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Abstract

Given a natural language sentence, parsing is the task of assigning it a grammati-

cal structure, according to the rules within a particular grammar formalism. Different

grammar formalisms like Dependency Grammar, Phrase Structure Grammar, Combi-

natory Categorial Grammar, Tree Adjoining Grammar are explored in the literature for

parsing. For example, given a sentence like “John ate an apple”, parsers based on the

widely used dependency grammars find grammatical relations, such as that ‘John’ is

the subject and ‘apple’ is the object of the action ‘ate’. We mainly focus on Combina-

tory Categorial Grammar (CCG) in this thesis.

In this thesis, we present an incremental algorithm for parsing CCG for two diverse

languages: English and Hindi. English is a fixed word order, SVO (Subject-Verb-

Object), and morphologically simple language, whereas, Hindi, though predominantly

a SOV (Subject-Object-Verb) language, is a free word order and morphologically rich

language. Developing an incremental parser for Hindi is really challenging since the

predicate needed to resolve dependencies comes at the end. As previously available

shift-reduce CCG parsers use English CCGbank derivations which are mostly right

branching and non-incremental, we design our algorithm based on the dependencies

resolved rather than the derivation. Our novel algorithm builds a dependency graph in

parallel to the CCG derivation which is used for revealing the unbuilt structure without

backtracking. Though we use dependencies for meaning representation and CCG for

parsing, our revealing technique can be applied to other meaning representations like

lambda expressions and for non-CCG parsing like phrase structure parsing.

Any statistical parser requires three major modules: data, parsing algorithm and

learning algorithm. This thesis is broadly divided into three parts each dealing with

one major module of the statistical parser. In Part I, we design a novel algorithm

for converting dependency treebank to CCGbank. We create Hindi CCGbank with a

decent coverage of 96% using this algorithm. We also do a cross-formalism experiment

where we show that CCG supertags can improve widely used dependency parsers.

We experiment with two popular dependency parsers (Malt and MST) for two diverse

languages: English and Hindi. For both languages, CCG categories improve the overall

accuracy of both parsers by around 0.3-0.5% in all experiments. For both parsers,

we see larger improvements specifically on dependencies at which they are known

to be weak: long distance dependencies for Malt, and verbal arguments for MST.

The result is particularly interesting in the case of the fast greedy parser (Malt), since
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improving its accuracy without significantly compromising speed is relevant for large

scale applications such as parsing the web.

We present a novel algorithm for incremental transition-based CCG parsing for

English and Hindi, in Part II. Incremental parsers have potential advantages for appli-

cations like language modeling for machine translation and speech recognition. We

introduce two new actions in the shift-reduce paradigm for revealing the required in-

formation during parsing. We also analyze the impact of a beam and look-ahead for

parsing. In general, using a beam and/or look-ahead gives better results than not us-

ing them. We also show that the incremental CCG parser is more useful than a non-

incremental version for predicting relative sentence complexity. Given a pair of sen-

tences from wikipedia and simple wikipedia, we build a classifier which predicts if one

sentence is simpler/complex than the other. We show that features from a CCG parser

in general and incremental CCG parser in particular are more useful than a chart-based

phrase structure parser both in terms of speed and accuracy.

In Part III, we develop the first neural network based training algorithm for parsing

CCG. We also study the impact of neural network based tagging models, and greedy

versus beam-search parsing, by using a structured neural network model. In greedy

settings, neural network models give significantly better results than the perceptron

models and are also over three times faster. Using a narrow beam, structured neural

network model gives consistently better results than the basic neural network model.

For English, structured neural network gives similar performance to structured percep-

tron parser. But for Hindi, structured perceptron is still the winner.

iv



Lay Summary

Given a natural language sentence, the task of finding its grammatical structure in a

grammar formalism is called natural language parsing. For example, given a sentence

like “John ate an apple”, parsers based on the widely used dependency grammars find

grammatical relations, such as that ‘John’ is the subject and ‘apple’ is the object of the

action ‘ate’. We mainly focus on a grammar formalism called Combinatory Categorial

Grammar (CCG) in this thesis.

In this thesis, we present an incremental algorithm for parsing CCG for two diverse

languages: English and Hindi. English is a fixed word order and morphologically sim-

ple language, whereas, Hindi is a free word order and morphologically rich language.

Our algorithm builds a dependency graph in parallel to the CCG derivation which is

used for revealing the unbuilt structure without backtracking. Though we use depen-

dencies for meaning representation and CCG for parsing, our revealing technique can

be applied to other meaning representations like lambda expressions and for non-CCG

parsing like phrase structure parsing.

This thesis is broadly divided into three parts each dealing with a major module of

the statistical parser: data, parsing algorithm and learning algorithm. In Part I, we de-

sign a novel algorithm for converting the Hindi dependency treebank to a Hindi CCG-

bank. We also do a cross-formalism experiment where we show that CCG supertags

can improve widely used dependency parsers. We experiment with two popular depen-

dency parsers (Malt and MST) for two diverse languages (English and Hindi) and show

that CCG categories improve the accuracy by around 0.3-0.5% in all experiments.

We present a novel algorithm for incremental transition-based CCG parsing for En-

glish and Hindi, in Part II. We introduce two new actions in the shift-reduce paradigm

for revealing the required information during parsing. We also analyze the impact of

a beam and look-ahead for parsing. In general, using a beam and/or look-ahead gives

better results than not using them. We also show that incremental CCG parser is more

useful than a non-incremental parser for predicting relative sentence complexity.

In Part III, we develop the first neural network based training algorithm for parsing

CCG. We also study the impact of neural network based tagging models, and greedy

versus beam-search parsing, by using a structured neural network model. In greedy

settings, neural network models give significantly better results than the perceptron

models and are also over three times faster. Using a (narrow) beam, structured neural

network model gives consistently better results than the basic neural network model.
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Chapter 1

Introduction

Given a natural language sentence, parsing is the task of assigning it a grammatical

structure, according to the rules within a particular grammar formalism. Different

grammar formalisms like Dependency Grammar, Phrase Structure Grammar, Com-

binatory Categorial Grammar (CCG), Tree Adjoining Grammar are explored in the

literature for parsing. For example, given a sentence like “John ate an apple”, parsers

based on the widely used dependency grammars find grammatical relations, such as

that ‘John’ is the subject and ‘apple’ is the object of the action ‘ate’. Figure 1.1 presents

the parse trees for this example sentence in phrase structure, dependency and combi-

natory categorial grammar formalisms.

Parsing is one of the major tasks which helps in understanding the natural lan-

guage. It is useful for several real-world applications like machine translation (Gal-

ley et al., 2006; Quirk and Menezes, 2006; Katz-Brown et al., 2011; Sennrich, 2015),

question answering (Kwiatkowski et al., 2013; Reddy et al., 2014, 2016), dialogue sys-

tems (Stoness et al., 2004), and speech recognition (Chelba and Jelinek, 2000; Roark,

2001). Parsers can be grammar-driven, data-driven/statistical or hybrid. Statistical

parsers differ from grammar driven parsers as they use a corpus to induce a probabilis-

tic model for disambiguation. Statistical parsers can be broadly divided into graph-

based parsers (McDonald et al., 2005b; Clark and Curran, 2007) and transition-based

parsers (Nivre et al., 2007b; Zhang and Clark, 2011a). Graph-based parsers use ex-

haustive global search resulting in a stronger and more accurate model. However,

transition-based parsers are more appealing for practical real-time applications since

parsing can be achieved in linear time compared to graph-based parsers, whose com-

plexity is generally polynomial in time.

In this thesis we focus on transition-based incremental parsing for Combinatory

1
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Figure 1.1: Parse trees in different grammar formalisms.

Categorial Grammar formalism. Incremental parsers are cognitively more plausible

than non-incremental parsers and are more appealing for applications like real-time

statistical machine translation and speech recognition. We work with two typologi-

cally diverse languages: English and Hindi. In this chapter, we first list the major

contributions of this thesis. We give a brief introduction to Combinatory Categorial

Grammar. Then we describe our approach for developing transition-based incremental

CCG parsers. Finally, we present the outline of this thesis.

1.1 Contributions

The major contributions of this thesis are

• Building on earlier work by Cakici (2005), we present an algorithm for convert-

ing dependency treebanks into CCGbanks.

• We show that informative CCG categories improve the performance of widely

used dependency parsers like Malt and MST.
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• We develop a new incremental algorithm for parsing CCG by introducing two

new actions which reveal unbuilt structure from overly greedy prefix analyses.

• For the task of predicting relative sentence complexity, we show that an incre-

mental CCG parser gives significant improvements in speed and accuracy com-

pared to a phrase structure parser.

• We present different neural network models for transition-based CCG parsing,

the first neural network based parsers for CCG 1.

• For all of the above (except for 1 and 4), we present experiments and results in

two typologically diverse languages: English (SVO word order) and Hindi (SOV

word order)

1.2 Combinatory Categorial Grammar

Combinatory Categorial Grammar (CCG) (Steedman, 2000) is a strongly lexicalized

grammar formalism, in the sense that all language-specific information including lin-

ear order is defined at the level of the lexicon. It is “nearly context-free” in expressive

power, in the sense of being among a group of formalisms for natural language gram-

mars that are at the least more expressive linguistically significant level than context-

free grammar (CFG) (Joshi et al., 1991). It has a completely type-transparent interface

between syntactic derivation and compositional assembly of the underlying semantic

representation, including predicate argument structure, quantification and information

structure. Because of this semantic transparency, CCG is widely used in practical

applications involving semantic interpretation and inference (Bos et al., 2004; Lewis

and Steedman, 2013a,b) especially for semantic parsing with special focus on question

answering (Kwiatkowski et al., 2013; Reddy et al., 2014).

In the categorial lexicon, words are associated with syntactic categories, such as

S\NP or (S\NP)/NP for English intransitive and transitive verbs. Categories of the

form X\Y or X/Y are functors, which take an argument Y to their left or right (depend-

ing on the direction of the slash) and yield a result X. Every syntactic category is paired

with a semantic interpretation (usually expressed as a λ-term).

Like all variants of categorial grammar, CCG uses function application to com-

bine constituents, but it also uses a set of linear order-dependent syntactic combinatory
1At the same time, and independent of this thesis, Xu et al. (2016) developed a neural network based

CCG parser.
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rules corresponding semantically to composition (B) and type-raising (T). Type rais-

ing is a non-recursive lexical operation related to (abstract) case. However, for fixed

word order languages without morphological case, Hockenmaier and Steedman (2007)

advocate the use of unary type-changing rules for reasons of efficiency, including type-

raising rules and additional rules to deal with complex adjunct categories (e.g (NP\NP)

=⇒ S[ng]\NP for ing-VPs that act as noun phrase modifiers). Examples of CCG rules

are:
Forward Application (>): X/Y Y =⇒ X

Backward Application (<): Y X\Y =⇒ X

Forward Composition (> B): X/Y Y/Z =⇒ X/Z

Backward Composition (< B): Y\Z X\Y =⇒ X\Z
Forward Crossed Composition (> BX ): X/Y Y\Z =⇒ X\Z
Backward Crossed Composition (< BX ): Y/Z X\Y =⇒ X/Z

Forward Type-raising (> T) : X =⇒ T/(T\X)

Backward Type-raising (< T) : X =⇒ T\(T/X)

1.3 Problem and Approach

We present an incremental algorithm for parsing Combinatory Categorial Grammar

(CCG) for two diverse languages: English and Hindi. English is a fixed word order

and morphologically simple language, whereas Hindi is a free word order and morpho-

logically rich language. The treebank available for Hindi is four times smaller than the

English treebank making the task of statistical Hindi parsing more challenging. Any

statistical parser requires three major modules: data, parsing algorithm and learning

algorithm. This thesis is broadly divided into three parts each dealing with one major

module of the statistical parser.

1.3.1 Data

Statistical parsers require data to train the model. To develop statistical CCG parsers,

we need resources like CCGbanks (Hockenmaier and Steedman, 2007) or CCG lexi-

cons (Çakıcı, 2009). Hockenmaier and Steedman (2007) developed the first English

CCGbank automatically from the Penn Wall Street Journal Phrase Structure Tree-

bank (Marcus et al., 1993). Availability of the English CCGbank has enabled the

creation of several robust and accurate wide-coverage CCG parsers for English, both

graph-based (Hockenmaier and Steedman, 2002; Clark and Curran, 2007; Auli and
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Lopez, 2011; Lewis and Steedman, 2014a) and transition-based (Zhang and Clark,

2011a; Xu et al., 2014), that are being used extensively for broad-coverage parsing,

and especially for tasks requiring deep linguistic analysis such as semantic parsing and

question-answering (Bos et al., 2004; Lewis and Steedman, 2013a,b; Kwiatkowski

et al., 2013; Reddy et al., 2014). Unlike English, Hindi is a morphologically rich and

free word order language. Creation of CCGbanks in other languages, especially lan-

guages typologically far from English is beneficial both for the development of CCG

analyses for linguistic phenomena in these languages, and also for the development of

deep NLP tools for these languages. There is no CCGbank available for Hindi and

manual creation of such resources takes a lot of effort. But, a Hindi dependency tree-

bank (Bhatt et al., 2009) was recently developed for Hindi. We present an approach for

automatically creating a CCG treebank from a dependency treebank for Hindi. Rather

than a direct conversion from dependency trees to CCG trees, we propose a two stage

approach: a language independent generic algorithm first extracts a CCG lexicon from

the dependency treebank. A deterministic CCG parser then creates a treebank of CCG

derivations. The advantage of this approach is that we can handle crossing-arcs in the

dependency treebanks in a better way.

After developing CCG resources like lexicon and supertagger for Hindi, we do a

cross-formalism experiment where we show that CCG supertags can improve depen-

dency parsing. Different grammar formalisms have different advantages and providing

features from one formalism can be useful for parsing in another formalism (Sagae

et al., 2007; Coppola and Steedman, 2013; Kim et al., 2012). CCG categories contain

subcategorization information which is a useful feature in dependency parsing (Zhang

and Nivre, 2011). We provide CCG categories as features to dependency parsers and

show that CCG categories helps dependency parsing. We experiment with two popu-

lar dependency parsers: Malt2 (Nivre et al., 2007b) and MST3 (McDonald, 2006) and

for two languages: English and Hindi. For both languages and both the parsers, CCG

categories improve the overall accuracy by around 0.3-0.5% in all experiments.

1.3.2 Parsing Algorithm

Traditionally transition-based parsers use arc-eager or arc-standard style parsing al-

gorithms (Nivre, 2003, 2004). Zhang and Clark (2011a) developed the first shift-

reduce CCG parser for English which gave accuracies competitive with graph-based

2http://www.maltparser.org/
3http://mstparser.sourceforge.net/

http://www.maltparser.org/
http://mstparser.sourceforge.net/
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parsers (Clark and Curran, 2007). Improving Zhang and Clark (2011a)’s model, Xu

et al. (2014) developed a dependency model for shift-reduce CCG parsing using a

dynamic oracle technique (Goldberg and Nivre, 2012). Shift-reduce CCG parsers rely

either on normal-form (Eisner, 1996a) CCGbank derivations (Zhang and Clark, 2011a)

which are non-incremental, or on dependencies (Xu et al., 2014) which could be incre-

mental in simple cases, but do not guarantee incrementality. As these parsers employ

an arc-standard (Yamada and Matsumoto, 2003) shift-reduce strategy on CCGbank,

given an SVO language, these parsers are not guaranteed to attach the subject before

the object.

Besides being cognitively plausible (Marslen-Wilson, 1973), incremental pars-

ing is more useful than non-incremental parsing for some applications. For example,

an incremental analysis is required for integrating syntactic and semantic information

into language modeling for statistical machine translation (SMT) and automatic speech

recognition (ASR) (Roark, 2001; Wang and Harper, 2003). We develop a new incre-

mental shift-reduce algorithm for parsing CCG by building a dependency graph in

addition to the CCG derivation as a representation. The dependencies in the graph are

extracted from the CCG derivation. We introduce two new actions in the shift-reduce

paradigm for “revealing” (Pareschi and Steedman, 1987) unbuilt structure during pars-

ing. We build the dependency graph in parallel to the incremental CCG derivation

and use this graph for revealing, via these two new actions. As our algorithm does

not model derivations, but rather models transitions, we do not need a treebank of

incremental CCG derivations and can train on the dependencies in the existing tree-

bank. Our approach can therefore be adapted to other languages with dependency

treebanks, since CCG lexical categories can be easily extracted from dependency tree-

banks (Cakici, 2005; Ambati et al., 2013). In this thesis, we use dependencies for

meaning representation and CCG for parsing. But our revealing technique is generic

enough and can be applied to other meaning representations like lambda expressions

and for non-CCG parsing like phrase structure parsing. Similar to CCG derivation,

we can extract dependencies from the phrase structure tree using head dependency

rules (Collins, 1999; Johansson and Nugues, 2007; de Marneffe et al., 2006). Also,

lambda expression can be represented in the form of a dependency graph similar to our

representation (Kwiatkowski et al., 2010).

We experiment with both English and Hindi CCGbanks. Developing an incremen-

tal algorithm for a predominantly SOV language like Hindi is much more challenging

than for an SVO language. Other factors like free word order nature, morphological
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richness and less training data played a key role in developing incremental parsing

models. We experimented with different levels of incrementality through experiments

analyzing the impact of greedy vs. beam and with/without look-ahead.

We show the practical implications of incremental parsers using an application of

predicting relative sentence complexity. Given a pair of sentences from Wikipedia

and Simple Wikipedia, we build a classifier which predicts if one sentence is sim-

pler/complex than the other. We experiment with features from different versions of

incremental CCG parsers, non-incremental CCG parser and phrase structure parser.

We show that CCG parse features in general and incremental CCG parser in particular

is more useful than a chart-based phrase structure parser both in terms of speed and

accuracy.

1.3.3 Learning Algorithm

Neural network models are gaining popularity because of both speed and accuracy. Re-

cent neural network based parsing work resulted in state-of-the-art dependency parsers

(Chen and Manning, 2014; Weiss et al., 2015; Alberti et al., 2015). Following these

developments, we built neural network and structured neural network models for pars-

ing CCG. In greedy settings, neural network models give significantly better results

than the perceptron models and are also over three times faster. In the case of beam,

structured neural network model gives consistently better results than the basic neural

network model. These results are consistent across English and Hindi.

Lewis and Steedman (2014b) and Xu et al. (2015a) showed that neural network

based supertaggers perform better than the maximum entropy based supertagger (Clark

and Curran, 2004a) for the state-of-the-art graph based parsers like C&C (Clark and

Curran, 2007) and EasyCCG (Lewis and Steedman, 2014a) parsers. Following this

work, we show that neural network taggers give better results compared to maximum

entropy based taggers for transition-based CCG parsing as well.

1.4 Thesis Outline

Chapter 2: Hindi CCGbank from Dependency Treebank In this chapter, we first

present an approach for automatically creating a Combinatory Categorial Gram-

mar (CCG) treebank from a dependency treebank for the Subject-Object-Verb

language Hindi. Rather than a direct conversion from dependency trees to CCG
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trees, we propose a two stage approach: a language independent generic algo-

rithm first extracts a CCG lexicon from the dependency treebank. A determin-

istic CCG parser then creates a treebank of CCG derivations. We also discuss

special cases of this generic algorithm to handle linguistic phenomena specific

to Hindi. In doing so we extract different constructions with long-range depen-

dencies like coordinate constructions and non-projective dependencies resulting

from constructions like relative clauses, noun elaboration and verbal modifiers.

The content of most of this chapter is published in Ambati et al. (2013) and

Ambati et al. (2016a).

Chapter 3: Improving Dependency Parsers using CCG Supertags
Subcategorization information is a useful feature in dependency parsing.

In this chapter, we explore a method of incorporating this information via CCG

categories from a supertagger. We experiment with two popular dependency

parsers (Malt and MST) for two languages: English and Hindi. For both lan-

guages, CCG categories improve the overall accuracy of both parsers by around

0.3-0.5% in all experiments. For both parsers, we see larger improvements

specifically on dependencies at which they are known to be weak: long distance

dependencies for Malt, and verbal arguments for MST. The result is particularly

interesting in the case of the fast greedy parser (Malt), since improving its

accuracy without significantly compromising speed is relevant for large scale

applications such as parsing the web. Parts of this chapter are based on the

content from Ambati et al. (2013) and Ambati et al. (2014).

Chapter 4: Incremental Parsing for English Incremental parsers have potential ad-

vantages for applications like language modeling for machine translation and

speech recognition. We describe a new algorithm for incremental transition-

based Combinatory Categorial Grammar parsing. As English CCGbank deriva-

tions are mostly right branching and non-incremental, we design our algorithm

based on the dependencies resolved rather than the derivation. We introduce

two new actions in the shift-reduce paradigm based on the idea of ‘revealing’

(Pareschi and Steedman, 1987) the required information during parsing. We

present two versions of the incremental parser: a greedy parser which uses a

look-ahead and a beam search parser which doesn’t use a look-ahead. On the

standard CCGbank test data, our greedy parser achieves improvements of 0.88%

in labelled and 2.0% in unlabelled F-score over a greedy non-incremental shift-
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reduce parser.

Chapter 5: Incremental Parsing for Hindi In this chapter, we present transition-

based CCG parsers for Hindi. We first extend the Zhang and Clark (2011a)’s

shift-reduce model by adding Hindi-specific features to build the first shift-

reduce CCG parser for Hindi. We analyze the impact of different settings like

chunk and morphological features, greedy vs. beam-search parsing, gold vs.

automatic features, coarse-grained vs. fine-grained lexicon. With automatic fea-

tures, beam-search parser with coarse-grained lexicon gave the best unlabelled

and labelled F-scores of 85.60% and 77.32% respectively. Then we design an

incremental algorithm extending the revealing based incremental algorithm pre-

sented in the previous chapter. We make several extensions to make the algo-

rithm as incremental as possible.

Chapter 6: Assessing Relative Sentence Complexity using Incremental Parsers
In this chapter, we see how incremental CCG parsers can help in a practical

application like predicting the relative sentence complexity. Given a pair of

sentences, we present computational models to assess if one sentence is simpler

to read than the other. While existing models explored the usage of phrase

structure features using a non-incremental parser, experimental evidence sug-

gests that the human language processor works incrementally. We empirically

evaluate if syntactic features from incremental CCG parsers are more useful

than features from a non-incremental phrase structure parser. Our evaluation

on Simple and Standard Wikipedia sentence pairs shows that incremental CCG

parser gives significant improvements in speed (12 times faster) as well as in

terms of accuracy (0.44 points better) in comparison to the previously used

Stanford parser. Furthermore, with the addition of psycholinguistic features, we

achieve the strongest result to date reported on this task. Part of this work is

published in Ambati et al. (2016c).

Chapter 7: Transition-based CCG Parsing using Neural Network Models This

chapter presents a neural network based transition-based CCG parser, the first

neural-network parser for CCG. We also study the impact of neural network

based tagging models, and greedy versus beam-search parsing, by using a

structured neural network model. We experiment with both English and Hindi

CCGbanks. For English, our greedy parser obtains a labelled F-score of

83.27%, the best reported result for greedy CCG parsing in the literature (an
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improvement of 2.5% over a perceptron based greedy parser) and is more than

three times faster. For Hindi, our greedy parser achieves a labelled F-score of

74.14% which is an improvement of 3% over the greedy perceptron parser. In

case of beam, structured neural network model, though not the state-of-the-art,

consistently gave better results than the basic neural network model. Part of this

work is published in Ambati et al. (2016b).

Chapter 8: Conclusion We conclude with possible future directions of this thesis in

this chapter.



Chapter 2

Hindi CCGbank from Dependency

Treebank

In this chapter, we first present an approach for automatically creating a Combinatory

Categorial Grammar (CCG) treebank from a dependency treebank for the Subject-

Object-Verb language Hindi. Rather than a direct conversion from dependency trees

to CCG trees, we propose a two stage approach: a language independent generic al-

gorithm first extracts a CCG lexicon from the dependency treebank. A deterministic

CCG parser then creates a treebank of CCG derivations. We also discuss special cases

of this generic algorithm to handle linguistic phenomena specific to Hindi. In doing so

we extract different constructions with long-range dependencies like coordinate con-

structions and non-projective dependencies resulting from constructions like relative

clauses, noun elaboration and verbal modifiers. Content of most of this chapter is

published in Ambati et al. (2013) and Ambati et al. (2016a).

2.1 Introduction

Creation of CCGbanks in other languages, especially languages typologically far from

English is beneficial both for the development of CCG analyses for linguistic phe-

nomena in these languages, and also for the development of deep NLP tools for these

languages. Different grammar formalisms like phrase structure grammar, combinatory

categorial grammar, and dependency grammar have different advantages. But devel-

oping treebanks manually in each formalism is a very expensive and time consuming

task. Automatic conversion of treebanks from one formalism to another significantly

reduces the manual annotation effort. We develop an algorithm for automatically cre-

11
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ating CCGbanks from dependency treebanks. We apply this approach to automatically

creating a Hindi CCGbank from an existing manually created Hindi dependency tree-

bank (Bhatt et al., 2009). The approach is applicable for creating CCGbanks for other

languages with existing dependency treebanks, and is especially relevant for other In-

dian languages.

As compared to English, many Indian languages, including Hindi, while basi-

cally verb final, have a freer word order and are morphologically richer. All of these

characteristics pose challenges to statistical parsers. In the Hindi dependency tree-

bank there are around 20% of dependency trees with at least one non-projective arc

which are problematic for vanilla shift-reduce parsing algorithms like arc-eager and

arc-standard(Nivre et al., 2007b). In this work, we show that CCG can capture these

phenomena elegantly, essentially by making such dependencies projective – that is,

covered by the grammar. Our approach can be adapted to extract CCGbanks for other

typologically similar languages with existing dependency treebanks, such as other In-

dic languages.

In this chapter we first present the related work regarding the automatic creation

of CCGbanks for English and other languages (Section 2.2). A brief summary of the

Hindi dependency treebank is provided in section 2.3. In sections 2.4 and 2.5, we first

show how we extract a CCG lexicon from the Hindi dependency treebank and then

use it to create a Hindi CCGbank. Details of different long-range dependencies arising

from coordination and other non-projective constructions are presented in sections 2.6

and 2.7. Finally, an analysis of CCG categories and combinators present in the Hindi

CCGbank is provided in section 2.8. We conclude with possible future directions in

section 2.9.

2.2 Related Work

Hockenmaier and Steedman (2007) developed the first English CCGbank semi-

automatically from the Penn Wall Street Journal Phrase Structure Treebank (Marcus

et al., 1993). For each phrase structure tree, they first determine the constituent type

of each node using heuristics adapted from Magerman (1994) and Collins (1999),

which take the label of a node and its parent into account. Then the tree is binarized

inserting dummy nodes as required into the tree such that all children to the left of

the head branch off in a right-branching tree, and then all children to the right of the

head branch off in a left-branching tree. Then CCG categories are assigned based on
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whether the node is root of the sentence, complement or adjunct of the head. Finally,

headword dependencies which approximate the underlying predicate-argument

structure are obtained.

The English CCGbank (Hockenmaier and Steedman, 2007) is primarily created

from the Penn Phrase Structure Treebank, which doesn’t directly capture interesting

linguistic phenomena like predicate-argument structures. Resources like PropBank

(Palmer et al., 2005) capture predicate-argument structure of the verb. Using Prop-

Bank, Honnibal and Curran (2007) improved the complement and adjunct distinction

in the CCGbank. Using information from different resources like PropBank and Nom-

Bank (Meyers et al., 2004), Honnibal et al. (2010) created an updated version of CCG-

bank which includes predicate-argument structures for both verbs and nouns, baseNP

brackets, verb-particle constructions, and nominal modifiers. They also trained a state-

of-the-art CCG parser on this new treebank and compared with the original treebank.

Since the updated treebank contains fine-grained details the performance of the parser

was slightly lower than the one trained on the original version.

Following Hockenmaier and Steedman (2007), there have been some efforts at au-

tomatically extracting treebanks of CCG derivations for other languages. Hockenmaier

(2006) developed a CCGbank for German from the Tiger treebank (Brants et al., 2002).

The Tiger treebank is based on a framework which has features from both phrase struc-

ture grammar and dependency grammar and results in graphs rather than trees. First,

these graphs are pre-processed and converted to planar trees. Then a translation step

is applied which binarizes the planar tree and extracts the CCG derivation. Tse and

Curran (2010) use an algorithm similar to Hockenmaier and Steedman (2007) and ex-

tracted a Chinese CCGbank from the Penn Chinese Treebank (Xue et al., 2005).

There have also been work on extracting CCG lexicons (Cakici, 2005) and CCG-

banks (Bos et al., 2009; Uematsu et al., 2013, 2015) from dependency treebanks. Bos

et al. (2009) created an Italian CCGbank from the Turin University Treebank (TUT) 1,

an Italian dependency treebank. They first converted dependency trees into phrase

structure trees and then applying an algorithm similar to Hockenmaier and Steedman

(2007) extracted the CCG derivations. Using different dependency resources available

for Japanese like the Kyoto corpus (Kawahara et al., 2002) and the NAIST text corpus

(Iida et al., 2007), Uematsu et al. (2013) developed a CCGbank for Japanese. They

first integrated the dependency resources into phrase structure trees and then converted

them into CCG derivations.

1http://www.di.unito.it/˜tutreeb/

http://www.di.unito.it/~tutreeb/
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Cakici (2005) extracted a CCG lexicon for Turkish. She first made a list of com-

plement and adjunct dependency labels. Traversing the dependency tree, she assigned

CCG categories to each node based on complement or adjunct information. Following

Cakici (2005), we first extract a Hindi CCG lexicon from the dependency treebank.

Then we use a CKY parser based on the CCG formalism to automatically obtain a

treebank of CCG derivations from this lexicon, a novel methodology that may be ap-

plicable to obtaining CCG treebanks in other languages as well. Our algorithm for ex-

tracting the lexicon is similar to Cakici (2005), but with pre-processing steps specific

to Hindi. However, where Cakici (2005) extracted only a CCG lexicon, we extended

it by developing a novel methodology for creating CCG derivations from this lexicon.

Kumari and Rao (2015) have successfully applied our method to create a CCGbank

for Telugu, an Indian language, differing from Hindi in belonging to the Dravidian

language family, and being agglutinative. This shows that our algorithm is generic

enough to be applied to other languages with little effort.

2.3 Hindi Dependency Treebank

In this section, we first give a brief introduction to the Hindi language. Then we provide

details about the Paninian grammatical model used for Hindi dependency annotation.

Following this, we describe the Hindi dependency treebank.

2.3.1 Hindi Language

Hindi is one of the official languages of the Republic of India, and the 4th largest lan-

guage in the world, with over 260 million speakers2. Hindi, while basically verb final,

is a freer word order language. This can be seen in (1), where (1a) shows the con-

stituents in the default SOV (Subject, Object, Verb) order, and the remaining examples

show some of the word order variants of (1a) 3.

(1) a. mohan ne raam ko kitaab dii.

Mohan ERG Ram DAT book give-past-fem

“Mohan gave a book for Ram” (S-IO-DO-V)

b. [ mohan ne ] [ kitaab ] [ raam ko ] [ dii ] (S-DO-IO-V)

c. [ raam ko ] [ mohan ne ] [ kitaab ] [ dii ] (IO-S-DO-V)

2http://www.ethnologue.com/statistics/size
3S=Subject; IO=Indirect Object; DO=Direct Object; V=Verb; ERG=Ergative; DAT=Dative

http://www.ethnologue.com/statistics/size


2.3. Hindi Dependency Treebank 15

d. [ raam ko ] [ kitaab ] [ mohan ne ] [ dii ] (IO-DO-S-V)

e. [ kitaab ] [ mohan ne ] [ raam ko ] [ dii ] (DO-S-IO-V)

f. [ kitaab ] [ raam ko ] [ mohan ne ] [ dii ] (DO-IO-S-V)

Hindi also has a rich case marking system, although case marking is not obligatory.

For example, in (1), while the subject and in-direct object are explicitly marked for the

ergative 4 (ERG) and dative cases, the direct object is unmarked for the accusative.

2.3.2 Paninian Grammatical Model

Indian Languages (ILs) including Hindi are morphologically rich and have a relatively

flexible word order. For such languages syntactic subject-object are not able to explain

the varied linguistic phenomena. In fact, there is a debate in the literature whether

the notions ‘subject’ and ‘object’ can be defined at all for ILs (Mohanan, 1982). Be-

havioural properties are the only criteria based on which one can confidently identify

grammatical functions in Hindi (Mohanan, 1994); it can be difficult to exploit such

properties computationally. Marking semantic properties such as thematic role as de-

pendency relation is also problematic. Thematic roles are abstract notions and will

require higher semantic features which are difficult to formulate and to extract as well.

Paninian grammatical model (Kiparsky and Staal, 1969; Shastri, 1973) provides a

level which while being syntactically grounded also helps in capturing semantics. In

this section we briefly discuss the Paninian grammatical model for ILs and lay down

some basic concepts inherent to this framework.

The Paninian framework considers information as central to the study of language.

When a writer/speaker uses language to convey some information to the reader/hearer,

he/she codes the information in the language string. Similarly, when a reader/hearer

receives a language string, he/she extracts the information coded in it. The Paninian

grammatical model is primarily concerned with: (a) how the information is coded and

(b) how it can be extracted.

Two levels of representation can be readily understood in language: One, the actual

language string (or sentence), two, what the speaker has in his mind. The latter can

also be called as the meaning. Paninian framework has two other important levels:

karaka level and vibhakti level
4Hindi is split-ergative. The ergative marker appears on the subject of a transitive verb with perfect

morphology.
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Figure 2.1: Levels of representation/analysis in the Paninian model

The surface level is the uttered or the written sentence. The vibhakti level is the

level at which there are local word groups together with case endings, preposition or

postposition markers. The vibhakti level abstracts away from many minor (including

orthographic and idiosyncratic) differences among languages. Above the vibhakti level

is the karaka level. It includes karaka relations and a few additional relations such as

purpose. The topmost level relates to what the speaker has in his mind. This may be

considered to be the ultimate meaning level that the speaker wants to convey. One can

imagine several levels between the karaka and the ultimate level, each containing more

semantic information. Thus, karaka level is one in a series of levels, but one which

has relationship to semantics on the one hand and syntax on the other. The levels of

representation in the Paninian model are presented in Figure 2.1.

At the karaka level, we have karaka relations and verb-verb relations, etc. Karaka

relations are syntactico-semantic relations between the verbs and other related con-

stituents (typically nouns) in a sentence. They capture a certain level of semantics

which is somewhat similar to thematic relations but different from it (Bharati et al.,

1995). This is the level of semantics that is important syntactically and is reflected in

the surface form of the sentence(s). Begum et al. (2008b) have subsequently proposed

an annotation scheme based on Paninian framework. They have extended the original

formulation to account for previously unhandled syntactic phenomenon.

The Paninian approach treats a sentence as a set of modifier-modified relations. A

sentence is supposed to have a primary modifier which is generally the main verb of

the sentence. The elements modifying the verb participate in the action specified by the
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verb. The participant relations with the verb are called karaka. The notion of karaka

will incorporate the ‘local’ semantics of the verb in a sentence, while also taking cue

from the surface level morpho-syntactic information (Vaidya et al., 2009). There are

six basic karakas, namely;

• k1: karta (This is similar to subject or agent): the most independent participant

in the action

• k2: karma (roughly the theme or object): the one most desired by the karta

• k3: karana (instrument): which is most essential for the action to take place

• k4: sampradaan (beneficiary): recipient or beneficiary of the action

• k5: apaadaan (source): movement away or separation from a source

• k7: adhikarana (location): location of the action in time and space

From the above description, it is easy to see that this analysis is a dependency

based analysis (Kiparsky and Staal, 1969; Shastri, 1973), with verb as the root of the

tree along with its argument structure as its children. The labels on the edges between

a child-parent pair show the relationship between them. In addition to the above six

labels many other have been proposed as part of the overall framework (Begum et al.,

2008b; Bharati et al., 2009b). Appendix A.1 shows the most frequent dependency

labels with their English equivalent.

In the following section, we provide details of the treebank annotated for Hindi

using this Paninian grammatical model.

2.3.3 Treebank

In this work, we consider a subset of the Hindi Dependency Treebank (HDT

ver-0.5) released as part of Coling 2012 Shared Task on parsing (Bharati et al.,

2012). HDT is a multi-layered dependency treebank (Bhatt et al., 2009) annotated

with morpho-syntactic (morphological, part-of-speech and chunk information) and

syntactico-semantic (dependency) information (Bharati et al., 2006, 2009b). POS and

chunk information is annotated following the POS and chunk annotation guidelines

(Bharati et al., 2006). The morphological features have eight mandatory feature

attributes for each node. These features are classified as root, coarse POS category,

gender, number, person, case, post position (for a noun) or tense aspect modality



18 Chapter 2. Hindi CCGbank from Dependency Treebank

(for a verb) and suffix. The dependency annotation follows the Paninian grammar

scheme described in section 2.3.2 which is known to be well-suited to modern

Indian languages. Dependency labels are fine-grained, and mark dependencies that

are syntactico-semantic in nature, such as agent (usually corresponding to subject),

patient (object), and time and place expressions. There are special labels to mark long

distance relations like relative clauses, coordination etc (Bharati et al., 1995, 2009b).

Figure 2.2 presents the dependency tree for an example sentence ‘mohan ne raam ke

lie kitaab khariidi (Mohan bought a book for Ram)’.

ROOT mohan ne raam ke lie kitaab khariidii
Mohan ERG Ram for book buy-past-fem

ROOT

OBJ

PURPOSE

CASE

SUBJ

CASE

‘Mohan bought a book for Ram.’

Figure 2.2: An example dependency tree for Hindi (ERG = Ergative case).

In this example, the verb khariidii (“bought”) is the root of the sentence. mohan

(“Mohan”) is the subject (SUBJ) of the verb khariidii (“bought”) and kitaab (“book”)

is the object (OBJ) of the verb. Since the book is bought for raam (“Ram”), raam

is attached to the verb with PURPOSE dependency label. The post-position markers

ne (Ergative case marker) and ke lie (equivalent to preposition “for”) are attached to

corresponding nouns with CASE dependency label.

The Hindi dependency treebank contains 12,041 training, 1,233 development and

1,828 testing sentences with an average of 22 words per sentence. Data is provided

in the Shakti Standard Format (Bharati et al., 2007) and CoNLL format. The CoNLL

format contains word, lemma, pos-tag, and coarse pos-tag in the WORD, LEMMA, POS,

and CPOS fields respectively and morphological features, and chunk information in the

FEATS column.5 We use CoNLL format for all our experiments.

5http://nextens.uvt.nl/depparse-wiki/DataFormat

http://nextens.uvt.nl/depparse-wiki/DataFormat
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2.4 Extracting a CCG Lexicon

We first make a list of argument and adjunct dependency labels in the treebank.

We obtained this list from the Hindi verb frames which make a distinction between

arguments and adjuncts for different verbs Begum et al. (2008a). For example, depen-

dencies with the label k1 and k2 (corresponding to subject and object respectively)

are considered to be arguments, while labels like k7p and k7t (corresponding to

place and time expressions) are considered to be adjuncts. For readability reasons, we

will henceforth refer to dependency labels with their English equivalents (e.g., SUBJ,

OBJ, PURPOSE, CASE for k1, k2, rt, lwg psp respectively). A list of the Hindi

dependency labels and their English equivalents are provided in the Appendix A.1.

Starting from the root of the dependency tree, we traverse each node. The category

of a node depends on both its parent and children. If the node is an argument of

its parent, we assign the chunk tag of the node (e.g., NP, PP) as its CCG category.

Otherwise, we assign it a category of X|X, where X is the parent’s result category and

| is directionality (\ or /), which depends on the position of the node w.r.t. its parent.

The result category of a node is the category obtained once its argument slots are

saturated. For example, S f , is the result category for (S f \NP)\NP. Once we get the

partial category of a node based on the node’s parent information, we traverse through

the children of the node. If a child is an argument, we add that child’s chunk tag, with

appropriate directionality, to the node’s category. If the child is an adjunct, the category

of the node is not affected.

Consider the verb khariidii (“bought”) in the example sentence in Figure 2.3. Since

it is the root of the sentence which is an argument dependency label, it gets a category

S f , from its parent. It has three children mohan (“Mohan”), raam (“Ram”) and kitaab

(“book”). We traverse through each child and update the category of khariidii as fol-

lows. Mohan is subject (“SUBJ”) of khariidii. Since SUBJ is a mandatory argument,

the category of khariidii is updated to S f \NP. The dependency label between raam and

khariidii is PURPOSE which is an adjunct label. So, the category of khariidii (“bought”)

is not changed due to this child. The third and final child kitaab is an object (“OBJ”) of

the verb, which is an argument label. As a result, the category of khariidii is updated

to (S f \NP)\NP.6

Now we consider again the children of the verb khariidii (“bought”). mohan (“Mo-

han”) is an argument of khariidii, and hence NP is the category for this node. mohan

6We return below to the question of case marking and agreement.
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(“Mohan”) has a case marker ne (“ERG”) as a child with dependency label CASE. Since

CASE is an NP adjunct 7, the category of mohan (“Mohan”) is not changed and remains

NP. Now consider the child of mohan (“Mohan”) which is ne (“ERG”). It is an adjunct

that is to the right of its parent. Since NP is the result category of its parent mohan

(“Mohan”), category of ne (“ERG”) will be NP\NP. Categories of other nodes are

assigned similarly.

The algorithm is sketched in Figure 2.4 and an example of a CCG derivation for

a simple sentence, marked with chunk tags, is shown in Figure 2.3. NP and S f are

the chunk tags for noun and finite verb chunks respectively8. Some important special

cases are described in detail in the following subsections.

ROOT mohan ne raam ke lie kitaab khariidii
Mohan ERG Ram for book buy-past-fem

ROOT

OBJ

PURPOSE

CASE

SUBJ

CASE

[NP mohan ne] [NP raam ke lie] [NP kitaab] [S f khariidii]

NP NP\NP NP (S f /S f )\NP NP (S f \NP)\NP
< < <

NP S f /S f S f \NP
< B×

S f \NP
<

S f
‘Mohan bought a book for Ram.’

Figure 2.3: An example dependency tree with its CCG derivation.

The process described above yields a “coarse-grained” lexicon, in which case is not

distinguished. We also created a “fine-grained” lexicon, in which we retain morpho-

logical information in noun categories. For example, consider the noun chunk raam ne

(“Ram ERG”). In the fine-grained lexicon, the CCG categories for raam and ne are NP

and NP[ne]\NP respectively. Morphological information such as ergative case ‘-ne’

in noun categories is expected to help with determining their dependency labels, but

makes the lexicon more sparse. We therefore extract both a coarse-grained and a fine-

grained lexicon; details of the machine readable format for both lexicons is presented
7We treated CASE as NP adjunct for the case of consistency with the dependency treebank. We

leave the other ways of treating CASE for future work.
8VGF is the chunk tag for finite verb chunk in the Hindi dependency treebank. But for the sake of

brevity we use S f notation here. A list of the Hindi chunk tags are provided in the Appendix A.1.
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ModifyTree(DependencyTree tree);

for (each node in tree):

handlePostPositionMarkers(node);

handleSpecialCases(node);

if (node is an argument of parent):

cat = node.chunkTag;

else:

prescat = parent.resultCategory;

cat = prescat + getDir(node, parent) + prescat;

for(each child of node):

if (child is an argument of node):

cat = cat + getDir(child, node) + child.chunkTag;

Figure 2.4: Algorithm for extracting a CCG lexicon from a dependency tree.

in Appendix A.2.

2.4.1 Morphological Markers

In Hindi, morphological information is encoded in the form of post-positional markers

on nouns, and tense, aspect and modality markers on verbs. A post-positional marker

following a noun plays the role of a case-marker (e.g., raam ne (“Ram ERG”), here ne

is the ergative case marker) and a role similar to an English preposition (e.g., mej par

(“table on”), here par is the postpositional equivalent of the English preposition “on”).

Post-positional markers on nouns can be simple one word expressions like ne or par,

or multiple words as in raam ke lie (“Ram for”). Complex post position markers as a

whole give information about how the head noun or verb behaves. For example, ke lie

is equivalent to “for” and ke baare me is equivalent to “about”. The Hindi CCGbank

merges complex postpositional markers into single words like ke lie so that the entire

marker gets a single CCG category.

For the “fine-grained” lexicon, we explored two variants of the lexicon: normal and

type-raised. In the normal version, the ergative case marker like ne looks for an NP

to the left and forms the CCG category NP[ne]. Whereas in the type-raised version,

the category of ne takes an NP to its left and creates a category which looks for an
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intransitive verb S f \NP[ne].

raam ne
Ram ERG
NP (S/(S f \NP[ne]))\NP

<

S/(S f \NP[ne])

For an adjunct like raam ke lie (“for Ram”) in Figure 2.3, we pass the adjunct in-

formation to the post-position marker ke lie, with NP as the category for the head noun

phrase, and the category (S f /S f )\NP for the postposition. Adjuncts that modify adja-

cent adjuncts are assigned identical categories X/X making use of CCG’s composition

rule and following Cakici (2005).

2.5 CCG Lexicon to Treebank conversion

Phrase structure to CCG conversion algorithms like Hockenmaier and Steedman

(2007) first convert a phrase structure tree into a binary tree. Converting a depen-

dency tree into a binary tree is not possible in the presence of a non-projective arc.

There are around 20% of sentences in the Hindi dependency treebank with at least

one non-projective arc. We therefore use a CCG parser to convert the CCG lexicon to

a CCG treebank, a novel idea, as conversion to CCG trees directly from dependency

trees is not straight-forward due to the above reason.

Using the algorithm presented in the previous section, we obtained one CCG cate-

gory for every word in a sentence. We then run a non-statistical CKY chart parser based

on the CCG formalism9, which gives CCG derivations based on the lexical categories.

This gives multiple derivations for some sentences. We rank these derivations using

two criteria. The first criterion is correct recovery of the gold dependency tree. Deriva-

tions which lead to gold dependencies are given higher weight. In the second criterion,

we prefer derivations which yield intra-chunk dependencies (e.g., verb and auxiliary)

prior to inter-chunk (e.g., verb and its arguments). For example, morphological mark-

ers (which lead to intra-chunk dependencies) play a crucial role in identifying correct

dependencies. Resolving these dependencies first helps the parser in better identifi-

cation of inter-chunk dependencies such as argument structure of the verb (Ambati,

2011). We thus extract the best derivation for each sentence and create a CCGbank for

Hindi.

9http://openccg.sourceforge.net/

http://openccg.sourceforge.net/
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Coverage, i.e., number of sentences for which we got at least one complete deriva-

tion, using this lexicon is 96%. Disabling crossed composition reduced the coverage

by around 10% showing the importance of this rule for a free word order language

with 20% non-projective sentences. The remaining 4% are either cases of inconsistent

annotations in the original treebank, or constructions which are currently not handled

by our conversion algorithm.

We extracted dependencies from the CCG Treebank and evaluated them with the

dependencies in the dependency treebank. Similar to Clark and Curran (2007), we use

indexed categories to achieve this. For example, (S\NP1)\NP2 is the indexed cate-

gory of (S\NP)\NP. NP1 resolves the subject dependency and NP2 resolves the object

dependency. Hindi CCGbank captures 99.1% of the dependencies in the dependency

treebank.

2.6 Coordination Constructions

Coordination is one of the most frequent sources of long distance dependencies in

corpora. Coordination can occur between similar components like noun-noun coordi-

nation, verb-verb coordination or between compatible components like adjective-noun

coordination. The CCG category of a conjunction is (X\X)/X, where a conjunction

looks for a child of type X to its right and then a child to its left of the same type

X to yield a result of the same type X . Figure 2.5 gives dependency tree and CCG

derivation for an example sentence with sentential (S) coordination. In the Hindi

CCGbank, it is the supertagger that identifies the correct instantiation of the type X

for the conjunction.10

There are four major types of coordination constructions in Hindi. We will describe

each type with an example and explain how CCG handles them.

Type 1 (Conjunction with two children): The CCG category of the conjunction

is (X\X)/X where X depends on the category of the conjuncts. The example given

below in figure 2.6, raam ora shyam skool gaye (“Ram and Shyam went to school”),

is the case of noun-phrase (NP) coordination. Conjunct ora (“and”) has two noun

phrases raam (“Ram”) and shyam (“Shyam”) as its children. Hence the category of

ora (“and”) is (NP\NP)/NP. ora (“and”) is first combined with the right child shyam

and then combined with the left child raam leading to a noun phrase, which becomes

10This treatment constitutes a slight difference from English CCGbank, where coordination is treated
syncategorematically, with conjunction bearing the category conj.
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ROOT raam ne seb khaaya ora shyam ne aam khaaya

ROOT

COORD

COORD

OBJ

SUBJ

CASE
OBJ

SUBJ

CASE

raam ne seb khaaya ora shyam ne aam khaaya
Ram ERG apple ate and Shyam ERG mango ate
NP NP\NP NP (S f \NP)\NP (S f \S f )/S f NP NP\NP NP (S f \NP)\NP

< < < <

NP S f \NP NP S f \NP
< <

S f S f
>

S f \S f
<

S f
‘Ram ate an apple and Shyam ate a mango.’

Figure 2.5: Sentential coordination.

the subject argument for the verb gaye (“went”).

ROOT raam ora shyam skool gaye

ROOT

DEST

SUBJ

COORDCOORD

raam ora shyam skool gaye
Ram and Shyam school went
NP (NP\NP)/NP NP NP (S f \NP)\NP

> <

NP\NP S f \NP
<

NP
<

S f
‘Ram and Shyam went to school.’

Figure 2.6: Type 1 coordination.

Type 2 (Conjunction with more than two children and not separated by commas):

In Hindi, sometimes a conjunction can have more than two children which are not

separated by commas. In such cases, CCG category of the node is type-changed from

X to a category (X\X)/(X\X). Figure 2.7 shows the dependency tree of an example

sentence raam shyam ora sita skool gaye (“Ram Shyam and Sita went to school”).

In this example, the conjunct ora (“and”) has three children raam (“Ram”), shyam

(“Shyam”) and sita (“Sita”). CCG category of shyam is type-changed from NP to

(NP\NP)/(NP\NP) so that it can combine with ora and then with raam to form an

NP.
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ROOT raam shyam ora siitaa skool gaye

ROOT

DEST

SUBJ

COORDCOORD

COORD

raam shyam ora siitaa skoola gaye
Ram Syam and Sita school went
NP NP (NP\NP)/NP NP NP (S f \NP)\NP

> <

(NP\NP)/(NP\NP) NP\NP S f \NP
>

NP\NP
<

NP
<

S f
‘Ram , Syam and Sita went to school.’

Figure 2.7: Type 2 coordination.

Type 3 (Conjunction with more than two children separated by commas): The

example sentence given below in Figure 2.8, raam , shyam ora sita skool gaye (“Ram,

Shyam and Sita went to school”), is the same as the one presented above in Type

2 category. The only difference is that there is a comma between the nouns raam

(“Ram”) and shyam (“Shyam”). The comma gets a CCG category , which is combined

with NP to form an NP. Similar to Type 2, the CCG category of shyam is type-changed

from NP to (NP\NP)/(NP\NP). This allows shyam to combine with ora and then with

raam to form an NP.

Unlike other CCGbanks which treat comma as a conjunction, we treat comma as

a punctuation here. In that way, we don’t have to change the dependency tree. If we

treat a comma as a conjunction, then we have to change the dependency tree as well,

where ora (“and”) will have comma and sita as children and comma will have raam

and shyam as children. Also, since comma can be missing as in Type 2, treating the

comma as a punctuation leads to having a single analysis irrespective of whether a

comma is present or not.

Type 4 (Argument cluster coordination): Figure 2.9 presents an example sentence

for argument cluster coordination, raam ne seb ora sita ne aam khaaya (“Ram ate an

apple and Sita ate a mango”). khaaya (“ate”) is the shared verb for both the sentences.

To handle such constructions, dependency tree introduces a dummy “NULL” node

which is co-indexed with the main verb khaaya and acts as the verb for the 1st sentence

as shown in the dependency tree in Figure 2.9.



26 Chapter 2. Hindi CCGbank from Dependency Treebank

ROOT raam , shyam ora sita skool gaye

ROOT

DEST

SUBJ

COORDCOORD

COORD

SYM

raam , shyam ora sita skoola gaye
Ram , Shyam and Sita school went
NP , NP (NP\NP)/NP NP NP (S f \NP)\NP

> <

NP NP\NP S f \NP

(NP\NP)/(NP\NP)
>

NP\NP
<

NP
<

S f
‘Ram , Shyam and Sita went to school.’

Figure 2.8: Type 3 coordination.

CCG can handle such constructions without introducing NULL nodes. The sub-

ject raam ne is type-raised from NP to a category which looks for an intransitive verb,

S f /(S f \NP). Similarly, the object seb (“apple”) is type-raised from NP to a category

which looks for a transitive verb, (S f \NP)/((S f \NP)\NP). Now, these two nodes are

combined leading to S f /((S f \NP)\NP) which takes a transitive verb and forms a sen-

tence. Similarly, subject and object arguments of the second sentence, sita ne (“Sita”)

and aam (“Mango”) are type-raised and combined. Now, these type-raised arguments

are combined using the conjunction ora (“and”) which is then combined with the main

verb khaaya to form a sentence 11.

2.7 “Non-Projective” Constructions

In the tradition of dependency grammar (Hays, 1964), constructions which induce de-

pendency arcs which cross as in Figure 2.10 are referred to as “non-projective”, be-

cause they cannot be generated by the core context-free dependency grammar, and are

generally supposed to arise from some separate component of the grammar, such as

transformational rules (Robinson, 1970).

Such dependencies arise in all languages from processes like relativization and

11We are not handling argument cluster coordination in the current version of the Hindi CCGbank
since the current version doesn’t include unary type-changing rules. We will handle these constructions
in the next version.
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ROOT baath yaha hai ki vo kal aayegaa
fact this is that he tomorrow come-FUT-MAD

ROOT

SCOM

SUBJ CCOM

COORD

TIME

SUBJ

‘The fact is that he will come tomorrow’

Figure 2.10: A dependency tree with a “non-projective” dependency.

various instances of coordination reduction. To call them “non-projective” is confus-

ing in the present context, since the central claim of CCG is that all dependencies

are projective, in the sense of arising directly from near-context free syntactic projec-

tion. In the dependency parsing literature techniques like swap action (Nivre, 2009)

or pseudo-projective parsing algorithm (Nivre and Nilsson, 2005) are used to handle

these crossing arcs. In case of CCG, we can extract such crossing dependencies us-

ing indexed categories12. Section 2.7.3 provides an example derivation showing how

indexed categories can be used to extract crossing dependencies. In this section, we

present different constructions and/or dependency labels which lead to crossing arcs in

the dependency treebank, and explain how CCG can be made to handle them projec-

tively.

Because Hindi has a comparatively free word-order, crossing dependencies are

more frequent in the Hindi dependency treebank than in comparable English data.

There are a total of 20% sentences with non-projective arcs in the Hindi dependency

treebank, amounting to 1.1% of total arcs. There is some previous work on analyzing

different non-projective constructions in Hindi and other Indian languages (Mannem

et al., 2009; Bhat and Sharma, 2012). We categorize the non-projective constructions

in the Hindi dependency treebank based on this previous work. Table 2.1 shows the

distribution of non-projective arcs across different constructions.

In the following sections, we present different constructions which lead to crossing

arcs in the dependency treebank, and explain how CCG can be made to handle them

projectively.

12Please refer to Clark and Curran (2007) for the details on how indexed categories are used to extract
dependencies
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Type of Construction Percentage (%)
Clausal Complements 32.4

Relative Clause Constructions 19.7

Topicalization 15.3

Genitives and Dislocated/Discontinuous Genitives 12.8

Paired Connectives 10.5

Others 9.3

Table 2.1: Distribution of different non-projective constructions in the treebank.

2.7.1 Clausal Complements

Clausal complements forming a complex NP are the cases where clauses elaborate on

a noun/pronoun. These are annotated with the CCOM dependency label. For example,

in the sentence given in Figure 2.11, baat (“fact”) is the subject (“SUBJ”) and yaha

(“this”) is its noun complement (“SCOM”), which are attached to the verb. Whereas

the clause ki vo kal aayegaa (“that he will come tomorrow”) has a dependency relation

with yaha (“this”) and is denoted by CCOM dependency label. 32% of crossing arcs

in the treebank are due to this construction.

There are two options to handle this case. In the first option we don’t change

the dependency tree. Since ki (“that”) is a subordinate conjunction, its chunk tag is

CCP. As it looks for a clause/sentence to its right, CCG category for ki (“that”) will

be CCP/S f . This gives yaha (“this”) a CCG category of NP/CCP, since the result

category of its child ki (“that”) is CCP. We can combine yaha (“this”) and hai (“is”)

using Backward Crossing Composition (< B×) which can then be combined with ki

(“that”) to establish the crossing dependency. Figure 2.11 gives the CCG derivation

for this example.

Another option is to systematically change the dependency trees concerned to make

the complementizer ki (“that”) the child of the copula hai (“is”), rather than of the

demonstrative yaha (“this”). As a result, the complementizer ki is assigned the cate-

gory (S f \S f)/S f , which will first combine with the clause to its right vo kal aayegaa,

and then with the clause to its left baat yaha hai, resulting in the derivation shown

below in Figure 2.12. For the CCGbank conversion, we modified the dependency tree

since we can avoid the use of crossed composition and thus simplifying the conversion

process without losing the linguistic information 13.

13 It is easy to re-construct the original dependency with the help of lexical item yaha (“this”). We
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ROOT baath yaha hai ki vo kal aayegaa

ROOT

SCOM

SUBJ CCOM
COORD

TIME

SUBJ

baath yaha hai ki vo kal aayegaa
fact this is that he tomorrow will-come
NP NP/CCP (S f \NP)\NP CCP/S f NP S f /S f S f \NP

< B× > B×

(S f \NP)/CCP S f \NP
<

S f
>

CCP
>

S f \NP
<

S f
‘The fact is that he will come tomorrow’

Figure 2.11: CCOM: CCG Derivation (Original dependency tree).

ROOT baath yaha hai ki vo kal aayegaa

ROOT

SCOM

SUBJ

CCOM

COORD

TIME

SUBJ

baat yaha hai ki vo kal aayegaa
fact this is that he tomorrow come-FUT-MAD

NP NP (S f \NP)\NP (S f \S f )/S f NP S f /S f S f \NP
< > B×

S f \NP S f \NP
< <

S f S f
>

S f \S f
<

S f
‘The fact is that he will come tomorrow’

Figure 2.12: CCOM: CCG Derivation (Modified dependency tree).

2.7.2 Relative Clause Constructions

Relative clauses are the second major constructions which lead to crossing dependency

arcs in the original treebank. 20% of such arcs in the data are due to relative clauses.

In English, relative clauses have the category type NP\NP, where they combine with

a noun phrase on the left to give a resulting noun phrase. Hindi has relative clauses of

the type NP\NP or NP/NP based on the position of the relative clause with respect to

the head noun.

For instance, for the example sentence in Figure 2.13, the relative clause has

can find the parent of ki (“that”) and extract the lexical item yaha (“this”) from its sub-tree. Assigning
it as the parent of ki (“that”) would result in the original dependency tree.
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NP\NP as its CCG category, since it is to the right of the head noun. Whereas in

Figure 2.14, the category of the relative clause is NP/NP since it is to the left of the

head noun. Similar to English, in Hindi also, we pass down this information to the rel-

ative pronoun rather than the main verb of the relative clause. As a result, the relative

pronoun will have a CCG category of (NP|NP)|X where the directionality depends on

the position of the relative pronoun in the clause and the category X depends on the

grammatical role of the relative pronoun.

Embedded: This is a simple case of relative clause where the relative clause is to

the right of its head noun. Mahajan (2000) calls such constructions as “Normal” since

it is similar to English relative clause construction. This type of relative clause doesn’t

lead to crossing dependency arcs. Figure 2.13 gives an example sentence, vo ladakaa jo

khadaa hai raam hai (“The boy who is standing is Ram”) with its dependency tree and

corresponding CCG derivation 14. The relative clause is marked within the brackets in

the following figure. In this example, the category of the relative pronoun jo (“who”) is

(NP\NP)/(S f \NP) which is similar to English relative pronouns. The relative pronoun

jo (“who”) first combines with the verb phrase khadaa hai (“is standing”) to form a

relative clause with category NP\NP. The relative clause then combines with its head

noun phrase vo ladakaa (“that boy”) which is then combined with the main verb phrase

to form a sentence S f .

ROOT vo ladakaa jo khadaa hai raam hai

ROOT

SCOM

SUBJ

RELC

POF

SUBJ
DEM

vo ladakaa [ jo khadaa hai ] raam hai
that boy who stand-MAS is Ram is

NP/NP NP (NP\NP)/(S f \NP) S f /S f S\NP NP (S f \NP)\NP
> > B× <

NP S f \NP S f \NP
>

NP\NP
<

NP
<

S f
‘The boy who is standing is Ram’

Figure 2.13: Embedded Relative Clause.

14In Hindi dependency treebank POF (part-of) dependency label is used to represent part of units
such as conjunct verbs.



32 Chapter 2. Hindi CCGbank from Dependency Treebank

Correlatives: In Hindi, a relative clause can occur to the left of the head noun

as well, which is the most frequent construction. This case of relative clause also

doesn’t lead to crossing dependency arcs. Figure 2.14 gives the dependency tree

and corresponding CCG derivation for an example sentence, jo ladakaa khadaa hai

vah raam hai (“The boy who is standing is Ram”). In this example, the relative

pronoun jo (“who”) occurs as a demonstrative. So the category of jo (‘who”) is

((NP/NP)/(S f \NP))/NP. The relative pronoun jo (“who”) combines with its head

noun ladakaa (“boy”) which is then combined with the verb phrase leading to the cate-

gory of relative clause NP/NP. Since the relative clause is to the left of the head noun,

its category is NP/NP rather than NP\NP which we saw in the previous embedded

relative clause.

ROOT jo ladakaa khadaa hai vah raam hai

ROOT

SCOM

SUBJ

RELCPOF

SUBJ

DEM

[ jo ladakaa khadaa hai ] vah raam hai
who boy stand-MAS is he Ram is

((NP/NP)/(S f \NP))/NP NP S f /S f S\NP NP NP (S f \NP)\NP
> > B× <

(NP/NP)/(S f \NP) S f \NP S f \NP
>

NP/NP
>

NP
<

S f
‘The boy who is standing is Ram’

Figure 2.14: Correlatives.

Extraposed: Unlike the previous two cases of embedded and correlative construc-

tions where the relative clause is next to the head noun, Hindi has constructions where

the relative clause is not next to its head noun. Figure 2.15 shows one such example

sentence vah ladakaa raam hai jo khadaa hai (“That boy is Ram who is standing”).

This type of construction leads to a crossing dependency arc. To handle this we change

the dependency tree slightly. Instead of the relative clause modifying the head noun,

we make it modify the main verb. As a result the relative pronoun will have a CCG

category of (S|S)|X instead of (NP|NP)|X. Since this is a case of extraposed/dislocated

relative clause, the category of relative clause is S|S rather than NP|NP. The original

dependency arc is marked with red dotted lines in Figure 2.15. Note that it is easy
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to recover the dependency between the relative clause and its head noun, as the head

noun chunk will have a word whose root is vo (“that”)15.

ROOT vah ladakaa raam hai jo khadaa hai

ROOT

SCOM

SUBJ

DEM

RELC

POF

SUBJ
RELC

vah ladakaa raam hai jo khadaa hai
that boy raam is who stand-MAS is

NP/NP NP NP (S\NP)\NP (S f \S f )/X S f /S f S f \NP
> < > B×

NP S f \NP S f \NP
< >

S f S f \S f
<

S f
‘That boy is Ram who is standing’

Figure 2.15: Extraposed Relative Clause (Example 1).

Figure 2.16 presents another example sentence which is similar to Figure 2.15,

except that the relative pronoun is not at the starting of the relative clause and it is

also not the mandatory argument of the verb of the relative clause. Here, the relative

pronoun jaisaa (“like-what”) is neither at the beginning of the clause nor a mandatory

argument. It is an adverbial modifier (ADV) for the verb kahaa (“said”). As a result,

the relative pronoun jaisaa will have a CCG category (S f /S f )/S f . jaisaa is combined

with the verb kahaa (“said”) using forward crossed composition (B×) which leads to a

category of S f /S f for the relative clause in the end. Similar to the previous example,

this is a case of extraposed relative clause.

2.7.3 Topicalization

The node which is the object/patient of the verb is marked with OBJ dependency label.

This OBJ label or topicalization is the cause for 11.3 % of crossing dependency arcs in

the treebank.

Figure 2.17 presents an example sentence where a crossing arc is created due to the

object (OBJ) relation. In the example sentence, khaanaa raam khaakar dukaan gayaa

15For example, in figure 2.15, CCG derivation gives the dependency between hai (“is”) of relative
clause and hai (“is”) of main clause. As the chunk with vo (“that”) root word (here vaha) is vaha
ladakaa (“that boy”), the head of hai (“is”) as per Hindi dependency guidelines would be ladakaa
(“boy”).
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ROOT raam ne jaisaa kahaa , maine vaisaa kiyaa

ROOT

ADV

SUBJRELC

SYMADV

SUBJ

CASE

raam ne jaisaa kahaa , maine vaisaa kiyaa
Ram ERG like-what said , I-ERG like-that did
NP NP\NP (S f /S f )/S f S f \NP S f \S f NP S f /S f S f \NP

< < B > B×

NP S f \NP S f \NP
> B× <

(S f /S f )\NP S f
<

S f /S f
>

S f
‘I did exactly what Ram said’

Figure 2.16: Extraposed Relative Clause (Example 2).

(“Ram after eating food went to the shop”), there are two verbs: khaakar (“having-

eaten”), a non-finite verb and gayaa (“went”), a finite verb. raam (“Ram”) is the

shared subject (SUBJ) of both the verbs. As per Hindi dependency guidelines, raam

cannot have two parents. So it is marked as SUBJ of the main verb gayaa (“went”).

If the subject, raam, was at the start of the sentence then the sentence would be raam

khaanaa khaakar dukaan gayaa, which is the most frequent construction. Then it

would not have created the crossing arc. Shared subject raam appearing within non-

finite verb phrase khaanaa khaakar (“having eaten food”) is not very common.

To handle these types of constructions, we relax the constraint of a node hav-

ing multiple parents. raam is subject of both the verbs: khaakar (“having eaten”)

and gayaa (“went”). But, due to tree constraint, dependency tree avoids the sub-

ject raam having two parents. We let the CCG derivation have raam as the subject

for both the verbs. As a result, khaakar (“having-eaten”) will have the CCG cate-

gory ((S f /(S f \NP2))\NP1)\NP2
16. The first part of the category, (S f /(S f \NP2)), cap-

tures the information that it is a verbal modifier which shares an argument with the

main verb. khaakar (“having-eaten”) first combines with raam and then with khaanaa

(“food”) to form S f /(S f \NP2). This is then combined with the VP dukaan gayaa

(“went to shop”) resulting in a sentence S f . Note that gayaa and raam are never com-

bined directly in the derivation. But this dependency is resolved using the indices.

16Indices for categories are not part of the lexicon but indices are used while extracting dependencies
from the CCG derivation.
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ROOT khaanaa raam khaakar dukaan gayaa

ROOT

SUBJ

DEST

VMODOBJ

khaanaa raam khaakar dukaan gayaa
food Ram having-eaten shop went
NP1 NP2 ((S f /(S f \NP2))\NP1)\NP2 NP3 (S f \NP2)\NP3

< <

(S f /(S f \NP2))\NP1 S f \NP2
<

S f /(S f \NP2)
>

S f
‘Ram after eating food went to the shop’

Figure 2.17: Topicalization.

2.7.4 Paired Connectives

Paired connectives such as agar-to (“if-then”) are the cause for 10.5% of crossing de-

pendency arcs in the treebank. These constructions involve VMOD, verbal modifier,

dependency label. Any verbal modifier which cannot be categorised as a specific rela-

tion like subject (SUBJ), object (OBJ) etc. is marked by a VMOD relation.

Original Annotation: Figure 2.18 presents an example ‘if-then’ construction. In

the original dependency tree for this sentence, agar unhone muh kholaa to wo unhe

maar daalegaa (“If they opened their mouth then he will kill them”), to (“then”) is the

ROOT of the sentence. maar (“kill”) is the child of tho (“then”) with the dependency

relation COORD. agar (“if”) is the child of maar (“kill”) with dependency relation

VMOD and kholaa (“opened”) is the child of agar (“if”) with dependency relation

COORD. VMOD relation between maar (“kill”) and agar (“if”) leads to a crossing

dependency arc here.

Modified Annotation: We modified the dependency tree to handle this construc-

tion. In the modified tree, to (“then”) is still the ROOT of the sentence. Both the verbs

maar (“kill”) and kholaa (“opened”) are children of to (“then”) with a COORD de-

pendency relation. agara (“if”) is the child of kholaa (“opens”) with the dependency

relation VMOD.

In the case of English if-then constructions, the CCG category of if is (S/S)/S[dcl]

which consumes a sentence to its right, leading to an S/S category for the if-clause.

It then consumes the then-clause leading to S category. But in the case of Hindi agar
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ROOT agar unhone muh kholaa to wo unhe maar daalegaa
if they mouth opened then he them kill will

ROOT

COORD

AUX

OBJ

SUBJ

VMOD

COORD

SUBJ

OBJ

‘If they opened their mouth then he will kill them’

Figure 2.18: Paired Connectives: Original dependency tree.

ROOT agar unhone muh kholaa to wo unhe maar daalegaa

ROOT

COORD

COORD
AUX

OBJ

SUBJ

VMOD

SUBJ

OBJ

agar unhone muh kholaa to wo unhe maar daalegaa
if they mouth opened then he them kill will

S f /S f NP NP (S f \NP)\NP (S f \S f )/S f NP NP (S f \NP)\NP S f \S f
< < B×

S f \NP (S f \NP)\NP
< <

S f S f \NP
> <

S f S f
<

S f \S f
>

S f
‘If they opened their mouth then he will kill them’

Figure 2.19: Paired Connectives: Modified dependency tree and corresponding CCG

derivation.

(“if”) can be optional. To capture this phenomenon, we make the category of tho

(“then”) to demand agar (“if”) clause rather than the opposite. So, the CCG category of

to (“then”) is (S f \S f )/S f which consumes a sentence to its right forming a then-clause

with the category S f \S f . It then combines with a sentence to its left which is the if-

clause leading to S f . Also, as agar (“if”) is optional it takes an adjunct category making

the main verb the head of the clause. Figure 2.19 shows the modified dependency tree

with the corresponding CCG derivation.
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2.7.5 Genitives and Dislocated/Discontinuous Genitives

The genitive/possessive relation which holds between two nouns is marked by GEN

dependency label. It mostly occurs with ‘kaa’ (masc.) or ‘kii’ (fem.) postposition

marker. A reliable cue for its identification is that the postposition agrees with the

noun it modifies in number and gender. In the majority of cases the nouns in genitive

relation are next to each other. But, in some cases, due to the free word order nature

of Hindi, some other word can occur between the two nouns in a genitive relation as

in the following example in Figure 2.20. This construction is the source of 7.5% of the

crossing arcs in the the dependency treebank.

In the example in Figure 2.20, maine uskaa mumbai mai kiraayaa dediyaa (“I

have given his rent in Mumbai”), uskaa (“his”) and kiraayaa (“rent”) are in genitive

relation. But, mumbai mai (“in Mumbai”) is between these two nouns leading to a

crossing arc. Though the dependency labels are different, the construction is similar to

the ones described in Section 2.7.5. When two nouns are in a genitive relation, if the

both the nouns are next to each other we make the noun with genitive marker demand

a noun to its right similar to genitive cases in other languages. But, if both the nouns

in genitive relation are not next to each other, then we make the head noun demand the

noun with genitive marker as in Figure 2.20. In this way, we can capture this unusual

word ordering elegantly in CCG.

ROOT maine uskaa mumbai mai kiraayaa dediyaa

ROOT

OBJ

PLACE

SUBJ

GEN

CASE

maine uskaa mumbai mai kiraayaa dediyaa
I-ERG his Mumbai in rent have-given

NP NPgen NP (S f /S f )\NP NP\NPgen (S f \NP)\NP
< < B

S f /S f (S f \NP)\NPgen
> B×

(S f \NP)\NPgen
<

S f \NP
<

S f
‘I have given his rent in Mumbai’

Figure 2.20: Genitive construction.

Hindi also has extensive use of conjunct “light” verbs. A conjunct verb is com-
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posed of a noun or an adjective followed by a verbalizer. Subject (SUBJ) or Object

(OBJ) arguments of a conjunct verb can have the genitive case marker. In such cases,

the arguments have a dependency relation with the noun of the conjunct verb since

the agreement is with the noun of the conjunct verb and not with the verb. The free

word order nature of adverbs and time and/or place expressions can cause crossing arcs

as in the following examples. Such constructions are called dislocated/discontinuous

genitives. We treat Part-OF (POF) and subject/object of conjunct verb (CSUBJ/COBJ)

as arguments. For example, in Figure 2.21, the light verb hua (“happened”) looks for

an NP, udhghaatana (“inauguration”) to its left. udhghaatana has a child mandir kaa

(“of temple”) with CSUBJ dependency relation. Since CSUBJ is an argument rela-

tion, CCG category of udhghaatana is NP\NPgen which looks for an NP with genitive

marker to its left. udhghaatana first combines with the light verb hua and then with

the optional time expression kala (“yesterday”) leading to S f \NPgen. The verb phrase

S f \NPgen is then combined with the noun phrase with genitive marker mandir kaa (“of

temple”) resulting in a sentence S f .

ROOT mandhir kaa kala udhghaatana hua

ROOT

POF

TIMECSUBJ

CASE

mandhir kaa kala udhghaatana hua
temple of yesterday inauguration happened

NP NPgen\NP S f /S f NP\NPgen S f \NP
< < B

NPgen S f \NPgen
> B×

S f \NPgen
<

S f
‘Yesterday, the temple got inaugurated.’

Figure 2.21: Dislocated/Discontinuous genitives (time expression).

Figure 2.22 is similar to Figure 2.21, except that the noun with genitive marker bud-

hdhiimattaa kii (“intelligence”) is in COBJ dependency relation with the noun of the

conjunct verb taariiph (“appreciate”). Also the intervening node jamkara (“greatly”)

which is the cause for the crossing arc is an adverb (ADV) unlike the time expression

in the previous case.
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ROOT usakii budhdhiimattaa kii jamkara taariiph kii hai

ROOT

AUXPOF

ADV

COBJ

CASE
GEN

usakii budhdhiimattaa kii jamkara taariiph kii hai
his intelligence gen greatly appreciate do is

NP/NP NP NPgen\NP S f /S f NP\NPgen S f \NP S f \S f
> < B

NP S f \NP
< < B

NPgen S f \NPgen
> B×

S f \NPgen
<

S f
‘His intellegence is greatly appreciated.’

Figure 2.22: Dislocated/Discontinuous genitives (adverb).

2.7.6 Others

Other major dependency labels/constructions which lead to crossing dependency arcs

are time/place expressions (TIME/PLACE), noun modifiers (NMOD), SUBJ. These

labels corresponds to 9% of crossing arcs.

Similar to adverbs, time/place expressions, due to freer word order nature of Hindi,

can occur at any place in the sentence and can be handled using crossed composition

in general cases. But, when these occur between nouns in genitive relation or in the

conjunct verbs constructions (as in 2.7.5), they lead to crossing arcs, and are handled

as discussed in section 2.7.5.

NMOD is the label for noun modifier. NMOD constructions which lead to cross-

ing arcs are similar to those of genitives as in 2.7.5. SUBJ constructions also engender

crossing arcs similarly to the OBJ constructions/topicalization in 2.7.3. These con-

structions are handled similar to the ones described in the previous sections.

2.8 Analysis of the Hindi CCGbank

In this section, we provide a brief analysis of the different CCG categories and com-

binators in the Hindi CCGbank. Table 2.2 lists the top 12 most frequent CCG cate-

gories in both coarse-grained and fine-grained versions of the lexicon. The most com-
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CCG Category Percentage (%)
NP 28.09

NP/NP 16.45

S f \S f 9.05

NP\NP 6.99

(S f /S f )\NP 6.66

(NP/NP)\NP 4.53

S f /S f 2.56

(S f \NP)\NP 2.21

JJP 2.11

S f \NP 2.05

(NP/NP)/(NP/NP) 1.90

CCP/S f 1.60

CCG Category Percentage (%)
NP 17.67

NP/NP 16.44

NP[0] 9.11

S f \S f 9.05

(S f /S f )\NP 5.91

(NP/NP)\NP 4.09

S f /S f 2.56

JJP 2.12

(NP/NP)/(NP/NP) 1.90

NP[0 ne]\NP 1.84

S f \NP[0] 1.82

NP[0 ko]\NP 1.77

Table 2.2: Distribution of CCG categories in coarse-grained (left) and fine-grained

(right) lexicon.

mon categories are the category for nouns (NP) and noun modifiers like adjectives and

determiners (NP/NP). The next most frequent categories are the categories for post-

position markers for nouns and auxiliary or tense, aspect and modality (TAM) markers

for verbs. S f \S f and NP\NP are the categories for auxiliary or TAM markers for verbs

and post-position markers for nouns respectively. The post-position marker of an ad-

junct noun phrase gets the category (S f /S f )\NP. (NP/NP)\NP is the category for both

genitive marker and conjunction in NP coordination. (S f \NP)\NP and S f \NP are the

categories for transitive and intransitive verbs respectively. Adjectival phrase gets a

category JJP. (NP/NP)/(NP/NP) is the category for modifier of a noun modifier and

CCP/S f is the category for subordinate conjunction.

Categories in the top 12 list of the fine-grained lexicon but not in the coarse-grained

are NP[0], NP[0 ne]\NP and NP[0 ko]\NP. In this lexicon, the coarse category for

nouns gets split into NP (the category for a noun with a separate lexical item as a case

marker) and NP[0] (the category for a noun without any case marker). For example,

in noun chunks raam ne (“Ram ERG”) and raam (“Ram”), the category of raam is NP

in first case and NP[0] in the later case. 0 here means that the case marker appeared

as a separate lexical item. For example, raam ne (“Ram ERG”) will have NP[0 ne] as

the category whereas usne (“he+ERG”) will have NP[ne] as the category. This is the
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notation followed in the Hindi dependency treebank. The remaining two categories,

NP[0 ne]\NP and NP[0 ko]\NP, are the categories for ergative (‘ne’) and dative (‘ko’)

case-markers.

Table 2.3 shows the distribution of different CCG combinators in the Hindi CCG-

bank. Since Hindi is a verb final language, the backward application and composition

combinators are more frequent than forward application and composition combinators.

Due to freer word order nature and crossing dependency arcs, there are around 0.5% of

crossed composition combinators in the Hindi CCGbank. This shows the importance

of crossed composition combinators for freer word order languages.

CCG Combinator Percentage (%)
Forward Application (>): 38.61

Backward Application (<): 45.90

Forward Composition (> B): 0.01

Backward Composition (< B): 14.99

Forward Crossed Composition (> BX ): 0.04

Backward Crossed Composition (< BX ): 0.45

Table 2.3: Distribution of combinators in the Hindi CCGbank.

2.9 Conclusion

We presented an approach for automatically creating a CCGbank from a dependency

treebank for Hindi which is a morphologically rich, freer word order and verb final

language. We created two types of lexicon: fine-grained which keeps morphological

information in noun categories and coarse-grained which doesn’t. We have provided

a detailed analysis of various long-range dependencies like coordinate and relative

constructions, and shown how to handle them in CCG. We have also discussed in detail

the different word orders that arise from the free word order nature of Hindi in various

constructions, and provided a unified projective analysis for them under CCG. We have

also provided a brief analysis of the different CCG categories and combinators in the

Hindi CCGbank.

The approach described here has already been successfully applied to Telugu, an-

other Indian language (Kumari and Rao, 2015). In future we would like to extract CCG

lexicons and/or CCGbanks for the many other languages for which dependency tree-
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banks are available, including the languages of the CoNLL dependency parsing shared

tasks (Buchholz and Marsi, 2006; Nivre et al., 2007a) and universal dependency tree-

banks (McDonald et al., 2013). We would also like to see the impact of generalisation

of our lexicon using the free-word order formalism for CCG categories of Baldridge

(2002).

In the next chapter, we develop a CCG supertagger for Hindi and show that infor-

mative CCG categories, which contain both local subcategorization information and

capture long distance dependencies elegantly, improve the performance of dependency

parsers.



Chapter 3

Improving Dependency Parsers using

CCG Supertags

Subcategorization information is a useful feature in dependency parsing. In this

chapter, we explore a method of incorporating this information via Combinatory

Categorial Grammar (CCG) categories from a supertagger. We experiment with two

popular dependency parsers (Malt and MST) for two languages: English and Hindi.

For both languages, CCG categories improve the overall accuracy of both parsers by

around 0.3-0.5% in all experiments. For both parsers, we see larger improvements

specifically on dependencies at which they are known to be weak: long distance

dependencies for Malt, and verbal arguments for MST. Parts of this chapter are based

on the content from Ambati et al. (2013) and Ambati et al. (2014).

3.1 Introduction

Dependency parsers can recover much of the predicate-argument structure of a

sentence, while being relatively efficient to train and extremely fast at parsing. Depen-

dency parsers have been gaining in popularity in recent times due to the availability of

large dependency treebanks for several languages and parsing shared tasks (Buchholz

and Marsi, 2006; Nivre et al., 2007a; Bharati et al., 2012).

In this chapter, we show that using CCG categories improve both popular

dependency parsers, Malt and MST for two typologically diverse languages, Hindi

and English. CCG lexical categories contain subcategorization information regarding

the dependencies of predicates, including long-distance dependencies. We show that

providing this subcategorization information in the form of CCG categories can help

43
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both Malt and MST on precisely those dependencies for which they are known to

have weak rates of recovery. The result is particularly interesting for Malt, the fast

greedy parser, as the improvement in Malt comes without significantly compromising

its speed, so that it can be practically applied in web scale parsing. Our results apply

both to English, a fixed word order and morphologically simple language, and to

Hindi, a free word order and morphologically rich language, indicating that CCG

categories from a supertagger are an easy and robust way of introducing lexicalized

subcategorization information into dependency parsers.

3.2 Related Work

Parsers using different grammar formalisms have different strengths and weaknesses,

and prior work has shown that information from one formalism can improve the per-

formance of a parser in another formalism.

Sagae et al. (2007) used the output of a dependency parser to improve a Head-

driven Phrase Structure Grammar (HPSG) parser. They achieved a 1.4% improvement

in accuracy over a state-of-the-art HPSG parser by using dependencies from a depen-

dency parser for constraining wide-coverage rules in the HPSG parser. Coppola and

Steedman (2013) incorporated higher-order dependency features into a cube decoding

phrase-structure parser. They experimented with both in-domain and out-of-domain

test sets and obtained significant gains in dependency recovery in both cases.

Kim et al. (2012) improved a CCG parser using dependency features. They ex-

tracted n-best parses from a CCG parser and provided dependency features from a

dependency parser to a re-ranker. They explored four different dependency schemes:

CoNLL1 (Nivre et al., 2007a), Stanford 2 (de Marneffe et al., 2006), LTH 3 (Johansson

and Nugues, 2007) and Fanse 4 (Tratz and Hovy, 2011). They used two widely used

dependency parsers: Malt and MST for their experiments. Dependency features from

MST parser using CoNLL scheme gave better improvements for CCG parsing. In the

case of Malt, using Fanse dependency scheme gave the best results. They obtained a

final improvement of 0.35% in labelled F-score on the CCGbank test set using features

from Malt parser.

Conversely, in this chapter, we show that dependency parsers can be improved by

1 http://stp.lingfil.uu.se/˜nivre/research/Penn2Malt.html
2http://nlp.stanford.edu/software/lex-parser.shtml
3http://nlp.cs.lth.se/software/treebank_converter/
4http://www.isi.edu/publications/licensed-sw/fanseparser/

http://stp.lingfil.uu.se/~nivre/research/Penn2Malt.html
http://nlp.stanford.edu/software/lex-parser.shtml
http://nlp.cs.lth.se/software/treebank_converter/
http://www.isi.edu/publications/licensed-sw/fanseparser/
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using CCG categories. There is a little work on using supertags as features to depen-

dency parsing (Foth et al., 2006; Çakıcı, 2009; Ouchi et al., 2014). Foth et al. (2006)

improved a constrained based dependency parser for German using supertags. They

first designed supertags based on dependency information like dependency labels and

directionality. They created ten different versions of supertags with different granular-

ity. Coarsest tagset has 35 tags where as the finest one has 12,947 tags. Using TnT

tagger5, a hidden Markov model based tagger, they developed a supertagger. They used

the automatic supertags assigned by this supertagger as a feature in their weighted con-

strained dependency parser. They obtained significant improvements of around 2.2%

in unlabelled attachment score and 2.6% in labelled attachment score with an error

reduction of over 24%.

Ouchi et al. (2014) did similar experiments where they improved English depen-

dency parser using supertags. They designed two versions of supertags: coarse-grained

and fine-grained, which are based on the dependency tree. Coarse-grained version

contains information about the dependency label of the current node, direction of the

current node with respect to its parent and also the directions of its children. In the

fine-grained version, in addition to the above information, dependency labels for the

children are also added. Coarser version has 79 tags whereas the finer version has

312 tags. They developed a Conditional Random Field (CRF) (Lafferty et al., 2001)

supertagger. Using the automatic supertags from this supertagger as a feature to the

dependency parser, they obtained 1.3% improvement in unlabelled attachment score

using coarse-grained supertags as features. The supertag design of Ouchi et al. (2014)

is inspired from that of Foth et al. (2006). But Foth et al. (2006) experimented with

weighted constraint parser for German, whereas Ouchi et al. (2014) experimented with

a data-driven transition-based parser for English.

Supertags used by Foth et al. (2006) and Ouchi et al. (2014) are based on the

information from the dependency tree. Çakıcı (2009) experimented with using CCG

supertags for MST parser for Turkish. Since the supertagger accuracy is very low

for Turkish, they couldn’t obtain any improvements in dependency parsing. Unlike

Foth et al. (2006) and Ouchi et al. (2014), but similar to Çakıcı (2009), we explored

CCG supertags rather than the supertags based on dependencies in our experiments.

Also, we experiment with two diverse languages: English and Hindi, and two popular

dependency parsers: Malt, a transition-based parser and MST, a graph-based parser.

Ouchi et al. (2014) only present unlabelled results with transition-based parser for

5http://www.coli.uni-saarland.de/˜thorsten/tnt/

http://www.coli.uni-saarland.de/~thorsten/tnt/
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English, whereas we present both unlabelled attachment score and labelled attachment

score in our experiments. Kumari and Rao (2015) applied our approach to Telugu,

another Indian language, whose dependency annotation scheme is based on that of

Hindi. They developed a supertagger for Telugu and used supertags as features for

Malt and MST parsing models for Telugu. They also obtained similar improvements

as our Hindi experiments.

3.3 Grammar Formalisms

In this chapter, we deal with two grammar formalisms: Combinatory Categorial Gram-

mar (CCG) and Dependency Grammar. We provided detailed description of CCG in

section 1.2. In this section we present a brief introduction to dependency grammar.

For a detailed description about CCG and dependency parsing, readers can refer to

Steedman (2000) and Kübler et al. (2009).

Dependency Grammar (DG) describes the syntactic structure of a sentence through

dependency graphs. A dependency graph of a sentence represents words and their

relationship to syntactic modifiers using directed edges. These edges can be labelled

with grammatical relations like Subject, Object etc.

Dependency trees can either be projective or non-projective. Due to English’s

rigid word order, projective trees are sufficient to analyze most English sentences.

But, in languages with free word order, such as Czech, Dutch, German, Hindi etc.

non-projective dependencies are more frequent. Rich inflection systems reduce the

demands on word order, leading to non-projective dependencies (McDonald, 2006).

CCG categories contain subcategorization information whereas dependency

graphs do not have this information explicitly. Unlike CCG, where a derivation is

first required to extract word-word dependencies, DG captures dependencies between

words directly. CCG derivations are constrained by the CCG rules used for combining

categories. But in DG, dependencies can occur between any words within a sentence.

CCG captures long distance dependencies elegantly, which can’t be done easily in DG

(Kim et al., 2012). Figure 3.1 shows a CCG derivation with CCG lexical categories

for each word and Stanford scheme dependencies (de Marneffe et al., 2006) for an

example English sentence.
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Figure 3.2: Analyses of different constructions in Stanford and CoNLL schemes

(adapted from Kim et al. (2012)).

3.4 Data and Tools: English

In this section we describe the dependency and CCG resources available for English.

3.4.1 Treebanks

In English dependency parsing literature, two different dependency schemes, namely,

Stanford and CoNLL are widely popular. Stanford scheme, introduced by de Marneffe

et al. (2006), is the dependency scheme used in the Stanford parser6. CoNLL scheme is

the scheme used in the CoNLL dependency parsing shared tasks (Buchholz and Marsi,

2006; Nivre et al., 2007a). Figure 3.2 demonstrates some of the differences between the

two dependency schemes. For instance, auxiliaries take the lexical verb as a dependent

in CoNLL scheme whereas for Stanford the lexical verb is the head of a verb phrase.

Also, CoNLL scheme is the widely explored scheme in English dependency parsing

literature, while Stanford scheme has a much richer label set of 48 labels (compared to

11 labels of CoNLL scheme).

We experimented with both these schemes. We used Penn Treebank (Marcus et al.,

1993) standard splits, training (sections 02-21), development (section 22) and testing

(section 23) for our experiments. We used the Stanford parser’s built-in converter

with the basic projective option to convert Penn Treebank trees into Stanford scheme

dependency trees. For CoNLL scheme, we used Penn2Malt7, a publicly available tool,

to generate CoNLL dependencies from Penn Treebank.

6http://nlp.Stanford.edu/software/lex-parser.shtml
7http://w3.msi.vxu.se/ nivre/research/Penn2Malt.html
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3.4.2 Supertagger

Clark and Curran (2004b) (C&C) developed a Maximum Entropy based CCG su-

pertagger for English using the English CCGbank (Hockenmaier and Steedman, 2007).

Using a frequency cutoff of 10, a category set of 409 category types was created.

Different features like word, part-of-speech, contextual and complex bi-gram features

were explored. The 1-best accuracy of this supertagger on the CCGbank development

set is 91.5%. We use this C&C supertagger for our experiments.

3.4.3 Dependency Parsers

We used Malt and MST parsers for our experiments. MaltParser is a freely avail-

able implementation of the parsing models described in Nivre et al. (2007b)8. It is

a classifier based shift reduce parser. With MaltParser, parsing can be performed in

linear time for projective dependency trees and quadratic time for arbitrary (possi-

bly non-projective) trees. MaltParser provides options for nine deterministic parsing

algorithms: Nivre arc-eager, Nivre arc-standard, Covington projective, Covington non-

projective, Stack projective, Stack swap-eager, Stack swap-lazy, Planar and 2-planar.

It also provides options for libsvm and liblinear learner algorithms.

MSTParser is a freely available implementation of the parsing models described in

McDonald (2006)9. It is a graph-based parsing system in which parsing algorithm is

equated to finding directed maximum spanning trees from a dense graph of the sen-

tence. MSTParser uses Chu-Liu-Edmonds maximum spanning tree algorithm (Chu

and Liu, 1965; Edmonds, 1967) for non-projective parsing and Eisner’s algorithm (Eis-

ner, 1996b) for projective parsing. It uses online large margin learning as the learning

(McDonald et al., 2005a). It also provides options for 1st order and 2nd order features.

1st order features are the features over the parent and child in the dependency arc.

These include different unigram, bigram features of parent node and child node. But,

2nd order features include more global features like grand parent, grand child and sib-

ling features. For example, postag of parent node and child node are 1st order features.

Whereas, postag of grand child and grand parent are second order features. Since Malt

uses a local model, it is good at short range dependencies. MST is good at long range

dependencies since it uses a global model.

There has been a significant amount of work on parsing English using Malt and

8http://www.maltparser.org/
9http://mstparser.sourceforge.net/

http://www.maltparser.org/
http://mstparser.sourceforge.net/
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MST parsers in the recent past (Nivre et al., 2007a). We first run these parsers with pre-

vious best settings (McDonald et al., 2005b; Foster et al., 2011; Zhang and Nivre, 2012)

and treat them as our baseline. In the case of English, Malt uses the arc-standard pars-

ing algorithm for CoNLL scheme and stack-projective algorithm for Stanford scheme.

For learning, liblinear learner is used for both the schemes. MST uses 1st-order fea-

tures, projective parsing algorithm with 5-best MIRA training for both the schemes.

For English, POS-tags are assigned using a perceptron tagger (Collins, 2002), with

an accuracy of 97.3% on a standard Penn Treebank test set. Following Zhang and Nivre

(2012), we assign automatic POS-tags to the training data using ten-way jackknifing.

3.5 Data and Tools: Hindi

In this section we describe the dependency and CCG resources available for Hindi.

3.5.1 Treebanks

For Hindi, we work with the Hindi Dependency Treebank (HDT ver-0.5) released as

part of Coling 2012 Shared Task on parsing (Bharati et al., 2012). The Hindi treebank

contains 12,041 training, 1,233 development and 1,828 testing sentences with an

average of 22 words per sentence. More details about the treebank can be found in

section 2.3.

3.5.2 Supertagger

Following Clark (2002), we used a Maximum Entropy approach to build our supertag-

ger. We explored different features in the context of a 5-word window surrounding

the target word. Details of the development of the Hindi supertagger are provided in

section 5.4.2. The 1-best accuracy of the supertagger is 82.92% and 84.40% for fine-

grained and coarse-grained lexicon respectively. As the number of category types in

fine-grained lexicon (376) are much higher than in coarse-grained (202), it is not sur-

prising that the performance of the supertagger is better for coarse-grained as compared

to fine-grained.
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3.5.3 Dependency Parsers

For Hindi, we did all our experiments using automatic features (pos, chunk and mor-

phological information) extracted using a Hindi shallow parser 10. Similar to English,

we first run Malt and MST with previous best settings (Bharati et al., 2012) and treat

them as our baseline. For Hindi, Malt uses the arc-standard parsing algorithm with a

liblinear learner. MST uses 2nd-order features, non-projective parsing algorithm with

5-best MIRA training. We compare and analyze results after adding CCG categories

as features with this baseline.

3.6 CCG Categories as Features to Malt and MST

Similar to Çakıcı (2009), instead of using CCG supertags for all words, we used su-

pertags which occurred at least K times in the training data, and backed off to coarse

POS-tags otherwise. We experimented with different values of K. For English K=1,

i.e., when we use CCG categories for all words, gave the best results. K=15 gave the

best results for Hindi. As the data for Hindi is small, providing CCG categories to

all the words didn’t help due to sparsity issues. But for English, due to the relatively

larger amount of data, using CCG categories for all the words worked better than using

coarse POS-tag based back off. We explored both Stanford and CoNLL schemes in the

case of English and fine and coarse-grained CCG categories in the case of Hindi. All

feature and parser tuning is done on the development data.

Since both Malt and MST parsers take the data in CoNLL format as input, we

provided CCG categories in the FEATS column of the CoNLL format. If S0 is the top

node in the stack, Q0 is the first node in the input queue and c is their corresponding

CCG category, then the feature templates used are S0c, Q0c, S0cQ0c.

3.6.1 Experiments with Gold Categories

We first provided gold CCG categories extracted from CCGbanks as features to the

Malt and MST parsers. We used coarse POS tags for the sentences which don’t have

a CCG derivation. Unlabelled Attachment Scores (UAS) and Labelled Attachment

Scores (LAS) on the test set are shown in Table 3.1. As expected, gold CCG categories

boosted UAS and LAS by around 4-7% in all the cases. This clearly shows that the

rich subcategorization information provided by CCG categories can help dependency

10 http://ltrc.iiit.ac.in/analyzer/hindi/

http://ltrc.iiit.ac.in/analyzer/hindi/
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Language Experiment
Malt MST

UAS LAS UAS LAS

English

Stanford Baseline 90.32 87.87 90.36 87.18

Stanford + Gold CCG 94.83** 93.06** 94.83** 90.96**
CoNLL Baseline 89.99 88.73 90.94 89.69

CoNLL + Gold CCG 94.24** 93.71** 95.35** 93.76**

Hindi

Baseline 88.67 83.04 90.52 80.67

Fine Gold CCG 95.27** 90.22** 96.60** 84.95**
Coarse Gold CCG 95.26** 90.18** 96.32** 84.71**

Table 3.1: Impact of Gold CCG categories on dependency parsing. McNemar’s test, **

= p < 0.01.

parsers like Malt and MST. All the improvements on test set are statistically significant

(McNemar’s test, p < 0.01).

3.6.2 Experiments with Supertagger output

Having seen improvements with gold CCG categories, we experimented with using

automatic CCG categories from a supertagger as a feature to Malt and MST. We

performed different feature and parser tuning experiments on the development data

and the settings which gave best results are used for test set. Unlabelled Attachment

Scores (UAS) and Labelled Attachment Scores (LAS) on the test set are shown in

Table 3.2. Numbers in brackets in the table are percentage of errors reduced. Even

with automatic categories from a supertagger, we got significant improvements over

the baseline, for all the cases. All the improvements on test set are statistically

significant (McNemar’s test, p < 0.05 for Hindi LAS and p < 0.01 for the rest). This

shows that the rich subcategorization information provided by automatically assigned

CCG categories can help Malt and MST.

For English, in the case of Malt, we could achieve 0.2% and 0.3% improvement

in UAS and LAS respectively for Stanford Scheme. For CoNLL scheme, these

improvements are 0.4% and 0.5% in UAS and LAS respectively. As Stanford

scheme has richer dependency label set compared to CoNLL, we could observe

better improvements for CoNLL scheme. In the case of MST, we got around 0.5%

improvements in all the cases.

In the case of Hindi, with gold CCG categories, the fine-grained lexicon gave
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Language Experiment
Malt MST

UAS LAS UAS LAS

English

Stanford Baseline 90.32 87.87 90.36 87.18

Stanford + CCG 90.56** (2.5) 88.16** (2.5) 90.93** (5.9) 87.73** (4.3)
CoNLL Baseline 89.99 88.73 90.94 89.69

CoNLL + CCG 90.38** (4.0) 89.19** (4.1) 91.48** (5.9) 90.23** (5.3)

Hindi

Baseline 88.67 83.04 90.52 80.67

Fine CCG 88.93** (2.2) 83.23* (1.1) 90.97** (4.8) 80.94* (1.4)
Coarse CCG 89.04** (3.3) 83.35* (1.9) 90.88** (3.8) 80.73* (0.4)

Table 3.2: Impact of CCG categories from a Supertagger on dependency parsing.

Numbers in brackets are percentage of errors reduced. McNemar’s test, * = p < 0.05 ;

** = p < 0.01.

slightly better improvements over coarse-grained as the fine-grained lexicon has

richer morphological information. When supertagger output is provided, fine-grained

supertags gave better improvements for MST, but for Malt, coarse-grained supertags

gave better improvements. The performance of the supertagger on the fine-grained

lexicon is slightly lower than that of the coarse-grained lexicon. In the case of Malt,

due to local learning, supertagger performance may have led to more error propagation

with fine-grained lexicon compared to coarse-grained and hence better performance

with coarse-grained supertags. In the case of MST, due to global learning and better

handling of error propagation, richer information of fine-grained categories may have

surpassed the slight supertagger performance differences. We could achieve final

improvements of around 0.3% in both UAS and LAS for Malt. For MST, 0.5% and

0.3% improvement is observed in UAS and LAS respectively.

3.6.3 Analysis: English

It is interesting to notice the impact of using automatic CCG categories from a su-

pertagger on long distance dependencies and verbal arguments. It is known that Malt is

weak at long-distance relations and MST is weak at verbal arguments (McDonald and

Nivre, 2007; Ambati et al., 2010a). Providing CCG categories as features improved

handling of long-distance dependencies for Malt and verbal arguments for MST.

Figure 3.3 shows the average F-score of Stanford and CoNLL schemes on the

impact of CCG categories for three major dependency labels, namely, ROOT, SUBJ,

OBJ, the labels for sentence root, subject, and direct object respectively. For Malt,
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Figure 3.3: Label-wise impact of supertag features for English.

providing CCG categories gave an increment of 0.5%, 0.8% for ROOT, and SUBJ

labels respectively over the baseline using Stanford dependencies. For MST, the

improvements are 0.8% and 1.2% respectively for ROOT, and SUBJ labels. Similar

improvements are observed for CoNLL dependencies as well. There is no significant

improvement for direct object label, especially in the case of Malt. This could be

because of error propagation, a well known problem with shift-reduce greedy search

with local learning parsers. As the CCGbank category for conjunctions in English

is ‘conj’ (as opposed to (X\X)/X which contains subcategorization) which doesn’t

provide any subcategorization information, there are no significant improvements in

the case of co-ordination constructions for English.

We also found that the impact of CCG categories is higher when the span of the
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Figure 3.4: Distance-wise impact of supertag features for English.

dependency is longer. Figure 3.4 shows the average F-score of Stanford and CoNLL

schemes on the impact of CCG categories for dependencies based on the distance

between words. Using CCG categories does not have much impact on short distance

dependencies (1−5). For longer range distances, 6−10, and >10, there is significant

improvement for both Malt and MST. For Malt, these improvements are 0.5% and

0.9% respectively. In the case of MST, there is an improvement of 1.3% and 1.7% for

distances 6−10, and >10 respectively.
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Figure 3.5: Label-wise impact of supertag features for Hindi.

3.6.4 Analysis: Hindi

Similar to English, providing CCG categories as features improved the handling of

long-distance dependencies for Malt and verbal arguments for MST respectively for

Hindi. In the case of Malt, Figure 3.5(a) shows the F-score of the impact of CCG

categories on three dependency labels, which take the major share of long distance

dependencies, namely sentence root (ROOT), co-ordination (COORD), and relative clause

(RELC). For these relations, providing CCG categories gave an increment of 1.3%,

1.4% and 1.6% respectively over the baseline. Unlike English, Hindi CCGbank

category of conjunction is (X\X)/X (X depends on the category of the children), which

contains subcategorization information. Hence, we observe significant improvements

for co-ordination dependencies in Hindi. In the case of MST, Figure 3.5(b) shows the

F-score of the impact of CCG categories on sentence root (ROOT), subject (SUBJ) and

object (OBJ) verbal arguments. For these relations, providing CCG categories gave an

increment of 0.5%, 0.4% and 0.3% respectively over the baseline.

Similar to English, we also observed that the impact of CCG categories is higher

when the span of the dependency is longer. Figure 3.6 shows the F-score of the impact

of CCG categories on dependencies based on the distance between words. Using

CCG categories does not have much impact on short distance dependencies (1−5).

For longer range distances, 6−10, and >10, there is an improvement of 1.8% and

1.4% respectively for Malt. In the case of MST, this improvement is 1.3% and 1.3%

for distance 6−10, and >10 respectively.
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Figure 3.6: Distance-wise impact of supertag features for Hindi.

3.7 Discussion

In this chapter, we showed that CCG lexical categories which contain both local sub-

categorization information and capture long distance dependencies elegantly, helped

both Malt and MST with both these kinds of dependencies. This result is true for both

languages, English (a fixed word order language) for which the two parsers already

had high baseline accuracies, and Hindi, which is a free word order and morphologi-

cally richer language. For both languages and parsers, CCG categories helped in better

recovery of verbal arguments and dependencies when the span of the dependency is

longer (6−10, and >10).

Richer CCG categories contain valency information, which has been shown to be

very useful feature in dependency parsing both for graph-based and transition-based

parsers (Zhang et al., 2013; Zhang and Nivre, 2011). Valency in the form of the number

of modifiers of a given head is used by the graph-based sub model of Zhang and Clark

(2008) and the models of Martins et al. (2009), and Zhang et al. (2013). Zhang and

Nivre (2011) used similar information for their transition-based parser, zpar (Zhang

and Clark, 2011b) 11), which uses beam search and global learning. For English, we

also experimented providing CCG categories as features to zpar. But, CCG categories

didn’t have significant impact in the case of zpar as it already uses similar information.

11https://sourceforge.net/projects/zpar/

https://sourceforge.net/projects/zpar/
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3.7.1 Impact on Web Scale Parsing

Greedy parsers such as Malt are very fast and are practically useful in large scale ap-

plications such as parsing the web. Though valency is a useful feature in dependency

parsing, Zhang and Nivre (2012) showed that providing valency information directly

didn’t help Malt. As Malt can’t use valency information, we are providing this infor-

mation indirectly in the form of CCG categories. We have shown a way to improve

Malt without compromising speed and thus enhancing its usefulness for web scale

parsing. Table 3.3 shows the speed of Malt, MST and zpar on parsing English testing

data in CoNLL scheme. Malt parses around 315 sentences per second, compared to 35

and 11 of zpar and MST respectively. Clearly, Malt is orders of magnitude faster than

MST and zpar. After using CCG categories from the supertagger, Malt parsed at the

rate of 275 sentences per second, still much higher than other parsers.

Parser Ave. Sents / Sec Total Time

MST 11 3m 36s

zpar 35 1m 11s

Malt 315 0m 7.6s

Malt + CCG 275 0m 9.0s

Table 3.3: Time taken to parse English testing data.

3.8 Conclusion and Future Direction

We have shown that informative CCG categories improve the performance of depen-

dency parsers like Malt and MST. We have shown that both gold CCG categories

and automatic categories from a supertagger, added as features to these dependency

parsers, help in recovering long distance relations for Malt and verbal arguments for

MST in the case of both English and Hindi. This result is particularly interesting in

the case of Malt which can’t directly use valency information, which CCG categories

provide indirectly. This led to an improvement in performance without compromising

speed.

Using information from different resources like PropBank (Palmer et al., 2005)

and NomBank (Meyers et al., 2004), Honnibal et al. (2010) have created an updated

version of CCGbank which includes predicate-argument structures for both verbs and
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nouns, baseNP brackets, verb-particle constructions, and nominal modifiers. In future,

we would like to explore this CCG resource for English. Though we have worked on

English and Hindi, our approach is generic enough to apply to other languages such

as Turkish, German etc. for which both dependency and CCG resources are available.

Using the algorithms of Ambati et al. (2013) and Cakici (2005), we can extract CCG

lexicon and/or CCGbanks for any language with a dependency treebank, including the

CoNLL dependency parsing shared task languages, and explore our approach.





Chapter 4

Incremental Parsing for English

We describe a new algorithm for incremental transition-based Combinatory Categorial

Grammar parsing in this chapter. We introduce two new actions in the shift-reduce

paradigm based on the idea of ‘revealing’ (Pareschi and Steedman, 1987) the required

information during parsing. We present two versions of the incremental parser: a

greedy parser which uses a look-ahead and a beam search parser which does not use

a look-ahead.

4.1 Introduction

While the majority of CCG parsers use chart-based approaches (Hockenmaier and

Steedman, 2002; Clark and Curran, 2007), there has been some work on developing

shift-reduce parsers for CCG (Zhang and Clark, 2011a; Xu et al., 2014). Most of

these parsers model normal-form CCG derivations (Eisner, 1996a), which are mostly

right-branching trees: hence they are not incremental in nature. The dependency

models of Clark and Curran (2007) and Xu et al. (2014) model dependencies rather

than derivations, but do not guarantee incremental analyses.

Besides being cognitively plausible (Marslen-Wilson, 1973), incremental parsing

is more useful than non-incremental parsing for some applications. For example, an

incremental analysis is required for integrating syntactic and semantic information

into language modeling for statistical machine translation (SMT) and automatic

speech recognition (ASR) (Roark, 2001; Wang and Harper, 2003).

In this chapter, we develop a new incremental shift-reduce algorithm for parsing

CCG by building a dependency graph in addition to the CCG derivation as a represen-

tation. The dependencies in the graph are extracted from the CCG derivation. Since

61
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a node can have multiple parents, we construct a dependency graph rather than a tree.

Two new actions are introduced in the shift-reduce paradigm for “revealing” (Pareschi

and Steedman, 1987) unbuilt structure during parsing. We build the dependency graph

in parallel to the incremental CCG derivation and use this graph for revealing, via these

two new actions. On the standard CCGbank test data, our greedy parser achieves im-

provements of 0.88% in labelled F-score and 2.0% in unlabelled F-score over a greedy

non-incremental shift-reduce algorithm. As our algorithm does not model derivations,

but rather models transitions, we do not need a treebank of incremental CCG deriva-

tions and can train on the dependencies in the existing treebank. Our approach can

therefore be adapted to other languages with dependency treebanks, since CCG lexical

categories can be easily extracted from dependency treebanks (Cakici, 2005; Ambati

et al., 2013). Though we use dependencies for meaning representation and CCG for

parsing, our revealing technique can be applied to other meaning representations like

lambda expressions and for non-CCG parsing like phrase structure parsing.

The rest of the chapter is arranged as follows. Section 4.2 gives a brief introduction

to related work in the areas of CCG parsing and incremental parsing. In section

4.3, we describe our incremental shift-reduce parsing algorithm. Details about the

experiments, evaluation metrics and analysis of the results are presented in section

4.4. We conclude with possible future directions in section 4.5.

4.2 Related Work

In this section, we first give a brief introduction to various available CCG parsers.

Then we describe approaches towards incremental and greedy parsing.

4.2.1 CCG Parsers

4.2.1.1 Graph-based

There has been a significant amount of work on developing graph-based parsers for

CCG. Both generative (Hockenmaier and Steedman, 2002) and discriminative (Clark

et al., 2002; Clark and Curran, 2007; Auli and Lopez, 2011; Lewis and Steedman,

2014a) models have been developed. Hockenmaier and Steedman (2002) use gener-

ative CKY chart parsing algorithms based on Collins (1997). Clark et al. (2002)’s

parser use a conditional model, based on Collins (1996) and a CKY chart parsing al-

gorithm similar to the one described in Steedman (2000). They use the dependency



4.2. Related Work 63

structures that are derived from the CCG derivations in CCGbank.

Clark and Curran (2007) (C&C) describe a number of log-linear parsing models

trained on CCGbank using the CKY chart parsing algorithm. They make consider-

able use of optimisation techniques and parallelized programming to account for the

performance requirement of the estimation task. They present a dependency model

and a normal form model and both the models are evaluated by the number of cor-

rect dependencies they recover. Curran and Clark (2003) first describe the usefulness

of log-linear models for parsing CCG. With log-linear models the parse space can

be represented in terms of features, and adding new features is relatively easy. They

use Generalised Iterative Scaling (GIS) (Darroch and Ratcliff, 1972) for training. Ex-

tending this work, Clark and Curran (2004a) improved both learning and parsing al-

gorithms. They introduced a dependency model which takes dependencies recovered

into account in addition to the derivation. Since GIS is inefficient for estimating huge

models, a parallel version of the Limited-memory Broyden-Fletcher-Goldfarb-Shanno

(L-BFGS) algorithm (Nocedal and Wright, 1999) was developed.

Fowler and Penn (2010) trained a state-of-the-art Probabilistic Context Free Gram-

mar (PCFG) parser (Petrov and Klein, 2007) on the CCGbank data and obtained en-

couraging results. Auli and Lopez (2011) experimented with belief propagation and

dual decomposition approaches for CCG parsing. They reported the best published

results for CCG parsing. Supertag-factored A* CCG parsing was employed by Lewis

and Steedman (2014a). They first extract k-best supertags for a sentence. Then they

run an A* parser which considers supertag probabilities and CCG combinators to gen-

erate a complete spanning analysis. In the absence of a spanning analysis, they in-

crease the beam for the supertagger. In addition to the standard CCGbank test data,

they also experimented with two out-of-domain data sets: Wikipedia and BioInfer.

Honnibal et al. (2009) annotated 200 Wikipedia sentences for evaluating CCG parsers.

Bioinfer is a syntactically annotated corpus of 1,100 sentences from biomedical ab-

stracts (Pyysalo et al., 2007). Though the accuracy of their A* parser is slightly lower

than the C&C parser on the CCGbank test set, they obtained significant improvements

for out-of-domain data. Because of its simple parsing model, Lewis and Steedman

(2014a)’s EasyCCG parser is one of the fastest parsers available for CCG parsing.

Lewis et al. (2015) recently introduced a joint A* model for CCG parsing and seman-

tic role labelling. Rather than a traditional pipeline model for semantic role labelling,

they present a joint model and showed improvements for both CCG parsing and se-

mantic role labelling.
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As these parsers employ a bottom-up chart-parsing strategy and use normal-form

CCGbank derivations which are right-branching, they are not incremental in nature.

In an SVO (Subject-Verb-Object) language, these parsers first attach the object to the

verb and then the subject.

4.2.1.2 Transition-based

Two major works in transition-based CCG parsing with accuracies competitive with

the widely used Clark and Curran (2007) parser (C&C) are Zhang and Clark (2011a)

and Xu et al. (2014). Zhang and Clark (2011a) used a global linear model trained

discriminatively with the averaged perceptron (Collins, 2002) and beam search for

their shift-reduce CCG parser. Following Collins and Roark (2004), they apply the

early update strategy to perceptron training. Xu et al. (2014) developed a dependency

model for shift-reduce CCG parsing using a dynamic oracle technique (Goldberg and

Nivre, 2012). Zhang and Clark (2011a) use a beam of size 16 whereas Xu et al. (2014)

use a much larger beam of size 128. Unlike the chart parsers, both these parsers can

produce fragmentary analyses when a complete spanning analysis is not found. Both

these shift-reduce parsers are more incremental than standard chart based parsers. But,

as they employ an arc-standard (Yamada and Matsumoto, 2003) shift-reduce strategy

on CCGbank, given an SVO language, these parsers are not guaranteed to attach the

subject before the object. A detailed description of Zhang and Clark (2011a) style

parsing algorithm is described with an example sentence in section 4.3.1.

4.2.2 Greedy Parsers

There has been a significant amount of work on greedy shift-reduce dependency pars-

ing. The Malt parser (Nivre et al., 2007b) is one of the earliest parsers based on

this paradigm. The Malt parser implements the transition-based approach to depen-

dency parsing. With this technique, parsing can be performed in linear time for pro-

jective dependency trees and quadratic time for arbitrary (possibly non-projective)

trees (Nivre and Nilsson, 2005; Nivre, 2008). It provides options for nine parsing

algorithms, namely, arc-eager, arc-standard, convington projective, covington non-

projective, stack projective, stack eager, stack lazy, planar and 2-planar (Nivre, 2003;

Covington, 2001; Nivre and Nilsson, 2005; Nivre, 2009; Gómez-Rodrı́guez and Nivre,

2010). The parser also provides an option for libsvm1 (Chang and Lin, 2011) and

1http://www.csie.ntu.edu.tw/˜cjlin/libsvm

http://www.csie.ntu.edu.tw/~cjlin/libsvm
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liblinear2 (Fan et al., 2008) learning models.

Malt is a greedy parser and there have been several extensions made both for

better learning and parsing. Goldberg and Nivre (2012) improved learning for greedy

parsers by using dynamic oracles rather than a single static transition sequence as the

oracle. In all the standard shift-reduce parsers, when two trees combine, only the top

node (root) of each tree participates in the action. Sartorio et al. (2013) introduced

a technique where in addition to the root node, nodes on the right and left periphery

respectively are also available for attachment in the parsing process. They showed sig-

nificant improvements in performance over the arc-eager and arc-standard algorithms.

A non-monotonic parsing strategy was introduced by Honnibal et al. (2013), where an

action taken during the parsing process is revised based on future context.

4.2.3 Incremental Parsers

Shift-reduce CCG parsers rely either on CCGbank derivations (Zhang and Clark,

2011a) which are non-incremental, or on dependencies (Xu et al., 2014) which could

be incremental in simple cases, but do not guarantee incrementality. Hassan et al.

(2009) developed a semi-incremental CCG parser by transforming the English CCG-

bank into left branching derivation trees. In doing so, they changed the lexical cat-

egories for words in order to create fully connected trees. They show that a strictly

incremental parser, which conducts only a single pass over the input and uses no

look-ahead, performs with very low accuracy. They also show that a semi-incremental

parser, which conducts two passes over the input and uses look-ahead, gives a balance

between incrementality and accuracy.

There is also some work on incremental parsing using grammar formalisms

other than CCG like phrase structure grammar (Collins and Roark, 2004) and tree

substitution grammar (Sangati and Keller, 2013). Collins and Roark (2004) developed

an incremental parser using a top-down chart parsing algorithm. They used averaged

perceptron (Collins, 2002) and beam search for their parser. During training they

applied the early update strategy to perceptron training. Sangati and Keller (2013)

present an incremental tree substitution grammar parser which is based on the Earley

algorithm. They also evaluated their incremental parser for sentence prediction and

showed improvements over an n-gram based model.

Now, we discuss five works related to incremental CCG parsing. Hassan et al.

2https://www.csie.ntu.edu.tw/˜cjlin/liblinear/

https://www.csie.ntu.edu.tw/~cjlin/liblinear/
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John loves Mary
NP (S\NP)/NP) NP

>

S/NP
>

S

Figure 4.1: Incremental Derivation of a simple sentence

(2009) created an incremental CCGbank and trained a parser on it. Demberg (2012)

discussed different constructions which pose problems in converting normal-form

derivations to incremental derivations. Pareschi and Steedman (1987) introduced a

lazy chart parsing strategy for CCG using unification. Dalrymple et al. (1991) showed

a new method of handling ellipses using higher-order unification which can be useful

for producing incremental analyses. Kwiatkowski et al. (2010) described a method to

automatically map sentences to logical forms using CCGs and higher-order unification.

4.2.3.1 Hassan et al. (2009)

Hassan et al. (2009) developed a semi-incremental CCG parser. They first transformed

the English CCGbank into left branching derivation trees. Then they explored incre-

mental left-to-right dependency parsing using the transformed CCGbank. According

to Hassan et al. (2009), a strictly incremental parser would conduct only a single pass

over the input, use no lookahead and make only local decisions at every word. They

showed that such a parser suffers heavy loss of accuracy. They also showed that a semi-

incremental (two-pass), linear-time parser that employs fixed and limited look-ahead

exhibits an appealing balance between the efficiency advantages of incrementality and

the achieved accuracy.

In Hassan et al. (2009), creation of an incremental CCGbank is a crucial step.

While creating a left branching tree, they apply the application rule for simple cat-

egories and composition rule for complex categories. For long range dependencies,

type-raising followed by forward application (TRFA) is applied. Figure 4.1 gives an

incremental derivation of a simple sentence. In this sentence ‘John loves Mary’, John

and loves are combined by TRFA rule as they can’t be combined using application or

composition rules. This results in a category S/NP which is combined with Mary using

the application rule to yield S.

This approach works well for simple sentences. But complex constructions like

wh-movement, co-ordination etc. pose problems. They introduce new rules and new
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He plays football and tennis
NP (S\NP)/NP NP (NP\NP)/NP NP

>

S/NP
>

S
>

S/NP
<

S

Figure 4.2: Incremental Derivation of a sentence with NP Co-ordination

categories to handle such special cases. Some of the notable changes are:

• All noun categories (N) are converted to noun phrase categories (NP). For ex-

ample, NP/N is changed to NP/NP.

• Category of conjunction is changed from conj to (X\X)/X. This implies that the

category of a conjunction in NP co-ordination will be (NP\NP)/NP instead of

conj.

• A new rule called COORD is introduced to handle co-ordination constructions

(see Figure 4.2). When a conjunction is encountered, they backtrack and extract

the suitable category in the context.

• A new rule called WHMV is introduced to handle wh-movement.

Thus, in Hassan et al. (2009)’s work, new rules and/or new categories are in-

troduced as required to create incremental left branching CCG derivation trees.

Once we have such a treebank, we can get incremental analysis for a sentence

from a left to right parser trained on this treebank.

4.2.3.2 Demberg (2012)

Demberg (2012) describes the complexities involved in creating fully connected left

branching trees using CCG. She reports that incremental derivations are not straight-

forward in the case of CCG. Type-raising is a step towards that, but it cannot generate

incremental derivations all the time. She points out that the Geach Rule can be useful

in creating left branching trees.

Geach Rule : Y/Z => (Y/G)/(Z/G)

But sometimes, we might have to change the category of the word. For example, in

an object relative clause construction like “The woman that every man saw laughed”,
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Figure 4.3(a) shows the normal form derivation. Using type-raising we can generate

a derivation as in Figure 4.3(b). The most incremental derivation that can be obtained

using both type-raising and Geach rule is given in Figure 4.3(c). Demberg (2012)

shows that we can achieve a fully incremental derivation only by changing the category

of the relative pronoun (4.3(d)). She also mentions that a fully incremental derivation

for complement clauses like Ann thinks the man slept can’t be produced even after

using type-raising and Geach rule.

She summarizes that type-raising and Geach rule can help in generating a fully

incremental derivation for a few constructions only. But, there still will be some con-

structions where changing the category of a word would help and some other construc-

tions where we cannot have an incremental derivation with all the available tricks. In

this chapter, we show that though CCG is not word by word incremental, it is incre-

mental enough for practical applications.

4.2.3.3 Dalrymple et al. (1991)

Dalrymple et al. (1991) introduce a new method of handling ellipses using higher-

order unification. This approach can be used to produce incremental analyses for CCG.

An elliptical construction has two clauses (source clause and target clause) which are

parallel in structure. The source clause is complete, whereas the target clause has

missing material found overtly in the source. For example, consider a verb phrase

(VP) ellipsis construction shown below.

Dan likes golf , and George does too.

The meaning of this sentence is that both Dan and George like golf. Here the

source clause is Dan likes golf and the target clause George does too. The source

clause parallels the target where ‘Dan’ and ‘George’ are parallel elements and the VP

of the target sentence is represented by ‘does too’. Dalrymple et al. (1991) propose the

following procedure to analyze ellipses.

1. Get the analysis of the source clause in the form of parallels

• P(s1, s2, ... , sn) = s where si are parallel elements in the source clause and

s is the analysis of the source clause.

2. Identify the primary occurrences and abstract them out
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The woman that every man saw laughed
NP/N N (N\N)/(S/NP) NP/N N (S\NP)/NP S\NP

>
NP

T
S/(S\NP)

> B
(S/NP)

>

N\N
<

N
>

NP
<

S

(a) Normal form derivation

The woman that every man saw laughed
NP/N N (N\N)/(S/NP) NP/N N (S\NP)/NP S\NP

T >

N/(N\N) NP
> B T

NP/(N\N) S/(S\NP)
> B > B

NP/(S/NP) (S/NP)
>

NP
<

S

(b) Derivation using type-raising

The woman that every man saw laughed
NP/N N (N\N)/(S/NP) NP/N N (S\NP)/NP S\NP

T >

N/(N\N) NP
> B T

NP/(N\N) S/(S\NP)
> B

NP/(S/NP)
T

(S/NP)/((S\NP)/NP)
> B

NP/((S\NP)/NP)
>

NP
<

S

(c) Most incremental derivation using type-raising and Geach rule

The woman that every man saw laughed
NP/N N ((N\N)/((S\NP)/NP))/NP NP/N N (S\NP)/NP S\NP

T
N/(N\N)

> B
NP/(N\N)

Geach
(NP/X)/((N\N)/X)

> B
(NP/((S\NP)/NP))/NP

> B
(NP/((S\NP)/NP))/N

>

NP/((S\NP)/NP)
>

NP
<

S

(d) Incremental derivation using new category for object relative pronoun

Figure 4.3: CCG derivations for Object Relative Clause construction
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• This results in P− > λx.λy.s(x,y...) where x,y etc. are corresponding pri-

mary occurrences in the source analysis.

3. Replace the variables with parallels in the target sentence

• This results in P(t1, t2, ... , tn) = t where ti are parallel elements in the target

clause and t is the analysis of the target clause.

In the above example, analysis of the source clause yields

P(dan) = like(dan∗,golf )

where Dan is the primary occurrence. Abstraction of primary occurrences gives the

following

P(dan) = λx.like(x,golf )

And in the final step, substituting with parallel elements in the target gives

P(george) = like(george,golf )

We can use a CCG parser or any other semantic analyzer to extract the analysis of

the source clause. We can make rules to identify primary occurrences in the source and

their parallels in the target based on the type of the sentence or clause (e.g., relative

clause, VP co-ordination, ellipses etc.). Higher order unification is used for abstrac-

tion. Huet (1975)’s higher-order unification algorithm which provides the solution for

generating all possible representations of source (P) can be used. Unification becomes

more challenging when there is more than one primary occurrence and/or when the

source analysis can be ambiguous. For example, the source analysis for the sentence

“Dan likes his wife, and George does too.” is

P(dan) = like(dan∗,wife−of (dan))

which on abstraction using unification leads to two solutions

P = λx.like(x,wife−of (dan))

P = λx.like(x,wife−of (x))
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On substitution of parallels, two analyses are possible for the target clause (A)

George likes Dan’s wife and (B) George likes George’s wife.

(A) : λx.like(x,wife−of (dan))(george) = like(george,wife−of (dan))

(B) : λx.like(x,wife−of (x))(george) = like(george,wife−of (george))

The task of abstraction becomes more complex when there is more than one pri-

mary occurrence. Higher-order unification provides more than one solution which will

increase the search space. Context and statistics can be used to prune the solution list

to reduce the search space.

4.2.3.4 Pareschi and Steedman (1987)

Pareschi and Steedman (1987) introduced a lazy chart parsing strategy for CCG using

unification. Each node is represented using directed acyclic graph feature-structures

(FSs) which contain syntax, phonology and semantic information. When two words

are connected to produce a new category, the corresponding FSs of these two words are

unified. Complex CCG categories are represented through res, arg and dir for result,

arguments and their directions.

The parsing algorithm of Pareschi and Steedman (1987) is a bottom-up left-to-right

algorithm. They build an analysis of the sentence using a shift-reduce strategy keeping

only one analysis. When another analysis is required, only at that time, they reveal

another analysis. The parsing algorithm comprises of four major steps:

1. Scanning: A word is moved to the stack. This is similar to the SHIFT action in

shift-reduce parsers.

2. Lifting: For every active node in the stack, all unary type-raising rules are ap-

plied. This is similar to the UNARY action of the Zhang and Clark (2011a)’s

shift-reduce CCG parser.

3. Reduce: Two adjacent nodes with categories X1 and X2 are reduced to give a

category X0 if there is a CCG rule X1 X2 => X0. This is similar to the BINARY

action of Zhang and Clark (2011a)’s shift-reduce CCG parser.

4. Reveal: Let X1, X2\X3 be the categories of the top two nodes in the stack. In

the case of the reveal action X1 is first split into X1a and X3 given that there is a

CCG rule X1a X2 => X0. Now, X3 and X2\X3 are combined to give X2 which

is then combined with X1a to give X0.
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John loves Mary
NP (S\NP)/NP NP

T

S/(S\NP)
> B

S/NP
>

S

(a) Analysis of a simple sentence

S
>

S/NP
> B

S/(S\NP)
T

John loves Mary madly
NP (S\NP)/NP NP (S\NP)\(S\NP)

T

S/(S\NP)
> B

S/NP
>

S. . . . . . . . . . . . . . . . . . . . . .
NP S\NP

(b) Revealing step

John loves Mary madly
NP (S\NP)/NP) NP (S\NP)\(S\NP)

>

S\NP
<

S\NP
<

S

(c) Reduction steps

Figure 4.4: Analysis of a simple sentence using Revealing from Pareschi and Steedman

(1987)
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Consider a simple sentence “John loves Mary madly”. Figure 4.4(a) gives the

analysis of this sentence until the ‘John loves Mary’ part. John is type-raised to give

a category S/(S\NP) through the Lifting operation. This combines with loves giving

S/NP which combines with Mary to give an S. The second derivation in which first

loves combines with Mary and then with John is not considered in the initial stage.

When madly is shifted to the stack, it needs a VP (S\NP) whereas an S is available.

The parser chooses the Reveal operation. S is split into NP and S\NP with appropriate

changes to the feature-structures. Figure 4.4(b) shows this alternative analysis. VP

‘loves Mary’ now combines with the adverb ’madly’ giving S\NP. This combines

with John (NP) resulting an S as shown in Figure 4.4(c). In this manner, the Reveal

operation can be used to extract an alternate analysis as and when required. We extend

this idea of revealing for our incremental algorithm described in section 4.3.2.

4.2.3.5 Kwiatkowski et al. (2010)

Kwiatkowski et al. (2010) described a method to automatically map sentences to log-

ical forms using CCGs and higher-order unification. Their training data consists of

sentences (e.g., ‘New York borders Vermont’) and their corresponding logical forms

(e.g., next to(ny, vt)). Using this training data they induce the lexicon using the fol-

lowing steps.

• Initialization: They start with a multi-word lexicon in the form of xi− > S : zi

for all training examples (xi,zi). For an example sentence ‘New York borders

Vermont’ and its corresponding logical form ‘next to(ny, vt)’, the starting item

in the lexicon is as below,

New York borders Vermont−> S : next to(ny,vt)

• Splitting Categories: A category X:h with syntax X and logical form h is split

into possible solution pairs (f, g) using higher-order unification. For the above

example, where X:h = S: next to(ny, vt) the corresponding f and g can be f =

λx.next to(ny,x) and g = ny.

• Assigning Syntactic Categories: Once f and g are extracted, corresponding

syntactic categories are assigned. The syntactic category of g is assigned and

then all possible categories for f with corresponding directionality are created.
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In the above example, NP is assigned to g which leads to two possible categories

for f

(g = NP : ny and f = S\NP)

(f = S/NP and g = NP : ny)

In this work they induce both logical expressions and syntactic categories and ex-

tracting logical expressions using higher-order unification is the most important step.

Several restrictions were enforced to reduce the number of higher-order solutions.

Some of these are incorporated to reduce the computational search space while oth-

ers are based on the grammar in use.

In this chapter, we develop a new transition-based algorithm for incremental CCG

parsing, which is more incremental than Zhang and Clark (2011a) and Xu et al.

(2014) and more accurate than Hassan et al. (2009). We also show the impact of beam

and look-ahead for incremental parsing. Our algorithm is not strictly incremental

as we only produce derivations which are compatible with the Strict Competence

Hypothesis (Steedman, 2000) (details in section 4.3.2.3). Unlike Hassan et al. (2009)

or Demberg (2012), we do not change any CCG lexical categories. We use the

revealing technique of Pareschi and Steedman (1987) for our incremental algorithm.

We use a dependency graph for revealing rather than the lambda expressions used by

Dalrymple et al. (1991) and Kwiatkowski et al. (2010) since our evaluation is based

on the dependency yield of the CCG derivation.

4.3 Algorithms

We first describe the Zhang and Clark (2011a) style shift-reduce algorithm for

CCG parsing. Then we explain our incremental algorithm based on the “revealing”

technique for shift-reduce CCG parsing.

4.3.1 Non Incremental Algorithm (NonInc)

This is our baseline algorithm and is similar to Zhang and Clark (2011a)’s algorithm

(henceforth NonInc). It consists of an input buffer and a stack and has four major pars-

ing actions: Shift, Reduce-Left, Reduce-Right and Unary, which are described

below in detail with an example sentence.

Since we keep track of dependencies in addition to the CCG derivation, our parser

configuration is represented by a triple < S, I, G >, where S is the stack, I is the input
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John likes mangoes from India madly
NP (S\NP)/NP NP (NP\NP)/NP NP (S\NP)\(S\NP)

>

NP\NP
<

NP
>

S\NP
<

S\NP
<

S

Figure 4.5: Normal form CCG derivation for an example sentence.

buffer and G is the dependency graph. We provide a brief description about each parser

action followed by the changes in the parser configuration.

• Shift - X (S) : Pushes a word from the input buffer to the stack and assigns a

CCG category X. This action performs category disambiguation as well, as X can

be any of the categories assigned by a supertagger. If q1 is the first node in the

input, then it is moved to the top of the stack with the category X. Every node in

the stack has both the CCG category and the head word information. So, the new

node shifted is represented as X(q1). This action does not add any dependencies

to the dependency graph. The parser configuration before (left hand side) and

after (right hand side) the shift action is presented below.

< S, q1|I, G > → < S|X(q1), I, G >

• Reduce Left - X (RL) : Pops the top two nodes from the stack, combines them

into a new node and pushes it back onto the stack with a category X. This cor-

responds to binary rules in the CCGbank (e.g., CCG combinators like function

application, composition etc., and punctuation rules). In this action the right

node is the head and hence the left node is reduced. Let S1(w1)
and S2(w2)

be the

top two nodes in the stack, where S1 and S2 are the CCG categories and w1 and

w2 are their corresponding head words. Since the RL makes the right node as the

head, the head word for category X is w1. This action also adds a dependency

arc from w1 to w2.

< S|S2(w2)
|S1(w1)

, I, G > → < S|X(w1), I, G∪{w1→ w2}>
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• Reduce Right - X (RR) : This action is similar to the RL (Reduce Left -X) action,

except that in this action the right node is reduced since the left node is the head.

The parser configuration would be as shown below.

< S|S2(w2)
|S1(w1)

, I, G > → < S|X(w2), I, G∪{w2→ w1}>

• Unary - X (U) : Pops the top node from the stack, converts it into a new node

with category X and pushes it back on the stack. The head remains the same

in this action. This action corresponds to unary rules in the CCGbank (unary

type-changing and type-raising rules). If S1(w1)
is the top node in the stack, then

this node becomes X(w1) after the unary action. Note that this action does not

add any additional dependency.

< S|S1(w1)
, I, G > → < S|X(w1), I, G >

Figure 4.5 shows a normal-form CCG derivation for an example sentence ‘John

likes mangoes from India madly’. Figure 4.6 shows the sequence of steps using the

NonInc algorithm for parsing the sentence. For simplicity, unary productions leading

to NP are not described. From step 1 through step 5, the first five words in the sentence

(John, likes, mangoes, from, India) are shifted with corresponding categories using

shift actions (S). In step 6, (NP\NP)/NP:from and NP:India are combined using the

Reduce-Right (RR) action to form NP\NP:from which is combined with NP:mangoes

in step 7 to form NP:mangoes. Step 8 combines (S\NP)/NP:likes with NP:mangoes

to form S\NP:likes using the RR action. Then the next word ‘madly’ is shifted in

step 9, which is then combined with S\NP:likes in step 10. In step 11, NP:John and

S\NP:likes are combined using the Reduce-Left (RL) action leading to S:likes. The

parsing process terminates at this step as there are no more tokens in the input buffer

and there is only a single node left on the stack.

We use indexed CCG categories (Clark et al., 2002) and obtain the CCG de-

pendencies after every action to build the dependency graph in parallel to the CCG

derivation. This is similar to Xu et al. (2014) but differs from Zhang and Clark

(2011a), who extract the dependencies at the end after obtaining a derivation for the

entire sentence. Figure 4.6 also shows the dependency graph generated and the arc

labels give the step ID after which the dependency is generated.
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4.3.2 Revealing based Incremental Algorithm (RevInc)

The NonInc algorithm described above is not incremental because it relies purely on

the mostly right-branching CCG derivation. In our example sentence, the verb (likes)

combines with the subject (John) only at the end (step ID = 11) after all the remaining

words in the sentence are processed, making the parse non-incremental. In this section

we describe a new incremental algorithm based on a ‘revealing’ technique (Pareschi

and Steedman, 1987) which tries to build the most incremental derivation.

4.3.2.1 Revealing

Pareschi and Steedman (1987)’s original version of revealing was defined in terms of

(implicitly higher-order) unification. It was based on the following observation. If we

think of categories as terms in a logic programming language, then while we usually

think of CCG combinatory rules like the following as applying with the two categories

on the left X/Y and Y as inputs, say instantiated as S/NP and NP, to define the category

X on the right as S, in fact instantiating any two of those categories defines the third.

X/Y Y =⇒ X

For example, if we define X and X/Y as S and S/NP, we clearly define Y as NP.

They proposed to use unification-based revealing to recover unbuilt constituents from

the result of overly-greedy incremental parsing. A related second-order matching-

based mechanism was used by Kwiatkowski et al. (2010) to decompose logical forms

for semantic parser induction.

The present incremental parser uses a related revealing technique confined to

the right periphery and defined over dependency graphs as meaning representation

rather than λ-terms. Using CCG combinators and rules like type-raising followed by

forward composition, we combine nodes in the stack if there is a dependency between

them. However, this can create problems for the newly shifted node as its dependent

might already have been reduced. For instance, if the object ‘mangoes’ in our running

example is reduced after it is shifted to the stack, then it will not be available for the

preposition phrase (PP) ‘from India’ (of course, this goes for more complex NPs as

well). We have to extract ‘mangoes’, which is hidden in the derivation, so as to make

the correct attachment to the PP. This is where revealing comes into play. ‘Mangoes’

is “revealed” so that it is available to attach to the PP following it, although it has

already been reduced. To handle this, in addition to the four actions of the NonInc
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algorithm, we introduce two new actions: Left Reveal (LRev) and Right Reveal

(RRev). For this, after every action, in addition to updating the stack we also keep

track of the dependencies resolved and update the dependency graph accordingly3. In

other words, we build the dependency graph for the sentence in parallel to the CCG

derivation. As these dependencies are extracted from the CCG derivation, a node can

have multiple parents and hence we construct a dependency graph rather than a tree.

• Left Reveal (LRev) : Pop the top two nodes in the stack (left, right). Identify

the left node’s child with a subject dependency. Abstract over this child node

and split the category of left node into two categories. Combine the nodes using

CCG combinators accordingly. VP modifiers like VP coordination require this

action. Let S1(w1)
and S2(w2)

be the top two nodes in the stack, where S1 and S2

are the CCG categories and w1 and w2 are their corresponding head words. After

the end of the LRev action S2(w2)
will be the top of the stack with a dependency

from w2 to w1 added to the dependency graph.

< S|S2(w2)
|S1(w1)

, I, G > → < S|S2(w2)
, I, G∪{w2→ w1}>

• Right Reveal (RRev) : Pop the top two nodes in the stack (left, right). Check

the right periphery of the left node in the dependency graph, extract all the nodes

with compatible CCG categories and identify all the possible nodes that the right

node can combine with. Right periphery of a node is the list of all the right-most

nodes in the graph like the right-most child, grand-child, grand-grand-child etc.

Select the head node and abstract over this node (e.g. object), split the category

into two categories accordingly and combine the nodes using CCG combinators.

Constructions like NP coordination, and PP attachment require this action. If

S1(w1)
and S2(w2)

are the top two nodes in the stack, then at the end of the RRev

action S2(w2)
will be the top of the stack. And the dependency head of w1 will be

a node in the right periphery of S2, say wp.

< S|S2(w2)
|S1(w1)

, I, G > → < S|S2(w2)
, I, G∪{wp→ w1}>

3 Xu et al. (2014) also obtain CCG dependencies after every action. But they do not have a depen-
dency graph which is updated based on the CCG derivation and used in the CCG parsing (in our case
for LRev and RRev actions).
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4.3.2.2 Worked Example

Figure 4.7 shows the sequence of steps for the example sentence described above. In

steps 1 and 2, the first two words in the sentence: ‘John’ and ‘likes’, are shifted from

the input buffer to the stack. In addition to standard CCG combinators of application

and composition, we also use type-raising followed by forward composition4. In step

3, the category of the left node ‘John’, NP, is type-raised to S/(S\NP) which is then

combined with the category of right node ‘likes’, (S\NP)/NP, using forward composi-

tion operator to yield the category S/NP. This step also updates the dependency graph

with an edge between ‘John’ and ‘likes’, where ‘likes’ is the parent and ‘John’ is the

child. The next word ‘mangoes’ is shifted in step 4 and combined with S/NP:likes

in step 5 using RR action yielding S:likes. After this step, the dependency graph will

have ‘likes’ as the root, with ‘John’ and ‘mangoes’ as its children. In this way, as our

algorithm tries to be more incremental, both subject and object arguments are resolved

as soon as the corresponding tokens are shifted to the stack.

In steps 6 and 7, the next two words ‘from’ and ‘India’ are shifted to the stack. Step

8 combines (NP\NP)/NP:from and NP:India using RR action to form NP\NP:from.

Now, we apply the RRev action in step 9 to correctly attach ‘from’ to ‘mangoes’. In

RRev we first check the right periphery and identify a possible node to be attached,

‘mangoes’, which is the object argument of the verb ‘likes’. We abstract over this

object and split the category in the following manner: If X is the category of the

left node and Y\Y is the category of the right node, then X is split into X/Y and

Y with corresponding heads. The head of the left node will be the head of X/Y,

and the dependency graph helps in identifying the correct head for Y. Now, Y and

Y\Y can be combined using the backward application rule to form Y, which can be

combined with X/Y to form X back. In our example sentence, S:likes is split into

S/NP:likes and NP:mangoes. NP:mangoes is combined with NP\NP:from to form

NP:mangoes, which in return combines with S/NP:likes and forms back S:likes.

Figure 4(a) sketches this process. This action also updates the dependency graph with

a dependency between ‘mangoes’ and ‘from’.

The next word ‘madly’ is shifted in step 10, after which the stack has two nodes

S:likes and (S\NP)\(S\NP):madly. We apply the LRev action to combine these two

nodes. We abstract over the subject of the left node, ‘likes’, and split the category.

4Type-raising followed by forward composition is treated as a single step. Without this, after type-
raising, the parser has to check all possible actions before applying forward composition, making it
slower.
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Slikes NP\NP f rom
R >

S/NPlikes NPmangoes
<

NP
>

S

(a) RRev

Slikes (S\NP)\(S\NP)madly
R <

NPJohn S\NPlikes
<

S\NP
<

S

(b) LRev

Figure 4.8: RRev and LRev actions.

Here, S:likes is split into NP:John and S\NP:likes. S\NP:likes is combined with

(S\NP)\(S\NP):madly to form S\NP:likes, which in return combines with NP:John

and forms back S:likes. The dependency graph is updated with a dependency between

‘likes’ and ‘madly’. Note that the final output is a standard CCG tree. Figure 4(b)

shows this LRev action.

4.3.2.3 Analysis

Our incremental algorithm uses a combination of the CCG derivation and a de-

pendency graph that helps to ‘reveal’ unbuilt structure in the CCG derivation by

identifying heads of the revealed categories. For example in Figure 4.8(a), in the RRev

action, S:likes is split into S/NP:likes and NP:mangoes. The splitting of categories

is deterministic but the right periphery of the dependency graph helps in identifying

the head, which is ‘mangoes’. The theoretical idea of ‘revealing’ is from Pareschi

and Steedman (1987), but they used only a toy grammar without a model or empirical

results. Checking the right periphery is similar to Sartorio et al. (2013) and abstracting

over the left or right argument is similar to Dalrymple et al. (1991). Currently, we

abstract only over arguments. Adding a new action to abstract over the verb as well

will make our algorithm handle ellipses in the sentences like ‘John likes mangoes and

Mary too’ similar to Dalrymple et al. (1991) but we leave that for future work.

Currently we use a dependency graph to reveal the unbuilt structure in the CCG

derivation. We can also use other representations like lambda calculus instead of

dependency graphs. Similar to Kwiatkowski et al. (2010) we can represent the lambda

expression in a graph format and use the left and right periphery to reveal the required

information similar to dependency graphs. Also our revealing technique is generic

enough to be applied to non-CCG parsing like phrase structure parsing. Similar to

CCG derivation, we can extract dependencies from the phrase structure tree using

head dependency rules (Collins, 1999; de Marneffe et al., 2006).
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In practice, we look at the bottom five nodes in the right periphery of the left node

in the stack and extract the nodes with a compatible CCG category. If n is the number

of words in the sentences, then the Complexity of NonInc is O(n). Since we check

five extra nodes in the RevInc algorithm, worst-case complexity is O(5n) which is still

linear in the sentence length. Also, since both the revealing actions lead to binary

derivations, they won’t result in cycles.

Our system is monotonic in the sense that the set of dependency relationships

grows monotonically during the parsing process. Our algorithm gives derivations

almost as incremental as Hassan et al. (2009) but without changing the lexical

categories and without backtracking. The only change we made to the CCGbank is

making the main verb the head of the auxiliary rather than the reverse as in CCGbank

derivations. In the right derivational trees of CCGbank, the main verb is the head for

its right side arguments and the auxiliary verb is the head for the left side arguments

in the derivation. Not changing the head rule would make our algorithm use the costly

reveal actions significantly more, which we avoid by changing the head direction. 3%

of the total dependencies are affected by this modification.

Though our algorithm can be completely incremental, we currently compromise

incrementality in the following cases:

(a) When there is no dependency between the nodes in the stack.

(b) In the presence of unary type-changing and non-standard binary rules.

(c) In the case of adjuncts like VP modifiers and coordinate constructions like VP,

sentential coordination.

We find empirically that extending incrementality to cover these cases actually

reduces parsing performance significantly. It also violates the Strict Competence Hy-

pothesis (SCH) (Steedman, 2000), which argues on evolutionary and developmental

grounds that the parser can only build constituents that are typable by the competence

grammar. We explored the adjunct case of attaching only the preposition first rather

than creating a complete prepositional phrase and then attaching it to correct parent.

In our example sentence, this would be the case of attaching the preposition ‘from’ to

its parent using RRev and then combining the NP ‘India’ accordingly as opposed to

creating the preposition phrase ‘from India’ first and then using RRev action to attach

it to the correct parent. Though the former is more incremental, it is inconsistent with

the SCH. The latter analysis is consistent with strict competence and also gave better
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parsing performance while compromising incrementality only slightly. The empirical

impact of these differing degrees of incrementality on extrinsic evaluation of our

algorithm in terms of language modeling for SMT or ASR is left for future work.

Using our incremental algorithm, we converted the CCGbank derivations into a

sequence of shift-reduce actions. We could convert around 98% of the derivations,

which is the coverage of our algorithm, recovering around 99% of dependencies.

Problematic cases are mainly the ones which involve non-standard binary rules, and

punctuations with lexical CCG categories other than ‘conj’, used as a conjunction, or

‘,’ which is treated as a punctuation mark.

4.4 Experiments and Results

We re-implemented Zhang and Clark (2011a)’s model for our experiments. We used

their global linear model trained with the averaged perceptron (Collins, 2002). We

applied the early-update strategy of Collins and Roark (2004) while training. In this

strategy, when we do not use a beam, decoding is stopped when the predicted action is

different from the gold action and weights are updated accordingly.

We use the feature set of Zhang and Clark (2011a) (Z&C) for the NonInc algo-

rithm. This feature set is comprised of features over a) the top four nodes in the stack

(S0, S1, S2, S3), b) the next four nodes in the input (Q0, Q1, Q2, Q3) and c) the left

and right children of the top two nodes in the stack (S0L, S0R, S1L, S1R) and head and

unary head for the top two nodes in the stack (S0H, S0U, S1H, S1U). All the features

are based on words (w) and POS-tags (p) and CCG categories (c) for these nodes. For

our own model, RevInc, in addition to these features used for NonInc, we also provide

features based on the right periphery of the top node in the stack. For nodes in the

right periphery, we provide uni-gram and bi-gram features based on the node’s CCG

category. For example, if S0 is the node on the top of the stack, B1 is the bottom-most

node in the right periphery, and c represents the node’s CCG category, then B1c, and

B1cS0c are the uni-gram and bi-gram features respectively. We extract features based

on bottom five nodes (B1, B2, B3, B4, B5) in the right periphery of the top node (S0)

in the stack. A complete list of the additional features used for RevInc is presented in

Table 4.1. All features except the last block (Type: Graph) are extracted for the NonInc

algorithm. In total we used 64 features for NonInc and 72 features for RevInc.

Z&C use a beam of size 16 for their experiments. We first experiment in a greedy

setting using a look-ahead of three elements and without the use of a beam. Then we
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Type Features

Stack (Basic)

S0wp, S0c, S0pc, S0wc,

S1wp, S1c, S1pc, S1wc,

S2pc, S2wc, S3pc, S3wc,

Input (Basic) Q0wp, Q1wp, Q2wp, Q3wp,

Stack (Children)
S0Lpc, S0Lwc, S0Rpc, S0Rwc, S0Upc, S0Uwc,

S1lpc, S1lwc, S1Rpc, S1Rwc, S1Upc, S1Uwc,

Bigram (Basic)

S0wcS1wc, S0cS1w, S0wS1c, S0cS1c,

S0wcQ0wp, S0cQ0wp, S0wcQ0p, S0cQ0p,

S1wcQ0wp, S1cQ0wp, S1wcQ0p, S1cQ0p,

Trigram (Basic)

S0wcS1cQ0p, S0cS1wcQ0p, S0cS1cQ0wp,

S0cS1cQ0p, S0pS1pQ0p,

S0wcQ0pQ1p, S0cQ0wpQ1p, S0cQ0pQ1wp,

S0cQ0pQ1p, S0pQ0pQ1p,

S0wcS1cS2c, S0cS1wcS2c, S0cS1cS2wc,

S0cS1cS2c, S0pS1pS2p,

Trigram

S0cS0HcS0Lc, S0cS0HcS0Rc,

S1cS1HcS1Rc, S0cS0RcQ0p, S0cS0RcQ0w,

S0cS0LcS1c, S0cS0LcS1w, S0cS1cS1Rc, S0wS1cS1Rc

Graph

B1c, B1S0c

B2c, B2S0c

B3c, B3S0c

B4S0c, B5S0c

Table 4.1: Feature templates for RevInc.

explore the impact of beam and look-ahead for our incremental parser. When we do

not use a look-ahead all the features involving Q1, Q2 and Q3 are excluded. So, for our

RevInc, we extract 72 features when we use a look-ahead and extract 64 features when

we do not use a look-ahead. Z&C and Xu et al. (2014), use C&C’s generate script

and unification mechanism respectively to extract dependencies for evaluation. C&C’s

grammar does not cover all the lexical categories and binary rules in the CCGbank. To

avoid this, we adapted Hockenmaier’s scripts used for extracting dependencies from

the CCGbank derivations.
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4.4.1 Data and Settings

We use the standard CCGbank training (sections 02 − 21), development (section 00)

and testing (section 23) splits for our experiments. All sentences in the training set are

used to train NonInc. But for RevInc, we used 98% of the training set (the coverage

of our algorithm). We use automatic POS-tags and lexical CCG categories assigned

using the C&C POS tagger and supertagger respectively for development and test data.

For training data, these tags are assigned using ten-way jackknifing (Zhang and Clark,

2011a). Also, for lexical CCG categories, we use a multitagger which assigns k-best

supertags to a word rather than 1-best supertagging (Clark and Curran, 2004b). The

number of supertags assigned to a word depends on a β parameter. Unlike Z&C, the de-

fault value of β of 0.01 gave us better results rather than decreasing the value to 0.0001.

Following Z&C and Xu et al. (2014), during training, we also provide the gold

CCG lexical category to the list of CCG lexical categories for a word if it is not

assigned by the supertagger.

4.4.2 Connectedness and Waiting Time

Before evaluating the performance of our algorithm, we introduce two measures of in-

crementality: connectedness and waiting time. In a shift-reduce parser, a derivation is

fully connected when all the nodes in the stack are connected leading to only one node

in the stack before a new node is shifted. We measure the average number of nodes

in the stack before shifting a new token from input buffer to the stack, which we call

connectedness. For a fully connected incremental parser like Hassan et al. (2009), con-

nectedness would be one. As our RevInc algorithm is not fully connected, this number

will be greater than one. For example, in a noun phrase ‘the big book’, when ‘the’ and

‘big’ are in the stack, as there is no dependency between these two words, our algo-

rithm does not combine these two nodes resulting in having two nodes in the stack5.

The second column in Table 4.2 gives this number for both NonInc and RevInc algo-

rithms. Though our algorithm is not fully connected, connectedness of our algorithm

is significantly lower than the NonInc algorithm as our algorithm is more incremental.

We define waiting time as the additional number of nodes that need to be shifted

to the stack before a dependency between any two nodes in the stack is resolved.

In our example sentence, there is a dependency between ‘John’ and ‘likes’. For

5This is a case where the dependencies are not true to the CCG grammar, and make our algorithm
less incremental than SCH would allow.
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Algorithm Connectedness Waiting Time

NonInc 4.62 2.98

RevInc 2.15 0.69

Table 4.2: Connectedness and waiting time.

NonInc, this dependency is resolved only after all the four remaining words in the

sentence are shifted. In other words, it has to wait for four more words before this

dependency is resolved and hence the waiting time is four. On the other hand, in

our RevInc algorithm, this dependency is resolved immediately, without waiting for

more words to be shifted, and hence the waiting time is zero. The third column in

Table 4.2 gives the waiting time for both the algorithms. Waiting time would be zero

for a fully connected derivation. Since we compromised incrementality in cases like

coordination, waiting time for our RevInc algorithm is not zero but it is significantly

lower than the NonInc algorithm and hence more incremental. This property is likely

to be crucial for future applications in ASR and SMT language modeling.

4.4.3 Greedy

We trained the perceptron for both the NonInc and RevInc algorithms using the CCG-

bank training data for 30 iterations, and the models which gave best results on devel-

opment data are directly used for test data. Table 4.3 gives the unlabelled precision

(UP), recall (UR), F-score (UF) and labelled precision (LP), recall (LR), F-score (LF)

results of both the NonInc and RevInc approaches on the development data. The last

column in the table gives the category accuracy. We used the modified CCGbank for

all experiments, including NonInc, for consistent comparisons. For NonInc, the modi-

fication decreased unlabelled F-score by 0.45%, without a major difference in labelled

F-score.

The top block (first two rows) in Table 4.3 presents the results in the greedy

settings. Our incremental algorithm gives an accuracy of 88.69% and 80.75% in

unlabelled and labelled F-scores which is an improvement of 1.39% and 0.47%

over the NonInc algorithm respectively. For both unlabelled and labelled scores,

the precision of RevInc is slightly lower than NonInc but the recall of RevInc is

much higher than NonInc resulting in a better F-score for RevInc. As NonInc is not

incremental and as it uses more context to the right while making a decision, it makes

more precise actions. But, on the other hand, if a node is reduced, it is not available
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for future actions. This is not a problem for our RevInc algorithm which is the reason

for higher recall. For example, in the example sentence, ‘John likes mangoes from

India madly’, if the object ‘mangoes’ is reduced after it got shifted to the stack, then

in the case of NonInc, the prepositional phrase ‘from India’ can never be attached to

‘mangoes’. But, RevInc makes the correct attachment using the RRev action. Category

accuracy of NonInc is better than RevInc, since NonInc can use more context before

taking a complex action and is less prone to error propagation compared to RevInc.

4.4.4 Beam

To compare these results in the perspective of Z&C’s parser we also trained our

NonInc and RevInc parsers with a beam size of 16 similar to Z&C. Increasing the

beam size increases the accuracy but significantly reduces the parsing speed. Z&C

showed that a small beam is sufficient to capture most of the ambiguity in the analyses

with reasonable tradeoff between speed and accuracy. The second block (3-4 rows)

in Table 4.3 shows these results and the last row presents the results from their paper.

Results with our implementation of Z&C are 0.65% lower than the published results,

possibly due to the modification made in the head rule, and other minor differences

like the supertagger beta value. Unlabelled and labelled F-scores of our RevInc parser

are lower than NonInc when we use a beam. Since NonInc is not incremental, it

makes use of better context. Also the advantage of the RevInc algorithm in the greedy

settings is achieved by NonInc with the use of a beam. These could be the reasons for

NonInc performing better than RevInc in the case of a beam.

4.4.5 No Look-ahead

All the above experiments use a look-ahead for POS-tagging, supertagging and pars-

ing. All the features involving input in Table 4.1 are look-ahead features. In this

section, we analyze the impact of look-ahead for our RevInc algorithm. We re-trained

POS-tagger, supertagger and parser without a look-ahead. On the CCGbank devel-

opment data, the accuracies of POS-tagger, supertagger and multitagger with a look-

ahead are 96.11%, 91.83% and 98.11% respectively. Without look-ahead the accura-

cies are 95.20%, 80.11% and 98.12% respectively. Look-ahead has a slight impact

on the performance of the POS-tagger. But removing the look-ahead dropped the ac-

curacy of the supertagger drastically by around 12%. However, the accuracy of the

multitagger is almost the same with or without look-ahead. Since the parser takes the
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output from the multitagger there is not a huge difference in the input to the parser in

both scenarios.

The third block (5-6 rows) in Table 4.3 presents the results without look-ahead. As

expected, removing the look-ahead significantly reduced the parsing accuracy. Inter-

estingly, in the case of beam, the results without look-ahead (LF: 80.84%) are only

1.0% lower than the ones using a look-ahead (LF: 81.93) and similar to the greedy

results with a look-ahead (LF: 80.75). For applications like web-scale parsing we can

use the greedy RevInc parser with a look-ahead as it gives a nice trade-off between

speed and accuracy. But for psycholinguistic experiments where strictly incremental

nature is required, we can use the RevInc parser with a beam and no look-ahead.

4.4.6 Final Test Results

Table 4.4 presents the results of our approaches on the test data. We observed similar

results as that on the development data. In greedy settings (first block), our incremental

algorithm, RevInc, gives 2.0% and 0.88% improvements over NonInc in unlabelled and

labelled F-scores respectively on the test data. Whereas in case of beam (second block),

results with NonInc are slightly better than RevInc. Removing the look-ahead signifi-

cantly reduced the accuracy but made the parser more cognitively plausible. With our

greedy incremental parser which uses a look-ahead, we obtained a labelled F-score of

81.43%. We achieved a labelled F-score of 80.84% with our incremental parser with a

beam and no look-ahead.

We compare our results with the incremental models of Hassan et al. (2009) (Has-

san* in Table 4.4). They reported unlabelled F-scores of 86.31% and 59.01% with and

without look-ahead respectively on test data which are 2.69% and 8.5% lower than the

results with our greedy RevInc parser with and without look-ahead respectively. Note

that these F-scores are not directly comparable since Hassan et al. (2009) use simpli-

fied lexicalized CCG categories. Our evaluation is based on CCG dependencies which

are different from dependencies in the dependency grammar. Hence, we can’t directly

compare our results with dependency parsers like Zhang and Nivre (2011) and Hon-

nibal et al. (2013). For unlabelled parsing we have to find the correct head for the word

and for labelled parsing we have to find correct head as well as correct label. In the

case of dependency parsing the labels are grammatical roles like SUBJ for subject or

OBJ for object. But for CCG parsing, the CCG category and the index is considered as

the label. Example dependencies for both CCG and dependency grammar formalisms
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are provided below.

CCG:

< likes,(S\NP1)/NP2,1,John >

< likes,(S\NP1)/NP2,2,mangoes >

Dependency:

< likes,SUBJ,John >

< likes,OBJ,mangoes >

For a dependency between likes and John, a dependency parser has to identify

the SUBJ label. But a CCG parser has to assign both the correct CCG category and the

correct index, here (S\NP)/NP and 1 respectively.

4.4.7 Label-wise Impact

We analyzed the label-wise scores of both NonInc and RevInc in the greedy settings.

In general, NonInc is better in precision and RevInc is better in recall. In the case of

verbal arguments ((S\NP)/NP) and verbal modifiers ((S\NP)\(S\NP)), the F-score of

RevInc is better than that of NonInc. But NonInc performed better than RevInc in the

case of prepositional phrase (PP) attachments ((NP\NP)/NP, ((S\NP)\(S\NP))/NP).

More context is required for better PP attachment which is provided by the fact that

NonInc has a context of several unreduced types for the model to work with, whereas

RevInc has fewer. On the other hand, actions like LRev are required to correctly attach

the verbal modifiers (‘madly’) if the subject argument (‘John’) of the verb (‘likes’) is

reduced early. Table 4.5 gives the results of these CCG lexical categories.

4.4.8 Speed

We also analyzed the performance of the greedy (beam=1) NonInc and RevInc parsers

in terms of parsing speed (excluding POS-tagger and supertagger time). Table 4.6

presents these results. NonInc and RevInc parse 110 and 125 sentences/second respec-

tively. Despite the complexity of the revealing actions, RevInc is faster than NonInc.

A significant amount of parsing time is spent on the feature extraction step. Features

from the top four nodes in the stack and their children are extracted for both the al-

gorithms. Since the average connectedness of RevInc and NonInc are 4.62 and 2.15

respectively, on average, all four nodes in the stack are processed for NonInc and only

two nodes are processed for RevInc. Because of this there is significant reduction in
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Category RevInc NonInc

(NP\NP)/NP 81.36 83.21
(NP\NP)/NP 78.66 82.94
((S\NP)\(S\NP))/NP 65.09 66.98
((S\NP)\(S\NP))/NP 62.69 65.89
((S[dcl]\NP)/NP 78.96 78.29

((S[dcl]\NP)/NP 76.71 75.22

(S\NP)\(S\NP) 80.49 76.90

Table 4.5: Label-wise F-score of RevInc and NonInc parsers (both with beam=1). Ar-

gument slots in the relation are in bold.

the feature extraction step for RevInc compared to NonInc. Also, the complex LRev

and RRev actions only constituted 5% of the total actions in the parsing process.

Model Sentences/Second

NonInc 110

RevInc 125

Table 4.6: Speed comparison of NonInc and RevInc algorithms.

4.5 Conclusion

We have designed and implemented a new incremental shift-reduce algorithm based

on a version of revealing for parsing CCG (Pareschi and Steedman, 1987). On the

standard CCGbank test data, our algorithm achieved improvements of 0.88% and

2.0% in labelled and unlabelled F-scores respectively in the greedy settings over the

baseline non-incremental shift-reduce algorithm. We also analyzed the impact of beam

and look-ahead and showed that we can achieve comparable accuracies without a

look-ahead when we use a beam. We achieved this without changing any CCG lexical

categories and only changing a single head rule of making the main verb rather than

the auxiliary verb the head. Our algorithm models transitions rather than incremental

derivations, and hence we do not need an incremental CCGbank. Our approach can

therefore be adapted to languages with dependency treebanks, since CCG lexical

categories can be easily extracted from dependency treebanks (Cakici, 2005; Ambati
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et al., 2013). We also designed new measures of incrementality and showed that our

algorithm is more incremental than the standard shift-reduce CCG parsing algorithm.

We presented two versions of incremental parsers which gave accuracies com-

parable to state-of-the-art shift-reduce CCG parsers. The first one is a greedy parser

which uses a look-ahead. The second one is a beam-search parser which does not use

a look-ahead. In Chapter 6 we show how these incremental parsers can be useful in

assessing relative sentence complexity. In the current chapter we worked with English

which is a SVO language. In the next chapter we extend this algorithm to handle

Hindi, a verb final language.



Chapter 5

Incremental Parsing for Hindi

In this chapter, we present transition-based CCG parsers for Hindi. We first extend

Zhang and Clark (2011a)’s shift-reduce model by adding Hindi specific features to

build the first shift-reduce CCG parser for Hindi. We analyze the impact of different

settings of the parser, like chunk and morphological features, greedy vs. beam-search

parsing, gold vs. automatic features, and coarse-grained vs. fine-grained lexicon. With

automatic features, the beam-search parser with a coarse-grained lexicon gave best un-

labelled and labelled F-scores of 85.60% and 77.32% respectively. We then design an

incremental algorithm extending the revealing based incremental algorithm presented

in the previous chapter. We make several extensions to make the algorithm as incre-

mental as possible.

5.1 Introduction

Using the Hindi CCGbank described in chapter 2, we develop different transition-

based CCG parsers for Hindi in this chapter. Ours is the first CCG parser for Hindi and

the first transition-based parser for a non-English language.

We first present a shift-reduce CCG parser for Hindi. We extend Zhang and Clark

(2011a)’s shift-reduce model by adding Hindi specific features. In that process, we

also develop Hindi tools like a POS-tagger, chunker and supertagger. We observe

the usefulness of different lexical and morphological features for developing a Hindi

supertagger. Then we build the first shift-reduce CCG parser for Hindi. We analyze

the impact of chunk and morphological features, greedy vs. beam-search parsing, gold

vs. automatic features, and a coarse-grained vs. fine-grained lexicon. With automatic

features, the beam-search parser with coarse-grained lexicon gave the best unlabelled

95
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and labelled F-scores of 85.60% and 77.32% respectively.

Hindi, though predominantly having an Subject-Object-Verb (SOV) word order,

is a free word order language and is morphologically rich. These characteristics make

the task of incremental parsing extremely challenging for Hindi. We design an incre-

mental algorithm extending the revealing based incremental algorithm presented in the

previous chapter. We make several extensions to make the algorithm as incremental as

possible. On the final test set, we obtained much lower accuracies with the incremental

algorithm, as compared to the non-incremental one. Free word order, ambiguity in the

morphological markers and low accuracy of the supertagger are some of the reasons

for this. We provide a detailed discussion about the reasons for the low accuracy.

The rest of the chapter is arranged as follows. Section 5.2 gives a brief introduction

to related work in the areas of CCG parsing for non-English languages and Hindi

dependency parsing. We describe the non-incremental and incremental algorithms

in section 5.3. In section 5.4, we provide details about different tools developed.

Since ours is the first CCG parser for Hindi, we first present the details of different

experiments conducted in section 5.5. Then, in section 5.6 we present the incremental

parsing experiments. We conclude with possible future directions in section 5.7.

5.2 Related Work

We provided related work in the areas of CCG parsing, incremental and greedy parsing

in the previous chapter. In this section, we provide details about CCG parsing for non-

English languages and Hindi dependency parsing.

5.2.1 CCG Parsing

Though most of the literature is on parsing English CCGbank, there is some work

on CCG parsing for non-English languages. Tse and Curran (2012) trained two En-

glish CCGbank parsers: the parser of Petrov and Klein (2007), and Clark and Curran

(2007)’s C&C parser on Chinese CCGbank data. They obtained a labelled F-score

of 72.73% with Petrov and Klein (2007)’s parser and 67.09% with the C&C parser.

They also analyzed the challenges involved in parsing Chinese using CCG. Uematsu

et al. (2013) developed a CCGbank for Japanese and trained Miyao and Tsujii (2008)’s

Head-driven phrase structure grammar (HPSG) parsing model on a Japanese CCG-

bank.
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For both Chinese and Japanese CCGbanks, state-of-the-art CCG parsers (Clark and

Curran, 2007) and/or phrase structure parsers (Petrov and Klein, 2007; Miyao and Tsu-

jii, 2008) are used to train a parsing model. These parsers require CCGbanks in order

to be trained. But Cakici (2005) only developed a CCG lexicon for Turkish and these

parsers could not be used to build a CCG parser for Turkish. Hence, she used Clark and

Curran (2006)’s partial training approach to build a CCG parser for Turkish. Clark and

Curran (2006)’s approach doesn’t need a CCGbank. They take a CCG lexicon as input

and generate a CCG derivation using CCG combinators. This approach is really useful

for languages or domains where there are CCG lexicons available but not CCGbanks.

5.2.2 Hindi Dependency Parsing

Following the CoNLL shared tasks on dependency parsing (Buchholz and Marsi, 2006;

Nivre et al., 2007a), two ICON Tools Contests (Husain, 2009; Husain et al., 2010) and

a Hindi parsing shared task in Coling 2012 workshop on Machine Translation and

Parsing in Indian Languages (Sharma et al., 2012) were held aiming at developing

dependency parsers for three Indian languages, namely Hindi, Telugu and Bangla.

Different rule-based, constraint based, statistical and hybrid systems were explored.

A two-stage approach for parsing Hindi is presented by Bharati et al. (2009a). They

handle simple sentences in the first stage and then handle complex sentences in the sec-

ond stage. Integer Linear Programming (ILP) technique is used to solve the constraint

optimisation problem. Bharati et al. (2008) presented the first statistical parser for

Hindi. They trained Malt and MST parsers on the Hindi dependency treebank. They

explored the usefulness of different syntactic, morphological and semantic features

for parsing Hindi. Since Hindi is a morphologically rich language, morphological

features played a crucial role in identifying the dependency relations. Ambati et al.

(2010a) and Ambati et al. (2010b) experimented with different morphological features

and different methods for incorporating these features for Hindi dependency parsing.

They experimented with both gold features and automatic features and showed that

for Hindi, gender, number and person features are useful only in the gold settings.

Whereas, postposition markers for nouns and Tense Aspect Modality (TAM) markers

for verbs are shown to be useful in both the settings. Gadde et al. (2010) showed that

using chunk information in addition to other syntactic and morphological features gave

slight improvements in accuracy.
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ROOT mohan ne raam ko subhah dekhaa
Mohan ERG Ram DAT morning see-past-mas

ROOT

OBJ

PURPOSE

CASE

SUBJ

CASE

[NP mohan ne] [NP raam ko] [NP subhah] [S f dekhaa]

NP NP[ne]\NP NP NP[ko]\NP S f /S f (S f \NP[ne])\NP[ko]
< < < B×

NP[ne] NP[ko] (S f \NP[ne])\NP[ko]
<

S f \NP[ne]
<

S f
‘Mohan saw Ram in the morning.’

Figure 5.1: An example Hindi sentence with dependency tree and corresponding CCG

derivation.

5.3 Algorithms

In this section, we first present our non incremental shift-reduce algorithm for pars-

ing Hindi. Then we describe the extensions made to the revealing based incremental

algorithm to handle Hindi.

5.3.1 Non Incremental Algorithm (NonInc)

This algorithm is based on Zhang and Clark (2011a) and is similar to the NonInc

algorithm presented in the previous chapter for English. It consists of an input buffer

and a stack and has four major parsing actions: Shift, Reduce-Left, Reduce-Right

and Reduce Unary, which are described below in detail with an example sentence.

Figure 5.1 shows a normal-form CCG derivation for an example sentence ‘mohan

ne raam ko subhah dekhaa (Mohan saw Ram in the morning)’. Figure 5.2 shows the

sequence of steps for parsing the sentence using the NonInc algorithm. For simplicity,

we represent S f as S without the finite feature. In steps 1 and 2, we shift the first

two words in the sentence, ‘mohan (Mohan)’ and ‘ne (ERG)’, with corresponding

CCG categories. Since ‘ne (ERG)’ is the case marker for the head noun ‘mohan

(Mohan)’ these two nodes are combined using Reduce-Right (RR) action to form

NP[ne]:mohan. Steps 4 and 5 shift the next two words ‘raam (Ram)’ and ‘ko (DAT)’

with NP and NP[ko]\NP categories respectively. Similar to the ‘mohan ne’ noun
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phrase, these two nodes are combined using RR action to form NP[ko]:raam. Next

the adjunct ‘subhah (morning)’ is shifted followed by the main verb ‘dekhaa (saw)’

in steps 7 and 8. In step 9, (S\NP[ne])\NP[ko]:dekhaa is combined with S/S:subhah

to form (S\NP[ne])\NP[ko]:dekhaa. Since ‘subhah (morning)’ is an adjunct, the

result category is same as the category of the main verb ‘dekhaa (saw)’. In step

10 (S\NP[ne])\NP[ko]:dekhaa is combined with NP[ko]:raam using Reduce-Left

(RL) action leading to S\NP[ne]:dekhaa. This action resolves the object argument

of the main verb. Then, S\NP[ne]:dekhaa is combined with NP[ne]:mohan to form

S:dekhaa using RL action. This action resolves the subject argument. The parsing

process terminates at this step as there are no more tokens in the input buffer and there

is only a single node left in the stack.

We presented the algorithm using fine-grained CCG categories. The algorithm

works the same for coarse-grained categories as well. In the coarse-grained lexicon we

don’t have morphological markers on categories. For example, the category of ‘dekhaa

(saw)’ will be (S\NP)\NP without any case markers for NPs. Similar to English, we

use indexed CCG categories and obtain CCG dependencies for evaluation.

5.3.2 Revealing based Incremental Algorithm (RevInc)

Since Hindi is predominantly a verb final language, as is seen in the above example,

we have to wait till the end of the sentence to resolve arguments like subject and object.

In this section, we introduce a new incremental algorithm extending the incremental

algorithm for English described in 4.3.2 to handle verb final languages like Hindi. We

take advantage of type-raising and type-changing rules in achieving this.

Figure 5.3 presents the incremental derivation for the example sentence discussed

in the previous section. Figure 5.4 gives the steps involved in getting this derivation.

We shift the first two words ‘mohan (Mohan)’ and ‘ne (ERG)’ with their correspond-

ing CCG categories in steps 1 and 2. Step 3 combines these two nodes using the

Reduce-Right (RR) action leading to NP[ne]:mohan. The first three steps are simi-

lar to the case of the NonInc algorithm. In NonInc, the next node is shifted to the

stack. But in the incremental algorithm we type-raise NP[ne] to S/(S\NP[ne]) using

the Reduce-Unary (RU) action in step 4. As a result, the subject noun phrase ‘mohan

ne (Mohan ERG)’ will demand a verb looking for a subject argument. In steps 5 and 6,

the next two words, ‘raam (Ram)’ and ‘ko (DAT)’, are shifted with their categories.

Step 7 combines these two nodes with the RR action and results in NP[ko]:raam
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node. Similar to the subject noun phrase, this object noun phrase is also type-raised

to (S\NP[ne])/((S\NP[ne])\NP[ne]:mohan in step 8. Now, both the subject and ob-

ject arguments are combined in step 9 to form a node S/((S\NP[ne])\NP[ko] which

demands a transitive verb to its right. Since there is no dependency between these

two nodes we consider the right node as the head for the purposes of the derivation.

In steps 10 and 11, the adjunct ‘subhah (morning)’ is shifted and type-changed to

((S\NP) \NP)/((S\NP)\NP) so that it can combine with the argument cluster ‘mohan

ne raam ko’. In step 12, both the argument cluster and the adjunct are combined to

form S/((S\NP[ne])\NP[ko]. Step 13 shifts the main verb ‘dekhaa (saw)’ with its cat-

egory ((S\NP[ne])\NP[ko]) which is combined with S/((S\NP[ne])\NP[ko] leading

to S in step 14.

Since Hindi is a free word order language, handling different word orders with the

incremental analysis is tricky. Consider a simpler version of the above example sen-

tence with just subject, object and verb information in SOV and OSV orderings. ‘mo-

han ne raam ko dekhaa (Mohan saw Ram)’ and ‘raam ko mohan ne dekhaa (Mohan saw

Ram)’ are the sentences in SOV and OSV word order respectively. Figure 5.5 presents

the incremental derivations for both these sentences. If you look at the subject noun

phrase ‘mohan ne (Mohan ERG)’, its category NP[ne] is type-raised to S/(S\NP[ne])

in the SOV case and (S\NP[ko])/((S\NP[ko])\NP[ne]) in the OSV case. Things get

more complicated when different nodes like adjuncts are added to the sentence. In

this case, we are keeping track of the previous node’s categories while type-raising the

current node. Instead we can solve this by considering the information only from the

current node when type-raising. ‘mohan ne (Mohan ERG)’ just gives us the informa-

tion that it demands a verb which looks for a noun in ergative case. It doesn’t give any

information about the number of other arguments or their ordering. So, we can just

type-raise the category to demand a verb looking for an ergative case marked noun.

We can further type-change the category based on the position of the current node with

respective to other nodes. Figure 5.6 shows the incremental derivations using this idea.

Here, in both SOV and OSV sentences, ‘mohan ne (Mohan ERG)’ is type-raised to

S/(S\NP[ne]). In SOV ordered sentence, this category is not changed. But in OSV

ordered sentence, this is further type-changed to (S\NP[ko])/((S\NP[ko])\NP[ne])

based on the context. This small change makes the task of the parser simpler as it

avoids the category explosion caused by different word orderings.
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[NP mohan ne] [NP raam ko] [S dekhaa]
Mohan ERG Ram DAT saw

NP NP[ne]\NP NP NP[ko]\NP (S\NP[ne])\NP[ko]
<

NP[ne]
T

S/(S\NP[ne])
<

NP[ko]
T

(S\NP[ne])/((S\NP[ne])\NP[ko])
>

S
‘Mohan saw Ram.’

(a) SOV word order

[NP raam ko] [NP mohana ne] [S dekhaa]
Ram DAT Mohan ERG saw
NP NP[ko]\NP NP NP[ne]\NP (S\NP[ko])\NP[ne]

<

NP[ko]
T

S/(S\NP[ko])
<

NP[ne]
T

(S\NP[ko])/((S\NP[ko])\NP[ne])
>

S
‘Mohan saw Ram.’

(b) OSV word order

Figure 5.5: Derivations for SOV and OSV word orderings with single type-raising.
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[NP mohan ne] [NP raam ko] [S dekhaa]
Mohan ERG Ram DAT saw

NP NP[ne]\NP NP NP[ko]\NP (S\NP[ne])\NP[ko]
<

NP[ne]
T

S/(S\NP[ne])
<

NP[ko]
T

S/(S\NP[ko])
(S\NP[ne])/((S\NP[ne])\NP[ko])

>

S/((S\NP[ne]\NP[ko])
>

S
‘Mohan saw Ram.’

(a) SOV word order

[NP raam ko] [NP mohan ne] [S dekhaa]
Ram DAT Mohan ERG saw
NP NP[ko]\NP NP NP[ne]\NP (S\NP[ko])\NP[ne]

<

NP[ko]
T

S/(S\NP[ko])
<

NP[ne]
T

S/(S\NP[ne])
(S\NP[ko])/((S\NP[ko])\NP[ne])

>

S/((S\NP[ko]\NP[ne])
>

S
‘Mohan saw Ram.’

(b) OSV word order

Figure 5.6: Derivations for SOV and OSV word orderings with type-raising followed by

a type-changing rule.
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5.4 Tools and Settings

5.4.1 Shallow Parser

The shallow parser for Hindi1 consists of a morphological analyzer, Part-Of-Speech

(POS) tagger and a chunker. The morphological analyzer gives morphological features

like the root form of the word, gender (masculine/feminine/neutral), number (singu-

lar/plural), person (first/second/third), case (oblique/direct), pos-position markers or

tense, aspect and modality (TAM) markers and suffix. The POS tagger and chunker

assign POS tags and chunk tags respectively. For example, in the sentence in Figure

5.7, ‘mohan ne raam ke lie kitaab khariidii (Mohan bought a book for Ram)’, ‘mohan

ne (Mohan)’, ‘raam ke lie (for Ram)’ and ‘kitaab (book)’ are NP chunks and ‘khariidii

(bought)’ is a finite verb chunk represented as S f .

[NP mohan ne] [NP raam ke lie] [NP kitaab] [S f khariidii]

Mohan ERG Ram for book buy-past-fem
‘Mohan bought a book for Ram.’

Figure 5.7: An example Hindi sentence with chunk information.

The POS and chunk tagsets used in the Hindi dependency treebank are slightly

different from the tags provided by the shallow parser, as the Hindi shallow parser uses

an older tagset. For example, in the older tagset finite, non-finite, infinite information

about the verbs is present at the POS level with the use of tags like VFM (fininte), VNN

(non-finite) etc. Whereas in the new tagset, all the non-auxiliary verbs get the same tag

(VM) and finite/non-finite information is moved to the chunk level represented with

VGF, VGNF tags2. To avoid this inconsistency, we trained a maximum entropy based

POS tagger and chunker on the Hindi dependency treebank. We used training data for

training the model, and development data to tune the model. We used the same set of

features used to build the taggers in the shallow parser (Avinesh and Gali, 2007). For

POS tagging, lexical items like the current word, the previous two words and the next

two words are used as features. In addition to the current word, suffixes and prefixes of

lengths 1-4 for the current word are also provided as features. For the chunker, features

from word and POS tags of the current word, previous two words and next two words

are used to build the model. Performance of the POS tagger on the development and

1http://ltrc.iiit.ac.in/analyzer/hindi/
2See Appendix A.1 and A.2 for complete list.

http://ltrc.iiit.ac.in/analyzer/hindi/
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Experiments: Features
Accuracy

Fine-

grained

Coarse-

grained

Exp 1: wi, pi 75.14 78.47

Exp 2: Exp 1 + li, ti 77.58 80.17

Exp 3: Exp 2 + fi 80.43 81.88

Exp 4: Exp 3 +wi−1, wi−2, pi−1, pi−2, 82.72 84.15

wi+1, wi+2, pi+1, pi+2

Exp 5: Exp 4 + wipi, witi, wifi, pifi 82.81 84.29

Exp 6: Exp 5 + wi−2wi−1, wi−1wi, wiwi+1, wi+1wi+2, 82.92 84.40

pi−2pi−1, pi−1pi, pipi+1, pi+1pi+2

Table 5.1: Impact of different features on the supertagger performance.

test data respectively is 93.08% and 93.16%. With gold POS tags, the chunker gave an

accuracy of 97.35% and 97.26% on development and test data respectively.

5.4.2 Supertagger

Clark (2002) developed the first CCG supertagger for English. A maximum entropy

model was used to build this supertagger. Curran and Clark (2003) explored different

options like Generalised Iterative Scaling (GIS) estimation and model smoothing to

improve the supertagger. Extending the supertagger model, Clark (2002) built a mul-

titagger for English. A multitagger assigns all categories to a word whose probabilities

are within some factor, β, of the category with the highest probability. It has been

shown that using multitagger output instead of supertagger output while parsing gives

better performance (Clark and Curran, 2004b). The state-of-the-art CCG parsers for

English (Clark and Curran, 2007) use multitagger output during parsing.

Following Clark (2002), we used maximum entropy models to build supertaggers

and multitaggers for Hindi. Details of the features used and other settings for the Hindi
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supertagger are provided in the following sections.

5.4.2.1 Category Set

For supertagging, we first obtained a category set from the Hindi CCGbank training

data. There are 2,177 and 718 category types in fine-grained (with morph. information)

and coarse-grained (without morph. information) data respectively. Clark and Curran

(2004b) showed that using a frequency cutoff can significantly reduce the size of the

category set with only a small loss in coverage. We explored different cut-off values

and finally used a cutoff of 10 for building the tagger. This reduced the category types

to 376 and 202 for fine-grained and coarse-grained lexicon respectively. The percent of

category tokens in the development data that don’t appear in the category set with this

cut-off are 1.39 & 0.47 for the fine-grained and coarse-grained lexicon respectively.

5.4.2.2 Features

Following Clark and Curran (2004b), we used a Maximum Entropy approach to build

our supertagger. We explored different features in the context of a 5-word window sur-

rounding the target word. We used features based on WORD (w), LEMMA (l), POS (p),

CPOS TAG (t) and the FEATS (f ) columns of the CoNLL format. Table 5.1 shows the

impact of different features on the supertagger performance. Experiments 1, 2, 3 have

current word (wi) features while Experiments 4, 5, 6 show the impact of contextual

and complex bi-gram features. i−1, i−2 represent previous two positions and i+1,

i+2 represent the next two positions.

Accuracy of the supertagger after Experiment 6 is 82.92% and 84.40% for

fine-grained and coarse-grained lexicon respectively. As the number of category

types in the fine-grained lexicon (376) are much higher than in the coarse-grained

one (202), it is not surprising that the performance of the supertagger is better for the

coarse-grained lexicon as compared to the fine-grained one.

5.4.2.3 Multi-tagger

We explored different values of β to develop a multitagger for Hindi. β of 0.01 gives

better performance and reasonable number of categories per word. A performance of

97.90% and 96.82% is achieved on the testing data for coarse-grained and fine-grained

lexicon respectively. Respective average number of categories per word is 5.27 and

6.65.
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Tagger
Gold Features Automatic Features

Coarse Fine Coarse Fine

supertagger 88.05 86.91 84.40 82.92

multi-tagger 98.42 97.50 97.90 96.82

Table 5.2: Performance of multi-tagger on the Hindi CCGbank.

5.5 Experiments and Results: NonInc

We first trained our re-implementation of Zhang and Clark (2011a)’s (Z&C*) model

on the Hindi data. We used their global linear model trained with the averaged

perceptron (Collins, 2002). We applied the early-update strategy of Collins and Roark

(2004) while training. In this strategy, when we don’t use a beam, decoding is stopped

when the predicted action is different from the gold action, and weights are updated

accordingly. Z&C* use a beam of size 16 for their experiments. We explore the impact

of morphological features, greedy vs. beam, and gold vs. automatic features. We

adapted Hockenmaier’s scripts to extract CCG dependencies from the Hindi CCGbank

derivations.

5.5.1 Data and Settings

We use the Hindi CCGbank developed in chapter 2 for our experiments. We use the

training, development and testing splits used for dependency parsing experiments. We

experiment with both fine-grained and coarse-grained lexicons and also see the impact

of gold and automatic POS, and chunk features. Also, for lexical CCG categories, we

use a multitagger. We use the POS-tagger, chunker and multitagger described in the

previous section for our experiments. Following Z&C* and Xu et al. (2014), during

training, we also provide the gold CCG lexical category to the list of CCG lexical

categories for a word if it is not assigned by the supertagger.

5.5.2 Impact of Morphological Features

We use the feature set of Zhang and Clark (2011a) (Z&C) for our baseline experi-

ment. Here, we use coarse-grained lexicon and gold POS, chunk features. First row
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Features UF LF Cat Acc.

Z&C* 84.06 73.78 85.58

Z&C* + Lemma, Chunk 84.22 74.19 85.98

Z&C* + Lemma, Chunk + Morph 85.47 75.89 87.55

Table 5.3: Impact of features on the Hindi CCG parser

of Table 5.3 gives these results. With the English feature set, we obtain an unlabelled

F-score (UF), labelled F-score (LF) and Category Accuracy (Cat Acc.) of 84.06%,

73.78% and 85.58%. Then we provided lemma, chunk features and morphological

features. Lemma and chunk features gave small gains of 0.2-0.4%. Morphological

features gave significant boost of 1.3-1.7%. Chunk features include the chunk tag of

the word and whether the word is head/child in the chunk. For example, in the noun

chunk ‘mohan ne (Mohan ERG)’, NP is the chunk tag for both the words. ‘mohan

(Mohan)’ is the head of the chunk and ‘ne (ERG)’ is the child in the chunk. We ex-

plored different morphological features provided in the treebank. Suffix and case/TAM

markers proved to be very useful. But gender, number, person information didn’t give

any improvements. This is similar to the Hindi dependency parsing experiments in

Ambati (2011). Table 5.3 presents the results of all these experiments.

Table 5.4 shows a list of all the feature templates used for Hindi CCG parsing.

Lemma, Chunk and Morphological rows are Hindi specific features and the rest are

features adapted from the English CCG parser. Let S0, S1, S2, S3 be top four nodes in

the stack and Q0, Q1, Q2, Q3 be the next four nodes in the input. Let the left and right

children of the top two nodes in the stack be represented by S0L, S0R, S1L, S1R and

head and unary head for the top two nodes in the stack are represented by S0H, S0U,

S1H, S1U. Let w, l, p, t, c, f be word, lemma, POS-tag, chunk tag, CCG category and

morphological features of a node respectively. We use three morphological features

namely, suffix of the word, case/TAM marker and whether the word is head or child

of the chunk. The top four rows in the table comprises of 64 features used for English

NonInc CCG parsing. Lemma and Chunk, Morphological rows shows the additional

features specific to Hindi CCG parsing. In total we used 83 feature templates for Hindi

CCG parsing.
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Type Features

Stack (Basic)

S0wp, S0c, S0pc, S0wc,

S1wp, S1c, S1pc, S1wc,

S2pc, S2wc, S3pc, S3wc,

Input (Basic) Q0wp, Q1wp, Q2wp, Q3wp,

Stack (Children)
S0Lpc, S0Lwc, S0Rpc, S0Rwc, S0Upc, S0Uwc,

S1lpc, S1lwc, S1Rpc, S1Rwc, S1Upc, S1Uwc,

Bigram (Basic)

S0wcS1wc, S0cS1w, S0wS1c, S0cS1c,

S0wcQ0wp, S0cQ0wp, S0wcQ0p, S0cQ0p,

S1wcQ0wp, S1cQ0wp, S1wcQ0p, S1cQ0p,

Trigram (Basic)

S0wcS1cQ0p, S0cS1wcQ0p, S0cS1cQ0wp,

S0cS1cQ0p, S0pS1pQ0p,

S0wcQ0pQ1p, S0cQ0wpQ1p, S0cQ0pQ1wp,

S0cQ0pQ1p, S0pQ0pQ1p,

S0wcS1cS2c, S0cS1wcS2c, S0cS1cS2wc,

S0cS1cS2c, S0pS1pS2p,

Trigram

S0cS0HcS0Lc, S0cS0HcS0Rc,

S1cS1HcS1Rc, S0cS0RcQ0p, S0cS0RcQ0w,

S0cS0LcS1c, S0cS0LcS1w, S0cS1cS1Rc, S0wS1cS1Rc

Lemma and Chunk
S0l, S0t, S0lt, S0tc, S1l, S1t, S1lt, S1tc

Q0lt, Q1lt

Morphological S0f, Q0f, S0fQ0f

Table 5.4: Feature templates for Hindi CCG parser.
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Model UP UR UF LP LR LF Cat Acc.

Fine (beam=1) 84.11 82.41 83.25 74.44 72.93 73.68 86.53

Fine (beam=16) 84.59 90.81 87.59 77.09 82.77 79.83 90.45

Coarse (beam=1) 84.89 86.06 85.47 75.37 76.41 75.89 87.55

Coarse (beam=16) 85.82 92.70 89.12 78.71 85.02 81.74 91.16

Table 5.5: Performance on the Hindi CCG parser on the testing data.

Model
Greedy Beam = 16

UF LF Cat Acc. UF LF Cat Acc.

Fine 79.21 68.84 82.19 83.82 74.80 86.37

Coarse 81.43 71.17 83.83 85.60 77.32 87.64

Table 5.6: Performance on the Hindi CCG parser using automatic features.

5.5.3 Lexicon and Beam

In this section, we analyze the impact of both the lexicon, and a beam for Hindi CCG

parsing. Table 5.5 presents the results for both fine-grained and coarse-grained lexicon

in greedy and beam settings. UP, UR, UF are unlabelled precision, recall and F-score

respectively. Similarly LP, LR, and LF represent labelled precision, recall and F-score

respectively. Cat Acc. is the CCG category accuracy. All these results are with gold

POS and chunk features.

In greedy settings, we obtain 83.25% in UF and 73.68% in LF using the fine-

grained lexicon. With the coarse-grained lexicon we get UF and LF of 85.47% and

75.89% respectively. Using the coarse-grained lexicon gives around 2.2% better re-

sults than the fine-grained lexicon. Given that the fine-grained tagset is three times

larger than the coarse-grained one and supertagger accuracy is 1.5% lower than for the

coarse-grained lexicon, this result is not surprising.

Similar to Zhang and Clark (2011a), we use a beam of size 16. Using a beam gave

approximately a 4% boost in UF and a 6% boost in LF for both the lexicons.
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5.5.4 Automatic Features

In the previous section, we analyzed the impact of lexicon and beam using gold POS,

chunk features. In this section, we replicate the experiments with automatic features.

Table 5.6 presents the unlabelled F-score (UF), labelled F-score (LF) and category

accuracy (Cat Acc) for all these experiments.

In greedy settings, we achieve an LF of 68.84% with the fine-grained lexicon and

71.17% with the coarse-grained lexicon. The coarse-grained lexicon has less number

of tags and also, the supertagger on coarse-grained lexicon is 1.5% better than on the

fine-grained lexicon. As a result we see a 2.33% improvement in accuracy using the

coarse-grained lexicon. Similar to the experiments with gold features in the previous

section, using a beam showed improvements of 4% in UF and 6% in LF. We obtain

final best results of 85.60% in UF, 77.32% in LF, and 87.64% in Cat Acc. with a

coarse-grained lexicon and using a beam of size 16. On the English CCGbank test set,

we get accuracies of 91.38% in UF and 85.00% in LF with a beam of 16. Final Hindi

results are 6-8% lower than the English results. But note that Hindi is much complex

than English due to its free word order and morphological richness. Also, the Hindi

dataset is nearly four times smaller than the English dataset.

In general, the coarse-grained lexicon gives better results than the fine-grained lex-

icon and using a beam gives significant boost over the greedy parser. Morphological

features played an important role in improving the performance of both the supertagger

and the parser.

5.6 Experiments and Results: RevInc

In this section, we present the results of our incremental algorithm for Hindi CCG

parsing. Similar to English experiments, we show the impact of greedy vs. beam

search, and look-ahead vs. no look-ahead for Hindi. We use the same feature set used

in the previous section. Since the coarse-grained lexicon gave better results than the

fine-grained lexicon, we work with the coarse-grained lexicon and automatic features

in this section. All the parameter tuning is done on the development data and the

settings which gave best result for development data are directly used on the test data.

Table 5.7 presents the results of all these experiments.
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5.6.1 Greedy

The first block of Table 5.7 presents the results of the greedy parsers. With NonInc, we

obtain an unlabelled F-score (UF) and labelled F-score (LF) of 81.43% and 71.17%

respectively. With RevInc, we get UF and LF of 71.75% and 61.92%, which is around

10% lower than the non-incremental algorithm. Unlabelled and labelled precision of

RevInc is slightly lower than the NonInc. But the respective recalls are around 15%

lower which is the main reason for the drop in F-score. Also, category accuracy is 5%

lower for RevInc compared to NonInc. We analyzed the output to better understand

the reasons for this low accuracy with RevInc. The free word order nature, morpho-

logical complexity and low training data are some of the main reasons for this low

performance. We provide complete details in section 5.6.4.

5.6.2 Beam

The second block (3-4 rows) in Table 4.3 shows these results with a beam of size 16.

Following Zhang and Clark (2011a) and to compare the results with English experi-

ments, we use a beam of size 16. F-scores improved by 5-6% when we use a beam.

Similar to the greedy settings, performance of RevInc is 9-10% lower than the NonInc

algorithm.

5.6.3 No Look-Ahead

Greedy and the beam search experiments described above use a look-ahead for pos-

tagging, chunking, super-tagging and parsing. In this section, we analyze the impact of

look-ahead for our RevInc algorithm. We re-trained the taggers (pos-tagger, chunker

and supertagger) and the parser without a look-ahead. Performance of pos-tagger and

chunker decreased only by 1% without a look-ahead. The accuracy of the supertagger

is significantly reduced from 84.40% to 76.63% when we removed the look-ahead

features. However, the accuracy of the multitagger is 96.63% which is just 1% lower

than the performance with a look-ahead (97.90%).

The third block (5-6 rows) in Table 5.7 presents results without look-ahead. Re-

moving the look-ahead significantly reduced the parsing accuracy. There is around

20% drop in unlabelled and labelled F-scores in the greedy settings. Similar to En-

glish, in case of a beam, there is only slight decrease in the accuracy as the multitagger

accuracy is similar to the case of using a look-ahead.
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5.6.4 Analysis

In this section we analyze the reason for the drop in the accuracy for the incremental

algorithm compared to the non-incremental version. The main problem is ambiguity in

the morphological markers. Some nouns don’t have morphological markers and even

in the cases where they are present, morphological markers are ambiguous. Consider

the sentence (1a). Noun phrases kitaab (book) and kal (yesterday) both don’t have

morphological markers. Here, kitaab (book) is the direct object, a mandatory argu-

ment, whereas, kal is a time expression which is an adjunct. In (1a) morphological

markers are missing for an argument and an adjunct. In Hindi, we can have sentences

comprising of two argument noun phrases without morphological markers as in (2).

In sentence (2), both mohan (Mohan) and kitaab (book) don’t have morphological

markers. mohan is the subject and kitaab is the direct object of the verb deta hai

(gives).

(1) a. mohan ne raam ko kitaab kal dii

Mohan ERG Ram DAT book yesterday gave

“Mohan gave a book for Ram yesterday” (S-IO-DO-V)

b. [ mohan ne ] [ kitaab ] [ raam ko ] [ kal ] [ dii ]

(2) [ mohan ][ raamko ] [ kitaab ] [ deta hai ]

Mohan Ram DAT book give is

“Mohan gives a book for Ram” (S-IO-DO-V)

(2) [ raam ko ] [ kitaab ] [ khariidna pada ]

Ram DAT book had-to-buy

“Ram had to buy the book” (S-DO-V)

(3) [ mohan ne ] [ raam ko ] [subhah] [ dekhaa ]

Mohan ERG Ram DAT morning saw

“Mohan saw Ram in the morning”

(4) [ mohan ne ] [ raam ko ] [ora] [ syam ko ] [ dekhaa ]

Mohan ERG Ram DAT and Shyam DAT saw

“Mohan saw Ram and Shyam”

Case markers on the nouns, when they are present, can be ambiguous. Consider

the ko marker in the (1a) and (2) example sentences above. In (1a), raam ko is an

indirect object. Whereas in (2), the same noun phrase raam ko is the subject argument

of the verb. The tense, aspect and modality (TAM) marker for the verbs helps in correct



5.6. Experiments and Results: RevInc 117

identification of these arguments. TAM marker of na pada in (2) helps in identifying

that the raam ko noun phrase is the subject argument rather than the indirect object as

in (1a) where the TAM marker is ii.

In case of NonInc, as we wait till the end of the sentence, we assign the correct

category to the verb taking advantage of the TAM marker for verbs and case markers

for nouns. But in the case of RevInc, we are predicting the category of the verb without

information about its TAM marker. Impact of the morphological markers is made clear

when we observe the labelled F-scores of both NonInc and RevInc in the initial itera-

tions during training. Labelled F-scores of NonInc and RevInc after the first iteration

are 62.39% and 59.22% respectively. The difference in F-score between RevInc and

NonInc is 3% after the first iteration. But this difference becomes wider, to 10%, after

the final iteration. For a given context, over the iterations, NonInc assigns more prob-

ability to single best action. Whereas, the probability mass is distributed more among

the conflicting cases for RevInc. For example, for kitaab over iterations, NonInc as-

signs it a direct object category. Whereas, in the case of RevInc, the probability mass

is distributed between the direct object and adjunct relations.

The free word order nature of Hindi makes the task more complicated. Con-

sider sentences 1(a) and 1(b). Both the sentences mean the same but have differ-

ent word orderings. In the first case, the CCG category of the ditransitive verb dii

(gave) is (((S\NP[ne])\NP[ko])\NP[0]). But in the second case the category would

be (((S\NP[ne])\NP[0])\NP[ko]), since the order of the arguments changed. In the

case of NonInc, we wait till the end of the sentence to assign a category for the verb.

So, we will have enough information about the ordering of the arguments to assign a

correct category. But in case of RevInc, we predict the category of the verb before we

even see the verb. So, the main problem here is the assumption about the ordering of

the arguments. We can avoid this by changing the lexicon following Baldridge (2002)

which are underspecified as to argument order. For example, the category of dii (gave)

would be S {NP[ne], NP[ko], NP[0]}. This category gives a result category of S once

all the three arguments are resolved irrespective of the ordering of the arguments.

Having a beam with different analysis would be helpful. But as the length of the

sentence increases, the number of possible variations increases exponentially making

the task of identifying the correct categories very difficult. Using CCG categories

similar to Baldridge (2002) and using more training data might be useful. Using tech-

niques like tri-training (Weiss et al., 2015), we can obtain more training data from the

raw corpus.
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Currently our revealing actions rely on the dependency graph created based on the

dependencies resolved from the CCG derivation. Since Hindi is a verb final language,

merging the argument cluster doesn’t give any dependencies, since the verb is absent.

For example, consider (4) which is the case of object coordination. Using type-raising

rules, we can merge mohan and raam. For coordination we need to reveal raam which

is currently not possible since we don’t have that information in the dependency graph

(as the graph is empty). So, we first merge the object arguments raam and syam and

then combine them with the subject argument mohan to get a derivation. As a result,

arguments are combined immediately when there is no coordination and in case of

coordination we wait till the nodes in conjunction are combined. So, the probability

mass is distributed between both the forms of derivations. We can make a minor change

in the algorithm where we create a dependency graph with a dummy verb. When mohan

and raam are combined, the dependency graph is updated with a dummy verb with

mohan as its subject and raam as its object. Now we can use the right reveal action to

reveal raam for a coordination construction, making the derivation more incremental.

5.7 Conclusion

We first presented transition-based CCG parsers for Hindi. We extended Zhang and

Clark (2011a)’s shift-reduce model by adding Hindi specific features to build the first

shift-reduce CCG parser for Hindi. We analyzed the impact of different settings like

chunk and morphological features, greedy vs. beam-search parsing, gold vs. auto-

matic features, and using a coarse-grained vs. fine-grained lexicon. With automatic

features, the beam-search parser with coarse-grained lexicon gave the best unlabelled

and labelled F-scores of 85.60% and 77.32% respectively. Then we designed an incre-

mental algorithm extending the revealing based incremental algorithm presented in the

previous chapter. We made several extensions to make the algorithm as incremental as

possible. Unlike English, we got much lower results for Hindi using the incremental

algorithm compared to the non-incremental version. We analyzed the reasons for this

result for Hindi as arising from its free word order nature, combined with morphologi-

cal ambiguity and low volumes of training data. We have suggested that the algorithm

can be improved by using an underspecified lexicon similar to Baldridge (2002) and

by introducing new actions for handling coordination.
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Assessing Relative Sentence

Complexity using Incremental Parsers

In this chapter, we see how incremental CCG parsers can help in a practical appli-

cation like assessing relative sentence complexity. Given a pair of sentences, we

present computational models to assess if one sentence is simpler to read than the

other. While existing models have explored the usage of phrase structure features

using a non-incremental parser, experimental evidence suggests that the human lan-

guage processor works incrementally. We empirically evaluate if syntactic features

from incremental CCG parsers are more useful than features from a non-incremental

phrase structure parser. Our evaluation on Simple and Standard Wikipedia sentence

pairs shows that incremental CCG parser gives significant improvements in speed (12

times faster) as well as in terms of accuracy (0.44 points better) in comparison to the

previously used Stanford parser. Furthermore, with the addition of psycholinguistic

features, we achieve the strongest result to date reported on this task. Part of this work

is published in Ambati et al. (2016c).

6.1 Introduction

The task of assessing text readability aims to classify text into different levels of dif-

ficulty, e.g., text comprehensible by a particular age group or second language learn-

ers (Petersen and Ostendorf, 2009; Feng, 2010; Vajjala and Meurers, 2014). There

have been efforts to automatically simplify Wikipedia to cater its content for children

and English language learners (Zhu et al., 2010; Woodsend and Lapata, 2011; Coster

and Kauchak, 2011; Wubben et al., 2012; Siddharthan and Mandya, 2014). A re-

119
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lated attempt of Vajjala (2015) studied the usage of linguistic features for automatic

classification of a pair of sentences – one from Standard Wikipedia and the other its

corresponding simplification from Simple Wikipedia – into COMPLEX and SIMPLE.

As syntactic features, they use information from phrase structure trees produced by a

non-incremental parser, and found them useful.

However, psycholinguistic theories suggest that humans process text incrementally,

i.e., humans build syntactic analysis interactively by enhancing current analysis or

choosing an alternative analysis on the basis of the plausibility with respect to context

(Marslen-Wilson, 1973; Altmann and Steedman, 1988; Tanenhaus et al., 1995). Be-

sides being cognitively possible, incremental parsing has shown to be useful for many

real-time applications such as language modeling for speech recognition (Chelba and

Jelinek, 2000; Roark, 2001), modeling text reading time (Demberg and Keller, 2008),

dialogue systems (Stoness et al., 2004) and machine translation (Schwartz et al., 2011).

Furthermore, incremental parsers offer linear time speed. Here we explore the useful-

ness of incremental parsing for predicting relative sentence readability.

Given a pair of sentences – one sentence a simplified version of the other – we

aim to classify the sentences into SIMPLE or COMPLEX. We use the sentences from

Standard Wikipedia (WIKI) paired with their corresponding simplifications in Sim-

ple Wikipedia (SIMPLEWIKI) as training and evaluation data. We pose this problem

as a pairwise classification problem (Section 6.2). For feature extraction, we use an

incremental CCG parser which provides a trace of each step of the parse derivation

(Section 6.3). Our evaluation results show that incremental parse features are more

useful than non-incremental parse features (Section 6.5). With the addition of psy-

cholinguistic features, we attain the best reported results on this task.

6.2 Problem Formulation

Initially Vajjala and Meurers (2014) trained a binary classifier to classify sentences in

SIMPLEWIKI to the class SIMPLE, and sentences in WIKI to the class COMPLEX. This

model performed poorly on relative readability assessment mainly because each sen-

tence is classified independently rather than treating SIMPLEWIKI and WIKI sentences

as a pair. Table 6.1 presents two examples from OneStopEnglish1 (OSE) corpus (Va-

jjala, 2015). This corpus consists of articles rewritten at three different reading levels

(elementary, intermediate and advanced). Consider the intermediate sentence in the

1http://www.onestopenglish.com/
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Advanced: In Beijing, mourners and admirers made their way to lay

flowers and light candles at the Apple Store.

Intermediate: In Beijing, mourners and admirers came to lay flowers and

light candles at the Apple Store.

Elementary: In Beijing, people went to the Apple Store with flowers and

candles.

Advanced: There are signs that, in Britain and America, streaming may

soon generate more revenue for the music industry than

downloads from online stores such as Apples iTunes.

Intermediate: In Britain and America, streaming may soon generate more

revenue for the music industry than downloads from online

stores such as Apples iTunes.

Elementary: In Britain and America, streaming may soon make more

money for the music industry than downloads from online

stores such as Apples iTunes.

Table 6.1: Example sentences at different reading levels. First group has sentences

with different sentence lengths. Second group has two of the sentences with same

sentence length.

first block of Table 6.1. This sentence is complex compared to elementary sentence.

But it is simpler than the advanced sentence in the same group. So, we can say that a

sentence is simple or complex in the context of other sentence. Also, a simpler sentence

need not be shorter than the complex sentence. For example, consider the sentences in

the second block. Sentences in intermediate and elementary reading levels have same

sentence length. But the elementary sentence has simpler words like ‘make’, ‘money’

where as the intermediate sentence has relatively complex words like ‘generate’, ’rev-

enue’. So complexity can be both at the lexical level like simple vs. complex words

as well as at the syntactic level like the presence/absence of co-ordination, relative

clauses etc. These examples clearly show that treating a sentence pair as a single entity

is better than treating each sentence in the pair as independent sentences.
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Noting that not all SIMPLEWIKI sentences are simpler than every other sentence

in WIKI, Vajjala (2015) re-framed the problem as a ranking problem according to

which given a pair of parallel SIMPLEWIKI and WIKI sentences, the former must be

ranked better than the latter in terms of readability. Inspired by Vajjala (2015), we

also treat each pair together, and model relative readability assessment as a pairwise

classification problem. Let a, b be a pair of parallel sentences. Let a, b represent their

corresponding feature vectors. We define our classifier Φ as

Φ(a−b) = 1 if a ∈ SIMPLE & b ∈ COMPLEX

=−1 if b ∈ SIMPLE & a ∈ COMPLEX

The motivation for our modelling is that relative features (difference) are more

useful than absolute features, e.g., intuitively shorter sentences are simple to read,

but length can only be defined in comparison with another sentence. A value of 20

for sentence length doesn’t give much information. A 20 word sentence can be a

SIMPLEWIKI sentence in one pair and a WIKI sentence in another pair. But, if we

take the difference in the length of the sentences in the pair, then it correlates much

better with the class label. A positive value correlates with COMPLEX class and a

negative value with SIMPLE class, which shows that WIKI sentences are longer than

SIMPLEWIKI sentences in most of the cases.

6.3 Incremental CCG Parse Features

In this section, we provide necessary background, and then present the features ex-

plored in our experiments.

6.3.1 CCG vs. PST

Figure 6.1(b) displays an incremental CCG derivation. Here, the syntactic type (cate-

gory) (S\NP)/NP on ate indicates that it is a transitive verb looking for a NP (object)

on the right-hand side and a NP (subject) on the left-hand side. In Figure 6.1(b), the

category of with (NP\NP)/NP combines with the category of mushrooms NP on its

right-hand side using the combinatory rule of forward application (indicated by >),

to form the category NP\NP representing the phrase with mushrooms. This phrase in
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John ate salad with mushrooms
NP (S\NP)/NP NP (NP\NP)/NP NP

>

NP\NP
<

NP
>

S\NP
<

S

(a) Normal form Derivation

John ate salad with mushrooms
NP (S\NP)/NP NP (NP\NP)/NP NP

> T

S/(S\NP)
> B

S/NP
>

S
>

NP\NP. . . . . . . . . . . . . . . . . . . . . . . R >

S/NP NP
<

NP
>

S

(b) Incremental Derivation

Figure 6.1: Normal form and incremental CCG derivations for an example sentence.
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turn combines with other contextual categories using CCG combinators to form new

categories representing larger phrases.

In contrast to phrase structure trees (PST), CCG derivation trees encode a richer

notion of syntactic type and constituency. For example, in a phrase structure tree, the

category (constituency tag) of ate would be VBD irrespective of whether it is transitive

or intransitive, whereas the CCG category distinguishes these types. As the linguistic

complexity increases, the complexity of the CCG category may increase, e.g., the rel-

ative pronoun has the category (NP\NP)/(S\NP) in relative clause constructions. In

addition, CCG derivation trees have combinators annotated at each level which indi-

cate the way in which the category is derived, e.g., in Figure 6.1(b) the category S/NP

of John ate is formed by first type-raising (indicated by >T) John and then applying

forward composition (indicated by >B) with ate. CCG combinators can throw light

into the linguistic complexity of the construction, e.g., crossed composition is an in-

dicator of long-range dependency. Phrase structure trees do not have this additional

information encoded on their nodes.

6.3.2 Incremental CCG

In Chapter 4, we introduced a transition-based incremental CCG parser for English.2

The main difference between this incremental version and standard non-incremental

CCG parsers such as Zhang and Clark (2011a) is that as soon as the grammar allows

two types to combine, they are greedily combined. For example, Figure 6.1(a) presents

a normal-form derivation used by non-incremental parsers for an example sentence

‘John ate salad with mushrooms’. Whereas, Figure 6.1(b) presents the incremental

derivation for the same sentence. In the normal-form derivation, all the words in the

sentence are first shifted to the stack. Then a preposition phrase ‘with mushrooms’

if formed which is then attached to the object ‘salad’. Then the transitive verb ‘ate’

resolves its object ‘salad’ first and then the subject ‘John’.

In the case of incremental derivation, first John is pushed on the stack but is imme-

diately reduced when its head ate appears on the stack (i.e., John’s category combines

with ate’s category to form a new category), and similarly when salad is seen, it is

reduced with ate. When with appears it waits to be reduced until its head mushrooms

appears on the stack, and later mushrooms is reduced with salad via ate using a spe-

2This parser is not word by word (strictly) incremental but is incremental with respect to CCG
derivational constituents following the Strict Competence Hypothesis (Steedman, 2000). See Chapter 4
for complete details.
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cial revealing operation (indicated by R>) followed by a sequence of operations. The

revealing operation is performed when a category has greedily consumed a head in

advance of a subsequently encountered post-modifier to regenerate the head. In the

non-incremental version, salad is not reduced with ate until with mushrooms is re-

duced with it.

Consider the following sentences A and B where B is a simpler version of A.

A Mourners and admirers came to lay flowers and light candles at the

Apple Store.

B People went to the Apple Store with flowers and candles.

Figures 6.2 and 6.3 present the incremental derivations for both these sentences.

Consider the CCG category for ‘to’ in both the sentences. In A, the category of ‘to’

is (S[dcl]\NP)/(S[to]\NP) which is much complex compared to the category of ‘to’

in B which is PP/NP. Both the derivations have one right reveal action (indicated by

R >). In A, the depth of this action is two since it is VP coordination. Whereas, in B

the depth is only one. Section 6.3.3.2 provides the details about the depth feature. This

kind of information can be useful in predicting the complexity of a sentence.

6.3.3 Features

As discussed above, as the complexity of a sentence increases, the complexity of CCG

categories, combinators and the number of revealing operations increase in the incre-

mental analysis. We exploit this information to assess readability of a sentence. For

each sentence, we build a feature vector using the features defined below extracted

from its incremental CCG derivation.

6.3.3.1 Sentence Level Features

These features include sentence length, height of the CCG derivation, and the final

number of fragments. Sentence length is the number of words in the sentence. Since

the CCG derivation is a binary tree, height of the derivation tree is the number of

edges from the root node to the deepest leaf node. A CCG derivation can have

multiple constituents if none of the combinators allow the constituents to combine.

This happens mainly in ungrammatical sentences. These uncombined constituents

are called fragments. If the parser gives a fully connected derivation tree then there
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is only one constituent and hence no fragments. If the parser couldn’t find a complete

spanning analysis, then the derivation will have multiple fragments. A complex

sentence is expected to have more number of fragments compared to a simpler

sentence, which could be a useful feature for predicting sentence complexity. Below

are the list of sentence level features used for our experiments.

• Sentence Length

• Height of the Derivation Tree

• Number of fragments

6.3.3.2 CCG Rule Counts

These features include the number of applications, forward applications, backward ap-

plications, compositions, forward compositions, backward compositions, left punctu-

ations, right punctuations, coordinations, type-raisings, type-changing, left revealing,

right revealing operations used in the CCG derivation. Each combinator is treated as a

different feature dimension with its count as the feature value. For the revealing oper-

ations, we also add additional features which indicate the depth of the revealing which

is analogous to surprisal (Hale, 2001)3. Depth here is defined based on the attachment

of the node in the revealing action. Depth=1 indicates that the attachment is with the

bottom most node. Similarly, depth=2 indicates that the attachment is with the second

bottom node and so on. Below is the list of all the 16 features in this category.

• Application (3): Forward, Backward, All

• Composition (3): Forward, Backward, All

• Punctuation (3): Left, Right, All

• Others (4): Coordination, Type-raising, Type-changing Rules

• Reveal (3): Left Reveal, Right Reveal, Depth of Reveal

3Please see Chapter 4 for additional information on the depth of revealing operations.
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6.3.3.3 CCG Categories

We define the complexity of a CCG category as the number of basic syntactic types

used in the category, e.g., the complexity of (S[pss]\NP)/(S[to]\NP) is 4 since it has

one S[pss], one S[to], and two NPs. Note that CCG type S[pss] indicates a sentence

but of the subtype passive. We use average complexity of all the CCG categories used

in the derivation as a real valued feature. In addition, we define integer-valued features

representing the frequency of specific subtypes (we have 20 subtypes each defined as a

different dimension) and the frequency of the top 8 syntactic types (each as a different

dimension). All 29 features in this category are listed below.

• Average number of arguments

• Sentence subtypes (16): declarative (dcl), passive (pss) etc.

• Noun subtypes (4): Expletive it (exp), there (thr), non-bare (nb), numbers (num).

• Other (8): # NPs, # VPs, # PPs, # Ss, # noun modifiers, # verbal modifiers, #

transitive verbs, # intransitive verbs.

6.4 Experimental Setup

In this section, we describe the setup for our experiments. We present the details about

the dataset and the classifier used. We also provide information about our baseline

model which uses non-incremental phrase structure features from the Stanford parser.

6.4.1 Evaluation Data

As evaluation data, we use WIKI and SIMPLEWIKI parallel sentence pairs collected

by Hwang et al. (2015), a newer and larger version compared to Zhu et al. (2010)’s

collection. We only use the pairs from the section GOOD consisting of 150K pairs.

We further removed pairs containing identical sentences which resulted in 117K clean

pairs. We randomly divided the data into training (60%), development (20%) and test

(20%) splits.

6.4.2 Implementation details

As our classifier (see Section 6.2) we use SVM with Sequential Minimal Optimiza-

tion in Weka toolkit (Hall et al., 2009) following its popularity in readability litera-
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Model Beam Look-ahead Accuracy

NON-INCREMENTAL PST - Yes 71.68

GREEDY NON-INCREMENTAL CCG No Yes 72.03

GREEDY INCREMENTAL CCG No Yes 72.12

INCREMENTAL CCG Yes No 71.97

Table 6.2: Impact of different syntactic features.

ture (Feng, 2010; Hancke et al., 2012; Vajjala and Meurers, 2014). We use polynomial

kernel and default settings for hyperparameters. This is similar to Vajjala and Meurers

(2014), but defers from Vajjala (2015) which uses SVMRank 4 (Joachims, 2006). We

use the parsers described in Chapter 4 for extracting CCG derivations. For supertag-

ging we use EasyCCG supertagger5 (Lewis and Steedman, 2014b) since it gave better

results than the C&C supertagger6 (Clark, 2002).

6.4.3 Baseline: NON-INCREMENTAL PST

Following Vajjala (2015), we use features extracted from Phrase Structure Trees (PST)

produced by the Stanford parser7 (Klein and Manning, 2003), a non-incremental

parser. We use the exact code used by Vajjala (2015) to extract these features which in-

clude part-of-speech tags, constituency features like the number of noun phrases, verb

phrases and preposition phrases, and the average size of the constituent trees. Vajjala

(2015) used a total of 57 features.8

6.5 Results

First we analyze the impact of CCG features from different CCG parsers. We ex-

periment with the greedy non-incremental CCG parser (we call this GREEDY NON-

INCREMENTAL CCG) and two versions of the incremental CCG parser described in

4http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
5http://homepages.inf.ed.ac.uk/s1049478/easyccg.html
6http://svn.ask.it.usyd.edu.au/trac/candc/
7http://nlp.stanford.edu/software/lex-parser.html
8Details of the features can be found in Vajjala (2015).

http://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html
http://homepages.inf.ed.ac.uk/s1049478/easyccg.html
http://svn.ask.it.usyd.edu.au/trac/candc/
http://nlp.stanford.edu/software/lex-parser.html
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Model Beam Look-ahead Accuracy

Vajjala and Meurers (2014) - Yes 62.63

Vajjala (2015) - Yes 74.58

NON-INCREMENTAL PST++ - Yes 78.68

GREEDY NON-INCREMENTAL CCG++ No Yes 78.77

GREEDY INCREMENTAL CCG++ No Yes 78.87

INCREMENTAL CCG++ Yes No 78.77

Table 6.3: Performance of models with both syntactic and psycholinguistic features.

Chapter 4: greedy parser which uses look-ahead features (we call this GREEDY IN-

CREMENTAL CCG) and a beam-search parser which doesn’t use a look-ahead (we

call this INCREMENTAL CCG). Table 6.2 presents the results of predicting relative

readability on the test data.9 GREEDY INCREMENTAL CCG achieves the best accu-

racy of 72.12%, a significant10 improvement of 0.44 points over NON-INCREMENTAL

PST (71.68%) indicating that incremental CCG features are empirically more useful

than non-incremental phrase structure features. INCREMENTAL CCG gave an accu-

racy of 71.97% which is slightly lower than GREEDY INCREMENTAL CCG but bet-

ter than the baseline NON-INCREMENTAL PST. Parsing accuracy of INCREMENTAL

CCG is slightly lower than GREEDY INCREMENTAL CCG which could be the reason

for this.

We also evaluate if this result holds for incremental vs. non-incremental CCG parse

features. Note that in the non-incremental version, revealing features are absent. This

version achieves an accuracy of 72.02%, around 0.1% lower than the winner GREEDY

INCREMENTAL CCG, yet higher than NON-INCREMENTAL PST showing that CCG

derivation trees offer richer syntactic information than phrase structure trees.

Apart from the syntactic features, Vajjala (2015) have also used psycholinguistic

features such as age of acquisition of words, word imagery ratings, word familiar-

ity ratings, and ambiguity of a word, collected from the psycholinguistic repositories

9All feature engineering is done on the development data.
10Numbers in bold indicate significant results, significance measured using McNemar’s test.
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Celex (Baayen et al., 1995), MRC (Wilson, 1988), AoA (Kuperman et al., 2012) and

WordNet (Fellbaum, 1998). These features are found to be highly predictive for assess-

ing readability. We enhance our syntactic models NON-INCREMENTAL PST, GREEDY

NON-INCREMENTAL CCG, GREEDY INCREMENTAL CCG and INCREMENTAL

CCG by adding these psycholinguistic features to build NON-INCREMENTAL PST++,

GREEDY NON-INCREMENTAL CCG++, GREEDY INCREMENTAL CCG++, INCRE-

MENTAL CCG++ respectively. Table 6.3 presents the final results along with the pre-

vious work of Vajjala and Meurers (2014) and Vajjala (2015). We ran their code on

our dataset and the results are similar to their results on Zhu et al. (2010)’s dataset.

Psycholinguistic features gave a boost of around 6.75 points on the syntactic models.

Additionally the performance gap between our models decrease (from 0.44 to 0.19)

showing some of the psycholinguistic features also model a subset of the syntactic

features. GREEDY INCREMENTAL CCG++ achieves the best accuracy of 78.77% out-

performing the previous best system of Vajjala (2015) by a wide margin.

We see similar trend in the results before and after adding psycholinguistic features.

In general, CCG features gave better results than phrase structure features. Among

different CCG parsers, GREEDY INCREMENTAL CCG parser performed consistently

better than GREEDY NON-INCREMENTAL CCG parser. Between both the versions

of the incremental parsers, GREEDY INCREMENTAL CCG parser, which is a greedy

parser using a look-ahead gave better than the INCREMENTAL CCG parser, which uses

a beam and no look-ahead. Also, GREEDY INCREMENTAL CCG parser is around ten

times faster than the INCREMENTAL CCG parser making it more appealing for the

practical real-time applications.

6.5.1 Speed

In addition to accuracy, parsing speed is important in real-time applications. Table

6.4 presents the speed comparison for NON-INCREMENTAL PST and GREEDY IN-

CREMENTAL CCG parsers. The Stanford parser (NON-INCREMENTAL PST) took

204 minutes to parse the test data with a speed of 3.8 sentences per second. The

GREEDY INCREMENTAL CCG parser took 16 minutes with an average speed of

47.5 sentences per second, a 12X improvement over the Stanford parser. These num-

bers include POS tagging time for the Stanford parser, and POS tagging and supertag-

ging time for the GREEDY INCREMENTAL CCG parser. This shows that our GREEDY

INCREMENTAL CCG parser is both efficient (12 times faster) and accurate (0.44 points
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Model Speed (Sentences/Second)

NON-INCREMENTAL PST 3.8

GREEDY INCREMENTAL CCG 47.5

Table 6.4: Speed comparison.

better) in comparison to the previously used Stanford parser for this task.

6.6 Conclusion

Our empirical evaluation on assessing relative sentence complexity suggests that syn-

tactic features extracted from an incremental CCG parser are more useful than from a

non-incremental phrase structure parser. This result aligns with psycholinguistic find-

ings that human sentence processor is incremental. Our incremental model enhanced

with psycholinguistic features achieves the best reported results on predicting relative

sentence readability. We explored a greedy incremental parser which uses a look-ahead

and a beam-search parser without a look-ahead of which the former was both accurate

and efficient for this task. Similarly, for other tasks as well we can explore different

levels of incrementality and choose the one suitable for the task.

We experimented with Simple Wikipedia and Wikipedia data from Hwang et al.

(2015). We can explore the usefulness of our system on other datasets like On-

eStopEnglish (OSE) corpus (Vajjala, 2015) or the dataset from Xu et al. (2015b).





Chapter 7

Transition-based CCG Parsing using

Neural Network Models

In this chapter, we present a neural network based transition-based CCG parser, one

of the first neural-network based parsers for CCG 1. We also study the impact of neu-

ral network based tagging models, and greedy versus beam-search parsing, by using a

structured neural network model. We experiment with both English and Hindi CCG-

banks. For English, our greedy parser obtains a labelled F-score of 83.27%, the best

reported result for greedy CCG parsing in the literature (an improvement of 2.5% over

a perceptron based greedy parser) and is more than three times faster. For Hindi, our

greedy parser achieves a labelled F-score of 74.14% which is an improvement of 3%

over the greedy perceptron parser. In the beam search case, the structured neural net-

work model, though not the state-of-the-art, consistently gave better results than the

basic neural network model. Part of this work is published in Ambati et al. (2016b).

7.1 Introduction

Shift-reduce parsing is interesting for practical real-world applications like parsing

the web, since parsing can be achieved in linear time. Although greedy parsers

are fast, accuracies of these parsers are typically much lower than graph-based

parsers. Conversely, beam-search parsers achieve accuracies comparable to graph-

based parsers (Zhang and Nivre, 2011) but are much slower than their greedy coun-

terparts. Recently, Chen and Manning (2014) have showed that fast and accurate

1At the same time, and independent of this thesis, Xu et al. (2016) developed a neural network based
CCG parser.

135
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parsing can be achieved using neural network based parsers. Improving their work,

Weiss et al. (2015) presented deep neural network and structured neural network mod-

els which gave state-of-the-art results for English dependency parsing.

Extending this recent work on neural network based dependency parsers, we

present a neural network based shift-reduce CCG parser, one of the first neural net-

work based parsers for CCG. We first adapt Chen and Manning (2014)’s shift-reduce

dependency parser for CCG parsing. We then develop a structured neural network

model based on Weiss et al. (2015), in order to explore the impact of a beam-search

on the parser. We also analyze the impact of neural network taggers (for both POS-

tagging and CCG supertagging) as compared to maximum entropy taggers.

For English, over a perceptron based greedy shift-reduce parser our neural network

parser achieves an improvement of 2.3% and 2.4% in unlabelled and labelled F-scores

respectively. We observe further improvements when we use neural network taggers

instead of the standard maximum entropy taggers. We experimented with both non-

incremental and the incremental versions of the parsing algorithm described in chapter

4 and the non-incremental algorithm gave better than the incremental algorithm. We

achieve final results of 89.78% and 83.27% unlabelled and labelled F-scores respec-

tively on the standard CCGbank test data with a non-incremental greedy parser using

neural network taggers. These are the best reported results for greedy CCG parsing

in the literature. Additionally, our neural network parser is more than three times

faster than its perceptron counterpart making it appealing for practical real-world ap-

plications. Even for Hindi, in the greedy settings, our neural network parser gave 3%

improvements over the perceptron parser.

When we use a beam, structured neural network model gave better results than the

the basic neural network model. To the best of our knowledge, ours is the first neural

network based parser for CCG and also the first work on exploring neural network

taggers for shift-reduce CCG parsing. This parser is available for public usage at

https://bitbucket.org/bharatambati/tranccg.

The rest of the chapter is arranged as follows. Section 7.2 gives a brief introduction

to related work in the areas of word embeddings and neural network parsing. Section

7.3 presents our neural network based parser for English. Details of the experiments

and analysis of the results on English CCGbank are provided in section 7.4. Hindi

parser, experiments and results are presented in sections 7.5 and 7.6. We conclude

with possible future directions in section 7.7.

https://bitbucket.org/bharatambati/tranccg
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7.2 Related Work

Related work in CCG parsing is already provided in Section 4.2.1. Here we present

related work in the areas of word embeddings and neural network parsing.

7.2.1 Word Embeddings

There has been increasing interest in using continuous vectors in the form of word

embeddings rather than discrete words as features. Word embeddings not only gen-

eralize well but also help in minimizing the feature engineering required for the task.

Word embeddings are successfully applied to a wide variety of NLP tasks such as

POS-tagging, supertagging, chunking, named-entity recognition, semantic role label-

ing, phrase structure parsing and dependency parsing (Turian et al., 2010; Collobert

et al., 2011; Collobert, 2011; Socher et al., 2013; Chen and Manning, 2014; Lewis and

Steedman, 2014b; Xu et al., 2015a).

Our work is closely related to Lewis and Steedman (2014b) and Xu et al. (2015a).

Lewis and Steedman (2014b) first developed a neural network based CCG supertagger

using feed-forward architecture. They explored different publicly available word

embeddings and achieved best results with Turian embeddings (Turian et al., 2010).

Then they used this supertagger in the state-of-the-art graph based CCG parser

(C&C) and showed improvements on both in-domain and out-of-domain test sets.

Extending Lewis and Steedman (2014b), Xu et al. (2015a) developed a recurrent

neural network based supertagger. They showed improvements over the feed-forward

based supertagger for both supertagging and parsing using the C&C parser. We also

explore the impact of neural network based CCG supertagger, especially Lewis and

Steedman (2014b)’s EasyCCG tagger, for shift-reduce CCG parsers.

7.2.2 Neural Network Parsers

Neural Network parsers are attracting interest due to both speed and accuracy. There

has been some work on neural networks for constituent based parsing (Collobert, 2011;

Socher et al., 2013; Watanabe and Sumita, 2015). Chen and Manning (2014) devel-

oped a neural network architecture for dependency parsing. This parser was fast and

accurate, parsing around 1000 sentences per second and achieving an unlabelled at-

tachment score of 92.0% on the standard Penn Treebank test data for English. Chen

and Manning (2014)’s parser used a feed forward neural network. Several improve-
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ments were made to this architecture in terms of using Long Short-Term Memory

(LSTM) networks (Dyer et al., 2015), deep neural networks (Weiss et al., 2015) and

structured neural networks (Weiss et al., 2015; Zhou et al., 2015; Alberti et al., 2015).

Weiss et al. (2015) first trained a neural network similar to Chen and Manning

(2014). Then they trained a structured perceptron model with a beam which takes

as input the pre-trained neural networks hidden layer(s) and the output layer. This

system is called a structured neural network. They also used a tri-training technique

for semi-supervised training using raw text. In tri-training, two parsers are run on

the raw text and the parse trees of the sentences for which both parsers gave same

analysis are used as training data. Weiss et al. (2015) also used two hidden layers with

2048 hidden units in each layer compared to Chen and Manning (2014)’s single hidden

layer with 200 hidden units. With their structured neural network model, Weiss et al.

(2015) obtained the state-of-the-art results for English dependency parsing. Alberti

et al. (2015) extended Weiss et al. (2015)’s parser by introducing set-valued features

for capturing morphological information and part-of-speech confusion sets. They also

explored the impact of joint POS tagging and dependency parsing. In addition to

English, they experimented with CoNLL 2009 Shared Task languages (Hajič et al.,

2009) and showed the usefulness of their approach.

We explore Chen and Manning (2014) style feed-forward neural network and

structured neural network of Weiss et al. (2015) for our work. Unlike Weiss et al.

(2015) who use a deep neural network with two hidden layers for pre-training2, we

use a feed-forward neural network with one hidden layer for pre-training. We provide

the details of our neural network parsers in the following sections.

7.3 Our Neural Network Parser (NNPar): English

The architecture of our neural network based shift-reduce CCG parser is similar to

that of Chen and Manning (2014). We present the details of the network and the

model settings in this section. We also discuss our structured neural network model.

7.3.1 Layers

Figure 7.1 shows the architecture of our neural network parser. There are three layers

in our parser: the input, hidden and output layers. We first extract the discrete features
2Following the neural network literature, we define any network with more than one hidden layer as

deep neural network.
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Figure 7.1: Our Neural Network Architecture (adapted from Chen and Manning (2014)).

from the parser configuration, such as words, POS-tags and CCG supertags. For each

of these discrete features we obtain a continuous vector representation in the form of

their corresponding embeddings and use them in the input layer.

The input layer is mapped to a hidden layer using the following function:

h = (Wh ∗E +bh)
3

where E is the input embedding vector, Wh is the weight matrix and bh is the bias

vector. Following Chen and Manning (2014), we use a cube activation function. They

used tanh, sigmoid, identity, and cube activation functions and showed that the cube

activation function achieves better results over other functions since it can capture the

interaction of three elements, such as tri-gram features, in a better way.

The output layer is a standard softmax layer and uses the following function:

Y = so f tmax(Wy ∗h)

where h is the hidden layer vector and Wy is the weight matrix. Y is the final vector

which represents probabilities for each class in the multi-class classification.
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7.3.2 Feature and Model Settings

We extract features from a) top four nodes in the stack (S0, S1, S2, S3), b) next four

nodes in the input (Q0, Q1, Q2, Q3) and c) left and right children of the top two nodes

in the stack (S0L, S0R, S1L, S1R). We obtain words (w) and POS-tags (p) of all 12

nodes. In the case of CCG supertags, in addition to the CCG categories (c) of the

nodes in the stack (top four nodes, left and right children of top two nodes), we also

obtain the lexical head categories (S0Hc, S1Hc) for the top two nodes. For example,

in Figure 4.6, after step 6, S\NP:loves is the top node in the stack (S0). CCG category

and lexical head category of this node (S0c and S0Hc) are S\NP and (S\NP)/NP

respectively. So, in total we have 34 features: 12 word, 12 POS-tag and 10 CCG

supertag features, presented in Table 7.1. We use a special token ‘NULL’ if a feature

is not present in the parser configuration.

Types Features

S0w, S1w, S2w, S3w,

words Q0w, Q1w, Q2w, Q3w,

S0Lw, S0Rw, S1Lw, S1Rw,

S0p, S1p, S2p, S3p,

POS-tags Q0p, Q1p, Q2p, Q3p,

S0Lp, S0Rp, S1Lp, S1Rp,

S0c, S1c, S2c, S3c,

CCG supertags S0Lc, S0Rc, S1Lc, S1Rc,

S0Hc, S1Hc

Table 7.1: The deature templates of our parser.

For each of these 34 features we obtain their corresponding embeddings. Lewis

and Steedman (2014b) explored different publicly available word embeddings (Mnih

and Hinton, 2009; Turian et al., 2010; Collobert et al., 2011; Mikolov, 2012; Mikolov

et al., 2013a) for CCG supertagging and showed that Turian embeddings of dimension-

ality 50 (Turian-50) gave better results. We explored embeddings from Collobert et al.
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(2011) and Turian et al. (2010) and we also got better results with Turian-50 embed-

dings. So, we use Turian-50 embeddings for words in our parser. For the words which

are not in the word embeddings dictionary, embeddings of ‘-UNKNOWN-’ token are

used as a backoff. Note that this ‘-UNKNOWN-’ token is different from the ‘NULL’

token used for non-existent features. For POS-tags and CCG supertags, the parameters

are randomly initialized within (-0.01, 0.01).

Our input layer is a 34 (feature templates) × 50 (embedding size) dimensional

vector. We use 200 hidden units in the hidden layer. For the output layer we compute

softmax probabilities only for the actions which are possible in a particular parser

configuration instead of all the 2296 actions. We use the training settings of Chen and

Manning (2014) for our parser. The training objective is to minimize the cross-entropy

loss with an l2-regularization and the training error derivatives are backpropagated

during training. For optimization we use AdaGrad (Duchi et al., 2011). 10−8 and

0.01 are the values for regularization parameter and Adagrad initial learning rate

respectively. To make the parser faster, matrix multiplications are pre-computed for

the most frequent 10,000 words. Parameters that give the best labelled F-score on the

development data are used for testing data.

7.3.3 Structured Neural Network

Chen and Manning (2014)’s parser is a greedy parser, and it is not straightforward to

add a beam during training into their parser. As a way of introducing a beam, Weiss

et al. (2015) presented structured perceptron training for the neural network parser,

known as a structured neural network. Following Weiss et al. (2015), we first pre-train

the feed-forward neural network model described in the previous section. For the final

layer, we train a structured perceptron using beam search decoding which takes the

neural network’s hidden and output layers as the input. In addition to using a softmax

for the output layer, we also applied this structured neural network approach for our

experiments using a beam. Unlike Weiss et al. (2015)’s neural network architecture,

which consists of two hidden layers with 2048 hidden units each, we use the Chen and

Manning (2014) style architecture described in the previous sections.

7.3.4 Comparison to Chen and Manning (2014)

Our neural network parser is adapted from Chen and Manning (2014) and differs from

their work in a number of respects. We use CCG supertags in the input layer since
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ours is a CCG parser. Chen and Manning (2014) use dependency label set as theirs is

a dependency parser. For word embeddings, we use Turian embeddings (Turian et al.,

2010) whereas they use embeddings from Collobert et al. (2011). We have slightly

smaller set of 34 feature templates compared to their 48 templates. Our parser has

2296 actions while Chen and Manning (2014) has much smaller number of actions

(35 for CoNLL and 91 for Stanford dependencies). For CCG, the shift action performs

category disambiguation by assigning a CCG category, in addition to shifting the node.

Also, there are many more CCG categories ( 500) compared to dependency labels ( 50)

which resulted in more operations.

7.4 Experiments and Results: English

We first compare our neural network parser (NNPar)3 with a perceptron based parser

in the greedy setting. Then we study the impact of incremental algorithm and neural

network taggers for transition-based CCG parsing. Next we analyze the impact of

a beam using neural network (NNPar) and structured neural network (Structured

NNPar) models.

The perceptron based parser is a re-implementation of Zhang and Clark (2011a)’s

parser (Z&C*). A global linear model trained with the averaged perceptron (Collins,

2002) is used for this parser and an early-update (Collins and Roark, 2004) strategy is

used during training. In the greedy setting (beam=1), when the predicted action differs

from the gold action, decoding stops and the weights are updated accordingly. When

a beam is used (beam=16), the weights are updated when the gold parse configura-

tion falls out of the beam. For Z&C*, the feature set of Zhang and Clark (2011a),

which comprises of 64 feature templates is used. For NNPar, the 34 feature templates

described in section 7.3.2 are used.

7.4.1 Data and Settings

We use the standard CCGbank training (sections 02 − 21), development (section 00)

and testing (section 23) splits for our experiments. All the experiments are performed

using automatic POS-tags and CCG supertags. We compare the performance using

two types of taggers: maximum entropy and neural network based taggers (NNT). The

C&C taggers 4 (Clark and Curran, 2004b) are used for maximum entropy taggers.
3We used Chen and Manning (2014)’s package for implementing our NNPar
4http://svn.ask.it.usyd.edu.au/trac/candc/wiki

http://svn.ask.it.usyd.edu.au/trac/candc/wiki
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For neural network taggers, SENNA tagger5 (version 3.0) (Collobert et al., 2011) is

used for POS-tagging and EasyCCG tagger6 (Lewis and Steedman, 2014a) is used for

supertagging. Both of these taggers use a feed-forward neural network architecture

with a single hidden layer similar to our NNPar architecture.

In the case of POS-tags, we consider the first best tag given by the POS tagger.

For CCG supertags, we use a multitagger which gives n-best supertags for a word.

Following Zhang and Clark (2011a) and Xu et al. (2014), only during training, the

gold CCG lexical category is added to the list of supertags for a word if it is not present

in the list assigned by the multitagger.

7.4.2 Parsing Model

In this section, we compare the performance of the perceptron based parser (Z&C*)

and neural network based parser (NNPar). We explore the greedy setting (beam=1) in

this section. Both parsers use C&C taggers.

Table 7.2 presents the unlabelled F-score (UF), labelled F-score (LF) and lexical

category accuracy (Cat Acc.) for the Z&C* and NNPar on the CCGbank development

data. NNPar outperformed Z&C* on all the metrics. There is significant improvement

of 2.14% in UF and 2.4% in LF. This observation is in line with the Chen and Manning

(2014)’s dependency parsing results. They obtained improvements of about 2% in

the unlabelled and labelled attachment scores for their neural network based parser

over their perceptron based baseline parser. Since our NNPar is based on Chen and

Manning (2014)’s parser, our results show that their neural network architecture is

robust enough to be successfully applied across different grammatical formalisms.

Model UF LF Cat Acc.

Z&C* 87.24 80.25 91.09

NNPar 89.38 82.65 91.72

Table 7.2: The performance of the Perceptron (Z&C*) and Neural Network (NNPar)

parsers.

5http://ronan.collobert.com/senna/
6http://homepages.inf.ed.ac.uk/s1049478/easyccg.html

http://ronan.collobert.com/senna/
http://homepages.inf.ed.ac.uk/s1049478/easyccg.html
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7.4.3 Parsing Algorithm

In Chapter 4 we presented the non-incremental algorithm (NonInc) of Zhang and Clark

(2011a) which is a standard shift-reduce CCG parsing algorithm and the revealing

based incremental algorithm (RevInc) which uses special revealing actions. We train

our NNPar using both parsing algorithms in a greedy setting. NonInc has ∼2300

actions whereas RevInc has ∼3000 actions. This made the parser very slow and com-

putationally expensive. So, we pruned out the sentences with less frequent actions.

Actions which occurred less than two times in the entire training data are considered

as less frequent actions which pruned around 400 actions. As a result, 4% of the train-

ing sentences are removed and the remaining 96% of the data is used for training. For

NonInc we used all the sentences without any pruning.

The results with both the algorithms are presented in Table 7.3. The first block (top

two rows) in the table presents the results using NonInc algorithm which are the same

as the results from Table 7.2. The second block (last two rows) presents the results with

RevInc algorithm. Similar to NonInc, the neural network model gave better results than

the perceptron model. There is an improvement of around 0.3% in both UF and LF

which is lower than the improvements observed for NonInc. Pruning the actions based

on the threshold for RevInc could be one of the reasons for this. Overall NonInc with

the neural network model gave the best results. So, for the rest of the experiments we

use NonInc parsing algorithm.

Parsing Algorithm Model UF LF Cat Acc.

NonInc Z&C* 87.24 80.25 91.09

NonInc NNPar 89.38 82.65 91.72

RevInc Z&C* 88.69 80.75 90.87

RevInc NNPar 89.08 81.07 90.86

Table 7.3: Performance of NonInc and RevInc parsing algorithms using Perceptron and

Neural Network models.
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7.4.4 Taggers

Maximum entropy based taggers of C&C use discrete features, while neural network

based taggers like EasyCCG tagger use continuous vector features and hence gener-

alize well (Lewis and Steedman, 2014a). Also, the C&C supertagger uses POS-tag

features. As a result, errors made by the POS-tagger significantly affect the perfor-

mance of the supertagger. EasyCCG supertagger avoids this problem as it doesn’t

use POS-tag features. Lewis and Steedman (2014a) showed that the performance of a

state-of-the-art graph-based CCG parser like C&C parser can be significantly improved

by replacing the C&C supertagger with EasyCCG supertagger. They obtained an im-

provement of 0.8% in labelled F-score with EasyCCG supertagger. Xu et al. (2015a)

extended this work. They developed a recurrent neural network based supertagger and

showed even better improvements for C&C parser. In this section, we observe the im-

pact of neural network based taggers for shift-reduce CCG parsing. We use both a POS

tagger and supertagger for our experiments, both neural network based.

Table 7.4 shows the impact of neural network taggers for NNPar in greedy settings.

The neural network based taggers (NNT) improve over the C&C taggers by 0.7%. Our

result is in line with Lewis and Steedman (2014a) and Xu et al. (2015a) and shows

that neural network taggers improve the performance of shift-reduce CCG parsers

as well. We obtained final unlabelled and labelled F-scores of 90.09% and 83.33%

respectively on the development data. To the best of our knowledge these are the best

reported results for greedy shift-reduce CCG parsing.

Taggers UF LF Cat Acc.

C&C 89.38 82.65 91.72

NNT 90.09 83.33 92.03

Table 7.4: Impact of Neural Network based taggers on NNPar.

7.4.5 Beam Search

In section 7.4.2, we showed that a neural network based parser (NNPar) outperforms

a perceptron based parser (Z&C*) in greedy settings. We observed a further boost in

the performance of the parser using neural network based taggers (NNT) in section

7.4.4. Now, we analyze the impact of these neural network based parsing and tagging
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Model Beam Taggers UF LF Cat Acc.

Z&C*

1 C&C 87.24 80.25 91.09

1 NNT 87.00 79.78 90.52

16 C&C 91.17 84.34 92.42

16 NNT 92.10 85.75 93.05

NNPar

1 C&C 89.38 82.65 91.72

1 NNT 90.09 83.33 92.03

16 C&C 90.78 83.76 91.98

16 NNT 91.46 84.55 92.35

Structured NNPar 16 NNT 92.19 85.69 93.02

Zhang and Clark (2011a) 16 C&C - 85.00 92.77

Xu et al. (2014) 128 C&C - 85.18 92.75

Table 7.5: Impact of the beam on Perceptron and Neural Network based parsers.

Number is bold are best systems in the respective blocks.

models for the beam search parsers. For Z&C* and Structured NNPar, following

Zhang and Clark (2011a), we use a beam of size 16 both during training and testing.

But for NNPar, we use a beam of 16 only during testing. During the training phase,

the neural network model of NNPar is trained locally.

Table 7.5 presents the results of Z&C*, NNPar and structure NNPar parsers using a

beam size of 16. The first block of the table (top 3 rows) presents the results for Z&C*.

The second block of the table (middle 4 rows) presents the results for our neural net-

work parsers. In this second block, the first three rows are the results with our NNPar

and the last row presents the results with our Structured NNPar. The last block (last 2

rows) presents the published results of Zhang and Clark (2011a) and Xu et al. (2014).

For Z&C*, using a beam improved the unlabelled and labelled F-scores by around

4% over the greedy parser with C&C taggers. Using neural network taggers (NNT)

gave further improvements of 0.9% and 1.4% in UF and LF respectively. We obtain
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UF and LF of 92.10% and 85.75% respectively on the development data.

For NNPar, using a beam improved the unlabelled and labelled F-scores by 1.4%

and 1.1% respectively over the greedy parser with C&C taggers. Using neural network

taggers (NNT) gave further improvements of 0.7% and 0.8% in UF and LF respec-

tively. We obtain UF and LF of 91.46% and 84.55% respectively on the development

data. Similar to Z&C*, using a beam gave better results than the greedy parser and us-

ing neural network taggers gave further boost over the C&C taggers for NNPar as well.

Our NNPar uses a beam only during training. Zhang and Nivre (2012) showed

that for dependency parsing using a beam during training as well as testing gives much

better results than using it only during testing. To overcome this problem, we ex-

perimented with our Structured NNPar model described in section 7.3.3. We achieve

F-score of 92.19% in UF and 85.69% in LF with our Structured NNPar which is an

improvement of 1.1% in LF over NNPar. This shows that in the case of neural net-

work parsing, structured neural network model performs better than the basic neural

network model. This is similar to the result of Weiss et al. (2015) for dependency

parsing. Notice that both the structured perceptron (Z&C*) and structured neural net-

work (Structured NNPar) give almost similar results when they both use NNT taggers.

To the best of our knowledge these are the best reported results for shift-reduce CCG

parsing on the development data.

7.4.6 Final Test Results

Table 7.6 presents the results for the final test data. The first block of the table (top 4

rows) presents the results in the greedy settings. The second block of the table (middle

4 rows) presents the results with a beam. The last block (last 2 rows) presents the

published results of Zhang and Clark (2011a) and Xu et al. (2014).

With the greedy setting, NNPar outperformed Z&C* in all the cases. Also NNT

gave slight improvements over C&C for NNPar. Final best results of 89.78% in UF and

83.27% in LF are obtained with NNPar which are the best reported result for greedy

shift-reduce CCG parsing.

In the case of the beam search parsers, we achieved final best scores of 91.76% in

UF and 85.59% in LF for Z&C* using NNT. We observed improvements of 0.5% in

both UF and LF by using NNT over C&C. In the case of neural network models, we

got an accuracy of 91.95% in UF and 85.57% in LF using our Structured NNPar, an

improvement of 1.1% in LF over the NNPar. We get the best category accuracy with
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Parser Beam Taggers UF LF Cat Acc.

Z&C* 1 C&C 87.28 80.78 91.44

Z&C* 1 NN 86.44 79.78 90.67

NNPar 1 C&C 89.61 83.18 92.04

NNPar 1 NNT 89.78 83.27 91.89

Z&C* 16 C&C 91.28 85.00 92.79

Z&C* 16 NNT 91.76 85.59 92.84

NNPar 16 NNT 91.14 84.44 92.22

Structured NNPar 16 NNT 91.95 85.57 92.86

Zhang and Clark (2011a) 16 C&C - 85.48 92.77

Xu et al. (2014) 128 C&C - 86.00 92.75

Table 7.6: Results on the CCGbank test data.

our Structured NNPar but LF is slightly lower than Xu et al. (2014). Note however

that we use a much smaller beam size of 16 (similar to Z&C) compared to theirs

(128). Results are presented with beam=16 to enable direct comparison with Zhang

and Clark (2011a), since our parsing algorithm is similar to theirs. Increasing the

beam size improved the accuracy but significantly reduced the parsing speed. Testing

with beam=128 gave 0.2% improvement in accuracy (still 0.2 points lower than Xu

et al. (2014)) but slowed the parser by ten times.

7.4.7 Label-wise Impact

In this section, we analyze the impact of different models on the top 10 most frequent

CCG supertags. Table 7.7 presents the F-scores of different greedy parsers for

these supertags. The first two columns show the results for Z&C* and NNPar using

C&C taggers. NNPar gives better results than Z&C* for all the CCG supertags.

For adjuncts like (NP\NP)/NP, ((S\NP)\(S\NP))/NP, there are improvements of
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1-2%. Much higher improvements of 3-4% are observed for verbal arguments like

((S[dcl]\NP)/NP. NNT (third column) gave better results than C&C for NNPar in

most of the cases (7/10). For adjuncts, both C&C and NNT shared the top spots. But

for verbal arguments, NNT gave significant improvements of 1-3%.

Table 7.8 presents the F-scores of the top 10 most frequent CCG categories for

beam search parsers. The first two columns show the results for Z&C* using C&C

and NNT taggers. Similar to greedy parsers, NNT gave better results than C&C for

most (8/10) of the cases. Especially for verbal arguments, there are improvements of

2-3% in the F-score. Last two columns present the result for NNPar and Structured

NNPar using NNT taggers. Structured NNPar gave better results than NNPar for all

the categories. But the results are slightly lower than Z&C* using NNT tagger since

the overall labelled F-score for Structured NNPar is slightly lower than Z&C.

Category Z&C*-C&C NNPar-C&C NNPar-NNT

N/N 94.35 94.85 95.80

NP[nb]/N 95.88 96.11 96.82

(NP\NP)/NP 81.84 83.49 83.91

(NP\NP)/NP 81.81 83.10 82.56

((S\NP)\(S\NP))/NP 67.04 69.26 69.23

((S\NP)\(S\NP))/NP 66.06 68.85 69.85

((S[dcl]\NP)/NP 77.32 81.62 82.72

PP/NP 65.16 67.25 69.24

((S[dcl]\NP)/NP 74.13 77.12 80.33

(S\NP)\(S\NP) 83.40 85.00 83.33

Table 7.7: Label-wise F-score of different systems on the top 10 most frequent CCG

categories in greedy settings. Argument slots in the relation are in bold.
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Category Z&C*-C&C Z&C*-NNT NNPar-NNT Structured

NNPar-NNT

N/N 95.00 96.24 95.77 96.01

NP[nb]/N 96.84 97.53 96.90 97.46

(NP\NP)/NP 82.54 84.97 84.65 84.82

(NP\NP)/NP 83.10 83.78 83.25 83.39

((S\NP)\(S\NP))/NP 71.79 71.56 69.39 70.62

((S\NP)\(S\NP))/NP 69.67 70.81 69.74 70.01

((S[dcl]\NP)/NP 84.17 86.00 84.75 87.07

PP/NP 71.10 71.82 70.03 71.31

((S[dcl]\NP)/NP 82.28 85.73 83.31 85.48

(S\NP)\(S\NP) 85.79 85.37 84.25 85.75

Table 7.8: Label-wise F-score of different systems on the top 10 most frequent CCG

categories for beam search parsers.
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7.4.8 Speed

Beam-search parsers are more accurate than greedy parsers but are very slow. With

neural network models we can build parsers which give a nice trade-off between speed

and accuracy. Table 7.9 present the speed comparison for both Z&C* and our NNPar in

greedy settings. NNPar is much faster, parsing 350 sentences per second compared to

Z&C* which parses 110 sentences per second. Parsers with beam=16 parse around 10

sentences per second and parsers with beam=128 parse around 1 sentence per second.

These numbers don’t include tagging time.

Model Sentences/Second

Z&C* 110

NNPar 350

Table 7.9: Speed comparison of perceptron and neural network based greedy parsers.

7.5 Our Neural Network Parser (NNPar): Hindi

The architecture of our neural network based shift-reduce CCG parser for Hindi is

similar to that of English described in section 7.3. Our neural network parser for Hindi

has two major differences from the English parser. The first concerns the input layer.

For English, the input layer has embeddings of words, pos-tags and CCG supertags.

For Hindi, in addition to these, we also provide embeddings of lemma, coarse pos-

tag, morphological features available in the LEMMA, CPOSTAG, FEATS columns

in the CoNLL format. As we have seen previously in Chapter 5 and as shown in

the literature (Ambati et al., 2010a,b), morphological features play a crucial role in

parsing Hindi. So, we provided embeddings for all the columns in the CoNLL format.

The second difference is that we created word embeddings using Word2Vec7 rather

than using publicly available embeddings like Turian-50 for English. We provide the

details below.

Figure 7.2 presents the neural network architecture for Hindi CCG parsing. Similar

to English, it has three layers: input embedding layer, hidden layer and output layer.

7https://code.google.com/archive/p/word2vec/

https://code.google.com/archive/p/word2vec/
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Figure 7.2: Our Neural Network Architecture for Hindi parsing.

Apart from the input layer, all other parameters like activation function, number of

hidden units, learning rate etc. are same as the English parser.

7.5.1 Features

We extract features from a) the top four nodes in the stack (S0, S1, S2, S3), b) the next

four nodes in the input (Q0, Q1, Q2, Q3) and c) the left and right children of the top

two nodes in the stack (S0L, S0R, S1L, S1R). We obtain the words (w) and POS-tags

(p) of all these 12 nodes. As for the CCG supertags, in addition to the CCG categories

(c) of the nodes in the stack (the top four nodes, the left and right children of the top

two nodes), we also obtain the lexical head categories (S0Hc, S1Hc) for the top two

nodes.

All the above features are common to the feature set used for English. In addition

to these features we extract lemma (l) and coarse POS-tags (t) for the top two nodes

in the stack (S0, S1) and the next two nodes in the input (Q0, Q1). We also obtain

morphological features (m) for the top two nodes in the stack (S0, S1). Each node

has three morphological features in the form of suffix, case marker and head/non-head
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node of the chunk. So, in total we have 48 features: 12 word, 12 POS-tag, 10 CCG

supertag, 4 lemma, 4 coarse POS-tag and 6 morphological features. Table 7.1 gives

the list of word, POS-tag and CCG category features for the English parser which is

common to Hindi parser. The list of all the additional features used for Hindi CCG

parsing is presented in Table 7.10. We use a special token ‘NULL’ if a feature is not

present in the parser configuration.

Types Features

lemma S0l, S1l, Q0l, Q1l

coarse POS-tags S0t, S1t, Q0t, Q1t

Morphological Features S0m, S1m

Table 7.10: Additional feature templates for Hindi CCG parser.

7.5.2 Word Embeddings

For each of these 48 features we obtain their corresponding embeddings. Since there

are no publicly available word embeddings for Hindi, we created word embeddings

using Word2Vec (Mikolov et al., 2013a,b). For words not in the word embeddings

dictionary, the embedding of an ‘-UNKNOWN-’ token is used as a backoff. For other

features (lemma, POS-tags, coarse POS-tags, morphological features, CCG supertags)

the parameters are randomly initialized within (-0.01, 0.01). We use 50 dimensional

word embeddings for our experiments. As a result our input layer is a 48 (feature

templates) × 50 (embedding size) dimensional vector.

7.6 Experiments and Results: Hindi

Similar to the English experiments, we first compare our neural network parser

(NNPar) with a perceptron based parser in the greedy setting. Then we analyze

the impact of a beam using neural network (NNPar) and structured neural network

(Structured NNPar) models. Since we don’t have neural network taggers for Hindi we

don’t do any experiments studying their impact.
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7.6.1 Data and Settings

We use the Hindi CCGbank training, development and testing splits for our experi-

ments. We experiment with both gold and automatic POS-tag and chunk features. In

both cases, CCG supertags are automatically assigned using word, POS-tag, chunk tag

and other features. The details of the Hindi supertagger are presented in 5.4.2. Our ex-

periments in Chapter 5 showed that because of sparsity issues and smaller amounts of

training data, coarse-grained lexicon gave better parsing results than the fine-grained

lexicon. So, we experiment only with coarse-grained lexicon in this section.

Similar to the English experiments, in the case of POS-tags, we consider the first

best tag given by the POS tagger. For CCG supertags, instead of a supertagger which

provides a single best supertag, we use a multitagger which gives n-best supertags

for a word. Following Zhang and Clark (2011a) and Xu et al. (2014), only during

training, the gold CCG lexical category is added to the list of supertags for a word if it

is not present in the list assigned by the multitagger. All feature tuning is done on the

development data and the settings which gave the best results on the development data

are directly used for the testing data.

7.6.2 Parsing Model

In this section, we compare the performance of perceptron based parser (Z&C*) and

neural network based parser (NNPar). We explore the greedy setting (beam=1) in this

section. Both parsers use maximum entropy taggers.

Table 7.11 presents the unlabelled F-score (UF), labelled F-score (LF) and lexical

category accuracy (Cat Acc.) for the Z&C* and NNPar on the Hindi CCGbank testing

data. First block (first three columns) presents the results with gold features and the

second block (last three columns) shows the results with automatic features. NNPar

outperformed Z&C* on all the metrics in both settings. With automatic features we

obtained the final best results of 83.57% in UF and 74.14% in LF with our NNPar. This

is an improvement of 2.14% in UF and 2.97% in LF over Z&C*. This observation is

inline with the Chen and Manning (2014)’s dependency parsing results and similar to

the results we obtained for English.
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Model
Gold Auto

UF LF Cat Acc. UF LF Cat Acc.

Z&C* 85.47 75.89 87.55 81.43 71.17 83.83

NNPar 86.56 77.98 89.12 83.57 74.14 86.29

Table 7.11: Impact of neural network model on greedy Hindi CCG parsing.

Model Beam
Gold Auto

UF LF Cat Acc. UF LF Cat Acc.

Z&C* 1 85.47 75.89 87.55 81.43 71.17 83.83

NNPar 1 86.56 77.98 89.12 83.57 74.14 86.29

Z&C* 16 89.12 81.74 91.16 85.60 77.32 87.64

NNPar 16 87.74 79.23 89.62 84.75 75.52 86.95

Structured NNPar 16 88.10 79.94 90.05 85.10 75.86 86.98

Table 7.12: Impact of beam on Hindi CCG parsing.
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7.6.3 Beam Search

Next, we analyze the impact of beam-search on various parsers. For Z&C* and Struc-

tured NNPar, we use a beam of size 16 both during training and testing; for NNPar, a

beam (of 16) can be used only during testing. Table 7.12 presents the results using a

beam size of 16. For comparison we also present the results of the greedy parsers. The

top 2 rows of the table show the results of greedy parsers and the last 3 rows present

the results of beam-search parsers.

Using a beam improved the performance of both the perceptron and neural network

parsers. Improvements are much larger for Z&C* ( 6%) compared to NNPar ( 1-2%).

Since NNPar uses a beam only during testing, there is only a slight improvement in

the F-score. Using a structured neural network gave further improvements but the

Z&C* gave the best results. We obtained a final LF of 77.32% with automatic features

using Z&C*. Structured NNPar performs better than NNPar even for Hindi. But it

didn’t give F-scores comparable to Z&C* for Hindi. Unlike English, we are capturing

much richer information in the form of word, lemma, POS-tag, coarse POS-tag and

morphological features with just 200 hidden units. Maybe improving the neural

network architecture and the number of hidden units similar to Weiss et al. (2015) and

exploring better ways of providing morphological features like Alberti et al. (2015)

might give better results for Hindi.

7.6.4 Label-wise Impact

Table 7.13 presents the results for the top 10 most frequent CCG categories for Hindi.

The first two columns show the results for greedy parsers described in 7.6.2. The last

three columns present the results for beam-search parsers described in 7.6.3. For all

the categories NNPar gave better results than Z&C* in the greedy settings. There are

improvements of around 3% for NP conjuncts or genitive markers ((NP/NP)\NP) and

Post-position markers for adjunct nouns ((S f /S f )\NP). As for the beam, Z&C* gave

better F-scores for most of the categories (8/10). There are minor differences in the

performance between Z&C* and Structured NNPar for the top eight categories. But

the difference is significant in the case of verbal arguments ((S f \NP)\NP).



7.7. Conclusion 157

Category
Greedy Beam

Z&C* NNPar Z&C* NNPar Structured

NNPar

NP/NP 79.01 82.36 83.67 82.76 83.72

S f \S f 84.04 87.20 91.07 90.48 91.19

NP\NP 81.10 82.72 83.49 82.94 82.44

(S f /S f )\NP 77.73 78.54 81.91 78.77 80.74

(S f /S f )\NP 73.08 76.43 79.87 77.65 79.14

(NP/NP)\NP 77.93 80.10 82.17 80.47 81.00

(NP/NP)\NP 73.26 76.68 77.55 77.05 77.51

S f /S f 68.30 72.45 73.53 72.30 73.50

(S f \NP)\NP 61.87 64.28 67.62 66.06 65.89

(S f \NP)\NP 58.17 63.61 68.55 67.04 65.89

Table 7.13: Label-wise F-score for top 10 most frequent CCG categories for Hindi.

7.6.5 Speed

Similar to English, our NNPar is more efficient in terms of parsing speed in the greedy

settings. Table 7.14 presents the speed comparison for both Z&C* and our NNPar.

NNPar is much faster, parsing 485 sentences per second compared to Z&C* which

parses 210 sentences per second. Note that similar to English, these numbers only

include parsing time and do not include tagging time.

7.7 Conclusion

We presented the first neural network based shift-reduce parsers for CCG, a greedy

and a beam-search parser. We explored neural network based tagging models as well

as parsing models, and a structured neural network model. For English, on the standard

CCGbank test data, we achieved a labelled F-score of 85.57% with our structured neu-
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Model Sentences/Second

Z&C* 210

NNPar 485

Table 7.14: Speed comparison of perceptron based and neural network based parsers.

ral network parser which gave comparable accuracies to structured perceptron parser

(85.59%). Our greedy parser gets UF and LF of 89.78% and 83.27% respectively,

the best reported results for a greedy CCG parser, and is more than three times faster

than its perceptron counterpart. We also found that neural network taggers gave better

results than maximum entropy based C&C taggers for our experiments.

We observed similar results with Hindi parsing as well. In greedy settings, the

neural network parser is both more efficient (more than two times faster) and more

accurate (3% better) than the perceptron parser. When we use a beam, the structured

neural network gave better results than the basic neural network model. However, the

structured perceptron gave the best results compared to the structured neural network

model for Hindi.

In general, in greedy settings, the neural network parser performed better than the

perceptron parser. With the use of a beam, the structured neural network parser per-

formed better than the basic neural network parser. Also, neural network taggers gave

better results than the maximum entropy taggers. In the case of a beam, the structured

neural network model gave comparable accuracies to the structured perceptron model

for English and slighlty lower results for Hindi. In the future we plan to explore more

complex models like deep neural networks with more than one hidden layer (Weiss

et al., 2015), and recurrent neural networks (Dyer et al., 2015) for CCG parsing.
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Conclusion

We presented an incremental algorithm for parsing Combinatory Categorial Grammar

(CCG) for two diverse languages: English and Hindi in this thesis. English is a fixed

word order and morphologically simple language, whereas, Hindi is a free word or-

der and morphologically rich language. We showed that CCG is incremental enough

for developing a practically useful incremental parser. Also, ours is the first broad

coverage incremental parser for a verb final language, Hindi. Our algorithm builds a

dependency graph in parallel to the CCG derivation which is used for revealing the

unbuilt structure. Though we used dependencies for meaning representation and CCG

for parsing, our revealing technique can be applied to other meaning representations

like lambda expressions and for non-CCG parsing like phrase structure parsing. This

thesis was divided into three parts each dealing with a major module of the statistical

parser: data (Chapters 2, 3), parsing algorithm (Chapters 4, 5, 6) and learning algo-

rithm (Chapter 7).

In Chapter 2, we presented an approach for automatically creating a CCGbank from

a dependency treebank for Hindi. We created two types of lexicon: fine-grained which

keeps morphological information in noun and verb categories and coarse-grained

which doesn’t. We provided a detailed analysis of various long-range dependencies

like coordinate and relative constructions, and showed how to handle them in CCG.

Our approach for converting dependency treebanks to CCGbanks has already been

successfully applied to Telugu, another Indian language (Kumari and Rao, 2015). Our

approach is generic enough to extract CCG lexicons and/or CCGbanks for the many

other languages for which dependency treebanks are available, including the languages

of the CoNLL dependency parsing shared tasks (Buchholz and Marsi, 2006; Nivre

et al., 2007a) and universal dependency treebanks (McDonald et al., 2013).
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In Chapter 3, We showed that informative CCG categories improve the perfor-

mance of dependency parsers like Malt and MST. CCG categories improved the over-

all accuracy of both parsers by around 0.3-0.5% in all experiments. Our experiments

showed that adding CCG categories as features to these dependency parsers helped in

recovering long distance relations for Malt and verbal arguments for MST. This result

is particularly interesting in the case of Malt, a greedy parser, as we get improvements

in performance without compromising speed and hence can be applicable to web scale

processing. Our results apply both to English, a fixed word order and morphologically

simple language, and to Hindi, a free word order and morphologically rich language,

indicating that CCG categories from a supertagger are an easy and robust way of intro-

ducing lexicalized subcategorization information into dependency parsers. Though we

worked on English and Hindi, our approach can be applied for other languages such

as Turkish, German etc. for which both dependency and CCG resources are available.

Kumari and Rao (2015) already used our technique to improve Telugu dependency

parser.

We presented a novel algorithm for incremental transition-based CCG parsing for

English and Hindi in chapters 4 and 5. We introduced two new actions into the shift-

reduce paradigm which reveal the unbuilt structure. We presented two versions of

incremental parsers. The first one is a greedy parser which uses a look-ahead. And

the second one is a beam-search parser which doesn’t use a look-ahead. The first one

gives a nice trade-off between accuracy and speed and hence is useful for practical real-

time applications. Whereas the second one is more useful for psycholinguistic studies.

Our incremental algorithm models transitions rather than incremental derivations, and

hence we don’t need an incremental CCGbank. Our approach can therefore be adapted

to languages with dependency treebanks, since CCG lexical categories can be easily

extracted from dependency treebanks (Cakici, 2005). We presented the first and basic

version of the incremental algorithm for parsing Hindi, a verb final language. We can

improve the algorithm to handle morphological richness and free word order nature of

Hindi by using a lexicon similar to Baldridge (2002) and by introducing new actions

for handling coordination.

In Chapter 6 we showed how these incremental parsers can be useful for a practical

application like assessing relative sentence complexity. Given a pair of sentences from

wikipedia and simple wikipedia, we built a classifier which predicts if one sentence is

simpler or more complex than the other. We showed that features from a CCG parser

in general and incremental CCG parser in particular are more useful than a chart-based
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phrase structure parser both in terms of speed (12 times faster) and accuracy (0.44%

better). In this work we only studied the impact of incremental parsers for practical

applications. In future we can analyze the usefulness of our incremental parser for

psycholinguistic studies.

Finally in Chapter 7, we presented the first neural network based transition-based

parser for CCG. We explored neural network based tagging models as well as parsing

models, and a structured neural network model. For English, on the standard CCGbank

test data, we achieved a labelled F-score of 85.57% with our structured neural network

parser which gave comparable accuracies to a structured perceptron parser (85.59%).

Our greedy parser gave unlabelled and labelled F-scores of 89.78% and 83.27% re-

spectively, the best reported results for a greedy CCG parser, and is more than three

times faster. We observed similar improvements for Hindi CCG parsing as well. In

general in greedy settings, the neural network parser performed better than the percep-

tron based parser. With the use of a beam, structured neural network parser performed

better than the basic neural network parser. Also, neural network taggers gave better

results than maximum entropy taggers. We plan to explore more complex models like

recurrent neural networks (Dyer et al., 2015) and deep neural networks (Weiss et al.,

2015) in future.
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Appendix A

Hindi Tagset and CCGbank Format

A.1 Hindi POS, chunk and dependency tagset

The following is the list of pos tags, chunk tags and dependency labels used in Hindi

treebank. For complete description, see the pos, chunk1 and dependency guidelines2

Sl No. Category Tag name

1.1 Noun NN

1.2 Locative Noun NST

2. Proper Noun NNP

3.1 Pronoun PRP

3.2 Demonstrative DEM

4 Verb-finite VM

5 Verb Aux VAUX

6 Adjective JJ

7 Adverb RB

1http://ltrc.iiit.ac.in/MachineTrans/publications/technicalReports/tr031/
posguidelines.pdf

2http://ltrc.iiit.ac.in/MachineTrans/research/tb/DS-guidelines/
DS-guidelines-ver2-28-05-09.pdf
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8 Post position PSP

9 Particles RP

10 Conjuncts CC

11 Question Words WQ

12.1 Quantifiers QF

12.2 Cardinal QC

12.3 Ordinal QO

12.4 Classifier CL

13 Intensifier INTF

14 Interjection INJ

15 Negation NEG

16 Quotative UT

17 Symbols SYM

18 Compounds *C

19 Reduplicative RDP

20 Echo ECH

21 Unknown UNK

Table A.1: Hindi POS Tagset

Sl. No Chunk Type Tag Name

1 Noun Chunk NP

2.1 Finite Verb Chunk VGF
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2.2 Non-finite Verb Chunk VGNF

2.3 Infinitival Verb Chunk VGINF

2.4 Verb Chunk (Gerund) VGNN

3 Adjectival Chunk JJP

4 Adverb Chunk RBP

5 Chunk for Negatives NEGP

6 Conjuncts CCP

7 Chunk Fragments FRAGP

8 Miscellaneous BLK

Table A.2: Hindi Chunk Tagset

Hindi depenency label English
Equivalent

Description

k1 (kartha) SUBJ Subject/Agent

k1s (samanadhikarana) SCOM Noun complements of kartha

k2 (karma) OBJ Object/Patient

k3 (karana) INST Instrument

k4 (sampradaana) RCPT Recipient

k5 (apaadaana) SRC Source

k7t (kaalaadhikarana) TIME Time Expression

k7p (deshadhikarana) PLACE Place Expression

r6 (shashthi) GEN Possessive/Genitive marker
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nmod relc RELC Relative Clause

vmod VMOD Verbal Modifier

nmod NMOD Noun Modifier

nmod adj AMOD Adjectival modifier of a noun

lwg psp CASE Case marker

lwg aux AUX Auxiliary verb or Tense, Aspect and

Modality marker for verb

pof POF Part-OF units such as conjunct verbs

rs NELB Noun Elaboration

r6-k1 CSUB SUBJ of conjunct verb

r6-k2 COBJ OBJ of conjunct verb

Table A.3: Hindi dependency labels and their English equivalents.

A.2 Hindi CCGbank: Machine-readable Format

CCG derivation for the first sentence in the Hindi dependency treebank guidelines

using fine-grained lexicon is given below. We follow the format of Hockenmaier and

Steedman (2007) for representing the binary CCG derivation trees with the bracketed

notation.

(< T S f 1 2> (< T NP[ne] 0 2> (< L NP NNP NNP raam NP>) (< L NP[ne]\NP

PSP PSP ne NP[ne]\NP>) ) (< T S f \NP[ne] 1 2> (< T NP[ko] 0 2> (< L

NP NNP NNP mohan NP>) (< L NP[ko]\NP PSP PSP ko NP[ko]\NP>) ) (< T

(S f \NP[ne])\NP[ko] 1 2> (< T NP[0] 1 2> (< L NP/NP JJ JJ niilii NP/NP>) (<

L NP[0] NN NN kitaab NP[0]>) ) (< L ((S f \NP[ne])\NP[ko])\NP[0] VM VM dii

((S f \NP[ne])\NP[ko])\NP[0]>) ) ) )

There are two types of nodes in the derivation trees: Leaf nodes and Non-leaf
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nodes. Leaf nodes have six fields.

<L NP[ne] NNP NNP raam NP[ne]>

<L CCGCat mod-POS-tag orig-POS-tag word CCGCat2>

L represents that it is a leaf node. CCGCat is the CCG category of the node. Unlike

English, POS tag is not modified during the conversion of dependency trees to CCG

derivations. So, in Hindi CCGbank, mod-POS-tag and orig-POS-tag both represent

the POS tag of the word. Lexical item is represented using word field. In English

CCGbank, CCGCat2 slot is used to represent predicate-argument structure of the CCG

category. In Hindi CCGbank, we just use the lexical CCG category to fill this slot.

Non-leaf nodes have four fields. T represents that the node is a non-leaf node.

CCGCat is the CCG category of the node. head takes two values: 0 if the left node is

the head and 1 if the right node is the head. Since the CCG derivation trees are binary

trees, children field will have 1 or 2 based on whether there are one or two children.

Example non-leaf node is given below.

<T NP[ne] 0 2

<T CCGCat head children

ROOT raam ne mohan ko niilii kitaab dii
Ram ERG Mohan to black book give-past-fem

ROOT

OBJ

RCPT

SUBJ

CASE CASE
AMOD

[NP raam ne] [NP mohan ko] [NP niillii kitaab] [S f dii]

NP NP[ne]\NP NP NP[ko]\NP NP/NP NP[0] ((S f \NP[ne])\NP[ko])\NP[0]
< < >

NP[ne] NP[ko] NP[0]
<

(S f \NP[ne])\NP[ko]
<

S f \NP[ne]
<

S f
‘Ram gave a black book to Mohan.’

Figure A.1: Example dependency tree and CCG derivation (Fine-grained).

CCG derivation tree with coarse-grained lexicon is provided below in machine

readable format along with the dependency tree and derivation.
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(< T S f 1 2> (< T NP 0 2> (< L NP NNP NNP raam NP>) (< L NP\NP PSP PSP

ne NP\NP>) ) (< T S f \NP 1 2> (< T NP 0 2> (< L NP NNP NNP mohan NP>)

(< L NP\NP PSP PSP ko NP\NP>) ) (< T (S f \NP)\NP 1 2> (< T NP 1 2> (< L

NP/NP JJ JJ niilii NP/NP>) (< L NP NN NN kitaab NP>) ) (< L ((S f \NP)\NP)\NP

VM VM dii ((S f \NP)\NP)\NP>) ) ) )

ROOT raam ne mohan ko niilii kitaab dii
Ram ERG Mohan to black book give-past-fem

ROOT

OBJ

RCPT

SUBJ

CASE CASE
AMOD

[NP raam ne] [NP mohan ko] [NP niillii kitaab] [S f dii]

NP NP\NP NP NP\NP NP/NP NP ((S f \NP)\NP)\NP
< < >

NP NP NP
<

(S f \NP)\NP
<

S f \NP
<

S f
‘Ram gave a black book to Mohan.’

Figure A.2: Example dependency tree and CCG derivation (Coarse-grained).
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N., and Lee, J. (2013). Universal Dependency Annotation for Multilingual Parsing.

In Proceedings of the 51st Annual Meeting of the Association for Computational

Linguistics (Volume 2: Short Papers), pages 92–97, Sofia, Bulgaria. Association for

Computational Linguistics.

McDonald, R., Pereira, F., Ribarov, K., and Hajic, J. (2005b). Non-Projective Depen-

dency Parsing using Spanning Tree Algorithms. In Proceedings of Human Language

Technology Conference and Conference on Empirical Methods in Natural Language

Processing, pages 523–530, Vancouver, British Columbia, Canada. Association for

Computational Linguistics.

Meyers, A., Reeves, R., Macleod, C., Szekely, R., Zielinska, V., Young, B., and Gr-

ishman, R. (2004). The NomBank Project: An Interim Report. In Meyers, A.,

editor, HLT-NAACL 2004 Workshop: Frontiers in Corpus Annotation, pages 24–31,

Boston, Massachusetts, USA. Association for Computational Linguistics.

Mikolov, T. (2012). Statistical Language Models Based on Neural Networks. PhD

thesis, Brno University of Technology.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Efficient Estimation of Word

Representations in Vector Space. In Proceedings of Workshop at ICLR.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013b). Distributed

Representations of Words and Phrases and their Compositionality. In Advances in

Neural Information Processing Systems 26, pages 3111–3119. Curran Associates,

Inc.

Miyao, Y. and Tsujii, J. (2008). Feature forest models for probabilistic HPSG parsing.

Computational Linguistics, 34(1):35–80.



Bibliography 185

Mnih, A. and Hinton, G. (2009). A Scalable Hierarchical Distributed Language Model.

In Advances in Neural Information Processing Systems, volume 21, pages 1081–

1088.

Mohanan, K. P. (1982). Grammatical relations in Malayalam. In Joan Bresnan (ed.),

The Mental Representation of Grammatical Relations.

Mohanan, T. (1994). Argument Structure in Hindi. CSLI Publications.

Nivre, J. (2003). An Efficient Algorithm for Projective Dependency Parsing. In Pro-

ceedings of the 8th International Workshop on Parsing Technologies (IWPT, pages

149–160.

Nivre, J. (2004). Incrementality in Deterministic Dependency Parsing. In Keller, F.,

Clark, S., Crocker, M., and Steedman, M., editors, Proceedings of the ACL Work-

shop Incremental Parsing: Bringing Engineering and Cognition Together, pages

50–57, Barcelona, Spain. Association for Computational Linguistics.

Nivre, J. (2008). Algorithms for deterministic incremental dependency parsing. Com-

putational Linguistics, 34(4):513–553.

Nivre, J. (2009). Non-Projective Dependency Parsing in Expected Linear Time. In

Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the

4th International Joint Conference on Natural Language Processing of the AFNLP,

pages 351–359, Suntec, Singapore. Association for Computational Linguistics.
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Tübingen, Germany.

Vajjala, S. and Meurers, D. (2014). Assessing the relative reading level of sentence

pairs for text simplification. In Proceedings of the 14th Conference of the European

Chapter of the Association for Computational Linguistics, pages 288–297, Gothen-

burg, Sweden. Association for Computational Linguistics.

Wang, W. and Harper, M. (2003). Language Modeling Using a Statistical Depen-

dency Grammar Parser. In Proceedings of the International Workshop on Automatic

Speech Recognition and Understanding, US Virgin Islands.

Watanabe, T. and Sumita, E. (2015). Transition-based Neural Constituent Parsing.

In Proceedings of the 53rd Annual Meeting of the Association for Computational

Linguistics and the 7th International Joint Conference on Natural Language Pro-

cessing (Volume 1: Long Papers), pages 1169–1179, Beijing, China. Association

for Computational Linguistics.

Weiss, D., Alberti, C., Collins, M., and Petrov, S. (2015). Structured Training for Neu-

ral Network Transition-Based Parsing. In Proceedings of the 53rd Annual Meeting of



190 Bibliography

the Association for Computational Linguistics and the 7th International Joint Con-

ference on Natural Language Processing (Volume 1: Long Papers), pages 323–333,

Beijing, China. Association for Computational Linguistics.

Wilson, M. (1988). MRC Psycholinguistic Database: Machine-usable dictionary, ver-

sion 2.00. Behavior Research Methods, Instruments, & Computers, 20(1):6–10.

Woodsend, K. and Lapata, M. (2011). WikiSimple: Automatic Simplification of

Wikipedia Articles. In Proceedings of the Twenty-Fifth AAAI Conference on Ar-

tificial Intelligence (AAAI), pages 927–932, San Francisco, California, USA.

Wubben, S., van den Bosch, A., and Krahmer, E. (2012). Sentence Simplification

by Monolingual Machine Translation. In Proceedings of the 50th Annual Meeting

of the Association for Computational Linguistics (Volume 1: Long Papers), pages

1015–1024, Jeju Island, Korea. Association for Computational Linguistics.

Xu, W., Auli, M., and Clark, S. (2015a). CCG Supertagging with a Recurrent Neural

Network. In Proceedings of the 53rd Annual Meeting of the Association for Compu-

tational Linguistics and the 7th International Joint Conference on Natural Language

Processing (Volume 2: Short Papers), pages 250–255, Beijing, China. Association

for Computational Linguistics.

Xu, W., Callison-Burch, C., and Napoles, C. (2015b). Problems in Current Text Sim-

plification Research: New Data Can Help. Transactions of the Association for Com-

putational Linguistics, 3:283–297.

Xu, W., Clark, S., and Auli, M. (2016). Shift-Reduce CCG Parsing with Recurrent

Neural Networks and Expected F-Measure Training. In Proceedings of the 2016

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, San Diego, California. Association for

Computational Linguistics.

Xu, W., Clark, S., and Zhang, Y. (2014). Shift-Reduce CCG Parsing with a Depen-

dency Model. In Proceedings of the 52nd Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers), pages 218–227, Baltimore,

Maryland. Association for Computational Linguistics.

Xue, N., Xia, F., Chiou, F.-D., and Palmer, M. (2005). The Penn Chinese Tree-

Bank: Phrase structure annotation of a large corpus. Natural language engineering,

11(02):207–238.



Bibliography 191

Yamada, H. and Matsumoto, Y. (2003). Statistical Dependency Analysis with Support

Vector Machines. In Proceedings of the Eighth International Workshop on Parsing

Technology, pages 195–206.

Zhang, H., Huang, L., Zhao, K., and McDonald, R. (2013). Online Learning for

Inexact Hypergraph Search. In Proceedings of the conference on Empirical methods

in natural language processing.

Zhang, Y. and Clark, S. (2008). A Tale of Two Parsers: Investigating and Combining

Graph-based and Transition-based Dependency Parsing. In Proceedings of the 2008

Conference on Empirical Methods in Natural Language Processing, pages 562–571,

Honolulu, Hawaii. Association for Computational Linguistics.

Zhang, Y. and Clark, S. (2011a). Shift-Reduce CCG Parsing. In Proceedings of the

49th Annual Meeting of the Association for Computational Linguistics: Human Lan-

guage Technologies, pages 683–692, Portland, Oregon, USA. Association for Com-

putational Linguistics.

Zhang, Y. and Clark, S. (2011b). Syntactic Processing Using the Generalized Percep-

tron and Beam Search. Computational Linguistics, 37:105–151.

Zhang, Y. and Nivre, J. (2011). Transition-based Dependency Parsing with Rich Non-

local Features. In Proceedings of the 49th Annual Meeting of the Association for

Computational Linguistics: Human Language Technologies, pages 188–193, Port-

land, Oregon, USA. Association for Computational Linguistics.

Zhang, Y. and Nivre, J. (2012). Analyzing the Effect of Global Learning and Beam-

Search on Transition-Based Dependency Parsing. In Proceedings of COLING 2012:

Posters, pages 1391–1400, Mumbai, India. The COLING 2012 Organizing Commit-

tee.

Zhou, H., Zhang, Y., Huang, S., and Chen, J. (2015). A Neural Probabilistic

Structured-Prediction Model for Transition-Based Dependency Parsing. In Proceed-

ings of the 53rd Annual Meeting of the Association for Computational Linguistics

and the 7th International Joint Conference on Natural Language Processing (Vol-

ume 1: Long Papers), pages 1213–1222, Beijing, China. Association for Computa-

tional Linguistics.



192 Bibliography

Zhu, Z., Bernhard, D., and Gurevych, I. (2010). A Monolingual Tree-based Trans-

lation Model for Sentence Simplification. In Proceedings of the 23rd International

Conference on Computational Linguistics (Coling 2010), pages 1353–1361, Beijing,

China. Coling 2010 Organizing Committee.


	cover sheet
	Thesis
	Introduction
	Contributions
	Combinatory Categorial Grammar
	Problem and Approach
	Data
	Parsing Algorithm
	Learning Algorithm

	Thesis Outline

	Hindi CCGbank from Dependency Treebank
	Introduction
	Related Work
	Hindi Dependency Treebank
	Hindi Language
	Paninian Grammatical Model
	Treebank

	Extracting a CCG Lexicon
	Morphological Markers

	CCG Lexicon to Treebank conversion
	Coordination Constructions
	``Non-Projective'' Constructions
	Clausal Complements
	Relative Clause Constructions
	Topicalization
	Paired Connectives
	Genitives and Dislocated/Discontinuous Genitives
	Others

	Analysis of the Hindi CCGbank
	Conclusion

	Improving Dependency Parsers using CCG Supertags
	Introduction
	Related Work
	Grammar Formalisms
	Data and Tools: English
	Treebanks
	Supertagger
	Dependency Parsers

	Data and Tools: Hindi
	Treebanks
	Supertagger
	Dependency Parsers

	CCG Categories as Features to Malt and MST
	Experiments with Gold Categories
	Experiments with Supertagger output
	Analysis: English
	Analysis: Hindi

	Discussion
	Impact on Web Scale Parsing

	Conclusion and Future Direction

	Incremental Parsing for English
	Introduction
	Related Work
	CCG Parsers
	Greedy Parsers
	Incremental Parsers

	Algorithms
	Non Incremental Algorithm (NonInc)
	Revealing based Incremental Algorithm (RevInc)

	Experiments and Results
	Data and Settings
	Connectedness and Waiting Time
	Greedy
	Beam
	No Look-ahead
	Final Test Results
	Label-wise Impact
	Speed

	Conclusion

	Incremental Parsing for Hindi
	Introduction
	Related Work
	CCG Parsing
	Hindi Dependency Parsing

	Algorithms
	Non Incremental Algorithm (NonInc)
	Revealing based Incremental Algorithm (RevInc)

	Tools and Settings
	Shallow Parser
	Supertagger

	Experiments and Results: NonInc
	Data and Settings
	Impact of Morphological Features
	Lexicon and Beam
	Automatic Features

	Experiments and Results: RevInc
	Greedy
	Beam
	No Look-Ahead
	Analysis

	Conclusion

	Assessing Relative Sentence Complexity using Incremental Parsers
	Introduction
	Problem Formulation
	Incremental CCG Parse Features
	CCG vs. PST
	Incremental CCG
	Features

	Experimental Setup
	Evaluation Data
	Implementation details
	Baseline: Non-Incremental PST

	Results
	Speed

	Conclusion

	Transition-based CCG Parsing using Neural Network Models
	Introduction
	Related Work
	Word Embeddings
	Neural Network Parsers

	Our Neural Network Parser (NNPar): English
	Layers
	Feature and Model Settings
	Structured Neural Network
	Comparison to Chen and Manning (2014)

	Experiments and Results: English
	Data and Settings
	Parsing Model
	Parsing Algorithm
	Taggers
	Beam Search
	Final Test Results
	Label-wise Impact
	Speed

	Our Neural Network Parser (NNPar): Hindi
	Features
	Word Embeddings

	Experiments and Results: Hindi
	Data and Settings
	Parsing Model
	Beam Search
	Label-wise Impact
	Speed

	Conclusion

	Conclusion
	Hindi Tagset and CCGbank Format
	Hindi POS, chunk and dependency tagset
	Hindi CCGbank: Machine-readable Format

	Bibliography


