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Abstract 

Factor H (FH) is a key regulator of the major humoral component of the innate immune 
system, the complement system. Activation of complement leads to opsonisation and 
immune clearance, cytolysis and release of mediators of inflammation as well as 
augmentation of the adaptive immune response. Strict control of the alternative pathway of 
the complement system is crucial to discrimination between healthy host tissues and 
potentially dangerous cells and particles. Most regulators, including FH, act by selectively 
protecting self-surfaces. Imbalance or failure in this tight regulation causes several human 
diseases. Central to the function of FH is its ability to bind to the C3105 convertase of the 
alternative pathway, to C3 fragments deposited on cells and particles and to specific 
polyanions on self surfaces. Detailed understanding of these binding events will not only 
shed light on the mechanism of action of this regulator, but also help to understand the 
mechanisms of diseases associated with an under-regulated alternative pathway. 

This study investigates the binding regions of FH for its major targets - the C3 fragments 
(C3b, C3c and C3d) and polyanionic carbohydrates such as glycosaminoglycans and sialic 
acid - focusing on the hypothesis that multiple sites on FH are occupied simultaneously by 
ligands. Factor H consists of 20 CCP modules; truncation fragments containing different 
numbers of CCP modules were recombinantly expressed, charactensed and submitted to 
hepann-affinity chromatography, gel-mobility-shift assays (GMSA) and surface plasmon 
resonance. This approach allowed detailed characterisation of the N- and C-terminal binding 
sites. However, contrary to some reports in the literature, fragments encompassing CCP 
modules 9 to 15 of FH do not show significant affinity for any of the primary ligands. An 
atomic resolution NMR structure of the two CCP modules 12 and 13 of FH, i.e. FH-12-13, 
and architectural information from biophysical analysis of the six-module construct FH- 10-
15 show that the primary role of this region is not to bind the primary ligands but to form a 
hinge allowing N- and C-termini to cooperate in engagement with their targets. 

Thus this report allows the formulation of a new model for FH action, where some of the 
central modules orient the key binding sites, at either end of FH, to act in concert facilitating 
selective protection of non-activating self-surfaces. 
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INTRODUCTION 

1.1 Innate Immunity 

The immune system protects the host organism by recognizing and disposing of invading 

microorganisms and potentially pathogenic modified host constituents. In vertebrates 

adaptive, or acquired (specific), immunity evolved alongside the more phylogenetically 

ancient (4) innate (or non-specific) immune system. The effectors of the innate immune 

system have the ability to recognise danger in a non-specific fashion and in a way that 

usually precedes responses mediated by the adaptive immune system. Thus innate immunity 

delivers prompt action against microbial threats and self-generated hazards (5). The innate 

immune response is also activated by antibody-antigen complexes. Moreover, the activation 

products of the innate immune system induce an enhanced state of awareness amongst some 

B- and T-lymphocytes. Thus there is crosstalk between innate and adaptive immunity. Both 

of these defence systems have humoral and cellular effector arms. 

1.2 The complement system 

The complement system is a collection of proteins that comprise the major humoral defence 

mechanism of the innate immune system. When it was first discovered it was described as a 

heat-sensitive factor in serum that "complemented" the effects of specific antibodies in 

bacterial lysis (6). The importance of complement is reflected in the fact that soluble 

complement components make up to 5% of the total protein content in human plasma (4). 
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iNTRODUCTION 

1.2.1 Introduction and overview 

The complement system comprises a network of over 30 serum and cell-surface proteins (7). 

It has three, interconnected, activation routes: the 'classical pathway', the 'lectin pathway' 

and the 'alternative pathway'. Each of these has the potential to proceed to a common 

'terminal pathway' that generates a catalytic membrane attack complex. All three activation 

pathways depend upon a proteolytic cascade whereby the activation of pro-enzymes creates 

functional enzymes in a series of steps that amplify an initial response. Non-enzymatic 

products of proteolysis include mediators of inflammation and enhancers of adaptive 

immunity. Different stimuli trigger each of the three pathways. The classical pathway is 

generally activated by antigen-antibody complexes, while the closely related lectin pathway 

recognises foreign carbohydrate motifs. Spontaneous, low-level and continuous activation is 

the distinctive feature of the alternative pathway. This is referred to as 'tick over'. Rapid 

amplification of the alternative pathway ensues in the absence of action of specific 

complement regulators. 

The central components of the complement system, like C3 and factor B', have their 

evolutionary origins more than 1300 million years ago (8). Paralogues are found in 

invertebrates like the sea urchin and horseshoe crab. In a recent study, C3 was also found in 

corals and sea anemones. For comparison, the evolutionary origin of the adaptive immune 

system (major histocompatibility complex - MHC) dates back to around 600 million years 

and is specific to jawed vertebrates. The oldest activation pathway of the complement system 

Note on Nomenclature of the complement system: 
Proteins of the classical pathway and the membrane attack system are allocated a certain number (they 
are listed here in their sequential reaction order): Clq, Cir, Cis, (C4, C2, 0), C5, C6,C7,C8,C9 

Suffix letters distinguish proteolytically produced fragments from their parent molecule. Usually the 
suffix letter "a" characterises the smaller product of a cleaving reaction, whereas the letter "b" 
designates the bigger cleavage product. Proteins of the alternative pathway are called "Factors't. 
There are three different methods of characterizing complement receptors. The receptors can be 
named either according to their ligand (e.g. C5a receptor), or using the cluster of differentiation (CD) 
system. Additionally there is a numbering system for receptors for the major fragments of C3. This 
distinguishes four different types of complement receptors (e.g. CR1 to CR4). Thus there can be three 

different notations for one protein (e.g. the receptor for C3b: C3b receptor, CD35 and CR1). 
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INTRODUCTION 

is the alternative pathway, based on proteins C3 and factor B. It is speculated that the lectm 

pathway became established around 900 million years ago with the appearance of mannan 

binding protein (MBP), MBP-associated serine protease (MASP) and ficolins. The classical 

pathway is thought to have emerged around 600 million years ago by vertebrate-specific 

complement gene duplications between C31C4/C5 , factor B/C2 and MASP/C iris. 

Activation of these pathways may results in different responses (5, 6), (9) 

(summarised in Table 1.1). 

Effect Mechanism 

• opsonisation and clearance by phagocytosis 

elimination of pathogens 
direct lysis through activation of terminal pathway 

membrane attack complex (MAC) 

clearance of apoptotic bodies opsonisation and clearance by phagocytosis 

recognition of immune complexes by Cl q pr9motes 
clearance of immune complexes 

clearance by macrophages and dentirtic cells 

mediation of inflammation release of anaphylatoxic and chemotactic proteins 

interaction of complement activation products with cell 
regulation of adaptive immune 

surface receptors of myeloid, lymphoid and stromal 
responses 

cells 

Table 1.1 Effects of complement activation 

The high levels of complement proteins circulating in serum (and draining into adjacent 

tissues) are constitutively expressed by hepatocytes (5). During acute infections, production 

of some complement proteins (e.g. C3 and MBL) is up-regulated and thus they may be 

classified as acute phase proteins (10). Local generation of complement components 

expressed by different cells (like macrophages, gut epithelial cells and fibroblasts) is critical 

for supplying a source of complement to peripheral lymph nodes and difficult-to-access 

tissues like skin and brain. 
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INTRODUCTION 

All three activation pathways converge at the pivotal event of the complement 

cascade, the formation of C3-convertases. Subsequent proteolytic activation of the 

glycoprotein C3 (that circulates permanently in the bloodstream at levels of about 1-2 

mg/mi) produces the anaphylatoxin C3a and the opsonin C3b. C3b is able to participate in 

further reactions that culminate in the formation of the membrane attack complex (MAC). A 

set of specific regulators of the complement cascade are necessary to maintain a delicate 

steady state between activation and repression of complement activity. 

Antigen- 
C1qr2s 2  MBP/MASP 

Antibody- 	
,[ 	,[ = 

	
Carbohydrate- 

Complex 
Complex 

Clqr2s2 MBPIMASP 

	

(acbvated) 	(activated) 

0 
JL 	J.L 

C4 	- 	C4b,. 	C4b2a C4b2a3b 
4 	(surface- 	I 	(03 convertase) (C5 convertase) 

C4a 	
bound) 	C2 

C2b 

C3a C5a 

C3 P 	C3b C5 P 

C3a C5a 

C3a 
BBa [I LI 1 	" C3bBb3b C3 	 C3b 	P C3bBb 

(surface- 	 (C3 convertase) 

p 
(CS convertase) 

FactorD 
Activation 

C6 C7 C8 C9 

C5b L 	C5b6789- 
MAC 

Figure Ii Complement cascade. Each of the three activation routes (classical, lectin and 

alternative pathway) can induce the formation of C3 and CS convertases resulting in the 

generation of many central complement activation products (C3a, C3b, C5a, C5b). Nascent C5b 

recruits the components of the terminal events necessary for the formation of the MAC. 

Anaphylatoxic protein fragments are coloured purple. For more details please see the relevant 

sections below. 
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1.2.2 The alternative pathway 

Overview 

The alternative pathway is characterised by a constant, low-level, spontaneous cleavage of 

C3 into C3a and C3b (the "tick-over" reaction - this process involves a form of C3 known as 

C3(H20) which is discussed below), exposing and activating the reactive thioester group 

that is deployed by C3b for attachment to nucleophilic groups. Under normal circumstances 

most newly generated C3b molecules are quickly cleaved by factor I in association with one 

of the complement regulators, factor H, complement receptor type I (CR1, CD35) or 

membrane cofactor protein (MCP, CD46) and the cleavage products are no longer able to 

participate in the complement cascade. Some C3b molecules interact with factor B forming 

C3b,B. In the context of such a complex, factor B is susceptible to the cleavage by the serine 

protease factor D. The fragment Bb remains associated with 0b, forming the C3 convertase, 

C3b,Bb, of the alternative pathway. In the presence of regulators (e.g. on a the membrane of 

a host cell that typically contains multiple complement regulators) the C3 convertase has an 

extremely short half-life and no amplification ensues. In the absence of regulators (e.g. on 

some bacterial surfaces) fresh molecules of C3 are cleaved by C3b,Bb to C3b and C3a thus 

stoking a positive-feedback loop (see Figure 1.1 and below for a detailed mechanism). 

Moreover, nascent C3b molecules bind to existing C3b,Bb complexes to form C3b 2,Bb; the 

presence of the extra C3b molecule provides a binding site for C5 (11) (12), and C3b2Bb is 

the C5 convertase of the alternative pathway that generates C5a and C5b. This is the first 

step leading to the terminal membrane attack complex. 
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protein function activated by activated into gained function 

carrier of tick-over C3a anaphylatoxin 

C3 reactive (c3H20),Bb) reactive 
C3b 

thioester or C3b,Bb thioester 

factor D serine protease n/a n/a n/a 

not definitely 
Ba 

factor B pro-enzyme factor D 
established 

Bb serine protease 

Table 1.2 Summary of alternative pathway proteins 

Central complement component C3 

Recent crystallographic determination of high-resolution structures of C3 (13), C3b (14) and 

factor B (15) provide detailed insight into the mechanism of alternative pathway activation. 

Proteolysis, complex formation and conformational changes are the underlying molecular 

principles of this pathway. The events of C3 cleavage, C3b attachment to surfaces and the 

steps leading to the formation of the alternative pathway C3-convertase will be discussed 

here on the basis of graphical presentations from (16). Complement component C3 is a 

member of the C3/a2-macroglobulifl family of host-defence molecules. A characteristic 

feature of this family of molecules, which are also found in groups as diverse as insects and 

nematodes, is the all-alpha helical thioester domain (TED). C4 and C5 are also member of 

this family and each has 26-30% sequence identity to C3. However, CS lacks the reactive 

thioester that, once activated, covalently attaches the parent protein to molecular and cellular 

targets. Human C3 (Figure 1.2) is synthesised as a 1641-amino acid residue precursor 

polypeptide chain.- Prior to secretion the C3 precursor undergoes posttranscriptional cleavage 

at a tetra-arginine sequence (Arg646-649). Mature C3 contains 13 domains within its two 
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polypeptide chains, the a—chain and f3—chain. Eight homologous macroglobulin (MG) 

domains form the core of the molecule. 

C3 

C345c 

Anchor 

r MG7  

U'NT 

i ANA 

Thioester 	 rA~AG3 

MG4 

RIM INKMGS 

Figure 1.2 High resolution crystal structure of human C3 (from (13)). a'NT, N-terminus of the 

a-chain; ANA, anaphylatoxin domain; CUB, complement Cir/Cis, UEGF, BMPI; LNK, linker; 

MG, macroglobulin; TED, thioester-containing domain. 

The first of two insertions containing the linker domain (LNK) and the anaphylatoxin 

domain (ANA) (and including the cleaved tetra-arginine segment) separates the primary 

sequence of MG6 into MG613 and MG6a components (Figure 1.2). The second insertion 

(between MG7 and MG8) adds the CUB domain (complement Cir/Cis, UEGF, BMPI) and 

the TED. The C-terminal extension forms the C345c domain. 

Activation of C3 

The thioester moiety of C3 is buried between the TED and MG8 domain. Thus shielded from 

reactions with nucleophiles it takes from hours to days for native C3 to react with amino or 
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hydroxyl nucleophiles (see below). Activation by C3 convertases cleaves the small 

anaphylatoxin C3a from C3 triggering conformational rearrangement in the remaining C3b 

(Figure 1.3). 

C3(H 20) 
C3 	 C3(H20)* 

CUB 

TED - ANA 
tic ::tion Thimsterf 

C3b 	 iC3b 

	

C3a 	 C3c 

C3f( 

	

C3 convertasa 	 ( 

	

Factor I + cofactors 	 Factor I + colactors 	 3d 

Figure 1.3 Activation of C3. Spontaneous (tick-over) ak. 	is shown (top). ..........u via C3 

convertase followed by inactivation of factor I mediated cleavage in the presence of cofactors is 

shown (below). Figure adapted from (16). 

Removal of the anaphylatoxin domain, which stabilises the TED-MG8 interface, allows the 

CUB and TED domain to swing out. Following solvent exposure and relocation by 85 A of 

the thioester group, the TED undergoes conformational changes that promote formation of 

the highly reactive thiolate and acyl-imidazole intermediate. This short-lived, meta-stable 

intermediate reacts very quickly (half-life time less than 100 11s for reaction with hydroxyl 

groups) with available nucleophiles. 

Molecules of C3b generated close to a nucleophile-bearing surface are likely to 

become attached to the surface via their thiol esters. If on the other hand formation of C3b 

occurs far from an activating surface the nucleophile is likely to be the oxygen of a water 

molecule (16). Indeed, intact C3 itself is able to undergo tick-over activation due to 

spontaneous hydrolysis of its thioester. This reaction proceeds at a very low rate as is 

obvious from the 230-hour half-life of C3 in water. Electron microscopic data is consistent 

with a C3 confonnational intermediate, C3(H20)*,  in which the TED is swung out and away 
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from the main body of C3. This intermediate has a half-life of about one hour, and it either 

flips back into its native C3 conformation or undergoes hydrolysis and an associated 

irreversible conformational change yielding C3(H 20). It is suggested that in C3(11 20) the 

anaphylatoxin domain remains attached but is translocated away from its position in native 

C3. As a consequence of such conformational changes C3(H 20) is able to interact with 

factor B, promote B cleavage and form part of a C3 convertase, C3(H 20),Bb. In terms of 

comparing the two processes whereby C3 can become activated (i.e. via formation of 

C3(H20) versus cleavage to C3b) it has been suggested that the relative chances of the 

structural transition from native C3 to an activated conformer (C3(H 20) or C3b) depend on 

the likelihood that the anaphylatoxin domain is translocated from its native position. 

According to this viewpoint, proteolytic activation to C3b results in highly probable and 

therefore relatively fast conversion to the highly reactive C3b; on the other hand the 

unassisted conformational transition to C3(H 20) is a rare, and therefore slow event. 

Formation of the alternative pathway C3 convertase 

Both C3b and C3(H 20) are able to nucleate assembly of alternative pathway C3 convertases 

by interacting with factor B, resulting either in surface-bound C3b,Bb or in fluid phase 

C3b,Bb or C3(H 20) (17). The formation of fluid-phase and surface-bound C3 convertases 

require very similar or identical sequences of binding events; these are discussed below in 

the context of surface-bound C3 convertase formation. 

In the local absence of specific regulators of complement activation, a C3b-coated 

surface provides a starting point for the formation of alternative pathway C3 convertases and 

the positive-feedback loop that generates additional C3b (and C3a). Factor B is an inactive 

pro-enzyme that adheres to its cofactor C3b in an Mg 2  -dependent manner and undergoes 

proteolytical activation (to Bb and Ba) by Factor D to form the active C3 convertase C3b,Bb 

10 



INTRODUCTION 

(Figure 1.4). In contrast to other complement serine proteases, Factor D circulates in its active 

form and does not require proteolytic activation. 

Factor B 

sp 

CCP2 	
C3bB aL linker 

VWA-J 	 C3b  

Mg 

0 

C3 convertase 	 Bb 
C3bBb 

Ba 	 C3b 

Factor 0 dissociation AL 

Figure 1.4 Formation of alternative pathway C3-convertase. Factor B comprises live domains; 

Three complement control protein (CCP) domains, a long linker domain (aL linker) containing 

the scissile bond for Factor 0 cleavage, Von Willebrand Factor A (VWA), and the C-terminal 

serine protease (SP) domain. Figure adapted from (16). 

Typically, the alternative C3 convertase has an in-vivo half-life of about 90 seconds. 

However, binding of human glycoprotein properdin to C3b,Bb complexes can prolong its 

lifetime. Once dissociated, Bb is unable to re-associate with C3b. It is thought that a part of 

the factor D-cleaved linker domain in Bb, which is attached to Von Willebrand factor A 

domain (VWA), prevents re-association of the two convertase components. However, C3b, 

if not cleaved by factor I/factor H, can again serve as a siarting point for C3 convertase 

formation. 

Note on regulation of C3 converlases 

Generation of opsonising C3b and anaphylatoxic C3a molecules is potentially harmful to 

host tissue and therefore requires tight regulation. Several surface-bound proteins along with 

the soluble plasma protein factor H regulate alternative pathway C3 convertase activity 

(Figure 1.5). These homologous 'regulators of complement activation' (RCA) act in multiple 

ways. For example, factor H competes with factor B for binding to C3b. Factor H, CR1 and 
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decay accelerating factor (DAF, CD55) accelerate the decay of the active convertase 

complexes (i.e. they exhibit decay accelerating activity (DAA)) 

Factor B 

SP 

CCP2 

aL linker  

CCP3 	
Bb 

 
VWA 	

C3convertase 

(:M  0 	 C3bBb 	

C3b 	

C3c 

Figure 1.5 Regulation of the alternative pathwa C3-convertase. Regulators of complement 

activation have decay accelerating (DAA) and/or cofactor (for factor I mediated cleavage) 

activity. Figure adapted from (16). 

into their components, C3b and Bb, resulting in a reduction of convertase in-vivo half-life 

from -90 to —iO seconds. Factor H, MCP and CR1 act as cofactors for the proteolytic 

inactivation of C3b (to i0b, or ultimately to C3c and C3d and C3g in the case of CR1) by 

factor I - this is termed cofactor activity (CA). 

1.2.3 The classical pathway 

The binding of immune complexes to complement component Cl q (complexed with Cl r and 

Cis to form Cl) triggers the classical pathway. The F c  portions of immunoglobulin (Ig) G 

and 1gM bound to antigen participate in a multivalent interaction with Clq, thus linking the 

adaptive antibody-derived immune response with the innate complement-derived response. It 

has been reported that direct binding to Clq of other substances such as bacterial 

lipopolysaccharide, viral glycoproteins, nucleic acids, prion infectious agent and fragments 
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of damaged cells can also initiate the classical pathway in an antibody-independent manner 

(7),(12). 

Clq is a member of the collectin protein family and it contains both lectin domains 

and collagen-like domain. Six globular heads linked together by collagen-like tails form the 

structure of Cl q, which is non-covalently (Ca 2tdependent) associated with two copies each 

of each the serine proteases Cir and Cis (i.e. Clqr2s2). Binding of two or more of the Clq 

heads to an immune complex (or other activating surface) is required to trigger a 

conformational change in the Cl-complex necessary for the activation of C ir (Figure 1.6) 

(5). Active C ir then proteolytically activates C is, which cleaves C4 into the two fragments 

C4a and C4b. A reactive thioester group on C4b attaches on the surface next to the Cl 

complex. The pro-enzyme C2 (homologous to the alternative pathway pro-enzyme factor B) 

then binds, in a Mg 21 -dependent step, to C4b and in this context is cleaved by the activated 

Cis into C2a and C2b. 

Figure 1.6 Structure of Clq (derived from(4)). The N-terminal collagenous tail-domain connects 

the C-terminal globular head domains. 

C2b remains in complex with the surface-attached C4b. The resultant C4b,2a complex is the 

classical pathway C3 convertase and exhibits a strong protease activity specific for C3 
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thereby generating C3b with its activated thioester group and ability to nucleate the 

alternative pathway convertase, as discussed earlier. Nascent C3b may also complex with 

C4b,2a forming the C4b,2a,3b complex, which is the C5 convertase of the complement 

pathway. The C5b generated by C4b,2a,3b thus represents the point of convergence between 

classical and alternative pathways along the route to the terminal pathway. The smaller 

cleavage fragments C4a, C3a and C5a are potent anaphylatoxins and trigger inflammation. 

1.2.4 The lectin pathway 

The lectin pathway activates complement on microbial surfaces and is'similar to the classical 

pathway. The pathway is triggered by binding of MBL or ficolins (L-ficolin or H-ficolin) to 

various carbohydrate motifs that are abundant on pathogens (10). MBL is - like CI q of the 

classical pathway - a six-headed collectin belonging to the C-type or C a2tdependent lectin 

super-family. Binding of sugar moieties to the MBL head domain (carbohydrate recognition 

domain) is facilitated by the formation of hydrogen bonds between four amino acid residues 

of the lectin domain and the pathogen-derived carbohydrate structures. Specific patterns of 

polar groups within the carbohydrates determine the selectivity of MBL binding. For 

example, ligands of MBL may be listed in order of decreasing affinity: N-acetly glucosamine 

> L-fucose, mannose, N-acetly mannosamine > maltose > glucose >> galactose, N-acetyl 

galactosamine. The low affinity of the MBL carbohydrate recognition site for single 

• monosaccharides means that multiple engagement with repeating microbial carbohydrates is 

a necessity. Discrimination between self and non-self results from the galactose and sialic 

acid that form the termini of most host carbohydrate structures; these inhibit MBL binding. 

Once activating carbohydrates are recognised by MBL, the MBL-associated serine 

proteases (MASP1 and 2; closely related (5) to the classical pathway proteases Cir' and Cis) 

become activated. The liganded MBL/MASP complex triggers the activation of C4 to C4b in 

an analogous prOcess to the equivalent steps of the classical pathway; C4 is cleaved to C4b 
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which binds to C2 forming the C3 convertase. Subsequently C2 is cleaved generating the 

bimolecular complex C4b,C2a, which corresponds to the point of conversion between lectin 

and classical pathways. The acute-phase protein, C-reactive protein, is also capable of 

activating the lectin pathway. 

1.2.5 Terminal events 

All three pathways of complement activation converge at the point of proteolytic generation 

from C5 of the complement component, C5b. This process initiates the so-called terminal 

pathway wherein five soluble plasma proteins (C5-C9) self-assemble to create a pore that 

inserts into phospholipids bilayers - the membrane attack complex (MAC) (18). The 

consequent disruption of a bacterial membrane (for example) leads to osmotic lysis and 

neutralisation of the infective species. 

The terminal pathway is thus instigated by cleavage of C5 by C4b,2a,3b or C3b 2,Bb. 

The smaller, C5a, product is the most potent of the anaphylatoxins. The C5b fragment acts as 

a nucleation site for assembly of a C5b,6,7 complex. This trimolecular complex is lipophilic 

and anchors itself in the lipid bilayer. This process is thought to convert the C5b,6,7 complex 

into a membrane-integrated high-affinity receptor for C8. The nascent C5b,6,7,8 (i.e. C5b-8) 

complex thus has ability to lyse certain microorganisms and eukaryotic cells. More 

importantly it serves as a landing pad for multiple copies of C9. Only one or two C9 

molecules incorporated into C5b-8 are sufficient to elicit lysis. More typically, incorporation 

of 12 to 18 C9 molecules results in formation of an annular structure enclosinga 10 nm open 

pore through the membrane (there are parallels here with perform - a pore-forming protein of 

cytotoxic killer cells and natural killer cells) (19). 
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1.2.6 Other roles of complement 

Complement is best known for its ability to recognise and dispose of pathogens (7). Two 

other important functions are modulation of adaptive immune responses and maintenance of 

tissue homeostasis by means of mediating waste disposal (20). 

Normal turnover in the body generates billions of dying cells daily and the resultant 

cell debris must be cleared in a non-inflammatory way. It is emerging that complement is a 

key component in performing endogenous recycling functions by recognition and 

opsonisation of cellular waste products - the initial step towards clearance by phagocytosis. 

For example, it has been shown that CRP, 1gM, Clq and MBL are involved in binding of 

apoptotic bodies and triggering of the enhanced uptake of apoptotic particles by the-

mononuclear phagocyte system. DNA exposed on apoptotic material (10) is hypothesised to 

be the ligand for MBL. MBL facilitates phagocytosis by cells that bear receptors for the 

collagenOus tail domain of MBL. Similarly, direct binding of Cl q to apoptotic cells and 

immune complexes promotes clearance via recognition of the Cl q collagenous tail domain 

by macrophages and dentritic cells (7). C3b deposition in response to alternative pathway 

activation triggers opsonisation not only of microorganisms, but also of altered self-cells 

(e.g. apoptotic or cancer cells (2 1-23)) enabling complement mediated clearance. It has been 

suggested that this process arises from the loss of membrane-associated complement 

regulators by damaged cells (due to apoptosis, injury, infection or tumor transformation) (7). 

Indeed, complement dysfunction may lead to impaired waste disposal, accumulation of 

debris, development of inflammation and autoreactivity resulting in damage to self-tissues; a 

causative or worsening factor for many inflammation-triggered diseases (for more 

information see 1.2.8 The role of complement and disease). 

Complement activation also enhances, both indirectly and directly, the adaptive 

immune responses (6) (10). Anaphylatoxins promote inflammation and recruit cellular 

effectors of the innate immune system (monocytes, macrophage, neutrophils, basophiles and 
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eosinophils) responsible for phagocytosis. Coating with opsonins promotes rapid ingestion 

of recognised danger particles and cells by the recruited phagocytic cells. Recognition, 

uptake and digestions of antigens in these cells trigger the release of cytokines and enable 

the presentation of these antigens to B-cells and T-cells. Both, cytokine release and antigen 

presentation are crucial mechanisms for improved adaptive immune responses. 

In terms of direct cross-talk between innate and adaptive immunity, cleavage 

products of complement activation and regulation interact with many different cell-surface 

receptors on myeloid, lymphoid and stromal cells facilitating "communication" between the 

complex networks of native and adaptive immune responses. The following specific 

interactions are illustrative. Stimulation of B-cell complement receptors CD2 1/complement 

receptor 2 (CR2), which binds 10b, C3dg and C3d, and CD35/CR1, which binds C4b, C3b, 

i0b, C3dg and C3d, significantly enhances B-cell activation (6); co-ligation of CR2 and B-

cell-antigen-receptor with C3d-coated antigenic particles (in combination with antigen 

presentation of CR2-postive dentritic cells towards B-cells) lowers the threshold of B-cell 

antigen response by a factor of 1000 (24). Absence of CR1 and CR2 (in knock-out mice) 

resulted in abnormal B-cell responses and impaired generation of memory B-cells. Recent 

studies explored the role of complement in regulating T-cell activity (25). Although direct 

interactions of T-cell complement receptors (e.g. the receptor for C3a) with complement 

activation products are discussed, concrete mechanisms remain elusive. A major role for T-

cell priming is ascribed to antigen presenting cells in lymphoid tissues, which mature 

through stimulation of their complement receptors: complement receptor 3 (CR3), 

complement receptor 4 (CR4), C3a-receptor and C5a receptor. 

1.2.7 Note about complement regulators 

As already discussed, activation of complement is potentially harmful to host tissue, and its 

activation must be kept in check (9). Many of the complement regulators are members of the 
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RCA family (5). These proteins are encoded by the RCA gene cluster and will be discussed 

in more detail below (section 1.3 Regulators of complement activation). Table 1.3 gives a 

brief overview of important complement inhibitors. Although complement regulation is 

found at nearly all steps throughout the complement cascade, most regulators control the 

central amplifiëation process, the conversion of C3 and CS to C3b and C5b. 

Membrane main 
Name Abbr. Function 

bound family 

i nhibits spontaneous activation 
 Cl-inhibitor Cl -Inh no serpins 

of Cl 

serine proteolytical inactivation of C3b 
Factor I - no 

protease and C4b 

CA for C3b and C4b 
Complement CR1, 

yes CCP DAA of C3 & CS convertases 
Receptor 1 CD35 

of both pathways 

Membrane 
MCP, 

Cofactor yes CCP CA for C3b and C4b 
CD46 

protein 

Decay 
DAF, 

accelerating yes CCP DA for both pathways 
CD55 

protein 

CA for C4b 
C4-binding 

C4131? no CCP DA of classical pathway 
protein 

- convertases of classical pathway 

CA for C3b 

Factor H FH no CCP DA of C3 & C5 convertases of 

alternative pathway 

Vitronectin binds to C5b67 - thus inhibiting 
- no Hemopexm 

(S protein) binding of C5b67 to membranes 

CD59 extracellular 
Protectin yes inhibits MAC formation 

MAC-IP domain of 
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cell surface 

receptors 

Table 1.3 Complement regulators 

1.2.8 The role of complement and disease 

The complement system is a powerful, indispensable, system for the maintenance of host 

protection and tissue homeostasis. Deficiencies in complement components or regulators of 

the complement cascade are associated with increased susceptibility to infection (9) and 

several diseases. For example, hereditary angioedema results from deficiencies of Cl - 

inhibitor (the key inhibitor of classical pathway C inC is proteases and an inhibitor of 

enzymes in the coagulation, fibrinolytic and kinin cascades). Autosomal mutations or auto-

antibodies against Cl-inhibitor result in impaired regulation that causes periodic swellings in 

multiple organs (20). 

Conditions as'sociated with mutations or polymorphisms in the key regulator of the 

alternative pathway, FH, include dense deposit disease (DDD), atypical haemolytic uraemic 

syndrome (aHIJS) and age related macular degeneration (AMD). These conditions will be 

discussed in- sections 1.4.4 to 1.4.6. 

- 	Complement also plays a secondary, or non-causative role, in many clinically 

adverse circumstances (9) that are characterised by prolonged or chronic inflammation. 

Examples include Alzheimer's disease, allo- and xenotransplantation, asthma, burn injuries, 

Crohn's disease, glomerulonephritis, haemolytic anaemia, ischemia/reperfusion injuries, 

immune-complex induced vasculitis, multiple-system organ failure, multiple sclerosis, 

myasthenia gravis, psoriasis, rheumatoid arthritis, septic shock, systemic lupus 

erythematosus and stroke. Synthetic, natural or modified complement inhibitors are being 

developed and tested in animal and clinical studies as a means to reduce complement-

triggered tissue damage in various clinical conditions. 
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A wide range of pathogens - including some viruses, bacteria, fungi and parasites - 

express proteins that interfere with complement activation either by recruiting host 

complement regulators (e.g. C413P of factor H), or by directly controlling various steps of 

the complement cascade. Some of the latter provide pointers for the development of new 

anti-inflammatory drugs. One example is the Vaccina virus complement control protein 

(VCP) and its homologues amongst the other pox viridae. In this case, the virus appears to 

have 'hijacked' a mammalian RCA gene; the sequences of the four CCP modules of VCP is 

highly similar to that of the N-terminal four CCP modules of C4BP. VCP has been shown to 

inhibit both classical and alternative pathways (CA and DAA) (26), to enhance the virulence 

of the virus through these complement regulatory activities. 

Another two examples of complement regulators from bacterial origin are the C5a peptidase 

of group A and group B streptococci, which is an established virulence factor that inactivates 

the anaphylatoxin C5a (17), and the S. aureus protein SCIN. The latter is expressed by 90 % 

of all S. aureus strains and was shown to strongly down-regulate C5a production. SCIN is 

also associated with reduced levels of both, membrane attack complex formation and 

alternative-pathway mediated opsonisation (C3b-deposition) (27). Unlike other host or 

pathogen derived complement regulators SC1N binds exclusively to the activated C3 

convertases (alternative- and classical pathway convertases) and increases the stability of the 

complexes. It is thought that this unique regulatory feature either locks the convertases' 

catalytic centre and/or block substrate binding. 
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1.3 Regulators of complement activation (RCA) 

To avoid damage to self-tissue it is obviously important that the activity of the complement 

system is restricted to its target cells. Furthermore, complement activation must be spatially 

and temporarily limited in order to prevent excessively widespread or prolonged activation 

because it is important not to exhaust the whole stock of complement proteins in one event 

(and thereby lessen responsiveness to later events). There are several different regulators of 

complement activity that differ in distribution and mobility as a consequence of their 

membrane-bound or soluble states. Arguably, the most important family of regulatory 

proteins are the RCA (vide supra - 1.2.7 Note about complement regulators). These proteins 

are encoded in a cluster of genes on chromosome 1 (1q32). The RCA are unusual examples 

of multiple-domain proteins in that they consist entirely (or almost entirely) of tandemly 

arranged examples of a single module-type - the complement control protein (CCP) module 

(also known as short consensus repeats or sushi domains) (28). The 60 amino acid residue 

consensus sequence of the CCP module includes four invariant cysteines, a nearly invariant 

tryptophan and highly conserved prolines, glycines and hydrophobic residues (Figure 1.7, 

Figure 1.8). The linkers connecting the individual modules (i.e. between the last cysteine of a 

CCP and the first cysteine of the next CCP) usually consist of four amino acids residues, but 

their lengths vary from three to eight residues (see section 1.3.2 The complement control 

protein module). CCP modules occur not only in RCA, but also in other proteins that are not 

thought to interact with the complement system (e.g. 1L2-receptor, beta2-glycoprotein I, 

Factor XIII of the blood clotting system, and the GABA receptor type 1 (29)). 

The soluble regulator of the alternative pathway of the complement system FH (and the FH- 

related proteins, some of which also have complement regulatory activity) consists 

exclusively of 20 CCP modules, whereas the other regulators - MCP (four CCP modules), 

DAF (four CCP modules), CR1 (most commonly 30 CCP modules) and C4BP (alpha chains 
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- eight CCP modules, beta chain - three CCP modules) - consist almost entirely of CCP 

modules. 

1.3.1 Compendium of regulators of complement activation 

The selective action of RCAs ensures down-regulation of complement activation on most 

self-surfaces, but, allows amplification of complement to proceed on surfaces of 

microorganisms or other unwanted particles, thus ensuring 'organised' elimination. Due to 

the aforementioned positive feedback loop for C3b generation, the RCAs have apparently 

evolved to act upon the early steps of activation, specifically the formation and stability of 

the convertase complexes. 

0 CCP module 

transmembrane region 

gS cytoplasmatic region 

E GPlanchor 

Ser-Thr-Pro-rich region 

unknown function 

C4bBP disulphide bridging 

domain 

Figure 1.7 Sketch representation of RCAs proteins (28), (30), (12), (31). 

Overview of domain composition and functional activities of RCA proteins: 

CA (cofactor activity for factor I mediated cleavage) 

DA (decay accelerating activity) 

FH is a 20 CCP-module containing plasma glycoprotein. 

CA: for C3b 
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DA: for alternative pathway C3 convertase (C3bBb) and C5 convertase (C3bBbC3b - short C3b 2Bb) 

FHL is an alternative splice product of FH containing the first seven CCP-modules. 

CA:forC3b 	 - 

DA: for C3bBb and C3b 2Bb (alternative pathway) 

MCP (or CD46) is a trans-membrane protein. MCP is comprised of four CCP modules, an 0-

glycosylated serine/threonine/proline-rich domain, a trans-membrane region and an intracellular 

region. 

CA: for C3b and C4b 

DA: none 

DAF (or CD55) is composed of four CCP modules followed by a serine/threonine-rich domain, which 

attaches the molecule to the membrane via a glycosyiphosphatidylinositol anchor. 

CA: none 

DA: for C3bBb and C3b 2Bb (alternative pathway); for C4b2a and C4b2a3b (C3 and C5 convertases of 

classical pathway) 

CR1 (or CD35) is a cellular receptor. The most common allotype is composed of 30 CCP modules, a 

trans-membrane and an intracellular domain. 

CA: for C3b and C4b 

DA: for C3bBb and C3b 2Bb (alternative pathway); for C4b2a and C4b2a3b (classical pathway) 

C4BP has a spider like structure and spans a heptameric plasma protein. The major isofonn consists 

of seven a-chains (eight CCP modules per a-chains) and one f3-chain (three SCR per 13-chain), adding 

up to 59 CCP modules in all. The C-termini of both chains have additional regions, which polymerise 

the single chains by disulfide formation forming the mature protein. 

CA: for C4b (in vitro also observed for C3b) 

DA: for C4b2a and C4b2a3b (classical pathway) 
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1.3.2 The complement control protein module 

A sequence alignment of the first four CCP modules of six different complement regulators 

(human MCP, CR1, C4BP, DAF, FH and viral VCP) illustrates the consensus sequence 

(Figure 1.8). 

hypervariable 
loop 

VCP_i --C TISRPINMKFKNSVET. DANANYNIDI 
HCP_i SD EEP. . .TFEAMELIG. . .KPKPYYEIER 
CR1_i WGQ AEW.LPFARPTNLT. . . .DEFEFPITY 
C4SP_1 LGN GPPT.LSFAAPMDIT. . .LTETRFKTTT 
DAF_1 --D GLP. . .DVPQPAL. MX . .EGRSF?EDTV 
FR_i ASP ELP ... PRRnTEIL1'G.SWSDQTYEETQ 
VCP_2 --- PSR ... D!DQ. .L. . .DIGC.VDFSS 
MCP_2 --- PYIR ... DPX.mQAVP. . .ANGT.YFYQ 
CR1_2 --- . . .DPVmM.VH. . .vIKG.IcFsQ 
C4RP_2 --- R. . 	RM . .IRTD.LSFSQ 
DAF_2 --- R.LNSASLKQPY ... ITQNYFPVTV 
fH_2 --- G. . .DTPFaTFTL ... TGGNVFEYVR 
VCP_3 --- 

RJHG 

Q. . .SISmRRN .... GYEDFTDSV 
MCP_3 --- T. . .KXKSRTF. . .SEVEVEYLDA 
CR1_3 --- . . .TXTmDFIS. .. TNRENFI1YSV 

C4BP_3 - K. . .DXRRHS. .. .GEENFYAYS 
DAF_3 --- . .EIRQ..ID. . .VPGG.ILFAT 
fR_3 --- LPVT ... APEmKTVSSAMEPDREYHFQ7' 
VCP_4 --- PHQ. . . .TISmYLSS. . .GFI(RSYSYNDN 
MCP_4 --- RF.. . .VVEmKQ!S. . .GFGKKFSYKAT 
CR1_4 --- TP. . . .NVEILVS. . .DNRSLRSLNFV 
C4BP_4 --- K. . . .DVSjiENVS. - .GFGPIYNYKDT 
DAF_4 --- PAP ... QItm.1Q. . .GERDRYC'YI<Q 
fR_4 --- KS. . . .DVISPiS. . .QKIIYKENBS 

linker 
residues 
II 

[RSH.STQf4.

KQAHP1YA.KTGSG ..... TLF. . .NQIRRR- 
YIP.PLATHTIDRNHT....nLPVS.DDAYRET- 
G...RPFSI.ILKNSV....GA..KDPERKS- 

TNSDGE... .VY. .NTFIYKR- 
FVKIP.RKDSVILKGSQ. .. .SDI. .EEFNRS-- 

RSL. .NV1M.VRKGE ..... nVALNPLRKQKRP- 
.0ESKS.YELGSTGSMVnNPE. .AOIZSVK - 
.EE1X.YELKGS.VAISGK. .PIEKVL- 
.SSSA.TIISGD.TVIDNE. .TIDRIP- 

EFr .STTS.REVQDR.GVGSRP. .LQZIVK- 
nRREPSLSPK1.TLQNLK. . . .1STA. .VEFKKKS- 

EINYREDTDG ..... TND. .II3EVVK-
SEr 	SGV.LSG ..... GES.D. .PTQIVK- 

?.GPDPFSr 	ESTI.IDN. .. .SVjSRA. .AnESKVVK- 
3GGRKVFEV 	EPSI.SNDDQVGISGP. .AQIIPNK 

FSL . HASI.VENETIGV1RPS. .PTEKIT-
STSS.ISGS.SVQDSDP. .LEBREIY - 

RIE. . DEEM.DDGF... .DSKE. .KQKVEIS- KIM.
SSSS.PGNT... .KPE. .LKtVR- 

. SDrI 	 SNST .... DPP. .VnKLSG-- 
FVNK.. PRRV 	 ALNK....PE..LSSRV-- 
FVR.. SSVI 	 ADSX .... NPS..PAEPNS- 

TMI.. 5111 	 VRNDE.GESGP. 	 .GK 
usys. .ERGDI.ESG ..... RP. . .LlSnEEKS- 

Figure 1.8 Sequence alignment. Alignment of selected CCP modules (VCP, MCP, CR!, C4BP, 

DAF, FH - identifier at the beginning of each sequence). Sequences were aligned using 

CLUSTAL W (2.0) (32). Conserved residues are shaded according to conservation using 

BOXSHADE version 3.21 (33). A square bracket indicates the linker region between the last 

cysteine of the previous CCP and the first cysteine of the consecutive CCP. A curly brace 

indicates the hypervariable (hv) loop, which varies in sequence and length between different 

CCP modules. The hv-loop's border to the C-terminus consists of a relatively conserved 

hydrophobic amino acid (shaded grey), which either can be one of the two aromatic amino acids 

tyrosine and phenylalanine, or the aliphatic amino acids isoleucine or leucine. 

The three-dimensional structures of numerous examples of CCP modules have been 

determined experimentally. Typically a hydrophobic core, containing the highly conserved 

tryptophan and other conserved residues, is sandwiched between small anti-parallel beta-

sheets. The four cysteines form disulfide bridges (Cys-I-Cys-III and Cys-II-Cys-1V (see 

Figure 1.9). In some cases, neighbouring CCP modules within a protein are thought to 

stabilise one another. From a functional perspective, tandem CCP modules often form a 

composite ligand-binding surfaces (28). Such intermodular cooperation - influenced by 

linker-length and the extent and chemical nature of intermodular interfaces - presumably 
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contributes critically towards the functional diversity of the numerous proteins (both within 

the complement system and elsewhere) that utilise these modules to recognise and bind to a 

wide range of partners. Moreover, two or more such distinct groups of neighbouring CCP 

modules within an RCA protein molecule may bind simultaneously to a common target 

molecule (vide infra). Therefore there is a particular interest in the determination not just of 

individual CCP structures within the RCAs but also in elucidating the overall architecture of 

the parent proteins. 

Figure 1.9 High resolution structure of CCP module. Ribbon diagram of the tertiary structure 

of FH CCPI6 (pdb-code: IHCC). The N-terminus is on the left, the C-terminus on the right. 

Broad arrows represent fl-strands that are connected by loops and areas of non-standard 

secondary structure (34), (35). The two disulfide bonds are presented in yellow. The conserved 

tryptophan is shown in red. 
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1.4 Factor H 

Factor H is a 1 55-kDa soluble glycoprotein regulator of the complement system 2 . It is 

abundant in plasma (300-790 jig/ml plasma concentrations (36)) and can associate with host 

cell membranes and other self-surfaces via recognition of polyanions such as 

glycosaminoglycans (GAGs) and sialic acid (37). Through intervention at the level of the 

alternative-pathway C3 and C5 convertase enzymes it modulates both fluid-phase and 

surface-associated complement amplification. Factor H works in several ways (38): it 

competes with factor B for binding to C3b thus impeding formation of alternative-pathway 

C3 convertases (C3bBb); when bimolecular convertase complexes do succeed in assembling, 

FH accelerates their subsequent dissociation (decay); FH also accelerates decay of the 

alternative-pathway C5 convertase (C3b 2Bb); and FH is a cofactor for factor I-mediated 

proteolytic cleavage of C3b to iC3b (see also sections 1.2.2 The alternative pathway and 

1.3.1 Compendium of regulators of complement activation). 

1.4.1 Structure of Factor H 

The 1213 amino acid residues of mature FH (155 kDa) (39) (40) consist of 20 "short 

consensus repeats" (SCR; SCR is another term for CCP), each of 60 residues (41) and 

containing the consensus sequence of a CCP module. A multiple alignment of the 20 SCRs 

(Figure 1.10) highlights the four invariant Cys residues and a near-invariant Trp residue 

between Cys(ffi) and (IV), as was discussed above. 

2 Parts of the section 1.4 Factor H have been published in (2. Schmidt, C.Q., A.P. Herbert, H.G. 
Hocking, D. Ubrin, and P.N. Barlow. 2008. Translational mini-review series on complement factor H: 
structural and functional correlations for factor H. Clin Exp Immunol 151:14-24. 
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hypervariable 	 linker 

loop 	 residues 

FH .CCP. 1 	ELPRNTE. ILTGSWS .... DQrP.ETQAIKRP RSL ...... . NVIM 	.KVALNPLRKQKRP 

FH_CCP_2 	

[GD.I

.PGDTPF.TFTLTGG ..... NVFE.YPVKAVTNE QLL ..... '.EINYRE 	 UD11 EVVK---- 

FH..CCP. 3 	 KIE ..... . DEEMS SDD2FLS.K.EKK VEIS- 

FM CCP 4 	. 	 . SPISQK ..... IIK.ENERFQKNM 	EYS. . .EK. . . .DA TES'.I.JR. . .PLS EEKS- 

FH CCP 5 	. "5 P. .DYSPLR. ..... IKHR.TPDE1TUQ.RN FYPAT. . .R. .N.TAK TST.WI. . .PA"R TLK 

pH ccp 6 	. .D KHGLYHENHRR. .PYFPVA.VKYYSDYDEHFETP .... SSYWDHH TQD.S  ... PAVPLRK"- 

FH_CCP_7 	 . 	 .YNQUYG. .....RKF.V.QK DVAHP ALP. . . .FJLQT.TVT EN.I.JS. . .PTRIRVKT 

FH_CCP 8 	SS1DE. .FISESQ ......yTA.LF::hKQ.&cL V:A. ...p'PETSG:" KDijg...AQTxKS-- - - - 

FH_CCP_9 . .i FMA. .RTKUDF.......TWFK.LSLT:.OEHD ESNTGSTT' .... 1. 5N'P.S. . .DL"IYERE-

FH_CCP_10 ..KDVH. .LVPDRKK .....DQK.V.....<FSKP.IV...... ..PNSVQ YHF.LS..PDLIKEQVQS 

FH_CCP_11 .P"ELL. .NVKEKTK ..... .PU.F.) J.D'PET... IL" IVEEST-- 

pH CCP.12 	 "ELEi. .WAQLSS ..... ppY.Yij"JEFNSESTUI .....'.HR.5 	I.HVT...QLQ AIDKLKK 

PH CCP13 SNLI LEE. .HLKNKK ...... EFD.HUSN1RA..XE......... WIHT 	£. ...PEVNSMAQIQL 

PH CCP 14 .PQ PS. .HNMTTT .......LNR.DEKV.SVLQEI iQ....... . . SEll KD.1RQ.. . SILVEKIP

FHCCP15 	 .PQ EH. .TIHSSRS.SQ.ESA.HTKLS 	 ..... SEN..ETT 	.M.KW5. . .SPQEGLP

FHCCP16 .PE S..VVAHMS ..... .PA.1AK L.GEKS. . .HPSIKTD" 

FHCCP 17 .LSFEL1A. .IPMGEK. . .K.DVK.I EQVTTATY KD ....... ASNVT I.NSET .....TRDTS

FH_CCP_18 .PTVQA. .YIVSRQ. . .M.SKP.SF.RVRUQ.RSP EMF. ...... DEEVM L.NPNT. . . EPQKDSTGK

FH_CCP_19 	 .PPD. .DITSFP. . .L.SVA.PASSVEQQNL QLF. ...... .NKRIT 	.NQWS. . .EP"LHP----- 

PH CCP 20 .SREMEN. .YNIALRWTAKQKLRTESVEF.VR RLS. . .SRS.HTLRTT ,LDL. ... EYTKR------ 

Figure 1.10 Multiple sequence alignment of 20 short consensus repeats in sequence of 

complement factor H (FH). One-letter codes used throughout; Sequences were aligned using 

CLUSTAL W (2.0) (32). Conserved residues are shaded according to conservation using 

BOXSHADE version 3.21 (33). A square bracket indicates the linker region between the last 

cysteine of the previous CCP and the first cysteine of the consecutive CCP. Invariant Cys 

residues and almost invariant Trp residue are highlighted in black. Each short consensus repeat 

(SCR) probably folds into a complement control protein (CCP) module; 

While circular dichroism spectra of Fil were uninterpretable (due to contributions from the 

40 putative disulfide bonds) (42), Fourier-transform infrared spectroscopy (43) confirmed 

extensive 13-sheet in FH and a paucity of a-helices. Infrared spectroscopy also demonstrated 

rapid exchange of backbone amide protons with solvent, indicative of an elongated structure 

for FIT in which the multiple CCPs do not, in general, contribute to a common globular 

arrangement. This inference of an extended structure concurs with electron microscopy, 

small angle-X ray scattering and analytical ultracentrifugation studies of C4BP, FH and 

other RCAs (44) (45) (46) (47). Currently, a "folded-back" model for FIT is favoured, 

bringing together its N- and C-terminal regions (48). 

There are 3D structures currently available for eleven out of the 20 FH CCPs that 

have been expressed recombinantly as single, double or triple modules (49) (35) (50) (51) 

(52) (1) (53) (and data presented in this thesis); and reliable, homology-based models have 

been produced for several others. Each CCP has an ovoid structure (Figure 1.9), of 

dimensions approximately 40 A by 15 A by 10 A. Five extended stretches of residues (that 
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often form 13-strands and small anti-parallel 13-sheets), run back or forth in a direction that is 

approximately parallel with the long axis of the CCP. Thus the module's N and C termini 

occupy opposite poles consistent with a "head-to-tail" arrangement of adjacent modules. 

Indeed, 3D structures of the module pair consisting of CCPs 15 and 16 (i.e. FH-15-16) (50), 

and of the triple-module FH-6-8 (53) are elongated with small intermodular buried surface 

areas. The recently determined high resolution structure of the three N-terminal CCP 

modules of FH revealed similar structural characteristic bulges or loops, corresponding to 

insertions and areas of low sequence conservation, project laterally from the body of the 

module potentially contributing to binding specificity. Since stabilising interactions between 

neighbouring modules are limited, intermodular flexibility is possible. The degree of overall 

flexibility of FH is unknown as are the extents of any conformational changes upon 

interaction with binding partners. 

1.4.2 Binding sites for C3b 

The N-linked glycans of FH are dispensable for complement regulation (54) , although 

whether they electrostatically modulate interactions between FF1 and surface-borne 

polyanions requires further investigation. Early mapping of functional sites to specific FH 

CCP modules fodused on a 38-kDa tryptic N-terminal fragment, with fluid-phase C3b-

binding and cofactOr activity (55) (56), corresponding to CCPs 1-5 plus part of CCP 6. A 42-

kDa FF1 splice variant (FH-like 1) containing CCPs 1-7 is likewise able to regulate fluid-

phase complement (57). To pinpoint key functional modules, fluid-phase cofactor activity 

was measured for (non-purified) module-deletion and truncation mutants of the 38-kDa 

fragment expressed recombinantly and secreted from Chinese hamster ovary cells (58) 

(Figure 1.11). The results imply that the four N-terminal CCPs are required for full cofactor 

activity in the fluid phase, although FH-1-3 (and to a lesser extent FH-2-4) retained residual 
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activity. A subsequent study (59) (involving constructs prepared in a baculovirus expression 

vector) largely reinforced these findings: while the FH-1-4 construct displayed full fluid-

phase cofactor activity, the triple-module constructs FH-1-3, FH-2-4, FH-1,2,4 and FH-1,3,4 

lacked it, as did the four-module construct FH- 1,6,7,4 (where CCPs 6 and 7 replace CCPs 2 

and 3), and FH-1-4 with non-native linker lengths. Subsequently, CCPs 1-4 were also shown 

to be required for the decay accelerating activity of this molecule, although full-length FH is 

• apparently —100-fold more potent on surfaces than FH-1-4 or FH-like 1 in this respect. In 

summary (60), the N-terminal four CCPs of FU are necessary and sufficient to engage with 

C3b and C3 convertase in the fluid phase and thereby regulate amplification, of the cascade 

via the alternative pathway. Interestingly, patients with an amino acid residue deletion in 

CCP 4 developed dense deposit disease (61), a renal pathology also seen in factor H-

deficient humans, pigs and mice (63). 
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CAA (38 kDa tryptic fragment) 

ctX:Xz:cSFTL CAK  (factor H-like 1) 
Ca0  (XIXXXZ 
P °  c 	XZXz:ZzxXX2C3b C3c C3d 
p3cZtZDCXX rrZ 	KxZDZj 	H° 

cA°cXXDCXD rrXXXiD H° 
CA° IXXXIX) 
Ca0  rrXz:X:XE H° 

c 	c2X:D XXKi 	H° 
c 
CAK 	 DXB  C3b 

CAK DX XXXXD H B 
CAK X XXXD C3b çp'd' 
QK 	cD ptj 	 C3bc C3d 

aXD 
QK 	cxc rrXD H° 

ãXZXD rrX:XlD H° 

CAKcDXXD 
rr X1 	,H 

XD H" 	 (XXl) H8  

A 	A 
ZXD H" 	 (XXXI1) HB 

ciXDZD HH 	 (B)CDCXZXD XdHw  

cIrXXXXDH°  
cZEXXXKXZKHB  czl 	ZKZK 	zzXJ?K esc3b hs' 

axxXD::xx 
zlX,zzXXZHB 
(XzKxxx:x:xICA esc3b HSP 

rir 1 
CA Ii 

PSEP 	 4444t++ICA ese3b i 
']1 

Ii: 
HB 

• 

I: 

Figure 1.11 Summary of module-deletion/truncations of FH. CCP modules are shown as ovals 

within a cartoon type representation of each deletion/truncation mutant. The black triangles 

indicate non-native linker lengths in one mutant. "CA" written alongside indicates it has 

cofactor activity; similarly "H", "C3b", "C30 etc. indicate the mutant protein has binding 

affinity for heparin-affinity resin, C3b, C3c etc. (ESC3b signifies sheep erythrocyte-bound C3b, 

as opposed to fluid-phase or chemically immobilised C3b); "PSE": protects sheep erythrocytes 

from complement-mediated lysis. A strike-through means a particular activity was investigated 
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but found not to be measurable; lower-case letters signify substantial reduction in measured 

activity; SFTL = the four residues specific to the C-terminus of FH-like 1; "err" = non-native N-

terminal sequence containing two Arg residues. Superscripts refer to cited works as follows: A = 

Alsenz et al. (55) (56); G = Gordon et al. (58); K = Kuhn (59); J = Jokiranta et al. (60); 0 = 

Ormsby et al. (61); B = Blackmore et al. (62) (63); H = Herbert et al. (1); HW = Hellwage et al. 

(64); SP = Sharma and Pangburn (65); and P = Pangburn (66). 

Further C3b-binding sites were identified using immuno-affinity-purified module-deletion 

FH mutants from a baculovirus expression vector (62). Constructs lacked (A) modules: 2; 5; 

1-5; 6-10; 11-15; 16-20; 1-10 or 11-20. All these deletion mutants exhibited C3b-cofactor 

activity except FHA2, FHA1-5, and FHAI-lO. Crucially, FHA1-5 (and FHA2) nonetheless 

retained some binding affinity for cell-surface (sheep erythrocyte)-bound C3b (csbC3b), 

demonstrating that FH CCPs other than modules 1-4 bind C3b. Deletions of CCPs 16-20 

decimated affinity for csbC3b, thus implicating a C-terminal region of FH as a second C3b-

binding site. A third C3b-binding site was suggested because FHA6- 10 exhibited a decreased 

affinity for csbC3b, similar to that of FHA1-5. 

An antibody (13 1X) specific for CCPs 8-15 weakened interactions of full-length FH 

with csbC3b (64), suggesting a third C3b-binding region lies in these CCPs. Subsequently 

Jokiranta et al. (60) investigated binding of purified FH constructs, cloned in a baculovirus 

system, to C3b, and its fragments C3c and C3d, attached to Biacore "CM5" chips. In these 

surface plasmon resonance (SPR) experiments both FH- 1-6 and Fil- 19-20 associated with 

immobilised C3b, confirming the presence of independent C3b-binding sites near both the N 

and C termini of FH. While FH-8-20 bound immobilised C3b, FH-8-1 1 and FH-15-18 did 

not (60). Hence this study could not confirm directly the existence of a third site, in the 

central segment of FH, able to independently bind C3b. On the other hand, no FH-12-14 

construct was tested thus it remains possible that one or more of these three CCPs contribute 

to a putative third C3b-recognition region. According to the same study (60) (Figure 1.11) FH 

1-6 bound to immobilised C3b but not to immobilised C3c or C3d (C3c and C3d are non- 
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overlapping proteolytic cleavage fragments of C3b; C3d corresponds to the thioester domain 

of C3b), while FH-19-20 recognised C3d in addition to C3b but not C3c (and the C-terminal 

0b(C3d)-binding site was subsequently mapped to CCP 20 (66)). Intriguingly, FH-8-20 

bound to both C3c and C3d suggesting (60) that the inferred, third, C3b-binding site is 

specific for C3c. A three-module, CCPs 10-12, 0b(0c)-binding site would explain most of 

these results i.e. interference by the 13 1X antibody, the loss of C3b-affinity by FH A6- 10 (but 

not the full activity displayed by FH Al 1-15), and the results obtained with FIHI-8-1 1, FH-15- 

18 and FH-8-20; this hypothesis requires testing with the appropriate constructs. An 

alternative explanation consistent with the evidence is that measurable affinity for C3c 

requires simultaneous engagement of two sub-sites, one within CCP 10 and the other within 

modules 16-18. In summary, two distinct binding sites for C3b lie at the N (CCPs 1-4) and C 

termini (CCP 20) of FH; the latter is also able to bind C3d. Intervening modules participate 

in the binding process, but evidence for a distinct, third, C3b (0c)-binding site remains 

circumstantial. 

1.4.3 Binding sites for polyanions 

Factor H binds to noncomplement-activating surfaces through interactions with polyanions. 

This is fundamental to its ability to regulate complement on surfaces (37). In early studies, 

FH CCP 13 (which is highly basic) and CCP 14 were implicated using a photoaffinity - 

tagging heparin analogue (67). However, experiments on FHA13 and FHA11-15 (65) 

indicated that deletion of CCP 13 from FH results in only very slightly reduced ability to 

bind a heparin-agarose column (and negligible loss of binding to C3b-coated sheep 

erythrocytes). On the other hand FHA6-10 (65) showed significantly weaker heparin affinity 

implying a stronger GAG/sialic acid-binding site exists in the 6-10 region. A prominent role 

for CCP 7 in GAG binding was subsequently confirmed because FH-1-6 - one of a series of 

constructs generated in CHO cells (63) (Figure 1.11) - barely bound heparin while FH-1-7 
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was a good heparin-binder. Furthermore FH-1-6,8,9 (i.e. a module 7-deletion of FH 1-9) lost 

all affinity for heparin. Latterly, constructs of FH-6-8 were shown to bind GAGs and GAG 

analogues (1) (68). 

Interestingly, FHA7 (and FHA7A13) bound heparin almost equally as well as FH, so 

module 7 is not the only one that binds polyanions (63). That FHA6-10, unlike FHA7 or 

FHA7A13, eluted from a heparin-affinity column at relatively low salt (65), suggests that 

modules 6, 8, 9 or 10 also participate in heparin binding. Some of these modules could 

contribute to the same heparin-binding site as CCP 7 or they could form a distinct, third site. 

A more recent study of constructs FH-8-9, FH-9-1 1 and FH-1 1-14 seems to support the 

notion of a third site centred on module 9; CCPs 8-9 bind most strongly, followed by CCPs 

9-11, while CCPs 11-14 did not bind heparin (61). It is worth noting that in these 

experiments an artificial sequence containing two arginine residues (EFTWPSRPSRIGT) 

was apparently included at the N terminus (part of the cloning procedure) of FH-8-9 and 

FH-9-1 1; in combination with a native lysine residue prior to the Cys(I) of CCPs 8 or 9, this 

introduces a potential heparin-interacting artefact. Indeed, in a previous study FH-1--6, 8-9 

(i.e. a construct containing both CCPs 8 and 9 but lacking CCP 7) had been shown not to 

bind hepann (62). In fact, the evidence suggests CCP 20 is the primary heparin-binding 

determinant in FHA7. The FHi7A20 construct eluted from a hepann-affinity colunm at low 

salt while FH- 18-20 bound relatively tightly (62). Moreover, non-heparin-binding FH- 1-5 

was converted to heparin-binding FH-1-5,20 by inclusion of CCP 20 in the construct (62). 

Human FH from an individual with a mutation (FH-E1 172Stop) resulting in a lack of 

module 20 bound weakly to a heparin-affinity column [49]. Highly purified, structurally 

characterized FH-1 9-20 (51) bound well to a heparin-agarose column. In summary, while 

GAG-binding sites in module 7 (with contributions from CCPs 6 and 8) and module 20 (with 

possible contributions from CCP 19) are well-established, current evidence for iñvolvemeñt 

of either CCPs 9 or 13 is inconclusive. 
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1.4.4 Dominant role of the C-terminus of Factor H in host recognition 

The importance of the C-terminal heparin-binding site for self versus non-self discrimination 

was shown by experiments on FHA6-10, FHAI 1-15 and FH-1-15. Of these three constructs, 

only FH-1-1 5 could not protect sheep erythrocytes against lysis by human complement 

(Figure 1.11) (66). In a dramatic illustration of the role played by CCPs 19 and 20, Ferreira et 

al. (69) showed that purified, P. pastoris-produced, FH-1 9-20 competitively inhibited the 

action of FH on cell surfaces. This double-module consfruct overcame the protective effects 

of frill-length FH and thereby promoted aggressive complement-mediated lysis of sheep 

erythrocytes. Further support for a dominant role of the FH C-terminus is provided by the 

ability of monoclonal CCP 20-specific antibodies (70) to block interactions of FH with 

endothelial cells. Thus this C-terminal polyanion and C3b-binding site is critical for the 

ability of FH to recognize and protect host cells bearing sialic acids and GAGs. Besides 

disrupting the protection of normally non-activating surfaces by full-length FH, FH- 19-20 

completely abolishes FH binding to immobilized C3b (but not to fluid-phase C3b) (69), 

despite the presence of the C3b binding site in CCPs 1-4. Moreover (70), CCP 20-specific 

antibodies blocked FH binding, in an enzyme-linked immunosorbent assay (ELISA), to C3b 

and C3d as well as to heparin (and to endothelial cells, as mentioned above). In order to 

reconcile these intriguing results with the multiple C3b- and GAG-binding sites identified by 

module-deletions and FH truncations, two models were proposed: (i) the C-terminus is 

unique among C3b-binding sites of FH in having a high affinity for cell surface-bound (csb) 

C3b (as opposed to fluid-phase C3b or C3b immobilized artificially on a chip or microtitre 

plate). The other C3b-binding site (in FH-1-4) has only poor affinity for C3b after the 

activated C3 fragment has become attached to a surface; this FH-1-4 site requires initial 

anchoring of FH via the C-terminus before it can engage, to a significant extent, with its 

binding site on csbC3b. Thus FH- 19-20 competes with the sole csbC3b-binding site in full- 
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length FH for binding to csbC3b. Because FH-19-20 has no complement regulatory region 

associated with it, the csbC3b to which it is bound is not destroyed by factor I. Similarly, if 

the csbC3b-binding site of FH is blocked by an antibody then FH will not be able to bind to 

csbC3b. In the fluid phase, binding of FH-19-20 to C3b is functionally irrelevant as the FIT 

N-terminal modules bind well elsewhere on fluid-phase C3b and this latter interaction is 

sufficient for co-factor activity; hence - in agreement with experimental evidence - FIT- 19-

20 does not inhibit fluid-phase co-factor activity. The C-terminus probably recognizes a 

composite site consisting of both GAGs and 0b; note that the C-terminal C3b-binding site 

is the only one that also binds GAGs. (ii) According to an alternative, or supplementary, 

model, the other FH C3b-binding site (in CCPs 1-4) is cryptic, only becoming available 

following occupation of the C-terminal site by C3b. The C-terminal site binds initially to the 

thioester domain of C3b inducing a conformational change within FIT. For example, the 

binding site in CCPs 1-4 could be occluded initially by interactions with other CCPs in a 

compact conformation of FIT. This notion of proximity between N- and C-terminal modules 

tallies with SPR experiments showing that FH-1-7 binds full-length FH on a Biacore chip 

[51] and with low-resolution structural studies discussed earlier. A problem with this notion 

of a cryptic site is that it predicts that fluid-phase 0b, in the presence of full-length FH and 

an excess of FH-19-20, will not be cleaved by factor I; this is because the FH-19-20 site on 

C3b would not be available for binding by FIT. In fact, FH-19-20 does not inhibit the co- 

factor activity of FIT in the fluid phase. It therefore remains necessary to invoke structural or 

accessibility differences between fluid-phase and csbC3b, as in model (i). 

1.4.5 Other binding partners 

As well as having binding sites for C3 fragments, polyanions, and factor I, FH reportedly 

binds to C-reactive protein (CRP) (71), fibromodulin (72) and adrenomedullin (73). Finally, 
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it is bound by proteins borne on a huge number of microorganisms that surface-sequester FH 

to evade complement (74-76). 

1.4.6 Factor H protein family 

The Factor H protein family comprises seven multidomain proteins: Factor H (FH), Factor 

H-like protein 1 (FHL- I or reconectin), and five Factor H-related proteins (FHR- 1, -2, -3, -4, 

-5) (74). All these proteins are built exclusively from differing numbers of CCP modules. 

While FilL-i - a splice variant of FH gene - is identical to the first seven N-terminal CCP 

modules of FH (with a C-terminal extension of four amino acid residues), the five FHR 

proteins are built from between four and nine CCP modules, all of which contain two 

modules highly homologous with FH- 19-20 and other domains showing sequence homology 

to Fil CCPs 6-7. Each of the FHR proteins are encoded by distinct genes located in the 

regulators of complement activation gene cluster (74). Since FHL-1 contains the four N-

terminal regulatory domains of FH and bears a polyanion binding site in CCPs 6-7, it is not 

surprising that FHL-1 displays similar complement regulatory activities to FH in some 

respects. A unique feature of FHL-1 is its ability to act as an adhesion protein, an activity 

that is mediated by the RGD motif in CCP 4. Plasma levels of FilL-i are 10 to 50-times 

lower than those of the main alternative pathway regulator FH (0.5 mg/ml). FHR proteins 

have been shown to bind to polyanions and C3b (74). Wide spread lack of DAA or CA 

among FITR proteins is a consequence of lacking sequence homology of any FHR protein 

with the N-terminal regulatory domain of FH. The exception is FHR-5 which exhibits weak 

CA and DAA (compared to FH) (77). FI{R3 and FHR4B are not associated with CA or 

DAA but were shown to enhance these functional activities of FH (78). The exact role of 

FHR proteins is still under investigation. 
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1.4.7 Atypical haemolytic uraemic syndrome 

Further support for a key biological role of the FU C-terminus (see 1.4.4 Dominant role of 

the C-terminus of Factor H in host recognition) in complement regulation in vivo derives 

from studies of atypical haemolytic uraemic syndrome (aHUS) (79). The majority of aHUS-

linked Fil mutations occur towards the C-terminus, with CCP 20 being a hotspot (80). 

Strikingly, a mouse model of aI-ITJS was generated in FH knock-out mice (that develop a 

different renal pathology, dense deposit disease (81)) by transgenic expression of FH-1-15 

(82). It was hypothesized that a predisposition to aHUS is linked directly to an inability of 

mutant forms of FH either to bind properly to C3b(C3d) or to recognize polyanionic markers 

on non-activating surfaces (or a diminishment of both these roles). This hypothesis has been 

tested by mutagenesis and structural studies. Table 1.4 lists laboratory-generated and 

naturally occurring FH mutants containing sequence changes within CCPs 19 and .20, all of 

which have been tested for function. Some were expressed recombinantly within the 

contexts of partial versions of FH such as FH-19-20 or FH-8-20, hence there is variation in 

the extent to which other binding sites within the protein can contribute to the functional 

outcome. Some changes coincide with aI{US-linked mutations while others were designed to 

identify residues participating in functional sites. All mutated proteins for which C3b(C3d)-

binding data are reported exhibit decreased affinity; Ki 1 86A, which is not aHUS-linked, is 

the exception. Most mutants display loss or reduction in affinity for heparin-affinity resin 

and for human umbilical vein endothelial cells (exceptions are Ri 182A, Ki 186A, Si l9lL 

and Vi 197A). In fact, all the aHTJS-linked mutants tested for function exhibited a deficiency 

in binding to either C3b(C3d) or GAGs, and in several cases to both. Pathophysiological 

insights based solely on the data in Table 1.4 are limited for several reasons. (i) No distinction 

was made between perturbation of a specific binding site and widespread structural 

disruption of the module. (ii) Contradictory results were obtained, e.g. Wi 1 83L in the 

context of FH-1 9-20 dimerised [as judged by mobility on sodium dodecyl sulphate- 

37 



INTRODUCTION 

polyacrylamide gel electrophoresis (SDS-PAGE)] and the dimer binds tightly to a heparin-

affinity column; yet W1183L in the context of FH-8-20 binds more weakly to heparin-

affinity resin than the native-sequence 8-20 construct. (iii) Glycosaminoglycans are diverse; 

their levels and patterns of suiphation, for example, vary between tissue-type and over the 

course of development and ageing (83). This raises a critical issue that has repercussions for 

the organ-limited nature of particular complement-associated diseases can the ability of FH 

to protect host, surfaces be attributed to specific GAG-recognition processes (84)? 

Unfortunately, heparin-affinity chromatography is a crude probe of the capacity to recognize 

specific surface polyanions. 

Mutation Source of protein aHUS CA? 	 Binding to: 
link? 

C3b(C3d) GAG HUVEC 

W1157R In context of FH-8-20 Yes NIR 	<<to C3b/C3d in Slight reduction; Slightly 
(Baculovirus) (Jz 2006) CPA; none by in heparin reduced 

SPR; binding 

E1172-stop l  Purified from Yes NIR 	<<toC3bbySPR Slightlyweaker No 
heterozygous patient than WT 
(M 2003; J 2005) 

R1182A In context of FH-19-20 Resembles NIR 	<to C3d in CPA; Binds to N/R 
(Pichiapastoris) (J RI 182S by SPR, si. <C3b, I heparin-aflinity 
2006) <C3d column 

W1183L Ex heterozygous Yes Yes * 	<to C3b in CPA N/R NIR 
patient (& ex COS 
cells) (S-C 2002,4) 

W1183L In context of FH-8-20 Yes N/R 	<to C3b & C3d Binds weakly Weak 
(Baculovirus) (Jz 2006). (SPR); <to to heparin 

C3b/C3d in CPA column 

• W1183L In context of FH-19-20 Yes N/R 	<to C3d in CPA < Dimer binds N/R 
(P. pastoris); note - to C3d; anomalous more tightly 
dimer on SD S-PAGE? result for C3b by than native 
(J 2006) SPR FH- 19-20? 

K1186A In context of FH-19-20 No NIR 	Full binding to C3b 7  , Similar heparin NIR 
Pichia pastoris) (J in CPA; SPR NIR affinity to 

2006 •••• 	............. ............ .... ....... . ............... . .......... ................... ..... ......................... ........ . .......................... ......... FH.-  19-20 

K1188A In context of FH-19-20 No N/R 	<to C3d in CPA; < SI <binding NIR 
(Pichia pastoris)(J to C3b & C3d by than FH-1 9-20 

.. 

S119IL Ex heterozygous Yes * 	N/R Full binding to NIR 
patient (H2006) heparin column 

51191L, Ex heterozyg. patient Yes 	• * 	<to C3b and C3d Full binding to 1 N/R 
V1197A (& in FH-18-20 by SPR heparin column 

context) (H 2006) 

V1197A Ex heterozyg. and also Yes * 	NIR Full binding to N/R 
exhemizyg..patients(H, heparin colunin, 
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2006) 

V1197A Ex homozygous patient Yes 	Yes * <to C3b in CPA NIR NIR 
(& ex COS cells) (S-C 
2002,4 .......... ...... 	 ,. 	..... ..... ............ 

V1197A In context of FH-8-20 Yes 	N/R <to C3b/C3d- Binds weakly Weak 
(Baculovirus) (Jz 2006) coated plates, and to heparin 

by SPR column 

E1198A In context of FH-19-20 Yes 	N/R <to C3d in CPA > to hep NIR 
(Pich ia pastoris) (J SPR: sI < to C3b, column cf 
206) .... ... .. 	...... FH...:20.. 

E1198K A Ex heterozygous Yes 	* N/R N/R Weak 
patient (v-S 2006) 

R1203E, In context of FH-15-20 RI2I0S 	NIR Significantly< to No binding to No 
R1206E, (P. pasloris)(HW 2005) resembles C3d & C3b (by heparin column 
R1210S, RI210C SPR) 
K1230S, 
R1231A 

R1203E In context of FH-15-20 See above 	N/R N/R No binding to No 

R1206E, (P. pastoris) (J 2005) heparin column 

R121OS 

R12I0C Ex heterozyg. patient Yes 	Yes * <to C3b in CPA N/R N/R 
(di-S with other 
proteins) (& ex COS 

. 	.  ....... ............ . ............... ............. 	(S:C .2002.4) 	. .. 

R1210C Ex heterozyg. patient & Yes 	N/R <to C3b/C3d- Binds weakly Weak 
in context of FH-8-20 coated plates; <to to heparin 
(Baculo-virus) (M C3d by SPR column 

.0...........)............................................................................ . 

R1215G In context of FH-8-20 Yes 	N/R Significantly < Binds weakly Weak 
(Baculovirus) (M 2003)1 binding to C3d by to heparin 

SPR column 

P1226S In context of FH-8-20 Yes 	NIR Not to C3b/C3d- Binds weakly N/R 
(Baculovirus) (Jz 2006) coated plates; to heparin 

None, by SPR column 

K1230S, In context of FH-15-20 No 	N/R NIR Binds hep. Weak 
R1231A (P. pastoris) (J 2005) 	. . column equal to 

FH-15-20 

Table 1.4 Mutations in complement control proteins (CCPs) 19 and 20 of FH. aIIUS: atypical 

haemolytic uraemic syndrome; GAG, glycosaminoglycan; HUVEC, human umbilical vein 

endothelial cell; NR, not reported; CPA, coated plate assay; SDS-PAGE: sodium dodecyl 

sulphate-polyacrylamide gel electrophoresis; SPR, surface plasmon resonance; sI, slight; hep, 

heparin; ex, from; <,reduced binding; CA, co-factor activity; *reduced  ability to protect sheep 

erythrocytes from complement-mediated haemolysis. Superscripts refer to cited work as 

follows: Jz 2006, Jozsci et al. (85); M2003,Manuelian et al. (86); J 2005, Jokiranta et al. 2005 

(87); J 2006, Jokiranta et aL 2006 (52); S-C 2002, 2004, (88) (89); H 2006, Heinen et al. (90); v-S 

2006, Vaziri-Sani et al. (91). 
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Thus, unfortunately, it is difficult to test directly the hypothesis that mutations in Fil 

predispose to aHIJS if they disrupt regions of FH involved in recognition of specific GAG 

suiphation patterns in the glomerulus (for example). In an attempt to deal with some of these 

issues, the 3D structural basis of GAG recognition by CCPs 19 and 20 was investigated 

using nuclear magnetic resonance (NMR) (51) and crystallography (52). The two modules 

are organized in the linear, end-to-end arrangement observed in other structures of CCP-

module pairs. A model GAG compound - pure, fully sulphated tetrasaccharide (dp4), 

enzymatically cleaved from heparin - was titrated into the FH- 19-20 sample and the NMR 

frequencies, or chemical shifts, of protein backbone atoms were monitored for perturbations. 

The presence of bound dp4 induces changes in the magnetic field experienced by nearby 

nuclei and thus amino acid residues in or near the binding site will resonate with slightly 

different chemical shifts. A surface patch of FH- 19-20 residues was thus implicated in 

binding to dp4. Strikingly, these coincided well with aHTJS-linked mutations (51). Thus, 

these experiments support a disease model in which dysfunctional FH fails to protect fully 

the GAG-rich layers of the glomerular basement membrane from complement activation. In 

another hypothesis C3d (and C3b) binding might be disrupted by aHUS-linked mutations, as 

suggested by Jokiranta et al. (52). One possible explanation for these apparently conflicting 

results is that FH- 19-20 has GAG- and C3d(0b)-binding sites that are sufficiently close to 

interfere or co-operate with one another depending on the nature of the ligand tested (e.g. 

heparin versus a physiological GAG and C3b versus 0d) and the order of binding events. 

Thus heparin inhibits binding of C3d to FH-15-20 while 0d. enhances binding of native-

sequence FH-15-20 to heparin (87). These observations are not inconsistent with the 

intuitively feasible hypothesis that a tertiary complex containing GAGs, C3b and FH forms 

during the process of complement regulation on self-surfaces. A caveat to interpretation of 

these studies is that electrostatic 'steering interactions' (as probed here by mutating Arg and 

Lys residues to uncharged residues, or potentially neutralizing their side-chains by addition 
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of a polyanion such as heparin) may represent just one step in the multi-step process 

whereby C3d interacts with CCPs 19-20. Electrostatic steering (92) could enhance the 

number of productive encounters between a pair of protein molecules by influencing their 

orientations as they approach one another, but the eventual complex could be stabilized by 

other interactions involving an entirely different set of side-chains. Another factor that 

complicates interpretation is the putative oligomerization of FH that could be important and 

may occur via the C-terminus (52). Thus despite much recent progress, in the absence of 

detailed thermodynamic studies of binding and 3D structures of binary and tertiary 

complexes, the picture remains obscured. 

1.4.8 Dense deposit disease 

Membranoproliferative glomerulonephritis type II (MPGN II), also known as dense deposit 

disease (DDD) (93, 94), is characterised by C3 deposition in the absence of immunoglobulin 

(95). In contrast, MPGN types I and III are associated with immune complex localisation in 

glomeruli (94) and account for the majority (--80%) of all MPGN cases. Deposition of C3 

along the glomerular capillary and in mesangial regions is characteristic for MPGN II. In this 

disease, severely under-controlled systematic alternative pathway activation leads to dense 

deposits within the glomerular basement membrane (GBM). Within 10 years from diagnosis 

half of the patients develops end-stage renal failure. In many individuals with MPGN H 

similar deposits occur in the choriocapillaris-Bruch's membrane-retinal pigment epithelial 

interface predisposing for visual impairments (see also below 1.4.9 Age-related macular 

degeneration). Immunohistological studies identified C3c as the major constituent of dense 

deposit in patience with MPGN II (94). In a subtype of MPGN II, rapidly progressive 

MPGN II, dense deposits were also shown to react with anti-C3d antibodies. 
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The most common trigger of MPGN II is autoantibodies (C3 nephritic factors) that 

stabilise C3 convertases of the alternative pathway and shield them from FH-mediated 

inactivation. Consistent with mouse and pig models of the disease (in which FH is entirely 

lacking), mutations in FH of human patients have been associated with a predisposition to 

MPGN 11(94). Many of these mutations (e.g. substitution of a consensus cysteine disrupting 

the formation of correct disulfide patterns) result in retention of FH in the endoplasmic 

reticulum and prevention of extracellular FH secretion. The resultant significantly reduced 

FH plasma levels lead to severely under-controlled alternative pathway activity, and the 

consequences are especially apparent at the GBM. The GBM is a layer of functionally 

specialized extracellular matrix rich in type IV collagen, laminin, other proteoglycans and 

glyôoproteins (94), with an overall high content of glycosaminoglycans. The GBM is 

exposed to complement at fenestrations between the endothelial cells lining glomerular 

capillaries. The lack of membrane-bound RCAs on the GBM is consistent with necessity to 

recruit circulating FH as a means of avoiding amplification of C3b at the GBM surface, and 

with the potentially severe consequences for this structure of a lack of fully functional FH. 

1.4.9 Age-related macular degeneration 

Patients suffering from MGPN II often develop the soft ocular drusen regarded as a hallmark 

of early age-related macular degeneration (96) (AMD), which is a leading cause of geriatric 

vision-loss. A recently discovered link between the Y/H 402 polymorphism in CCP 7 oIFH 

and both dense deposit disease (97) and AMD (98) hints at the physiological importance of 

this second (after CCP 20) polyanion-binding site in FH. The at-risk allele has received most 

attention; it is present in 35% of individuals of European descent. Homozygous individuals 

have a 6-fold increased risk of developing AMD, whereas heterozygotes are only 2.5 times 

more susceptible (99). The at-risk sequence variation is also present in FH-like 1, where 

module 7 represents the sole polyanion-binding site. This GAG-binding module has been 
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reported additionally to participate in binding sites for CRP (100), fibromodulin (101), DNA 

(102) and various pathogen-borne proteins (100, 102, 103). 

Structural and chemical shift perturbation studies of CCP 7 - similar to those carried 

out on FH-19-20 - revealed that the H/Y 402 side-chain is positioned in such a way as to 

contribute specificity to a GAG-binding groove (1). Working with the single module, Y402 

CCP 7 bound significantly more strongly than H402 CCP 7 both to a heparin-affinity column 

and to dp4. This appears to support the case for a causal link between the polymorphism and 

a mechanism for AMD involving insufficient complement regulation in the ageing choroid. 

When examined in the context of the triple-module 1 711-6-8, however, the two variants 

bound equally well to some GAGs (1) but differently to others (68), with either variant 

binding more tightly depending upon the GAG tested. Both Y402 and H402 versions of full-

length FH bound equally well to a series of fully sulphated heparin fragments and (as might 

have been predicted from the aforementioned results obtained for FHA7) to a heparin-

affinity colunm (1, 101, 104, 105). In all probability, what these results illustrate is that the 

FH—GAG interaction is both dual-site (i.e. involves two physiologically releant GAG-

binding sites on FH) and tissue-specific. The results obtained with isolated CCP 7 in 

complex with a chemically defined heparan sulphate analogue, together with the data for 

interaction of FH-6-8 with a range of heterogeneous GAGs, indicate strongly that the 

disease-linked polymorphism is tweaking the GAG-(self)-recognition capabilities of FH in a 

subtle fashion not apparent in the test tube with full-length FH and the 'blunt instrument' of 

heparin. Such a conclusion is supported by the detailed picture of protein—sugar interactions 

provided by the crystal structure of FH-6-8 in complex with sucrose octasulphate (53). A 

subtle difference between the two allotypic variants is consistent with the 11402 (at-risk) 

variant of FH - which is present in 35% of Western populations - functioning adequately 

until at least old age. Indeed, the 11402 variant is less tightly sequestered than the Y402 

variant by the M6 protein of Streptococcus pyogenes and might confer an evolutionary 
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advantage in this respect (105). Consistent with a 'GAG hypothesis' for a causal link with 

AMD there is also evidence for differential binding of the Y/H 402 variants to cell surfaces. 

Flow cytometry and confocal laser scanning microscopy revealed a slightly lower binding of 

the 11402 variant to retinal pigment epithelial cells and to endothelial cells, and indeed (in the 

context of FIT-like 1) the H402 variant has reduced co-factor activity at the cell surface even 

though there is no difference in fluid-phase cofactor activity between the two variants (106). 

In another flow cytometry study the H402 variant exhibited higher binding to necrotic Jurkat 

T cells, which may reflect a measured difference in DNA-affinity between the variants (with 

11402 FH-6--8 binding to DNA more tightly than Y 402 FH-6-8) (101). Controversy,  

surrounds the effects of the polymorphism on the affinity of FH for CRP as measured by 

SPR or by ELISA. Five reports concur that the H402 allotypic variant (within the context of 

full-length FH, FH-like 1, FH-5-7 or FH-6-8) is the weaker CRP binder (1, 101, 104-106). 

Previous work showed that CRP is more abundant in the eyes of AMID patients with the 

H402 variant of FIT than in those with the Y402 variant (107) and that CRP is present in 

drusen (101, 107). It has been suggested that FIT recognizes CRP borne on the membranes of 

apoptotic cells and acts to ensure that apoptotic cell clearance proceeds in a non-

inflammatory setting (21). Overlap has been reported for CRP- and GAG-binding sites on 

CCP 7 (100), suggesting that the relative affinities for these two ligands might be critical for 

FH function at self-surfaces in situations where both ligands are encountered; if the Y/H 402 

side-chain contributes to both sites it could be a key player in this respect. So a 'GAG 

hypothesis' and a 'CRP hypothesis' need not be mutually exclusive. However, a study by 

• Hakobyan et al. (108) casts doubt on the relevance of the FH—CRP interaction. In the hands 

of these authors, FH interacts with CRP only under circumstances where the CRP pentamer 

is disrupted through Ca 2  ion-removal, a situation that would never prevail in physiological 

circumstances. 
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1.4.10 Summary of literature survey 

Taking all these data together, a mechanism for FF1 is emerging. The two terminal regions of 

CFH (specifically, modules 1-7 and modules 19-20) contain all the proven discrete binding 

sites and are also the sites of most disease-linked sequence variations. Towards the centre of 

CFH (CCPs 12-14) module 13 - the smallest CCP module in FF1 with respect to the number 

of amino acids - is joined with its neighbouring modules by long linkers (Figure 1.12) 

allowing CFH to kink so that the two terminal ends of FH are brought into proximity. The C-

terminal modules are the only ones with the potential to bind to a composite site consisting 

of C3b and the polyanions on the self-surface to which C3b is attached, and hence are 

dominant in distinguishing self-surfaces from non-self (complement activating) ones. The N-

terminal three or four CCPs, like other similar blocks of CCPs in other RCAs (e.g. CD46, 

CD55, CD35) are able to perform the task of disrupting the surface-associated C3/C5 

convertases once the CFH is anchored in place by its C-terminus. 
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Figure 1.12 CCP module and linker size in FH. The five linkers of CCPs1O-15 consist of six, 

seven or eight residues. The largest numbers of linker residues occur around CCP 13 while the 

size of CCP 13 is the smallest in Eli (and among all known RCAs). 

To position conectly the N-terminal modules in the GAG-convertase-CFH complex, a 

further interaction of CFH with GAGs is mediated by the specific recognition capabilities of 
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CCP 7 - indeed, this module could act as a 'proof-reader' to make it more difficult for 

bacteria to emulate the chemistry at self-surfaces. 

1.5 Project aims 

Our working hypothesis suggests the architecture of the middle portion of FH imposes or 

stabilizes- a conformation of the molecule in which the terminal regions engage 

simultaneously with its key ligands (C3 fragments and polyanionic carbohydrates). To test 

our hypothesis, it is necessary both to re-examine the distribution of binding sites throughout 

the protein and to elucidate its structure. Localisation of binding sites will be achieved by 

expressing selected regions of FH and measuring their affinity for protein and carbohydrate 

ligands. With regard to structure determination, the large potentially flexible nature of FH 

rules out a direct approach based on NMR or X-ray diffraction. To circumvent this difficulty, 

a "dissect-and-rebuild" strategy based on studies of short fragments of Fil is planned. Both 

functional and structural aspects of this study therefore depend upon recombinant expression 

of multiple-CCP module fragments of FH at micro-to milligram yield. Based on previous 

experience in the Barlow lab, P. pastoris was the vector of choice for this exercise. 

The first aim is to undertake functional characterisation of FH ligand-binding 

regions where literature reports remain circumstantial or controversial; this includes 

investigation into the ability of CCP9 and CCP 13 to act as binding partners for polyanions 

and CCPs 12-14 to act as a binding partner for C3b and C3c. 

The second aim is to conduct quantitative studies on the well-established binding 

sites at either terminus of FH and the region of CCP6-8; the objective here is to obtain a 

more accurate understanding of the binding of FH to C3b and its fragmentation products 

than has been available hitherto 
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The third aim is to express multiple module constructs encompassing the centre of 

Fil to test the notion that CCP modules 10-15 include a hinge (or rigid bend) that facilitates 

spatial proximity of the C- and N-termini. The top priority will be the 'double-module 

construct FH-12-13, in which the smallest module of FH, CCP 13 (51 amino acid residues) 

is connected to CCP 12 by the longest linker (eight amino acid residues). This construct will 

be expressed in ' 5N and ' 3C-enriched media to enable determination of a high-resolution 

solution structure using NMR. In addition, longer constructs embracing flanking modules 

(i.e. 10,11 and 14,15) will be subjected to analytical ultracentrifugation to provide an 

architectural context for the high resolution structural studies. 
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MATERIAL AND METHODS 

2.1 DNA amplification, cloning, protein production and 

purification 

2.1.1 Polymerase chain reaction (PCR) 3  

The PCR was used to amplify coding sequences for full-length FH from a human cDNA 

library, and for amplifying the coding sequences for the various FH constructs. It was also 

used for screening of colonies, Q uickChange® site directed mutagenesis (Stratagene®,  CA, 

USA) and sequencing reactions. 

All priming sequences4  were purchased from Si gma®Genosys  and are listed in Table 

2.1. The primers were shipped in a desalted and de-protected form. Exceptionally, some of 

the longer primers were ordered in an HPLC-purified form. 

Oligonucleotide 
name 

DNA sequence 
restricti 

 on site 

FH-1 F 
CTATTTGTGCTGCAGAAGATTGCAATGAAC 

TTCC 
Pstl 

FH-6 F AACTGCAGGACCTFGTGATFATCC Pstl 

FH-7 F 
TCAAACTGCAGGACTCAGAAAATGTTATTT 

TC 
Pstl 

FH-8 F AACTGCAGGAACATGTTCCAAATC Pstl 

• 	Orm-1711-8 F GTCGGTACCAAAACATGTT'CCAAATCAAG Kpnl 

FH-10 F AACTGCAGGAGAATGCGAACTTCC Pstl 

FH-1 1 F AACTGCAGGATCATGTGGTCCACCTCC Pstl 

FH-12 F AACTGCAGGAACCTGTGGAGATATACC Pstl 

FH-13 F AACTGCAGGAAAGTGCAAATCATC Pstl 

FH-14 F AACTGCAGGATTATGCCCACCTCCACC Pstl 

a-FH-7 R GCTCTAGACTAGATGCATCTGGGAGTAGG XbaI 

b-FH-7 R GCTCTAGACTA1TT'GACACGGATGCATC Xbal 

FH-8 R GCTCTAGACTAAGATTFAATGCACGTG Xbal 

FH-9 R GCTCTAGACTAATAACATATGGGTAAATC Xbal 

Orm-FH-9 R 
GGTCTA GACTATFCATAACATATGGGTAAA 

TCA 
Xbal 

FH-1 1 R GCTCTAGACTAAATACACACTGGTAAAG Xbal 

FH-12 R GCTCTAGACTACACACACTGGGGAAGTITGG Xbal 

FH-13 R GCTCTAGACTATGAGCAGYTCACrFCTGG Xbal 

FH-14 R GCTCTAGACTAAACACAGAGTGGTATTGAC Xbal 

FH-15 R GCTCTAGACTAYTCACACTGAGGTGG Xbal 

For composition of buffers, media and vector maps see appendicies 
"Many of the primers listed here were designed by Claire Egan or Dr Andrew Herbert former 
members of the Barlow group. 
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FH-20 R 
GCATGCTCTAGACTATCflTITGCACAAGT 

TGGATAC  
Xbal 

FH-7(H402Y) F 
GGATATAATCAAAATFATGGAAGAAAGTT 

TG  
n/a 

FH-7(H402Y) R AAAC1TTCTFCCATAATITFGATFATATCC  

FH-8(G446K) F 
CACGTGGCCCAGCGCTCCGTCTGCTATCG 

GTACCAAAAC  
n/a 

FH-8(G446K) R 
GTIYrGGTACCGATAGCAGACGGAGCGCT 

GGGCCACGTG 
n/a 

FH-12(N718Q)F 
CAGTGGAATITCAGTGCTCAGAATCA1TFA 

C 
n/a 

FH-12(N718Q) R CTGAGCACTGAAATFCCACTGAATC n/a 
FH-13(N802Q) F GGATCCAGAAGTGCAGTGCTCAATGG n/a 
FH-13(N802Q) R GTGCCATFGAGCACTGCACTFCTGG n/a 

FH-14(N822Q) F CCCAATTCTCACCAGATGACAACC n/a 
FH-14(N822Q) R GGTFGTCATCTGGTGAGAATTGGG n/a 

FH-13(Q802N) F GGATCCAGAAGTGAACTGCTCAATGG n/a 
FH-13(Q802N) R CCATFGAGCAGTTCAC11TCTGGATCC n/a 

FH-14(Q822N) F CCCAATFCTCACAATATGACAACC n/a 
FH-14(Q822N) R GGTI'GTCATATTGTGAGAATTGGG n/a 

alpha-Factor F GGGGATVFCGATGTTGCTGYITFG n/a 
AOX1 R CCGGTCTTCTCGTAAGTGCC n/a 

pUB/B sd-TOPO F 
GCAGCTTATAATGGTITACAAATAAAGCAA 

TAGC  
n/a 

pUB/B sd-TOPO R GGTAACGCCAGGGTTITCCC n/a 

Table 2.1 Primer sequences. Restriction-enzyme sites are shown in italics. Primers used with the 

QuickChange site-directed mutagenesis kit for the generation of constructs with "mutated" 

primary sequences are named in such a way as to indicate the amino acid substitution. F and R 

indicate the forward and reverse priming directions, respectively. The expression "(X446K)" 

indicates the substitution of a cloning artefact residue with wild-type amino acid Lysine at 

position 446. Orm-FH-8 F and Orm-FH-9 R stand for primers use in the study of Ormsby et al. 

(61) 

The generation of coding sequences was generally carried out according to the scheme in 

Table 2.2 by mixing 1 Al of forward and reversed primers (10 /Lmol), template DNA (40 ng), 

5 Al Herculase ®  reaction buffer (1 Ox concentrate from Stratagene), 2.5 Al dimethylsulfoxide 

(DMSO), 1 Al deoxynucleotde triphosphates (NTPs) (10 mM from (Roche ®, Mannheim, 

Germany), 0.5 A l Herculase®  Hotstart polymerase (5 U/fl) (Stratagene ®) and adjusting the 

volume to 50 Al using molecular biology-grade 1120. 
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Step Temperature (°C) Time (mm) Repetitions 

Initialisation 95 1.0 lx 

Denaturation 95 0.5 

Touch-down annealing 

steps 

Tm  0.5 14x 

gradient -0.5° 	R3.0°/s 

Elongation 72 1.0 / kb DNA 

Denaturation 95 0.5 

19 to 24x Annealing Tm  7 0.5 

Elongation 72 1.0 / kb DNA 

Final Elongation 72 5.0 - 

Hold 4 hold - 

Table 2.2 PCR cycling parameters. The melting temperatures (T mS) of the whole primers with 

subtraction to account for the contribution from non-complementary regions of the primers (i.e. 

restriction enzyme site or mutation substitutions) determine the annealing temperatures. In 

cases where the resulting T m5 of forward and reverse matching sequences were different, the 

annealing temperature was set to the lower primer T m . 

2.1.1.1 Generation offull length FH coding sequence from c-DNA library 

The coding sequence for full-length FH was amplified from the human universal Quick-

cloneTm cDNA library (Clontech ®, CA USA) and cloned into pCR ®4Blunt-TOPO®  vector 

then sub-cloned into pPlCZalphaB vector). Thçse two full-length FH clones were used as a 

template for generation of coding sequences for different FH module constructs. 

2.1.1.2 Generation of wild-type coding sequences for dfferent FH module constructs 

For thegeneration of wild-type coding sequences the PCR volumes and cycling program, as 

described above, were used. In case where no, or only a little, PCR product could be 

obtained with these PCR parameters, the annealing temperature was lowered by up to 5 °C; 

alternatively a subsequent PCR reaction was performed using a small proportion of the first-

round PCR product. 
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2.1.1.3 PCR screening of colonies 

Screening by PCR was performed with Mastermix ®  (0.05 U//Li) from Promega UK Ltd. 

(Southampton, UK). From overnight plates, roughly ten single bacterial colonies were 

picked and transferred to a new plate as well as being transferred to a PCR tube containing 

20 /Ll "EB buffer" (10 mM TrisCI, pH 8.5 ), which was subsequently exposed to 90-100 °C 

for 300 s to lyse the bacteria and solubilise plasmid DNA. A 1 jLl aliquot of this extraction 

was mixed with 5 Al PCR-Mastermix solution and 2 JL1 each of forward and reversed primer 

(10 pivI) The PCR products were analysed on an agarose gel. For PCR conditions see Table 

2.3. 

Step Temperature (°C) Time (mm) Repetitions 

Initialisation 95 1.0 lx 

Denaturation 95 0.5 

30x Annealing 50 0.5 

Elongation 60 1.0 / kb DNA 

Hold 4 hold - 

Table 2.3 Mastermix PCR cycling parametres 

2.1.1.4 Sequencing reactions 

All of the DNA sequencing was carried out by the automated sequencing service of the 

School of Biological Sciences (University of Edinburgh). The primers described in Table 2.4, 

or sequencing primers supplied with the TOPO®  cloning kit (Invitrogen), were used. The 

PCR-based sequencing was carried out according to the table below using primer (3.2 pmol), 

template DNA (150-300 ng), ABI prism BigDye terminator mix V3.1 (4 tL), and adjusting 

the volume to 20 giL. The resultant PCR produce was submitted for sequencing. 

Step Temperature (°C) Time (mm) Repetitions 

Initiation 95 0.5 lx 

Denaturation 96 0.5 24x 
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Annealing 50 0.5 

Elongation 60 4.0 

Hold 4 hold 

Table 2.4 Sequencing cycle programme 

2.1.1.5 Sequencing of DNA inserts from P. pastoris 

Small fragments of P.pastoris colonies were picked and transferred to a PCR tube containing 

20 j.tl EB buffer, which was subsequently exposed to 90-100 °C for 5 min to lyse the yeast 

and solubilise DNA. A 1 Al aliquote of this extraction was used to perform a Touch-down 

PCR. The resultant PCR products were analysed on a DNA agarose gel, ethanol precipitated 

and resuspended in molecular biology-grade H 20. The resuspended DNA was used as a 

template for a sequencing reaction. 

2.1.1.6 QuickChange®  site-directed mutagenesis 

The PCR-based sequencing reactions were carried out according to Table 2.5 (below) by 

mixing 1 lil of forward and reversed primer (10 jimol), template plasmid DNA (40 ng), 5 ttl 

Pfu buffer (lOx concentrate), 1 Itl dNTPs (10mM), 1 pA Pfu Turbo hotstart (2.5 U/pA) 

(Invitrogen) and adjusting the volume to 50 p1 using molecular biology-grade H 20. The 

QuichChange reaction was mixed with Dpnl (10 U/pA) (New England Biolabs) and 

incubated for between one and two hours at 37 °C to allow for digestion of the methylated 

template DNA plasmid prior to transformation into competent bacterial cells. 

Step Temperature (°C) Time (mm) Repetitions 

Initiation 95 0.5 lx 

Denaturation 96 0.5 

Annealing Tm  -5 1.0 1 9x 

Elongation 68 1.0 / kb DNA 

Final Elongation 72 5.0 - 

Hold 4 hold - 

Table 2.5 PCR cycling parameters for QuickChange ®  site-directed mutagenesis 
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2.1.2 Horizontal Agarose Gel Electrophoresis for Nucleic Acids. 

A batch of triethanolamine-agarose (1.0 to 1.3 % (w/v) agarose) was heated until the agarose 

had completely dissolved. It was cooled to approximately 45 °C before addition of ethidium 

bromide to a final concentration of approximately 0.5 tg/ml and then poured into a gel tank 

to set. Alternatively, the ethidium bromide-substitute, CYBR® Safe stain from Invitrogen 

(Invitrogen, CA, USA), was added in a similar procedure and according to the protocol 

supplied by Invitrogen. DNA samples in loading buffer were loaded into wells alongside 

DNA molecular-weight markers that covered the range 250 - 1500, or 500 - 10,000, base 

pairs (New England Biolabs, MA, USA). The gel was run at 100 V until clear resolution of 

the markers was obtained, then it was visualised with UV radiation using a transilluminator. 

2.1.3 TOPO®  cloning reaction 

The cloning of the PCR-product into the pUB/B sd ®  Topo®  or pCR®  4blunt TOPO®  vector 

was achieved as follows. 

An aliquot containing 2 fil of PCR product was mixed with 0.5 jil of the provided 

dilute-salt solution, 0.5 /Ll sterile 1120 and 0.5 ul vector solution. The mix was centrifuged 

and was allowed to sit for 300-600 s at room temperature. Then a 3-jLl aliquot of this mixture 

were employed to perform a reaction using the TOPO®  cloning kit prior to transformation of 

One Shot®  Top 10 chemically competent E. coli cells. The transformed cells were spread on 

LB Miller agar plates ampicillin (100 to 200 ig/ml (wlv)) agar plates and grown overnight at 

37 °C. 

2.1.4 Restriction enzyme single and double digests 

The reactions were routinely carried out with NIEB® enzymes and matching reaction buffers 

as follows: 

Appropriate NEB-buffer + BSA 	2 l 
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vector 	 14jl 
restriction endonuclease 1 	 1.0 lil (20 UI zl) 
(restriction endonuclease 2 	 1.0 il (20 UI jzl) only in case of a double digest) 
H20 	 added to obtain a volume of 20 jil 

In the case of double digests, the reaction buffer was chosen to maximise the efficiency of 

both endonucleases following the New England Biolabs recommendations. The reaction 

components were mixed and incubated at 37 °C for 3 h or overnight. The restriction 

endonucleases were then deactivated at the temperature and time recommended by the 

manufacturer. The DNA fragments obtained were purified and concentrated by phenol-

chloroform extraction followed by an ethanol precipitation or by gel extraction using 

QlAquick®  spin gel extraction kit (Qiagen, Crawley, UK). The restriction digests were 

analysed on a 1% agarose electrophoresis gel to ensure that the reaction had been carried to 

completion. 

2.1.5 DNA purification and Plasmid DNA extraction 

The QlAprep®miniprep or QlAprep®maxiprep kit for plasmid extraction and the QlAquick ®  

spin gel kit for extraction and purification of DNA from agarose gels were obtained from 

Qiagen (Crawley, UK). 

From a bacterial culture that had been growing over night at 37 °C, an aliquot (5 ml for 

miniprep or 150 ml for maxiprep) was removed and spun down (5 min at 4000g). From the 

pellet, plasmid DNA was extracted using QlAprep miniprep kits following the protocols 

provided. For gel extraction of cut DNA fragments, the QlAquick ®  spin gel extraction kit 

was used. The eluted DNA was stored at -20 °C. 

2.1.6 Ethanol precipitation 

Based on the measured volume of the DNA sample, the salt concentration was adjusted by 

adding sodium acetate, pH 5.2 to a final concentration of 0.3 M, or by adding 5 M 

ammonium acetate to a final concentration of 2.0-2.5 M. Then between 2 and 2.5 volumes 
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(calculated after salt addition) of cold 100% ethanol was added. The mixture was vortexed 

and placed on ice or at -20 °C for 0.5-1 h. Subsequently it was centrifuged (Eppendorf 

Microfuge®) for 10-15 riin at maximal speed. Then the supernatant was carefully removed 

and 1.0 ml of 70% ethanol was added. After a brief further ceritrifugation step the 

supernatant was carefully removed and the pellet was air dried. Finally the pellet was 

resuspended in an appropriate volume of TE-buffer or water. 

2.1.7 Phenol-Chloroform extraction 

Phenol-Chloroform extractions were carried out with Phenol: Chloroform: Isoamyl Alcohol 

mixture (in rates of 25:24:1 respectively, saturated with 10 mM Tris, pH 8.0, 1 mM EDTA) a 

under standard procedures. This mixture was purchased from Si gma Aldrich® .  

2.1.8 DNA quantification 

DNA concentrations were determined by spectroscopy (Eppendorf BioSpectrometer, 

Eppendorf, Hamburg, Germany) at a wavelength of 260 nm. The purity of DNA samples 

were estimated by the absorbance ratios of A 2 60flm I A280nm  and A260nm / A320nm. 

2.1.9 Ligation reactions 

Roughly, 50 ng of cut vector pPICZaB (Invitrogen) combined with a three-fold molar excess 

of insert were mixed and the volume adjusted with dH 20 to 10 tl. Then 10 d of 2x Quick 

Ligation Buffer (provided with the ligase) and 1 jil of Quick T4 DNA Ligase (400 UI t1) 

(both from NEB) were added and mixed thoroughly. After a brief centrifugation step, the 

reaction mixture was incubated at room temperature (25°C) for five minutes prior to Top 10 

transformation. Transformed cells were spread onto LB Lennox Zeocin (25 jg/ml) plates 

and grown overnight at 37 °C. This step utilises the Zeocin tm1-resistance gene present in the 

P. pastoris expression vector pPICZaB. 
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2.1.10 Transformations of plasmids into E. coli competent cells and culture 

growth 

A microcentrifuge tube containing the frozen stock of cells were thawed on ice; the cell 

suspension was then swirled and incubated on ice for a further ten minutes. Plasmid DNA 

(1-2 pA of concentrations between 50 to 400 jtg/pA) was added, and the two solutions were 

mixed together by tapping the tube. After incubation on ice for 30 minutes, the tube was 

placed in a water bath at 42 °C for precisely 45 s and then rapidly returned to the ice for two 

minutes. Pre-warmed SOC medium (250 jiL, 42 °C) was added and cells were incubated at 

37 °C, on a shaking platform (200 rpm) for one hour, then plated onto pre-warmed LB 

Lennox agar plates for Zeocin (25 ig/m1 final concentration) resistance selection, or LB 

agar plates for ampicillin (100-200 g/m1 final concentration) resistance selection, and 

incubated at 37 °C overnight. 

After overnight growth on agar plates, single colonies were picked and used to 

inoculate 5 ml LB Lennox containing ZeocinTM  or LB containing ampicillin (concentrations 

as above) followed by incubation on the shaking platform (225 rpm) 37 °C. These cultures 

were used for DNA analysis and manipulation. When larger culture volumes were required, 

100 gL of the starter culture was placed into 50-250 ml of the appropriate media. 

2.1.11 Transformation ofF. pastoris 

P. pastoris is a yeast expression system. As a eukaryotic vector, it combines the desired 

features of protein processing, protein folding, and posttranslational modification (109, 110). 

P. pastoris is known to exhibit high heterologous levels of protein expression. The genetic 

nomenclature and numerous techniques developed for Saccharomyces cerevisiae have been 

carried forward to P. pastoris. As P. pastoris is methylotrophic, it is able to use methanol as 

a carbon source in the absence of glucose. Methanol is oxidised to formaldehyde and 

hydrogen peroxide using molecular oxygen and alcohol oxidase (AOX). This reaction takes 
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place in the peroxisome. Hydrogen peroxide is consumed via the action of a catalase. The 

formaldehyde, which is generated by AOX, partly leaves the peroxisome and is further 

oxidised to formate and carbon dioxide by cytoplasmic dehydrogenases, providing the 

organism with energy. The formaldehyde remaining within the peroxisome is used to 

produce cellular constituents. The genome of P. pastoris encodes for two alcohol oxidases, 

AOX1 and AOX2. The two enzymes are 97% identical to each other and share 

approximately the same specificity (111). Methanol metabolism is mainly carried out 

through the catalytic action of the AOX 1 gene product, which promotes a more rapid 

catabolism of methanol relative to AOX2. P. pastoris growing on methanol as a carbon 

source expresses AOX1 levels of more than 30% of total soluble protein. Two mechanisms 

are involved in the regulation of the AOX1 gene. First, there is a repression/derepression 

mechanism, e.g. in the presence of glucose the AOX1 gene is repressed. Absence of glucose 

on its own is not sufficient to stimulate the AOX1 expression as, secondly, the presence of 

methanol is required as an induction signal prior to AOX1 gene transcription (112). The loss 

of its main methanol catabolic enzyme AOX1 results in P. pastoris strains (MUTS:  methanol 

utilization slow) that have to rely on their facility to catabolise methanol through the more 

slowly metabolising AOX2. There are therefore two different P. pastoris methanol 

metabolising phenotypes, MUTS  and MUT. The P. pastoris strain used throughout this 

study was KM71H (Invitrogen) of the MUTS  phenotype. 

Heterologous protein expressed in P. pastoris can be intracellular or secreted. 

Secretion requires a signal sequence in order to direct the protein to the secretion pathway. 

As P. pastoris only secretes very low levels of native protein into the medium, and is able to 

grow in minimal medium, secretion can be an important first step in purification of the 

heterologous protein (113). The P. pastoris-based expression system offers superior post-

translational modifications, as it does not cause hyperglycosylation. Of relevance to RCA 

proteins (containing two disulfides per CCP module) native disulfide bonds patterns are 
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generally obtained in the secreted product. Once the heterologous protein sequence has been 

transformed into the exJression cassette and subsequently integrated in the genome, it is 

under the control of the strong and highly-inducible AOX 1 -promotor. Therefore expression 

of the protein can be regulated through the feeding of methanol to cell cultures. Usually this 

system expresses foreign proteins in high yields, although yields are generally not as high as 

for alcohol oxidase itself (114). In conclusion the P. pastoris expression system is 

appropriate for generation of micro- to milligram quantities of pure recombinant protein with 

"correct" disulfides and the option of isotopic enrichment for NMR studies. 

The following protocol was followed: 

A 5-ml aliquot of YPD was inoculated with the P. pastoris strain KM71H and grown 

overnight at 30 °C. 

Then 500 ml of fresh YPD medium was poured into a two-litre flask, inoculated with 0.1-

0.5 ml of the overnight culture and cells were grown overnight to an 0D 600  of 1.3-1.5. 

The cells were subsequently centrifuged at 1500 g for five minutes at 4°C, following 

which the pellet was resuspended with 500 ml of ice-cold, sterile water. 

The cells were once again centrifuged (as in Step 3), and the pellet resuspended with 250 

ml of ice-cold, sterile water. 

Cells were centrifuged again (as in Step 3), and the pellet resuspended with 20 ml of ice-

cold 1 M sorbitol. 

Finally cells were centrifuged (as in Step 3), and the pellet resuspended with 1 ml of ice-

cold 1 M sorbitol for a final volume of approximately 1.5 ml. 

An aliquot of 80 jil of the cells from Step 6 was mixed with 5-20 jig of linearized 

DNA (in 5-10 jil TE Buffer, or sterile water) and transferred to an ice-cold 0.2-cm 

electroporation cuvette. The cuvette containing the cells was incubated on ice for five 
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minutes. Settings on the Bio-Rad GenePulser II were: charging voltage - 1500 V, 

capacitance - 25 itF, resistance 200 m??. Immediately after pulsing for 6 s, 1.0 ml of ice-

cold 1.0 M sorbitol was added to the cuvette. The contents of the cuvette were then 

transferred to a sterile microcentrifuge tube and incubated for 1 h at 30 °C. Finally 200-600 

l aliquots were spread on YPDS Zeocin Tm  plates. These were incubated at 30 °C until 

colonies had appeared. 

2.1.12 P. pastoris recombinant protein expression in shaker flasks 

The following protocol was employed for shaker-flask scale protein expression in P. 

pastoris. 

A single colony was used to inoculate 100 ml of BMG in a one-litre baffled flask. The 

mixture was grown at 28-30 °C in a shaking incubator (250-300 rpm) until the culture 

reached an OD 600  of between two and six (this took approximately 16-18 hours). 

The cells were harvested by centrifuging at 1500-3000 g for five minutes at room 

temperature. In order to induce expression, the supernatant was decanted and the cell pellet 

was resuspended in BMM using one-fifth to one-tenth of the original culture volume. 

The 100-mi baffled flask was capped with a sterile sponge and returned to the incubator. 

Every 24 hours, 100% methanol was added to maintain a final concentration of 0.5% to 

1.2 % - this addition of methanol induces protein expression. 

At several times during the induction period, 1.0 ml of the supernatant was transferred to a 

1.5-mi microcentrifuge tube. These samples were used to analyze protein expression levels. 

Prior to protein purification, PMSF and EDTA were added to final concentrations of 0.5 

mlvi and 5 mM, respectively, in order to minimize protease activity. 

Note that for the screening of expression levels for multiple clones (three or more) the 

protocol above was scaled down by a factor often. 
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2.1.13 P. pastoris recombinant protein expression in fermentors 

Control and logging of temperature, pH, agitation, and air and oxygen supply allow for much 

higher expression yields in fermentors compared to shaker-flask growths. Any of the protein 

constructs that was required in larger (i.e. milligram) quantities for subsequent experiments, 

or was insufficiently expressed in shaker-flask growths, was produced in a fermentor. 

Protein expression in 15N-enriched, or 15N and 13C-enriched, media (to obtain labelled 

samples for NMR studies) were exclusively performed in fermentors. The fermentations 

were carried out in two-litre or five-litre cylindrical Bioflow 3000 (New Brunswick 

Sc ientific®) fermentor vessels. 

In a typical fermentation, the initial volume of growth media was 600 ml. For the 

inoculum, a 300-mi. BMG P. pastoris culture was grown in a two-litre shaker flask, pelleted 

at 1500 g and resuspended in about 20 ml 100 mM potassium phosphate buffer, pH 6.0. The 

contents of the initial media, and the details of the feeding schedule, depended upon whether 

the protein product was to be unlabelled, 15N-labelled, or ' 5N,' 3C-labelled: 

Basal salts and initial medium: 

CaSO4 x7.H20 0.95g 
MgSO4  x 7.H20 12.0 g 
K2SO4  6.0 g 
H20 540 ml 
1 M potassium phosphate 
buffer, pH 6.0 60 ml 

600 ml 

The prepared media was poured into the fermentor vessel and all the probes were 

attached prior to autoclaving the fully assembled fermentor unit. After autoclaving the 

dissolved (D) 0 2-probe was charged over night. Air was bubbled continuously into the 

vessel through a sterile filter and agitation was set to 200 rpm in order to saturate the 

medium with oxygen. Also attached were pH- and temperature-probes, as well as a feed for 
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a 2 M KOH solution (the "base feed"). The temperature was set to 30 °C. To the media were 

added 0.5 ml Antifoam 206 (Sigma-Aldrich) and 2.5 ml of high-purity grade fermentation 

trace mineral salts (PTM I salt, Arnresco). 

In the case of ' 5N isotope-enriched fermentations, 7-8 g of ' 5N-(NH4)2 SO4  were 

dissolved in about 20 ml H20 and sterile filtered (0.2 jim) into the fermentor. After addition 

of all reagents and p11 adjustment (to pH 5.0) the dissolved oxygen under these conditions 

was normalised to 100. Before inoculation the agitation rate was set so as to maintain a 

relative oxygen level of 40 during cell growth and induction (e.g. the aeration is held at a 

constant level but the agitation rate is increased when yeast cells metabolise nutrients and the 

oxygen level drops below a relative value of 40). When, however, maximum agitation rates 

of 1000 rpm proved inadequate to maintain the relative oxygen level at 40, a spike of oxygen 

(supplied by an oxygen cylinder) was utilised (in fermentations of up to a one-litre scale). 

In ' 5N isotope-enriched fermentations the cells were grown, in the presence of 

glycerol as carbon source, to high densities (for one to two days) prior to reduction of the 

temperature to 15 °C and initial induction with 0.5% (of culture volume) methanol. After 

consumption of the initial methanol, further methanol feeds of 1.0% to 1.5% of culture 

volume were provided for three to four days. The frequency of methanol feeds was 

determined on the basis of carefully monitoring the agitation-rate and dissolved oxygen 

curves so as to avoid overfeeding or poisoning. Every glycerol and methanol feed was 

accompanied by a 0.1 ml addition of PTM1-salts. 

For 15N and 13C enrichment, 7 g of ' 5N-(N}{4)2SO4  and 15 g 13C-glucose were 

dissolved in about 50 ml 1120 and sterile-filtered (using a 0.2-sm cut-off filter) into the 

fermentor prior to inoculation. The 13C-labelled glucose, rather than ' 3C-glycerol, was used 

at this juncture because it represents a significantly cheaper source of 13C. In cases where an 

insufficient cell density was reached after consumption of 15 g 13C-glucose, another 5 to 10 

g of 13C-glucose were added, as before. Trace amounts of glucose suppress the methanol- 
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inducible promoter; hence after consumption of all the 13C-glucose, 1 g of 13C-glycerol was 

added to ensure its de-repression. Reduction of the temperature to 15 °C ensued. This was 

followed by induction with 13C-methanol and then by additional 13C-methanol feeds as 

required to maintain cell growth, 

The protocol for fermentations with non-isotope enriched media differed slightly. A 

34% NHOH solution was utilised as a combined nitrogen source and base for regulating the 

pH. This dictates a change in the composition of basal salts - to the values listed below - in 

order to avoid excessive salt concentrations that could have adverse effects on recombinant 

protein expression. 

Phosphoric acid 85% 27 ml 
CaSO4  X 7.1120 0.95 g 
MgSO4  x 7.H20 15.0 g 
K2SO4  18.2g 
KOH 4.2 
Glycerol 25 ml 
AddH2O 	upto 1L 

Prior to calibrating the D0 2  probe, the pH was adjusted to pH 5 by addition of the 34% 

NH40H solution. 

In all cases, the supernatant was harvested by spinning the cell suspension initially 

for 10 min at 5000 x g. The supematant was decanted into second set of centrifuge bottles 

and spun again for 30 min at 8000 x g prior to sterile filtration (0.2 gm). Prior to protein 

purification, PMSF and EDTA were added to final concentrations of 0.5 mlvi and 5 mM, 

respectively. 

2.1.14 Estimation of protein concentrations 

Protein concentrations were determined by UV spectroscopy (Eppendorf BioSpectrometer, 

Eppendorf, Hamburg, Germany) at a wavelength of 280 nm. The purity of DNA samples 

were estimated by the absorbance ratios of A280 nm  / A260nm  and A280nm  / A320nm. Extinction 
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coefficients for the protein constructs were calculated from the primary sequence with online 

ExPASy ProtParam tool (115). Concentrations were calculated according to the Beer-

Lambert equation. 

2.1.15 Trichloroacetic acid (TCA) precipitation to concentrate protein samples 

To the protein sample was added an equal volume of a 20% (vlv) solution of TCA . The 

mixture was incubate for 30 minutes on ice and then spun in the microfuge for 15 min at 4 

°C. The supernatant was removed carefully and 300 Id of cold acetone was added prior to 

spinning for 5 min at 4 °C. The supematant was, again, decanted carefully. After air-drying 

the pellet, it was resuspended in SDS-PAGE loading buffer and loaded onto a SDS-PAGE 

gel after heating at 65 °C for 180 s. 

2.1.16 Protein concentration in membrane spin concentrators 

Buffer-exchanges for. NMR samples, and all the concentration steps for the variously 

labelled protein samples were performed in 0.5-mi, 6.0-mi or 20-ml VivaspinTM 

concentrators (Sartorius Mechatronics UK Ltd, Epsom,United Kingdom), with an 

appropriate molecular weight cut-off membrane (3000 - 10000 Da). 

2.1.17 Sodium dodecyl-suiphate polyacrylamide gel elctrophoresis (SDS PAGE) 

Polyacrylamide gradient gels (4-20% Criterion and from Bio-Rad, 4-12% NuPage ®  Bis-Tris 

gels from Invitrogen) were prepared following the protocol provided. Equal volumes of 

protein samples and (double concentration) protein loading buffer were mixed and heated 

prior to gel loading. Broad range protein marker was loaded as a reference. The gel was run 

at 100-200 V in TGS-buffer (for the BioRad system) or NuPAGE ®  MES-buffer (for the 

Invitrogen system) until good separation of the markers was obtained. Visualisation of 

protein bands was obtained by staining gels with Bio-Safe Coomassie stain (Bio-Rad, CA, 

USA). 
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2.1.18 Glycoprotein detection 

After SDS-PAGE, gels were fixed by complete immersion in the Fixing Solution. The 

Fixing Solution was subsequently replaced with ultra-pure water and the gels agitated gently, 

then transferred to the provided periodic acid solution followed by a further short period of 

gentle agitation. The periodic acid solution was removed in a second washing step with 

water, then gels were immersed in Schiff s Reagent (Fuchsin-Sulfite Reagent) that stains 

glycans pink. This was, in turn replaced by provided reduction-solution (sodium 

metabisulfite). Finally the gels were subjected to a series of two or three washing steps with 

water. 

2.1.19 Enzymatic deglycosylation of N-linked glycans 

Proteins that exhibited N-linked glycosylation according to the above test were 

deglycosylated either prior to purification, or between the first and second purification steps, 

by incubating 100 ml supernatant with 

6000 U EndoHf (New England Biolabs, MA, USA) at 37 °C for three hours. Yields were 

typically in the region of 0.1-0.5 mg of pure protein/g of wet cells. 

2.1.20 Western blot 

A two-step Western blot was adopted to recognise c-myc-containing protein constructs. The 

primary anti-myc-tag polyclonal antibody (Cell Signalling Technology ®) used was raised 

rabbit. The secondary anti-rabbit IgG, conjugated with horseradish peroxidase (HRP) (Cell 

Signalling Technology®), was raised in goat. First, proteins were resolved using SDS-PAGE 

as described in above. The staining step was omitted. Then, the gel was soaked in Towbin-

buffer and electro-transferred onto a nitrocellulose membrane (BioRad Laboratories). 

Electro-transfer was carried out in a Mini Trans-Blot cell (BioRad Laboratories) at a 
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constant current of 150 mA for 90 minutes in Towbin-buffer. Pre-stained molecular weight 

markers allowed monitoring of the transfer onto nitrocellulose membrane. Blotted 

membranes were blocked for two hours in 100 ml of PBS containing 5% non-fat dried milk 

(blocking buffer). Overnight incubation at 4 °C on an orbital rocking platform with 5 ml of 

1:1000 dilution of the primary antibody in blocking buffer followed. After rinsing the 

membrane with PBS it was washed with PBS containing 0.05% TWEEN20 for 20 mm. After 

another washing step in PBS for 10 minutes, the membrane was incubated for two hours 

with 25 ml of a 1:3000 dilution of the secondary antibody on an orbital rocking platform. 

Membrane washing steps identical to the ones used after the addition of the first antibody 

(described above) were used. A SuperSignal ®  West PICO-Chemiluminescent substrate Trial 

Kit (Pierce®)  was used to generate the enhanced chemiluminescence (at 425 nm) for the 

detection of the secondary antibody. The signal was detected by an X-ray film. 

2.1.21 Protein chromatography 

Buffer reagents and solvents used for protein purification were purchased from Sigma-

Aldrich® and Fisher-Scientific ®  (Fisher Scientific UK Ltd, Loughborough, UK). Unless 

stated otherwise, all pre-packed columns and affinity resins were purchased from GE 

Healthcare Bio-Sciences AB, Sweden. Protein samples were buffer-exchanged either by 

multiple dilutions and concentrations of samples in Vivaspin concentrators, or by applying 

them to a 5-mi PD-10 desalting column or a 5-mi HiTrapTm desalting column (both from 

Amersham Biosciences®) .  

For the initial purification steps, bench-top columns (graduated Econo-Pac ®  polypropylene 

column from BioRad Laboratories, CA, USA) were packed with SP 6 FF Sepharose or 

Heparin 6 FF Sepharose. Prior to loading, the crude supernatant from fermentors or shaker 

flasks were either concentrated and buffer-exchanged as described above, or simply diluted 

and adjusted to a pH suitable for sample binding. After washing with low-salt concentration 
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buffer, samples were eluted from the resin with suitable buffers supplemented with 1.0 M 

NaCl. Subsequent chromatography steps were carried out on BioCad ®  700E Reperfusion 

chromatography system or on a AKTAdesignTMFPLC  system (pump P-920, UV-detector 

unit UPC-900). 

Prior to ion-exchange chromatography, samples were buffer-exchanged into binding 

buffer conditions (20 mM potassium phosphate, 20 mM sodium acetate or 20 mM sodium 

carbonate buffers at pH values suitable for the chosen type of ion-chromatography and 

sample p1). Elution of samples from ion chromatography columns was achieved by applying 

a gradient from 100% binding buffer to 100% elution buffer. The elution buffer generally 

consisted of the same buffering agent and pH as the binding buffer, but was substituted with 

NaCl to yield a concentration of 1.0 M NaCl. For cation-exchange the TricornTm MonoS 

column 4.6/100 (1.7 ml CV) was used. For anion-exchange the TricornTm MonoQ 4.6/100 

(1.7 ml CV) column and HiTrap' CaptoQ (dimensionsof each: 7 mm x 25 mm) were used 

(all from Amersham Biosciences®).5 

Ni2 -affinity chromatography was employed to purify recombinant proteins that had 

been expressed with a hexa-histidine tag. Binding buffer consisted of 20 mM potassium 

phosphate buffer at pH 7.0, supplemented with NaCl to a final concentration of 0.5 M to 

inhibit non-specific binding. The elution buffer was made by adding imidazole to the binding 

buffer to a final concentration of 0.5 M. For Ni2  affinity chromatography a XK 16/20 

column was packed with 25 ml of 1MAC Sepharose 6 FF resin. 

Unless stated otherwise, gel filtration chromatography was performed in a buffer 

containing 0.5 M to 1.0 M NaCl and 20 mM potassium phosphate buffer at a pH of 6.6 or 

7.4. Gel filtration was performed on a HiLoad 16/60 Superdex'' 75 prep grade column. 

Heparin-affinity chromatography, a subtype of cation exchange chromatography that 

additionally features selection based on affinity for carbohydrate polymers, was performed 

All columns (apart from reversed-phase HPLC columns) and chromatography-resins were 
purchased from Amersham Biosciences®. 
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with 1-mi and 5-mi HiTrapTM hepann-affinity columns (dimensions of each: 7 mm x 25 mm) 

or a PorosllE hepann-affinity chromatography column (4.6 x 100 mm, Applied Biosystems, 

Warrington, UK). 

Reversed-phase chromatography steps were carried out on a Waters HPLC system 

comprising a Waters' 600 Controller fitted with a Waters' 486 tuneable absorbance detector. 

Separation was achieved by a gradient elution from the initiai conditions of 95:5 v/v 

1120:acetonitrile to final conditions of 5:95 v/v H20:acetonitrile. Column used was Supeico 

Discovery®  BlO Wide Pore C5 HPLC column. 

2.1.22 Mass spectroscopy 

2.1.22.1 MALDI- TOF peptide-mass fingerprinting 

Purified proteins were suspended in 50 mM ammonium bicarbonate, then reduced and 

alkylated using 5 mM DTT and 15 mM iodoacetamide. Following digestion with trypsin 

(1:100 (w/w) trypsin:protein, two hours, 37 °C), a 0.5-pJ aliquot of the digest was mixed 

with 0.5 pd ct-cyano-4-hydroxycinnamic acid matrix (10 mg/mI in 50% (v/v) acetonitrile in 

water containing 0.1% (v/v) trifluoroacetic acid) on a MALDI sample plate. Samples were 

then analyzed on a Voyager-DE STR biospectrometry workstation MALDI-TOF mass 

spectrometer (Applied Biosystems), and processed spectra were searched against the 

National Centre for Biotechnology Information non-redundant database or in-house database 

using ProteinProspector (University of California, San Francisco, http://prospector.ucsf.edu ) 

or Mascot (Matrix Science, http://www.matrixscience.com ). 

2.1.22.2 Electrospray ionisation mass spectrometry 

The mass spectra were recorded on a Micromass (Manchester, UK) single quadrupoie mass 

spectrometer fitted with an eiectrospray ionisation source. This was used in the positive-ion 

mode. Tuning parameters were as follows: ES+ was 2, the capillary voltage was 3.50 kV; 

HV:Lens 0.50 kV; 4, Cone: 50 V; 5, Skimmer Offset 5 V. 
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Prior to injecting the sample into the mass spectrometer, the sample was desalted 

during a LC step on a Luna (Phenomenex, Hurdsfield, UK) 5u-05 column (dimensions 50 

x 2 mm) using the following distilled water-acetonitrile gradient: the initial conditions of 

95:5 v/v H20:acetonitrile was adjusted over 30 min to the final conditions of 5:95 v/v 

H20:AcCN. 

2.1.23 N-terminal sequencing 

N-terminal sequencing was performed by the Dr Nick Morrice from the University of 

Dundee. 

2.2 Functional characterisation 

2.2.1 Heparin binding studies 

2.2.1.1 Heparin chromatography 

Protein samples (50-78 jig, 1 ml) in 20 mM potassium phosphate buffer (pH 7.4) were 

loaded individually onto either a HiTrap heparin-affinity chromatography column (7 x 25 

mm, GE Healthcare) or a Poros 2011E heparin-affinity chromatography column (4.6 x 100 

mm, Applied Biosystems) equilibrated with 20 mM potassium phosphate buffer (at pH 7.4) 

and subsequently eluted with a linear gradient of 0-1 M sodium chloride in 20 mM 

potassium phosphate buffer (pH 7.4). 

2.2.1.2 GMSA 6  

Oligosaccharides were prepared from low-molecular-weight heparin by partial digestion 

with heparinase I followed by size fractionation on a Bio-Gel PlO gel filtration column (Bio- 

Rad) (116). Fluorophore-labeled species were produced by attachment of 2-aminoacridone 

6 Apart from sample preparation, GMSA analyses were setup and performed by Barbel Blaum. 
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to the oligosaccharide reducing end (116), and GMSA were performed, as described 

previously (117). Briefly, 2-aminoacridone tagged oligosaccharides were combined with the 

recombinant segments of FH at a range of concentrations in a volume of 10 jil of PBS 

containing 25% (v/v) glycerol for 15 minutes (at room temperature). Samples were then 

loaded on a 1% agarose gel in 10 mM Tris-HC1 (pH 7.4) and 1 mM EDTA. Electrophoresis 

was performed (200 V, 8-15 minutes) in a horizontal agarose electrophoresis system using 

an electrophoresis buffer comprising 40 mM Tris/acetate, 1 mM EDTA (pH 8.0). 

Immediately thereafter, the fluorescent oligosaccharides were visualized. 

2.2.2 Co-factor activity 

An endpoint fluid phase assay was used to measure co-factor activity for factor I mediated 

cleavage of C3b into iCb. Factor I and FH (positive control) were purchased from 

Complement Technology Inc., TX, USA. Equimolar amounts (2 jiM in the final 30 jil 

reaction) of Factor I and C3b (4 jig and 10 jig, respectively) of were mixed with Factor H (5 

jig; 1 jiM in 30ji1) or FH-1-4 (2.9 jig in PBS; 3.3 jiM in 30 jil) and PBS was added to a 

volume of 30 jil. The reaction mix was vortexed and incubated in a waterbath at 37 °C for 

one hour. Reducing SDS loading buffer was added immediately and the mix was heated 

prior to loading on a gel. 

2.2.3 Binding to C3 fragments C3b, C3c and C3d 

Factor H binding to C3b, C3c and C3d was monitored by surface plasmon resonance (SPR) 

using a Biacore T100 instrument (GE Healthcare). The sensor surfaces were prepared by 

immobilizing human C3b, C3c or C3d (Complement Technology) in two or three of the four 

flow cells of Biacore series S carboxymethylated dextran (CM5) or carboxymethylated 

matrix-free (Cl) sensor chips (GE Healthcare), using standard amine coupling; the reference 

surface in each case was prepared in the remaining flow cell(s) by performing a dummy 

coupling reaction in the absence of any proteins. Experiments were performed at 25 °C using 
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a flow rate of 30 p1mm (after performing a flow-rate study to check for mass transport 

limitation). Duplicate injections of FH samples in 10 mM HEPES-buffered 150 mM saline 

with 3 mM EDTA and 0.05% (vlv) surfactant p20 (HBSEP ) were performed at the 

concentrations indicated. A contact time of 90 s was used, as this was found to be sufficient 

to achieve steady-state conditions, followed by a dissociation time of 600 s with HBS-EP as 

running buffer. The chips were regenerated between sample-injections by two injections of 1 

M NaCl for contact times of 45 s. Data were processed using Biacore T100 evaluation 

software version I.I. Reporter points for affinity measurements were set to 2 s before 

injection began and 2 s before the injection period finished. Dissociation constants were 

calculated by fitting steady-state binding levels derived from the background-subtracted 

traces to a one-to-one binding steady-state model 

2.3 NMR structural studies 

One- and two-dimentional NMR spectra were normally recorded to evaluate the quality of 

recombinantly expressed constructs. A suite of two- and three-dimensional NMR 

experiments was recorded for the structure determination of FI-I-12-13. As no NMR 

development was undertaken in this project, a brief overview of NMR theory will 

exclusively deal with spectra processing and interpretation, followed by an outline of 

structure calculation methods used in this study. Comprehensive experimental setup 

guidance and pulse sequence documentation are may be accessed online at (http://nmr -

linux.chem.ed.ac .uk/highfield/highfield.html). 

2.3.1 Sample preparation 

Overexpressed constructs were purified as described in CHAPTER 3. Purified samples were 

concentrated in spin concentrators and buffer exchanged into 20 mM potassium phosphate 

buffer pH 6.6 or pH 7.4. Concentrations for 1-D experiments ranged from 50 to 125 .M. For 
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2- and 3-dimensional experiments, sample concentrations were 100 to 620 zM. In case of 

low expression or purification yields, samples were concentrated to 300 Al and transferred 

into Shigemi tubes. D 20 and NaN3  were added to all NMR samples to yield 5 to 10 % (v/v) 

and about 0.01 %, respectively. 

2.3.2 Data collection 

All spectra were recorded on Bruker AVANCETM 14.1 Tesla (600 MIHz) spectrometer or a 

Bruker AVANCETM  18.8 Tesla (800 MHz) spectrometers fitted with 5-mm triple-resonance 

probe/cryoprobes. All 2- and 3-dimensional spectra were recorded at 37 °C. All spectra were 

acquired by the author with the assistance of Dr Dusan UhrIn, Mr Juraj Bella and Dr Andrew 

Herbert (University of Edinburgh). Spectra recorded for the structure determination of FH-

12-13 are listed in Table 2.6. 

Experiment 
Experiment 

type 

labelling 

required 
Dim 1 Dim 2 Dim 3 

' 5N-HSQC (118) through-bond ' 5N 'H 75N n/a 

' 3C-HSQC (119) through-bond 13C 'H 13 C n/a 

CBCA(CO)NH (120) through-bond 15N, 13c 'H 13 C&D 

CBCANH (121) through-bond 15N, 13c 'H 13C ' 5N 

HBHA(CO)NH (122) through-bond 15N, 13c 'H 'H 15N 

HBHANH (123) through-bond ' 5N, '3c 1 H 'H ' 5N 

HNCO (124) through-bond 15N, 13c 'H ' 3C0 ' 5N 

HN(CA)CO (125) through-bond ' 5N, '3c 'H ' 3C0 ' 5N 

H(C)(CO)NHTOCSY through-bond 
(126)  15N, 13C 'H 1 Hsidechain  15N 

(H)C(CO)N}[TOCSY through-bond 
(126)  15N, 13c 'H 13C S dCCII 15N 

15N-Tocsy(127) through-bond 15N,13C 'H 'H 15N 

HCCH-TOCSY (128) through-bond ' 5N, 13c 'H 'H ' 3C 

(HB)CB(CGCD)HD through-bond 
(129)  15N, 13c 'H '' 

'-arom n/a 

(HB)CB(CGCDCE)HE through-bond 
(129)  15N, 13c 'H 13C arom n/a 

Aromatic '3CHSQC 
(119) 

through-bond 15N, 13c 'H Carom 
 n/a 
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' 5N-HSQC-NOESY (127) through space 15N 'H 'H ' 5N 

' 3C-HSQC-NOESY (130) through space 15N, 13c 'H 'H 

Table 2.6 NMR experiments used in this study. 

2.3.3 NMR software 

The Bruker software suit Topspinrm was used for data acquisition and initial processing. 

Apart from the 13C-HSQC-NOESY, all the NMR spectra were finally processed using 

AZARA (W. Boucher, Department of Biochemistry, University of Cambridge,, UK). Data 

visualisation and resonance assignment were carried out in the NMR data analysis software - 

package, CCPNIMR Analysis (131). 

2.3.4 Data processing 

Fourier transformation and several window functions for maximised resolution were applied 

to collected raw data spectra resulting in frequency spectra. Spectra processing with process 

command in AZARA require a parameter file (ser.ref) and a script input file (scr). 

2.3.5 General resonance assignment strategy 

An assignment of all the NMR resonances in a protein generally requires a suite of three-

dimensional (3D) experiments recorded on 1 3C, 1 5N-labelled sample. The reference 

spectrum for most 3D experiments is the 2D 15N-HSQC, in which every cross-peak 

corresponds to an amide (i.e. (CO)-NIH-) (Figure 2.1) and thereby correlates an amide 

nitrogen with its attached proton. The various 3D experiments allow these correlations to be 

extended through-bonds to include other atoms. In this way, nuclei, as identified by their 

resonance frequencies, may be assigned to clusters corresponding to covalently linked 

groups of atoms. The redundancy of information in four pairs of 3D experiments allows 

overlapping clusters to be placed in sequential order and then matched to specific stretches 

of amino acid residues within the polypeptide sequence Figure 2.2). 
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The 3D ' 5N-TOCSY, 3-D H(CC)(CO)NH-TOCSY and 3-D (H)CC(CO)NH-TOCSY are 

used to extend assignments from the backbone amides into the side-chain spin systems. 

Together with the HCCH-TOCSY experiment, which yields cross-peaks for every aliphatic 

(attached to 13C) side-chain 1 H, these experiments should in theory enable the assignment of 

all of the non-aromatic side-chain atoms. Aromatic atoms can be identified by a set of 2D 

experiments that correlate aromatic HD and HE shifts with CB shifts of the same side-chain. 

• 	. 
• 	. • 	

•• 	• 
:.• • 	. • 0. 0. 
••. 	. • 

LL 

• 	• 	• 
• 

• • 
Fl ( 1 H ppm) 

Figure 2.1 15N-HSQC spectrum. Each cross-peak (blue dot) represents an amide proton. Its 

correlated proton and nitrogen shifts (frequencies) can be extrapolated from the two axes, 

where Fl is the first dimension (the amide proton dimension) and F2 is the second, indirectly 

detected dimension (the nitrogen dimension). 

These assignment are subsequently transferred to the 13C- and ' 5N-edited NOESY 

spectra to facilitate assignment of NOESY cross-peaks that arise from NOE transfers 

between non-covalently linked protons which are close in space. 
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R 

I 
R 

I 

H HaOJ¼HH0 

residue residue 

Figure 2.2 Nomenclature of sequential amino acids in a polypeptide chain The residue i is 

preceded by the residue i-i. a- and n-atoms are indicated. 

2.3.6 Assignment of backbone resonances 

For ' 3C,' 5N-labelled proteins, backbone assignment of FH-12-13 relied on the matching of 

cross-peaksin pairs of complementary experiment. In this way, signals (in the 31(1  dimension) 

from the (i) and the (i-I) residue, which are transferred to the (i)-amide proton, were 

correlated with matching signals of the (i-I) residue, which are also transferred to the (i)-

amide proton; identification of matching shifts in the 3rd  dimension of the experiment pairs 

CBCA(CO)NH - CBCANH, HBHA(CO)NFI - HBI-IANH and I-IN(CA)CO - HNCO allowed 

sequential assignment of the two amino acid residues involved and the atomic assignment of 

the (Ca,  C) resonances, the (Ha,  H) resonances and the CO resonances, respectively. 
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Figure 2.3 Magnetisation transfer and 3-D spectra representation of CBCA(CO)NH and 

CBCANH experiments. Magnetisation transfer (top-panels) and the multi-dimensional 

spectrum representations (bottom panels) of(A) the 15N-HSQC, (B) the CBCA(CO)H and (C) 

the CBCANI-I experiments. Atoms labelled during the evolution periods of the pulse programs 

and whose dimensions are detected in the spectra are colour coded for clarity. Arrows indicate 

the magnetisation transfer steps of the experiment. Only one strip is shown for the 3-13 

CBCA(CO)NH and CBCANH along with the corresponding amide cross-peak in the 2-13 ' 5 N-

HSQC. 

The first two dimension of each of these experiments were the amide proton (HN) and amide 

nitrogen (N H) frequencies - hence the plane described by these two axes depicts the 

reference 15N-l-!SQC spectrum. Figure 2.3 7  describes magnetisation transfer of the 

CBCA(CO)N1-1 and CBCANH experiments and illustrates representatively dimension 

organisation in 3-D spectra used for protein backbone assignment. Figure 2.4 shows matching 

connectivity between CBCA(CO)NH and CBCANH planes of the construct FH-12-13. 

Figure and legend are reproduced from PhD Thesis "The structure of an active N-terminal fragment 
of human complement factor H" by Hocking, HG 
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Figure 2.4 Triple resonance NMR CBCA(CO)INH (purple) and CBCANH (green) spectra of 

Fl-I-12-13. Spectra allow to trace sequential backbone-connectivities. Sequence number and 

amino acids identifier are show in red print. 

2.3.7 Assignment of side-chain resonances 

TOCSY (Total Correlation Spectroscopy) experiments were employed for the assignment of 

'H and 13C side-chain resonances. The ' 5N-TOCSY-HSQC (Figure 2.58)  correlates aliphatic 

side-chain proton shifts from the (i) residue with root resonances and N" shifts) of the 

same residue. I-l(CC)(CO)NH-TOCSY and (H)CC(CO)Nl-I-TOCSY experiments correlate 

aliphatic proton shifts and aliphatic carbon shifts of the (i-I) residue, respectively, with the 

root resonances of following amino acid (i). These side-chain assignments were transferred 

to the 13C-HSQC spectrum which then served as a reference point for the assignment of the 

HCCH-TOCSY spectrum. Similarly to the ' 5N-TOCSY-l-ISQC, the HCCH-TOCSY 

8 
Figure and legend are reproduced from PhD Thesis "The structure of an active N-terminal fragment 

of human complement factor H" by Hocking, HG. 
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spectrum correlates (Figure 2.5) all proton shifts from the (i) residue with 13C-HSQC root 

resonances (H and CH  shifts) of the same residue. 

Um 

H I3CH 

I 7-13C 
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IHC 

13CH-HSQC 
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Figure 2.5 Aliphatic proton assignment using 15N-TOCSY-l-ISQC and the HCCI-I-TOCSY. 

Magnetisation pathways (top panels) and multi-dimensional spectrum representations (bottom 

panels) for (A) the ' 5N-l-ISQC, (B) the N-TOCSY-HSQC, (C) the ' 3CH-HSQC and (D) the 

HCCH-TOCSY. Atoms labelled during the evolution periods of the pulse programs and whose 

dimensions are detected in the spectra are colour coded for clarity. Arrows indicate the 

magnetisation transfer steps of the experiment. Only one strip is shown for the 3-13 15N- 
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TOCSYHSQC and the 3-D HCCH-TOCSY, along with their corresponding amide cross-peak in 

the 2-D 15N-HSQC, and 13CH cross-peak in the 2-D 13CH-HSQC. 

2.3.8 Assignment of aromatic resonances 

Two 2-D experiments specialised for detecting aromatic proton shift, (HB)CB(CGCD)HD 

and (HB)CB(CGCDCE)HE, were employed for the shift assignment from hisitidine, 

phenylalanine, tyrosine and tryptophan residues. These experiments correlate CO shifts of 

aromatic amino acids with 116  or 11C  ring protons. In case of assigned CO shifts and not 

significantly overlapped 2-D aromatic spectra, the H6  or He  ring protons could be correlated 

to the Co  shift in the 13C-HSQC spectrum. 

2.3.9 Atom assignment - summery 

The above discussed assignment strategies yielded a near-complete atomic assignment (98.3 

% of all atoms) of FH- 12-13. Chemical shift assignment of more than 90% of all backbone 

amide and non-labile proton shifts (132) is a requirement for correct automated NOE cross-

peak assignment by the program CYANA employed in this study 9 . 

2.3.10 Cis-trans- Proline assignment 

The construct FH-12-13 contains five proline residues. Trans- or cis-configuration of the 

proline peptide bonds was determined by calculating the difference between the CP and C 

shifts (iCDCT)  of each proline residue. A statistical analyses of ' 3C chemical shifts from 

high resolution NMR structures (133) showed ACDC7  in trans prolines to be 4.51 ± 1.17 

ppm and in cis prolines to be 9.64 ± 1.27 ppm. Table 2.7 lists ACDCY  values for all proline 

residues in FH-12-13. 

Chemical shift tables and all distance restraints and NMR data will be deposited in the 
BioMagResBank (http://www.bmrb.wisc.edu/)  
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Pro-sequence 

number 
ACPC1' conformation 

695 32.32 27.13 5.18 trans 

707 30.57 26.41 4.15 trans 

708 34.73 24.817 9.91 cis 

742 32.47 26.25 6.22 trans 

799 34.83 25.95 8.89 cis 

Table 2.7 List of AC-C values and conformation assignment for all proline residues in FH-12-

13. 

Prolines 708 and 799 have AC-C values of 9.91 and 8.89, respectively, and were 

configured cis. The remaining prolines were configured trans. The configuration of proline 

peptide bonds by chemical shift differences was cross-validated by analysing H  to Pro-H8  

and H  to  ProHa  NOE-patterns in the ' 3C-edited NOESY spectrum. For a trans-proline 

peptide bond strong H  to Pro-H6  and weak H  to  ProHa  NOE cross-peaks are expected; for 

a cis-proline peptide bond weak H  to Pro-H 8  and strong 11a  to ProHa  NOE cross-peaks are 

expected. The NOE patterns confirmed the configuration of proline-peptide bonds. 

2.3.11 Assignment of NOE cross-peaks 

Assignments from the two reference spectra ' 5N-HSQC and ' 3C-HSQC were transferred to 

both 3-D NOESY spectra (' 5N-HSQC-NOESY and 13C-HSQC-NOESY) by overlaying 

planes of the 3-D NOESY spectra onto the relevant reference spectra. Intra-residue NOE 

cross-peaks were identified by overlaying proton-proton planes of the 15N-HSQC-NOESY 

and ' 3C-HSQC-NOESY spectra on top of the ' 5N-TOCSY and HCCH-TOCSY spectra, 

respectively. 

A NOE cross-peak between two protons is usually corroborated by its symmetry-

related cross-peak as described in Figure 2.6. 
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•2'HN ) • 
Fl ( 1 H ppm) 

Figure 2.6 Symmetry related NOE cross-peaks. Proton A experiences "through space" dipolar 

coupling of proton B resulting in a NOE cross-peak at the proton frequency of B. Due to the 

mutual nature of the NOE effect proton B experiences a corresponding effect resulting in a 

NOE cross-peak at the proton frequency of A. The two symmetry related cross-peaks are 

indicated by an arrow. 

Second-dimension proton shifts ( 1 H in the F2 dimension) were only assigned to specific 

nuclei where the two corresponding symmetry-related NOE cross-peaks could easily be 

identified. In cases of peak overlap or degenerate symmetry-related cross-peaks, the peaks 

were left unassigned and treated as ambiguous by the automated assignment and structure 

calculation software. Unambiguous assignment of proton shifts in the F2 dimension was 

mainly focused on amide-to-amide, amide-to-side-chain and aromatic-to-any proton cross-

peaks. 

Peak lists for both NOESY spectra alongside with a chemical shift list table of all 

assigned atoms in FH-12-13 were exported from the CCPNMR ANALYSIS project in the 

XEASY format. NOE intensities were calculated using the "box sum" routine in CCPNMR 

E 
0. 
Q.  

I 

(N 
U- 
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ANALYSIS software package. A process of indirect magnetisation transfer - known as spin 

diffusion - between two protons far in space via a dense network of protons can result in not 

completely accurate NOE intensities and consequently partly erroneous distance restrains. 

To minimise these effects and restrict magnetisation transfer to close spin pairs, both 

NOESY pulse sequences were implemented with minimal mixing times. 

2.3.12 Structure calculation in CYANA 

The CYANA program for NMR structure calculation is based on its predecessor DYANA. 

DYANA is an acronym for DYnarnics Algorithm for Nmr Application and calculates 

structures from distance restraints, as well as torsion angle constraints, collected by NMR 

(134). For initial structure calculation and semi-automated NOE assignment the structure-

calculation software CYANA (135) (version 2.1) was used. The program employs multiple 

parallel sampling of conformational space to drive the minimisation of a potential energy 

target function in combination with fulfilling the experimentally derived distance constraints. 

In other words empirical restraints (i.e. bond lengths, bond angles and prochiralities) are kept 

at their optimal value while the employed torsion angle dynamics minimise a variable 

potential energy target function (in torsion angle space) to satisfy the experimental distance 

restraints. The energy minimisation function uses simulated annealing to prevent the process 

from getting trapped in local energy minima. By applying repeated in silico heating steps 

followed by slow, progressing cooling steps local energy minima can be overcome to reach 

the global energy minimum. The CYANA 2.1 software (135), which is partly based on 

DYANA, embeds the Combined automated NOE assignment and structure determination 

(CANDID) module (132) enabling NMR structure determination of proteins by automated 

assignment of the NOESY spectra. An iterative approach runs through multiple cycles of 

NOE cross-peak assignment (by the CANDID module) followed by DYANA-driven 

structure calculation (torsion angle dynamics). In the current study, seven such cycles 
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assigned a user-supplied, partly manually assigned NOE cross-peak list, filtered all 

submitted ambiguous NOE cross-peaks for cross-peaks meeting certain quality features (i.e. 

closeness of chemical shift match or presence of symmetry-related cross peaks) and 

calculated a three-dimensional protein structure. Figure 2.7 schematically illustrates the 

automated NOE cross-peak assignment and 3D structure calculation cycling by CYANA. 

*1 
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Experimental input data 

> amino acid sequnece 

> chemical shill list from sequence-specific 
resonance assignment 

> list of NOESY cross peak positions and volumes 
C 

Structure calculation 
using DYANA torsion 
angle dynamics 

generation of a protein 3-D 
structure that is added to the 
input for the following 
CANDID cycle 

Constraint combination (only 
in cycles I and 2) 

combination of small groups of 
a priori unrelated long-range 
distance constraints into new 
virtual distance constraints 
carrying the assignments from 
two or several of the original 
constraints 

Initial assignment list 

For each NOESY cross peak, 
one or multiple assignments 
are determined based on 
chemical shift fitting within 
user-defined tolerance ranges 
(in this study: 0.03 ppm for 
direct proton, 0.04 ppm for 
indirct proton and 0.45 ppm 
for 15-N/13-C) 

7 
cycles  

1:3~1 
Quality filter for each 
individual NOESY cross peak 
assignment 

Quality features: 

> generalised peak volume 
contribution 

> closeness of chemical shift fit 

> presence of symmetry-related 
cross peaks 

> compatibility with covalent 
polypeptide structure 

> network anchoring 

> compatibility with intermediate 
protein 3-D structure (only from 
cycle 2 onwards) 

Calibration of NOE upper 

LJ 
Elimination of spurious NOESY cross peaks 

only cross peaks meeting the following 
conditions are retained: 

> at least one assignment has a network-
anchoring score above a threshold 

> at least one assignment is compatible with 
intermediate 3-D protein structure generated in 
the preceeding cycle (only from cycle 2 
onwards) 

Figure 2.7 NOE cross-peak assignment and 3D structure calculation cycling by CYANA; 

adapted from (132) 
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After completion of the first cycle every subsequent CANDID cycle takes into account the 

three-dimensional protein structure from the previous cycle, in addition to the complete input 

used for the first cycle. Network-anchoring and constraint-combination are built in routines 

to prevent biased structures triggered by artefacts in the input data. 

NOE cross peaks are embedded in a hugely redundant network of NOE 

connectiyities. Network anchoring rates the initial, chemical shift-based assignment on the 

basis of how well the assigned NOE-connection is embedded in a (consistent) set of 

neighbouring NOE cross-peak assignments. 

Constraint-combination combines two or several NOE (upper) distance restraints to 

reduce the influence of single incorrect distance restraints originating from NOE artefacts. 

Since after the completion of the first cycle the NOESY cross-peak evaluation will (in 

addition to the initial inputs) also be driven by compatibility with the intermediate 3-D 

structure, it is critical that the correct polypeptide fold is found during the first cycle. This 

was accounted for by verifying that the backbone RMSD for each individual CCP domain 

(of the structures generated in cycle 1) was equal or lower to 3 A (132). 

Initially two sets of structure calculation were performed in parallel; one where the 

conserved disulfide bonds in each module of FH-12-13 were not defined, and the second 

with the disulfide bonds (disulfide connectivities: Cys 691 -Cys733 , Cys719-Cys744, Cys753-Cys792  

and Cys781 -Cys803) were defined. The backbone RMSDs between the two sets were 

calculated for the single domains (CCP12, CCP13) and were found to be 0.744 A and 0.462 

A, respectively. Therefore, this exercise allowed confirmation of the defined disulfide bonds. 

2.3.13 Structure calculation in CNS 

Structure refinement in a thin layer of water solvent has been shown to significantly improve 

structural quality criteria such as Ramachandran-plot statistics, packing quality, the number 

of unsatisfied H-bond donors and acceptors and backbone conformation (136). The 
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refinement of protein structures in explicit solvent is not an option in CYANA, but it has 

been implemented in the Crystallography and NMR systems (CNS) structure calculation 

software (137). Nonetheless, it was decided to avoid employing CNS at the initial stage of 

FH-12-13 structure calculations because it does not have an explicit automated-NOE cross-

peak assignment capability; moreover CNS-based structure calculations require more CPU 

time. Therefore NOE assignments were derived from the final CYANA structure 

calculations then imported (through FormatConverter) into ANALYSIS. Within ANALYSIS 

NOE intensities were converted into distance bounds (Table 2.8). Finally, the restraints list 

was exported into CNS format (again, using FormatConverter). 

relative NOE intensities upper distance restraint 

>3.5 2.5A 

1.3-3.5 2.8A 

0.3-1.3 4.OA 

0.1-0.3 5.OA 

uptoO.1 6.OA 

Table 2.8 Relative NOE intensity rating and translation into distance restraints. Standard "Bin" 

NOE cross-peak volume integration into relative intensities was performed in ANALYSIS. A 

relative intensity of 1.0 reflects the average over all observed NOE cross-peak intensities. Upper 

distance restraints for each interval of relative intensities are indicated. For all intervals, the 

minimum distance was set to the sum of the Van-der-Waal radii of two protons, 1.8 A. 

Structure calculation by CNS (version 1.2 was used in this study) employs restrained 

molecular dynamics in Cartesian space (as opposed to the torsion angle space utilised in 

CYANA) and is driven by the minimisation of a hybrid energy target function of empirical 

and experimental restraints (138, 139). The function describing the overall energy target 

(Eoveraii) thus combines two energy terms, one derived from empirical restraints expressed by 
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a force field (EFF) and one derived from experimental, NOE-derived, distance restraints 

(ENOE): 

Eoveraii = EFF + ENOE 

The energy term of empirical restraints (E n) is described by: bond lengths (E b011d), bond 

angles (Eangies), dihedral angles (Ejroper), chiralities (Eimproper) and a van-der-Waals repulsive 

term (Edw) that prevents overly close contacts between atoms: 

EFF = Eb011d + Eangies + Eimproper + Edw 

The CNS protocol used in the current study (see structure calculation process involves 

different stages, along which the weighting for NOE distance restraints progressively 

increases: generation of random starting structure, local geometry optimisation of starting 

structure, prochiral swapping (randomly swapping of methyl, methylene and side-chain 

amide protons to prevent the energy minimisation from getting trapped in local energy 

minima) and refinement. 

In each round of CNS structure calculations, 100 structures for FH-12-13 were calculated 

and ranked according to overall energy and NOE energy and plotted versus Eoveraii and ENOE. 

Converged structures were scanned for violated NOE distance restrains (NOE violations 

>0.5 A). NOE cross-peaks responsible for such NOE violations were inspected and 

depending on the identification of peak artefacts (i.e. extensive peak overlap, embedment in 

noise signals, closeness to diagonal) the upper distance value derived from these NOE-cross 

peaks were adjusted. 

Three iterative CNS calculation rounds with minimum adjustments yielded the 3-D structure 

of FH-12-13, which was subjected to a final CNS refinement step in water solvent. Water 

refinement was carried out using the RECOORD protocols 

(http://www.ebi.ac.uklmsd!recoord); A 7 A water shell was created around the protein and a 
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molecular dynamics force field, including electrostatic and Lennard-Jones non-bonded 

potentials, was employed to mimic interaction with the solvent. 

2.3.14 Molecule visualisation programs 

Representations of protein structures were made in the molecular visualisation programs 

MOLMOL 2k.2 (140) and PyMol (141). Both programs were also used for the calculation of 

backbone root mean square deviation (RMSD) values. Electrostatic surface representations 

were calculated and displayed using GRASP (142). 

2.4 Analytical ultracentrifugation 

All studies were performed (20 ± 0.5 °C) in a Beckman XL-A analytical ultracentrifuge. For 

sedimentation velocity analysis cells were loaded with 400 jiJ of sample or appropriate 

buffer solution, and the rotor accelerated to 45,000 or 50,000 rpm. Radial scans at 273 nm 

were taken every two minutes and data analysed using the program Sedfit (143) to compute 

c(s) distributions. Resolution was set at 150, with an F (confidence) factor at 0.68. Over a 

series of fits an average value for the frictional ratios was determined: this was used as 

default for all fitting, to minimize artifactual variations. The baseline, the meniscus and cell 

base radial positions were floated in the fitting. The final profile was analyzed using 

software pro Fit (Quantum Soft, ZUrich). A value of the partial specific volune (Vbar) (in 

ml/g) was computed via the program SEDNTERP (144), which was also employed to 

compute the density and viscosity properties of the buffer solution. 



CHAPTER 3 

PROTEIN PRODUCTION AND CHARACTERISATION 

me 



PROTEIN PRODUCTION AND CHARACTERISATION 

3.1 Introduction and overview of construct 

A variety of different FH constructs covering the different putative functional sites of FH (as. 

described in the Introduction) have been prepared for this study. Figure 3.1 illustrates these 

constructs in terms of their CCP module-composition and their position within the Fl -I 

protein. 

P 

I41I 
13 

N 

Figure 3.1 Summary of FH segments employed in this study' °. A schematic representation of the 

FH molecule is shown on the far left with CCP modules numbered 1-20; to its right are cartoons 

10 FH- 1-4 was cloned by Dr. David Kavanagh (148). FH- 19-20 was prepared (cloned, expressed, 
purified) by Dr Andrew Herbert (51). The DNA preparation prior to transformation into P. pastoris of 
constructs FH-7-8 and FH-6-8 was carried out by Claire Egan. The DNA for FH-7 H402 , FH-13 and 
FH-12-14 was cloned by Claire Egan. Batches of FH-13 protein were used which had been expressed 
and purified by Claire Egan or by the author of this thesis. All those constructs that included CCP 
module 7 were prepared in both, with and without the at-risk polymorphism for AMD at position 402 
(residues numbered according to their its position within intact FH prior to cleavage of the signal 

go 
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of the constructs prepared for the current study. Modules previously implicated in GAG 

binding are shaded in black. 

Table 3.1 summarises N-terminal and C-terminal non-native sequences of all constructs and 

specifies the range of native FH residues within each construct by sequence number. 

Factor H 
residues 

19-263 

322-508 

324-443 

386-445 

386-508 

447-565 

446-565 

446-566 

447-927 

568-745 

568-927 

629-685 

629-865 

690-804 

690-865 

752-804 

752-927 

Non-native sequence 
(C-terminal) 

HHHHHH 

sequence - UniProtKB/Swiss-Prot entry P08603). The DNA preparation prior to transformation into 
P. pastoris of constructs FH-7-8 and FH-6-8 was carried out by Claire Egan. FH-7 H402, FH-13 and 
FH-12-14 was cloned by Claire Egan. Batches of FH-13 were used which had been expressed and 
purified by Claire Egan or by the author of this thesis. Two and three N-glycosylation sites present in 
constructs FH- 13-14 and FH- 12-14 (respectively) were knocked out by substituting asparagine 
residues for glutamines in N-glycocylation sites. FH- 19-20 was prepared (cloned, expressed, purified) 
by Dr Andrew Herbert (51). 
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FH-19-20 	 AG 	 1107-123 1 

Table 3.1 Sequences of recombinant proteins used in this study. Numbering is on the basis of the 

encoded protein sequence including the 18 amino acid residues of the natural signal sequence. 

Overview ofprotein production 

The following sections describe cloning, expression, purification and characterisation of all 

FH segments prepared for this study. Unless stated otherwise, the coding sequences for all 

constructs were amplified from human FH cDNA that had been cloned into pUB/Bsd TOPO 

or pPIC.ZaB. The appropriate DNA sequences were cloned into TOPO vector (for details see 

Figure 3.2). Sub-cloning into pPICZaB vector deviated from standard procedures (see 

CI-IAPTER3, Construct FH-6-7). 

- 	 ! 	 i .........ai 	 nd cloninQ 

PCR amplification of coding sequence 

blunt end cloning into TOPO 5-vector (pUB/Bed 
TOPOeor pCR54Blunt-TOPO) 

transformation into One Shote  TOP10 chemically 
competent E. coil cells and culturing on selective 

medium (200 pg/mI LB ampicillin plates) 	I Subcloning of coding sequence 

liquid culturing of transformed TOP10 E. coil cells double restriction enzyme digest (using enzymes 

for plasmid amplification and extraction Pstl and Xbal) of pPICZaB vector and TOPO 

i vector containing coding sequence 

DNA purification and concentration (QlAquick Ge1 
Extraction Kit, Phenol chloroform extractrion and/ot j  

- Ethanol precipitation 

Validation of coding sequence in pPICZaB Ligation of DNA coding sequence into cut 
vector - - 	 pPICZOB vector 

transformation of ligated vector into One Shot® 
TOPlochemicaliycompetentE. co/icells and 

culturing on selective medium (25 pg/mI Zeocin - 

plates) 	 - 

PCR screening of colonies for insert of coding - 

DNA ----------- - - 	 - 

liquid culturing of transformed TOP10 E. co/i cells: 
for larger scale plasmid amplification and 

extraction - 

confirmation of DNA coding sequence insert in 
pPICZQB vector by sequencing 

Transformation into P/dna pas tons 

linearisation of plasmid by Sad restriction enzyme 
digest to enhance homolog recombination of 

expression cassette in Pichia pastons 

Transformation of Pichia pastons KM71 H cells by 
electroporation and clone selecting by plating on 

100-300 pg/mI Zeocin YPDS plates 

mini scale expression study of colonies (preferable: 
of colonies growing on high Zeocin 

concentrations) 

Figure 3.2 Flowchart showing steps involved in the generation of genetically modified P. pastoris 

clones for recombinant protein expression. 	 - 
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Successfully transformed P. pastoris (strain KM71H) clones were tested for protein 

expression in mini-scale trials. The best clones were selected for expression in shaker flasks 

or fermentor. Protein was harvested from supernatant either by concentration or batch 

absorption. Protein was purified using one or two of the following types of colunm 

chromatography: size-exclusion, ion exchange, Ni 2taffinity and heparin-affinity. All of the 

standard protocols are described in CHAPTER 2 while specific parameters are reported on a 

case by case basis below. A summary of the protein production undertaken for the current 

study is presented in Table 3.2. 
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Protein X Starting Mini-scale Shaker flask! Endo Pre- Purification step Purification step Sequence Fold Notes 

material Fermentor Hf? purificati 1 2 validation validation 

on 

FH- 1-4 Overexpress Fermentor No None Nickel affinity3  Size exclusion 4  Accurate mass Cofactor assay 
ing clone 1,2  (Figure 3.4) determination by 

MS5  (Figure 3.5)  
FH-6-7 402  FH DNA6  Figure 3.8  No  
FH-6-7 11402  FH-6-8H402 Figure 3.8 No 

DNAin 
pPICzaB  

FH-6-8 402  Site- Figure 3.9 Expressed by No ' 5N HSQC Taken 
directed A. P. Herbert recorded by forward by 
mutagenesis  (APH)  APH APH 

FH-6-8 H402  DNA sub- Figure 3.9 Shaker flask No Heparin Cation exchange None MS-tryptic fingerpr. 15N HSQC 
cloned in (Figure 3.10) sepharose 7  (CE) (Poros) (Figure 3.11) recorded by 
pPICzczB  (Figure 3.10)  APH  

FH-7 402  FH-7 402  Figure 3.12 Shaker flask No SP- CE (Mono-S) None Structure 
DNA in (Figure 3.12) sepharose 7  (Figure 3.12) determined by 
pPICzaB  APH  

FH-7H402  Overexpress Expressed by No Structure 
ing clone APH determined by 

APH  
FH-7-8 402  FH-7-8 402  Figure 3.13 Shaker flask No Heparin CE (Poros) MS-tryptic fingerpr. 15N HSQC 

DNA in (Figure 3.13) Sepharose (Figure 3.14) (Figure 3.15) recorded by B. 
pPICzaB  Blaum  

FH-7-8H402 FH-7-8H402 Figure 3.13 Expressed by No 
DNA in APH 
pPICzaB  

FH-8-9 FH DNA Figure 3.16 Shaker flask + Yes None Anion exchange Size exclusion MS-tryptic fingerpr. 15N HSQC K446 version 
15N (AE) (CaptoQ) (Figure 3.19) (Figure 3.20) (Figure 3.20) also made - 
fermentor)  (Figure 3.18)  

FH-8-9 FH DNA Figure 3.21 Yes None AE (CaptoQ) Size exclusion MS-tryptic fingerpr. Different 
(Figure 3.22) (Figure 3.22) (Figure 3.23) cloning 

procedure - 
FH-8-15 Overexpress Shaker flask Yes None AE (MonoQ) Size exclusion MS-tryptic fingerpr. ID IH-NMR 

-ing clone  (Figure 3.24) (Figure 3.25) (Figure 3.26) (Figure 3.26)  

1:2i FH DNA Figure 3.27 Shaker flask Yes None AE (MonoQ) Size exclusion MS-tryptier!. ID IH-NMR Some sugar 
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(Figure 3.28) (Figure 3.29) (Figure 3.30) (Figure 3.30) contamination 
FH- 10-15 FH DNA Figure 3.31 Shaker flask Yes None (Figure 3.32) AE (Mono Q) MS-tryptic fingerpr. ID 'H-NMR Tendency to 

(Figure 3.31) (Figure 3.33) (Figure 3.34) (Figure 3.34) oligomerise 
+ fermentor 

FH-1 1 FH DNA Figure 3.35 No Forms 
dimers? 

FH-1 1-14 FH DNA Figure 3.36 Shaker flask Yes None Size exclusion AE (Mono Q) MS-tryptic fingerpr. ID 'H-NMR Tendency to 
_______ (Figure 3.36)  (Figure 3.37) (Figure 3.38) (Figure 3.39) (Figure 3.39) oligomerise 

FH-12 FH DNA Figure 3. 40 Yes 
FH-12-13 FH DNA Figure 3.41 Shaker flask Yes Heparin Heparin-affinity MS-tryptic fingerpr. Structure 

(Figure 3.41) Sepharose (Poros) (Figure 3.43); determined 
+ ' 5N and Accurate MS 
' 5N,' 3C ferm. 

FH-13-14 CHAPTER Figure 3.45 Shaker flask Yes Heparin Size exclusion MS-tryptic fingerpr. Strong 
3 Sepharose (Figure 3.46) (Figure 3.47) tendency to 

oligomerise 
FH-13-14 CHAPTER Figure 3.44 

___________________ _______________ 

 As above Q802,Q822 3 
FH-13 Overexpress Shaker flask Yes SP- CE (Mono S) Structure 

ing clone (Figure 3.48) Sepharose (Figure 3.48) determined by 
C. Fenton  

FH-13-15 FH DNA Figure 3.49 Shaker flask Yes Heparin (HiTrap) Size exclusion MS-tryptic fingerpr. ID 'H-NMR _____________  (Figure 3.50) (Figure 3.50) (Figure 3.51) (Figure 3.51) 
FH-14 FH DNA Figure 3.52 

____________ 
Very low or 
no expression 

Table 3.2 Overview of recombinantly expressed proteins 

'All of the recombinant proteins in this study were expressed in P. pastoris strain KM7 111 
2N-terminal c-myc tag; C-terminal hexa-His tag 
3XK 16/20 cohmm loaded with IMAC Sepharose charged with Ni 2  (Amersham Biosciences) 
4Hiload Superdex 75 prep grade size-exclusion colunm (16 mm x 600 mm) Amersharn Biosciences 
5By liquid chromatography-( 1 2-Tesla) Fourier-transform ion cyclotron resonance mass spectrometry 
6"FH DNA" = FH-coding sequence amplified from cDNA and sub-cloned into either pUB/Bsd TOPO vector or pPICzczB 
7"Fast Flow Sepharose" Amersham Biosciences 
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3.1.1 Construct FH-1-4 

A P. pasloris KM7I I-I clone over-expressing FH-1-4 was cloned by Dr David Kavanagh. 

The construct was designed with an N-terminal c-myc tag and a C-terminal hexa-His tag for 

ease of purification. The sequence was partially validated by peptide mass fingerprinting, as 

described in (145). The N-terminal c-myc tag allowed Western-blot screening for this 

construct using commercially available polyclonal anti-c-myc tag antibodies (Cell Signalling 

Technology) 

Protein from four-litre fermentation was initially purified on a Ni 2  -affinity column. 

The elution profile showed a dominant protein peak at roughly one third of the imidazole 

gradient (corresponding to —215 mM imidazole eluting from the column). Samples of 5 l.tl of 

the crude supernatant and of fractions corresponding to the elution peak were analysed by 

SDS-PAGE (Figure 3.3-A). 
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Figure 3.3 Gradient SDS-PAGE of FH-1-4 following fermentor-expression and purification. (A) 

Each lane was loaded with 5 tl of protein sample mixed with reducing loading buffer. Lane I: 

crude fermentor supernatant. Lanes 2-12: samples corresponding to the protein peak eluting at 

—215 mM imidazole. Lane 13: Protein ladder with molecular-weight (kDa) standards as 

indicated. Note that fractions corresponding to the middle of the peak are overloaded (B) 

Western blot performed with primary anti-c-myc tag antibodies. Lane I was overloaded with 

FH-1-4 corresponding to sample of lane 7 from gel in (A); lanes 2, 3 and 5 contain shaker-flask 

WC 



PROTEIN PRODUCTION AND CHARACTERISATION 

expressed FH-1-4 variants" - 162V, R53H and R78G - for comparison. (C) FH-14 

corresponding to sample of lane 7 from gel in (A): flow-through after application to ConA-lectin 

column (lane 1); untreated (lane 2); treated with 500 U of PNGase F (lane 4); treated with 500 U 

of Endo Hf  (70 kDa) (lane 5); treated with about 1000 U of Endo H (lane 6); molecular weight 

markers are shown in lane 3. 

The gel revealed three dominant bands between molecular weight standards of 25 and 37 

kDa. The higher molecular weight band is broad and diffuse, the one in the middle is sharp 

and corresponds to the expected molecular weight of FH-14 (30.0 kDa) and the third band 

is probably a degradation product. A sample from the Ni 2taffinity elution was analysed by 

Western blot (anti-c-myc tag detection) to confirm that the second band corresponds to FH-

1-4. Although the sample (lane 1- Figure 3.3-B) was too concentrated, it is still apparent that 

both the diffuse upper band and the "degradation band" correspond to proteins containing a 

c-myc tag, as does the band corresponding to the expected molecular weight for FH-14of 

—30 kDa. Detection by the antibody of the diffuse upper band could be explained, if it is a 

glycosylation product of the FH-1 -4 construct. N-linked and 0-linked high-mannose 

containing glycosylation is a well known post-translational modification observed in the P. 

pastoris expression system (146, 147). Although an N-linked glycosylation site is present in 

FH-1-4 (N217-G218 -S219), this was found not to be glycosylated in shaker-flask expressions of 

the same clone (148). It could not be ruled out, however, that glycosylation might occur 

under fermentation conditions. To investigate if the diffuse, upper band does indeed derive 

from glycosylation, the FH-l-4 sample was applied to a column packed with convallatoxin A 

lectin (149) that retards molecules containing high-mannose carbohydrate structures (Figure 

3.3-C). A small proportion was also mixed and incubated with different, commercially 

available endoglycosidase enzymes that trim N-linked glycans (Figure 3.3-C). Neither 

treatment, however, resulted in any depletion of the diffuse band; therefore, no conclusions 

regarding the nature of this band could be drawn. 

11 The FH- 1-4 variants were prepared by Isabel Pechtl. 
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The SDS-PAGE gel analysis of fractions following Ni 2 -affinity chromatography 

shows that the proportion of the -30 kDa protein begins to dominate towards the last third of 

the elution peak. This partial resolution was exploited by re-application of the relevant 

fractions onto the Ni 2  -affinity column followed by elution with 40 mM imidazole-

containing buffer over eight column volumes. This procedure resulted in an elution peak 

with a long tail. While the diffuse and degradation bands predominated in the early fractions 

of this peak, the desired species (-30 kDa) is clearly enriched in the later fractions (Figure 

3.4-A). The late-eluting fractions were pooled, concentrated and applied to gel-filtration 

chromatography (Figure 3.4-13). A small peak eluted at —48 ml just before the large main peak 

(at 56 ml). Fractions spanning the two peaks were analysed on gradient SDS-PAGE. 

Fractions corresponding to the earlier peak contain the diffuse and degradation bands 

whereas fractions collected under the main peak contain almost exclusively the target 

material. 

B C 
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- 	 peak small 

- 
eaily eluting 	

100 	
late elutirig 
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17 
37 

Figure 3.4 Purification of FH-1-4; (A) Gradient SDS-PAGE of fractions following elution of the 

FH-1-4-containing material from a nickel-affinity column using 40 mM imidazole. (B) Gel 

filtration of late-eluting fractions from the nickel-affinity elution profiled in (A). (C) Gradient 

SDS-PAGE of fractions corresponding to the two peaks in the chromatogram of(B). The small 

peak eluting before the main peak contains the diffuse upper band and degradation product 

while the larger peak corresponds mostly to the target material. 
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Fractions corresponding to the major peak in the gel-filtration chromatogram were pooled 

and submitted for N-terminal sequencing, mass spectrometry (Figure 3.5) and an assay of 

factor I co-factor activity (see Methods) (Figure 3.6). 

N-terminal sequencing reported the amino acids "EQKLIS" that may be compared 

to the expected N-terminal amino acid sequence "AGEQKLIS", where AG corresponds to 

the cloning artefact and "EQKLIS" is the initial sequence of the c-myc tag. Such a finding is 

consistent with several literature reports of N-terminal variations in P. pastoris-expressed 

proteins that are fused with the secretion signal sequence of the S. cerevisiae alpha—factor. 

These arise from aberrant processing of the signal sequence by dibasic endopeptidase Kex2, 

and dipeptidyl amino peptidase Ste13 (150-159). Another explanation for the missing AG 

could be trimming of N-terminal sequences by non-specific proteases that are present at low 

levels in culture media (160). Taking the N-terminal truncation of AG into account, the 

molecular weight of FH-1-4 is predicted to be 29663.2 Da. Liquid chromatography-mass 

spectrometry analysis (Figure 3.5) revealed one major species (A: 29663 Da) corresponding 

precisely to the predicted mass, and three minor species of slightly higher molecular weight 

(B: 29791.8 Da, C: 29826.2 Da and D: 29950 Da). The difference between peaks A and B is 

128.8 Da. Therefore peak B reflects a species that still retains the glycine of the cloning 

artefact dipeptide "AG" accounting for a theoretical mass of 128 Da. Differences between 

peaks C-A, and D-B are 163.2 Da and 158.2 Da, respectively. Species C and D most likely 

correspond to species A and B that bear one hexose sugarunit; expected molecular mass for 

such a modification is 162 Da. A possible explanation could be non-specific linkage of 

recombinantly expressed protein with sugars present in P. pastoris culture medium 

(Maillard-reaction). 
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Figure 3.5 Mass spectrometric analysis of FH-1-4; Major peak A corresponds exactly to the 

predicted mass of FH-1-4 of 29663 Da. 

The purified FH- 1-4 was submitted for an assay of cofactor activity with respect to cleavage 

of C3b by Factor I to investigate functional activity of the P. pasloris-expressed construct 

(Figure 3.6). 

234 
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C3ba—_' 150 100 

C3b, 3 	 75 
iC3b, 68 kDa- 

-Factorl50kDa— .- 5 
43 kDa- 

- 37 
Factor I. 38 kDa 	

25 
FH-1-4 	 20 

Figure 3.6 Cofactor activity assay of FH-1-4 for factor 1-mediated cleavage of C3b (see 

Methods). Fl-I-1-4 was loaded in lane 1 of a SDS-polyacrylamide gel. The positive control (Fl-I) 
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and the negative control (C3b and factor I only) were loaded in lanes 2 and 3, respectively. Lane 

4 shows molecular weight markers (kDa). 

Cofactor activity could be demonstrated for the FH-1-4 expressed in this study. This is 

evident from the presence of the 68 and 43 kDa cleavage products on the gel (Figure 3.6) This 

is consistent with literature reports (58),(59) that the cofactor activity of FH is present within 

its four N-terminal CCP modules. 

3.1.2 Constructs FH-6-7 402  and FH-6-7H402 

Due to difficulties experienced with the standard sub-cloning methodology modifications 

were instituted. The outline of the initial cloning steps are summarised in Figure 3.2. 

"Quick" ligation reactions (New England Biolabs Ltd., Hitchin, UK), without 

performing a gel purification after restriction-enzyme digestion; were carried out. Simple re-

ligation of the picaaB vector, without incorporation of the target construct, is a possibility. 

In order to minimise this, a large excess of cut FH-6-7 DNA was used for the ligation 

reaction. A PCR-based screen (shown for FH-6-7 H402  and FH-6-7 402  in Figure 3.7-A and 

Figure 3.7-13, respectively) was performed on the colonies, which were grown overnight. 

Forward and reverse primers, sandwiching the cloning site, were used for the PCR screening. 

The expected bop-length of relegated picaaB vector is 330 bp, whereas the expected bp-

length of the pPICZaB vector containing FH-6-7 is - 620 bp. Two out of nine, and five out 

of five, screened colonies showed a DNA band of the right size for FH-6-7 H402, and FH-6-

7Y402, respectively. 
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Figure 3.7 PCR screen of E. coil colonies transformed with the ligation product of the pPICZaB 

sub-cloning step; (A) control: the 330-bp band in lane I corresponds to "empty" pPICZaB 

vector; 100-hp ladder (lane 2); 800-hp band of positive control (lane 3); 620-bp bands of vector 

containing FH-6-7 402  (lanes 4 to 8); empty (lane 9); 1-kb ladder (lane 10); (B) the five bands of 

330-hp correspond to re-ligated vectors (lane 1, 3, 4, 7 and 8); the two bands of 620-hp 

correspond to vector containing FH-6-7 402  (lane 2 and 5); diffuse bands (lane 6); control: 330-

bp band corresponds to "empty" pPICZaB vector (lane 9); 100-bp ladder (lane 10); 800-hp 

band of positive control (lane 11). 

Colonies showing a DNA band at the expected size were selected for plasnild extraction. 
Confirmation of the successful ligation was achieved by sequencing. After transformation, a 
small-scale expression test was performed on those P. pastoris colonies that grew on YPDS 
plates containing Zeocin (300 tgIml) (Figure 3.8). 
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Figure 3.8 Mini-scale expression study of FH-6-7 (A) Gradient SDS-PAGE of mini-scale 

expression study of five P. pustoris clones expressing FH-6-7 y402 ; an arrow indicates the protein 
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bands at the expected mobility; molecular weight markers (kDa) as indicated. (B) Gradient 

SDS-PAGE as in (A, but for construct FH-6-7 402 . 

3.1.3 Constructs FH-6-8 402 and FH-6-8 11402  

The coding DNA for FH-6-8 1140 2 sub-cloned into P. pasloris expression pPICZaB vector was 

provided by Claire Egan. FH-6-8 402  was obtained by changing the 402-H coding sequence 

of the construct F11-6-8F1402 (in pPICZaB vector) to the 402-Y coding sequence using the 

QuickChangeTM mutagenesis kit (Stratagene'). Successful amplification of FH-6-8 402  in the 

QuickChangeTM-PCR reaction was monitored by agarose gel analysis (Figure 3.9 A). 

A 	B 	 C 
1 	2 	3 	4 	56 	

123456 

	

-250 	 --250 

5 kb 	 -75 	 -75 
4kb 	 -50 	 -50 
3kb 	 .-37 	 _37 

--20 

-15 

	

-10 	 -10 

Figure 3.9 Plasmid DNA preparation of construct FH-6-8 402  and mini-scale expression study of 

P. pustoris clones FH-6-8 14402  and FH-6-8 402  (A) Agarose gel shows QuickChange-PCR product 

(FH-6-8 402  in the pPICZaB vector) at the expected size of 4.1 kb (pPICZczB vector: 3.6 kb; FH-

6-8y 402 insert: 540 bp). (B) Gradient SDS-PAGE of the mini-scale expression study; an arrow 

indicates the protein bands at the expected mobility for FH-6-8402; molecular weight markers 

(kDa) are indicated. (C) Gradient SDS-PAGE as in B) but for construct FH-6-8 402 . 

After insertion of the expression cassettes into competent P. pastoris KM7IH cells, a mini-

scale expression study was performed on colonies growing on YPDS plates containing 300 

ig/ml Zeocin (Figure 3.9-13 and -C). 
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Figure 3.10 Expression and purification of FH-6-8 11402 ; (A) Gradient SDS-PAGE of concentrated 

supernatant of shaker flask expression (lane 2). (B) Pre-purified FH-6-8H402 was buffer 

exchanged into equilibration buffer, mixed with a protease inhibitor cocktail (which was 

purchased from Sigma) and loaded onto the POROS 20S cation-exchange column equilibrated 

with 20 mM potassium phosphate buffer (p11 6.0) and eluted in three gradient steps to I M 

sodium chloride. FH-6-8 H402  was eluted at about 50% concentration of elution buffer. (C) 

Gradient SDS-PAGE of the FH-6-8 402  peak fraction (lane 2). 

FH-6-8 F!40 2 expressed in shaker flasks was harvested by batch absorption onto heparin 

sepharose at pH 5.0. It was eluted in 1 M salt, diluted and adjusted to pH 6.0 and then 

subjected to cation-exchange chromatography (Figure 3.10). SDS-PAGE revealed a single 

band under reducing and non-reducing conditions. Note that slightly increased mobility 

occurs under non-reducing conditions, consistent with disulfide formation (86). 

Partial validation of primary structure was obtained from a tryptic-digest MALDI-

TOF mass spectrometry-based peptide fingerprint analysis (Figure 3.11). 
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Sequence coverage: 36 (69 of 189 arrLirlo acids) 

1 	 11 	21 	31 	41 	51 	61 	71 

AGLKPCDYPD IKHGLYHEN MRRPYFWV GKYYSYYCDE HFETPSGSYW DHIHCTQDGW SPAVPCLRKC YVPYLENGflI 

81 	91 	101 	111 	121 	131 	141 	151 

QNHGRKIVQG 1<SIDVCH?G YALPKAQTV TcNGWSPT PRCIRVKTCS KSSIDIENGF ISESQYTYAL KEKA}YQCKL 

161 	271 	181 

'2OJTAGEP2 	 TOU'LiN 2cQTC 

Figure 3.11 (A) Mass spectrum of tryptic-peptide fingerprint of FH-6-8H402 (B) Sequence 

coverage in peptide-mass fingerprinting. The amino acid sequence of FH-6-8 402  is shown; 

highlighted in red are matched peptide masses, and underlined are trypsin cleavage points. 

3.1.4 Constructs FH-7 42  and FH-7 11402 

The KM7IH P. pastoris clone FH-7H402 was prepared by Claire Egan. Coding DNA for FH-

7 Y402 sub-cloned into P. pasloris expression pPICZB vector was provided by Claire Egan, 

too. This vector was transformed into P. pasloris. Colonies that grew on YPDS plates 

containing 300 pglml Zeocin were subjected to a mini-scale expression study (Figure 3.12-

A). 
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Figure 3.12 Expression and purification of FH-7 402. (A) Gradient SDS-PAGE from mini-scale 

expression trial. (B) Shaker flask expression of colony lane I (of A) with highest expression 

level. (C) Pre-purified (SP-Sepharose) F'H-7 402  was buffer-exchanged into 20 mM sodium 

acetate pH 5.0 and loaded onto the Mono S column. Protein was eluted in a linear gradient to I 

M NaCl over 15 column volumes. (B) Gradient SDS-PAGE of fractions from the cation-

exchange chromatography. Both peaks in the cation-exchange chromatogram correspond to 

bands with similar mobility on the gel. 

Following shaker-flask expressions of FU-7 402  (Figure 3.12-13), the supernatant was diluted 

five-fold and the pH was adjusted to 5.0 for batch-absorption to SP-Sepharose. After elution 

(I M NaCl) protein was subjected to cation exchange chromatography (Figure 3.12-C). 

The elution profile shows two overlapping peaks. SDS-PAGE analysis of the 

fractions spanning both peaks show similar gel-mobility and integrity (as judged by the 

absence of degradation bands). This likely reflects N-terminal variations originating from 

differential processing of the Saccharornvces cerevisiae a—factor mating secretion signal. 

This commonly results in a ragged N-terminal sequence leaving parts of the Ste 13 peptidase 

signal EAEA" (157). The presence of either one or two "EA" repeats would result in 

different net-charges, and partial separation in ion-chromatography. The purity and integrity 

of recombinantly expressed protein was monitored by SDS-PAGE (Figure 3.12-D). SDS-

PAGE under non-reducing conditions also yielded a single band with slightly increased 

mobility (not shown) compared to reducing conditions, as expected. 

Protein expressed by this clone was used for the determination of the high resolution 

NMR structure of FH-7 402  by Dr Andrew Herbert (1). This published work obviously 

validates the integrity and structure of the recombinantly expressed protein. 
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3.1.5 Constructs FH-7-8 402  and FH-7-8 11402  

The coding DNA sub-cloned into the P. pastoris expression vector pPICZaB was provided 

for both FI-I-7-8 constructs by Claire Egan. Following transformation of P. pastoris four Fl-I-

78H402 clones and only one FH-7-8 402  clone grew on YPDS plates containing 300 jig/mI 

Zeocin, and these were subjected to mini-scale expression trials (Figure 3.13). 

	

A 	 B 

	

1 	2345 	 12 
-1 75.0-.. 
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- 47.5- 

-32.5----- 
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-6.5------ 

Figure 3.13 Mini-scale expression study of FH-7-8; (A) Gradient SDS-PAGE of four clones 

expressing FH-7-8H402; an arrow indicates the protein bands at the expected mobility for FH-7-

8H402• (B) As in A) but for one colony of construct FH-7-8 402 . 

Following shaker-flask culture, supernatant (diluted five-fold, p1-I 5.0) was batch-absorbed 

onto heparimi resin and eluted (I M NaCI). SDS-PAGE (reducing conditions) of the eluted 

material showed the presence of some degradation, while SDS-PAGE under non-reducing 

conditions reveals a single band (Figure 3.14-A). A possible explanation of the degradation 

pattern observed would be a situation in which a certain portion molecules are c1ipped' but 

remain held together by one or more disulfide bonds. 
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Figure 3.14 Expression and purification of FH-7-8' 402 ; (A) Gradient SDS-PAGE of FH-7-8 2  

(shaker flask expression) pre-purified on l-leparin-Sepharose; reducing and non-reducing and 

gel loading conditions (lanes I and 3 respectively). (B) Heparin affinity chromatogram; pre-

purified FH-7-8 402  was buffer-exchanged into 20 mM potassium phosphate buffer, loaded onto 

a Self Pack POROS 20 Heparin affinity column at pH 7.4 and eluted in a linear gradient to 1 M 

NaCI over 20 CV. (C) Gradient SDS-PAGE of fractions from the heparin-affinity 

chromatography shown in B). Lanes and fractions as indicated. Fractions highlighted by arrows 

correspond to the major peak 

The eluted material was flowed over 5 ml of Con-A lectin Fast Flow resin (Amersham 

Biosciences) which was pre-equilibrated with 20 mM sodium acetate buffer at pH 5.0. The 

flow through was collected and buffer-exchanged into 20 mM potassium phosphate buffer, 

pH 7.4, for heparin-affinity chromatography. 

The chromatogram shows two smaller peaks flanking the main peak (Figure 3.14-13). 

SDS-PAGE (Figure 3.14-C) reveals that only the fractions corresponding to the main peak 

show a single band, and these were collected for downstream applications. However, to 

increase the yield fractions on either side were pooled, desalted and re-applied to the 

heparin- affinity column. Partial validation of the primary structure was obtained from a 

tryptic digest MALDI-TOF mass spectrometry peptide fingerprint analysis (Figure 3.15). 

108 



PROTEIN PRODUCTION AND CHARACTERISATION 

	

flow 
	

LIEM 

	

I 	I 	I 

a.' 
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Figure 3.15 (A) Mass spectrum of peptide fingerprint of construct FH-7-8 402  (B) Sequence 

coverage in peptide mass fingerprinting. The amino acid sequence of FH-7-8 402  is shown 

highlighted in red are matched peptide masses, underlined are trypsin cleavage points. 

2-13 NMR 'H,' 5N HSQC experiments (performed by Barbel Blaum (3)) were consistent with 

correctly folded 3-D structure. 

3.1.6 Constructs FH-8-9 and FH8-9 K446 

The FH-8-9 coding sequence was cloned into the pPICZcB vector and transformed into P. 

pasloris (Figure 3.2). 
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Figure 3.16 Gradient SDS-PAGE of mini-scale expression study of two P. pastoris clones 

expressing Fl-l-8-9; samples run under reducing conditions and non-reducing conditions are left 

and right of the molecular weight marker, respectively. 

Small-scale expression tests were performed for those colonies that grew on YPDS plates 

containing 300 tg/rnl Zeocin (Figure 3.16); EndoUrtreated samples were analysed by SDS-

PAGE. 

Batches of FH-8-9 were expressed (unlabelled) in shaker flasks, or ' 5N-isotopically 

enriched in I-litre scale fermentation. Figure 3.17 shows the log of fermentation parameters 

for the duration of the fermentation run (- 116 h). 
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Figure 3.17 Log of 15N-FH-8-9 fermentation. Control parameters shown are agitation (dark 

blue), relative percentage of dissolved oxygen (130 2  - pink), temperature (cyan), pH (yellow) and 
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potassium hydroxide feed (purple). Black arrows indicate respiratory response of P. pasioris to 

feeding. Metabolism of energy sources (glucose, glycerol. methanol - metabolism peaks 

indicated by black arrows) leads to consumption of dissolved oxygen. In order to keep the D02  

value set at 40%, agitation value is increased to enhance oxygen dissolution. 'N-NH 4SO4  was 

used as nitrogen source and was present in the initial medium. Cell mass was grown at 30 °C on 

two glucose feeds, followed by a glycerol feed for de-repression of the alcohol oxidase promoter. 

For induction with methanol the temperature was lowered to 15 °C to increase stability of 

recombinantly expressed protein. P. pastoris metabolism acidifies the culture medium. This was 

balanced with potassium hydroxide feeds to maintain the pH at a constant value of 5.0. 

The purification protocols for (unlabelled) shaker-flask expression and for 15N-labelled 

fermentations, were identical. The deglycosylated supernatant was flowed over 5 ml of Con-

A lectin resin, which was equilibrated with 20 mM potassium phosphate buffer at pH 7.4. 

The flow-through was diluted five-fold, adjusted to pH 7.0 and applied to an anion-exchange 

column (Figure 3.18). 

Figure 3.18 Initial purification of FH-8-9 (A) diluted and deglycosylated fermentor supernatant 

FH-8-9 was passed through a HiTrap CaptoQ column, equilibrated with 20 mM potassium 

phosphate at pH 7.0 and eluted in a linear gradient, over 20 CV, to I M NaCl. (B) Gradient 

SDS-PAGE of fractions indicated in A). 

The elution profile shows two broad overlapping peaks. Fractions analysed by SDS-PAGE 

(Figure 3. I 8-B) indicated that the first peak - eluting at the beginning of the gradient - 

corresponds mainly to FH-8-9 (with a small proportion of degraded material present) 
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contaminated with significant impurities originating from P. pasloris proteins. The second 

elution peak corresponds mostly to P. pastoris proteins. The elution of recombinantly 

expressed FH-8-9 at the beginning of the gradient, combined with the significant amounts of 

impurities present. suggests that the initial protein capturing and purification step (CaptoQ) 

is not ideal. However, the low p1 12  (4.7) of the FH-8-9 construct ruled out cation-exchange 

chromatography as a first step. Therefore care was taken to maximise yield from the CaptoQ 

column by reapplying the flow-thorough onto the column. Size-exclusion chromatography 

(in 20 mM potassium phosphate buffer. pH 7.4, 500 mM NaCI) was applied as a secoiid 

purification step to separate P. pastoris proteins and degraded material from intact FH-8-9 

protein. The high molecular weight P. pasloris proteins eluted early from the Superdex 75 

column (Figure 3.19-A). Fractions representing the major peak at 78.9 ml were analysed on 

SDS-PAGE (Figure 3.19-B). 
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Figure 3.19 Second purification step for FH-8-9; (A) Concentrated and semi-purified FH-8-9 

sample was loaded on a HiLoad Superdex 75 size-exclusion column. (13) Gradient SDS-PAGE of 

fractions from size exclusion-chromatography shown in A). Reducing and non-reducing 

conditions applied in lanes 1-9, and 10-I1, respectively. 

12 Theoretical p1 values were calculated by using the online server Expasy Swiss prot protparam tool 
(115). 

112 



PROTEIN PRODUCTION AND CHARACTERISATION 

Fractions from the leading shoulder of the main peak correspond to degraded FH-8-9, while 

other fractions from this peak contain intact and pure material. Partial validation of primary 

structure was obtained from a tryptic digest MS (Figure 3.20). 

A 
Sequence coverage: 59 	71 of 119 amino acids) 

1 	 11 	 21 	 31 	 41 	 51 	 61 	 71 

TCSKSSIDIE NGFISES!T TAL1KA5YQ CKLGTVTADG ETSGSITCGtc DGWSAQ?TCI KSCDIPV.FM ATNDFTW 

81 	 91 	 101 	111 
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Figure 3.20 Validation of Fl-1-8-9 (A) Sequence coverage in peptide mass fingerprinting for FH-

8-9. The amino acid sequence of FH-8-9 is shown; highlighted in red are matched peptide 

masses, underlined are trypsin cleavage points. (for mass spectrum of peptide fingerprint of 

construct FH-8-9 Appendices) (B) 'N-HSQC spectrum of FH-8-9. Spectrum shows good 

dispersion with well resolved peaks. NMR sample is 110 piM in 20 mM potassium phosphate 

buffer pH 6.6. 

Lineshape and good peak dispersion in the 2-D NMR !H.ISN  I-ISQC spectrum are consistent 

with a correctly folded 3-D structure (Figure 3.20-13). 

For the preparation of constnict FH-8-9 K446, which features a change of the non-

native Gly from the cloning artefact into the native Lys at position 446, a QuickChangeTM 

mutagenesis (Stratagene) strategy was employed. A preparation of electrocompetent P. 

pasloris strain KM7 I H was transformed with the successfully produced expression cassette. 

High plasmid copy number-containing colonies were selected on YPDS plates containing 
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200 tg/ml Zeocin. A mini scale expression study (Endol -lrtreated) allowed selection of a 

clone with high expression levels (Figure 3.21). 
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Figure 3.21 Gradient SDS-PAGE of mini-scale expression trial of four P. pasloris clones 

expressing FH-8-9K4 6; Lanes 1-4 reducing conditions; lane 5 corresponds to sample shown in 

lane 1, but loaded under non-reducing conditions. 

The supernatant of the mini-scale expression study was concentrated and buffer-exchanged 

into 20 mM potassium phosphate, pH 7.4. 

3.1.7 Construct FH-RR8-9 

FH-RR8-9 corresponds to the construct reported in a study by Ormsby el al. (61) and is 

characterised by a long N-terminal cloning artefact including two arginines. By-and-large the 

same cloning strategy was applied as reported above. However, two deviations from this 

protocol (Figure 3.2) were made in order to reproduce exactly the construct reported (61). The 

5'-primer contained a Kpnl-restriction enzyme site (instead of Pstl site as for all other 

constructs) and the P. pasloris expression vector used was pPICZuA (instead of pPICZaB as 

for all other constructs). Briefly, coding DNA for FH-RR8-9 was amplified in a PCR reaction 

using pPICZaB sub-cloned FH-8-9 DNA as a template. The resulting DNA was ethanol 

precipitated and cloned (blunt-end cloning) into the pCR-4Blunt-TOPO vector. One Shot 

TOPIO chemically competent E. co/i cells were transformed with the vector and selected on 

LB ampicillin (200 ig/ml) plates. The plasmid was amplified (by liquid culturing of 
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LB ampicillin (200 tg/ml) plates. The plasmid was amplified (by liquid culturing of 

transformed TOPIO cells), extracted and submitted to double restriction-enzyme digestion 

using KpnI and XbaI restriction enzymes. After transformation ofF. pastoris, colonies that 

grew on YPDS plates containing 300 ig/ml Zeocin were subjected to mini-scale expression 

studies. Endoft-treated  samples were analysed by SDS-PAGE (Figure 3.22-A). 
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Figure 3.22 Expression and purification of FH- RR8-9; (A) Gradient SDS-PAGE of mini-scale 

expression study of six P. pastoris clones. (B) Gradient SDS-PAGE of fractions from anion-

exchange chromatography. (C) The concentrated, semi-purified FH- RR8-9 sample was loaded on 

the HiLoad Superdex 75 size exclusion column equilibrated with 20 mM potassium phosphate, 

pH 7.4, containing 500 mM NaCl. (D) Gradient SDS-PAGE of pooled peak fractions 34 and 35 

from size exclusion chromatography; non-reducing and reducing gel loading conditions were 

applied to lanes 1, and 3, respectively). 

Despites the presence of the two Arg in the N-terminal cloning artefact of FH- RR8-9 the 

theoretical p1 of the CCP module pair remained quite acidic (pI 5.0). This allowed shaker 

flask-expressed FH- RR 8-9 to be purified in the same way as FH-8-9. Figure 3.22-13 shows 

SDS-PAGE analysis of fractions eluted from the HiTrapTM CaptoQ column. A small amount 

of impurities from P. pastoris proteins is visible as are distinct FI-I-RR8-9 degradation 

products. For further purification, size-exclusion chromatography was used (Figure 3.22-C). 

Central peak fractions were pooled and analysed on a gradient SDS-PAGE (Figure 3.22-D). 

While under non-reducing conditions a single protein band at the expected mobility was 

obtained, under reducing conditions a small amount of degradation is still evident. Partial 

validation of primary structure was obtained from atryptic digest MS analysis (Figure 3.23). 
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Sequence coverage: 52% (71 of 134 amino acids) 

1 	 11 	 21 	 31 	 41 	 51 	 61 	 71 

EF'TWPSRPSR IGT!crCSKSs IDIGFISE SQTThL 	AKYQCKLGYV mDGETSGSI C(S).Q PTCISDIP 

81 	 91 	 101 	 111 

AFTY 	FTWYLNDTL DYECHDGYES NTGSTT1.• IV CGYrDI I lYE 

Figure 3.23 (A) Sequence coverage in peptide mass fingerprinting for FH-14118-9.  The amino acid 

sequence of Fl-I-RR8-9 is shown; highlighted in red are matched peptide masses, underlined are 

trypsin cleavage points (for mass spectrum of peptide fingerprint of construct FH-RR8-9 see 

Appendices. 

3.1.8 Construct FH-8-15 

The FH-8-15 coding sequence was cloned into the pPICZaB vector and transformed into P. 

pasloris (by Carina Gandy working under the supervision of the author of this thesis) (Figure 

3.2). 

Batches of FH-8- 15 were expressed in shaker flasks. The supernatant was 

concentrated and submitted to deglycosylation by treatment with endoglycosidase EndoH 

(New England Biolabs Ltd., Hitchin, UK). The deglycosylated sample was buffer exchanged 

into 20 mM sodium carbonate buffer, pH 9.0, and applied to a MonoQ anion-exchange 

chromatography column and eluted in a linear gradient of 20 column volumes to I M sodium 

chloride (Figure 3.24). Fractions analysed by SDS-PAGE show several impurities, 

originating mainly from suspected degradation of FH-8-15 with some possible contribution 

from P. pastoris proteins. Samples analysed under reducing conditions showed more 

impurity bands than those analysed under non-reducing conditions. This implies that a 

portion of the molecule might be clipped' but held together by disulfide bridges. 
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Figure 3.24 First purification step of FH-8-15; (A) Concentrated, deglycosylated and buffer-

exchanged FH-8-15 was loaded onto the MonoQ anion-exchange column. (B) Gradient SDS-

PAGE of fractions indicated in A). Reducing and non-reducing conditions applied in lanes 1-8, 

and 9-15, respectively. 

Peak fractions eluted from the Mono Q column were pooled and concentrated. As a second 

purification step, size-exclusion chromatography (using the HiLoad Superdex 75 size-

exclusion column) was applied (in 20 mM potassium phosphate buffer, pH 7.4, 500 mM 

NaCI). Peak fractions of the eluted protein were monitored by SDS-PAGE (Figure 3.25). 
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Figure 3.25 Second purification step of FH-8-15 (A) The concentrated and pre-purified FH-8-15 

sample was loaded on the size-exclusion column. (B) Gradient SDS-PAGE of fractions indicated 

in A). Reducing and non-reducing gel loading conditions applied to lanes 1-7, and 8-9, 

respectively. 
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Samples loaded under non-reducing conditions showed a pure single protein band, while 

under reducing loading a very small contamination consisting of two faint, putative 

degradation products, was noticeable. Partial confirmation of the primary sequence was 

achieved by a tryptic- digest MS. Folding was examined through acquisition of a 1-D 'H-

NMR experiment (Figure 3.26). 

A 
Seqience coverage: 14 	at 463 amirLo acids) 

1 	 11 	21 	31 	41 	51 	61 	71 

AGTCSKSSID IENGFISESQ YTYALKEKAK YQCKLGYVTA DGETSGSITC GKDGWSAQPT CIKSIPVT MNARTKNDFT 

81 	91 	101 	111 	121 	131 	141 	151 

WFKLNDTLDY ECHDGYESNT GSTTGSIVCG YNGWSDLPIC YERECEL'KI DVHLVPDRKK DQYKVGEVLK FSCKPGFTIV 

161 	171 	181 	191 	201 	211 	221 	231 

GPNSVOCYHF GLSPDLPICE EQVQSCGPFP ELLNGNVKEK TETQH8EV VTYQ1PRFL MKGPNKIQcV DGEWTTLPVC 

241 	51 	261 	271 	281 	291 	301 	311 

IVEESTCGDI PELEHGWAQL SSPPYYYGDS VEFNCSESFT MIGHRSITCI EGVWZ'QLPQC VAIDKLKKCK SSNLIILEEH 

321 	331 	341 	351 	361 	371 	381 	391 

LKNKKEFDHN SNIRYRCRGK EIKTVCIN GRWDPEVNCS MAQIQLCPPP PQIPNSHNMT TTLNYRDGEK VSVLCQENYL 

401 	411 	421 	431 	441 	451 	461 	471 

IQEGEEITCK DGRWQSIPLC VEKIPCSQPP QIEHGTINSS RSSQESYAHG TKLSYTCEGG FRISEENETT CYMGKWSSPP 

481 

B 

I 	10 	6 	6 	¶ 	6 	0 	4 	3 	2 	¶ 	0 
H 0/ 

Figure 3.26 Validation of FH-8-15; (A) Sequence coverage in peptide mass fingerprinting for 

FH-8-15. The amino acid sequence of FH-8-15 is shown; highlighted in red are matched peptide 

masses, underlined are trypsin cleavage points. (for mass spectrum of peptide fingerprint of 

construct FH-8-15 see Appendices) (B) 'H-NMR spectrum of FH-8-15; Spectrum shows good 

dispersion with well-resolved peaks. NMR sample is 68.3 jiM in 20 mM potassium phosphate 

buffer pH 6.6. 

Lineshape and good peak dispersion in the 'H-NMR spectrum are consistent with a sample 

containing> 80 % folded material. 
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3.1.9 Construct FH-10-12 

The FH-I0-12 DNA coding sequence was cloned into the pPICZaB vector and transformed 

into P. pasloris (Figure 3.2). A small-scale expression trial was performed for those colonies 

that grew on YPDS plates containing 150 tg/ml Zeocin (Figure 3.27); EndoH ç-treated 

samples were analysed by SDS-PAGE. 
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Figure 3.27 Gradient SDS-PAGE of recombinantly expressed FH-10-12. (A) Mini-scale 

expression trial of two P. pastoris clones expressing FH-10-12; non-reducing and reducing gel 

loading conditions were applied to lanes 1-2, and 4-5, respectively. (B) EndoH rtreated 

supernatant from the shaker-flask expression. Two dominating bands are visible, one at the 

expected mobility for FH-10-12 co-migrating with the 25-kDa molecular weight standard 

(indicated by arrows) and one large diffuse band corresponding to the migration of a 30-kDa 

protein. 

FH-10-12 was expressed in shaker flasks (Figure 3.27-13). The Fl-I-10-12 band co-migrates 

with the 25-kDa of the molecular marker. The big diffuse band corresponding to a 30-kDa 

protein could be a FH-10-12 species that is still glycosylated due to incomplete EndoH 1-

treatment or 0-glycosylation. However, aberrant processing of the a-mating secretion signal 

by P. pastoris (as described in the section 3.1.1), cannot be ruled out. 

The purification steps for FH-10-12 were almost identical to the ones used for FH-8-15. 

Following harvest the supernatant was concentrated and submitted to deglycosylation by 

treatment with endoglycosidase EndoH 1 . The deglycosylated sample was concentrated and 
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buffer-exchanged into 20 mM potassium phosphate buffer, pH 7.8. and flowed over I ml of 

Con-A lectin resin. The flow-through was applied to the MonoQ anion-exchange column. 

Bound material was eluted in a linear gradient of 20 column volumes to I M NaCI (Figure 

3.28-A). Fractions spanning the eluted peak were analysed by SDS-PAGE (Figure 
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Figure 3.28 First purification step of FH-10-12. (A) Concentrated, deglycosylated and buffer-

exchanged FH-10-12 was loaded onto the MonoQ column and then eluted with a linear gradient, 

over 20 column volumes, to 1 M NaCl. (B) Gradient SDS-PAGE of fractions indicated in A). 

Reducing and non-reducing gel loading conditions were applied to lanes 1-12, and 13-14, 

respectively. 

Anion-exchange chromatography was able to resolve Fl-1-I0-12 from some of the 

contaminating P. pastoris proteins. However, significant amount of impurities remained. 

Under these conditions the endoglycosidase EndoI-I (-75 kDa) could not be separated from 

the FH-10-12 material either. However, size-exclusion chromatography should easily 

separate the added endoglycosidase from FH-10-12. Furthermore, the diffuse higher band 

(-30 kDa) co-eluted with FH-10-12 (-25 kDa). Neither EndoHrtreatment nor application to 

Con-A lectin resin were able to resolve the two FH-10-12 species, in the FH-10-12 

preparation. Since both approaches (EndoHf and Con-A lectin resin) work on the basis of 

recognising mainly high mannose structures (161, 162) it may be that the diffuse band 

represents N- or 0-linked glycosylation of mannose-poor carbohydrates, despite the fact that 

glycosylation in yeast vectors are know to be rich in high-mannose structures (163). 
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As a second purification step, size-exclusion chromatography was applied (in 20 

mM potassium phosphate buffer, pH 7.4, 500 mM sodium chloride). Several small- to 

medium-peaks eluted prior to the main peak; the diffuse upper band corresponds to higher 

molecular weight species of FH-I0-I2, while a band at the expected place for FH-10-12 is 

also evident (Figure 3.29). 
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Figure 3.29 Second purification step of FH-I0-12 (A) Concentrated and pre-purified FH-10-12 

sample was applied to the HighLoad Superdex 75 size-exclusion column. (13) Gradient SDS-

PAGE of fractions indicated in A). Reducing and non-reducing conditions applied in lanes 1-7, 

and 9-10, respectively. The main band is in the right place for FH-10-12. 

Fraction 47 to 49 were pooled and concentrated. Partial confirmation of primary sequence 

was obtained from tryptic digest MS (Figure 3.30-A). Folding was confirmed by acquisition 

of a l-D 'I-  I NMR experiment (Figure 3.30-13). 
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A 

Sequence coverage: 21) 	(36i.f 	amino acids) 

1 	 11 	21 	31 	41 	51 	61 	71 

AGECELPKID VULVPDRZKD QYKVGEVLKF SCKPGFTIVG PNSVQCYHFG LSPDLPICKE QVQSCGPPPE LLNGNVKEKT 

81 	91 	101 	111 	121 	131 	141 	151 

KEETGHSEVV ZYTcNPRIIM RGPNRIQCVD GEWTTLPVCI VEESTCGDIP ELEHGWAQLS SPPYYYGDSV EE'NCSESFTh 

161 	171 

[1 

4 
ii 	O 	9 	I 	 7 	 9 	 9 	 4 	 3 	7 

fi 4I 

Figure 3.30 Validation of FH-10-12 (A) Sequence coverage in peptide mass fingerprinting for 

FH-10-I2. The amino acid sequence of Fl-l-10-12 is shown; highlighted in red are matched 

peptide masses, underlined are trypsin cleavage points. (for mass spectrum of peptide 

fingerprint of construct Fl-l-10-12 see Appendices) (B) 'H-NMR spectrum of FH-I0-12; 

Spectrum shows good dispersion with well resolved peaks. The NMR sample was 127 iM in 20 

mM potassium phosphate buffer, pH 6.6. Arrows indicate signals arising from contaminating 

carbohydrate. 

The spectrum indicates the presence of some contaminating sugars (indicated with arrows) 

derived from P. pasloris. Lineshape and good peak dispersion in the l-D 'H-NMR 

experiment are consistent with a sample containing> 80 % folded material. 

3.1.10 Construct FH-10-15 

The FH-10-1 5 coding sequence was cloned into the pPICZaB vector and transformed into P. 

pus/uris (Figure 3.2) (in collaboration with Isabell Pechtl and Patience Tetteh-Quarcoo 

working under the supervision of the author). 

122 



PROTEIN PRODUCTION AND CHARACTERISATION 

A small-scale expression trial (Figure 3.31-A) was performed on clones that grew on 

YPDS plates containing 300 tgIml Zeocin. The presence of N-glycosylation sites 

necessitated removal of the Asn-linked. 
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Figure 3.31 Gradient SDS-PAGE of P. pastoris FH-10-15 expression. (A) Mini-scale expression 

trial of two P. pasloris clones expressing FH-10-15; samples run under reducing conditions, 

lanes 1-2, and under non-reducing conditions, lanes 4-5, respectively. (B) EndoHrtreated 

supernatant from shaker-flask expression. The dominant band shows the mobility expected for 

FH-10-15. Reducing and non-reducing gel loading conditions applied to lanes 1 and 3, 

respectively. 

F1-1-10-15 was expressed in shaker flasks or four litre fermentations. Purification followed 

the same protocol. A small EndoHrtreated sample of the expression medium was treated 

with EndoH f  and analysed on SDS-PAGE (Figure 3.31-13). The gel shows a protein band of 

FH-10-15 at a mobility corresponding to 42 kDa (reducing conditions) and at 35 kDa (non-

reducing conditions). Concentrated and deglycosylated FH-10-15 was loaded onto the 

HiLoad Superdex 75 size-exclusion column. Peak fractions of the eluted protein were 

monitored by SDS-PAGE (Figure 3.32). 
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Figure 3.32 First purification step of FH-10-15 (A) Concentrated and deglycosylated FH-10-15 

was loaded onto the size-exclusion column equilibrated with 20 mM potassium phosphate at pH 

7.4 containing 500 mM NaCl. (B) Gradient SOS-PAGE of fractions indicated in A). Reducing 

and non-reducing conditions applied to lanes 1-8, and 9-10, respectively. 

Fractions 39 to 44, which correspond to the main peak in the size-exclusion chromatogram, 

show only a little high-molecular-weight impurity and some faint degradation bands. 

Fractions 40-43 were pooled and buffer-exchanged into 20 mM sodium carbonate buffer, pEl 

9.0, prior to application onto the MonoQ anion-exchange column. Retarded material was 

eluted in a linear gradient over 20 column volumes to I M NaCl (Figure 3.33). SOS-PAGE 

analysis shows single bands corresponding to FH-1 0-15. 

Figure 3.33 Second purification step of FH-10-15 (A) Deglycosylated FH-10-15 was subjected to 

anion-exchange chromatography. (B) Gradient SOS-PAGE of fractions indicated in A). 

Reducing and non-reducing conditions applied to lanes 1-8, and 9, respectively. (C) Gradient 

SOS-PAGE of fractions of anion-exchange chromatography of fermentor-expressed FH-10-15. 

Reducing and non-reducing conditions applied to lanes 1-5, and 6-9, respectively. 
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An overloaded gel of fractions from the final anion-exchange purification step (from the 

fermentor batch) shows that - under non-reducing conditions - a small proportion of FH-10-

15 material multimerises to dimers and trimers. It is not clear whether such multimerisation 

is, in fact present in the other sample but was too weak to be detectable, or whether it only 

occurs due to the higher protein concentrations. The proportion of multimerised species 

remained below -5% (section 5.3). 1 H-NMR spectrum of a similarly concentrated protein 

(see below) showed little sign of aggregation. 

A 
Sequence coverage: 40% (149 of 365 amino acids) 

1 	 11 	 21 	 31 	 41 	 51 	 61 	 71 

TAGCELPKI DVHLVPDRKK DQYKVGEVLE( FSXPGflV GPNSVQCYEF GLSPDLPICK EQVQSCGPPP ELLNGNVKE 

81 	 91 	 101 	 111 	 121 	 131 	 141 	 151 

TEYGESEV VEYcNPRFL MKGPNKIQCV DGEWTTLPVC IVEESTCGDI PEL6HGWAQL SSPPYYYGDS VEFNCSESFT 

161 	 171 	 181 	 191 	 201 	211 	221 	 231 

MIGHRSITCI HGVWTQLPQC VAIDKLK1<CK SSNLIXI.KZR LFDEN SNIRYRCRGX EIaTVcIN GRWDPEVNCS 

241 	251 	261 	271 	 281 	291 	 301 	 311 

MAQIQLCPPP PQIPNSHNMT TTLNYRDGEK VSVLQENYL IQEGEEXTCK flGRSPLC VXPCSQPP QXEBG?INSS 

321 	331 	 341 	 351 	 361 	 371 	 381 	 391 

RSSQESYAHG TKLSTrCZGG FRISEENETT CYMGKWSSPP QC6SR 

H 61 

Figure 3.34 Validation of FH-10-15 (A) Sequence coverage in peptide mass fingerprinting for 

Fl-I-b-IS. The amino acid sequence of FH-10-15 is shown; highlighted in red are matched 

peptide masses, underlined are trypsin cleavage points (for mass spectrum of peptide 

fingerprint of construct FH-10-15 see Appendices). (B) 'H-NMR spectrum of FH-10-15; 

spectrum shows good dispersion with well-resolved peaks. The NMR sample is 48 tiM in 20 mM 

potassium phosphate buffer, pH 6.6. 
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Partial validation of primary structure was obtained from a tryptic digest MS (Figure 3.34-A). 

Folding was examined through acquisition of a l-D 'FI-NMR experiment (Figure 3.34-13). 

Lineshape and good peak dispersion in the I-I-NMR experiment are consistent with a sample 

containing> 80 % folded material. 

3.1.11 Construct Fil-il 

A P. pastoris KM7 lI-I clone over-expressing FH- 11 was prepared using identical steps to 

those described above (Figure 3.2). Figure 3.35-A shows a small-scale expression trial for 

clones that grew on YPDS plates containing 150 p.g/ml Zeocin. All clones expressed a 

protein that shows migration corresponding to —40 kDa under reducing conditions. Under 

non-reducing conditions, migration of FH-1 I was surprisingly decreased. Since the bands 

corresponding to non-reducing conditions were very faint, the surplus supernatant from lane 

3 (Figure 3.35-A) was concentrated in a spin concentrator and analysed again under non-

reducing and reducing loading condition (Figure 3.35-13). From this gel it is clear that the 

single module FH-1 I runs at the size of a dimer when loaded under non-reducing conditions. 

Whether this effect is an artefact of the P. pastoris expression system or was artificially 

introduced due to absence of neighbouring (stabilising) modules, or indeed reflects 

properties of FH-1 I even in the context of full length FH, needs to be investigated further. 

For other single modules expressed in this study (FH-7 402, FH-7 H402 , FH-12, FH-13) no 

dimeriasation was observed, neither did FH-10-12 - encompassing module 11 show 

dimerisation. On the other hand, FH-10-15 did show a small degree of dimerisation and 

trimerisation under non-reducing conditions. 
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A 	 B 
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Figure 3.35 Gradient SDS-PAGE of recombinant FH-I 1. (A) Mini-scale expression study of five 

P. pasloris clones expressing FH-11 (arrow indicating the band corresponding to FH-11); 

Reducing and non-reducing conditions apply to lanes 1-5, and 7-8, respectively. (B) SDS-PAGE 

was repeated with a 20-times more concentrated sample from lane 3 of gel A). Reducing and 

non-reducing conditions apply to lanes 1, and 2, respectively. 

3.1.12 Construct FH-11-14 

The FH-1 1-14 coding sequence was cloned into the pPICZaB vector and transformed into P. 

pastoris (Figure 3.2). 

A small-scale expression trial was performed on colonies that grew on YPDS plates 

containing 150 tg/ml Zeocin (Figure 3.36). Asn-linked glycans were trimmed prior to SDS-

PAGE analysis. 
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Figure 3.36 Gradient SDS-PAGE of P. pastoris FH-I 1-14 expression. (A) Mini-scale expression 

trial of five P. pastoris clones expressing FH-11-14; reducing and non-reducing gel loading 

conditions apply to lanes 1-5, and 6-7. respectively. (B) EndoH 1  treated supernatant from 

shaker-flask expression. The dominant band (highlighted by an arrow) shows the mobility 

expected for FH-11-14. Reducing and non-reducing conditions apply to lanes 2 and 3, 

respectively. A triangle indicates a band (lane 3) corresponding to the mobility expected for 

dimerised FH-11-14. 

FH-I 1-14 was expressed in shaker-flasks (Figure 3.36-13) and purified using identical steps as 

used for FH-l0-15. Apart from P. pastoris proteins and a band corresponding to Endol-11 (' 

75 kDa) SDS-PAGE shows the presence of putative FH-1 1-14 degradation under reducing 

conditions, while tinder non-reducing conditions the degradation appears to be absent. This 

effect was also observed for several other constructs (see above) and is thought to reflect a 

situation in which clipped' peptides remain held together by disulfide bridges. As with FH-

10-15, a small proportion of dimerised protein is visible on the gel under non-reducing 

conditions. The harvested supernatant was concentrated, deglycosylated and loaded onto the 

size-exclusion column equilibrated with 20 mM potassium phosphate buffer, p1 -1 7.4, 500 

mM NaCl. Eluted protein was monitored by SDS-PAGE (Figure 3.37). 
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Figure 3.37 First purification step of FH-II-14 (A) FH-11-14 was loaded onto the HiLoad 

Superdex 75 size-exclusion column. (B) Gradient SDS-PAGE of fractions indicated in A). 

Reducing and non-reducing conditions apply to lanes 1-8, and 9-10, respectively. 
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Fractions 42-46 contain putative degradation bands. These fractions were pooled and buffer-

exchanged into 20 mM sodium carbonate buffer p1-I 9.0 prior to application onto the MonoQ 

anion-exchange column. Retarded material was eluted in a linear gradient over 20 column 

volumes to I M NaCl (Figure 3.38). SDS-PAGE analysis reveals pure Fl-I-I 1-14. Trace 

amounts of supposed degradation are only visible tinder reducing conditions; SDS-PAGE 

analysis under non-reducing conditions yields a single band. 
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Figure 3.38 Second purification step of FH-I1-14 (A) Anion-exchange chromatogram of FH-11-

14. (B) Gradient SDS-PAGE of fractions indicated in A). Reducing and non-reducing conditions 

apply to lanes 1-7, and 8, respectively. 

Partial validation of primary structure was obtained from a tryptic digest MS (Figure 3.39-

A). Folding was checked through acquisition of a 1-D 'H-NMR experiment (Figure 3.39-13). 
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A 

Sequence coverage: 30% (72 of 239 amino acids) 

1 	 11 	 21 	 31 	 41 	 51 	 61 	 71 

PQSCGPPPEL LNGNVKEKZK ZKYGUSEVVE YYCNPRTLMr, GPIIQCVDG EWTTLPVCIV EESTCGDIPE LEHGWAQLSS 

81 	 91 	 101 	 111 	 121 	 131 	 141 	 151 

PPYYYGDSVE FNCSESFTMI GHRSITCIRG VWTQLPQCVA IDKLKKCKSS WLXXLZERLK NKKCFDRNSN IRYCRO 

161 	 171 	 181 	 191 	201 	211 	221 	231 

II 10 	4 	8 	7 	0 	8 	4 	3 	2 	I 	0 
III &I PPM  

Figure 3.39 Validation of Fl-I-I 1-14 (A) Sequence coverage in peptide mass fingerprinting for 

FH-I1-14. The amino acid sequence of Fl-I-I 1-14 is shown; highlighted in red are matched 

peptide masses, underlined are trypsin cleavage points (for mass spectrum of peptide 

fingerprint of construct FH-11-14 see Appendices). (B) 'H-NMR spectrum of FH-II-14; NMR 

sample is 82 gM in 20 mM potassium phosphate buffer, p1-1 6.6. 

Lineshape and good peak dispersion in the 'H-NMR spectrum are consistent with a sample 

containing> 80 % folded material. 

3.1.13 Construct FH-12 

A P. pasloris KM71H clone over-expressing FH-12 was prepared using identical steps to 

those described in Figure 3.2. 

A small-scale expression trial (Figure 3.40) was performed on clones that were selected on 

YPDS plates containing 150 .1g/ml Zeocin. Prior to gel loading, samples were 

deglycosylated. In both cases, under reducing and non-reducing conditions, migration of FH-

12 remains at the same level (- 10 kDa). 
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Figure 3.40 Gradient SDS-PAGE of mini-scale expression trial of five P. pastoris clones 

expressing FH-12 (arrow indicating the band corresponding to FH-12). Reducing and non-

reducing conditions apply to lanes 1-5, and 6, respectively. 

3.1.14 Construct FH-12-13 

The Fl-l-l2-13 coding sequence was cloned into the pPICZaB vector and transformed into P. 

pasloris (Figure 3.2). A small-scale expression trial (Figure 3.41) was performed on clones 

that grew on YPDS plates containing 150 jig/mI Zeocin. Samples were deglycosylated prior 

to gel loading. 

Batches of FH-12-13 were expressed (unlabelled) in shaker-flasks or 15N-

isotopically and 15N. 3C-isotopically enriched in one-litre scale fermentations. 

A 	 B 	C 
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Figure 3.41 Gradient SDS-PAGE of P. pastoris FH-12-13 expression. (A) Mini-scale expression 

trial of five P. pasloris clones expressing FH-12-13; faint bands at mobility expected for FH-12- 

13 are highlighted by an arrow. Reducing and non-reducing conditions apply to lanes 1-5 and 6- 

131 



A 
mAU 

900 - Protease 
Inhibitor 

/ 	Cocktai' 
H 	and 

mpunties 

00 

[] 

123 

2.1 
conductivity 

PROI FIN PRODUCTION AND CHARACTERISATION 

7, respectively). (B) Concentrated supernatant from mini-scale expression trial from lane 2 of 

A). Reducing and non-reducing conditions apply to lanes 2 and 3 respectively. (C) EndoH r  

treated elution from batch-absorbed FH-12-13. 

The purification protocol for ' 5N-/ 15N- 13C-isotopically enriched one-litre scale) 

fermentations and unlabelled shaker-flask expression was very similar 

Supernatant from cell cultures was diluted five-fold and the pH adjusted to 5.0 for 

batch-absorption to heparin-Sepharose. After elution (1 M NaCI) the protein was mixed with 

a protease inhibitor cocktail (containing 4-(2-aminoethyl) benzenesulfonyl fluoride, 

pepstatin A, E-64, and 1,1 0-phenanthroline - purchased from Sigma) and submitted to 

EndoHf treatment (Figure 3.41-C). Deglycosylated sample was buffer-exchange prior to 

loading onto a Self Pack POROS 20 heparin affinity column (diameter = 4.6 mm, length = 

100 mm) equilibrated with 20 mM sodium acetate buffer, pH 5.0. lmmobilised material was 

eluted with a linear gradient over 15 CV to 0.5 M NaCl (Figure 3.42-A). The elution profile 

shows one dominating peak that slightly overlaps with a small second peak. SDS-PAGE 

analysis of the fractions from the two peaks show a single protein species at the migration 

expected for FH-12-13. The fraction corresponding to the second peak exhibits some 

degraded material (Figure 3.42-13). 

0 	 - 
- 

MI 

Figure 3.42 Purification of FH-12-13 (A); Pre-purified FU-12-13 was applied to heparin-affinity 

chromatography. (B) Gradient SDS-PAGE of the two peak fractions from A). Samples in lane I 
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and lane 2 correspond to the first and second peak 1  respectively. The strong peak in the flow 

through fractions mostly corresponds to constituents in the protease-inhibitor cocktail. 

Fractions spanning the first protein peak were pooled, concentrated and submitted to 

validation by NMR, tryptic-digest MS (Figure 3.43-A) and positive electrospray ionisation 

mass spectrometry. All analyses by mass spectrometry were performed with unlabelled 

material. The subsequently determined high resolution structure of FH-12-13 (see 

CHAPTER 5) validates the integrity and structure of this recombinantly expressed protein. 

The electrospray-ionisation mass spectrum (Figure 3.43-13) shows four major peaks. Peak B 

(13565 Da) corresponds to the predicted mass of FH-12-13 having one unit of "EA" (from 

the P. pasloris expression system) at the N-terminus: Mr= 13563 Da. Peak D (13767 Da) 

corresponds to the same species but with a GlucNAc unit (the core sugar unit that does not 

get trimmed by Endol-I f): Mr  = 13766 Da. Peaks A (13435 Da) and C (13639 Da) are 

derivatives of peaks B and D, respectively. The mass difference between A and B is 128 Da 

indicating the loss of the N-terminal Glu (theoretical Mr = 129). Similarly, the mass 

difference between C and D (127 Da) is consistent with the loss of the N-terminal glutamate. 
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3oquenc c:erage: 60% (71 of 117 amino acids) 

1 	 Ii 	 21 	 31 	 41 	51 	 61 	 71 

AGTCGDIPEL EHGWAQLSSP PYYYGDSVEF NCSESPrMIG HRSITCIflGV WQLPQCVAI DLKKK$SN XIIT2ZRLKN 
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Figure 3.43 Validation of FH-12-13 (A) Sequence coverage in peptide mass fingerprinting for 

FI-I-12-13. The amino acid sequence of FH-12-13 is shown; highlighted in red are matched 

peptide masses, underlined are trypsin cleavage points (for mass spectrum of peptide 

fingerprint of construct FH- 12-13 see Appendices). (B) Liquid-chromatography, 12-Tesla, 

Fourier-Transform, Ion-Cyclotron-Resonance Mass-Spectrometrv analysis of FH- 12-13. 

In summary, mass spectrometry analysis revealed four major species of FH-12-13. It appears 

that during expression of FH-12-13 one EA"-unit remained at the N-terminus (peak B: EA-

FH-12-13). A proportion of FH-12-13 has, in addition to the leading "EA", one N-

glycosylation site occupied with one GlucNAc (peak D: EA-FH-12-13-GlucNAc). Judging 

from the relative heights of the charge series (+10) signals, roughly 50% of both (EA-FH-12-

13 and EA-FH-12-13-GlucNAc species) have lost the N-terminal glutamate yielding A-Fl-I- 
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12-13 and A-FH-12-13-GlucNAc. A comparison of relative intensities beteen species 

having one N-glycosylation site occupied (peaks C and D) and having none occupied (peaks 

A and B), indicates that about 65% of FI-l-12-13 is glycosylated. 

3.1.15 Construct FH-13-14 and FH-13-14Q802 Q822 

Two P. pastori.s KM7IH clones over-expressing FH-13-14 or FH-13-14 Q802. Q822  were 

prepared using similar steps to those described in Figure 3.2. 

Small-scale expression tests were performed for four colonies (FH-13-14 0802 , Q822)  that grew 

on YPDS-plates containing 300 	'ml Zeocin (Figure 3.44-A). 

12345 
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Figure 3.44 Gradient SDS-PAGE of P. pastori.s FH-13-14Q802_Q822  expression. (A) Mini-scale 

expression trial of four clones expressing FH-13-l4Q2QS22 ; bands of concentrated samples at 

the mobility expected for FH-13-14 0502Q$2  are highlighted by an arrow. Bands are blurred 

although molecular weight markers (lane 1) show distinct bands. (B) Same gel as in A), but after 

treatment with the sigma glycosylation detection kit; protein with attached sugars is stained 

pink. 

The resultant SDS-PAGE bands appear quite diffuse Figure 3.44-A). Samples also seemed to 

have undergone significant proteolysis. One possible reason for the observation of diffuse 

SDS-PAGE bands might originate from 0-glycosylation. Engineering out of two N- 
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glycosylation sites could have created a consensus site for 0-glycosylation. To determine if 

this was the case, gels were treated with Sigma glycosylation detection kit (see section 

2. 1 .1 8Glycoprotein detection and Figure 3.44-B), which oxidises sugar residues and 

specifically stains them pink. Some pink colouration is apparent in each band. Thus, the 

possibility of 0-glycosylation in FH- 13-I 4Q802, Q822 exists. 

Due to these degradation and possible glycosylation problems with FH-13- 

' 4Q802_Q822' the wildtype FH-13-14 construct including five of the eight amino acid residues 

in the 12-13 linker was prepared. The same techniques as described above were utilised to 

create this constructs. As the construct FH- 1 3-1 4(8()2 Q822 had already been integrated into the 

pPICZaB vector, two site directed mutagenesis steps were performed to transform the N-

glycosylation sites back so as to obtain the wild type sequence. Maxi-prep plasmid extraction 

of Fl-I-13-I4 in pPICZaB vector was followed by linearization, purification and 

concentration of the cut plasmid prior to transformation into electrocompetent KM7 I H P 

pasloris cells. A small-scale expression tests was performed on colonies that were selected 

on YPDS plates containing 300 tgIml Zeocin. 
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Figure 3.45 Gradient SDS-PAGE of P. pasloris FH-13-14 expression. Mini-scale expression 

trial of four clones expressing FH-13-14; EndoH 1—treated, concentrated samples were loaded. 

An arrow highlights bands at the mobility expected for FH-13-14. A high proportion of 

degraded material is present. 
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Expression levels for clones expressing FH-13-14 are high, but substantial degradation is 

evident. The wild-type form was selected for larger-scale expression and purification studies. 

Despite numerous attempts to optimise conditions so as to minimise proteolysis, the 

presence of degradation products persisted (Figure 3.46-C). Furthermore it became clear that 

Fl-1-13-14 oligomerises to form dirners and trimers, which can be separated by gel-fltration 

and yield a single band under non-reducing conditions, but multiple bands under oxidising 

conditions (Figure 3.46). 

A B C 
P 

peak2 	
1 	2 	3 4 	5 	6 1 	2 	3 

70 

peak 1 
sample 

60- 

before 	- 

loading onto 
E 

50  
--. 	 column CL 

3Z 

.- 

.0 

.4) 
40 peak 3  

20 1 conductivity 15 

-------- 	 rrrr - 	 - 

6 20 	40 	60 	80 	00 	120 	140 	100 ml 

Figure 3.46 Size-exclusion chromatogram of FH-13-14 (A) Pre-purified, deglycosylated and 

concentrated FH-13-14 sample was loaded onto a Superdex size-exclusion column. (Ii) Gradient 

SDS-PAGE of fractions from size-exclusion chromatography shown in A). Reducing and non-

reducing gel-loading conditions apply to lanes I, and 2-5, respectively. Lanes 1 and 2 show 

condition of the sample prior to loading onto the size-exclusion column. Lane 3, 4 and 5 

correspond to peaks 1, 2 and 3, respectively. (C) Samples of peak I and peak 2 loaded under 

reducing conditions. 

Size-exclusion chromatography was able to separate three FH-13-14 species corresponding 

to trimer, dimer and monomer, as judged by their molecular weight from non-reducing SDS-

PAGE analysis. FH-13-14 samples prior to gel filtration, and samples corresponding to 

peaks 2 (dimer) and 3 (monomer) were submitted to primary sequence validation by tryptic 
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digest MS (Figure 3.47). All samples showed very similar to identical peptide fingerprint 

verifying that oligomers correspond to FH-13-14. 

Sequence coverage: 311 (38 of 120 amino acids) 
1 	 11 	 21 	 31 	 41 	 51 	 61 	 71 

AGDKLKKCKS SNLIILEKHL PDROMMENS NIRYRCRGPM GWIRTVCING RWDPEVNCSM AQIQLCPPPP QI ?NSHNMTT 

81 	 91 	 101 	 111 

Figure 3.47 Partial validation of FH-13-14 (A) Sequence coverage in peptide mass fingerprinting 

for FH-13-14. The amino acid sequence of FH-13-14 is shown; highlighted in red are matched 

peptide masses, underlined are trypsin cleavage points (for mass spectrum of peptide 

fingerprint of construct FH-1 3-14 see Appendices). 

Due to the high levels of degradation and oligomerisations of the Ft-l13-14 it was excluded 

from functional and structural studies. 

3.1.16 Construct FH-13 

The KM7IH P. pastor/s construct over-expressing FH-13 was prepared by Claire Egan. 

Fl-1-13 was expressed in shaker-flasks (Figure 3.48-A). Following batch-absorption (SP-

Sepharose) and EndoH r-treatment sample was desalted into 20 mM sodium acetate buffer, 

pH 5.0. Pre-purified sample was loaded onto the MonoS cation-exchange column. 

Immobilised material was eluted in a linear gradient over 15 CV to I M NaCl (Figure 3.48-

B). The elution profile shows two slightly overlapping peaks. SDS-PAGE analysis of the 

fractions spanning both peaks bands of similar mobility. Fractions corresponding to the 

second peak exhibit some degradation. The appearance of two baseline-resolved peaks likely 

reflects the aforementioned "ragged" N-terminal sequence. The fractions exhibiting a single 

band were pooled and concentrated. 
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Figure 3.48 Expression and purification of FH-13. (A) Shaker-flask expression of FH-13. The 

band corresponding to FI-I-13 is marked by an arrow. (B) Cation-exchange chromatogram of 

pre-purified FH-13(C) Gradient SDS-PAGE of fractions indicated in B). 

This clone was used to express FH-13 that was used for determination of the high resolution 

NMR structure for by Chris Fenton. This exercise clearly validates the integrity and structure 

of recombinantly expressed FH-13. 

3.1.17 Construct FH-13-15 

The FH-13-15 coding sequence was cloned into the pPICZctB vector and transformed into P. 

pasloris (Figure 3.2). 

A small-scale expression trial of clones selected on YPDS plates containing 150 

jig/mi Zeocin is shown in Figure 3.49-A. The presence of N-glycosylation sites necessitated 

enzymatic removal of the Asn-linked glycans. 
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spression trial of six clones expressing FH-13-15 (highlighted by an arrow); reducing and non-

reducing conditions apply to lanes 1-6, and 7-8, respectively. (B) EndoH,-treated supernatant 

from shaker-flask expression. The dominant band (highlighted by an arrow) shows the mobility 

cpected for Fl-1-13-15. Reducing and non-reducing conditions apply to lane I and 3, 

respectively. Triangles indicate bands (non-reducing conditions) corresponding to mobilities of 

(linicrised and trirrierised 1-11-13-1 5. 

I 11-13-I 	\ as e\prL-sed III 	IiaLer-l1k,. l.iidol I-treated superliatant \'as rin on a 
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isible. Under non-reducing conditions degradation bands appear to be absent or less 

p;oiuriced. I his effect as ohser ed for sonic other constructs and is discussed above. 

Sini i lark to the observation for 111-10-15. FH- II - 4 and I H-I 3-1 4 a proportion of 

dimerised and trimerised FH-13-15 is visible on the gel, under non-reducing conditions. 

Following harvest the supernatant was diluted 1:1 and passed over two in-line connected 

HiTrapTM Heparin columns (dimensions of each: 7 mm x 25 mm - Amersham Biosciences) 

equilibrated with 20 mM sodium acetate buffer. pH 5.0. Bound material was eluted in a 

linear gradient over 20 column volumes to I M NaCl (Figure 3.50-A). FH-I3-15 eluted in a 

broad peak, likely reflecting the presence of multiple FH-13-15 species (dimers and trimers). 

For separation of oligomers the eluted protein was concentrated and loaded onto the HiLoad 

Superdex 75 size-exclusion column (equilibrated with 20 mM potassium phosphate buffer, 
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Figure 3.50 Purification of FH-13-15 (A); diluted and deglycosylated FH-13-15 fractionated by 

heparin-affinity chromatography. (B) Concentrated and pre-purified FH-13-15 was loaded 

onto the size-exclusion column. (C) Gradient SDS-PAGE of fractions indicated in B). on-

reducing and reducing conditions apply to lanes 1-7, and 9-10, respectively. 

tinder reducing conditions a distinct degradation band appeared in SDS-PAGE analysis. 

While a similar phenomenon was observed for other constructs, the relatively high level of 

degradation shown for FH-13-15 is unusual. Also the tendency to oligomerise, as judged by 

the proportion of monomeric to dimeric and trimeric species (on a non-reducing gel - sample 

taken from crude supernatant after harvesting), is observed to be higher for FH-13-15 than 

for any other construct. Fractions 47 to 49 were pooled and concentrated. Partial validation 

of primary structure was obtained from a tryptic-digest MS (Figure 3.51). Acquisition of a 1-

D 'H NMR experiment revealed upfield-shifted methyl peaks in the 'H-NMR spectrum 

implying that folded material pre-dominates. However, the 1umpy' appearance of the 

spectrum is consistent with some degree of aggregation and/or the presence of some 

improperly folded material. These findings are consistent with the enhanced tendency of 

oligomerisation and degradation observed for FH-l3-15. 
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A 
Sequence coverage: 42 (76 of 178 amino acids) 
1 11 21 31 41 51 61 71 
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Figure 3.51 Validation of FH-13-15 (A) Sequence coverage in peptide mass fingerprinting for 

FH-13-15. The amino acid sequence of Fl-l-13-15 is shown; highlighted in red are matched 

peptide masses, underlined are trypsin cleavage points (for mass spectrum of peptide 

fingerprint of construct FH-13-15 see Appendices). (B) 'H-NMR spectrum of FH-13-15; 

Spectrum shows some degree of peak broadening and generally has less sharp and well resolved 

peaks. The NMR sample is 100 ,tM in 20 mM potassium phosphate buffer, pH 6.6. 

3.1.18 Construct FI-1-14 

The FH-14 coding sequence was cloned into the pPICZaB vector and transformed into P. 

pasloris (Figure 3.2). A small-scale expression trial (Figure 3.52) was performed on five 

colonies that were selected on YPDS plates containing 150 tg!ml Zeocin. Deglycosylated 

samples were analysed by SDS-PAGE. No protein band was visible from any of the five 

selected clones. To compare expression of F1-I-14 to other FH deletion-module constructs a 

mini-scale expression trial of different constructs was performed in parallel. The clones of all 

constructs subjected to this mini-scale expression (FH-1 I. Fi1-1 1-14, FH-12, FH-12-13 and 

FH-14) have been selected on agar plates that contain 150 ig/ml Zeocin. Supernatant from 

FI-1-12, FH-14, FH-1 1-14 and FH-12-13 cultures were deglycosylated prior to spin- 
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concentration and SDS-PAGE. Only the supernatant of construct Fl-I-14 was concentrated 

by 50-times: the supernatant from all other constructs was concentrated 10-fold. 

	

FH-11 	FH-12 	FH-14 	FK-11-14 	FH-12-13 
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Figure 3.52 Expression-level comparison on gradient SDS-PAGE. Constructs and loading 

conditions (reducing or non-reducing) are indicated. 

In spite of a five-fold higher concentration level (also reflected in the denser background of 

P. pastoris proteins) no clear band corresponding to the expected size of a single CCP 

module was visible in the lanes of FH-14. For a conclusive assessment as to why FH-14 

could not be expressed in this study, more detailed analyses and higher sample numbers 

would be needed. It is hypothesised, however, that the lack of expression of FH-14 could 

reflect problems in folding when expressed as a single module. Improperly folded material 

would not be directed to the secretion-pathway, but would be sent for recycling to the 

proteasome. 
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3.2 Conclusions - protein production, purification and 

characterisation 

Structural and biophysical studies of proteins are critically dependent on the provision of 10 

-i 0 g-quantities of pure proteins. When the target protein is large and flexible with 

multiple binding sites, the ability to produce more experimentally tractable truncated 

versions, via genetic engineering, is paramount. For NMR purposes, isotopic labelling is a 

virtual requirement mandating the use of organisms with simple nutritional requirements. In 

the case of extracellular proteins with disulfide linkages, bacterial protein production is 

notoriously problematic. These considerations formed the background to the work of this 

chapter that has illustrated the utility of P. pastoris as an expression vector for production of 

multiple-module segments of FH. 

Mammalian, insect, yeast and bacterial vectors have all been applied to the 

production of proteins and protein-segments from the RCA family (reviewed in (2)). 

Mammalian and insect systems suffer from the drawback that isotopic enrichment is 

expensive; disulfide-containing proteins expressed in bacterial systems often require re-

folding. Yeast has proved the method of choice in this laboratory, and the methylotropic 

yeast P. pastoris - with the option of fusing the target protein to a cleavable secretory signal 

peptide - has proved to be particularly advantageous. The double-CCP protein FH- 19-20 had 

previously been expressed in large quantities in P. pastoris (51), and shown to be properly 

folded and functional; more recently the P. pastoris-produced proteins FH-1-2, FH-2-3 and 

FH-1-3 were used in a detailed structural analysis of the N-terminal region of FH (148). The 

current work greatly extends these protein production efforts and demonstrates that this 

vector is also suitable for producing proteins containing many more modules - as many as 

eight in the case of FH-8-15. Moreover, these recombinant proteins are folded as judged by 

1-D and 2-D NMR spectra. 
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The results described here also illustrate the potential difficulties that arise from the 

use of P. pastoris to express multiple-CCP module products. Some logistical issues such as 

the relative complexity of cloning (compared to bacteria), the multiple days required for cell 

culture, and the large volumes of supernatant that require processing have to be factored into 

work-schedules but do not constitute insurmountable barriers to progress. The tendency of P. 

pastoris to attach high-mannose sugars to N-glycosylation sites is a disadvantage but this can 

be •  dealt with by mutagenesis or by post-harvest removal of glycans (leaving a G1cNAc stub) 

with EndoHf  (although there is an associated risk of proteolysis). There are few reports of 

selective isotopic labelling in P. pastoris of the sort used in recent years for isotopic 

enrichment of larger proteins in E coli, so this is a limitation at least until similar labelling 

strategies are devised for the higher organism. Finally, several of the protein products 

exhibited a tendency to form dimers, trimers and tetramers some of which appeared, 

puzzlingly, to survive the process of SDS-PAGE under non-reducing conditions. Thus it 

proved impossible to produce the target segments FH-13-14 and FH-14. 

Despite these hurdles, the current work resulted in a panel of validated proteins 

corresponding to segments of FH. Together with segments produced in previous work in 

this lab, these provide "coverage" of some 85% of the factor H molecule. They thus form a 

uniquely valuable resdürce for the functional and structural work described in the next two 

chapters. 

145 



CHAPTER 4 

FUNCTIONAL STUIMES 13  

13  Parts of this chapter have been published in (1), (3). 
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4.1 Perspective 

A key biological role of Fil is to ensure that the alternative pathway of complement 

activation operates selectively on pathogenic surfaces (as opposed to self-surfaces). The 

principal ligands involved in this process of self versus non-self discrimination are surface-

bound C3b molecules, and polyanionic carbohydrate structures (glycosaminoglycans 

(GAGs) and sialic acid). This work set out to establish structure-function relationships for 

FH; the previous chapter described the production of a set of recombinant proteins 

representing various regions of the FH molecule. In this chapter, the functional 

characterisation of these proteins is described. In order to investigate the carbohydrate ligand 

of FH, heparin was employed for most studies. Heparin itself is a soluble (rather than a cell-

surface) GAG and is heterogeneous, but it is widely used as a model compound in protein: 

GAG interaction studies due to its ready availability. It consists predominantly of a repeating 

disaccharide unit consisting of 2-0-sulfated iduronic acid and 6-0-sulfated, N-sulfated 

glucosamine. Levels of sulfation are variable but, overall, heparin is one of the most 

negatively charged molecules in nature. It resembles the abundant surface-bound GAG, 

heparin sulphate. In the current study, either heparin-affinity columns were purchased and 

used in chromatographic assays, or enzymatically digested and size-fractionated preparations 

of heparin were employed in gel mobility shift assays (see METHODS). For studies of C3b 

binding, commercially available C3b protein molecules were immobilised on sensor chips 

and SPR (see METHODS) was utilised to measure affinities. Although the chip surface is 

only an approximate representation of the cell surface it nonetheless allows a reproducible 

and quantitative assessment of protein-ligand interactions. 

147 



FUNCTIONAL STUDIES 

4.1.1 Analysis of Heparin binding sites in FH 

First, it was attempted to confirm a previous report that FH CCP 9 harbours a GAG-binding 

site (61). 
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J 600=- 

13-15 
0.013 / 

0 I 400 
0.008 

0.003 200 

5 

0.023 

1-14, b 0.018 600 
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::008 

8  

0.048 1000 
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Arg-Arg-8-9 0.038 800 8 

'L015025 I ml 

Figure 4.1 Factor H segments employed in this study and results of heparin-affunity 

chromatography. (A) Schematic of FH with CCPs implicated in heparin binding shaded: black, 

well-established sites in CCPs 7 and 20; grey, putative sites in CCPs 9 and 13 under 

investigation here. Recombinant protein constructs employed in the present study are also 

drawn. Profiles of FH segments on a l-IiTrap heparin-affinity column are shown in (B-D). Ten 

proteins were chromatographed individually but plotted here on one of three frames, each with 

a representative trace to show the salt gradient applied: (13) FH-7-8, FH-8-9, FH-8-15, and FH-

RR89 (indicated by *); (C) FH-10-12, FH-10-15, FI-I-11-14, and FH-12-13; and (D) FH-13-15 and 

FH-1 9-20. 
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Fully characterized and authenticated FH-8-9 eluted from a HiTrap column (Figure 4.1-13) in 

20 mM phosphate buffer (p1-I 7.4) with no additional salt; on the other hand, >150 mM NaCl 

was required to elute the positive controls, FH-7-8 and FH-19-20 (Figure 4.1-13 and -D). In a 

consistent result, FH-8-9, unlike the positive controls, failed to retard the mobility of a range 

of purified, defined-length heparin-derived oligosaccharides in a GMSA (Figure 4.1-A and - 

C). 

A 
FH-19-20 	 - 	 FH-12-13...._. 1 	 FH-13_... 

DP4 	 DP12 

- 

C 	FH- 7.8 7-8 8-9 8-9 * 	* 	FH- 	10-12 	6.8(H) 10-15 

DP1 2 - 	+ 	- 	4- 	- 	+ 	 - 	8-9 	12-13 13.15 - 	11-14 	8.15 

_ 	 DP1O •L 

OP 2 2 4 4 6 6 8 8 10 10 12 12 	OP 4 4 6 6 8 8 10 10 12 12 
FH-13 	- -4- 	-- - + - + - ± - + 	FH.12.17 - 	- + - + - + - + 

D 

Figure 4.2 Gel-mobility shift assays. In the GMSA, electrophoretic migration toward the anode 

(upward in this figure) of fluorescently labelled heparin oligosaccharides (1 tg), of defined 

degree of polymerization (DP, Le. number of sugar units), can be retarded by binding to 

equimolar amounts (unless otherwise stated) of the indicated FH segments. Note that the 

resulting fluorescent protein-heparin complex often stays in, or close to, the well, resulting 

frequently in loss of fluorescent intensity (relative to the free oligosaccharide) upon subsequent 

gel handling. (A) Increasing ratios of FH-19-20 to DP4 demonstrate retardation of sugar 

migration by this positive control (lanes contain, from left to right, no protein, blank, 0.7:1, 

1.4:1, 2.8:1, 7.0:1, and 13.8:1 molar ratios of protein-DP4). (B) Even at a 4:1 ratio of protein to 

sugar, neither FH-13 nor FH-12-13 bind to DPI2 (lanes contain 0:1, 1:1, 2:1, and 4:1 ratios, 

from left to right). (C) The GMSA shows clearly that FI-1-7-8 binds to sulfated heparin 

fragments DPI2 while FH-8-9 does not. The exact construct reported by Ormsby et aL (61), 

signified by an asterisk, retards migration, although less markedly than does FH-7-8. Unlike 

positive control FH-6-8 1402 , none of the segments between CCPs 8 and 15 retards migration of 

more than trace amounts of DPIO. (D) Neither FH-13 nor FH-12-13 binds to longer fragments 

of heparin (up to DPI2). 
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This lack of detectable affinity for heparin by FH-8-9 is in apparent contradiction to the 

previously published report of significant binding of hepann by several constructs that 

encompass CCP 9 (61). Explanations based on mis-folding of FH-8-9 may be eliminated on 

the basis of its NMR-authenticated structure (see CHAPTER 3). To investigate further, the 

same sequence as was used in the key experiment of the previous published study was 

analysed: i.e. FH-8-9, which incorporates an N-terminal sequence artefact containing two 

Arg residues. This construct does indeed bind to a HiTrap heparin-affinity column 

significantly better than does FH-8-9 (Figure 4.1-B) and almost as tightly as the positive 

controls. It also binds to sulfated heparin fragments according to GMSA (Figure 4.2-C). The 

clear implication is that the extraneous di-basic sequence contributes non-specifically to the 

heparin-binding affinity of FH-8-9. To investigate further, a synthetic peptide of sequence 

EFTWPSRPSRIGTKT' 4  was tested for binding to heparin-affinity resin. This sequence 

matches the non-native sequence at the N terminus of FH-8-9 plus two native residues 

(Lys and Thr). The peptide was found not to have a strong affinity for heparin (data not 

shown). It is therefore concluded that the heparin binding site in FH-8-9 is a composite of 

non-native N terminus and native sequence. 

Based on a previous report of heparin binding to CCP 13 or CCP 14 of FH (67), this 

potential GAG-interacting site was investigated further. Of note is that CCP 13 has more 

positively charged residues than do other CCPs in FH. Surprisingly, FH-12-13 failed to 

adsorb to either of the two heparin-affinity columns (see METHODS) used in this study at 

physiological salt concentration and pH (Figure 4.2-C). Nor did FH- 12-13 bind to defined-

length (from 4 to 12 sugar units) heparin-derived oligosaccharides in the GMSA (Figure 4.2-

B), even at a 4:1 ratio of protein to sugar. It was conceivable (prior to the determination of 

the 12-13 structure, see CHAPTER 5) that their long (eight-residue) intermodular linker 

allows CCPs 12 and 13 to arrange themselves side-by-side in the context of the isolated pair 

14  Peptide EFTWPSRPSRIGTKT was purchased from Sigma. 
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such that the putative GAG-binding site on CCP 13 is inaccessible. This possibility was 

eliminated by our observation that, when expressed as a single module, CCP 13 (FH- 13) was 

unable to bind GAGs (Figure 4.2-B and D). It was also considered a possibility that residues 

from module 14, or from the 13-14 linking sequence, are required to complete a GAG-

binding sub-site in CCP 13. This option was excluded by a study in which it was observed 

(Figure 4.1-C and Figure 4.2-C) that FH-1 1-14 is neither retained to a significant extent on a 

heparin column nor does it bind to heparin in a GMSA. Next, the possibility was considered 

that CCP 14 rather than CCP 13 might be central to a longer putative binding site. With this 

in mind, FH-13-15 was produced, but it was also found not to bind the heparin-affinity 

column or to produce more than a hint of binding according to GMSA (Figure 4.1 -D and 

Figure 4.2-C). The presence (as judged by NMR) of some unfolded or aggregated material in 

the FH-1 3-15 sample would be most unlikely to explain this lack of binding by the majority 

of folded FH-13-15 material that is also present. Thus, these results show clearly that 

modules 13 and 14 of FH and their immediate neighbours do not constitute a discrete GAG-

binding site comparable to the ones present in CCP 7 and CCP 20. 

Having failed to detect heparin binding within CCPs 8 or, 9 or CCPs 11-15, 

intervening modules were chosen for examination. FH- 10-12 was not retained on a heparin 

column nor was it positive by GMSA (Figure 4.1-C and Figure 4.1-C). It was reasoned that 

CCPs 12-13 (small modules joined by a long linker) might allow the FH molecule to fold 

back upon its self, allowing non-neighbouring modules to form a composite GAG-binding 

site (this was subsequently shown to be the case - see CHAPTER 5). To investigate this 

further, a construct that includes two CCPs on either side of FH-12-13 was analysed next. 

This construct - FI1-10-15 - did, not bind heparin with significant affinity (Figure 4.1-C and 

Figure 4.2-C). Finally, FH-8-15 was tested in order to find out whether CCPs 9 and 13 might 

individually be relatively weak GAG binders but nonetheless contribute to a common, higher 

affinity GAG binding site. Despite encompassing two previously reported GAG-binding 
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modules, this longer construct does not have significant hepann affinity (Figure 4.1-B and 

Figure 4.2-C). 

4.1.2 Comparison of heparin binding between the AMD-protective 402Tyr 

and the at-risk 402H allotypic variants in the contexts of CCP 7 and 

CCPs 6-8' s  

Since FH contains two strong GAG-binding sites (i.e. CCPs 7 and 20) that likely compete or 

cooperate in biochemical binding assays, the heparin binding properties of the binding site 

centred in CCP 7 were investigated in the context of the single-module variants FH-

7y402/FH-7H402 and triple module variants FH-6-8 y402/FH-6-8H402. (A detailed study of FH-

1 9-20:heparin interactions was undertaken previously in this lab by A. Herbert) (51).) 

A mixture of the His and Tyr variants of triple module proteins (CCP6-8) could not 

be resolved on a heparin-affinity column (Figure 4.3). 

Figure 4.3 A mixture of His402 and Tyr402 CCP 6-8 (triple modules) applied on a Poros 

heparin-affinity column. 

They also bound equally well to a panel of chemically pure, defined-size, fully sulfated 

hepann fragments (Figure 4.4-A). A similar observation was reported for these variants in the 

This work was undertaken together with and under guidance of Dr Andrew Herbert The GMSAs 
were performed by in the lab of Malcolm Lyon, Paterson Institute for Cancer Research, University of 
Manchester, UK. 
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context of full-length FF1 (1). However, when the I -1is402 and Tyr402 variants were tested in 

the context of isolated CCP 7, base-line resolution on a heparin-affinity column (pH 7.4) 

(Figure 4.4-13) could be achieved. Moreover, irrespective of oligosaccharide length. Tyr402 

CCP 7 retards a higher proportion of heparin than His402 CCP 7 according to a GMSA 

(Figure 4.4-A). 

A 	HeparinDP 22244 	4666888101010121212 
FH allotype I IIY 	I! 	V 

FH-6-8 
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FH-7 •'W' 

Dermantan sulfate DP 	4 4 4 (, 	6 8 8 8 10 10 10 12 12 12 
FHallotype 	 ff N . 	II V 	H V 	H V 	H V 
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Figure 4.4 Affinity of FH-7 and FH-6-8 His402 and Tyr402 allotypes for GAGs (A) Comparison 

of GMSA data for His402 and Tyr402 allotypes of CCP 6-8 (top) or CCP 7 (middle) with 

defined-length heparin oligosaccharides (degree of polymerization (DP) values refer to the 

number of monosaccharide units). A four-fold molar excess of FH-7 was added to 0.5 g of 

oligosaccharide, or equimolar amounts of FH-6-8 were added to 0.5 g of oligosaccharide. 

Bottom, a comparison of GMSA data for His402 and Tyr402 allotypes of FH-7 with defined 

length dermatan sulfate oligosaccharide; equimolar amounts of FH-7 were added to 0.5 g of 
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ohgosaccharide. (B) A mixture of His402 and Tyr402 CCP 7 (single modules) separated on a 

Poros heparin-affinity column. 

This effect is most pronounced for shorter oligosaccharides (di- and tetrasaccharide). A 

simple non-specific charge effect seems unlikely since the Tyr402 allotype of CCP 7 binds 

more strongly than the potentially positive His402 variant. Although CCP 7Y402  binds 

heparin more tightly than does CCP 7H402,  such discrimination is not manifested towards a 

panel of size-fractionated dermatan sulfates (in a GMSA experiment (Fig. 77-A)). This 

observation indicates that there are GAG-specific differences between the binding properties 

between the two allotypes. These results are discussed further in CHAPTER 6. 

4.2 Analysis of C3b-binding sites 

1.2.1 Mapping of C3b-binding sites of FH 

When acting as a complement regulator on self surfaces, FH presumably binds 

simultaneously to both GAGs and C3b. The affinities for C3b of various segments of FH, 

employing constructs FH-1-4 and FH-19-20 as positive controls, were measured by SPR. For 

these exploratory experiments Kd values were not determined, but affinities were compared 

based on the number of response units (RU) measured (that correlates with the amount, of 

analyte that is bound to the sensor chip) when a 10 pM solution of the fragment was passed 

over the chip surface. Table 4.1 summarises the C3b-coated sensor-chips prepared for this 

work. 

Chip (type) 
Flow cell 1 

C3b loading 
Flow cell 2 

(RU) 
Flow cell 3 Flow cell 4 

A(CM5) 0 4109 0 4104 

B(CM5) 0 384 1593 3002 

C(C1) 0 140 499 752 

5RU = response units; Reference surfaces (0 RU) were prepared as described in Materials and Methods. 
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Table 4.1 Chip-surface summary. C3b was amine-coupled to three flow-cells of two CM5-chips 

and one Cl-chip. The CM5-chip surface is characterised by a carboxymethylated dextran 

matrix that is covalently attached to the sensor-chip surface. The Cl-chip surface is directly 

carboxymethylated and therefore matrix-free. 

Figure 4.6-A illustrates the quality of the sensorgrams; Figure 4.6-13 summarises the size of the 

response (normalized to the binding of FIT- 19-20) obtained both before and after adjustment 

to take account of the molecular weight of the analyte. 

The construct FH-11-14 incorporates the previously inferred C3b-binding modules 

12-14, yet its affinity for C3b was found to be insignificant compared with that of FH-1-4 or 

FH-19-20 (Figure 4.6). The presence of a putative C3b-binding site in modules 12-14 had 

been deduced from module-deletion experiments, the interpretation of which may have been 

complicated by neighbouring-module effects. To investigate this, FH-10-12 and FH-13-15 

were also tested, but were found to have no affinity for C3b either. Nonetheless, the 

possibility of a composite binding site for C3b, requiring cooperation of non-contiguous 

stretches of modules, could not be eliminated on the basis of results obtained with shorter 

constructs. Therefore, the six-module construct FIT- 10-15 was tested for C3b binding. With 

this construct a response (at a target loading of 4200 RU) of < 4 RU was obtained, which 

was interpreted as reflecting negligible affinity (Figure 4.6). Finally, FH-8-1 5, the longest FH 

construct that has been expressed so far, was tested for C3b-binding affinity; some evidence 

of binding was detected when a 10 jrM sample was passed over the sensor chip (Figure 4.6), 

although the response obtained was significantly smaller than that obtained from injection of 

even 1 liM positive controls. This implies that CCPs 8 or 9 contribute wholly or partly to a 

weak C3b binding site. On the other hand, the double module FH-8-9 was found not to have 

a measurable affinity for C3b according to this assay. It was therefore concluded that there is 

likely some degree of cooperativity between low-affinity sites in module 8 or 9 and another 

low-affinity site within the 10-15 region. 
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Figure 4.5 Surface plasmon resonance experiments to compare affinities for C3b binding of 

both allotypes of CCPs 6-8, 402V and 402H. Duplicate traces recorded on flow cell 4 of chip A 

are shown (see Table 4.1). 

A further weak C3b binding site was detected in CCPs 6-8. The relative binding of 1 -1402 and 

Y402 FH-6-8 was compared; these were found to bind with approximately equal strengths 

(Figure 4.5). 
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Figure 4.6 Surface plasmon resonance experiments to identify C3b-binding segments of FH. (A) 

The duplicate traces recorded during one experiment in which a series of 10 iM solutions of the 

segments indicated were flowed across flow cell 4 of chip A (see Table 4.1). These serve to 

illustrate data quality and reproducibility but also to highlight differences between the sizes of 

response for the various segments. Note that the traces for FH-10-15, FH-8-9, FH-12-13, FH-13-

15, Fl-l-10-12, and FH-11-14 are all very close to the baseline. (B) Bar charts to illustrate the 

strength of the response obtained for each FH segment on CM5 chips bearing immobilized C3b 

(inset: a 12-fold y-axis expansion of the responses from segments covering the CCPs 8-15 

region). Coloured bars indicate averages of multiple readings, normalized to reflect differences 

in the target density (and expressed as a percentage of the response obtained for FH-19-20). 

Coloured bars with black diamonds show the same data following adjustment to take into 

account the direct correlation between a response and the M r  of an analyte. Error bars indicate 

SEs from the mean and are for four measurements (duplicate runs on two flow cells on chip A) 

with the exception of FH-1-4 (6 measurements on three flow cells of chip B) and FH-19-20 (10 

measurements in total on five flow cells of chips A and B). 
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To investigate the role of module 8 more thoroughly, the C3b binding behaviour of FH-7-8 

was assayed. Surprisingly, since the possibility has not received serious attention before, FH- 

7-8 (Y402) binds C3b (the 11402 allotype of 7-8 was not examined). Taking into account its 

smaller mass (two modules in FH-7-8 compared with eight in 8-15), the sensorgrams 

indicate that significantly more FH-7-8 molecules bind to the C3b-coated chip compared 

with Ffl-8-15 under comparable conditions, although FH-7-8 binding is still much weaker 

compared with FH-19-20. This implies that module 7 is a more important contributor to C3b 

binding. 

1.2.2 Further characterisation of major C3b-binding sites in FH 

To further investigate the extent to which the binding to C3b of the major sites, CCPs 1-4 

and 19-20 contribute to the FH-C3b interaction, Kd values were measured for FH-1-4 and 

FH-19-20 and compared to that of full-length FH. These experiments were repeated at 

several C3b densities and on two different types of sensor chip (Figure 4.7, Table 4.1 and 

Table 4.2 and APPENDICES). The averaged Kd values of FH-1-4 and FH-19-20 (as 

measured on the CM5 dextran-coated chip surface) are approximately eight- and two-fold, 

respectively, weaker than that of full-length FH. 

158 



FUNCTIONAL STUDIES 

	

A Response 	

20 M 110  
FH-I-4 	

90 	 10M 

50 

30 

Response 
200 

150 	 Increased 

100 loading of 

00 	50 	10.0 	15.0 	200 conc 

B 
Fl-I-19-20 

90 

70 

50 

30 

10 	 FL  
30 	80 	130sec 	 00 	30 	6.0 	9.0 

C 
340 

	

FH 290 	 4pM 	 600 

	

140 	 300 

30 	80 	130sec 	 0.0 	1.0 	2.0 	3.0 	4.0 COflC 

IpMJ 

Figure 4.7 Use of SPR to measure dissociation constants for major C3b-binding sites in FH. 

Duplicate sensorgrams are shown for (A) Fl-l-1-4, (B) FH-19-20, and (C) full-length FH at a 

range of analyte concentrations (FI-l-I-4, 0.05-20.4 p.tM; FH-19-20, 0.05-10 ?IM; FH, 0.01-3.93 

,iM) (left panels). These data are illustrative and show results obtained using flow cell 3 of chip 

B (CM5) (see Table 4.1). Right panels; plots of the response obtained vs. analyte concentration 

at each of three C3b densities (as indicated) on chip B (CM5). The equivalent data (FH-1-4, 

0.05-102 tM; FH-19-20, 0.05-50 tM; FH, 0.01-3.93 riM) obtained on chip C (Cl) are not shown 

here (see APPENDICES), but all Kd measurements for C3b are summarized in Table 4.2. 

These results are consistent with a modest avidity effect arising from the simultaneous 

occupancy of the two major 0b-binding sites. To investigate further, these measurements 

were repeated on a Cl chip, and the loading on the Cl chip of C3b was minimized in an 

attempt to achieve a situation where adjacent molecules of C3b in appropriate orientations 

are unlikely to be available for binding to a single FH molecule. The Kd values obtained on 
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the Cl chip are comparable to those measured on the CM5 chip, but display a slightly larger 

avidity effect (Table 4.2). 

Chip (type) Protein / Kd ± S.E.M (.LM)S 

Flow cell 2 Flow cell 3 Flow cell 4 Combined& 

FH-1-4 14.5 ± 0,5 13.7 ± 0.3 13.5 ± 0.3 13.5 ± 0.2 

B(CM5) FH-19-20 4.7±0.3 3.7±0.2 3.4±0.2 3.5±0.1 

FH 2.2±0.1 1.8± 0.1 1.5±0.1 1.6±0.1 

FH-1-4 10.0 ± 0.3 9.3 ± 0.5 10.0 ± 0.5 9.8 ± 0.3 

(Cl) FU-19-20 7.8± 1.7 4.6±0.8 4.4±0.8 4.5±0.5 

FH 0.70 ± 0.06 0.63 ± 0.07 0.56 ± 0.07 0.59 ± 0.04 

[)erived Kd values are plus or minus the standard error of the mean (S.E.M.) calculated from the data 
exemplified in Figure 4.7, as described in Methods. 

' Obtained by combining data from all three of the flow cells, i.e. at three different C3b loadings, on the 
sensor chip. 

Table 4.2 Derived Kd values for interaction of C3b with FH, and with FH fragments that 

correspond to its two major binding sites. 

4.3 Analysis of the binding sites for C3b-cleavage products, C3c 

and C3d 

In a preceding section it was shown that the central modules of FH (embracing its CCPs 9-

15) do not harbour any discrete binding sites for C3b according to SPR. In vivo, C3b gets 

cleaved by factor I (in the presence of FH and other cofactors) creating the C3dlC3dg 

fragment (that corresponds to the thioester domain of C3/C3b and remains bound to the 

surface) and the larger C3c fragment representing the bulk of the original C3 molecule (see 

CHAPTER 1). The cleavage process reveals previously buried regions of these molecules 

that serve as nascent interaction sites for a range of receptors. In a previous paper that 

reported the "third" C3b binding site in FH, a case was made for the C3c-portion of C3b 
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being the binding site of CCPs 12-14 region of Fil (60). Thus it remained possible that the 

central modules of FH bind better to C3c than intact C3b. 

To investigate this possibility further an experiment was designed based on SPR. To 

ensure that a direct comparison could be made between C3b- and C3c-binding affinities, 

these molecules were coated (by amine coupling) onto different flow-cells (flow-cell 2 = 

C3c, flow-cell 4 = C3b) of the same CM5 chip. As a further control, C3d was immobilised 

on the surface of the third flow-cell. An effort was made to achieve approximately equal 

densities of protein molecules on all three chip-surfaces resulting in loadings of 2984 RU for 

C3b, 2371 RU for C3c and 509 RU for C3d. These translate to mole-ratios of 1.04:1 and 

0.88:1 for C3c and C3d, respectively, versus C3b. That the recombinant FH segments and 

the amine-coupled C3b were interacting in the expected way was confirmed by the results 

for flow-cell 4 (Figure 4.8) - FH-19-20 gives a larger response than FH-1-4, while FH-6-8 

gives a weak response and FH-8-15 a still weaker one. The results for C3d (immobilised on 

flow-cell 3) are also consistent with all the previous work - only Fil- 19-20 binds appreciably 

to this fragment. These positive and negative controls increased confidence in the reliability 

of the results obtained for C3c. In the case of this fragment, however, no appreciable binding 

was recorded for any of the FH segments, including FH-8-15 that incorporates the previously 

reported C3c-binding site. 
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Figure 4.8 Surface plasmon resonance experiments to identify C3b-, C3c- and C3d-binding 

segments of FH. (A) The duplicate traces recorded during one experiment in which a series of 

10 tiM  solutions of the segments (colour coded) were flowed across three flow cells coated with 

2984 RU of C3b, 2371 RU of C3c and 509 RU of C3d. These not only confirm the findings for 

C3b, but also highlight differences between the sizes of response of the various FH segments for 

different fragments of C3. 

In an additional experiment, an attempt was made to measure the affinity of full-length FH 

for immobilised C3d. As before, C3b, C3c and C3d were coated on separate flow-cells of the 

same CM5 sensor chip. The positive control (FH versus C3b) demonstrated that these 

molecules were behaving as expected (Figure 4.9) i.e. that the FH employed in the study had 

functional integrity, and that the SPR technique was working. Interestingly though, only a 

weak interaction between FH and C3d could be detected under these conditions. 
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Figure 4.9 Surface plasmon resonance experiments with FH and FH-19-20 to identify affinities 

for C3b, C3c and C3d. The duplicate traces recorded during one experiment in which a series of 

5 ftM solutions were flowed across three flow cells coated with 1494 RU of C3b, 1191 RU of C3c 

and 310 RU of C3d. These translate to ratios of 1.04:1 and 1.07:1 for C3c and C3d, respectively, 

versus C3 b. 

Given the consequent inability to measure a Kd for C3d of intact FH, it was decided to 

perform this measurement using FH-19-20 16 . For this experiment, a Cl sensor chip was 

coated with three densities of C3d molecules (33 RU. 102 RU and 153 RU). A range of 

concentrations of FH-19-20 was passed over the chip allowing the derivation of the Kd = 6.9 

tM. This may be compared to the Kds previously measured for the FH-19-20:C3b 

interaction (3.5 jtM and 4.5 jiM for CM5 and Cl chips). The comparison implies that a 

significant portion of the binding contacts in the C3b-FH complex are provided by the 

C3b(TED)-FH-19-20 interactions (discussed further below). 

16  This experiment was performed together with, and under the guidance of Dr. Andrew Herbert. FH-
19-20 was provided by Dr Andrew Herbert. 
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Figure 4.10 Use of SPR to measure FH-19-20 dissociation constant for C3d. (A) Duplicate 

injections of F11-19-20 at a range of analyte concentrations (0.1-48 pM). These data are 

illustrative and show results obtained using flow cell 4 (Cl-chip-surface coated with 154 RU of 

C3d). (B) Plots of the response obtained vs. analyte concentration at each of three C3d densities 

(33 RU, 102 RU and 154 RU of C3d) on a Cl-chip surface. 

Taken together. these results provide a self-consistent picture of FH engaging through its N-

and C-terminal regions with two distinct sites on C3b. at least one of which (the Fl -1-19-20 

target) is in the TED region. Both of these sites for full-length FH are apparently lost upon 

cleavage of C3b (despite the fact that affinity for the cleaved-off C3d is detectable in Fl-l-19-

20 when examined in isolation from the rest of the FH molecule). 

4.4 Conclusions 

Factor H has an apparently simple structure - being composed entirely from CCP modules - 

but has a sophisticated function that involves engagement with both protein and 
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carbohydrate ligands. Previous work had suggested a multitude of binding sites on FH for its 

two principal binding partners - GAGs and C3b - that were difficult to reconcile with a 

plausible mechanistic model. This chapter described a systematic attempt to map binding 

sites by examining the binding abilities of recombinantly expressed segments, covering 85% 

of the FH molecule, which have been carefully checked for purity and structural integrity 

(see CHAPTER 3). 

The current work is consistent with multiple literature reports that identified 

modules 6-8 and modules 19-20 of FH as being important for binding to GAGs (the potential 

differences between GAG-binding by the Y402 and 11402 allotypes are considered in the 

DISCUSSION). Indeed these well-established sites served as useful positive controls for the 

two methods employed here to measure affinity for GAGs - heparin chromatography and 

GMSA. Reassuringly, both methods gave very similar results. Thus the lack of GAG-

binding, inferred from the present study, by CCPs in the central portion of FH is strong 

evidence that this region of the regulator interacts weakly, if at all, with the polyanionic 

carbohydrates in the vicinity of surface-bound C3b. This is despite the contrary claims of 

previous studies in the literature and the highly positively charged nature of CCP 13. 

Indeed, in the case of FH-8-9 the reported heparin-binding site (61) was clearly shown to be 

an artefact. There remains the possibility (considered in the DISCUSSION) that, by 

focussing mainly on heparin as a model GAG, important interactions have been missed. 

Nonetheless, the simplest interpretation of the current results is that there are only two GAG 

binding sites in FH. 

The current work also confirms the C3b-binding sites at the N- and C-terminal 

modules of FH; it furnishes Kd values for these sites with respect to C3b that is immobilised 

by amine-coupling to the surface of sensor chips, and provides evidence for cooperative 

binding of these two sites to a single C3b molecule (Figure 4.11). 
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Figure 4.11 Bar-chart diagram summarising Kd values determined for C3b binding of FH 

(green and blue stripes), FH-1-4 (light blue) and FH-19-20 (green). On the left: Sketch 

representation of C3b molecules (pink) immobilised on the dextran matrix of a CM5-chip 

surface (top) or on the carboxylated matrix of a Cl-chip surface (below). For the lowest C3b 

loading of 140 RU on the Cl-chip, C3b molecules, on average, space out by 46 nm, a distance 

that nearly spans 15 CCP modules. The fact that avidity is exhibited in binding of FH to the 

140-RU C3b-CMI chip is evidence for engagement of both the 1-4 and 19-20 sites by the same 

molecule of C3b. 

These findings are in line with the literature and engender confidence in the 'negative 

evidence" for strong binding sites elsewhere in FH. Weak binding of C3b by FH-6-8 is a 

novel observatiom it may have physiological significance by contributing to the stability of 

the complex once FH has engaged with C3b via its principal recognition sites. The even 

weaker C3b (and C3c)-binding inferred for modules from 9 through 15 is of very 

questionable relevance. Thus the simplest interpretation of the current results is that there 

are two predominant, discrete, bindings sites in FH for C3b. A puzzling result was obtained 

in the case of the FH-C3d interaction since this does not match to the literature or any of the 
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current dogma. If "true", this observation has mechanistic implications (see DISCUSSION), 

but it requires further investigation. 
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5.1 Overview 

In the previous chapter, evidence was presented in strong support of the contention that 

modules representing the central region of FH (CCPs 9 to 15) do not make a major, direct, 

contribution to binding the primary ligands of FU, i.e. C3b and GAGs. Although not 

involved directly in binding, these central modules could nonetheless be crucial to the 

process whereby FH engages its ligands. Indeed the longer-than-average length of linkers in 

this region, which also includes the smallest CCP module of FH (CCP 13, spanning only 51 

amino acid residues), likely reflects an important role of this region in the overall 

architecture of the full-length, 20-CCP module, molecule. To investigate this possibility, a 

structural approach was adopted with the aim of underpinning future mutagenesis and 

functional studies of the region, in addition to providing direct insights into the spatial 

organisation of these central modules. The CCP module-pair, FH-12-13, was selected for 

initial high-resolution structure determination by NMR: intriguingly, it compasses both the 

longest linker and smallest CCP in FH; and it is a convenient size for rapid NMR-based 

structural determination. (Note that triple-module and longer segments of RCAs produce 

NMR spectra with unfavourable relaxation properties leading to inefficient magnetization 

transfer and the poor performance of many triple-resonance experiments.). The involvement 

of the flanking inter-modular interfaces creating a bent back structure was examined by 

including FH-1 1-14 and FH-1O-15 in the study. In the cases of these larger segments, AUC 

was the primary technique for examining structure. The strategy was to combine the high-

and low-resolution structural information obtained from this study to build up an 

understanding of the architecture of central-FH. 
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5.2 NMR structure of FH-12-13 

The determination of a high-resolution 3D structure by NIvIR requires a near-to-complete 

resonance assignment of all atoms. To facilitate such an exercise, a double-labelled sample 

of FH-12-13 was prepared and subjected to a suite of NMR experiments as described 

previously (METHODS). Utilising information from through-bond connectivity 

experiments, such as HN(CO)CACB and IINCCACB, the amide protons (except 783G) and 

11a, H, Ca and Cp of all residues were assigned. It was subsequently possible to assign nearly 

all side-chain atoms utilising the 13C-HSQC, HCCH-TOCSY and (for aromatics) 

(HB)CB(CGCD)HD, and (HB)CB(CGCDCE)HE experiments. The final assignment for 

[' 3 C,' 5N] of FH-12-13 (see METHODS) includes 98.3% of all non-exchangeable hydrogen, 

nitrogen and carbon atoms (e.g. Figure 5.1). 
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5.2.1 Structure calculation 

I he CANDID automated NOE-assignment algorithm embedded within the CYANA 

software (132) was employed in the present study. This time-saving procedure works on the 

ell-established principle that ambiguous NOEs can be automatically assigned in a reliable 

fashion on the basis of calculated structures as they emerge from sequential rounds of 

structure calculations. It is essential that a robust starting structure is generated in the initial 

round, and this is judged on the basis of several input and output criteria. 

Since more than 90% of the (non-labile) backbone amide protons were present in 

the list of assigned chemical shifts, these data satisfied one of the key input criteria for the 

use of CANDID (132). To ensure satisfaction of the second criterion, a total of 5456 NOE 
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cross-peaks were picked, thus providing a "faithful representation" of the available NOESY 

spectra. Seven successive rounds of CYANA-based structure calculations were then 

initiated. After the last cycle 80.8% of all picked NOESY cross-peaks had been assigned 

(compared to a threshold of 80% that is considered satisfactory for this stage of the 

CANDiD algorithm). The target function after cycle one was 634- A 2 ; this is poorer than the 

250-A2  threshold recommended by the authors of CANDID. On the other hand, the target 

function had dropped to a reassuring 9.63 A 2  after the seventh, final cycle, inside the 10 A 2  

value regarded as a satisfactory CANDID output criterion. The backbone heavy atom-

RMSDs for the ensemble of first-cycle structures were found (in MolMol) to be 2.4 A for the 

residues of CCP 12 and 1.9 A for CCP 13 - these values are well inside the recommended 

maximum value of 3.0 A. Moreover the "RMSD drift" between the first-cycle ensemble and 

the seventh-cycle ensemble (a critical measure of the extent to which the first cycle captures 

the "true" polypeptide fold) was less than 25 % of these values. 

After seven cycles of CYANA-based structure calculation, a total number of 2911 

unique upper distance restraints had been generated. These may be subdivided into 1371, 

359 and 1181 restraints corresponding to intra-residue, medium-range (between residue i and 

residues i+1 to i+4), and long-range (between residue i and residues 1+(?5)) restraints, 

respectively (Figure 5.2). 

/ 
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I Peak 
selected: 5456 5456 5456 5456 5456 5456 5456 

assigned: 4908 4807 4586 4553 4479 4421 4410 

unassigned: 548 649 870 903 977 1035 1046 

with diagonal assignment: 12 12 12 12 12 12 12 

swI - 

off-diagonal: 4896 4795 4574 4541 4467 4409 4398 

unique: 1248 3302 3641 3654 3822 3946 3962 

short-range 	i-jI<1: 3148 3118 3024 2978 2905 2862 2853 

medium-range 1<Ii-jI<5: 616 490 414 417 400 392 387 

long-range Ii-jI>5: 1132 1187 1136 1146 1162 1155 1158 

:4 I Upper 
total: 4059 3523 3166 3086 2965 2845 2841 2911 

short-range, 	Ii-jI<=l: 2172 1855 1683 1603 1505 1424 1346 1371 

medium-range, l<Ii-jI<5: 1052 819 386 385 359 344 357 359 

long-range, 	11-jI>5 : 835 849 1097 1098 1101 1077 1138 1181 

Average assignments/constr.: 5.06 2.10 1.28 1.28 1.20 1.14 1.0,0 1.00 

Average target- 

function value: 634.04 	283.25 331.22 61.86 28.28 15.48 14.09 9.63 

Average RMSD 	esàtes9O 

backbone PNSD to mean: 3.95 2.60 1.65 1.38 1.22 0.96 0.56 0.70 

heavy atom RMSD to mean: 4.54 2.93 1.95 1.68 1.52 1.29 0.92 1.01 

Figure 5.2 Report from CYANA structure calculation cycles for FH-12-13. Statistical tracking 

of NOE cross-peaks assignment, distant-restraint deduction, target function values and root 

mean square deviation values for the entire module FH-12-13 is shown (over all CANDID 

cycles). - 

Using Format Converter of the CCPNMR software (131), the upper distance restraints from 

the final CYANA cycle were converted into CNS-style distance restraints (because, as 

explained in METHODS, the use of well-established scripts within the CNS software allows 

for easier water refinement in the final step of the process). 

A total of 100 structures of FH-12-13 were generated using appropriate scripts 

within the CNS structure calculation program. Figure 5.3 shows a plot of rank number (after' 

ordering structures according to energy, lowest first) against overall efiergy and NOE energy 
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of the structures generated in the final cycle. As may be judged from the positions of the 

major inflection points, good convergence was achieved for the lowest-energy 43 structures. 

On the other hand, smaller inflections points were observed in the structure-numbers 25-26 

region of the curve. It was decided to select the 20 lowest-energy structures and submit them 

to a final refinement step in water solvent. 
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Figure 5.3 Energy plot of 100 structures from the final round of CNS structure calculations of 

FH-12-13. NOE energy is shown in red triangles. Total energy is shown in blue squares. 

The resulting ensemble of 20 representative, water-refined, NMR structures is shown in 

Figure 5.4: backbone RMSD values for overlays on CCP 12, CCP 13 and CCPs 12-13 are 

indicated. Totals of 10, 75 and 75 distance constraints were observed between module 12 

and 1317,  between module 12 and the linking amino acid residues, and between module 13 

and the linker residues, respectively. Within CCP 12, CCP 13 and the linker residues, 1243, 

1360 and 147 distance constraints were observed, respectively. 

7  Module boundaries are defined to span from the first consensus Cys to the last consensus Cys. 
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- %J.I 
Ji  

FH-13 

Figure 5.4: Ensemble of NMR-derived structures. Backbone overlay of 20 lowest-energy 

structures selected from a total of 100 calculated (RMSD over backbone atoms as indicated). (A) 

Overlaid on module 12. (B) Overlaid on module 13. (C) Overlaid on both modules - the good 

convergence in this overlay indicates the existence of a well-defined module-module orientation. 

(D) View of one of the 20 structures (the nearest to the mean) with secondary structure shown 

by a cartoon (PyMol (141)). Disulfide bonds are highlighted in yellow. 

5.2.2 Description of structure and analysis 

The structures of FH-12-13 are in good agreement with spectra collected in D 20, which 

reveal slow-exchanging amides that are likely participating in 1-1-bonds - see below. The 

structure reveals an approximate 100-degree bend between CCP 12 and CCP 13 (Figure 5.5). 
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Figure 5.5 Characteristics of CCP in the structure of FH-12-13 (backbone traces are shown; 

CCP 12 and CCP 13 are coloured red and blue, respectively). (A) The 100°-bend between CCPs 

12 and 13 is indicated. (B) Dimensions of each CCP are highlighted on the backbone traces by a 

dashed, yellow line. 

Both CCP 12 and CCP 13 have structures that are fairly typical for modules of this type: the 

disulfide bonds are Cys(I)-Cys(I11) and Cys(Il)-Cys(IV) and occur towards either end of the 

ovoid CCP modules. Anti-parallel n-strands are the prevailing secondary structural element. 

The shape of CCP 13 appears to be less ovoid and more spherical than that of CCP 12 

(Figure 5.4-D) and in comparison with other CCPs. The hypervariable loop of CCP 13 shows 

helical elements in all 20 lowest-energy structures, and in five structures out of the 20, this 

region complies with the criteria of an a-helix structure (according to MOLMOL). 

The water-refined ensemble of 20 lowest energy structures of FH-12-13 was 

submitted to the "Coarse-packing quality control" check within the programme WHATIF 

(164)). This routine assesses the local environment of individual amino acids residues in 

terms of a "directional atomic contact analysis" which compares the distribution of atom 

types around amino fragments to the average distribution observed in the PDB. A WHATIF 

course-packing score lower than -5.0 indicates improper packing. The average score for the 

submitted ensemble is comfortably inside this value at -1.371. 

PROCI-IECK is a programme that evaluates the stereochemical quality of protein 

structures in terms of the extent to which its phi and psi angles occupy energetically 
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favoured regions of the Ramachandran plot(165, 166). A PROCI-IECK analysis of ensemble 

yielded acceptable scores. Overall, 72.2 % and 24.1 % of amino acid residues are in the 

most-favoured and additionally-allowed regions of the Ramachandran plot (Figure 5.6), 

respectively. These scores are of comparable quality to other, published , NIMR-derived 

structures of CCP modules (1, 51, 148, 167). 
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Figure 5.6 Ramachandran statistics (PROCHECK) of water refined ensemble of the 20 lowest 

energy structures of FH-12-13. 
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In a hyd rogen/de uteri um exchange experiment, arnide protons that are exposed to 

ol cut e\cllange rapidl\ v ith deuterium atoms. The substitution ofN-H with N-D results in 

a loss of the relc ant NMR sienal. Hence °N-HSQC cross-peaks of exposed amide groups 

disappear within a period of seconds-to-minutes when the sample is dissolved in D 20. On 

the other hand. Protons thai arc buried and inaccessible to solvent, or are involved in the 

tiination of Ii' roien-bond. arc Ics usceptihIe to exchange and their signals remain 

detectable in a 15N-HSQC spectrum for a period of hours-to-days. These slowly exchanging 

atiude'.. .Lenerall\ corre'.pond to regions of hydrogen-bond-stabilised secondary structure. In 

tile current orL. a double-labelled sample of [bN_C]_FH_l2_13  was lyophilised and re-

suspended in 99.96% D 20. A series of 5N-l-ISQC spectra were recorded, initially at intervals 

of 30-40 rnin and finally after 24 hours. 
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Figure 5.7 ' 5 N-HSQC spectrum of FH-12-13 30 minutes after re-suspension in D 2 0. Sample is 

600 iM in a volume of 300 id. 
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After 30 minutes of exposure to D 20, 23 HN  signals are still clearly visible in the spectrum. 

These are highlighted in red on the structure of FH-12-13 (Figure 5.7). Of these 23, 17 (i.e. 

77%) correspond to H-bonded amides within beta strands (Figure 5.8). 

Figure 5.8 Amino acids corresponding to resonances unaffected by the hydrogen/deuterium 

exchange are highlighted in red on the structure of FH-12-13. 

Five of the remaining six signals also correspond to amide protons that are engaged in 

formation of hydrogen bonds: D798 UN  with the ll a  and hydroxyl-oxygen of T790 IS (T790 

is part of a beta-strand) R796 HN  shows main-chain hydrogen-bonding with carbonyl of 

1793 (which lies just after a beta-strand); 1788 HN  hydrogen bonds with carbonyl of beta-

strand residue Y779; T739 HN  hydrogen bonds with the carbonyl of 3-strand residue T732; 

and 1734 HN  engages with the carbonyl of V737 to form a n-turn (Figure 5.9). Typically for a 

f3-turn, the position i+2 is occupied by a glycine (168). 

The remaining signal corresponds to the ft of the consensus tryptophan in CCP 12. 
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Figure 5.9 Type IV n-turn involving 1734 (blue), 1-1735 (magenta), 6736 (cyan) and V737. Yellow 

dotted line indicates the H-bond between H of 1734 and carbonyl oxygen of V737. 

In summary, 22 of 23 slowly exchanging amide resonances were demonstrated to be a part 

of or linked to secondary structure elements. 

5.2.3 Analysis of the intermodular interface 

There are two unusual features in the primary structure of the module-pair FH-12-13. CCP 

13 is the smallest domain in FH and it connects to CCP 12 by eight linking amino residues, 

thereby constituting the longest linking sequence in FH. Prior to structure determination of 

FH-12-13, a range of possibilities regarding the structure of this linker were considered 

plausible: for example the linker might form a 1800  U-bend and positions CCPs 12 and 13 in 

an anti- parallel side-by-side orientation; or the linker might not maintain a stable (rigid) 

conformation, but rather be flexible and allow a large degree of movement between the two 

CCP modules; or the eight amino acid residues could form a specific, stable structure fixing 

the orientation of CCPs 12 and 13 with respect to each other. The experimentally derived 

structure proves the third of these to be the case and reveals a 100° bent between modules 12 
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and 13 (Figure 5.5). In this respect it is noteworthy that six of the eight linking residues are 

characterised by long or bulky side-chains (Figure 5.10). providing many methylene- and 

methyl-groups for van der Waals contacts not only within the linker residues, but with side-

chains from both flanking CCP modules. 

H 3 N 	H 3 N 

CH 3  
H3CyCH3 YCH3  

Val—AIa—lle—Asp—Lys— Leu—Lys—Lys  

CH3 	r-o 
H3C"CH3 

NH 3  

Figure 5.10 Sketch representation of the eight linker residues between module CCPs 12 and 13. 

Side-chain atoms are shown. 

The total of 75 NOE-derived distance restraints between the linker residues and each of the 

two modules reflects the large intimacy contacts with both CCPs. The CCP module-to-linker 

contacts would only,  stabilise the relative orientation of the two modules if the linker itself 

folds into a stable structure. This does indeed appear to be the case with 147 distance 

constraints identified within the linker. The result is a 'mini" domain with its own small core 

that acts to "glue together" the two modules (Figure 5.11-D). The compactness of the linking 

"mini-domain'S is such that the modules make direct contacts, as reflected in the ten NOE-

derived distance restraints. Figure 5.11 (A-C) highlights direct intermodular contacts at the 

interface oUCCPs 12 and 13. 
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A 

C 
	

D 

Figure 5.11 Surface and cartoon representations of FH-12-13. (A-C) The eight linker amino 

acids are shown as stick-representation. The surface of the FH-12-13 module is shown, but 

surface corresponding to the linker residues has been made invisible. CCPs 12 and 13 are 

coloured red, and blue, respectively. (D) The eight linker residues (shown in surface 

representation - the remaining surface of FH-12-13 has been made invisible) are characterised 

by bulky side-chains that form a compact core ("mini-domain") which fixes the 100°-bend 

between CCPs 12 and 13. 

5.2.4 Analysis of FH-12-13 surface 

Surface bound polyanionic carbohydrates are a primary ligand of Ft-I. Recognition of 

these surface markers is thought to provide the basis for self versus non-self discrimination 

(INTRODUCTION). The present study mapped GAG-binding sites in FH to two regions, 

CCPs 6-8 and 19-20 (CHAPTER 4). In a previous study. however, CCP 13 was implicated 

in heparin binding (67). Binding to the negatively charged sulphate- and carboxyl groups of 

183 



STRUCTURAL STUDIES 

surface GAGs (or heparin as a model GAG) is assumed to require a complementary, 

positively, charged area on the protein surface. 

A surface-charge analysis of FH-12-13 reveals a negative and positive surface 

patches that lie on opposite faces of the structure and are localised in CCP 12, and CCP 13, 

respectively (Figure 5.12). 

Three glutamate residues (E696, E698, E721) and one aspartate (D693) are the main 

contributors to the electronegative surface region of CCP 12. The positive patch in the centre 

of CCP 13 extends to the C-terminus. Two lysines from the linker (K751 and K752) and five 

basic residues from CCP 13 (K754, K766, K768, K769 and R796) form the main positive 

patch on the molecule. The amino acids K780, R782, K784 extend this positive area towards 

the C-terminus. It is striking, that despites this extended positive surface on one face of 

module 13, no affinity for heparin could be detected at physiological pH (METHODS). This 

will be discussed further below (DISCUSSION). 
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Figure 5.12 GRASP (142) Electrostatic surface representations of FH-12-13. Electrostatic 

surface potential: red = negative charge, blue = positive charge, range = -51+5 kT. While acidic 

amino acids in CCP-12 cluster into a negative surface patch, basic amino acids in CCP-13 

cluster into a positive surface patch. 

5.3 	Analytical ultracentrifugation' 8  

The results of the preceding section imply that despite the long linking sequence, modules 12 

and 13 do not form a U-turn nor do they comprise a flexible hinge. Assuming that the 100-

degree bend between 12-13 observed in the structure does indeed persist in the intact FH, it 

is intriguing to speculate on whether the 13-14 junction for example. characterised by 

18 Ultracentrifugational analysis was carried out by Dr. Arthur Rowe, School of Biosciences, 
University of Nottingham. UK 
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another lone linker, is also bent and if so hether it is bent in the same direction. Jo address 

these issues. the technique of analytical ultracentrifugation was employed. 

Sedimentation velocity analytical ultracentrifugation is a well-established technique 

for characterising a protein sample (144, 169). Not only does it allow verification of 

quaternary structure and detection (and quantification) of aggregates it also provides 

information on the overall shape of a protein at the level of discrimination between roughl'\ 

spherical entities and extended or rod-like molecules. The method involves monitoring the 

protein concentration distribution across a cell that is being spun at very high speed 

(typically 45,000 rpm) in a rotor within a centrifuge. Under the influence of strong 

centrifugal force, the protein molecules migrate away from the centre of the rotor such that 

an expanding region that is depleted of molecules forms behind the air-water interface 

(meniscus). The boundary between populated and unpopulated regions of the cell moves 

towards the outside of the rotor over time (eventually forming a pellet). The concentration 

distribution is measured by detection of absorbance or refractive index at intervals over a 

time-course. Runs are typically three-four hours in length and the sample consists of roughly 

0.45 ml at a concentration of 0.02-0.1 mg.ml'. The results of a sedimentation velocity run on 

FH-10-15 are showTi in Figure 5.13. The upper frame shows a series of scans across the 

centrifuge cell (absorbance at 273 nm plotted against distance from the centre of the rotor). 

The first scan (black) was performed at 4 minutes after starting the 45,000-rpm (the black 

data set in the graph), and subsequent scans (rainbow colours) were recorded at two-minute 

intervals thereafter. The first data set shows that the area behind the meniscus is already 

largely depleted of protein molecules. Over time the boundary moves - sediments - 

outwards. Both the molecular weight and the shape of the protein determine its rate of 

sedimentation; high-molecular weight, spherical proteins sediment faster than low-molecular 

weight, elongated ones. The shape-dependency is a consequence of the greater friction 

experienced by a less compact protein. 
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Figure 5.13 A screenshot showing the outcome of processing the data from a sedimentation 

velocity AUC run (performed and analysed in Nottingham) on FH-10-15. The top frame shows 

multiple traces of the distribution (with respect to distance (cm) from the axis of rotation, x-

axis) of 0D273  values; black is the initial trace, and subsequent traces recorded at time intervals 

during the course of the run are shown rainbow-fashion, violet-to-red. The bottom frame shows 

a fitted (Sedtit) plot of the distribution of molecular weights within the sample (mostly a 

monomer of the expected molecular weight, but with a minor population of putative dimer). 

The middle frame shows the residuals and therefore indicates the goodness of fit. 

The lower frame of Figure 5.13 shows the distribution of sedimentation rates (coefficients) 

for the population of protein molecules in the cell, as extracted from the scans in the upper 

frame using a fitting-routine (the goodness of fit is summarized in the plot of residuals in the 

middle frame). The area under the peak is proportional to the amount of protein, and the plot 

resembles an inverse size-exclusion chromatogram. The presence of a single (Gaussian) peak 

is good evidence for the existence of a single species in this sample. The diffusion 

coefficient can be obtained from the width of the peak and used in combination with the 

position of the peak to calculate the molecular weight of the protein. The fitting routine also 
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provides a frictional ratio that relates to the "axial ratio" of the molecule and pertains to its 

overall shape (Table 5.1). 

Sample 	s(20,w) 	M 	 M 	vbar 	 frictional 

(S) 	from 	from 	computed monomer 	ratio 

formula 	c(M)  	(S & M) 

FH-11-14 1 	2.25 	27138 	26527 J 	0.725 	99 	1.48 

FH-10-15 	3.19 	40909 	40500 	0.725 	97 	1.37 

FH-12-13 	1.74 	13566 	168001 	0.724 	80 	1.20 

Fable 5.1 Summar ol results from se(hmeulation s elocitv AIJC. S(20,s ) is the sedimentation 

coefficient measured in S = Svedberg units; M = relative molecular mass (either calculated from 

the sequence (c(M)) or estimated from the fitted sedimentation data); vbar is the partial specific 

volume in units of ml per g ;the frictional ratio is calculated from vbar, c(M) and s(20,w) and is 

an indicator of shape - the higher its value, the higher the axial ratio (i.e. the more elongated the 

in olec u Ic). 

It was hypothesised that CCPs 12-13 form part of a I 80-degree curve in FH that is created 

by a succession of same-direction bends between adjacent modules. If this is true, then the 

addition of modules 1 1 and 14 will result in a structure with a smaller axial ratio (a less 

extended structure) as summarised in Figure 5.14. Moreover, if these four modules achieve a 

U-turn in the structure then the further addition of CCPs 10 and 15 would result in a still 

smaller axial ratio (Figure 5.14). Thus the hypothesis predicts that axial ratios will not tend to 

increase as more CCP modules are added to FH-12-13 and this is a prediction that is testable 

by AUC. Therefore, the set of constructs, FH-12-I3, FH-1 1-14 and FH-10-15 were 

submitted to the University of Nottingham (Professor Arthur Rowe) for sedimentation 

velocity AUC. 
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Figure 5.14 Schematic to illustrate the thinking behind the AUC-based experiments and their 

interpretation. Each CCP module is indicated by an oval shapes; "long" linkers (six or more 

residues) are drawn as small circles; the cubes (dotted lines) are drawn to help visualise the 

axial ratios of the structures as drawn. The initial hypothesis (upper cartoons) proposed a 

decreasing trend in axial ratios with increasing numbers of modules on either side of CCPs 12-

13. This was not supported by the data, which was consistent with the speculative suggestions 

drawn in the lower cartoons (see text). 

The first thing to notice, is that the results of this analysis demonstrate all of the samples to 

be predominantly monomeric. Although oligomers are present as a minority component in 

some samples, the simplest interpretation is that self-association is not an important property 

of these segments of Fl-I. As may be seen from Table 5.1, the fitted frictional ratios are 

inconsisleni with the initial hypothesis in that FH-1 1-14 is considerably more extended in 

shape that FH-12-13. This strongly argues against a "smooth" bend as envisaged in the 

previous paragraph. There are numerous plausible explanations for this result, including the 

possibility that the 11-12 and 13-14 junctions are flexible resulting in multiple conformations 

that average to a rod-like shape (see Figure 5.14). The most striking feature of the AUC 
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results, however, is that FH-10-15 is more compact in overall shape than FII-ll-14. Given 

the uncertainties in explaining the sedimentation data for FU-11-14, it is obviously 

impossible to provide more than speculative suggestions regarding the structure of FH-10-

15. On the other hand, it is tempting to hypothesize that the 12-13-induced 100-degree bend, 

in combination with flexibility at the 11-12 and 13-14 junctions, allows modules 10 and 15 

to interact, stabilising the compact conformation that is implied by the AUC data. Clearly, 

more investigation is required to investigate this and other possibilities. 

5.4 Conclusions 

Previous structural work (1, 50, 51, 53, 148) on FH focussed on modules towards the N-

and C-termini, either because of their functional relevance (CCP modules 1-3, 6-8 and 19-

20) or because (in the cases of CCP modules 5, 15 and 16) of their ease of expression. This 

left a dearth of structural information for CCP modules 9-14 - the central portion of Fil. 

The work of the previous chapter seems to rule out the involvement of these modules in 

important direct interactions with the principal ligands of FE! - GAGs and C3b. On the other 

hand, these functional results pointed to an architectural role of the smaller-than-average 

CCP modules joined by longer than average linkers in this portion of FE!. The current 

chapter describes results that shed the first light on the structural biology of these modules 

and helps to formulate hypotheses for the mechanism of action of FH (see DISCUSSION). 

This work reveals that the long linker between modules 12 and 13 does not promote 

flexibility nor does it allow the two modules to form a side-to-side interaction that would 

promote a 180 degree-bend in FE!. Rather, the bulky residues of the linker form a compact 

"mini-module" that acts like "glue" to hold the flanking modules in a rigid 100-degree bent 

conformation. This is the first time such an arrangement has been observed between CCP 
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modules (In the only other example of a CCP-module pair joined by an eight-residue linker, 

the modules lie side-by-side (170)). There is no reason to suspect that the mere presence of 

neighbouring modules (11 and 14) in FH will disturb this arrangement. The 12-13 structure 

solved in this work provides a basis for modelling other intermodular 'junctions" in this 

region and for speculating that they continue the bend in the same direction. Experimental 

work is required to confirm whether this is the case. 

This chapter also describes an attempt to obtain less detailed structural information 

on the central region of Fil using AUC. The principal result is that FH-10-15 is more 

compact in its overall shape than FH-1 1-14. Such a result could have several explanations 

but the most obvious one is that modules 10 and 15 contact one another to stabilise a bent-

back conformation (that is induced in part by the bend between CCPs 12 and 13). This 

possibility is considered further in the DISCUSSION. 
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In this brief final chapter an attempt is made to draw together the various strands of the 

work, and to suggest a model for Fil engagement with C3b 

6.1 Factor H has just two principal binding sites each for GAGs 

and C3b 

The deployment of complement regulatory proteins as a means of selectively protecting self 

tissue from the potentially detrimental consequences of indiscriminate amplification of 

surface-deposited C3b (via the alternative pathway) is a simple but apparently effective 

strategy for the provision of immune surveillance (37). As demonstrated in the current work, 

and in confirmation of numerous existing reports in the literature, the first four CCP modules 

of FH are necessary and probably sufficient for the ability of this molecule to function as a 

cofactor for factor I in the fluid phase; these N-terminal four modules are also reported to 

have some ability to accelerate the decay of the convertase-complexes (58, 59, 171). This 

then leaves the remaining 16 modules with the responsibility for ensuring that the regulatory 

potential of FH is delivered selectively on self surfaces. The current work (again, backed by 

copious literature) strongly suggests that this delivery is achieved by GAG-recognition 

through modules 7 and 20 (and their flanking modules), and, by the presence of an additional 

C3b-binding site at the FH C-terminus. In contradiction to several previous papers, the 

current data demonstrate that modules 9-15 lack discrete, strong, binding sites for C3b (or 

C3c or C3d) or heparin. The new results suggest that any contribution these modules make to 

binding is relatively small. 

It is quite striking that the single module CCP 13, which bears a prominent 

positively charged patch on one face (STRUCTURAL STUDIES), is not a good heparin 

binder. It suggests that the specific positioning or orientation of side-chains, as opposed to 

complementary charge alone, is necessary for the binding of GAG at physiologically 
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relevant salt concentrations. The additional observation that CCP 13 in the context of FR- 12-

13, and, in the context of four longer segments, does not bind heparin appears to rule out the 

possibility of flanking modules serving to complete a partial GAG-recognition site in CCP 

13. It does remain possible, though, that species of GAG other than the heparin/heparan 

sulfate family, or GAGs with different sulfation densities for example (68), do interact with 

CCP 13; it should be borne in mind, however, that heparin is very rarely a weaker ligand 

than heparan and dermatan sulfates for GAG-binding proteins. It is also conceivable that a 

very weak GAG-binding site in CCP 13 cooperates with the GAG-binding sites in modules 7 

and 20 once FR has become anchored at the cell surface via these latter modules. What is 

clear from the current work, however, is that CCP 13 ought not to be discussed in the same 

vein as modules 7 and 20 in terms of GAG binding by FH. Unlike CCP 13, CCP module 9 

appears as an unlikely candidate for a heparin binder on the basis of its p1. Indeed, a protein 

consisting of CCP modules 1-6 followed by 8 and 9 (i.e., the delta-CCP 7 version of FH-1-

9) has been reported previously not to bind heparin (62). The more recent results of Ormsby 

et al. identifying CCP module 9 as a GAG-binding module (61) were therefore surprising. 

The current work shows that FH-8-9 could be converted from a non-GAG binding construct 

to a GAG binding one by addition of non-native cationic N-terminal residues present in the 

Orrnsby et al. constructs. This strongly suggests that the non-native Arg residues were 

critical contributors to the previously reported interaction with GAGs. It nonetheless remains 

possible that CCP module 8 contributes to the well-explored GAG binding site centred on 

neighbouring CCP 7 (53). 

In the current study C3b was immobilized via amine coupling to a 

carboxymethylated dextran SPR sensor chip, enabling direct measurements of C3b-FH 

interactions. It is noteworthy that no significant differences in the SPR-denved Kd for FH-

19-20 - when comparing amine-coupled C3b with C3b immobilized via a biotinylated 

thioester linkage to an avidin chip - was detectable (binding data for the biotinylated C3b 
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was acquired in the lab of Dr. John D. Lambris, University of Pennsylvania). Previously 

reported SPR studies (60) indicated that FH-8-20 and FH-19-20 bind C3b, but FH-8-1 I and 

FH-15-18 do not (60). An earlier published study observed a perturbation in binding to C3b, 

immobilized via its thioester to an erythrocyte surface, by an FH deletion mutant that lacks 

CCPs 6-10 (i.e., FH-delta6-10) (65). It was not entirely clear if this observation reflected a 

loss of direct interaction with C3b, as there was a concurrent loss in this mutant of the GAG-

binding site in CCP 7 that could, presumably, contribute to FH association with C3b in the 

context of a GAG-bearing cell surface. None of these results conflict with the ones reported 

in the present study. 

In previous work (60), however, a "third" C3b binding site in CCPs 12-14 was 

inferred by Jokiranta et al. (60) on the basis that FH-8-20 binds both C3d and C3c while Fil-

19-20 binds C3d but not C3c (ergo, there is a C3c-binding sites somewhere between 

modules 8 and 18— the authors pinpointed CCPs 12-14 based on some further deductions). It 

should be remembered that C3c and C3d are distinct fragments of C3b; when C3b is cleaved 

into the fragments C3c and C3d new surfaces are exposed on both fragments (13, 14) and it 

is conceivable that these sites act as binding sites for CCP domains from the centre of FH. In 

the current study, however, no affinity for either C3c or C3d (amine coupled to a CM5 

sensor chip) of the FH-8- 15 construct was detectable. Thus this finding contradicts the 

previous report of a third C3b/C3c binding site. It is of note that the experiments reported by 

Jokiranta were carried out in one-third of physiological salt concentration (1/3 \'BS buffer). 

In contrast to this, all SPR experiments undertaken for this study have been carried out in 

physiological salt concentration (HBS-EP+). 

On the other hand, our observation that F}I-7-8 and FH-6-8 have weak but possibly 

significant affinities for C3b immobilized on a chip is consistent with the original studies on 

FH-delta6-10 (65); as mentioned above, the reduced affinity of FHA6-10 to C3b coated 

surfaces could have arisen from the loss of the second polyanion binding site in FF1 and 
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therefore the possibility of CCPs 6-8 to exhibit affinity for C3b never attracted much 

attention. However, in the light of the AMD-linked polymorphism in CCP 7 this observation 

needs to be explored further in future studies. 

6.2 A model for engagement of FH with C3b on the cell surface 

(Figure 6.1) 

The structural work described in CHAPTER 5 (along with SAXS-based evidence from the 

Perkins lab (48)) is consistent with a bent-back conformation of FH that allows spatial 

proximity of its N- and C-terminal portions. Based on the functional studies in CHAPTER 4 

(and the majority of the previous literature in this field) it is clear that between them these 

regions of FH contain all the experimentally proven, discrete binding sites for GAG and 

C3b. The previous observation that an antibody to CCP 20 can block the cofactor activity of 

FH (70) is also consistent with the relevant sites being close in space, at least when FH is 

engaged with the surface-associated convertase (but also, speculatively, in non-liganded FH 

as discussed below). That FH-1 9-20 can overcome the protective effects of FH against 

complement-mediated lysis of erythrocytes (69) also points to a key role for this region in 

anchoring FH to the surface, perhaps via a composite binding site consisting of C3b and 

GAGs (64) with specific patterns or densities of sulfation. The aforementioned bend in the 

central region of FH (and/or a direct or carbohydrate-mediated association between these 

two GAG-binding regions) would allow CCP 7 to bind nearby, perhaps acting in a 

"proofreading" role in that it could recognize a second composite C3b-GAG binding site, 

again containing a particular distribution of sulfates. 

Binding of this nature would then place the N-terminal four CCPs at a specific 

position relative to the C3b(TED) binding site in the C-terminal module and hence to the 

surface-bound C3b (Figure 6.1). Such positioning might be critical for efficient operation of 

196 



DISCUSSION 

the N-terminal functional unit in its cofactor and decay-accelerating roles. Involvement of 

two (or more) sites in binding of FH to a common C3b molecule as discussed in CHAPTER 

4 (and see, in particular Figure 4.11 page 166) could explain the stronger Kd of the full-length 

FIT protein compared with that of the tightest binding fragment, FH- 19-20 (measured on Cl 

and CM5 sensor chips). That FH-1-4 binds well to C3b (K. of 10 or 14 jzM when C3b was 

amine-coupled to a Cl- or a CM5 chip, respectively), but lacks affinity for the cleavage 

fragments C3c and C3d (CHAPTER 4), implies that the binding site for CCPs 1-4 on C3b 

includes the domain that gets cleaved by factor I (i.e. the CUB domain). This inference has 

been borne out by a recently presented (International Complement Workshop, Basel, 2008) 

crystal structure of a C3b:FH-1 -4 complex. 

Thus, in this working model (Figure 6.1), the principal role of some of the central 

CCP modules is to act as a set of spacers, projecting the functional regions away from a 

bent-back region (composed from the remaining central CCP modules). This configuration 

allows the key binding sites to approach each other (or even interact) so as to act 

cooperatively in selectively engaging and destabilizing the self surface-associated convertase 

complexes. Such an arrangement is reminiscent of the mechanism employed by the RCA 

C4b-binding protein, in which functional sites at the tips of seven arms (each consisting of 

eight CCPs) cooperate in recognizing a composite surface of GAGs and C4b (172). The 

complement receptor type-i also employs cooperation between sites that are remote in its 

sequence, for example to accelerate decay of the C5 convertase (173). 

The C3c-binding data (in CHAPTER 4) suggest that once FH has accomplished its 

cofactor role and the CUB domain is cleaved by Factor I, CCPs 1-4 lose (largely) their 

affinity for C3c. This, together with the more tentative data that shows a lack of C3d binding 

by FIT, implies that FH is able to dissociate from the products of the reactions it helps to 

catalyse. More details of the proposed model are presented in the legend to Figure 6.1. 
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CUB 
domain 

GAGs 

"Non-activating" surface (e.g. self-cell surface) 

Figure 6.1 in this model FH binds to surface-bound C3b (anchored via its TED domain) co-

localised with specific polyanionic GAGs that provides the self-signal for specific complement 

down-regulation. While CCPs 1-4 of FH associate with the 11C3c-like" body of C3b plus the 

CUB-domain (that is specific to C3b), CCPs 19-20 mainly bind to the TED (i.e. the 'C3d-like" 

part of C3b). Additionally, the 19-20 and the 6-8 regions associate with cell-surface GAGs 

thereby strengthening the affinity of FH for the C3b-bearing surface, and possibly stabilising a 

functionally active orientation of CCP modules. Subsequent factor 1-mediated cleavage of the 

CUB-domain of C3b leaves opsonic iC3b at the cell surface (iC3b may be further cleaved 

yielding C3d). The loss of the CUB destroys the N-terminal C3b-binding site within FH and 

therefore the avidity effect resulting from engagement of both FH-termini with C3b is lost. 

Whether FH can remain bound to iC3b is untested; likewise its affinity for C3d is (following our 

tentative results described in CHAPTER 4) a matter for further investigation. The possibility of 

a self-association of the C-terminal part (CCPs 19-20) of Fl-I with CCPs 1-7 - once CCPs 1-4 

have lost their affinity for surface immobilised C3 - might present an additional rationale 

explaining how CCPs 19-20 could be disengaged from the TED of iC3b. Such a self-association 

of CCPs 19-20 with a region in CCPs 1-7 within full-length Fl-I would also explain why the 

double module 19-20 binds to C3d, while (in the current work) full-length FH shows 

comparatively little association with C3d. 
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6.3 Implications of the working model for the link between 

mutations/SNPs and disease 

The potential for cooperation between CCPs 7 and 20 suggested in CHAPTER 4 is 

interesting in that such an arrangement has an enhanced capacity for combinatorial 

recognition of specific types of GAG molecules among diverse possibilities. This supports a 

model in which complement regulation in tissues displaying different GAGs could be 

differentially susceptible to mutations and polymorphisms within modules 7 and 20; it is 

surely no coincidence that between them, these two modules account for nearly all the 

disease-related sequence variations in FH. 

A dominant GAG-binding role of CCP 20 is indeed consistent with the fact that 

mutations in this region have been linked to a}{US and a failure to prevent complement-

mediated damage to endothelial cells and basement membrane in the walls of glomerular 

capillaries. In recent, unpublished, work (D. Kavanagh, personal communication and V. 

Ferreira (University of Texas) presentation at the 2008 International Complement 

Workshop) it was shown that a}{US-linked mutations can result in enhanced binding both to 

GAGs and C3b when each ligand is studied separately; yet the same mutants have a depleted 

ability to compete with FH for binding to a C3b-coated cell surface. This intriguing 

observation is in line with our model that envisages a complex, multivalent interaction of FH 

with its target that could be upset by an imbalance of affinities. For example if module 20 

binds more tightly to C3b it might also bind more tightly to C3d and fail to be released after 

cleavage of C3b. Alternatively, if a mutant binds too strongly to GAGs it may lose 

specificity for a putative composite GAG-C3b binding site and bind indiscriminately to 

GAGs that are remote from C3b. 
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A "proof-reading" role of the heparin-binding site in CCP 7 as proposed in the 

model is consistent with the link between the H/Y402 SNP and a predisposition to develop 

AMD. Moreover, a distinct difference in heparin binding between 402 Y and H allotypes, 

within isolated module 7, was reported in CHAPTER 4. Although such differential GAG 

binding was only observed when analysed within the single module 7, and was not apparent 

in the context of FH or FH-6-8, this is an intriguing observation. Since differences (in the 

context of, single modules) were observed for heparin but not for dermatan sulphate, GAG-

specific effects might play a role in AMD onset and progression. Even a very low level of 

differential GAG binding of FIT, not detectable in biochemical assays, could gain 

significance over decades; AIVID visual impairment (associated with the 402 polymorphism 

in FH) manifests predominantly in the elderly. 
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APPENDIX A 

REAGENTS 

Standard chemicals for preparation of buffers and media, as well as standard laboratory 

consumables were purchased either from Sigma-Aldrich Company Ltd. (Gillingham, UK) or 

(Fisher Scientific UK Ltd. (Loughborough, UK). 

All media containing antibiotics were stored at 4°C. 

Antibiotica 

Zeocin (ant-zn-i) was acquired from Autogen Bioclear UK Ltd. (Caine, UK). 

Ampicillin (A1001-5) was bought from Cambridge BioScience (Cambridge, UK). 

Enzymes 

All restriction enzymes (XbaI - R0145S; PstI - R0140S; Sad T  R0156S; BtsI - R0614S; 

HphI - R0158S), as well as EndoHf®  (P0703S) and the Quick Ligation ®  Kit (M2200S) were 

purchased from New England Biolabs Ltd. (Hitchin, UK). 

SDS-PA GE 

. Pre-stained Protein Marker, Broad Range (6-175 kDa) [P7708S] and Quick-Load ®  

were obtained from New England Biolabs UK. 

. Precision Plus Protein' All Blue Standards (161-0373), Bio-Safe Coomassie stain 

(161-0786); Polyacrylamide Ready-Gel 4-20% (161-1105) were purchased from 

Bio-Rad Laboratories Ltd. (flemel Hempstead, UK). 

NuPAGE®  Novex 4-12% Bis-Tris Gel, NuPAGE ®  Sample Reducing Agent, 

NuPAGE®  MOPS and MES buffers were obtained from Invitrogen (Paisley, UK). 
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DNA-A garose-gel 

• 100 base pair (N323 iS) and 1 kb DNA Ladder (N0468S) were obtained from New 

England Biolabs UK. 

• Sybrsafe®  was obtained from Invitrogen (Paisley, UK). 

PCR 

• PCR Master mix (M7502) was bought from Promega Cooperations (Southampton, 

UK) 

• PfuTurbo®  Hotstart DNA Polymerase (#6003 20) and Herculase ®  Hotstart DNA 

Polymerase (#600310) were purchased from Stratagene (Stratagene European 

Headquarters, Amsterdam Zuidoost, The Netherlands) 

Vectors 

All vectors used were purchased from Invitrogen (Paisley, UK). 

• P. pastoris expression vectors pPICZaA and pPICZaB. 

• Blunt end TOPO®-cloning vectors pUB/Bsd-TOPO®  and pCR04Biunt-TOPO®  

Cells 

P. pastoris strain KM71H and chemical competent E. coli one shot TOP1O®  cells 

were bought from Invitrogen (Paisley, UK). 
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APPENDIX B 

BUFFER and MEDIA 

Media Composition (w/v unless otherwise stated) 

4% (vlv) glycerol 

0.413% potassium hydroxide 

Basal Salts for unlabelled fermentor 1.5% magnesium sulphate heptahydrate 

growth 1.82% potassium sulphate 

0.093% calcium sulphate 

2.67% (vlv) ortho-phosphoric acid 

3.125% (v/v) glycerol 

Basal Salts for ' 5N-labelled fermentor 1.5% magnesium sulphate heptahydrate 

growth 1% potassium sulphate 

0.093% calcium sulphate 

10% (v/v) 200 mM potassium phosphate pH 5 

1.5% magnesium sulphate heptahydrate 

Basal Salts for 15N, 13C-labelled 1% potassium sulphate 

fermentor growth 0.093% calcium sulphate 

10% (v/v) 200 mM potassium phospate pH 5 

100 mM Potassium phosphate pH 6 

1.34% YNB 
BMG (Buffered minimal glycerol) 

4 x 10-5 % biotin 

1% glycerol 

100 mlvi potassium phosphate pH 6 

l.34%YNB 
BMM (Buffered minimal methanol) 

4 x 10-5 % biotin 

0.5% methanol 

LB (Lysogeny Broth) Lennox 
0.5% yeast extract 

1% tryptone 
(Low salt (less than 5 g/L) is required for 

0.5% sodium chloride 
efficient selection with Zeocin) 

+1- 1.5% agar 

LB (Broth) Miller 0.5% yeast extract 
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1% tryptone 

1% sodium chloride 

+1- 1.5% agar 

0.5% yeast extract 

2% tryptone 

Soc (Super Optimal broth with 10 mM sodium chloride 

Catabolite repression) 2.5 mM potassium chloride 

10 mlvi magnesium chloride 

10 mM magnesium sulphate 

20 mM D-glucose 

1 Ox YNB stock (Sigma) with ammonium 
YNB (Yeast Nitrogen Base) 

sulphate without amino acids 

1% yeast extract 

YPD (Yeast Extract, Peptone, 2% peptone 

Dextrose) 2% dextrose (D-glucose) 

+1- 1.5% agar 

1% yeast extract 

2% peptone 

YPDS (Yeast Extract, Peptone, 2% dextrose (D-glucose) 

Dextrose Sorbitol) 1 M sorbitol 

+1- 1.5% agar 

+1- 100-300 tg/m1 Zeocm 

EDTA stock solution 
0.5 M stock adjusted to pH 8 with sodium 

(ethylenediaminetetraacetic 
hydroxide pellets 

acid)  

50 mM Tri-HC1 

100 mM %-mercaptoethanol 

SDS-PAGE sample loading buffer 2% Sodium-dodecyl-sulfate 

0.1% bromophenol blue 

10% glycerol 

10% Methanol 

Towbin buffer 25 mM Tris Base 

192 mM Glycine 

TCA (trichioroacetic acid) 30% stock (Sigma) made up in H20 

0.025 M Tris-Base 

0.192MGlycine 
Tns-Glycine-SDS Buffer (TGS) 

0.1% SDS (w/v) 

pH 8.3 

216 



APPENDICES 

[  Tris-acetate (2 M) 
TAE buffer 50x in distilled H20 

EDTA(lOOmM) 

LTAE Agarose agarose 1 % (w/) in TAE buffer 
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APPENDIX C 

VECTOR MAPS 

A) pUB/Bsd-TOPO® : 
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B) pCR®4Blunt-TOPO® : 
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C) pPICZaA: 

Et-p 

- 

pPICZa 
A,B,C 

3.6 kb 

Comments for pPCZLLA 	8 U 
353 nuc190114e8 
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pUC oigIr bases 2566-359 compemoniary strani) 
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D) pPICZuB: 

	

r. 	Ii 
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3.6 kb 
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0-myc epltope: baSes 1275-1304 
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APPENDIX D 

MALDI MASS SPECTRA OF TRYPTIC-DIGEST PEPTIDE FINGERPRINTING 

FH-8-9: 

Voysges Spa 11-MvBC(150.S,0.1)'NF0.7"MC(SP 12517,217901 

Ma. Cal) 

FH-p8-9: 

Voylgee Spa #1 MCMVBC(15.05,0.1)a.NF0.7(BP • 12516, 356251 
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FH-8-15: 

Voyg.Speo 11. dBC(15.0.5,0.1)'NFO7(BP • 1252A, 9931 

Mn. 9-1 

FH-1O-12: 

Voy.g.r Spec 41AdvBC(1$,0J.0.1).cNFO.7]BP. 1821.5. 706] 
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FH-1O-15: 

Voyager Spec al MCMvBC(1,O.5A1)NFO.7(3P 2205.0, 25030J 

Mfl1,W2) 

FH1 1-14: 

Voyager Spec U 	vBC(15,0.5,0.1)'NF0.7f8P 1131.7,7591 

'a- 
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FH 12-13: 

Voyager Spm 61 MC'BCBC' 	(15O.5O.I)NFO.7(BP 24992, 56261 

Mafl() 

IUIbI 

Voy, Spec 	 1132.3. 35993] 
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FH-13-14: 

Voy9r 8p. 11Mv8C(I5,O.$,O.1).'NFO.7"MC(BP • 2740.1, 10$l 

MSS(flVZj 
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APPENDIX D 

USE OF SPR TO MEASURE DISSOCIATION CONSTANTS FOR MAJOR C3B-

BINDING SITES IN. FH. 

Response 
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Duplicate sensorgrams are shown for (A) FH-14, (B) FH-19-20, and (C) full-length FH at a 

range of analyte concentrations (FH-I-4, 0.05-102 p.M; FH-19-20, 0.05-50 jiM; FH, 0.01-3.93 

jiM). These data are illustrative and show results obtained using flow cell 2 of Cl-chip. 140, 500 

and 750 RU of C3b were amine coupled onto flow-cells 2,3 and 4, respectively. Flow-cell I 

served as a reference surface. 
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