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Abstract 

This thesis investigates various aspects of the relation between the lattice and 

continuum formulations of quantum field theories, in particular QCD. The aim of 

this is to gain a better insight into the theory of QCD, and to be able to relate 

more accurately the numbers obtained from lattice simulations to experimental 

values for physical quantities. 

The first part of this thesis (chapters 1 and 2) gives a general introduction to 

quantum field theory, with emphasis on the lattice formulation of QCD. The first 

chapter describes the functional integral formulation of gauge theories and how it 

can be used to study these theories non-perturbatively by discretising the space-

time variables. 

The second chapter discusses the principles behind the renormalisation of these 

theories. The Ward and Slavnov—Taylor identities that are preserved non-pertur-

batively, and can be invoked when renormalising the theory, are derived. The final 

part of this chapter discusses the renormalisation of composite operators, using 

both perturbative and non-perturbative methods. In particular, it is shown how 

the chiral Ward identities can be used to extract renormalisation constants for the 

axial and vector currents and the ratio of the scalar to the pseudoscalar density. 

In chapter 3, results for ZA, Zv and Zp/Z s  at 0 = 6.2 are presented and their 

effects on calculations of physical quantities like decay constants are dicussed. 

The final chapter investigates the quark—gluon vertex. The form factors of the 

off-shell vertex function, and the symmetries and Slavnov—Taylor identities that 

may be used to reduce these form factors, are discussed. I then outline a method 

for extracting the running coupling from the vertex function. This also includes 

a discussion of the quark and gluon field renormalisation. 

Details of computation and results for the vertex function in the Landau gauge 



are then presented, and these results are compared with other determinations of 

the running coupling and with other more general studies of the vertex function. 
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Chapter 1 

Quantum field theory and lattice QCD 

1.1 Basic philosophical idea 

Quantum field theory claims to describe the basic constitution of the world, pro-

viding the principles underlying all matter and forces the 'basic matter' and 

'basic force'. Although its current incarnation, the Standard Model, is not a fi-

nal theory (it must be supplemented with general relativity, for one thing), most 

improvements and suggestions for further developments of the Standard Model 

are formulated within the framework of quantum field theory. The entities it con-

cerns itself with are remote from ordinary life - their typical scales are 15 levels 

of magnitude down, at the subatomic and subnuclear level, and most of them are 

only 'observed' in big, complex detectors in big accelerators. Much of lattice QCD 

concerns itself with bridging the first part of the gap with the macroscopic world 

- constructing hadrons and hadronic physics from the world of quark and gluon 

fields. 

The essence of the world as described by quantum field theory has some notable 

features, distinguishing it from previous fundamental theories, which describe the 

world at more 'normal' scales. 

Matter and force are treated on the same footing, so the 'basic matter' and the 

1 
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'basic force' are much the same kind of entity. There is a rough identification of 

matter with fermions and of force with (gauge) bosons, but even that is no longer 

the case in supersymmetric theories. 

The basic entities of the theory are fields, derived from a mathematical language 

originally used for describing and explaining forces. More precisely, the basic 

entities are operator fields, which create and destroy particle - 'matter' - states. 

This may be the first time in fundamental physics since Aristotle that forces have 

taken priority over matter. 

Rather than individual particles, it is the species of particles that is considered 

primary, since each field corresponds to one particle species - undermining the 

individuality that has traditionally been seen as a defining property of matter. 

The entities that are considered fundamental by the theory are not those that 

can be 'observed' by experiment. Since it is not possible to separate a particle or 

field from its interactions, the fields and parameters must be renormalised so that 

everything is described in terms of the 'observable' fields which are dressed with 

self-interactions. Much of this thesis concerns itself with this aspect of the theory. 

1.2 Functional integral formalism 

The dynamics of the fields (and the corresponding particles) are determined by the 

action S, which is a functional of the fields. The action must satisfy the conditions 

of locality, microcausality and Poincaré invariance. Specifically, the requirement 

of locality implies that the action can be written as an integral S = f d4 xL(x) of 

the Lagrangian £, which is a function of the fields and their derivatives. 

There are two formalisms commonly used for quantising field theories. The canon- 

ical operator formalism treats the fields as operators which create and destroy 

particles, and imposes commutation relations between them, like the equal time 
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commutator between fields and canonical momenta, or Heisenberg's equation of 

motion. The functional integral formalism treats the fields as ordinary variables 

(or Grassmann variables in the case of fermionic fields) with a weight for each 

field configuration [] given by exp(iS[]). By integrating over all possible field 

configurations one can obtain the Green functions or vacuum expectation values 

of any product of field variables 

(OIT((xi)(x2). . . 

	

= f D(x1)(x2). .. 	 )[]  

where 1D refers to any field - scalar, spinor, vector or tensor - and x 1 , x 2 ,... are 

general coordinates, referring to both space—time and internal indices. 

The Green functions contain all the physical information of the theory. In partic-

ular, they are related to transition amplitudes between external n-particle states 

through the Lehmann—Symanzik—Zimmermann reduction formula 

(pip2 ... pn , out qiq2 ... qm ,in) 

(iz2)11 
j d 

4 y j  ... d4  x m exp(ip k yk - 1: Z* qkXk) 

	

X ( °yi + m2 ). . (E]xm  + m2)((y1) ... (x)) 	 (1.2) 

+ disconnected terms 

For fermionic fields, (0 + m 2 ) is replaced by the fermion operator (i + m). 

The Green functions can all be expressed in terms of the generating functional 

Z[J] = f V e t f d4xJ(x).(x) 	 (1.3) 

which gives 

g ( ' ) (x) 	((x)) 	= 	iSJ(x) 	
(1.4) 

J 
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S 	S 	I
g (2) (x1, X2) 	((X1)(X2)) 	 Z[J]  

- 	iSJ(x i ) iSJ(x 2 ) 

etc. 

We are normally interested only in the connected Green functions, which can be 

derived from the generating functional W[J] where 

	

Z[J] = e'" 	 (1.6) 

The one-particle irreducible (proper) Green functions F(')(x i ,. . . ,x,) can be de-

fined in terms of their corresponding Feynman diagrams: They are truncated (all 

external propagator legs are removed) and cannot be divided into subdiagrams 

by cutting one internal line. All Feynman diagrams and Green functions can be 

written in terms of proper functions. They can also be derived from the effective 

action F[], which is arrived at by a Legendre transformation of W[J] 

iF[] = W[J] - if d4xJ(x)(x) 	 (1.7) 

where 

(x) = 	W[J] 	 (1.8) 
iSJ(x) 

	

= J(x) = - 
SF 
	 (1.9) 
S(x) 

We then have 

[' 	(x 1 ,. . ., x 	
= 	

S 
) 	

S 	
(1.10)  

S O (X 

where cI = () are the classical fields. These proper functions are the building 

blocks of perturbation theory and the renormalisation programme. 
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1.3 Gauge theories 

1.3.1 The gauge principle 

In addition to the external space—time degrees of freedom (including Dirac and 

Lorentz indices for spinors and vectors /tensors), the matter fields have internal 

degrees of freedom, which can be expressed as one or more complex phases = 

oe_i9t. The physics of the system should be independent of how these phases 

are chosen, so it should be invariant under local changes of phase, or local gauge 

transformations. This leads to the introduction of gauge fields A a  and covariant 

derivatives D = D, + igV'A". The transformation of the matter fields 

(x) —* e_9taO(x) 	 (1.11) 

is compensated by the transformation of the gauge fields 

A(x) —+ e_zYtaO )(A,(x) — ô)ei9ta9), 	 (1.12) 

where A, 1 (x) = taA( x ). Then the covariant derivative of the matter field will 

transform in the same way as the matter field itself: 

D(x) —+ e_9tOOD,L T( x ) 	 (1.13) 

Alternatively, this can be understood as parallel transport in a general coordinate 

space. In this picture, the matter fields are vectors (fibre bundles) in the curved 

space of gauge coordinates. The connection between two adjacent fibre bundles 

is provided by the gauge field A — when a vector is parallel transported from x 

to x + dx, it picks up a phase igA,(x)dx,: 

(x + dx) = (x) + igA,(x)(x)dx 	 (1.14) 
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or, non-infinitesimally, 

= Pei9 fx (x)  

where path-ordering P means that the later points in the path come to the left. 

In this picture, gauge invariance can be seen to be an expression of translation 

invariance in this space. 

The dynamics of the gauge fields themselves is given by the Yang—Mills action 

LYM —TrF,,,FAv  

where F, = —[D, DJ is the field tensor (curvature tensor, in the geometric 

picture), which transforms as 

F(x) —+ e_jgtaGa()F'iv(x)C9taO), 	 (1.17) 

so L YM  is gauge invariant, as it should be. 

1.3.2 Quantising gauge theories 

The extra, unphysical gauge degrees of freedom lead to problems when one tries 

to quantise gauge theories, since the naive path integral will contain an infinite 

number of contributions from gauge equivalent configurations. This manifests 

itself in the propagator Dal (X 
— 

y) = (A(x)A(y)) being ill-defined, or its inverse 

FAA (x, y) singular.' To avoid this, we factor out the integration over the gauge 

is only really a problem when one tries to perform a saddle point approximation to the 
functional integral, ie in perturbation theory. If we instead, as in lattice simulations, evaluate 
the functional integral directly, the problem does not arise. 
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group by inserting 

1 = LFp[A(x)] J Dg(x)8(F[A(x)]), 	 (1.18) 

where F is a gauge non-invariant functional of A / L, into the path integral. After 

reordering, the full partition function for a pure gauge theory becomes 

Z = JVgJVA/ FP[A]S(F[A])e (1.19) 

Both the gauge fixing term S(F[A]) and the Faddeev—Popov term LFP[A]  can be 

expressed as exponentials of a local action. In particular, for a covariant gauge, 

Fa(x) = ôA(x) - Bc( x ), we can write 

JVB( x ) e_fd42  fJS(F2(x )) = e_fd42 	(1.20) 
x,a 

while 

 
LFp[A] 	

SF 
det - = det M = J DVe_ 

d4xd4y 	
b() 	 (1.21) 

So 

where a'(x) is the parameter for an infinitesimal gauge transformation, and , 'q 

are scalar anticommuting variables or ghosts. For the covariant gauge, this can 

be rewritten 

SFL( x ) = a(SA)(x) = aDsab( x ) 

SFa 
= 	= 	 (1.22) 

Sa t, 

Including Nf  flavours of fermion fields, the full Lagrangian for a gauge theory like 

Q CD in a covariant gauge is 

£(x) = L M (x) + £F(x)  + I(x) + jFP(x) 	(1.23) 
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where 

12'(x) = 7J(x)(i - m)b(x) 

£GF(x) = — 
1 
—(aA)2 
2 

= O,Yj(x)D(x) 

(1.24) 

(1.25) 

(1.26) 

and LYM  is given by (1.16) 

1.4 Euclidean quantum field theory 

The functional integral in Minkowski space is not well-defined and is ill-suited for 

numerical studies. Therefore, most numerical studies, both those using Dyson-

Schwinger equations and lattice simulations, are carried out in Euclidean space. 

The Euclidean action and functional integral are obtained from the Minkowski 

space equivalents by the substitutions 

f d4x -~ 	_ifd4 x E (1.27) 

(1.28) 

IYOAA 
—+ 	AE (1.29) 

AABA  _AE.BE (1.30) 

where a . b = >I'=i 	and the -y's satisfy 

EE _F  and 	'y —'Y1Y2'Y3'Y4 	 (1.31) 

Under this transformation, the proper Green functions are directly carried over 

to the Euclidean space, while the full, connected Green functionspick up a 

prefactor i ( _ 
z 
 )n 

This is equivalent to an analytic continuation (Wick rotation) x 0  —+ —ix4 of the 
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time variable in the complex plane. This continuation is valid provided the Green 

functions have no singularities in the third and first quadrant of the complex plane. 

This is usually true in perturbation theory, but not necessarily non-perturbatively. 

This problem may be overcome by defining the theory in Euclidean space and 

solving for the Euclidean position-space Green functions (Schwinger functions). 

These may then be continued back to Minkowski space - though quantities like 

masses and decay constants are invariant under the Wick rotation, so the analytic 

continuation to Minkowski space is not needed if this is all we are interested in. 

A necessary condition for the Euclidean theory to be well-defined (or the analytic 

continuation to Minkowski space to be possible) is reflection positivity, which 

means that 

((®F)F>O 
	

(1.32) 

where 

OF(x, t) = F(x, -t) 	 (1.33) 

for any functional F which depends only on the fields at positive times. This 

is specifically a statement about Schwinger functions, and is the Euclidean-space 

version of the spectral condition and requirement that the scalar product in Hilbert 

space is positive. 

The Euclidean path integral is 

Z = I D.DE C1 (1.34) 

where SE[E]  is arrived at using the transcription rules (1.27)-(1.31), and is real. 

The theory thus takes the form of a statistical mechanics problem, with a weight 

e-  S
E;p~ ]  given to each configuration [], and lends itself to simulations using Monte 

Carlo methods. Hereafter, everything will be in Euclidean space unless explicitly 

stated otherwise, and the superscript E  will be dropped. 
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1.5 Lattice QCD 

In order to simulate the theory on a computer, with a finite number of variables, 

we discretise space—time to form a finite lattice, replacing f dx with a > and 

derivatives with finite differences. The lattice fields '(x) are taken to be some 

average of the continuum fields over the space near x. 

1.5.1 Lattice gauge fields 

The gauge fields are represented by link fields U,(x) which belong to the gauge 

group C itself, rather than by the fields A(x) which belong to the gauge algebra. 

The link fields are the parallel transporters 

A 
U(x, x + ) = U(x) = _igaA(+4/2) 	 (x)dx 

(1.35) 

which transform a matter field at x + A to one at x, cf. section 1.3.1. Under a 

local gauge transformation A(x) these will transform as 

U(x) = A(x)U(x)A 1 (x + /) 	 (1.36) 

The continuum functional integral f DA is replaced by 

Jvu = Hf dU(x)  H I dU (b) 	 (1.37) 
links  

5 

This is finite and well-defined for any compact group if for dU we use the invariant 

group measure (Haar measure), which obeys 

JG 
f(U)dU = J f(VU)dU = f f(UV)dU 	VV e C 	(1.38) 
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IG 
dU = 1 	 (1.39) 

Since the functional integral is already well-defined, there is no need to fix the 

gauge if we want to compute gauge invariant quantities. 

The gauge invariant quantities that can be constructed in this theory are 

t( x )u(c y)(y ) 	and 	U(C,) 

where 4D is a matter (scalar or spinor) field which transforms as 

= A) 	(t)A = 
	 (1.40) 

and U(C,) is a parallel transporter U(x,z i )U(z i , z 2 ) . .. U(z,,y) along any path 

C = (x, z1 )  z2,. .. ,z, y) joining x and y. The covariant forward derivative can be 

constructed as 

so that 

D(x) = [U(x)(x + /) - (x)] 	 (1.41) 

t(x)D(x) 	[t(x)U(x)(x + j2) - t(x)(x)J 	(1.42) 

is obviously gauge invariant. 

The pure gauge action is expressed in terms of closed loops, with the simplest 

being the Wilson action [1] (for a SU(N) gauge theory) 

S0  = 
g 

PEE (1_eTrU(x)) 	 (1.43) 
X /L<l) 

= S'M+O(a2) 
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where 3 = 2N/g2  and U' is the plaquette 

U' (x) U(x)U,(x + /i)U(x + ii)U(x) 	 (1.44) 

1.5.2 Lattice fermions 

Fermions are represented on the lattice by anticommuting spinors & on the lattice 

sites. The fermion action can be discretised in a straightforward way: 

SF  

+m(x)b(x)] 	 (1.45) 

This is called the naive fermion action. It suffers from the presence of doublers 

- unphysical zero modes of the fermion matrix. This can be seen from a simple 

inspection of the fermion matrix in momentum space: 

= 	 (1.46) 

M(p) = xy - 	ysin(p,) + m 	(1.47) 
- 

S 

This is 0 for all p, E 10, 7r}. Since all zeros in the fermion matrix correspond to 

a particle (which can, in an interacting theory, be created in a pair production 

process), there will be not one, but 16 fermion species. Nielsen and Ninomiya [2] 

have shown that any lattice theory fulfilling the conditions of 

• translational invariance 

• locality 

• hermiticity of the Hamiltonian 
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and with a set of locally defined, discretely valued conserved charges (fermion 

numbers) which are bilinear in the fermion fields will have an equal number of 

left- and right-handed particles for each set of quantum numbers. This means 

that neutrinos cannot be simulated on the lattice, and chiral symmetry cannot be 

preserved in lattice QCD. 

Wilson [3] proposed a remedy for this problem by adding an extra irrelevant 

operator to the action 

SW = 	[(x)(x) - 	((x + )U(x)(x) + (x)U(x)(x + 
a 

(1.48) 

which gives the doublers a mass on the scale of the cutoff a 1 . r is an arbitrary 

parameter, which is normally chosen to be equal to 1. This term explicitly breaks 

chiral symmetry. 

The Wilson fermion action is often rewritten in terms of the hopping parameter 

ic as 

5WF = 
	{( x)(x) + 	(x)[U(x)(-y - r)(x + 2) 	(1.49) 

—Ut(x - 	+ r)(x - 41 
where 

1 - 8kr 
(1.50) 

2k 

This gives the momentum space free propagator 

- —i > y sin(pa) + r I(1 - cos(pa)) + m 
- 	

sin  (p,, a) + [r 	(1 - cos(pa) + rn]2 	
(1.51) 

Since there is no chiral symmetry to prevent the fermions from acquring a dy- 

namical mass, they will typically do so. This means that the massless limit can 

only be determined a posteriori as the value of k where the pseudoscalar meson 
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is massless. 

1.5.3 The quenched approximation 

It is not possible to simulate Grassmann variables numerically in a direct way. 

But provided the action is bilinear in the fermion fields, they can be integrated 

out analytically. From the properties of Grassmann variables, 

	

J d==1 	 (1.52) 
dO 

it follows that 

f rjFbdb e-VjMjklbk = detM 	 (1.53) 
i 

This means the effective gauge action is given by 

	

Z = J VU det M[U]e_S 	
= 

J VUe_SG[U]+1ndetM[U} 

= JDue 	 (1.54) 

There exist several algorithms for simulating the fermion determinant, but these 

are computationally expensive, so most lattice simulations up to now have been 

performed in the quenched approximation, where one sets det M=1. This is equiv-

alent to ignoring the effect of fermions mt the gauge distribution, ie ignoring vac-

uum polarisation effects from fermion loops. The quenched theory can be treated 

analytically as a theory with N1  = 0. 

One would expect that setting det M, which numerical simulations have shown to 

be a wildly fluctuating quantity, equal to 1, would be a very bad approximation. 

However, it turns out that most results obtained using this approximation agree 

quite well with experiment, suggesting that fermion loops only have marginal 

effects for most quantities. 
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1.6 Gauge fixing on the lattice 

Although all physical quantities are gauge invariant and most of them can be 

computed on the lattice in a gauge invariant way, there are still many cases where 

gauge fixing is desirable or necessary. Most important among these are gauge 

dependent wave functions, and quark and gluon correlation functions (or anything 

involving matrix elements between quark and gluon states rather than hadronic 

states). The gauge can be fixed by applying a gauge transformation (1.36)on each 

link so that the resulting link variables conform to our gauge fixing prescription. 

The most commonly used gauges in lattice studies are the Coulomb gauge VA = 0 

and the Landau gauge 0, corresponding to 6 = 0 in (1.25). The Landau 

gauge can be obtained by finding an extremal value for 

F(A) = AI2 = JTr(A(x)A(x))d 4 x 	 (1.55) 

since, if we write A(x) = exp(it"O(x)), then 

SF 
(1.56) 

SO" 

This can be carried over to the lattice by replacing AII2 with 

= 	ReTrU,,(x) —1 	 (1.57) 

However, this will not give a unique solution. Gribov [4] showed that in the con-

tinuum theory, there will be several non-trivial solutions satisfying this condition, 

with different ReTrU = F(Amjn ), and this is also the case in the lattice theory 

[5]. The problem can be reduced, but not eliminated, by imposing additional 

conditions, eg. for the Faddeev—Popov matrix IM I > 0. 

More general gauges can be obtained by letting the gauge transformation be a 
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stochastic distribution rather than one definite transformation per gauge config-

uration. Specifically, the family of covariant gauges in (1.20) can be simulated by 

generating random matrices B(x) with a distribution exp(—TrB(x)) and fixing 

aA(x) - B(x) in the same way as 9A(x) is fixed in the Landau gauge [6]. 

Another family of covariant gauges [7] is obtained by taking the gauge fixing 

functional 

F[A] = e_SGF 	SGF = M2 J d4 x(A(x)) 2 	(1.58) 

to replace 6(F[A]) in (1.18). This bypasses the problem of Gribov copies, and if 

M -+ oo, the point on the gauge orbit where (A(x)) 2  reaches its global minimum 

is selected. This is equivalent to the Landau gauge a,A(x) = 0, but with no 

copies. As M -+ 0, the theory approaches a theory without gauge fixing. 

This can be carried over to lattice simulations [8], replacing A 2  with ReTrU, and 

evaluating the functional integral in two stages. For each configuration, a set 

of gauge transformations are generated with the weight CSGF  and the (gauge 

dependent) operator we are interested in is averaged over those transformations, 

before the configuration average is taken. 

It is also possible to transcribe the continuum gauge fixed action (1.23) to the 

lattice, and this is necessary when one wishes to perform perturbative lattice 

calculations. However, this does involve significant complications in computing 

the Faddeev-Popov determinant, and is not feasible for practical numerical sim-

ulations. Some numerical studies of ghost fields [9] have, however, been carried 

out. 

1.7 Improved actions 

Although all effects of discretisation should disappear as a -+ 0, in any simulation 

using the Wilson actions (1.43) and (1.49) at realistic values of 0, the 0(a) and 
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0(a2 ) discretisation errors may be significant. There are also lattice artefacts that 

are small at tree level, but may become large non-perturbatively, or at higher-

loop order. Both these kinds of effects may give uncertainties of up to 20-30% 

in estimates of physical quantities, for the simulations that are possible today. It 

is therefore a great advantage if one can construct actions which reduce or avoid 

these problems. 

1.7.1 Symanzik improvement 

The idea of this programme [10] is to add higher-dimensional terms to the action to 

cancel order-by-order the discretisation effects. In the continuum (or, equivalently, 

on a much finer lattice), the lattice action, which is non-local, can be written as 

a local effective action 

S=So +aSi +a2 S2 +...Jd4 x[ro(x)+ar i (x)+...] 	(1.59) 

Similarly, the renormalised composite lattice operator OR  can be represented by 

local effective fields 

OR(X) = O o (x) + a0i(x) + a202(x)  +... 	 (1.60) 

where So  and 00  are the continuum action and operators respectively. 

The operators that enter into L, 01 etc can be constructed by considering their 

dimensionality and the symmetries they must obey, such as parity, charge conju-

gation, and Euclidean or lattice symmetries. In the improved action, counterterms 

with the same structure are added to cancel the contributions from S i , 01 etc to 

the Green functions. Their coefficients can be computed perturbatively from the 

zero-momentum proper Green functions, or using a non-perturbative prescription 

[11]. 
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Wilson's pure gauge action is already 0(a)-improved, while the Wilson fermion 

SWF action has 0(a) errors. We can write down the operators that enter into 

0 1  = 	oF'cb 	 (1.61) 

02 =D 	 (1.62) 

	

mTrF,F 	 (1.63) 

04 = 	 ( 1.64). 

= m 2 j 	 (1.65) 

Of these, 02  and 04  can be eliminated using the equations of motion (provided 

we are only considering on-shell quantities), while 0 3  and 0 5  imply a redefini-

tion of the mass and coupling constant, respectively. So we are left with the 

Sheikholeslami-Wohlert [121 action 

SSW = 
SWF + CSW f d4x(x)P(x)(x) 	 (1.66) 

where 	is some lattice representation of the field tensor F,LV . One possible 

choice, which makes the improved action depend only on nearest-neighbour cou-

plings, is the cloverleaf term 

P -  T1P-
O

' - 	+ U'' - 	 ( 1.67) 
1L1J 2  

The coefficient CSW = 1 at tree level, but non-perturbative calculations [13] have 

shown it to be significantly different from this. 
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1.7.2 Tadpole improvement 

Lattice operators, including those entering into the action, are usually constructed 

from or matched to continuum operators by expanding 

U,.(x) = e2a9k 	-+ 1 + iagA,.(x) 	. 	(1.68) 

However, the higher order terms in this expansion include 'tadpole diagrams' 

which generate power divergences in 1/a, cancelling the powers of a in the expan-

sion. This means that the vacuum expectation value of U,.(x) (in some gauge) is 

smaller than 1 - the main contribution is from —(A,.(x)) < 0 - and a better 

expansion would be 

U,.(x) = uo (1 + iagA,.(x)) 	 (1.69) 

where u0  represents the mean value of U,.. Gauge invariance requires that u0  is a 

constant. It can be defined in several ways, either as the expectation value of U,. 

in the Landau (or some other) gauge, or by using the mean value of the plaquette, 

 1/4 

uo 
 = (ITrUCI) 
	. 	 (1.70) 

All these definitons give similar results [14]. 

The mean-field tadpole improvement prescription [14] simply replaces U,.(x) with 

U,.(x)/u o  everywhere in the action and in operators. For Wilson's gauge and 

fermion actions, this simply amounts to a rescaling of the parameters 3 and it, 

but for improved actions, and when calculating certain matrix elements, it is 

non-trivial. 
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Renormalisation 

2.1 Symmetries and identities in QCD 

It is a general feature of field theories that the existence of a continuous symmetry 

implies some identity for physical quantities. In classical field theories this mani-

fests itself in Noether's theorem, linking every global, continuous symmetry with a 

conserved current. Thus, conservation of energy and momentum can be seen as a 

consequence of translational invariance, and electromagnetic current conservation 

a consequence of global gauge invariance. 

In quantum field theory most of the interesting symmetries are expressed through 

Ward identities or Slavnov—Taylor identities between Green functions. The most 

important of these are derived from the gauge invariance of the theory. 

2.1.1 The generic Ward identity 

The generic Ward identity can be derived as a direct consequence of the invariance 

of Green functions under some local transformation. Consider a Green function 

= (O(x1,x2,.. .)) = j D(P 0 ['(D] (X 1, X 2 ... 	 (2.71) 

20 
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If we postulate that C is invariant under some transformation of the fields, 

parametrised by a continuous variable w(x), we have 

SC 	 ___ ___ 50 	

X)) e_S 
	 (2.72) 

	

0=5() = 	 ( JW (X) 	SW 

I/So 	SS 
SW(X) 	 ) 	

3) 
S \ 	

- 0 	=0 	 (27 

By choosing different operators 0 we can derive Ward identities connecting Green 

functions with any number of external legs and operator insertions. Alternatively, 

they can be expressed in a compact form as identities of the generating functionals. 

2.1.2 Slavnov—Taylor identities 

Consider the gauge fixed generating functional 

J
DAd etM e_f d4 'M1 

	
(2.74) 

where F is the gauge fixing functional and det M is the Faddeev—Popov determi-

nant, cf. section 1.3.2. DAdet M(A) is invariant under the gauge transformation 

JA  = DSab ,  so we can transform the variables in the integral. This gives 

e' 	= J VA det M e d4 x(1yM+F2 +J.A+ FM+TD5) 	(2.75) 

since SF = MSa. 

Taking Sa to be the nonlocal transformation Sa = M 1 5w, and expanding to the 

lowest order in Sw, we get 

DA det M fd4x( + J. DM' ) Swe 
fd4 	F2+A) = 0 	(2.76) 
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which implies 

1 	

[  
Fa 	

8__1 e
W ljl = Jd4y (J,, D,c [/1]) (y)G ca (y,) 	(2.77) 

8J(x)] 

where 
F8 1  
[6J(] G

, ,, (y, x) = 8,"84(X - y)e' 	 (2.78) 

This gives us the Slavnov—Taylor identities for full, connected Green functions. 

The identities for the proper functions can be obtained by observing that the 

action (with ghosts included) is invariant under the Becchi—Rouet—Stora transfor-

mation 

8A(x) = Db(x)b(x)Sc 	sASç' 	 (2.79) 

8(x) 	Fa[A(X)]8Ci8C 	 (2.80) 

J77, (X) 	 fabcbc(X)8C 	S1)6 	 (2.81) 

6(x) = —gt(x)(x)8( 	sO8 	 (2.82) 

80(x) = —9(x)t aa(x)8 	s74Sç 	 (2.83) 

If we introduce source terms K and L for the operators sA and sTj respectively, 

performing the BRS transformation on the path integral gives 

JVAVVDVJ d 4  (J5A + - Fw - gTh + 	(x) 

e f d4 y(rYM+r+rF  )+JA++w+ +c7 = 0 	(2.84) 

Jd4x(J/ 

2 	

- 

- - _.+ 
To-S=W 

= 0 	 (2.85) 
SwSa 8aSw, 

14( 8 	_8 	1 	8 

 SK 	SL 	JJ 
S2 	2 

= 

- - + 	_)(x)W[J, w, , K, L, a, 7] = 0 	(2.86) 
8w6a Sa8w 
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Performing a Legendre transformation on this gives us 

(SF SF SF SF Sr SF 

6AW  677 6L JO 677Jo 

+ L 
I 52 I-' Sr 	1Sr

F[A] 
	

0 	 (2.87)  ----  

We can also, independently of this, perform a change of variables 71 —* 77 + Sj, 

which yields 

(W(X) 
— j5I)) 

W[J,,w,K,L] 0 	(2.88) 

SF 	SF 

	

ab11() + 
So 	

= 0 	 (2.89) 5J  

where we have written 

Fa(X) = ab(X)I1b(X) 	 (2.90) 

For example, taking the derivative wrt A(y) and ui(z) of (2.87) gives the Slavnov-

Taylor equation for the gluon self-energy 

d4x 	
52j 	52 1: 

	

_____________ = 0 	 (2.91) I 	SA)5A() 5c( z )5Ka( x ) 

where F = F — ( 1/2e)F 2  and 

52 F 	 52 F 

677c(z)6K,1,1(x) + Sc(z)Sa( 	
= 0, 	 (2.92) 

x) 

follows from (2.89). 
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2.2 Renormalisation and counterterms 

2.2.1 The principle of renormalisation 

The (bare) parameters that enter into the action are not, in general, equal to those 

corresponding parameters that can be measured. The masses, kinetic terms and 

couplings will have contributions from self-interactions of the fields beyond what 

can naively be read out of the (bare) action. They will have to be renormalised, 

in order that the parameters we do put into the theory correspond to, or can be 

related to, measurable quantities. This is done by rewriting the theory in terms of 

the physical or renormalised parameters. In doing this, new terms counterterms 

will appear in the action. The theory is renormalisable if 

only a finite number of counterterms are required 

all the counterterms are local and Lorentz invariant 

the bare and reriormalised theories have the same symmetries 

The last condition (which must be satisfied order by order in perturbation theory) 

leads to severe restrictions on the form the counterterms can take, since it means 

the Slavnov—Taylor identities must be satisfied order by order for gauge theories. 

It turns out that this can indeed be done. The Slavnov—Taylor identities guarantee 

the gauge invariance of the theory, in particular the universality of the coupling 

constant. If we write the counterterms as 

Ar = (Z3  - 1)Tr[(öA - aA)2] 

—g(Z i  - 1)Tr(ö,A,. - aA)[A, Au]) 

- 	 (2.93) 

+(23 - 1)(_ a D 2 7a ) + 9(2i - 1)fabcA90701c 
- 

+(Z2 - 1) 	+ (Z2 '0 
 

— - 1)m?&' 
M 
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+ig(Z1F - 1)'yA 

then 

(2.94) 

	

z 1  z3  23 	Z2  

follows from the Slavnov—Taylor identities and guarantees that the renormalised 

coupling 9R = Z9g = Z1 Z3 _3 1 2g  enters in the same way everywhere in the renor-

malised action. If we define the renormalised fields 

	

A R = Z 112 A 0 	 (2.95) 

	

OR = Z1/200 	 (2.96) 

- -1/2 

	

= z3 	o 	 (2.97) 

the renormalised action takes the same form as the bare action, but with the 

renormalised fields and parameters rather than the bare ones entering. 

In most quantum field theories, divergences will arise when evaluating Green func-

tions perturbatively. Since the renormalised Green functions and parameters must 

be finite, this means that the bare parameters are infinite (or zero), and the in-

finities are absorbed into the counterterms. If this is to happen in a well-defined 

way, the theory must be regularised - which means that a momentum cutoff 

is imposed to make all quantities finite. In continuum calculations, this is nor-

mally done by dimensional regularisation, while the lattice automatically provides 

a momentum cutoff of it/a. A set of renormalisation conditions is then applied to 

the regularised Green functions. In dimensional regularisation, the most common 

scheme is the modified minimum subtraction scheme MS, where only the diver-

gent part and some associated terms are subtracted off. Although it is possible to 

implement an analogous minimal subtraction in lattice theories as well, momen-

tum schemes, where the Green functions at some set of momenta are related to 

the tree level Green functions, are more appropriate and more commonly used. 
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The renormalisation constants will in general depend on all the defining param-

eters of the theory - coupling constants and masses - plus a scale that enters 

through the renormalisation. It is possible, and sometimes desirable, to choose a 

scheme where the dependence on for instance the masses is eliminated. The stan-

dard minimal subtraction scheme is such a mass-independent, but most lattice 

schemes are not, and it is considerably more complicated to disentangle the mass 

dependence in such schemes. 

2.2.2 Renormalisation group and the QCD /3-function 

Consider a Green function 

(n) 
(Pi, 	, p, qi,.0 	 ,qflA) go, MO) 

= 	 (2.98) 

and the associated proper Green function 

F n) 
(pi, 	p, qi,.. 	qflA; go, MO) 

- 	 (2.99) 
- 2 

with n, external fermion legs and nA external gauge legs, in a mass-independent 

renormalisation scheme (so that we can simplify things by ignoring the masses). 

Since F 0  does obviously not depend on the renormalisation scale y, we have 

0 = 	-F0 = 	+ 3(g)- - 	- 	 (2.100) 

which is the renormalisation group equation, with 

ag  
(2.101) 

,7-1/2 a 	1/2 
= Li3 	 (2.102) 
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, 7 -1/2 a 	1/2 = 	2 	IL 'Ott Z
2 	 (2.103) 

0 can be calculated in perturbation theory, and to two loop order in a SU(N) 

gauge theory with Nf  flavours, it is 

	

/3(g) = — b og 3  — bi g 5 +O(g7 ) 	 ( 2.104) 

uN - 2N 1  
b0  = 	 ( 2.105) 

3(16ir2 ) 

34N 2 - 1ONN1  - 3N(N 2  - 1)/N 
b 1 = 

	

3(167r2)2 	
(2.106) 

The coefficients b0  and b 1  are scheme independent, as can be easily shown. If we 

call the renormalised coupling in one scheme g and in another scheme g, then we 

can expand gi  in powers of g 

gi = f(g) = g(1 + a1 g2  + (9(g4 )) 	 (2.107) 

This gives 

0, 01) = 	
ôg of 

att

= 0(g)(1 + 3a 1 g2  + (9(g4 )) 

= —bog3 (1 + 3a 1 g2 ) - big' + 0(g7 ) 

	

= —bog 3 - b 1 g + o(g7) 	 (2.108) 

Integrating (2.101), and using (2.104), we find that 

2  
92() = 
	 90 	 (2.109) 
1+gbo ln()+g ln(1+g ln(j4)+g1  ln(bog)) 

where go  = g(io ). This can be rewritten in terms of a renormalisation group 
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invariant scale parameter A, 

g2 (j) = 
bo ln(,u2 /A 2 ) + 1 1lnln(fL2/A2) 	

(2.110) 
bo  

where the scale parameter A is 

bl 

A = 	2b0g2(i.) (bog2()) 270 (2.111) 

Since g is not a scheme-independent quantity, A will also be different for different 

renormalisation schemes. 

2.2.3 Lattice perturbation theory 

Most of the discussion in the previous sections carries over directly to lattice gauge 

theories. In particular, if we add a discretised version of £GF  and £FP,  as defined 

in (1.25) and (1.26) to the Wilson action S 0  + SWF ,  this can be shown to be 

invariant under BRS transformations defined in analogy to (2.79)-(2.83), and the 

effective action F satisfies the Slavnov-Taylor identities (2.87) and (2.89). This, 

and the renormalisability of lattice QCD to all orders in pertrubation theory, is 

worked out in detail by Reisz in [15]. 

Since numerical simulations are always performed using the bare fields and pa-

rameters, the renormalisation of the fields and couplings entering into the action 

will not be an issue when computing hadronic quantities. However, as will be ex-

plained below, the composite operators involved in hadronic physics also need to 

be renormalised, and their renormalisation constants have usually been computed 

perturbatively. 

It turns out that perturbation series in aIT = g/4r = 3/27r/3, at least at the 

one-loop order, often give results in very poor agreement with experimental or 

non-perturbative determinations of the same quantities. This should not be a 
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surprise, since a 1 	is a bare quantity and perturbation series in the continuum 

are always expressed in terms of the renormalised coupling. If we re-express the 

perturbation series in terms of a renormalised coupling at some appropriate scale, 

it will be more well-behaved, as Lepage and Mackenzie [14] have shown. 

2.3 Composite operators 

In hadronic physics, we are interested in Green functions involving local operators 

composed of several quark and gluon fields: operators for creating and destroying 

mesons or baryons, electroweak currents, K °  - K° mixing operators, etc. These op-

erators can be introduced into the partition function by coupling them to auxiliary 

sources, generating Green functions with operator insertions by taking derivatives 

with regard to the sources. Simple power counting will reveal that these insertions 

affect the degree of divergence of diagrams, possibly leading to new divergences 

which must be cancelled by new counterterms. 1  This will require new renormal-

isation conditions to be imposed on Green functions containing these operators. 

When renormalising composite operators, it must be taken into account that they 

can mix with each other. Consider, for example, an operator 01  of dimension n. 

If there are other operators 02,. . 0m with the same quantum numbers and with 

dimension d < m (which must be compensated with factors these will in 

general mix with 01,  so that the physical Green functions are linear combinations 

of the Green functions containing 01,... O. The renormalised operator will 

1 Naively, one could expect that the renormalisation of the fields the operators are composed 
from is sufficient to cancel those divergences. However, this only renormalises the contributions 
from insertions of the kind '1(x)4(y), which involve 2 independent momenta, while a composite 
operator of the type a(X)b(X) involves only one momentum. Alternatively, it can be argued 
that the composite operators (those whose renormalisation matters, at least) only appear in 
effective theories - eg, when the electroweak sector of the standard model is separated off, 
electroweak matrix elements are computed from Green functions containing current operators, 
bilinear in the quark fields. 
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then be 

(2.112) 

and similarly for the other operators. Alternatively, the operator can be redefined 

to subtract off the divergences from the lower-dimensional operators. 

All these operators can be renormalised in perturbation theory the same way 

as the fields and parameters in the action, by evaluating Green functions with 

operator insertions to n-loop order and imposing renormalisation conditions. But 

sometimes higher-order or non-perturbative contributions to the renormalisation 

are significant, even when using a tadpole-improved scheme. It would therefore be 

useful to have a non-perturbative renormalisation procedure. Two such procedures 

are described below. 

2.3.1 Chiral Ward identities and current renormalisation 

constants 

We define the various lattice vector currents 

	

VLa() = 	(x)(x) 	 (2.113) 

	

VPSa(x) = 	{( x + 	U(x)(x) + h.c.} 	(2.114) 

	

V C ' (x) = 	{(x)( - r)U(x)(x +A ) 

+ (x + 	+ r)U(x)"(x)} 	(2.115) 

	

VCIa(X) = 	a () + 	
( 2.116) 

the axial currents 

A L,  W = 	( x) 5 A(x) 	 (2.117) 

A(x) = 	1 (x + 	saU(x)(x) + h.c.}, 	(2.118) 
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and the pseudoscalar and scalar densities 

	

pa(x) = 	(x)75(X) 	 (2.119) 

Sa(x) = (2.120) 

These are all flavour-mixing (non-singlet) currents; )" is a flavour SU(3) gener-

ator. The superscript 'PS' here denotes 'point split', while 'L' denotes 'local'. 

In the continuum limit, these operators are related to the physical operators by 

multiplicative renormalisation constants Z, ZS,  ZAL  etc, so that V, = ZV ,L etc. 

The currents V C  and icl  are both conserved, therefore their renormalisation 

constants are both 1, while the partial conservation of the local and point-split 

vector currents anl axial currents guarantee that their renormalisation constants 

are finite. Zp and Zs are both infinite, but as we shall see, the Ward identities 

guarantee that the ratio Zp/Zs remains finite. 

i/Cl is also improved according to the prescription in section 1.7.1. Thus the 

renormalisation constants for VL and i71'S  can be easily determined by evaluating 

	

- 	VCI 	3) 
(2.121) 

	

- 	L,PS 
(aIVi 	(x) /3) 

between arbitrary hadron states (o  I and I /3). Alternatively, they may be deter-

mined from 

	

( PI (0)P(,T)) 	
(2.122) 

g(Pt(0)V4L'S(, t)P(, T)) 

This should give a precise estimate provided the effect of the off-diagonal matrix 

elements (Pm  I 	P) can be neglected, since, if we write 

C3t  = > KPt(0)V4(il,t)P(x,T)) 

1 	1 
= 	 (0IPt(0)IPm )(Pm IV4 (9,t)IPn ) 

ç m,n 21 m  2E,, 
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(P I P(, T) 10) 
\ Cm  

= , 	>(Pm
IV 

	

4(o)e_m_ce_m_t I ) 	-EDT 

m,n 2Em 

Cm Cn  

	

(2Em)(2En) (
Pm  V4 (0) I Pn)e_Te_m_t 	(2.123) 

and 
C2  

C2 "t  = 	( Pt(0)P(,T)) = E __?3e_EnT 	 (2.124) 
n 	fl 

then, since (P I V4 (0) I P) = 2E/Zv for degenerate mesons, it follows that C32t 

C2P/Zv  if we ignore the off-diagonal elements. For non-degenerate mesons, we 

have instead C 3 t = C2Pt /2Zv, since in this case (P I 174(0)1 P) = E/Zv. 

Ward identities with the standard Wilson action 

For the axial case, there is no conserved current or other "easy" way of determin-

ing the renormalisation constants, but they can be obtained using chiral Ward 

Identities. If we define the transformations 

8A(x) = jaa(x)a5(x) 	8A(x) = iaa(x)(x)A &, 	(2.125) 

equation (2.73), with w(x) = aa( x ) ,  becomes  

• /O(x 1 ,x 2 ,...)\ 

8a(x) 	
1=(OAO(xi,x2,)) 

(O(Xl, X2,• .)[(x){, Mo } 5 (x) + X-(x )I) 	(2.126) 

where M0  is the bare mass matrix and Xa(x)  is the chiral variation of the Wilson 

term of the action. This is a dimension-5 operator that is equal to zero at tree 

2 The Ward identities that naturally come out of this are expressed in terms of the point-
split currents and the forward lattice derivative. However, if we replace the forward by the 
symmetric derivative and point-split by local currents, the resulting Ward identities only differ 
by terms of 0(a2). 
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level in the continuum limit, but it mixes with OA a  and 	so we define, 

following [16], 

xa + 	+ ( ZA - 1)8A a 	 (2.127) 

Requiring that (a I xa  I ,8) = 0 for all on-shell (a I and 0) determines 

M M0 +M (oIa4 APa) 

= 	= 	ZA 	= 2(01 pa Pa) 	 (2.128) 

where p, m and M are in general matrices in flavour space. If we set O(y, 0) = 

A(y)V(0) and assume all quark masses are degenerate, (2.126) can be re- 
v 

ordered to yield [16] 

= 

—a 	b + ((x){, m}(x)A(y)(0)) 

ZAd + jfabd8(X - y)(TvT 
(y)TTC()) 

+ if(x)—(A 
zv 	

(y)A(0)) 	 (2.129) 
ZA 

where A = ZEAL and V = Zv V L  are the operators with the correct continuum 

limit. The continuum Ward identity 

D (A (x) A (y) (0)) 

((x ){Aa ,  m} 5 (x)A(y)V(0)) 

+ jfabd(v,d(y)v;c(o)) + jfacdS( X )(Ab(y)Ad(0)) 	(2.130) 

is recovered if 

(eLa (x)A Lb (y)V LC (0)) 

jfabd8(x - y )(VLd( y )VLC(0)) 
z 2  

+ jfacd8(X )(ALb( y )ALd(0)) 	 (2.131) 
zv 
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where 

	

La() = 	- 2pPc(x ) 	 (2.132) 

Similarly, setting O(y, 0) = Sb( y ) Pc(0) we obtain 

(eLa (x)s b (y)p c (o)) 
bd ZP 

- d a 	 - y )(pd()pc(0)) 

- d 	 (2.133) 
ZAL ZP 

where d alc  is defined by 

{a A l l  = 2dAC + 4 8ab 
N 

This equation can be used to obtain the ratio of the scalar and pseudoscalar 

density renormalisation constants Zs /Zp. 

Ward identities with the improved action 

The derivation of the Ward identities for the SW action is practically identical to 

the derivation for the Wilson action. However, further complications are brought 

in by the improved operators. Bilinear improved operators can be obtained [17] by 

replacing (x)IT(x) with (x)(i +!!-a('-  +mo))r(i - - mo)) 

The terms involving m 0  can be eliminated using the equations of motion 

	

( + mo )S(x, y) = (x - y) 	S(x, y)( — MO) = —8(x - y) 	(2.134) 

where S is the quark propagator. Inserting this into the LHS of (2.131), we get 

Lb 	L (pa()A(y)VC(0)) 
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i 1  'I'(°)) 

= —(TrS(O, x) f S(x, y) I S(y, 0) 

- (TrS(y, x) 	S(x, 0) 	S(0, y) f) 

= —(TrS(0, x) S(X) 	S ( 0)  0) 	) 

- (TrS(y, x) 	S(x, 0)S(0, y) 	) 

+ifacdS(x )(TrS(O, y) F S(y,0) I)  

i + 	f8(x - y) (Tr S(0, y) 	S(y, 0) 

+ terms at y = 0 

where 

(i+)F(1—j) 
 ra 

So if we sum over all x and spatial g (keeping y 0 0) in eq. (2.131), we obtain 

2p 	(P  (x)A, (y)V'(0)) 
XS 

= —z(-- - pra)f,bd (vLd(y)vLc(o)) 

1 
—i( 	- pra)f 	(ALb( y)ALd(o)) 	 (2.135) 

Similarly, (2.133) becomes 

2p 	(Pa(x)S)(y)PC(0)) 
x 

zP 	abd 
=

_ pra)d(Pd(y) Pc(0)) ZS  

zs 

	

_____ - 
pra)d° 	(sb(y)sd(o)) 	 (2.136) 



Chapter 2. Renormalisation 	 86 

2.3.2 Renormalisation with quark Green functions 

Another, more generally applicable method for non-perturbative renormalisation 

of operators is by imposing conditions on matrix elements of the operators between 

quark Green functions [18]. This method requires gauge fixing, since the quark 

Green functions are gauge dependent quantities, but has the advantage that the 

scheme is defined in the continuum as well as on the lattice, so that matching to 

commonly used continuum schemes is straightforward. The conditions imposed 

are also of the same kind as you would naturally choose in lattice perturbation 

theory. 

More precisely, the renormalised Green function cg (pa) of the operator C com-

puted between between quark states I pa) at a chosen momentum is fixed to its 

tree-level value 

	

gg(pa) = Zo( 1aa)(pa 1 0 pa )I 22 	(P 	0  I p)o 	(2.137) 

In practice, this is done by fixing the renormalised proper Green function F o (pa) 

to 1 

	

= 1 	 (2.138) 

where 

Fo (pa) = 	Tr (S( pa)_ 1 90 (pa)S(pa)_ 1 P0 ) 	 ( 2.139) 
12 

P0 is a projector onto the tree-level operator. The quark field renormalisation 

constant Z2  can be defined, for instance by requiring that the quark propagator 

equals the tree-level propagator 

	

Tr (—Z* E, 'y sin(pa)S 1  (pa)) 	
(2.140) 

= 	4 	sin 2 (pa) 	I p22 

or by requiring that Z?,  computed in this scheme, is equal to 1. 
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Renormalisation of current operators 

3.1 Computational details 

The results reported in this chapter have been obtained using the Wilson gauge 

action (1.43) and SW fermion action (1.66), in the quenched approximation. The 

configurations were generated using the Hybrid Over-Relaxed algorithm, described 

in[19],onal63 x48 lattice at/3 = 6.O and a24 3 x48 lattice at/3 = 6.2. At )3 = 6.2, 

the configurations were separated by 2400 sweeps, after an initial thermalisation 

of 16800 sweeps. The configurations at 3 = 6.0 were separated by 1200 sweeps, 

after a thermalisation of 10800 sweeps. 

The propagators used are the same as in [30] for 0 = 6.2 and [20] for 0 = 6.0, 

except for the tadpole improved and heavy quark propagators in section 3.3, 

which were generated specifically for the purpose of this analysis. They were all 

generated using point sources and sinks. The details of the algorithm used are 

described in [19]. 

Since we normally only compute propagators from the origin to any point in 

space and time, the 3-point functions in (2.122), (2.135) and (2.136) could not 

be evaluated directly from the existing data. Instead, 'extended propagators' 

Si(y,O) = IS(y,x)ysS(x,0) and S(y,0;T) = S(y,x,T)y 5 S(x,T,0) were 

37 
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generated using 

MS i (y,0) = 'ys S(z,O) 	 (3.141) 

MS(y,0) 	'-y5S(z,0)StT 	 (3.142) 

(3.143) 

The code to initialise the solver for (3.141) was written specifically for this study. 

The statistical analysis has been performed using minimum x2  fits to the times-

liced data, using both correlated and uncorrelated X2 's. The errors were obtained 

by a bootstrap procedure, using 100 bootstrap samples. 

3.2 Thep parameter 

Using the property of the Wilson propagator 

S(0, x) = 75 St( x ,0) 5 	 (3.144) 

and the zero-momentum pseudoscalar ground state 

	

IP) = E P(,0)I0) 	 (3.145) 

we find that p, defined in (2.128), can be estimated by 

PM - 
	

( 3.146) 
- 2St(,t;0)S()t;0) 

where ô4  is the symmetric derivative 

(3.147) af(x) 
= 	2 
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Figure 3.1: p  as a function of t (in lattice units), for /3 = 6.2 (left) and 0 = 6.0 
(right). 

K mS (GeV2 ) pa 

6.2 0.14262 

0.14144 

0.208(7) 

0.663(7) 

0.00903 + 12
- 18 

0.03141 + 11
- 20 

6.0 0.1432 1 	0.615(10) 0.03849 + 28 
 

Table 3.1: Values of the p parameter, in lattice units, as a function of the quark 
mass. 

p(t) was computed for 60 configurations at 0=6.2, with ic=0.14144 and 0.14262, 

and for 36 configurations at 0=6.0, ic=0.1432. The results are shown in figure 3.1. 

From these plots we see that p is constant between t = 7 and t = 23 approximately. 

Fitting p(t) to a constant between timeslices 7 and 23 also give the best values 

for x2  per degree of freedom (fitting between timeslices 7 and 22 gives a slightly 

better x2  for the data at 13 = 6.0, but this is marginal), so these are the values 

quoted in table 3.1 and used subsequently. 
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3.3 Vector current 

3.3.1 Standard SW action 

ZV  was determined from eq. (2.122), using 10 configurations, at three values for 

the quark mass for 0 = 6.2 (corresponding to ic = 0.14144, ,c = 0.14226 and 

= 0.14262), and at ic = 0.1432 for 0 = 6.0. The results are presented as 

a function of t in figs.3.2 and 3.3. We see that the values for Zv are roughly 

independent of t, as one would expect from (2.123). The best values, obtained 

by fitting to timeslices 5-19, are given in table 3.2. The errors from the variation 

between the timeslices are obtained from fits to 100 bootstrap samples of timeslices 

within this fitting range. 

The results are plotted as a function of the square of the mass of the pseudoscalar 

meson (proportional to the quark mass) in fig.3.4. We see that the results show a 

clear (linear) dependence on the quark mass. Since this renormalisation scheme 

is not explicitly mass independent, one would expect that the improved, renor-

malised current takes the form [11] VR = Zv(1 + bv am)V. The parameter bV  is 

currently not known, even to tree level. The mass dependence is also consistent 

with the expectation that the leading corrections to these calculations should be 

of O(a3 m oa). Perturbation theory at one-loop level [22, 23] with a mean-field 

rescaled coupling constant 3' = /3/u gives Z = 0.842 which is quite close to, 

but still incompatible with, these non-perturbative values. The result for /3=6.0 

is also in good agreement with the values quoted in [24], which are obtained using 

a slightly different method. 

Z has also been determined from eq. (2.135), with ii = p = 0 (using that 

(V(y)V(0)) = 0 to simplify the expression), at k=0.14144 (0=6.2) and ,c=0.1432 

(0=6.0). This gives Z = 0.817 at /3=6.2, and Z = 0.801 
10 

 at /3=6.0.
- 10

Both these values are within 2a of the results obtained from eq. (2.122). 
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Figure 3.2: Z as a function of t, using the ratio (2.122) (left), and for K = 0. 14144, 
using the Ward identity (2.135) (right). 
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Figure 	3.3: Z as a function of t, for 3 	6.0, r, = 0.1432, using the ratio (2.122) 
(left), and using the Ward identity (2.135) (right). 

3.3.2 Tadpole improved action 

In an attempt to investigate the effect and viability of tadpole improvement, Zv 

was computed for mesons composed of two heavy quarks and of one heavy and 

one light quark, for a 'standard' and a tadpole improved SW action at /3 = 6.0. 
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mps  

6.2 0.14262 0.208 0.82139 	j
41 + 25 
12 - 25 

0.14226 0.341 0.82453 + 24 + 24 
22 - 23 

0.14144 0.663 0.83136 	23 + 22 
16 - 23 

6.0 0.1432 0.615 0.81683 + 4 5 
- 33 

Table 3.2: Values of the renormalisation constant Z as a function of the quark 
mass. The first set of errors are the statistical errors, while the second set are the 
errors due to the variation between the timeslices. 
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Figure 3.4: Z as a function of the mass of the pseudoscalar meson. The heavier 
point at 0=6.0, taken from [21], is included for comparison. 
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The tadpole improvement was implemented by replacing U(x) with U,(x)/u o , 

with u0  = 0.87779, before computing the propagators. 

It was expected that tadpole improvement would bring about better agreement 

between non-perturbative perturbative results. In particular, since to one-loop 

order Zv is supposed to be mass-independent, tadpole improvement should reduce 

the mass dependence observed here and in [25]. 

Another effect of tadpole improvement should be that the current quark mass 

used in the definition of improved operators is more well-defined. If we write 

/ 	ar4-\ / 	ar \ 

	

= (1 +(1 —z)arñi o ) 1 +z - -) F 1 _z --P) 	(3.148) 

the equations of motion can be used to eliminate either ñio (z = 1) or j(z = 

0). The latter would be considerably cheaper computationally, but depends on 

a reliable estimate of the 'bare' (subtracted) quark mass ñi 0 . Using a tadpole 

improved action will bring r,, closer to its tree-level value of 1/8, and tadpole 

perturbation theory could then provide an estimate of ñi 0 , or the dependence of 

quantities like Zv  on 

In this study, Zv = C2pt/C3pt ,  where C2t,3t  are the unrotated (unimproved) 

correlators, is computed, and Z °  is obtained from 

Z °  = (1 + am) v 	 (3.149) 

where m = ln(1 + m0 - m) = ln(1 + - ---' is the (heavy) quark pole mass. 
2 	2kI 

For the data without tadpole improvement, K values of 0.133, 0.125 and 0.111 were 

used for the heavy quarks. For the tadpole improved data, K = 0.11411,0.1095 

and 0.096 were used for the heavy quarks, and tc = 0.1210 and 0.1218 for the light 

quarks. The lightest quark was only used to create degenerate light mesons, in 

order to obtain an estimate for K, - all the heavy-light mesons had rl = 0.1210. 
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The pseudoscalar mass was extracted using uncorrelated fits to timeslices 10 to 

19 (5 to 19 for the tadpole improved z = 1 data). Using the data from the two 

light quarks, the critical hopping parameter was found to be r c  = 0.12235. 

The results are presented in tables 3.3 and 3.4. All the rotated results are obtained 

with a sample of 10 configurations. The heavy-heavy and light-light unrotated 

results are also obtained with 10 configurations, while the heavy-light results are 

from 15 configurations. All the data are shown as a function of the heavy quark 

pole mass m in fig.3.7. 

Heavy-heavy Heavy-light 
mpsa  mpsa 

0.133 1.020 0.9022 	i 0.733 ii 0.8921 + 6 
7 

0.125 1.409 0.9602 0.947 + 10 0.9458 + 6 
8 

0.111 2.013 	' 1.0391 1.274 + 11 1.0178 	' 	' 
15 

Table 3.3: Zv for heavy-heavy and heavy-light mesons, using the standard SW 
action. 

As fig.3.7 shows, tadpole improvement does reduce the mass dependence of Zv, 

although there is still a significant mass dependence left. This is not surprising, 

since the SW action is only tree level improved, and (9(ama) errors may still be 

z=0 z=1 
Ici  mpsa _ Zz mpsa 

0.12100 0.12100 0.334(8) 0.8957 + 3 0.8576 t 0.332(7) 0.9437 t 
0.12180 0.12180  0.21(1) 0.9367 t 
0.12100 0.11411 0.665(8) 1.133 0.900 t 0.671(8) 0.964 t 

0.10950 0.834(8) 1.360 0.977 0.841(9) 1.016 + 

0.09600 1.24(1) 2.054 1.172 1.25(1) 1.079 t 
0.11411 0.11411 0.932(7) 1.179 0.9365 0.933(6) 1.0010 t 
0.10950 0.10950 1.237(5) 1.385 0.9953 t 1.238(4) 1.0334 t 
0.09600 0.09600 1.982(3) 2.107 1.2023 +10 1.983(3) 1.1016 t 

Table 3.4: Zv for light-light, heavy-light, and heavy-heavy mesons, using rotated 
and unrotated tadpole improved propagators. The errors are purely statistical. 
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figures are data without tadpole improvement, the middle figures for tadpole im-
proved data with z = 1, and the bottom figures show Zv for tadpole improved 

data with z = 0. 
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Figure 3.7: Z as a function of the heavy quark pole mass, comparing tadpole 
improved with unimproved data (left), and z = 0 with z = 1 (right). 

significant. Also, the mass dependence of the 0(a)-improved vector current is not 

known at tree level, as mentioned previously. 

Using the two lightest quark masses, Zv(m = 0) is found to be 0.932 for the 

tadpole improved action with z=1. This agrees poorly with the perturbative 

value [26] of 0.99, but the ratio Z ° /Z 1  is in good agreement with perturbation 
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- 
, M PS  A  Zp/Zs 

6.2 0.14262 0.208 1.040 	' 0.693 + 28 
- 40 

0.14144 0.663 1.047 0.649 + 
8 - 

6.0 0.1432 0.615 1.097 _17 0.607 + 13 
-  28 

Table 3.5: Values of the renormalisation constants Z and Zp/Z 5  as functions of 
the quark mass. 

theory 

The comparison of the data at z = 0 and z = 1 is inconclusive, but indicates that 

it is possible to use either prescription. A more recent and detailed study of these 

mass effects can be found in [27]. 

3.4 Axial current 

The axial vector renormalisation constant Z is determined using eq. (2.135), with 

v = p = i and summing over i = 1, 2,3, using the values for Z quoted in table 3.2 

as input. The results are obtained at 0=6.2, using 60 configurations for ic=0.14144 

and 26 configurations for ,c=0.14262, and at 0=6.0 using 36 configurations for 

ic=0.1432. The results are plotted against t in fig.3.8 for 0=6.2, and in fig.3.9 

for /3=6.0. We see that, apart from the effect of the contact terms on the first 

few timeslices, they show virtually no dependence on t, especially for ic=0.14144. 

Since the Ward identities are time independent, this is to be expected. For the 

two other K values, the data becomes unreliable at high t. The best estimates are 

obtained from fitting to timeslices 7-22 for K=0.14144 and to timeslices 6-16 for 

K=0.14262 and 0.1432. The results are given in table 3.5. 

Within the statistical errors, these results show no dependence of ZA on the quark 

mass. This is confirmed by simulations at 0=6.0 [28]. The comparison with results 

from perturbation theory is more interesting: one-loop calculations with a mean- 

field rescaled coupling constant give ZA 0.97, which is considerably lower than 
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Figure 3.8: Z as a function of t for r. = 0.14144 (left) and ,c = 0.14262 (right). 
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these non-perturbative results. The discrepancy is higher at lower 3, as expected, 

and the value for /3=6.0 is consistent with the value of 1.09 quoted in [21] (and 

within 2a of the updated value [29] of 1.06(2)). 
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Figure 3.10: Zp/Z s  as a function of t for k = 0.14144 (left) and .'c = 0.14262 

(right). 

3.5 Pseudoscalar and scalar densities 

The ratio of pseudoscalar to scalar renormalisation constant is determined from 

(2.136), using the same ensembles as for ZA. Zp/Zs is plotted as a function of tin 

figs.3.10 and 3.11. For 3=6.2, ic=0.14144 afit to timeslices 7-24 was used, while for 

,c=0.14262 the fit was to timeslices 16-24, and at 3=6.0, ic=0.1432, a fit range of 

8-20 was used. The best estimates are given in table 3.5. The uncertainty in these 

results is too large to determine whether there is any dependence on the quark 

mass. Perturbative calculations with a mean-field rescaled coupling constant give 

Zp/Z s 0.70. As can be seen, the result for the heavier quark mass (which is the 

more accurate) is slightly lower than this, while the lighter quark mass gives a 

value compatible with perturbative results (although the errors here are still quite 

large). At 0=6.0, the perturbative estimate is Zp/Zs=0.68, confirming that, as 

in the case with ZA, the discrepancy decreases with increasing 0. 
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Figure 3.11: Zp/Z s  as a function oft for Ic = 0.1432,8 = 6.0 

3.6 Effect on decay constants 

Table 3.6 shows how the values for the decay constants reported in [30], for 0=6.2, 

change when we use the results given above for the renormalisation constants. For 

Zv, the values in table 3.2 have been extrapolated to the limit of zero quark mass, 

giving Zv = 0.817(2). When determining fK  and  f, an additional uncertainty, 

due to the quark mass dependence, of ±0.008, is added, corresponding to the 

difference between the values at the largest quark mass and in the chiral limit. 

For ZA, a best estimate is obtained by combining the results at the two ic-values, 

+10 
of ZA = 1.045 

- 14' 
with the errors corresponding to the spread between the 

highest and lowest estimate. We see that all the decay constants move closer to 

the experimental values, but that a significant discrepancy still remains, especially 

for fo  and fK.  This may be partly related to uncertainties in the determination 

of ic3. f7, turns out to be about 3o away from its experimental value. The APE 

collaboration has found fir /(mpZA) = 0.186(20) at /3 = 6.2 [32], which gives a 

value for f,-/m compatible with experiment. Recently obtained results with a 
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old estimates updated estimates experiment 

102 ± 	MeV 110 	Me V 132 MeV 

fK 123 	MeV 133 + MeV 160 MeV 

11fr  0.316 t 0.311 + 
- 13 0.28 

WK. 0.298 j 0.293 + 5 + 1 
9-1 

11f 0.280 0.276 + 3 + 1 
6-1  0.23 

0.138 + 0.149 + 	6 
- 10 0.172 

fKIMP 0.160 + 0.172 + 8 
-9 0.208 

fK/mK* 0.144 + 0.155 + 
-7  0.179 

Table 3.6: Values of decay constants in physical units, using perturbative and 
non-perturbative values for the renormalisation constants. The second set of errors 
in the vector meson decay constants are systematic uncertainties due to the quark 
mass dependence of Zv. 

+5 
tadpole improved action [31] give f/(ZAm)=0.162 - 	

Using the perturbative 

value for ZA, which for the tadpole improved action is 0.93 at /3 = 6.2, this still 

gives a value for fir /mp of 0.151 
' 5 

which is 4o lower than the experimental 

value. It is possible that a non-perturbative determination of ZA will improve on 

this, although it is again unlikely that it will bridge the gap between the lattice 

estimate and experiment. 

All the work reported in this chapter was performed two years or more ago. Since 

then, there have been a number of new developments, both theoretically and in 

algorithms and computer power. This means that the results reported here are to 

a large extent already out of date, and must be updated with new results for the 

new actions that are now being used. 
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The quark—gluon vertex 

4.1 Continuum symmetries and form factors 

The continuum vertex function (fig. 4.1) can be derived from the effective action 

F, cf. eq. (1.10) 
J3 r Aa(  

- 

x)SA(y)S@(z) 

and the momentum-space vertex is defined by 

(2) 4 84 (p + q - r)A(p, q) 
= f 	 y, z) 	(4.151) 

The only possible dependence this can have on the group coordinates a, i, j is 

proportional to I. We can therefore consider only A(p, q), defined by 

(AaIJ - T(A )aa IiicrI3 	U' 
(4.152) 

Lorentz invariance and parity conservation require that this takes the form 

A,(p 2 ,q2 ,pq) = F1p + F2q, + F3  

+F4  1Pii + F5 	+ F6  & + F7  4q,. 	 (4.153) 

52 
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Figure 4.1: The quark—gluon vertex. 

+F8op + F9aqu 

where all the F's depend only on the invariants p 2 , q2  and pq. 

At tree level, this reduces to AO = igo'y. From this we can see that the form 

factor containing the running coupling is F3 , while all the other form factors are 

expected to be finite. 
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4.2 Method for extracting the renormalised cou-

pling 

4.2.1 Definitions and principles 

We define the lattice gluon field A,(x), which in the continuum limit becomes 

aA0'nt( x ), as 

At ,  W =4- (U(x) - U(x)) - ---Tr (U,,  (X) - UAI 	(4.154) 
2igo 	 6igo  

The momentum-space gluon field then becomes 1  

A,, (q) = 	e'A(x) 
S 

1 = 	(u( q) - U(—q)) - 	Tr (u( q) - U(—q)) (4.155) 
2igo 	 6igo  

The Lie algebra-valued gluon fields can be computed by tracing with the Gell-

Mann matrices 

	

TrA"A = Tr,VI>1_Ab = 	8abAb = A a 	 (4.156) 
b  2 	b 

We can define the configuration space quark—gluon vertex function as 

V(x,y,z) = (( x)(z)A(y)) = (S(x,z)A(y)) 	(4.157) 

Fourier transforming this and invoking translational invariance gives us the full 

'This should really be A,(q) = >, e_ (z '/ 2 )A, 2 (x), but we are keeping q, = 0, so it makes 
no difference. 
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(unamputated) momentum space vertex function: 

E 
e_xY(x)Ay)77(z)) 

x,y,z 

= 	_i(p+q— r)z 	_i(p(xz)+q(Y_z)) ((x - z)A(y - z)J(0)) 

= 	_i(p+q—r)z E _i(px+qj) 

= V(p+q—r) (S(p)A(q)) 

= V8(p+q—r) G(p,q) 	 (4.158)CVO  

and the proper vertex function 

A t (p, q) 	(S(p + q)) 1  (S(p)A(q)) (S(p)) 1  (D(q)) 1 	(4.159) 

where the momentum-space quark propagator S(p) is 

8(p) = E eS(x, 0) 	 (4.160) 

D(q) is the gluon propagator, 

D(q) - 5 b p
Iii) (q)D(q) 	 (4.161) 

and the projector P,(q) is 

Pp, (q) = JA , - ( 1 - .) 
q11q11
-- 	

(4.162) 

In the Landau gauge (e=0),  P becomes the transverse projector T,, and D(q) 

can be determined by 

D(q) = 	
1

D(q) 	 (4.163) 
3(N - ) 
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At tree level, this becomes 

(p, q) = _iT aT  g0(q) 	cos (2 + q) 	. . 	 ( 4.164) 
(2p + q) 

A (°) 	 \ 
________ - 	

2 ) 2 

We will also define the colour-traced full vertex function 

2 
= N2  - 1 	

IG(p,q) 	 (4.165) 

	

23 A
C 	j,a 

F3  may be extracted by exploiting the symmetries of the problem. First, we isolate 

F3  and F4  

Tr'y/L A,(p, q = 0) = 4F3 (p2 ) + 4pF4 (p2 ) 	 ( 4.166) 

where no sum over i is implied. We can then eliminate F4  by imposing an appro-

priate kinematics, e.g. p,. = O,p 	0 with i ii. 

Finally, we define the renormalised coupling as 

g(p) = iZ(p)i 3  (p)F3 (p2 ) 	 ( 4.167) 

where Z2  and Z3  are the renormalisation constants for the quark and gluon fields. 

Z2  may be determined from (2.140), while Z3  is defined by 

Djjv 	= T(p)Z3(p) 	 (4.168) 

From this, we can compute gR(q2),  which should be independent of the bare 

coupling g = 6/13 , and relate this to the running coupling calculated in other 

schemes, eg, gMS(q2)  or the lattice 3-gluon coupling [33]. It is worth noting 

that, since this scheme is defined in the continuum as well as on the lattice, the 

matching with 9"'(q 2)  can be performed entirely within continuum perturbation 

theory, provided there is a region where perturbation theory is valid and lattice 

artefacts are insignificant. 
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4.2.2 Computational details 

All the results in this chapter have been obtained with the Wilson gauge action 

at 0 = 6.0 on a 16 3  x 48 lattice. The gauge fields were generated with a Hy-

brid Over-Relaxed algorithm, with configurations separated by 800 sweeps. The 

quark propagators have been generated using a tadpole improved SW fermion 

action, with csw = 1.48, for one value of ic/uo  = 0.1370, which corresponds to a 

pseudoscalar mass of 830 MeV. 

The gauge fields have been fixed to Landau gauge, using a Fourier accelerated 

algorithm [34] to deal with low-momentum modes. The Landau gauge condition 

has been achieved to an accuracy of 

V\Tc 	
IaA2 < 	 (4.169) 

It is necessary to be careful when Fourier transforming the quark propagators. 

Having chosen antiperiodic boundary conditions in the time direction, we have to 

choose half-integer values for the momenta in the time direction 

	

pta=2(nt +)/Lt 	nt =0,1,...,Lt-1 	(4.170) 

while the spatial momenta (and the gauge momenta in all directions) have integer 

values, 

pia =2irn/L 	 (4.171) 

The time Fourier transformation for the quarks cannot be performed directly using 

a standard FFT routine; instead, 8(t) is extended onto a lattice of length 2L, 

using S(t + L) = —S(t), and picking only the odd momenta. Alternatively, and 

equivalently, we could perform a standard FFT on 8(t) = e_it/tS(t). 

The analysis is performed as in chapter 3, using least x2  fits and with the er- 

rors obtained from bootstrap samples. However, the large datasets involved give 
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problems. To circumvent these, the data have been divided into 4 batches of 

83 configurations each, with 100 bootstrap samples generated for the average 

= iTr'yA(p,q) and the covariance matrix (so that 

the correlation between K, for different Pt  can be taken into account) for each 

batch, with different seeds used for the random number generator for each batch. 

A combined estimate for K and K L K is then obtained from 

K = 
j- K 

for each bootstrap sample of K,, and similarly for the covariance matrix. This 

is a good estimate provided the average and covariance for each batch provide 

reasonable estimates. 

4.3 Determination of Z2  and Z3  

The quark field renormalisation constant Z2  has been determined using equation 

(2.140). The results are plotted as a function of Ipal in fig. 4.2. We see that Z2  

has large ambiguities. A natural assumption is that these ambiguities arise from 

violations of rotational symmetry, and this is confirmed by fig. 4.3, where it is 

plotted for momenta only in certain directions. 

The main ambiguity is between on-axis and off-axis points, as we can see by 

comparing fig. 4.3 (a)—(c). The values for spatial on-axis points are lower than 

those which are on-axis in the time direction, because it is not possible to set 

Pt = 0. Comparing (c) and (d), we see there is also an ambiguity at high momenta, 

which accounts for the 'spurs', and is almost removed entirely by selecting only 

low-lying momentum values, as in (d). 

These violations are primarily of O(pa), since the SW action is only 0(a)-improved 

for on-shell quantities. Following the prescription of [17], one could 'rotate' the 
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Figure 4.2: Z2  as a function of Ipal, for 80 configurations 

propagators at either end with (1 + (4 + MO)) 
(cf. sections 2.3.1 and 3.3.2), 

and there are indications that this would help. An earlier study, using the same 

(rotated) propagators as were used at 0 = 6.0 in section 3.3, had no ambiguity 

between on-axis and off-axis points, but still large high-momentum ambiguities, as 

figure 4.4 shows. However, attempts to add these rotations by hand by replacing 

with j  have not been successful. 

Z2  has been fitted to a phenomenological curve (to be used as input when com-

puting the renormalised coupling), Z2  = c0  + c1  ln(pa) + c2 (pa)2 , using only the 

on-axis points in the time direction. The best estimates for the parameters are 

given in table 4.1. 

ll 0.960t 9 I 
ci —0.065 t 14 

C2 	0.054 

Table 4.1: Parameters for the quark field renormalisation constant Z2 , from 83 

configurations, 100 bootstrap samples. 

The gluon field renormalisation constant Z3  has been determined from (4.168), 

and is shown as a function of qa in figure 4.5. This has been fitted to a phenomeno- 

logical curve Z3 (qa) = A 0  + A 1  ln(qa) + A2 (qa)2  for 0.45 < qa < 1.57, and to a 



Chapter 4. The quark—gluon vertex 

1.2 

1.1 
	

1.1 

1.0 
	

1.0 

no 
	 no 

0 	 1 	 2 	 0 	 1 	 2 

1.1 
	

1.1 

1.0 
	

1.0 

no 
	 no 

0 	 1 	 2 	 0 	 1 	 2 

Figure 4.3: Z2  as a function of 1pal, for 80 configurations, selected momenta. (a) 
Momenta only in the time direction; (b) momenta on-axis in spatial directions, 
with t = +; ( c) off-axis momenta only; (d) l4 < 2; Intl 
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Figure 4.4: Z2  as a function of 1pal, for 8 configurations, using rotated propagators, 
Csw = 1,k = 0.1432 

curve Z3 (qa) = ai (qa) + a2 (qa)2  + a3 (qa)3  for qa < 0.45. The best estimates for 

the parameters are given in table 4.2. A high accuracy is obtained already for 20 

configurations, and only minimal violations of rotational symmetry are observed. 

pa < 0.45 pa > 0.45 

ai  I 	6.0 A 0  2.12 + 2 
3 

a2  38 A 1  —2.25 + 6 
8 

a3  —70 + 13 A 2  0.347 + 25 
20 

Table 4.2: Parameters for the gluon renormalisation constant Z3 , from 20 config-
urations, 100 bootstrap samples. 

It should be emphasised that these fits are only performed to facilitate the com-

putation of the running coupling gR(p),  and no physical significance should be 

attached to the phenomenological parameters quoted. 
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1 	 2 

Figure 4.5: Z3  as a function of j qa j , for 20 configurations 

4.4 The F3  form factor and the running coupling 

4.4.1 The unamputated vertex 

Tr'yG,(p,q) is shown as a function of p = (O,O,O,pt ) for q = 0 (with i = 1) in 

fig. 4.6. We see that there is a clean signal which falls off smoothly with p. 

Fig. 4.7 shows iTry1 G1  for fl q  = 1 and 2. For n = 1 there is still a clear signal, 

although the amplitude has fallen off from q = 0 to qa =7r/8 as it does from Pt  0 

to pt a 7/8. However, for fl q  = 2, as fig. 4.7 (b) shows, noise dominates, and 

insofar as there is a signal, it is negative. This indicates that a renormalisation 

scheme where F3  is calculated as a function of q 2 , keeping p=O, is not feasible. 

Fig. 4.8 shows iTr-yi Gi (p, q) for various non-zero p and q. The most interesting 

of these are (a) and (b), which show what happens to TryG,(p, q) when p,j 0 

or q,  0. Fig. 4.8 (a) shows that the signal is strongly suppressed when q,  0, 

and (b) indicates a highly non-trivial behaviour for p. =A 0. This indicates how 

the form factors for the proper vertex F4—F7  in (4.153) come into play for these 
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Figure 4.6: Tr'y 1 Gi (p,q) for q = 0, p = (0,pt ), as a function of pt a, for 83 

configurations. 
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Figure 4.7: Tr'-y i Gi (p,q) for q 	0, p = (0,p), as a function of pt a, for 83 config- 

urations. 
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Figure 4.8: Tr-fl  Gi (p,q) for various combinations of p and q, as a function of p. 
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Figure 4.9: Ki (p, q) for q = 0, p = (0, Pt),  as a function of pt  a, for 83 configurations 

(a)—(d), and for all 332 configurations (e). 
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Figure 4.10: K2(p, q) and K3 (p, q) for q = 0, p = (0, pt ), as a function of pt a, for 

83 configurations. 
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Figure 4.11: K4 (p,q) for q = 0, p = (0, pt ), as a function of pt a, for 83 configura-

tions. 
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of reflection symmetry may be present, but they are all within a few standard 

deviations. It should be emphasised that these are the only values of the momenta 

for which any significant violation of reflection symmetry can be detected. When 

computing the running coupling and AQCD,  all equivalent momenta have been 

averaged. 

In fig. 4.13 K1  is shown as a function of 1pal for q = 0. This is equal to the form 

factor F3 , and as the figures show, it is a well-defined function of p (within the 

statistical errors) at least for pa < 1 - 1.2. Fig. 4.14 shows K1  for fl q  = 1. This 

shows a similar dependence on p as F3 (p), although the errors are larger, as one 

would expect. 

Fig. 4.15 shows Ki (qa = 7r/4) as a function of 1pal. Although any signal here is 

swamped by the noise, it is still possible to detect a p dependence similar to the 

dependence for q = 0 and q = ±1. 

K1  is also shown as a function of pt a for several values of qt  =A 0 in fig. 4.16. Since 

p and q are parallel in this case, it is difficult to give a physical interpretation of 

this, but it can be noted that 

The signal is most distinct for Pt = —q/2. This indicates that the leading 

dependence of the vertex on p and q is as a function of p + q/2, as indicated 

by the tree level expression (4.164). 

• There is a clear signal for all values of q. This means that it may be feasible 

to choose an alternative renormalisation scheme, using the symmetric point 

q = 2Pv This has the added advantage that finite size effects should play 

no role, and it is also a fairly commonly used scheme in perturbation theory. 
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Figure 4.13: F3 (p) as a function of Ipal for p = (O,py ,O,pt ) ( left) and 

p = (O,O,p,p t ) ( right). 
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Figure 4.14: Ki (p,q) as a function of Ipa I for fl q  = 1 (left) and fl q  = —1 (right). 



Chapter 4. The quark—gluon vertex 
	

71 

4 

93 

-2 

-k 

0 	 1 	 2 

Figure 4.15: Ki (p,q) as a function of 1 pa I for fl q  = 2 

4.4.3 The running coupling and the A parameter 

We see from fig. 4.13 that F3  is a well-defined, decreasing function of p, although 

the uncertainties are still quite large. Fig. 4.17 shows F3  for a restricted set of 

momenta (pv a < 1.2; 1 pal < 1.5), where equivalent momenta are averaged. This 

removes almost all the remaining ambiguities. 

Using the values for Z2  and Z3  in 4.3, we obtain gR(p),  which is shown in fig. 

4.18. These results are close to those obtained from the 3-gluon vertex [33]. 

(The dip at low p is entirely due to the renormalisation factor Z3 .) We find 

that o g(2GeV) = 0.27 ± 0.06 + 0.03, where the first error is statistical, and the 

second is the systematic error from the ambiguity in Z2 . The scale has been set 

to a 1  = 2GeV, from the string tension. 

The QCD scale parameter A has been computed according to the 2-loop formula 

(2.111). The results are shown in fig. 4.19. It is difficult to draw any firm con- 

clusions from this, since the data become very noisy at the point where 2-loop 

perturbation theory might become valid. However, it seems that A reaches a 
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Figure 4.17: F3 (p) as a function of p, with equivalent momenta averaged. 
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Figure 4.18: g(p) as a function of p (GeV), for p, < 2.4GeV (left), and for a 
wider range of momenta (right). 
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Figure 4.19: AQCD(p)  (GeV) as a function of p (GeV), for Pu < 2.4GeV (left), and 
for a wider range of momenta (right). 

plateau at about p=1.5 GeV, giving an estimate for AQCD  of about 300-600MeV 

in this renormalisation scheme. 

4.5 Other form factors 

A useful check on the symmetries of the vertex is to see whether form factors 

other than F3  exhibit the behaviour expected of them according to (4.153). As a 

preliminary exercise, I have calculated TrA 1  (p, q = 0) for varying P1  and p. At 

tree level, this is equal to go  sin  P1,  and in general it should be proportional to 

p1 or sin Pi  As figure 4.20 shows, this is indeed the case, at least qualitatively. 

It could also be argued that there is a constant term of - 0.02, and a slight 

linear dependence on p,  but the uncertainties are so large that this cannot be 

ascertained with any confidence. 

I have also computed Trys A i  and Try5 'yi A i , which should be zero because of parity 

conservation. This is confirmed. 
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Figure 4.20: TrA 1 (p,q) for n = +1,2,3, as a function of pj a, for 80 configura-

tions. 
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4.6 Outlook 

4.6.1 Sources of error 

As mentioned in section 4.3, off-shell Green functions will contain residual 0(a) 

errors even when they are computed using the (0(a)-improved) SW action. We 

have already seen that this gives uncertainties of 5% in the estimate for Z2 , from 

violations of rotational symmetry. Although no such violations are observed for 

the quark—gluon vertex, at least not for the kinematics used in this study, it is 

not unreasonable to assume that it also contains 0(a) errors. Indeed this may be 

one reason why the signal deteriorates as rapidly with q as it does, to the extent 

that for qua > 0.75, with p = 0, all that can be observed is noise. 

It is slightly puzzling that O(qa) errors are so large when 0(pa) errors are rela-

tively small. One explanation of this may be that the 0(pa) effect is cancelled 

when amputating with S(p) on both sides of the vertex, while S(p + q) only enters 

once. This is supported by the plots (fig. 4.16) for q t  =A 0, where the errors are 

smallest for p + q/2 0. 

Considering the tree level expressions (1.51) and (4.164) for the quark propagator 

and the vertex function, it may be noted that the cosine term in the vertex will 

not contribute in the kinematics chosen for this study. The sine term in the quark 

propagator may on the other hand give 0(a) contributions that are not taken care 

of by the amputation and the determination of Z2 . 

Since the gluon is at zero momentum in the chosen kinematics, one would expect 

finite volume effects to play an important role. However, studies of the 3-gluon 

vertex [33] indicate that finite volume effects are not significant, even when zero-

momentum gluons are involved. Still, it would be desirable to perform the simu-

lation on a larger lattice in order to have a better resolution of the momentum in 

directions other than the time direction. 
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The gauge is fixed to an accuracy near machine precision. This should be an 

indication that errors due to inaccurate gauge fixing are small compared to other 

errors. I have not conducted any investigation of this kind of errors, but early 

studies of the quark propagator showed that gauge dependent quantities did not 

change significantly when the accuracy was changed from 10-6  to lOu. 

Another potential source of uncertainties is Gribov copies. One would expect 

these to play some role, but studies of, among other things, gauge dependent 

determinations of current renormalisation constants [29] indicate that the errors 

due to Gribov copies are not large, and would not affect the qualitative results in 

this study. 

The statistical errors are quite large, even with 332 configurations. This is not 

unexpected for gauge dependent, non-zero momentum 3-point functions. There 

seems to be little prospect of improving on the statistical errors at 3 = 6.0. Data 

taken at 3 = 6.2 would be expected to be less noisy, both because of self-averaging 

and because the Green functions are more well-defined at weak couplings. 

A problem is that the perturbative window - where the effects of finite lattice 

spacing are small, and perturbation theory is still valid - is small. This means 

that comparisons with perturbation theory, or with lattice results obtained using 

different methods, is difficult. Simulations at higher would reduce this problem 

as well. 

4.6.2 Comparisons and applications 

Matching these results for g R  to the MS scheme, and thereby to any other renor-

malisation scheme, is a fairly straightforward calculation in continuum perturba-

tion theory. However, this has not yet been done, and no such calculations, using 

this specific scheme, are to my knowledge presented in literature. Without match-

ing to other schemes, any comparison with other calculations or with experimental 
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results are fairly meaningless - although it is encouraging that the results for g 

are quite close to those of [33], where a similar renormalisation scheme was used. 

This does not affect the main aim of this study, which has been to demonstrate 

the feasibility of the method, and despite the difficulties related to being restricted 

to a fermion action which is only on-shell improved, and the poor quality of the 

data for q 0, this has been achieved. 

Another potential application of this kind of study is to use the vertex as input in 

Dyson—Schwinger equations. The DSE for the quark self-energy E(p) = >2'(p) - 

= ) is 

= iZg f ( 

 

	 4 S(q)D(p - q)A(p, q) 	(4.172) 

where ZA A, L (P, q) is the main unknown quantity. Usually, some ansatz is made 

about the form of it, after invoking the constraints of the Slavnov—Taylor identi-

ties. The remaining undetermined functions are determined using the DSE for the 

quark—gluon vertex - but that requires knowledge of the quark—quark scattering 

kernel, and only the asymptotic form of this is known. If the form of A could 

be determined from the lattice, that would provide more solid input, or test the 

validity of the usual assumptions. 

The methods employed in this study can easily be extended to the study of cou-

plings between quarks and composite gluonic objects. Of particular phenomeno-

logical interest is the pomeron, which is assumed to be a 2-gluon jPC = J++ object 

(with J undetermined). Work is underway to investigate different models for this 

[35]. The methods are also similar to those involved in the non-perturbative  re-

normalisation scheme discussed in section 2.3.2, which can be used to supplement 

the methods used in chapter 3. It is not surprising, however that the uncertainties 

in determinations of renormalisation constants using this method [18] are larger 

than those from the Ward identity and ratio methods discussed there. 
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4.6.3 Conclusions and suggestions for further work 

The results presented in this chapter demonstrate that it is possible to extract the 

renormalised QCD running coupling non-perturbatively by studying the quark—

gluon vertex on the lattice. Values for a 3 (2GeV) and AQCD are found that are 

in reasonable agreement with results from other calculations and measurements. 

This is however only a qualitative result, since the perturbative matching to other 

schemes has yet to be done. 

There is also a good prospect for computing the other form factors, thus deter-

mining non-perturbatively the complete (proper) quark—gluon vertex. A good 

signal for F1  has already been found, and a more indepth study would attempt to 

quantify this and the remaining form factors. This would be useful especially for 

use in Dyson—Schwinger equations. 

It is unsatisfactory that the gluon momentum has been fixed to zero when calculat-

ing physical quantities in this study. It would therefore be desirable to investigate 

the feasibility of using a renormalisation scheme where p = —r = —q/2 = 

There are indications that this might give useful results, especially from the data 

at qt  0, but other data, for q in other directions are not so encouraging. 

The errors are still quite large, and apart from statistices, the most significant 

contribution is 0(a) errors from the fermion action. It is clear that in order to ob-

tain reliable results, it is important to bring these under control. Repeating these 

calculations with off-shell improved quark propagators would be a step in that 

direction. Reduction of the effects of finite lattice spacing would also be achieved 

by performing the calculations at higher 0. This would have the added advantage 

of widening the perturbative window and (presumably) reducing statistical errors. 

Although finite size effects are not expected to be large, it would be useful to 

quantify them by repeating the study on a lattice of different size. 

Of more fundamental interest would be a study of the gauge dependence of the 
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vertex, including the effect of Gribov copies. Since any general covariant gauge, 

apart from the Landau gauge with Gribov copies, requires evaluation of multi-

ple gauge transformations per configuration, this is considerably more expensive 

computationally, and is not a realistic prospect for the near future. 



Conclusions 

This thesis has studied the renormalisation of various quantities in lattice QCD. 

Renormalisation constants were computed non-perturbatively for the current re-

normalisation constants ZA and Zv, for the Sheikholeslami—Wohlert action. There 

is evidence that this would bring previous estimates for pseudoscalar and vector 

meson decay constants closer to their experimental values than the estimates ob-

tained using the perturbative values, but there is still considerable discrepancy - 

at least for the UKQCD collaboration's results. Since this work was done over 2 

years ago, more recent results have since appeared using more refined techniques 

and improved actions, for which the corresponding renormalisation constants to 

a large extent have yet to be computed. 

A study was also conducted of the mass dependence of Zv,  using tadpole improved 

and non-improved actions, and different prescriptions for the 0(a) improvement 

of the operators. This was little more than a study of the feasibility of the 'new' 

action and prescription, which had a positive outcome insofar as they are now 

both being used by the UKQCD collaboration. 

In chapter 4, a method is presented for studying the quark—gluon vertex non-

perturbatively and using it to extract a renormalised QCD coupling. The initial 

results of this are encouraging, although the perturbative matching to M37  and 

other renormalisation schemes still has to be done in order to obtain physical 

predictions. The results are still hefted with large errors, especially 0(a) errors 

from the quark field renormalisation constant, and this has to be brought under 

rixi 
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control before more reliable estimates of the running coupling a 3  and the scale 

parameter AQCD  can be obtained. 
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