017  
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Life style Fresh fruit intake Touchscreen 1309 11017  

Life style Dried fruit intake Touchscreen 1319 11017  

Life style Oily fish intake Touchscreen 1329 11016  

Life style Non oily fish intake Touchscreen 1339 11016  

Life style Processed meat intake Touchscreen 1349 11017  

Life style Poultry intake Touchscreen 1359 11017  

Life style Beef intake Touchscreen 1369 11016  

Life style Lamb mutton intake Touchscreen 1379 11017  

Life style Pork intake Touchscreen 1389 11013  

Life style 
Never eat eggs dairy 

wheat sugar 
Touchscreen 6144 11017  

Life style Cheese intake Touchscreen 1408 10954  

Life style Bread intake Touchscreen 1438 11017  

Life style Cereal intake Touchscreen 1458 11017  

Life style Salt added to food Touchscreen 1478 11017  

Life style Tea intake Touchscreen 1488 11017  

Life style Coffee intake Touchscreen 1498 11017  

Life style Hot drink temperature Touchscreen 1518 11017  

Life style Water intake Touchscreen 1528 11017  

Life style 
Major dietary changes in 

the last 5 years 
Touchscreen 1538 11017  

Life style Variation in diet Touchscreen 1548 11016 
 

Life style 
Time spend outdoors in 

summer 
Touchscreen 1050 11017 

 

Life style 
Time spent outdoors in 

winter 
Touchscreen 1060 11017 
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Life style Skin colour Touchscreen 1717 10987 
 

Life style Ease of skin tanning Touchscreen 1727 10951 
 

Life style 
Childhood sunburn 

occasions 
Touchscreen 1737 11017 

 

Life style Hair colour Touchscreen 1747 11015 
 

Life style Facial ageing Touchscreen 1757 10708 
 

Life style Use of sun protection Touchscreen 2267 11017 
 

Life style 
Frequency of solarium 

sunlamp use 
Touchscreen 2277 11017  

Life style 
Frequency of friend family 

visits 
Touchscreen 1031 11016  

Life style Leisure activities Touchscreen 6160 11016  

Life style Able to confide Touchscreen 2110 10970  

Life style 
Vitamin and mineral 

supplements 
Touchscreen 6155 11016 

 

Life style 
Mineral and other dietary 

supplements 
Touchscreen 6179 11017 

 

Life style Alcohol weekly unit Touchscreen 

1568, 1578, 1588, 

1598, 5364, 1608, 

4407, 4418, 4429, 

4440, 4451, 4462 

11017 
Derived based on multiple fields. Ref: Clarke 

et al. (2017) Mol Psychiatry (22),1376–1384 

Physical measure Overall health rating Touchscreen 2178 11016  

Physical measure 
Long standing illness, 

disability or infirmity 
Touchscreen 2188 10996  

Physical measure Falls in the last year Touchscreen 2296 11017  
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Physical measure 
Weight change compared 

with 1 year ago 
Touchscreen 2306 11003  

Physical measure Leg pain on walking Touchscreen 4728 10964  

Physical measure 
Leg pain when standing 

still or sitting 
Touchscreen 5452 2455  

Physical measure Leg pain in calf/calves Touchscreen 5463 2491  

Physical measure 
Leg pain when walking 

uphill or hurrying 
Touchscreen 5474 2436  

Physical measure 
Leg pain when walking 

normally 
Touchscreen 5485 2473  

Physical measure 
Leg pain on walking action 

taken 
Touchscreen 5507 2491  

Physical measure 
Leg pain on walking effect 

of standing still 
Touchscreen 5518 2227  

Physical measure 

Surgery on leg arteries 

other than for varicose 

veins 

Touchscreen 5529 2513  

Physical measure 
Surgery amputation of toe 

or leg 
Touchscreen 5540 2507  

Physical measure Ever pain last month Touchscreen 6159 11017  

Physical measure Headaches for 3 months Touchscreen 3799 2865  

Physical measure 
Neck shoulder pain for 3 

months 
Touchscreen 3404 3507  

Physical measure Back pain for 3 months Touchscreen 3571 3803  

Physical measure Knee pain for 3 months Touchscreen 3773 3401  
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Physical measure 
Ever vascular heart 

problem diagnosed 
Touchscreen 6150 11014  

Physical measure 
Age high blood pressure 

diagnosed 
Touchscreen 2966 3201  

Physical measure 
Blood clot problem 

diagnosed 
Touchscreen 6152 11017  

Physical measure 
Age hay fever, rhinitis or 

eczema diagnosed 
Touchscreen 3761 3406  

Physical measure 
Diabetes diagnosed by 

doctor 
Touchscreen 2443 11016  

Physical measure 
Cancer diagnosed by 

doctor 
Touchscreen 2453 11016  

Physical measure 
Fractured broken bones in 

last 5 years 
Touchscreen 2463 11011  

Physical measure 

Other serious medical 

condition diagnosed by 

doctor 

Touchscreen 2473 11000  

Physical measure 

Medication for cholesterol, 

blood pressure, diabetes 

or take exogenous 

hormones 

Touchscreen 6153 5700  

Physical measure 
Medication for pain relief, 

constipation or heartburn 
Touchscreen 6154 11015  

Physical measure 
Diastolic blood pressure 

(automated reading) 
Physical measure 4079 10983  
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Physical measure 
Pulse rate (automated 

reading) 
Physical measure 94 10983  

Physical measure 
Systolic blood pressure 

(automated reading) 
Physical measure 95 10983  

Physical measure Pulse rate Physical measure 4194 10951  

Physical measure 
Pulse wave Arterial 

Stiffness Index 
Physical measure 21021 10932  

Physical measure 
Pulse wave peak to peak 

time 
Physical measure 4196 10946  

Physical measure 
Pulse wave Reflection 

Index 
Physical measure 4195 10951  

Physical measure Body Mass Index Physical measure 23104 10883  

Physical measure Leg fat free mass (right) Physical measure 23113 10883  

Physical measure Leg predicted mass (left) Physical measure 23118 10883  

Physical measure Leg predicted mass (right) Physical measure 23114 10883  

Physical measure Arm fat percentage (left) Physical measure 23123 10882  

Physical measure Arm fat percentage (right) Physical measure 23119 10883  

Physical measure Arm fat mass (left) Physical measure 23124 10881  

Physical measure Arm fat mass (right) Physical measure 23120 10881  

Physical measure Arm fat free mass (right) Physical measure 23121 10882  

Physical measure Arm fat free mass (left) Physical measure 23125 10880  

Physical measure Arm predicted mass (left) Physical measure 23126 10879  

Physical measure Arm predicted mass (right) Physical measure 23122 10882  

Physical measure Trunk fat percentage Physical measure 23127 10877  

Physical measure Trunk fat mass Physical measure 23128 10875  

Physical measure Trunk fat free mass Physical measure 23129 10870  
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Physical measure Trunk predicted mass Physical measure 23130 10869  

Physical measure Basal metabolic rate Physical measure 23105 10883  

Physical measure Body fat percentage Physical measure 23099 10876  

Physical measure Whole body fat mass Physical measure 23100 10868  

Physical measure Whole body fat free mass Physical measure 23101 10883  

Physical measure Whole body water mass Physical measure 23102 10883  

Physical measure Leg fat percentage (left) Physical measure 23115 10883  

Physical measure Leg fat percentage (right) Physical measure 23111 10883  

Physical measure Leg fat mass (left) Physical measure 23116 10883  

Physical measure Leg fat mass (right) Physical measure 23112 10883 
 

Physical measure Leg fat free mass (left) Physical measure 23117 10883 
 

Physical measure Impedance of whole body Physical measure 23106 10882 
 

Physical measure Impedance of arm (left) Physical measure 23110 10883 
 

Physical measure Impedance of arm (right) Physical measure 23109 10883 
 

Physical measure Impedance of leg (left) Physical measure 23108 10883 
 

Physical measure Impedance of leg (right) Physical measure 23107 10883 
 

Physical measure Hand grip strength (left) Physical measure 46 11016 
 

Physical measure Hand grip strength (right) Physical measure 47 11017 
 

Cognition Trail making Touchscreen 6348, 6350 5699 Derived by substuding Trail#1 by Trail#2 

Cognition Digit substitute Touchscreen 23324 6075 
 

Cognition Numeric memory Touchscreen 100029 5781 
 

Cognition gCog NA NA 5247 

Derived by conducting PCA on all cognition 

results. The scores of the first un-rotated 

principal component were extracted as the g 

measure. 

Mental health MDD-Nerves Touchscreen 2090 8164 
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Mental health MDD-Smith Touchscreen 20126 7137 
 

Mental health MDD-ICD Interview 135 4430 
 

Mental health MDD-CIDI Online follow-up 

20446, 20441, 

20449, 20536, 

20532, 20435, 

20450, 20437 

7201 
Over four items met then coded as 1, 

otherwise 0 

Mental health Recurrent depression Online follow-up 20442 3788 MDD-CIDI=1, plus episodes reported > 1 

Mental health Single depression Online follow-up 20442 3788 MDD-CIDI=1, plus episodes reported = 1 

Mental health Postnatal depression Online follow-up 20445 7201 
MDD-CIDI=1, plus postnatal reasons reported 

= 1 

Mental health 
Single depression 

Following Trauma 
Online follow-up 20447 3788 

Single depression=1, plus trauma reported 

Mental health Neuroticism Touchscreen 20127 7085 
 

Mental health Loneliness Online follow-up 2020 8257 
 

Mental health PHQ9 Severity Online follow-up 

20514, 20507, 

20510, 20508, 

20517, 20518, 

20519, 20511, 

20513 

8340 Add up score 

Mental health CIDI MDD Severity Online follow-up 

20446, 20441, 

20449, 20536, 

20532, 20435, 

20450, 20437 

8340 Add up score 

Mental health Depression age onset Online follow-up 20433 4702 
 

Mental health 
Depression age last 

episode 
Online follow-up 20434 4702 
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Mental health 
Depression affective 

symptoms 
Online follow-up 

20446, 20441, 

20450, 20437, 

20514, 20507, 

20510, 20513 

8340 

 

Mental health 
Depression cognitive 

symptoms 
Online follow-up 20435, 20508 8340 

 

Mental health 
Depression somatic 

symptoms 
Online follow-up 

20449, 20536, 

20532, 20517, 

20518, 20519, 

20511 

8340 

 

Mental health Wider Bipolar definition Online follow-up 20548 8269 Total manifestations >=3 items 

Mental health Bipolar disorder (type I) Online follow-up 20493 8269 
MDD-CIDI=1, plus schizophrenic symptoms 

reported 

Mental health Bipolar disorder (type II) Online follow-up 20493 8269 
MDD-CIDI=1, plus schizophrenic symptoms 

absent 

Mental health 
General anxiety disorder 

ever 
Online follow-up 

20506, 20509, 

20520, 20515, 

20516, 20505, 

20512 

5816 Total manifestations >=5 items 

Mental health 
Total bipolar disorder 

manifestations 
Online follow-up 20548 8340 

 

Mental health 
General anxiety disorder 

Severity 
Online follow-up 

20506, 20509, 

20520, 20515, 

20516, 20505, 

20512 

8340 
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Mental health AUDIT Score Online follow-up 

20403, 20416, 

20409, 20408, 

20411, 20405, 

20413, 20407, 

20412 

8340 

 

Mental health Cannabis ever Online follow-up 20453 8327 
 

Mental health 
Addiction ever (self-

reported) 
Online follow-up 

20543, 20454, 

20401 
8263 

Reported cannabis use or AUDIT score >=16 

Mental health Unusual experience ever Online follow-up 
20471, 20463, 

20474, 20468 
8329 

 

Mental health Trauma (childhood) Online follow-up 

20488, 20487, 

20490, 20491, 

20489 

8167 

 

Mental health Trauma (adult) Online follow-up 

20523, 20521, 

20524, 20522, 

20525 

8059 

 

Mental health Trauma (catastrophic) Online follow-up 

20527, 20526, 

20528, 20529, 

20531, 20530 

8339 

 

Mental health 
Post-traumatic 

stress disorder (PTSD) 
Online follow-up 

20497, 20498, 

20495, 20496, 

20494, 20508 

8317 PCL (PTSD check list) score > 13 

Mental health PTSD check list score Online follow-up 

20497, 20498, 

20495, 20496, 

20494, 20508 

8340 

 

Mental health Self harm ever Online follow-up 20480 8317 
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Mental health Not worth living Online follow-up 20479 8340 
 

Mental health Subjective well-being Online follow-up 
20458, 20459, 

20460 
8139 

 

Mental health Any comorbidity Online follow-up NA 8340 

Summary of whether is case in wider bipolar 

definition, GAD ever, addiction ever, and 

unusual experience ever. If is case in any of 

the conditions then coded as 1, otherwise 0. 

Mental health Multiple comorbidity Online follow-up NA 8340 

Summary of total conditions in wider bipolar 

definition, GAD ever, addiction ever, and 

unusual experience ever 

Mental health Social phobia Interview 

20499, 20544 

8340 
 

Mental health Schizophrenia Interview 8340 
 

Mental health 

Psychosis (other than 

social phobia and 

Schizophrenia) 

Interview 8340 

 

Mental health Any phychosis Interview 8340 
 

Mental health Personality disorder Interview 8340 
 

Mental health Uncategorised phobia Interview 8340 
 

Mental health Panic attacks Interview 8340 
 

Mental health 
Obsessive-compulsive 

disorder 
Interview 8340 

 

Mental health Mania bipolar Interview 8340 
 

Mental health Mood disorder Interview 8340 
 

Mental health Bulimia nervosa Interview 8340 
 

Mental health Binge eating Interview 8340 
 

Mental health Autism spectrum disorder Interview 8340 
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Mental health 
General anxiety disorder 

and others 
Interview 8340 

 

Mental health Anorexia nervosa Interview 8340 
 

Mental health Any eating disorder Interview 8340 
 

Mental health Agoraphobia Interview 8340 
 

Mental health Any anxiety disorder Interview 8340 
 

Mental health 
Attention deficit 

hyperactivity disorder 
Interview 8340 

 

Mental health 
Sum of all ICD-10 

psychiatric diagnoses 
Interview 8340 

 

Intracranial/subcortical 

volume 
Thalamus Imaging 25011, 25012 

9750 

 

Intracranial/subcortical 

volume 
Caudate Imaging 25013, 25014 

 

Intracranial/subcortical 

volume 
Putamen Imaging 25015, 25016 

 

Intracranial/subcortical 

volume 
Pallidum Imaging 25017, 25018 

 

Intracranial/subcortical 

volume 
Hippocampus Imaging 25019, 25020 

 

Intracranial/subcortical 

volume 
Amygdala Imaging 25021, 25022 

 

Intracranial/subcortical 

volume 
Accumbens Imaging 25023, 25024 

 

Intracranial/subcortical 

volume 

Brain stem and the 4th 

ventricle 
Imaging 25025 
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Intracranial/subcortical 

volume 
Intracranial volume Imaging 

25088, 25006, 

25004 

Add-up of grey matter, white matter and 

ventricular cerebrospinal fluid was generated 

as a measure of intracranial volume. 

White matter 

microstructure 
g.FA.Total Imaging NA 

9,699 

PCA on sub-group of tracts. See methods for 

more information 

White matter 

microstructure 
g.FA.Association fibres Imaging NA 

White matter 

microstructure 
g.FA.Thalamic radiations Imaging NA 

White matter 

microstructure 
g.FA.Projection fibres Imaging NA 

White matter 

microstructure 
g.MD.Total Imaging NA 

9,671 

White matter 

microstructure 
g.MD.Association fibres Imaging NA 

White matter 

microstructure 
g.MD.Thalamic radiations Imaging NA 

White matter 

microstructure 
g.MD.Projection fibres Imaging NA 

White matter 

microstructure 
FA.Acoustic radiation Imaging 25488, 25489 

9699 Bilateral tracts. Hemisphere was controlled for. 
White matter 

microstructure 

FA.Anterior thalamic 

radiation 
Imaging 25490. 25491 

White matter 

microstructure 

FA.Cingulate gyrus part of 

cingulum 
Imaging 25492, 25493 
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White matter 

microstructure 

FA.Parahippocampal part 

of cingulum 
Imaging 25494, 25495 

White matter 

microstructure 
FA.Corticospinal tract Imaging 25496, 25497 

White matter 

microstructure 

FA.Inferior fronto-occipital 

fasciculus 
Imaging 25500, 25501 

White matter 

microstructure 

FA.Inferior longitudinal 

fasciculus 
Imaging 25502, 25503 

White matter 

microstructure 
FA.Medial lemniscus Imaging 25505, 25506 

White matter 

microstructure 

FA.Posterior thalamic 

radiation 
Imaging 25507, 25508 

White matter 

microstructure 

FA.Superior longitudinal 

fasciculus 
Imaging 25509, 25510 

White matter 

microstructure 

FA.Superior thalamic 

radiation 
Imaging 25511, 25512 

White matter 

microstructure 
FA.Uncinate fasciculus Imaging 25513, 25514 

White matter 

microstructure 
FA.Forceps major Imaging 25498 

 

White matter 

microstructure 
FA.Forceps minor Imaging 25499 

 

White matter 

microstructure 

FA.Middle cerebellar 

peduncle 
Imaging 25504 

 

White matter 

microstructure 
MD.Acoustic radiation Imaging 25516, 25517 9671 Bilateral tracts. Hemisphere was controlled for. 
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White matter 

microstructure 

MD.Anterior thalamic 

radiation 
Imaging 25517, 25518 

White matter 

microstructure 

MD.Cingulate gyrus part of 

cingulum 
Imaging 25519, 25520 

White matter 

microstructure 

MD.Parahippocampal part 

of cingulum 
Imaging 25523, 25524 

White matter 

microstructure 
MD.Corticospinal tract Imaging 25523, 25524 

White matter 

microstructure 

MD.Inferior fronto-occipital 

fasciculus 
Imaging 25527, 25528 

White matter 

microstructure 

MD.Inferior longitudinal 

fasciculus 
Imaging 25529, 25530 

White matter 

microstructure 
MD.Medial lemniscus Imaging 25532, 25533 

White matter 

microstructure 

MD.Posterior thalamic 

radiation 
Imaging 25534, 25535 

White matter 

microstructure 

MD.Superior longitudinal 

fasciculus 
Imaging 25536, 25537 

White matter 

microstructure 

MD.Superior thalamic 

radiation 
Imaging 25538, 25539 

White matter 

microstructure 
MD.Uncinate fasciculus Imaging 25540, 25541 

White matter 

microstructure 
MD.Forceps major Imaging 25525 

 

White matter 

microstructure 
MD.Forceps minor Imaging 25526 
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White matter 

microstructure 

MD.Middle cerebellar 

peduncle 
Imaging 25531 

 

Resting-state 

connectivity 

1548 connections between 

55 nodes 
Imaging 25753 10121 
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Table S2. Loadings of each tract on gTotal, gAF, gTR and gPF in FA and MD. 

 

Tract 
FA MD 

g.Total gAF gTR gPF g.Total gAF gTR gPF 

Parahippocampal part of cingulum 0.353 0.361 -- -- 0.461 0.575 -- -- 

Parahippocampal part of cingulum 0.397 0.413 -- -- 0.433 0.544 -- -- 

Forceps major 0.546 0.557 -- -- 0.489 0.54 -- -- 

Cingulate gyrus part of cingulum 0.563 0.639 -- -- 0.633 0.598 -- -- 

Cingulate gyrus part of cingulum 0.586 0.662 -- -- 0.638 0.614 -- -- 

Uncinate fasciculus 0.647 0.665 -- -- 0.665 0.716 -- -- 

Uncinate fasciculus 0.684 0.698 -- -- 0.749 0.777 -- -- 

Superior longitudinal fasciculus 0.823 0.801 -- -- 0.85 0.788 -- -- 

Superior longitudinal fasciculus 0.814 0.802 -- -- 0.865 0.809 -- -- 

Forceps minor 0.804 0.804 -- -- 0.725 0.668 -- -- 

Inferior longitudinal fasciculus 0.824 0.818 -- -- 0.855 0.856 -- -- 

Inferior longitudinal fasciculus 0.844 0.824 -- -- 0.902 0.878 -- -- 

Inferior fronto-occipital fasciculus 0.822 0.828 -- -- 0.859 0.848 -- -- 

Inferior fronto-occipital fasciculus 0.852 0.842 -- -- 0.892 0.868 -- -- 

Superior thalamic radiation 0.651 -- 0.739 -- 0.778 -- 0.853 -- 

Superior thalamic radiation 0.641 -- 0.744 -- 0.746 -- 0.83 -- 

Posterior thalamic radiation 0.672 -- 0.779 -- 0.756 -- 0.86 -- 

Posterior thalamic radiation 0.677 -- 0.804 -- 0.775 -- 0.884 -- 

Anterior thalamic radiation 0.775 -- 0.806 -- 0.837 -- 0.863 -- 

Anterior thalamic radiation 0.769 -- 0.818 -- 0.83 -- 0.863 -- 

Medial lemniscus 0.273 -- -- 0.505 0.22 -- -- 0.231 

Middle cerebellar peduncle 0.364 -- -- 0.525 0.325 -- -- 0.956 

Medial lemniscus 0.286 -- -- 0.53 0.197 -- -- 0.2 

Acoustic radiation 0.621 -- -- 0.57 0.492 -- -- 0.289 

Acoustic radiation 0.635 -- -- 0.627 0.524 -- -- 0.245 

Corticospinal tract 0.579 -- -- 0.817 0.585 -- -- 0.268 

Corticospinal tract 0.586 -- -- 0.834 0.585 -- -- 0.274 
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Table S3. List of regions for the functional connectivity that positively associate with higher 

Depression-PGRS. The report was generated using the ‘report’ function in SPM 12. 

 
Coordination of 
the voxel with 
the highest 
intensity in the 
cluster 

AAL regions Number of voxels Highest intensity 

-10, -60, 18 Precuneus_L (aal) 5236 0.16795 

-34, 36, -10 Frontal_Inf_Orb_L (aal) 2807 0.14045 

-22, 28, 40 Frontal_Mid_L (aal) 1930 0.17721 

26, 32, 34 Frontal_Mid_R (aal) 1575 0.14386 

58, -8, -10 Temporal_Mid_L (aal) 933 0.096372 

14, -78, -32 Cerebelum_Crus1_R (aal) 897 0.092922 

-52, -12, 32 Postcentral_L (aal) 886 0.17333 

-20, 58, , 0 Frontal_Sup_L (aal) 851 0.10166 

-40, -70, 34 Occipital_Mid_L (aal) 545 0.074744 

50, -12, -12 Temporal_Mid_R (aal) 540 0.078985 

-32, -40, -12 Fusiform_L (aal) 462 0.11144 

22, 60, -2 Frontal_Sup_Orb_R (aal) 372 0.097698 

-12, 48, 14 Frontal_Sup_Medial_L (aal) 243 0.082818 

16, -60, -24 Cerebelum_6_L (aal) 224 0.086436 

0, -60, -24 Vermis_6 (aal) 203 0.076384 

24, -20, -16 Hippocampus_R (aal) 192 0.090945 

24, -38, -12 Fusiform_R (aal) 174 0.085587 

24, -20, -16 Hippocampus_L (aal) 141 0.10302 

16, -62, -18 Cerebelum_6_R (aal) 137 0.075099 

36, -6, 14 Insula_R (aal) 130 0.09974 

-36, -8, 14 Rolandic_Oper_L (aal) 91 0.086849 

46, -52, -10 Temporal_Inf_L (aal) 84 0.061853 

-10, -78, -32 Cerebelum_Crus2_L (aal) 56 0.05745 

-10, -2, 14 Caudate_L (aal) 54 0.077763 

48, -66, 36 Angular_R (aal) 42 0.047485 

10, -68, -50 Cerebelum_8_L (aal) 40 0.061126 

2, -52, -18 Vermis_4_5 (aal) 33 0.060399 

42, -16, -24 Fusiform_R (aal) 27 0.071946 

40, -4, -44 Temporal_Inf_R (aal) 22 0.066757 

10, 48, -10 Frontal_Med_Orb_R (aal) 22 0.062801 

-34, -52, -32 Cerebelum_6_L (aal) 22 0.059631 
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Table S4. List of regions for the functional connectivity that negatively associate with 
higher Depression-PGRS. The report was generated using the ‘report’ function in SPM 
12. 
 

Coordination of 
the voxel with the 
highest intensity 
in the cluster 

AAL regions Number of voxels 
Lowest 
intensity 

18, 64, -6 Frontal_Sup_Orb_R, (aal) 13358 -0.10955 

26, -96, -4 Occipital_Inf_R, (aal) 3818 -0.16348 

-52, -48,, 4 Temporal_Mid_L, (aal) 1244 -0.06084 

-30, -46, 38 Parietal_Inf_L, (aal) 1207 -0.07073 

44, 12, 32 Frontal_Inf_Oper_R, (aal) 977 -0.06305 

32, 22, 10 Insula_R, (aal) 565 -0.08861 

-10, -66, 32 Precuneus_L, (aal) 514 -0.09174 

14, -64, 34 Precuneus_R, (aal) 376 -0.08152 

30, -6, 52 Precentral_R, (aal) 374 -0.06178 

44, -24, 38 Postcentral_R, (aal) 300 -0.0564 

60, -22, -6 Temporal_Sup_R, (aal) 245 -0.04927 

38, -54, -42 Cerebelum_Crus1_L, (aal) 180 -0.05439 

44, -52, -12 Temporal_Inf_L, (aal) 150 -0.05388 

64, -50, , 6 Temporal_Mid_R, (aal) 65 -0.03867 

22, -68, -50 Cerebelum_8_L, (aal) 64 -0.04105 

22, -38, -44 Cerebelum_10_R, (aal) 50 -0.0544 

16, -42, -44 Cerebelum_9_L, (aal) 50 -0.05161 

-28, -70, 26 Occipital_Mid_L, (aal) 50 -0.04033 

-10, -2, 14 Caudate_L, (aal) 33 -0.06296 

-38, -4, 16 Insula_L, (aal) 33 -0.06194 

22, 28, -16 Frontal_Sup_Orb_R, (aal) 26 -0.0404 

44, -8, 54 Precentral_R, (aal) 26 -0.03745 

20, -28, -6 Hippocampus_L, (aal) 25 -0.06612 

38, -2, 16 Insula_R, (aal) 24 -0.05134 

24, -56, -50 Cerebelum_8_L, (aal) 23 -0.04057 

0, -50, -20 Vermis_4_5, (aal) 22 -0.04336 
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Appendix 4: 

Supplementary materials of Chapter 5: Resting-State Connectivity and 

Its Association With Cognitive Performance, Educational Attainment, 

and Household Income in UK Biobank 

 

Supplementary Methods 

Participants 

The UK Biobank covers an age range from 40 to 70 at the initial visit, and by the time 

of the imaging assessment, the age range was from 45 to 75, because the imaging 

assessment took place after the initial visit. The imaging sample was selected within 

the overall sample for predominantly healthy participants to achieve a selection of 

population-based sample. The UK Biobank sample chose mainly white people with 

European ancestry. The education level was comparatively high, with a proportion of 

53.15% received college or university level degree. 

Clustering of 55*55 matrix 

The clustering for the whole-brain analyses on 55*55 connectivity matrix was for better 

illustration, using hierarchical clustering approach described in: 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0076315. The 

number of cluster was user-defined as n=5. 

Educational attainment and household income 

For educational attainment, participants could choose at least one of the following 

options: College or university degree, A levels/AS levels or equivalent, O 

levels/GCSEs or equivalent, CSEs or equivalent, NVQ or HND or HNC or equivalent, 

other professional qualifications, none of the above, and prefer not to answer. 

For household income, available choices were: <£18,000, £18,000 to £30,999, 

£31,000 to £51,999, £52,000 to £100,000, >£100,000, do not know and prefer not to 

answer. An ordinal variable from 1 to 5 was created to determine the level of 

household income (<£18,000 as 1, >£100,000 as 5). 

PCA analysis for cognitive performance, educational attainment and household 



Appendix 4: Supplementary materials of Chapter 5 

224 

 

income 

As the results in the main text showed that the regions involved in the three traits were 

highly overlapping, we have conducted a PCA analysis to extract the first unrotated 

latent component of the three traits, and used the scores for the factor to test the 

resting-state-network associations with the common variance of all three traits. 

PCA was conducted using princomp in R (https://stat.ethz.ch/R-manual/R-

devel/library/stats/html/princomp.html). Results are shown in supplementary results 

and Figure S5. 

Permutation test 

As we now have an updated sample of 7,144 people (from the latest data release), 

we have now additionally conducted two further sets of analyses to validate our results. 

First we performed permutation test on half-sized sample (N=3,572) and tested the 

distributions of the p values for the significant connections found in 55*55 matrix 

described in our initial findings. After 1,000 times of randomly selecting half of our 

sample, conducting analyses on them, we found that the distributions of p values for 

over 90% of the significant connections found in our initial results were lower, 

compared with the mean p value for the rest of connections (Figure S7-S9).  

Second, another permutation test was performed to test whether the results found in 

a training subsample can predict the results in a separate testing sample. We cut the 

sample in halves, and used the first half as a training dataset and the second half as 

a testing dataset. We extracted the effect sizes for the 55*55 connectivity matrix 

acquired from the training sample and applied them on the testing dataset to calculate 

a neural connectivity score for the trait. And then we used the neural connectivity 

score to predict the variances for the traits in the testing sample. For instance, we 

used the effect sizes of cognitive performance in the training sample (βtraining), and 

calculated the sum of βtraining*Connectivitytesting as the neural-network score of 

cognitive performance in the testing sample. We then used this score to predict the 

cognitive performance, educational attainment and household income in the testing 

sample. Age, age2, gender, scanner positions and mean motion were controlled. 

Likewise permutation tests were conducted to use the neural associations of 

educational attainment or household income to predict other traits in the testing 

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/princomp.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/princomp.html
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sample. Results are shown in Figure S10.  

Supplementary Results 

Phenotypic associations 

The mean test performance score for the VNR was 6.92 (SD = 2.15). Age and sex 

both showed significant associations with VNR score (age: β=-0.07, p=3.50Χ10-5, 

sex: β=0.19, p=3.18Χ10-9; Male=1, Female=0).  

In total, 1,801 participants reported having obtained a college/university-level degree 

(43.29% of the overall sample). The mean age of people with a college/university-

level degree was 61.62 (SD=7.49), which was significantly lower than the group 

without (Mean age=62.65, SD=7.58, t=4.37, p=1.27Χ10-5). Men reported a 

significantly higher proportion of college degrees (48.80%) than women (39.73%), 

χ2=34.8, df=1, p=3.65Χ10-9. Educational attainment showed positive association with 

cognitive performance, with age, age2 and sex controlled (β=0.457, p<2Χ10-16). 

The proportion of people who reported having household income at each level is 

shown in Figure S1. The income band of £31,000 to £51,999 contained the highest 

proportion (29.98%) of individuals, and the band >£100,000 contained the lowest 

proportion (6.06%). Both age and sex showed significant associations with household 

income (age: β=-0.29, p<2Χ10-16; sex: β=0.20, p=1.04Χ10-9). Higher household 

income was associated with better cognitive performance (β=0.167, p<2Χ10-16), with 

age, age2, and sex controlled in the model. 

PCA analysis of cognitive performance, educational attainment and household 

income 

The first latent component (g) of the three traits explains a major portion of total 

variance (75.6%), it was heavily loaded on cognitive performance (correlation 

loadings: cognitive performance: 0.998, educational attainment: 0.261, household 

income: 0.220).  

We have conducted an additional analysis using the first latent component as a 

predictor and tested the shared component of cognitive performance, educational 

attainment and household income on the resting-state networks (see supplementary 

methods). Results are shown in Figure S7. As expected, the regions involved with 
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stronger connections with latent g of the three traits were mainly located in default 

mode network areas and lateral prefrontal cortex.  
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Figure S1. Descriptive statistics of (a) cognitive performance on the verbal-numerical 

reasoning test; (b) educational attainment (those with [0] and without [1] a college degree; and 

(c) household income (GBP per annum). 
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Figure S2. (A) Five intrinsic functional networks selected from the 21 components generated 

by low-dimension ICA (see Methods, Imaging data). Component 1 was identified as the default 

mode network (DMN, red). Component 13 and 21 were left and right cingulo-opercular network 

(CON) respectively (yellow). And finally, component 5 and 6 were identified as right and left 

fronto-parietal network (FPN, blue). (B) The mean values of couplings of networks of interest. 

The values are standardised temporal correlation coefficient between networks of interest. A 

higher absolute value indicates a higher strength, and the sign indicates the directionality of 

the connection. A negative value means an anti-correlated connection, whilst a positive value 

indicates a positive connection. Mean values and 95% confident intervals of the connections 

can be viewed in Table 1. 
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Figure S3. (A) Significant network couplings associated with cognitive performance in verbal-

numerical reasoning (absolute β ranged from 0.034 to 0.063, all effect sizes of the significant 

connections are reported in Table 1). An orange arrow means positive association between 

cognitive ability with the absolute strength of a connection, whilst a blue arrow indicates 

decreased absolute strength of a connection with better cognitive performance. Solid arrows 

are positive connections and dashed ones are negative. An orange arrow reflects positive 

associations between cognitive ability with the absolute strength of a connection, whilst a blue 

arrow indicates decreased absolute strength of a connection with better cognitive performance. 

(B) and (C) represent the association of cognitive performance in verbal-numerical reasoning 

and the connection between left/right CON (β=0.061 and -0.045 respectively for left/right CON) 

and DMN (β=-0.045). Y-axis represent the normalised correlation coefficient between temporal 

modulations of networks. Better cognitive performance was associated with more positive 

connections between DMN and bilateral CON. The spatial maps of the functional networks 

can be found in Figure S2. 
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Figure S4. Results for whole-brain analysis of non-binary proxy for educational attainment. 

Three levels were set, which included: college or university level, A or AS level, and all other 

levels. 
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Figure S5. Results for whole brain analysis of the first latent component of cognitive 

performance (VNR), educational attainment and household income. The first latent component 

was extracted from unrotated PCA by using princomp in R (https://stat.ethz.ch/R-manual/R-

devel/library/stats/html/princomp.html). This component explains 75.6% of total variance. 

Correlation loadings for the factor are: cognitive performance: 0.998, educational attainment: 

0.261, household income: 0.220. 

  

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/princomp.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/princomp.html
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Figure S6. Mediation analysis for NOI results. Network connectivity was set as the predictor, 

and educational attainment as the dependent variable. Mediator was set as cognitive 

performance. We tested on two network connections that were significant for both educational 

attainment and cognitive performance. The association between rFPN-rCON and rCON-DMN 

connectivity and educational attainment was mediated by cognitive performance (18.4% and 

76.2% of direct path mediated by indirect path respectively for each model, CFI = TLI = 1). 
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Figure S7. Permutation test on cognitive performance (VNR). X axis shows the connections, and y axis shows the uncorrected p value transformed by -log10 

function. T-test was performed on the p-value distributions for each connection that was found associated with VNR to test whether these tested connections 

have significantly lower p values compared to the non-significant connections in the initial finding. The dashed blue line is the mean uncorrected p value of 

all other connections. Two connections’ p values were not significantly lower than the mean p value of all other connections (N44-N17: t(999)=18.25, p<1E-

16, and N45-N44: t(999)=6.95, p=6.50E-12). All other connections have lower p values compared to the non-significant ones, which takes up 92.3% of all 26 

connections (t-test p<1E-16).  
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Figure S8. Permutation test on educational attainment. X axis shows the connections, and y axis shows the uncorrected p value transformed by -log10 

function. T-test was performed on the p-value distributions for each connection that was found associated with educational attainment to test whether these 

tested connections have significantly lower p values compared to the non-significant connections in the initial finding. The dashed blue line is the mean 

uncorrected p value of all other connections. Three connections’ p values were not significantly lower than the mean p value of all other connections (N44-

N25: t(999)=1.22, p=0.22, N45-N44: t(999)=11.55, p<1E-16, and N47-N45: t(999)=4.98, p=7.34E-7). All other connections have lower p values compared 

to the non-significant ones, which takes up 90.0% of all 33 connections (t-test p<1E-16). 
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Figure S9. Permutation test on household income. X axis shows the connections, and y axis shows the uncorrected p value transformed by -log10 function. 

T-test was performed on the p-value distributions for each connection that was found associated with household income to test whether these tested 

connections have significantly lower p values compared to the non-significant connections in the initial finding. The dashed blue line is the mean uncorrected 

p value of all other connections. All the connections have lower p values compared to the non-significant ones (t-test p<4.91E-8). 
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Figure S10. Using the model built by the training sample to predict the traits in the testing 

sample. The x axis is the models of using predictors derived from training sample to predict 

the trait as the dependent variable in the testing sample. In panel a, the y axis is the 

uncorrected p value transformed by -log10. In panel a, the red dashed line is the p=0.05 

significance line, as there is no baseline mean p value to compare with like in Figure S6-8. In 

Figure b, the y axis is the standardised effect size. We also conducted t-test to compare the 

effect sizes with 0, and all models showed significant difference from 0 (income_income: p = 

0.009, for all other models: p < 1×10-16). 
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Table S1. Connections that showed significant association with cognitive performance in VNR on 55*55 partial correlation matrix. All reported betas are 

standardised effect sizes. The regression model was applied to test the association between VNR and absolute strength of connections, which was achieved 

by multiplying values of connections with the sign of their mean value (see Methods). The spatial maps of the nodes in the table indicated by numbers can 

be found in Figure 2. 

 

 
Beta Standard error t.value p p.corrected 

Valence of 

connection 
95% CI of value of connection 

N17_N15 0.054  0.016  -3.403  6.73E-04 0.038  + 1.215  1.275  

N21_N11 0.062  0.016  3.901  9.72E-05 0.014  - -1.939  -1.881  

N21_N7 0.097  0.016  6.140  9.09E-10 0.000  + 3.746  3.829  

N22_N1 0.061  0.016  -3.789  1.53E-04 0.018  - -0.561  -0.510  

N24_N4 -0.066  0.016  -4.092  4.37E-05 0.007  - -1.136  -1.075  

N24_N9 -0.083  0.016  5.196  2.14E-07 <0.001  + 0.319  0.363  

N25_N5 -0.072  0.016  4.488  7.39E-06 0.002  - -0.639  -0.579  

N26_N12 0.081  0.016  5.036  4.96E-07 0.000  + 3.746  3.829  

N28_N24 0.076  0.016  4.737  2.25E-06 0.001  + 0.151  0.206  

N29_N11 0.059  0.016  3.671  2.45E-04 0.021  + 0.762  0.830  

N31_N12 -0.066  0.016  -4.109  4.06E-05 0.007  + 1.234  1.300  

N33_N13 0.060  0.016  -3.751  1.78E-04 0.018  - -0.702  -0.649  

N33_N22 0.055  0.016  3.412  6.52E-04 0.038  + 0.649  0.701  

N39_N33 0.074  0.016  -4.580  4.80E-06 0.001  - -0.561  -0.510  

N42_N18 0.055  0.016  3.445  5.77E-04 0.037  + 1.671  1.737  

N42_N6 -0.056  0.016  3.516  4.43E-04 0.031  - -0.594  -0.548  

N44_N17 0.054  0.016  3.425  6.21E-04 0.038  + 0.276  0.314  

N44_N25 0.071  0.016  4.477  7.78E-06 0.002  + 2.321  2.383  

N45_N15 0.059  0.016  3.682  2.34E-04 0.021  + 1.233  1.291  

N45_N44 0.055  0.016  -3.494  4.81E-04 0.032  - -1.264  -1.217  
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Beta Standard error t.value p p.corrected 

Valence of 

connection 
95% CI of value of connection 

N45_N5 -0.058  0.016  -3.625  2.93E-04 0.024  + 0.026  0.095  

N46_N25 -0.057  0.016  -3.543  4.00E-04 0.030  + 0.002  0.046  

N47_N31 0.059  0.016  3.766  1.68E-04 0.018  + 1.096  1.159  

N48_N19 0.061  0.016  -3.780  1.59E-04 0.018  - -0.679  -0.627  

N48_N21 -0.061  0.016  -3.804  1.44E-04 0.018  + 0.005  0.053  

N50_N7 0.057  0.016  -3.591  3.33E-04 0.026  - -0.251  -0.213  
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Table S2. Connections that showed significant association between their absolute strength with educational attainment on the whole brain proxied by 55*55 

partial correlation matrix. The spatial maps of the nodes in the table indicated by numbers can be found in Figure 2. 

 

 Beta Standard error t.value p p.corrected 
Valence of 

connection 
95% CI of value of connection 

N5-N4 -0.103  0.031  3.290  1.01E-03 0.045  - -0.720  -0.660  

N8-N3 -0.119  0.031  -3.809  1.42E-04 0.018  + 0.903  0.994  

N12-N5 0.132  0.031  -4.201  2.71E-05 0.007  - -2.111  -2.036  

N12-N11 0.106  0.031  3.394  6.94E-04 0.040  + 6.507  6.608  

N15-N7 0.122  0.031  3.949  7.96E-05 0.015  + 0.875  0.929  

N17-N15 0.121  0.031  -3.905  9.59E-05 0.015  - -0.825  -0.784  

N19-N18 -0.136  0.031  4.338  1.47E-05 0.005  - -0.747  -0.689  

N20-N10 -0.109  0.031  3.488  4.91E-04 0.038  - -0.443  -0.399  

N24-N4 -0.108  0.031  -3.428  6.15E-04 0.038  + 0.588  0.651  

N25-N3 0.137  0.031  -4.355  1.36E-05 0.005  - -0.264  -0.223  

N25-N4 -0.161  0.031  -5.150  2.73E-07 <0.001  + 0.995  1.059  

N26-N12 0.108  0.031  3.457  5.51E-04 0.038  + 3.746  3.829  

N29-N25 0.108  0.031  -3.440  5.88E-04 0.038  + 0.180  0.241  

N31-N7 0.125  0.031  -3.995  6.57E-05 0.014  - -1.939  -1.881  

N33-N2 -0.103  0.031  -3.294  9.96E-04 0.045  + 0.257  0.310  

N34-N26 -0.133  0.031  -4.254  2.14E-05 0.006  + 0.320  0.378  

N35-N33 0.108  0.031  -3.452  5.63E-04 0.038  - -0.075  -0.035  

N36-N35 0.105  0.031  -3.363  7.79E-04 0.041  - -0.636  -0.596  

N40-N7 0.118  0.031  -3.761  1.72E-04 0.020  - -0.694  -0.648  

N40-N34 0.122  0.031  -3.888  1.03E-04 0.015  - -0.479  -0.429  

N42-N8 -0.108  0.031  3.439  5.89E-04 0.038  - -0.756  -0.699  

N44-N25 0.112  0.031  3.589  3.35E-04 0.029  + 2.321  2.383  

N44-N36 0.139  0.031  -4.431  9.61E-06 0.005  - -1.469  -1.424  
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 Beta Standard error t.value p p.corrected 
Valence of 

connection 
95% CI of value of connection 

N45-N15 0.117  0.031  3.717  2.05E-04 0.022  + 1.233  1.291  

N45-N36 0.105  0.031  3.348  8.20E-04 0.041  + 0.617  0.662  

N45-N44 0.105  0.031  -3.403  6.74E-04 0.040  - -1.264  -1.217  

N46-N36 0.110  0.031  -3.509  4.54E-04 0.037  - -0.935  -0.890  

N47-N36 0.105  0.031  3.358  7.93E-04 0.041  + 0.721  0.766  

N47-N45 0.110  0.031  3.590  3.35E-04 0.029  + 2.071  2.130  

N48-N5 -0.114  0.031  3.641  2.75E-04 0.027  - -0.123  -0.055  

N50-N10 -0.121  0.031  3.861  1.15E-04 0.015  - -0.606  -0.569  

N52-N37 0.104  0.031  3.343  8.37E-04 0.041  + 0.303  0.344  

N55-N10 -0.105  0.031  3.337  8.53E-04 0.041  - -0.063  -0.034  
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Table S3. Connections that showed significant association between their absolute strength with household income on the whole brain proxied by 55*55 partial 

correlation matrix. The significant connections presented in the table is identical with those connections shown in Figure 2. 

 

 Beta Standard error t.value p p.corrected 
Valence of 

connection 
95% CI of value of connection 

N12_N11 0.072  0.017  4.208  2.64E-05 0.010  + 6.507  6.608  

N15_N11 0.082  0.017  -4.806  1.60E-06 0.002  - -1.246  -1.185  

N18_N8 0.064  0.017  3.720  2.02E-04 0.033  + 0.216  0.267  

N18_N12 0.067  0.017  -3.909  9.42E-05 0.020  - -2.099  -2.035  

N24_N4 -0.067  0.017  -3.908  9.49E-05 0.020  + 0.588  0.651  

N25_N4 -0.062  0.017  -3.629  2.88E-04 0.039  + 0.995  1.059  

N26_N12 0.078  0.017  4.531  6.04E-06 0.004  + 3.746  3.829  

N30_N6 0.062  0.017  3.634  2.83E-04 0.039  + 0.350  0.411  

N31_N7 0.062  0.017  -3.603  3.19E-04 0.039  - -1.939  -1.881  

N34_N26 -0.073  0.017  -4.269  2.01E-05 0.010  + 0.320  0.378  

N40_N2 0.060  0.017  -3.526  4.27E-04 0.042  - -1.806  -1.752  

N40_N19 0.060  0.017  -3.539  4.06E-04 0.042  - -1.136  -1.075  

N40_N22 -0.061  0.017  3.554  3.84E-04 0.042  - -0.548  -0.506  

N44_N40 0.065  0.017  -3.812  1.40E-04 0.026  - -0.509  -0.460  

N47_N18 0.068  0.017  -3.967  7.42E-05 0.020  - -0.724  -0.679  



Appendix 4: Supplementary materials of Chapter 5 

242 

 

Table S4. Regions involved in the significant connections of VNR. The regions were extracted 

using the “result” function of SPM (http://www.fil.ion.ucl.ac.uk/spm/). Clusters that were above 

50% of the highest global intensity and cluster size above 20 are reported in the following 

tables. The coordinates and AAL labels indicate the peak of the reported cluster. 

 

Positive connections 

No 
Coordinate of peak 

region 
AAL label 

Number of 

voxels 

Intensity of 

peak region 

1 -22, -74, -26 Cerebelum_Crus1_L 2804 6.4319 

2 36, -72, -40 Cerebelum_Crus2_R 2661 4.765 

3 -12, -48, -42 Cerebelum_9_L 159 3.0327 

4 50, 4, -38 Temporal_Inf_R 157 3.0399 

5 2, -68, -32 Vermis_8 36 2.5446 

6 56, 34, 0 Frontal_Inf_Tri_R 35023 6.9587 

7 -48, -54, -12 Temporal_Inf_L 313 2.8549 

8 26, -20, -14 Hippocampus_R 58 3.2229 

9 10, 0, 14 Caudate_R 78 3.1414 

10 -10, -4, 16 Caudate_L 35 2.8065 

11 4, -20, 8 Thalamus_R 29 2.6283 

12 -40, -46, 40 Parietal_Inf_L 713 3.1276 

13 -24, -10, 50 Frontal_Sup_L 147 2.5947 

14 34, -2, 60 Frontal_Mid_R 54 2.053 

 

Negative connections 

No 
Coordinate of peak 

region 
AAL label 

Number of 

voxels 

Intensity of 

peak region 

1 32, -70, -48 Cerebelum_7b_R 351 -3.5296 

2 8, -74, -24 Cerebelum_Crus1_R 1982 -3.4538 

3 -2, -52, -34 Cerebelum_9_L 225 -2.4617 

4 -22, -34, -42 Cerebelum_10_L 56 -2.3538 

5 48, -60, -8 Temporal_Inf_R 2456 -3.9686 

6 -28, -74, 22 Occipital_Mid_L 8857 -8.2862 

7 30, -64, -28 Cerebelum_6_R 147 -2.8812 

8 -46, 14, -14 Temporal_Pole_Sup_L 26 -1.8379 

9 -8, 38, -12 Frontal_Med_Orb_L 275 -2.3001 

10 -30, 26, -2 Insula_L 988 -3.4967 

11 34, 38, -8 Frontal_Inf_Orb_R 144 -3.0886 

12 32, 26, -2 Insula_R 260 -3.2563 

16 -50, -12, 30 Postcentral_L 6311 -4.4245 

17 26, 52, -2 Frontal_Mid_R 338 -2.4291 

19 32, -72, 22 Occipital_Mid_R 3881 -7.9954 

http://www.fil.ion.ucl.ac.uk/spm/
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No 
Coordinate of peak 

region 
AAL label 

Number of 

voxels 

Intensity of 

peak region 

22 -10, -40, 34 Cingulum_Mid_L 1340 -3.8093 

23 -8, 0, 12 Caudate_L 51 -2.1585 

24 -34, -32, 20 Insula_L 20 -1.757 

25 36, -30, 18 Insula_R 23 -1.7716 

26 6, 4, 56 Supp_Motor_Area_R 71 -2.3897 

27 -4, 6, 54 Supp_Motor_Area_L 31 -1.6887 

28 12, -32, 66 Paracentral_Lobule_R 32 -1.8698 
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Table S5. Regions involved in the significant connections of educational attainment. The 

coordinates and AAL labels indicate the peak of the reported cluster. 

 

 

Positive connections 

No 
Coordinate of peak 

region 
AAL label 

Number of 

voxels 

Intensity of 

peak region 

1 12, -46, -44 Cerebelum_9_R 311 8.8438 

2 -38, -66, -42 Cerebelum_Crus2_L 3413 11.1 

3 -2, -68, -34 Vermis_8 29 4.7242 

4 2, -58, -24 Vermis_6 22 5.1606 

5 58, -6, -14 Temporal_Mid_R 402 8.8827 

6 -26, -36, -16 Fusiform_L 75 6.8778 

7 -24, -20, -16 Hippocampus_L 55 7.7283 

8 0, -58, 44 Precuneus_L 13050 15.5606 

9 22, 28, 46 Frontal_Sup_R 8148 14.3976 

10 -20, 30, 38 Frontal_Mid_L 6549 14.9328 

11 -32, 36, -10 Frontal_Inf_Orb_L 421 10.9456 

12 -60, -12, -10 Temporal_Mid_L 212 7.2928 

13 -54, -46, -12 Temporal_Inf_L 55 6.1464 

14 -20, -84, -10 Fusiform_L 739 6.1887 

15 56, -40, -10 Temporal_Mid_R 40 4.8633 

16 24, -76, -6 Lingual_R 187 6.9006 

17 -8, 4, 6 Caudate_L 40 7.5075 

18 8, 6, 4 Caudate_R 73 7.6276 

19 -48, -24, 6 Temporal_Sup_L 56 5.9954 

20 36, -84, 10 Occipital_Mid_R 25 4.1809 

21 -46, -48, 12 Temporal_Mid_L 26 4.5143 

22 50, -44, 26 SupraMarginal_R 1413 6.1332 

23 34, -26, 18 Insula_R 37 5.3353 

24 30, -74, 20 Occipital_Mid_R 26 4.8628 

25 38, -14, 20 Insula_R 20 5.6089 

26 -34, -18, 42 Postcentral_L 189 7.0578 

27 -50, -40, 46 Parietal_Inf_L 343 5.4355 

28 -16, -4, 68 Frontal_Sup_L 40 5.1036 
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Negative connections 

No 
Coordinate of peak 

region 
AAL label 

Number of 

voxels 

Intensity of 

peak region 

1 -10, -72, -26 Cerebelum_Crus1_L 453 -5.7127 

2 34, -70, -48 Cerebelum_7b_R 77 -5.1072 

3 -16, -42, -46 Cerebelum_9_L 109 -6.2768 

4 18, -42, -46 Cerebelum_9_R 114 -7.2587 

5 10, -84, -38 Cerebelum_Crus2_R 60 -4.8257 

6 -2, -52, -34 Cerebelum_9_L 78 -6.9646 

7 10, -74, -24 Cerebelum_6_R 27 -4.779 

8 -16, -58, 16 Precuneus_L 15001 -15.7718 

9 24, -20, -16 Hippocampus_R 43 -4.5335 

10 -22, -22, -16 Hippocampus_L 25 -4.972 

11 56, -4, -18 Temporal_Mid_R 110 -5.2959 

12 -34, 36, -12 Frontal_Inf_Orb_L 111 -5.2593 

13 32, 38, -8 Frontal_Inf_Orb_R 851 -6.4684 

14 50, -58, -6 Temporal_Inf_R 366 -6.3365 

15 -40, -66, -6 Occipital_Inf_L 689 -6.7649 

16 8, 52, -10 Frontal_Med_Orb_R 35 -4.3472 

17 -10, 46, -6 Frontal_Med_Orb_L 30 -4.1374 

18 40, -18, 0 Insula_R 22 -4.7318 

19 38, 0, 14 Insula_R 35 -5.385 

20 -46, -22, 20 Rolandic_Oper_L 111 -5.0322 

21 -38, -4, 16 Insula_L 38 -7.1293 

22 60, -26, 32 SupraMarginal_R 106 -4.2938 

23 50, 4, 34 Precentral_R 151 -4.4223 

24 -20, 28, 38 Frontal_Sup_L 144 -5.3051 

25 -38, -24, 60 Precentral_L 373 -7.4667 

26 -26, -8, 48 Precentral_L 89 -4.6457 
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Table S6. Regions involved in the significant connections of household income. The 

coordinates and AAL labels indicate the peak of the reported cluster. 

 

Positive connections 

No 
Coordinate of peak 

region 
AAL label 

Number of 

voxels 

Intensity of 

peak region 

1 24, 26, 50 Frontal_Sup_R 21182 5.4614 

2 12, -72, -48 Cerebelum_8_R 394 2.7072 

3 64, -16, -16 Temporal_Mid_R 1409 3.2367 

4 42, 18, -36 Temporal_Pole_Mid_R 41 1.8175 

5 54, 10, -32 Temporal_Pole_Mid_R 21 2.0982 

6 28, -70, -24 Cerebelum_6_R 182 2.1569 

7 -16, -62, -22 Cerebelum_6_L 56 2.2845 

8 10, 44, -20 Rectus_R 35 2.7192 

9 40, -2, 16 Insula_R 7530 5.667 

10 -38, -4, 16 Insula_L 6699 6.2029 

11 -42, -44, -14 Temporal_Inf_L 38 1.8629 

12 -24, 42, -14 Frontal_Sup_Orb_L 116 2.5622 

13 -38, 48, 2 Frontal_Mid_L 1066 2.6366 

14 -46, -68, 8 Temporal_Mid_L 381 2.5717 

15 -10, -16, 10 Thalamus_L 121 2.7542 

 

Negative connections 

No 
Coordinate of peak 

region 
AAL label Number of voxels 

Intensity of 

peak region 

1 -28, -70, -50 Cerebelum_8_L 89 -1.7068 

2 -14, -52, -48 Cerebelum_9_L 20 -1.5 

3 -6, -74, -40 Cerebelum_7b_L 147 -1.8434 

4 22, -38, -44 Cerebelum_10_R 34 -1.7134 

5 -20, -36, -44 Cerebelum_10_L 31 -1.6446 

6 6, -76, -34 Cerebelum_Crus2_R 42 -1.6713 

7 -2, -52, -34 Cerebelum_9_L 33 -1.7678 

8 -40, -72, -28 Cerebelum_Crus1_L 29 -1.5027 

9 -28, -62, -30 Cerebelum_6_L 52 -1.994 

10 30, -64, -28 Cerebelum_6_R 21 -1.5615 

11 32, -46, -8 Fusiform_R 227 -2.5744 

12 52, -16, 6 Temporal_Sup_R 1372 -2.9145 

13 44, -56, -6 Temporal_Inf_R 270 -2.3303 

14 -40, -32, 10 Temporal_Sup_L 922 -3.1724 

15 34, 36, -10 Frontal_Inf_Orb_R 43 -1.6368 

16 -28, -60, -8 Fusiform_L 165 -2.5173 
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No 
Coordinate of peak 

region 
AAL label Number of voxels 

Intensity of 

peak region 

17 -40, -66, -6 Occipital_Inf_L 319 -2.3311 

18 32, 28, 0 Insula_R 39 -1.5766 

19 -28, -74, 22 Occipital_Mid_L 3066 -5.032 

20 32, -70, 24 Occipital_Mid_R 4320 -5.2122 

21 46, 6, 24 Frontal_Inf_Oper_R 793 -2.1462 

22 -34, 8, 28 Frontal_Inf_Oper_L 413 -1.8625 

23 8, 16, 50 Supp_Motor_Area_R 58 -1.5919 

24 -24, -4, 50 Frontal_Mid_L 707 -2.2576 

25 -14, -42, 48 Cingulum_Mid_L 20 -1.436 

26 16, -40, 48 Paracentral_Lobule_R 33 -1.5304 

27 -6, 16, 48 Supp_Motor_Area_L 29 -1.5881 
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Table S7. Network-of-interest (NOI) results for cognitive performance (VNR) and educational attainment. The significant between-network connections were 

shown in the results below. 

 

VNR 

Type Connections Beta Std t.value p pcorrected 
Mean value of 

connection 

95% CI of value of 

connection 

inter-hemisphere 
left FPN - right FPN -0.040 0.016 -2.493 1.27E-02 0.018 1.156  1.127  1.185  

right CON - left CON -0.063 0.016 -3.923 8.89E-05 6.67E-04 0.379  0.356  0.402  
          

CON - FPN 

left CON - right FPN 0.034 0.016 -2.106 3.52E-02 0.044 -1.359  -1.387  -1.330  

right CON - left FPN 0.043 0.016 -2.714 6.68E-03 0.011 -2.088  -2.122  -2.054  

left CON - left FPN 0.044 0.016 2.732 6.33E-03 0.011 1.043  1.018  1.067  

right CON - right FPN 0.051 0.016 3.200 1.38E-03 0.005 0.648  0.620  0.676  
          

DMN-related 
left CON - DMN 0.061 0.016 3.824 1.33E-04 6.67E-04 0.675  0.652  0.698  

right CON - DMN -0.045 0.016 2.797 5.18E-03 0.011 -0.275  -0.300  -0.250  
          

EDUCATION 

Type Connections Beta Std t.value p pcorrected 
Mean value of 

connection 

95% CI of value of 

connection 

CON - FPN right CON-right FPN 0.086 0.031 2.736 6.24E-03 0.021 0.648 0.620  0.676  
          

DMN-related 
right FPN - DMN 0.104 0.031 -3.335 8.59E-04 0.004 -0.710 -0.738  -0.682  

right CON - DMN -0.149 0.031 4.761 1.99E-06 1.99E-05 -0.275 -0.300  -0.250  
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Table S7. Correlation matrix between average motion during resting-state assessment, first 

four genetic principal components, cognitive performance (VNR), educational attainment and 

household income. Motions and genetic principal components showed very weak correlations 

with VNR, educational attainment and household income. 

 

 
 A
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Age 1 0.085 0.155 -0.061 -0.021 -0.28 

Sex 0.085 1 0.147 0.081 0.071 0.079 

Motion 0.155 0.147 1 -0.085 -0.094 -0.113 

VNR -0.061 0.081 -0.085 1 0.257 0.202 

Edu -0.021 0.071 -0.094 0.257 1 0.237 

Income -0.28 0.079 -0.113 0.202 0.237 1 
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Table S8. Replication analyses on the (1) unrelated sample, which related people were removed (N=3,253), and (2) updated unrelated sample (N=7,144). 

Three connections turned null in both unrelated 4k sample and unrelated 7k sample, which takes up 4.05% of 74 significant connections found in the main 

results. None of the significant connections showed opposite direction of effect in the additional analyses. 

 

  Main model Unrelated people (N~=4k) Unrelated people (N~=7k) 

 Connection Beta (std) Puncorrected Pcorrected Beta (std) Puncorrected Beta (std) Puncorrected 

V
N

R
 

N17_N15 0.054 (0.016) 6.73E-04 3.85E-02 0.053 (0.018) 3.36E-03 0.049 (0.012) 7.30E-05 

N21_N7 0.097 (0.016) 9.09E-10 1.35E-06 0.09 (0.018) 5.38E-07 0.074 (0.012) 2.71E-09 

N21_N11 0.062 (0.016) 9.72E-05 1.44E-02 0.067 (0.018) 2.28E-04 0.058 (0.012) 3.14E-06 

N22_N1 0.061 (0.016) 1.53E-04 1.77E-02 0.051 (0.018) 4.99E-03 0.025 (0.012) 4.66E-02 

N24_N4 -0.066 (0.016) 4.37E-05 7.21E-03 -0.064 (0.018) 4.36E-04 -0.052 (0.013) 3.71E-05 

N24_N9 -0.083 (0.016) 2.14E-07 1.59E-04 -0.073 (0.018) 6.33E-05 -0.059 (0.012) 2.45E-06 

N25_N5 -0.072 (0.016) 7.39E-06 1.65E-03 -0.084 (0.018) 3.57E-06 -0.057 (0.012) 3.75E-06 

N26_N12 0.081 (0.016) 4.96E-07 2.45E-04 0.061 (0.018) 7.47E-04 0.052 (0.012) 2.57E-05 

N28_N24 0.076 (0.016) 2.25E-06 8.35E-04 0.081 (0.018) 1.01E-05 0.074 (0.013) 4.02E-09 

N29_N11 0.059 (0.016) 2.45E-04 2.14E-02 0.057 (0.018) 1.71E-03 0.055 (0.013) 9.99E-06 

N31_N12 -0.066 (0.016) 4.06E-05 7.21E-03 -0.079 (0.018) 1.47E-05 -0.074 (0.012) 3.61E-09 

N33_N13 0.06 (0.016) 1.78E-04 1.77E-02 0.05 (0.018) 5.90E-03 0.043 (0.012) 5.67E-04 

N33_N22 0.055 (0.016) 6.52E-04 3.85E-02 0.055 (0.018) 2.76E-03 0.055 (0.013) 1.11E-05 

N39_N33 0.074 (0.016) 4.80E-06 1.43E-03 0.046 (0.018) 1.23E-02 0.047 (0.013) 1.78E-04 

N42_N6 -0.056 (0.016) 4.43E-04 3.13E-02 -0.057 (0.018) 1.80E-03 -0.044 (0.013) 4.75E-04 

N42_N18 0.055 (0.016) 5.77E-04 3.73E-02 0.035 (0.018) 5.63E-02 0.025 (0.012) 4.60E-02 

N44_N17 0.054 (0.016) 6.21E-04 3.84E-02 0.041 (0.018) 2.33E-02 <0.001, >-0.001 (0.012) 9.68E-01 

N44_N25 0.071 (0.016) 7.78E-06 1.65E-03 0.057 (0.018) 1.48E-03 0.054 (0.012) 1.19E-05 

N45_N5 -0.058 (0.016) 2.93E-04 2.42E-02 -0.045 (0.018) 1.28E-02 -0.05 (0.012) 7.09E-05 

N45_N15 0.059 (0.016) 2.34E-04 2.14E-02 0.037 (0.018) 4.03E-02 0.039 (0.012) 1.72E-03 

N45_N44 0.055 (0.016) 4.81E-04 3.25E-02 0.034 (0.018) 5.71E-02 0.019 (0.012) 1.27E-01 
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  Main model Unrelated people (N~=4k) Unrelated people (N~=7k) 

 Connection Beta (std) Puncorrected Pcorrected Beta (std) Puncorrected Beta (std) Puncorrected 

N46_N25 -0.057 (0.016) 4.00E-04 2.97E-02 -0.039 (0.018) 3.18E-02 -0.02 (0.012) 1.09E-01 

N47_N31 0.059 (0.016) 1.68E-04 1.77E-02 0.056 (0.018) 1.87E-03 0.034 (0.012) 5.23E-03 

N48_N19 0.061 (0.016) 1.59E-04 1.77E-02 0.046 (0.018) 1.10E-02 0.041 (0.013) 1.14E-03 

N48_N21 -0.061 (0.016) 1.44E-04 1.77E-02 -0.057 (0.018) 1.75E-03 -0.021 (0.012) 8.73E-02 

N50_N7 0.057 (0.016) 3.33E-04 2.60E-02 0.059 (0.018) 1.18E-03 0.057 (0.012) 4.27E-06 

E
d

u
c

a
ti

o
n

a
l 
a
tt
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m
e
n
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N5_N4 -0.103 (0.031) 1.01E-03 4.54E-02 -0.056 (0.018) 2.28E-03 -0.045 (0.013) 3.91E-04 

N8_N3 -0.119 (0.031) 1.42E-04 1.75E-02 -0.056 (0.018) 2.34E-03 -0.036 (0.013) 4.51E-03 

N12_N5 0.132 (0.031) 2.71E-05 6.71E-03 0.056 (0.018) 2.25E-03 0.033 (0.013) 8.67E-03 

N12_N11 0.106 (0.031) 6.94E-04 3.97E-02 0.032 (0.018) 7.50E-02 0.038 (0.012) 2.24E-03 

N15_N7 0.122 (0.031) 7.96E-05 1.48E-02 0.041 (0.018) 2.35E-02 0.044 (0.012) 4.66E-04 

N17_N15 0.121 (0.031) 9.59E-05 1.53E-02 0.046 (0.018) 1.21E-02 0.054 (0.012) 1.65E-05 

N19_N18 -0.136 (0.031) 1.47E-05 5.47E-03 -0.058 (0.019) 1.74E-03 -0.039 (0.013) 1.99E-03 

N20_N10 -0.109 (0.031) 4.91E-04 3.80E-02 -0.071 (0.018) 1.28E-04 -0.043 (0.013) 6.06E-04 

N24_N4 -0.108 (0.031) 6.15E-04 3.80E-02 -0.049 (0.018) 7.95E-03 -0.038 (0.013) 2.33E-03 

N25_N3 0.137 (0.031) 1.36E-05 5.47E-03 0.068 (0.018) 2.36E-04 0.042 (0.013) 8.17E-04 

N25_N4 -0.161 (0.031) 2.73E-07 4.06E-04 -0.081 (0.018) 1.06E-05 -0.077 (0.013) 8.59E-10 

N26_N12 0.108 (0.031) 5.51E-04 3.80E-02 0.029 (0.018) 1.12E-01 0.032 (0.013) 1.05E-02 

N29_N25 0.108 (0.031) 5.88E-04 3.80E-02 0.042 (0.018) 2.29E-02 0.038 (0.013) 2.75E-03 

N31_N7 0.125 (0.031) 6.57E-05 1.39E-02 0.039 (0.018) 3.21E-02 0.038 (0.012) 2.19E-03 

N33_N2 -0.103 (0.031) 9.96E-04 4.54E-02 -0.064 (0.018) 5.00E-04 -0.024 (0.013) 6.05E-02 

N34_N26 -0.133 (0.031) 2.14E-05 6.37E-03 -0.051 (0.018) 5.55E-03 -0.059 (0.013) 2.69E-06 

N35_N33 0.108 (0.031) 5.63E-04 3.80E-02 0.055 (0.019) 3.26E-03 0.037 (0.013) 3.41E-03 

N36_N35 0.105 (0.031) 7.79E-04 4.09E-02 0.055 (0.018) 2.59E-03 0.027 (0.013) 3.49E-02 

N40_N7 0.118 (0.031) 1.72E-04 1.96E-02 0.06 (0.018) 1.24E-03 0.019 (0.013) 1.46E-01 

N40_N34 0.122 (0.031) 1.03E-04 1.53E-02 0.049 (0.018) 7.75E-03 0.044 (0.013) 4.62E-04 

N42_N8 -0.108 (0.031) 5.89E-04 3.80E-02 -0.052 (0.018) 4.56E-03 -0.018 (0.013) 1.55E-01 
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  Main model Unrelated people (N~=4k) Unrelated people (N~=7k) 

 Connection Beta (std) Puncorrected Pcorrected Beta (std) Puncorrected Beta (std) Puncorrected 

N44_N25 0.112 (0.031) 3.35E-04 2.93E-02 0.047 (0.018) 9.83E-03 0.012 (0.012) 3.30E-01 

N44_N36 0.139 (0.031) 9.61E-06 5.47E-03 0.071 (0.018) 1.09E-04 0.044 (0.013) 4.38E-04 

N45_N15 0.117 (0.031) 2.05E-04 2.17E-02 0.028 (0.018) 1.33E-01 0.037 (0.013) 3.59E-03 

N45_N36 0.105 (0.031) 8.20E-04 4.09E-02 0.061 (0.018) 1.07E-03 0.031 (0.013) 1.46E-02 

N45_N44 0.105 (0.031) 6.74E-04 3.97E-02 0.036 (0.018) 5.18E-02 0.008 (0.013) 5.02E-01 

N46_N36 0.11 (0.031) 4.54E-04 3.74E-02 0.047 (0.018) 1.09E-02 0.029 (0.013) 1.91E-02 

N47_N36 0.105 (0.031) 7.93E-04 4.09E-02 0.046 (0.018) 1.29E-02 0.028 (0.013) 2.42E-02 

N47_N45 0.11 (0.031) 3.35E-04 2.93E-02 0.029 (0.018) 1.02E-01 0.016 (0.012) 1.88E-01 

N48_N5 -0.114 (0.031) 2.75E-04 2.72E-02 -0.061 (0.018) 8.06E-04 -0.046 (0.013) 2.78E-04 

N50_N10 -0.121 (0.031) 1.15E-04 1.55E-02 -0.059 (0.018) 1.31E-03 -0.029 (0.013) 2.30E-02 

N52_N37 0.104 (0.031) 8.37E-04 4.09E-02 0.052 (0.018) 4.74E-03 0.043 (0.013) 5.31E-04 

N55_N10 -0.105 (0.031) 8.53E-04 4.09E-02 -0.074 (0.018) 6.83E-05 -0.027 (0.013) 3.32E-02 
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N12_N11 0.072 (0.017) 2.64E-05 9.80E-03 0.063 (0.019) 9.81E-04 0.043 (0.013) 1.17E-03 

N15_N11 0.082 (0.017) 1.60E-06 2.38E-03 0.082 (0.019) 1.91E-05 0.043 (0.013) 1.21E-03 

N18_N8 0.064 (0.017) 2.02E-04 3.34E-02 0.06 (0.02) 2.40E-03 0.019 (0.013) 1.50E-01 

N18_N12 0.067 (0.017) 9.42E-05 2.01E-02 0.047 (0.02) 1.69E-02 0.035 (0.013) 9.10E-03 

N24_N4 -0.067 (0.017) 9.49E-05 2.01E-02 -0.062 (0.02) 1.65E-03 -0.052 (0.013) 1.23E-04 

N25_N4 -0.062 (0.017) 2.88E-04 3.89E-02 -0.065 (0.02) 9.67E-04 -0.056 (0.013) 2.66E-05 

N26_N12 0.078 (0.017) 6.04E-06 4.49E-03 0.074 (0.019) 1.54E-04 0.062 (0.013) 3.55E-06 

N30_N6 0.062 (0.017) 2.83E-04 3.89E-02 0.049 (0.02) 1.24E-02 0.039 (0.013) 3.19E-03 

N31_N7 0.062 (0.017) 3.19E-04 3.94E-02 0.049 (0.019) 1.09E-02 0.035 (0.013) 7.45E-03 

N34_N26 -0.073 (0.017) 2.01E-05 9.80E-03 -0.079 (0.02) 5.35E-05 -0.071 (0.013) 1.25E-07 

N40_N2 0.06 (0.017) 4.27E-04 4.23E-02 0.041 (0.019) 3.63E-02 0.024 (0.013) 7.07E-02 

N40_N19 0.06 (0.017) 4.06E-04 4.23E-02 0.051 (0.019) 8.10E-03 0.044 (0.013) 8.49E-04 

N40_N22 -0.061 (0.017) 3.84E-04 4.23E-02 -0.073 (0.02) 2.14E-04 -0.051 (0.013) 1.51E-04 

N44_N40 0.065 (0.017) 1.40E-04 2.59E-02 0.062 (0.019) 1.58E-03 0.042 (0.013) 1.58E-03 



Appendix 4: Supplementary materials of Chapter 5 
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  Main model Unrelated people (N~=4k) Unrelated people (N~=7k) 

 Connection Beta (std) Puncorrected Pcorrected Beta (std) Puncorrected Beta (std) Puncorrected 

N47_N18 0.068 (0.017) 7.42E-05 2.01E-02 0.053 (0.02) 6.36E-03 0.024 (0.013) 7.24E-02 
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