
Where does it go from here? The place of software in digital repositories

Neil P. Chue Hong
Software Sustainability Institute, University of Edinburgh

N.ChueHong@software.ac.uk

Abstract

The open repositories community has made

great strides in recent years in addressing
interoperability, policy and providing the
arguments for open access and sharing. One
aspect of open research which has come to
prominence is the importance of software as a
fundamental part of reproducible research, which
in turn raises issues around the preservation of
software.

In this short paper, I will describe some of the
work that the Software Sustainability Institute
(SSI) has been doing to address the structural and
policy issues which currently present a barrier to
the deposit and use of software in open
repositories.

1. Introduction

In recent years, scientific research has been
augmented by the use of computer software for
data capture, simulation, data analysis, and more.
With the advent of what has been termed “e-
Science”, it has increasingly focused on the use of
software carried out by communities of
researchers that span disciplines, laboratories,
organisations, and national boundaries.

This permeation of the use of software into the
mainstream of research across all disciplines has
meant that it is increasingly difficult to reproduce
and reuse the work of other researchers. The
reproducible research principle requires the full
computational environment to be published as
well as the paper where the results are reported.

This raises the question of whether the current
preservation policies and digital repositories are
capable of handling software as a digital object
that requires preservation.

2. Software Preservation

A key challenge in digital preservation is being

able to articulate, and ideally prove, the need for
preservation. A clear framework of purposes and
benefits facilitates making the case for
preservation. This is even more relevant for the
specific case of software preservation. In the JISC
funded Clarifying the Purpose and Benefits of
Preserving Software project1 the SSI and
Curtis+Cartwright developed a benefits
framework [1] which identified four key benefits
to preserving software:

• Encourage software reuse;
• Achieve legal compliance and

accountability;
• Create heritage value;
• Enable continued access to data and

services.

It also identified seven different approaches to
software preservation and sustainability:

• Technical preservation (techno-centric) -
Preserve original hardware and software
in same state;

• Emulation (data-centric) - Emulate
original hardware / operating
environment, keeping software in same
state;

• Migration (functionality-centric) - Update
software as required to maintain same
functionality, porting/transferring before
platform obsolescence;

1 Project website: http://softwarepreservation.jiscinvolve.org/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429722752?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

• Cultivation (process-centric) - Keep
software ‘alive’ by moving to a more
open development model, bringing on
board additional contributors and
spreading knowledge of process;

• Hibernation (knowledge-centric) -
Preserve the knowledge of how to
resuscitate/recreate the exact functionality
of the software at a later date;

• Deprecation - Formally retire the
software without leaving the option of
resuscitation/recreation;

• Procrastination - Do nothing.

Two of the benefits – achieving legal
compliance and accountability and enabling
continued access to data and services – pose
relevant questions for the open repository
community and are driven very much by the
reproducible research principle.

Reproducible research [3] refers to the idea that
the ultimate product of research is the traditional
paper output along with the full computational
environment used to produce the results in the
paper such as the code, data and methods
necessary for reproduction of the results and
building upon the research. Whilst great strides
have been made to ensure that we can preserve
the data sets along with the paper, less has been
done in terms of understanding how to preserve
the software and its related environment (with
some notable exceptions [4] [7] [9]).

We perceive that there are two principal
challenges when considering the preservation of
software in a fixed state (i.e. technical
preservation, emulation and hibernation) for the
medium-to-long term for the purpose of
reproducible research: accurately capturing
dependencies; and understanding how to
reference and credit the deposited software upon
reuse.

3. Significant properties and software
metadata

Previous work undertaken by STFC [4] [6] has
looked at identifying the significant properties of
software, that is the essential attributes of the
software which affect its appearance, behaviour,
quality and usability. Significant properties must

be preserved over time for the software object to
remain accessible and meaningful. Moreover,
because the boundaries of a piece of software are
less distinct than a dataset, the dependencies –
both explicit and tacit, functional and non-
functional become more important. There is also
great scope for ambiguity in the internal contents
of a “software object”. Examples of this include:
alternative routines and libraries; downloadable
content (DLC) which is accessed post “release”.

Work at the SSI has involved both assessing
how easy a framework such as that described in
[4] could be implemented and utilised given the
above issues, as well as participating in efforts
such as SWOP2 to develop a vocabulary that will
help describe software used by the curation and
data preservation community with a secondary
outcome of better understanding how the curation
community are using software descriptions within
their preservation work.

4. Access, citation and credit for software

Much has been done to improve the accessibility
to and ability to reference datasets, in particular
through the DataCite3 and ORCID4 initiatives.

Nevertheless, there are a number of issues [2]
that make software a particularly specialised form
of dataset when it comes to citations and harder to
reuse the work done by others pertaining to
datasets. Many, such as versioning and
authorship, are ameliorated in the case of specific
deposit in relation to a publication, however the
issue of granularity remains.

In general, when a dataset is deposited in a
repository, that specifies its granularity – the
dataset can be considered as a unique object. It
may consist of a collection of pieces of data that
have distinct characteristics (e.g. an album is
well-defined as a collection of songs) but
importantly there is a point in time at which the
distinction is made. Software has become harder
to define, in particular as software has made the
leap from a single machine to a distributed
system. What do you consider a part of the
software, and what might you assign an identifier

2 Software Ontology project: http://softwareontology.wordpress.com/
3 DataCite: http://datacite.org/
4 ORCID: http://about.orcid.org/

to? What is an “application”: source code,
binaries, workflows, manuals, website? And how
much should we consider in terms of
dependencies such as operating systems and
hardware characteristics?

5. Digital Repositories and Software

It is clear that there are two separate concerns
when looking at the preservation of software to
enable reproducible research. Firstly, the software
must be deposited somewhere where the depositor
can both have reasonable assurances of persistent
storage, with appropriate metadata to allow for
retrieval and replay. Secondly, there must be
mechanisms in place to reference this instance of
the software and connect it to the other digital
ephemera to which it is associated such as the
papers, datasets and workflows.

For storage, whilst there are many publicly
available providers of code repositories (e.g.
SourceForge5, GitHub6) these may not provide the
necessary assurances for long-term storage.
Likewise these repositories are often structured
and organised to support the constant evolution
and development of the code, which is not
appropriate for “stored” code versions. There are
some generally available filestores which would
be appropriate for software storage (e.g.
FigShare7) and some which might be repurposed
to allow software storage (e.g. Dryad8). There are
many mature, open, technical approaches to
persistent, guaranteed storage of data (e.g.
LOCKSS9 [4], dSPACE10, Fedora11) however it is
not appropriate for each researcher developing
software to operate such a repository themselves.
Institutional repositories would also appear to be
the correct place for researchers to deposit
software as they are already starting to put in
place policies to collect research outputs from
projects, yet an analysis of the current policies of
the major UK university repositories shows that
they either ignore or exclude software deposit

5 SourceForge: http://www.sourceforge.net/
6 GitHub: http://www.github.com/
7 FigShare: http://figshare.com/
8 Dryad: http://datadryad.org/
9 LOCKSS: http://www.lockss.org/
10 DSpace: http://www.dspace.org/
11 Fedora: http://fedora-commons.org/

(UCL and Newcastle University are two which
we are aware are running trials for deposit of
software). This clearly needs to change, but a case
must be made – as it was for data – of the benefits
and also an analysis of the ongoing costs.
Additionally, guidelines must be in place to
ensure that appropriate metadata is recorded to
allow reuse in the future, and that this is checked
on some regular basis.

Ideally, the ability to reuse the existing
mechanisms for referencing publications and
datasets would also allow current bibliometric and
impact measurement tools to be applied to
software. An analysis of the guidelines and usage
of Digital Object Identifiers (DOIs) for datasets
and comparison with software only uncovers one
barrier: how does the concept of a data publisher,
also the body responsible for minting and
administering the identifier, translate to software?
It is likely that each software publisher (normally
the research project, consortium or individual) is
not in a position to generate DOIs on an ad-hoc
basis. However, in the specific case of a software
deposit to support reproducible research this
barrier is easier to overcome. A single identifier is
required to associate with the instance of the
software deposited at the time of deposit of the
related paper and datasets. Authorship can be
fixed at the point of deposit. And the data
publisher becomes the repository in which the
author chooses to deposit the software, for
instance Dryad already issues DOIs for deposited
data packages.

A complementary approach to this, which uses
existing mechanisms to allow for citable software
is the idea of a software paper. In this scenario,
the metadata and methodology required to reuse a
piece of software is published as a “traditional”
paper which is citable in the normal fashion. This
software paper references the deposited software
which can reside in a data repository such as
FigShare or Dryad, an institutional repository, or
even as a tagged version of the source code in a
code repository (assuming persistence is
addressed). This approach is currently being
trialled by the SSI in conjunction with Ubiquity
Press.

6. Conclusions

The increasing backing of the reproducible
research ideals necessitates the ability to describe,
store, retrieve and reuse software associated with
publications. Work done to address similar
requirements for datasets can mostly be reused for
software in this special case as many of the issues
pertaining to the rapid development, multiple
dependencies, and assignment of identifiers are
simplified. Nevertheless, even though many of the
technical challenges have been solved, the policy
– particularly at institutional repositories – needs
to be revised to acknowledge the requirement to
provide facilities for depositing software. This
area is one which the Software Sustainability
Institute is looking to address in collaboration
with others.

7. Acknowledgements

The Software Sustainability Institute comprises
staff of the universities of Edinburgh, Manchester,
Oxford and Southampton, and is funded by the
EPSRC under grant EP/H043160/1. The work on
clarifying the purpose and benefits of preserving
software was carried out in collaboration with
Curtis and Cartwright Ltd and funded by the
JISC. The work on SWOP is led by the University
of Manchester and the EBI and is funded by the
JISC.

8. References

1. N. Chue Hong, S. Crouch, S. Hettrick, T.
Parkinson, and M. Shreeve, “Software Preservation
Benefits Framework,” Software Sustainability
Institute Technical Report, 2010. Retrieved on 5th
March 2012 from:
http://www.software.ac.uk/attach/SoftwarePreserva
tionBenefitsFramework.pdf

2. N. Chue Hong, “Software Impact – the differences
from datasets”, Beyond Impact blog, May 2011.
Retrieved from: http://beyond-impact.org/?p=175

3. Sergey Fomel and Jon Claerbout, "Guest Editors'

Introduction: Reproducible Research," Computing
in Science and Engineering, vol. 11, no. 1, pp. 5–7,
Jan./Feb. 2009, doi:10.1109/MCSE.2009.14

4. Petros Maniatis, Mema Roussopoulos, T. J. Giuli,

David S. H. Rosenthal, and Mary Baker. 2005. The

LOCKSS peer-to-peer digital preservation
system. ACM Trans. Comput. Syst. 23, 1
(February 2005), 2-50.
DOI=10.1145/1047915.1047917
http://doi.acm.org/10.1145/1047915.1047917

5. Matthews, B.M., McIlwrath, B., Giaretta, D., &

Conway, E. (2008). The Significant Properties of
Software: A Study. In JISC report, 2008. Retrieved
August 3, 2009, retrieved from
http://sigsoft.dcc.rl.ac.uk/twiki/pub/Main/SigSoftT
alks/SignificantPropertiesofSoftware.doc

6. Brian Matthews, Arif Shaon, Juan Bicarregui, and

Catherine Jones. 2010. A Framework for Software
Preservation | Matthews | International Journal of
Digital Curation. International Journal of Digital
Curation 5, no. 1: 91-105.
http://ijdc.net/index.php/ijdc/article/view/148, doi:
10.2218/ijdc.v5i1.145.

7. Piotr Nowakowski, Eryk Ciepiela, Daniel

Harężlak, Joanna Kocot, Marek Kasztelnik,
Tomasz Bartyński, Jan Meizner, Grzegorz Dyk,
Maciej Malawski, The Collage Authoring
Environment, Procedia Computer Science, Volume
4, 2011, Pages 608-617, ISSN 1877-0509,
10.1016/j.procs.2011.04.064.

8. Ricardo H Ramirez-Gonzalez, Raoul

Bonnal, Mario Caccamo and Daniel MacLean, bio-
samtools: Ruby bindings for SAMtools, a library
for accessing BAM files containing high-
throughput sequence alignments, Open Research
Computation 2012, 1:1, doi:10.1186/2042-5767-1-
1

9. Yale Law School Roundtable on Data and Code

Sharing, "Reproducible Research," Computing in
Science and Engineering, vol. 12, no. 5, pp. 8-13,
Sep./Oct. 2010, doi:10.1109/MCSE.2010.113

