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Abstract

This thesis considers the problem of program correctness within a rich theory of

dependent types, the Extended Calculus of Constructions (ECC). This system

contains a powerful programming language of higher-order primitive recur-

sion and higher-order intuitionistic logic. It is supported by Pollack’s versatile

LEGO implementation, which I use extensively to develop the mathematical

constructions studied here.

I systematically investigate Burstall’s notion of deliverable, that is, a program

paired with a proof of correctness. This approach separates the concerns of

programming and logic, since I want a simple program extraction mechanism.

The�-types of the calculus enable us to achieve this. There are many similarities

with the subset interpretation of Martin-Löf type theory.

I show that deliverables have a rich categorical structure, so that correctness

proofs may be decomposed in a principled way. The categorical combinators

which I define in the system package up much logical book-keeping, allowing

one to concentrate on the essential structure of algorithms.

I demonstrate our methodology with a number of small examples, culmin-

ating in a machine-checked proof of the Chinese remainder theorem, showing

the utility of the deliverables idea. Some drawbacks are also encountered.

I consider also semantic aspects of deliverables, examining the definitions

in an abstract setting, again firmly based on category theory. The aim is to

overcome the clumsiness of the language of categorical combinators, using
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Abstract ii

dependent type theories and their interpretation in fibrations. I elaborate a

concrete instance based on the category of sets, which generalises to an arbitrary

topos. In the process, I uncover a subsystem of ECC within which one may speak

of deliverables defined over the topos. In the presence of enough extra structure,

the interpretation extends to the whole of ECC. The wheel turns full circle.
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Chapter 1

Introduction

This thesis concerns a number of insights and techniques obtained from cat-

egory theory, applied to the study of programs and their correctness proofs

in constructive type theory. As such, it provides a modest exploration of the

interaction of two disciplines at the heart of much recent research in theoretical

computer science. It is largely based on the unpublished ideas of Rod Burstall

[12].

1.1 Formal methods

For thirty years, researchers and industrialists of all persuasions have pursued

the Grail of verified programming. No longer may we be content to regard

programming as a craft, erecting the medieval cathedrals we now strive so

strenuously and expensively to preserve [23,24].

This thesis represents an experiment in this field in the context of an integ-

rated environment for the development of mathematical proofs, which also con-

tains a powerful programming language. As such, the environment furnished

by Pollack’s LEGO implementation of the Extended Calculus of Constructions,

1
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represents a good experimental tool for investigation of new methods, since the

features of computation and logic are combined in one system.

One of the strengths of formal reasoning on a machine is that we can re-

legate much logically dull activity — e.g. the computing of substitutions —

to the proof tool, using unification and other devices, without the user having

to manage the tedious book-keeping. Set against that, however, the activity of

formal proof, as has been observed many times by various authors and research

workers, carries with it a huge burden of information typically suppressed in

what mathematicians regard as acceptable proofs. One of the aims, therefore,

of this thesis will be to develop languages of sufficient expressiveness to en-

able us to construct proven programs in a well-structured way, mirroring the

construction of programs themselves.

There are two contrasting approaches to the formal development of correct

programs. Classically, we typically write a program and produce a separate

proof of its correctness. This approach seems unsatisfactory in that the proof

is separate from the program. It is more acceptable in a formalism such as

Floyd-Hoare assertions [40], in which local correctness statements are attached

to program phrases, or Dijkstra’s use of predicate transformers [22,25], where

we may derive appropriate guards by calculating weakest preconditions.

A constructive, or type-theoretic, approach is to prove a mathematical the-

orem in some constructive logic, and extract from it a program. This method

is attractive at first sight but there is considerable difficulty in separating the

algorithmic part of the proof from the correctness part. We must somehow an-

notate the proof in such a way as to mark those parts which are computationally

relevant, as opposed to those which serve to demonstrate the correctness of our

extracted program.

If we look for a constructive proof of a statement of the form8x: I(x) =) 9y: O(x; y)
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then what emerges is a function which, given an individual x and a proof ofI(x), produces a pair consisting of an individual y and a proof that it satisfiesO(x; y). In other words we cannot get the result y without providing the proof

of I(x). It seems that if we try to develop a substantial program this way we

need to handle proofs all the time as we attempt to calculate values: the proof

and the computation are inextricably mixed.

Burstall’s idea is to consider instead pairs (f; p), where f is a function from

individuals to individuals and p is a proof that8x: I(x) =) O(x; f(x))
In this thesis, we consider the systematic development of proven programs

within type theory using this idea of a deliverable.

In this approach, there is a clear separation of the computation from the

proof, but we have made no gain if we have to construct f and p separately. We

should examine the possibility of a compositional development of such pairs. But

here we face an obstacle, namely the asymmetry of I and O in such a definition.

A first approximation is simply to consider unary predicates, rather than

relations, that is we examine pairs (f; p), where f is a function and p is a proof

that 8x: I(x) =) O(f(x)):
Burstall observed that these deliverables form a category with additional struc-

ture. This enables us to construct deliverables in the style of categorical com-

binators for the �-calculus [21].

In a subsequent paper [13], Burstall and the author sketched how to extend

this framework to allow us to speak once more of relations between the input

and output, while preserving the categorical character of the construction. These

ideas are elaborated in Section 3.2 of this thesis.
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The methodology we propose, however, cannot be regarded as a panacea

for the problems of verified programming. It does not eliminate the essential

difficulty in furnishing proofs, although it does allow the proofs to be structured

in a rather less ad hoc way. So in some sense, we have localised the difficulty, by

insisting that the structure of an intended (if only partially elaborated) algorithm

underlie the correctness proof. Our experience with the Chinese remainder

theorem in Chapter 4 seems to bear this out. A major drawback seems to

be the crudeness of the language of categorical combinators within which we

work. A significant advance would be to develop a type-theoretic language

for deliverables. The system we present in Chapter 5, derived from semantic

considerations of deliverables, should be regarded as a preliminary step in this

direction.

1.2 Foundations: type theory and category theory

The last twenty years or so has seen a revitalisation of intuitionistic mathematics

with the emergence of various type theories, focusing on the notion of construc-

tion, and its relationship with proof theory and the �-calculus. Starting with

Howard’s account of “propositions as types” [42], a constructive reading of the

logical connectives and the semantics of proofs has revealed close connections

between intuitionistic mathematics and functional programming. These ideas

were elaborated by Scott [98], de Bruijn and his co-workers in the AUTOMATH

project [11], and most notably by Martin-Löf, in a succession of predicative

systems which bear his name [69,70,71,79]. Central to these systems is the idea

of dependent type or family of types. In a parallel development [32], Girard

considered impredicative systems related to simple type theory [14]. Coquand

and Huet [17,18] were able to unite dependent types and impredicativity in

their Calculus of Constructions, CC. Finally Luo synthesised Martin-Löf’s idea
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of a predicative hierarchy of type universes with the impredicative Calculus of

Constructions in his Extended Calculus of Constructions, ECC [58,59].

In this context, the notion of deliverable, considered in the simple case of a

function respecting unary predicates, does not appear to be new. Already in the

proof of normalisation for his 1973 theory [69], Martin-Löf gave an interpretation

(due to Hancock) of the judgments of the theory in a model of closed terms,

where types were interpreted as sets of closed terms, subject to some predicate

being satisfied1. The interpretation is given by a grand simultaneous inductive

definition on the derivable judgments of the theory. The particular clause for the

function space embodies the idea of deliverables. Indeed, this remark applies

to any normalisation proof based on the reducibility method. The reducibility

predicate �A, defined by induction on the type A, with the function clause

essentially �A!B(f) = 8a:A:�(a)) �(fa) . Martin-Löf’s interpretation has re-

emerged in recent years in giving an account of subset types within Martin-Löf

type theory, of which we shall have more to say below.

A parallel development over a similar period has been the emergence of

internal languages for categories, which at their most crude are simply exten-

sional type theories with unary function symbols. The presence of structure

(images, cartesian products, closedness) yields further strengthening of the

type-formation and derivation rules in the internal logic. Much effort was ex-

pended in the ’Seventies in the systematic exploration of the interaction between

logical properties and categorical structure, culminating in the elaboration of

the internal logic of toposes [28,49,10,53,5]. The most significant development

in this regard must be Lawvere and Tierney’s observation that the represent-

ability of the notion of subobject (via the so-called subobject classifier) is what

makes set theory possible. Significant for later authors in the development of1I am grateful to Furio Honsell for pointing out this connection to me.
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the internal language is the realisation, just as Russell and Church had noted

in rather different terms, that all the impredicative definitions of higher-order

logic — in an extensional, intuitionistic setting — are obtainable from the small

complete internal poset 
 , whose object of objects is the subobject classifier [49,

Ch.3].

Subsequent research in categorical logic has considered the richer type sys-

tems above, with fibrations emerging as the central unifying concept [102,6,45,

26,105,84,48]. We shall return to these issues in Chapter 5 below.

Type-theoretically, the notion of “subset”, or subset type has been much

less clearly defined. Probably the most closely argued and theoretically sat-

isfying has been the work of the Göteborg group [79]. One of the troubling

(and desirable!) features is the role that subsets play in suppressing proposi-

tional information in programs. Within a topos, the use of subobjects to give

a semantics to judgments of the logic ensures that propositions have at most

one proof, but in a �-calculus with propositions as types, we have possibly

many, yielding a potentially huge proliferation in the dependence of functions

on proofs. Our treatment using deliverables follows the path of systematically

developing proofs of correctness, in which computational information is kept

distinct from propositional information. The presence of �-types allows us to

do this.

1.3 Overview of the thesis

Chapter 2 sets out the type-theoretic preliminaries we require in the study of this

approach to program correctness. Luo’s Extended Calculus of Constructions,

ECC [58,59], is sketched as the basic framework of types and terms. The calculus

is intended to provide a unified account of dependent type theory which brings

together a theory of predicative datatypes and impredicative higher-order logic.
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The separation of datatypes from propositions is at the heart of the deliverables

idea. The presence of �-types in the calculus allows us to maintain these

distinctions in a structured way. We discuss a number of features of the calculus,

including a simple lemma on equality, which is used repeatedly in verifying

basic properties of deliverables. A number of derivations are given, illustrating

the expressive power of the calculus. We discuss a small example, concerning

the even numbers, in the context of our general view of program specification.

We also discuss Pollack’s LEGO implementation of the Extended Calculus of

Constructions [85,64]. This is a very versatile system, which allows us to develop

proofs and constructions by refinement. The system also achieves great utility

through a powerful mechanism for extending the basic calculus with definitions.

We describe this, and a number of other features of the system, which was used

extensively in this research. In particular, most of the mathematical proofs in this

thesis have been checked in the system, with the exception of those concerning

the categorical constructions in Chapter 5. Often, the proof term exhibiting a

mathematical construction in the text is illustrated by the corresponding term

in the LEGO system. We work through a sample derivation of the even number

example, to give the reader an introduction to reasoning in the system. More

elaborate examples are discussed in Chapter 4.

The system has recently been extended to allow for inductive definitions

of datatypes in the style of Martin-Löf type theory. This allows direct access

to a powerful programming language of higher-order primitive recursion. We

illustrate the use of such a language with the examples of natural numbers and

lists. We impose a restriction on our programs that they be simply typed (though

we allow polymorphism at the Type level), rather than using the full power of

dependent types. There are two reasons for this. The first is pragmatic: we

would like our programming language to resemble a language such as Standard

ML [35], which does not have dependent type constructors, and which we use

at various points as a convenient prototype notation for the algorithms we
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represent in LEGO. In practical terms, of course, this restriction helps to keep

things simple, so that we might understand what is going on. A more ambitious

task would be to develop the theory for the full language of dependent types.

We feel this thesis represents a substantial step in this direction.

The second reason arises from the particular approach we adopted to devel-

oping the structure of the various categories of deliverables. We wished in part

to allow the methodology to be applied to the Church representations of the

datatypes at the impredicative level of the calculus. This would hopefully have

permitted some comparison between the work reported here and the work of

Paulin-Mohring and collaborators on program extraction in Coquand’s original

calculus of constructions [81,82]. Unfortunately, these connections remain to be

made precise.

Chapter 3 introduces the central definitions and concepts in this thesis.

We define a simple notion of specification, consisting of a type together with

some predicate defined over it. We show how to define first-order deliverables,

program-proof pairs which respect this notion of specification, in the type theory

ECC. We demonstrate various constructions we may make with such gadgets,

which provide both practical examples of the methodology we propose, and

some of the meta-theory. We show that first-order deliverables form a semi-

cartesian closed category in the sense of [37]. This is Theorem 3.1.1. We may

also equip the category of first-order deliverables with a weak notion of natural

numbers object and lists. We show the correctness proof of a simple doubling

function in this framework.

We then discuss how to refine these basic notions, so that we are able to

express the statement that a function respects some relation between its input

and output. This leads to the notions of relativised specification and second-

order deliverables, which are our principal objects of study in the examples we

have considered. It turns out that the structure of second-order deliverables

is very similar to that of first-order deliverables. Stated precisely, we obtain
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Theorem 3.2.1:

Theorem For each specification S , the category of second-order deliverables over S has

the structure of a semi-ccc;

and Theorem 3.2.2:

Theorem Second-order deliverables form an indexed category [50,6] over the category

of first-order deliverables, whose fibres are semi-cccs, with semi-cc structure strictly

preserved by reindexing along first-order deliverables.

We also show some rules for recursive specifications over natural numbers and

lists, which we employ in our examples.

Chapter 4 discusses a number of examples of the development of small

programs using the deliverables methodology. The last example discusses a

proof of the Chinese remainder theorem, illustrating both the use of second-

order deliverables in separating the rôles of parameters from that of dependent

variables in the proof, and the economy of the deliverables style as against a

separate correctness proof of the underlying algorithm.

In Chapter 5, we return to category theory. We explore how the idea of

deliverables may be elaborated in the abstract setting of a category, intended

to model some typed functional language, together with a system of abstract

predicates indexed over it. We give a detailed account of a particular instance

of the construction, based on a topos. The categorical understanding of the

semantics of type theories allows us to describe this model in type-theoretic

terms. We uncover a subsystem, CC+, of ECC which describes these “abstract

deliverables”. CC+ was introduced by Luo to overcome the non-conservativity

of CC over Church’s simple theory of types [60]. It enables us to represent the

type of individuals in Church’s system as a constant at the Type level, rather

than the Prop level. If the set theory embodied in the topos is sufficiently rich,

as it is for example in the case of Zermelo-Frankel set theory with inaccessible

cardinals, then we may interpret the whole of ECC. In any case, we arrive at

the conclusion that a fragment of the LEGO system itself may be used as a logic
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of correct programs in the higher-order logic of a topos. We believe this may

have very useful consequences for the pragmatics of program development, set

against existing formal design methodologies in higher-order logic.

The thesis ends with a number of avenues for further exploration of these

ideas.

1.4 Related work

There are basically two approaches to a logical account of formal program

development. The first relies on annotating programs with logical formulae,

and expressing the correctness of a program in terms of logical deductions.

This has its origins in the work of Floyd, Hoare and others in the ’Sixties [40, for

example]. The idea of a deliverable clearly has echoes of this idea, but brought

into the functional setting. It also avoids the defect of the Floyd/Hoare style

in having object language and meta-logical variables on the same footing as

object variables of our chosen type theory. Moreover, the proofs we obtain are

not those in some encoded logic of programs. For the case of Hoare’s logic in

the Edinburgh Logical Framework [34], it proved quite difficult to formulate a

satisfactory notion of encoding [73,30].

The second approach, based on various intuitionistic type theories, has been

to develop constructive proofs, and use realisability techniques to extract al-

gorithmic information. Both Martin-Löf type theory [15,79] and the Calculus of

Constructions [17,81,82] have been used in this style. This thesis uses ideas from

both these schools. Most influential has been the theory of subsets in Martin-Löf

type theory. This has been given an eloquent treatment in [79, Chapter 18], to

which the reader is referred for a detailed discussion. The central problem in

using constructive proofs as a programming discipline is that proofs contain

redundant information. Dependent types allow us to express logical predicates
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as types, but do not permit the representation of any more recursive functions.

For the Calculus of Constructions, this has a precise statement in the result of

Berardi and Mohring [81,7]:

Theorem CC is conservative over F!.

Consequently, CC can represent, in the standard representation of functions on

inductive types due variously to Church, Girard, Leivant and others [32,56,9],

no more functions than F!. The proof is based on a syntactic mapping, the

so-called Berardi-Mohring projection. Mohring used this mapping as an extrac-

tion function, which, coupled with the associated realisability predicate, allows

a powerful and flexible approach to program development from proofs. Under

this interpretation, an arbitrary type is interpreted as a type, together with a

predicate (the realisability predicate) defined over it.

The approach taken in [79] is to separate computationally relevant proofs

from the purely logical, via a translation of the judgments of the basic formal

system into multiple judgments. This translation permits the formation of a

“subset type” fx 2 AjB(x)g, for which a reasonable elimination rule may be

given. An attempt to equip the basic theory with such a type (which may

be used to precisely hide the information of the precise nature of a proof that

predicate B(x) holds) yields very unsatisfactory results [92,93,79].

Given the basic theory of types and terms in Martin-Löf type theory, the first

step is to extend the theory with a notion of proposition and a judgment P true
for propositions. This is very straightforward, using propositions as types. A

proposition is just a type in the basic theory. A proposition is true if there is

some element inhabiting it, again in the basic theory. This seemingly innocent

proof-irrelevance gives the subset theory its power.

The subset theory now interprets the basic judgmentA set
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of Martin-Löf type theory as two judgments in the underlying theory, prescrib-

ing� a set A0 in the basic theory, and� a family of propositions A00(x) prop [x 2 A0], again in the basic theory.

This corresponds to our definition of specification in Section 3.1.

Equality of sets A;B is based on equality of the underlying sets A0; B 0, but

uses logical equivalence of the families A00; B 00. We rejected such a choice, in

favour of the decidable relation of convertibility in ECC.

The membership judgment a 2 A is interpreted in the obvious way: we

may derive a 2 A if we can derive a 2 A0 and A00(a) true in the basic theory.

This captures the essential idea, that the judgments A set and a 2 A should

describe subsets of the terms in A0 in the underlying theory. In this way, the

proofs of the propositions A00(a) are systematically suppressed. It is then relat-

ively straightforward to see how this allows the interpretation of a subset-type

constructor.

How does this compare with our approach? The resulting expressions for

the various type constructors are very similar, compare for example the defini-

tion of exponential for second-order deliverables with the �-type in the subset

interpretation. We consider explicit proofs of the propositional parts of our

specifications, whereas we need only know that some proof may be derived

in the subset theory. However, this seems to be one of the limitations of their

approach, in that we only know that certain derivations in the subset theory arise

from certain other derivations. Our use of �-types, by contrast, means that we

can represent the derivations of deliverables as actual terms within ECC, using

the definable combinators which code up the explicit translation. The price we

pay seems to be that we have to work with a rather clumsy language for these
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terms, as opposed to the conceptual elegance of reusing the basic language of

types and terms in the subset theory.

The NuPrl system, developed by Constable and his co-workers [15], is based

on early versions of Martin-Löf’s type theory. In particular, the underlying term

calculus is untyped, and the system has extensional equality types. This has

the advantage of suppressing some irrelevant information in proofs. It also

overcomes the limitations on the use of an explicit subset-type constructor in a

theory with intensional equality, exposed in [92,93]. The sovereign disadvantage

is that the basic judgments of the theory become undecidable, coupled with a

proliferation of well-formedness conditions in the application of the rules.

Recently, Hayashi has also proposed a system based on realisability, which

abandons the usual type constructors �;�, on which most work to date on

type theory has been based, in favour of a more set-theoretic style, with union,

intersection and singleton types [39]. The system he considers is, however,

ingenious enough to represent dependent products and dependent sums. At

the same time, the typing rules for union and intersection hide information.

This allows a simple translation or extraction into a programming language

with a polymorphic type discipline. Singleton types seem essential in achieving

this harmony between the type system and the underlying untyped terms.

Pavlovič, in his thesis [83], elaborates in categorical terms a theory of con-

structions in which programs do not depend on proofs of logical propositions.

As with the models of Constructions considered by Hyland and Pitts [45], the

emphasis is on extensional systems, rather than the intensional system we work

with here. Proof-theoretic properties seem to be regarded as something “: : :an

implementation would have to answer” [83, p.8].
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1.5 Prerequisites

We assume the reader is familiar with at least a basic account of category the-

ory, including the definition of adjunction and cartesian closed category, as for

example in Mac Lane [67] or Lambek and Scott [53].

We moreover assume that the reader has a rudimentary understanding of

type theory. An excellent introduction to the systems of Martin-Löf is contained

in the book by Nordström, Petersson and Smith [79].



Chapter 2

Type theoretic preliminaries: ECC

and LEGO

2.1 Review of ECC

Luo’s Extended Calculus of Constructions, ECC, [58,59] is a rich type theory con-

taining Coquand and Huet’s Calculus of Constructions [17,19] as a subsystem,

together with strong �-types and a cumulative hierarchy of predicative uni-

verses, much as in the systems considered by Martin-Löf and his collaborators

[69,70,79]. All these systems are based on the “propositions as types” paradigm,

due to Curry and Howard [42], though the ideas go back to a constructive read-

ing of the logical connectives due to Heyting and Kolmogorov. In Martin-Löf

systems, all types may be read as propositions, and in Coquand and Huet’s

original system, all propositions may be read as types. ECC avoids this blur-

ring of distinctions, giving us access to full intuitionistic higher-order logic at

a propositional level, together with a predicative environment for computation

and abstract mathematics. It is precisely this ability to distinguish propositional

from computational information within a single framework which underlies

our approach to program development.

15
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ECC is built out of a calculus of terms, together with a formal system for

deriving judgments which define the well-typed terms.

2.1.1 The term calculus

The collection of terms is given by the following grammarT ::= � j V j�V :T:T j �V :T:T j TT j�V :T:T j pairT (T; T ) j �1(T ) j �2(T )
where V ranges over some infinite collection of variables, and � ranges overProp and Typei (i 2 !), the so-called kinds of ECC. Prop is an impredicative

universe, as in Coquand and Huet’s original systems [17], intended to contain

propositions, while the Typei are predicative universes much like a set-theoretic

hierarchy (and very similar to the Ui of some versions of Martin-Löf’s theories

[79,70]). Substitution for free occurrences of variables is defined in the usual way.

Terms are identified up to renaming of bound variables. The basic conversion

relation '� is defined on all terms, and as usual is the congruence closure of the

familiar reductions:(�) (�x:A:M)N BM [N=x], and(�) �i(pairT (M1;M2)) BMi(i = 1; 2).
This is then extended to a cumulativity relation �, the least relation on the terms

such that� � is a pre-order (in fact Luo proves that � is a partial order with respect

to conversion '�)� on kinds, Prop � Typei � Typej(i � j), and
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2.1.2 The derivable judgments of ECC

A context is a finite sequence of declarations of the form x:M , where M is a

term. We denote the empty context by �. A judgment is a relation of the form� ` M : A, where � is a context and M;A are terms. If � is the empty context,

we often simply write `M : A in place of � `M : A. The rules of ECC are given

in Table 2–1 below.

Remark When x =2 FV (B) we typically write A ) B for �x:A:B, in case A;B
are both well-typed of type Prop in some context, and A! B otherwise. This is

simply a device to mark the distinction between logical implication at the Prop
level, and the function type constructor at predicative levels Typei of the type

hierarchy. In the same vein, we typically write 8 in place of � in instances of rule(�1) in Table 2–1, to emphasise the distinction between the logical quantifier

and the dependent type constructor. For �-types, if x =2 FV (B) then we writeA�B for �x:A:B.

As examples of the derivable judgments, and by way of illustration of some

of the features of ECC, we have the following:

Impredicative definition The rule (�1) is very strong. It allows us to make the

usual higher-order definitions of the logical constants and connectives for

intuitionistic logic, for example,? =def 8�:Prop: �;1More precisely, if A '� A0; B � B0 then �x:A:B � �x:A0:B0. See [59] for a detailed

discussion of this point.



Chapter 2. Type theoretic preliminaries: ECC and LEGO 18(axiom) � ` Prop : Type0(wcon) � ` A : ��; x:A ` Prop : Type0 (x =2 FV (�); � a kind)(type) � ` Prop : Type0� ` Typei : Typei+1 (i 2 !)(var) �; x:A;� ` Prop : Type0�; x:A;� ` x : A(�1) �; x:A ` P : Prop� ` �x:A:P : Prop(�2) � ` A : Typei �; x:A ` B : Typei� ` �x:A:B : Typei (i 2 !)(�) �; x:A `M : B� ` �x:A:M : �x:A:B(app) � `M : �x:A:B � ` N : A� `MN : [N=x]B(�) � ` A : Typei �; x:A ` B : Typei� ` �x:A:B : Typei (i 2 !)(pair) � `M : A �; x:A ` N : [M=x]B �; x:A ` B : Typei� ` pair�x:A:B(M;N) : �x:A:B(�1) � `M : �x:A:B� ` �1(M) : A(�2) � `M : �x:A:B� ` �2(M) : [�1(M)=x]B(�) � `M : A � ` B : Typei� `M : B (A � B)
Table 2–1: The rules of ECC for deriving judgments
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This interpretation is consistent, in that we may show that there exists no

term M such that � `M : ? [59].

Moreover, impredicativity allows us to make generalised inductive defin-

itions (see for example the exposition in [1,27]). As a simple example, we

may derive in context �nat = nat:Type0; 0:nat; S:nat! nat,�nat; n:nat ` 8�:nat! Prop:�(0)) (8k:nat:�(k)) �(S(Sk)))) �(n) : Prop
which represents the (informal) proposition that n is an even natural num-

ber. That is, we define even numbers to be those n which satisfy all

predicates satisfied by 0 and closed under successor of successor (the

impredicativity, of course, lies in the fact that “evenness” is just such a

predicate). Moreover, in this representation�nat ` ��:nat! Prop:�z:�(0) :�s:8k:nat :�(k)) �(S(Sk)) :z: 8�:nat! Prop:�(0)) (8k:nat:�(k)) �(S(Sk)))) �(0)
is a proof that 0 is even. Such definitions arise in much the same way as

Church’s representation of the datatypes in second-order �-calculus [32,

56,9];

Universes and cumulativity As simple examples of the use of universes, we

may derive, for each i; j 2 ! with i < j,` Typei ! Typei : Typej
and ` �� :Typei:�x:�:x : Typei ! Typei;
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defining a polymorphic identity function, one for each type universeTypei.
A less trivial use of cumulativity is the reflection of propositions, that

is to say terms of type Prop, into the predicative levels using rule (�).
This allows us to form �-types whose second component is a proposition.

This gives a strong constructive notion of subset type or species [8,52]. In

this way, we may account for the use of (some, if not all) impredicative

instances of set-theoretic comprehension typical in mathematics.�-types In context �nat;�:nat ! Prop, we may use �-types to form a type

representing those functions which preserve P :�nat; P :nat! Prop ` �f :nat! nat : 8n:nat : P (n)) P (fn) : Type0
This type may be seen as a specification of the P -preserving functions.

This makes essential use of the cumulativity, as indicated in the previous

section. For the case of the predicate defined above representing evenness,Even =def �n:nat : 8�:nat! Prop:�(0)) (8k:nat:�(k)) �(S(Sk)))) �(n)
we may derive the judgment in Figure 2–1. This term formally represents

the knowledge that the function x 7! x + 2 preserves the even numbers.

We may read this judgment as “x 7! x+2 meets the specification of being

an evens-preserving map”. The use of �-types allows us to speak of the

function, together with its proof of correctness, the idea around which all

the subsequent chapters of this thesis will revolve.

These examples illustrate the unwieldiness of the �-expressions defining even

the simplest proofs. We shall not often have occasion to describe such proofs

explicitly. One of the principle virtues of the LEGO system is that such proofs

may be developed by refinement, with the proof term being computed by

the system. The finished scripts of such refinement proofs are usually more

perspicuous than the �-expressions to which they give rise. Where appropriate,
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whereplustwo = �n:nat : S(Sn)proof = �n:nat : �p:P (n) :��:nat! Prop:�z:�(0) : �s:8k:nat:�(k)) �(S(Sk)) :s n (p� z s)
Figure 2–1: A proof that x 7! x+ 2 preserves the even numbers

we shall quote from dialogues with the typechecker, to indicate a particular

construction whose existence is claimed in the text. Many of the proofs are

implemented in LEGO, and we rely on them rather than a laborious explanation

in informal mathematics.

2.1.3 Proof-theoretic properties of the calculus

The properties of the calculus which are central to the LEGO implementation,

and hence this thesis, are as follows:

Church-Rosser (CR) The underlying conversion relation is Church-Rosser;

Strong Normalisation (SN) If � ` M : A, then M;A and every type occurring

in � are strongly normalising;

Subject Reduction (SR) If � `M : A and M B N then � ` N : A;
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Strengthening If �; y:B ` M : A is derivable, with y 62 FV (M;A), then � `M : A is derivable;

Cumulativity � has an inductive definition; moreover, for any two terms A;B
it is decidable whether A � B;

Principal types If � `M : A, then there exists a least Ap in the ordering � such

that � `M : Ap.
2.1.4 Equality and conversion

The impredicative quantification at the Prop level expressed in rule (�1) in

Table 2–1 allows us to define Leibniz’ equality (cf. [59, p. 119]):EQ� =def �x; y:�:�P :� ! Prop:Px) Py:
where � ` � : � for some kind �. That this indeed defines an equivalence

relation follows from the impredicativity: see [59, p. 119], or Appendix B for

formal proofs of symmetry and transitivity. In his thesis [ibid. pp.158–160], Luo

proved the following lemma, which establishes the computational adequacy of

Leibniz’ equality in specifications:

Lemma 2.1.1 Suppose � ` a; b : A, and � `M : EQA a b. Then a '� b.
The proof follows from SN, CR and the structure of derivations in ECC, and

shows that the normal form of M must be the proofreEQ =def �x:A:�P :A! Prop:�h:Px:h : 8x:A:EQA x x
of the reflexivity of the relation EQ. The proof rests crucially on the fact thata; b;A are defined in the empty context. But in fact more is true, if we prescribe the

shape ofM to match the above term reEQ. An easy induction on the derivation

of judgments in the theory, using the inductive character of �, proves that to
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show two terms t1, t2 typable in context �, are interconvertible, it is necessary

and sufficient that� ` reEQ t1 = �P :� ! Prop:�h:Pt1:h : EQ� t1 t2
be derivable, where � is some type of t1; t2.
2.2 Review of LEGO

LEGO is Pollack’s implementation of a typechecker and refinement proof system

for ECC and a number of related systems, based on earlier ideas of Huet, de

Bruijn and others [11,17].

2.2.1 Syntax

The LEGO syntax for terms in the official syntax of ECC is given byT ::= Prop j Type(i) (i 2 !) j VfV:TgT j [V:T]T j TT j<V:T>T j (T,T) j T.1 j T.2
where the correspondence with the official syntax is given in Table 2–2.

The system does not accept ill-typed terms. LEGO provides extensions to

this syntax, some of which are described below, and some of which are due to

the detailed operation of the system, which we do not describe here, but details

of which may be found in papers of Pollack and others [64,85]. In particular,

the presence of cumulativity and �-types means that a term may in general be

well-typed with (infinitely) many types. Usually the principal type is the most

useful, but on occasion we need to cast a term M with a specified (legal) typeA, which is denoted M:A. This device is already inherent in the official syntax
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and T.2 to �2(T ).

Table 2–2: Comparison between syntax of LEGO and ECC

for pairs pair�x:A:B(M;N), where the subscript provides a form of casting of the

term. Type-casting is also part of the Goalmechanism. For a detailed discussion

of this point, see [59, p.32, 37-38][85].

2.2.2 The theorem prover

The system has two distinct levels, the so-called lego state and proof state. In

the lego state, the user may build and manipulate contexts, type-check terms

and initiate proofs. To type-check an expression, the user simply enters it,

followed by a semicolon. If the term is well-typed in the current context,

which may include local hypotheses and definitions in the course of a proof, the

system returns the value and type of the expression. Typically, in illustrating

mathematical constructions, we will include such output, indicating the success

of the construction, taking seriously Howard’s intention behind “propositions

as types” [42]. The construction is the proof.

LEGO implements a small command language for developing proofs by

refinement. A fuller explanation is in [64,85], but to account for some of the uses

of LEGO in the body of this thesis, here is a brief explanation of some of these

commands:
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Goal The command Goal A, where � ` A : � in the current context �, initiates

a refinement proof of the type A. The system enters the proof state, which

it exits only when no subgoals remain.

Intros This command performs introductions as in rules (�I); (pair) in Table 2–

1 above.

Refine The command Refine term attempts to unify the current goal with the

type of term, expanding definitions and performing�-reduction as needed.

If successful, it produces as subgoals the types of any bindings not wholly

matched, and it fails in the event of no match. Much of the strength of the

system lies in the evaluations performed during unification, especially in

the presence of �-rules. In the absence of any other subgoals, the proof is

successful and the system prints *** QED ***. It returns to the lego state.

Save The command Save term adds a new definition to the context, binding the

result of a successful refinement to the name term, cast with the type of the

goal.

Other commands provide context management, and make essential use of the

proof-theoretic properties such as strengthening.

2.2.3 Additional features of the LEGO system

Pollack’s typechecker for ECC in his LEGO implementation extends the official

syntax of ECC in (at least) four significant ways:

Typical ambiguity The syntax is extended with an “anonymous” universe

symbolType, freeing the user from having to specify universe levels, which

are inferred by the system, subject to the constraints of predicativity [36,

86]; for example,
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defines a polymorphic identity function at all levels;

Definitions Both local and global definitions are available to the user. They are

denoted by [x = M ] uniformly, which acts as a binder for local definitions,

and standing alone, as a global definition. Moreover, universe levels

are recomputed for each instance of (the expansion of) a definition (ibid.),

allowing a form of universe polymorphism.

Argument synthesis The syntax is extended by implicit binding operators[x|A],fx|Ag, which allow the suppression of arguments in application terms; this

is obtained by a translation of the unofficial, implicit syntax into the ex-

plicit system, together with an algorithm to synthesise implicit arguments

[86]. For example, we may define Leibniz’ equality uniformly, without

needing to supply the type explicitly:[EQ = [t|Type][x,y:t]{P:t -> Prop}(P x) -> P y];
When x,y are defined with the same type, EQ x y is then a legal expres-

sion; a type is inferred for x,y and passed as an argument to EQ. In the

example of the polymorphic identity I above, if we define[I = [t|Type][x:t]x];
then the self-application I I becomes a legal expression [86].

Arbitrary reductions The syntax has recently been extended to provide arbit-

rary extensions to the conversion relation '� via new �-reductions for

elimination constants at the Type level, in accordance with Luo’s view that

logical types live at the Prop level, and datatypes at the Type level.

As an example, the natural numbers may be defined in the system as

follows:
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So far, this is no more than a small context of assumptions, which we

could extend with axioms defining the behaviour of the primitive recursornatrecd when applied to the constructors zero and succ. However, if

these axioms describe �-reductions at the propositional level, using Leib-

niz’ equality EQ, this would not allow us to identify types dependent on

convertible terms. Moreover, the underlying unification algorithm used

in LEGO cannot exploit proofs of equality in resolving goals. So we add

new reductions, corresponding to their usual �-rules [79]:[[C:nat->Type][z:C zero][s:{k:nat}{ih:C k}C(succ k)][n:nat]natrecd C z s zero ==> d|| natrecd C z s (succ n) ==> s n (natrecd C z s n)];
This leaves us with the burden of a context of assumptions of datatypes

and type constructors, which would have been necessary in an axiomat-

isation, but gives us the utility of computation by structural recursion. The

universe polymorphism, in the type of natrecd above, ensures at least as

expressive a programming language as Martin-Löf’s systems. It is this

which motivates our study of program development within ECC. The

meta-theory of such an extension for the case of iterated inductive defin-

itions, as in Martin-Löf’s various theories, is an active area of research

[20,63,33, to name but a few]. Their consistency has been argued model-

theoretically [80, etc.], but the preservation (or otherwise) of the strong

proof-theoretic properties above is less well understood.

We shall in the course of this thesis use the first three features extensively to

simplify the syntactic complexity of our constructions; though the impact of the
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first is not directly felt, it clearly has relevance in considering an extension of

the theory of deliverables to the case of structuring mathematical theories, as

in [59, pp. 147–151], and [62]. We shall exploit the arbitrary reductions feature

to describe disjoint sums of types, a unit type, the natural numbers, and lists,

with primitive recursion, and define deliverables over these. We hope to give

a uniform account of other datatype definitions in future work. See also [33],

among others.

2.2.4 Equality and Conversion bis.

The lemma concerning Leibniz’ equality of Section 2.1.4 above becomes a power-

ful practical tool in LEGO.

Lemma 2.2.1 (Equality Lemma) To establish the interconvertibility of two termst1,t2 in LEGO , all we require is that the following refinement be successfulGoal EQ t1 t2;Refine reflEQ;*** QED ***
where[reflEQ = [t|Type][x:t][P:T -> Prop][h:P x]h];
is the proof of the reflexivity of Leibniz’ equality.

This will considerably simplify much of the routine work in verifying the equal-

ity of various categorical constructs in the subsequent chapters.

2.2.5 A sample derivation

To give the reader a feel for the LEGO implementation, we present the derivation

of Figure 2–1, the proof that x 7! x+ 2 preserves the even numbers.
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Firstly, we make the context �nat of assumptions:Lego> [N:Type(0)][Z:N][S:N->N];
to which the system respondsdecl N : Type(0)decl Z : Ndecl S : N->N
In this context, we define the predicate for evenness:Lego> [Even = [n:N]{Phi:N -> Prop}{evenZ:Phi Z}{evenSS:{k:N}{ind_hyp:Phi k}Phi(S(S k))}Phi n];
to which the system respondsdefn Even = [n:N]{Phi:N->Prop}(Phi Z)->({k:N}(Phi k)->Phi (S (S k)))->Phi nEven : N->Prop
We now initiate a refinement derivation of a term of the relevant �-type:Goal <f:N -> N> {n:N}(Even n) -> Even (f n);
to which the system respondsGoal?0 : <f:N->N>{n:N}(Even n)->Even (f n)
The term ?0 represents a term waiting to be instantiated as the proof progresses.

Henceforth, we record the response of the system as the user sees it, directly

following commands at the Lego> prompt.

Now the outermost constructor of the term is pair, so we use �-introduction:
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There are now two subgoals, ?1,?2, corresponding to the two components of

the pair. We work first on ?1. Since the goal has functional type, we use �-

introduction. We then refine by the term S, twice (since we have an idea of the

construction we wish to make).Lego> Intros n;Refine S;Refine S;Intros (1) nn : N?3 : NRefine by S?4 : NRefine by S?5 : N
We now close this branch of the derivation tree, using the local assumptionn : N. The Discharge.. indicates the discharge of this local hypothesis in

the derivation tree, just as in natural deduction [89].Lego> Refine n;Refine by nDischarge.. n?2 : {n:N}(Even n)->Even (([n'3:N]S (S n'3)) n)
We now work on subgoal ?2, which has been further instantiated by the solution

to ?1. Again, we use �-introduction, and then expand the definition of the

predicate Even.Lego> Intros n hyp;Expand Even;Intros (2) n hypn : Nhyp : Even n
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We see that there are a further three introductions to make, this time using a

wildcard character, the underscore _, as in Standard ML [35].Lego> Intros _ _ _;Intros (3) _ _ _Phi : N->PropevenZ : Phi ZevenSS : {k:N}(Phi k)->Phi (S (S k))?7 : Phi (S (S n))
At this stage, not all the local context is visible, but we may use the Prf command

to display the whole local context, and the current subgoals.Lego> Prf;n : Nhyp : Even nPhi : N->PropevenZ : Phi ZevenSS : {k:N}(Phi k)->Phi (S (S k))?7 : Phi (S (S n))
In fact, at this stage of the proof, there is only one choice open to us, as only

the hypothesis evenSS : {k:N}(Phi k)->Phi(S(S k)) unifies with the current

subgoal.Lego> Refine evenSS;Refine by evenSS?9 : Phi n
Once more there is only one choice, namely to use the hypothesis hyp : Even n.
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Finally, we may use the Immed tactic to resolve any outstanding subgoals against

the local context.Lego> Immed;ImmediateDischarge.. evenSS evenZ PhiDischarge.. hyp n*** QED ***
The alternative at this point would be to give explicit refinement termsLego> Refine evenZ;Refine evenSS;Refine by evenZ?12 : {k:N}(Phi k)->Phi (S (S k))Refine by evenSSDischarge.. evenSS evenZ PhiDischarge.. hyp n*** QED ***
In either case, the derivation is now complete, so we may save the proof term.Lego> Save a_simple_example;a_simple_example saved
We may now examine the term, by simply entering its name. We see here the

explicit type-casting in LEGO’s representation of terms in a �-type.Lego> a_simple_example;value = ([n:N]S (S n),[n:N][hyp:Even n][Phi:N->Prop][evenZ:Phi Z][evenSS:{k:N}(Phi k)->Phi (S (S k))]evenSS n (hyp Phi evenZ evenSS)
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We may also construct the explicit terms plustwo and proof of Figure 2–1, by

definition.Lego> [plustwo = a_simple_example.1];defn plustwo = a_simple_example.1plustwo : N->NLego> [proof = a_simple_example.2];defn proof = a_simple_example.2proof : {n:N}(Even n)->Even (a_simple_example.1 n)
Lastly, we may use the commands Hnf VReg, and Normal VReg to display these

values in head-normal form, respectively normal form2.Lego> plustwo;value = a_simple_example.1type = N->NLego> Hnf VReg;[n:N]S (S n)Lego> Normal VReg;[n:N]S (S n)Lego> proof;value = a_simple_example.2type = [f=a_simple_example.1]{n:N}(Even n)->Even (f n)Lego> Hnf VReg;[n:N][hyp:Even n][Phi:N->Prop][evenZ:Phi Z][evenSS:{k:N}(Phi k)->Phi (S (S k))]evenSS n (hyp Phi evenZ evenSS)Lego> Normal VReg;2Likewise, the commands Hnf TReg, and Normal TReg display their types in head-

normal form, respectively normal form.
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This concludes the example.


