

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429723035?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Applying

High Performance Computing

to

Profitability and Solvency Calculations

for

Life Assurance Contracts

T
H

E

U
N I V E

R
S

I
T

Y

O
F

E
D

I N B
U

R

G
H

Mark Tucker

Doctor of Philosophy
The University of Edinburgh

2016

“As soon as an Analytical Engine exists, it will necessarily guide the future
course of the science. Whenever any result is sought by its aid, the question
will then arise – By what course of calculation can these results be arrived
at by the machine in the shortest time?”

Charles Babbage, 1864. [1]

Abstract

Throughout Europe, the introduction of Solvency II is forcing companies in the life

assurance and pensions provision markets to change how they estimate their liabilities.

Historically, each solvency assessment required that the estimation of liabilities was

performed once, using actuaries’ views of economic and demographic trends. Solvency

II requires that each assessment of solvency implies a 1-in-200 chance of not being

able to meet the liabilities. The underlying stochastic nature of these requirements

has introduced significant challenges if the required calculations are to be performed

correctly, without resorting to excessive approximations, within practical timescales.

Currently, practitioners within UK pension provision companies consider the calcula-

tions required to meet new regulations to be outside the realms of anything which is

achievable. This project brings the calculations within reach: this thesis shows that

it is possible to perform the required calculations in manageable time scales, using

entirely reasonable quantities of hardware. This is achieved through the use of several

techniques: firstly, a new algorithm has been developed which reduces the computa-

tional complexity of the reserving algorithm from O(T 2) to O(T) for T projection steps,

and is sufficiently general to be applicable to a wide range of non unit-linked policies;

secondly, efficient ab-initio code, which may be tuned to optimise its performance on

many current architectures, has been written; thirdly, approximations which do not

change the result by a significant amount have been introduced; and, finally, high

performance computers have been used to run the code.

This project demonstrates that the calculations can be completed in under three

minutes when using 12,000 cores of a supercomputer, or in under eight hours when

using 80 cores of a moderately sized cluster.

i

Lay Summary

Throughout Europe, the introduction of Solvency II is forcing companies in the life

assurance and pensions provision markets to change how they estimate their liabilities.

Historically, each solvency assessment required that the estimation of liabilities was

performed once, using actuaries’ views of economic and demographic trends. Solvency

II requires that each assessment of solvency implies a 1-in-200 chance of not being able

to meet the liabilities. The underlying complexity of these requirements has introduced

significant challenges if the required calculations are to be performed correctly, without

resorting to excessive approximations, within practical timescales.

It is estimated that performing the required calculations for a representative portfolio

of half a million annuity policies, using commercially available software, running on

hardware which the industry is comfortable with, would take about 2800 years on

a single core of a desktop PC. The elapsed time can be reduced by splitting the

calculations over multiple cores on many PCs. However, it would require more than

35,000 quad-core desktop PCs, running at full capacity for over a week, to estimate

the liabilities for this portfolio. Therefore, practitioners within UK pension provision

companies consider the calculations required to meet the new regulations to be outside

the realms of anything which is practical.

The work in this thesis shows that it is possible to perform the calculations required

by the new regulations in far shorter time scales, using far smaller quantities of hard-

ware. This is achieved by a) writing efficient code, rather than using commercially

developed software; b) changing the underlying computational method; and, c) using

high performance computers.

This project demonstrates that the calculations can be completed either during a coffee

break when using a supercomputer, or overnight when using a small collection of multi-

core CPUs.

ii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my

own, except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification, except as specified in

the text.

Some of this work has been published as follows:

⊛ parts of Chapters 3 and 4 have appeared in

Tucker, M. and Bull, J.M., An efficient algorithm for the calculation of reserves

for non unit-linked life policies., Algorithmic Finance (2014), 3:3-4, 143-161.

⊛ parts of Chapter 5 have appeared in

Tucker, M. and Bull, J.M., The Application of High Performance Computing to

Solvency and Profitability Calculations for Life Assurance Contracts., in proceed-

ings of 5th Workshop on High Performance Computational Finance, SuperCom-

puting, 2012. (Published in High Performance Computing, Networking, Storage

and Analysis 2012 (SC Companion)).

⊛ parts of Chapter 8 have appeared in

Tucker, M. and Bull, J.M., Fulfilling Solvency II Regulations using High Per-

formance Computing., in proceedings of 8th Workshop on High Performance

Computational Finance, SuperComputing, 2015. (Published in High Performance

Computing, Networking, Storage and Analysis 2015 (SC Companion)).

Mark Tucker,

December 2016.

iii

Acknowledgements

I would like to thank Mark Bull: as my supervisor, his patience, guidance, and sugges-

tions have made this project what it is.

I would also like to thank Fiona Reid: her tutorials on the use of EPCC’s high

performance computers were invaluable.

I would also like to thank Gavin Conn: his explanation of Solvency II gave this project

a worthwhile goal.

I must acknowledge Moose, Bert, and Ernie, the three German Shepherd dogs which

have been in my life during this project: they have been a constant source of stress

relief, and the time spent walking with them has solved many problems, and brought

new insights.

Finally, I must thank my wife, Nicola: without her constant support throughout the

entire period leading up to the submission of this thesis the project could not have been

completed.

iv

Contents

Abstract i

Lay Summary ii

Declaration iii

Acknowledgements iv

Contents v

1 Introduction 1

1.1 Demonstrating Solvency ... 1

1.2 Profitability ... 2

1.3 Annuities ... 2

1.4 Software ... 3

1.5 Change in Regulations ... 4

1.6 Aims of This Project ... 5

1.7 Thesis Layout ... 7

2 Background 9

2.1 Actuarial Concepts ... 9

2.2 Domain Specific Languages... 19

2.3 Use Cases ... 23

2.4 Computer Processors ... 31

2.5 High Performance Computing 35

2.6 Related Work.... 50

v

2.7 Platforms Used 55

3 Change of Reserving Algorithm 58

3.1 Motivational Examples... 58

3.2 The General Case ... 63

3.3 Zero Reserve States... 70

3.4 Implementational Considerations... 73

3.5 Summary ... 77

4 Use of the Recurrence Algorithm 78

4.1 Single Life Policies .. 78

4.2 Two-Life Policies .. 85

4.3 Extension to Other Policies ... 90

4.4 The General Case ... 92

4.5 Summary ... 94

5 Improving the Performance of Profitability Calculations 95

5.1 Initial Code 95

5.2 Optimisations... 99

5.3 Performance Implications... 106

5.4 Summary ... 106

6 Simplifying Interpolation in the Mortality Table 108

6.1 Overview 109

6.2 Force of Mortality... 110

6.3 Linear Interpolation in the lx’s . 114

6.4 Implementation in a Commercial Environment ... 117

6.5 Linear Interpolation in the qx’s . 119

6.6 Alternative Implementation ... 121

6.7 Effect of Interpolation Method.... 124

6.8 Summary ... 127

vi

7 Re-drawing Parameters 128

7.1 To Re-draw or Not To Re-draw.... 128

7.2 Mathematical Representation ... 129

7.3 Algorithms and Their Complexity... 135

7.4 Relative Merits of Re-drawing or Not... 138

7.5 Summary ... 139

8 Fulfilling Solvency II Requirements 144

8.1 Initial Code 145

8.2 Optimisations... 149

8.3 Simplifications ... 159

8.4 Performance when Re-Drawing Parameters... 161

8.5 Performance when Not Re-Drawing Parameters ... 177

8.6 Summary ... 181

9 Future Work 183

9.1 Further Work with CPUs.... 183

9.2 The General Case ... 186

9.3 Alternative Technologies ... 188

9.4 Other Uses ... 191

9.5 Nested Stochastic Projections... 193

9.6 Summary ... 194

10 Conclusion 195

10.1 Review.... 195

10.2 Summary ... 200

Bibliography 203

List of Figures 211

List of Tables 213

vii

List of Algorithms 216

A Estimation of Run Time for Brute Force Solvency II in the Com-
mercial Environment 217

A.1 Initial Estimate... 217

A.2 Allowing for Technological Advances ... 220

B Hardware Specifications 221

B.1 Features of a Xeon CPU 221

B.2 Nodes on the Xeon Cluster ... 222

B.3 Features of an NVIDIA GPU 223

B.4 Comparisons ... 223

C Number of States for Assurances 225

D Regression Analyses 227

D.1 Summation vs. Recurrence Relation ... 227

D.2 Single Life and Reversionary Annuities.. 229

E Probability of Transition before Time t 230

E.1 Single Life Policies .. 230

E.2 Two-Life Policies .. 235

E.3 Continuous Time.... 246

viii

Chapter 1

Introduction

1.1 Demonstrating Solvency

All insurance businesses operating within the UK are regulated to ensure that, among

other things, they demonstrate, on a regular basis, that they are solvent. At its simplest,

solvency boils down to holding sufficient assets (cash, stocks, bonds, Gilts, etc.) so

that the income from those assets (both regular interest and dividends, etc., and the

proceeds from their disposal), together with future premium income, is sufficient to

meet the liabilities arising from, and the expenses attributable to, the policies to which

those assets relate. This may be interpreted simplistically as

solvency ⇔

present value of (assets and future income)

exceeds

present value of (liabilities and future expenses)

In many commercial environments, the assets and liabilities are valued separately, on

completely different systems. Accordingly, this investigation only considers liabilities

within a life assurance office, i.e. the payments to the policyholder, and the associated

expenses.

The present value of the future payments to the policyholder can be calculated using

methods which are elementary to actuarial science: the basic concept is to allow for

interest accruing on the funds currently held, and for the probability of making each

payment – this will be discussed further in Section 2.1.

1

The amount which is currently required to be held to meet these liabilities is the

reserve: the reserve is a fundamental quantity in determining solvency. The available

assets must exceed the liabilities: it is usual to hold a solvency margin, in excess of the

reserve, which acts as an additional cushion.

1.2 Profitability

Further interest in the values of the assets and liabilities lies in the fact that the timings

of the cash flows, and the order in which they happen, can be used to estimate the future

profit arising from the policies. Each year payments will be made to policyholders,

expenses will be paid, premiums will be received from policyholders, and income will be

received on the funds held: these items form the basis of the estimation of profitability.

Therefore, the estimation of profit which can emerge from each policy also requires

knowledge of future reserves.

There are two main categories of policies which are common. Firstly, those where

premiums are received from the policyholder over time in order to accrue a benefit at

a later time, for example endowments to cover a mortgage: the premiums build up

so that, throughout a year, under normal investment conditions, the reserve increases.

Secondly, those where a large premium is paid at the outset in return for a sequence

of smaller benefits in the future: the amount remaining for each policy will be smaller

as a result of each payment, leading to a decrease in reserves. Crucially, this change

of reserves dictates that all reserves do need to be calculated in each future step of

the projection: the formulae for the calculation of reserves may have quite complicated

forms; for example, see Equation 2.1.5.

Moreover, to increase the accuracy of the information available for running the business,

and to allow for the fact that most policies have cash flows which occur more frequently

than yearly, the whole projection of all of this business is often performed using monthly

steps rather than yearly steps. While this does add to the accuracy, it also adds to the

calculation count, and hence to the run time.

1.3 Annuities

This project focuses on calculations relating to life annuities since the financial well-

being of an increasing proportion of the population depends on companies’ abilities to

2

make pension payments. An annuity portfolio within a representative life assurance

office will consist of several types of policy: policies where payments are currently

being made to the policyholder may be represented as single life annuities (see Section

2.1.5.1); policies where payments could, at some future point, be made to the spouse of a

policyholder currently receiving payments may be represented as reversionary annuities

(see Section 2.1.5.2); and, policies where payments are currently being made, so long

as a specified collection of a group of lives remain alive may be represented as either

joint life annuities or last survivor annuities. To allow for this diversity, this project

considers all four of these policy types.

The conceptual simplicity of annuity policies makes them ideal for explorational imple-

mentations of new programming techniques. The calculations involved in the process-

ing of these policies expose ample parallelism, allowing the investigation of both the

combination of existing programming techniques and emerging technologies.

1.4 Software

Within the industry, current standard practice is that the calculation of reserves, and

estimation of profitability, are performed using computer programs which are generated

by specialist valuation software packages. These packages are generally crafted for ease

of use, rather than performance of execution, and there is usually only limited scope

for improving the performance of the programs they produce.

These packages require the relationships between variables to be entered in a pseudo-

code style language, and the package then produces source code, compiles and links it,

and launches the resulting executable. The clear advantage of these packages is that

quite complex programs can be developed by users who are not trained programmers,

allowing users who understand the intricacies of the policies to produce the programs:

this is clearly beneficial when complicated contracts are being modelled. The fact that

the users are usually not trained programmers is also one of the main disadvantages of

these packages: the art of programming is removed by the package, and this usually

results in the executable having sub-optimal performance.

The financial results required are the totals across all policies. However, in general the

calculations performed for one policy do not affect the calculations for any other policy.

This independence leads to the possibility of using HPC techniques and emerging

technologies to process the policies in parallel.

3

An initial performance benchmark was obtained using a standard valuation package

within a life assurance office. Using that package, on reasonably modern PCs, the

times taken for a program produced by the package to perform a profitability estimate

on annuities were about 1.0 seconds per policy for single life annuities, and roughly

2.5 seconds per policy for reversionary annuities: it took roughly 35 CPU core hours

to produce results, using monthly projection steps, for a portfolio of about 129,000

single life annuity policies, and about 22.5 CPU core hours to process about 35, 000

reversionary annuity policies.

1.5 Change in Regulations

Historically, the calculations used for the demonstration of solvency were based on

a single, ‘best estimate’, basis, which is a set of assumptions about future interest

and mortality rates: these assumptions were set by actuaries and the calculations were

usually performed using software from commercial valuation packages, running on PCs.

It is currently not uncommon for life assurance offices to have a few hundred PCs as

dedicated ‘slaves’ to perform these calculations. However, new regulations are being

introduced and these require that the best estimate approach is replaced with Monte

Carlo simulation of a range of scenarios based on different assumptions.

Solvency II [14] requires that an additional capital requirement, based on a 1-in-200

worst-case scenario in each future time step, is found. The minimum required to

fulfil the regulations would be to perform 200 simulations at each step, and take the

worst result. However, statistically, this is not particularly robust in terms of outliers.

Therefore, one widely-adopted approach to attempt to satisfy Solvency II is to generate

1000 Monte Carlo scenarios in each future time step, and calculate the liabilities using

each scenario; from these 1000 scenarios, the one which produces the 5th largest liability

value is sought since that corresponds to a 0.5% chance of the actual liabilities being

larger than the value reported. Of necessity, this approach dictates that the results of

99.9% of all calculations performed are discarded.

These new requirements, if implemented naively, lead to the need for a far greater vol-

ume of calculations: the number of calculations is so vast that the use of commercially

available software to obtain the results is currently beyond contemplation. The fact that

reserves must be calculated in each future time step means that existing profitability

calculations may be used to estimate the run time. By using the benchmark times as

a base, considering a moderately sized portfolio of half a million policies, consisting of

4

300,000 single life annuities, 100,000 reversionary annuities, 50,000 joint life annuities,

and 50,000 last survivor annuities, and assuming monthly steps for a period of 60 years,

an estimate (derived in Appendix A) of the run time for a projection with 1000 scenarios

in each future time step, using 1 CPU core, is about 9130 years.

The estimate of 9130 core years is based on the CPU in mid-range PCs and commercial

software available in life offices at the time this project was first mooted. However,

as discussed in Section A.2 (in Appendix A), advances in CPU technology, from chips

used within commercial environments at the start of this project, to those used in

supercomputers at the end of this project, and improvements in compilers over the

same period, lead to a speedup of about 3.25×. It would therefore be reasonable to

expect that the calculations would take around 2810 CPU core years if an up-to-date

CPU core and modern compiler were to be used. An alternative view of this is that,

in order to meet reporting deadlines of two weeks, so that the maximum acceptable

run time was one week, the processing would require in excess of 145,000 CPU cores

continuously running at full capacity. The prospect of running more than 35,000 quad-

core desktop PCs at full capacity for a week leads most practitioners in the UK to

conclude that the calculations are beyond contemplation.

As an alternative to using PCs as slaves (as outlined in Section 1.4), some life offices

now have clusters consisting of a few hundred cores. However, even with this amount

of hardware, their processing capacity is of the order of a few percent of the estimated

requirement. Therefore, it is generally acknowledged among practitioners within UK

life offices that, using current commercially available valuation software on hardware

which the industry is currently comfortable with, it is impossible to fully comply with

the incoming Solvency II regulations.

Although the estimate of run time derived in Appendix A is based on the approach

used within the life industry, it is rather naive. Chapter 7 demonstrates that the

correct choice of algorithm, if it could be implemented using standard commercial

software, could reduce the estimate by a factor of around 100. However, solely changing

the algorithm does not reduce the time to one which is practical in a commercial

environment.

1.6 Aims of This Project

The underlying stochastic nature of the requirements for the Solvency II regulations

has introduced significant challenges if the required calculations are to be performed

5

correctly, without resorting to excessive approximations, within practical timescales.

The inability to fulfil the incoming Solvency II regulations means that it is necessary

to seek efficient algorithms and implement those algorithms on hardware capable of

highly parallel threading: that is the focus of this project. The use of 1000 Monte

Carlo scenarios for each future time step has become colloquially known in the UK as

the “brute force” approach. This project aims to show that it is possible to perform

the full brute force calculation (with a full valuation for each policy, for each scenario,

for each step) within practical timescales using massively parallel architectures.

A significant amount of work has been done by others on changing the way in which the

stochastic processes underlying the assets or liabilities are modelled, with those changed

processes being implemented on small scale parallel computers. That work generally

focuses on the development of parallel algorithms which are then implemented on multi-

core CPUs. Although that work improves the way in which the underlying parameters

are modelled, it does nothing to aid the way in which the liabilities are calculated from

those parameters.

This project is based on the philosophy that any of the range of beneficial techniques

may be used. Ordering them by increasing difficulty of implementation, the techniques

under consideration in this project are i) compiler optimisations, ii) manual optimisa-

tions, iii) implementation on different hardware, e.g. GPUs, and iv) implementation of

different algorithms. However, this is not necessarily the order in which the techniques

have been applied in this project; the approach here has been to utilise techniques

which lead to the greatest improvement in performance.

Although the ability to comply with the regulations is the prima facie driver for this

project, the underlying benefit of this work comes from the fact that the demonstrations

of solvency and future profitability are the foundations of the ability of the assurance

company to continue in business, and this is clearly essential to people who have their

pensions provided by such companies. As the current trend to move away from ‘final

salary’ (or defined benefit) pensions provided by employers continues, and more people

are moved to ‘money purchase’ (or defined contribution) schemes, the ability of pension

providers to continue in business becomes paramount to the financial well-being of an

increasing portion of the population.

6

1.7 Thesis Layout

Chapter 2 contains a review of annuities, including a derivation of the formula required

to estimate the value of the liabilities relating to an annuity policy. It also discusses

current hardware, used in High Performance Computing, which is relevant to this

project, and contains a discussion of the performance of that hardware. Finally, it

introduces the hardware used in this project.

Chapter 3 presents the derivation of a novel algorithm which may be used to estimate

the liabilities within many types of non unit-linked life assurances, pensions, and other

policies. This algorithm brings the calculations required for Solvency II within the

realms of practicality for most life offices.

Chapter 4 shows how the algorithm developed in Chapter 3 is applied to several specific

types of policies, and introduces a means of extending the use of the algorithm to several

other types of policies. This work, and that in Chapter 3, has been published in [88].

Chapter 5 presents optimisations made to code used in situations where only one

scenario is required. Such calculations include: the current method of estimating

liabilities for demonstrating solvency; estimating profitability arising from an existing

book of business; and estimating the cash amount to be dis-invested for a cohort of

annuities. This work has been published in [87].

Chapter 6 discusses a simplification to the method used for interpolation in a mortality

table. Because interpolation is an extremely heavily used operation, this simplification

leads to a significant reduction in calculation time, but only a small change in financial

results.

Chapter 7 considers the application of Monte Carlo simulations to situations where

parameters are drawn from a time series, as required by Solvency II: the parameters

drawn in any particular time step should be valid for use in each future time step and so

re-sampling may not be necessary. Whilst re-sampling in each step reduces the variance

of the result, it may be possible to achieve sufficient accuracy by not re-sampling the

parameters and increasing the number of scenarios instead.

Chapter 8 presents ab-initio code developed to implement the brute force approach

to demonstrating solvency under the Solvency II regulations. Although the shortest

run times were obtained using a Cray supercomputer, timings for an implementation

on a modest Unix cluster are also presented: these show that life offices with modest

amounts of hardware are able to perform the calculations within practical timescales.

7

Some of this work has been published in [89].

Chapter 9 presents some ideas for future work which could be based on this project.

These ideas are split into the two fields covered by this investigation: some ideas concern

different hardware, and further software implementations, whilst other ideas concern

further actuarial uses for high performance codes.

Chapter 10 contains a summary and closing remarks.

8

Chapter 2

Background

This chapter puts this project in context: it presents the background behind the

problem, together with an overview of the actuarial theory underlying the problem

and the computing concepts used in the solution of the problem.

Section 2.1 presents the actuarial concepts which underpin this project, starting with

some actuarial notation. Then annuities are described, and mortality is discussed,

before these concepts are combined to introduce life annuities. Section 2.2.1 considers

actuarial valuation systems, which are the standard tool within life offices at the current

time. The general concepts of these systems are presented, and an overview of their

benefits and problems is considered. Section 2.3 presents some of the uses for which

programs produced by valuations systems are required. These uses may stem from

either regulatory requirements, or management actions. Section 2.4 gives an overview

of computer processing hardware: CPUs and GPUs are both introduced. Section 2.5

presents an introduction to high performance computing. Initially the different types of

current HPC machine are introduced, and then an overview of programming techniques

used on these machines is discussed. Section 2.6 discusses work related to this project:

there is a distinct shortage of directly relevant work, and so literature from other areas

is discussed. Finally, Section 2.7 presents the platforms used in this project.

2.1 Actuarial Concepts

In order to estimate the liabilities relating to, and profit emerging from, a block of life

annuity policies it is necessary to explain the formulae used. This section covers the

notation used, and the basic concepts of the theory of annuities and mortality, before

9

combining them to produce the summation formulae which are used to estimate the

relevant liabilities.

It is common in actuarial work for the unit of time to be 1 year, but this is not a

requirement. Therefore, unless stated otherwise, time units are assumed to be years.

2.1.1 Actuarial Notation

As far as reasonably practical, standard International Actuarial Notation [39] is used

throughout this thesis. Therefore,

tpx = Pr[life currently aged precisely x survives until age x+ t]

and

tqx = 1− tpx

= Pr[life currently aged precisely x dies before reaching age x+ t]

and if t = 1 then the prefix is dropped so that px = 1px and qx = 1qx. Also following

standard notation, for t ≥ 0, lx+t is the number of lives expected to be alive at age

x+ t, given that there are lx lives at age x: see Section 2.1.4 for further details.

In theoretical work, (x) is standard notation for “a life currently aged precisely x”.

However, it is generally accepted that, when there is no possibility of ambiguity, the

parentheses may be omitted so that x denotes ‘a life currently aged x’.

Many parts of this thesis consider annuities: standard notation uses

ax to represent the expected present value of an annuity where payments of amount

1 are made at the end of a year to a life aged x at the time of valuation, so long

as the life is alive at the time of payment, and

äx to represent the expected present value of an annuity where payments of amount

1 are made at the start of a year to a life aged x at the time of valuation, so long

as the life is alive at the time of payment.

In this project, a′x is used to highlight that a general payment stream is assumed, i.e.

the payments of amount 1 are made at some fraction f ∈ [0, 1] through the year, and

hence ax and äx are simply special cases of a′x with f = 1 and f = 0 respectively.

In a similar manner, standard notation uses ax|y and äx|y to represent two-life reversion-

10

ary annuities where the payments are made at the end or start of a year, respectively,

to (y) after the death of (x). Here, a′x|y is used to indicate that payments are made

some fraction f ∈ [0, 1] through the year so that ax|y and äx|y are just special cases of

a′x|y.

2.1.2 Interest and Discounting

Interest is usually considered to be ‘the reward to the lender for making a loan’. When

bank loans and mortgages are considered, the role of the lender and borrower are

familiar: this illustrates the requirement that the lender will require some recompense

for making the loan, and the inherent risk that the loan will not be repaid. In general,

the greater the risk undertaken in making the loan, the greater the rate of interest

charged.

Savings accounts attract interest: in such accounts the customer has, effectively, lent

the bank the money. It is straightforward to calculate how much will be in the account

after a certain period of time if interest is earnt at a known fixed rate. The converse is

also true: it is possible to calculate how much needs to be invested for a certain period

at a known interest rate to be able to withdraw a required amount at the end of that

period of time. The value invested under such conditions is known as the discounted

present value, or simply the present value (PV), of the amount required at the later date

[59, Section 2.5], and the process of obtaining the present value is known as discounting.

Suppose the interest rate is fixed at rate i per period. Then the discount factor which

applies over the period of unit length is

v =
1

1 + i

and vt+f is the discount factor which applies from time 0 to a cash flow some fraction

f ∈ [0, 1] through the period from t to t+1 for t ∈ Z+. When the rate of interest varies

as a function of time, standard practice [59, Section 2.4] is to consider the discount

factor from 0 to t as

v(t) = exp

(
−
∫ t

0
δ(r) dr

)
where δ(r) is the force of interest at time r.

To allow generality, removing all assumptions about variability of interest rates, it is

possible to denote the discount factor as vt which allows for either a fixed rate of interest,

or a variable rate of interest, over a time interval of length t: this is the approach taken

11

in Section 2.3.3.1.

2.1.3 Annuities

At its most basic, an annuity is just “a stream of payments”. Very common examples

in everyday use are bank loans and mortgages, where the bank (or other lender) ‘gives’

the customer some money now in return for a series of future repayments; effectively

the loan is the purchase of an annuity (from the customer) by the lender, and the

repayments form the annuity. Most bank loans have fixed interest rates, and are for

fixed periods of time, whereas mortgages often have a variable rate of interest.

In general, the payments are made at fixed regular intervals, although this is not a

necessity. Many of the most common forms of annuity are payable monthly or yearly,

although in some rare situations, payments may be made weekly, but this is becoming

extremely uncommon.

By considering an annuity as a stream of payments, the PV of the entire annuity is the

sum of the PV’s of the individual payments. Consider, for simplicity, an annuity where

n repayments, each of amount 1, are to be made annually, the first being one year from

outset, so that the last payment is due at time n. Suppose that the interest rate is

fixed at i per annum, and let the present value of the annuity be a. Then, following

the derivation in [59, Section 3.3],

a =
1− vn

i
(2.1.1)

where v is the discount factor corresponding to the annual interest rate i.

For the case where payments are not made annually, but the interest is quoted as an

annual rate, an adjustment is required in order to obtain the effective interest rate

over the period between payments. Consider the common case where payments are

made monthly: suppose the annual rate of i is applied to monthly payments, then the

equivalent monthly rate j is such that (1+ j)12 = (1+ i) and, to maintain consistency,

rate j needs to be applied over the number of months for which the annuity is payable,

not the number of years.

So far, the annuities discussed have been payable at the end of the period. However,

life annuities (introduced in Section 2.1.5) are a particular class of annuity where it is

common for the payment to be made part-way through each month or year. The same

basic principles apply to these annuities, but it is necessary to make an adjustment for

12

the timing of the payments. Consider an annuity where n payments, each of amount 1,

are to be made annually, the first being some fraction f ∈ [0, 1) through the first year.

The PV of this annuity is

a′ =
1− vn

i
vf−1

= a (1 + i)(1−f)

where a is as defined in Equation (2.1.1). Note that it does not matter which end of

the interval is considered to be closed: if the interval is f ∈ (0, 1] and the payment

is actually made at f = 1 then the payment stream is an annuity payable in arrear,

whereas if the interval is f ∈ [0, 1) and the payment is actually made at f = 0 then the

payment stream is an annuity payable in advance [59, Page 45].

Therefore, the only difference between the PV of this annuity and the PV of the initial

simple annuity is the factor (1 + i)(1−f), which adjusts for the ‘addition of interest’ to

the original annuity value; this is equivalent to allowing for the loss of interest between

time f , when the payment is made, and the end of the step, where the payment was

made in the introductory case.

Since multiplication is linear, standard actuarial practice recognises that a useful mon-

etary value to use in the derivations is 1. This allows annuity factors, tabulated by

interest rate and term, to be published. With the advent of computers, these factors

are becoming less useful in numerical calculations, but they are invaluable in theoretical

work.

2.1.4 Mortality

The rate of mortality is a concept which is of fundamental concern to actuaries in life

assurance and pensions businesses. At its simplest, “the rate of mortality at age x” is

a measure of the proportion of people currently aged x who are expected to die before

reaching age x+1. The actual mechanics of estimating mortality rates are outside the

scope of this project, but are well explained in [6, Chapter 2].

When estimating mortality rates, actuaries within life offices usually assume that lives

are independent. This assumption has several advantages, primarily by simplifying

the derivation of the mortality rates (by not needing covariances between the variables

which represent the survival of the lives) and by simplifying calculations using the

resulting, estimated, mortality rates. The assumption is not really realistic in cases of

13

spouses or business partners because there is a possibility of death in same accident.

However, in populations which are observed for the mortality rate to be estimated, the

assumption is reasonable.

The mortality estimates obtained are {qx}∞x=0 where qx is the probability that a person

currently aged precisely x will die before reaching age x + 1. In general, the x’s are

tabulated at integral values since that has the simple interpretation of being the xth

birthdays.

These probabilities are used to form a ‘life table’, which shows the number of lives

expected to be alive at a particular age, given a particular number of new-born infants.

The table is built in an intuitive manner: let lx be the number of lives aged exactly x;

then lx+1 is the number of lives who were aged exactly x and did not die within the

year to age x+1, and the expected number of lives reaching age x+1, given that they

were alive at age x, is lx+1 = lx (1− qx).

A natural result of this form of producing the table is that the x’s are integers, and

this is often regarded as beneficial since people have a tendency to arrange major life

events on, or particularly close to, significant birthdays, e.g. they retire at age 65.

A life table is used to calculate the probabilities of survival: the probability of surviving

from age x to age y is simply

Pr[Survive from age x to age y] =
ly
lx

Using standard actuarial notation, let tpx be the probability that a life currently aged

x survives for t years. Then the standard result for survival probability can be stated

as

tpx =
lx+t

lx
(2.1.2)

The use of this relationship is not restricted to integers. Since the relationship expresses

the fact that ‘the probability of surviving from one age to another is the same as the

ratio of the expected number of lives at those ages’, it works equivalently well for any

ages: the only increase in complexity comes from the fact that lx at fractional ages

needs to obtained from the life table by interpolation.

14

2.1.5 Life Annuities

Although the regulations which are being introduced apply to all types of policy, this

project focuses on life annuities, partly because they are conceptually simple, but

mainly because the ability for an annuity provider to demonstrate that they are solvent

is of prime importance to a sizeable portion of the population who rely on these annuity

providers. Also, for many assurance companies, life annuities form the largest part of

their liabilities: by providing a means for dealing with annuities, this project goes a

long way towards demonstrating solvency for the entire book of business. Despite the

focus on life annuities, the major advances this project has made can be applied to a

wider variety of assurance contracts, as will be shown in Chapter 4.

A ‘life annuity’ is an annuity where the payments depend on the survival, or otherwise,

of a pre-specified life, or collection of lives. Section 2.1.5.1 considers single-life annuities

certain; they depend on the survival, or death, of only one life, and it is certain that

they will start to be paid. Other types of life annuity could depend on two or more

lives, and yet others may not even start to be paid. The most common example of a

single life annuity is the payment of a pension to a pensioner; the pension stops being

paid when the pensioner dies. A less common example of a single life annuity is a

child’s annuity: this is a rider benefit to a temporary assurance of the parent and will

only become payable if that parent dies within the period specified in the contract and

the annuity payments are made to a dependant child so long as that child is alive at

the time of payment, with the payments terminating at a specified age (often 18 or 21).

Although a pension may also have a spouse’s pension, the payment of that spouse’s

pension depends on the survival of the spouse, rather than the pensioner. It is therefore

a different type of annuity: it is a two-life (reversionary) annuity, as covered in Section

2.1.5.2. Spouse’s pensions are the contracts which provided the motivation for devel-

oping a vector form of a recurrence relation for calculating reserves: this is introduced

in Section 3.1.3.

It is possible to estimate the present value of life annuities by adding survival probabil-

ities to the present value calculations used for non-life annuities. Including the survival

probabilities of the form of Equation (2.1.2) in Equation (2.1.1) allows for both the

interest earnt up to the point of payment, and for the possibility of not making the

payment.

In principle, the possibility that the recipient could live forever needs to be acknowl-

edged. However, the fact that immortality is unlikely is usually allowed for by setting

15

tpx, or equivalently lx, to zero for older ages, e.g. lx = 0 for x > 120. Hence, the usual

situation is that in theoretical work all lives have the possibility of infinite survival,

while in numerical work a limiting age is set, and all lives are assumed to suffer a

terminal event at that age.

2.1.5.1 Single Life Annuities

A payment at a particular future date will only be made if the life is alive at that

date. Therefore, for a life aged x at the date of valuation, a payment due t years

from the valuation date will need to allow for interest at rate i p.a., using a factor of

vt = (1+ i)−t, and for the probability of survival, using a factor of tpx. Using standard

actuarial notation, let ax be the expected present value of the annuity, with an annual

payment of 1, payable at the end of each year, to a life aged x at the time of valuation,

so long as the life is alive at the time the payment is due. Then ax can be considered as

the sum of the present values of the individual payments, and so, following [65, Section

2.2], the total present value can be shown to be

ax =

∞∑
t=1

tpx v
t (2.1.3)

Life annuities, like all other annuities, can be paid other than yearly, and at fractions

of the way through the yearly or monthly period. It is straightforward to derive a

formula for the present value of a life annuity which is payable some fraction of the way

through a projection step. For a life annuity where payments are to be made annually

to a life aged x at the time of valuation, the first payment being some fraction f ∈ [0, 1)

through the first year, the relevant adjustment is to use (t+ f), rather than t, so that

the summation becomes

a′x =

∞∑
t=0

(t+f)px · v(t+f)

A further adjustment can be made to allow for the payments being made some fraction

of the way through a month, rather than a year: it is only necessary to adjust the index

variable to allow for the fact that there will be twelve times as many steps between

tabulated values in the life table. Incorporating the adjustment to recognise that the

index variable k is now in months, and f ∈ [0, 1) is a fraction of a month, requires the

use of
(
k+f
12

)
; i.e. when k is a non-negative integer representing the number of months

into the projection,
(
k+f
12

)
is the number of years from the start of the projection to

the payment of the benefit.

16

It is not uncommon for annuitants (recipients of life annuities) to take their policies

out in such a way that the amount payable increases by a fixed escalation rate e on

each policy anniversary and it is therefore necessary to include a further adjustment

to the valuation formula to allow for escalation. Using standard notation, let ⌊m⌋ be

the integer part of m. Allowing for the fact that, in general, the valuation of the life

annuity will happen some fraction g through the policy year, so that the next payment

is at time g + f
12 since the most recent policy anniversary, the adjustment is made by

incorporating a factor of (1 + e)⌊g+(
k+f
12)⌋.

ax is standard notation for a level annuity payable in arrear: since the derivation in this

section is for an annuity which is not necessarily level, nor in arrear, different notation

is needed, and so a′x is used. Therefore, the annuity factor for a general single life

annuity is

a′x =
∞∑
k=0

(k+f
12)px × v(

k+f
12) × (1 + e)⌊g+

k+f
12

⌋ (2.1.4)

The PV obtained from this equation is the expected present value of payments, of

amount 1 at outset, to be made to the policyholder. Assuming that these life annuities

are pensions, the pension provider will need to hold this amount in some form (often

Treasury bonds) in order to meet the payments in future. Effectively, the amount has

been reserved to make the payments to this policy, and hence a′x is referred to as a

reserve factor, and the monetary amount which is the product of the reserve factor

and the current payment amount is the reserve. Finally, supposing that, for the jth

policy, ϕj is the amount payable at the first payment following the valuation date, the

payments are made at a fraction fj through the month, the policy holder is aged xj

at the time of valuation, the time of valuation is a fraction gj since the last policy

anniversary, and the escalation rate is ej , the total reserve for all policies is the sum of

the individual reserves across relevant policies, i.e.

Total

Reserve
=

∑
j∈ policies

ϕj a
′
xj

=
∑
j

(
ϕj

∞∑
k=0

(
k+fj
12

)pxj × v

(
k+fj
12

)
× (1 + ej)

⌊gj+
k+fj
12

⌋

)
(2.1.5)

2.1.5.2 Two Life Annuities

Life annuities are not restricted to the survival or otherwise of a single life: several forms

of multiple life annuities exist within UK life assurance offices, but this project considers

17

some of the more common examples. For each of these, the summation formulae only

differ from Equation 2.1.4 in their probability of payment. For clarity of notation, the

lives are denoted x and y, rather than x1 and x2.

A reversionary annuity becomes payable to a second life on the death of the first life:

a common example is a spouse’s pension, which becomes payable when the member

of the pension scheme dies. The payment in the kth step is made so long as the first

life has died and the second life is alive: allowing for escalation and the possibility of

payment a fraction f through a step, the summation for the reserve factor for a single

policy is

a′x|y =

∞∑
k=0

(
(k+f

12)qx (k+f
12)py

)
× v(

k+f
12) × (1 + e)⌊g+

k+f
12 ⌋ (2.1.6)

A joint life annuity is payable so long as both lives remain alive: the corresponding

reserve factor is therefore

a′ JLxy =

∞∑
k=0

(
(k+f

12)px (k+f
12)py

)
× v(

k+f
12) × (1 + e)⌊g+

k+f
12

⌋ (2.1.7)

A last survivor annuity remains payable so long as at least one of the two lives remain

alive: an alternative view of this is that payments are made so long as ‘not both lives

are dead’ and the corresponding reserve factor is

a′ LSxy =
∞∑
k=0

(
1− (k+f

12)qx (k+f
12)qy

)
× v(

k+f
12) × (1 + e)⌊g+

k+f
12

⌋ (2.1.8)

2.1.5.3 Reserves

Calculations involving reserves need to distinguish between in-force reserves and per-

policy reserves [22, Section 12.3]. The factor a′x+t discussed in Section 2.1.5.1 is the

factor for the in-force reserve: it is the reserve required at time t, per £1 of benefit, for

a life aged x at t = 0, given that the policy is in force at time t > 0. By multiplying the

in-force reserve by the probability of survival to that time, using a realistic mortality

basis, rather than the reserving mortality basis (i.e. tpx is calculated using, possibly, a

different mortality table), the reserve obtained is tVx, which is the per-policy reserve:

it is the reserve required for a policy in the data set at the valuation date, t = 0 (i.e.

not necessarily still in force at time t > 0).

Similarly, the factors a′x|y, a
′ JL
xy , and a′ LSxy discussed in Section 2.1.5.2 are factors for

18

the in-force reserve for the relevant policy type: they are the reserve, per £1 of benefit,

for lives aged x and y at t = 0, required at time t given that the policy is in force at

that time. To obtain the per-policy reserve factors for two life annuities, it is necessary

to allow for the probability of the survival of the lives to time t, and hence the fact

that the policy could have migrated to a different type depending on which of the lives

survive: i.e.

annuity type per-policy reserve factor

Reversionary tV
′
x|y = tpx tpy · a′x+t|y+t + tqx tpy · a′y+t

Joint Life tV
′ JL
x,y = tpx tpy · a′ JLx+t,y+t

Last Survivor tV
′ LS
x,y = tpx tpy · a′ LSx+t,y+t + tpx tqy · a′x+t + tqx tpy · a′y+t

The distinction between in-force reserves and per-policy reserves is important because

a life office only needs to hold the per-policy reserve which, due to the allowance for the

probability of still requiring to hold the reserve, will be less than the in-force reserve.

2.2 Domain Specific Languages

Over the last couple of decades, software packages which reduce the load on the

programmer have appeared: this section considers such ‘domain specific languages’,

or DLSs.

2.2.1 Actuarial Valuation Packages

Within the life assurance industry, DLSs are known as ‘valuation packages’, and several

are available, e.g. Prophet [31], Algo Financial Modeler1 [38] and [77], Mo.net [75], and

MoSes [94]. The idea behind these valuation packages is analogous to the spreadsheet

and, as such, these valuation packages are, in concept, very good. These packages are

usually crafted for flexibility and ease of use, rather than performance of the programs

they produce.

At their most basic level these packages require the relationships between variables to

be entered in a high level pseudo code: see Figure 2.1 for an example of a form used to

input these relationships. In the example shown, PVRE is the present value of retained

earnings – a measure of how much profit is expected to emerge from the policy in a

particular step. Hence, the formula for ‘CumulativePVRE’ is simply either the PVRE

1This changed names: VIP → VIPitech → Algo Financial Modeler → RNA ‘R3S’

19

Figure 2.1 Representation of a typical Variable Input Screen, as used in a standard actuarial
valuation software package.

in the first step, or the existing CumulativePVRE with the PVRE in the current step

added.

When the required relationships have all been entered, the valuation software performs

the relevant dependency analysis and produces source code in a ‘normal’ programming

language, which is often C, C++ or Fortran, although Visual Basic has now also

appeared as the language used by one valuation package. The valuation package which

was used for the initial timings for this project produces Fortran code: the source

created for the relationship in the example in Figure 2.1 is

if (FirstTorTle0 .eq. 1) then

CumulativePVRE = PVRE

else

CumulativePVRE = CumulativePVRE + PVRE

endif

This code is then compiled and linked into an executable using standard compilers and

linkers which are controlled by the valuation package issuing command-line instructions

internally. The executable produced by this method is then launched by the valuation

package, and when execution is complete the valuation software ensures that any

memory used has been correctly freed.

20

Relationships {entered as

high-level language by

non-programmers}

Parameter Values

{in text files}

User Defined Functions

{entered as normal code

by programmers}

‘Standard’ .obj file Source Code

‘Standard’ .obj file

‘Standard’ .exe file

Results {as text file}

Data {in text file}

Program

Execution

Figure 2.2 Schematic overview of a standard actuarial valuation software package.

In general, the functionality of a spreadsheet can be enhanced using add-ins, macros

and user-functions. Analogously, it is generally possible to create user-defined functions

for these financial valuation packages. While these functions can be built to perform

calculations of arbitrary complexity, they have a minor drawback in that they need to

be written in one of the standard languages mentioned above. Since these functions lie

outside the normal functionality of the package, they need to be written and compiled

by a competent programmer before they can be used by the valuation package. They

are only integrated into the system at the point at which the package performs its

linking stage. For clarification, Figure 2.2 represents the workings of these systems,

with the dashed oval representing the boundary of the valuation package.

Given their mode of operation, the advantages to these systems are clear. For normal

operation, they allow non-programmers to produce some really complex programs

which can be used to estimate the current value of, or profitability within, some

quite complicated assurance contracts: the user simply needs to input the correct

relationships and the valuation package does the rest. Software developers only need

to get involved when relationships between variables become too complex to enter into

the system, and user-defined functions need to be built.

An added advantage to storing the relationships between variables, rather than actual

21

source code, is that it becomes reasonably straightforward for non-programmers to

change the way policies are processed: the user simply needs to change the relevant

relationships between the variables and, assuming that no errors were introduced, the

valuation package will produce a new executable. The advantage here is that, for this

mode of use, users do not need to become involved in the details of variable types, or

the shapes of arrays, etc.

However, while the disadvantages of these systems are not quite so obvious, they are

as equally fundamental as the advantages. A slight issue arises from the fact that

even if the value of only one parameter is changed in only one place, then the system

will generate totally new source code for all the relationships entered by the non-

programmers (i.e. not the user-defined functions) re-compile all of that source, and link

the resultant object file. This is clearly far less efficient than being able to simply re-

compile only those parts of the source code which have changed, especially when only

a numeric value in a parameter file has altered so that there are actually no changes to

the code.

Another disadvantage is that, for the relationships entered by the non-programmers,

there is no possibility of being able to tune compiler optimisations. Neither can the

linker options be tuned, even when user-defined functions have been created, and then

compiled with a high level of optimisation. As a consequence of this, all programs

depend on compiler and linker settings which were ordained by the writers of the

valuation package at the time it was developed. While these standard options may be

beneficial in some situations, they are certainly not optimal for all codes.

A far more fundamental problem is that the user is constrained by pre-configured

parameters which were included in the package at the time it was built, e.g. some

of these valuation packages only allow a forward progression through time, while

others consider all numeric variables to be double precision even when integers would

suffice. The only way to work around such constraints and deficiencies is to build

relationships which are at a far more fundamental level, i.e. move away from the text-

based relationships and utilise the skill of the programmers. It is this problem which

is the predominant motivation for the investigation in this report.

2.2.2 Other Areas of Finance

In addition to the actuarial valuation systems just mentioned, similar DSLs exist for

other fields. For example, SciFinance [80] is available for derivatives pricing: one case

22

study [81], which appears on the SciFinance website, states that SciFinance “elimi-

nates programming by automatically translating model specifications for any financial

derivative that can be priced using any series of partial differential equations (PDEs) or

stochastic differential equations (SDEs) into fully documented C-family/CUDA source

code . . . ”. This modus operandi is similar to that of Algo Financial Modeler and MoSes,

etc. (mentioned in Section 2.2.1), which translate relationships between variables into

code – albeit for CPUs rather than GPUs. However, SciFinance is not used in actuarial

valuations.

2.3 Use Cases

Having covered the derivation of the formulae in Section 2.1, and given an overview of

actuarial valuation packages in Section 2.2.1, this section covers some of the situations

in which these calculations are used.

2.3.1 Parameters

Most actuarial calculations are performed to estimate the current value of something

which relies on future events and so, in order for this to be possible, assumptions need

to be made about what could happen in the future. These assumptions take the form

of parameters to the calculation: as with other fields of computing, these parameters

may be varied according to their use. Parameters typically fall into two categories,

economic and demographic.

Examples of economic parameters are interest rates, inflation rates, levels of expenses,

or monetary exchange rates. The majority of these have intuitive explanations, the

possible exception being the expenses: these are the proportion of the company’s

running costs which are attributable to each policy, and recovered from the policyholder,

either as an addition to the premium or a reduction in benefit payable. Typical

values for interest rates, inflation rates, and monetary exchange rates may be found in

newspapers and financial publications, e.g. interest rates are currently around 0.5% with

some addition for risk, so that a bank loan attracts a rate of around 5%. Typical values

for expenses attributable to policies in a moderately sized life office would currently be

around £30 per policy per year, although this will fluctuate yearly, as the operating

expenses change.

Examples of demographic parameters would be mortality rates (i.e. deaths), morbidity

23

rates (i.e. sickness) and birth rates. Mortality rates vary depending on what is being

measured, and therefore which table is being used. Consider 65 year old males:

according to ELT17 [70] for an entire population, it could be expected that 12.40‰ of

the those reaching age 65 would die before their 66th birthday; according to PNML00

[42] for pensioners (who are not impaired lives), it could be expected that 12.85‰ of

the those reaching age 65 would die before their 66th birthday; according to ANS00 [41]

for assured lives who smoke, it could be expected that 15.42‰ of the those reaching

age 65 would die before their 66th birthday.

Within a particular set of parameters, the value of each item may vary with time:

for example, in order to allow for lightening of mortality (i.e. the fact that people are

living to older ages), any realistic simulation would allow for fewer people dying at a

particular age as time progresses.

2.3.2 Single Scenario Calculations

This section introduces uses where only one set of parameters are required because the

calculations are only performed once.

2.3.2.1 Calculation of Reserves

As mentioned in Section 1.1, the calculation of reserves is performed as part of the

regulatory requirement to assess of solvency. Historically, the reserves were calculated

once, using a set of assumptions based on actuaries’ views of future economic and

demographic trends. For annuities, the calculation is a straightforward implementation

of the summation formulae derived in Section 2.1.5.

The assumptions used necessarily introduce subjectivity because different actuaries will

have different views. However, the basis used is often quite prudent, e.g. if the expected

future interest rate is 4% then the valuation of the liabilities will often use 3.95% so

that the resulting estimate of the liabilities is higher than necessary. This produces the

benefit of including an implicit solvency margin in addition to the explicit margin that

the regulators require.

However, as interest rates have fallen over the last decade, the rates used in calculations

are closer to their expected values so that implicit margins are reducing (in an attempt

to demonstrate that the company remains solvent in the harsher climate). This reduc-

tion in implicit margin, and the resulting reduction in reserves, also leads to a reduction

24

in the explicit margin (which, under the outgoing regulations, is a fixed percentage of

reserves).

2.3.2.2 Estimation of Profitability

These calculations are used to estimate the future profit which will emerge from a block

of policies. The company’s managers will use these estimates to inform decisions as

to whether policies should continue to be sold (because they are profitable), whether

a policy type should be withdrawn (because it appears to make a loss), or whether a

policy type should be reformulated so that the level of profit may be increased, e.g. by

adding an explicit management charge.

Because these calculations are for internal purposes only, the bases used do not neces-

sarily have to closely match market conditions: the bases could mirror management’s

expectations. There is generally one ‘best estimate’ basis for calculating reserves and

one ‘realistic’ basis for projecting profitability calculations. This has the advantage of

producing future reserves which may be checked against the calculation of statutory

reserves (as discussed in Section 2.3.2.1) to ensure that the bases on which the man-

agement are basing their decisions are not dramatically different from the bases which

are used to create reserves which appear in statutory reports.

Profitability calculations are based on the reserve calculations together with the change

in reserves and interest on reserves, against which payments and expenses are offset.

Under current practice, reserves need to be re-calculated at each future time step and

the change in reserve over each step, and the interest earnt on the reserve during each

step, are obtained in a straightforward manner.

The entire process is conceptually straightforward. However, implementations using

commercial valuation packages are less than ideal as a means of estimating such prof-

itability: as mentioned in Section 1.4, the time to process the largest data set within

a single cohort of single life annuities is roughly 35 CPU core hours for about 129,000

policies: this is a processing rate of approximately one policy per second. Using the

same valuation system, which produces single threaded programs, it took about 22.5

CPU core hours to process about 35, 000 reversionary annuity policies. This use of a

commercial valuation package was the original motivation for the investigation in this

project; the conceptual simplicity of the contracts is not reflected by run time.

25

2.3.2.3 Disinvestments

In order to run a business which administers annuities, it is necessary to estimate how

much cash is paid out to policyholders, and hence how many of the assets backing the

portfolio of annuities need to be liquidated, in each future month. These calculations

are for internal, management purposes only and so are not required to satisfy any

regulatory requirements.

The estimation of cash required is often achieved by performing a profitability estimate

and ignoring the change in reserves, interest on reserves and expense-related items: the

remaining items are the cash flows which approximate the value of the assets which

need to be disinvested at each time step.

2.3.3 Multiple Scenario Calculations

This section gives an overview of the use which motivated this project: the values of the

parameters used in the estimation of liabilities must be repeatedly drawn from some

underlying distribution, with each set of parameters being used only once.

2.3.3.1 Demonstrating Solvency

Historically, solvency regulations required that a solvency margin be held in excess

of the reserves; for many types of policy this solvency margin was simply 4% of the

reserve. Therefore, demonstrating solvency was simply showing that available assets

exceeded 104% of estimated liabilities, where those liabilities were calculated on a best

estimate basis.

The new solvency regulations require that the additional capital required to ensure

solvency is calculated in a more complex, and hence realistic, manner. For every step,

the assurer must calculate the additional capital at that time as the difference between

the capital required using the office’s ‘best estimate’ and the capital required to meet

a ‘1-in-200’ event, assuming that the latter exceeds the former: these differences are

then discounted to obtain their PV, and that PV is the additional capital requirement

at the valuation date.

2.3.3.1.1 The Process

In order to ensure that the calculations are resilient, and correctly allow for only 0.5%

26

chance of not being able to meet future liabilities, there is no deduction from the capital

required in the unlikely event that the
(

1
200

)th
worst scenario leads to a smaller reserve

than the best estimate. In this way, the capital requirement seeks to ensure that the

office holds the optimum amount of capital to cover the liabilities.

It might be possible to use statistical techniques, such as moment generating functions,

to derive the distribution of the reserve at each time step: this would require knowledge

of the distribution of each of the relevant parameters, the number of policies, the

distribution of ages of the policyholders, and the payment characteristics of each policy.

However, this is an extremely difficult problem, and it may be that no closed form for

the distribution of reserves exists: to date, the derivation of a distribution of reserves

has not been achieved. Without knowing the distribution, it is impossible to find an

analytical expression for the reserve which infers a ‘1-in-200’ chance of not being able

to meet all liabilities and a Monte Carlo approach is therefore required.

In order to estimate a 1-in-200 event, an absolute minimum of 200 simulations are

required. However, using only 200 simulations provides very little statistical robustness:

several times this number of simulations are required to reduce the error of the estimate.

Within the actuarial profession, a generally accepted approach to obtaining the 1-in-200

worst reserve is to obtain 1000 simulations of the reserve, with the parameter values for

each simulation drawn from some distribution. However, 999 of those simulations are

then discarded; the one kept is that which infers a 1
200 chance of the required reserve

being greater than that obtained in the corresponding scenario. To allow for changes

in mortality, and other trends in different parameters, our implementation allows for

the parameter values to be drawn from different distributions in each time step. This

Monte Carlo approach to assessing solvency under the Solvency II regulations infers a

run time which is beyond contemplation using currently available commercial software

on hardware which the industry is comfortable with: as stated in Section 1.5, a naive

estimation of the run time is around 2800 CPU core years.

The main focus of this project is the consideration of a brute force approach to fulfilling

the Solvency II requirements, the ultimate requirement of which is to obtain the

additional capital requirement, or ACR. This work is based on the interpretation of

the ex-modelling actuary from Aegon UK [15] which is as follows:

– let t ∈ {1, 2, · · · , T} be the index for future months where the maximum, T ,

typically has a value of 600, 660, 720, or 780, depending on how far into the

future the projection is required to run: note that t = 0 is not the index of a

future month and so t = 0 may be considered to be the index of the step to which

27

additional capital requirement relates, i.e. “now”;

– let vt be the discount factor from now (i.e. t = 0) to time t, allowing for either a

fixed rate of interest or, more realistically, variable rates of interest;

– let Bt be the total (over all policies) of the best estimate per-policy reserves at

time t;

– let J be the number of scenarios required (so that, for the situation described in

the preceding paragraph, the value of J is 1000);

– let j ∈ {1, 2, · · · , J} be the scenario index;

– let Vt,j be the total (over all policies) of the simulated per-policy reserves at time

t ∈ {1, 2, · · · , T}, for scenario j ∈ {1, 2, · · · , J};

– let V ′
t be the 99.5th percentile in the sequence obtained by sorting the set of

simulated reserves at time t, {Vt,j}Jj=1: note that when J = 1000, V ′
t is the

fifth-highest reserve;

– let Ct be the additional capital required at time t if V ′
t exceeds the best estimate

at that time, i.e. Ct = max(V ′
t −Bt, 0) for t ∈ {1, 2, · · · , T};

– let θ be a fixed percentage (whose value is to be mandated by the regulator);

then the whole calculation may be described by Algorithm 2.1.

Obtaining the scalar value obtained in Line 26 of Algorithm 2.1 is the ultimate aim

of the entire process: i.e. calculation of the in-force reserves is part of the process of

obtaining the ACR – obtaining the reserves is not the final objective. Note that t = 0

corresponds to the valuation date: under the construction above, reserves at t = 0 do

not contribute to the ACR.

In Line 14 of Algorithm 2.1, the at,j,p’s are the annuity factors introduced in Section

2.1.5. These factors are for the in-force reserves2: the complexity of the calculation

of these factors is discussed in Section 3.4.1 where a new algorithm is compared to

the existing approach. The complete calculation of the ACR for Solvency II is con-

sidered in Section 7.3 which contains a discussion of the complexity of four possible

implementations of the algorithm.

It is not entirely clear which interest rates should be used to obtain the discount factors

in Line 21 of Algorithm 2.1: possible candidates are

a) the rates used to obtain the best estimate reserve: this has the advantage that

the same rates will be used for a particular time, but the use of fixed rates is not

consistent with a Monte Carlo approach;

2The per-policy reserves are calculated in Line 16.

28

Algorithm 2.1 Additional capital requirement for single life annuities using a brute force
approach.

1: set T = maximum projection step number
2: obtain best estimate economic and demographic parameters for all future steps
3: for t=1 to T do
4: initialise the overall best estimate per-policy reserve at time t: Bt = 0
5: for p=1 to number of policies do
6: calculate the best estimate per-policy reserve at time t for policy p . . .
7: . . . and increment Bt by the per-policy reserve for policy p
8: end for
9: set J = number of scenarios

10: for j=1 to J do
11: obtain economic and demographic parameters by sampling
12: initialise Vt,j = 0
13: for p=1 to number of policies do
14: calculate the in-force reserve at time t for policy p using scenario j: at,j,p
15: calculate the probability that policy p is in force at time t: tp

∗
x

16: calculate the per-policy reserve: Vt,j,p = at,j,p × tp
∗
x

17: increment Vt,j by the individual per-policy reserve Vt,j,p

18: end for
19: end for
20: obtain V ′

t by sorting {Vt,j}Jj=1 and taking the 99.5th percentile
21: obtain the discount factor to time t: vt
22: calculate the discounted best estimate reserve at time t: B̂t = vt ×Bt

23: calculate the discounted 99.5th percentile reserve at time t: V̂ ′
t = vt × V ′

t

24: calculate the discounted additional capital at time t: Ĉt = max(V̂ ′
t − B̂t, 0)

25: end for
26: calculate the Additional Capital Requirement: ACR = θ

∑
t>0

Ĉt

b) the rates used in the scenario which generated the reserve: this is consistent with

the Monte Carlo philosophy and removes a potential performance loss caused by the

need to broadcast a single value to all processes;

c) rates which are different to anything used elsewhere: this has no clear advantages,

but it may become mandated by the regulator at a future date.

2.3.3.1.2 Parameter Usage

Line 11 in Algorithm 2.1 requires that economic and demographic parameters (as

exemplified in Section 2.3.1) be obtained. There are two distinct possibilities for the

origin of these parameters: either the parameters may be re-drawn from the underlying

distribution at each step, or those parameters already drawn might be re-used. If the

parameters are re-drawn then at,r,p in Line 14 of Algorithm 2.1 will need to be re-

calculated in every future step using the new parameters: if the parameters are not

re-drawn, and at,r,p is calculated using Algorithm 3.2, then at,r,p will not need to be

29

re-calculated in every future step – the values in the sequence obtained through use of

the recurrence relation will be precisely those values which are required.

However, it is not clear from the regulations whether obtaining the economic and

demographic parameters for time step t would be dependent on the result of the reserve

calculation for step t − 1. If the distributions from which the parameters are drawn

do change at each time step, e.g. to allow for management actions, then it is necessary

to re-draw the parameters: i.e. those drawn in the previous step cannot be reused, so

that the in-force reserves do need to be re-calculated at every time step. Therefore,

to allow for a worst-case calculation count, the majority of this project assumes that

there is no such dependence. However, to acknowledge the possibility that there could

be a dependence, parallelisation over the t step is not exploited: the implementation of

this approach is discussed in Chapter 8.

2.3.3.1.3 Alternative Methodology

If it can be guaranteed that the distributions from which the parameters are drawn do

not change at each time step, then it may not be considered necessary to re-draw the

parameters: i.e. the values for each t, as drawn in the first step, may be considered as

valid for the entire projection. Under this approach, it is possible to calculate in-force

reserves at t = 0 in a manner which calculates the in-force reserves for all future t

as a by-product: see Chapter 3 for details. However, by adopting this approach, it is

necessary to increase the number of scenarios at each future step in order to reduce the

statistical error in the final result: details of the increased number of scenarios, and an

implementation of this approach, are discussed in Chapter 7.

2.3.3.1.4 Parameter Generation

Parameters could be produced using standard techniques, such as sampling against the

cumulative distribution function and calculating the inverse [78]. In practice, there are

two fundamental options for doing this:

a) read the parameters from files on the disk: this allows all companies to use the

same values (if such files were supplied by the regulator), and therefore valuations,

and estimates of additional capital, would be truly market consistent. However,

the obvious detrimental effect is that the time to read parameters could form a

significant part of the processing. This project reads parameters from disk to allow

the worst case run times to be obtained and evaluated: see Section 8.1.3.2 which

discusses the use of 1000 files, each containing parameters for 780 future time steps.

b) generate parameters as part of the processing: this is likely to be faster than reading

30

from disk, but assumes that there is a valid inverse transformation of the distribution

function. However, under Solvency II it is possible for companies to apply to use

an ‘internal model’ (rather than use whichever model is ordained by the regulator):

this could lead to companies using different distributions for a particular parameter.

If this were to happen, because the distributions used are not necessarily consistent

across the market, the whole concept of market-consistent valuations (which was

one of the initial drivers for Solvency II) would be invalidated.

2.4 Computer Processors

There are several different categories of computer processors, each having been devel-

oped for a different purpose. This section initially discusses CPUs because those are

the basis of the investigation in this thesis. It then covers GPUs because they could be

used as the basis of a further investigation.

2.4.1 Central Processing Units

CPUs are the general purpose calculation engines within computers: they are designed

to perform a multitude of types of task, and are very good at being a jack-of-all-

trades. CPUs can provide good performance when working on a single task but

their performance starts to deteriorate when multitasking, and the resultant context

switching, is involved.

2.4.1.1 Recent History

“Moore’s Law” has many interpretations: in the original paper [64], Moore talked about

the ‘number of components changing over a five year period’. This is often reinterpreted

as ‘the number of transistors doubling every two years’, although this is also sometimes

reported as ‘the density of transistors on a chip doubling every 18 months’. Other

interpretations come in terms of the speed of a chip doubling every two years (or 18

months).

Whatever the interpretation, the Law initially translated into the clock frequencies of

CPUs roughly doubling every 18 months or so: this was a result of the production and

use of smaller transistors which could be switched more quickly. However, smaller tran-

sistors lead to voltage leakage and, when the silicon wafers get thin enough, attempting

31

to build circuits at the size of atoms becomes a limiting factor. Therefore, physical

limitations mean that this interpretation of Moore’s Law is coming to an end: whilst

huge advances in performance have been achieved by harnessing this improvement in the

speed of CPUs, since about 2005 clock frequencies have stopped increasing significantly.

For the last 10 years, the increase in number of transistors has resulted in more cores per

chip, rather than each core having a faster clock. Currently, Intel’s 6-core, 12-thread,

Xeon L5640 chips are available in small cluster machines used within the pensions

industry, and the Intel 24-core, 48-thread, Xeon E7-8890 v4 chips are available to build

into servers and clusters from mid 2016 [46] and [92].

From developments made in recent years by both Intel and AMD, it looks likely that

the current trend towards incorporating more cores, rather than faster clocks, will

continue for the near future. These multi-core chips provide a good starting point

for the investigation in this project: investigating the performance of highly optimised

CPU code provides a benchmark to measure other technologies against.

2.4.1.2 Programming CPUs

There are many references providing details on how to improve the performance of

codes, e.g. [2], [3], [5], [32], and [44]. Many of the techniques in these books have been

incorporated in the current phase of this project: for example, ordering if-statements in

decreasing order of probability of meeting the criteria, ensuring that multidimensional

arrays are traversed in the correct order, extracting common sub-expressions, and using

multiplication-by-reciprocal rather than division have all been included. Bacon [5]

suggests that ‘strip mining’ is unlikely to have significant effect on performance until

the data have been tuned to fit within cache, or “other transformations have been

performed first”. Strip mining has been used as part of this project: it forms the basis

for vectorisation, and is discussed further in Section 2.5.5.1.

Another feature of modern CPUs which may have a major benefit for this project is

the availability of vector units; these allow similar calculations, on adjacent elements of

arrays, to be performed very efficiently. While utilisation of vector units can enhance

performance of calculation-intensive codes [8, Table 9.6], the future direction in which

vector units will develop is uncertain: it is not clear whether manufacturers will increase

the number of units in each chip, or increase the width of each unit without changing

the number of units.

The benefit of vector units can be harnessed by improving the vectorisation oppor-

32

tunities within the code, although the price to be paid for improved performance is

usually increased programmer effort. Increasing the amount of vectorised calculations

is likely to become essential to obtaining best performance on CPUs, and is therefore a

significant part of this project. However, in order to extract a high level of performance,

the code in Chapter 8 has been restructured so that nested loops have the outer loops

parallelised and the inner loop vectorised: this is how Intel’s compiler handles auto-

parallelisation and auto-vectorisation [45, Page 1462].

Current standard software within the pensions industry uses CPUs. However, the

extent to which that software can benefit from recent advances and features of modern

CPUs is limited. Most valuation packages produce code which runs on only a single

thread, although some packages have recently added ‘more advanced’ options in some

packages to allow for up to eight threads to be used. Conversely, one commercial

package, released in 2008, almost defeats recent advances in hardware by employing

version 5.5.1 of Borland’s C++ compiler from 2000.

2.4.1.3 Future Developments

Given the speed, and variety, of developments in computing over the past decade, trying

to predict the future is likely to be prone to error. However, there are a few observations

which may be relevant to the performance required for the processing requirements in

the actuarial world.

Firstly, it seems reasonable to believe that the multi-core revolution will continue.

Given that the introduction of more cores, rather than higher clock frequencies, was

partly driven by physical limitations within chip manufacture, and that such limitations

seem unlikely to be overcome (otherwise they would probably have been overcome by

now), it seems unlikely that there will be a move towards fewer cores per chip in

the foreseeable future. Therefore, programming techniques which benefit from higher

numbers of cores will become increasingly important if the potential of future chips is

to be realised.

Secondly, as the number of cores increases, it is likely that it becomes necessary to

move away from current CPUs, e.g. Intel’s latest Xeon Phi has about 70 cores, each

capable of four-way multi-threading. Although the majority of HPC programming

techniques may be used on these many-core chips, it is unlikely that they will be in

desktop machines, on desks, within the office space: this leads to the possibility that

they will be perceived as ‘special’ in some way and therefore they are unlikely to be

33

targeted by the creators of valuation packages.

2.4.2 Graphics Processing Units

GPUs are more specialised than CPUs: their original purpose was for rendering and

manipulating pixels. As long as the final image is correct, the processing of each pixel

can be performed independently of all others, and hence the order of the processing is

irrelevant. Further, so long as moving images appear continuous, it does not matter

how quickly the data is processed: the human brain considers a rate of slightly less

than 30 frames per second to be continuous [53] and so there is no need to produce

images at a much higher rate than that. The combination of independence and lack of

need for outstanding speed means that GPUs have evolved to have large numbers of

relatively slow processing units. Small GPUs, such as NVIDIA’s 640-core GTX950M,

are available in current laptops while the larger graphics cards have a few thousand

cores: for example, the K40c, as used in NVIDIA’s CUDA Centre at Durham University

[26], has 2880 stream cores. However, on all of these GPUs, each thread is processed

more slowly than would be possible on a CPU of equivalent age: this is simply a result

of GPUs having lower clock frequencies than CPUs.

GPUs started to be used for general purpose programming when NVIDIA introduced

CUDA [67] in 2007: having been developed by NVIDIA, CUDA may only be used to

write code which runs on their GPUs. CUDA was originally a set of extensions to C

which allowed data to be transferred on and off the GPU, and also controlled how the

compute kernels were launched. As CUDA has evolved, further functionality has been

added and extensions to Fortran have been incorporated in the PGI compiler.

OpenCL [51] was introduced in 2009 as an alternative means of allowing general purpose

C code to run on GPUs. Like CUDA, OpenCL is an extension to the language which

places the correctness requirements in the programmer’s hands, and it continues to

evolve as recent C++ standards are supported [51]. In contrast to CUDA, OpenCL

may be used to create code which runs on GPUs from a wide range of manufacturers:

the costs of this increased applicability are increased complexity in setting up the code

to control the run time environment to account for the specific GPU being used and,

possibly, poorer performance.

GPUs may also be programmed using directive-based languages analogous to OpenMP.

OpenACC was introduced in 2011 by a consortium consisting of NVIDIA, Cray, The

Portland Group, and CAPS [71]. This simplified the programming of GPUs, but limited

34

options to the use of either the PGI compiler suite or the Cray compiler suite.

In 2013 OpenMP was extended to cover GPU programming with the release of Version

4.0 of the standard [73]. The advantage of this is that OpenMP is implemented by

many compilers, removing the tether to a specific vendor. OpenMP’s support for

GPUs was further extended by the release of Version 4.5 in 2015 [74]: this effectively

made OpenACC redundant, and it is not expected that OpenACC will evolve further.

The fact that compilers implementing OpenMP 4.x are available means that it should

be relatively straightforward to program GPUs. However, the recentness of the release

of these OpenMP standards means that the implementations in many compilers are

not yet mature, leading to the possibility that the compilers contain bugs resulting in

either an inability to produce code for a particular GPU or, worse, the production of

incorrect code.

2.5 High Performance Computing

Over the last 25 years, conventional wisdom within life offices has been to improve

computing performance by obtaining more up-to-date PCs: it has been sufficient to

rely on chip manufacturers increasing the processing power of computers by increas-

ing the CPU’s clock frequency roughly in line with Moore’s law. However, it is no

longer possible to rely on the speed of CPUs increasing significantly: instead, chip

manufacturers have moved to placing more compute cores on each chip in order to

increase their processing power. Therefore, to benefit from modern processors, it is

necessary to embrace programming paradigms which utilise multi-core chips. Whilst

some commercial valuation packages do now have some parallel computation capability,

these capabilities are often limited and so much of the benefit of multi-core CPUs is

not harnessed.

This project uses standard parallel programming techniques to develop software which

is capable of running on modern machines which have multi-core chips. This project

also uses several techniques which are used in serial programming but are also of benefit

in a parallel environment.

35

2.5.1 Applicability of High Performance Computing

The problem of demonstrating solvency, as set out in Section 2.3.3.1 is, at first sight,

one of high throughput computing, rather than high performance computing. It would

be possible, using the current industry standard software, to split the calculations

across vast numbers of PCs to perform the calculations for each of the simulations

for each future time step. However, there are drawbacks to this approach: firstly, the

results need to be collated, and the quantity of intermediate results files involved would

lead to concerns about the accuracy of the collation; secondly, hardware reliability

considerations suggest that using several thousand PCs is likely to lead to at least

some of those machines failing during a run; and, thirdly, practical considerations of

housing (and cooling) several thousand PCs is likely to require a bespoke building,

and the cost of providing electricity for such a large number of machines is a definite

perceived problem. These issues mean that adopting such a process for calculating the

additional capital requirement is impractical and untenable.

In order to correctly demonstrate solvency, an HPC solution is favoured since such an

approach could incorporate the collation of the results within the calculation process.

That is the main focus of the investigation in this project: a high performance solution

is used, so that the required high throughput is achieved.

There is ample parallelism at various levels in this problem; the Monte Carlo simulations

within the overall calculation are independent of each other, although their results must

be combined; each policy within each simulation may be regarded as independent of all

others; and, all probability and present value calculations for each payment within each

policy could be calculated independently of all others. This abundance of parallelism

allows the investigation of various approaches to performing the calculations, using

various paradigms.

2.5.2 Hardware

High performance computers run parallel programs, i.e. programs which perform differ-

ent parts of the same calculation at the same time. These machines are usually classified

as distributed memory or shared memory : the differences between these machines are

described in the following sections.

36

2.5.2.1 Distributed Memory Machines

A distributed memory machine has more than one node: in the case of large supercom-

puters, there could be several thousand nodes, while small clusters may only have a

handful of nodes. All the nodes are able to communicate with each other via a network.

Each node has its own computing capability, usually with one or more CPUs on each

node, or a CPU and a GPU on the same node. Each node has its own memory: in

order for a node to access a variable in another node’s memory, the two nodes need to

communicate. It is the fact that not all the memory is on the same node which makes

these distributed memory machines.

These machines allow separate parts of a program to run on each node, leading to

multi-node parallelism. They also have large quantities of memory, usually consisting

of a reasonable amount (often a few tens of giga-bytes) on each node: for a machine

with several thousand nodes, this results in many tera-bytes of memory.

The main reason this project uses a distributed memory machine is to harness the

number of compute cores it has, rather than to use the volume of memory available:

the cores are used as a convenience over using a collection of several hundred PCs.

However, as described in Section 8.2.1, the processing regime in this project requires

roughly 1 GB of RAM per scenario, so that running 1000 scenarios at same time requires

1 TB of RAM. The distributed memory machines used in this project are described in

Sections 2.7.2 and 2.7.3. Although this project uses a distributed memory machine with

thousands of nodes, these large machines are not common within the industry: this is

largely due to the power and cooling costs associated with these machines outweighing

their usefulness.

2.5.2.2 Shared Memory Machines

A shared memory machine has more than one core on a node: all cores on that node

can directly access the memory on that node. There is no standard layout for a node

of a shared memory machine: each node may have one or more CPUs; each CPU may

have one or more dies; and each die may have one or more cores. However, all machines

share common features, and the fact that the node has memory which may be accessed

by all cores on the node allows multi-core parallelism within each node.

The memory of these machines has a hierarchical structure which approximately reflects

the layout of the cores: the relative nearness of a level of memory to the computational

37

ability is reflected in the time to access a value from that memory, rather than any

geographical interpretation (although physical considerations usually result in the faster

memory being located nearer the arithmetic units). In the following descriptions, the

figures quoted relate to Intel Xeon Ivy Bridge processors: these are the CPUs in the

Cray system used in this project – that system is introduced in Section 2.7.2, and the

following figures are taken from Appendix B.

Starting ‘closest’ to the arithmetic units, there is a small cache which is only available

to the core which it is associated with, and allows data to be accessed quickly. There

are often two levels of core-specific cache: Level 1 cache is 32 kB and the time to

retrieve data is around 1.5 nanoseconds; Level 2 cache is 256 kB and the time to

retrieve data is around 5.9 nanoseconds. In addition, there is a Level 3 cache which

is shared between the cores on a chip: this is 30 MB and the time to retrieve data

is around 17 nanoseconds. Finally, there is the main memory which is accessible by

all cores on a node: the size of this is not dependant on the CPU and is often in

the region of 64 GB. The time to retrieve data is around 81 nanoseconds, and it is

therefore desirable to access this memory as infrequently as possible. Clearly, being

able to perform calculations on the data in caches closest to the arithmetic units will

lead to the calculations completing more quickly.

However, this memory structure admits the possibility of a core in one CPU on a node

needing to read data which was written by a core on a different CPU. This highlights

two problems when programming shared memory machines: firstly, the fact that the

write must happen before the read leads to synchronisation intricacies; secondly, the

fact that the required data could have been written by a core in a different CPU means

that the caches need to be kept aware of updates by other cores, although the caches

do not necessarily need to be kept identical.

A related, but independent issue, is non-uniform memory access (NUMA): this is the

situation where a core on one CPU needs to access data stored in either the cache of

a different core, or the RAM attached to a different CPU. In the case of data being

in another CPU’s memory, it is necessary for the data to be transferred across the

interconnect between CPUs: this need to copy the data back through the memory

hierarchy, and the resulting bookkeeping, takes a not insignificant amount of time

meaning that calculations take longer when the most up-to-date data are spread over

the different memory levels of several CPUs. NUMA effects, caused by running a

program across several CPUs, often degrade performance noticeably: it is possible to

reduce these effects by ensuring that, as far as possible, any threads involved in a

particular calculation are all running on the same CPU.

38

It is perfectly possible for small, standalone machines with multiple cores to be pro-

grammed using shared memory techniques: multi-core laptops could therefore serve as

development platforms for codes which are to be run on larger shared memory machines.

Similarly, it is perfectly possible to use shared memory techniques to program machines

which have several CPUs, each with multiple cores, accessing the same shared memory.

The shared memory machine used in this project is described in Section 2.7.1. This

machine has mechanisms which allow the programmer to dictate the level to which

threads are tied to cores: throughout this project, all code is written and run in a

manner which ensures that threads only access the memory allocated to the CPU on

which that thread is running, i.e.

– the environment variable, OMP PROC BIND, is set to true, and

– the number of threads used does not exceed the number of cores available.

2.5.2.3 Intra-Core Parallelism

There are several forms of parallelism which may be applied within a single core: the

more important ones are discussed here.

2.5.2.3.1 Pipelining

Pipelining is a form of instruction level parallelism: parts of consecutive instructions are

executed at same time. Multiple independent instructions are executed simultaneously,

and a new instruction is started every cycle so long as the required resources are avail-

able. Independent instructions keep the processor busy, while dependent instructions

may stall the processor. Branch prediction could be a problem for pipelines: if the

prediction is incorrect, then results in flight in the pipeline are wasted. Pipelining is

implemented in hardware: there is no need for the programmer to intervene.

2.5.2.3.2 Superscalar Processing

Superscalar processing is another form of instruction level parallelism: instructions

may be issued to different functional units in the same cycle. Superscalar processing

is also implemented in hardware: as with pipelining, there is no need for programmer

intervention.

2.5.2.3.3 Vectorisation

Vectorisation is a form of data parallelism: the same arithmetic operation is performed

39

on several pieces of data at same time. For this reason, vectorisation is also referred

to as SIMD (single instruction, multiple data) processing. In order to perform SIMD

processing, the compiler will produce instructions specifically for the CPU’s SIMD

instruction set, although different compilers may produce different instructions.

The number of data items which can be operated on depends on the size of the vector

processing unit: vector units in modern CPUs are typically 256 or 512 bits wide,

allowing four or eight double precision numbers to be processed at the same time –

in particular, the Xeons in the Cray (which will be introduced in Section 2.7.2) have

256-bit wide vector units. However, the size of these units is increasing, meaning that

vectorisation within program code may become more important.

Although vector processing is a feature of the hardware, unlike pipelining and super-

scalar processing, there is much the programmer can do to increase the amount of code

which is vectorised: this is a result of the fact that the compiler is often unable to

perform adequate analysis of the code to be able to determine that it may safely be

vectorised: see Section 2.5.5 for details.

2.5.2.3.4 Simultaneous Multi-Threading

SMT is a cross between instruction level parallelism and data parallelism: it allows

instructions from different threads, which are likely to be working on different data

items, to execute in any given pipeline stage at the same time. This means that the

architecture needs to be modified slightly: the ability to fetch instructions from multiple

threads needs to be added, and the register files need to be larger (to hold data from

several threads). The number of threads which may run at the same time depends on

the hardware: for example Intel Xeon CPUs generally allow 2 threads per core, whereas

the Xeon Phi allows 4 threads per core. The fact that instructions from different threads

could be working on different data items at different stages in the pipeline means that

there is likely to be contention for hardware resources such as memory bandwidth,

cache bandwidth, cache capacity, logic units or floating point units.

SMT tends to fall into two categories: firstly, ‘red/black processing’ where alternate

threads are processed on alternate clock cycles, for example the Knights Corner Xeon

Phi chips; or secondly, processing different threads in the same clock cycle, e.g. Intel’s

Xeon CPUs, or Knights Landing Xeon Phi chips. In either case, the functional units are

shared by the multiple threads, leading to a possibility of the processing rate reducing.

The benefit of SMT comes from the possibility of filling instruction slots which would

otherwise be empty. The slots could be empty either because there are dependencies

40

between variables which need to be calculated, or because the CPU is stalled waiting

for data from a lower level of cache or RAM. Therefore SMT particularly benefits codes

which have large amounts of pointer chasing, and would not be expected to be of so

much benefit for calculation-intensive codes.

SMT also increases the programmer’s workload as a result of needing to expose more

parallelism at the thread level in order to keep the functional units busy. However, with

SMT the threads may be competing for hardware features such as memory bandwidth,

cache bandwidth, or TLBs, etc. and such contentions are likely to adversely affect

performance. Therefore, overall, it is not clear, in advance, whether a code will benefit

from SMT: the effect of SMT on the code developed in this project is discussed in

Section 8.2.6.1.

2.5.3 Scalability of HPC Codes

One feature of any HPC code which is of interest is its scalability : this considers how

well the code performs as the amount of processing capacity varies. The amount of

computation required to solve a particular problem is the ‘workload’ and, because the

size of any particular problem is fixed, the workload is also referred to as the ‘problem

size’.

There are two forms of scalability which are commonly investigated: firstly, strong

scaling considers how the run time for a fixed problem size varies as the number of

cores varies; secondly, weak scaling considers a fixed workload per core, and investigates

how the run time varies as the number of cores, and the resulting workload, varies.

Demonstrating strong scaling involves showing that the problem can be solved more

quickly as more cores are used, whereas demonstrating weak scaling involves showing

that larger problems may be solved within a set time by using more cores. If a code

shows strong scaling on a machine with a modest number of cores, it is often worth

transferring that code to a machine with a larger number of cores. This allows more

cores to be used so that the problem might be solved in a shorter time.

For profitability and solvency calculations, interest lies in strong scaling. Any particular

life office will have a fixed number of policies and hence a fixed work load: if the

monthly variation in the number of policies is small3, then the workload will not vary

dramatically so the overall run time will not differ significantly; if the monthly variation

in the number of policies is large4, then a different decomposition is likely to be needed

3Small changes will result from new business, and/or policies lapsing/maturing.
4Large changes will result from acquisition of a block of policies from a different office (or the sale

41

anyway.

For Solvency II, the workload may also change as a result of the number of scenarios

changing. However, running 104 scenarios would not provide a much more accurate

estimate of the 1-in-200 liability than just running 103 scenarios does: the accuracy

of the estimation of the distributions from which the parameters are drawn is likely

to provide a greater source of variation than the number of Monte Carlo simulations

anyway.

2.5.4 Programming Techniques

Distributed memory machines require different programming techniques to shared mem-

ory machines: the different techniques are discussed in this section.

2.5.4.1 MPI Programs

It is not possible for cores on different nodes of a distributed memory machine to

access variables in another node’s memory without communication between the nodes.

In order to facilitate such communication, programs for distributed memory machines

often use MPI, the Message Passing Interface standard [62].

The MPI standard defines a specification which any MPI library should adhere to:

the standard does not define how the library should be implemented, nor how any

program using MPI should be written. This has the clear advantage that any program

which conforms to the specification will run on any machine which has a library which

implements the specification: this ‘write once and run anywhere’ approach allows code

to be run on several machines, with only recompilation (to allow for the different

architecture) being required.

When running ‘a program’, the MPI environment actually consists of several processes,

each running its own copy of the same program, and each having its own address

space. The number of processes running is referred to as the size, and the position of

a particular process within the scheme is its rank. The fact that each process has its

own address space means that individual instances of the program do not need to be at

identical points in their execution, nor have identical values for variables. This means

that, for example, separate files may be read from the disk by different processes since

the values of the handles may differ across the processes.

of a block of policies to a different office).

42

In order to communicate, an MPI program sends messages containing data between

nodes, either collectively or on a one-to-one basis: the other side of the communication

is the receipt of the message and utilisation of the data contained in the message.

The MPI library handles the low level communication, but it is the programmer’s

responsibility to ensure that the correct data are sent to the correct place, and that the

program does not proceed past the point the data are required before they are received.

The data which are moved need not necessarily be fundamental types: it is often useful

to pass data in a form which is more convenient to the data structures in the program.

Therefore MPI contains the concept of derived data types: these are defined by the

programmer, and must be available in the program which is to use them.

This project uses MPI solely as a convenient way to control the launching of several

processes which all perform the same processing, albeit on different data. The MPI

functions MPI Comm rank and MPI Comm size are used to determine which scenarios are

processed by which ranks, i.e. there is no communication involving the movement of

data from one rank to another, and consequently derived data types are not required.

However, the fact that separate files may be read on different processes is taken

advantage of in order to read the parameter files for different scenarios on each of

the processes.

2.5.4.2 OpenMP Programs

When programming a shared memory machine, it is common to use OpenMP [72]: this

is an API consisting of a collection of directives, functions, and environment variables

which are added to the program code to control the number, and execution, of threads

in the program.

An OpenMP program consists of a series of serial regions and parallel regions. Exe-

cution of the program starts on a single thread, performing tasks in serial. When a

parallel region is encountered, a team of threads is created and the team remains until

the end of the parallel region, at which point they must synchronise to ensure that they

are all at the same point before the team is disbanded: whether the team is actually

destroyed, or only ‘retired’, depends on considerations such as how long the program

could run before encountering the next region (if one exists) relative to the time taken

to create the team. This creation, synchronisation and destruction of threads is similar

to the fork-join model used by other threaded programming paradigms, e.g. Pthreads

[66]. Conceptually, there is no limit to the number of parallel regions which may be

43

encountered: for example, parallel regions could be entered within a loop, with the

fork-execute-synchronise-join process being carried out for each iteration of the loop.

Within many programs, parallelism comes from the ability to concurrently perform

separate iterations of loops. Although OpenMP allows the possibility of performing

tasks in parallel, the code in this project uses only the loop form of parallelism. When

a loop is executed in parallel, it is necessary to ensure that individual iterations do not

depend on other iterations in a way which is not controlled: most simply, the iterations

should be independent; in more complex cases, the iterations require some form of

synchronisation.

The way in which the iterations of a loop are split across the threads is known as

loop scheduling. There are several forms of loop scheduling, each distributing the loop

iterations to threads in a different way: if each iteration requires the same amount of

work, then a static schedule may be used, but if the amount of work varies, then it may

be beneficial to use a dynamic schedule to try to achieve a balanced amount of work, or

‘load’. If the load is not balanced, some threads may be waiting, doing nothing, while

other threads are working: this is not as desirable as having all threads working, but

each working for a shorter time.

Within a parallel region, variables may be classified as shared or private: these classifi-

cations determine which threads may access which variables. Shared variables may be

accessed by all threads, whereas private variables may only be accessed by the thread

which ‘owns’ them, meaning that there will be a separate instance of each private

variable for each thread. The main use for the distinction in the classifications lies in the

fact that private variables may be used on a particular thread to perform independent

calculations, the results of which are used to update shared variables. In order to

ensure that the updates to the shared variables are not corrupted by several threads

attempting to perform the update at the same time, it is necessary to ensure that

the updates are protected by one of the synchronisation techniques which OpenMP

provides. Both the correct categorisation of variables as shared or private, and any

necessary synchronisation, are the programmer’s responsibility. The programmer is

also responsible for ensuring that all variables accessed by different threads are accessed

in the correct order. For example, a shared variable must be correctly populated by

one thread before is it read by another thread: if the read occurs before the write,

it is likely that the wrong value will be used by the reader. Therefore, although the

OpenMP runtime handles the low level thread creation and destruction, the program

must contain the correct directives and/or calls to the library in order that the threads

are manipulated, and perform the required calculations, correctly.

44

The OpenMP standard allows the implementation to specify the upper limit on the

number of threads, but that limit is usually far higher than the number of computational

cores available. For example, this project uses a Cray XC30 (which is described more

fully in Section 2.7.2): when using the Cray programming environment on that machine,

the limit is approximately 232 threads, which exceeds anything which most applications

will require. There is, therefore, no reason why the number of threads used must match

the number of cores available. If the number of threads is lower than the number of

cores, then there will be idle cores: this is useful in applications which have a high

memory requirement per thread, allowing all the memory to be utilised by the smaller

number of threads. If the number of threads is greater than the number of cores (or

SMT threads, where supported by the hardware), then some of the OpenMP threads

will be held in an idle state while others use the cores available, before being placed on

a core which was hosting a thread which has finished its work: this swapping of threads

on and off cores is managed by the operating system and the OpenMP implementation

– the programmer may be aware of it, but has no control over it. Using a number

of threads which exceeds the number of cores available generally does not enhance

performance because there will be delays while the threads, and their relevant data,

are switched.

This project makes heavy use of shared memory techniques: the main use is in process-

ing separate parts of large arrays after the data have been read from the disk. Within

this project, the number of OpenMP threads only ever exceeds the number of available

cores when testing whether using SMT, with two threads per core, is beneficial: the

results of this investigations are discussed in Section 8.2.6.1.

2.5.4.3 Hybrid Programs

It is not uncommon, when programming large distributed memory machines, for the

distributed memory model to be used in the same program as a shared memory model

to create mixed-mode, or hybrid, programs: MPI is used to communicate between the

nodes, and OpenMP is used for the shared memory within a node.

The MPI specification allows four levels of thread safety, which are differentiated by

their symbolic values: these are defined as

⊛ MPI THREAD SINGLE: this allows only a single thread of execution

⊛ MPI THREAD FUNNELED: this allows the programmer to create threads, but only

45

the master thread5 can call MPI routines

⊛ MPI THREAD SERIALISED: this allows the programmer to create threads, and any

thread can call MPI routines, but routines can only be called by one thread at a

time

⊛ MPI THREAD MULTIPLE: this allows threads to be created, and any number of

threads can call MPI routines at any time

The level of safety allowed is determined by which of these constants is passed to the

MPI initialisation routine, MPI Init thread(), which takes required as an input, and

produces provided as an output. Since not all implementations of the MPI library

provide all levels of safety, the result must be queried to ensure that the desired level

of safety has been granted, in order that the program will work as intended.

This project uses mixed-mode programming for the brute force code discussed in

Chapter 8: MPI is used to coordinate which scenarios are run on which nodes, and

OpenMP is used to process the policies in parallel within a node. Given this usage,

there are no MPI calls inside parallel regions, and so thread safety is not a problem: it

therefore suffices to use MPI Init().

Section 8.2.5 considers which combination of processes per CPU and threads per process

leads to best performance for the machines used6.

2.5.5 Aiding Vectorisation

Section 2.5.2.3.3 mentioned vectorisation: this is a form of parallelism that improves

the speed at which computationally intensive loops may be processed. Loops which

benefit from vectorisation have a few specific features: they have short bodies; they

have a single entry and a single exit; there must be no branches (jumps out of the loop

are forbidden, but ‘if-then-else’ constructs are allowable); and there can be no function

calls (other than to intrinsic functions). In order to increase the level of vectorisation

in a code, several techniques may be used: in particular, strip mining has been used to

improve the performance of the code in this project.

5The master thread is the one which initialised MPI.
6There is no reason to expect that any machine will have the same optimum combination of factors

as any other machine (unless the two machines are perfectly identical).

46

2.5.5.1 Strip Mining

The work at the centre of many calculation-intensive codes involves iterating over a

collection of items, which are usually stored in arrays or lists: the actual storage method

is purely an implementational detail, and therefore not of prime importance. The

collection of items, or ‘iteration space’, which may contain any number of dimensions,

can usually be partitioned to aid processing.

Strip mining is the processing of a large iteration space in smaller chunks: each chunk is

a part of the overall space. In one dimension, the iteration space may be envisaged as a

strip, which is split into smaller strips. In two dimensions, the rectangular space is split

into smaller rectangles which are often long thin strips. In multi-dimensional spaces,

the strips may be taken over each dimension at the same time: for a three dimensional

space, this leads to the production of small blocks, and so strip mining is also known

as ‘blocking’. Strip mining has two advantages in relation to vectorisation: firstly, it

may allow vectorisation of loops which could not otherwise be vectorised; secondly, it

allows the length of the block to be changed so that the code may be tuned to improve

performance on each machine on which it is run.

With vectorisation, the same operation is performed on several pieces of data at the

same time: this means that the data must be independent, and so dependencies must

be removed before vectorisation can be applied. Consider a skeleton for a code to value

annuities: the code contains a loop over independent policies, and a loop over time

steps within policies. This initial situation is depicted in Figure 2.3 (a) and the pseudo

code to describe it is

for p=1:numPols

for t=1:numSteps

process step t of policy p

The second loop is inherently sequential because of the dependencies between time

steps: these dependencies mean that the loop cannot be vectorised. By adding another

loop which processes the policies in blocks, the pseudo code becomes

for b=1:numBlocks

for p=1:polsInBlock_b

for t=1:numSteps

process step t of policy p

47

t

=

1
:
n
u
m
S
t
e
p
s

p = 1:numPols

(a) Processing each time step within each policy.

b = 1:numBlocks

 p = 1:polsInBlock_b

block 5 block 4block 3block 2 block 1

t

=

1
:
n
u
m
S
t
e
p
s

(b) Processing a particular time step for each policy within a block.

Figure 2.3 Traversing the ‘policy vs. time step’ iteration space.

It is then possible to swap the order of the loops so that, for each policy within the

block, the same time step is processed. This situation is depicted in Figure 2.3 (b) and

the pseudo code to describe it is

for b=1:numBlocks

for t=1:numSteps

for p=1:polsInBlock_b

process step t of policy p

There are now no dependencies in the innermost loop, and so vectorisation may be

applied to the p loop. Further, since policies are processed independently, there can

be no dependencies between blocks, and so the b loop over blocks may be processed in

parallel, using OpenMP for example. It is necessary to tune the length of the block so

that there is enough work to keep the vector units occupied, but not too much work so

that locality of data is lost, leading to more data retrieval than necessary.

The use of strip mining to allow the removal of dependencies is an optimisation tech-

nique which could be made for many codes, not just actuarial valuation codes. It

48

is used here because of the need for the highest level of performance possible to

achieve the throughput necessary for the brute force approach to Solvency II. Blocking

techniques have been used in all the calculation intensive parts of the code. Section 4.4.2

discusses the actual implementation used in this project, and Section 8.2.6 discusses

the performance gains from the use of vectorisation.

2.5.5.2 Compiler Directives

Modern compilers usually permit a choice between several levels of optimisation: the

higher levels often contain ‘auto-vectorisation’, whereby the compiler vectorises loops

which i) it recognises to be vectorisable, and ii) it determines to be beneficial. However,

there may be cases where the compiler cannot decide whether vectorisation is beneficial,

or even possible: in these cases, the addition of directives, or pragmas, is beneficial.

The Intel compiler, for example, uses #pragma SIMD to tell the compiler that the loop

may be vectorised. The addition of these pragmas is an assertion by the programmer

that there are no data dependencies within the loop, and hence that the concurrent

processing of several elements of the loop will not contravene the semantics of the code.

Other compilers may have different directives. However, since Version 4.0, OpenMP

has provided a standardised set of vectorisation-related directives: this standardisation

will enhance the portability of the code, but is unlikely to improve performance of the

code produced by a particular compiler.

Neither automatic vectorisation, nor the use of pragmas, require the use of loop block-

ing: it is possible that a loop of arbitrary length may be vectorised. However, there

may be performance benefits for being able to select a particular block length within a

loop which is to be vectorised: those benefits come from efficiently using the cache and

having a number of loop iterations which is divisible by the vector length. Given that

different CPUs have different cache configurations, the block length must be tuned to

each machine to obtain optimum performance: see Section 8.2.5 for details.

2.5.5.3 Redundant Calculations

The optimum vector length depends on the size of the vector unit in the chip. However,

it is possible that the length of the data array is not an integer multiple of the optimum

vector length. The processing of the ‘fractional block’ will decrease the performance of

the code, and it is therefore desirable to ensure that all blocks have this same optimum

length. A simple way of equalising the lengths of the block is to pad the last block with

49

‘null data’: such data should be zero for additive calculations, and one for multiplicative

calculations. These data are used for null calculations which allow the vector processor

to operate on a full vector: the calculations are ‘redundant’ since they are carried out

solely to enhance the machine’s performance.

An extreme instance of this case is the situation where the entire data set is smaller

than the width of the vector processor. In this case, there is only one trip through

the loop, and it becomes debatable whether padding the data is beneficial: it may be

better to just use a non-vectorised version of the code.

2.5.5.4 Removing Conditional Tests

The data required for profitability and solvency calculations are a block of policies,

and a set of assumptions. Each policy has a policyholder associated with it and, due

to the nature of population dynamics, there will be a spread of dates of birth of the

policyholders within a block. In general, life tables are populated with mortality values

up to age 120. The projection step in which the end of the life table is reached will

differ with the date of birth. Therefore, a naive approach is to implement the lookup

in the life table using a test to see whether the life is above age 120: this test will need

to be performed for every policy for every step. Although most vector units do now

allow conditional assignments, such tests degrade performance.

A better approach is to remove these tests by populating the mortality table in the

implementation with ‘certain death’, i.e. set qx = 1 for 121 < x < ω, where ω is the

maximum age implied by the data set for the current projection. There is then no need

to perform the conditional test, but the complete set of calculations are performed

for all policies for all steps even when, for example, the policyholder is age 135. This

technique has been used in the code developed in this project in order to allow the

removal of the test, thereby permitting maximum calculation within the vectorised

code.

2.6 Related Work

There is a distinct shortage of peer-reviewed literature relating to the application of

HPC to actuarial calculations for assurance policies: to the best of our knowledge, this

is the first published work in this area. Therefore, this section summarises available

actuarial references to HPC and then considers the application of HPC to other areas

50

of finance.

2.6.1 HPC in the Actuarial World

The actuarial world has been slow to adopt HPC: a selection of results from simple

searches reveals the following:

– Brackett and Renzi’s article for the Milliman website [61]: this discusses the fact

that “Milliman worked with Microsoft to integrate its financial modeling tool,

MG-ALFA (Asset Liability Financial Analysis), with Windows Compute Cluster

Server 2003.” However, MG-ALFA is not used in policy-level actuarial valuations.

Whilst there is little of academic interest in this article, it does state that “a 1000-

scenario model with reserves and capital based on 1000 paths at each valuation

point for a 30-year monthly projection requires the cash flows for each policy to

be projected 360 million times”, which reinforces the scale of the problem that

this project is attempting to address.

– Newberry et. al ’s article for the Microsoft website [60]: this states that it “is a

preliminary document and may be changed substantially . . . ”. It does however

restate that “a stochastic-on-stochastic 30-year projection requires hundreds of

millions of individual policy valuations.” Page 15 states that “Towers Perrin

produces MoSes actuarial software.” and “. . . HPC-compatible version of MoSes

was launched in 2008”: these statements are both simply advertising for MoSes,

which could be expected from the fact that one of the authors is a Towers Perrin

employee. Also, the ‘HPC’ to which this is compatible is Microsoft’s HPC Server,

which is not commonly used in large HPC systems.

– Pledge’s article for the Society of Actuaries [83]: this discusses the fact that

Microsoft presented Milliman with an award for their MG-ALFA software which,

as previously noted, runs in a Microsoft environment.

– The Royal Society of Edinburgh’s conference, ‘Computation in Finance & Insur-

ance, post-Napier’ (April 2014) for which none of the papers are available. The

minutes [79] indicate that:

a) in Smith’s talk about Solvency II, he states that “The performance of the

FTSE 100 is key to calculating SCR.” and hence (according to the record of

this talk) ‘the interest rate must be re-drawn every step.’;

b) Keenan and Withy, two Milliman employees, discussed the performance of

their proprietary software running in the Microsoft cloud; and

c) Phillips discussed the use of GPUs with python as a scripting language,

51

although there is nothing to state how the calculations were done on the

GPU.

2.6.2 HPC in the Financial World

In recent years, HPC has been applied to a number of financial applications. However,

much of this work has related to the computational requirements of securities and

options trading, and is therefore well outside the arena of actuarial valuations: for

example

– Bethel et al. [7] investigated the application of HPC to the possibility of suspend-

ing trading when a ‘flash crash’ occurs in the market.

– Lindeman [55] investigated the use of shared memory parallelism in the solution of

‘an inverse problem’, represented by a sparse matrix, generated in the calibration

of pricing models, and concluded that using Intel’s Threaded Building Blocks

and two 4-core CPUs led to better performance than a commercial Levenberg-

Marquardt solver when considering realistic problems.

– Dozsa et al. [25] looked at whether the high-bandwidth and low-latency of Blue

Gene systems provide sufficient performance to allow real-time stream processing

of large volumes of data, concentrating their work on the financial sector.

– Doan et al. [24] implemented a parallel version of American-Bermudan options

pricing on a Grid using Java.

– Irturk et al. [48] implemented an FPGA version of Markowitz’s mean variance

framework for optimal asset allocation.

– Daly et al. [21] demonstrate that, using a Blue Gene machine, real-time time

series analysis can be performed on a multivariate basis, rather than a simpler

univariate basis.

Despite this variety of areas to which HPC have been applied, there is, as indicated

in Section 2.6.1, a lack of research into the application of HPC to actuarial valuations,

or to solvency and profitability calculations for life assurance policies. However, the

work in this project does have some similarities with other work previously undertaken

in other areas of finance. Firstly, Dixon et al. [23] worked on market value-at-risk

estimation, and by changing algorithms, and using other techniques, achieved a speedup

of 148× for their GPU calculations; this project implements a different algorithm, and

uses other techniques to improve performance, whilst transferring the calculations to

GPUs is suggested as future work. Secondly, Williams [93] presents a discussion on the

52

distribution of calculations using coarse-grained parallelism to spread the calculations

for fixed income securities over multiple machines; this project harnesses the fine-

grained parallelism which is inherent in the portfolio of policies, whilst future work

could exploit coarse-grained parallelism through the use of clusters of GPUs.

2.6.3 Use of GPUs

Over the last few years, there has been much interest in discovering whether there is any

performance benefit in the approach of applying the large numbers of slower cores to

non-graphics codes: this approach has become known as “general purpose computing

on GPUs”. A wide variety of scientific and engineering codes have been ported for

execution on GPUs, and the performance of these codes compared to the CPU codes:

for example

– molecular dynamics: Lui et al. [58] obtained speedups of the order of 16× when

comparing a simulation running on a single Pentium4 3 GHz CPU against a

system with an AMD Opteron 2210 1.8 GHz with an NVIDIA GeForce 8800

GTX 512.

– molecular dynamics: Ufimtsev and Martinez [90] used a workstation with a single

Core 2 quad-core 2.66 GHz CPU and two NVIDIA GeForce GTX 295 cards, and

obtained speedups of the order of 6× for small molecules, roughly 20× for medium

molecules, and approximately 100× for large molecules.

– fluid dynamics: Corrigan et al. [16] achieved speedups of 9.4× for single precision

and 1.56× for double precision, when compared to OpenMP running on 4 cores.

– genetics: Chang et al. [12] achieved a speedup of between 40× and 90× for one

aspect of their work, and roughly 35× for another aspect.

– linear algebra: Lahabar [52] obtained speedups of between 3× and 8× over Intel’s

MKL and between 3× and 59× over Matlab, depending on the size of the problem.

– astronomy : Harris et al. [35] achieved a speedup of two orders of magnitude when

compared to a traditional CPU-based approach.

In addition to these non-financial arenas, there has been interest in applying GPUs to

the pricing of options. Options are financial instruments which are traded and give rise

to a profit or loss depending on the price of some other commodity at some future date

[37, Section 1.3]; for example it is possible to buy an option which depends on the future

price of IBM shares [9, Section 14.1]. The pricing of options involves simulation of non-

trivial random walks, and is therefore computationally intensive. In recent years, there

has been interest in the performance of option pricing codes on GPUs: for example

53

– Joshi [50] achieved a speedup of about 150× for pricing Asian options.

– Tian et al. [85] achieved a speedup of 22× when implementing a new CPU-GPU

version the Longstaff-Schwartz method.

– Lui et al. [57] achieved a speedup of about 43× for pricing Exotic options, and

about 18x for pricing Vanilla options.

– Jauvion and Nguyen [49] achieved a speedup of 30× when parallelising the Cox-

Ross-Rubinstein pricing model on a GPU.

– Cvetanoska and Stojanovski [20] implemented a GPU algorithm for pricing Amer-

ican options which was “6500 times faster than the serial algorithm implemented

on the CPU”.

2.6.4 Performance of GPUs

Many of the comparisons of performance between CPUs and GPUs are misleading.

From the comparisons in Appendix B.4, GPUs have about 11× the Flop rate and

roughly 8× memory bandwidth of CPUs: GPUs cannot, therefore, be more than about

10× faster than CPUs. Pakin [76] highlights some major concerns which should be

considered when performance comparisons are being undertaken. These observations

include

– the need to ensure that the code is run on systems which are not doing anything

else at the same time (or, at least, ensure that any other work does not interfere

with the work being considered),

– ensuring that the same level of arithmetic precision is used on both systems,

rather than using double precision on CPUs and only single precision on GPUs,

– reporting the time required for the entire routine, rather than just the calculation

kernel which, when run on a GPU, may not include the time required to transfer

the data to/from the GPU,

– ensuring that CPU code has been as heavily optimised for the relevant CPU

architecture as the GPU code has been for its architecture,

– ensuring that the algorithm used in the two architectures are not fundamentally

different, and

– comparing the size of problem which solves the problem, rather than running more

iterations than necessary on the GPU in order to reduce the cost of transferring

the data to the GPU.

The relative performance of the two architectures, allowing for the considerations just

54

outlined, has been scrutinised by Lee et al. [54], and their observations and conclusions

reinforce the need for consistency. The first observation made is that performance of

CPUs is good so long as they are only doing one thing at a time, whereas GPUs can

perform switching between elements when long latency events occur, thereby aiding the

GPU’s perceived performance. The second observation is that the two architectures

have different designs, and this usually results in the optimal data layout for the GPU

code being different to that which would be optimal for the CPU.

The overall conclusion is that fair and unbiased comparisons between the performance

of CPUs and GPUs are extremely difficult to obtain. Certainly, Cvetanoska and

Stojanovski’s paper on pricing American options [20] seems to have benefited from

both a different algorithm and performing artificially high numbers of iterations on the

GPU to emphasise its parallel capabilities.

Giles et al. [33] have taken these factors into account in their investigation of the use of

GPUs for finite difference solvers. They used both one-factor models of the algorithm,

which require a small amount of data, leading to a compute intensive situation, and

three-factor models, which require more data, leading to more transfer of data between

CPU and GPU: these models are therefore ideal as comparators for performance. Their

results show that, whether for the one-factor or the three-factor models, the times for 2

Xeon processors are in the region of only 3× to 7× the times obtained using an NVIDIA

K40, indicating that the GPU performance is consistent with the factors derived at the

start of this section.

As with references to HPC in the actuarial world, references to the application of

GPUs to actuarial valuations and profitability calculations within the life assurance

and pensions industry are elusive.

2.7 Platforms Used

This section details the platforms used in this project, and gives an indication of what

they were used for.

2.7.1 48-core Opteron SMP

This is a server hosted by Edinburgh Parallel Computing Centre, which is a department

within The University of Edinburgh. This machine has: four 12-core AMD Magny-

55

Cours7 1.9 GHz CPUs which can be used as a single 48-core SMP8, using OpenMP

across all 48 cores in a single program; a total of 64 GB of RAM; Scientific Linux

V6.5; Version 12.1 of the Intel compiler suite, which implements V3.1 of the OpenMP

standard. This machine is used to measure performance and scalability of code which

calculates profitability arising from a block of life annuities, as discussed in Chapter 5.

Although multi-core machines are becoming available in the life and pensions industry,

they tend to run Microsoft HPC Server, and it is unusual that these machines are

configured such that more than one CPU can be treated as an SMP. This machine is

representative of those machines which could be used in life offices, if such machines

were configured appropriately. In this thesis, this machine is referred to as ‘the Opteron

cluster’.

2.7.2 Cray XC30

This machine is the current UK academic supercomputer: it is provided by EPSRC

and run by Edinburgh Parallel Computing Centre. It has 4920 compute nodes [30];

each node has two 2.7 GHz 12-core Intel E5-2697 Ivy Bridge processors; each core can

support two hardware threads, allowing SMT (as discussed in Section 2.5.2.3.4); the

majority of the nodes have 64 GB of RAM, while a few have 128 GB of RAM. There

is a large selection of software on this machine: this project uses V5.2.56 of the Cray

programming environment, which implements V4.0 of the OpenMP standard, and Cray

mpich V7.2.6, which can be used to coordinate jobs across several nodes.

This machine is used to measure performance and scalability of the brute force code,

as discussed in Section 2.3.3.1. Although supercomputers are rare within the life and

pensions industry, interest in this machine arises from the High Performance Computing

aspect of this project. In this thesis, this machine is referred to as ‘the Cray XC30’.

2.7.3 16-core Xeon Cluster

This is a server hosted by Edinburgh Compute and Data Facility, which is a department

within The University of Edinburgh. This machine has a myriad of types of nodes,

which are described in Appendix B.2. Despite this variety, the code developed in this

project does not require vast amounts of memory per core. Therefore, all runs were

done on standard nodes: each node has two 2.4 GHz 8-core Intel E5-2630 V3 processors,

7Opteron 6168
8SMP = Symmetric Multi-Processor.

56

and 64 GB of RAM; scientific Linux V7.2; Intel 16.0.0 compiler suite, which implements

V4.0 of the OpenMP standard; MPI functionality is provided via openMPI V1.6.5.

Small numbers of nodes (i.e. up to 5) are used to represent modern hardware which

could be available in industry: it is used to measure the performance of the code which

performs the brute force approach to solvency, as described in Section 2.3.3.1. In this

thesis, this machine is referred to as ‘the Xeon cluster’.

57

Chapter 3

Change of Reserving Algorithm

The simplest way to reduce a program’s execution time is make it do less work. In

general, this may be achieved either by reducing the amount of I/O, or by performing

fewer operations. For the solvency and profitability calculations considered here, the

amount of input data is already very small, and the amount of output data is negligible,

so the only realistic opportunity to reduce the workload is to do fewer calculations. This

chapter derives a vector form of a recurrence algorithm for calculating reserves: that

recurrence algorithm significantly reduces the volume of calculations required, leading

to a dramatic increase in speed.

Section 3.1 provides motivational examples by producing recurrence relations for simple

annuities using straightforward manipulation of the fundamental summation formu-

lae. It also considers the change in representation from a policy-based approach to

a survival-based approach. Section 3.2 derives the recurrence for a general policy,

indicating that a recurrence may be found for any policy type. Section 3.3 introduces

a simplification which reduces the implementational complexity of the recurrence by

removing those survival states which do not require a reserve: these states have been

christened ‘Zero Reserve States’. Section 3.4 discusses features which must be con-

sidered when the recurrence is implemented. Section 3.5 contains a summary of the

chapter.

3.1 Motivational Examples

In actuarial valuations, it is usual to think in terms of the underlying contract: this

generally makes things simple to understand because there is a direct relation back to

58

the circumstances under consideration. However, in the derivation of the algorithm

considered in this chapter, it becomes helpful to think in terms of the survival state of

the lives to which the policy relates. This section provides an overview of the transition

from a policy based approach to a survival based approach.

3.1.1 Single-Life Annuities

As discussed in Section 2.1.5, annuities may be paid in arrear, or in advance, although

many annuities are paid part way through each period; obvious examples are pensions

where the payments are often made on the ‘monthiversary ’ of the policy inception date,

which is often the policyholder’s 60th or 65th birthday. In Section 2.1.3 it was noted

that the advance and arrear cases are just special cases of annuities where payments are

made part way through each period; it is therefore appropriate that only cases where

payments are made at a fraction f ∈ [0, 1] through the step are considered.

Level, single-life annuities serve as an introduction to several concepts which become

useful later, particularly when considering other types of annuity. For a single-life

annuity with level payments which are made at some fraction f through the period,

the summation formula for the reserve factor is

a′x =
∞∑
t=0

t+fpx × vt+f for f ∈ [0, 1] (3.1.1)

The derivation of a recurrence relation for these policies is straightforward:

a′x =

∞∑
t=0

t+fpx × vt+f

= fpx × vf +

∞∑
(s+1)=1

((s+1)+f)px × v((s+1)+f)

= fpx v
f + px v

∞∑
s=0

(s+f)px+1 × v(s+f)

and, by comparing the summation with Equation 3.1.1, the recurrence relationship is

a′x = fpx v
f + px v a

′
x+1 (3.1.2)

Note that this derivation assumes that mortality rates and interest rates are constant

in time: in Section 3.4.3 these assumptions will be removed. Note also that, when

written in the form of Equation 3.1.2, the recurrence runs backwards in time: this is

59

convenient since natural boundary conditions exist (or may be assumed) at the end of

the policy, e.g. p120 = 0.

A by-product of the recurrence running backwards in time is that if the distributions

from which the parameters for a particular step are drawn do not change over time,

then the reserves calculated at older ages in the process of obtaining a′x are valid for

those older ages. Hence, a reduction in the overall amount of computation may be

achieved by simply storing those intermediate results: this is the approach taken in

Section 8.5 which considers the case where parameters do not need to be re-drawn

from their distributions.

For an annuity, with level payments of amount 1, payable annually in advance, Equation

3.1.2 reduces to

äx = 1 + v px äx+1

A useful side-effect of using the recurrence is that it removes the need to use the power

function to compute vt+f in Equation 3.1.1, and replaces it with multiplication, which

is about 20 times cheaper in modern hardware.

3.1.2 Two-Life Reversionary Annuities

Suppose that two lives are aged x and y, and that they are independent. Assume,

without loss of generality, that the payment is made to (y) after the death of (x).

Then, for a reversionary annuity,

Pr[payment at time t is made] = Pr[x is dead at time t and y is alive at time t]

= Pr[x dies within time t] × Pr[y survives for time t]

= (1− tpx)× tpy

For the case where level payments of amount 1 are made part-way through an interval,

at some fraction f from the start of each interval, the summation formula for the reserve

factor is

a′x|y =

∞∑
t=0

(1− t+fpx)× t+fpy × vt+f for f ∈ [0, 1] (3.1.3)

Again, the recurrence relation may be derived straightforwardly:

a′x|y =

∞∑
t=0

(1− t+fpx) · t+fpy · vt+f

60

= fqx · fpy · vf +
∞∑

(s+1)=1

(s+1)+fpy · v(s+1)+f

−
∞∑

(s+1)=1

(s+1)+fpx · (s+1)+fpy · v(s+1)+f

= fqx · fpy · vf + v py · a′y+1

− v px py

∞∑
s=0

[1− s+fqx+1] · s+fpy+1 · vs+f

i.e.

a′x|y = fqx fpy v
f + qx py v a

′
y+1 + px py v a

′
x+1|y+1 (3.1.4)

In turn, the three components of the sum represent

1) the payment at time f which is made only if x has died but y is still alive,

2) the (single life) reserve factor which is required at the start of the next step if x has

died but y is still alive, and

3) the (reversionary) reserve factor which is required at the start of the next step if

both x and y are still alive.

3.1.3 Vector Recurrence Relation

The derivation of the vector form of the recurrence relation is based on the observation

that the recurrence relation for the reserve factor for the reversionary annuity in

Equation 3.1.4 also involves the reserve factor for the single life annuity.

3.1.3.1 Contract-Based Presentation

When expressed as a vector, the pair of recurrence relations in Equations 3.1.4 and

3.1.2 become (
a′x|y

a′y

)
=

(
fqx fpy v

f + py qx v a
′
y+1 + px py v a

′
x+1|y+1

fpy v
f + py v a

′
y+1

)

which can be written as(
a′x|y

a′y

)
= vf

(
fqx fpy 0

0 fpy

)(
1

1

)
+ v

(
px py py qx

0 py

)(
a′x+1|y+1

a′y+1

)
(3.1.5)

61

Hence, for a relatively simple contract, it is possible to find a vector expression for the

recurrence relation where that vector expression brings together the relations for all

contract types which may be involved in the reserve calculations for that policy type.

3.1.3.2 Survival-Based Presentation

Although the two matrices in Equation 3.1.5 are the same shape, they are populated

differently: this results from the derivation being based on the type of the policy at

each step. An alternative presentation is to consider the survival state of each life at

each time point. Using binary indexing for each life being either alive (state 0) or dead

(state 1) leads to a simple representation of all the possibilities of survival over the

step: the states and labelling for two lives, currently aged x and y, are therefore

State Binary Label (x) (y)

0 00 Alive Alive

1 01 Alive Dead

2 10 Dead Alive

3 11 Dead Dead

Using the ordering which results from this binary labelling, it is possible to construct

a matrix of probabilities of the lives surviving for time g, which could be either f

(when considering the probability of payment), or 1 (when considering the probability

of requiring a reserve). For two lives, the relevant matrix is
gpx gpy gpx gqy gqx gpy gqx gqy

0 gpx 0 gqx

0 0 gpy gqy

0 0 0 1

 (3.1.6)

The states of the lives can be considered as a time-inhomogeneous Markov chain, where

matrix 3.1.6 is the transition matrix, also known as a Markov matrix or stochastic

matrix [95]. Note that no transitions are possible in a step of length zero so that, when

g = 0, the transition matrix is the identity, I.

Using this matrix to combine Equations 3.1.4 and 3.1.2, and setting g = f or g = 1,

62

leads to the following recurrence for a reversionary annuity
a′x|y

0

a′y

0

 = vf

fpx fpy fpx fqy fqx fpy fqx fqy

0 fpx 0 fqx

0 0 fpy fqy

0 0 0 1

0

0

1

0

+v

px py px qy qx py qx qy

0 px 0 qx

0 0 py qy

0 0 0 1

a′x+1|y+1

0

a′y+1

0

 (3.1.7)

This vector expression for the reserve factors under consideration appears more complex

than the version in Equation 3.1.5: however, this expression involves only one matrix,

which must be evaluated at two points in time, rather than requiring two different

matrices, one for each of the time points.

Note that although binary labelling using ‘zero for alive’ may initially seem counter-

intuitive, its use leads to a desirable property: since the number of dead people cannot

decrease, this labelling naturally leads to the transition matrix being upper triangular.

3.2 The General Case

This section presents a completely general vector recurrence relation which may be

used for different forms of life assurance contract: after the initial presentation, there

is a formal derivation of the relation using a component-wise approach. The generic

nature of the components in the recurrence relation means that this vector relation

can be used for any non unit-linked policy of arbitrary complexity, so long as the cash

flows and probabilities can be isolated and expressed in the form required by the vector

notation presented here.

The generality of the recurrence relation means that the derivation is not entirely

trivial. Therefore, the first four sub-sections establish some preliminary results which

are required in the overall derivation in Section 3.2.5.2.

63

3.2.1 Lives

In theoretical work, it is usually assumed that all lives involved in a policy are indepen-

dent. For the most general case, there could be any number of lives, so it is necessary to

consider x+ t, which is a vector of length m, representing a collection of m independent

lives aged precisely x1 + t, x2 + t, · · · , xm + t: n.b. t is a vector, of length m, whose

elements are all equal to t. This notation reinforces the fact that the ages of the lives

are a function of the time t since the start of the projection. Using this construction,

the ages of a given set of lives are just a function of the duration from valuation to the

time under consideration.

3.2.2 Cash Flows

We are interested in a sequence of cash flows which may be made at fixed future times,

according to the survival state of x at those future times: due to their nature, cash

flows to holders of annuity policies are also known as ‘payments’ or ‘benefits’. The

nominal amount of each cash flow is fixed, but the expected amount of each cash flow

depends on the probability that the payment is made and hence on the survival state,

at the point of payment, of the collection of lives.

Let t ∈ R+ and let β ∈ (0, t). Let cx,t,j be the nominal cash flow which happens at the

fraction f ∈ [0, 1] from time t, if x is in state j at that time. Then

the cash flow cx,t,j happens at time t+ f if the lives are in state j at that time

⇒ the cash flow cx,t,j happens at time β + (t − β) + f if the lives are in state j at

that time

⇒ the cash flow cx,t,j may also be denoted cx+β,t−β,j

i.e.

cx,t,j = cx+β,t−β,j ∀ x 0 < β < t

This is the mathematical formulation of the statement that “a payment of known

nominal amount, made at some time in the future, will be of the same nominal amount

at that future date, irrespective of how the time in the future is determined”.

Therefore, in particular, let β = 1 and let t = s+ 1. Then

cx,s+1,j = cx+1,s,j (3.2.1)

It should be noted that the cash flows are a completely general, arbitrary function of

64

the state of the lives at the time the payment is made: see Section 3.4.3.1 for further

discussion about assumptions relating to cash flows.

3.2.3 Discount Factors

In standard notation, if i is a constant annual rate of interest which applies over a

period of t years then the discount factor which applies for that period is vt = (1+ i)−t.

There is an implicit assumption that the period starts at time 0 and ends at time t;

if that is not the case then the discount factor remains vt = (1 + i)−t wherever the

difference in time is t. Hence, when the rate of interest is constant, vt = vt1 vt−t1 for

any 0 ≤ t1 ≤ t.

When the rate of interest varies with time, standard practice [59, Section 2.4] is to

consider the discount factor from 0 to t as

v(t) = exp

(
−
∫ t

0
δ(r) · dr

)
where δ(r) is the force of interest at time r.

Let 0 ≤ t ≤ t1 ≤ t2, and let δ(r) be the force of interest at time r ∈ [0, t2]. Let dx,t,t1,t2

be the discount factor which applies from time t+ t1, and lasts for time t2 − t1; i.e. it

applies from the point at which the lives are aged x+ t+ t1 to the point the where

lives are aged x+ t+ t2. Then

dx,t,t1,t2 = exp

(
−
∫ t2

t1

δ(r) · dr
)

= exp

(
−

[∫ t′

t1

δ(r) dr +

∫ t2

t′
δ(r) dr

])

= exp

(
−
∫ t′

t1

δ(r) dr

)
× exp

(
−
∫ t2

t′
δ(r) dr

)

i.e.

dx,t,t1,t2 = dx,t,t1,t′ · dx,t,t′,t2 ∀ x t1 ≤ t′ ≤ t2

This is the mathematical formulation of the statement that “discounting an amount

from t2 to t1 is the same as discounting that amount from t2 to an intermediate time

t′ and then discounting that (discounted) amount from t′ to t1”.

Therefore, in particular, let t1 = 0, t′ = 1 and t2 = s+1+ f so that t2− t1 = s+1+ f ,

65

t′ − t1 = 1 and t2 − t′ = s+ f . Then

dx,t,0,s+1+f = dx,t,0,1 · dx,t,1,s+f (3.2.2)

Notice that these discount factors are independent of the state of the lives, a phe-

nomenon which is consistent with reality since mortality rates are generally independent

of investment returns. Notice also that the use of force of interest removes any assump-

tion that the interest rate remains constant: see Section 3.4.3.2 for further discussion

about assumptions relating to interest rates.

3.2.4 Survival Probabilities

In standard notation, tpx is the probability that a life aged precisely x survives for time

t: as mentioned in Section 2.1, unless specified as otherwise, time units are assumed

to be years. Hence, the probability that two independent lives aged precisely x and y

both survive for time t is tpx · tpy. By extension, the probability that a collection of m

independent lives all survive for time t is simply the product of the survival probabilities

of each of the individual lives.

It is necessary to consider the probability of moving from any state to any other. Let

wx,t,t1,t2,j,i be the probability of the set lives x being in state i at time t+ t2, given that

it is in state j at time t + t1 for t1 ≤ t2 (so that the time for the possible transition

from state j to state i is t2− t1). Then, using the Partition Theorem, and conditioning

on the state at time t′ ∈ [0, t2 − t1],

wx,t,t1,t2,j,i =
∑
k

wx,t,t1,t′,j,k · wx+t′,t′,t′,t2,k,i

where the sum is over all possible states to which the lives could migrate. This is the

mathematical formulation of the statement that “the probability that the set of lives

moves from state j to state i in time t2 − t1 is the same as the probability of moving

from state j to any other state at some intermediate time t′ and then moving to state

i in the remaining time”.

Therefore, in particular, let t1 = 0, t′ = 1 and t2 = s+1+ f so that t2− t1 = s+1+ f ,

t′ − t1 = 1 and t2 − t′ = s+ f . Then

wx,t,0,s+1+f,j,i =
∑
k

wx,t,0,1,j,k · wx+1,t,1,s+f,k,i (3.2.3)

Notice that there is no assumption of constant mortality: see Section 3.4.3.3 for further

66

discussion about assumptions relating to mortality.

3.2.5 Recurrence Relation for Reserve Factors

Using the results in the preceding sections it is possible to derive a general recurrence

relation where benefits may be payable, depending on the survival state of the lives.

This is a two stage process: first, a relation is derived for lives being in a particular

state, and then the general relation is obtained by considering all possible states that

the lives may be in.

3.2.5.1 Reserve for Lives in a Particular State

From Section 3.2.2, any cash flows which happen in a step happen at some fraction

f ∈ [0, 1] through the step. Let rx,t,j be the reserve which must be held, at time t, for

a set of lives x in state j at that time. Then, because the lives could have migrated to

state i by time s, the nominal amount of the cash flow to be made in step t+ s to the

lives in x, if they are in state i at that time, is cx,t+s,i. Therefore, the expected amount

of a cash flow to be made in step t+ s to the lives in x, given that they are currently

in state j, and allowing for migration to any other state i, is

∑
i

[wx,t,0,s+f,j,i · cx,t+s,i]

Allowing for discounting to that time, the present value of such a cash flow is

dx,t,0,s+f

∑
i

[wx,t,0,s+f,j,i · cx,t+s,i]

Therefore, using an infinite sum to allow for possible cash flows in all future time steps,

the reserve required at time t, given that the lives x are in state j at that time, is

rx,t,j =

∞∑
s=0

(
dx,t,0,s+f

∑
i

[wx,t,0,s+f,j,i · cx,t+s,i]

)
(3.2.4)

for t = 0, 1, 2, · · · ,∞. Note that, for the brute force approach, the 1000 simulations at

each time step t will each be an instance of rx,t,j .

67

3.2.5.2 Relation for Lives in a Particular State

Starting from Equation 3.2.4, the recurrence relation for lives in a particular state may

be derived in a straightforward manner;

rx,t,j =

∞∑
s=0

(
dx,t,0,s+f

∑
i

[wx,t,0,s+f,j,i · cx,t+s,i]

)

which, splitting off the first term in the sum, is

= dx,t,0,f
∑
i

wx,t,0,f,j,i · cx,t,i

+
∞∑
s=1

(
dx,t,0,s+f

∑
i

wx,t,0,s+f,j,i · cx,t+s,i

)

and, shifting the index (so that s = s′ + 1), this is

= dx,t,0,f
∑
i

wx,t,0,f,j,i · cx,t,i

+

∞∑
s′=0

(
dx,t,0,s′+1+f

∑
i

wx,t,0,s′+1+f,j,i · cx,t+s′+1,i

)

which, using the results from Equations 3.2.1, 3.2.2, and 3.2.3, is

= dx,t,0,f
∑
i

wx,t,0,f,j,i · cx,t,i

+
∞∑

s′=0

([
dx,t,0,1 · dx,t,1,s′+f

]∑
i

[∑
k

wx,t,0,1,j,k · wx+1,t,1,s′+f,k,i

] [
cx+1,t+s′,i

])

and, by reordering the summations and factoring terms which are sum independent,

this is

= dx,t,0,f
∑
i

wx,t,0,f,j,i · cx,t,i

+ dx,t,0,1
∑
k

wx,t,0,1,j,k

[∞∑
s′=0

dx,t,1,s′+f

∑
i

(
wx+1,t,1,s′+f,k,i · cx+1,t+s′,i

)]

Finally, recognising that dx,t,1,s′+f = dx+1,t,0,s′+f , and then comparing the sum in

square brackets to the summation required for rx+1,t,k, gives

rx,t,j = dx,t,0,f
∑
i

wx,t,0,f,j,i · cx,t,i + dx,t,0,1
∑
k

wx,t,0,1,j,k · rx+1,t,k (3.2.5)

68

where the i and k sums are over all possible states of the lives.

Various policy types could fit a particular instance of this formula just by changing the

values of cx,t,i which may or may not be zero, depending on the state j. Notice that a

policy which has a limited term trivially fits the use of an infinite sum by setting the

cash flow amounts after the end of the policy term to zero.

3.2.5.3 Relation Considering all Possible States

Equation 3.2.5 relates to the jth possibility of a set of possible states. Combining all of

the possibilities for rx,t,j into a vector, the relationship becomes

rx,t = dx,t,0,f Wx,t,f cx,t + dx,t,0,1 Wx,t,1 rx+1,t

where

– rx,t is a column vector, of length n, where the jth entry is rx,t,j and n is the total

number of states which could be occupied by x,

– dx,t,0,g is the discount factor from time t to time t+ g for g ∈ {f, 1},

– Wx,t,g is an n× n Markov transition matrix where the entries relate to the lives

surviving from time t to the time t+ g for g ∈ {f, 1}; the (i, j)th entry of Wx,t,g

is wx,t,0,g,j,i,

– cx,t is a column vector, of length n, where the ith entry is cx,t,i.

Replacing the discount factors dx,t,0,g with vgt , which is closer to the equivalent standard

notation, recognises that interest rates do not depend on the state of any lives, but

explicitly allows the possibility that the underlying interest rate varies through the

projection, the equation becomes

rx,t = vft Wx,t,f cx,t + vt Wx,t,1 rx+1,t ∀ x ∈ Rm+
f ∈ [0, 1] (3.2.6)

If there are two or more changes of state in a step, then only the overall change is of

interest. For example, if a reversionary annuity changes to a single life annuity on the

death of the first life, and becomes ceased on the death of the second life within the

same time step, then we are only interested in the fact that it has gone from being a

reversionary annuity to being ceased, and the fact that it was temporarily a single life

annuity is of no consequence.

Note that Section 3.1.1 stated that, for the motivating example, the reserves calculated

69

for future ages are applicable at those ages so long as the basis on which they were

calculated does not change. That observation is true for the full recurrence relation

derived here: each element of the vector rx,t+α is valid for α > 0 so long as the basis

does not change in the time interval [0, α].

3.2.5.4 Interpretation

Using a standard definition [65, Section 4.2],

A (prospective) reserve is the present value of all future cash flows, allowing

for discounting and the probability of those cash flows being made.

The vector approach presented here is confirmation of an intuitive interpretation of

that definition, i.e.

The reserve ‘now’ is the present value of ‘any cash flows which may occur

during the first period’ together with the present value of ‘any reserve which

is required at the end of the first period, so long as that reserve is then

required’.

3.3 Zero Reserve States

The recurrence relation for the motivational example was derived in its natural form

in Equation 3.1.5: this was expanded to a form which had a full stochastic matrix in

Equation 3.1.7. This increase in complexity was necessary to show how the motivational

example progressed, but it is not a necessary part of performing the calculations.

For complex policies, the full matrix Wx,t,g has a large number of zeroes, and the

proportion of zeroes grows rapidly with the number of lives and number of states.

Also, for many policies, the cash flow vector will contain a large proportion of zeroes,

e.g. 75% of the entries in the cash flow vector are zero for even the relatively simple

example of a joint life annuity: see Section 4.2.1.2 for further details.

A naive implementation of the recurrence relation, using the natural form of the transi-

tion matrix and cash flow vector, will therefore lead to large proportion of the operations

being ‘multiply by zero’. Clearly, these operations will result in zero (mathematically, if

70

not implementationally1) and so can be omitted if the sections of the relation in which

they arise can be identified.

3.3.1 Overview

We call a state a ‘zero reserve state’ (ZRS) if it is a state for which all future cash

flows are zero and there is no path to a state which has any future non-zero cash flows.

There is no need to keep track of ZRSs (since they do not contribute to the liabilities)

and hence calculations which relate to ZRSs are redundant and may be removed. For

example, a reversionary annuity payable to y after the death of x has a zero cash flow

if x is still alive, but the state where x and y are both alive is not a ZRS because there

is a path to a state where there are future cash flows, i.e. the path to the state where

x dies before y.

A ZRS is not necessarily a sink state for the Markov chain because it is possible to

move out of one ZRS, into another ZRS: for example, a reversionary annuity has no

future cash flows when y dies so that the state where y dies first is a ZRS from which it

is possible to move to another ZRS (on the death of x). Allowing for ZRSs, Equation

3.2.6 may be written as

rx,t = vft Wx,t,f cx,t + vt Wx,t,1 rx+1,t (3.3.1)

where

– rx,t is rx,t with rows which correspond to ZRSs removed,

– cx,t is cx,t with rows which correspond to ZRSs removed, and

– Wx,t,g is Wx,t,g with rows and columns which correspond to ZRSs removed.

3.3.2 Example

For single life annuities, nothing further will be paid once the life has entered the dead

state so that dead is a ZRS. Therefore, Equation 3.3.1 can be interpreted directly as

a′x = vf fpx cx,t + v px a
′
x+1

where the j index on the cash flow has been dropped since there is only one non-trivial

cash flow. This results in the initial motivational example in Equation 3.1.2 when the

1Any implementational values which are not truly zero will arise as a result of rounding in the
machine.

71

cash flow amount is set to 1, as is the case for a level annuity after the payment amount

has been factored out.

3.3.3 Derivation of General Case

W is the stochastic matrix containing probabilities of changing state in one transition.

Therefore, W may be used to identify ZRSs.

Let B be a matrix containing indicator variables (i.e. 1 or 0) showing other possible

states to which it is possible to migrate in one transition, i.e.

Bij =

0 if wij = 0 ∀ t or i = j

1 otherwise

Then B has size n×n where, as stated in Section 3.2.5.3, n is the total number of states

which could be occupied by x, and Bk shows the states which it is possible to reach in

k transitions. Note that, since k = 0 corresponds to zero transitions, it is equivalent to

staying in the same state and hence B0 is the identity matrix.

Let

U =
n−1∑
k=0

Bk

so that U is a matrix containing the number of distinct routes through the transition

diagram, from any state to any other, in n − 1 or fewer transitions: since there are

n states, the longest possible path (ignoring retracing) between any two states is of

length n− 1. Note that if Uij = 0, then state j cannot be reached from state i. Note

also that U is constant for each particular combination of i) number of states and ii)

number of lives.

Finally, let d be a vector containing indicator variables showing states which could have

cash flows in any time step, i.e.

di =

1 where ci ̸= 0

0 where ci = 0

Then, under this construction,

e = Ud

is a vector containing indicators showing states which i) have cash flows and ii) can be

72

reached from the current state. Hence, ZRSs can be identified as those states which

correspond to zero-valued elements of e.

3.4 Implementational Considerations

The recurrence relation developed in Section 3.2 was completely general, ensuring that

the relation is applicable in as many situations as possible. This section considers some

practicalities, and discusses the severity of the restrictions implied by the assumptions

in the derivation.

3.4.1 Algorithm Complexity

A useful indicator of the performance of an algorithm is its complexity: it is therefore

necessary to consider how the complexity of the approach to calculating reserves using

the recurrence relation developed in Section 3.2 differs from the complexity using the

original summation approach.

3.4.1.1 Summation Approachto Calculating In-Force Reserves

In order to calculate the in-force reserve at each future time using the standard sum-

mation approach, two forward loops are required. Let T be the index of the maximum

projection step, which may either be calculated from the data or set as a parameter.

Then the algorithm to calculate the in-force reserves is as shown in Algorithm 3.1.

Algorithm 3.1 Calculation of in-force reserves using a summation approach.

1: for t = 0, 1, . . . , T do
2: obtain cx,t, vt, v

f
t ,Wx,t,f ,Wx,t,1

3: end for
4: for t = 0, 1, . . . , T do
5: set rx,t = 0
6: set vcash flow = 1
7: set vend step = 1
8: for s = t, . . . , T do
9: set vcash flow = vend step × vfs

10: set vend step = vend step × vs

11: increment rx,t by vcash flow ·

(∏
r<t

Wx,r,1

)
·Wx,s,f · cx,s

12: end for
13: end for

73

Hence, from the loop nest over t and s, it is apparent that obtaining the sequence

{rx,t}Tt=0 is O(T 2), i.e. the computational complexity is quadratic in the number of

projection steps.

3.4.1.2 Recurrence Approach to Calculating In-Force Reserves

As stated in Section 3.1.1, calculating the in-force reserve at each future time using the

form of a recurrence relation, as derived in Section 3.2.5, allows the use of backward

substitution. Therefore, the nest of two forward loops in the approach in Section 3.4.1.1

may be replaced by a single backward loop. Again, let T be the index of the maximum

projection step. Then the algorithm to calculate the in-force reserves is as shown in

Algorithm 3.2. Hence, obtaining the sequence {rx,t}Tt=0 is O(T), i.e. the computational

Algorithm 3.2 Calculation of in-force reserves using the recurrence approach.

1: for t = 0, 1, . . . , T do
2: obtain cx,t, vt, v

f
t ,Wx,t,f ,Wx,t,1

3: end for
4: set rx,T+1 = 0
5: for t = T, . . . , 0 do {descending}
6: set rx,t = vft Wx,t,f cx,t + vt Wx,t,1 rx+1,t

7: end for

complexity is linear in the number of projection steps.

3.4.2 Step Lengths

In all parts of the derivation in Section 3.2, the relationships are based on time steps

of unit length: in theoretical work, it is usually assumed that the default length of a

step is a year. Cases where cash flows happen more frequently need to be adjusted to

allow for the frequency of payments.

Using this vector form of the recurrence there is no need for such adjustments; the

sequence {cx,t} indicates the nominal amount of each cash flow. Hence, in the case of

escalating payments, for example, the stream of payments which populate the sequence

{cx,t} must already include the allowance for escalation and the timing of the cash

flows. Similarly, if a projection is being performed using monthly steps and the cash

flows occur yearly, then the sequence {cx,t} would have a non-zero value for every

twelfth step only.

74

3.4.3 Required Assumptions

The derivations in the preceding sections require only the simplest of assumptions

which, for practical purposes, are not particularly restrictive.

3.4.3.1 Cash Flows

The monetary amounts of all cash flows (whether they are premiums, benefits or

expenses) must be known in advance of their use. Also, more as a requirement to be able

to use vector arithmetic than an assumption, there must be a one-to-one correspondence

between time steps and cash flows (so that there can be a maximum of one cash flow

of any particular type in each projection step). Therefore, if a policy has monthly cash

flows then monthly projection steps are required: using monthly projection steps is fine

for policies which have annual cash flows since 11 of any 12 consecutive steps will have

a cash flow of amount zero.

3.4.3.2 Interest

The discount factor being used for a particular step must be known in advance of

reaching the time step being simulated. Since the derivation in Section 3.2.3 is based

on the force of interest, there is no need to assume that the interest rate is constant.

There is, however, a requirement that the time interval under consideration can be split

appropriately and, for all practical purposes, this should be possible. Treating inflation

as ‘the other side of the interest coin’ requires that an equivalent assumption applies

to inflation of expenses.

There is a great body of research into modelling future interest rates; see for example

[13], [17] and [91]. Any interest rate model could be used to derive the sequence of

discount factors {vt} required for the recurrence relation in this project because the

relation simply requires that interest rates are derivable, and available when required

for use in the calculations. Notice that {vt} is independent of the lives.

3.4.3.3 Mortality

The mortality table being used for a particular step must be known in advance of

reaching the time step being simulated. There is no need to assume that the under-

lying mortality cannot change, provided that it is possible to derive a set of survival

75

probabilities from whatever mortality model is applicable throughout the period up to

the point that the transition matrix is used.

There is a great body of work on the modelling of mortality rates; for example [11]

provides a comprehensive discussion on recent models. Much of this work shows that

mortality is currently improving over time, so that

‘the probability of a life currently aged 75 surviving for a year’

is less than

‘the probability of a life currently aged 65 surviving from age 75 to age 76,

assuming they first survive for 10 years to reach age 75’.

While it is noted that these improvements in mortality exist, they are not of fundamen-

tal relevance to the workings of the equation derived in Section 3.2.4. Any mortality

model could be used to derive the sequence of survival probabilities {Wx,t,g} required

for the recurrence relation because the relation simply requires that mortality rates are

derivable, and available when required for use in the calculations.

It is important to note that Wx,t,g depends on the lives in x, and therefore on the

properties (such as gender, age, medical history, etc.) of those lives. Hence, in princi-

ple, it would be possible to have different mortality tables for each life, allowing the

mortality to be completely general. It should also be noted that the granularity of

the improvements in mortality might mean that the underlying tables only need to

be changed every twelfth step, effectively using annual improvements in a projection

which uses monthly steps.

3.4.3.4 Complexity

From Algorithm 3.2, the complexity of the recurrence approach is O(T): this is based

on the second loop over t. The first t loop calculates cash flows, interest rates and

mortality rates which are required in the second loop. Therefore, provided that the

derivation of these items can be achieved with complexity O(T) or better, the overall

complexity of the algorithm remains O(T).

76

3.4.4 Number of States

The derivation in Section 3.2.5 was based on the existence of two states; 0 for alive,

and 1 for dead. However, there are several policy types where more than two states are

required. Examples of the need for more than two states include life assurances, where

the benefit is paid on the transition from alive to dead (rather than the continuance

in the alive state), and it is possible to show that a third state, say died-in-step, is

required for the derivation to be mathematically correct: see Appendix C for details.

Also, for policies such as permanent health instance, where the benefit is payable in the

‘ill’ state and it is possible to make many transitions from able to ill and back again,

before death, it is clear that states able, ill and dead are required. Notice, however,

that because some transitions are reversible, the stochastic matrix for such a policy will

not be upper triangular.

The derivation in Section 3.2.4 is cast in terms of survival probabilities and hence

there were only two states. However, the generality of that derivation means that any

number of survival states could be considered and hence that section could be renamed

‘Transition Probabilities’. Therefore, the fact that more than two states might be

required is not contrary to the derivation of Equation 3.2.6 – in fact, the use of two

states is a particular instance of the fact that the recurrence relation relates to any

number of states.

3.5 Summary

This chapter has shown how to change the algorithm for calculating the in-force reserves

from one which has complexity O(NT 2) for a projection of N policies over T steps to

one which has complexity O(NT). For a projection using monthly steps over a term of

50 years, this change would be expected to yield a speedup of two orders of magnitude:

the actual performance gain for a single-scenario case will be discussed in Section 5.2.4.

The derivation has been completely general and so will work for a wide variety of non

unit-linked policies. Chapter 4 discusses the application of this recurrence algorithm

to several policy types in order to demonstrate how widely it may be applied.

This chapter has also considered ZRSs, the removal of which is essential to any efficient

implementation of the algorithm.

77

Chapter 4

Use of the Recurrence Algorithm

The derivations in Chapter 3 led to the stochastic matrix Wx,t,g, where the indices

emphasise the dependence of the transition probabilities on the age of the lives, the

projection step number, and the fraction of the step where cash flows occur. Further,

the matrix allowing for the removal of zero reserve states is Wx,t,g to emphasise the

same dependencies. In contrast to Chapter 3, which was a formal derivation, this

chapter shows how the recurrence relation may be used. Therefore, throughout this

chapter these stochastic matrices are denoted by W and W for clarity: the dependence

on age, projection step number, and fraction of the step are implicit.

Section 4.1 considers the simplest policies to which the recurrence derived in Chapter 3

may be applied, i.e. single life policies. Section 4.2 considers the extension to two-

life policies: the extension is conceptually simple, and the implementation is only

marginally more complex. Section 4.3 discusses the extension to other types of policy,

both those having more lives, and those with more complicated conditions under which

cash flows are made. Section 4.4 proposes the applicability of the relation to completely

arbitrary policies, and introduces the framework for the implementation of such cases.

Section 4.5 contains a summary.

4.1 Single Life Policies

The derivation in Section 3.2 led to a survival based consideration of policies being a

more natural approach. Therefore, the simplest illustrations of the recurrence algorithm

are those which relate to only one life.

78

0start 1

gpx

gqx

1

Figure 4.1 State transition diagram for one life and two states.

4.1.1 Two States

For a single life, the simplest model has only two states, alive and dead. As mentioned

in Section 3.1.3.2, binary labelling is used, with 0 for alive and 1 for dead, so that the

transition diagram is as shown in Figure 4.1. This leads to the stochastic matrix

W =

(
gpx gqx

0 1

)

and the matrix of indicators for possible transfers to other states becomes

B =

(
0 1

0 0

)

Therefore, since B is a 2× 2 matrix, the upper limit of the sum is r = dim (B)− 1 = 1

so that

U =

1∑
k=0

Bk = I+B =

(
1 1

0 1

)

4.1.1.1 Single Life Annuities

Different values of f lead to annuities where the timing differs, i.e. in advance, in arrear,

or part-way through the step. Varying cx,t leads to the recurrences for other differences

in types of annuity;

– for a level annuity, cx,t = θ where θ is constant,

– for an increasing annuity, cx,t = ϕt where ϕt increases in arithmetic progression,

– for an escalating annuity, cx,t = ωt where ωt increases in geometric progression,

– for a limited term annuity, cx,t = 0 for all time steps after the end of the policy

term.

79

For any of the four payment types, payments are only made so long as the life remains

alive, i.e. so long as the life remains in state 0. Therefore, the indicator of cash flows is

d =
(
1 0

)T
so that

e = Ud =
(
1 0

)T
from which it is apparent that state 0 is not a ZRS, but state 1 is a ZRS.

The general form of the recurrence relation for one life and two states is(
r0,x

r1,x

)
= vf

(
fpx fqx

0 1

) (
c0,x

c1,x

)
+ v

(
px qx

0 1

) (
r0,x+1

r1,x+1

)
(4.1.1)

Hence, for single life annuities, where the payment is made if the life is in state 0, the

recurrence relation, after the ZRSs are removed, becomes(
r0,x

)
= vf

(
fpx

) (
c0,x

)
+ v

(
px

) (
r0,x+1

)
and, for level payments (where the value of c0,x is always 1), in actuarial notation, this

is

a′x = vf fpx + v px a
′
x+1

which agrees to the motivational example in Equation 3.1.2. Hence, for a level annuity,

with payment amount 1, payable in advance (so that f = 0), the relation reduces to

äx = 1 + v px äx+1

For whole life annuities an appropriate boundary condition is tp120 = 0 for t > 0.

Standard notation uses ax:n to denote the reserve factor for an annuity of amount 1,

payable at the end of each period, to a life aged x at inception, for a maximum of

n payments, so long as the life is alive at the time of the payment. Therefore, this

thesis uses a′x:n to denote the reserve factor for an annuity of amount 1, payable at

some fraction f through each period, to a life aged x at inception, for a maximum

of n payments, so long as the life is then alive. Using this notation, an appropriate

boundary condition for such a policy is a′
x+n:0

= 0.

80

4.1.1.2 Endowments

A pure endowment may be viewed as an annuity where the amounts of all cash flows

except one are zero, the non-zero cash flow being at the time the endowment is payable.

Using this interpretation, the usual value for the cash flow vector is cx,t =
(
0 0

)T
,

and the non-zero cash flow for a policy effected by a life aged x at inception with an

original term of n is cx+n,0 =
(
1 0

)T
.

Standard actuarial notation uses A 1
x:n to denote an endowment of amount of 1 payable

to x, after a period of length n, if x is alive at time n. Using this notation, the required

interpretation Equation 4.1.1 is(
A 1

x:n

0

)
= vf

(
fpx fqx

0 1

) (
0

0

)
+ v

(
px qx

0 1

) (
A 1

x+1:n−1

0

)

where f ∈ [0, 1] is arbitrary1. Removing the ZRS leads to

A 1
x:n = v px A

1
x+1:n−1

with the boundary condition A 1
x+n:0

= 1.

4.1.2 Three States

It is possible to show that assurances cannot use a Markov transition matrix with only

two states: see Appendix C for details. This is because the benefit is payable on the

transition from one state to another, rather than the continuance in a particular state,

and hence the assumption that the cash flows are computable as a function of x, t and

state does not hold.

A straightforward solution is to introduce a third state, say ‘died in step’, from which

the life transfers to the dead state in the next step with probability 1. Under this

construction, ternary labelling must be used for the states, and the states under

consideration are 0 for alive, 1 for ‘died in step’, and 2 for dead. The transition diagram

for this situation is as shown in Figure 4.2, and the stochastic matrix derived from that

diagram is

W =

gpx gqx 0

0 0 1

0 0 1

1Because the cash flow is zero, it does not matter where in the step is is considered to occur.

81

0start 1 2

gpx

gqx 1

1

Figure 4.2 State transition diagram for one life and three states.

and the matrix of indicators for possible transfers to other states is

B =

0 1 0

0 0 1

0 0 0

Since B is a 3× 3 matrix, the upper limit of the sum in U is 2 so that

U =
2∑

k=0

Bk = I+B+B2 =

1 1 1

0 1 1

0 0 1

4.1.2.1 Assurances (Whole Life and Term)

The benefit is payable when the life dies, i.e. when the state ‘died-in-step’ is entered.

Therefore the vector for indication of cash flow is

d =
(
0 1 0

)T
and hence

e = Ud =

1 1 1

0 1 1

0 0 1

0

1

0

 =

1

1

0

from which it is apparent that states 0 and 1 are not ZRSs, but state 2 is a ZRS.

In standard notation, Ax denotes the reserve factor for a whole life assurance, where

a benefit of amount 1 is payable at the end of the step in which the death of a life

currently aged x occurs. Using this notation, the recurrence relation is equivalent to

Ax = qx v + px v Ax+1

82

and an appropriate boundary condition is p120 = 0, or q120 = 1.

In standard notation, A1
x:n denotes the reserve factor for a term assurance, issued to

a life aged x at inception, with an original term of n, and the benefit of amount 1 is

payable at the end of the step in which death occurs. Using this notation, the recurrence

relation is equivalent to

A1
x:n = qx v + px v A

1
x+1:n−1

and an appropriate boundary condition is A 1
x+n:0

= 0 because if the life has not died

by the end of the original term then nothing is payable, so no reserve is required.

4.1.2.2 Critical Illness Policies

Under these policies, a lump sum benefit is payable if a life contracts a devastating,

incurable illness, e.g. cancer or Alzheimer’s. The policies may be modelled using three

states; 0 for undiagnosed, 1 for diagnosed in step, and 2 for previously diagnosed. Under

this construction, the transition diagram for these policies has transitions in the same

directions as that in Section 4.1.2, although the descriptions of the states are different.

It is therefore possible to apply identical logical derivations as in Section 4.1.2.1 and

hence deduce that states 0 and 1 are not ZRSs, but state 2 is a ZRS.

4.1.3 Three States with One Reversible Transition

Consider a Permanent Health Insurance policy: depending on the policy contract, this

pays out when the policyholder becomes unable to work, either through any sickness,

or because of some pre-specified sickness. In either case, cash flows only happen when

the policyholder is in the ill state. Using ternary labelling for the states leads to 0 for

able (i.e. fit to work), 1 for ill, and 2 for dead. Let gp
rs
x be the probability of a life

aged x moving from state r to state s in time g, where r, s ∈ {0, 1, 2}. Then the state

transition diagram is as shown in Figure 4.3.

Since it is not possible for a life to leave the dead state, so that gp
22
x = 1, the stochastic

matrix is

W =

gp
00
x gp

01
x gp

02
x

gp
10
x gp

11
x gp

12
x

0 0 1

83

0start

2

1

gp
00
x gp

01
x

gp
02
x

gp
10
x

gp
11
x

gp
12
x

gp
22
x

Figure 4.3 State transition diagram for one life and three states, where one transition is
reversible.

and the matrix of indicators for possible transfers to other states becomes

B =

0 1 1

1 0 1

0 0 0

Since B is a 3× 3 matrix, the upper limit of the sum for U is 2 so that

U =
2∑

k=0

Bk =

2 1 2

1 2 2

0 0 1

4.1.3.1 Permanent Health Insurance

Since payments are made while the policyholder is in the ill state, the vector of

indicators for a cash flow happening is

d =
(
0 1 0

)T
so that

e = Ud =
(
1 2 0

)T
from which it is apparent that ‘dead’ is the only ZRS. This agrees to the fact that a

payment could be made on transition into the ill state from either the able state or the

ill state: n.b. the transition ill-to-ill is, effectively, continuing in the ill state.

84

From this example, it is clear that the elements of e may be interpreted as the number

of transitions required to enter the benefit-paying state from the current state: the first

element indicates that only one transition is need to reach the ill state from the able

state; the second element indicates that two transitions are need to reach the ill state

from the ill state, i.e. ill → able → ill.

4.1.3.2 Income Protection

These policies have their benefits payable when the policyholder becomes out of work.

Using ternary labelling, the states are 0 for employed, 1 for unemployed, and 2 for

‘withdrawn from workforce’ (i.e. retired or dead). Under this construction, these policies

may be considered using a three-state model with one reversible transition and hence

follow the same derivation as Section 4.1.3.1, leading to retired and dead being ZRSs

while employed and unemployed are not ZRSs.

4.2 Two-Life Policies

In order to demonstrate the applicability of the algorithm to a wider collection of

situations it is necessary to consider the next level of complexity, i.e. policies with two

lives.

4.2.1 Two States

Representing the lives as x and y rather than x1 and x2, the states to which it is possible

to migrate can be tabulated as

State Binary x y Possible Future States

0 00 alive alive 0 1 2 3

1 01 alive dead 1 3

2 10 dead alive 2 3

3 11 dead dead 3

and the corresponding transition diagram is as shown in Figure 4.4.

85

00start 01

10 11

gpx gpy

gpx gqy

gqx gpy
gqx gqy

gpx · 1

gqx · 1

1 · gpy
1 · gqy

1

Figure 4.4 State transition diagram for two lives and two states.

The stochastic matrix is

W =

gpx gpy gpx gqy gqx gpy gqx gqy

0 gpx 0 gqx

0 0 gpy gqy

0 0 0 1

and the matrix of indicators for possible transfers to other states is

B =

0 1 1 1

0 0 0 1

0 0 0 1

0 0 0 0

and, since B is 4× 4, the upper limit of the sum of U is 3, so that

U =

1 1 1 3

0 1 0 1

0 0 1 1

0 0 0 1

4.2.1.1 Reversionary Annuities

Payments are made to the second life, y, after the death of the first, x, so that the

payments are made in state 2 and the vector of indicators for a cash flow being made

86

is therefore

d =
(
0 0 1 0

)T
so that

e = Ud =
(
1 0 1 0

)T
from which it is apparent that payments can only be made from states which can be

reached from state 0 or state 2. Therefore states 0 and 2 are not ZRSs, but states 1

and 3 are ZRSs.

In actuarial notation, the vector for reserve factors rx,t can be interpreted as(
a′x|y 0 a′y 0

)T

4.2.1.2 Joint Life and Last Survivor Annuities

Payments are made on a joint life annuity so long as both lives are alive, whereas

payments on a last survivor annuity made so long as at least one of the lives survives.

Therefore, for a joint life annuity

d =
(
1 0 0 0

)T
⇒ e =

(
1 0 0 0

)T
and for a last survivor annuity

d =
(
1 1 1 0

)T
⇒ e =

(
3 1 1 0

)T
Hence, for a joint life annuity states 1, 2 and 3 are ZRSs and for a last survivor annuity

state 3 is the only ZRS.

4.2.2 Three States

For the construction where the three states are alive, died-in-step and dead, any of

the three survival states could be occupied by either of the two lives. Therefore, the

relevant transition diagram, using ternary labelling, is as shown in Figure 4.5.

87

00start 01 02

10 11 12

20 21 22

gpx gpy

gpx gqy

gqx gpy
gqx gqy

gpx · 1

gqx · 1

gpx · 1

gqx · 1

1 · gpy
1 · gqy 1 · 1

1 · 1

1 · gpy
1 · gqy 1 · 1

1

Figure 4.5 State transition diagram for two lives and three states.

88

4.2.2.1 Assurances

There are 5 states, transition into which might lead to payment, i.e. 01, 10, 11, 12,

and 21. Whether payment is made on the first or second death will be detailed in

the policy document, making it necessary to consider the two cases separately: the

first death happens on transition into states 01, 10 and 11, i.e. both lives are not still

alive, and the second death happens on transition into states 11, 12, and 21. However,

transition into states 12 and 21 can only happen from states which indicate that one of

the lives is already dead, i.e. those transitions happen from a state which is, effectively,

a single life policy anyway.

The transition matrix is

W =

gpx gqx 0

0 0 1

0 0 1

⊗

gpy gqy 0

0 0 1

0 0 1

 where ⊗ is the Kronecker product

=

gpx gpy gpx gqy 0 gqx gpy gqx gqy 0 0 0 0

0 0 gpx 0 0 gqx 0 0 0

0 0 gpx 0 0 gqx 0 0 0

0 0 0 0 0 0 gpy gqy 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 gpy gqy 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1

from which the matrix of indicators for possible transitions to other states is

B =

0 1 0 1 1 0 0 0 0

0 0 1 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0

89

and hence

U =

8∑
k=0

Bk =

1 1 1 1 1 2 1 2 5

0 1 1 0 0 2 0 0 2

0 0 1 0 0 1 0 0 1

0 0 0 1 0 0 1 2 2

0 0 0 0 1 0 0 0 1

0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 1

Considering the two cases:

a) when the benefit is paid on the first death, the vector of indicators for a cash flow

being made is

d =
(
0 1 0 1 1 0 0 0 0

)T
so that

e = Ud =
(
3 1 0 1 1 0 0 0 0

)T
and hence all states other than 00, 01, 10 and 11 are ZRSs.

b) when the benefit is paid on the second death, the vector of indicators for a cash flow

being made is

d =
(
0 0 0 0 1 1 0 1 0

)T
so that

e = Ud =
(
5 2 1 2 1 1 1 1 0

)T
and hence only state 22, where both lives have already died, is a ZRS.

4.3 Extension to Other Policies

The derivation in Chapter 3 was completely general, suggesting that the algorithm

could be used for a vast array of policy types. So far, this chapter has only considered

those policies which are relatively common. Therefore, this section gives an overview

of considerations required to apply the recurrence algorithm to a far wider selection of

policies.

90

4.3.1 More than Two Lives

Although cases which involve more than two lives are uncommon, they are included

here for completeness.

The two-life models in Section 4.2 are straightforward extensions of the single life models

in Section 4.1. For larger numbers of lives, the transition matrices may be obtained by

induction, using tensor products. Let W(m) be the transition matrix required for m

lives, and let ⊗ be the Kronecker product. Then

a) for the two state model (used for annuities and endowments),

W(m) = W(m−1) ⊗

(
gpxm gqxm

0 1

)

with W(0) = (1). There are 2m possible states so that W(m) has 4m elements, of

which 3m are non-zero, and

b) for the three state model (used for assurances),

W(m) = W(m−1) ⊗

gpxm gqxm 0

0 0 1

0 0 1

with W(0) = (1). There are 3m possible states so that W(m) has 9m elements, only

4m of which are non-zero.

4.3.2 With-Profit Policies

The recurrence algorithm from Chapter 3 can be applied to with-profit policies so long

as the cash flows can be determined in advance of their use so that the assumption in

Section 3.4.3.1 holds. This should not pose any practical problems because the cash

flows can be calculated in the forward loop in Algorithm 3.2 and then used in the

backward loop. Even if bonuses are applied on a two-tier basis, this algorithm can

be used if estimated bonus rates are available in advance of calculating the bonuses

attaching at a particular time.

91

4.4 The General Case

A good implementation of the process for calculating reserves using the relation derived

in Chapter 3 would generate sufficient code that any policy can be processed by the

addition of minimal further code. This is a straightforward procedure: from the number

of states and number of lives, determine the transition diagram and hence the ZRSs,

as outlined in Section 3.3.3; from a separate process, which must be identified for each

new policy type, generate the cash flows; from the transition diagram and the cash

flows, calculate the reserves.

4.4.1 Theory

Reserves must be calculated using overall matrix formulation, but once ZRSs have

been identified it is possible to omit relevant columns and rows from the matrix

multiplication. For example, for a single life whole life assurance, which is a three

state case,

W =

gpx gqx 0

0 0 1

0 0 1

so that, omitting the entire rows and columns which result from the identification of

ZRSs,

W =

(
gpx gqx

0 0

)

Hence, the required multiplication with the reserve vector is

Wr =

(
gpx · r0 + gqx · r1
0 · r0 + 0 · r1

)

Therefore, by omitting other cases where Wij = 0, irrespective of whether or not they

are ZRSs, it is possible to circumvent multiplication by zeroes.

4.4.2 Implementation

A naive implementation of the algorithm would be

for p = 1 to number_of_policies

92

for s = 1 to number_of_future_time_steps

for r = 1 to number_of_rows_in_W

for c = 1 to number_of_columns_in_W

reserve(r,c,p) =

However, using the standard loop optimisation technique of introducing blocks within

the loop over policies, the loop nest becomes

for b = 1 to number_of_blocks

for p = 1 in number_of_policies_in_block

for s = 1 to number_of_future_time_steps

for r = 1 to number_of_rows_in_W

for c = 1 to number_of_columns_in_W

reserve(r,c,p) =

It is then possible to perform permutation of the loops so that the loop over policies

is innermost and hence in the ideal position for vectorisation to be applied. The loop

nest for this structure is

for b = 1 to number_of_blocks

for s = 1 to number_of_future_time_steps

for r = 1 to number_of_rows_in_W

for c = 1 to number_of_columns_in_W

for p = 1 in number_of_policies_in_block

reserve(r,c,p) =

4.4.3 Masked Implementation

To reduce the potentially excessive number of multiply-by-zero operations, it may be

sensible to create a mask which contains Boolean indicators which are zero where either

a row or column leads to a ZRS, or a row or column has zero probability of a cash flow

in this step: the mask would be populated as

for i=1:num_rows

for j=1:num_cols

mask[i,j] = 1

for i=1:num_rows

93

if (row(i) IMPLIES ZRS)

{

mask[i,:] = 0

mask[:,i] = 0

}

It is then possible to insert a test against the mask within the permuted loop nest, viz;

for b = 1 to number_of_blocks

for s = 1 to number_of_future_time_steps

for r = 1 to number_of_rows_in_W

for c = 1 to number_of_columns_in_W

if (mask[r,c]) then

for p = 1 in number_of_policies_in_block

reserve(r,c,p) =

endif

Note that the performance is not particularly adversely affected by the existence of the

if-test because that test is performed outside the loop over policies which, under this

permutation, is innermost. Note also that, since the policies in the innermost loop are

independent, it should be possible for that loop to be vectorised.

4.5 Summary

This chapter has shown how the theory developed in Chapter 3 may be applied to a

wide variety of contracts, and how that application produces relations which may be

used as the basis for an efficient implementation for the calculation of each contract’s

reserves. It has also shown how these relations, derived in a matrix context, relate to

formulae which are recognisable in the actuarial landscape.

This chapter has also intimated that, since several contracts may use the same state

transition diagram, and hence the same stochastic matrix, efficient code can be pro-

duced for specific cases so that only a few changes, which relate to cash flows, need to be

made for each particular contract. An even more general implementation is discussed

in Section 9.2.

94

Chapter 5

Improving the Performance of

Profitability Calculations

Section 2.3.2 introduced several cases where programs produced by a valuation system

are currently run, with only a single set of parameters being needed. The fact that only

one set of parameters is required means that the required calculations can be performed,

albeit in a long time. This chapter considers optimisations which were performed on

a code which performs a typical single scenario calculation and the effects of those

optimisations on the run time.

Section 5.1 describes the purpose and implementation of the initial code: it describes

the policy data and parameters used in the project. Regression testing and variability

of timings are also considered. Section 5.2 considers the optimisations applied to the

code: initially optimisations from a previous project are described since they form the

basis of the work in this project and then the optimisations performed in this project,

and their effect, are presented. Section 5.3 contains a discussion of the performance

implications of the optimisations performed, and Section 5.4 contains a summary of

the chapter.

5.1 Initial Code

In order to present the benefits of the optimisations applied to the code during this

project, it is necessary to explain what the initial code for the investigation was, and

how it compared to code used in real situations.

95

5.1.1 Initial Code

At the time this investigation was first mooted, the package used within the commercial

environment which spawned the investigation transformed the relationships within the

package into Fortran77 source, and compiled it using Compaq Visual Fortran V6.6

(CVF). This led to two major problems when producing a piece of code to replicate

that produced within the commercial environment; firstly, because CVF is no longer

available, a licensed copy could not be obtained to use outside the office; secondly, and

more fundamentally, the code produced within that environment had intellectual rights

attached to it, so its use for anything other than its original intent, i.e. running the

business, is prohibited. The combination of these two factors meant that the starting

point was some Fortran90 code which ran on a laptop after having been compiled using

V10.1 of Intel’s Fortran compiler.

The code used as the starting point for this project was developed during an MSc in

HPC [86]. The original code was a mirror of the code from the commercial environment

in two respects: firstly, for the same combination of initial parameters and data, it

produced the same financial results as the system used within the office; secondly, it

originally ran at similar speed to code from commercial software. The similarity in

performance was a direct result of its implementation being similar to code produced

by a commercial package. At the end of the MSc project, the code had been through

several stages of serial optimisation and had been parallelised using OpenMP, and so

had several desirable characteristics: it produced the correct financial results, it ran

significantly more quickly than the original code, and scaled reasonably well over small

numbers of cores.

Originally, only code to estimate profitability within single life annuities was developed.

This limited code was sufficient to show that the principles work, i.e. optimisation of

ab-initio code produces significantly faster code than that resulting from commercial

packages. The assumption that the principles are transferable to other policy types

was validated, as an early stage of this project, by the production of code to estimate

profitability of reversionary annuities.

5.1.2 Data

A standard interpretation of the UK’s Data Protection Act is that ‘data may only be

used for the purpose for which it was collected’. This, allied to client confidentiality,

precludes the use of real data from the commercial environment and so this investigation

96

uses data created specifically for this purpose: having been artificially created, this data

will be referred to as ‘synthetic data’.

In order that the performance of the program investigated is representative of the

performance of the valuation system, our synthetic data look like they could be drawn

from a population of policyholders with similar characteristics as those in the business.

Because this investigation considers annuity policies, payable to pensioners, our data

was created so that it represents a similar group of pensioners, even if they are fictitious.

This data was created so that all attributes are random, and the main characteristics

may be summarised as follows:

1) the date of birth is such that the age at valuation is uniformly distributed between

57 and 67 so that the synthetic data represents a cohort of people who have retired

recently, either at normal retirement age, or slightly early;

2) the policy inception date is uniformly distributed over the calendar year prior to the

valuation date so that these data represent a cohort of recent business;

3) roughly 73% of the policyholders are male;

4) roughly 81% of the policies have payments made monthly, the remainder have

payments made annually;

5) if s is defined as the modal payment, i.e. the amount paid at each payment, then s

has a log-normal distribution with a mean of roughly 5.0 and standard deviation of

about 1.5: more precisely,

ln s ∼ N
(
5.01, 1.4772

)
and

6) the rate of escalation, i.e. the annual increase in the amount paid to the policyholder,

is approximately distributed as

escalation rate 0% 3% 4.25% 5%

proportion of policies 95.2% 3.5% 0.8% 0.5%

Standard statistical simulation techniques [78, Section 4.1] were used to to create the

data. Using the probability density function for a required distribution, it is possible

to determine the cumulative distribution function and hence the probability that a

variable from that distribution is less than a specified value. Generating a random

number in the range from zero to one produces the required probability, corresponding

to the value on the cumulative distribution function, from which the relevant value

from the distribution can be determined.

97

This method clearly relies on the availability of a random number generator: this

project used the Fortran rand() function. The implementation of rand() provided

by the Intel Fortran compiler uses a combination of two linear congruential generators

[43]. However, the sequence produced by Intel’s rand() suffices for the production

of synthetic data which look like they have similar properties to a real cohort of

policyholders.

5.1.3 Parameters

The profitability calculations in a commercial environment use two bases; a reserving

basis which is used to calculate the reserves in each future time, and a realistic basis

which is used to project the reserves forward from each time point to the next, allowing

for interest earnt on the reserve between the time points. These bases are usually

simplistic: there is one interest rate and one inflation rate, both of which are used for

the duration of the projection, and there is usually no allowance for improvements in

mortality.

In order to reproduce the financial results, these same simplistic bases are used through-

out the development and optimisation of the investigation into the single scenario calcu-

lations. Whilst these constant parameters are unrealistic, their use has the advantage

of truly emulating the commercial environment, thereby allowing valid performance

comparisons.

5.1.4 Regression Testing

A naive statement of the aim of a code optimisation project is ‘to make the program

run more quickly’. However, it is possible to make any program run arbitrarily fast

by simply removing large parts of the code, thereby allowing the program to output

rubbish. Therefore, a better statement of the aim of an optimisation project is ‘to make

the program run faster while producing the same results’.

The test data described in Section 5.1.2 were run through the live system in a com-

mercial environment and the results from that run have been compared to the output

from running that same test data through the initial version of the new F90 code

produced for the investigation. That comparison showed the output for each policy

to be the same to 6 significant figures. Within the commercial environment which

inspired this investigation any difference in results on different platforms is considered

to be immaterial if it is less than 1%. Therefore, an actual relative difference of less

98

than 10−6 provides evidence that the initial program for this investigation does give the

same results as the real program. This regression test was performed at the end of each

stage of the investigation. The level of agreement maintained throughout the course of

optimisation was 6 significant figures. Overall, the result produced by the final code is

not materially different to the original results. The final code could therefore be used

to replace the code in the commercial environment.

5.1.5 Variability of Timings

As mentioned in Section 1.4, the time to process each policy in a commercial environ-

ment is roughly 1 second for single life policies and about 2.5 seconds for reversionary

annuities. This chapter reports performance in terms of ‘policies per second’ and,

as changes to the code are made, the processing rate improves dramatically. The

difference in processing rates indicates that any variability of run times for a particular

optimisation is not significant in relation to the overall time, and so there is no benefit

in obtaining confidence intervals for the run times reported in this chapter. Therefore,

each run has been performed only once and, whilst variability in times is acknowledged

to exist, it is stressed that the times reported are representative, rather than being a

mean, mode or median, etc. of the overall time.

5.2 Optimisations

The optimisation of any code is an iterative process. To reflect this, the optimisations

applied to the Fortran code are presented separately, allowing the relative effect of each

stage to be discussed individually.

5.2.1 Initial Optimisation

As stated in Section 5.1.1, the idea that commercially available valuation packages do

not create optimal code was originally investigated for an MSc dissertation [86]. The

results of that investigation showed that there is scope for improving performance of

code which initially has similar performance to that produced by commercial software.

It is not possible to fully appreciate the performance of code produced by valuation

packages in comparison to the performance of code developed in this project without

considering the initial improvements made during the MSc. Therefore, for complete-

ness, the optimisations from the MSc are discussed here briefly.

99

The MSc project performed most of the optimisations which would be expected for a

scientific code. However, due to the short duration of that project, the improvements

made may not have been absolutely optimal.

In the first stage of the MSc, a collection of compiler flags which improved performance

was applied: see [86, Section 2]. In order to match the performance of the valuation

package it was necessary to disable optimisation and enable debugging code; although

the use of unoptimised code is appealing from a correctness viewpoint, it is generally

accepted that moderate levels of optimisation will not lead to transformations which

dramatically change the value of the results.

In the second stage of the MSc, two dominant routines were manually optimised.

Following the selection of the collection of compiler flags, a profile of the program’s

execution showed that the majority of the execution time was spent in only two

routines making them obvious targets for re-factoring. Therefore, i) the routine for

the interpolation within a life table to obtain lx at non-integral ages was optimised in

[86, Section 3], and ii) [86, Section 4] optimised the routine for the calculation of the

reserve using the summation approach (which was a naive implementation of Equation

2.1.5).

The profile obtained after these optimisations showed that more than 50% of the

execution time was spent in routines which had already been optimised, indicating that

more performance could only be extracted from the use of other techniques. Therefore,

in [86, Section 6], the code was parallelised by the addition of OpenMP which used a

single thread to read the data into a shared array, processed all the data using a team

of threads, stored the results back to another shared array, and finally wrote the results

to disk using a single thread.

As mentioned in Section 5.1.1, the original code was written to mirror that produced

by the valuation package: it therefore had global variables, and was written in a single

large routine. OpenMP uses the concept of shared and private variables in order to

partition what separate threads may access: to simplify the process of determining the

scope of variables, it is useful to have as much of the program split into subroutines

as possible. Therefore, as part of the addition of OpenMP, the code was re-engineered

in a manner similar to the object oriented philosophy: subroutines were placed within

modules relevant to a particular concept, and variables were made local to each routine.

The largest machine available to the MSc project was a 16-core SMP which had

the Portland compiler, rather than the Intel compiler used on the laptop: the re-

engineering, and the change of hardware and compiler, led to a speedup of 1.5×. Also,

100

Optimisation Speedup Rate

None N/A 1.0
Increase level of compiler optimisation 3.73× 3.7
Manually optimise interpolation routine 1.68× 6.3
Manually optimise reserving calculation 2.69× 17
Change hardware and re-engineer (to simplify OpenMP) 1.56× 26
OpenMP parallelisation (16 threads on 16 cores) 15.6× 410

Table 5.1 Performance rate (policies per second) for profitability calculations for single life
annuities resulting from optimisations in MSc project: the speedup relates to the
individual stage, but the rate is cumulative.

the scalability of the OpenMP code was investigated in the MSc [86, Section 7], which

showed that it was 96% efficient when running 16 threads on 16 cores: a reduction in

efficiency at this relatively low number of threads suggests scope for extracting more

performance.

5.2.2 Further Optimisation

The changes discussed in Section 5.2.1 were performed as part of the MSc and the re-

sulting performance improvements are summarised in Table 5.1. The changes discussed

below were performed as part of this investigation.

5.2.2.1 Power Calculations

The optimisation of the reserving calculation in the MSc confirmed a generally accepted

truth: on modern hardware, a single multiplication operation is faster than a single

power calculation. Therefore, if a sequence of values are known to be in geometric

progression then, for sufficiently long sequences, obtaining the values by repeated

multiplication is to be preferred to obtaining the values by calculating powers. Hence,

power calculations were replaced wherever possible: this improved overall performance

by a factor of 2.6×.

5.2.2.2 OpenMP Synchronisation

As a result of the short nature of the MSc project, the OpenMP parallelisation im-

plemented there used a critical region in order to accumulate values across policies: a

standard OpenMP reduction could not be used because the data structures involved

were not intrinsic types. The replacement of this region with bespoke reduction code

101

reduced the time the threads were waiting to access the accumulation variables: this

improved performance for the entire program by a factor of 1.2×.

5.2.3 Scaling of OpenMP Code

The OpenMP parallelisation of the original Fortran code, as developed during the MSc,

was not particularly efficient past about 12 threads; when running 40 threads on 48

cores, the efficiency was only about 60%.

The cause of the inefficiency was identified as the locking of variables used as internal

files on each thread. These internal files were used to collect the values of several

variables, ready to be output as strings to files on the disk. The variables were declared

within subroutines which were called by each thread and therefore each thread should

have had its own private copy. However, even though those variables were declared as

private within the OpenMP code, they were being treated by the compiler as ‘normal’

files and hence being locked during I/O.

The solution was to keep the individual variables separately, and write them to the

external file using Fortran’s I/O formatting functionality. Having resolved the issue,

the code scaled to almost 95% efficiency when using 48 threads on 48 cores of the

Opteron cluster.

5.2.4 Change of Algorithm

Chapter 3 discussed a recurrence algorithm which has computational complexity O(T)

for a projection over T time steps. For a projection over 600 monthly steps this implies

a speedup of two orders of magnitude compared to the summation approach used in

the commercial valuation package.

5.2.4.1 Processing Rate

In order to investigate the speedup, the input data were changed: the date of birth,

and policy inception date were set to be identical for every policy, but the amount

and frequency of the payments were unaltered. The changes to the dates ensure that

each policy has the same outstanding term for a particular valuation date, while having

the financial data differing across policies ensures that the calculations do need to be

performed, rather than just recalling previously calculated values. Using this approach,

102

300 360 420 480 540 600 660 720 780 840 900 960 1020
0

2.5

5.0

7.5

10.0

12.5

Number of Projection Steps

A
ve

ra
ge

 T
im

e
pe

r
Po

lic
y

(m
ill

is
ec

on
ds

)

Summation
Recurrence

Figure 5.1 Time (in milliseconds) to calculate reserves for single life annuities using naive
summation and recurrence algorithm: times were obtained using a single core of
the Cray, and are the average over 5000 policies.

the number of steps which are processed is controlled by changing the valuation date.

Figure 5.1 shows the average time to process single-life annuity policies using the

summation approach and the recurrence relation. The times measured are solely for

the calculation of reserves: all inputs to the algorithm (such as lx’s and payment

amounts) are calculated prior to the recurrence being used and so are not included

in the measurement1. The implementation of each of the algorithms used the same

level of compiler optimisation, so that the only difference between the timings was the

algorithm. On the scale presented, which demonstrates the quadratic nature of the sum-

mation approach, the times for the recurrence approach are almost indistinguishable

from the axis. This indicates that as well as having better scaling than the summation

approach, the recurrence approach is far faster than the summation approach.

Figure 5.2 indicates that the speedup resulting from changing the algorithm is a linear

function of the number of steps: this is consistent with changing the complexity from

O(T 2) to O(T) where T is the number of time steps. The speedup for T steps is not

T because the process of obtaining the reserve using a summation approach contains

some calculations which are O(T): these are unaffected by the change of algorithm and

1This also means that there is no I/O in the timings.

103

300 360 420 480 540 600 660 720 780 840 900 960 1020
60

80

100

120

140

160

180

200

Number of Projection Steps

Sp
ee

du
p

Speedup
Linear Fit

Figure 5.2 Speedup (for Single Life Annuities) resulting from change from naive summation
to recurrence relation: times were obtained using a single core of the Cray, and
are the average over 5000 policies.

hence do not contribute to the speedup resulting from changing the algorithm’s overall

complexity: see Appendix D for further details.

Figure 5.3 shows the average time to process single-life and reversionary annuity poli-

cies using the recurrence approach to calculating reserves. The linear scaling of the

recurrence approach, with increasing number of steps, for both types of annuity, is

clear: linear scaling agrees with the complexities derived in Section 3.4.1. The fact

that the slope of the line for the reversionary annuity policies is roughly twice the slope

for the single-life annuity policies is a result of the fact that, for a reversionary annuity,

there are twice as many lives for which the probability of survival needs to be obtained

and, per Equation 3.1.4, two reserve factors are required at each step.

5.2.4.2 Verifying Correctness

Section 5.1.4 noted that regression testing was performed as part of each optimisation

phase: for the optimisations discussed in Sections 5.2.1, 5.2.2 and 5.2.3, the output

for each policy was verified to be the same to 6 significant decimal figures. However,

because a new algorithm was introduced here, more stringent testing was performed to

104

300 360 420 480 540 600 660 720 780 840 900 960 1020
0

5

10

15

20

25

30

Number of Projection Steps

A
ve

ra
ge

 T
im

e
pe

r
Po

lic
y

(m
ic

ro
se

co
nd

s)

Single Life
Reversionary

Figure 5.3 Processing times (in microseconds) using recurrence relation for different annuity
contracts: times were obtained using a single core of the Cray, and are the average
over 100,000 policies.

demonstrate the correctness of the new algorithm.

Ideally, the results produced using the new recurrence algorithm should be the same

(to the level of machine precision) as the results produced using the old summation

algorithm. This may be verified by producing results from both approaches in binary

format, rather than ASCII format, and comparing them using readily available, stan-

dard tools. However, there are known failings with computer arithmetic: a common

example is summing a collection of real-valued variables of varying magnitudes in

different orders producing different answers. These failings become apparent in this

project: examples include the recurrence approach’s use of repeated multiplication

compared to the summation approach’s use of the power function, and the accumulation

of errors from the recurrence’s use of the reserve at the next time step in the calculation

of the current reserve.

Therefore, to allow for the fact that it is impossible to verify exact numerical equality of

the results from each approach, the output for each policy was verified to be the same

to 11 significant decimal figures, rather than just 6. Taken with the mathematical

equivalence of the approaches, as derived in Section 3.2, the numerical equivalence at

this level of accuracy provides evidence that the differences in reserves are immaterial by

105

Optimisation Speedup Rate

Serial optimisations in MSc (see Table 5.1) 17
Remove calls to power function 2.60× 44
Implement recurrence algorithm 105.3× 4,600
Change to multi-core platform 1.87× 8,600
OpenMP parallelisation (48 threads on 48 cores) 46.6× 390,000

Table 5.2 Performance rate (policies per second) as optimisation of profitability code
progressed.

any practical definition of materiality, e.g. the definitions discussed in Section 6.7.2.

5.3 Performance Implications

Table 5.2 summarises the increases in processing rate discussed in the previous sections.

The overall improvement of five orders of magnitude is significant: it allows runs which

would have previously taken many hours to perform to be completed in a few seconds,

potentially allowing a paradigm shift in the way that life offices work.

Figure 5.4 shows the close to linear scaling of the OpenMP parallelisation on the

Opteron cluster. The code scales well up to 24 threads on 24 cores and scales reasonably

well to 48 threads on 48 cores, being roughly 94.5% efficient at that point.

5.4 Summary

Figures 5.2 and 5.3 show that the speedup resulting from, and linearity of, the recur-

rence relation agree with the theoretical expectation which results from changing the

complexity of the reserving algorithm from O(T 2) to O(T) for T projection steps.

The discussion of the change in algorithm in Section 5.2.4 indicates that experimental

timings agree with theoretical expectation, as derived in Section 3.4.1.

The scaling indicated by Figure 5.4 suggests that the OpenMP implementation may

not be particularly efficient on more than about 64 cores. However, this is not currently

a major concern because SMPs with this number of cores are not common, especially

in life offices at the present time.

106

0 4 8 12 16 20 24 28 32 36 40 44 48
0

100

200

300

400

Number of Threads

Pr
oc

es
si

ng
 R

at
e

(T
ho

us
an

d
Po

lic
ie

s
pe

r
Se

co
nd

)

Ideal
Achieved

Figure 5.4 Performance using OpenMP on the Opteron cluster: for each thread count, the
ideal processing rate is derived from the time taken to process 4× 105 single life
annuity policies on one thread.

107

Chapter 6

Simplifying Interpolation in the

Mortality Table

It is highly unlikely that many policyholders will have their birthdays on the valuation

date, so that most policyholders will be a non-integer age at that date: this becomes

more relevant when monthly projections are being performed since the ages will be non-

integer for at least 11 of the 12 steps. In order to calculate survival probabilities for

non-integer ages, it is necessary to obtain lx or qx for fractional ages using interpolation

between the values in the life table (which are tabulated for integral ages). Interpolation

in the life table becomes more prominent for two life annuities, thereby increasing the

importance of efficient interpolation. Therefore, this chapter considers simplifications

to the interpolation process.

Section 6.1 provides an overview of the significance of interpolation, both in terms of the

proportion of execution time taken and the accuracy of the financial results produced.

It also contains a brief recap of the important actuarial concepts used in this chapter.

Section 6.2 introduces the concept of the force of mortality, which may be considered

as the formula underlying the mortality. The section contains a discussion of how

to fit a polynomial to data obtained from published life tables, and how the mortality

rates derived from the fitted polynomial compare to the rates in those published tables.

Section 6.3 discusses what is apparently the simplest form of interpolation, i.e. linear

interpolation in the lx’s. As the section shows, there is a major problem with this

method, and that makes it wholly unusable. Section 6.4 discusses the interpolation

used in the commercial environment, i.e. cubic interpolation in the lx’s. This method

solved the problem with linear interpolation, but the method has a high calculational

108

cost, and that makes its use undesirable. Section 6.5 discusses an alternative simple

form of interpolation, i.e. linear interpolation in the qx’s. However, again there is a

major problem with this interpolation method which prohibits its use. Section 6.6

introduces an alternative form of deriving mortality rates for fractional step lengths.

This method is based on the binomial expansion, and requires a slight adjustment

which is also explained. Section 6.7 introduces a measure of goodness-of-fit of each of

the various methods: this measure shows that the approximation based on the binomial

expansion is almost as good as the complex method used in the commercial approach,

and is far better than the simple interpolation methods. Finally, Section 6.8 contains

a summary of the chapter.

6.1 Overview

As mentioned in Section 5.2.1, the routine which interpolates within the life table was

the first to be manually optimised in an MSc project [86] which preceded this one:

that optimisation improved the performance of the interpolation routine by a factor of

roughly 43×. Despite that improvement, the profile at the end of the MSc showed the

interpolation routine to be the most heavily occupied routine in the program.

In order to perform projections using monthly time steps, monthly survival probabilities

are required. However, in general, qx or lx are tabulated only at integral ages, and so

it is necessary to use interpolation to obtain probabilities at fractional ages, and for

fractions of a year. Various methods of interpolation are possible, but these each

have their failings: some of these interpolation methods are discussed in this chapter.

Furthermore, as this chapter demonstrates, the method used to obtain the monthly

death probabilities dramatically influences the progression of these probabilities.

A property of death probabilities which is obviously desirable is that “the probability

of dying in any of 12 consecutive months should be the same as the probability of

dying within the year comprising those 12 months”: this chapter also considers how

this requirement guides the method of interpolation.

Terminology

As with previous chapters, standard International Actuarial Notation [39] is used in

this chapter. Therefore, for x ∈ R+, and t ∈ [0, 1],

⊛ tpx is the probability of a life aged precisely x surviving for time t,

109

⊛ tqx is the probability of a life aged precisely x dying within time t: when time

units are years, 1
12
qx is the probability of a life aged precisely x dying within one

month,

⊛ lx+t is the expected number of lives at age x + t, given a particular number of

lives at age x.

6.2 Force of Mortality

Any method of interpolating in a life table will lead to some level of approximation: it

is therefore necessary to find a (continuous) function that may be used as the ground

truth, against which various methods of interpolation may be measured. Although

there is no way of directly obtaining fractional survival probabilities from the tabulated

values of qx or lx, it is possible to use a calculation based on the force of mortality, µx.

A standard formula [65, Section 1.6] gives

tpx = exp

(
−
∫ t

0
µx+r dr

)
(6.2.1)

Use of the force of mortality allows monthly survival probabilities to be determined

exactly; these exact values may be used to gauge the effect of the various interpolation

methods.

6.2.1 Survival Probabilities

By modelling the force of mortality as a function of age gives µr = µ(r) so that

tpx = exp

(
−
∫ x+t

x
µ(r) dr

)
(6.2.2)

For accuracy in fitting an appropriate model, and to allow for improvements in mor-

tality, the Continuous Mortality Investigation Bureau would fit a curve to ln (µr) [40].

However, for the purpose of demonstrating the effect of interpolation, it suffices to

model to µr, rather than ln (µr).

Values of qx are tabulated, and so the values of px may be readily obtained. However, it

is simpler to check goodness-of-fit (and fewer calculations are required) if the exponen-

tiation is removed. Therefore, for the purpose of investigating interpolation, mortality

is modelled by fitting a low-order polynomial to the force of mortality obtained from

110

60 65 70 75 80 85 90 95 100
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Age x

−
ln

(p
x)

PMA92
Quadratic
Cubic
Quartic

Figure 6.1 Polynomials of low degree fitted to − ln (px) where the qx’s are from PMA92
Ultimate.

rearranging Equation 6.2.2, viz:

− ln (tpx) =

∫ x+t

x
µ(r) dr (6.2.3)

To allow for the fact that the tabulated values are for death in the next year, setting

t = 1 gives

− ln (px) =

∫ x+1

x
µ(r) dr

6.2.2 Fitting Polynomials

Figure 6.1 shows the effect of fitting low order polynomials to − ln (px) where the

corresponding qx’s are from the PMA92 Ultimate table and the fitting process used

least squares. The age range in the fitting process was restricted to 60 ≤ x ≤ 100 for

two reasons: firstly, in a cohort of recent, normal health, retirees there are unlikely to be

many policies where the policyholder is below age 60, and secondly, for a representative

cohort of retirees, age 100 is likely to be attained in roughly 40 years, by which time

the effect of discounting will outweigh any effect caused by inaccuracy in mortality

calculations.

111

It is apparent from Figure 6.1 that a quadratic curve does not provide a very good

fit. Closer inspection also shows that the cubic exhibits decreasing mortality at the

younger ages: while decreasing mortality is a feature of childhood mortality, mortality

at pensioners’ ages is generally expected to be a monotonically increasing function of

age. Therefore, the lowest order, well fitting, polynomial with desirable properties is

the quartic.

6.2.2.1 Quartic Polynomial

To a relatively small degree of precision, the fitted quartic is

− ln (px) = −1.048× 10−7 x4 + 3.649× 10−5 x3 − 4.395× 10−3 x2

+ 2.256× 10−1 x− 4.235 (6.2.4)

Using the fitted quartic to obtain monthly probabilities is straightforward:

− ln (tpx) =

∫ x+t

x
µ(r) dr

=

∫ x+t

x

(
ar4 + br3 + cr2 + dr + e

)
dr (6.2.5)

so that, for one year survival probabilities, setting t = 1 gives

− ln (px) = ax4 + (2a+ b)x3 +

(
2a+

3

2
b+ c

)
x2

+ (a+ b+ c+ d)x+

(
a

5
+

b

4
+

c

3
+

d

2
+ e

)
(6.2.6)

Equating coefficients between Equations 6.2.4 and 6.2.6 leads to

a b c d e

−1.048× 10−7 3.670× 10−5 −4.450× 10−3 2.300× 10−1 −4.349

For monthly probabilities, using these values, and setting t = 1
12 in Equation 6.2.5,

gives

− ln
(

1
12
px

)
= −8.737× 10−9 x4 + 3.058× 10−6 x3 − 3.704× 10−4 x2

+ 1.914× 10−2 x− 3.616× 10−1 (6.2.7)

Generating monthly death probabilities using Equation 6.2.7 leads to a monotonically

increasing, non-negative set of values for 1
12
qx for 60 ≤ x ≤ 100. Therefore, this quartic

112

fit will be used to create the ‘true’ monthly mortality throughout the remainder of this

chapter.

6.2.3 Fitted Mortality

As stated at the start of this chapter, the purpose of fitting the polynomial is to compare

the effect of various methods of interpolation. To do this, it is necessary to obtain the

annual mortality rates which are derived from the fitted monthly rates: the actual

monthly death probabilities are

1
12
qx = 1− 1

12
px

where 1
12
px may be obtained from Equation 6.2.7.

The monthly death probabilities are the base-line, against which all approximations in

the remainder of this chapter will be compared. The fitted annual mortality rates may

be obtained from these fitted monthly death probabilities as

qx = 1− px = 1−
11∏
k=0

1
12
px+ k

12

= 1−
11∏
k=0

(
1− 1

12
qx+ k

12

)
(6.2.8)

Figure 6.2 shows the original rates tabulated in PMA92 Ultimate, and the annual rates

fitted using the quartic in Equation 6.2.7 and the relationship in Equation 6.2.8: there

is clear correspondence between the values at each age, indicating that the fitted quartic

is appropriate.

6.2.4 Consistency of Probabilities

When interpolating in the lx’s, the probability of surviving for 12 consecutive monthly

steps is

11∏
k=0

1
12
px+t+ k

12
=

11∏
k=0

exp

(
−
∫ x+t+ k

12
+ 1

12

x+t+ k
12

µ(r) dr

)

= exp

(
−

11∑
k=0

∫ x+t+ k
12

+ 1
12

x+t+ k
12

µ(r) dr

)

113

60 65 70 75 80 85 90 95 100
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Age x

q x

PMA92
Derived

Figure 6.2 Annual death probabilities as tabulated in PMA92 Ultimate, and derived from
fitting a quartic polynomial to the force of mortality.

= exp

(
−
∫ x+t+1

x+t
µ(r) dr

)
= 1px+t

Hence, the progression of monthly survival probabilities obtained via the force of

mortality agrees to the annual survival probability: later parts of this chapter show that

the consistency between the two methods of calculating probability of survival for one

year is not always present for other methods of obtaining monthly death probabilities.

6.3 Linear Interpolation in the lx’s

A standard method of calculating probabilities is to use tpx =
lx+t

lx
. A simple method

of obtaining lx+t for non-integral ages is linear interpolation in the lx’s. Also, in-

tuitively, the principle quantity is the number of lives, rather than the number of

deaths. Therefore linear interpolation in the lx’s is appealing from the perspective of

intuitive simplicity. However, as this section shows, there are problems with this form

of interpolation.

114

6.3.1 Consistency of Probabilities

When interpolating in the lx’s, the probability of surviving for 12 consecutive monthly

steps is

11∏
k=0

1
12
px+t+ k

12
=

11∏
k=0

lx+t+ k
12

+ 1
12

lx+t+ k
12

=
lx+t+ 1

12

lx+t+ 0
12

×
lx+t+ 2

12

lx+t+ 1
12

× · · · ×
lx+t+ 12

12

lx+t+ 11
12

=
lx+t+1

lx+t

= 1px+t

Hence, interpolation in the lx’s gives a progression of survival probabilities which agrees

to that obtained directly from the underlying table, irrespective of the actual method

of interpolation: this is because the lx’s used as knot-points for the interpolation are

the lx’s in the table.

6.3.2 Progression of Probabilities

A standard formula [65, Section 1.6] using lx’s gives

1
12
qx+t = 1−

lx+t+ 1
12

lx+t

which, using linear interpolation between lx’s, is

≈ 1−
(
1−

[
t+ 1

12

])
lx +

([
t+ 1

12

])
lx+1

(1− t) lx + (t) lx+1

and, since lx+1 = (1− qx) lx, this is

= 1−
(
1−

[
t+ 1

12

])
lx +

(
t+ 1

12

)
(1− qx) lx

(1− t) lx + t (1− qx) lx

which simplifies to

= 1−
1− t qx − 1

12 qx

1− t qx

115

65 66 67 68 69 70
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
x 10

−3

Age

P
r[

de
at

h
in

 m
on

th
]

Formulaic
Linear Interpolation in l

x

Figure 6.3 Progression of probability of death within the next month, for a life initially aged
65 1

3 , increasing by 1
12

th thereafter, using linear interpolation in the lx’s.

and hence, ultimately,

1
12
qx+t ≈

1

12
(

1
qx

− t
)

Since, in this form, 1
12
qx+t is a function of only one qx, there are two phenomena

which prohibit the use of this form of interpolation. Firstly, for ages between about

55 and about 75, the size of qx relative to t leads to the probability of dying within

one month being an almost constant function of t for t ∈ (0, 1), as shown in Figure

6.3: an alternative interpretation of this is that, since the values of lx’s are tabulated

for x ∈ Z+, “the probability of dying within one month only changes significantly on

a birthday”, which is clearly absurd. Secondly, for ages over about 85, the progression

of monthly death probabilities starts to oscillate wildly: for illustration, values derived

from using qx’s obtained from Equation 6.2.7 give

1
12
q88 11

12
≈ 15.1× 10−3 , 1

12
q89 ≈ 13.9× 10−3

and

1
12
q94 11

12
≈ 28.8× 10−3 , 1

12
q95 ≈ 23.1× 10−3

116

The interpretation of this is that “the probability of dying within one month signifi-

cantly reduces on a birthday”, which is also absurd.

6.4 Implementation in a Commercial Environment

Since linear interpolation within the lx’s is not desirable because the resultant probabil-

ities have strange properties, a different approach is required. One particular life office

uses cubic interpolation within the lx’s to obtain survival probabilities: that approach

is considered in this section.

6.4.1 Degree of Interpolation Polynomial

In a mortality investigation, the fundamental quantity observed is the number of lives

at each particular age: the mortality rates are derived from these observations, possibly

via the force of mortality [6, Chapter 2]. Therefore valuation actuaries within several

life offices consider agreement between the lx’s used in their projection and the lx’s in

the life table to be of fundamental importance, and hence interpolation must be within

the lx’s: this agrees with Section 6.3.1 because the tabulated lx’s are the knot-points

when interpolating in the lx’s.

A more realistic progression of probabilities may be obtained using a higher degree

interpolation polynomial. In particular, so as not to bias the interpolation toward

either higher or lower ages, it is possible to fit a cubic based on the two integral ages

either side of the fractional age at which interpolation is being performed. The knot-

points used are the lx’s from the underlying table so that, by construction, the derived

lx’s must agree to the table.

Figure 6.5 shows the deviation from the true monthly mortality (obtained using Equa-

tion 6.2.7) and various approaches to interpolation: it shows that using cubic interpo-

lation in the lx’s to obtain the probability of death within one month overcomes the

problem of stepwise increases in the probability of death (seen in Section 6.3.2) and the

values are particularly close to the true values. It therefore appears that using a more

computationally intensive interpolation method might give ‘correct’ probabilities. This

is the approach taken in the life office which inspired this investigation.

The original implementation used in this project, which mirrors this commercial prac-

tice, is based on fitting a cubic curve to the lx’s which are derived from the qx’s in the

117

table.

6.4.2 Initial Implementation

The original program in the commercial environment was only ever tested and run

using monthly steps throughout the entire projection. To avoid the absurd progression

of monthly survival probabilities resulting from linear interpolation in lx’s, and to

produce a sequence of lx’s which does agree to the original life table, a somewhat

convoluted approach has been implemented.

The stages used in the commercial environment are:

i) use the qx’s in the relevant table to create a series of lx’s: since the qx’s are

tabulated for integral ages, the obtained lx’s will relate to integral ages;

ii) use cubic interpolation in the lx’s, based on two integer ages either side of the

required age, to obtain the sequence of l’s at fractional ages, i.e. {lx+t+f} for

x ∈ Z+, t ∈ R+ and f ∈ [0, 1]: since interpolation in the lx’s is used, the sequence

{lx+t+f} will agree to the table when (x+ t+ f) ∈ Z+;

iii) obtain fqx+t = 1−
lx+t+f

lx+t
for f ∈ (0, 1) from the l’s produced in the previous step:

this ensures that the progression of l’s obtained from the probabilities matches the

lx’s in the table.

6.4.3 Complexity of the Commercial Implementation

After the optimisation in the MSc project [86, Section 3], the routine to calculate lx+t

using cubic interpolation in the lx’s can be described by the following:

Input: actualAge as x ∈ R+

Input: lxTable (as an array of lx’s at integer ages)

1: ageLastBirthday = floor(actualAge)

2: ageFraction = actualAge - ageLastBirthday

3: for k = 0 to 3 do

4: j = k - 1

5: lx(k) = lxTable(ageLastBirthday + j)

6: ageAdj(k) = ageFraction - j

7: end for

8: factor(0) = - ONE SIXTH * ageAdj(1) * ageAdj(2) * ageAdj(3)

9: factor(1) = ONE HALF * ageAdj(0) * ageAdj(2) * ageAdj(3)

118

10: factor(2) = - ONE HALF * ageAdj(0) * ageAdj(1) * ageAdj(3)

11: factor(3) = ONE SIXTH * ageAdj(0) * ageAdj(1) * ageAdj(2)

12: reqdLx = factor(0) * lx(0) + factor(1) * lx(1)

+ factor(2) * lx(2) + factor(3) * lx(3)

Output: reqdLx

Overall, therefore, the commercial implementation for the process of calculating monthly

death probabilities can be described as

Input: x+ t, the age at the start of the interval

Input: f , the length of the interval

1: from age x+ t, use cubic interpolation in the lx’s to obtain lx+t

2: from age x+ t+ f , use cubic interpolation in the lx’s to obtain lx+t+f

3: obtain fqx+t = 1−
lx+t+f

lx+t
Output: fqx+t

Note that ONE SIXTH and ONE HALF have been set as macro constants to remove the need

to calculate or retrieve them. Allowing for the high degree of compiler optimisation

used, it is possible that many of the intermediate variables are retained in registers:

this becomes more probable if the interpolation routine is inlined within the overall

routine. Therefore it is likely that the only values which are required to be retrieved

from memory are the 8 values from lxTable(:). Also, floating point arithmetic takes

longer than integer arithmetic and so it seems reasonable to ignore the operations which

relate to manipulation of indices. Finally, because the value of fqx+t is output from the

overall function, it seems unlikely that it will be stored. Therefore, the operation count

for this approach to obtaining Pr[die within f , starting at age x+ t] may be estimated

as

operation load floor() store × + − ÷
count 8 2 0 32 7 11 1

6.5 Linear Interpolation in the qx’s

In general, when a life table is published it does not only contain the lx’s: it also contains

the qx’s for integral ages. Therefore, a straightforward alternative to interpolating in

the lx’s is using interpolation within the qx’s to obtain monthly probabilities.

119

6.5.1 Progression of Probabilities

Assuming a uniform distribution of deaths, the standard actuarial result [6, Section

1.47] gives

1
12
qx+t ≡

1

12
qx+t

which, using linear interpolation between qx’s populated for x ∈ Z+, is

≈ 1

12
[(1− t) qx + t qx+1]

This is a function of two adjacent qx’s so that, for pensioners’ ages, 1
12
qx+t is a contin-

uously increasing (albeit piecewise linear) function of t. Therefore, linear interpolation

in the qx’s leads to a more realistic progression of probabilities than linear interpolation

in the lx’s.

However, as Figure 6.5 shows, the probabilities obtained by this method have a bias

towards heavy mortality at lower ages. Further, as mortality increases at older ages,

the contribution from qx is not compensated for by the contribution from qx+1 so that

the interpolated mortality at these older ages suffers a bias towards being too light.

6.5.2 Consistency of Probabilities

Using linear interpolation in the qx’s, the probability of surviving for 12 consecutive

monthly steps is

11∏
k=0

1
12
px+t+ k

12
=

11∏
k=0

(
1− 1

12
qx+t+ k

12

)

which, assuming a uniform distribution of deaths, is

≈
11∏
k=0

(
1− 1

12
qx+t+ k

12

)

and, by linear interpolation, this is

≈
11∏
k=0

(
1− 1

12
[(1− k) qx+t + k qx+t+1]

)

120

=

11∏
k=0

(
1− 1

12
[(1− px+t) + k (px+t − px+t+1)]

)

There is no clear path to showing this equal to 1px+t and so it is difficult to see how

interpolating in the qx’s produces anything which matches the lx’s in the underlying

table. In fact, numerically, there is evidence that interpolation in the qx’s produces a

sequence of lx’s which do not agree to the underlying table. This lack of agreement with

the underlying table discourages the use of linear interpolation in the qx’s: certainly,

this is the reason it is not used in some life offices.

However, by using a different approach it is possible to produce very similar death

probabilities, thereby leading to lx values which are similar to those in the original

table.

6.6 Alternative Implementation

Sections 6.3 and 6.5 have demonstrated that linear interpolation is not a plausible

approach to obtaining probabilities. However, by considering a further approximation

to the probabilities it is possible to improve the performance of the routines which

calculate the probabilities.

6.6.1 Interpolation Methodology

The value required is fqx, i.e. the probability that a life currently aged precisely x dies

within a fraction f of a year. The binomial expansion may be used to obtain

fqx ≈ 1− (1− qx)
f

≡ f qx

[
1− f − 1

2
qx

[
1− f − 2

3
qx

[
1− f − 3

4
qx [· · ·]

]]]
Using only the first term of the expansion gives

fqx ≈ f qx

which is precisely the approximation obtained by using the assumption of uniform

distribution of deaths [6, Section 1.47]. Using the first two terms of the expansion gives

fqx ≈ f qx

(
1− f − 1

2
qx

)
(6.6.1)

121

Jan 1st Dec 31stJun 30th

HHHj

mid
June ����

mid
July

� -51
2 months

�����

Monthly Rate applies

�����

Annual Rate applies

Figure 6.4 Required age deduction to ensure equivalence of average monthly mortality and
average yearly mortality.

so that, for a monthly step, where f = 1
12 ,

1
12
qx ≈ qx

12

(
1 +

11

2

qx
12

)
(6.6.2)

In many statistical applications, a continuity correction is made when applying con-

tinuous distributions to discrete data: that correction takes the form of a deduction of
1
2 from the discrete value. For mortality, the rate which should apply to the middle

of a monthly step should be the same as the rate which would apply to the middle of

a yearly step, if the mid-points of the intervals coincided: this is depicted in Figure

6.4 which considers the mortality applicable to a calendar year starting on January 1st.

Hence, the qx which should be used in the binomial expansion is that rate which applies

to a life 51
2 months younger, i.e. qx−5.5/12 where x is the actual age of the life. Figure 6.5

shows that the monthly death probabilities, obtained by setting f = 1
12 in this method,

show a slight deviation from the expected values, but that deviation is extremely small

compared to the deviations resulting from other interpolation methods.

6.6.2 Complexity of the Simplification

For the simplification, the process is

Input: actualAge as x ∈ R+

Input: f , the length of the interval

Input: qxTable (as an array of qx’s at integer ages)

1: effectiveAge = x′ = x− 5.5
12

2: qxAge = floor(effectiveAge)

122

3: ageFraction = effectiveAge - qxAge

4: use linear interpolation in the qx’s to obtain qx′

i.e. qx′ = (1 - ageFraction) * qxTable(qxAge)

+ ageFraction * qxTable(qxAge + 1)

5: calculate fqx′ using Equation 6.6.1

i.e. fqx′ = f * qx′ * (1 - 0.5 * (f − 1) * qx′)

Output: fqx′

Using the same assumptions as Section 6.4.3, the complexity of this approach is esti-

mated as

operation load floor() store × + − ÷
count 2 1 0 6 1 5 0

Hence, compared to the commercial implementation discussed in Section 6.4, this

simplification leads to a significant reduction in data retrieval and computation: the

resulting improvement in performance is discussed in Section 8.3.1.

6.6.3 Higher Order Approximation

Using the first three terms of the expansion gives

fqx ≈ f qx

(
1− f − 1

2
qx +

f − 1

2

f − 2

3
(qx)

2

)
so that, for monthly death probabilities, where f = 1

12 ,

1
12
qx ≈ qx

12

(
1 +

11

24
qx +

11

24

10

36
(qx)

2

)
The deviations of the monthly death probabilities (obtained from this approximation)

from the expected values are shown in Figure 6.5. Given the size of qx, and hence of

(qx)
2, the probabilities obtained using the first three terms do not really diverge from

those obtained using only the first two terms until about 20 years into the projection, by

which time the effect of discounting will override the change caused by any error in the

estimation of the probability. Therefore, there is an increase in volume of calculations

for no significant change in qx’s, and hence no significant improvement in the accuracy

of the financial results.

123

65 66 67 68 69 70
−1

0

1

2
x 10

−4

Age

D
ev

ia
tio

n
[In

te
rp

ol
at

ed
 −

 F
or

m
ul

ai
c]

Linear Interpolation in l

x

Cubic Interpolation in l
x

Linear Interpolation in q
x

Corrected Interpolation in q
x
 (2 terms)

Corrected Interpolation in q
x
 (3 terms)

Figure 6.5 Deviation from known formulaic value of monthly probabilities of death, using
different interpolation methods, for a life initially aged 651

3 , with the age
increasing by 1

12
th thereafter, to a maximum of age 70.

6.7 Effect of Interpolation Method

Although this chapter has discussed various forms of interpolation, there has been no

attempt to justify the quality of those interpolations. This section quantifies the relative

differences of those methods from the ‘true’ expected values obtained using Equation

6.2.7.

6.7.1 Goodness of Fit

Figure 6.5 shows the deviation of the interpolated values from the known formulaic

values: the deviation at age x is

δx = q̂x − q̊x

where q̂x is the interpolated value and q̊x is the value obtained from the formula derived

in Section 6.2.2. Although Figure 6.5 provides evidence that the different methods of

interpolation differ in their closeness to the ‘correct’ value, it does not quantify the

accuracy of each of the methods.

124

65 70 75 80 85 90 95
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5
x 10

−3

Age

D
ev

ia
tio

n
[In

te
rp

ol
at

ed
 −

 F
or

m
ul

ai
c]

Linear Interpolation in l

x

Cubic Interpolation in l
x

Linear Interpolation in q
x

Corrected Interpolation in q
x
 (2 terms)

Corrected Interpolation in q
x
 (3 terms)

Figure 6.6 Deviation from known formulaic value of monthly probabilities of death, using
different interpolation methods, for a life initially aged 651

3 , with the age
increasing by 1

12
th thereafter, to a maximum of age 95.

A simple measure of closeness is the RMS value, i.e.

ϕ =

√
1

n

∑
x

(q̂x − q̊x)
2

However, this is skewed by large deviations from large values where, overall, the relative

deviation may not be too large: this becomes especially apparent at older ages, as shown

in Figure 6.6. Therefore, a better measure is one akin to the chi-squared statistic, as

used in goodness-of-fit tests: this leads to the closeness, ξ, being

ξ =
∑
x

(q̂x − q̊x)
2

q̊x

where the sum is over monthly ages xm for 65 ≤ xm ≤ 95, i.e. the same as the range in

Figure 6.6. The closeness, using this measure, of each of the interpolation techniques

is shown in Table 6.1, from which it is apparent that the commercial approach of

using cubic interpolation in the lx’s gives the best results with regard to correctness of

probabilities. The alternative implementation from Section 6.6 gives a reasonably good

result: there is no real need to use a third term in the expansion since the deviations

from the known formulaic values do not start to become significant until after the effect

125

Interpolation Method Closeness, ξ

Linear Interpolation in lx 3.30× 10−3

Cubic Interpolation in lx 8.18× 10−8

Linear Interpolation in qx 8.07× 10−3

Corrected Interpolation in qx (2 terms) 2.56× 10−4

Corrected Interpolation in qx (3 terms) 6.38× 10−6

Table 6.1 Closeness of interpolation to expected values for monthly probability of death.

Policy Type Method Payments Renewal Exps Investment Exps

Single Life Commercial 1.4847× 1010 4.7824× 1012 1.5776× 1011

Approximation 1.4844× 1010 4.7776× 1012 1.5760× 1011

Reversionary Commercial 8.1767× 10 8 2.1832× 1011 7.5464× 10 9

Approximation 8.1791× 10 8 2.1810× 1011 7.5390× 10 9

Joint Life Commercial 2.0762× 10 9 2.4533× 10 9 7.0526× 10 7

Approximation 2.0755× 10 9 2.4482× 10 9 7.0391× 10 7

Last Survivor Commercial 2.9021× 10 9 1.8547× 1011 6.3089× 10 9

Approximation 2.9017× 10 9 1.8528× 1011 6.3027× 10 9

Table 6.2 Initial reserves for representative portfolio of 500,000 policies: the ‘commercial’
implementation uses cubic interpolation in the lx’s (as described in Section 6.4.2),
and the ‘approximation’ uses the algorithm in Section 6.6.

of discounting has swamped the effect of survival probabilities.

6.7.2 Financial Consequences

The validity of this simplification can be assessed by whether the change in financial

results is material. Several ‘definitions’ of materiality are available: in terms of financial

planning, a difference in results is usually considered immaterial if the results differ by

less than 1%, and an old definition of materiality, used by auditors, was that a difference

in results is immaterial if the difference is less than 5%. However, several life offices

are currently moving to a modern concept of materiality, i.e. “a difference in results is

immaterial if it does not change an economic decision which would be based on those

results” [47, QC11].

The initial reserves for the representative portfolio of 500,000 policies have been ob-

tained using the original commercial implementation based on cubic interpolation in

the lx’s, and the first two terms of the expansion in Equation 6.6.1: the results are

given in Table 6.2. The magnitude of the change in reserves is always less than 1
4%

which, by any practical definition, is immaterial.

126

The fact that the method of interpolation does not make a significant difference to the

financial results is to be expected from the fact that the basic summation formula for

a single life annuity with level payments is

a′x =
∑
t

vt tpx

so that a small change in tqx has no real effect on tpx which

a) remains ‘imperceptibly close’ to 1 for ages up to about 85, and

b) is overwhelmed by vt for values of t greater than about 15 so that, when the age

implies that tpx is not particularly close to 1, the discounting dominates anyway.

6.8 Summary

Linear interpolation in lx’s should be avoided because of the stepwise nature of the in-

crease in probabilities at low ages, and the erratic nature of the increase in probabilities

at high ages.

The commercial implementation uses a method based on cubic interpolation in the lx’s,

thereby producing a smooth progression of probabilities at the cost of a large amount

of computation. However, the monthly death probabilities produced are reasonably

close to those obtained from use of the correct mortality.

Linear interpolation in qx’s produces a smooth progression of probabilities, but these

are biased towards heavy mortality at ages where discounting does not override survival

probabilities.

The simplification using the binomial expansion produces probabilities which are smooth

and not systematically biased: the amount of computational work required is greatly

reduced compared to that required for the commercial implementation and there is no

need to use more than a relatively simple implementation of the expansion.

127

Chapter 7

Re-drawing Parameters

Section 2.6.1 noted that, at the RSE conference in 2014 [79], Smith indicated that it

is essential that interest rates be re-sampled every step. Despite this, there is a body

of thought which considers that a sequence of parameters drawn from a time series,

once drawn, may be re-used within the scenario in which the parameters were drawn,

without affecting the validity of the simulation. This chapter considers the rationale

behind, and consequences of, not re-drawing economic and demographic parameters at

each step.

Section 7.1 considers whether or not parameters need to be re-drawn in a Monte Carlo

simulation where the parameters are from a time series. Section 7.2 contains a complete

mathematical statement of the interpretation of Solvency II considered in this project.

A matrix form of the probability of transferring between states before a particular time

is presented for the main classes of policy type considered in Chapter 4: these matrices

allow the per-policy reserves to be obtained from the in-force reserves. Section 7.3

presents algorithms for possible implementations of the interpretation of Solvency II

considered in this project: there are alternatives for whether the in-force reserves are

calculated using the summation or recurrence approaches, and for each of these cases,

whether or not parameters are re-drawn. Section 7.4 considers the relative merits of

re-drawing parameters. Finally, Section 7.5 contains a summary of the chapter.

7.1 To Re-draw or Not To Re-draw

This chapter considers the paradigm under which parameters that are sampled from a

time series need not be re-drawn in each future time step because the values drawn at

128

outset will be equally valid for the particular time step to which they relate. However,

a smaller variance in the calculated values is obtained if the values are re-drawn.

Solvency II is a set of regulations enacted in Law: no law is completely unambiguous.

Within the UK, the standard interpretation appears to be that the parameters should be

re-drawn in each future step, per Smith’s presentation at the 2014 RSE conference [79].

Other countries may have other interpretations, but allowing for re-drawing considers

the worst computational case.

If the distributions from which the parameters are drawn do not change at each time

step, e.g. in order to reflect changes which result from management actions, changes in

legislation or a shortfall in a previous step, then (as noted in Section 3.2.5.3) it is not

necessary to re-draw the parameters: i.e. the values for each t, as drawn in the first

step, may be considered as valid for the entire projection. Under this approach, it is

possible to calculate in-force reserves at t = 0 in a manner which calculates the in-force

reserves for all future t > 0 as a by-product. However, by adopting this approach, it

is necessary to increase the number of scenarios at each future step in order to reduce

the statistical error in the final result: the increased number of scenarios are discussed

in Section 8.5.3.

It is not entirely clear that there is a particular advantage (in terms of accuracy of the

answer) in re-drawing from the mortality table every month: since changes in mortality

are gradual, re-drawing yearly should be sufficient. However, since the in-force reserves

need to be re-calculated in every step of the outer loop (to allow for interest and

inflation), it is appropriate to re-draw the mortality.

7.2 Mathematical Representation

Algorithm 2.1, in Section 2.3.3.1, gave an outline of the mathematical statement of the

algorithm for satisfying Solvency II requirements. This section gives a more complete

mathematical description of the calculations required to obtain Solvency II’s additional

capital requirement which allows the algorithms in Section 7.3 to be directly related

back to the underlying mathematical requirements.

129

7.2.1 Transitions between States before Time t

Let the matrix of probabilities of transition between states between times 0 and t be
Hx,t for a single life aged x at time 0

Hxy,t for two lives aged x and y at time 0

Hx,t for a collection of lives x at time 0

where t ∈ {0, 1, 2, . . . }. Then,

⊛ for t = 0, i.e. the start step the first step,

Hx,0 = Hxy,0 = Hx,0 = I

because it is not possible to move between states in a time interval of length zero,

and

⊛ for t ≥ 1 and various combinations of numbers of lives and possible states, the

matrices are populated as shown in the remainder of this section.

Note that Hx,t corresponds to

Pr[transition between time 0 and time t]

and so is not necessarily equal to Wx,t,1, which corresponds to

Pr[transition during step of length 1, starting at time t]

In fact

Hx,t =

t−1∏
s=0

Wx,s,1 t ∈ {1, 2, 3, . . . } (7.2.1)

In order to populate the matrix of probabilities of transition between states before time

t, it is useful to use more standard notation. There is a possibility that a life survives

for some time and then dies within a specified subsequent interval: this is the ‘deferred

probability of death within that interval’ and, by definition,

r|sqx = Pr[(x) survives for time r and then dies within further time s]

≡ Pr[(x) survives for time r]× Pr[(x+ r) dies within time s]

= rpx sqx+r

130

=
lx+r − lx+r+s

lx

where, per previous sections, (x) denotes a life aged precisely x. As usual, if the period

in which death may occur is 1 then the subscript may be dropped, i.e.

r|qx = r|1qx

= rpx qx+r

The following sub-sections simply state the stochastic matrices for various combinations

of number of lives and states: the proofs of the correctness of these matrices are given

in Appendix E.

7.2.1.1 Single Life Policies

For single life policies the matrices are straightforward:

⊛ for two states;

Hx,t =

(
tpx tqx

0 1

)
∀ t ∈ {1, 2, 3, . . . }

⊛ for three states;

Hx,t =

tpx t−1|qx t−1qx

0 0 1

0 0 1

 ∀ t ∈ {1, 2, 3, . . . }

⊛ for three states with one reversible transition;

Hx,t =

tp
00
x tp

01
x tp

02
x

tp
10
x tp

11
x tp

12
x

0 0 1

 ∀ t ∈ {1, 2, 3, . . . }

7.2.1.2 Two-Life Policies

For two-life policies, it is possible to make use of the mixed product property of

Kronecker products for matrices [36, Lemma 4.2.10]. This leads to the following:

131

⊛ for two states;

Hxy,t =

tpx tpy tpx tqy tqx tpy tqx tqy

0 tpx 0 tqx

0 0 tpy tqy

0 0 0 1

 ∀ t ∈ {1, 2, 3, . . . }

=

(
tpx tqx

0 1

)
⊗

(
tpy tqy

0 1

)
where ⊗ is the Kronecker product

= Hx,t ⊗Hy,t

⊛ for three states;

Hxy,t = Hx,t ⊗Hy,t ∀ t ∈ {1, 2, 3, . . . }

=

tpx t−1|qx t−1qx

0 0 1

0 0 1

⊗

tpy t−1|qy t−1qx

0 0 1

0 0 1

7.2.1.3 Calculating Probabilities of Transitions between States

Although Hx,t is the matrix of probabilities for a collection of lives moving between

states in t steps, there is no need to perform any matrix multiplications in order to

populate Hx,t: the fact that each entry is a product of transition probabilities for one

or more lives means that it suffices to perform look-ups into mortality tables or, in the

case of sickness benefits, morbidity tables.

For example, consider a two-life two-state model: from Section 7.2.1.2, the required

matrix is

Hxy,t =

tpx tpy tpx tqy tqx tpy tqx tqy

0 tpx 0 tqx

0 0 tpy tqy

0 0 0 1

132

which, using Equation 2.1.2, is

=

lx+t

lx

ly+t

ly

lx+t

lx

ly − ly+t

ly

lx − lx+t

lx

ly+t

ly

lx − lx+t

lx

ly − ly+t

ly

0
lx+t

lx
0

lx − lx+t

lx

0 0
ly+t

ly

ly − ly+t

ly

0 0 0 1

Therefore, so long as the look-ups can be performed in constant time, calculation of

Hx,t, for any number of lives, and any value of t, is linear in the number of lives.

7.2.2 Mathematical Formulation of ACR

Starting from Line 26 of Algorithm 2.1, the additional capital requirement is

ACR = θ
∑
t>0

max(V̂ ′
t − B̂t, 0)

As in Algorithm 2.1, let J be the number of scenarios, and let j ∈ {1, 2, . . . , J} be the

index of the individual scenarios. Let
99.5%
max

j
{Vt,j} be the 99.5th percentile V over the

scenarios at step t, and let j∗(t) be the index of the scenario having the 99.5th percentile

value of Vt,j . Finally, let dt1,t2,j∗(t) be the discount factor from time t1 to time t1 + t2

using interest rates from scenario j∗(t). Then, allowing for sorting to find the 99.5th

percentile reserve,

ACR = θ

T∑
t=1

max

(
d0,t,j∗(t)

99.5%
max

j
{Vt,j} − d0,t,j∗(t) Bt, 0

)
(7.2.2)

Therefore, the calculationally-intensive part of Solvency II is finding the discounted

99.5th percentile total per-policy reserve at each time step,

d0,t,j∗(t)
99.5%
max

j
{Vt,j}j=1:J

which requires calculation of the set {Vt,j}j=1:J , i.e. the entire set of discounted total

per-policy reserves at each time step t where t ∈ {1, 2, · · · , T}.

133

From Section 3.2.5.3, Wx,t,g is the stochastic matrix containing probabilities of chang-

ing states between times t and t+g, for g ∈ {f, 1}. Also, from Section 7.2.1, Hx,t is the

stochastic matrix containing probabilities of changing states before the start of the tth

step. The lives are in a particular state at t = 0, so let hx,t be the row of Hx,t which

corresponds to the state of the lives at t = 0: i.e. hx,t is the vector of probabilities of

the lives migrating to a state at time t, given the state which they are in at t = 0.

The per-policy reserve at time t is the sum of in-force reserves over all possible states

which the lives could occupy at that time, allowing for the probability of transferring

to those states. Hence, adding a j index to emphasise that the reserve is dependent on

the scenario from which the parameters are drawn,

Vx,t,j = hx,t,j rx,t,j

where

– rx,t,j is a column vector of in-force reserves at time t, calculated using parameters

from scenario j,

– hx,t,j is the row vector of probabilities of the lives migrating to a state at time t,

given the state they are in at t = 0, and using parameters from scenario j, and

– Vx,t,j is a scalar which represents the per-policy reserve, at time t, using param-

eters from scenario j.

Hence, for scenario j, allowing for the fact that the lives x relate to policy p, so that x

may be used as summation index, the total per-policy reserve at time t is

Vt,j =
∑
x∈

policies

Vx,t,j

which, using the result in the previous paragraph to relate the per-policy reserve to the

in-force reserve for individual policies, is

=
∑
x∈

policies

hx,t,j rx,t,j

and, using the results from Equation 3.2.4, this is

=
∑
x∈

policies

hx,t,j

∞∑
s=0

dt,s+f,j Wx,t,s+f,j cx,t+s

where

134

– hx,t,j is the vector of probabilities of the lives migrating to a state at time t, given

the state they are in at time t = 0, using parameters from scenario j,

– dt1,t2,j is the discount factor from time t1 to time t1+ t2 using interest rates from

scenario j,

– Wx,t1,t2,j is the transition matrix containing probabilities of the lives x migrating

from one state at time t1 to another (not necessarily different) state at time t1+t2,

using mortality tables, morbidity tables, etc., from scenario j,

– cx,t is the vector of cash flows made at time t: these monetary amounts are

independent of scenarios.

Substituting this back into Equation 7.2.2, and allowing for the linearity of multiplica-

tion of the discount factor, gives

ACR = θ

T∑
t=1

max

99.5%
max

j

∑
x∈

policies

hx,t,j

∞∑
s=0

dt,s+f,j Wx,t,s+f,j cx,t+s

−Bt, 0

 d0,t,j∗(t)

(7.2.3)

7.3 Algorithms and Their Complexity

The process of obtaining the additional capital requirement was described in Algorithm

2.1 where, in Line 11, economic and demographic parameters are obtained for each

step in the t loop. Parts of Section 2.3.3.1 discussed the possibility of obtaining the

additional capital requirement without re-drawing parameters at each future time: it

is therefore necessary to consider the complexity of the two cases (re-drawing vs. not

re-drawing) separately.

Equation 7.2.3 details the mathematical relationship between the policies, the parame-

ters and the additional capital requirement. This section presents different algorithms,

each showing a possible implementation of the calculations required by Equation 7.2.3.

Note that, although the estimate of run time derived in Appendix A is used within

the life industry, it is rather naive: it is based on an O(T 2) summation at each of T

future steps, making the overall complexity of the estimate O(T 3). However, due its

naivety, this approach is not one which is pursued in this thesis: the algorithms in this

section are such that the worst complexity is O(T 2). Also note that the algorithms in

this section are conceptual algorithms: there may be implementational optimisations

such as allowing for Zero Reserve States, and fusing loops, but these do not affect

135

the complexity of the algorithms and so are not considered here. Finally note that, as

mentioned in Section 7.2.2, p and x are equivalent summation indices for the pth policy.

Therefore, in the following algorithms, the loops are indexed over p but variables are

indexed as x.

7.3.1 Parameters are Re-drawn

The requirement to re-draw parameters came from the initial interpretation of Solvency

II by the ex-modelling actuary from Aegon UK [15], as presented in Algorithm 2.1. This

interpretation is further enforced by Smith (at the RSE conference in 2014 [79]) where

he observed that it is essential that interest rates be re-sampled every step. Given the

predominantly actuarial nature of this project, the interpretation of the regulations by

actuaries is given prominence in the project: the majority of the analysis in Chapter 8

is therefore conducted on the basis that parameters be re-drawn each time step.

Allowing for re-drawing, the complete set of parameters is {Pt,j} where 1 ≤ t ≤ T ,

and 1 ≤ j ≤ J . Each element of the set consists of an entire basis: i.e. the discount

factors (derived from the interest rate) and the inflation factors for all time steps s,

where t ≤ s ≤ T , and mortality rates both sexes, for each of 120 ages, for each of

the years of birth covered by the data set. Note that for time step t the discount and

inflation factors for s < t are not required and can be omitted from the parameter

sets, but the full mortality tables are still needed. Section 8.1.3.2 discusses how the

parameter sets are stored in files. The actual values in the files do not affect the amount

of computation to be performed and are therefore unimportant in this project which

is only concerned with performance. In practice, the regulator will dictate the actual

values, or some means of producing them.

7.3.1.1 Naive Summation

Algorithm 7.1 calculates in-force reserves using the summation approach from Algo-

rithm 3.1 after re-drawing parameters at each step: conceptually, this is the simplest

intuitive description of the interpretation in Section 2.3.3.1. From the loops over t and

s in Lines 9 and 20 of Algorithm 7.1, calculation of the ACR using summation over a

maximum of T time steps when re-drawing parameters has complexity O(T 2).

136

7.3.1.2 Recurrence Relation

Algorithm 7.2 calculates in-force reserves using the recurrence approach from Algorithm

3.2 after re-drawing parameters at each step. From the loops over t and s in Lines 9

and 21 of Algorithm 7.2, calculation of the ACR using the recurrence relation over a

maximum of T time steps when re-drawing parameters has complexity O(T 2).

7.3.2 Parameters are not Re-drawn

The alternative interpretation, where parameters are not re-drawn, is also considered

in this project. When parameters are not re-drawn, the complete set of parameters is

{Pj} where 1 ≤ j ≤ J , and J is the number of scenarios. Again, each element of the

set consists of an entire basis, i.e. the discount factors and the inflation factors for all

time steps s, where 1 ≤ s ≤ T , and mortality rates both sexes, for each of 120 ages,

for each of the years of birth covered by the data set. Section 8.5.1 discusses how the

parameter values are stored in files: that section also contains the associated changes

to the program which are required to correctly implement this regime. As with the

case where parameters are re-drawn, the actual values in the files are not important in

this project.

7.3.2.1 Naive Summation

Algorithm 7.3 calculates in-force reserves using the summation approach from Algo-

rithm 3.1, but does not re-draw parameters at each step. Although parameters are not

re-drawn, the loops over t and s in Lines 12 and 22 of Algorithm 7.3 mean that the

process of obtaining the ACR for a projection over T time steps has complexity O(T 2).

7.3.2.2 Recurrence Relation

Algorithm 7.4 calculates in-force reserves using the summation approach from Algo-

rithm 3.2, but does not re-draw parameters at each step. Because parameters are not

re-drawn, it is possible to rearrange the loops so that there are no nested loops over

future time steps. The values of hx,t,j (the probabilities of transferring to a particular

state between time 0 and time t) must be calculated in the forward loop starting at

Line 19 in order that the values are known when they are required in the backward

137

loop, starting at Line 32, which calculates the per-policy reserves, rx,t,j . By storing the

values of Vt,j for t > 1 as the backward loop progresses, it is not necessary to perform

any recalculation.

Hence, since there are no nested loops over time, obtaining the ACR for a maximum of

T time steps using this approach has complexity O(T). Note that although it is possible

to perform loop fusion and permutations in this algorithm, those optimisations do not

add to the clarity of the underlying process and have therefore not been shown.

7.4 Relative Merits of Re-drawing or Not

The preceding sections have presented the definition of the ACR, and algorithms

to calculate it depending on whether or not parameters are re-drawn. This section

considers the relative merits of each approach.

Re-drawing parameters at each future step is generally accepted practice within life

offices in the UK, per [84]: it coincides with the view of actuaries that it is necessary

to produce a new yield curve in each step of the outer loop of a nested stochastic

projection of liabilities. Conversely, not re-drawing parameters requires further work

to establish the validity of the approach and hence permit acceptability by actuaries:

this is discussed in Section 9.1.4.

Re-drawing parameters at each step requires a large amount of computation. Not re-

drawing parameters results in a reduction in computation because the O(T) algorithm

can be used. While fewer calculations are required for each scenario, experimentation

is required to quantify the robustness of the ACR produced in this way: it is likely that

more scenarios will be required. Based on the results in Figure 5.2, assuming a value of

T = 720, around 140,000 scenarios without re-drawing could be performed in the same

time as 1000 scenarios with re-drawing. This is confirmed by the actual performance

measurements comparing implementations of Algorithms 7.2 and 7.4, as presented in

Section 8.5.3.

When re-drawing parameters, it is difficult to obtain a robust estimator for the ACR

with significantly fewer than 1000 scenarios. Conversely, by not re-drawing parameters

it is easier to vary the number of scenarios in order to achieve a required variance of

the estimator.

138

7.5 Summary

So long as the values of lx can be obtained from the relevant life tables in constant

time, calculation of the probabilities of transition before any time step is linear in the

number of lives; i.e. it is independent of the number of time steps. Therefore calculation

of the per-policy reserves has the same complexity (in the number of time steps) as

calculation of the in-force reserves.

The complexity of the various algorithms to calculate the ACR over T time steps may

be summarised as follows:

Parameters

Re-drawn ? Approach Algorithm Complexity

Yes Summation 7.1 O(T 2)

Yes Recurrence 7.2 O(T 2)

No Summation 7.3 O(T 2)

No Recurrence 7.4 O(T)

Hence, the complexity of the implementation is only O(T) when parameters are not

re-drawn.

139

Algorithm 7.1 Calculation of ACR using summation and re-drawing parameters.

1: set J = number of scenarios
2: set T = maximum projection step number
3: for p=1 to number of policies do
4: for t=1 to T do
5: calculate nominal cash flows: cx,t {these are independent of all bases}
6: end for
7: end for
8: obtain best estimate economic and demographic parameters for all future steps
9: for t=1 to T do

10: initialise the overall best estimate per-policy reserve at time t: Bt = 0
11: for p=1 to number of policies do
12: calculate the best estimate per-policy reserve at time t for policy p . . .
13: . . . and increment Bt by the per-policy reserve for policy p
14: end for
15: for j=1 to J do
16: read economic and demographic parameters Pt,j from file
17: initialise the total per-policy reserve: Vt,j = 0
18: for p=1 to number of policies do
19: initialise rx,t,j = 0, dt,0,j = 1, Wx,t,0,j = I
20: for s = 0, . . . , T − t do
21: obtain (from Pt,j) the discount factor for step t+ s: dt+s,1,j

22: set dt,s+f,j = dt,s,j · (dt+s,1,j)
f

23: set dt,s+1,j = dt,s,j · dt+s,1,j

24: obtain Wx,t+s,f,j and Wx,t+s,1,j from mortality/morbidity tables in Pt,j

25: set Wx,t,s+f,j = Wx,t,s,j Wx,t+s,f,j

26: set Wx,t,s+1,j = Wx,t,s,j Wx,t+s,1,j

27: increment rx,t,j by dt,s+f,j Wx,t,s+f,j cx,t+s

28: end for
29: calculate probabilities of being in a particular state at time t: hx,t,j

30: calculate the per-policy reserve: Vx,t,j = hx,t,j rx,t,j
31: increment Vt,j by the individual per-policy reserve Vx,t,j

32: end for
33: end for
34: obtain V ′

t by sorting {Vt,j}Jj=1 and taking the 99.5th percentile
35: obtain the discount factor from time 0 to time t from the basis used to calculate

the 99.5th percentile: d0,t,j∗(t)
36: calculate the discounted best estimate reserve at time t: B̂t = d0,t,j∗(t) Bt

37: calculate the discounted 99.5th percentile reserve at time t: V̂ ′
t = d0,t,j∗(t) V

′
t

38: end for

39: calculate the Additional Capital Requirement: ACR = θ
T∑
t=1

max
(
V̂ ′
t − B̂t, 0

)

140

Algorithm 7.2 Calculation of ACR using recurrence relation and re-drawing parameters.

1: set J = number of scenarios
2: set T = maximum projection step number
3: for p=1 to number of policies do
4: for t=1 to T do
5: calculate nominal cash flows: cx,t {these are independent of all bases}
6: end for
7: end for
8: obtain best estimate economic and demographic parameters for all future steps
9: for t=1 to T do

10: initialise the overall best estimate per-policy reserve at time t: Bt = 0
11: for p=1 to number of policies do
12: calculate the best estimate per-policy reserve at time t for policy p . . .
13: . . . and increment Bt by the per-policy reserve for policy p
14: end for
15: for j=1 to J do
16: read economic and demographic parameters Pt,j from file
17: initialise the total per-policy reserve: Vt,j = 0
18: for p=1 to number of policies do
19: calculate probabilities of being in a particular state at time t: hx,t,j

20: initialise rx,T+1,j = 0
21: for s = T − t, . . . , 0 do {descending}
22: obtain (from Pt,j) the discount factor for step t+ s: dt+s,1,j

23: obtain Wx,t+s,f,j and Wx,t+s,1,j from mortality/morbidity tables in Pt,j

24: set rx,t+s,j = (dt+s,1,j)
f Wx,t+s,f,j cx,t+s + dt+s,1,j Wx,t+s,1,j rx+1,t+s,j

25: end for
{at this point s = 0, so that the reserve is rx,t,j}

26: calculate the per-policy reserve: Vx,t,j = hx,t,j rx,t,j
27: increment Vt,j by the individual per-policy reserve Vx,t,j

28: end for
29: end for
30: obtain V ′

t by sorting {Vt,j}Jj=1 and taking the 99.5th percentile
31: obtain the discount factor from time 0 to time t from the basis used to calculate

the 99.5th percentile: d0,t,j∗(t)
32: calculate the discounted best estimate reserve at time t: B̂t = d0,t,j∗(t) Bt

33: calculate the discounted 99.5th percentile reserve at time t: V̂ ′
t = d0,t,j∗(t) V

′
t

34: end for

35: calculate the Additional Capital Requirement: ACR = θ

T∑
t=1

max
(
V̂ ′
t − B̂t, 0

)

141

Algorithm 7.3 Calculation of ACR using summation but not re-drawing parameters.

1: set J = number of scenarios
2: set T = maximum projection step number
3: for p=1 to number of policies do
4: for t=1 to T do
5: calculate nominal cash flows: cx,t {these are independent of all bases}
6: end for
7: end for
8: obtain best estimate economic and demographic parameters for all future steps
9: for j = 1 to J do

10: read economic and demographic parameters Pj from file
11: end for
12: for t=1 to T do
13: initialise the overall best estimate per-policy reserve at time t: Bt = 0
14: for p=1 to number of policies do
15: calculate the best estimate per-policy reserve at time t for policy p . . .
16: . . . and increment Bt by the per-policy reserve for policy p
17: end for
18: for j=1 to J do
19: initialise the total per-policy reserve: Vt,j = 0
20: for p=1 to number of policies do
21: initialise rx,t,j = 0, dt,0,j = 1, Wx,t,0,j = I
22: for s = 0, . . . , T − t do
23: obtain (from Pj) the discount factor for step t+ s: dt+s,1,j

24: set dt,s+f,j = dt,s,j · (dt+s,1,j)
f

25: set dt,s+1,j = dt,s,j · dt+s,1,j

26: obtain Wx,t+s,f,j and Wx,t+s,1,j from mortality/morbidity tables in Pj

27: set Wx,t,s+f,j = Wx,t,s,j Wx,t+s,f,j

28: set Wx,t,s+1,j = Wx,t,s,j Wx,t+s,1,j

29: increment rx,t,j by dt,s+f,j Wx,t,s+f,j cx,t+s

30: end for
31: calculate probabilities of being in a particular state at time t: hx,t,j

32: calculate the per-policy reserve: Vx,t,j = hx,t,j rx,t,j
33: increment Vt,j by the individual per-policy reserve Vx,t,j

34: end for
35: end for
36: obtain V ′

t by sorting {Vt,j}Jj=1 and taking the 99.5th percentile
37: obtain the discount factor from time 0 to time t from the basis used to calculate

the 99.5th percentile: d0,t,j∗(t)
38: calculate the discounted best estimate reserve at time t: B̂t = d0,t,j∗(t) Bt

39: calculate the discounted 99.5th percentile reserve at time t: V̂ ′
t = d0,t,j∗(t) V

′
t

40: end for

41: calculate the Additional Capital Requirement: ACR = θ

T∑
t=1

max
(
V̂ ′
t − B̂t, 0

)

142

Algorithm 7.4 Calculation of ACR using recurrence relation but not re-drawing parameters.

1: set J = number of scenarios
2: set T = maximum projection step number
3: for p=1 to number of policies do
4: for t=1 to T do
5: calculate nominal cash flows: cx,t {these are independent of all bases}
6: end for
7: end for
8: obtain best estimate economic and demographic parameters for all future steps
9: for t=1 to T do

10: initialise the overall best estimate per-policy reserve at time t: Bt = 0
11: for p=1 to number of policies do
12: calculate the best estimate per-policy reserve at time t for policy p . . .
13: . . . and increment Bt by the per-policy reserve for policy p
14: end for
15: end for
16: for j=1 to J do
17: read economic and demographic parameters Pj

18: end for
19: for t=1 to T do
20: for j=1 to J do
21: initialise the total per-policy reserve: Vt,j = 0
22: for p=1 to number of policies do
23: calculate probabilities of being in a particular state at time t: hx,t,j

24: end for
25: end for
26: end for
27: for j=1 to J do
28: for p=1 to number of policies do
29: initialise rx,T+1,j = 0
30: end for
31: end for
32: for t=T to 1 do {descending}
33: for j=1 to J do
34: obtain (from Pj) the discount factor for step t+ s: dt+s,1,j

35: for p=1 to number of policies do
36: obtain Wx,t,f,j and Wx,t,1,j from mortality/morbidity tables in Pj

37: set rx,t,j = (dt,1,j)
f Wx,t,f,j cx,t + dt,1,j Wx,t,1,j rx+1,t,j

38: calculate the per-policy reserve: Vx,t,j = hx,t,j rx,t,j
39: increment Vt,j by the individual per-policy reserve Vx,t,j

40: end for
41: end for
42: obtain V ′

t by sorting {Vt,j}Jj=1 and taking the 99.5th percentile
43: obtain the discount factor from time 0 to time t from the basis used to calculate

the 99.5th percentile: d0,t,j∗(t)
44: calculate the discounted best estimate reserve at time t: B̂t = d0,t,j∗(t) Bt

45: calculate the discounted 99.5th percentile reserve at time t: V̂ ′
t = d0,t,j∗(t) V

′
t

46: end for

47: calculate the Additional Capital Requirement: ACR = θ
T∑
t=1

max
(
V̂ ′
t − B̂t, 0

)
143

Chapter 8

Fulfilling Solvency II

Requirements

Section 2.3.3 introduced the demonstration of solvency under Solvency II: the Monte

Carlo nature of the approach outlined there requires several sets of parameters to be

processed. Using standard commercial software, these calculations are beyond con-

templation. However, by creating ab-initio software which is designed from the outset

to be well-performing, the calculations may be performed in a reasonable time. This

chapter presents the code developed in this project, its features and its performance

characteristics.

Section 8.1 discusses the code, both in terms of its implementation and its functionality:

it also introduces the inputs, and the variability of the timings. Section 8.2 discusses

the optimisations applied to the code: because the code was written from scratch,

these optimisations are part of the design, rather than part of a subsequent speed

improvement programme, and are therefore at a higher level than those considered

in Chapter 5. Section 8.3 discusses simplifications used in the code, including the

approximation covered in Section 6.6: these simplifications result in a small difference

to the results, and are therefore different to the optimisations which do not affect

the results. Section 8.4 discusses the performance of the code on different platforms:

the hardware and software constituents of each platform were introduced in Section

2.7. Section 8.5 discusses performance of a version of the code which does not re-

draw parameters from their distributions at each time step: the lack of re-drawing

parameters is likely to reduce the statistical robustness of the estimated additional

capital requirement but Section 8.5.3 considers how this may by compensated for by

144

increasing the number of scenarios processed. Section 8.6 contains a summary of the

chapter.

8.1 Initial Code

Since the main use of a code which runs multiple scenarios would be fulfilling Solvency

II regulations, the most efficient code would be one which only calculates reserves in

each future time step: any calculation of profitability-related items is superfluous with

respect to solvency. Therefore, if the existing profitability code were to be used, then

revenue items would need to be stripped out of it. Whilst removing these items from

the existing code is possible, and not particularly daunting, there could be a need to

re-factor that code again in order to extract sufficient performance to allow the new

regulations to be met. Creating ab-initio code means that the code can be designed,

from the outset, for high levels of performance: in particular, it ensures that maximum

use can be made of vectorisation.

8.1.1 Mechanics of The Code

The code could have been written in either Fortran or C. There is not much performance

difference between codes written in these languages if the programs are written with

optimal properties of modern hardware in mind and then compiled using modern

compilers which target that hardware.

However, the code was written in C because coding techniques for new technologies

tend to appear in C before their Fortran equivalents appear so that having a code base

in C allows emerging technologies to be embraced more quickly. In particular, optimum

performance is generally extracted from GPUs when CUDA is used, and that requires

a good C code base to be available.

Because the code was written for modern hardware, it was designed to make use of

vector units and so vectorisation was used wherever possible. The Intel compiler, used

throughout development, allows the use of #pragma simd to encourage the compiler to

create code which uses the vector units. This has the advantage of letting the compiler

report which loops were vectorised, which loops were not vectorised in their current

layout, and which loops could not be vectorised because of data dependencies: clearly,

this information is invaluable when developing the code with the aim of maximising

vectorisation. These pragmas are ignored by other compilers: there is therefore no need

145

to remove them when using, for example, the Cray compiler on the XC30. However,

since the code was developed, OpenMP has added SIMD directives to the standard:

it would be possible to translate the code to use these directives as compilers, which

adhere to this version of the OpenMP standard, become available.

The main problem addressed in this project is the ability to perform the brute force

calculations required to fulfil Solvency II. The code therefore concentrates on calcu-

lations, and data are stored in the simplest structures possible, i.e. arrays. While it

would have been possible to create elaborate data types and storage mechanisms, such

an approach would require the use of pointers: this is not a problem in itself, but

de-referencing pointers takes time which could more usefully be used for performing

floating point arithmetic.

8.1.2 Features of the Code

In order to improve the realism of the projections, the code is designed to allow

flexibility in the parameters it uses. Both interest rates, and inflation rates, are assumed

to vary on a monthly basis, and so the implementation allows different values for each

time step. Similarly, to allow for future changes in mortality, the implementation allows

for different tables in each time step.

The initial implementation has one purpose – demonstrating that Solvency II regula-

tions can be met. The code therefore only performs the reserving calculations which are

necessary to meet this goal. Revenue items may be added later if use for stochastically-

based calculation of profitability, such as pricing, is required.

8.1.3 Inputs

The inputs for the single scenario calculations were discussed in Section 5.1. The

corresponding values for multiple scenario calculations are similar and are therefore

only covered briefly.

8.1.3.1 Data

The synthetic data for single life annuities and reversionary annuities are as described

in Section 5.1.2. The fact that those data represent a cohort of recent retirees means

that they have long outstanding terms, which makes them ideal for demonstrating that

146

the processing can be done for policies with non-trivial terms. Therefore, those data

are reused, without alteration, for the multiple scenario calculations. Additionally,

data for joint life annuities and last survivor annuities were created to have the same

characteristics as the reversionary annuity data.

8.1.3.2 Parameters

The main objective of this project is the reduction of total execution time: other than

testing for correctness of the optimisations during the course of the project, there is

no particular interest in the financial results obtained. Therefore, the basis items take

values which allow the reserves obtained at each stage to be easily verified, with no

particular regard to the values obtained. For example, the interest rates used show a

linear progression from month to month, rather than following any particular model

which may be applied.

The values are read from files to simulate a situation where regulatory requirements

might mean that the same values are used for all competitors in a particular market,

thereby allowing comparisons of solvency positions on a predetermined basis. Also,

using known values ensures that the financial results obtained from different platforms

are identical: if the values had been dynamically generated during the execution of the

program, then the use of different compilers, which may implement the random number

generators differently, could lead to different sets of parameter values and hence to a

different set of results. However, because the basis items would be from a known

distribution, these differences in actual parameter values would be eroded by the use

of sufficiently large numbers of simulations in the Monte Carlo process.

To account for improvements in future mortality, a separate mortality table is used for

each monthly step within each of the 1000 scenarios. To allow for the synthetic data

used in this project, there are separate qx values for each of 2 sexes, for each of 40 years

of birth, for each of 120 ages, for each of 780 future time steps, for each of the 1000

scenarios: for the implementation in this project, these mortality rates are read from

disk, as are all interest and inflation rates. There are therefore 1000 parameter files

which will be discussed further in Section 8.2.2.

8.1.3.3 Algorithm

In order to conform to Smith’s interpretation that ‘it is essential that interest rates

are re-sampled every step’ [79], the majority of the results in this chapter are based on

147

the requirement that parameters are re-drawn at each time step. Also, Section 5.2.4

discussed the fact that the recurrence relation was two orders of magnitude faster than

the summation approach for a projection over several hundred monthly steps.

Section 7.3 presented four possible algorithms for determining the ACR under Solvency

II, the differences being dependent on whether parameters are re-drawn at each time

step, and whether the recurrence relation is used. Algorithm 7.2 calculates in-force

reserves using the recurrence approach after re-drawing parameters at each step: this

is therefore the algorithm used to produce the majority of the performance results

presented in this chapter. Section 8.2.1 presents the implementation of the algorithm

and Section 8.4 discusses the performance of that implementation. Performance of an

implementation based on Algorithm 7.4 (using the recurrence relation) where, per the

possibility discussed in Chapter 7, parameters are not re-drawn, is discussed in Section

8.5.

8.1.4 Outputs

Section 8.2.1 introduces an approach to processing the 1000 scenarios in each future

time which uses 1000 tranches, each having one scenario in each future step: this leads

to 1000 output files, each containing reserve values in each future time step, summed

over all policies in the data set. The output is therefore 1000 files, each of 18 kB.

In order to obtain the capital requirement, a post-processing stage is needed. This

straightforward stage has three phases; first, read the 1000 files and populate T arrays,

each of length 1000 where T is the number of future time steps; second, perform T

sorts, each on 1000 elements; finally output the 5th largest element from each of the T

arrays. The array elements output by this method are the 5th largest reserve at each

of the T steps, and therefore form the sequence {V ′
t } required in Algorithm 2.1.

Compared to the processing time required to obtain the 1000 results files, the time for

this post-processing is insignificant and is not considered further.

8.1.5 Variability of Timings

As mentioned in Section 1.5, the run time for a brute force calculation in a commercial

environment is estimated to be about 2800 CPU core years. To allow a reasonable

variability in times, say ±10%, the run time would be 2800 years ± 280 years. Later

sections of this chapter report run times that were achieved, on various platforms,

148

as a result of the work done in this project: all of the times are several orders of

magnitude smaller than this estimate. The difference in magnitudes of the run times

guarantees that there is no chance of the intervals overlapping and so there is no benefit

in obtaining confidence intervals for the run times reported in this chapter. Therefore,

to minimise the use of HPC resources, each run has been performed only once and,

whilst variability in run times is acknowledged to exist, it is stressed that the times

reported are representative, rather than being a mean, mode or median of the overall

time.

8.2 Optimisations

The code, as presented in Section 8.1.1, has been designed and written to be particularly

efficient so that optimisations at source level, such as those described in Section 5.2.2

are unlikely to have a significant effect. The majority of the optimisations discussed

here are at a higher level, and are designed to take advantage of coarser parallelism.

8.2.1 Use of Tranches

A naive approach to implementing code to fulfil Solvency II regulations, as interpreted

in Algorithm 2.1, is to perform 1000 simulations at each time before moving on to the

next time step. Since, by assumption, the calculations for each step are independent of

the calculations for any other step, such an implementation naturally leads to having

each time step as the unit of parallelism. However, this approach leads to load imbalance

since the earlier steps will require more processing than later time steps. Whilst such

imbalance could be overcome by manually adjusting steps processed by each processor,

there is an alternative approach which removes the imbalance.

This better approach, which naturally leads to load balance, and permits the possibility

that the outer loop over time steps is sequential (as discussed in Section 2.3.3.1), is

the use of tranches. Each tranche is implemented as a task, and each of 1000 tranches

performs one simulation in each future time. This leads to the need to collate results at

the end of the projection, but that is a trivial post-processing task which, as mentioned

in Section 8.1.4, takes a time which is insignificant in comparison to the production of

the results to be collated.

The overall loop structure for this approach is as described by Algorithm 8.1, which

results from the transformations discussed in Section 4.4.2: i.e. Algorithm 8.1 is an

149

Algorithm 8.1 Structure of loop nest in C implementation of brute force approach to
obtaining the additional capital requirement for Solvency II.

1: set T = index of the maximum projection step {per Section 3.4.1.1}
2: for n = 1 to number of tranches do
3: for t = 1 to T do
4: draw parameters used to calculate at,r,p and Vt,r,p

5: for b = 1 to number of blocks do
6: for s = T to t (decreasing) do
7: for p = 1 to number of policies in block do
8: use recurrence to obtain the in-force reserve, a′n,s,p
9: calculate the per-policy reserve Vn,s,p from the in-force reserve

10: end for
11: end for

at this point s = t, so that the reserve is Vn,t,p

due to re-drawing parameters, all Vn,s,p : s ̸= t are discarded

12: sum the per-policy reserves over the current block, Vn,t,b =
∑
p∈b

Vn,t,p

13: end for
14: sum the per-policy reserves over all blocks of policies, Vn,t =

∑
b

Vn,t,b

15: end for
16: end for

17: for t = 1 to T do
18: perform sorting to obtain V ′

t , the 99.5th percentile of the set {Vn,t}
19: obtain Ct = max(V ′

t −Bt, 0)
20: end for
21: discount the sequence {Ct} to obtain the Risk Margin
22: obtain the Additional Capital Requirement as fixed percentage θ of the Risk Margin

optimised implementation of Algorithm 7.2, where parameters are re-drawn in every

future time step. Note that Lines 17 to 22 of Algorithm 8.1 have not been implemented:

they form the trivial post processing stage to collate the results.

This approach has been implemented as follows:

– the n loop (over tranches) uses MPI to coordinate a task farm since all tranches

may be run independently;

– the t loop (over time steps) is sequential, but it could be decomposed if there are

no dependencies of the parameters on the previous t step. In that case, there

is scope to increase the number of processes, while maintaining reasonable load

balance, by ‘folding the loop over’ so that there is pairing of time steps and the

steps considered by each process have similar work: since T is the maximum

projection step, the pairings would be (1, T), (2, T − 1), (3, T − 2), etc.;

– the b loop (over blocks) is parallelised using OpenMP;

150

– the s loop (over time steps for the recurrence relation) is inherently sequential

due to the dependencies in Equation 3.3.1; and

– the p loop (over policies in the block) is vectorised as much as possible.

Note that the complexity of this implementation is O(T 2), as it must be due to the

re-drawing of parameters (per the discussion in Section 8.1.3.3).

8.2.2 Organisation of Scenario Data

Section 8.2.1 discussed the use of tranches, with each tranche performing the calcula-

tions for one scenario in each future time step. The implementation developed in this

project reads separate interest rates, inflation rates, and investment expense rates for

each month, for each scenario within a tranche, from the disk. The independence of

the scenarios generates independence of the parameters, and so the implementation

combines all assumptions for each tranche into a .csv file. Each value is stored in the

file in 13.11 floating point notation1, and ASCII format. There are therefore, in total,

1000 parameter files, each of 148 MB.

Combining the parameters for all time steps into one file has the added advantage of

requiring fewer file handles and less file-checking housekeeping than having them all

separated. The ARCHER Best Practice Guide [27] suggests that ‘accessing several

files from the same directory is not particularly efficient’. Therefore, this project’s

implementation uses 1000 directories, each with one parameter file. Although this

approach does not have any clear benefits on other platforms, it is used without

alteration to enhance portability of the implementation.

8.2.3 Re-calculation of Benefits

In order to calculate any reserve, which by definition is ‘the amount held in order to

meet future liabilities’, it is necessary to know what the future cash flows are. The cash

flows which constitute the benefits payable to the holder of an annuity policy form part

of the cx,t element of Equation 3.2.6: the remainder of cx,t is made up of the expenses

attributable to the administration of that policy. For every policy, the benefits are

invariant over the Monte Carlo simulations, and so it would be possible to calculate

benefits only once, at the outset of the projection.

113 characters, of which 11 follow the decimal point: being mortality and interest rates, the values
are all 0. · · · In the example scenarios used in this project, all values are positive, so there is no need
to allow another character to hold the sign.

151

However, calculating the payments to be made to each policy for each step only once,

and retaining those values, requires a significant amount of memory: for example, half a

million policies, allowing a maximum projection term of 65 years, using monthly steps,

requires around 3 GB. If the MPI which controls the processing of the tranches were to

use a replicated data approach, then 3 GB per rank becomes significant. Alternatively,

if the MPI used a distributed data approach, then the communications pattern to

access the correct data at the correct times would lead to significant communication

overhead. Therefore, at the start of every iteration of the b loop (in Algorithm 8.1) the

benefits payable to each policy within the block are re-calculated: on modern machines,

the cost of compute is small compared to the cost of moving data, so that repeated

re-calculation is unlikely to be wasteful.

A simple algorithmic optimisation was to calculate the benefits only for steps s=t:T

(where T is the index of the maximum projection step), rather than for s=1:T. However,

the fact that the synthetic data used in this project reflect data from the commercial

environment meant that the payment amount contained in the data relates to the next

payment, rather than the previous payment. In order to be able to escalate the payment

amount in the same way at any step (thereby removing the if-test which checks whether

inflation should be applied), the data were read in and changed to remove any escalation

applied: the additional calculational effort of winding back any escalation applicable

to the step prior to the valuation date is minimal when offset against the saving in the

overall run time.

This straightforward change led to an overall performance improvement of about 15%.

8.2.4 Length of Blocks

To allow for rapid developments in hardware, and increase portability of the code, it is

desirable to allow for different CPUs having different vector lengths, and hence different

platforms having different optimum block lengths. The ability to tune the block size

in loops in which vectorisation is used is encapsulated by including the block length as

a compile-time constant. Although this requires the code to be recompiled when the

parameter is changed, recompilation time is only a few seconds and so is insignificant

as a consideration, especially compared to some scientific codes which take of the order

of hours to compile. Also, having the parameter as a compile-time constant, rather

than a run-time argument, provides the compiler with information which it could use

to perform data alignment, or other optimisations which relate to the data transfers.

152

The performance benefits of different block lengths are discussed in Section 8.2.5 where

the parameters are tuned for each of the different machines.

8.2.5 Work Allocation: ‘processes vs. threads’

For a fixed number of cores on a CPU, it may initially seem preferable to use OpenMP

threads to MPI processes since threads do not need to hold copies of the entire address

space. This reduction in memory usage means that more threads can fit into a fixed

amount of overall memory when compared to the number of processes which would

fit that space. Also, the larger number of threads leads to a relatively smaller cache

footprint per thread, which is beneficial because of the reduction in movement of data,

through the cache, required to keep the threads busy. However, the problem with

increasing the number of threads is synchronisation; a larger number of threads could

lead to an increase in time spent at barriers. Therefore, there is a clear argument for

fewer threads and more MPI processes.

Hence, in order to determine the optimum combination of block size, number of MPI

processes and number of OpenMP threads, a subset of tranches was run on each of the

machines: the results of those runs are discussed in the following sub-sections.

8.2.5.1 Cray XC30

On the Cray, 96 tranches were processed using 4 nodes, i.e. 96 cores, and various combi-

nations of block size, number of processes, and number of threads. The use of 96 cores

to process 96 tranches leads to a balanced load for a range of combinations of processes

and threads, thereby ensuring that load imbalance cannot cloud the conclusion about

which combination leads to best performance. The times for this collection of runs are

shown in Table 8.1.

For smaller block sizes, one OpenMP thread per MPI process leads to best performance.

However, this has a disadvantage in terms of load imbalance and scalability: the nodes

on the Cray, like many HPC machines, have a number of cores which is not a divisor

of the 1000 tranches required for the approach proposed in this project. Therefore,

spreading 1000 tranches over 24-core nodes (with one core per process) results in

42 nodes being required, with one not being fully populated, and this leads to two

problems. Firstly, since one node is not fully populated, this use of pure MPI should

be expected to lead to load imbalance: using fewer processes, each with more threads,

is a simple way of overcoming such imbalance, even if that results in marginally worse

153

MPI OpenMP Block Size
Processes Threads 8 16 32 64 128 256

4 24 2263 2191 2258 2210 3559 4747
8 12 1984 1887 1927 1928 3125 4425
16 6 2080 1752 1767 1804 2815 4138
24 4 1818 1700 1721 1740 2803 4109
32 3 2438 1703 1695 1715 2783 4203
48 2 1864 1673 1686 1721 2740 4067
96 1 1738 1633 1656 1926 2912 4326

Table 8.1 Run times (in seconds) to process 500,000 policies, over 96 tranches using various
combinations of block size, number of MPI processes and number of OpenMP
threads per process, on 4 nodes of the Cray XC30.

performance. Secondly, and more importantly, the number of cores required by pure

MPI is fixed: if more cores are available, for example because more nodes are available,

then cores in excess of the number of ranks will be unused.

For all block sizes, one MPI process per node leads to worst performance: this is

consistent with expectation because the 24 threads would be spread over the two NUMA

regions on the node. Other than the case of one MPI process per node (which can

be discarded because it has worst performance), block sizes of 16 and 32 have best

performance for all combinations of processes and threads: the difference in time of

these block sizes is likely to be within the variability of the run times. Also, for most

block sizes, larger numbers of threads have longer run times than smaller numbers: this

is likely to be due to the threads starting to compete for bandwidth when accessing

Level 3 cache. However, with the exception of 8 processes and 3 threads per node,

each combination of processes and threads has its minimum run time for a block size

of 16: the exception reported here is likely to be noise, resulting from the variability

of timings. Therefore, it seems reasonable to deduce that best performance is obtained

for a block size of 16.

For a block size of 16, there is not a significant difference between the minimum time

(using 1 thread) and the times using 3 or 4 threads. However, by using 3 or 4 threads

per process, it is possible to utilise 3000 or 4000 cores with almost perfect efficiency. For

the exploratory runs summarised in Table 8.1, using 8 processes each with 3 threads,

and a block size of 16, takes only 4.5% longer than the optimal combination. Note that

3 threads per process, with 8 processes per node, has a slight advantage in that there

will be no unused cores as the number of processes per node is a divisor of the number

of tranches. It is also possible to use higher numbers of cores by reducing the number of

processes per node with a corresponding increase in the number of threads per process:

154

MPI OpenMP Block Size
Processes Threads 4 8 16 32 64 128

2 8 5379 5056 4912 4715 4831 7367
4 4 5297 4966 4810 4616 4727 6882
8 2 5284 4886 4762 4538 4673 6812
16 1 5320 4891 4910 4509 4649 5772

Table 8.2 Run times (in seconds) to process 500,000 policies over 32 tranches, using various
combinations of block size, number of MPI processes and number of OpenMP
threads per process, on 1 node of the Xeon cluster.

while this leads to a slight worsening of the time to process each tranche, more tranches

are processed concurrently, leading to a shorter overall ‘time to solution’.

The Xeon processors in the Cray allow simultaneous multi-threading (SMT). In order

to assess whether SMT benefits this code, 8 tranches were run on one node using 8 MPI

processes, each with 3 OpenMP threads and SMT disabled: the time (including I/O)

was 551.4 sec. When SMT was enabled and the number of threads was doubled, the

time (including I/O) to process the 8 tranches was 536.5 seconds, indicating a speedup

of 1.03× from SMT. The fact that the two submissions were in the same script ensured

that the same node was used, thereby eliminating some forms of timing variability, e.g.

nodes running at different speeds, and so it seems there was some small benefit in using

SMT. This small improvement agrees to the fact that the Ivy Bridge architecture is

known not to benefit too much from SMT. The fact that the benefit on the Cray is

small, allied to the fact that not all CPUs implement SMT, meant that the use of SMT

was not pursued further: none of the other timings in this thesis were taken with SMT

enabled.

The times for the Cray to perform a complete brute force run, consisting of 1000

tranches, are discussed in Section 8.4.1.

8.2.5.2 The Xeon Cluster

In order to determine the optimal combination of processing parameters on the Xeon

cluster, a modest number of tranches was processed using 1 node and various combina-

tions of block size, number of processes, and number of threads. For each combination,

all 500,000 policies in the synthetic data were processed, while the number of tranches

was 32 to allow for full utilisation of the node. The times for this collection of runs are

in shown Table 8.2.

155

Runs using 1 process with 16 threads were not performed for any block size because

spreading the OpenMP across 2 NUMA regions is expected to lead to longer runs times

than those where the OpenMP threads are kept within 1 NUMA region: this was the

case on the Cray, as shown by the results in Table 8.1.

For all combinations of processes and threads, a block size of 32 leads to best perfor-

mance: this differs to the Cray, where the optimum block size was 16. This difference

is likely to be a result, primarily, of the use of different compilers on the different

machines, but the characteristics of the different CPUs may have some effect.

As with the Cray, pure MPI led to best performance, but this has the same disadvantage

in terms of load imbalance and scalability: the nodes on the Xeon cluster have 16 cores,

and hence perfect load balance can only be obtained through the use of 2, 4 or 8 MPI

processes per node. Using 4 processes per node allows up to 250 nodes to be used,

whereas using pure MPI limits the number of nodes to 63. From this collection of

processing parameters, the minimum run time results from using 8 processes with 2

threads each; the time of 4538 seconds is only about 0.6% longer than the shortest

time, but as with the Cray, this combination of processes and threads allows greater

numbers of nodes to be used than would be possible with pure MPI, i.e. up to 125

nodes may be used.

8.2.6 Vectorisation

The vectorisation of calculation intensive loops is a standard method of improving the

speed of a program, and it is generally desirable to vectorise as many such loops as

possible. Many loops are trivial to transform to a form which the compiler is able to

vectorise. However, some loops need further manipulation in order that they may be

vectorised. The calculation of the death probabilities for each policy is a clear target

for vectorisation, but there are two problems with a naive implementation.

Firstly, because not all lives are the same age at the valuation date, the number of qx’s

required varies on a policy-by-policy basis and the number of iterations through the

loops varies accordingly. In order to overcome this, redundant calculations were added:

rather than stopping the calculation process when the policyholder reaches age 120,

qx’s are calculated for all policies up to the maximum time step implied by ages in the

data file and setting qx = 1 for x > 120, thereby imitating a standard mortality table.

Secondly, because mortality rates can vary by year of use, an intuitive implementation

uses a two-dimensional array to hold the mortality rates, i.e. the table is indexed by age

156

Upper Bound declared as
Block Length Standard Variable Macro Variable

Optimal, with $SIMD pragmas 4538 4493
Optimal, but no pragmas 4919 4695

1 8152

Blocking removed 5498
Redundant Calcs removed 5001

Table 8.3 Run times (in seconds) to process 500,000 policies over 32 tranches using various
block sizes, on 1 node of the Xeon cluster.

and calendar year. The Intel compiler could not vectorise the calculations when two-

dimensional indexing was used. Therefore, a function was created to obtain a mortality

rate by converting the two-dimensional indices to a one-dimensional index: by calling

this function, the calculation of mortality rates could be vectorised. Also, because the

function only has a small body, it was inlined by the compiler.

8.2.6.1 The Effect of Vectorisation

Vectorisation was built into the brute force code as it was developed: its effect (as

measured by its removal) is shown in Table 8.3. The fully vectorised code is constructed

using loops whose lengths are the block sizes which were tuned for optimality in Section

8.2.5. There are two possibilities for specifying the loops bounds, i.e.

i) use of a macro variable, e.g. for p = 1 to BLOCK SIZE where BLOCK SIZE has

been #define’d, or

ii) use of a standard variable, e.g. for p = 1 to block len where block len is

calculated for each block.

Where the optimal block size is used, the times using both possibilities for specifying

the upper bound have been measured.

The code was developed using the Intel compiler: this had the advantage of allowing

the production of large quantities of information about which loops were vectorised,

and the reasons why others were not. The outcome is that, in the final code, as many

loops as possible are vectorised. The use of Intel’s compiler had a useful side effect: by

using Intel’s #pragma SIMD, it is possible to measure the effect of the pragmas to see

how much benefit the guidance to the compiler was. It is apparent from Table 8.3 that

using these pragmas leads to the best performing code, and that it does not matter

whether the loop bounds are specified using macro variables or standard variables.

157

Removing the pragmas shows several things. Firstly, when the upper bound is specified

with a standard variable, there is a speedup of about 1.08×, indicating that the pragmas

do aid the compiler. Secondly, when the upper bound is specified with a macro variable,

there is a speedup of about 1.04×: this reduction is speedup is likely to come from the

compiler not being able to make optimisations which result from knowing the block

length, or equivalently, the loop’s trip count. Thirdly, when pragmas are not used,

using a macro variable as the upper bound leads to a speedup of roughly 1.05×: this

speedup is also likely to come from optimisations which the compiler can make as a

result of knowing the block size.

Despite the performance advantages of using a macro variable for the upper bound,

there is a clear disadvantage to this approach: the number of policies processed must

be a multiple of the block size. However, in practical terms, this is not a problem

because if there is a partial block then it may be padded with null data, e.g. by setting

the payment amount to zero.

Using a block length of 1 led to the run time increasing by a factor of about 1.5×: this

increase is likely to be partly due to the number of calls to subroutines increasing (since

each call only processes one policy), and may be partly due to the overhead associated

with having many trips through loops, each of which has a trip count of 1. The fact

that the upper bound is specified as a standard variable means that the compiler cannot

absorb the overhead, whereas it might have been possible for the compiler to optimise

the loop away if the bound had been a macro variable.

The complete removal of blocking leads to the same run time as using blocks of optimal

length, but without pragmas. This might indicate that vectorisation only benefits this

code when the compiler is explicitly told that the loop is vectorisable, i.e. the code is

more complex than the compiler’s heuristics are designed to handle.

The difference in times between code without blocking and code also having redundant

calculations removed is roughly 1.6%. Section 2.5.5.4 discussed the addition of redun-

dant calculations to improve the performance of the vectorised code, but these results

indicate that adding redundant calculations also improves performance of the non-

vectorised version: this may be due to improved optimisation resulting from removing

if-tests. However, the difference in times is within level of noise and is, therefore, not

significant.

Overall, the difference between blocking with optimal blocks and SIMD pragmas, and a

complete absence of blocks is a speedup of 1.21×. The fact that the selection of compiler

switches led to vectorisation being enabled in both cases indicates that vectorisation

158

is not particularly beneficial to this code on this CPU architecture. However, the fact

that the code is vectorised adds some degree of ‘future-proofing’ to the code in two

ways. Firstly, the memory layout is as required to permit memory coalescing on GPUs:

the possibility of porting this code to GPUs is discussed in Section 9.3.1. Secondly,

Intel’s Xeon Phi processors have longer vectors and so vectorisation is likely to be

more beneficial there: the possibility of porting this code to Xeon Phis is discussed in

Section 9.3.2. Additionally, although vectorisation and the use of the SIMD directive

is a different concept to the use of blocks, the addition of blocking allows the lengths

of the block to be changed in order to minimise the runtime of the program.

In Section 2.5.2.3.4 it was mentioned that the benefit of SMT on a Xeon CPU comes

from the ability to fill empty instruction slots. The lack of benefit of SMT to this code

when running on Xeon CPUs suggests that there are not many such empty slots, or

some hardware resource, such as cache bandwidth, cache latency or cache capacity, is

saturated: see Section 8.4.1.2 for a discussion of the performance of this code on the

Xeons in the Cray.

8.3 Simplifications

The changes discussed in Section 8.2 are optimisations; they improve the performance

of the code without changing the results. The changes discussed in this section are

approximations; they improve the performance of the code at the expense of producing

marginally different results.

8.3.1 Change of Interpolation Methodology

Chapter 6 discussed the effect of changing the interpolation method used, from the

commercial approach using cubic interpolation in the lx’s, to a simplification based on

linear interpolation in the qx’s. There, it was shown that the effect on the monthly

death probabilities, over the time range where discounting is not completely dominant,

was small. The change in probabilities also led to an insignificant change in the reserves

required, as discussed in Section 6.7.2.

Chapter 6 also indicated that the simplification would lead to a reduction of the number

of data retrievals and arithmetic operations required to calculate the monthly death

probabilities: this reduction in complexity led to a speedup of 2.4× for the interpolation

routine, and 1.8× for the entire program.

159

8.3.2 Timing of Cash Flows

A policyholder may choose to have their benefits paid on any day of the month so that

the discount factor to the time of the cash flow, from the start of the month, is vα where

α ∈
{

1
31 ,

2
31 , · · · , 1

}
. The implementation in this project allows each projection step to

use a different monthly interest rate, and hence the sequence {vα} needs to be obtained

in every step. Even using the method of repeated multiplication, as discussed in Section

5.2.2.1, populating the sequence takes time because obtaining the first element, v
1
31 ,

requires evaluation of a power for a non-integral exponent.

It is possible to simplify the calculations by assuming that all cash flows occur either

at the start of the step (so that f = 0 and hence vf = 1), or at the end of the step (so

that f = 1 and hence vf = v). In either case, the discount factor does not require any

calculation and hence the approximated result is obtained more quickly than the true

result. However, both of these possibilities introduce a systematic bias to the financial

results.

Therefore, to remove the bias, the assumption that all cash flows happen mid-step

could be made. This has the additional benefit that the only discount factor required

in any step, since it applies to all policies, is
√
v, and that may be computed reasonably

quickly: most compilers have an efficient implementation of sqrt(), and performance

may be improved further on platforms where an efficient hardware implementation is

available.

Assuming that cash flows are mid-step has a performance advantage in terms of survival

probabilities: the probability of dying before reaching the middle of a monthly step is

fqx = 1
24
qx

which, under the assumption of uniform distribution of deaths, is

≈ 1

2
1
12
qx

Under this construction, the simplification in Equation 6.6.2 only needs to be evaluated

once (for the full step): the mid-step probability may then be trivially obtained through

a single multiplication.

The time (including I/O) for the Cray to process all 500,000 policies using 1 MPI

process and 3 OpenMP threads (as discussed in Section 8.2.5.1) was 556.1 sec with

cash flows assumed to be in the middle of the step, and 1284.0 sec with accurate cash

160

flows, indicating a speedup of 2.3× from this approximation.

It is not clear how a single measure which shows the effect of this simplification should

be derived: the fact that all reserves at all time steps are affected clouds the problem.

However, as an indication, the total initial reserve2 for the 300,000 single life policies

increases by a relative amount of 1.88× 10−5, which is immaterial, and all reserves at

all other time steps show a correspondingly small change.

8.4 Performance when Re-Drawing Parameters

The optimisations discussed in Section 8.2 and the approximations discussed in Section

8.3 have all had an effect on the overall run time, but each effect was mentioned in

isolation. This section discusses the overall performance of the code on two platforms,

a Cray supercomputer and a Unix cluster containing Xeon CPUs. The time on the

Cray is taken as the benchmark: as a result, there is some discussion about the profile

of the code in the Cray.

8.4.1 Cray XC30

Section 8.2.5.1 concluded that using 8 processes per node, each with 3 threads, gave near

optimal performance while permitting perfect load balance and potentially allowing the

use of a large number of nodes: this combination of processes and threads therefore

seems preferable to other combinations. However, for some node counts, using 8 threads

will not lead to an equal number of tranches per process: in these cases, the number of

processes is chosen so that an equal number of tranches is processed by each process,

and the number of threads is chosen to fully populate each node with one thread per

core. The times for a complete run of 1000 tranches have been obtained for a range of

numbers of nodes, and the results are shown in Table 8.4: these results are discussed

in Section 8.4.1.1 and the performance of the Cray while producing these results is

discussed in Section 8.4.1.2.

2The ‘initial reserve’ is the reserve required at the start of step 1. Note that, because the policy is
in the data file, the probability of being in force at the start of step 1 is 1, the per-policy reserve is the
same as the in-force reserve at that point.

161

Number of Nodes 5 10 25 50 125 250 500
Number of Cores 120 240 600 1200 3000 6000 12000

MPI Processes per Node 8 4 8 4 8 4 2
OpenMP Threads per Process 3 6 3 6 3 6 12

Tranches per Process 25 25 5 5 1 1 1

Wall Clock Time (sec) 13875 7285 2863 1461 571 294 155

Portion of Run Time in I/O 2.1% 4.1% 2.1% 4.0% 2.2% 4.2% 8.2%

Table 8.4 Run time (in seconds) to process 500,000 policies over 1000 tranches using a block
size of 16, and various numbers of nodes on the Cray XC30.

8.4.1.1 Performance

The run using 500 nodes indicates that, given enough hardware for every tranche to be

processed concurrently, the entire brute force calculation can be performed in under 3

minutes. However, the expense of purchasing and operating a 500 node Cray is unlikely

to be justifiable in most life offices unless other uses can be found for its computational

capabilities. Similarly, 500 nodes equates to 12,000 cores, and very few offices are likely

to obtain clusters of this size. Therefore, although the calculations can be performed

in such a short time, it seems doubtful that, in reality, they will be.

The run using 125 nodes indicates that the entire brute force calculation can be

performed in less than about 10 minutes, i.e. within a coffee break. However, on

our Cray, which is heavily used by the UK academic community, it takes significantly

longer than this for the job to navigate to the top of the queue. The fact that 125 nodes

equates to 3000 cores places this amount of hardware within the realms of clusters which

could be contemplated by many offices, so that the waiting in the queue of a heavily

used machine becomes far less of a perceived obstacle.

25 nodes equates to 600 cores: this amount of hardware is similar to that which some

of the larger life offices have available, and so it is possible for those offices to perform

the calculations in under 1 hour using Xeon CPUs.

10 nodes equates to 240 cores: this is similar to the quantity of hardware many life

offices have available, and so it is possible for most offices to perform the calculations in

about four hours on the wall clock using Xeon CPUs. In general, using a few hundred

cores, most life offices could perform the required calculations using the processing

scheme presented here.

5 nodes equates to 120 cores: this amount of hardware is easily affordable, and so there

is no reason why all offices could not perform the calculations in, what is effectively, an

162

0 2000 4000 6000 8000 10000 12000
0

1

2

3

4

5

6

7

8

Number of Cores

Pr
oc

es
si

ng
 R

at
e

(T
ra

nc
he

s
pe

r
Se

co
nd

)

Ideal
Achieved

Figure 8.1 Strong scaling on the Cray XC30: the ideal processing rate is based on the time
using 5 nodes (as presented in Table 8.4), i.e. including I/O, for 1000 tranches,
using a block size of 16.

overnight run.

Figure 8.1 shows the scaling on the Cray: the expected performance is based on the

time taken for the entire brute force calculation using 5 nodes, i.e. 120 cores. The

deviation from the expected rate is larger where the number of threads is larger: this

is consistent with the discussions in Section 8.2.5.1 which highlighted that run time

increased with number of threads per process.

The portion of run time in I/O in Table 8.4 may be summarised as

Portion of Time in I/O ≈ 2% ≈ 4% ≈ 8%

Threads per Process 3 6 12

This is consistent with an increasing number of threads reducing the time to perform

calculations, making the time to perform the fixed amount of I/O a larger portion of

the run time.

163

Samp% | Samp | Imb. | Imb. |Group

| | Samp | Samp% | Function

| | | | PE=HIDE

| | | | Thread=HIDE

100.0% | 29470.0 | -- | -- |Total

|---

| 95.4% | 28112.2 | -- | -- |USER

||---

|| 54.6% | 16076.0 | 142.0 | 1.0% |calcQx_allSteps_block

|| 13.7% | 4034.5 | 107.5 | 3.0% |annuitySL_calcReserves_block

|| 10.5% | 3107.8 | 230.2 | 7.9% |annuityXX_calcBenefits_block

|| 7.8% | 2286.5 | 60.5 | 2.9% |annuityRA_calcReserves_block

|| 5.6% | 1658.8 | 44.2 | 3.0% |annuityLS_calcReserves_block

|| 2.9% | 855.5 | 37.5 | 4.8% |annuityJL_calcReserves_block

||===

| 3.9% | 1154.5 | -- | -- |ETC

||---

|| 1.9% | 568.0 | 27.0 | 5.2% |__isoc99_fscanf

|| 1.2% | 361.8 | 35.2 | 10.1% |____strtod_l_internal

|===

Figure 8.2 Summary sampling results from CrayPAT when processing 50% of the data over
8 tranches using 8 processes, each with 3 threads, and a block size of 16.

8.4.1.2 Profile

The Cray XC30 has CrayPAT, Cray’s ‘Performance Analysis Tools’ [19], available.

CrayPAT may be used as a sampling profiler, but has additional capabilities. The

results from any sampling must be viewed with caution: the sampling errors mean

that the information portrayed is only indicative. However, despite this caveat, the

discussion below is relevant in its order of magnitude of the performance achieved by

the Cray when running this code. The sampling was performed while processing 50%

of the data over 8 tranches using 8 processes, each with 3 threads on a single node of

the Cray. The results are shown in Figure 8.2, which shows that about 55% of the time

is spent in the routine which performs interpolation to calculate the qx’s. Therefore,

despite the optimisations, and the adoption of the simplification introduced in Section

6.6, the calculation of survival probabilities is still the dominant part of the program’s

execution.

The re-calculation of benefits, as discussed in Section 8.2.3 accounts for about 10% of

the time. The fact that this routine relates to all annuity policies suggests that any

time spent further optimising this routine will only benefit annuity policies: this is in

contrast to the interpolation routine which will be used by other policy types as they

are implemented. The remaining four dominant routines in Figure 8.2 relate to the

164

==

Total

--

CPU_CLK_UNHALTED:THREAD_P 850855016169

CPU_CLK_UNHALTED:REF_P 29363425998

DTLB_LOAD_MISSES:MISS_CAUSES_A_WALK 74827744

DTLB_STORE_MISSES:MISS_CAUSES_A_WALK 3582966

L1D:REPLACEMENT 34977227601

L2_RQSTS:ALL_DEMAND_DATA_RD 31839808309

L2_RQSTS:DEMAND_DATA_RD_HIT 24416064737

MEM_UOPS_RETIRED:ALL_LOADS 572199371747

FP_COMP_OPS_EXE:SSE_SCALAR_DOUBLE 323187260991

FP_COMP_OPS_EXE:X87 237961551

FP_COMP_OPS_EXE:SSE_FP_PACKED_DOUBLE 57338067

SIMD_FP_256:PACKED_DOUBLE 251029051343

PM_ENERGY:NODE 40.046 /sec 11943 J

User time (approx) 298.224 secs 805502887165 cycles

CPU_CLK 2.898 GHz

HW FP Ops / User time 4451.876 M/sec 1327656104048 opsS 20.6%peak(DP)

Total DP ops 4451.876 M/sec 1327656104048 ops

Computational intensity 1.65 ops/cycle 2.32 ops/ref

MFlop/s (aggregate) 35615.01 M/sec

TLB utilization 7297.46 refs/miss 14.253 avg uses

D1 cache hit,miss ratios 93.9% hits 6.1% misses

D1 cache utilization (misses) 16.36 refs/miss 2.045 avg hits

D2 cache hit,miss ratio 78.8% hits 21.2% misses

D1+D2 cache hit,miss ratio 98.7% hits 1.3% misses

D1+D2 cache utilization 77.08 refs/miss 9.635 avg hits

D2 to D1 bandwidth 6516.404MiB/sec 2037747731776 bytes

==

Figure 8.3 Statistics from CrayPAT when processing 50% of the data over 8 tranches using
8 processes, each with 3 threads, and a block size of 16.

calculation of reserves for each type of policy: these are the routines which implement

the recurrence approach to calculating the reserves, as introduced in Chapter 3. The

amount of time spent in each routine approximately reflects the number of each type

of policy, although there is a slight effect on the two-life policies caused by requiring

differing numbers of factors, depending on the policy type.

The fact that ancillary routines (such as reading data) take minimal time is expected

from the fact that this project was based on the premise that the calculation was

beyond contemplation, even though the I/O is achievable: the fact that the profile is

dominated by calculation reinforces the suggestion that I/O is not currently a major

concern.

Figure 8.3 shows that the code achieves roughly 20% of the peak Flop rate, and has

a computational intensity of about 2.3 operations per reference. A survey of scientific

165

codes running on Cray XT4’s [4] showed that many of those codes achieve in the region

of 5% to 15% of peak performance: only those codes which are heavily reliant on Fourier

transforms perform significantly better. While the results quoted in that survey are

for Opteron CPUs, rather than the Xeons in our Cray, there is some evidence that the

code from this project does perform quite reasonably.

Additionally, memory is loaded in the Cray in pages of 4 kB so that 512 double precision

numbers are moved in each transfer. Therefore, if each number were to be used once,

then the expected TLB utilisation would be 512 references per miss: this code achieves

about 7300 references per miss, suggesting that the code has good reuse of data once it

is loaded. This suggestion is reinforced by the fact that the D1 cache hit ratio is about

94%, and that the D1+D2 cache hit ratio is almost 99%. The fact that this code is

particularly good at using data in cache is to be expected: it results from tuning the

block sizes to the machine, allowing the optimal block size to be found.

8.4.1.3 Analysis of Performance

In order to verify the profile information in Section 8.4.1.2, further tests were performed:

those tests are considered in this section.

As discussed in Section 8.2.1, MPI has been used to coordinate a task farm across

tranches since they may be run independently: that independence ensures that there

is no communication between processes and hence any investigation into performance

need only consider a single node. Also, the two sockets on a node have independent

memory hierarchies, and the runs were performed using fewer OpenMP threads than the

cores in a socket, so that processes on each of the sockets are independent. Therefore,

an investigation into performance need only consider a single socket.

8.4.1.3.1 Using Global Variables to Count Flops

It is possible to estimate the number of Flops performed by the program: this may be

achieved by finding the average outstanding term of a policy, and working through the

algorithm and estimating the number of operations per month per policy. However, it

is just as straightforward (and time efficient) to add global counters to the program

and increment them every time operations of the relevant type are performed: this is

the approach taken by this project.

Due to the number of operations, and running time, processing the complete data

set over 1000 tranches, counting all operations is excessive. It suffices to count the

166

Calls to
Total Flops pow() floor() sqrt()

3.885× 1012 2.242× 106 9.834× 1010 8.760× 109

Table 8.5 Count of operations and function calls while processing 50% of the data, over one
tranche, running on one node of the Cray, with the frequency set to 2.7 GHz using
the --p-state option for aprun.

operations for 50% of the policies for one tranche, running on one core of one node:

this gives a good indicator of the performance of the Cray while running this code, and

this setup corresponds to the information presented in Figure 8.3. Note that, in order

for the variables not to wrap round to negative numbers, the type for the counters must

be unsigned long long which, on the Cray, has an upper limit of 264−1. The results

of this manual instrumentation are shown in Table 8.5.

The run time was 900.0 seconds which, given the number of operation in Table 8.5,

equates to a rate of 4.316 × 109 Flops/sec. This is in close agreement to the value of

4.452 × 109 Flops/sec produced by CrayPAT, and shown in Figure 8.3. The Xeons

in the Cray can perform 8 Flops per cycle: with the frequency fixed at 2.7 GHz, this

leads to a peak Flops per core of 21.6 × 109. Therefore, the achieved performance for

this sample is 19.98% of peak which is also in close agreement to the value of 20.6%

produced by CrayPAT.

8.4.1.3.2 Validating CrayPAT using Pure MPI

In order to further understand the performance of the Cray, profiling runs were per-

formed on a single socket with differing numbers of processes running.

The Xeon CPUs in the Cray provide ‘turbo boost’ when the chip is not fully utilised.

However, as more cores are used, and the chips run hotter, the frequency reduces to its

nominal value, thereby ensuring that the chip does not overheat. In order to remove

this effect, the frequency of the chip was restricted to its nominal value of 2.7 GHz using

the aprun parameter, --p-state. Pertinent metrics from these runs are shown in Table

8.6, where the information is straight from CrayPAT (albeit presented with a smaller

number of significant digits): it should be noted that a) the CrayPAT documentation

states that “with the exception of the aggregate Flop rate, the results for runs using

more than one process are averaged over the processes” and b) that the averaging

occurs within CrayPAT, before the results are output.

Using the results in Table 8.6, several observations may be made from the fact that

each process is running in a single-threaded manner. Firstly, the wall clock times are

167

Processes
Item 1 2 3 6 12

CPU
Frequency GHz 2.7 2.7 2.7 2.7 2.7

Time
Overall Wall sec 1784 1783 1787 1793 1789
Read Data sec 3.5 3.3 3.8 5.3 2.1
Read Parameters sec 12.8 10.5 10.8 10.9 10.6

Operations
Total Number ×1012 8.178 8.197 8.192 8.194 8.195
Number Vectorised ×1012 1.549 1.553 1.552 1.552 1.552
Number Scalar ×1012 1.963 1.963 1.963 1.964 1.963
Aggregate Flop Rate ×109/s 4.59 9.20 13.77 27.51 55.13
Fraction of peak Flops 21.3% 21.4% 21.3% 21.3% 21.3%

Cache
D2 to D1 bandwidth GiB/s 6.246 6.255 6.240 6.234 6.246
D2 cache hit rate 95.9% 95.4% 95.7% 95.7% 95.6%
L3 cache hit rate 100.0% 99.8% 99.7% 99.6% 99.6%
L1 cache misses ×109 177.90 176.87 177.54 177.51 177.37
L2 cache misses ×109 13.72 13.62 13.34 13.53 13.58
L3 cache misses ×106 5.03 31.71 35.49 47.85 55.86

Table 8.6 Metrics from CrayPAT using single-threaded code on 1 node when parameters are
re-drawn: 500,000 policies, one scenario per process, one thread per process, all
processes on same socket, CPU frequency fixed using --p-state=2700000.

168

near-constant: this is consistent with the fact that each process-count is for a run

where the specified number of processes each processes exactly one scenario. Secondly,

as an immediate consequence, the aggregate Flop rate increases as an almost linear

function of the number of processes. Next, the near-constant execution time indicates

that there is no significant contention for shared resources such as memory bandwidth,

L3 bandwidth, or L3 capacity. Next, the L3 hit rate is high but slowly decreasing: the

slow decrease is expected from the fact that L3 is shared between all cores on a socket

so that, as the number of processes using the cache increases, the probability of the

required data being there decreases. Further, the number of L3 misses is several orders

of magnitude smaller than the number of L1 or L2 misses: this indicates good reuse

of L3 cache. Finally, the number of operations is roughly the sum of i) the number

of scalar operations and ii) four times the number of vectorised operations: this is

expected from the fact that vector units in Ivy Bridge chips can perform four double

precision operations at the same time.

Based on the results in Table 8.6, it is possible to derive several further metrics: those

metrics are obtained as follows, and shown in Table 8.7:

i) fraction of flops which were vectorised ≡ 4× number of vectorised ops

total number of ops
where 4 is the width of the Ivy Bridge vector units.

ii) flops per L1 miss ≡ total number of operations

number of L2 requests

iii) flops per L2 miss ≡ total number of operations

number of L3 requests

iv) a) time waiting for L1 misses ≡ number of L1 misses× L2 latency

cycles per sec
where, per Appendix B, the L2 latency is 12 cycles

b) fraction of time waiting for data from L2 ≡
time waiting for L1 misses

overall wall time

v) a) time waiting for L2 misses ≡ number of L2 misses× L3 latency

cycles per sec
where, per Appendix B, the L3 latency is 30 cycles

b) fraction of time waiting for data from L3 ≡
time waiting for L2 misses

overall wall time

A summary of the results in Tables 8.6 and 8.7 is that: the code is achieving better than

20% of peak performance; there is a good level of reuse of data once it is loaded into

L3 and L2 cache which, as mentioned in Section 8.4.1.2, results from tuning the block

size to achieve optimal performance; about 75% of operations are vectorised; about

45% of the overall time is spent waiting for data from L2 cache; and about 8.5% of

the overall time is spent waiting for data from L3 cache. It is therefore apparent that

169

Processes 1 2 3 6 12

Fraction of Flops vectorised 75.77% 75.81% 75.78% 75.76% 75.75%

Flops per L1 miss 43.77 43.85 43.83 43.84 43.84

Flops per L2 miss 595.9 601.8 614.2 605.5 603.6

Time waiting for L1 misses
Wall Clock (sec) 790.7 792.2 791.0 790.1 791.3
Fraction of Overall Wall Time 44.33% 44.45% 44.26% 44.09% 44.24%

Time waiting for L2 misses
Wall Clock (sec) 152.5 151.3 148.2 150.4 150.8
Fraction of Overall Wall Time 8.55% 8.49% 8.29% 8.39% 8.43%

Table 8.7 Derived metrics for single-threaded code on 1 node when parameters are re-drawn:
500,000 policies, one scenario per process, one thread per process, all processes on
same socket, CPU frequency fixed using --p-state=2700000

performance-limiting factor is the L1 cache miss latency.

8.4.1.3.3 Validating CrayPAT when using OpenMP

The preceding discussion related to running the code using pure MPI, which is consistent

with the results in Section 8.2.5.1, which showed that the fastest execution was obtained

for pure MPI. However the results in Figure 8.3 were obtained using three OpenMP

threads per process. It is therefore prudent to investigate the performance of the Cray

when running in this manner. CrayPAT output when using three threads per process

is shown in Table 8.8.

Noting that, with the exception of aggregate Flop rate, the values are averages over the

number of used cores so that the fact that the number of operations is roughly one-third

of the values in Table 8.6 is to be expected because each process uses three threads,

i.e. the calculations are spread over three times the number of cores. The reduction in

time to roughly one-third of the value in Table 8.6 is a direct consequence of most of

the work being parallelised using OpenMP, and running with three threads.

The combination of reduction in number of operations per core, and corresponding

reduction in run time, mean that the percentage of peak performance is roughly the

same as for pure MPI, i.e. about 21%. The fact that the achieved peak performance is

marginally lower than for pure MPI is consistent with the fact that, in Section 8.2.5.1,

using pure MPI was shown to be the fastest method of running the code, but use of

OpenMP allowed for use of a greater number of cores while reducing the performance

marginally.

The CrayPAT output in Table 8.8 shows that the percentage of peak performance is

170

Processes
Item 1 2 3 4 8

CPU
Frequency GHz 2.7 2.7 2.7 2.7 2.7

Time
Overall Wall sec 614 613 615 613 613

Operations
Total Number ×1012 2.728 2.734 2.733 2.730 2.730
Number Vectorised ×1011 5.166 5.183 5.179 5.171 5.171
Number Scalar ×1011 6.551 6.540 6.545 6.548 6.548
Aggregate Flop Rate ×109/s 4.44 8.91 13.33 17.81 35.65
Fraction of peak Flops 20.8% 20.8% 20.8% 20.7% 20.8%

Cache
D2 to D1 bandwidth GiB/s 6.052 6.055 6.044 6.058 6.070
D2 cache hit rate 95.8% 95.7% 95.5% 95.7% 95.9%
L3 cache hit rate 100.0% 99.7% 99.7% 99.7% 99.7%
L1 cache misses ×109 59.24 59.37 59.04 59.36 59.31
L2 cache misses ×109 4.30 4.46 4.62 4.476 4.49
L3 cache misses ×106 1.72 1.16 1.34 1.52 1.51

Table 8.8 Metrics from CrayPAT using OpenMP-enabled code on 1 node when parameters
are re-drawn: 500,000 policies, one scenario per process, 3 threads per process,
CPU frequency fixed using --p-state=2700000. Note that the figures for
Aggregate Flop Rate are under-reported by a factor of three (i.e. the number
of threads per process): see Section 8.4.1.3.3 for details.

171

Processes 1 2 3 4 8

Fraction of Flops vectorised 75.75% 75.82% 75.81% 75.75% 75.76%

Flops per L1 miss 43.74 43.87 43.81 43.81 43.76

Flops per L2 miss 634.23 612.8 591.69 611.39 607.57

Time waiting for L1 misses
Wall Clock (sec) 263.5 263.9 263.7 263.7 263.8
Fraction of Overall Wall Time 42.90% 43.02% 42.87% 42.99% 43.07%

Time waiting for L2 misses
Wall Clock (sec) 47.8 49.6 51.3 49.6 49.9
Fraction of Overall Wall Time 7.78% 8.08% 8.34% 8.09% 8.15%

Table 8.9 Derived metrics for single-threaded code on 1 node when parameters are re-drawn:
500,000 policies, one scenario per process, 3 threads per process, CPU frequency
fixed using --p-state=2700000.

roughly 21%, and this value has been justified above: this highlights a problem with the

aggregate Flop rate calculated by CrayPAT and shown in Table 8.8. The total number

of operations, number of vectorised operations and number of scalar operations are

all averaged over the number of ‘working cores’, i.e. the product of the number of

processes and the number of threads per process: this may be verified by comparing

the column for one process with the corresponding column in Table 8.6. Therefore,

because aggregation is performed over processes rather than cores, the aggregate Flop

rate is too low by a factor of the number of threads used per process: this is easily

verified by noting that the implied peak Flop rate (which may be derived by dividing

the aggregate Flop rate by the percentage achieved) is about one-third of the value

derived from multiplying the chip’s clock rate, the number of operations per cycle and

the number of used cores.

Table 8.8 shows that, for runs with three threads per process, the number of L2 cache

misses is less than one-third of the number for the pure MPI run (as shown in Table

8.6): this may be due to a L2 miss in the threaded version being satisfied by a request

to the L2 on a different core, rather than a request to the shared L3.

Table 8.9 shows the same collection of derived metrics that were obtained for pure MPI,

and presented in Table 8.7. The values of the derived metrics, shown in Table 8.9, for

the code run using three-threaded OpenMP are similar to the metrics for the pure MPI

version of the code. In particular, the run time when using three threads is about 3.5%

longer than those for pure MPI which might be due to coherency misses causing longer

L2 miss latencies; there is a good level of reuse of data once it is loaded into cache;

about 43% of the overall time is spent waiting for data from L2 cache; and about 8%

of the overall time is spent waiting for data from L3 cache. It is apparent that, as with

172

Block Size 4 8 16 32 64 96 128 256

Run Time (sec) 1947 1471 1298 1232 1227 1282 1256 1727

Table 8.10 Run times (in seconds) to process 500,000 policies over 96 tranches, using single
precision, vectorised code and various block sizes, but pure MPI, on 4 node of
the Cray.

the pure MPI case, the performance-limiting factor is the L1 cache miss latency. Based

on these observations, there seems limited scope for further optimisation.

8.4.1.3.4 Performance of The Code when Run in Other Configurations

In order to glean further performance information, other configurations of the code

have been run. As discussed in Section 8.2.6, the original code was implemented using

as much vectorisation as possible so as to gain optimal performance. Also, the code

uses double precision throughout in order not to lose accuracy. To allow the effect of

these design decisions to be estimated, a single precision version of the vectorised code

was created, and non-vectorised versions of both precision levels were created.

The performance of the code when run using OpenMP, compared to the performance

using pure MPI has just been discussed: the conclusion that there was similar perfor-

mance under both paradigms means that it suffices to run further analyses using pure

MPI.

Sections 8.2.4 and 8.2.5 discussed the need to run the code using the optimal block

size when processing 1000 tranches whilst re-drawing parameters: the need to find the

optimal block size also applies to the single precision code used in these comparisons.

The timings from running the code using various block lengths are shown in Table 8.10,

from which it is apparent that a block size of 64 is best, although this is only marginally

better than a block size of 32. This compares well with the results in Section 8.2.5.1

where the times for block lengths of 32 and 16 were not particularly different. The

doubling of the optimum block size for single precision calculations might be expected

from the fact that single precision requires half as many bytes per datum, so that there

are twice as many items in each cache line: whilst this is a reasonable expectation, it

is not guaranteed that, on all machines, best performance of the single precision code

will be with twice the block size which is best for double precision. Although the scalar

code was created by removing the loop over blocks of policies and the SIMD pragmas

which guided the Intel compiler during development, the compiler switch to completely

disable vectorisation was not used so that the compiler was free to create vectorised

code. Also, because the non-vectorised version of the code does not contain a loop over

173

Double Single
Item Vector Scalar Vector

CPU
Frequency GHz 2.7 2.7 2.7

Time
Overall Wall sec 1788 3017 1327

Operations
Total Number ×1012 8.198 8.225 8.126
Number Vectorised ×1012 1.552 1.004 0.769
Number Scalar ×1012 1.963 4.059 1.959
Aggregate Flop Rate ×109/s 55.13 32.70 73.95
Fraction of peak Flops 21.30% 12.70% 28.50%

Cache
D2 to D1 bandwidth GiB/s 6.246 10.056 4.199
D2 cache hit rate 95.6% 100.0% 91.3%
L3 cache hit rate 99.6% 86.4% 99.8%
L1 cache misses ×109 177.37 508.93 83.66
L2 cache misses ×109 13.58 0.34 13.40
L3 cache misses ×106 55.86 46.72 20.42

Table 8.11 Metrics from CrayPAT using single-threaded code on 1 node when parameters
are re-drawn: 500,000 policies, one socket, twelve processes per socket, one
scenario per process, one thread per process, CPU frequency fixed using
--p-state=2700000

blocks of policies, the concept of an optimal block size is redundant.

Table 8.11 contains information from CrayPAT resulting from also running single

precision vectorised and double precision non-vectorised configurations of the code using

pure MPI on a full socket of a single node, i.e. 12 processes on 12 cores: these results

show several things, as follows.

Firstly, for all configurations, the percentage of peak Flops is based on a theoretical

maximum of 259.2 GFlops, which is 8 Flops per cycle, for each of 12 cores running at

2.7 GHz. However, the 8 Flops per cycle is for double precision calculations and so

the percentage of peak derived by CrayPAT for the single precision code is misleading:

the theoretical maximum ought to be doubled so that achieved peak is halved, but

Table 8.11 contains the information exactly as it is calculated within, and presented

by, CrayPAT.

Secondly, the speedup obtained from vectorisation is about 1.69×: this differs to Section

8.2.6.1 where the overall benefit of vectorisation was 1.2×. However, the analysis in

Section 8.2.6.1 was performed on the Xeon cluster, using the Intel compiler, whereas

the analysis in this section was performed on the Cray, using the Cray compiler.

174

Next, in Tables 8.7 and 8.9 the fraction of Flops which were vectorised was calculated

as
4× number of vectorised operations

total number of operations

because the Ivy Bridge vector units can perform 4 double precision operations con-

currently. However, for single precision, the vector units can perform 8 operations

concurrently: this means that, for single precision, the fraction of Flops which were

vectorised should be calculated as

8× number of vectorised operations

total number of operations
= 8× 0.769× 1012

8.126× 1012
≡ 75.7%

which is almost identical to the fraction vectorised in the double precision version.

Next, the fraction of Flops which were vectorised in the scalar code is

4× number of vectorised operations

total number of operations
= 4× 1.004× 1012

8.225× 1012
≡ 48.8%

This indicates that, although loop blocking and explicit pragmas were removed, the

compiler vectorised almost half the calculations.

Next, changing from double precision to single precision leads to approximately half

the number of L1 misses, which is consistent with each load of the cache line retrieving

twice the number of variables. The fact that there is no real change in L2 misses

suggests that the missed values would not have been re-used, i.e. those accesses did not

display particularly good temporal locality.

Next, for the double precision code, changing from vectorised to scalar leads to L1 misses

increasing by a factor of about 2.9×, and L2 misses decreasing by a factor of about 1
40×.

This is consistent with vectorisation improving spatial locality, and hence reducing L1

misses. Conversely, however, vectorisation increases the working set size, increasing

L2 misses. Overall, the improvement in spatial locality and reduction in floating-point

instruction count, but worsening of temporal locality, caused by vectorisation, has a

beneficial effect, as seen by the decrease in run time.

Next, when vectorisation is removed from the double precision code the L3 cache hit

rate reduces significantly. This is simply a result of the near-zero number of L3 misses

changing only slightly, but having a large effect on the rate.

Finally, the speedup achieved by using single precision, rather than double precision,

for the vectorised code is about 1.35×. The fact that the code does not run in half the

time is another indication that the performance limitation is not memory bandwidth:

175

MPI Processes per Node 8
OpenMP Threads per Processes 2

Tranches per Process 25

Wall Clock Time (sec) 28357

Portion of RunTime in I/O 0.996%

Table 8.12 Run time (in seconds) to process 500,000 policies over 200 tranches using a block
size of 32, on 1 node of the the Xeon cluster.

if memory bandwidth had been the limit then, for a given memory bandwidth, twice

as many single precision variables as double precision variables could be transferred in

a given time so that, ceteris paribus, the performance would have doubled.

8.4.2 The Xeon Cluster

Section 8.4.1 discussed the ability to perform the full brute force calculation on a

Cray XC30. However, such machines are generally not common in life offices: although

there is a possibility of renting time on external machines, the misconception that ‘data

security will be compromised’ is likely to be a barrier to such an approach. Therefore,

this section considers the ability to perform the brute force calculation on a cluster

which is small enough to be operated within many life offices.

Section 8.2.5.2 concluded that a block size of 32 was optimal for the Xeon cluster.

Table 8.12 shows timings for processing 200 tranches on one node: by extrapolation,

the independence of the tranches suggests that it should be possible to complete a

full brute force run in under 8 hours on the wall clock using 5 nodes. Since five nodes

equates to 80 cores, all offices should be able to perform the calculations in an overnight

run. Allowing for the differences in CPU speeds, and the numbers of cores on the nodes,

this would be equivalent to 16804 sec on the Cray. The actual time on the Cray (per

Table 8.4) is 13875 sec: the Xeon cluster therefore takes about 21% more time than

expected and is therefore about 17.4% slower than the Cray. Given the similarity in

the CPU specification of the two machines, the difference is likely to be due partly to

the use of different compilers (the Cray compiler was used on the Cray, while the Intel

compiler was used on the Xeon cluster), and partly to the memory management system

in the Cray being particularly efficient in comparison to clusters which do not have the

Cray operating system.

176

8.5 Performance when Not Re-Drawing Parameters

The situation where parameters are not re-drawn has only been run on the Cray: this

section describes the set-up for, and results of, that processing.

8.5.1 Run Time Set-up

8.5.1.1 Algorithm and Code

Conceptually, Algorithm 2.1 (without the need to re-draw parameters in Line 11) is

required: implementationally, when the recurrence approach is used, this becomes

Algorithm 7.4. As mentioned in Section 8.2.1, the code used for the main part of

the investigation (i.e. the results discussed in Section 8.4) implements Algorithm 8.1

which is an optimisation of Algorithm 7.2. In order to create an implementation of

Algorithm 7.4, so that parameters are not re-drawn, the outer loop over time steps

was removed from the implementation of Algorithm 7.2: in fact, because the in-force

reserves calculated for future time steps are considered valid under this approach, they

are stored in an array, rather than being discarded. Therefore, the code changes between

the implementations of the two algorithms are minimal.

8.5.1.2 Data and Parameters

By not re-drawing parameters each time step, the amount of calculation per read of

the policy data is greatly reduced if only one scenario is processed. A simple method of

increasing the ratio of calculation to I/O is to process several scenarios for each read of

the data: the data files discussed in Section 8.1.3.1 may therefore be re-used without

modification. However, efficient use of this scheme requires that the parameters are

stored differently; having 1000 files, each with parameters for 750 simulations, allows

for up to 750,000 scenarios3 while allowing the files to remain open, thereby reducing

the amount of housekeeping required.

3This is an arbitrary limit to prove the concept: a commercial situation could have several orders
more scenarios.

177

MPI OpenMP Block Size
Processes Threads 4 8 16 32 64 128 256

8 12 170.2 168.5 179.0 372.1 538.0 581.1 596.2
16 6 146.9 137.6 163.0 351.0 520.9 577.2 583.0
24 4 141.1 131.5 156.6 336.8 514.4 559.3 575.5
32 3 139.4 131.0 159.6 343.4 527.3 561.1 580.1
48 2 137.0 127.4 155.0 337.2 517.4 557.5 571.2
96 1 133.5 124.3 155.9 349.3 517.0 568.6 569.8

Table 8.13 Run times (in seconds) to process 10 scenarios per read of the data for 500,000
policies, over 96 tranches using various combinations of block size, number of
MPI processes and OpenMP threads per process, on 4 nodes of the Cray XC30.

8.5.2 Finding the Optimal Block Length

Section 8.2.5 considered the best combination of processes and threads to use in the

situation where parameters are re-drawn from the relevant distribution in each step:

in order to ensure that the best combination of processes and threads is used when

parameters are not re-drawn it is necessary to perform a similar preparatory investi-

gation. The run times resulting from processing 10 scenarios per read of the data are

shown in Table 8.13.

From Table 8.13 it is apparent that a block size of 8 is optimal, irrespective of the

combination of processes and threads. As the number of scenarios processed for each

read of the data increases, it is reasonable to expect that, because the processing for

each scenario is identical, the run time should increase as a linear function of number

of processes. It should therefore be expected that the optimal block size will be 8,

irrespective of the number of scenarios processed. Run times for varying numbers of

scenarios per read of the data, using a block size of 8, are shown in Table 8.14: the

table also shows the results of using least squares to fit the straight line

tr = m× ns + c

where tr is the overall time for the run and ns is the number of scenarios per read of

the data.

Table 8.14 shows several things. Firstly, pure MPI leads to the shortest run times,

irrespective of how many scenarios are processed: the fact that pure MPI results in

fastest processing is consistent with Section 8.2.5.1 – which is to be expected because

the choice of whether or not parameters are re-drawn has no effect on the processing of

each policy once the parameter values are known. Secondly, the overall processing time

178

MPI OpenMP Scenarios per Process Linear Regression
Processes Threads 1 10 20 50 m c R2

8 12 46.35 168.5 270.1 625.0 11.69 40.76 0.99906
16 6 34.54 137.6 248.9 600.5 11.56 21.36 0.99990
24 4 28.08 131.5 245.4 588.2 11.43 16.88 1.00000
32 3 28.51 131.0 242.7 583.4 11.32 17.19 0.99999
48 2 27.04 127.4 240.8 582.1 11.34 14.68 0.99999
96 1 23.86 124.3 236.1 571.3 11.17 12.66 1.00000

Table 8.14 Run times (in seconds) to process 500,000 policies with varying number of
scenarios: parameters for linear models are included. The processing was for 96
tranches using a block size of 8 and various combinations of block size, number
of MPI processes and number of OpenMP threads per process, on 4 nodes of the
Cray XC30.

per scenario increases most slowly for pure MPI so that the shortest time to process

larger numbers of scenarios should be expected from the use of pure MPI. Finally, for

all combinations of processes and threads, the overall processing time is modelled well

by a linear function of number of scenarios processed.

8.5.3 The Full Run

The calculation of the ACR involves the 99.5th percentile of the distribution of ag-

gregated per-policy reserves at each future step. Therefore, it is likely that, if the

parameters are not re-drawn, then the statistics of the final ACR will not be very

robust. It is possible to show that, asymptotically, the sample variance of the 99.5th

percentile of a sample from a standard normal distribution is roughly 24 times the

sample variance of the mean of a sample from a standard normal distribution: see for

example [10], which refers to [34, Sections 5.4.7 and 2.3]. It therefore seems likely that

a sample of only 1000 scenarios will not be sufficient.

The result in [10] cannot be directly applied to the ACR because the parameters are

not necessarily independent (e.g. a high degree of correlation between interest rates

and inflation rates should be expected), the distributions from which the parameters

are drawn are not necessarily normal, and the ACR is not a simple function of the

parameters.

Without performing numerical experiments with realistic input parameters, it is not

possible to determine the number of scenarios required to keep the variance of the ACR

within a given tolerance. However, for purposes of illustrating performance, runs using

24,000 scenarios and 96,000 scenarios have been performed.

179

Number of Nodes 5 10 25 50 125 250 500
Number of Processes 120 240 600 1200 3000 6000 12000

Scenarios per Process 200 100 40 20 8 4 2

Wall Clock Time (sec) 2322 1208 493 254 115 74 43

Portion of Time in I/O 0.20% 0.25% 0.46% 1.03% 1.81% 5.25% 11.57%

Table 8.15 Run time (in seconds) on the Cray XC30 when parameters are not re-drawn each
time step: pure MPI was used to process 24,000 scenarios using a block size of
16.

Number of Nodes 5 10 25 50 125 250 500
Number of Processes 120 240 600 1200 3000 6000 12000

Scenarios per Process 800 400 160 80 32 16 8

Wall Clock Time (sec) 9247 4795 1924 966 402 213 122

Portion of Time in I/O 0.11% 0.17% 0.14% 0.16% 0.32% 0.90% 1.56%

Table 8.16 Run time (in seconds) on the Cray XC30 when parameters are not re-drawn each
time step: pure MPI was used to process 96,000 scenarios using a block size of
16.

Section 8.4.1.1 discussed the strong scaling of the code when re-drawing parameters

and running on the Cray. Tables 8.15 and 8.16 show the timings for strong scaling

tests for the code running on the Cray when not re-drawing parameters and processing

24,000 and 96,000 scenarios respectively: the performance achieved when parameters

are not re-drawn is shown in Figure 8.4.

It is not entirely obvious, but the ideal processing rates for 24,000 and 96,000 scenarios

are the same: this is because the number of scenarios processed per second for five

nodes are almost identical for the two regimes, and is likely to be a result of I/O not

being a significant part of the overall time on a small number of cores.

It is apparent from Figure 8.4 that the efficiency for the case where parameters are not

re-drawn is not as good as the efficiency for the case where parameters are re-drawn:

the efficiency implied by the use of 12,000 cores is about 51% for 24,000 scenarios,

and roughly 76% for 96,000 scenarios. This is a result of the fact that, for the smaller

number of scenarios, the cost of reading the policy data is not amortised over as many

calculations: the parameters are read for each scenario so that the cost of reading them

is linear in the number of scenarios. The sole reason for not re-drawing parameters was

to reduce the number of times the reserves4 must be calculated so that the increased

proportion of time spent in I/O, as the number of operations (to calculate reserves) falls,

is as expected. The cost of reading the data reduces as more scenarios are processed,

4Both the in-force and per-policy reserves need to be obtained.

180

0 2000 4000 6000 8000 10000 12000
0

200

400

600

800

1000

1200

Number of Cores

Pr
oc

es
si

ng
 R

at
e

(S
ce

na
ri

os
 p

er
 S

ec
on

d)

Ideal
Achieved (24000)
Achieved (96000)

Figure 8.4 Strong scaling on the Cray XC30 when parameters are not re-drawn each time
step: the ideal processing rate is based on the time using 5 nodes (as presented
in Table 8.15 and 8.16), i.e. including I/O, for 24,000 and 96,000 scenarios. The
code used a block size of 8 with double precision and vectorisation included.

which is also expected.

Although the code does not scale particularly well, it is possible to process 96,000

scenarios in about two minutes. This processing time requires 500 nodes of a Cray so

that, as noted in Section 8.4.1.1, the expense of purchasing and running this amount

of hardware is likely to prohibit life offices achieving these time scales.

8.6 Summary

This chapter has considered ab-initio code to perform the calculations required to fulfil

Solvency II calculations using a brute force approach. By building optimisations into

the code at the outset, arranging scenario data efficiently, tuning parameters relating

to the machine’s architecture, and making a few modest simplifications, the brute force

calculations can be performed in reasonable timescales.

Section 8.2.5 indicated that, on the platforms tested, using pure MPI leads to the

shortest run time for each tranche. However, in order to obtain greater scalability, a

hybrid approach using a small number of OpenMP threads should be used.

181

Section 8.3 showed that performance was improved by a factor of more than 4× by

including simplifications which changed the results by less than 0.1%.

Section 8.4.1 demonstrated that, when re-drawing parameters, the entire calculation

can be performed during a coffee break using a supercomputer. Figure 8.1 shows that

the implementation scales well as the number of cores is increased: the deviation from

linearity is due to the combination of MPI processes and OpenMP threads changing to

permit full load balance. Figure 8.2 shows that the majority of the run time is spent

in routines which have been carefully considered and optimised. Figure 8.3 shows that

the implementation performs well in terms of computational efficiency. An in-depth

analysis of performance confirmed the computational efficiency to be reasonably high,

and showed the limiting factor to be latency of transfers from L2 cache to L1 cache. It

is, therefore, unlikely that much more performance could be extracted without further

fundamental changes to the code: Section 9.1 contains some ideas on what those changes

could be.

Section 8.4.2 demonstrated that it is possible to perform the entire calculation overnight

using a cluster which is small enough to be within the reach of the vast majority of life

assurance companies. There is therefore no reason that the approach developed in this

project should not be used in the industry, throughout Europe.

Section 8.5.3 showed that, by not re-drawing parameters, the same variance of 99.5th

percentile (as could be achieved by re-drawing) could be obtained in about 45 seconds

when using 12,000 cores of the Cray: this represents a speedup of about 3.6× compared

to re-drawing parameters, per Table 8.4. When compared to re-drawing parameters,

the case of not re-drawing parameters runs more quickly but the scaling is far worse, as

shown by Figures 8.1 and 8.4: when processing 24,000 scenarios, I/O takes a significant

part of the run time because the cost of reading the policy data on each process

is amortised over a smaller number of calculations than when 96,000 scenarios are

processed.

182

Chapter 9

Future Work

Chapter 5 has shown that it is possible to estimate future profitability in far shorter

times than are achievable using currently available commercial software, and Chapter

8 has shown that it is possible to perform a brute force assessment of solvency in

times which are within the realms of contemplation. However, there is still scope for

future work in the area investigated in this project, both in terms of improving the

performance of the current code, and in applying these techniques to other situations.

This chapter discusses some ideas for further investigations.

Section 9.1 suggests ideas for further work with CPUs, both in terms of further opti-

misations of this code, and extension to other types of policy. The derivation of the

recurrence relation in Chapter 3 is independent of policy type, indicating that it can be

applied to a completely arbitrary policy: Section 9.2 discusses implementation of a gen-

eralised policy. Section 9.3 considers alternative technologies, and Section 9.4 suggests

other uses for a code which runs as quickly as that developed in this project. Section

9.5 considers the extension of this work to nested stochastic projections, i.e. those

where the recurrence itself is based on stochastic simulation, rather than deterministic

derivations. Finally, Section 9.6 contains a summary of the chapter.

9.1 Further Work with CPUs

So far, this project has concentrated on the use of CPUs: this section suggests further

possible work using CPUs.

183

9.1.1 General Optimisation

The use of simple compiler flags means that the compiler’s discretion is applied to lower

level optimisations in the production of the executable file. Therefore, an investigation

into optimal combinations of settings which are not already included in -fast might

lead to a further improvement in performance.

A further serial optimisation would be to change the vectorised calculation of the qx’s

to go to the maximum step implied by the ages in the current block, rather than the

maximum step implied by the ages in the entire data file. However, for randomly

distributed data, the maximum age in the block is not likely to differ significantly from

the maximum age in the data file. Therefore, it is not currently envisaged that this

would lead to much further speed improvement: any performance improvement is likely

to require the data file to be sorted by date of birth so that policies within a block have

similar outstanding terms, thereby removing the need for some redundant calculations.

Whilst these optimisations are expected to yield small improvements in performance,

any speedups resulting from these changes are not expected to be more than about 2×.

Table 8.3 contains statistics regarding the performance of this code on the Cray: the

code achieves roughly 20% of peak performance which is quite reasonable. The statistics

also show that this code achieves a ratio of Flops-per-reference of about 2.3, which is

also quite reasonable. The combination of these factors suggests that there is not much

more performance which could be extracted from the CPU code.

Given recent trends in hardware development, it seems reasonable to think that the

trend for widening vector units within CPUs and increasing the vector instructions

sets will continue for the foreseeable future. Any changes in the size of the vector unit

may trivially be incorporated in this project’s code by changing the block length, as

discussed in Section 8.2.5. Also, the nature of the brute force approach means that

the code is calculation intensive: the majority of the time is spent performing floating

point arithmetic, so that it is hard to see how changes to the vector instruction set

will improve performance – unless there is a fundamental shift in the way the vector

units performs those calculations. Therefore, further optimisations are unlikely to lead

to paradigm shifting changes in the way companies work: the changes discussed in

Chapters 3 to 8 of this thesis might do.

184

9.1.2 Improving I/O

The Cray has a good I/O capability and, Table 8.4 shows that, within the execution

of the Solvency code discussed in Section 8.4.1.1, I/O is less than 2% of the overall

execution time when running on up to 125 nodes. Although this is not a significant

part of the overall time, other machines have lesser I/O capabilities, and so there might

be a need to improve I/O.

Reading from disk does leave some scope for improvement: for both the data and the

parameters, the effect of I/O could be reduced by interleaving I/O and calculation, and

the time spent in I/O could be further reduced by using binary files, rather than ASCII

files.

A further enhancement would be to generate the parameter values from their underlying

distributions during the run, rather than reading them from disk. Section 8.1.3.2

implied a total of 148 GB scenario data: removing the need to read this volume of data

would not only improve performance, it would also allow the number of scenarios to be

varied quickly, should any future change in regulations require such a variation in the

underlying methodology.

9.1.3 Extension to Other Policies

The Fortran code discussed in Chapter 5 was developed only for simple annuities. An

obvious candidate for further work is the extension of this code to cover estimation of

profitability of other policies: in particular, two life annuities could be implemented by

adding a few further routines which deal with the different payment probabilities.

Annuities were chosen for the investigation into the possibility of fulfilling Solvency II

regulations because the continued existence of the companies which provide annuities

is essential to the financial well-being of pensioners. However, there are a great many

other policy types whose benefits are relied on by policyholders with different needs.

Therefore, the extension of the code to cover other policies, such as assurances and

endowments, would be beneficial. The fact that such policies have cash flows which are

easily derived means that it is possible to produce highly optimised code for them.

It should also be possible to produce code for a completely arbitrary policy, and this is

discussed in Section 9.2.

185

9.1.4 Variance of ACR as a Function of Number of Scenarios

Section 7.1 discussed whether or not parameters should be re-drawn, and Section 7.3

analysed possible algorithms which might be used to obtain the ACR depending on

whether or not parameters are re-drawn. Sections 8.4.1 and 8.5.3 have shown that,

irrespective of whether parameters are re-drawn, it is possible to calculate the ACR in

reasonable wall clock times when using implementations of Algorithms 7.2 and 7.4 and

a large enough portion of a supercomputer.

Section 1.5 contained an informal argument for using 1000 scenarios to obtain the

ACR when parameters are re-drawn and Section 8.5.3 contained an justification for

an increase in the number of scenarios required when parameters are not re-drawn.

However, there is no rigorous justification for what the number of scenarios should be

in either case.

The distribution for the ACR will depend on not only the distributions for the underly-

ing parameters, but also the number of scenarios processed and whether the parameters

are re-drawn in each time step. Actually calculating the ACR’s distribution analytically

will be difficult, and may not even be possible. However, it would be possible to

perform many simulations of the ACR calculation in order to obtain an approximation

to the distribution, and how it depends on the number of scenarios: the processing

rates achieved using the advances made by this project would make such simulations

possible, irrespective of whether parameters are re-drawn or not.

The first stage of such an investigation would be to replace the current method of

reading parameters from files by generating them within the program: this allows

a) the number of scenarios to be varied rapidly, perhaps as a command line input,

and b) the distributions which model the parameters to be easily changed, e.g. by

writing new functions. In order for the final distribution of the ACR to be realistic,

functions which produce economic and demographic parameters would also need to be

realistic: for example interest rates would need to contain some level of correlation

between consecutive months, rather than being independently drawn from a particular

distribution, as is the case in this project.

9.2 The General Case

The theoretical foundations for the use of the recurrence relation for a general policy

were discussed in Section 4.4. An implementation for general policies would require a

186

framework whose only constraint is that code to generate cash flows for each new policy

type could be fed into the existing structure relatively easily: it would be necessary to

generate sufficient code that any policy type could be processed through the addition

of minimal further code.

The most general form of the recurrence relation, as given in Section 3.2.5.3, is

rx,t = vft Wx,t,f cx,t + vt Wx,t,1 rx+1,t

and, after removing zero reserve states, this becomes

rx,t = vft Wx,t,f cx,t + vt Wx,t,1 rx+1,t

Using a two-life, last survivor annuity as a specific example, nothing is payable after

both lives have died meaning that there is only one state with zero cash flows. The

corresponding required reserve factors, in actuarial notation, are axy, ax, and ay so

that, after removing ZRSs, Wx,t,f and Wx,t,1 are 3×3 matrices, and the cash flow and

reserve factor vectors, cx,t and rx,t, are 3 × 1. Therefore, implementation of matrix-

vector multiplication for this contract is trivial.

In order to implement the general case it would be necessary to be able to identify zero

cash flows, and there needs to be sufficient information to calculate the cash flows for

each possible state for each future step. The identification of zero cash flows would

necessarily be a policy-dependent step, and it is likely that a conditional expression

would be needed. Additionally, W would be needed in terms of qx’s: this should not

be too onerous for each particular policy since only one W is needed for each transition

diagram – the fact that there is one transition matrix for each combination of number

of lives and number of states means that the structure of W can be determined in

advance.

In order to minimise the amount of code required for each new policy type, it could

be beneficial to implement such a generalised code in an object oriented language so

that its inheritance capabilities can be harnessed. The fact that the current code is

C suggests that C++ is the natural choice, allowing much of the existing code to

be reused. However, Fortran is a continually evolving language which now supports

several aspects of object oriented design and programming. Hence, rewriting the code

in Fortran 2003 would serve as well as transferring the code to C++.

It is clearly possible to perform implementational optimisations for specific contracts.

187

Performing such optimisations for the general case would be more difficult because

the need to allow for all possible states must be admitted. It is therefore reasonable to

expect that any implementation of the general case would have lower performance than

code which is crafted for the specific cases. However, because the general case would

be based on the recurrence relation, it could reasonably be expected to be two orders

of magnitude faster than an implementation based on summation for a projection over

several hundred steps. Therefore, using this approach, there would be hard-coded,

highly optimised code for the most common policies (which account for the majority

of liabilities), and an implementation of the general case for contracts where there are

not many policies.

9.3 Alternative Technologies

Other computing technologies are used in other arenas of science and engineering. This

section suggests whether those technologies could be applied to the actuarial problems

investigated in this project.

The results in Section 8.2.6 showed that vectorisation of the code only led to a speedup

of about 1.2× on the Xeon processors. However, the amount of vectorisation in the

code provides some level of allowance for future changes to hardware: the data layout

required for vectorisation is the same as that required by GPUs in order that memory

coalescing may be performed.

9.3.1 GPUs

Transferring data to a GPU takes a long time in relation to CPU-related data move-

ments. Therefore, in order to benefit from performing calculations on a GPU, there

needs to be sufficient calculation to overcome the cost of transferring the data to the

GPU.

As a result of changes made during the course of this project, profitability calculations

can be performed sufficiently quickly that they can be completed in a few seconds

on a moderately sized SMP. However, although small clusters of PCs are becoming

commonplace within the industry, SMPs of the size used in this project are still

relatively rare in life assurance offices in the UK. It is therefore unlikely that the

approach used in Chapter 5 will be widely adopted.

188

In order to be able to perform the calculations on a reasonable amount of hardware,

an alternative solution may be to transfer the program to GPUs. However, it is not

clear that there is sufficient computation within profitability calculations to overcome

the time cost involved in transferring the data to the device. An investigation into

the performance of the profitability code on alternative hardware would therefore be

beneficial.

The demonstration of solvency which this project considers appears to be ideally suited

to implementation on GPUs because it is compute intensive: Section 3.4.1 demonstrated

that, for a projection of N policies over T time steps, the amount of compute is O(NT).

Since the amount of policy data1 for N policies is O(N), for a projection over 50 years

using monthly steps, so that T = 600, there is a reasonable amount of calculation on

a small amount of data, and none of the calculations for any policy involve the data

from any other policy.

Implementation on GPUs could be via CUDA, OpenCL, or OpenMP’s recently added

extensions for GPUs. A CUDA version could be used to determine the speed im-

provement using a highly optimised GPU code relative to the optimised CPU code

developed in this project. The OpenMP version would demonstrate the performance

available from the use of a programming model which is straightforward to implement.

Allowing for the discussions in Section 2.6.4, it is expected that a highly tuned CUDA

version of the code could be of the order of only 10× faster than the highly optimised

CPU code developed here: this expectation is consistent with the comparison of GPU

hardware to CPU hardware – as mentioned in Section 2.6.4, a single GPU has roughly

11× the compute capacity and about 8× the memory bandwidth of a single CPU, so

that the overall performance could be expected to lie between these limits.

Without some degree of optimisation, the performance of an OpenMP version on a GPU

would not be expected to match that of a highly optimised CUDA version. However,

because of the optimisations built into the code as a result of the use of the OpenMP

API and its run time, the performance would not be expected to be orders of magnitude

worse than CUDA. A future investigation could lead to the ability to justify a statement

such as ‘OpenMP leads to 50% of the performance of CUDA for 15% of the effort’.

1The amount of scenario data is independent of the number of policies.

189

9.3.2 Xeon Phi MIC

Intel’s Many Integrated Core chip, known as ‘Xeon Phi’, has 512-bit wide vector

processors, resulting in the ability to perform 8 double-precision SIMD instructions

in each cycle. This, allied to the high degree of vectorisation in the code developed in

this project, invites the possibility of investigating whether the Xeon Phi is a better

chip than a standard CPU for performing the brute force approach. The processing

strategy discussed in Section 8.2.1 harnesses the parallelism at both the scenario, and

policy, levels. It is likely that this strategy will still be required in order to make

best use of all cores available on the Xeon Phi, while continuing to expose plenty of

parallelism at the thread level.

Code can be built to run on older versions of the Xeon Phi, code named Knights Corner,

and often abbreviated as KNC, in ‘native’ mode or in ‘offload’ mode: in either case, the

Intel compiler must be used. For native mode, the compiler produces code which runs

entirely on the KNC, and MPI and OpenMP may be used within the code. For offload

mode, the compiler inserts directives which mark regions of the code to be run on the

KNC, while the remainder of the code runs on the CPU. The hybrid code which was

developed in Chapter 8, and run on the Cray, should run on the KNC in native mode

without alteration, although the parameters relating to block size, number of processes

and number of threads per process will need to be tuned.

Another aspect of a future investigation could be modifying the code to run in offload

mode on the KNC, although it is not clear that there will be much benefit to this

because a new evolution of the Xeon Phi chip has been released and is expected to

replace KNC chips in most systems. The new Xeon Phi, code named Knights Landing,

and often abbreviated as KNL, is expected to be available mainly as CPU replacements,

rather than co-processors, so that the entire code will run on the KNL, making offload

mode redundant. KNL chips are being built into Cray systems where the Cray compiler

suite may also be used: the choice of compilers therefore invites an exploration of the

techniques employed by the different compilers.

KNL chips include an updated 512-bit vector instruction set and incorporate fused-

multiply-add (FMA) instructions. It should therefore be expected that best perfor-

mance on the KNL is obtained for codes which are highly vectorised and have FMA

instructions. However, the code developed in this project does not have a significant

proportion of instructions which can be reformed as FMAs. Therefore, although the

code is highly vectorised, it is unlikely to attain a high percentage of the KNL’s peak

performance.

190

Another aspect of KNLs which could be of interest is their high bandwidth memory:

this is ‘multi-channel DRAM’, known as MCDRAM. KNLs have 16 GB of MCDRAM

which may be configured as 16 GB of cache: since this sits between the Level 2 cache

for the cores and the main memory, the entire setup has become known as hierarchical

memory, or stacked memory. The amount of memory required for the brute force

approach is small enough to benefit from the KNL’s high bandwidth memory. However,

using pure MPI on the KNL would probably exhaust the 16 GB MCDRAM: one KNL

chip might hold all the data required to process 16 tranches concurrently, e.g. using 16

MPI processes, each with 4 threads, on a 64-core system.

9.4 Other Uses

Until now, this project has concentrated on profitability and solvency. Whilst these are

two of the major calculationally intensive areas within assurance and pensions provision

businesses, there are others which could form the foundation of further investigations.

9.4.1 Pricing

The process of determining the level of premium which should be charged for a par-

ticular level of benefit, given a particular set of assumptions, is a prime concern to a

business in any market. The assumptions used form the ‘pricing basis’, which contains

a similar set of parameters to the reserving and realistic bases used in Chapters 5 and

8, although the values of those parameters are likely to differ.

Setting premium levels usually consists of several profitability runs, each using a dif-

ferent basis with a collection of model points. The premium for a contract is taken to

be that which leads to the profit which is desired for the level of risk which is implied

by the contract. The problem with this approach is the inability to test a large enough

collection of bases, each with differing parameters, against a large enough collection of

model points. This leads to a very coarse grained sweep of the parameter space, and

hence to a not particularly well polished pricing structure.

However, an approach which would result in a finer grained sweep of the parameters

would be to estimate the profitability within 1000 model points on each of 1000 bases.

This is effectively a single profitability run for 106 ‘policies’, where each policy is a

model data point with a basis associated with it.

191

The profitability program, developed in this project could be used for this approach;

at the rate of processing reported in Chapter 5, the overall processing of 106 policies

would take only a few seconds. This would bring pricing into interactive timescales;

the selection of bases could be changed at will by the operator.

Pricing using this system could lead to a clear competitive advantage in times of rapidly

changing investment markets.

9.4.2 Stochastic Approach to Profitability

In addition to varying the bases used for pricing, it would be possible to implement

the profitability program discussed in Chapter 5 so that, by allowing the realistic and

reserving assumptions to be sampled from distributions, there could be a Monte Carlo

approach to profitability: such an approach would be more realistic than the current

approach where the bases are fixed, and are therefore highly reliant on actuaries’

assumptions about the future.

9.4.3 Sensitivity Analysis

Knowing how both the profitability of, and reserves for, a given set of policies change as

a result of changes to values of basis items is of prime importance to any life assurance

company.

As with Section 9.4.1, the program developed in this project could be used with data

points which allow the modelling of the derivatives of basis items. However, this requires

that the values of the basis items differ by a sufficiently small margin as to approximate

numeric differentiation. With a program which has high enough performance, many

small changes to several parameters could be processed using a similar setup to that

suggested for pricing.

An extension to sensitivity analysis is determining the point at which the company

becomes insolvent, e.g. it would be possible to determine the interest rate at which the

reserves required to cover the estimated liabilities exceed the available assets.

9.4.4 Asset Shares

Companies which have been trading in a with-profits market for a sufficiently long

time will have funds where not all assets can be accurately apportioned to current

192

policyholders. For example, a whole life assurance effected in 1860 will probably have

paid the benefit by 1910: this means that, for over 100 years, any shortfall in the bonus

which was due to this policy, but not allocated to it, will have been accumulating in

the fund. Such orphan assets now form a noticeable portion of the with-profits funds

of some large companies, and some companies are starting to think about the best way

to apportion such assets: whilst some policies may have ceased in the past few decades,

so that their beneficiaries might be traceable, it is far less clear what to do with assets

which relate to policies which went off the books several decades ago.

Using a program which processes policy data as quickly as that developed in this

investigation, it would be possible to rebuild the actual values of all policies ever held

by a company – assuming that all the relevant records could be found in order to

construct the data. Whilst this does not solve the problem of what to do with the

orphan assets, it would allow the calculation of the actual amount orphaned from each

policy.

9.5 Nested Stochastic Projections

The work in this project was based on an interpretation of Solvency II which required

1000 simulations in each future time step, leading to 360,000 times the existing number

of calculations for a projection using monthly time steps over 60 years. The results in

Section 8.4.1 show that that projection can be performed in under 3 minutes on 12,000

cores of the Cray. Compared to the original naive estimate of about 2800 years on a

single CPU core, this project has achieved a speedup of around 4.1× 104.

There is another interpretation of Solvency II which suggests that, because reserves and

capital must be calculated on a stochastic basis, other considerations in managing a life

office (often referred to as ‘management actions’) need to be based on nested stochastic

projections. However, in such projections, the inner stochastic loop need only be over

a one year horizon: see [82] for a diagrammatic representation.

Using monthly time steps over 60 years, with 1000 inner paths for each of 1000 scenarios

at valuation would require the reserves for each policy to be evaluated 720 million

times: that is only 2000 times the 3.6× 105 fold increase in calculation this project has

demonstrated to be achievable in a reasonable time. Therefore, the expected run time

would be roughly 3× 105 seconds (i.e. about half a week) whilst still using 500 nodes,

or it might be possible to spilt the calculations further so that it becomes possible to

use more nodes.

193

The processing required for this alternative interpretation of Solvency II is embar-

rassingly parallel: it should therefore be possible to use a commercial cloud-based

technology to perform the required processing. This approach would require aspects

such as data security to be considered: the solutions to such perceived problems could

be as simple as anonymising the data.

9.6 Summary

Several ideas for avenues of further investigation have been suggested in this chapter.

They fall into three categories; implementation of the general case, implementation

of other use cases, and implementation on other technologies. However, despite this

categorisation, there is no requirement to pursue these in any particular order.

The variety of possible future investigations is consistent with Section 2.6 and the

shortage of directly relevant literature, placing this thesis at the start of an emerging

field of studying the application of HPC to actuarial calculations for life assurance

policies.

194

Chapter 10

Conclusion

In the 150 years since Babbage’s observation was published, much has been learnt

about how results of computations may be arrived at more quickly: this thesis has

added a little to that knowledge. Section 10.1 summarises the contribution made by

each chapter, and Section 10.2 provides closing comments.

10.1 Review

Chapter 3 introduced a new algorithm for obtaining in-force reserves at a particular

time step: this algorithm takes the form of a vector recurrence relation which runs

backwards through time, allowing the use of boundary conditions which may be easily

found (or assumed). The algorithm is completely general in that it does not require

any particularly restrictive assumptions: all that is required is that cash flows and

parameter values are known in advance of their use. The algorithm is also general

in that it applies to many classes of non unit-linked policies, without regard to the

conditions of the underlying contracts: all that is required is that cash flows must be

determinable.

The algorithm reduced the computational complexity of obtaining each in-force reserve

from O(T 2), using the existing summation method, to O(T) for T projection steps,

leading to a speedup of two orders of magnitude for a projection over several hundred

monthly steps. The introduction of zero reserve states further reduced the computa-

tional requirement.

Chapter 4 considered the application of the algorithm developed in Chapter 3 to

195

different types of policies. The matrix at the heart of Equation 3.2.6 is a stochastic

matrix whose elements are all survival probabilities: it is therefore easier to think in

terms of the survival states of the lives involved, than to use the traditional approach

of considering individual policy types. In fact, it is possible to use the same survival

matrix to model many contracts, the difference in the contracts being governed by the

conditions under which the cash flows are made.

The application of the algorithm may be extended in two ways. Firstly, despite being

somewhat unintuitive, the introduction of a third survival state allows many more

contracts to be modelled: these additional contracts are those where the benefit is paid

on transition from one state to another. An alternative interpretation of a three state

model allows the recurrence relation to be applied to situations where the transitions

between states could be reversible, e.g. permanent health insurances. Secondly, the

algorithm may also be extended to any number of lives. Although situations where

more than two or three lives are involved in a policy are rare, this algorithm is able to

deal with them so long as they fulfil the same basic criteria already mentioned, i.e. the

cash flows and parameter values are all known at the time they are used.

Chapter 5 discussed the optimisation of a code which performs profitability calculations

on single life annuities. Although neither the code nor the data it processed are from a

commercial environment, both reflect their respective entities sufficiently well to believe

that the improvements made here would transfer directly to a business world, with

the only requirement that hand-crafted code were used rather than using programs

produced by commercially available valuation software.

Standard optimisations such as selecting appropriate compiler flags, manually opti-

mising dominant routines, and adding parallelism, all led to efficient, scalable code.

The implementation of the algorithm from Chapter 3 led to a further increase in

performance: analysis of the run times showed that the time taken to calculate the

reserves does in fact vary with theoretical expectation, both in terms of speedup

resulting from changing from O(T 2) to O(T) for T projection steps, and in terms

of the recurrence algorithm’s linearity in the number of steps.

Overall, a speedup of around 4 × 105 was achieved: the constituents of this speedup

are represented in Figure 10.1, which is based on a diagram which appeared in a course

presented by the ARCHER service [28]. The observed speedup represents that actually

achieved and the estimated effort required is representative of the work involved in

deriving and coding the recurrence algorithm introduced in Chapter 3. This degree

of speedup means that a process which currently takes a few days in an commercial

196

-

6

⊕ Change Hardware
⊕ Tune Compiler Options

⊕ Serial Optimisation

⊕ Parallelisation

Change Algorithm ⊕
100

10

1

Observed

Speedup

1 10 100

Estimated Man-Days

Figure 10.1 Effort and reward during the optimisation of a code which performs profitability
calculations on single life annuities.

setting could be achieved in under 1 second.

Chapter 6 considered an approximation which produces monthly death probabilities

at fractional ages, based on the interpolation of annual probabilities, tabulated at

integral ages. In order to assess the effect of various methods of interpolation, and the

approximation, a quartic polynomial was fitted to the force of mortality which underlies

a particular table: this allows ‘true’ survival probabilities to be analytically obtained.

As a further simplification, the force of mortality was only modelled over the range

of ages where the effect of discounting does not entirely dominate the result of the

calculation: while it would have been possible to fit a higher degree polynomial over

a wider age range, this is unlikely to reveal anything new about the accuracy of the

simplification.

Various methods of directly interpolating in both the lx’s and the qx’s were discussed.

Desirable properties for a series of 12 consecutive monthly probabilities are i) that

their cumulative effect agrees to the annual probability, and ii) that the progression is

sensible with respect to actual lives. None of the direct interpolation methods display

both properties, but all methods show one property or other, indicating that none of the

direct methods are desirable. The chapter also considered one life assurance company’s

use of a convoluted method of obtaining the probabilities, based on cubic interpolation

in the lx’s to derive a series of monthly qx’s. The values obtained are very close to their

theoretically derived counterparts, but the time to perform the calculation is excessive

in its contribution to the overall run time.

197

A simplification, based on a binomial expansion using the qx’s obtained by linear

interpolation was considered. The simplification has far fewer arithmetical steps and

therefore executes more quickly. Although this method introduces a level of approxi-

mation (in addition to that from the interpolation), the probabilities produced closely

match the theoretically expected values. Additionally, the difference between using

the first three terms of the expansion and only using the first two terms is negligible

in terms of the probabilities produced. Furthermore, the change in reserves resulting

from the change in methodology is immaterial.

Chapter 7 considered an alternative interpretation of Monte Carlo simulations for time

series: that interpretation considers that re-drawing parameters in each time step is not

necessary. The chapter contained a complete mathematical formulation of Solvency II

and showed that if mortality and morbidity values can be obtained from the relevant

life tables in constant time then obtaining the probability of being in a particular state

at a particular time has complexity which is linear in the number of lives.

Algorithms for four possible implementations of calculating the additional capital re-

quirement were presented: for a projection over T time steps, the complexity is O(T 2)

other than where the recurrence relation is used and parameters are not re-drawn, in

which case the complexity is O(T).

Chapter 8 discussed the production and performance of code which performs the

calculations required for a brute force assessment of solvency for a variety of life annuity

contracts. As with Chapter 5, the data were synthetic, but were generated to have the

same properties as data from a commercial environment and so there is reason to believe

that the code developed in this project would be useable without significant changes in

the commercial setting.

Standard optimisations, such as those used in Chapter 5, were built into the code, and

the optimisations considered in Chapter 8 were at a different level. Those optimisations

included: the use of tranches to overcome imbalance in the scheduling of the processing

of scenarios; placing the files with scenario information into separate directories to assist

the file management system; re-calculating the benefits at each step to reduce memory

requirements and subsequent data transfers; tuning the length of blocks; and finding

the best combination of processes and threads. Although vectorisation was built in to

the code wherever possible, it led to an improvement in processing speed of roughly

20% which, in terms of the overall speedup achieved in this project, is not significant.

In addition to the simplification of the interpolation discussed in Chapter 6, the timings

of the cash flows were approximated. Rather than using the actual fraction through the

198

month, all cash flows were assumed to happen in the middle of the month, simplifying

both the discounting and the survival calculations: this simple approximation had a

significant effect on the performance, but a negligible effect on the financial results.

On a Cray XC30 supercomputer, the entire brute force calculation for the representative

portfolio may be performed in under three minutes if sufficient cores are used. There is

a lower bound on the run time and that bound is determined by the I/O requirement:

it might be possible to reduce the overall time by a factor of say 5, so that the overall

time is about 30 seconds, but this would not lead to any further significant changes in

working practices. The use of 12,000 cores of a supercomputer is likely to be outside the

standard practice of most life assurance companies and so timings were also obtained

for smaller numbers of cores: the code scales well, with the deviation from linearity

being due to the use of combinations of threads and processes which are not optimal but

allow larger numbers of nodes to be used. On a modest cluster, the entire brute force

calculation may be performed in under eight hours using only 80 cores. This amount

of hardware is well within reach of the majority of life assurance companies: there is

therefore no reason why any portfolio of policies of this size should not be processed in

a way which meets the requirements of Solvency II.

Analysis of the code on the Cray showed that the routines which dominated the run

time were those which have already been highly optimised. The code achieves around

20% of the peak Flop rate, has a high cache hit rate, and spends in excess of 40%

of the overall time waiting for data from L2 cache. These observations indicate that

possibilities for extracting further performance are limited: it is likely that greater

performance may only be achieved by splitting the tranches into chunks, each of which

processes only some of the time steps.

If the interpretation that Monte Carlo simulations for time series do not require pa-

rameters to be re-drawn is adopted, then a smaller amount of processing is required for

each scenario, but more scenarios are likely to be required. These conflicting factors

lead to a reduction in run time when parameters are not re-drawn: there is a speedup

of roughly 6× on 5 nodes and roughly 3.6× on 500 nodes Although not re-drawing

parameters leads to the processing being done more quickly than when parameters are

re-drawn, the scaling is far worse: this is a result of the time to read the policy data

not being spread over as many calculations as the number of nodes increases.

Chapter 9 suggested independent areas for future investigations based on the work in

this project. Although Chapter 8 concluded that there is no real scope for further sig-

nificant performance improvements, it may be possible to slightly improve performance

199

through several minor changes in compiler flags, or through more significant changes

to the way in which I/O is performed.

There is scope for extending this code to policies other than annuities. Because the

recurrence relation developed in Chapter 3 is completely general, it applies to a wide

range of policies. It should therefore be possible to produce highly optimised routines

for each of the more common policy types, allowing the policies which make up the

majority of liabilities to be valued. Also, the generality of the recurrence suggests the

possibility of producing generic code which may be used for less common policy types.

As discussed in Section 9.2, such code should be sufficiently general that it requires the

coding of the sequence of cash flows as the only additional effort when further contract

types are added.

The possibility of transferring this code to two other technologies exists. Firstly, GPUs

have a large number of cores, and their use is beneficial to codes which have a large

amount of computation with only a small amount of data. The problem in this project

meets those criteria and so the code is a good candidate for porting to GPUs. Secondly,

Intel’s Xeon Phi chips have large numbers of cores and allow hyper-threading with a

small number of threads. The results in Tables 8.1 and 8.2 indicate that, when running

on CPUs, the code developed in this project runs more quickly with smaller thread

counts. It seems reasonable to think that it might perform well on the Xeon Phi when

running several tranches at the same time, using a small number of threads per tranche.

Finally, several uses for codes which run this quickly were discussed. These uses are

all based on the management’s ability to run the business, rather than on statutory

reporting. Therefore, although these uses may initially seem unimportant, they will

benefit the company by improving the quality of the management information available.

10.2 Summary

The correct fulfilment of the requirements of the Solvency II regulations in the UK

life assurance and pensions markets requires a fundamentally different approach to

performing the necessary calculations than is currently used within the industry. This

project has demonstrated that, using a combination of algorithmic improvements, serial

optimisations, vectorisation, parallelisation using MPI and OpenMP, straightforward

approximations, and high performance computers it is possible to obtain a significant

increase in performance over current commercial software. In Section 1.5, it was

estimated that a full brute force Solvency II calculation, with parameters being re-

200

drawn in each time step, would take around 2810 CPU core years. However, that naive

estimate was based on the approach of re-calculating reserves using summation at each

step.

From Table 8.4, given a large enough portion of a supercomputer, and an improved

algorithm, the calculations can be done in roughly 155 sec (on the wall clock): this is

around 1.86 × 109 faster than the naive algorithm, implemented using old compilers

and running on out-of-date technology. However, from Figure 5.2, changing to the

recurrence algorithm leads to a performance gain of about 140× for a projection over

60 years using monthly steps; Appendix A.2 shows that technological improvements

leads to this type of software running about 3.25× faster; and, the 155 seconds in

Table 8.4 is based on the use of 12,000 cores of a Cray. The combination of these three

factors means that a performance gain of 5.46 × 106 could have been expected from

using the new algorithm on a modern platform. Therefore, the work in this project

represents a serial speedup of about 340× in addition to gains from improvements in

technology, parallelisation of the code, and the new algorithm.

For uses where only one scenario is used (e.g. estimation of profitability), changing the

method of calculating in-force reserves from a summation approach to a recurrence

approach leads to a reduction in the complexity for the overall calculation from O(T 2)

to O(T). Overall, the optimisation of the code used in the single scenario case led

to a speedup of about 4 × 105 when using OpenMP parallelisation with 48 threads

on 48 cores of the Opteron cluster. This suggests that using 16 threads on 16 cores

of a reasonable Xeon CPU could lead to a speedup of at least 105, indicating that

a profitability calculation, which currently takes a few tens of hours, could be run

in a few seconds on entirely affordable hardware. This would allow all life offices to

perform profitability calculations more frequently, and on a wide range of parameter

values, enabling management decisions which could allow the office to remain profitable

in difficult economic climates: e.g. changing the mix of assets in which the office is

invested, withdrawing contracts from sale, or changing the level of premiums for various

products.

For uses which require multiple scenarios (e.g. Solvency II), whether there is a reduction

in the overall complexity as a result of chaging to the new recurrence algorithm depends

on whether parameters are re-drawn at every time step: if parameters are re-drawn,

then complexity remains O(T 2) (since an O(T) algorithm is used at each future step)

but the overall calculation is faster because the volume of power calculations is greatly

reduced; if parameters are not re-drawn, then complexity reduces from O(T 2) to O(T).

201

The work in this thesis makes a full Monte Carlo simulation of solvency a realistic

possibility, and therefore should be taken as the start of a migration of assurance

companies away from code generated by valuation packages, and towards code which is

targeted at up-to-date HPC hardware. Bespoke code should be considered as a means

of overcoming the perceived inability to perform the Monte Carlo simulations required

for Solvency II. This project has shown that it is possible to perform the full brute

force calculation, for a representative portfolio of policies, within time scales which are

well within the realms of contemplation.

A large number of people rely on pensions bought from these companies for their

financial well-being: as that number increases, there will be a corresponding increase

in the importance of the companies remaining solvent, and hence continue paying the

pensions. The work in this thesis provides a means by which pension providers can fulfil

the Solvency II regulations correctly, ensuring that their assessments of solvency may

be performed quickly and accurately, thereby contributing to the continuing financial

security of an increasing proportion of the population.

202

Bibliography

[1] Babbage, C., Passages from the Life of a Philosopher, Ch 8., London, U.K.,
Longman, 1864.

[2] AMD, Software Optimization Guide for AMD64 Processors, Revision 3.06, 2005.
http://support.amd.com/TechDocs/25112.PDF.
Accessed 27/09/2016

[3] AMD, Software Optimization Guide for AMD Family 15h Processors, Revision
3.08, 2014.
http://support.amd.com/TechDocs/47414 15h sw opt guide.pdf

Accessed 27/09/2016

[4] Antypas, K., Shalf, J., and Wasserman, H., NERSC6 Workload Analysis
and Benchmark Selection Process., 2009. National Energy Research Scientific
Computing Center Division, Berkeley, CA 94720.
www.nersc.gov/assets/pubs presos/NERSCWorkload.pdf.
Accessed 12/11/2016

[5] Bacon, D.F., Graham, S.L. and Sharp O.J., Compiler Transformations for High
Performance Computing, ACM Computing Surveys, Dec 1994.

[6] Benjamin, B., and Pollard, J.H., The Analysis of Mortality and Other Actuarial
Statistics. UK, Institute Of Actuaries & Faculty Of Actuaries, 1993.

[7] Bethel, E.W., Leinweber, D., Rubel, O., and Wu, K., Federal Market Information
Technology in the Post Flash Crash Era: Roles for Supercomputing, in Proceedings
of Fourth Workshop on High Performance Computational Finance, 2011.

[8] Bik, A., The Software Vectorisation Handbook, USA, Intel Press, 2006.

[9] Bodie, Z., Kane, A. and Marcus, A., Essentials of Investments, McGraw-Hill, 6th
edition, 2007.

[10] Brown, M.B. and Wolfe, R.A., Estimation of the variance of percentile estimates,
in Computational Statistics and Data Analysis 1, 1983, 167-174.

[11] Cairns, A. J. G., Blake, D. and Dowd, K. Modelling and Management of Mortality
Risk: A Review. Scandinavian Actuarial Journal, Volume 108, 2008, No. 2, Pages
79-113.

203

[12] Chang, D.J., Desoky, A.H., Ouyang, M., Rouchka, E.C., Compute Pairwise
Manhattan Distance And Pearson Correlation Coefficient Of Data Points With
GPU. SNPD ’09 Proceedings of the 2009 10th ACIS International Conference on
Software Engineering, Artificial Intelligences, Networking and Parallel/Distributed
Computing, Pages 501-506.

[13] Chen, L. (1996). Stochastic Mean and Stochastic Volatility - A Three-Factor
Model of the Term Structure of Interest Rates and Its Application to the Pricing
of Interest Rate Derivatives. Interest Rate Dynamics, Derivatives Pricing, and
Risk Management. Lecture Notes in Economics and Mathematical Systems, 435.
Springer. ISBN 978-3-540-60814-1.

[14] Commission of the European Communities. Solvency II (2008): Amended Proposal
for a Directive of the European Parliament and the Council on the Taking-up
and Pursuit of the Business of Insurance and Reinsurance [SOLVENCY II].,
COM/2008/0119 final/2 - COD 2007/0143. Brussels, 2008.

[15] Conn, G., Private Communications within Aegon U.K., Nov 2011 - Feb 2012.

[16] Corrigan, A., Camelli, F., Lohner, R. and Wallin, J., Running Unstructured Grid
Based CFD Solvers On Modern Graphics Hardware, 19th American Institute of
Aeronautics and Astronautics: Computational Fluid Dynamics, 2009.

[17] Cox, J.C., Ingersoll, J.E. and Ross, S.A., A Theory of the Term Structure of
Interest Rates., Econometrica 53, 1985, Pages 385-407.

[18] Cray, Cray XC30 Architecture Overview
www.archer.ac.uk/training/courses/craytools/pdf/architecture-

overview.pdf

Accessed 07/11/2016

[19] Cray, Performance Measurement and Analysis Tools, Revision S-2376-63, 2015.
http://docs.cray.com/books/S-2376-63/S-2376-63.pdf

Accessed 27/10/2016

[20] Cvetanoska, V. and Stojanovski, T., Using High Performance Computing And
Monte Carlo Simulation For Pricing American Options, European University,
Skopje.
arxiv.org/ftp/arxiv/papers/1205/1205.0106.pdf

Accessed 12/11/2016

[21] Daly, D., Ryu, K.D. and Moreira, J.E., Multi-variate Finance Kernels in the
Blue Gene Supercomputer, in Proceedings of First Workshop on High Performance
Computational Finance, 2008.

[22] Dickson, D.C.M. Hardy, M.R., and Waters, H.R., Actuarial Mathematics for Life
Contingent Risks. 2nd Edition, Cambridge University Press, 2013.

[23] Dixon, M., Chong, J. and Keutzer, K., Acceleration of Market Value-at-
Risk Estimation, in Proceedings of Second Workshop on High Performance
Computational Finance, 2009.

204

[24] Doan, V.D., Gaikwad, A., Baude, F. and Bossy, M, “Gridifying” Classification-
Monte Carlo algorithm for pricing high-dimensional Bermudan-American options,
in Proceedings of First Workshop on High Performance Computational Finance,
2008.

[25] Dozsa, G., Eleftheriou, M., Inglett, T.A., King, A.J., Musta, T.E., Sexton,
J. and Wisniewski, R.W., Stream Processing Performance for Blue Gene/P
Supercomputer, in Proceedings of First Workshop on High Performance
Computational Finance, 2008.

[26] Durham University, Institute for Advanced Research Computing CUDA Centre at
Durham University.
www.dur.ac.uk/iarc/NVIDIAcuda

Accessed 12/11/2016

[27] EPSRC, ARCHER Best Practice.
http://www.archer.ac.uk/documentation/data-management/

Accessed 12/11/2016

[28] EPSRC and NERC, ARCHER: Single Node Optimisation, Course Notes, Session
1.
www.archer.ac.uk/training/course-material/2014/12/SglNode Camb/L01-

perfopt-intro.pdf

Accessed 12/11/2016

[29] EPSRC and NERC, ARCHER: Single Node Optimisation, Course Notes, Session
2.
www.archer.ac.uk/training/course-material/2014/12/SglNode Camb/L02-

nodearch.pdf

Accessed 12/11/2016

[30] EPSRC, ARCHER Technical Specifications.
www.archer.ac.uk/about-archer/hardware/

Accessed 12/11/2016

[31] FIS Insurance, Prophet Financial Modeller.
www.prophet-web.com/prophet-products/

Accessed 20/09/2016

[32] Gerber, R., Bik, A., Smith, K. and Tian, Z., The Software Optimisation Cookbook,
USA, Intel Press, 2006.

[33] Giles, M.B., Laszlo, E., Reguly, I., Appleyard, J. and Demouth, J., GPU
implementation of finite difference solvers., In proceedings of 7th Workshop on
High Performance Computational Finance, SuperComputing, 2014. (Published
in High Performance Computing, Networking, Storage and Analysis 2014 (SC
Companion)).

[34] Gross, A.M. and Clark, V., Survival Distributions: Reliability Applications in the
Biomedical Sciences., John Wiley, New York, 1975.

[35] Harris, C., Haines, K. and Staveley-Smith, L., GPU Accelerated Radio Astronomy
Signal Convolution, Experimental Astronomy, (DOI: 10.1007/s10686-008-9114-9),
2008.

205

[36] Horn, R.A., and Johnson, C.R., Topics in Matrix Analysis, Cambridge Press, 1991.

[37] Hull, J,C., Options, Futures and Other Derivatives, Prentice Hall, 3rd edition,
1997.

[38] IBM, Algo Financial Modeller.
www-03.ibm.com/software/products/en/algofinamode

Accessed 20/09/2016

[39] Institute Of Actuaries and Faculty Of Actuaries, Formulae and Tables for Actuarial
Examinations, UK, Institute Of Actuaries & Faculty Of Actuaries, 1980.

[40] Institute Of Actuaries and Faculty Of Actuaries: Continuous Mortality
Investigation (Life Office Mortality Committee), CMI Working Paper 25 (Revised):
Stochastic projection methodologies: Lee-Carter model features, example results
and implications. Nov, 2007.

[41] Institute Of Actuaries and Faculty Of Actuaries, ‘00’ Series Mortality Tables:
Permanent Assurances, Males, Smokers, 2010.
https://www.actuaries.org.uk/learn-and-develop/continuous-mortality

-investigation/cmi-mortality-and-morbidity-tables/00-series

Accessed 26/09/2016

[42] Institute Of Actuaries and Faculty Of Actuaries, ‘00’ Series Mortality Tables:
Pensioners, Male, Normal, Lives, 2010.
https://www.actuaries.org.uk/learn-and-develop/continuous-mortality

-investigation/cmi-mortality-and-morbidity-tables/00-series

Accessed 26/09/2016

[43] Intel, Developer Zone (Development, Tools, Resources, RANDOM NUMBER).
https://software.intel.com/en-us/node/526691.
Accessed 09/09/2016

[44] Intel, Intel 64 and IA-32 Architectures Optimization Reference Manual, 2011.
http://www.intel.com/content/dam/www/public/us/en/documents/

manuals/64-ia-32-architectures-optimization-manual.pdf

Accessed 14/11/2016

[45] Intel, Intel Fortran Compiler User and Reference Guides, 2011.
Available as pdf file with compiler distribution.
Replacement at https://software.intel.com/en-us/intel-fortran-compiler
-17.0-user-and-reference-guide

Accessed 14/11/2016

[46] Intel, Intel Xeon Processor data sheet.
ark.intel.com/products/family/93797/Intel-Xeon-Processor-E7-v4-

Family#@Server

Accessed 29/09/2016

[47] International Accounting Standards Board, The Conceptual Framework for
Financial Reporting, 2010.
www.ifrs.org/News/Press-Releases/Documents/ConceptualFW2010vb.pdf

Accessed 28/09/2016

206

[48] Irturk, A., Benson, B., Laptev, N. and Kastner, R., FPGA Acceleration of
Mean Variance Framework for Optimal Asset Allocation, in Proceedings of First
Workshop on High Performance Computational Finance, 2008.

[49] Jauvion, G. and Nguyen, T., Parallelized Trinomial Option Pricing Model On
GPU With CUDA.
https://www.scribd.com/document/74126721/Parallelized-Trinomial-

Option-Pricing-Model-on-GPU-with-CUDA

Accessed 14/11/2016

[50] Joshi, M.S., Graphical Asian Options, Wilmott Journal, 2:2, John Wiley & Sons,
Ltd. 2010.

[51] Khronos Group, The open standard for parallel programming of heterogeneous
systems.
https://www.khronos.org/opencl/

Accessed 29/10/2016

[52] Lahabar, S. and Narayanan, P.J., Singular Value Decomposition On GPU Using
CUDA, IEEE International Parallel Distributed Processing Symposium, 2009.

[53] Lanier, J., Virtually There, Scientific American, April 2001.

[54] Lee, V.W., Kim, C., Chhugani, J., Deisher, M., Kim, D., Nguyen, AdD., Satish,
N., Smelyanskiy, M., Chennupaty, S., Hammarlund, P., Singhal, R. and Dubey,
P., Debunking The 100× GPU vs. CPU Myth: An Evaluation Of Throughput
Computing On CPU And GPU, ISCA10, Saint-Malo, France. 2010.

[55] Lindeman, A.J., Opportunities for Shared Memory Parallelism in Financial
Modeling, in Proceedings of Third Workshop on High Performance Computational
Finance, 2010.

[56] Lindley, D.V., and Scott, W.F., New Cambridge Elementary Statistical Tables,
Cambridge University Press, 1984.

[57] Liu, L., Zhang, Y., Liu, L., Yang, G. and Zheng, W., Efficient Monte Carlo-Based
Options Pricing On Graphics Processors And Its Optimizations, Science China
Information Sciences, Vol 5, Pages 1703-1712, 2010.

[58] Liu, W., Schmidt, B., Voss, G. and Muller-Wittig, W., Molecular Dynamics
Simulations On Commodity GPUs With CUDA, LNCS 4873, Pages 185-195, 2007.

[59] McCutcheon, J.J. and Scott, W.F., An Introduction To The Mathematics Of
Finance., Institute Of Actuaries & Faculty Of Actuaries, 1991.

[60] Microsoft, High Performance Computing and Insurance Actuarial ModellingFinal,
November 2008.
download.microsoft.com/documents/uk/business/finance/White-Paper-

High-Performance-Computing-and-Insurance-Actuarial-Modelling-Final.pdf

Accessed 23/11/2017

[61] Milliman, Actuarial High Performance Computing Increasingly Accessible And
Indispensable, May 2008.
www.milliman.com/insight/Articles/Actuarial-high-performance-

207

computing-Increasingly-accessible-and-indispensable/

Accessed 23/11/2017

[62] Message Passing Interface Forum, MPI: A Message-Passing Interface Standard,
Version 2.2, September 2009.
www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf

Accessed 14/11/2016

[63] Molka, D., Hackenberg, D., Robert Schöne, R. and Matthias S. Müller,
M.S., Memory Performance and Cache Coherency Effects on an Intel Nehalem
Multiprocessor System, in Proceedings of the 18th International Conference on
Parallel Architectures and Compilation Techniques. 2009.

[64] Moore, G.E., Cramming More Components onto Integrated Circuits, Electronics,
pp. 114-117, April 19, 1965.

[65] Neill, A., Life Contingencies, Institute Of Actuaries and Faculty Of Actuaries,
1989.

[66] Nichols, B., Buttlar, D., and Proulx Farrell, J., Pthreads Programming, USA,
O’Reilly, 1996.

[67] NVIDIA, What is GPU Computing?.
http://www.nvidia.co.uk/object/cuda-parallel-computing-uk.html

Accessed 29/10/2016

[68] NVIDIA, NVIDIA Tesla K80.
http://www.nvidia.com/object/tesla-k80.html

Accessed 10/11/2016

[69] NVIDIA, Tesla K80 GPU Accelerator.
https://images.nvidia.com/content/pdf/kepler/Tesla-K80-BoardSpec-

07317-001-v05.pdf

Accessed 10/11/2016

[70] Office for National Statistics, English Life Tables, No 17.
https://www.ons.gov.uk/file?uri=/peoplepopulationandcommunity/

birthsdeathsandmarriages/lifeexpectancies/datasets/1englishlife

tables/current/elt17 tcm77-414349.xls

Accessed 26/09/2016

[71] OpenACC-standard.org, OpenACC Standard for Parallel Computing, Nov 2011.
http://www.openacc.org/node/93

Accessed 02/10/2016

[72] OpenMP Architecture Review Board, OpenMP Application Program Interface,
Version 3.1, July 2011.
www.openmp.org/mp-documents/OpenMP3.1.pdf

Accessed 02/10/2016

[73] OpenMP Architecture Review Board, OpenMP Application Program Interface,
Version 4.0, July 2013.
www.openmp.org/mp-documents/OpenMP4.0.0.pdf

Accessed 02/10/2016

208

[74] OpenMP Architecture Review Board, OpenMP Application Program Interface,
Version 4.5, November 2015.
www.openmp.org/mp-documents/openmp-4.5.pdf

Accessed 02/10/2016

[75] Oxford Actuarial Consultants, Mo.net.
www.oac-mo.net

Accessed 20/09/2016

[76] Pakin, S., Ten Ways To Fool The Masses When Giving Performance Results On
GPUs, HPCwire, Dec 2011.
www.hpcwire.com/hpcwire/2011-12-13/ten ways to fool the masses when

giving performance results on gpus.html

Accessed 14/11/2016

[77] RNA Analytics, R3S.
www.rnaanalytics.com

Accessed 23/11/2017

[78] Ross, S.M., A Course in Simulation., USA, Macmillan Publishing Co, 1990.

[79] The Royal Society of Edinburgh, Computation in Finance & Insurance, post-
Napier, April 2014.
www.rse.org.uk/wp-content/uploads/2016/10/Computation -in Finance

and Insurance-post-Napier.pdf

Accessed 23/11/2017

[80] SciComp, SciFinance.
www.scicomp.com

Accessed 23/11/2017

[81] SciComp, Rapid Development Model for Valuation of Exotic Option Instruments
with SciFinance and Integration into a 3rd Party Vendor System.
http://www.scicomp.com/company/case study/request CBA

Accessed 23/11/2017

[82] Society of Actuaries, The Actuary’s HPC Challenge, CompAct, Apr 2008.

[83] Society of Actuaries, Actuarial Software Wins Microsoft Innovation Award,
CompAct, Oct 2011.

[84] Smith, A., Private Communications, May 2018.

[85] Tian, Y., Zhu, Z., Klebaner, F.C. and Hamza, K., Pricing Barrier And American
Options Under The SABR Model On The GPU, Concurrency Computat.: Pract
Exper, 2011.

[86] Tucker, M., The Optimisation of a Financial Modelling Code., Dissertation for
MSc in High Performance Computing. The University of Edinburgh, 2009.
static.ph.ed.ac.uk/dissertations/hpc-msc/2008-2009/Mark Tucker.pdf

Accessed 14/11/2016

[87] Tucker, M. and Bull, J.M., The Application of High Performance Computing
to Solvency and Profitability Calculations for Life Assurance Contracts., In

209

proceedings of 5th Workshop on High Performance Computational Finance,
SuperComputing, 2012. (Published in High Performance Computing, Networking,
Storage and Analysis 2012 (SC Companion)).

[88] Tucker, M. and Bull, J.M., An efficient algorithm for the calculation of reserves
for non unit-linked life policies., in Algorithmic Finance (2014), 3:3-4, 143-161.

[89] Tucker, M. and Bull, J.M., Fulfilling Solvency II Regulations using High
Performance Computing., In proceedings of 8th Workshop on High Performance
Computational Finance, SuperComputing, 2015. (Published in High Performance
Computing, Networking, Storage and Analysis 2015 (SC Companion)).

[90] Ufimtsev, I. and Martinez, T.J., Quantum Chemistry On Graphical Processing
Units. 3. Analytical Energy Gradients, Geometry Optimization, And First
Principles Molecular Dynamics, J. Chem. Theory Comput, Volume 5, Pages 2619-
2628, 2009.

[91] Vasicek, O. (1977). An Equilibrium Characterisation of the Term Structure.
Journal of Financial Economics 5 (2): pp.177-188.

[92] wccftech (online). Intel Launches Its 14nm Broadwell-EX Platform, May 2016.
http://wccftech.com/intel-broadwell-ex-xeon-e7-8890-24-cores/

Accessed 26/10/2016

[93] Williams, T.J., Distributed Calculations on Fixed-Income Securities, in Proceed-
ings of Second Workshop on High Performance Computational Finance, 2009.

[94] WillisTowersWatson, MoSes.
https://www.towerswatson.com/en-GB/Services/Tools/moSes

Accessed 14/11/2016

[95] Wolfram, Wolfram Mathworld: Stochastic Matrix.
https://mathworld.wolfram.com/StochasticMatrix.html

Accessed 17/08/2017

[96] Zitzlsberger, G., Intel Architecture for HPC Developers.
https://indico.cern.ch/event/403113/contributions/1847268/

attachments/1123555/1603259/01 Intel Architecture for HPC

Developers.pdf

Accessed 11/11/2016

[97] 7-cpu, Intel Architecture for HPC Developers.
www.z-cpu.com/cpu/IvyBridge.thml

Accessed 11/11/2016

210

List of Figures

(2.1) Representation of a typical Variable Input Screen, as used in a standard
actuarial valuation software package. 20

(2.2) Schematic overview of a standard actuarial valuation software package. . 21

(2.3) Traversing the ‘policy vs. time step’ iteration space. 48

(4.1) State transition diagram for one life and two states. 79

(4.2) State transition diagram for one life and three states. 82

(4.3) State transition diagram for one life and three states, where one transi-
tion is reversible. 84

(4.4) State transition diagram for two lives and two states. 86

(4.5) State transition diagram for two lives and three states. 88

(5.1) Time (in milliseconds) to calculate reserves for single life annuities using
naive summation and recurrence algorithm: times were obtained using
a single core of the Cray, and are the average over 5000 policies. 103

(5.2) Speedup (for Single Life Annuities) resulting from change from naive
summation to recurrence relation: times were obtained using a single
core of the Cray, and are the average over 5000 policies. 104

(5.3) Processing times (in microseconds) using recurrence relation for different
annuity contracts: times were obtained using a single core of the Cray,
and are the average over 100,000 policies. 105

(5.4) Performance using OpenMP on the Opteron cluster: for each thread
count, the ideal processing rate is derived from the time taken to process
4× 105 single life annuity policies on one thread. 107

(6.1) Polynomials of low degree fitted to − ln (px) where the qx’s are from
PMA92 Ultimate. 111

211

(6.2) Annual death probabilities as tabulated in PMA92 Ultimate, and derived
from fitting a quartic polynomial to the force of mortality. 114

(6.3) Progression of probability of death within the next month, for a life ini-
tially aged 651

3 , increasing by 1
12

th thereafter, using linear interpolation
in the lx’s. 116

(6.4) Required age deduction to ensure equivalence of average monthly mor-
tality and average yearly mortality. 122

(6.5) Deviation from known formulaic value of monthly probabilities of death,
using different interpolation methods, for a life initially aged 651

3 , with
the age increasing by 1

12
th thereafter, to a maximum of age 70. 124

(6.6) Deviation from known formulaic value of monthly probabilities of death,
using different interpolation methods, for a life initially aged 651

3 , with
the age increasing by 1

12
th thereafter, to a maximum of age 95. 125

(8.1) Strong scaling on the Cray XC30: the ideal processing rate is based on
the time using 5 nodes (as presented in Table 8.4), i.e. including I/O, for
1000 tranches, using a block size of 16. 163

(8.2) Summary sampling results from CrayPAT when processing 50% of the
data over 8 tranches using 8 processes, each with 3 threads, and a block
size of 16. 164

(8.3) Statistics from CrayPAT when processing 50% of the data over 8 tranches
using 8 processes, each with 3 threads, and a block size of 16. 165

(8.4) Strong scaling on the Cray XC30 when parameters are not re-drawn each
time step: the ideal processing rate is based on the time using 5 nodes
(as presented in Table 8.15 and 8.16), i.e. including I/O, for 24,000 and
96,000 scenarios. The code used a block size of 8 with double precision
and vectorisation included. 181

(10.1)Effort and reward during the optimisation of a code which performs
profitability calculations on single life annuities. 197

212

List of Tables

(5.1) Performance rate (policies per second) for profitability calculations for
single life annuities resulting from optimisations in MSc project: the
speedup relates to the individual stage, but the rate is cumulative. . . . 101

(5.2) Performance rate (policies per second) as optimisation of profitability
code progressed. 106

(6.1) Closeness of interpolation to expected values for monthly probability of
death. 126

(6.2) Initial reserves for representative portfolio of 500,000 policies: the ‘com-
mercial’ implementation uses cubic interpolation in the lx’s (as described
in Section 6.4.2), and the ‘approximation’ uses the algorithm in Section
6.6. 126

(8.1) Run times (in seconds) to process 500,000 policies, over 96 tranches using
various combinations of block size, number of MPI processes and number
of OpenMP threads per process, on 4 nodes of the Cray XC30. 154

(8.2) Run times (in seconds) to process 500,000 policies over 32 tranches, using
various combinations of block size, number of MPI processes and number
of OpenMP threads per process, on 1 node of the Xeon cluster. 155

(8.3) Run times (in seconds) to process 500,000 policies over 32 tranches using
various block sizes, on 1 node of the Xeon cluster. 157

(8.4) Run time (in seconds) to process 500,000 policies over 1000 tranches
using a block size of 16, and various numbers of nodes on the Cray XC30.162

(8.5) Count of operations and function calls while processing 50% of the data,
over one tranche, running on one node of the Cray, with the frequency
set to 2.7 GHz using the --p-state option for aprun. 167

(8.6) Metrics from CrayPAT using single-threaded code on 1 node when pa-
rameters are re-drawn: 500,000 policies, one scenario per process, one
thread per process, all processes on same socket, CPU frequency fixed
using --p-state=2700000. 168

213

(8.7) Derived metrics for single-threaded code on 1 node when parameters
are re-drawn: 500,000 policies, one scenario per process, one thread
per process, all processes on same socket, CPU frequency fixed using
--p-state=2700000 . 170

(8.8) Metrics from CrayPAT using OpenMP-enabled code on 1 node when
parameters are re-drawn: 500,000 policies, one scenario per process, 3
threads per process, CPU frequency fixed using --p-state=2700000.
Note that the figures for Aggregate Flop Rate are under-reported by
a factor of three (i.e. the number of threads per process): see Section
8.4.1.3.3 for details. 171

(8.9) Derived metrics for single-threaded code on 1 node when parameters
are re-drawn: 500,000 policies, one scenario per process, 3 threads per
process, CPU frequency fixed using --p-state=2700000. 172

(8.10)Run times (in seconds) to process 500,000 policies over 96 tranches, using
single precision, vectorised code and various block sizes, but pure MPI,
on 4 node of the Cray. 173

(8.11)Metrics from CrayPAT using single-threaded code on 1 node when pa-
rameters are re-drawn: 500,000 policies, one socket, twelve processes per
socket, one scenario per process, one thread per process, CPU frequency
fixed using --p-state=2700000 . 174

(8.12)Run time (in seconds) to process 500,000 policies over 200 tranches using
a block size of 32, on 1 node of the the Xeon cluster. 176

(8.13)Run times (in seconds) to process 10 scenarios per read of the data for
500,000 policies, over 96 tranches using various combinations of block
size, number of MPI processes and OpenMP threads per process, on 4
nodes of the Cray XC30. 178

(8.14)Run times (in seconds) to process 500,000 policies with varying number
of scenarios: parameters for linear models are included. The processing
was for 96 tranches using a block size of 8 and various combinations of
block size, number of MPI processes and number of OpenMP threads
per process, on 4 nodes of the Cray XC30. 179

(8.15)Run time (in seconds) on the Cray XC30 when parameters are not re-
drawn each time step: pure MPI was used to process 24,000 scenarios
using a block size of 16. 180

(8.16)Run time (in seconds) on the Cray XC30 when parameters are not re-
drawn each time step: pure MPI was used to process 96,000 scenarios
using a block size of 16. 180

(A.1)Run times (in seconds) to process 1000 policies of each type using the
initial code from the MSc after compiling with the Cray compiler on the
Cray: since the code is single threaded, only one core was used. 220

214

(B.1)Selected details of the E5-2697 2.7 GHz Ivy Bridge processors in the
Cray XC30. Note that 518 GFlops per node results from having two
12-core chips per node. 221

(B.2)Summary of nodes in the Xeon cluster. 223

(D.1)Estimation of portion of time in O
(
T 2
)
calculations. 229

215

List of Algorithms

(2.1) Additional capital requirement for single life annuities using a brute force
approach. 29

(3.1) Calculation of in-force reserves using a summation approach. 73

(3.2) Calculation of in-force reserves using the recurrence approach. 74

(7.1) Calculation of ACR using summation and re-drawing parameters. 140

(7.2) Calculation of ACR using recurrence relation and re-drawing parameters. 141

(7.3) Calculation of ACR using summation but not re-drawing parameters. . 142

(7.4) Calculation of ACR using recurrence relation but not re-drawing param-
eters. 143

(8.1) Structure of loop nest in C implementation of brute force approach to
obtaining the additional capital requirement for Solvency II. 150

216

Appendix A

Estimation of Run Time for

Brute Force Solvency II in the

Commercial Environment

In order to obtain the best accuracy, the projection should be performed with the

smallest time steps which reasonably represent reality, i.e. monthly steps. In a com-

mercial environment, using industry standard software in a Windows environment on

desktop PCs, profitability calculations take about 35 CPU hours for 129,000 single life

annuity policies, and about 221
2 CPU hours for 32,000 reversionary annuity policies.

Since the programs are single threaded, in addition to being CPU core hours, these

measurements are also times on the wall clock. In terms of meaningful metrics, this

translates to average times to process each policy of roughly 1.0 seconds per policy for

single life annuities, and 2.5 seconds per policy for reversionary annuities.

A.1 Initial Estimate

A.1.1 Derivation based on Time Steps

Let the average outstanding term of a policy be T months. Then the performance

statistics of interest are 1.0/T seconds per policy per monthly step for single life

annuities, and 2.5/T seconds per policy per monthly step for reversionary annuities.

The number of time steps that the average policy is involved in the Solvency II

217

projection is

T (for the ‘best estimate’) + 1000× (T − 1) (for scenarios at step 1)

+ 1000× (T − 2) (for scenarios at step 2)

+ · · ·

+ 1000 (for scenarios in the last step)

which is

≈ 500 T 2

The representative portfolio of policies used in this project also contains joint life and

last survivor policies. The times to process these policies in a commercial environment

are not available but, since they are two-life annuities, it is assumed that their processing

times will be similar to those for reversionary annuities. Hence, the time to process the

representative portfolio is estimated as

500 T 2 ×

300000× 1.0

T (for the single life annuities)

+ 100000× 2.5
T (for the reversionary annuities)

+ 50000× 2.5
T (for the joint life annuities)

+ 50000× 2.5
T (for the last survivor annuities)

which is

500 T 2 ×
(
300000

T
+

2.5× 200000

T

)
= 4.0× 108 T

It is common actuarial practice to allow for future improvements in mortality by

considering lives as being younger than they actually are. Suppose that the average

age of the policyholder at the valuation date is 65: then, to allow for the reduction in

age, consider the average age the valuation date to be 60. Allowing for the boundary

condition, tpx = 0 for x > 120, the average outstanding term is 60 years, i.e. T = 720

months. Hence, the estimated overall run time is

(
4.0× 108

)
× 720 = 2.88× 1011 CPU core seconds (A.1)

i.e. around 9130 CPU core years.

218

A.1.2 Derivation based on Number of Calculations

Suppose the number of operations in a profitability calculation is M , and that the

maximum step number is T . Then, for the brute force calculation of solvency:

the number operations in the first step is 1000M ;

the number operations in the second step is 1000M
T − 1

T
;

the number operations in the third step is 1000M
T − 2

T
;

and so on until the end of the projection.

Hence, the total number of operations is

T∑
t=1

(
1000M

T − t

T

)
=

1000M

T

T∑
t=1

(T − t)

=
1000M

T

T−1∑
t=1

t ≈ 500MT

For a projection over 60 years, using monthly steps, T = 720 so that the total number

of operations is 3.6 × 105M . Hence, the volume of operations increases by a factor of

360, 000×

Therefore, for the portfolio of 300,000 single life policies and 200,000 two life policies,

the expected run time (assuming that all two life annuities take the same time per

policy as reversionary annuities) is

360, 000×

35 hrs
129000 × 300000 (for the single life annuities)

+
22.5 hrs
32000 × 200000 (for the two life annuities)

= 8.0× 107 hrs

≡ 2.89× 1011 seconds

which corroborates the value in Equation A.1.

219

Annuity Type Single Life Reversionary

Run Time (sec) 306.8 774.9
Seconds per Policy 0.3068 0.7749
Improvement 3.259 3.226

Table A.1 Run times (in seconds) to process 1000 policies of each type using the initial code
from the MSc after compiling with the Cray compiler on the Cray: since the code
is single threaded, only one core was used.

A.2 Allowing for Technological Advances

The estimates in Section A.1 are based on software produced by a commercial valuation

package, running on desktop PCs in one particular life office at the time this project

was first considered, i.e. 2009, when the MSc dissertation [86] was completed. The code

produced for the MSc originally ran at the same rate as the commercial software when

run in a similar environment [86, Section 1.3]. Therefore, in order to allow for advances

in technology and improvements in compilers during the lifetime of this project, the

initial code from the MSc has been re-run on the Cray under identical compilation

conditions, i.e. single threaded, with no optimisation and full debugging info enabled:

the run times and resultant improvement in performance (in relation to the life office’s

PCs) are shown in Table A.1.

From the results in Table A.1, it is prudent to consider that a speedup of about 3.25×
results from changing from the Compaq compiler and PC-based CPUs from 2009 to

the Cray compiler and Xeon CPUs in our Cray in 2016. Therefore, the estimate in

Equation A.1 should be reduced by this factor, so that the estimated overall run time

is
2.88× 1011 CPU core seconds

3.25
≡ 8.86× 1010 CPU core seconds

i.e. around 2810 CPU core years.

220

Appendix B

Hardware Specifications

Sections 2.5.2.2, 2.5.2.3 and 2.7.3 quote figures relating to hardware specifications:

those details are summarised in this Appendix.

B.1 Features of a Xeon CPU

The nodes on the Cray XC30 have two Intel Xeon E5-2697 2.7 GHz Ivy Bridge proces-

sors on each node [30]: the features of these Xeons are summarised by Cray [18], and

have been repeated in Table B.1.

Cores per die 12
Dies per node 2
Each core has:
User threads 2
Function group 1 AVX (vector)
bits wide 256 bits wide
functional units 1 add and 1 multiply

L1 cache (per core) 32 kB
L2 cache (per core) 256 kB

L3 cache (per die) 30 MB
Cache BW Per core (GB/s)
L1 / L2 / L3 100 / 40 / 23

Peak DP Flops per core 8 Flops/clk
Peak DP Flops per node 518 GFlops

Table B.1 Selected details of the E5-2697 2.7 GHz Ivy Bridge processors in the Cray XC30.
Note that 518 GFlops per node results from having two 12-core chips per node.

221

Other features of Intel Xeon Ivy Bridge processors [96] may be summarised as:

⊛ cache latencies:

Cache Level Latency (cycles)

L1 D 4

L2 (unified) 12

L3 26-31

L2 and L1 D-Cache in other cores 43 or 60

⊛ maximum memory bandwidth = 59.7 GB/s

⊛ instruction set extension = Intel AVX

Pertinent times for Intel Xeon Ivy Bridge processors [97] may be summarised as:

Item Value

RAM Latency 30 cycles + 53× 10−9 sec

Branch misprediction 14 cycles

Converting these values to times to retrieve data into a location from the next layer

away from the registers, on a 2.7 GHz processor, gives:

Location How Long Time (nanoseconds)

L1 Cache 4 cycles 1.5

L2 Cache 12 cycles 4.4

L3 Cache 30 cycles 11.1

RAM 30 cycles + 53 nanoseconds 64.1

The cumulative sums of these values are the times to retrieve data from a certain

location into a register on a 2.7 GHz processor: these are the values quoted in Section

2.5.2.2.

B.2 Nodes on the Xeon Cluster

The Xeon cluster has a large number of different types of nodes: these are enumerated at

the ECDF’s website1, but that is only accessible from within the Edinburgh University

domain and so the information is reproduced in Table B.2. Despite this variety of

available nodes, the code in this project does not require vast amounts of memory per

core. Therefore, all runs were done on “Standard 64G” nodes: these are the nodes

described in Section 2.7.3.

1https://www.wiki.ed.ac.uk/display/ResearchServices/Memory+Specification

222

Description Cores RAM Nodes Xeon Processor

Standard 64G 16 64 GB 71 E5-2630 v3 (2.4 GHz)
Standard 128G 16 128 GB 22 E5-2630 v3 (2.4 GHz)
Intermediate 192G 16 192 GB 63 E5-2630 v3 (2.4 GHz)
Intermediate 256G 16 256 GB 12 E5-2630 v3 (2.4 GHz)
Large 512G 16 512 GB 10 E5-2630 v3 (2.4 GHz)
Large 768G 16 768 GB 6 E5-2630 v3 (2.4 GHz)
Large 2T 32 2 TB 2 E7-4820 v2 (2.0 GHz)
IGMM Standard 16 128 GB 107 E5-2630 v3 (2.4 GHz)
IGMM Large 16 768 GB 6 E5-2630 v3 (2.4 GHz)
Roslin Standard 256G 16 256 GB 16 E5-2630 v3 (2.4 GHz)
Roslin Intermediate 512G 16 512 GB 12 E5-2630 v3 (2.4 GHz)
Roslin Intermediate 768G 16 768 GB 8 E5-2630 v3 (2.4 GHz)
Roslin Large 2T 40 2 TB 2 E7-4820 v3 (1.9 GHz)
Roslin Large 3T 40 3 TB 2 E7-4820 v3 (1.9 GHz)

Table B.2 Summary of nodes in the Xeon cluster.

B.3 Features of an NVIDIA GPU

In addition to the CPU nodes in the Xeon cluster (summarised in Section B.2), the

cluster also has 2 nodes which each have one Xeon E5-2630 v3, 2.4 GHz CPU and

one NVIDIA Tesla K80 GPU [68, 69]. The relevant features of a Tesla K80 may be

summarised as:

⊛ there are 4992 NVIDIA CUDA cores with a dual-GPU design, i.e. there are two

GK210 GPUs, each having 2496 cores;

⊛ the base clock speed is 560 MHz, although this may be boosted to 562–875 MHz;

⊛ double-precision performance is up to 2.91 TFlop/s (with boost enabled), and

single-precision performance is up to 8.73 TFlop/s (with boost enabled);

⊛ memory bandwidth is 480 GB/s, i.e. 240 GB/s for each of the two GK210 GPUs;

⊛ there is 24 GB GDDR5 memory, i.e. 12 GB for each of the two GK210 GPUs.

B.4 Comparisons

From the data in Sections B.1 and B.3:

i) the Flop rate of a GPU is 2.91 TFlop/s whereas the tabulated value for the Flop

rate of CPUs is 518 GFlop/s per CPU node which, allowing for two CPUs per

node, means that a GPU has about 11.2× the Flop rate of a CPU;

223

ii) the memory bandwidth of a GPU is 480 GB/s whereas the memory bandwidth of

a CPU is 59.7 GB/s so that a GPU has about 8× the memory bandwidth of a

CPU.

224

Appendix C

Number of States for Assurances

Using only two states in the vector form of the recurrence relation, as derived in Chapter

3, cannot work for Assurances.

Proof by Contradiction

For the simplest, single life, whole life assurance, where a benefit of 1 is paid at the

end of the step in which death occurs, the relevant relation, in non-vector form, using

standard actuarial notation, is

Ax = v qx 1 + v px Ax+1 (C.1)

Suppose that it is possible to produce a vector form of the recurrence using only two

states. Then, because the benefit is payable at the end of the step, the two transition

matrices in Equation 3.2.6 are the same and, because ‘payment at the end of the step’

relates to f = 1, the possible transitions dictate that the matrix is(
px qx

0 1

)

Using the approach with only two states, state 0 refers to ‘alive’ so that the required

reserve factor is Ax and state 1 refers to ‘dead’ so that the required reserve is 0. Hence,

the vector for the reserves required is (
Ax

0

)

225

Therefore, the full vector equation becomes(
Ax

0

)
= v

(
px qx

0 1

) (
θ

ϕ

)
+ v

(
px qx

0 1

) (
Ax+1

0

)
(C.2)

where θ and ϕ are the, as yet undetermined, cash flows which depend on the state

occupied at the end of the step.

For state 0, the top row of Equation C.2 gives

Ax = v px θ + v qx ϕ+ v px Ax+1

and, to match the non-vector form in Equation C.1, the required cash flow values areθ = 0

ϕ = 1
(C.3)

For state 1, the bottom row of Equation C.2 gives

0 = v ϕ

and, using the value of ϕ from state 0 (per Equation C.3), this gives

0 = v

which is a contradiction . . . unless the interest rate is i = ∞

The absurdity of an infinite interest rate is highlighted by the interpretation that, by

investing the smallest monetary unit possible, the interest earnt on that investment, in

the shortest time possible, will be infinite: such interest will cover any payments which

could ever be made, and hence there is never any need to hold any reserves.

226

Appendix D

Regression Analyses

D.1 Summation vs. Recurrence Relation

D.1.1 Individual Regression Curves

Let T be the number of time steps in the projection, and let ts be the average time per

policy using the summation approach, and tr be the average time per policy using the

recurrence approach. Then fitting polynomials to the data represented by Figure 5.1

gives

ts = 1.0910× 10−8 T 2 + 1.7092× 10−7 T + 4.2454× 10−5

and

tr = 6.0110× 10−8 T − 5.6484× 10−7

Let Rs and Rr be correlation coefficients for the summation and recurrence approaches,

respectively. Then R2
s = 0.999998 and R2

r = 0.999949. The high degree of correlation

indicates how well the times for the summation and recurrence approached are repre-

sented by quadratic and linear curves, respectively: this reinforces the derivation of the

complexities in Section 3.4.1.

227

D.1.2 Speedup

The speedup resulting from the change of algorithm is represented in Figure 5.2: using

T for the number of time steps in the projection, and σ for the speedup, the line of

best-fit has equation

σ = 0.17924 T + 7.3649

with a correlation coefficient, Rσ, given by R2
σ = 0.999913. The high degree of

correlation suggests that the speedup is linear, and that is expected from the fact

that the algorithm’s complexity has changed from O(T 2) to O(T) for T time steps.

D.1.3 Portion of Time in O(T 2) Calculations

The portion of time in O(T 2) calculations may be approximated using an approach

similar to Amdahl’s law.

Let λ be the portion of time spent in O(T 2) calculations while calculating the reserve,

so that 1− λ is the portion of time spent in O(T) calculations: note that this assumes

that the portion of O(1) calculations is zero – which may or may not be true. Then,

under this construction, the total time for T steps using the summation approach is t,

which may be decomposed as λt+(1− λ) t. Hence, the expected time for T steps using

the recurrence approach is
λt

T
+ (1− λ) t and the expected speedup, Γ, is therefore

Γ =
λt+ (1− λ) t
λ
T t+ (1− λ) t

=
T

λ+ (1− λ)T

Let Ts be the measured time to calculate the reserves using the summation algorithm,

and let Tr be the measured time using the recurrence algorithm. Then the measured

speedup is σ =
Ts

Tr
. Equating the measured speedup to the expected speedup, so that

the measured speedup is an estimator for the expected value, gives

σ =
T

T − (T − 1)λ

from which

λ =
1− 1

σ

1− 1
T

(D.1)

228

T 300 360 480 540 600 660 720 840 960 1020
σ 61.6 72.3 93.0 103.7 114.4 125.4 136.5 157.6 179.5 190.9
λ 0.987 0.989 0.991 0.992 0.993 0.994 0.994 0.995 0.995 0.996

Table D.1 Estimation of portion of time in O
(
T 2
)
calculations.

The times Ts and Tr, which were used to create Figure 5.2, are the times purely for the

reserve calculation – all ancillary calculations (such as obtaining cash flow amounts and

qx’s) are performed prior to the reserve calculation. Table D.1 contains the estimates

(obtained using Equation D.1) of proportion of time spent in O(T 2) calculations while

calculating the reserve. From Table D.1, it is apparent that around 99% of the time

calculating reserves is spent in O(T 2) calculations.

D.2 Single Life and Reversionary Annuities

Let T be the number of time steps in the projection, and let tsl be the average time per

policy to perform profitability calculations, using the recurrence approach, for single life

annuities, and tra be the average time per policy to perform profitability calculations,

using the recurrence approach, for reversionary annuities. Then fitting straight lines to

the data represented by Figure 5.3 gives

tsl = 1.5978× 10−8 T − 1.5144× 10−7

and

tra = 2.5815× 10−8 T − 2.5360× 10−7

Let Rsl and Rra be correlation coefficients for the single life and reversionary annuities,

respectively. Then R2
sl = 0.9999995 and R2

ra = 0.9999999

229

Appendix E

Probability of Transition before

Time t

It is not possible to move between states in zero time so, for the start step of 1, i.e.

time t = 0,

Hx,0 = I = Hxy,0

For the start step of 2, i.e. time t = 1, there is only one transition possible (i.e. that

which may have occurred during the interval from time t = 0 to time t = 1), and so

the matrices Hx,2 and Hxy,2 are simply the relevant transition matrices from Chapter

4. For larger values of t, Hx,t and Hxy,t must be obtained by multiplying the matrix

for Hx,t−1 or Hxy,t−1 with the matrix for probability of transition during the interval

from time t − 1 to time t. Each case is considered separately in the remainder of this

chapter.

E.1 Single Life Policies

E.1.1 Two States

Hx,t =

(
tpx tqx

0 1

)
t ∈ {1, 2, 3, . . . }

230

Proof

Hx,1 =

(
px qx

0 1

)

≡

(
1px 1qx

0 1

)

=

(
tpx tqx

0 1

)
where t = 1

Hence the result holds for t = 1.

Suppose the result is true for t = k where k ≥ 1, i.e. Hx,k =

(
kpx kqx

0 1

)

Then

Hx,k+1 = Hx,k

(
px+k qx+k

0 1

)

=

(
kpx kqx

0 1

) (
px+k qx+k

0 1

)

=

(
kpx px+k kpx qx+k + kqx

0 1

)

=

(
k+1px k|qx + kqx

0 1

)

=

(
k+1px k+1qx

0 1

)

=

(
tpx tqx

0 1

)
where t=k+1

Hence the result is true for t = k + 1 whenever it is true for t = k, and the result is

true for t = 1. Therefore, by induction, the result is true for all t ≥ 1, i.e.

Hx,t =

(
tpx tqx

0 1

)
t ∈ {1, 2, 3, . . . }

Q.E.D.

231

E.1.2 Three States

Hx,t =

tpx t−1|qx t−1qx

0 0 1

0 0 1

 t ∈ {1, 2, 3, . . . }

Proof

Hx,1 =

px qx 0

0 0 1

0 0 1

≡

1px 0|qx 0qx

0 0 1

0 0 1

=

tpx t−1|qx t−1qx

0 0 1

0 0 1

 where t = 1

Hence the result holds for t = 1.

Suppose the result is true for t = k where k ≥ 1, i.e. Hx,k =

kpx k−1|qx k−1qx

0 0 1

0 0 1

Then

Hx,k+1 = Hx,k

px+k qx+k 0

0 0 1

0 0 1

=

kpx k−1|qx k−1qx

0 0 1

0 0 1

px+k qx+k 0

0 0 1

0 0 1

=

kpx px+k kpx qx+k k−1|qx + k−1qx

0 0 1

0 0 1

=

k+1px k|qx kqx

0 0 1

0 0 1

232

=

tpx t−1|qx t−1qx

0 0 1

0 0 1

 where t = k + 1

Hence the result is true for t = k + 1 whenever it is true for t = k, and the result is

true for t = 1. Therefore, by induction, the result is true for all t ≥ 1, i.e.

Hx,t =

tpx t−1|qx t−1qx

0 0 1

0 0 1

 t ∈ {1, 2, 3, . . . }

Q.E.D.

E.1.3 Three States with One Reversible Transition

Hx,t =

tp
00
x tp

01
x tp

02
x

tp
10
x tp

11
x tp

12
x

0 0 1

 t ∈ {1, 2, 3, . . . }

Proof

Hx,1 =

p00x p01x p02x

p10x p11x p12x

0 0 1

≡

1p
00
x 1p

01
x 1p

02
x

1p
10
x 1p

11
x 1p

12
x

0 0 1

=

tp
00
x tp

01
x tp

02
x

tp
10
x tp

11
x tp

12
x

0 0 1

 where t = 1

Hence the result holds for t = 1.

Suppose the result is true for t = k where k ≥ 1, i.e. Hx,k =

kp
00
x kp

01
x kp

02
x

kp
10
x kp

11
x kp

12
x

0 0 1

233

Then

Hx,k+1 = Hx,k

p00x+k p01x+k p02x+k

p10x+k p11x+k p12x+k

0 0 1

=

kp
00
x kp

01
x kp

02
x

kp
10
x kp

11
x kp

12
x

0 0 1

p00x+k p01x+k p02x+k

p10x+k p11x+k p12x+k

0 0 1

=

kp

00
x p00x+k

+

kp
01
x p10x+k

kp
00
x p01x+k

+

kp
01
x p11x+k

kp
00
x p02x+k

+

kp
01
x p12x+k

+

kp
02
x 1

kp
10
x p00x+k

+

kp
11
x p10x+k

kp
10
x p01x+k

+

kp
11
x p11x+k

kp
10
x p02x+k

+

kp
11
x p12x+k

+

kp
12
x 1

0 0 1

=

k+1p
00
x k+1p

01
x k+1p

02
x

k+1p
10
x k+1p

11
x k+1p

12
x

0 0 1

=

tp
00
x tp

01
x tp

02
x

tp
10
x tp

11
x tp

12
x

0 0 1

 where t = k + 1

Hence the result is true for t = k + 1 whenever it is true for t = k, and the result is

true for t = 1. Therefore, by induction, the result is true for all t ≥ 1, i.e.

Hx,t =

tp
00
x tp

01
x tp

02
x

tp
10
x tp

11
x tp

12
x

0 0 1

 t ∈ {1, 2, 3, . . . }

Q.E.D.

234

E.2 Two-Life Policies

E.2.1 Two States

Hxy,t =

tpx tpy tpx tqy tqx tpy tqx tqy

0 tpx 0 tqx

0 0 tpy tqy

0 0 0 1

 t ∈ {1, 2, 3, . . . }

Proof

Hxy,1 =

px py px qy qx py qx qy

0 px 0 qx

0 0 py qy

0 0 0 1

≡

1px 1py 1px 1qy 1qx 1py 1qx 1qy

0 1px 0 1qx

0 0 1py 1qy

0 0 0 1

2
35

=

tpx tpy tpx tqy tqx tpy tqx tqy

0 tpx 0 tqx

0 0 tpy tqy

0 0 0 1

 where t = 1

Hence the result holds for t = 1.

Suppose the result is true for t = k where k ≥ 1, i.e. Hxy,k =

kpx kpy kpx kqy kqx kpy kqx kqy

0 kpx 0 kqx

0 0 kpy kqy

0 0 0 1

Then

Hxy,k+1 = Hxy,k

px+k py+k px+k qy+k qx+k py+k qx+k qy+k

0 px+k 0 qx+k

0 0 py+k qy+k

0 0 0 1

2
36

=

{
(kpx kpy)

(px+k py+k)

}
(kpx kpy) (px+k qy+k)

+

(kpx kqy) (px+k)

(kpx kpy) (qx+k py+k)

+

(kqx kpy) (py+k)

(kpx kpy) (qx+k qy+k)

+

(kpx kqy) (qx+k)

+

(kqx kpy) (qy+k)

+

(kqx kqy) · 1

0 (kpx) (px+k) 0

(kpx) (qx+k)

+

(kqx) · 1

0 0 (kpy) (py+k)

(kpy) (qy+k)

+

(kqy) · 1

0 0 0 1

2
37

=

k+1px k+1py

k+1px k|qy

+

k+1px kqy

k|qx k+1py

+

kqx k+1py

k|qx k|qy

+

k|qx kqy

+

kqx k|qy

+

kqx kqy

0 k+1px 0 k|qx + kqx

0 0 k+1py k|qy + kqy

0 0 0 1

=

k+1px k+1py k+1px k+1qy k+1qx k+1py k+1qx k+1qy

0 k+1px 0 k+1qx

0 0 k+1py k+1qy

0 0 0 1

=

tpx tpy tpx tqy tqx tpy tqx tqy

0 tpx 0 tqx

0 0 tpy tqy

0 0 0 1

 where t=k+1

Hence the result is true for t = k + 1 whenever it is true for t = k, and the result is true for t = 1. Therefore, by induction, the result is true

2
38

for all t ≥ 1, i.e.

Hxy,t =

tpx tpy tpx tqy tqx tpy tqx tqy

0 tpx 0 tqx

0 0 tpy tqy

0 0 0 1

 t ∈ {1, 2, 3, . . . }

Q.E.D.

E.2.2 Three States

Hxy,t =

tpx tpy tpx t−1|qy tpx t−1qy t−1|qx tpy t−1|qx t−1|qy t−1|qx t−1qy t−1qx tpy t−1qx t−1|qy t−1qx t−1qy

0 0 tpx 0 0 t−1|qx 0 0 t−1qx

0 0 tpx 0 0 t−1|qx 0 0 t−1qx

0 0 0 0 0 0 tpy t−1|qy t−1qy

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 tpy t−1|qy t−1qy

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1

t ∈ {1, 2, 3, . . . }

=

tpx t−1|qx t−1qx

0 0 1

0 0 1

⊗

tpy t−1|qy t−1qy

0 0 1

0 0 1

2
39

Proof

Hxy,1 =

px py px qy 0 qx py qx qy 0 0 0 0

0 0 px 0 0 qx 0 0 0

0 0 px 0 0 qx 0 0 0

0 0 0 0 0 0 py qy 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 py qy 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1

=

1px 1py 1px 0|qy 1px 0qy 0|qx 1py 0|qx 0|qy 0|qx 0qy 0qx 1py 0qx 0|qy 0qx qy

0 0 1px 0 0 0|qx 0 0 0qx

0 0 1px 0 0 0|qx 0 0 0qx

0 0 0 0 0 0 1py 0|qy 0qy

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1py 0|qy 0qy

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1

2
40

=

tpx tpy tpx t−1|qy tpx t−1qy t−1|qx tpy t−1|qx t−1|qy t−1|qx t−1qy t−1qx tpy t−1qx t−1|qy t−1qx t−1qy

0 0 tpx 0 0 t−1|qx 0 0 t−1qx

0 0 tpx 0 0 t−1|qx 0 0 t−1qx

0 0 0 0 0 0 tpy t−1|qy t−1qy

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 tpy t−1|qy t−1qy

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1

where t = 1

=

tpx t−1|qx t−1qx

0 0 1

0 0 1

⊗

tpy t−1|qy t−1qy

0 0 1

0 0 1

Hence the result holds for t = 1.

2
41

Suppose the result is true for t = k where k ≥ 1, i.e.

Hxy,k =

kpx kpy kpx k−1|qy kpx k−1qy k−1|qx kpy k−1|qx k−1|qy k−1|qx k−1qy k−1qx kpy k−1qx k−1|qy k−1qx k−1qy

0 0 kpx 0 0 k−1|qx 0 0 k−1qx

0 0 kpx 0 0 k−1|qx 0 0 k−1qx

0 0 0 0 0 0 kpy k−1|qy k−1qy

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 kpy k−1|qy k−1qy

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1

Then

Hxy,k+1 = Hxy,k

px+k py+k px+k qy+k 0 qx+k py+k qx+k qy+k 0 0 0 0

0 0 px+k 0 0 qx+k 0 0 0

0 0 px+k 0 0 qx+k 0 0 0

0 0 0 0 0 0 py+k qy+k 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 py+k qy+k 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1

2
42

=

k+1px k+1py k+1px k|qy

k+1px k−1|qy

+

k+1px k−1qy

 k|qx k+1py k|qx k|qy

k|qx k−1|qy

+

k|qx k−1qy

k−1|qx k+1py

+

k−1qx k+1py

k−1qx k+1py

+

k−1qx k+1py

k−1|qx k−1|qy

+

k−1|qx k−1qy

+

k−1qx k−1|qy

+

k−1qx k−1qy

0 0 kpx px+k 0 0 kpx qx+k 0 0 k−1|qx + k−1qx

0 0 kpx px+k 0 0 kpx qx+k 0 0 k−1|qx + k−1qx

0 0 0 0 0 0 k+1py k|qy k−1|qy + k−1qy

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 k+1py k|qy k−1|qy + k−1qy

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1

2
43

=

k+1px k+1py k+1px k|qy k+1px kqy k|qx k+1py k|qx k|qy k|qx kqy kqx k+1py kqx kpy kqx kqy

0 0 k+1px 0 0 k|qx 0 0 kqx

0 0 k+1px 0 0 k|qx 0 0 kqx

0 0 0 0 0 0 k+1py k|qy kqy

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 k+1py k|qy kqy

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1

=

tpx tpy tpx t−1|qy tpx t−1qy t−1|qx tpy t−1|qx t−1|qy t−1|qx t−1qy t−1qx tpy t−1qx t−1|qy t−1qx t−1qy

0 0 tpx 0 0 t−1|qx 0 0 t−1qx

0 0 tpx 0 0 t−1|qx 0 0 t−1qx

0 0 0 0 0 0 tpy t−1|qy t−1qy

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 tpy t−1|qy t−1qy

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1

where t=k+1

Hence the result is true for t = k + 1 whenever it is true for t = k, and the result is true for t = 1. Therefore, by induction, the result is true

2
44

for all t ≥ 1, i.e.

Hxy,k =

tpx tpy tpx t−1|qy tpx t−1qy t−1|qx tpy t−1|qx t−1|qy t−1|qx t−1qy t−1qx tpy t−1qx t−1|qy t−1qx t−1qy

0 0 tpx 0 0 t−1|qx 0 0 t−1qx

0 0 tpx 0 0 t−1|qx 0 0 t−1qx

0 0 0 0 0 0 tpy t−1|qy t−1qy

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 tpy t−1|qy t−1qy

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1

t ∈ {1, 2, 3, . . . }

=

tpx t−1|qx t−1qx

0 0 1

0 0 1

⊗

tpy t−1|qy t−1qy

0 0 1

0 0 1

 t ∈ {1, 2, 3, . . . }

Q.E.D.

2
45

E.3 Continuous Time

The proofs in Sections E.1 and E.2 have relied on the upper limit of the time interval

being an integer (to align with the start of a projection step, where all steps are of

unit length). It is possible to show that similar matrices can be derived for continuous

time intervals, i.e. non-integral end-points: such proofs would require integration of the

force of mortality. However, because those proofs are not directly required here, they

have been neither provided nor rigorously derived.

246

	cover sheet
	thesis_Tucker

