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Abstract 

 

Copy number Variants (CNVs), which comprise deletions, insertions and inversions of genomic 

sequence, are a main form of genetic variation between individual genomes. CNVs are 

commonly present in the genomes of human and other species. However, they have not been 

extensively characterized as their ascertainment is challenging.  

 

I reviewed current CNV studies and CNV discovery methods, especially the algorithms which 

infer CNVs from whole genome Single Nucleotide Polymorphism (SNP) arrays and compared 

the performance of three analytical tools in order to identify the best method of CNV 

identification. Then I applied this method to identify CNV events in three European population 

isolates—the island of Vis in Croatia, the islands of Orkney in Scotland and villages in the South 

Tyrol in Italy - from Illumina genome-wide array data with more than 300,000 SNPs. I analyzed 

and compared CNV features across these three populations, including CNV frequencies, genome 

distribution, gene content, segmental duplication overlap and GC content. With the pedigree 

information for each population, I investigated the inheritance and segregation of CNVs in 

families. I also looked at association between CNVs and quantitative traits measured in the study 

samples. 

 

CNVs were widely found in study samples and reference genomes. Discrepancies were found 

between sets of CNVs called by different analytical tools. I detected 4016 CNVs in 1964 

individuals, out of a total of 2789 participants from the three population isolates, which clustered 

into 743 copy number variable regions (CNVRs). Features of these CVNRs, including frequency 

and distribution, were compared and were shown to differ significantly between the Orcadian, 



 v

South Tyrolean and Dalmatian population samples. Consistent with the inference that this 

indicated population-specific CNVR identity and origin, it was also demonstrated that CNV 

variation within each population can be used to measure genetic relatedness. Finally, I 

discovered that individuals who had extreme values of some metabolic traits possessed rare 

CNVs which overlapped with known genes more often than in individuals with moderate trait 

values. 
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Chapter 1 

 

Introduction 
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1.1 Copy Number Variation as a source of genetic variation 

 

Genetic variation in the human genome takes many forms, from single nucleotide changes 

(including single nucleotide polymorphisms, SNPs), to fine-scale copy number changes such as 

small insertions and deletions (INDELS), microsatellite and minisatellite repeats, larger scale 

structural variations such as inversions, translocations and copy number variations (CNVs), to 

large microscopically visible chromosome anomalies (Sharp et al., 2006, Table 1). The above 

variations and polymorphisms constitute the architecture of the human genome and underline the 

differences between individuals at the DNA (Deoxyribonucleic Acid) level.  

 

SNPs are common polymorphic markers that are uniformly distributed throughout the genome. 

With the guidance of the DNA reference sequence (e.g. HapMap (The International HapMap 

Consortium, 2005)) and the use of high-throughput genome-wide SNP microarrays, numerous 

studies have successfully found genetic determinants of human complex traits in a fast and 

economic way. SNPs may be associated with phenotypic variation either through direct causal 

effects or by indicating the location of causal variants which are in linkage disequilibrium with 

them (Stranger et al., 2007). So far, SNPs are considered to be the most common form of 

genomic variation and to account for a large proportion of normal phenotypic variation. During 

the last few years, structural variants such as copy number variants have attracted much attention, 

as they are also found to be widely spread all over the genome. Despite the advance of 

technologies to detect variants in different forms in the genome, genomic rearrangements of 

median size, between 500bp and 5Mb, have remained largely unnoticed until recently. That has 

changed with the advent of studies that have discovered an abundance of submicroscopic copy 

number variation of DNA segments. 
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Table 1.1 Type of genetic variants and their relative sizes (Sharp et al., 2006) 

 

 

Copy number variation (CNVs, or copy number changes, copy number alterations), are defined 

as a DNA segment that is 1kb or larger and present at variable copy number in comparison with 

a reference genome (Redon et al., 2006), exclusive of the insertion/deletion events caused by 

transposable elements (Freedman et al., 2004). CNVs are discovered as deletions, insertions, 

duplications and complex multi-site variants. They are a subset of structural variation, which is 

defined as genomic alterations that involve segments of DNA that are larger than 1kb or 

translocation between one chromosome and another that may result in no loss of genetic material, 

but do involve loss of genetic coding information.  

 

CNVs have been studied as gene copy number differences between individuals at specific loci, 

especially for rare diseases for some considerable time , for example large deletions on 
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chromosome 15 which caused Prader-Willi syndrome, and hemizygosity at the elastin locus in 

Williams syndrome, The common α-globin gene deletions widely detected in different isolated 

populations and the well established study of identical duplications of gene PMP22 in autosomal 

dominant and sporadic forms of Charcot Marie-Tooth disease type 1  are other examples (Sebat, 

2007). However, the knowledge of such genomic rearrangements was limited until recently, and 

the prevalence and impact of CNVs was assumed to be small. Since 2004, a wave of structural 

variant studies in normal human individuals leads to a whole new understanding of CNVs, 

revealing them as a major source of human genetic variation (Conrad et al., 2006; Iafrate et al., 

2004; Redon et al., 2006; Sebat et al., 2004; Tuzun et al., 2005; McCarroll et al., 2005).  

 

The advance of microarray technology and availability of complete human genome sequencing 

enabled researchers to capture genome wide CNVs in multiple individuals, and also shed light 

on their location and frequencies. The first attempt was made in 2004 by two independent groups, 

Iafrate et al. (2004) and Sebat et al (2004). Both groups surveyed the genome wide copy number 

changes in a number of human genomes, and revealed the extent of this category of genetic 

variation at a previously unanticipated level. Iafrate et al.(2004) detected 255 loci which contain 

genomic imbalances among 55 unrelated individuals, while Sebat et al. (2004) found 221 CNVs 

which represented 76 Copy Number Polymorphisms (CNP, defined as CNVs at >1% frequency) 

in 20 individuals. Some of these loci influence genes that have important biological roles such as 

neurological functions and metabolism (Iafrate et al., 2004; Sebat et al., 2004). More studies 

followed in the subsequent years, which made use of existing SNP genotyping data and clone 

paired-end sequencing data to detect CNVs (Tuzun et al., 2005; Conrad et al., 2006; McCarroll 

et al., 2005). 

 

In 2006, a first generation CNV map across the whole human genome was published by Redon 
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et al., (2006). This map was based on 270 individuals from four different ethnic populations of 

European, Asian or African descents, each of whom contributed to the original International 

HapMap Project. 1447 copy number variable regions (CNVRs) were reported, which in total 

covered 12% of the genome. They also observed enrichment of genes in functional categories 

such as cell adhesion, sensory perception of smell and of chemical stimulus, and also 

neurophysiologic processes (Redon et al., 2006). Other studies utilizing HapMap data also 

emerged. Comprehensive investigation of CNVs in this representative sample set of humans 

revealed a series of characteristics of CNVs,   such as chromosomal distribution, correlation 

with segmental duplications (SDs) in the genome and gene content (Kohler and Cutler, 2007; 

Korn et al., 2008; Lin et al., 2008; Locke et al., 2006; McCarroll et al., 2008; Redon et al., 2006; 

Wang et al., 2007). Although platform choice and algorithm differences in these studies resulted 

in a degree of discrepancy of CNVs detected even for the same individuals (see Chapter 5 for 

details), these studies have greatly broadened the dimension of human genetics research and 

have brought a population perspective into such investigations. 

 

Whilst conventional CNV detection methods such as mining SNP genotyping data or using 

array-based Comparative Genome Hybridization (array-CGH) were widely adopted in CNV 

studies, some early fruits were harvested from fine-scale CNV detection based on whole genome 

sequencing technologies, which enabled detection of CNVs at unprecedented resolution. To date, 

whole genome sequencing has been reported in at least 33 individual genomes; 30 of them have 

had CNVs determined (Ahn et al., 2009; Bentley and et al., 2008; Drmanac et al., 2010; Kim et 

al., 2009; Levy et al., 2007; Lupski et al., 2010; McKernan et al., 2009; Pelak et al., 2010; 

Pushkarev et al., 2009; Schuster et al., 2010; Wang et al., 2008; Wheeler et al., 2008. See 

Chapter 4 for details). These studies have demonstrated that compared to SNP, CNVs confer 

higher level differences between individuals. Pioneer study of CNVs detected from two partially 
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sequenced genomes estimated the total amount of sequence divergence to be 0.5%, with the 

majority of variation being due to CNVs (Korbel et al., 2008), which is contrary to our 

traditional view that human genomes share 99.9% similarity. An analysis of deletions detected 

from whole genome sequence for five individuals (Ahn et al., 2009; Bentley and et al., 2008; 

Levy et al., 2007; Lupski et al., 2010; McKernan et al., 2009; Wang et al., 2008; Wheeler et al., 

2008) showed that there was only a small fraction of total detected CNV loci shared between any 

two individuals among these five (see Chapter 4 for details). In the future, the human genome 

similarity rate may further be revised, with knowledge of accurate whole genome CNV calls 

from more sequenced individuals.  

 

The presence of copy number variation is not limited to human genomes, but also widely found 

in genomes of other species. Genome-wide CNVs have been characterized in great apes, 

chimpanzees, mice, dogs and drosophila (Perry et al., 2007; Dopman and Hartl, 2007; Pielberg 

et al., 2002; Locke et al., 2003; Li et al., 2004; Chen et al., 2009; Snijders et al., 2005). The 

impact of specific CNVs on phenotypes of other species, for example domestic pigs and black 

sheep, have also been studied (Norris and Whan, 2008; Pielberg et al., 2002).  

 

Since CNVs are of thousands to millions base pairs long, they frequently span entire genes 

leading to different gene copy numbers between individuals, or alter the intron/exon structure of 

genes by disrupting exons or fusing genes together (Korbel et al., 2008), therefore CNVs could 

contribute to disease susceptibility or phenotypes through alterations in gene dosage. Disease 

relevance of DNA copy number alteration is not a new topic. Recurrent deletions of tumor 

suppressors and amplifications of oncogenes have been investigated in cancer studies for a long 

time. The discovery of CNVs in germline DNA in diseased and healthy individuals extends the 

frontier of such researches from cancer to more and more common and rare diseases. Since then, 
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a number of CNVs were shown to be associated with disease (see Chapter 1.5). Of equal 

importance to SNPs, CNVs as a major source of genetic variation has brought a new dimension 

to genomics and disease genetics.  
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1.2 Characteristics of copy number variants 

 

1.2.1 How many CNVs are there in the human genome? 

Before 2004, the scale of copy number variants in human genome was underestimated. Ever 

since the pioneer genome-wide CNV discoveries, more and more new CNVs have been revealed 

from various studies. Redon et al. in 2006 estimated 12% of the human genome is covered by 

CNVs (Redon et al., 2006); now the proportion of genome regions showing evidence of copy 

number variation has been revised to be 35.07%, according to Database of Genomic Variants 

(DGV, http://projects.tcag.ca/variation/). 

 

DGV is a database where publicized CNV results from various platforms are centralized and 

deposited. Up to early 2011, it has received 42 publications with available CNV data. It now 

contains 66741 CNVs underlying 15963 loci (CNVRs); the number of identified CNVRs has 

dramatically increased over the last few years (Figure 1.1).  

 

Not only has the total number of CNV’s discovered increased, but it is also clear that only a 

small portion of CNVRs identified in each new study overlap those found by others (Freedman 

et al., 2004; McCarroll and Altshuler, 2007; Redon et al., 2006; Smith et al., 2007), indicating 

that the catalogue of copy number variability remains incomplete. This may be due to 1) the 

difference of CNV size detected by use of different methods, 2) CNV frequency differences 

between different population, 3) the limitation to detect rare CNVs and variable false positive 

rates and 4) false negative rates to detect CNVs across different studies (Smith et al., 2007). 

Therefore there is still a great potential to identify novel CNVs and make a contribution to the 

building of a more complex genetic architecture of human genome. 
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Figure 1.1 Increase in published CNV and InDel data that have been added to DGV since 2004. 
The numbers reflect the year of publication. The studies published are all included in the 2004 

total. (From http://projects.tcag.ca/variation/, last accessed in April 2011) 

 

 

Figure 1.2 CNV size distributions in DGV (From http://projects.tcag.ca/variation/, last accessed 
in April 2011) 
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1.2.2 Length of CNVs 

The size distribution of the CNVs in DGV is shown in Figure 1.2. Most CNVs are of small to 

median sizes, while only a small portion of CNVs are large.   

 

The detection method of choice might result in different size ranges of predicted CNVs. First of 

all, the targeted length of CNVs is limited by resolution of assays. The insertion size of BAC 

(Bacterial Artificial Chromosome) CGH arrays is typically 80-200kb, therefore the identification 

of CNVs smaller than 50 kb is difficult. Fosmid and cosmid clones of approximately 40 kb in 

length improve the resolution to about 20kb. Resolution of SNP arrays is variable across the 

genome and for many array types there is a lower limit of 10-40kb (Carter, 2007). Whole 

genome sequencing potentially provides the highest resolution, but the short read length limits 

the size of detected CNVs. Secondly, density and coverage of probes in an array is positively 

correlated to the number of CNVs detected.  Third, breakpoint determination affects the size of 

actual CNVs. For example, the size of CNVs detected by BAC arrays is significantly 

overestimated, due to long insert sizes of BACs (but breakpoints are determined as the 

boundaries of the first and last probes in a region showed signal change).    

 

1.2.3 Chromosomal location of CNVs 

The distribution of CNVs on chromosomes is not uniform (Fig 1.3).  Enrichment of CNVs is 

observed in peri-telomeric and/or sub-centromeric regions for most chromosomes. The CNVRs 

cluster in functional categories such as cell adhesion, sensory perception of smell and of 

chemical stimulus, as well as neurophysiologic processes (Nguyen et al., 2006).  
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1.2.4 CNVs and segmental duplications 

Copy number changes are found to preferentially enrich near segmental duplications (SD), 

which are defined as duplicated sequences of >1kb with 90% or more sequence identity in the 

reference human genome assembly (Bailey et al., 2002). A number of studies which specifically 

focus on structural variants in SDs also argue that these loci are hotspots for chromosomal 

rearrangement and copy number variations (Locke et al., 2006; Sharp et al., 2005).   
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Figure 1.3 Genome-wide view of CNVs. Blue bars indicate reported CNVs, red bars indicate 
reported inversion breakpoints, green bars to the left indicate segmental duplications. (Adapted 

from http://projects.tcag.ca/variation/, last accessed in April 2011) 
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1.3 Detection of copy number variants 

 

1.3.1 Classical cytogenetic techniques to detect structural variants 

Cytogenetics is the study of chromosome structure. Classical cytogenetic techniques include 

routine Giemsa-banding (G-banding) to reveal large structural variations which are 

microscopically visible. Another category of cytogenetics is molecular cytogenetics. One 

well-known example of classical cytogenetics application is the diagnosis of trisomy 21, which 

leads to Down syndrome. This procedure was established in 1950s and has been widely used in 

routine prenatal examinations. A large number of abnormalities of chromosome structure (partial 

deletion, duplication or inversion) or number (aneuploidy) have been described to be associated 

with a very wide range of congenital abnormalities (James et al., 1971).   

 

1.3.2 Fluorescence in situ hybridization (FISH) and chromosome based comparative 

genome hybridization (CGH) 

Fluorescence in situ hybridization (FISH) is a type of molecular cytogenetic techniques 

introduced in the 1980s. It is an in situ hybridization technique in which a labeled probe of 

specific DNA sequences, for example a Bacterial Artificial Chromosome (BAC) clone or fosmid 

clone, is hybridized to a preparation of metaphase chromosomes or interphase DNA, which is 

usually attached to solid media (e.g. a glass slide). Then the chromosome DNA and probe 

mixture is denatured, so that the single-stranded probe and single stranded DNA can re-anneal, 

and at the same time the probe hybridize to the complementary DNA sequences, and now a 

double stranded molecule is reformed. Following hybridization, unbound probes are washed 

away, and the hybridized probes can be visualized directly if they were tagged with 

fluorochromes such as Cyanine (Cy) or Alexa Fluor dyes, or can be detected by antibodies 
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against hapten-tagged probes, or affinity agents such as avidin or streptavidin if probes are 

labeled with the biotin and digoxigenin systems (Bauman et al., 1980).  

 

Compared to classical cytogenetic karyotyping, FISH has the advantage of increased the 

resolution to ~100kb, which enables the detection to submicroscopic copy number changes. 

Over the years FISH techniques have evolved, for instance multi-colour hybridization which 

allow visualizing of rearrangements involving multiple chromosomes and Fiber-FISH which 

benefit from extended chromatin fibers in the DNA preparation to detect small copy number 

changes. Fiber-FISH can detect deletion gaps or tandem duplications down to the size of a 

fosmid clone (40kb) or even smaller; it was utilized in the survey of  and related segmental 

duplication in human and chimpanzees (Perry et al., 2008).   

 

Another type of molecular cytogenetic techniques is chromosome-based comparative genome 

hybridization (CGH). The first step of CGH is to labeled test and reference DNA differentially, 

then those DNA simultaneously hybridize to chromosome metaphase spreads (at the same time 

unlabelled Cot-1 DNA is also hybridized to block DNA repeats). The hybridization will then be 

detected with two fluorochromes, and genomic regions of gains or losses would be illustrated as 

changes in the ratio of intensities of the two fluorophores along the chromosomes. The technique 

was first introduced in the analysis of amplification of the myc locus at 8q24 in tumor cell line 

(Kallioniemi et al., 1992). Thereafter, it has been widely applied in the analysis of tumor 

chromosomal aberrations. The advance of CGH is that it allows whole-chromosome or 

whole-genome surveys of chromosomal rearrangement and aberrations, while previous 

approaches only target specific genomic regions. However, the use of metaphase chromosomes 

largely limits the resolution of CGH. 
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1.3.3 Array-based comparative genome hybridization (array-CGH) 

Array-based comparative genome hybridization (array-CGH) is an upgrade to the traditional 

CGH technique. By applying comparative genome hybridization to a solid surface with 

immobilized DNAs targeted in small spots, it greatly enhanced the resolution and application 

range for copy number detection.   

 

A CGH array consists of mapped DNA sequences spotted or directly synthesized onto a solid 

surface, for exame a glass slide. Different sources of DNA sequences which could be generally 

classified as genomic inserts are used in array approaches, such as BAC, cosmid or fosmid 

clones, cDNA clones, genomic polymerase chain reaction (PCR) products or oligonucleotides. 

For the hybridization experiment, uniquely labeled subject and control DNA are co-hybridised 

onto arrays with Cot-1 blocking agent which would count out signal from common repetitive 

sequences (Figure 1.4 a)). Then the test and reference DNA signal intensity is recorded for all 

probes on the array. Significant deviation from the test/reference ratio of 1 (equivalent to log2 

(test/reference)=0) for a probe (or a series of consecutive probes) would be interpreted as DNA 

copy number changes (Figure 1.4 b)) (Solinas-Toldo et al., 1997; Pinkel and Albertson, 2005). 
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Figure 1.4 (a) Array comparative genomic hybridization (CGH). Genomic DNA from two cell 
populations is differentially labeled and hybridized to a microarray. The fluorescent signal 

intensity ratios measured at each array spot are normalized so that the median log2 ratio is 0. 

Plotting of the data for chromosome 9 from pter to qter shows that most elements have a ratio 

near 0. The two elements nearest pter have a ratio near −1, indicating a reduction of a factor of 

two in copy number. Fluorescent in situ hybridization (FISH) with a red-labeled probe for the 

deleted region and a green-labeled control probe (genome locations indicated by the red and 

green arrows on the ratio profile) shows that the cells contain two copies of the green probe and 

only one for the red, consistent with the array CGH analysis (adapted from Pinkel and Albertson, 

2005) 
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1.3.3.1 BAC array CGH 

Bacterial Artificial Clones array CGH is the first generation CGH, and is also used for the 

earliest genome-wide human CNV surveys (Iafrate et al., 2004; Redon et al., 2006; 

Solinas-Toldo et al., 1997). BAC arrays targets specific regions of the genome, or tiling the 

genome at an average resolution of about 1 Mb. Now the BAC arrays can be synthesized with 

over 30,000 features at a tiling path resolution 80-150kb, due to the availability of overlapping 

sequencing clone contigs generated for public domain of the Human Genome Project (Fiegler et 

al., 2006). The DNA preparation for BAC arrays was problematic, because substantial effort was 

required in bacterial culture handling to extract enough DNA from the BAC clones; this problem 

was tacked later by applying DNA amplification methods such as rolling circle replication, 

linker adaptor PCR or degenerated oligonucleotide primer PCR (DOP-PCR). The whole-genome 

tiling path (WGTP) array platform was generated using the DOP-PCR strategy, with BAC DNA 

amplified using three different, specifically designed degenerated oligonucleotide primers. At 

that point complete amplification of the clone DNA was achieved and the effect of E. coli host 

vector DNA contamination was minimized. After years of improvement, the technique of BAC 

array CGH has matured and it has been a sensitive and reliable platform for the detection of 

genomic aberrations (Fiegler et al., 2006).  

 

1.3.3.2. Oligonucleotide Array CGH (OaCGH) 

Alongside BAC arrays, oligonucleotide-based arrays are also among the most popular methods 

to detect genomic imbalances.  25~85 mer oligonucleotides are synthesized in-situ onto the 

solid base of the array which serve as the probes or features for CNV detection. Different oligo 

arrays are combined with different labeling and hybridization techniques to yield high-resolution 

copy number measurements. Oligonucleotide arrays are usually commercially available, from 
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suppliers such as Affymetrix, Roche Nimblegen and Agilent Technologies. Non-commercial 

oligonucleotide array CGH platforms have also been applied , where 60~70 mer oligonucleotide 

libraries are spotted as elements on the arrays (Ylstra et al., 2006).  

 

Compared to BAC arrays, early oligonucleotide arrays had low signal-to-noise ratio, which leads 

to variable reported signals for CNV detection (Carter, 2007). Another issue which hindered the 

wider application of OaCGH is the higher costs to purchase commercial arrays and experimental 

reagent; therefore OaCGH were mostly used for validation (Conrad et al., 2006; Locke et al., 

2006; Wang et al., 2007) or breakpoint mapping (Sharp et al., 2005) rather than whole genome 

discovery of CNVs, in the early years of its application. New technologies, such as the use of 

digital mask photolithography, has allowed oligo arrays to be constructed at much higher density, 

providing better resolution and precision for CNV detection. Flexibility of array design also 

expanded the usage of oligo arrays: the arrays can be optimized to avoid highly repetitive 

regions, but can also cover low copy repeats such as segmental duplications where CNVs are 

abundant. Designs can also be customized to target clinically relevant regions for disease studies. 

With improved signal-to-noise ratio, enhanced reproducibility, better quality control and the 

reducing cost, oligo arrays are now recognized as an accurate method for high resolution CNV 

detection (Cronin et al., 2008; Ylstra et al., 2006; Urban et al., 2006). The latest commercially 

available oligo arrays include the Agilent SurePrint G3 Human CGH Microarray 1M with 

963,029 biological features and NimbleGen Human CGH 4.4M Whole-Genome Tiling Array. 

 

Representational oligonucleotide microarray analysis (ROMA) is a member of the OaCGH 

technology family. “Representations” of the test and reference genomes are prepared by 

digesting the genomes with restriction enzymes. After differential PCR amplifications, 

representations of the entire genome are amplified to show relative increases, decreases or 
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remain equal copy number in the two genomes.  Oligonucleotide probes from human genome 

sequence are hybridized with differently labeled test and reference genome fragments, so that 

change of copy numbers could be detected from signal intensity changes (Lucito et al., 2003). 

ROMA, which was developed from a previous method called Representational Difference 

Analysis, has the advantage of reducing the complexity of a genome with taking restriction 

enzyme cleaved DNA fragments. This approach has been used in several CNV discovery and 

disease association studies (Sebat et al., 2004; Sebat et al., 2007; Walsh et al., 2008). 

 

1.3.4 CNV detection using Single Nucleotide Polymorphism data 

Single Nucleotide Polymorphism is the most well studied genetic variants in human genomes. 

Since the 1990s, enormous effort has been put into the SNP discovery, validation and 

characterization. The International HapMap project is an important landmark in the history of 

human genetics studies, which provides a catalogue and database of well-characterized SNPs in 

sampled human individuals from four major ethnic populations (The International HapMap 

Consortium, 2005). The release of reference SNP map in human genome has enabled the 

development of high-throughput array technologies for SNP genotyping, for example SNP 

genotyping platforms by Affymetrix and Illumina Inc. With the guidance of DNA reference 

sequence and the use of high-throughput genome-wide SNP microarrays, numerous studies 

showed success in finding genetic determinants of human complex traits in a fast and economic 

way.  

 

Many genome-wide SNP association studies with large sample sizes (hundreds to thousands of 

participants) are already established. Intuitively one may argue whether these SNP genotyping 

data can be mined for copy number analysis at no extra cost and further, make the data a 
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potential source for CNV-disease association studies complementing SNP-disease association, 

which may aid understanding of the contribution of a higher level of genetic variants to the 

disease susceptibility or disease related traits.  

 

A number of algorithms have been introduced to indicate CNVs from SNP array genotyping 

results (Gunderson and Peitter, 2006; Li and Wong, 2001; Colella et al., 2007; McCarroll et al., 

2008; Korn et al., 2008).Compared with array-CGH, SNP genotyping provides extra information 

to estimate copy number by combining the normalized intensities and allelic ratio.  SNP 

genotyping platform are different in that a combination of two genotyping parameters is 

analyzed: normalized intensity measurement and allelic ratio. Together, these parameters provide 

a more sensitive and precise profile of chromosomal aberrations. SNP array data also provides 

genetic information (haplotypes) of the involved locus. Importantly, the SNP genotyping 

platform has the capability of identifying copy-neutral LOH (Loss of Heterozygosity) events, 

such as gene conversion, which cannot be detected with array-CGH (Gunderson and Peitter, 

2006). 

 

1.3.4.1 SNP-tagging based on linkage disequilibrium 

It is hypothesized tht SNPs could tag adjacent common copy number changes, or CNPs, based 

on linkage disequilibrium (LD), therefore LD could be utilized for CNV investigation. However, 

whether SNP can serve as a good proxy for CNV detection still remains unclear (Redon et al., 

2006; McCarroll and Altshuler, 2007). Only a small proportion of CNVs has to date been 

accurately genotyped, making the assessment of linkage disequilibrium around CNVs difficult. 

Some studies suggested that deletion polymorphisms are generally in strong linkage 

disequilibrium and segregate on ancestral SNP haplotypes (Hinds et al., 2006; McCarroll et al., 
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2005) while some others argued although a number of CNVs are in strong linkage 

disequilibrium with nearby markers, accurate genotypes can only be captured for small 

proportion of the tested CNVs (Redon et al., 2006). CNVs are commonly found in regions rich 

in segmental duplications, but those regions are not favored in SNP selection in commercial SNP 

genotyping assays, whose design is based on SNP tagging which aims to capture most common 

variants in the genome, because regions harboring CNVs usually tend to be gene-poor and 

common CNPs usually cause SNP genotyping assays to fail Hardy-Weinberg and Mendelian 

inheritance checks. Consequently, these regions are often filtered out during the selection of 

high-performance SNP assays (McCarroll and Altshuler, 2007; Locke et al., 2006). Other 

reasons may be high recombination rate in regions of CNV or high rate of spontaneous 

recurrence of CNVs (Lee and Jeon, 2008; Lee et al., 2007).  

 

1.3.4.2 CNV detection using whole-genome SNP genotyping arrays 

SNP arrays originally designed to genotype SNPs in genome-wide association studies can be 

used to estimate copy number variations. Hybridization signals of probes at each SNP locus can 

be compared to those from a single or a group of references genomes hybridized on the same 

array type. The CNV calls can thus be generated (Figure 1.5). Apart from directly utilizing 

signal intensities, CNVs, in particular deletions, can be inferred from regions with extended loss 

of heterozygosity (LOH), non-Mendelian inconsistency among families and enrichment of 

Hardy-Weinberg disequilibrium (Conrad et al., 2006; McCarroll et al., 2005)   
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1.3.4.2.1 CNV studies utilizing whole-genome SNP data 

The first SNP based CNV studies were carried out in 2005, with Affymetrix GeneChip Human 

10k arrays to analyze copy number changes from a variety of different sources, including 

primary tumors, cell lines and blood from patients with unbalanced translocations (Conrad et al., 

2006; Herr et al., 2005; McCarroll et al., 2005). Thereafter the resolution of SNP arrays 

gradually increased, and the companion analytical tools also developed. For example 

Affymetrix’s Genome-Wide Human SNP Array 6.0 which consists of more than 906,000 SNP 

and 946,000 CNV probes are now available for underlying CNV profile in human samples (Kidd 

et al., 2008).  

 

The SNP data from International HapMap project was often mined by CNV researchers to 

generate example maps of CNVs in human genome from multiple population cohorts or served 

as reference for testing SNP-base CNV detection algorithms (Komura et al., 2006; Conrad et al., 

2006; Locke et al., 2006; Redon et al., 2006; Kohler and Cutler, 2007; Ting et al., 2007; Wang et 

al., 2007; Korn et al., 2008; Lin et al., 2008; McCarroll et al., 2008; Rigaill et al., 2008; Sanders 

et al., 2008; Shen et al., 2008; Cooper et al., 2008; Pique-Regi et al., 2009; LaFramboise et al., 

2005). SNP genotyping data from already established association studies has been routinely 

recycled for CNV determination (see 1.5 for references). The advantage of such a study design is 

that knowledge of SNPs, CNVs and other clinically useful data such as uniparental disomy 

(which is a copy number neutral LOH detectable by analyzing hybridization signals) (Dunbar et 

al., 2008) can all be gained from the same array simmutanously.            
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Figure 1.5 Protocol outline of CNV detection from hybridization signal intensity data of SNP 
arrays (Adapted from Redon et al., 2006)  
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The major problem of using earlier generation SNP arrays to detect CNVs is uneven probe 

spacing, with particularly low density of SNPs near or at repeat-rich regions such as segmental 

duplication, centromere and telomeres. This will directly cause inaccurate CNV calls which in 

practice are inferred from signal intensity data for SNPs. The later SNP genotyping platforms 

with denser SNPs perform better in detecting CNVs. Several recent SNP genotyping platforms 

have taken copy number detection into account, which include non-polymorphic probes 

specifically selected for their genomic positions and for linear response to copy number changes. 

For example Affymetrix Genome-wide Human SNP array 5.0 and 6.0, and Illumina Human 

1M-Duo Bead Chip, with over 1.2 million markers including probes designed to target known 

CNV regions and gaps between HapMap SNPs. These platforms have greatly enhanced power to 

detect CNVs in association studies, integrating both SNP and CNV assessments in the pipeline 

of such researches (Korn et al., 2008).                                                              

 

1.3.4.2.2 SNP-based CNV detection algorithms  

A number of bioinformatics tools have been designed to detect CNVs using the intensity data 

from hybridization of sample DNA to the probes on the array. LogR Ratio (LLR) and B Allele 

Frequency (BAF) are the two most important parameters of singnal intensity for CNV detection. 

The detection algorithms fall into generally two major categories: Hidden Markov model (HMM) 

and circular binary segmentation (CBS). Building upon the statistical principles of HMM and 

CBS a number of algorithms have been developed; some examples can be viewed in Table 1.2. 

 

The assumption of HMM is that the observed intensities of each SNP probe are related to an 

unobserved copy number state at each locus, so that a DNA segment of copy number change can 

be determined if consecutive probes within this segment all show the same non-neutral copy 
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number state (Details in Chapter 2).  

 

With prior knowledge of modeling statistics, algorithms have been developed to infer copy 

number changes with genomic SNP data. HMMseg is one of the earliest algorithms designed for 

this purpose, which is command line operated (Day et al., 2007). However application of correct 

modeling procedures is not an obvious process to non-statisticians. For these reasons software 

with user-friendly interface has been developed which allows guided applications of HMM 

methods (Winchester et al., 2009). QuantiSNP and PennCNV are two academically developed 

software tools that are freely available for CNV prediction. Users can apply HMM to their own 

data using these tools.  

 

QuantiSNP (Colella et al., 2007) was initially designed for Illumina Infinium array platforms, 

but the later versions of this software have been proved to have satisfactory accuracy on 

Affymetrix and Illumina GoldenGate data where SNP coverage is suitable. The output of 

QuantiSNP gives a log Bayes factor with its prediction which is a post-process parameter to 

indicate the likelihood of the results. The user can rank events in order of Bayes factor and chose 

a satisfactory cutoff to define their list of CNVs. QuantiSNP is widely used in CNV discovery 

and disease associations, as highlighted by  CNV studies in Autism spectrum disorders and 

schizophrenia (Moreno-De-Luca et al., 2010; Pinto et al., 2010; Stefansson et al., 2008; 

Vrijenhoek et al., 2008; Wang et al., 2007; Wang K. et al., 2010). 
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Table 1.2  Examples of SNP-based CNV detection algorithms  (Winchester et al., 2009) 
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PennCNV (Wang et al., 2007) was also tailored for Illumina genotyping platforms at first, and 

later modified to be compatible to Affymetrix platforms in a version called “PennCNV-Affy”. It 

has a number of downstream analyses including the use of family trio data in analysis, in which 

the family information (when applicable) is taken into account to give more confidence of a 

CNV detected to be passed on from parent(s) to offspring. It also includes a number of options to 

handle results such as scripts which allow the viewing of PennCNV results in BeadStudio 

Chromosome Browser or the web-based UCSC browser (http://genome.ucsc.edu/). The 

application of PennCNV to detect CNVs can be found in over 60 published articles 

(http://www.ncbi.nlm.nih.gov/pubmed, last accessed April 2011), in population CNV profiling  

(Cooper et al., 2008; McQuillan et al., 2008; Perry et al., 2008), tumor studies (Cooper et al., 

2008; Jacobs et al., 2007; McQuillan et al., 2008; Perry et al., 2008; Toujani et al., 2009), and 

CNV association with diseases (Glessner et al., 2009a; Wang K. et al., 2010; Glessner et al., 

2009b; Glessner et al., 2010; Bademci et al., 2010).  

 

Other HMM based programmes include: the Birdsuite package which integrate calling of 

common CNVs (with the knowledge of categorized CNVs from publications) and the discovery 

of rare CNVs  (McCarroll et al., 2008); dChip software which was originally developed for 

Affymetrix platforms and outputs and LOH score alongside each prediction (Li et al., 2008); 

Copy Number Analyzer for GeneChip arrays (CNAG) (Nannya et al., 2005),  and many more.  

 

Another category of algorithms are based on Circular Binary Segmentation (CBS). These 

algorithms were originally developed for arrayCGH analysis to convert noisy intensity values 

into regions of equal copy number (Olshen et al., 2004), but have been modified for SNP 

genotyping arrays. CBS continuously divides a region into segments until it finds a segment with 

a different copy number compared to the neighboring region. This detection of change-point 
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along chromosomes is designed to identify all the places which partition the chromosome into 

segments of the same copy number. Segment ends were joined to form a circle to allow a further 

likelihood ratio test. The median LLR values are then given to the final set of segments within 

the region, and this median values are used to define copy number status of each segment.  

 

DNAcopy and cnvPartition are two packages among many CBS based algorithms.  

Traditionally, CBS scans a chromosome multiple times and generate a permutation reference 

distribution to obtain the corresponding P value for each segment of CN change, which is time 

consuming. As the number of markers increases, the number of computations increase 

exponentially, which is not favoured in CNV detection from newer arrays which contain 

hundreds of thousands markers.  DNAcopy implements a ‘stopping rule’ into the basic CBS 

algorithm; this will stop a computation process early when there is strong evidence for the 

presence of copy change of the segment being assessed (Venkatraman and Olshen, 2007a).  

cnvPartition was developed by Illumina for their proprietary software BeadStudio. As a plug-in, 

it can easily be applied to LRR and BAF data organized and analyzed in BeadStudio. 

cnvPartition contains two modules: one for breakpoint identification using LRR, and another for 

assigning copy number to the regions between identified breakpoints with information of BAF 

(BeadStudio TechNotes of CNV algorithms). Other examples of computational tools utilizing 

CBS are The Genome Alteration Detection Algorithm (GADA) (Pique-Regi et al., 2008), and 

commercial software Partek (Partek Inc., St. Louise, MO) and HelixTree (Golden Helix, Inc.).  

 

 

 

1.3.4.2.3 Choice of algorithm for SNP based CNV detection 

Accurate CNV prediction from hybridization singnal intensities largely relies on the 
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performance of sophisticated algorithms or statistical methods to discover copy number changes. 

To date a number of commercial and in-house CNV detection software have been developed to 

process SNP array data, which one or ones to chose from the large collection should be an 

important concern in the primary stages of any study that intend to mine SNP data for CNV 

discovery. It has been shown that output from different algorithms showed large scale variability 

(Korn et al., 2008) ,  but it is only recently that researchers have started to assess the impact of 

algorithm choices on resulting CNV calls in a systematic way (Dellinger et al., 2010; Tsuang et 

al., 2010; Winchester et al., 2008; Zhang et al., 2011).    

 

No consistent conclusion could be made for the algorithms considered in the already published 

comparison studies. For example, all four studies assessed QuantiSNP but its ranking amongst 

all algorithms tested was different in each study. The large scale of discrepancy of results from 

different methods makes one question the power and accuracy of these algorithms. To increase 

confidence of CNV predictions in the data, it is recommended using a second algorithm on the 

single dataset to produce the most informative results (Winchester et al., 2009). But it should be 

noted that, the trade-off of taking overlap of two algorithms is the chance of missing true 

positive calls only made by one algorithm.  
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1.3.5 Validation and detection of locus-specific CNVs 

The CNV prediction is often followed by quantitative or semi-quantitative measurements of 

copy variation at selected targeted loci. These measurements serve as independent platforms to 

validate array-based CNV discoveries and they can precisely determine breakpoints of CNV 

regions. The detection/confirmation of CNVs at targeted loci can be expended in a wider context, 

where candidate CNV loci can be genotyped in a large number of samples for disease 

association studies or in clinical diagnostic settings. Table 1.3 shows some example of 

locus-specific CNV detection. 

 

Conventional methods such as FISH, RFLP (Pulsed field gel electrophoresis)-Southern Blot, 

PFGE and long range PCR can be applied for validating a small number of CNVs in limited 

samples. However, these methods are low-throughput and technically demanding.  

 

Newer techniques such as quantitative fluorescent real-time PCR (qPCR), multiplex quantitative 

Fluorescent Real-time PCR, pyrosequencing, invader assays and Ligation detection reaction 

(LDR) have been developed along with the progress of CNV discoveries. These new methods 

are more cost effective and faster in detecting CNVs at targeted loci, and have the potential to be 

applied in large-scale investigations.  
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Table 1.3 Example of locus-specific CNVs and the methods applied for the detection. (Lee and 

Jeon, 2008) 

 

1.3.6 Whole genome sequencing and detection of CNVs 

The sequence of original consensus human genome is the bedrock of most CNV discoveries to 

date. Genomic insert clones, for example BACs or oligonucleotides are representative segments 

of the reference genome sequence compiled by the HGSC (Human Genome Sequencing 

Consortium, 2004; Human Genome Sequencing Consortium, 2001). The other major CNV 

detection platform, namely SNP genotyping arrays, have depended upon SNP information 

derived from the International HapMap Project, which has identified and catalogued common 

genetic polymorphisms at single nucleotide level.  
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On the other hand, the option of directly detecting copy number change of DNA segments from 

sequence data is considered in a few whole genome sequencing studies. Thus, 666 CNVs were 

found in the first published DNA sequence from a sole individual, Dr J. C. Venter (Levy et al., 

2007), using first-generation shotgun sequencing technology; 602 CNVs detected in Dr J. D. 

Watson’s genome on Roche/454 platform (Wheeler et al., 2008); 5704 in the genome of an 

African individual (Bentley and et al., 2008) and 2682 in the first Asian genome (Wang et al., 

2008), both on Illumina Genome Analyzer platform.    

 

The computational tools to detect CNVs from sequence data fall into two main categories, 

paired-end read mapping/paired-end read sequencing/end-sequence profiling (PEM/PES/ESP), 

and read depth (RD) (Koboldt et al., 2010). Whole genome sequencing allows detection of 

structural variants at unprecedented resolution, however it is still too early to announce unbiased 

whole genome CNV profiling can be achieved by solely analyzing DNA sequencing data. The 

state-of-art bioinformatics methods developed for this purpose each has its drawbacks. First of 

all, due to the short length of sequenced bases, many reads cannot be uniquely mapped to the 

genome. Second, the alignment is particularly problematic at segmental duplication rich regions; 

read-depth methods could detect variants at those locations, but their resolution is relatively poor. 

Third, PEM-based methods have the advantage to detect dosage-invariant SVs, but these 

algorithms have limited power in detecting insertions larger than the insert size. Fourth, the G+C 

content throughout the genome, amplification error and uneven likelihood of fragmentation all 

may cause different representation of certain regions compared to others. Last but not least, 

many of the data sets do not have sufficient coverage to infer all SVs with statistical significance 

(Xi et al., 2010). 
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Therefore more advanced and sophisticated platforms and algorithms for detecting SVs from 

sequence data are required. It is also advisable that the results from direct DNA sequencing are 

combined with conventional platforms such as CGH and SNP array which has a better 

specificity in detecting longer CNVs, so that the relative advantages of these methods can 

complement each other and the power of revealing genome-wide CNVs can be maximized.    
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1.4 Mechanisms for the formation of genomic rearrangements  

One fundamental question to be asked in CNV studies is what mechanisms contribute to the 

generation of CNVs. The knowledge of underlying mutation processes for CNV will yield 

insights into the genomic distribution, evolution and frequency of CNVs in the human 

population. Four major mechanisms for the formation of genomic rearrangement have been 

proposed; they are non-allelic homologous recombination (NAHR), non-homologous end 

joining (NHEJ), fork stalling and template switching (FoSTeS) and L1 retrotransposition.  

 

1.4.1 Non-allelic homologous recombination  

It has long been observed that copy number variable regions often coincide with repeat 

sequences, for instance segmental duplications (Sharp et al., 2005) or Alu repeats (Lee et al., 

2007). Some genetic disorders, known to be caused by large scale microdeletion or 

microduplication of the genome, such as Williams Syndrome and Charcot Marie Tooth Disease, 

often have breakpoints in or around highly homologous segmental duplications or low copy 

repeats (LCRs) (Lee et al., 2007). It has been suggested that SDs or LCRs can serve as substrates 

for NAHR, and that NAHR account for most cases of recurrent CNV formations (Stankiewicz 

and Lupski, 2006; Lee et al., 2007; Stankiewicz and Lupski, 2006). Other repeats such as SINEs 

(eg. Alu), LINEs and human endogenous retroviruses (HERVs) can all act as substrates for 

NAHR, which are observed in less recurrent CNV events (Cooper et al., 2007). 

 

NAHR happens during meiosis, when two sister chromosomes align. In this process, 

misalignments or unequal cross-over of the homologous sequences will lead to germline 

rearrangements (Figure 1.6a). Different distribution and participation of the homologous 

sequences cause different type of CNVs in NAHR, from simple deletion or duplication to more 
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complex rearrangement, such as tandemly duplicated arrays, or other complicated structural 

variations involving multiple homologous duplicons (Zhang et al., 2009).  

 

1.4.2 Non-homologous end joining 

NHEJ is an alternative mechanism for repair of DNA double strand breaking (DSB) in cells. 

When there are no extensive homologous sequences to act as the repair template for NAHR near 

a random DSB, the nucleases will remove the broken ends which is followed by filling of 

missing nucleotides by the Pol X family of DNA polymerases(Zhang et al., 2009) (Figure 1.6a). 

It is an error-prone repair mechanism, which often generates gains and losses of nucleotides at 

the junctions.  Compared to NAHR, the knowledge of NHEJ is limited (Lee et al., 2007).  

 

NHEJ more usually appears in unstable regions of the genome, for example subtelomeric regions 

(Kim et al., 2008). Moreover, many 17p translocations and other nonrecurrent  disease-causing 

deletions have one of their breaking points in LCRs (Stankiewicz and Lupski, 2006). These may 

implicate the contribution of NHEJ to CNV formation with the absence of NAHR substrates. 

 

1.4.3 Fork stalling and template switching 

In 2007, Lee et al. proposed a new model apart from NAHR and NHEJ as a mechanism for 

human genomic rearrangements (Lee et al., 2007).  
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Figure 1.6 Comparisons and characteristics of the four major mechanisms underlying human 
genomic rearrangements and CNV formation. (a) Models: NAHR, between repeat, sequences 

(LCRs/SDs, Alu, or L1 elements); NHEJ, recombination repair of double strand break; FoSTeS, 

multiple FoSTeS events (×2 or more) resulting in complex rearrangement and single FoSTeS 

event (×1) causing simple rearrangement; and retrotransposition. TS, target site; TSD, duplicated 

target site. Thick bars of different colors indicate different genomic fragments; completely 

different colors (as orange and red or orange/red/green in FoSTeS×2) indicate that no homology 

between the two fragments is required. The two bars in two similar shades of blue indicate that 

the two fragments involved in NAHR should have extensive homology with each other. The 

triangles symbolize short sequences sharing microhomologies. Each group of triangles (either 

filled or empty) indicates one group of sequences sharing the same microhomology with each 

other. (b) Characteristic features for each rearrangement mechanism: variation type that each 

mechanism generates; type of homology sequences flanking breakpoint; the way the breakpoints 

formed and favorable sequence feature recognized by each mechanism. Specific features of 

certain mechanisms are shown in red. Abbreviations: dup, duplication; del, deletion; inv, 

inversion; ins, insertion (Zhang et al., 2009). 
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In this process, when a DNA replication fork stalls, the lagging strand detangles from the 

original template and switches to another replication fork if it finds a micro homologous 

sequence in the new fork. Then DNA synthesis restarts on the new fork and finally a 

rearrangement is made between the sites of original and new replication fork (Figure 1.6a). The 

difference between NAHR and FoSTeS are the required size of homologous sequences 

(intensive repeats for NAHR and microhomology for FoSTeS) and that NAHR happens in 

chromosome recombination process while FoSTeS in DNA replication process(Figure 1.6b). 

 

1.4.4 Retrotransposition 

Transposons are one type of mobile genetic elements in the human genome which can move, or 

transpose, themselves to new positions within the same genome. They act either by transcribing 

a segment of targeted DNA into RNA (Ribonucleic Acid), then from RNA back to DNA at a 

different location by reverse transcription and therefore result in a duplication of the targeted 

sites (named retrotransposition, and known as “copy and paste”), or by cutting out a DNA 

segment and inserting it into a new site in the genome via transposase activity (known as “cut 

and paste”). Long interspersed element-1 (L1) elements are a major class of retrotransposons. 

They are abundant in human genome, and are the only currently active autonomous 

retrotransposons (Zhang et al., 2009).   

 

In a survey of eight end-pair sequenced genomes, it was declared that retrotransposition 

accounted for 30% of all the detected SV indels (Kidd et al., 2008). Another study which 

analyzed SVs associated with mobile element in J. C. Venter’s genome claimed that about 10% 

of the indels of >100 bp were associated with transposable DNA sequences, including L1, Alu 

and SVA (composite retrotransposon) (Kidd et al., 2008; Xing et al., 2009) 
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1.5 Disease and phenotypic relevance of copy number variation 

 

1.5.1 Approaches to identify the genetic components of phenotypic variation 

It has been shown that most medical disorders, including cancer, heart disease and mental illness, 

have a significant genetic component. However, the isolation of disease susceptibility loci (DSL) 

remains difficult (Smith et al., 2006). 

 

Linkage studies have proven to be very powerful in localising genes for monogenic Mendelian 

disorders, but are poor for fine mapping genes of small effect size or low penetrance, thus may 

be much less effective for common complex diseases.  

 

It is widely accepted that association studies, which use large numbers of SNPs or other markers 

that are genotyped in known linkage regions or candidate genes, are an important complement to 

linkage studies, in the attempt to localize genes for complex traits. This method involves 

mapping hundreds of thousands, even millions of single nucleotide polymorphisms (SNPs) 

throughout the whole genome of multiple individuals in either case-control or population based 

study design, comparing frequencies of different alleles or haplotypes at the same genetic variant 

locus in people with the disease (cases) and similar people without (controls). The allele 

frequency differences together with other information is analyzed with statistical techniques, if 

one allele or haplotype appears more often in one group (cases or controls) than the other, this 

variant is suggested to be associated with an elevated risk of or protection against this disease. 

The association study design has greater power to detect smaller effects compared to linkage 

analysis, but requires many more markers to be examined. In recent years, with the identification 

of tightly spaced SNP variants through the human genome, the improvements in genotyping 

technology and associated cost reduction have made high resolution association studies practical, 
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and given them greater power and resolution for gene mapping than linkage studies. 

In the last few years, accumulating evidence has been found to reveal the universal existence of 

CNVs distributed in human genome and it has been suggested that CNVs may serve as a useful 

class of markers in genetic association studies (Redon et al., 2006; Sharp et al., 2006; Shelling 

and Ferguson, 2007).To carry out an association analysis using CNVs as markers, all levels of 

copy number should be measured. However, only a small percentage of common CNVs can 

yield genotypes of the quality that could be used for linkage disequilibrium analysis (Redon et 

al., 2006). And in the existing collection of CNVRs identified, only a very small number of 

CNVs have been genotyped  (McCarroll and Altshuler, 2007). This is inadequate to establish a 

robust and comprehensive CNV marker map. 

 

The current methodologies of CNV genotyping fall into two categories: use raw copy-number 

measurements such as log2R ratio (Stranger et al., 2007) or dichotomize over CNVRs and define 

the CNV variations as ‘gain’ or ‘lose’. It has been argued that summarizing raw copy-number 

measurements into such ‘calls’ may lose information present in the original measurements and is 

of uncertain relationship to the true genotype (McCarroll and Altshuler, 2007).  

 

The genetic variance underlying heritable traits related to complex disease can be partly 

explained by common variants of small effect, which form the basic principle of association 

studies: common-variant-common-disease hypothesis. However, the phenotypic variation will 

also have a contribution from rarer variants. A spectrum of the observed allelic frequency of 22 

functional quantitative trait nucleotide (QTN) variants influencing the trait (Figure 1.7), 

obtained in various resequencing studies, suggests that rare variants (with frequencies<0.05) 

may be very important causal factors in quantitative trait variation (Blangero, 2004).  On the 

other hand, it is shown in an L-shaped or exponential distribution of mutation effect sizes that 
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there are many variants with small effects, a small number with intermediate effects and 

relatively few with large effects (Wright et al., 2003). It could be argued that a collection of 

multiple rare variants could make a very significant contribution to human phenotypic variation.  

 

However, the current popular methods to detect genetic variants have limitations when it comes 

to the case of multiple rare variants.  Linkage studies conducted among families with multiple 

cases of disease were successful in identifying variants of large effects with high penetrance. 

Association studies conducted in general populations samples using common genetic markers 

typically find low penetrate variants with (very) small effects. It is not unexpected given that 

these common genetic variants are ancient and will have been subject to some selective pressure 

over time. Usually the rare SNPs are not in linkage disequilibrium (LD) with any other variants 

within the gene and are uncorrelated with any common haplotype, so the HapMap strategy base 

solely on tagging common SNP variants could easily fail even with very large sample sizes 

(Blangero, 2004).  

 
Figure 1.7 Observed allelic frequency spectrum from 22 QTNs obtained from 7 different 
resequenced genes (Blangero, 2004). 
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1.5.2 The study of CNV in human traits and diseases 

1.5.2.1 Single causative CNVs in human traits and diseases 

The first attempt to link structural variants to human disease was made by Lupski et al in the 

early 1990’s. Their study revealed an association between a gene duplication on chromosome 

17p and a common inherited neurological disorder,  Charcot-Marie-Tooth (CMT) disease type 

1A (Lupski et al., 1991). However, the publication of that pioneering study was not without 

difficulty. Both Science and Nature rejected Lupski’s submission without even sending it out for 

review. At that time, “there was no appreciation that copy number was a mechanism of disease”, 

said Lupski (Cohen, 2007). This study finally appeared in Cell later that year.  

 

The study of association between gene copy number and CMT brought a refreshing new way of 

thinking to all geneticists. This discovery not only offered understanding to the etiology of the 

devastating disease but it also started the search for finding connections between genetic disease 

and a wider variety of genetic variation, which can be anything from a single base pair to very 

long stretches of DNA on chromosomes. This marked the opening of a new era in human 

genetics.  

 

Since then, alongside the progress of technology to detect structural variants, more and more 

scientific groups studied the CNV-disease association and several fruits were presented in this 

field. An important discovery of CNV association in 2005 should not be missed out here. 

Gonzalez et al. discovered significant interindividual and interpopulation differences in the copy 

number of a duplication influencing CCL3L1 gene, and found out lower copy of CCL3L1 was 

associated with higher HIV/AIDS susceptibility (Gonzalez et al., 2005). This became a classical 

example of CNV-disease association via gene dosage effect in the early years.  
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1.5.2.2 Genome-wide CNV association  

Genome-wide association studies (GWAS) have been proposed as a powerful strategy to detect 

potential genes which may account for complex disease outcomes or phenotypes. The first 

genome-wide association study was carried out in 94 myocardial infarction patients and 658 

controls, based on 92,788 SNPs (Ozaki et al., 2002). Two SNPs in the lymphotoxin-alpha (LTA) 

gene were found to be significantly associated with myocardial infarction. One of them has a 

functional impact on transforming amino acid residual from threonine to asparagine (Thr26Asn) 

while another in intron 1 of the LTA gene influences the level gene transcription. Since then, the 

number of GWAS has grown nearly exponentially. To date, dbGaP by NCBI (Database of 

Genotypes and phenotypes, http://www.ncbi.nlm.nih.gov/gap, last accessed in March 2011) 

categorized 5684 analyses on 124656 clinical variables from 132 studies.  Numerous novel 

genetic loci underlying disease susceptibility have been discovered, and many of these 

associations hold up to rigorous standards for replication. NHGRI’s ‘A Catalog of Published 

Genome-Wide Association Studies’ listed 817 publications which attempted to assay at least 

100,000 SNPs in the initial stage, as of the time of writing. In total, 3998 SNPs were reported to 

be significantly (P<10
-5
) associated with disease or disease-related traits (http://www.genome. 

gov/gwastudies/).   

 

A database called DECIPHER (Database of Chromosomal Imbalances using Ensembl Resources) 

was developed to catalog CNVs identified by array CGH which links to disease, using a variety 

of bioinformatics applications (https://decipher.sanger.ac.uk/application/syndrome/). To date, 59 

syndromes for over 4200 consented patients investigated in more than 150 institutions 

worldwide were categorized in DECIPHER. These diseases included Charcot-Marie-Tooth 

syndrome (CMT), Adult-onset autosomal dominant leukodystrophy (ADLD), Miller-Dieker 
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syndrome, Angelman syndrome and many more.  

 

SNP genotyping platforms are widely used to construct CNV genotypes that are used in 

association and linkage studies, to map chromosomal regions containing genetic variants account 

for complex phenotypes and diseases in GWAS. A number of studies have used SNP array to 

detect CNVs and performed association studies between CNVs and disease outcome. Table 1.4 

lists some CNV GWAS with positive results between 2005 and 2009. Only one association of a 

common CNV reached significance out of all the 26 studies (Bae et al., 2008); most studies with 

positive findings claimed a general enrichment of CNVs in cases, especially de novo or rare 

CNVs. It should be noted that although CNVs are ubiquitous in the human genome, the 

frequencies of this type of genetic variation are often observed to be low, therefore only a small 

portion of CNVs can reach acceptable marker allele frequency for GWAS. For the rare ones only 

the general enrichment could be tested; more analysis and experiments are needed to address the 

biological roles of each rare CNVs.  
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Table1.4 Examples of genome-wide CNV association studies. Associated risk: “Multiple CNVs” indicates overall CNV burden is 
associated with disease.

Disease
Associated

condition
Chromsome Gene or location Associated risk Study type

Genotyping

platform
Reference

Autism spectrum disorders ascertainment neurexins Multiple CNVs Familial Affymetrix 10K Szatmari et al., 2007

ascertainment Multiple Multiple Multiple CNVs Case control Affymetrix 550K Glessner et al., 2009

ascertainment Multiple Multiple Multiple CNVs Case control Affymetrix 500K Marshall et al., 2008

16 16p11.2 Duplication

Schizophrenia ascertainment 22 22q11.2 Hemizygous deletion Case control Affymetrix 250K Bassett et al., 2008

acertainment Multiple Multiple Multiple CNVs Case control Affymetrix 5.0/6.0 ISC, 2008

acertainment Multiple Multiple Multiple CNVs Case control Illumina 550K Kirov et al., 2009

17 17p12 Deletion

22 22q11.2 Deletion

acertainment 11 chr11:112772031-112778135Deletions in this region Case control Illumina 550/610K Need et al, 2009

acertainment 1 1q21.1 de novo deletions Case control Illumina 300/550K,

Affy 6.0

Stefansson et al., 2008

15 15q11.2

15 15q13.3

Multiple Multiple Multiple CNVs Case control Affymetrix 250K Vrijenhoek et al., 2008

acertainment Multiple Multiple Novel SVs Case control Affymetrix 500K Walsh et al., 2008

Bipolar disorder acertainment 6 6q27 Duplication Familial Illumina 550K Yang S et al., 2009

9 9q21.11 Duplication

12 12p13.31 Duplication

15 15q11.2 Deletion

acertainment Multiple Multiple Multiple CNVs Case control Affymetrix 6.0 Zhang et al., 2009

Autosomal recessive mental retardation ascertainment 8 TUSC3 Homozygous deletion Familial Affymetrix 250K Garshasbi et al., 2008

Amyotrophic lateral sclerosis acertainment Multiple Multiple Heterozygous deletion Case control Illumina 300K Blauw et al., 2008

Blepharophimosis-Ptosis-Epicanthus inversus syndrome ascertainment Multiple Multiple Multiple CNVs Patients Affy262K, Illumina

300/370K

Gijsbers et al., 2008

Myelodysplastic/myeloproliferative disease survival Multiple Multiple Multiple CNVs Case control Affymetrix 250K Gondek et al., 2008

ascertainment 4 TET2 Various deletions Patients Affymetrix 250K Langemeijer et al., 2009

acertainment 5 del(5q) Deletion Case control Affymetrix 50K Wang L et al., 2008

Multiple Multiple Multiple CNVs

Autosomal recessive juvenile nephronophthisis acertainment NPH1 Heterozygous deletion MR patients Affymetrix 100K Hoyer et al., 2007

Systemic lupus erythematosus acertainment 6 C4 Deletion Case control unkown Kamatani et al., 2008

Osteoporosis acertainment 4 4q13.2 Deletion Case control Affymetrix 500K Yang T et al., 2009

Acute myeloid leukemia survival Multiple Multiple Multiple CNVs Case control Affymetrix 250K Gondek et al., 2008

Subarachnoid aneurysmal hemorrhage acertainment 14 14q31.1 Heterozygous deletion Case control Illumina 300K Bae et al., 2008

Li-Fraumeni syndrome acertainment Multiple Multiple Multiple CNVs Case control Affymetrix 250K Shlien et al., 2008

Renal cell carcinomas expression level Multiple Multiple Duplication Gene expression Affymetrix 100K Cifola et al., 2008

Neuroblastoma expression level Multiple Multiple Duplication Gene expression Affymetrix 100K Fix et al ., 2008
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It can be predicted that resequencing studies will identify many variants, including rare variants 

of intermediate effect associated with common complex disease. This paradigm shift has already 

begun with the seminal work of Cohen et al., who compared non-synonymous sequence 

variations in individuals at the extremes of the population distribution of HDL-cholesterol levels, 

and determined that a significant fraction of genetic variance is due to multiple alleles with 

intermediate effects that are present at low frequencies in the population (Cohen et al., 2004). 

Furthermore, genotyping only the individuals with extreme phenotypic values is proved to 

greatly increase power while reducing cost, in linkage and association studies(Abecasis et al., 

2001). Romeo et al. has demonstrated that targeting extremes is a powerful strategy to identify 

rarer variants (Romeo et al., 2007). Until many more such studies are reported it would be 

premature to decide on the relative importance of the common variant-common disease model 

and the alternative rare variant-common disease model which states that disease susceptibility to 

common diseases is the result of multiple low frequency/rare variants with larger phenotypic 

effects. Although individually rare, these variants may be collectively common in the population 

(Cohen et al., 2004). 

 

1.5.3 The ways that CNVs influence phenotypic variation 

Genetic changes at the DNA level could alter gene expression and eventually confer phenotypic 

effects. CNVs discovered as deletions, insertions, duplications and complex multi-site variants 

often span thousands of base pairs, therefore they can potentially influence gene expression. 

Stranger et al. surveyed the impact of CNV on expression patterns by examining mRNA levels 

in lymphoblastoid cell lines from 210 HapMap individuals from four ethnic groups (Stranger et 

al., 2007), with knowledge of the CNVs from the same set of samples (Redon et al., 2006). Copy 

number changes were found to account for 8.75% of variation at expression levels of 972 genes. 
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Effects of some CNVs on gene expression were found in all four ethnic groups, while some were 

population specific. More than half of the expression probes associated with CNVs were away 

from the CGH clone harboring the CNV, some were as far away as 2Mb apart, indicating distant 

regulation (Stranger et al., 2007). The major molecular mechanisms suspected include: 1) gene 

dosage effect, 2) interruption of a gene, e.g. interrupting protein coding sequences, 3) 

influencing regulatory sequence, 4) gene fusion, 5) unmasking mutations or functional SNPs in 

the remaining allele. 

 

The effect of CNVs on dosage-sensitive genes is the most prominent. For instance gene copy 

number of the human salivary amylase gene (AMY1) can vary from 2 to 15. Populations which 

bear a diet habit to consume more starch were found to have higher AMY1 copy numbers. A 

correlation of levels of mRNA and AMY1 protein level for different copy numbers was observed; 

it was therefore argued that this CNV locus influence gene expression at both transcriptional and 

translational levels (Perry et al., 2007). 

 

CNVs may disrupt protein coding sequences of a gene to cause functional loss or modification 

of that gene.  One example comes from a schizophrenia study, where genome-wide CNVs were 

determined in cases and controls. Multiple CNVs were found to be enriched in schizophrenia 

patients, including a deletion of 400 kb in size which disrupts the ERBB4 (receptor 

tyrosine-protein kinase erbB-4) gene (Walsh et al., 2008).  cDNA ends amplification 

experiment confirmed absence of erbB-4’s  receptor intracellular kinase domain in the mutant 

transcript by the authors (Walsh et al., 2008).  

 

CNV can also have a long range position effect on gene expression. Velagaleti et al. discovered a 

pair of translocations whose breakpoints was 900 kb upstream and 1.3 Mb downstream of SOX9 
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gene, respectively, could cause compomelic dysplasia, a disease which has been proved 

previously to be associated with mutations within SOX9 (Velagaleti et al., 2005). 

 

Genomic rearrangements can cause fusion of different genes or their regulatory sequences, thus 

generating a gain-of-function mutation. This mechanism is prominently observed in cancers 

associated with specific somatic chromosomal translocations (Zhang et al., 2009), and also 

found in disease studies. Glucocorticoid-remediable aldosteronism (GDA) is an autosomal 

dominant disorder which has syndrome of hypertension with variable hyperaldosteronism. 

NAHR causes gene fusion of two GDA candidate genes on chromosome 8q, one encoding 

aldosterone synthase and another coding steroid 11 beta-hydroxylase. This fusion can account 

for hypertension in animals and humans (Lifton et al., 1992). 

 

Hemizygous deletion at a locus may diminish one allele and unmask another recessive allele or 

functional polymorphism. For example, the plasma coagulation factor 12 (FXII) is a gene that 

underlies Sotos syndrome. The activity of FXII is low in normal individuals but high in 

individuals who have a single deletion at this loci, remaining only one copy of FXII allele 

(Kurotaki et al., 2005).  

 

1.5.4 CNV and evolution 

CNVs can influence human traits and disease susceptibility, therefore they can be potentially 

exposed to selection pressure during evolution. Both positive and negative selection on CNV 

have been discovered in humans and other species (Zhang et al., 2009).  
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CNVs are usually found to be located out of functional sequences in human genomes, which 

suggests purifying selection on CNVs. Conrad et al. (2006) investigated the SNP density within 

deletions in coding sequence and introns, and observed a strong underrepresentation of SNPs in 

deletion regions compared with the HapMap average. Many of the genes containing deletions 

had disease-associated OMIM (Online Mendelian Inheritance in Man) entries (Conrad et al., 

2006). The gene-poor phenomenon in CNV regions and the lower number of deletions than 

duplications that overlap disease-related genes are also confirmed in a number of other studies 

(Nguyen et al., 2008; Redon et al., 2006).   

 

Gene duplication has long been considered to be a main mechanism driving positive selection. 

The variable copy of AMY1 in different human populations in response to changing diet is a 

good example (Perry et al., 2007), a duplicated gene and its regulatory elements could be 

modified for new functions, resulting diversification in a species.   

 

CNVs could also be under reduced purifying selection, resulting in more variants in nonessential 

genes. The frequency of neutral CNVs will fluctuate under genetic drift. There is good evidence 

suggesting that CNVs significantly enrich in regions with genes that respond to the environment, 

such as sensory perception and immunity (Redon et al., 2006). Such variants can arise and 

remain in the genome by reduced purifying selection as in an unstable or changing environment 

so selective advantage of any one copy number state may vary (Nguyen et al., 2008; Redon et al., 

2006).  

 

 

 

 



 49

1.6 CNVs at familial and population level 

 

CNV should behave in just the same way as other genetic variants, in terms of segregation 

between individuals across generations. Redon et al. investigated heritability of 67 bi-allelic 

CNVs in 90 HapMap parents-offspring trios (30 trios each from three human populations). They 

showed only 0.2% of the CNVs exhibited Mendelian discordance; they argued the small 

proportion probably reflected genotyping error rate rather than the rate of de novo events at these 

loci (Redon et al., 2006). In a study of association between CNVs and schizophrenia, Xu et al. 

detected CNVs in parents-offspring trios in 200 affected families and 152 control families. Out 

of the total 11,268 unique CNVs identified, only 19 were de novo (Bademci et al., 2010; Xu et 

al., 2008). Due to the complex inheritance of CNVs, SNPs located within CNV regions often 

display inconsistency of Mendelian inheritance or are not in Hardy-Weinberg equilibrium. This 

special behavior of markers has been used to successfully identify polymorphic deletions and 

inversions (Conrad et al., 2006; Hinds et al., 2006; McCarroll et al., 2005). 

 

Studying CNV at population level is useful in a number of respects: first, recurrent CNVs 

detected in a large number of individuals can be used to construct a human CNV map; second, 

CNVs provide detailed information about haplotype structure that could facilitate the selection 

of tagging SNPs for use in association studies; last but not least, cataloging CNV frequency, 

distribution and map location between different populations may help geneticists to understand 

human migrations, recent natural selection and evolution of recombination hotspots. The 

HapMap data derived from samples from four ethnic groups (European, African, Asian-Chinese 

and Asian-Japanese) was first to be used to demonstrate variation of copy number at population 

level (Redon et al., 2006). Later on, a couple of studies extended high-resolution surveys of 

variation in genotype, haplotype and copy number to a wider range of human population groups. 
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Jacobsson et al. (2008) surveyed 396 CNV loci in a worldwide sample of 29 populations. They 

found the frequencies of CNVs were generally low (only one CNV frequency exceeded 10%), 

and CNVs private to one population were more common than private SNP alleles. Partial 

similarity was found between population structure inferred for CNVs and that inferred from SNP 

and haplotype data sets (Jakobsson et al., 2008). Li et al. discovered and characterized 3900 

CNVs from 985 Caucasians and 692 Asians. Many CNVs showed significant ethnic differences 

in frequencies (Li et al., 2009). However, comparisons of CNVs in multiple populations are still 

rare. First, there are few well designed population genetics studies, which have data available for 

CNV analysis and at the same time involve multiple populations with family information; 

second, the discrepancies in study design, platform choice and analytical methods between 

studies, leads to difficulties when merging CNV information from different studies each focus on 

different populations. Here, I take advantage of data collected from three different study cohorts, 

each from an isolate population, all with family data and all genotyped with the same SNP 

GWAS panel. This has allowed me to undertake a captive analysis of CNV frequency and 

distribution within and between cohorts.  
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1.7 Aims of this thesis 

 

The aim of this thesis is to a) address the advantages and limitations of current copy number 

variants (CNV) detection methods, b) apply and compare alternative calling algorithms for CNV 

detection in three European populations from Illumina 300K whole-genome genotyping data, 

and c) investigate association between CNVs and quantitative traits in the study samples. This 

thesis comprises the following experimental sections: 

 

In Chapter 3, I demonstrate the extent of copy number variation between individuals. Using 

downloaded information from five human individuals who had their genomes sequenced, I 

compared CNVs called directly from whole-genome sequencing data for these five genomes. I 

also examined the characteristics of these CNVs and discuss limitations of the methods which 

categorize CNVs from raw DNA sequence data. 

 

In Chapter 4, I investigate population level CNV profiles, drawing on published studies, 

focusing on those that detected CNVs from whole genome SNP genotyping data. A structured 

review was constructed to retrieve CNVs identified specifically in HapMap samples, from 

various types of genotyping platforms and using different calling algorithms. Two HapMap 

samples were in common to six of the identified studies and used to evaluate the impact of 

platform choice on CNV calling. Also the CNVs detected in SNP genotyping studies were 

compared against those identified by another physical mapping technique on the same 

individuals, to address the robustness and / or limitations of CNV detection methods using SNP 

genotyping data. 

 

Chapter 5 compares CNVs called by four different algorithms from whole-genome genotyping 



 52

data, for a subset of our study samples. The false positive and false negative rates of each 

algorithm were estimated from the extent of overlap in CNV detection and the relative 

performance of these four algorithms evaluated.  

 

In Chapter 6, CNVs of individuals from three European population isolates were determined, 

using algorithms chosen on the basis of method evaluation concluded in Chapter 5. The 

characteristics of these CNVs are described, and genetic difference at population level in context 

of copy number difference will be examined. Also I investigate the inheritance of CNVs with the 

knowledge of pedigree information for the three study populations. 

 

Chapter 7 comprises an analysis of association between CNVs and seven metabolic-related 

quantitative traits. The overall burden of CNVs on metabolic phenotypes is assessed. Regression 

analysis was performed for common CNV association and for the rare CNVs, to test whether 

there is an enrichment of rare CNVs in metabolic pathways in individuals with extreme trait 

values will be explored. 
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Chapter 2 

 

Materials and Methods 
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2.1 Study populations 

The study samples come from three population genetics projects: CROAS in Island of Vis, 

Croatia, ORCADES in Orkney Isles, UK and MICROS in South Tyrol, Italy, (Figure 2.1) which 

are under the banner of a large collaboration project, EUROSPAN.  

 

2.1.1 EUROSPAN 

The EUROSPAN project (http://homepages.ed.ac.uk/s0565445/index.html) was initiated in 2006 

and involves five population isolates from Italy (MICROS), Croatia (CROAS), Scotland 

(ORCADES), Sweden, and the Netherlands. The project aims at assessing the genetic structure 

of European isolates and at identifying genes underlying common traits, taking advantage of the 

genetic and environmental homogeneity that usually characterizes population isolates. In the 

current context, population isolates are "secondary isolates", i.e. groups that, for some reasons, 

detached or were detached from larger populations. In particular, EUROSPAN cohorts were 

derived from small population samples which have grown slowly, with little influx from outside 

the groups. 

 

As inclusion criteria these populations had to a) represent local populations occupying 

a well defined geographic area and have limited exchange with surrounding populations 

enabling the inclusion of large family groups, b) have historical records enabling their genealogy 

and migration patterns to be defined, c) span the geographic range and environmental diversity 

inhabited by European populations. The Scottish, South Tyrolean and Croatian populations are 

small populations founded by a limited number of individuals and/or have undergone a 

population bottleneck, followed by long isolation and very low immigration (Marroni et al., 

2006).  
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Figure 2.1 Geographic distribution of study samples 

 

 

 

2.1.2 The Dalmatian samples: CROAS study 

The Croatian Anthropogenetic Study (CROAS) is funded by the Medical Research Council 

(MRC) and involves the Universities of Zagreb and Split, the Institute for Anthropological 

Sciences, Zagreb, the University of Edinburgh and the MRC Human Genetics Unit, Edinburgh. 
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The research focuses particularly on the isolated population on the island of Vis. Residents from 

the villages Komiza and Vis on Island of Vis were asked to volunteer and give their consent to 

take part in the study.  The Komiza survey was carried out in May 2003 and the Vis survey in 

May 2004. 1062 volunteers were recruited (584 from Komiza and 478 from Vis), which 

represented a very high proportion of the permanent resident adult population (65-70%). Data 

were successfully recorded for 1030 of these individuals. The volunteers ranged from 19 to 93 

years of age and all gave informed consent (426 males and 604 females). All participants were 

asked to give some basic family information, such as the names of their parents and any siblings. 

More extensive genealogical data were extracted from the Komiza and Vis parish registers which 

dated back to 1838. Using both sources of information, pedigrees were constructed. 134 

participants could be joined up into a single pedigree. 588 of phenotyped and genotyped 

individuals could be placed in 125 pedigrees, of which the largest pedigree links 134 individuals. 

The remaining individuals were singletons (those who were unable to be connected to any 

relatives).  

 

2.1.3 The Orcadian samples: ORCADES study 

The Orkney Complex Disease Study (ORCADES) is an ongoing, family-based, cross-sectional 

study that seeks to identify genetic factors influencing cardiovascular and other disease risk in 

the population isolate of the Orkney Isles in northern Scotland. The North Isles of Orkney, the 

focus of this study, consist of a subgroup of ten inhabited islands with census populations 

varying from ~30 to ~600 people on each island. The North Isles have experienced a period of 

severe population decline over the last 150 years, fueled by high emigration and low fertility. 

The population fell from an estimated peak of 7700 in the 1860s to 2217 by 2001. Endogamous 

marriage was widespread during the nineteenth century and into the twentieth century. The 
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combined effects of steep population decline and endogamy have led to inflated levels of 

parental relatedness in the current population. Data collection was carried out in Orkney between 

2005 and 2007.  

 

2.1.4 The South Tyrolean samples: MICROS study 

Samples from South Tyrol were collected as part of the Genetic Study of Three Population 

Microisolates in South Tyrol (MICROS) from settlements in Venosta Valley. The MICROS study 

was an extensive survey carried out in Val Venosta (South Tyrol, Italy) in 2001. Participants 

were from three isolated villages located in the Italian Alps, in a German-speaking region 

bordering with Austria and Switzerland. Due to geographical, historical and political reasons, the 

entire region experienced prolonged isolation from surrounding populations. Information on 

participants’ health status was collected through a standardized questionnaire. Laboratory data 

were obtained from standard blood analyses. Initially 1175 people were enrolled in the study, 

which has subsequently risen to approximately 1400.  

 

2.2 Ethical approval and consent 

 

Ethical approval was given for the patient recruitment in Vis, Orkney and South Tyrol by the 

relevant Research Ethics Committee of the Faculty of Medicine, University of Zagreb, Croatia 

and Local Research Ethics Committee of NHS Lothian; the Local Research Ethics Committee of 

NHS Orkney and the North of Scotland Research Ethics Committee in Aberdeen; and the Local 

Research Ethics Committee South Tyrol, respectively. In all three sites, volunteers gave written 

informed consent to all parts of the study, with the research medical doctors or research nurse or 

research co-ordinator present to answer questions. They were made aware that they need not 



 58

take part in all parts of the study and were free to withdraw at any time without consequences for 

them. In Orkney and Tyrol, volunteers chose whether to consent to their family doctor being 

contacted in the event of incidental findings coming to light (Mascalzoni et al., 2009). 

 

2.3 Phenotyping 

 

Clinical history questionnaires were filled out and core quantitative traits were measured for 

participants in Vis and Orkney. Clotted blood was obtained and the following traits were a subset 

of those measured: height, weight, body mass index (BMI), waist and hip circumference, 

subscapular skinfold thickness and suprailiac skinfold thickness. Levels of fasting fasting 

glucose and insulin were measured in the NHS Orkney laboratories and laboratory of Dr Salzer 

from the University of Zagreb, for Orcadians and Dalmatians, respectively.   

 

2.4 Genotyping 

Fasting blood samples were taken from all participants (EDTA blood to be used for DNA 

extraction and clotted blood for serum biochemistry). DNA samples were genotyped according 

to the manufacturer's instructions (http://www.illumina.com/) on Illumina Infinium 

HumanHap300v1 for Dalmatian samples and on Illumina Infinium HumanHap300v2 for 

Orcadians and South Tyroleans, by technicians at the Wellcome Trust Clinical Facilities in 

Edinburgh (for Vis and Orkney samples) and University of Lübeck in Germany (for MICROS 

samples). The first and second version of HumanHap 300 arrays had 317,525 and 318,235 SNPs, 

respectively. SNPs with >10% missing genotypes were excluded. After data cleaning, 308,300 

and 318,237 autosomal SNPs remained for version 1 and version 2 arrays, respectively.  

 

Samples in Vis and Orkney with a call rate below 95% and those in South Tyrol with a call rate 



 59

below 98% were excluded from the analysis. Sex checking was performed with PLINK, and 

individuals with discordant pedigree and genomic data were removed. In total, on completion of 

data-cleaning and quality-control procedures, SNP genotyping data from a total of 2861 

individuals from three populations were available.  

 

2.4.1 Infinium II Whole Genome Genotyping Assay  

The Infinium
TM
 II Assay enables flexible SNP selection using a tagSNP content strategy and 

provides even coverage across the genome (http://www.illumina.com/). The Infinium
TM
 II 

procedure takes three days to complete and has four automated steps that are all performed on a 

Tecan robot system: (1) whole genome amplification, (2) hybridization to an oligonucleotide 

probe array (performed offline in a hybridization oven), (3) array-based SNP scoring assay, and 

(4) signal amplification. For the Infinium II assay, one bead type is used per SNP and the alleles 

are scored by SBE (Single-Base Extension) using differentially-labeled terminators (Figure 2.2).  

 

Illumina manufactures several high density tag SNP genotyping arrays including Sentrix® 

HumanHap300 BeadChip. BeadChips are constructed by random assembly of bead pools into 

micro-well patterned stripes on a silicon substrate.  

 

Each stripe is loaded with a unique bead pool composed of tens of thousands of different bead 

types for a total complexity of hundreds of thousands of bead types across the BeadChip. Each 

bead type is immobilized with a decoding sequence and a locus-specific 50-mer oligonucleotide 

probe. The identity is determined by a hybridization-based decoding procedure. These 

BeadChips utilize the single-base extension (SBE) Infinium II assay to genotype tag SNPs 

selected from Phase I and II of the HapMap project. The median SNP spacing on the 
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HumanHap300 is 5 kb and the HumanHap550 is 2.8 kb, enabling an effective resolution of ~50 

kb and ~28 kb (10 SNP smoothing), respectively. (Gunderson and Peiffer, 2006) 

 

2.4.2 BeadChip Imaging 

After completion of the assay, the BeadChips are scanned with a two-color confocal Illumina 

BeadArray™ Reader at a 0.84–1.0-µm pixel resolution. Image intensities are extracted and 

genotypes are determined using Illumina’s BeadStudio software. Aberrations were detected by 

visualizing SNP-CGH data in the Illumina Genome Viewer and Chromosome Browser. 

 

Figure 2.2 Infinium II Single-Base Extension. (Adapted from (Gunderson and Peiffer, 2006) 
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2.4.3 Analyzing SNP-CGH Data in BeadStudio 

Genotyping data consist of two channel intensity data corresponding to the two alleles, allele A 

and allele B. The raw intensity of allele A and B (X and Y, respectively) of each SNP are 

imported to BeadStudio software (Illumina Manual 1) and normalized using a proprietary 

algorithm. The normalized X and Y are then combined as raw A versus raw B allele intensities to 

produce a value called “normalized R”. 

 

Next, the normalized R intensities were compared to 120 normal reference HapMap individuals 

with GenTrain software. Finally, the data were converted to polar coordinates R and Theta (Fig. 

2.3). Theta (θ) represents the angle deviation from pure A signal, where 0 represents pure A 

signal and 1.0 represents pure B signal. It can be calculated by the equation: θ= (2 / ∏)* 

arctan(B/A). Each genotype has a specific expected cluster position from the reference data set 

as in figure 2.3. Each SNP genotype of each individual was determined according to its relation 

to these clusters. Values which lie between these clusters were discarded and labelled as NC (no 

call). Theta was then transformed to allele frequency (e.g. B Allele Frequency), which is more 

discriminative, using linear interpolation of the canonical clusters (Gunderson and Peiffer, 2006).  

Figure2.3 Polar plotting of genotyping clusters.  The AA genotype lies near the zero theta 
value and BB near theta of 1, with AB in between both genotypes. The yellow dots indicates an 

excluded individual with values lie away from expected cluster positions 
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2.5 CNV detection 

Copy number variation was determined for study samples using genotyping data on the Illumina 

platforms. Log R ratio (LRR) and B allele frequency (BAF) at each SNP loci are two important 

types of values for CNV detection. LRR and BAF information was analyzed with various 

methods in the current study, which included Hidden Markov Model (HMM) based algorithms 

QuantiSNP and PennCNV, and Circular Binary Segmentation (CBS) based algorithms DNAcopy 

and cnvPartition. QuantiSNP, cnvPartition and DNA copy were run on a desktop computer with 

a 2.76GHz processor and 4GB of RAM. PennCNV were performed on a computer of 1.77GHz 

processor and 3GB of RAM.  

 

2.5.1 Log R Ratio and B Allele Frequency 

The comparison of normalized intensities between a reference and subject sample is the 

foundation of traditional array-CGH. SNP-CGH is different in that a combination of two 

genotyping parameters is analyzed: normalized intensity measurement and allelic ratio. 

Collectively, these parameters provide a more sensitive and precise profile of chromosomal 

aberrations.  

 

Illumina has developed two modes of SNP-CGH analysis. The first is a single sample mode in 

which reference values are derived from canonical genotyping clusters created from clustering 

on normal reference samples. This mode is often used in general copy number detections, and is 

the mode chosen for the analysis in this thesis. The second is a paired sample mode in which 

direct intensity comparisons between a subject sample and its corresponding matched pair are 

performed. This mode is often applied in copy number change discoveries in paired tumor and 

normal samples. 
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Normalized intensity measurement, log R ratio (LRR), and allelic ratio, B allele frequency 

(BAF), are two key parameters to be considered in detecting chromosomal aberrations. LRR is 

the log, base 2, of the normalized signal intensity (Normalized R) of subject versus normalized 

signal intensity (Normalized R) of the reference. An LLR value of zero indicates no difference 

between individual and reference values. A significant departure from the zero value is an 

indicator of copy number changes (a gain if the R ratio is greater than one and a loss if the R 

ratio is less than one). BAF is the ratio of intensity at the B allele versus that at the A allele; for 

example BAF of 0 indicates an absent B allele at this locus (genotype AA or A_ etc.). The 

combination of the two parameters provides information to predict copy number change (Figure 

2.4): LRR indicates overall copy number of alleles at a locus and BAF indicates which allele is 

deleted or amplified. The effect size that is required to depart from normality is not a constant; it 

changes with different numbers of the SNPs involved in a specific window size. 

Figure 2.4 Shift in log R ratio (LRR) and B allele frequency (BAF) value plots infer copy number change. 

LRR (top) and BAF (bottom) plotted from one individual for each SNP on chromosome 18. A deletion on 

the q arm can be identified by the shift in the LRR downwards and the loss-of-heterozygosity indicated by 

the disappearance of heterozygous state (0.5) in the BAF (as indicated by the area within the red rectangle). 

Chromosome location coordinates in hg18 (Build 36). 
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2.5.2 Hidden Markov Model based CNV detection algorithms 

 

2.5.2.1 Markov Chain and Hidden Markov Model 

A Markov Chain, named after Russian mathematician Andrey Markov, is a discrete random 

process with the Markov property. A discrete random process is a system which can be in 

various states, and which changes randomly in discrete steps. The random process has the 

Markov property if the conditional probability distribution of future states in the process depends 

only upon the present state, in other words, given the present, the future only depends on the 

present state but does not depend on the previous states (Rabiner, 1989).  

 

Since the Markov property is a simple and mathematically tractable relaxation of the assumption 

of independence, it is natural to consider discrete-time Markov Chains on a finite state space as 

possible models for sequential data, which are not independent from each other, in that space. 

 

The Markov Chain can be represented in terms of a graphical model, as shown in Figure 2.5 

Each node represents a random variable, and the edges indicate conditional dependence structure. 

X0, X1, … Xn-1, Xn are a sequence of random variables on a Markov Chain, which are all with the 

Markov Property; i.e. given the present state, the future and past states of each variable are 

independent: 

                                                                       

The behaviour of a Markov Chain resembles a random walk on the graph shown in Figure 

2.5.The possible values of Xi comes from a finite set S, which is called the “state space” of the 

chain. The changes of state on the chain are called transitions (represented by the horizontal 
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arrows in Figure 2.5.), and the probabilities associated with various state-changes are called 

transition probabilities. The transition probability matrix of the Markov Chain is denoted as Τ. 

Suppose X0  is drawn from a distribution λ. Initially X0 is chosen according to λ at that state Sx0; 

at time t the current position is Sxt. From any position (state) there are two possible transitions, 

either to the next integer or to the previous integer. The transition probabilities at Sxt, denoted as 

Txt (the Xt-th row of the transition matrix Τ), depend only on the current state; therefore the 

values of Xt-1 and Xt+1 are chosen only with respect to Txt, regardless of any prior positions.  

 

Figure 2.5 Graphical illustration of a Markov Chain 

 

λ and Τ are important parameters of a Markov Chain, by studying λ and Τ one can identify 

many properties of Markov Chain. For example, the distribution of X0 is determined by λ, while 

the distribution of X1 is determined by λTx1, etc.  

 

In statistics, a Hidden Markov Model (HMM) describes a probability distribution over a 

potentially infinite number of sequences. The name ‘Hidden Markov Model’ comes from the fact 

that the state sequence is a first-order Markov chain, but only the symbol sequence is directly 

observed. It is an extension of a Markov Chain which is able to capture the sequential relations 

among hidden variables.  
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Figure 2.6 Graphical illustration of a Hidden Markov Model 

 

The illustration of a HMM is shown in Figure 2.6. X0, X1, … Xn-1, Xn  is a Markov Chain and at 

time t, for t=0,1,…,n. Yt is independent of all other variables given Xt. From the graphical model 

for HMM, we can easily see the conditional independence structure of all variables (X0 ,Y0),…, 

(Xn ,Yn). Here the observed sequences Y0, Y1,…,Yn-1, Yn  are influenced by a hidden Markov chain 

X0, X1, … Xn-1, Xn ; and the observed sequences are used to infer the hidden sequences. The 

horizontal arrows represent state transition on the Markov Chain. The vertical arrows represent 

the relationships between each pair of Xt and Yt , called emission probability. The emission 

probability matrix is denoted as Γ (Zhang 2008). 

 

HMM is widely applied in the detection of copy number variation from genotyping data. 

Theoretically, information at each SNP loci along the chromosomes can be considered as a node 

from a sequence of data. The hidden state is the true copy number of the individual’s genome; 

the observed states are the normalized intensity measurements of each probe on the array (Figure 

2.7). The emission probability of allelic intensities for an underlying hidden state of 2 copies 
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(normal state), <2 copies (copy number loss) and >2 copies (copy number gain) is modelled and 

the modelling parameters are determined from calculations which are based on a training set of 

data. The transition probabilities between underlying copy number states is asserted such that 

transitioning out of a state reflecting 2 copies is low, while transitioning within the same state or 

returning to normal copy number is relatively high. 

Figure 2.7 HMM modelling in detection of copy number variation 

 

2.5.2.2 QuantiSNP: 

QuantiSNP is an analytical tool to analyze copy number variation using whole genome SNP 

genotyping data. It was originally developed for Illumina arrays, but later versions of this 

software support Affymetrix data with additional data conversion steps (Collella et al., 2007).  

QuantiSNP uses an Objective Bayes Hidden-Markov Model (OB-HMM) to automatically infer 

regions of segmental copy number abnormalities from genotyping data. The OB-HMM is 

claimed to be highly suited to the analysis of high-throughput genomic data when one of the 

hidden states has special status as a ‘null’ or normal state, in which case OB-HMM allows for 

setting of parameters which ensure certain frequentist coverage properties for excursions of the 
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model out of the null state, while benefiting from Bayesian marginal inference.  

 

Six hidden states used in HMM for QuantiSNP are listed in Table 2.1. A priori probability that 

hidden state change occurs between adjacent SNP loci (the transition probability) is defined by 

an exponential function. The emission probabilities that a set of LLR and BAF values of a SNP 

predict hidden states of the same SNP are defined as a mixture of Gaussian and uniform 

distributions. Most of the hyper-parameters in the above model are estimated via maximum 

marginal likelihood techniques on a training data set, then a expectation maximization (EM) 

algorithm is used to find maximum marginal a posteriori estimates for the parameters of the 

emission distributions, followed by a Viterbi algorithm which to compute the sequence of hidden 

states with highest probability. After corrected for type I error and multiple sample influence, the 

copy number of a DNA segment is determined with a Bayes Factor (BF), which is a 

measurement of confidence of the region being in hidden state in comparison to all other 

sequences in which no part of this region is in this hidden state. The higher BF indicates 

significance of events (Collella et al., 2007) (Table 2.2).  

 

Table 2.1 Hidden states, associated copy numbers and biological interpretation 

Each hidden state z is associated with a given copy number c(z) and genotype number K(z). For 

each copy number there can be a number of genotypes. For example, for copy number3 there can 

be one of four genotypes {AAA, AAB, ABB, BBB}. The genotype number gives the number of 

components in the mixture distribution of B allele frequencies for that state.  
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Table 2.2 Combination of LRR and BAF indicates six hidden states of copy number 

 

 

QuantiSNP version 1.0 (Windows command line based) was downloaded from http://www. 

well.ox.ac.uk/~ioannisr/quantisnp/ after a licence agreement signed between University of 

Edinburgh Medical Genetics Section and University of Oxford, in 2008. Copy number analysis 

was carried out in QuantiSNP following instructions described in the user manual (Yau 2007). 

LLR and BAF data for each individual in the study sample were exported from BeadStudio and 

processed with R software. Individuals with standard deviation of LLR>0.3 were excluded. 

Parameter settings for QuantiSNP analysis were set as: defined length of a CNV—no more than 

3,000,000 bp; maximum number of optimisation steps of expectation maximisation—25; 

correction for local GC content—yes; array data library—Illumina HapMap 550K (which is 

compatible with HapMap 300K array). After calculation, QuantiSNP outputs a list of CNVs with 

chromosomal location, assigned copy number and a Log Bayes Factor (LBF) for each detected 

segment. LBF threshold of 30 was selected; any CNVs with a LBF<30 were excluded. 

 

 

3:AAA,AAB,A

BB,BBB

4:AAAA,AAAB,

AABB,ABBB,B

BBB

0 copy
1 copy:

A_, B_

Log2R Ratio 0

B allele

frequency

0(AA)

0.5 (AB)

1(BB)

0(AA)

1(BB)

0(AAA)

0.33(AAB)

0.67(ABB)

0(AAAA)

0.25(AAAB)

0.5(AABB)

0.75(ABBB)

1(BBBB)

0.5
0(A_)

1(B_)

Copy

number

>0 <0

Copy number lossCopy number gain
Copy-neutral

LOH(2 copies):

AA,BB

Normal(2

copies):

AA,AB,BB



 70

2.5.2.3 PennCNV: 

PennCNV is also an algorithm based on HMM. It was originally designed for Illumina assays, 

the later versions also support data from Affymetrix platforms. It incorporates multiple sources 

of information, including LRR and BAF at each SNP marker, the distance between neighbouring 

SNPs, the allele frequency of SNPs, and family trio information where available.  

 

The modelling of six hidden states in CNV is the same as that in QuantiSNP (Table 2.1 and 

Table 2.2). The first-order HMM is used to predict copy number states at each SNP. The 

emission probabilities are underlined as that a set of LLR and BAF values of a SNP predicts 

hidden states of the same SNP. These are defined in a manner very similar to that in QuantiSNP, 

but uses uniform distribution to model both random fluctuation of signal measures in chemical 

assays and the possible genome misannotation and misassembly. The modelling and 

interpretation of LRR and BAF values for chromosome X is treated differently, because of the 

hemizygous state in males. The transition probability of hidden states is constructed differently 

from that in QuantiSNP, which incorporates unknown parameters to be resolved by a HMM 

learning process using the Baum-Welth algorithm. The Viterbi algorithm is used to infer the 

most likely path (state sequences for all SNPs along each chromosome) (Wang et al., 2007). 

PennCNV has a module to validate CNVs detected in the former steps using family information, 

specifically the parent-offspring trio information. However, only a small fraction of the 

individuals in the study sample (10.13%) could be placed in family trios. Also this process takes 

5*5*5 CNV matrices to compute and is time consuming. For these reasons this module was not 

utilized in the CNV analysis in this thesis.  
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PennCNV was downloaded from http://www.openbioinformatics.org/penncnv/. To create a Perl 

environment on Windows system for PennCNV to be performed, ActivePerl was downloaded 

from http://www.activestate.com/activeperl and installed. CNV detection with PennCNV used 

individual LRR and BAF files exported from BeadStudio, and the analysis was performed 

following PennCNV tutorial (http://www.openbioinformatics.org/penncnv/penncnv_beadstudio_ 

tutorial.html). CNVs containing ≤2 SNPs were excluded. 

 

2.5.3 Circular binary segmentation based CNV detection algorithms 

 

2.5.3.1 Circular binary segmentation  

Circular binary segmentation (CBS) is a modified version of binary segmentation method to find 

change points in a sequence of data. For example, it can be applied in aberrant DNA copy 

number detection with chromosomal SNP genotyping data. It allows for tertiary splits by 

connecting the two chromosomal ends (thus called “circular”) (Olshen et al., 2004). 

 

CNVs occur in contiguous regions of the chromosome that often cover multiple markers. The 

markers within a CNV region display aberrant copy number (normal copy number=2); therefore 

the beginning and ending of this region are “change points” on the chromosome underlying 

change of copy number status in the region compassed by the two change points. The CBS 

algorithm provides a natural way to segment a chromosome into contiguous regions and 

bypasses parametric modelling of the data with its use of a permutation reference distribution. 

The SNP array data to be used for change-point detection are the log ratio of normalized 

intensities indexed by the marker locations. There may be multiple change-points in a given 

chromosome, each corresponding to a change in the copy number in the test sample 
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(Venkatraman and Olshen, 2007a). The goal of CBS is to identify all the change-points which 

will then partition the chromosome into segments where copy numbers are constant. Once the 

chromosome is partitioned the copy numbers of the segments can be estimated with the help of 

additional information. This will provide the locations of copy number aberrations. 

 

2.5.3.2 DNAcopy 

DNAcopy is a non-parametric method which is based on circular binary segmentation (CBS). It 

splits the chromosomes into contiguous regions of equal copy number by modeling discrete copy 

number gains and losses. Using a permutation reference distribution, it bypasses parametric 

modeling of the data for assessing significance of the proposed splits. The model selection is 

done in the forward way by repeatedly splitting each contiguous segment until no significant 

splits are found, using a maximal t-statistic with a permutation reference distribution to assess 

statistical significance of differences in the LRR values within a segment compared to those in 

the adjacent segments. The computational time required for permutation is exponentially 

correlated with number of markers considered. To tackle the problem of long computational time 

when applying CBS to high-density array data, two speed enhancements to the original CBS 

algorithm are incorporated in DNAcopy: 1) a hybrid approach for the computation of the p-value 

of the maximal t-statistic using a tail probability approximation for the maximal of a Gaussian 

random field; 2) a sequential testing approach for deriving a stopping rule that reduces the 

number of permutations when there is strong evidence for the existence of a change-point. 

DNAcopy outputs the predicted mean LRR of each predicted segment. Because only LRR are 

used in the detection, no specific copy numbers can be assigned for each predicted segment; the 

segments are thus generally classified as “copy number gains” and “copy number losses”.  
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DNAcopy version 1.12.0 was downloaded from http://www.bioconductor.org/packages/ 

2.3/bioc/html/DNAcopy.html. It was installed and run under the R environment. The analysis 

was performed according to the user manual (Venkatraman et al. 2007b). A smoothing step was 

implemented before segmentation.  

 

2.5.3.3 cnvPartition 

The cnvPartition algorithm quickly scans genotyping data sets to identify the existence and 

location of copy number aberrations. This algorithm is best conceptualized as two modules: one 

for breakpoint identification, and another for assigning copy numbers to the regions lying 

between these breakpoints (Illumina Manual 2).  

 

The breakpoint detection module is similar in style to the circular binary segmentation algorithm 

for copy number analysis, but processes samples at a faster rate. For breakpoint detection, two 

hypothetical breakpoints are placed at the 5’ and 3’ ends of a chromosomal region, respectively. 

The algorithm then tries to find one internal breakpoint such that the mean log R ratio between 

the breakpoints is maximally different from the mean LRR on either side of the breakpoints. 

Then, maximal binary splits are determined on both sides of the first single breakpoint in the 

hypothetical region, resulting in the labeling of two more putative breakpoints. The segment 

between two of the 5 breakpoints described above which has the highest difference in LRR 

compared to other segments is identified as a putative chromosomal aberration. Once a putative 

aberration is identified, the significance of its splits is assessed and a confidence score is given 

for each of such putative CNV segment.  
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Following partitioning, copy number estimates are assigned to each identified segment. The first 

step is to compute the median of the segment’s LRR and their robust standard deviation (median 

absolute deviation—MAD). If a segment’s LRR estimate is more than a threshold value 

specified by the programme, it is called a copy number gain, otherwise it is called a copy 

number loss. This is followed by the discrimination between single-copy and homozygous 

deletions using BAF. Specifically, the number of SNPs in this region which have extreme BAF 

values (<0.25 or >0.75) is determined. If this number is greater than what would be expected by 

chance (p < 0.01, sign test), the segment is assigned a copy number of one; otherwise it is 

assigned a copy number of zero. 

 

cnvPartition 1.0.2 as a plug-in for BeadStudio (Illumina Manual 3) was downloaded from 

Illumina Connect website at http://www.illumina.com/software/illumina_connect.ilmn and 

installed on BeadStudio platform. The parameter settings applied for the CNV analysis were: 

minimum probe count (the minimum number of SNPs to define a CNV): 3, because CNVs 

containing ≤2 SNPs are more likely to contain a high fraction of false positives; detect extended 

homozygosity: true; minimum homozygosity region size: 10 Mb; confidence threshold: 35. The 

programme gave an output of a list of detected CNVs with their chromosomal locations, 

estimated copy number and confidence score for each putative CNV. The CNVs with confidence 

score <35 were excluded. 

 

2.6 Data cleaning 

 

SNP coverage in centromeric regions is very low, thus CNVs called in these regions are much 

more likely to represent false positive calls. For this reason all the CNVs spanning centromeres 

were excluded from the analysis (according to the coordinates of centromeres on each 
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chromosome). CNVs on chromosome X and chromosome Y were excluded due to the 

complications of hemizygosity in males and X-chromosome inactivation in females. CNVs 

represented by a single SNP were excluded. It is decided that a CNV region detected by any 

method based on genotyping array data must span at least two markers; therefore any CNV 

reflecting only one marker (length of 1bp) was excluded. 

 

The Croatian samples were genotyped on an earlier version (V1) of the Illumina HumanHap 

300K platform which were designed based upon the Human May 2004 (hg17) sequence 

assembly, while the Orcadian and South Tyrolean samples were genotyped Illumina HumanHap 

300K V2 platform based upon the Human March 2006 (hg18) assembly. To match the single 

Orcadian sample with the Croatian data, the coordinates of each CNV detected for the Orcadian 

and South Tyrolean sample were converted to hg17 using liftOver (http://genome.ucsc.edu/ 

cgi-bin/hgLiftOver). 
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Chapter 3 

 

Copy Number Variation in Individual Genomes 
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3.1 Preface 

 

Completion of the first finished sequence of human genome, a global collaboration of scientists 

under the banner of International Human Genome Project (Human Genome Sequencing 

Consortium, 2004; Human Genome Sequencing Consortium, 2001), was a major technical 

achievement that provided a common start point for a wide range of basic science, biology and 

medicine.  It was achieved through automated Sanger sequencing, a robust but relatively costly 

and time consuming chemistry for genome analysis.  Once the first consensus human sequence 

was assembled, acquiring complete new human genome sequence was much easier and faster, 

but still costly and unaffordable on a large scale (Human Genome Sequencing Consortium, 2004; 

Levy et al., 2007). Over the past five years, the technical advances in nucleotide chemistry 

combined with array based methods for templating target sequences, plus massively parallel, 

detection of sequence reactions  have led to a revolutionary shift in genome sequencing , so 

called next-generation sequencing (NGS). NGS platforms include Roche 454, Illumina 

GenomeAnalyzer, Life Technologies SOLiD, Helicos Bioscience HeliScope and Complete 

Genomics. As of February, 2011, at least 33 individual genomes have been fully sequenced 

(Table 4.1), one of which was sequenced twice on two different platforms (Bentley and et al., 

2008; McKernan et al., 2009).  

 

One valuable application of massively parallel sequencing is variant discovery by sequencing 

targeted regions of interest or whole genome. Those genetic variants include single nucleotide 

variants (SNV) and structural variants (SV). To identify SVs using NGS platforms, two 

categories of computational approaches have been developed. The first category are based on 

paired-end read mapping/paired-end read sequencing/end-sequence profiling (PEM/PES/ESP), 

which detects insertions and deletions by comparing the distance or orientation between mapped 
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read pairs to the average insert size of the genomic library (Koboldt et al., 2010). The second 

category detects discrepancies of read depth (RD) between sample genome and reference 

genomes for a DNA fragment, to determine events with either increased or decreased copy 

number (Yoon et al., 2009). In addition to SNV discovery, most of the published individual 

genome sequencing studies has utilized either PEM or RD methods to investigate SV of the 

study genome(s) (Table 3.1). 

 

Whole genome sequencing enables detection of SVs with essentially single base resolution, 

substantially higher resolution than achievable by Comparative Genomic Hybridization (CGH) 

or Single Nucleotide Polymorphism (SNP) genotyping platforms. It is also able to detect 

copy-invariant structural variants, such as inversions, and can pin point structural break-points, 

which always remain problematic for array-based platforms (CGH and SNP).  
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Table 3.1 Complete individual genomes sequenced on massively parallel sequencing platforms, and the CNVs detected from sequencing data  

 

‘Sequencing Platform’: Illumina GA--Illumina Genome Analyzer.’SNPs’ indicates the number of single nucleotide polymorphisms called, excluding small indels. ‘dbSNP’ 

indicates the proportion of SNPs that were present in dbSNP build 126 or later. ‘Definition of CNV’ indicates what the authors define as a CNV in each study; if such 

definition is absent in the article but CNVs recorded in DGV, the DGV deification of a CNV (1kb-3Mb) is used.  ‘num CNVs by sequencing’ indicates total number of 

CNVs detected from sequencing data (validated and unvalidated), with definition of a CNV by author for the according study. 

Sample ID Ancestry Gender Disease State Study
Sequencing 

platform

Max read 

length (bp)

Fold 

coverage
SNPs (m)

dbSNP 

(%)

Definition of 

CNV

Calling 

method

num CNVs 

by 

sequencing

Hemo0001 European Male Hemophilia A Pelak et al. 2010 Illumina GA 2×25 30.4× 3.38 88 >2kb read depth 746

Hemo0004 European Male Hemophilia A Pelak et al. 2010 Illumina GA 2×25 23× 3.29 88 >2kb read depth 788
Hemo0005 European Male Hemophilia A Pelak et al. 2010 Illumina GA 2×25 36.2× 3.39 88 >2kb read depth 847

Hemo0006 European Male Hemophilia A Pelak et al. 2010 Illumina GA 2×25 51× 3.46 88 >2kb read depth 863
Hemo0007 European Male Hemophilia A Pelak et al. 2010 Illumina GA 2×25 34.2× 3.37 88 >2kb read depth 847

Hemo0011 European Male Hemophilia A Pelak et al. 2010 Illumina GA 2×25 31.6× 3.27 88 >2kb read depth 918
Hemo0017 European Male Hemophilia A Pelak et al. 2010 Illumina GA 2×25 33.4× 3.47 88 >2kb read depth 770

Hemo0019 European Male Hemophilia A Pelak et al. 2010 Illumina GA 2×25 20.2× 3.29 88 >2kb read depth 823
Hemo0020 European Male Hemophilia A Pelak et al. 2010 Illumina GA 2×25 36.4× 3.44 88 >2kb read depth 776

Hemo0022 European Male Hemophilia A Pelak et al. 2010 Illumina GA 2×25 38.7× 3.40 88 >2kb read depth 884
Control 1 European Female Epilepsy Pelak et al. 2010 Illumina GA 2×25 32.3× 3.58 88 >2kb read depth 739

Control 2 Hispanic American Male Epilepsy Pelak et al. 2010 Illumina GA 2×25 28× 3.74 85 >2kb read depth 782

Control 3 European Male Control Individual Pelak et al. 2010 Illumina GA 2×25 23.6× 3.36 88 >2kb read depth 819

Control 4 Hispanic American Male Schizophrenia Pelak et al. 2010 Illumina GA 2×25 30.5× 3.66 87 >2kb read depth 765

Control 5 European Male Schizophrenia Pelak et al. 2010 Illumina GA 2×25 27.4× 3.42 89 >2kb read depth 814

Control 6 African American Male Schizophrenia Pelak et al. 2010 Illumina GA 2×25 24.9× 4.02 78 >2kb read depth 809
Control 7 European Male Extreme Memory Pelak et al. 2010 Illumina GA 2×25 23.3× 3.40 88 >2kb read depth 822

Control 8 European Male Extreme Memory Pelak et al. 2010 Illumina GA 2×25 26.9× 3.42 88 >2kb read depth 790
Control 9 European Female Cold Urticaria Pelak et al. 2010 Illumina GA 2×25 29× 3.58 88 >2kb read depth 760

Control 10 European Female Metachondromatosis Pelak et al. 2010 Illumina GA 2×25 31.4× 3.54 88 >2kb read depth 743
Lupski European Male CMT Lupski et al.  2010 Life SOLiD 2×25~50 29.6× 3.42 83 N.A. PEM 84

NA07022 European (CEU) Male N.A. Drmanac et al.  2010 Complete Genomics 2×35 87× 3.08 90 N.A. PEM 2125
NA19240 African (YRI) Male N.A. Drmanac et al.  2010 Complete Genomics 2×35 63× 4.04 81 N.A. none none

NA20431 
(Church)

European  Male none Drmanac et al.  2010 Complete Genomics 2×35 45× 2.91 90 N.A. none none

ABT African Male N.A. Schuster et al.  2010 Life SOLiD 2×25 30× 3.62 89 N.A. none none

KB1 African Male N.A. Schuster et al.  2010 Roche/454 1×350 10.2× 4.05 82
>20kb, 

duplication only
read depth 886

NA18507 African (YRI) Male N.A. McKernan et al.  2009 Life SOLiD 2×25 18× 3.87 81 100bp-100kb PEM 4660
P0 (Quake) European Male none Pushkarev et al.  2009 Helicos 1×70 28× 2.81 76 >1kb read depth 752

AK1 Asian (Korean) Male N.A. Kim et al.  2009 Illumina GA 2×106 28× 3.45 83 duplication only PEM 24
SJK Asian (Korean) Male N.A. Ahn et al.  2009 Illumina GA 1×75 29× 3.44 88 0.1-100kb PEM 3335

YH (Wang) Asian (Chinese) Male N.A. Wang et al.  2008 Illumina GA 2×35 36× 3.07 86 >100bp PEM 2682

Watson European Male none Wheeler et al.  2008 Roche/454 1×250 7.4× 3.32 82 1kb-3Mb N.A. 602

NA18507 African (YRI) Male N.A. Bentley et al.  2008 Illumina GA 2×35 41× 3.45 74 50bp-35kb read depth 5704

Venter European Male N.A. Levy et al.  2007 Shotgun 1×800 7.5× 3.07 95 N.A. N.A. 666
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Copy number variation, structural variants of median length (1kb to 3Mb), has been intensively 

studied in recent years. However, CNV detection from SNP genotyping suffers from limited SNP 

coverage in most SNP genotyping platforms and lack of (a) robust algorithm(s) for detection, 

resulting in high error rates and poorly assayed regions of the genome. Some basic but important 

features of CNVs including breakpoint definition and chromosomal distribution are inadequate 

or partial. A complete map of all CNVs from individual genomes would be a valuable resource 

to catalogue Copy Number Polymorphism (CNP) and to understand the origin and formation 

mechanism with the knowledge of genomic features within and spanning CNV regions. 

Although CNVs were reported in most individual whole genome sequencing studies, parallel 

comparisons of CNVs with other studies and with the CNVs in public databases were only 

mentioned briefly in a few of them (Schuster et al., 2010; Wang et al., 2008). 

 

In this Chapter, I describe a) how I brought together CNVs directly and unambiguously called 

from whole genome sequencing data from all available published resources, b) compared the 

distribution and other features of deletions in five individual genomes of three ethnic origins 

(European, African and Asia), in the aim of revealing the difference of panorama CNV make up 

at individual level and group level and c) address current limitations of CNV cataloguing using 

NGS.  
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3.2 Materials and Methods 

 

3.2.1 CNV data 

Whole genome CNVs called from sequencing data, from 12 published studies (Ahn et al., 2009; 

Bentley and et al., 2008; Drmanac et al., 2010; Kim et al., 2009; Levy et al., 2007; Lupski et al., 

2010; McKernan et al., 2009; Pelak et al., 2010; Pushkarev et al., 2009; Schuster et al., 2010; 

Wang et al., 2008; Wheeler et al., 2008), were either obtained from the published paper, 

supplementary information or downloaded from Database of Genomic Variants                                                    

(http://projects.tcag.ca/variation/, version 10 of all recorded structural variants, last updated in 

November 2010). The total number of each CNV called from sequencing data (CNVs called by 

further validation methods such as CGH and SNP array were not included), calling method, 

definition of CNV in each of the 12 studies were recorded. 

 

3.2.2 Analysis of deletions 

Deletions within the length range of 1kb to 3Mb in five individual genomes, from six studies 

were selected for comparison. Every genomic location (chromosome coordinates in Build 36) 

was recorded. Deletions detected primarily by CGH or SNP array were not included, as the 

following comparison of deletions focuses on CNV results directly drawn from DNA sequencing 

data. Information of genes overlapping each deletion was obtained from DGV (version 10, last 

updated in November 2010).  

 

A deletion region was defined as the maximum genomic region which was shared among all 

samples carrying a deletion at the same locus. The deletion regions for the five individual 

genomes were determined with in-house scripts compiled by myself, using R. 
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The Mann-Whitney test was performed to test the difference in a) mean lengths of deletion and b) 

gene content in the deletion regions, between groups of individuals. The significance level was 

set to 0.05. 

 

3.3 Results 

 

3.3.1 Overview of CNV detection in completely sequenced individual genomes 

To date, 12 whole individual genome sequencing studies reported their CNV findings from part 

or whole genome sequence data (Table 3.1). Kim et al. used a small number of CNV calls 

generated with sequence data from part of the genome as a training set, while the main method 

they adopted to detect genome-wide CNVs was CGH. Lupski et al. also utilized CGH to detect 

CNVs in sample genome and used sequence data as a complementary method. All other studies 

produced CNV calls directly from sequence data, with other CNV detection methods to validate 

or to complement those CNVs. In these 10 studies, Levy et al. (2007), Wheeler et al. (2008) and 

Bentley et al. (2008) did not describe method of CNV detection from sequence data in their 

research article; the CNV results from these three studies were later deposited to DGV, which 

were not available in the original research article or supplementary information.  Drmanac et al. 

(2010) and Schuster et al. (2010) each selected one sample genome (NA07022 and KB1 

respectively) from their studies to investigate structural variants. 4 studies chose read depth (RD) 

methods to detect CNVs from sequence data; the other 6 studies used end-pair mapping (EPM) 

methods (Table 3.1).  
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The number of detected CNVs ranged from 84 to 5704 for each genome, and the definition of a 

CNV by length also varied across the studies (Table 3.1). Schuster et al. and Kim et al. only 

investigated duplications, but not deletions. 

 

3.3.2 Comparison of deletions in five individual genomes 

The CNVs detected directly from sequencing data were at a higher resolution and with more 

complete genome coverage, compared to other CNV detection methods (WTCCC, 2010). The 

released CNV data from genome sequence studies made it possible to reveal some features of 

CNVs from a relatively accurate and reliable source. Among the 12 studies which reported 

sequencing of individual genomes, 7 released lists of CNVs which were obtained from the raw 

sequence data (Ahn et al., 2009; Bentley and et al., 2008; Drmanac et al., 2010; Kim et al., 2009; 

Levy et al., 2007; Lupski et al., 2010; McKernan et al., 2009; Pelak et al., 2010; Pushkarev et al., 

2009; Schuster et al., 2010; Wang et al., 2008; Wheeler et al., 2008). Ahn et al. (2009) only 

tested for duplications and Bentley et al. (2008) only released data of deletions. To generate a 

data set of CNVs comparable across the most of available genomes, only deletions of a certain 

range of length (>1kb and <3Mb) were considered. In all, six genome sequencing studies on five 

human genomes, Venter, Watson, NA18507, YH and SJK, met the starting criteria for analysis 

and comparison. (Table 3.2)   
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Table 3.2 Deletions in five sequenced genomes from six studies 

 

 

 

 

 

 

 

 

Sample ID Ancestry Gender Study
Sequencing

platform

Calling

method

# Deletions by

sequencing

Length

range (bp)

Median

length

(bp)

Venter European Male Levy et al.  2007 Shotgun N.A. 320 1006-19710 2115

YH (Wang) Asian (Chinese) Male Wang et al.  2008 Illumina GA ESP 487 1004-124100 2443

Watson European Male Wheeler et al.  2008 Roche/454 N.A. 602 1007-38900 4022

NA18507 African (YRI) Male Bentley et al.  2008 Illumina GA read depth 693 1002-50123 2620

NA18507 African (YRI) Male McKernan et al.  2009 ABI SOLiD ESP 4125 1103-937300 1616

SJK Asian (Korean) Male Ahn et al.  2009 Illumina GA ESP 988 1001-99440 2624
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The number of deletions between 1kb and 3Mb varies greatly among individuals (from 320 to 

4125). It is noted that even for the same individual, NA18507, the choice of sequencing platform 

affected detection. Bentley et al. (2008) sequenced the genome of NA18507 using Illumina 

Genome Analyzer in 2008 and reported 693 deletions; a year later McKernan et al. (2009) 

sequenced the same individual on ABI SOLiD platform, while the number of deletions in the 

same size range they found was about 7 times (4125) that from Bentley et al. (2008) study. A 

comparison of deletions from these two studies for NA18507 was carried out. I found that 594 

deletions were found by both studies, corresponding to 85.7% of the deletions in Bentley et al. 

(2008) and 14.4% deletions in McKernan et al.(2009). The number of deletions per genome for 

NA18507 in Bentley et al.(2008) study was more similar to that of other four genomes; and also 

according to a study which constructed a reference set of structure variants for two HapMap 

individuals based on data from four sequencing studies, the average deletion variants in those 

two individuals were about 680 per genome (Mills et al., 2011). Therefore data from Bentley et 

al. (2008) was selected to be included in further analysis, representing deletion profile of 

NA18507. Subsequently a final set of totally 3090 deletions for JCV (J.C.Venter), JDW 

(J.D.Watson), NA18507, YH and SJK were determined. 

 

The distribution of deletion lengths for the five genomes showed an ‘L’ shape: the majority of 

deletions were small in length (<10kb) and only a few detected deletions were large (11.4% 

deletions >10kb). A concordance of trend in deletion length distribution was observed among all 

five individuals (Figure 3.1). The median length of deletions for SJK, NA18507 (2008) and YH, 

whose genomes were sequenced on Illumina GA platform, were similar at around 2500bp (Table 

3.1).  
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The 3090 deletions were grouped into 2053 non-redundant copy number variant regions 

(CNVRs). A CNVR is the maximum region shared among all individuals carrying a CNV at the 

same locus. Among the total 2053 CNVRs, 1502 (73.1%) were detected in only one individual,; 

295 (14.3%) shared by two individuals; 126 (6.1%) by three individuals; 86 (4.2%) by four 

individuals; and 44 (2.1%) by all five individuals. For each individual, except YH, about half of 

the deletions detected did not overlap those in any other genomes (Table 3.3).  

 

The overlap rate of deletion CNVRs in each two genomes selected from the five sequenced 

genomes ranged from 12.9% to 61.7%. The concordance of deletions between the African 

sample NA18507 and each of the two Asian samples (27.8% and 36.8% of deletions from 

NA18507 overlapped those from YH and JSK, respectively) was higher, than that between 

NA18507 and each of the two European samples (15.4% and 22.5% of deletions from NA18507 

overlapped those from JCV and JDW, respectively). The concordance of deletions in the two 

Asian samples was high (61.7% of YH’s and 30.6% of JSK’s deletions were detected in each 

other’s genome), while the concordance was low in the two European samples (28.4% of JCV’s 

and 15.9% of JDW’s deletions were detected in each other’s genome).  
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Figure 3.1 Deletion length distribution for five sequenced genomes: JCV, JDW, NA18507, YH 

and SJK. Each vertical bar represents deletions in the indicated length range, in proportion to 

total number of deletions for an individual genome.    
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Table 3.3 Overlap of deletion CNVRs in paired genomes.  

      

  NA18507  JCV  JDW YH JSK 

#CNVRs 679 320 573 485 977 

Overlap of CNVRs with other genomes (percentage): 

      

NA18507 - 105(32.8%) 153(26.7%) 189(40.0%) 250(25.6%) 

JCV 105(15.4%) - 91(15.9%) 97(20%) 126(12.9%) 

JDW 153(22.5%) 91(28.4%) - 141(29.1%) 178(18.2%) 

YH 189(27.8%) 97(30.3%) 141(24.6%) - 299(30.6%) 

JSK 250(36.8%) 126(39.4%) 178(31.1%) 299(61.7%) - 

private 349(51.4%) 156(48.8%) 329(57.4%) 137(28.2%) 531(54.3%) 

      

Each column presents comparison of deletion CNVRs in one genome to each of other four 

genomes, and also the CNVRs found exclusively in this genome (private CNVRs). In brackets 

are the percentages of CNVRs overlapped by each of the other four genomes, compared to total 

CNVRs in an individual genome. 

 

The overlap of deletion CNVRs in the five samples in the context of their ethnic origins is 

shown in Figure 3.2. The ‘Asian’ deletion set comprised 1163 deletion CNVRs detected in one 

or both of YH and JSK’s genomes; the ‘European’ deletion set comprised 802 deletion regions 

from JCV and JDW, whilst the ‘African’ set,   represented by NA18507 comprised 679 

deletions. 

 

Of the total 2053 deletions, 153 were observed in all three ethnic groups. The number of 

deletions shared between African and European groups (197) was lower than that for African and 

Asian (286), or Asian and European (261). (Figure 3.2) 
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Figure 3.2 Deletions in sequenced individuals from African, Asian and European origins. 

 

 

The gene content in shared and private deletion regions was investigated. A third (1059) of the 

3090 deletions for the five genomes overlapped genes. Gene count in these deletions ranged 

from 1 to 8.  The mean number of genes in 1502 deletions private to one individual was 0.33, 

which was significantly less than the 0.44 genes on average contained in the 551 shared 

deletions (P=0.0001314).  
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3.4 Discussion 

 

The advance of ultra-high-throughput sequencing technologies enabled and greatly accelerated 

the study of full spectrum of genomic variants, from single base change (single nucleotide 

polymorphism) to large scale structural variants, including copy number variants. At the time of 

writing, at least 12 studies have reported whole genome sequencing of 33 human genomes, 

however the focus of variant discovery was still on single nucleotide variants; the description 

and discussion of SV detected directly from sequence data was superficial and mostly without 

comparison to other individual sequenced genomes.  

 

Those studies carried out whole genome sequencing on different platforms, from Sanger shotgun 

sequencing to NGS platforms (Illumina, Roche/454, Life SOLiD, Helicos and Complete 

Genomics). The error rate of NGS is still higher than conventional Sanger sequencing, especially 

elevated at the start and end of a read (Koboldt et al., 2010). It is notable that the generation and 

analysis of data from NGS instruments present numerous challenges, including sample 

contamination, library chimaeras, sample mix-ups, variable run quality and computation issues 

with sequence alignment (Xi et al., 2010).  

 

The algorithm used is another variable and limitation for SV detection from whole genome 

sequencing studies. Even for the same individual, applying different algorithms can result in 

different calls, for example, the concordance of deletion calls of NA18501 from two studies each 

used RD or EPM method was not high (14.4% CNVs detected by EPM were also detected by 

RD). Moreover, an RD and EPM method each has its problems. First of all, due to the short 

length of sequenced bases, many reads cannot be uniquely mapped to the genome. Second, the 

alignment is particularly problematic at segmental duplication rich regions; read-depth methods 
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could detect variants at those locations, but their resolution is relatively poor. Third, PEM-based 

methods have the advantage to detect dosage-invariant SVs, but these algorithms have limited 

power in detecting insertions larger than the insert size. Fourth, the G+C content throughout the 

genome, amplification error and uneven likelihood of fragmentation all may cause different 

representation of certain regions compared to others. Last but not least, many of the data sets do 

not have sufficient coverage to infer all SVs with statistical significance (Xi et al., 2010).  

 

A survey of deletions from five sequenced genomes showed that the majority of deletions 

between 1kb and 3Mb were short in length and at the lower level for robust detection by CGH or 

SNP typing (Figure 3.1). This skewed distribution is also true for CGH or SNP genotyping 

detection methods (McCarroll et al., 2008; Redon et al., 2006), but on a different scale from 

NGS. For example, in a study of CNVs in three European populations from SNP genotyping 

data (Chapter 7 of this thesis), about 60% of all deletions between 1kb and 3Mb were larger than 

10kb, while over 80% of deletions were smaller than 10kb from the sequence data of five 

individuals. This discrepancy of size range reflects limitation of algorithms to detect larger SVs 

from sequence data. Although NGS has a lot of advantages in SV detection than conventional 

methods, it is still not a one-stop solution for SV discovery. Improvements in the pipeline for SV 

detection from sequence data are needed. Some endeavors have been made by combining several 

complementary algorithms, to predict SVs more accurately (Hormozdiari et al., 2009). It is also 

advised that future studies may need to use multiple libraries with different insert sizes to 

discover SVs of a wider size range (Medvedev et al., 2009). One the other hand, CGH or SNP 

genotyping based methods are useful in detecting larger SVs, especially large insertions which 

are technically difficult for sequencing based methods, therefore applying these two categories 

of SV detection for the same individual and combining result from both platforms would enable 

the discovery of SVs across the full size range.  
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The overlap of deletions among the five whole genome sequenced individuals was low (2.1%). 

About half of all discovered deletions for each individual were unique to that individual. 

Compared with single nucleotide variants, which were 74% to 95%, concordant with the 

reference human sequence in dbSNP (table 4.1), structural variants were much less congruent, 

reflecting in part the technical limitations on robust detection and alignment. Concordance of 

deletions was higher between two Asian genomes but lower between two European genomes, 

but many more examples will be needed to draw any fair conclusions about potential variations 

in frequency or distribution between individuals and ethnic groups.  An analysis which 

compared deletion variants in three ethnic groups showed that the rate of sharing was lower 

between African and Europeans than that between African and Asians or Asians and Europeans, 

which was similar to SNV sharing in five individuals (NA18507, JCV, JDW, YH, AK1) from the 

same three ethnic groups (Ahn et al., 2009 ). This result may reflect the genetic origin of 

structural variants, but again with such a small sample size of sequenced genomes, those 

between-group differences could not be studied at a population level.  

 

In this small set of individuals, I noted that those deletions observed in a single individual 

overlapped with fewer genes than those shared in multiple individuals (P=0.0001314). Deletions 

are generally considered to be more likely to be harmful than insertions (Conrad et al., 2006), 

being more likely to directly disrupt gene function. Consequently, deleterious deletions would 

not survive purifying selection and are less likely to be fixed over generations. Neutral deletions 

are less sensitive to purifying selection so they would be expected to be more common than 

deletions which affect more genes.  
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In conclusion, platforms and algorithms for detecting SVs from sequence data needs to be 

improved and one should consider incorporate other SV detection method into the pipeline to 

produce most accurate calls of SVs in the whole size range, covering wider regions in the 

genome. The comparison of deletions detected for five sequenced individuals showed that CNVs 

in human genomes were ubiquitous but the understanding of them, including basic features like 

distribution of all CNV loci, was still far from complete. Difference of some characteristics, for 

example gene content was observed between CNVs restricted to one genome and those shared 

by multiple individuals, however more samples were needed to draw a conclusion at population 

level. Recently, the 1000 Genome Project (http://www.1000genomes.org/) has published their 

primary CNV map based on whole genome DNA sequencing data from 185 human genomes, 

which consist of 22,025 deletions and 6,000 additional SVs (Mills et al., 2011). They found 

common deletions were more often shared across populations, whereas rare alleles were 

frequently observed in only one population. They also pointed out that due to limitations of 

current SV calling methods which depend on mapping reads onto their genomic locus of origin, 

only a fraction of the total SVs could be detected. With the advance of projects which aimed at 

sequencing more individuals, including the 1000 Genome Project and The Cancer Genome Atlas, 

(http://cancergenome.nih.gov/) and technological development of sequencing platform and SV 

detection algorithms, it is believed that our knowledge of structural variants, including copy 

number variation, will substantially increase and the full spectrum of CNVs in human genomes 

will be revealed.          
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Chapter 4 

 

Structured Review of SNP-based CNV studies in 
HapMap samples 
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4.1 Preface 

 

Single nucleotide polymorphism (SNP) oligonucleotide genotyping arrays are widely accepted 

to analyze copy number variants (CNVs). Profiling CNVs from SNP data has become popular in 

established Genome Wide Association Studies because of the convenience of data acquisition 

and processing. However, in the absence of completed high-resolution, genome-wide maps of 

variation, the extent to which commercially available SNP platforms accurately capture CNVs 

remains unknown. Moreover, genotyping platforms and CNV calling algorithms vary largely 

across studies, making it difficult to assess the robustness of SNP-based CNV detection.  

 

The probe coverage for four commonly used SNP arrays (Illumina HumanHap 300, Affymetrix 

500K, Illumina Human 1M and Affymetrix 6.0) had been investigated, in nine human genomes 

whose variants had been systematically detected by fosmid ESP mapping and validated by 

orthogonal approaches (Cooper et al., 2008). With the fine-scale map of genomic structural 

variation determined (Kidd et al., 2008), these nine HapMap genomes provide reliable 

information of the locations, breakpoints and copy number status of their CNVs, therefore can 

serve as a good bench mark to evaluate the CNV discovery results generated by other methods. 

It has been found from Cooper (2008)’s study that probes in older genome-wide platforms such 

as Illumina HumanHap 300 and Affymetrix 500K only cover about 25% of deletions, and fewer 

than 20% of deletions harbour multiple markers (most detection algorithms call CNV events 

only if the CNVs span at least two markers). Even when newer arrays (Illumina Human 1M and 

Affymetrix 6.0) were considered, about 30% deletions annotated by complete fosmid sequencing 

were not covered by the markers on those platforms. With probe coverage of 25%-70%, one can 

presume that the detection rate of actual CNV calling methods using probe intensity data from 
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any of these arrays will turn out to be even lower.  

 

The International HapMap project (The International HapMap Consortium, 2003) provides a key 

resource for researchers to study human DNA sequence variation, by characterizing sequence 

variants, their frequencies, and correlations between them, in DNA samples from four major 

world populations with African, Asian and European ancestry.  The HapMap resource includes 

genotype data on over 4 million single nucleotide polymorphisms (SNPs), gene expression data 

using various microarray platforms and other phenotypic data such as drug response as well as 

structural variation data. In recent years, many researchers who are interested in human genome 

structure variants have taken advantage of HapMap genotyping data to study copy number 

variants and to test or validate their CNV calling algorithms.(Conrad et al., 2006; Cooper et al., 

2008; Kohler and Cutler, 2007; Korn et al., 2008; Lin et al., 2008; Locke et al., 2006; McCarroll 

et al., 2008; Redon et al., 2006; Wang et al., 2007; McCarroll et al., 2005) 

 

With CNV detection from SNP data becoming a routine for GWAS studies, a reliable protocol is 

required to guarantee accurate CNV detection. But a golden standard has yet to be discovered. In 

this chapter, a structured review of all the SNP-based CNV studies to date using HapMap 

samples is conducted, and the data from each included study were extracted and analyzed. By 

comparing CNV calls made in those studies with the baseline CNV from the same HapMap 

individual, it was hoped to shed light on the evaluation of SNP-based CNV detection methods.  
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4.2 Structured literature search and data extraction 

 

4.2.1 Literature search across databases 

Research articles included in three major databases, ISI Web of Knowledge, Medline and 

Embase were searched. ISI Web of Knowledge was searched for the key words "SNP or single 

nucleotide polymorphism" in combination with "copy number" and yielded 864 articles. Ovid 

databases-Medline and Embase were searched for the key words "SNP or single nucleotide 

polymorphism"  in combination of  "copy number", with the result limited to human, 

non-review, published between 1995 and September 2009 and yielded 344 articles. These key 

word combinations were adopted to target all potential studies that detect CNVs from SNP 

genotyping arrays. The results of the two searches were merged. After deleting 411 duplications 

and 20 articles published before 1995 (from the ISI search), finally 778 potentially informative 

articles remained for further study. 

 

The title and abstract of each of the 778 articles was read. Any studies focusing on non-human 

data or which did not utilize whole-genome SNP data to infer CNVs were excluded. At this stage 

263 articles remained. Among these, 17 articles have “HapMap” in their titles or abstracts. Full 

texts and supplementary data of these 17 articles were obtained and examined, to identify the 

studies with extractable data. Some of these only used HapMap samples as a reference set; some 

made use of the HapMap SNP information to test CNV calling methods but the list of CNV calls 

are not shown. Finally, 7 studies (McCarroll et al., 2005; Conrad et al., 2006; Cooper et al., 2008; 

Kohler and Cutler, 2007; McCarroll et al., 2008; Redon et al., 2006; Wang et al., 2007), each 

with detailed information of identified CNVs or CNVRs (Copy Number Variant Regions), 

fulfilled the inclusion criteria and the CNV data from each study were extracted.  The searching 
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process is indicated in Figure 4.1. It was found in the search that all related articles analyze all or 

subsets of HapMap phase I and phase II samples from a total of 270 individuals: 30 

adult-and-both-parents trios from Ibadan, Nigeria (YRI), 30 trios of U.S. residents of northern 

and western European ancestry (CEU), 44 unrelated individuals from Tokyo, Japan (JPT) and 45 

unrelated Han Chinese individuals from Beijing, China (CHB). None of the CNV studies has 

used HapMap phase III data, which consists of genotypes of a total 1397 individuals and PCR 

resequencing results from 712 individuals (http://www.sanger.ac.uk/humgen/hapmap3/).  
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Figure 4.1 Literature search for research articles which detect CNVs from whole-genome SNP 

genotyping data in HapMap individuals 
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Table 4.1 Summary of selected information from 7 SNP-based CNV studies in HapMap samples: sample description, genotyping strategy and 

CNV detection methods 

Pop: population formation, CEU-central European, YRI-Yoruba in Ibadan, CHB-Beijing,China, JPT-Tokoyo,Japan; #Prob: number of SNP probes in the 

genotyping assay (in thousands); CNV calling: name and algorithm of CNV calling software, the number of CNVs called, number of CNV carriers and average 

number of CNV in each carrier in each study 

Total
in CNV

analysis
Software Algorithm

# final

CNVs

# CNV

carriers

CNVs/c

arr ier

McCarrol

et al
2005

CEU+YRI+

CHB/JPT
269 269

HapMap

Project SNP

genotype

~1300

in house

analyt ical

platfrom

Mend el failure, null

genotypes  and H-W

disequilibrium

541 269 2.01

Redon et

al
2006

CEU+YRI+

CHB/JPT
270 270

Affymatrix

Eearly Access

500K

475

in-house

analyt ical

platform

 pair-w ise

comparisons  (SW-

ARRAY), signal

i ntens ity  change and

SNP informat ion

6458 270 24

Conrad et

al
2006 CEU+YRI

180 (60

trios)

60(offspring

s )

HapMap

Project SNP

genotype

1108/108

6(CEU /Y

R I)

in-house

analyt ical

platform

Mendelian

i ncompatibility

345/590(

CEU /

YR I)

30/30
11.5/

19.7

Wang et al 2007
CEU+YRI+

CHB/JPT

112(16*3

CEU+12*

3YRI+28

CHB/JPT)

112

illumin a

HumanHap

550

~ 550 PennCNV
HMM utiliz ing l og2R

and BAF
2987 112 26.7

Kohler et

al
2007 CEU+YRI

90

CEU+90

YRI

180

HapMap

Project SNP

genotype

867/932

m icrodel

(self-

developed)

allele frequencies ,

genotyping-error rates ,

m iss ing-data rates  and

delet ion frequency

McCarroll

et al
2008

CEU+YRI+

CHB/JPT
270 270

Affymatrix

SNP 6.0
906 Birdseye

HMM utiliz ing l og2R

and BAF
46931 270 173.8

Cooper et

al
2008

CEU+YRI+

CHB/JPT
9 9

Illum ina

HumanHap

1M

~1000 HMMseg
HMM utiliz ing l og2R

and BAF
368 9 40.9

Genotyp ing

platform

#

Prob (K )

CNV calling

Author Year Pop

Sample Size
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Table 4.1(continued) Summary of selected information from 7 SNP-based CNV studies in HapMap samples: CNVs, CNVRs and validation      

Number of deletions and amplifications in each study; length of each type of CNVs; CNVR: calling-the definition of a CNVR in each study, #CNVRs-number of 

CNVRs defined in each study; validation: methods-the way a subset of the CNVs being validated, #tested CNVs-number of CNVs selected for validation, 

#validated CNVs-number of CNVs validated by other methods out of the tested CNVs in each study              

All Del Amp Calling # CNVRs Methods # tested CNVs # validated CNVs

McCarrol  et

al
2005 541 0 1-745

18.3/

7.8

18.3/

7.8
0/0

FISH/SNP

genotyping/PCR/quan

titative PCR

93 81

Redon et al 2006 3454 3004
205.8/

80.8

141.7/

48.7

279.5/1

31.6

merging &

summarizing all pair-

wise comparisons

980

whole genome

TilePath/locus-

specifi c assay/in

another incividual/in a

previous study

6458 (980

CNVRs)

1789 CNVs overlap

WGTP results (957

CNVRs)

Conrad e t

al
2006

345/590(CE

U/YRI)
0/0

41.4/

36.9

41.4/

36.9
0/0

qPCR/380K

oligonucleotide

microarray

12 del/93 del 12 del/ 80del

Wang et al 2007 2060 927
0.001-

7834.1

45.1/

12.2

34.9/

9.3

67.8/24.

6

Kohler et al 2007

CNVs were

grouped

into CNVRs

0

CNVR

mean

length

10.2

CNVR

mean

length

10.2

0/0

outmost boundaries of

any CNV at the same

loci

693(213

CEU+329 YRI)

McCarrol l

et al
2008 39346 7585

0.074-

1134

27.3/

22.1

CNVR

14/5.7

del only

CNVR

20.3/53

7.6 amp

only

CNVR

 non-overlapping small

regions containing any

SNP showing CNV

1319 (877 del

only+197 amp

only+245

showing both)

qPCR/Fosmid ESP

27 CNPs in 30

individuals/8

individuals

99.3%

concordance/76%

>10kb, 64%>5kb,

27%<5 kb

Cooper e t

al
2008 258 110 1-1451

80.3/4

1.8

45.6/

19.8

161.7/1

13

fosmid ESP mapping

(Kidd et al 2008)
368

>2/3 of 368 CNVs

validated

Author Year

CNVR Validation

Deletions
Amplifica

tions

Length

range

(kb)

Mean/median length

(kb)
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4.2.2 Overview of seven relevant studies 

The information from these 7 studies is extracted and tabulated into spreadsheets, including 

author, publishing year, population composition, genotyping platform, number of probes, 

SNP selection criteria, CNV calling strategy, number of CNVs, CNV length and validations. 

The summary of information from these studies is displayed in Table 4.1.  

 

All these studies applied certain platform/algorithm combinations to the whole (Redon 2006 

and McCarroll 2008) or a subset (the other 5 studies) of the HapMap sample collection. The 

SNP content ranges from 475,000 (Redon) to over 1,300,000 (McCarroll 2005). Three 

studies (McCarroll 2005, Conrad 2006, and Kholer 2007) directly adopt SNP genotypes from 

the HapMap project genotype collection, and inferred copy number change via mendelian 

incompatibility, genotyping error and missing genotypes. Due to technology limitations, 

these 3 studies were only able to present deletions (copy number loss events). The other four 

studies used signal intensity data obtained from commercial SNP genotyping platforms 

(Affymetrix Early Access 500K, Affymetrix SNP 6.0, Illumina HumanHap 550 and Illumina 

HumanHap 1M) to detect both deletions and amplifications. Hidden Markov Model based 

algorithms are utilized in these studies to simultaneously indicate copy number status of the 

SNPs on these arrays. In all studies, each sample is detected to posses one or more CNVs. It 

was shown in these four studies that there were more deletions than amplifications detected 

in HapMap samples. Although the samples by all seven studies were drawn from the same 

HapMap collection, the average numbers of detected CNVs per carrier by different 

platform/algorithm were obviously different, from 2 events per CNV carrier to 174 events 

per CNV carrier. Redon, Kohler (2007) and McCarroll (2008) group CNVs into 

non-redundant copy number variation regions (CNVRs) each by a different CNVR definition. 

Instead of presenting raw CNVs with chromosomal locations, McCarroll (2008) identified 

common CNPs by searching for genomic regions across which copy number probes show 
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cross-sample patterns of same status (copy number gain or loss), then assigned each 

individual corresponding CNVRs rather than the original CNVs. Kohler (2007) only 

presented CNVRs which contained any evidence of copy number variants but not original 

sample-wise CNVs detected in his samples.  

 

4.2.3 Platforms and CNV detection methods 

 

4.2.3.1 HapMap genotypes 

McCarroll (2005), Conrad and Kholer obtain the SNP genotyping data from HapMap phase I 

data release. During phase I, genotyping of over one million SNPs was carried out by 10 

centres across the world, using seven different genotyping technologies. The genotyping data 

generated for 270 individuals was placed in the public domain and is available for download 

(http://hapmap. ncbi.nlm.nih.gov/). 

 

Redon (2006), Wang (2008), McCarroll (2008) and Cooper (2008) use probe signal intensity 

data from commercially available Affymetrix Early Access 500K (500K EA), Illumina 

HumanHap 550, Affymetrix SNP 6.0 and Illumina HumanHap 1M genotyping arrays, 

respectively.  

 

4.2.3.2 Whole Genome genotyping arrays by Affymetrix and Illumina 

Affymetrix’s 500K EA array is a precursor version of the GeneChip® Human Mapping 

500K array set, comprising 534,500 SNPs on two arrays and is used in conjunction with the 

whole genome sampling assay (WGSA). The median physical distance between SNPs is 2.5 

kb and the average distance between SNPs is 5.8 kb on the 500K EA array. The latest version 

of Affymetrix genotyping array, Genome-wide Human SNP Array 6.0 contains 1.8 million 
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genetic probes, including more than 906,600 SNPs and more than 946,000 probes for the 

detection of copy number variation. The inclusion of CNV probes makes Affymetrix Human 

SNP Array 6.0 the only platform to date with analysis tools to truly integrate copy number 

and association analysis simultaneously on a single array. It is claimed to have the highest 

physical coverage of the genome (http://www.affymetrix.com/). 

 

Illumina’s HumanHap550 Genotyping BeadChip enables whole-genome genotyping of over 

550,000 tag SNPs derived from the International HapMap Project on a single BeadChip.The 

assay combines specific hybridization of genomic DNA to arrayed probes with 

allele-specific primer extension and signal amplification, therefore effectively increasing the 

signal-to-noise ratio in genotype calling (Wang et al., 2007). The Human 1M DNA Analysis 

BeadChip interrogates nearly 1.2 million SNP probes per sample, providing Illumina’s most 

comprehensive genome-wide coverage of SNPs. The uniform genome-wide coverage results 

in a median spacing of 1.5 kb between markers and fewer large gaps. There are around 

60,000 probes, developed in collaboration with deCODE Genetics, covering regions likely to 

contain undiscovered CNVs—segmental duplications, megasatellites and region lacking 

SNPs. This feature makes the Human 1M array of high value for CNV detection, in addition 

to genome-wide SNP genotyping (http://www.illumina.com/products/human1m_ 

duo_dna_analysis_beadchip_kits.ilmn). 

 

4.2.3.3 Deletion discovery from SNP genotypes 

McCarroll et al (2005) argue that segregating deletions can cause SNP genotypes to appear 

‘abnormal’, such as apparent deviations from mendelian inheritance, apparent deviations 

from Hardy-Weinberg equilibrium and null genotypes. Based on this principle, they 

developed a procedure to identify deletions from SNP genotypes. First of all, they detected 

indications of the potential presence of deletions from mendelian incompatibility (i.e. the 
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deviation from mendelian inheritance), Hardy-Weinberg disequilibrium and null genotypes, 

in family trios or unrelated individuals. They then looked for regions of the genome in which 

the same type of “failed” profile appeared repeatedly at nearby markers in a manner that is 

statistically unexpected based on chance. Finally a subset of ‘failed’ SNP genotyping assays 

which are likely to reflect structure variants was determined.  

 

Conrad et al (2006) adopted a similar approach for deletion detection from SNP genotypes. 

They examined consecutive SNPs transmitted from parent to child and flagged the regions of 

SNPs whose genotypes appeared to violate mendelian transmission. Then they distinguished 

between two classes of mendelian incompatibility which were either the mendelian 

incompatibility consistent with a deletion or inconsistent with a deletion. At last, they 

detected deletions which appear to be regions of runs of SNPs displaying mendelian errors, 

each in a single HapMap family trio. Due to the nature of this method, deletions only in the 

offspring of a family trio are represented. Compared with McCarroll (2005), this method 

only concentrates on Mendelian incompatibilities and doesn’t take into account other types 

of apparent genotyping errors (H-W disequilibrium, null genotypes) which might be resulted 

from deletions, and so gave results which appeared to be more stringent and conservative.  

 

4.2.3.4 Methods to identify copy number change from signal intensity data 

Redon (2006) used an algorithm described in Komura et al (2006) to identify copy number 

from Log2R ratio of SNPs in the whole-genome SNP genotyping arrays. This approach 

comprised three major steps: intensity pre-processing, CNV detection and Copy-Number 

inference. After step one, CNV detection began with pairwise comparisons of probe 

intensities for all possible pairs of samples (n-1 comparisons for n samples), an adapted 

Smith-Waterman algorithm helped to find isolated islands of substantially higher (or lower) 

intensity ratios and assigned significance to each finding by a permutation test. Then the 
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results for all comparisons were merged to extract candidate CNV regions for each sample. 

During step three, each CNV region was assigned a copy number and the boundaries were 

determined, by using a maximum clique algorithm to define the diploid samples for any 

given region based on the results from the large reference data.  

 

Wang (2007), McCarroll (2008) and Cooper (2008) each facilitate a Hidden Markov Model 

based program (PennCNV, Birdseye and HMMseg) to detect CNV by analysing both Log2R 

ratio and B Allele Frequency (BAF) of the SNPs. The Hidden Markov Model is a statistical 

technique that models a Markov process, where the probability of observing a particular state 

at a particular time point only depends on the state at previous time points. This feature 

makes HMM widely used in the field of SNP array based CNV detection, when practice it to 

model status of copy numbers at nearby SNPs (Wang et al., 2007). In this model, a sequence 

of SNPs are each assigned a most likely copy number based on the calculated probability of 

copy number status, then the copy number variable fragments are  assessed and determined 

(details of HMM in the Methods chapter).  

PennCNV:  this was developed by an academic group for the Illumina genotyping platform 

and is freely available to users to apply to their own data. The standard output from this 

package is a list of detected copy number variant events and brief summary statistics to be 

used for quality check. It can run using command line options or integrated into Illumina’s 

BeadStudio data analysis software as a plug-in. It has a few downstream analysis options, 

such as using family trio data to increase accuracy of prediction(Wang et al., 2007)  . 

Birdseye: this is a component in the Birdsuite analytical solutions. The Birdsuite set 

developed by Korn et al (Korn et al., 2008) combines SNP genotyping, copy number 

detection and genotyping of common CNP. (The concept of CNP genotyping is similar to 

SNP genotyping: instead of SNP probes, probes which represent common copy number 
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polymorphism are arrayed and hybridized with DNA samples, and then the CNP genotypes 

are determined.) Four different software programs are integrated into Birdsuite for 

Affymetrix dataset: The Canary algorithm genotypes common CNPs; Birdseed yield SNP 

genotyping results; Birdseye uses the HMM to identify and assess previously unkown CNVs 

in the data set and Fawkes merges all the results from the three previous stages. 

HMMseg: this is a command line operated algorithm for segmenting continuous genomic 

datasets on a scale-specific basis using HMM. Scale specificity is achieved by an optional 

smoothing step. HMMseg uses Gaussian emission distributions to detect consecutive SNPs 

in the genome with aberrant signal intensities, with diagonal covariance for multiple datasets, 

and supports both the Viterbi and posterior decoding methods for copy number state 

assignments(Day et al., 2007). 

 

4.3 Comparison of CNV findings of two individuals in six HapMap 
studies 

Among the seven studies which are included in this review, all but one (Kohler (2007)) 

provide CNV call results for each of the HapMap sample in their studies. On the other hand, 

Kohler (2007) groups sample-wise CNVs into CNVRs and only showed the constructed map 

of CNVRs instead of listing the original CNV calls. The lists of CNVs for each sample in the 

rest six studies were downloaded from supplementary information of each of these six 

studies; the chromosomal coordinates for each CNV were all converted to hg17 (Build 35) 

using liftOver (http://genome.ucsc.edu/cgi-bin/hgLiftOver). The entries which could not be 

mapped to hg17 were discarded.  In the remaining six studies, 2 same individuals, 

NA12878 and NA19240, were used by each of them. They were both in the HapMap sample 

collection; NA12878 is of European ancestry and NA19240 is of African ancestry. 

Genome-wide fosmid end-sequence-pair (ESP) maps have been developed for nine humans, 

which also include the same two individuals. To address the extent to which existing 
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SNP-based CNV detection methods accurately capture true CNVs, the CNV results of each 

study for NA12878 and NA19240l were compared to CNVs detected using ESP sequencing 

for the same individual.  

 

4.3.1 Deletions for NA12878 and NA19240 

McCarroll (2005) and Conrad et al (2006) only investigate the deletion polymorphism in 

their studies, therefore to construct a paralleled comparison of copy number variants across 

the six studies, only autosomal deletions were considered. 

 

The number of deletions for the same two HapMap individuals from each study is shown in 

Table 4.2. Between 12 and 69 deletions were identified for NA12878 and between 9 and 57 

for NA19240. The SNP density of each platform did not affect the number of deletions 

detected (P value=0.838, not significant). Two categories of CNV detection methods were 

used: McCarrol (2005) and Conrad (2006) chose to detect deletions based on Mendelian 

error/genotyping error in SNP genotypes, while the other four analyse signal intensity. 

Considering the rational of the two categories of methods, the genotyping analysis methods 

also takes into account the family trio information, therefore one may argue the results might 

be conservative and the number of deletions of the same individual might be underestimated. 

However, the difference of the number of detected deletion events between two categories of 

method did not reach significant threshold (P value=0.4364, two tailed). 
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Table 4.2 Number of deletions detected for NA12878 and NA19240 in six studies 

Study Method
SNP 

density
NA12878 NA19240 Both

Deletion 

median 

length(kb)

McCarroll et 

al(2005)
genotype high 16(568.0Kb) 16(242.7Kb) 32 11.2

Redon et al
signal 

intensity
low 15(755.8Kb) 9(850.1Kb) 24 49.7

Conrad et al genotype high 12(537.9Kb) 20(614.8Kb) 32 20.8

Wang et al 
signal 

intensity
low 21(1.325Mb) 13(178.2Kb) 34 11.6

McCarroll et 

al(2008)

signal 

intensity
high 69(1.564Mb) 57(1.325Mb) 126 9.7

Cooper et al 
signal 

intensity
high 43(2.367Mb) 20(537.2Kb) 63 27.7

 

For NA12878 and NA19240, the number of deletions indicated in each of the six studies was listed. 

The total lengths of genomic regions covered by those deletions were listed in brackets.  

 

The median length of detected deletions generated by the different platform/algorithm 

combination varied (from 9.7 to 49.7 kb). The deletions detected by Redon (2006) were 

longer than any other studies (median length 49.7kb, almost two fold of the second longest 

detected deletion median size in Cooper (2008)’s study). It was suspected that the deletions 

identified by genotype analysis might be shorter since family information provides more 

evidence of true deletion boundaries; but no significant difference of deletion length was 

found between two categories of detection methods (p=0.5745). Both number of detected 

deletion and the chromosomal region covered by those deletions vary greatly for the same 

individual across the six studies. 

 

4.3.2 Cross comparison of deletions from six studies 

The locations of each deletion for the same individual were compared across the six studies 

(Table 4.3). The results from two genotype analysis studies (McCarroll (2005) and Conrad 

(2006)) were widely validated in at least one other study (recovery rate of 64.5% and 62.5%, 

respectively), while most of the deletions (84.9%) from McCarroll (2008) could not be found 

in any other studies. Correlation tended to be better when both studies in a pair to be 
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compared adopt the same methods, for example, deletions from McCarroll (2005) 

concordant with those from Conrad (2006) best, which both used genotype/family 

information analysis, Wang (2007) had more deletions also detected in studies in which they 

analyzed signal intensity rather than genotype/family information.   

 

 

Table 4.3 The concordance of detected deletions in the six studies.  

McCarroll 

et al(2005)

Redon et 

al
Conrad et al Wang et al 

McCarroll 

et al(2008)

Cooper et 

al 

McCarroll 

et al(2005)
genotype high 31 - 2 13 1 8 6 11 (35.5%)

Redon et al
signal 

intensity
low 24 2 - 5 9 5 8 10 (41.7%)

Conrad et 

al
genotype high 32 13 5 - 7 4 8 12 (37.5%)

Wang et al 
signal 

intensity
low 34 1 9 7 - 2 12 17 (50%)

McCarroll 

et al(2008)

signal 

intensity
high 126 8 5 4 2 - 10 107 (84.9%)

Copper et 

al 

signal 

intensity
high 61 6 8 8 12 10 - 36 (59.0%)

#CNVs not 

recovered 

(%)

#Total 

CNVs
Study

#CNVs recovered in other studies

Method
SNP 

density

 

Note: The number in each cell is the number of CNVs detected in each corresponding pair of studies. 

For ease of comparison across multiple studies, CNVs in each of the two genomes were grouped into 

CNVRs (CNV loci), eg. in McCarrol(2005) study, 16 deletions of NA12878 were at 16 CNV loci, 16 

deletions of NA 19240 were at 15 CNV loci, therefore those deletions were at 31 sample-wise CNV 

loci. 

 

4.4. Concordance with deletions determined by ESP sequencing 

 

4.4.1 Reference deletions detected by ESP sequencing 

Kidd et al (2008) applied the clone-based Fosmid end-sequence pair (ESP) technology to 

determine structure variants in nine human genomes, including four individuals of Yoruba 

Nigerian ethnicity, three of Western and Northern European ethnicity and two of Eastern 

Asia ethnicity. For each individual a whole genomic library of about 1 million clones was 

constructed, by using fosmid subcloning strategy. Each library was arrayed and both ends of 

each clone insert were sequenced to generate a pair of high-quality end sequences. At the end 

a physical clone map for each individual human genome was generated, the regions 
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discrepant by size or orientation on the basis of the placement of end sequence against the 

reference assembly were flagged. Following approaches of validation, 2725 sample-wise 

insertion, deletion and inversions more than 8kb in length were identified. The scale of this 

CNV discovery study is the finest to date compared with other platforms/methods, therefore 

in this chapter this data set was taken as the baseline reference to assess the robustness of 

CNV detection platforms/methods mentioned above. The list of all copy number variants 

identified in this study was downloaded from the supplementary information to this article. 

 

In total those CNVs could be merged into 1607 non-redundant CNVRs. A CNVR was 

defined as the region containing any SNP showing CNV. If CNVs in multiple samples are at 

the same locus, they were assigned to be in the same CNVR. The boundaries of each CNVR 

were the locations of outmost reach of SNPs showing CNV at this locus. 1129 of the 1607 

CNVRs were only observed in single individuals, among them, 475 belong to the African 

population, 362 to the European population and 292 to the Asian population. 478 (29.7%) 

CNVRs were shared by more than one individual. 133 of these CNVRs were shared by three 

populations; 110 only shared between European and Asian populations, 94 only shared 

between European and African populations and 69 only shared between African and Asian 

populations. (Figure 4.2.) 

 

The same pattern of CNVR sharing among three populations was observed in Cooper 

(2008)’s data. The 368 CNVs from Cooper et al were grouped into 278 CNVRs, in the same 

manner as analysing Kidd (2008)’s results. Most of these CNVRs (243 out of 278) belong to 

a single population; most of the population specific CNVRs are found in African population. 

Only a small fraction of the CNVRs (8 CNVRs) were shared by three populations; European 

and African populations shared more CNVRs. (Figure 4.3.) 
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Figure 4.2 CNVR sharing in 9 HapMap individuals from Kidd et al (2008).  
Note: numbers in the shaded areas indicate the numbers of shared CNVRs. 

 

 

Figure 4.3 CNVR sharing in 9 HapMap individuals from Cooper (2008) et al.  
Note: numbers in the shaded areas indicate the numbers of shared CNVRs. 

 

155 autosomal deletions (7.48Mbp) were detected for NA12878 and 142 (5.76Mbp) for 

NA19240. Among those deletion regions, 143 for NA12878 (7.01Mbp) and 130 for 

NA19240 (5.29Mbp) covered multiple SNPs (the reference SNPs are from the Illumina 

Human 1M array SNP collection which represented one of the highest SNP densities in the 

six studies), which means maximally 92% of the baseline reference deletions could have a 

chance to be recovered by any SNP based detection methods (“detectable”), because it 
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always takes more than 2 consecutive SNPs which shown evidence of a shift of copy number 

status away from normal towards the same direction (either gain or loss).  

 

4.4.2. Overlap with fosmid ESP map 

The positions of deletions for NA12878 and NA19240 were compared to the fosmid ESP 

map of deletions for the same two individuals. Of the 143 detectable deletions for NA12878 

on the fosmid ESP map, 42 were also detected in at least one study from the six SNP-based 

CNV studies (3.72Mbp). On the other hand, 26 (1.11Mbp) out of the 130 detectable 

deletions for NA19240 were recovered each by one or more other studies. Thus the rate for 

the fosmid ESP validated deletions to be recovered by any SNP-based technologies 

discussed in this chapter was 29.3% (or 53% by length) for NA12878 and 20% (or 21.0% by 

length) for NA19240. The average recovery rate for both individuals was 24.9% (or 34.2% 

by length). 

 

To demonstrate the breakdown of concordant deletions by each study, the results of 

comparison with Kidd (2008)’s data is shown in Table 4.4. The concordance rates for the six 

studies range from 25.4% (McCarroll 2008) to 58.73% (Cooper). Except for McCarroll 

(2008), other three studies working on signal intensities tended to be more robust in 

identifying reference deletions (54.17%, 44.12% and 58.73% vs. 40.63% and 31.25%). 

Despite the low density of SNP genotyping platform chosen by Redon et al (2006), their 

algorithm still yielded a concordance rate of over 50%.  

 

4.5 Discussion 

Comparison of detected events in the same dataset by different methods is a good way of 

assessing accuracy of detection algorithms. The HapMap samples are considered the most 

intensively studied genetic sample collection; various studies on the whole or a subset of 
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these samples produced genotyping results generated on various SNP genotyping array 

platforms, as well as fosmid ESP sequencing results. With the development of methodology 

to detect copy number variable events and construct maps of structural variation for HapMap 

samples based on those data, the HapMap collection can serve as a resource for CNV 

detection algorism comparison. Seven CNV discovery studies were targeted from a 

structured literature search, which aimed to identify all SNP-based CNV studies to date on 

the well characterized HapMap samples. Those were published between 2005 and 2008, 

either directly used HapMap genotypes (Kohler and Cutler, 2007; McCarroll et al., 2005; 

Redon et al., 2006; Conrad et al., 2006) or analyzed signal intensity data of SNP genotyping 

arrays for those samples (Cooper et al., 2008; McCarroll et al., 2008; Redon et al., 2006; 

Wang et al., 2007). The principles of inferring copy number variation via SNP genotypes are 

to identify the ‘imprints’ in the genome which might be caused by deletions, such as missing 

genotypes, deviations from Mendelian inheritance and violations of Hardy-Weinberg 

equilibrium. On the other hand, implying copy number status from signal intensities of a 

series of SNPs on a chromosome can yield results of both copy number gains and copy 

number losses.   

 

Table 4.4 Deletions in concordance with Kidd et al. 2008 

 

 

NA12878 NA19240 both
concordance

rate

McCarroll et

al(2005)
genotype high 32 8 5 13 40.63%

Redon et al
signal

intensity
low 24 10 3 13 54.17%

Conrad et al genotype high 32 5 5 10 31.25%

Wang et al
signal

intensity
low 34 9 6 15 44.12%

McCarroll et

al(2008)

signal

intensity
high 126 22 10 32 25.40%

Cooper et al
signal

intensity
high 63 28 9 37 58.73%

concordance with Kidd et al 

MethodStudy SNP density
# Detected

deletions
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The existence of structural variance is ubiquitous in human genomes. Despite 

platform/algorithm choices, multiple CNVs were found for every sample in all seven studies. 

This fact is supported in many other human genetics studies. CNVs are also commonly 

found to be widely spread in other species, for example mice, chimpanzees, pigs and 

maize(Perry et al., 2008; Springer et al., 2009; Adams et al., 2005; Fadista et al., 2008). It is 

possible that for any single genome there may be regions displaying different levels of copy 

number polymorphisms.  

 

The genotype-analysis based methods (in McCarroll 2005 and Conrad 2006) tend to detect 

less deletion events per sample (although the difference was not significant) compared with 

signal intensity-based methods (Table 4.1). It might be explained by the nature of these two 

categories of methods. The genotype analysis assessed missing genotypes, H-W 

disequilibrium and Mendelian incompatibilities in family trios, screened regions of genome 

which carried above events but possibly were caused by deletions rather than being true 

genotyping errors. It is presumed that incorporating family information and assess 

transmission of these inheritable genetic features might increase accuracy in deletion 

detection, but at the same time more deletions in these trios might have been missed out, for 

example homozygous deletions in the offspring is undetectable by this method, and if all 

three samples in a trio appear to be homozygous for a number of consecutive SNPs, it is hard 

to tell if they are truly all homozygous or if some of them are hemizygous for a deletion in 

this region, when no apparent Mendelian incompatibility is detected in this trio. Conrad et al 

(2006) performed a simulation to calculate power of their method, and claimed it has 

moderate power to detect deletion events in family trios. They also predicted the total 

number of deletions based on simulations, that the CEU children were estimated to carry 

around 30 deletions and the YRI children about 50 deletions of >5 kb (Conrad et al., 2006). 

Their method detected 14.4 deletions of >5kb, which was less than half of the estimated 

number of deletions in the 60 HapMap offspring. The simulations suggested that the number 
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of events may be underestimated by genotype-analysis methods. 

 

The density of SNPs in the seven studies was not the same; the earlier studies (Redon (2006) 

and Wang (2007)) used arrays containing about 500k SNPs while others analyzed above 1M 

SNPs. The relationship of SNP density and the number of CNVs detected (deletions were 

considered instead of looking at both deletions and amplifications, because three of the seven 

studies only studied deletions) was investigated and no significant association was found. 

The median size of deletions in these studies were between 5.7 kb and 48.7 kb, meanwhile 

the median physical distance between SNPs on one of the lower SNP density genotyping 

platform (Affymetrix 500K EA array) is 2.5 kb. The deletion length suggested most detected 

deletions spanned multiple SNPs; the sufficient length of deletions made them already 

detectable by both lower and higher density SNP genotyping arrays.  

 

The shared HapMap samples, NA12878 and NA19240, are the basis of the method 

comparison among six studies which provided detected individual CNVs. The cross 

comparison showed that generally some deletions found in one study could be also found in 

other studies; it is assumed that the larger numbers of similar events across different 

platform/methods could mean higher true positive rate, therefore all the programmes were 

able to detect at least a proportion of true deletion events. The proportion of deletions 

detectable by other studies was above 40% for all studies except for McCarroll (2008). 

Although some studies had lower percentage of overlapping events, it is important to also 

consider the number of events as well as the proportion, for example about 60% of the events 

detected by Redon (2006) were confirmed but other algorithms had detected more events in 

total. In McCarroll’s study, CNV identification was split into two steps: an initial detection of 

common copy number polymorphisms (CNPs) captured by CNP probes followed by a HMM 

based algorithm (Birdseye) to further detect rare events.  The HMM model adapted in 

Birdseye was different from that by others (PennCNV and HMMseg): it took into account 
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the probe intensities from both copy number and SNP probes to indicate true underlying 

hidden states (e.g. copy number status of each probe) while others analyze solely SNP probe 

intensities. The novelty of McCarroll’s platform might result in the lower overlapping rate 

with results from other studies, including studies which also utilized HMM. 

 

A difference in the size of the predicted deletions between platform/algorithms was notified 

for NA12878 and NA19240. This was to be expected when using different genotyping arrays 

as probe location and SNP density vary. On the other hand, this kind of effect can also be 

caused by simply altering algorithm parameters and CNV definitions.  

 

It has been claimed by inter-population CNV investigations that more copy number variable 

events were to be expected in African populations rather than in European populations. A 

small subset of the HapMap collection which consists 9 samples from Europe (CEU), Africa 

(YRI) and Asia (CHB+JPT) were studied for structural variants, by Cooper (2008) et al and 

Kidd et al (2008) using SNP genotyping and sequencing, respectively. Similar CNV sharing 

patterns were found in these two studies, which confirmed the more frequent observation of 

CNVs in Africans and there was an median overlap of same CNV events between two 

distinct populations. In the comparison of deletions of NA12878 and NA19240, in most of 

the cases more deletions for NA12878 were detected than for NA19240, among various 

platform/algorithm combinations. This violation of predictions might just due to sampling. 

 

When taking the deletions which Kidd et al (2008) detected for the same two samples by 

ESP sequencing as reference, the comparison of findings between each of the six studies and 

Kidd et al (2008) showed a variety of concordance that the detected deletions overlaps Kidd 

(2008)’s results. Despite SNP density difference, most of the signal intensity-based HMM 

algorithms outperformed genotype analysis methods. The two studies (McCarroll 2005 and 

Conrad (2006)), which identified deletions in family trios by analyzing SNP genotypes, not 
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only found less events compared with reference but also had lower concordance rate. 

McCarroll et al 2008 which used intensity-based method had only 15% of the detected 

deletions in concordance with Kidd et al (2008), suggesting a possible high false-positive 

rate of their method. But one should also notice the number of overlapping events with Kidd 

(2008) in McCarroll 2008’s study was one of the largest, showing their ability to detect 

confirmed events. Winchester et al. (Winchester et al., 2009) performed four algorithms 

(including cnvPartition, GADA, PennCNV and QuantiSNP) on the same set of SNP signal 

intensity data on one HapMap individual and they also found a significant discrepancy in 

results among different algorithms. 

 

Considering all six studies together, only about a quarter of deletions from Kidd’s ESP 

sequencing results, which were potentially detectable on SNP genotyping arrays, were also 

discovered in at least one of the six SNP-based studies. Although the platform and 

algorithms to detect CNVs from SNP genotyping arrays discussed in this chapter were not 

exhaustive, this finding revealed the limitation of current SNP-based CNV detection methods 

to discover true CNVs. Winchester et al also compared their results from multiple algorithms 

to Kidd (2008)’s deletion predictions and the same low level of consistency was claimed.  

 

Several challenges remain in SNP-based CNV discovery: first of all, on commercial SNP 

genotyping arrays, probes are not uniformly distributed across the genome and are 

particularly sparse in regions of segmental duplication and complex CNV regions, for 

example 10% deletions identified by Kidd (2008) for two HapMap individuals do not cover 

at least two consecutive SNPs on any of the SNP platforms discussed in this chapter. To 

overcome this limitation, newer platforms, such as Affymetrix SNP 6.0 and Illumina 

HumanHap 1M were developed; Affymetrix SNP 6.0 revolutionarily included a huge 

number of CNV probes in the hope of targeting more common CNVs.  However the results 

showed the concordance rate even for the newer platforms are low. Secondly genotype 
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analysis methods which use genotyping error to predict CNVs are only capable of detecting 

deletions and require family information so these should be considered as a useful additional 

method to identify CNVs from genotyping data rather than a direct discovery tool (Carter, 

2007). Another major concern for the detection of CNVs utilizing array technology is the 

definition of putative CNV when assessing shifts in relative signal intensity changes from 

arrays. Some define a CNV as a change in the intensity of certain number of consecutive 

SNPs that exceed a pre-defined threshold and some define a CNV through more complex 

statistical models. The robustness of CNV detection depends on an accurate algorithm which 

distinguishes a region in which SNPs have unusual signal intensity from the rest of the 

genome. Last but not least, technical issues such as signal-to-noise ratio and the choice of 

reference to be compared with putative CNV regions can also cause problems in CNV 

calling (Carter, 2007).  

 

From the comparison of different platform/algorithm combination for the same subset of 

HapMap samples in this chapter, one can argue that gaps still exist in software development; 

it is important to improve the methods to make them more sensitive and powerful in 

detecting CNV from SNP data. But it is also important to take into account the information 

different algorithm provided and it is sensible to utilize the different advantages of each 

algorithm. In two studies comparing CNV calling from multiple algorithm or 

algorithm/platform combinations which utilized SNP genotyping data for HapMap samples, 

a large discrepancy in the calling results was also identified (Winchester et al., 2009; Zhang 

et al., 2011). It is recommended to take a second algorithm on a single dataset to assist to 

produce the most confident predictions (Winchester et al., 2009). At last, a range of 

platform/algorithms for the same dataset are presented in this chapter, however one can not 

definitively confirm the existence of a CNV without independent biological replication. 
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5.1 Preface 

Various algorithms and programs have been developed to detect copy number variants 

(CNVs) from genome-wide single nucleotide polymorphism (SNP) arrays. However, their 

reliability and performance has remained uncertain. I compared four CNV detection methods: 

QuantiSNP, cnvPartition, PennCNV and DNAcopy using SNP data from 966 individuals 

genotyped on the Illumina Human Hap 300K array. Both QuantiSNP and PennCNV are 

based on the Hidden Markov Model (HMM) algorithm, while cnvPartition and DNAcopy 

are based on Circular Binary Segmentation (CBS) algorithm (details in Chapter1, 1.3.4.2). 

 

It is important to attempt to assess the performance of the analytic methods when applied to 

data from this less than optimal genotyping platform (Illumina 300K arrays), in being able to 

identify true CNVs. An approach relying on the concordance rate in duplicated genotyped 

samples was used to estimate false positive and false negative rates for each of the four 

analytic methods. It was found that setting a threshold for filtering less reliable CNV calls 

helped to increase the accuracy and power of CNV detection by QuantiSNP and cnvPartition. 

It was also stated that QuantiSNP and cnvPartition outperformed other two methods in terms 

of false positive and false negative rates. Another independent approach was employed 

which assessed the ability of one of the detection methods, QuantiSNP, to recover true CNVs 

from genotyping data, based on a HapMap data set from eight humans who had their CNVs 

determined and whose SNP genotyping data was publically available. The results suggested 

that QuantiSNP was a conservative method which had a high specificity (low false positive 

rate) but low sensitivity (high false negative rate). 

 

A discrepancy in the occurrence, length, type of CNVs detected by the different methods was 

observed. When the CNVRs derived from CNVs called by the four methods were compared 

it was found that QuantiSNP and cnvPartition had the best concordance in terms of CNVRs 

detected.  
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5.2 Materials and methods 

 

5.2.1 Samples 

965 samples from Croatia and 1 sample from Orkney were included in the analysis. To 

assess the false positive and false negative rates of each CNV detection method, duplicate 

samples were needed. A duplicate is defined here as an individual who was genotyped 

multiple times (twice) at the same platform. CNV results were independently obtained from 

each genotyping dataset and then these were compared so that false positive/false negative 

rates could be calculated. Initially an individual in the Croatian population, Kom388, was 

selected to serve as a duplicate and was genotyped twice. However, one of the two 

genotyping datasets did not pass the quality control step and so these data could not be used. 

For the above reason, an Orcadian individual, ORC2091, was genotyped twice in order to 

serve as a duplicate sample.   All 966 samples had passed quality control (details in 

Methods chapter). 

 

5.2.2 Parameter setting of the four methods to detect CNVs from SNP array data 

 

CNVs were determined for each sample using QuantiSNP (version 1.0), cnvPartition 

(version 1.0.2), PennCNV and DNAcopy, respectively. These represented the four analytic 

methods available at the time of the analysis (between year 2007 and 2008) which had been 

reported in published articles. QuantiSNP and PennCNV are based on a Hidden Markov 

Model (HMM), which indicates copy number status of each SNP depending on information 

from neighbouring SNPs. CnvPartition and DNAcopy are both Circular Binary 

Segmentation (CBS) methods, which divide the chromosomes into segments to extract 

segments of aberrant signal intensities which indicate a copy number deviation from the 

normal copy number of such segments. 
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PennCNV and DNAcopy didn’t have a filter option whereas various parameter options could 

be individually selected in the QuantiSNP and cnvPartition software.  

 

The QuantiSNP filter includes times of permutation (EMiters), characteristic length of CNVs 

(L), GC correction option (doGCcorrect) and threshold of Bayes Factor (Yau, 2007; Colella 

et al., 2007). QuantiSNP uses an expectation maximization (EM) algorithm to fit HMM 

model parameters to the data and after permutations the model was optimized and 

convergence was achieved. The more permutation steps taken, the better the model fits the 

data but longer computation times are required. The parameter EMiters determines the 

maximum number of optimization steps to be used. A recommended value of 25 was chosen 

which was believed to balance both the precision of model optimization and computational 

time. In CNV detection, longer CNVs may be called with more confidence as LogR ratio and 

B allele frequencies of more markers were taken into account. This might be expected to 

reduce the false positive rate of CNV calls. For this reason, QuantiSNP requires a defined 

characteristic length of CNVs (denoted L) for filtering possible false positives. 

L=3000000bp was chosen to be the maximum length in this analysis. It had been reported 

that correcting Log2R ratio for local GC content would reduce noise and increase accuracy of 

CNV detection (Colella et al., 2007), so the GC correction option was selected. For each 

CNV event given by the EM algorithm, a Bayes Factor (BF) was reported to indicate the 

degree of confidence for the event being of significance. Greater BF values indicate more 

confidence in the validity of the CNV call. A BF value of above 30 was recommended to 

reduce false positive calls (Colella et al., 2007). In this analysis both unfiltered CNV calls 

and CNV calls with BF>=30 were analyzed separately and were compared to assess the 

possible advantage of setting a BF threshold.  
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For cnvPartition (version 1.0.2), alterations can be made in setting parameters including 

“Confidence Threshold”, “Include Mitochondrial Chromosomes”, “Include Sex 

Chromosomes” and “Probe Gap Size Threshold”. For the analysis which was limited to 

autosomes the two parameters “Include Mitochondrial Chromosomes” and “Include Sex 

Chromosomes” were set to be false. The Probe Gap Size threshold is the upper limit of 

region length between probes and regions within probe gaps whose size is greater than this 

value would not be considered to be within CNV regions. Setting such a threshold would 

help prevent CNVs from being called across large probe gaps, such as centromeres. The 

default value of 1,000,000 bp was adopted in the current analysis. cnvPartition incorporated 

an algorithm to assign a Confidence Score to each CNV call. A higher Confidence Score 

value denotes greater confidence in the validity of the CNV call. The recommended 

threshold for this Confidence Score was 35 (Illumina Manual 3). In this analysis both 

unfiltered CNV calls and CNV calls with Confidence Threshold of 35 were analyzed 

separately and were compared to assess the possible advantage of setting a Confidence 

Threshold. 

 

5.2.3 Computation  

QuantiSNP, cnvPartition and PennCNV required Log2R ratio and B allele frequency data for 

each SNP within each sample while DNAcopy required only Log2R ratio data. HMM based 

methods such as QuantiSNP and PennCNV are fast with QuantiSNP taking only 6-7 minutes 

to process per sample. CBS methods are more computationally intensive with a processing 

time for DNAcopy of 12 to 15 minutes to process a sample. cnvPartition adopted an 

improved method to decrease computation time, which resulted in a processing time of less 

than 10 minutes per sample. QuantiSNP, cnvPartition and DNA copy were run on a desktop 

computer with a 2.76GHz processor and 4GB of RAM. PennCNV were performed on a 

computer of 1.77GHz processor and 3GB of RAM.  



 126

5.2.4 Copy number assignment for DNAcopy 

Unlike the other three methods, the DNAcopy procedure didn’t result in a list of CNV 

segments each with a copy number. DNAcopy segments a chromosome according to the 

Log2R intensity ratio values and only highlights chromosome regions with abnormal values 

which could indicate either deletions or amplifications. I adopted a method which was 

developed for cnvPartition (Illumina, 2007) to determine the copy number status of each 

potential copy number variant region identified by DNAcopy. Due to the lack of B allele 

frequency information, each region was assigned either ‘deletion (copy number<2)’ or 

‘amplification (copy number>2)’ instead of an exact number (0,1,3, 4 etc). 

 

5.2.5 Assessment of sensitivity and specificity of algorithms 

The computation of sensitivity and specificity of the algorithms considered in this chapter 

comprises two parts. 

 

The first part is to test the false positive and false negative rate of CNV detection for each of 

the four methods (and with different filtering options) by using 966 samples, one of whom 

had been genotyped twice. In the current study design, the “truth” of individual observations 

is viewed as unknown (that is the true positives and true negatives and unobserved in the 

study sample without any further validation). Under these circumstances, a strategy of 

relying on concordance of replicates was employed (Jakobsson et al., 2008).  

 

In a population of sample size n, in total M CNVs were detected at m loci. Several 

individuals in that population had been genotyped twice and CNVs were detected 

independently for each replicated pair, but only one genotyping data for each individual were 

added to the total population. Denote false positive rate by α and false negative rate by β and 

these values can be obtained by equations: 
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     (1) 

      (2) 

Where τ denotes the probability that an allele is called as a CNV, χ denotes the concordance 

of CNV calls in replicated pair and ρ denotes the probability that a CNV is truly present for a 

given allele. Equations 1 and 2 provide the basis of estimating false positive and false 

negative rate. In these cases, α and β are each determined by 3 parameters, τ, χ and ρ. The 

first 2 parameters can be estimated while only the last one is unknown. ρ can be estimated 

as:                            ρestimated=M/(2×m×n)                      (3) 
and χ is the number of concordant CNV loci (m1) divided by total number of CNV loci 

called in a replicated pair for the same individual (m2).  

                           χestimated=m1/m2                                                (4) 

 

Inserting the calculated value of ρ and χ, α and β are then presented as functions of 

unknown parameter ρ. If an approximate range of ρ can be estimated, the range of false 

positive and false negative rates can be determined.   

 

Define τ as the probability that an allele is called as a CNV, ρ as the probability that a CNV 

is truly present for a given allele, an allele is called as a CNV either when 1) a true positive 

CNV present at a true positive loci and 2) the CNV, detected at the loci which wasn’t a true 

location for CNV is a false positive. Therefore there is Equation 5: 

τ=α(1−ρ)+(1−β)ρ                                   (5) 

 

Specificity (also termed ‘accuracy’), which equals to 1-α, is defined as the ratio of number 

of true negatives to number of total negatives (true negatives + false positives). Sensitivity 
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(also termed ‘power’), which equals 1-β, is defined as the ratio of number of true positives to 

number of all positives (true positives + false negatives). Therefore lower false positive rate 

indicates higher sensitivity and lower false negative rate indicates higher specificity. 

 

Duplicate genotypes were needed for this assessment. An individual from Orkney, ORC2091, 

had been independently genotyped twice. These data were then combined with data from the 

965 Croatian samples for this analysis, making the total sample size 966 individuals. Two 

sets of genotyping data from the same individual were assessed for CNVs when the true 

copy number status is unknown. Data from two genotyping panels of the same individual 

were each processed with QuantiSNP and cnvPartition to yield CNV results. Only one set 

(set A) CNVs of ORC2091 was combined with Croatian population, the other set (set B) was 

compared with set A but not CNVs from other samples. All CNVs of each combined data set 

(Croatian+ORC2091(A)) were mapped on chromosomes; CNV loci are defined as 

non-redundant chromosomal regions which harboured at least 1 CNV from at least one 

individual. 

 

The second part is to test sensitivity and specificity of QuantiSNP to detect CNVs, using 

genotyping data from 8 HapMap samples (NA12156, NA12878, NA15510, NA18507, 

NA18517, NA18555, NA18956 and NA19129). These individuals had been end-sequenced 

and two array-CGH platforms were also used to validate CNVs detected by end-sequencing 

(Kidd et al., 2008). The CNV calls of the 8 HapMap samples were downloaded from 

Database of Genomic Variants (http://projects.tcag.ca/variation/) as a reference set to 

represent the ‘true’ CNVs within those samples. These individuals had also been DNA 

genotyped on Illumina Human1M arrays which comprises 1,072,820 SNPs SNP intensity 

files for these 8 humans were downloaded from the Illumina ftp site (http://www. 

illumina.com/ forms/ftp.ilmn). QuantiSNP was run on the intensity data to generate CNV 
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calls. The CNVs called by QuantiSNP were then compared to those in the reference set for 

the same individual.  

 

5.3 Results 

 

5.3.1 SNP coverage of the 300K array for verified CNVs  

The Illumina HumanHap 300K genotyping array (earlier version) comprised 308,330 

autosomal SNPs. To assess the probe coverage of CNV events, verified CNVs from four 

human genomes, of J. Craig Venter
 
(Levy et al., 2007), James Watson (Wheeler et al., 2008), 

NA18507 (Bentley and et al., 2008) and YH (Wang et al., 2008), whose whole-genome DNA 

has been sequenced were extracted to constructed a reference set (details in Chapter 3).  

 

The 308,300 SNPs were then mapped to each of the reference CNVs and the number of 

overlapping SNPs for each reference CNV was recorded (Table 5.1). It was found that the 

HumanHap 300 platform had a poor coverage of CNVs; it lacked probes within on average 

85% of the reference CNVs in the four genomes, and about 93% couldn’t be tagged by 

multiple probes (Table 5.1).  

 

 

5.3.2 Occurrence, type, length and frequency of CNVs detected by four methods 

SNP data from each of the 965 Croatian samples were processed by QuantiSNP (BF>30), 

cnvPartition (confidence score>35), PennCNV and DNAcopy, respectively. An overview of 

number of events, CNV type, length, and CNV burden per sample is given in Table 5.2. 

 

QuantiSNP detected 29964 CNV events, of which the majority were deletions. After 
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applying a Bayes Factor threshold of 30, the number CNVs remaining was 1619. Thus the 

filtered data reduced the number of CNV calls by about 20 fold. Many of the small CNVs 

didn’t meet the threshold, which suggested a trend with the QuantiSNP algorithm to give 

more confidence to longer CNVs. Of the excluded CNVs, most were deletions. This could be 

explained by the fact that amplifications were in general of longer length than deletions.   
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Table 5.1 Illumina HumanHap300K genotyping array probe coverage of CNVs in four sequenced individuals.  
 

Author Subject Ethic origin Platform # CNVs 
Mean 

length (bp) 
Length range 

(bp) 

300K array probe coverage** 

0 SNP 1 SNP ≥≥≥≥2 SNPs Missing* 

Levy et al  (2007) J.C. Venter  Caucasian 
Sequencing & 

arrays 
382 18470 1006 to 920100 345 8 29 0.92 

Wheeler et al (2007) James. Watson Caucasian 
Sequencing& 
arrayCGH 

625 14210 1007 to 1580000 448 84 93 0.85 

Bentley et al (2008) Anonymous  
South 
African 

Solexa 693 4072 1002 to 50000 624 57 12 0.98 

Wang et al (2008) Anonymous  Chinese 
Illumina 

Sequencing 
494 6227 1004 to 158300 443 30 21 0.96 

Average       549 9952 1002 to1580000 465 45 39 0.93 

 

* “Missing” denotes the missing coverage rate which was the proportion of CNVs that didn’t overlap at least two consecutive SNPs on the 300K 

platform  

** “300K array probe coverage” denotes the number of CNVs in the individual genomes covered by 0,1 or ≥2 SNPs  
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cnvPartition identified more amplifications than deletions before filtering. The confidence 

score threshold of 35 limited the total number of CNVs to half of the unfiltered number. 

After applying the confidence score threshold an elevation in median length of both deletions 

and amplifications was observed, which might suggest that cnvPartition also placed 

confidence in longer CNVs (as with QuantiSNP).  

 

A discrepancy in the features of CNVs detected by different methods was observed (Table 

5.2). QuantiSNP (filtered) and cnvPartition (filtered) identified a similar number of deletions 

and amplifications; PennCNV identified 2 fold more deletions than amplifications; and 

DNAcopy identified mainly deletions, with only 11% events being amplifications. The 

median length of CNVs detected by QuantiSNP and cnvPartition was significantly longer 

than those detected by the other two methods; DNAcopy identified a large number of smaller 

deletions, which make the median length of CNVs it detected the shortest among the four 

methods. The lengths of the CNVs detected by the 4 methods all follow an L shape, with 

many small events and few large events (e.g. length of CNVs called by QuantiSNP, as in 

Figure 5.1). Only 1.7 and 3.4 events per sample were detected by QuantiSNP and 

cnvPartition, respectively (filtered data). DNAcopy detected 11.8 events per sample and 

PennCNV detected 30.1 events per sample. None of these numbers exceeded 39, which was 

the average number of true CNV events which can be captured by 2 or more SNPs on the 

300K chips, based mainly on the analysis of the sequence data of 4 humans described above.  
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Table 5.2 Type, length and occurrence of CNVs detected by four methods.  

Method Total events Deletions Amplifications 
Median length 

(kb) 

Median 
deletion 

length (kb) 

Median 
amplification 
length (kb) 

CNV per 
sample 

QuantiSNP 
BF>30 1619 747 872 154.4 97 160.3 1.7 

unfiltered 29964 20916 9048 40.1 35.5 52.6 31.1 

cnvPartition 
confidence>35 3293 1367 1926 136.7 68.6 185.2 3.4 

unfiltered 6328 2707 3626 92.9 56.2 51.6 6.6 

  PennCNV 29062 19252 9810 50 64.7 53.7 30.1 

  DNAcopy 11380 10091 1289 11.5 10.5 11.7 11.8 

 

Summary of both unfiltered and selected (Bayes Factor>30) CNVs detected by QuantiSNP are listed. Also unfiltered and selected (confidence score>30) 

CNVs detected by cnvPartition are listed 
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Figure 5.1 Distribution of CNV length (between 1kb and 1Mb) detected by QuantiSNP 

 

5.3.3 Test of the validity of threshold setting parameters of QuantiSNP and 

cnvPartition 

Both QuantiSNP and cnvPartition introduced parameters for quality control purposes, as 

described in 5.2.2.  The unfiltered CNVs detected were far greater in number than the 

CNVs called after filtering the data (Table 5.2). 

 

29982 unfiltered CNVs at 7484 loci for 966 samples were identified by QuantiSNP. 18 and 

33 CNV loci were each detected for the two independent genotyping panels of ORC2091, of 

which 10 were concordant. The filter of BF=30 resulted in 1621 CNVs at 416 loci for total 

samples, 2 identical CNV loci were found in the two genotyping panels of ORC2091. The 

estimated probability value that an allele is called a CNV (τ) in 966 samples and the 

concordance rate (χ) of two observations for the same individual, ORC2091, were calculated. 

Details and calculations of τ and χ for cnvPartition were also listed in Table 5.3.



 135

 

Table 5.3 Estimated probability value that an allele is called a CNV (τ) in 966 samples and the concordance rate (χ) of two observations for the same 

individual, ORC2091.  

Method 

965 
Croatians 

ORC2091 
(A) 

Croatians+ 
ORC2091 

(A) 

Croatians+ 
ORC2091 

(A) 

 P of an 
allele called 

CNV, ττττ  

ORC2091 
(B) 

ORC2091 
(A) and (B) 

ORC2091 
(A) or (B) 

Concordance 

χχχχ 

#CNVs #Loci 

QuantiSNP 
BF>30 1619 2 1621 416 0.0020  2 2 2 1.00  

unfiltered 29964 18 29982 7484 0.0021  33 10 31 0.32  

cnvPartition 
confidence>35 3293 2 3295 776 0.0022  2 2 2 1.00  

unfiltered 6328 5 6333 1435 0.0023  5 3 7 0.43  

PennCNV 29062 7 29069 5385 0.0028  7 4 10 0.40  

DNAcopy 11380 4 11384 3485 0.0017  9 3 10 0.30  

The CNVs were detected by four methods; both unfiltered and filtered results were included in the table. ORC2091 (A), the one of two datasets to be 

combined with 965 Croatians; ORC2091 (B), the other dataset of the duplicated sample. ORC2091 (A) and (B): the number of CNV loci detected in 

both duplicates (m1); ORC2091 (A) or (B): the number of CNVs detected at least one duplicate (m2). τ was calculated according to Equation 3 and c 
was calculated according to Equation 4 
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Inserting value of τ and χ into Equations 1 and 2, false positive and false negative rates 

could be plotted as functions of ρ. A comparison of false positive and false negative was 

made between the filtered and unfiltered CNV results for QuantiSNP and cnvPartition, 

respectively (Figure 5.2 and Figure 5.3).  

 

The threshold of 30 notably reduced both false positive and false negative rates of CNVs 

detected by QuantiSNP (Figure 5.2). The false positive rates for both threshold settings 

were low, bounded above by 0.22% (unfiltered) and 0.17% (filtered). The false negative 

rates approximated to zero from ρ=0.0019 and ρ=0.0033, for unfiltered and filtered CNVs 

respectively.  

 

Similar results were observed with cnvPartition. The performance improved after setting the 

confidence score filter at a value of 35 both in term of reducing false positive and false 

negative rates (Figure 5.3). However, the difference before and after applying the filter was 

not as great as with QuantiSNP: the departure of unfiltered and filtered curves in both Figure 

5.3 (a) and (b) was not as great as in Figure 5.2 (a) and (b). 

 

5.3.4 False positive and false negative rates of four methods 

In Table 5.3, the number of CNVs, number of CNV loci in the 966 sample and a comparison 

of the two sets of genotyping data for the same duplicated individual were tabulated. As 

stated in Section 6.4.3, applying filters significantly improved power and accuracy for both 

QuantiSNP and cnvPartition; therefore only filtered CNVs were used in this further analysis. 

The average probability of an allele being a CNV (denoted by τ) and concordance rate in the 

pair of duplicated datasets (denoted by χ)  were calculated based on the information 

mentioned, each for QuantiSNP (BF>30), cnvPartition (confidence score>35), PennCNV and 

DNAcopy. 
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(a) 

 

(b) 

 

Figure 5.2 Estimated false positive and false negative rates as functions of the unknown true 
mean frequency of CNVs detected by QuantiSNP, with different threshold settings, across all loci 

in the 966 samples. (a) False positive rates, (b) False negative rates 
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(a) 

 

(b) 

 

Figure 5.3 Estimated false positive and false negative rates as functions of the unknown true 
mean frequency of CNVs detected by cnvPartition, with different threshold settings, across all 

loci in the 966 samples. (a) False positive rates, (b) False negative rate.
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The average probabilities of an allele being a CNV across all loci was similar for the four 

methods were between 0.0017 and 0.0028. QuantiSNP and cnvPartition had very close 

τ values (0.0020 and 0.0022) while PennCNV had the highest and DNAcopy the lowest 

values. 

 

QuantiSNP and cnvPartition had the best concordance rate of 1. Both of them detected two 

identical CNVs from the pair of duplicated datasets of ORC2091. DNAcopy had the lowest 

concordance rate of 0.3.  

 

With the estimated τ and χ values, the false positive rate α and false negative rate β could be 

plotted from Equations 1 and 2 as functions of the only unknown parameter, r. The plots of 

false positive and false negative rates for the four methods were shown in Figure 5.4 and 

Figure 5.5.  

 

The intercept of the y axis on Figure 6.4 was 0.0018 for QuantiSNP, 0.0017 for cnvPartition, 

0.0015 for PennCNV and 0.0025 for DNAcopy. Note that under the assumption for any 

useful test that the true positive rate 1-β is greater than or equal to the positive rate α, a 

rearrangement of Equation 5 result in α≤τ, so the false positive rate of DNAcopy should be 

bounded by the probability t, which being 0.0017 for DNAcopy (Table 5.3). Thus the false 

positive rates for the four methods were all very low at under 0.18%. 

 

Figure 5.5 showed β values for the 4 analytic methods with ρ ranging between 0 and 0.05. 

QuantiSNP and cnvPartition seemed to have the lowest false negative rate, while DNAcopy 

had the highest false negative rate. Even when the probability of an allele being called a 

CNV was as low as 0.01, DNAcopy lost over 70% of its power to detect true CNVs, while 

QuantiSNP and cnvPartition still had about 50% of the power. 
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Figure 5.4 Estimated false positive rates as functions of the unknown true mean frequency of 
CNVs detected by QuantiSNP, cnvPartition, PennCNV and DNAcopy, across all loci in the 966 

samples.  

Figure 5.5 Estimated false negative rates as functions of the unknown true mean frequency of 
CNVs detected by QuantiSNP, cnvPartition, PennCNV and DNAcopy, across all loci in the 966 

samples.  
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5.3.5 Estimation of false positive and false negative rate of QuantiSNP with validated data 

 

1959 autosomal CNVs were confirmed by fosmid end-pair analysis and validated by array-CGH 

and/or DNA sequencing for these 8 individuals, with median length of 23.4 kb (length range: 

701 bp-930kb), which had been downloaded from Database of Genomic Variants.  

 

The SNP intensity files for these 8 humans were downloaded from the Illumina ftp site 

(http://www.illumina.com/forms/ftp.ilmn). Using the 1M SNP data, 1694 unfiltered autosomal 

CNVs were detected by QuantiSNP. 207 of them had a BF>30. The median length of these 

CNVs is 85 kb (length range: 942bp-4981 kb). SNPs in the Human1M array were densely 

distributed across the genome with the average gap between two SNPs being approximately 

3000bp.  

 

67 out of 1959 validated CNVs were recovered in the dataset of CNVs detected by QuantiSNP 

(the length of the overlapped part should exceed 50% of the length of the shorter sequence to be 

compared in a pair), while 140 CNVs detected by QuantiSNP were not true. n CNVs segmented 

a chromosome into n+1 regions of no CNVs, thus the total 1959 CNVs resulted in 8 human 

autosomes 1959+22×8=2135 non-CNVs. Therefore, the false positive rate of QuantiSNP to 
detect CNVs in these 8 samples was 140 / (140+2095) =6.55% and false negative rate is 

67/(67+1892)=96.6% (Table 5.4).  
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Table 5.4 The positive, negative, false positive and false negative CNV events detected by 
QuantiSNP in 8 HapMap samples         Actual condition (True CNVs) 

Present Absent 

Test 
result 
(CNVs 

detected) 

Positive 67 (true CNV detected) 
140 (detected CNVs are not true) 

Type I error 

 Negative  
1892 (true CNVs which 

are not detected) 
Type II error 

2095 (CNVs not detected are not 
true CNVs) 

 

 

5.3.6 Concordance of CNVs detected by four methods 

For 966 individuals from Vis and Orkney, the 1619 CNVs detected by QuantiSNP were grouped 

into 430 CNVRs; 3293 CNVs detected by cnvPartition were grouped in 857 CNVRs; 29062 

CNVs detected by PennCNV were grouped in 6528 CNVRs; and 11380 CNVs detected by 

DNAcopy were grouped in 3624 CNVRs (Table 5.5).  

 

All of the CNVRs detected by any of the four methods were combined and aligned together. 

This resulted in 8873 non-redundant CNVRs along the chromosomes, each detected by one to 

four methods. Two DNA segments were considered to be overlapped if they mapped to 

approximately the same location on the genome and the length of overlapping part exceeded 

50% of the length of the shorter segments. It was found that a number of CNVRs were detected 

by multiple CNV detection methods, however the majority of CNVRs were only detected by 

only one method, especially for PennCNV (4847 private CNVRs) and DNAcopy (2129 private 

CNVRs) (Figure 5.6). 
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Table 5.5 Concordance of detected CNVRs between each pair of methods 

 QuantiSNP (%) cnvPartition (%) PennCNV (%) DNAcopy (%) 

QuantiSNP 430 357 (41.7) 360 (5.5) 263 (7.3) 

cnvPartition 357 (83.0) 857  662 (10.1) 493 (13.6) 

PennCNV 360 (83.7) 662 (77.2) 6528  1368 (37.7) 

DNAcopy 263 (61.1) 493 (57.5) 263 (4.0) 3624 
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Figure 5.6 Number of overlapped CNVRs detected by QuantiSNP, cnvPartition, PennCNV and 
DNAcopy 

 

 

 

The concordance of CNVRs detected by QuantiSNP was higher with both cnvPartition (357 out 

of 460) and PennCNV (360 out of 460). 77% of the CNVRs detected by cnvPartition were also 

detected by PennCNV. Only 25% of the CNVRs detected by PennCNV were also detected by 

other methods, with the highest concordance with CNVRs detected by DNAcopy. DNAcopy 

only identified CNVRs of which 40% overlapped with CNVRs detected by other methods 

(Table 5.5). 
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Length of overlapped CNVRs among QuantiSNP, cnvPartition and PennCNV are shown in 

Figure 5.7. DNAcopy result was excluded from this analysis, because it had poor concordance 

with other three algorithms and it has highest false positive and false negative rate in detecting 

CNVs, indicated in section 5.3.4. 74.8Mb of 357 CNVRs was detected by both QuantiSNP and 

cnvPartition, 185 Mb of 360 CNVRs was detected by both QuantiSNP and PennCNV, and 

131.4Mb of 662 CNVRs was detected by both cnvPartition and PennCNV. 65.7Mb of 307 

CNVRs was detected by all three methods, which in length was 87.8% of the overlap between 

QuantiSNP and cnvPartition, 50% of the overlap between cnvPartition and PennCNV, and 

35.5% of the overlap between QuantiSNP and PennCNV. 

 

Figure 5.7 Total lengths of CNVRs detected by QuantiSNP, cnvPartition and PennCNV 
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5.4 Discussion 

 

The SNPs contained in Illumina 300K arrays were mapped to genomic regions which showed 

evidence of CNV in four whole-genome sequenced genomes, to determine SNP coverage of the 

300K arrays. On average only 39 CNVs per genome (7.1%) were covered by multiple (≥2) 
SNPs. This would be the maximum number of CNVs per genome which could possibly be 

detected on the 300K platform. In practice, this proportion might further decrease due to 

limitations in the sensitivity of CNV detection algorithms to detect CNVs using SNP genotyping 

arrays. However, limitations of sequencing could lead to false negative observations (discussed 

in Chapter 3) and the CNV profiles in different individuals might vary. This may result in an 

overall underestimation of the true number of CNVs in these four genomes.  

 

A statistical model, which calculates false positive and false negative rates based on concordance 

of replicated data with population CNV information, was utilized in the analysis of this chapter. 

The limitations of this analysis include: 1) the assumption was that the CNVs were common 

therefore might not hold well for rare CNVs; 2) there was only one duplicate for the current 

study, which may introduce bias in the estimation of concordance rate; 3) the range of true mean 

frequency of CNV at all loci for a population was uncertain, which makes the calculation of 

power difficult. Notwithstanding these limitations, a comparison was made for the same method, 

sample samples and same duplicate but only varying CNV detection algorithms and parameter 

setting.  

 

It was shown that setting filtering parameters for QuantiSNP and cnvPartition resulted in lower 

false positive and false negative rates for CNV detection. Applying can be recommended for use 

with these analytic approaches. 
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The result of the comparison of false positive and false negatives, when the true status of an 

allele being a CNV at a locus is unknown, indicated that for the 966 samples studied, QuantiSNP 

and cnvPartition outperformed other two analytic methods and DNAcopy had the worst 

performance of the four methods (Figure 5.4 and Figure 5.5). 

 

These very low false positive rates suggested the majority of errors came from false negatives. 

However, one should note that this estimation is based on the very low probability of that an 

allele is called as a CNV (Table 5), which may not always be the true case. For example, in the 8 

HapMap samples described above, in total 2444 true CNVs at 1368 loci represent a probability 

of 0.11, which is much larger than the estimated rates in Table 5 without known true copy 

number status of each loci in the population. The false negative rate is hard to determine due to 

the uncertainty in ρ. QuantiSNP was only robust in detecting CNVs if the average frequencies of 

true CNVs were low: to achieve the power of 80% (β=0.2), the true frequency should below 

0.0033 if applying a filter; at the same frequency, power for detecting CNV by QuantiSNP 

without setting a BF threshold would be only 60%. QuantiSNP without setting this threshold lost 

its power much faster than performing with a filter.  

 

The approach discussed above was based on the assumption that the true probability of an allele 

being a CNV at a locus was unknown, which coincided with the real situation of the current 

study: CNVs were detected from SNP genotyping arrays without further validation, so the 

authenticity of those CNVs could not be assessed directly. To directly access performance of 

CNV detection algorithms, a dataset of published CNVs for 8 human genomes was constructed 

as a reference set.  This reference set was used to demonstrate performance of QuantiSNP, 
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which is one of the better algorithms of the four based on result from former analysis (section 

5.2.5). The false positive rate of QuantiSNP was far higher than the estimates in section 5.2.5 

(<0.2%) but it was still in an acceptable range which promised reasonable accuracy of detecting 

true CNVs. However, the false negative rate was very high, indicating that there was the risk that 

QuantiSNP would discard a high proportion of true CNVs. It is noted that all 1959 laboratory 

validated CNVs were included in this analysis, some of which might be unable to be detected by 

1M array therefore the false negative rate could be inflated. The 1M array SNP coverage of 

CNVs in these 8 genomes was not assessed in the current study, but previous study suggested 

60% of the deletions from the same 8 HapMap samples were covered by the SNPs on Illumina 

1M array platform (Kidd et al., 2008). Based on the estimate above, the majority of errors were 

false negatives in which case many true CNVs were not detected by QuantiSNP. The low false 

positive rates and high false negative rates suggested the algorithm and filter which QuantiSNP 

adopted was conservative. Thus this limitation resulted in a low detection rate (sensitivity) for 

QuantiSNP to detect true CNVs from SNP genotyping data. 

 

The comparison of overlapped CNVs detected by four methods showed that the overlap of 

results from different algorithms was low. QuantiSNP and cnvPartition had higher percentage of 

CNVs detected also by another algorithm (Table 5.5). Events detected by multiple methods 

were considered to be of more confidence that the events were true (Winchester et al., 2009); 

65.7Mb of 307 CNVRs was detected by QuantiSNP, cnvPartition and PennCNV, which in length 

was 87.8% of the overlap between QuantiSNP and cnvPartition, compared to the percentage of 

those more confident CNVs to the overlap between cnvPartition and PennCNV, and the overlap 

between QuantiSNP and PennCNV, QuantiSNP and cnvPartition had the best concordance in 

CNV detection. 
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After the point of time of the method comparison in current study, several studies published 

results for comparison of CNV calling algorithms (Dellinger et al., 2010; Tsuang et al., 2010; 

Winchester et al., 2008; Zhang et al., 2011). Winchester et al. used Affymetrix 6.0 and Illumina 

1M Duo data from a well characterized CEPH sample, NA10861, to test the performance of 

seven algorithms: Birdsuite, CNAT (Chromosome Copy Number Analysis Tool, Affymetrix, 

Inc.), cnvPartition, GADA, Nexus (Biodiscovery Inc.), PennCNV and QuantiSNP. The overlap 

of results from any two algorithms range from 2% to 100%, mostly below 60% with highest 

resemblance between data generated on the same genotyping platforms. Taking the structural 

variants identified by fosmid end-pair sequence (EPS) method for the same individual (Kidd et 

al., 2008) as reference, the false positive rate (based on lack of overlapping with the EPS result) 

range from 51% to 80%. Using the events detected by Kidd et al (2008). on another sample, 

NA15510 as reference, the result from four algorithms, cnvPartition, GADA, PennCNV and 

QuantiSNP, showed the false negative rates were between 77% and 96% (Winchester et al., 

2009). Dellinger et al. ran each of the seven methods on their 10 samples from Myopia 

case-control study: CBS, CNVFinder, cnvPartition, gain and loss of DNA, PennCNV and 

QuantiSNP. They evaluated statistical power, false positive rates and receiver operating 

characteristic (ROC) curve residuals by simulation studies. They showed that QuantiSNP 

outperformed other methods based on ROC curve; Nexus had low specificity and high power; 

PennCNV detected the fewest numbers of CNVs (Dellinger et al., 2010). Tsuang et al. compared 

outputs from four algorithms, QuantiSNP, cnvPartition, pennCNV and HelixTree for 48 

Caucasian schizophrenia cases and 48 matching controls. They found substantial discrepancy in 

the results from different algorithms, from the aspects of total number, size, and number per 

person of events (Tsuang et al., 2010). Zhang et al. evaluated the performance of four software 

packages, Birdsuite, Partek, HelixTree and PennCNV in two datasets, one consists of 90 

HapMap CEU sample and the other of 1001 bipolar cases and 1033 controls. Birdsuite recovered 
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the highest percentages of known HapMap CNVs of median length. It also called the most 

CNVs consistent with qPCR validation in one CNV region, but the accuracy in other two regions 

was extremely low. Birdsuite and Partek predicts more rare event than other algorithms (Zhang 

et al., 2011).  

 

Despite difference in choice of algorithms to be included in each study, all method comparison 

studies mentioned above, together with the current study suggest nonnegligible discrepancy of 

results from different CNV calling algorithms for SNP data. Therefore it is advised to choose 

appropriate algorithms with caution in the planning stage of CNV research. The number and 

features of CNV called depends on algorithms utilized, and also choice of filtering settings. For 

example, Zhang et al. found PennCNV called fewer events than QuantiSNP, which is contrary to 

the finding in the current study; this discrepancy is explained that Zhang et al. used a lower 

filtering threshold for QuantiSNP outputs, which leads to much larger number of events detected 

compared to those might have been resulted from a higher filtering threshold (as in the current 

study). Combining results from two algorithms is recommended (Winchester et al., 2008), 

however, while decreasing false positive rate, it might also increase false negative rate. Without 

a ‘true’ gold standard (complete set of CNVs in the whole genome), the sensitivity and 

specificity of any particular algorithm or combination of algorithms are impossible to estimate 

accurately. More comprehensive and sophisticated CNV detecting method and denser SNP 

coverage of genotyping platform (for example Affymetrix SNP 6.0) are desired, and a reliable 

reference set of CNVs in well defined sample genomes is needed to assess the performance of 

detection algorithms. 
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Chapter 6 

 

Copy Number Variation across European Populations 
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6.1 Preface 

Copy Number Variation (CNV) is defined here as DNA segments of 1kb or longer in length 

and present at variable copy number in comparison with a reference genome (Redon et al., 

2006). CNVs are commonly found in the genomes of human and other species (Cutler and 

Kassner, 2008; Dopman and Hartl, 2007; Fadista et al., 2008; Zhang et al., 2009). To date, 35% 

of the human genome demonstrates evidence of coverage by CNVs (Database of Genomic 

Variants, DGV, http://projects.tcag.ca/variation/).  It is suggested that CNVs, in the form of 

deletions, insertions, duplications and complex multi-site variants, may contribute to human 

phenotypic variation, either directly by gene dosage and proportionate variation in gene 

expression (Stranger et al., 2007), and/ or indirectly through a) position effects on expression 

levels per se or developmental patterns of expression, or b) by affecting recombination rates 

and thus genome evolution (Redon et al., 2006).Indeed, several studies have reported evidence 

for a direct contribution of CNVs to complex disease phenotypes in human populations, such as 

Schizophrenia and Autism (Int Schizophrenia Consortium, 2008; Pinto et al., 2010; Sebat et al., 

2007), and in other species (Garshasbi et al., 2008; Kamatani et al., 2008; Williams et al., 2010; 

Yang et al., 2009; Perry et al., 2007; Jackson et al., 2007; Pielberg et al., 2002; Norris and 

Whan, 2008).  

Copy number variation can be directly assayed by quantitation of hybridisation to specialist 

oligonucleotide (Bailey et al., 2008; Cowell and Lo, 2009) or clone arrays (Fiegler et al., 2006) 

or by direct genome sequencing (Bentley and et al., 2008; Wang et al., 2008), but also 

conveniently extracted from single nucleotide polymorphism (SNP) array data (Jakobsson et al., 

2008; Cooper et al.,2008). As well as being applied to the search for genetic contributions to 

disease phenotypes, several studies have provided global estimates of CNV frequency and 

distribution in HapMap samples ((Redon et al., 2006; Stranger et al., 2007) and large 
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population cohorts (Jakobsson et al., 2008; Zogopoulos et al., 2007; Franke et al., 2008; 

McQuillan et al., 2008), but relatively little attention has been given to potential variation 

within major population groups. Comparisons of CNV frequency and distribution between 

independent studies have also been hampered by discrepancies in study design, platform choice 

and analytical methods between studies.  

Geographical population isolates are valuable resources for the dissection of complex genetic 

traits and disease outcomes (Peltonen, 2000; Shifman and Darvasi, 2001; Wright et al., 1999) 

Genetic isolates have reduced genetic heterogeneity, as measured by fewer net mutations and 

numbers of polymorphic SNPs compared with outbred populations (Shifman and Darvasi, 

2001). Furthermore, by virtue of population bottlenecks, genetic drift and high kinship, each 

isolate will have a different evolutionary history and thus different genetic makeup. For 

example, isolate populations have been reported to show increased linkage disequilibrium and 

reduced haplotype diversity relative to outbred populations, consistent with reduced effective 

population size and increased genetic relatedness (Vitart et al., 2006).  

Here, I take the opportunity provided by the EUROSPAN project (Mascalzoni et al., 2009) 

which brings together several groups working on the genomic and phenotypic analysis of 

population isolates across Europe. Our objective was to make use of high density genome-wide 

genotyping data to describe and compare frequencies of each CNV and their distribution within 

and between these population isolates, and thus determine to what extent CNVs can be used as 

measures of relatedness and identifiers of population origin. Using Illumina whole genome data 

with more than 300,000 SNPs from each of three European population isolates, spanning from 

Northern to Southern Europe, 4016 CNVs in 1964 individuals were detected, which clustered 

into 743 copy number variable regions (CNVRs). The frequency and distribution of these 
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CVNRs was compared and shown to differ significantly between the Orcadian, South Tyrolean 

and Dalmatian populations. Consistent with the inference that this indicated population-specific 

CNVR identity and origin, it was also demonstrated that CNVR variation within each 

population can be used to measure genetic relatedness.  

6.2 Materials and Methods 

 

6.2.1 Study sample 

2789 individuals with data passing quality control (QC) from the island of Vis, Croatia (the 

CROAS study (Vitart et al., 2006), n=965), the Orkney Isles, Scotland (The Orkney Complex 

Disease Study, ORCADES (McQuillan et al., 2008), n=691) and South Tyrol, Italy (The 

Genetic Study of Three Population Micro-isolates in South Tyrol, MICROS (Pattaro et al., 

2007), n=1133) are included in the CNV analysis. These studies followed similar study 

procedures as part of the EU FP7 EUROSPAN study (Mascalzoni 2010) All three projects were 

approved by the relevant ethics committees. Data collection was carried out between 2003 and 

2007 in the three locations. Informed consent and blood samples were received from all study 

participants. (See Chapter 2 for details). 

6.2.2 Genotyping 

The Dalmatian samples were genotyped on the Illumina Infinium HumanHap 300 v1 platform 

while the Orcadian and South Tyrolean samples were genotyped on the Human Hap 300 v2 

platform (Illumina, San Diego, CA, USA). The genotyping was done in two sites: Individuals 

with less than 90% call rate were removed. Sex checks and IBD sharing between first- and 

second-degree relative pairs were performed with the PLINK program 

(http://pngu.mgh.harvard.edu/purcell/plink/) (Purcell et al., 2007), and individuals with 
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discordant pedigree and genomic data or falling outside expected ranges were removed from 

the study. SNPs on the sex chromosomes were excluded. Finally 300,938, 309,200 and 308,396 

SNPs remained in Dalmatian, Orcadian and South Tyrolean datasets, respectively. 

6.2.3 CNV calling 

For each individual, the Log2R ratio and B allele frequency of each SNP were processed by 

QuantiSNP and cnvPartition software to generate CNV calls.  

The two independent sets of CNV calls made for the same individual were then assessed. The 

output from QuantiSNP and cnvPartition both provide information for each CNV on the 

chromosome number and chromosomal coordinates of the start and end of each CNV 

(breakpoints). One sample possessing >35 CNVs detected by cnvPartition was excluded from 

the further analysis. Genomic coordinates of each CNV detected in each person were mapped 

to hg18 sequence assembly using LiftOver (http://genome.ucsc.edu/ cgi-bin/hgLiftOver). 

SNP coverage in centromeric regions is very low, thus CNVs called in these regions are likely 

to be false positive. For this reason all the CNVs spanning centromeres were excluded from the 

analysis (according to the coordinates of centromeres on each chromosome). CNVs smaller 

than 1kb or larger than 3Mb were excluded.  

QuantiSNP and cnvPartition outputs were combined to produce a list of sample wise CNVs. A 

confirmed CNV call was made if 1) the CNV was identified by both methods at the same locus 

and the overlap indicated by both methods exceeds 50% in length; 2) the type of a copy number 

change event (copy number loss or copy number gains) called by both methods was consistent 

and 3) overlap length was between 1000 bp and 3Mbp. The boundaries of a CNV were taken as 

the beginning and end of the overlapped section. 
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To locate CNVs on chromosomes, individual-wise CNVs were merged into Copy Number 

Variable Regions (CNVRs). A CNVR is the maximum region shared among all individuals 

carrying a CNV at the same locus.  

6.2.4 Haplotype and SNP tagging 

9 and 22 CNVRs from Vis and Orkney, respectively, each with a population frequency of >1%, 

were analyzed with Plink (http://pngu.mgh.harvard.edu/~purcell/ plink/) (Purcell et al., 2007). 

SNP genotyping data were exported from BeadStudio and merged with CNV genotypes of the 

same individuals. Tagging SNPs were investigated with a window size of 3Mb spanning each 

CNVR. For each CNVR, the adjacent SNPs 1Mb upstream and downstream to the genomic 

location of each CNVR were selected in haplotype analysis. 

6.2.5 Genetic clustering analysis 

Genetic clusters of a selected set of CNVRs, in which each CNVR was shared by two or more 

individuals, were inferred by the software Structure [35], under assumptions of admixture, 

correlated allele frequencies and no prior population information. For each number of clusters 

(K) from 2 to 4, a Burnin length of 10,000 iterations followed by 10,000 Markov Chain Monte 

Carlo iterations was used. The second order rate of change of logarithmic probability of data 

between subsequent K values was estimated to identify the optimal number of clusters in the 

data. 
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6.2.6 Analysis of CNV kinship correlation  

The kinship coefficient is a measure of overall genetic similarity relative to some base 

population in two diploid organisms. 

For each population, P, with T individuals in total, suppose there are N CNVRs: CNVR1, 

CNVR2, …, CNVRN, each with M1, M2,…,MN CNV carriers ({M}>=2 and {M}<T). For the 

nth CNVR (1≤n≤N), CNVRn , there are Mn people carrying the same CNVR. 

Extract a sub kinship matrix from the population kinship matrix with those carriers C1, C2, …, 

CMn  for CNVRn: 

                                  C1,     C2,     C3,   …, CMn   

                        C1     0.5      -        -      …    - 

                                       C2     k12     0.5       -     …    - 

                         C3     k13      k23      0.5   …    - 

                          :       :         :         :       : 

                          CMn    k1Mn      k2Mn    k3Mn    …  0.5 

This is a Mn*Mn matrix, which is symmetrical around the diagonal line. Let kij denote the 

pairwise kinship coefficient between individuals Ci and Cj (i={1,2,3,…Mn}, j={1,2,3,…Mn}). 

At the diagonal line of this matrix, kij|i=j =0.5, because when considering the probability of a 

random chosen allele to be IBD between two identical genomes, the same allele can be drawn 

twice.  
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In this sub-matrix for CNVRn, let Kn denote the non-redundant collection of all pair-wise 

kinship coefficients between any two individuals out of all Mn carriers. 

Kn={( k12), (k13, k23), (k13, k23 , k33), …( k1Mn, k2Mn, k3Mn,… ,k(Mn-1)Mn)}  

Let Kpop denote the non-redundant collection of all pair-wise kinship coefficients between any 

two individuals out of all T individuals in the population 

Kpop={( k12), (k13, k23), (k13, k23 , k33), …( k1T, k2T, k3T,… ,k(T-1)T)}  

Therefore Kn has (Mn-1)! elements and Kpop has (T-1)! elements.   

Then a t-test is performed to test the difference of means between Kn and Kpop.  The 

probability, pn is calculated to indicate significance of this difference. A permutation procedure 

is taken to adjust pn: another Mn*Mn matrix is randomly drawn from population kinship matrix, 

with the pair-wise kinship coefficients 

Krandom={( k12), (k13, k23), (k13, k23 , k33), …( k1Mn, k2Mn, k3Mn,… ,k(Mn-1)Mn)}  

A p value, pperm is obtained from a t-test of comparing means of Krandom and Kpop. The same 

random process repeats 1000 times, result in 1000 Pperm values. pn is then ranked among the 

permutated p values, the adjusted  pn,  pnadjust is the number of permutated p values which do 

not exceed pn, divided by the number of permutations. 

6.2.7 Statistical analysis 

The reference CNV list was downloaded from DGV. The record of known genes and 

recombination rates in the human genome was downloaded from the UCSC genome browser. 

Intra- and inter-chromosomal segmental duplications (SDs) of >90 identity and >1kb in length, 
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which cover 150.8Mbp of human genome (5.3%) (She et al., 2004; Bailey et al., 2002) were 

downloaded from the public Segmental Duplications Database      (http://humanparalogy.gs. 

washington.edu/, build 36).  

All calculations and alignments were performed with the R 2.10.1 software package, with 

scripts compiled by myself. The test of difference in means was conducted using student’s t-test 

for normalized data or the non-parametric Mann-Whitney U test, significant threshold set to 

0.05. 
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6.3 Results 

 

 

6.3.1 Overview of copy number variation in Dalmatian, Orcadian and South Tyrolean 

populations 

The study samples were recruited from three populations across Europe, namely the Island of 

Vis, Croatia, Orkney Islands, Scotland and South Tyrol, Italy (Figure 2.1). 2789 individuals 

who passed quality control were included in the analysis. To generate more informative results 

(Winchester et al., 2009), two algorithms, QuantiSNP (Colella et al., 2007) and cnvPartition 

(Illumina Manual 2) were utilized to detect CNV events from SNP genotyping data (see chapter 

5 for details). The combined analysis of CNV calling by QuantiSNP and cnvPartition software 

(see Methods) identified 4016 autosomal CNVs in 1964 individuals, out of the total 2789 

samples, which makes 70.4% of them CNV carriers, with an average number of 2.05 detectable 

CNVs per carrier.  7.8% of the all autosomal SNPs were covered by CNVs. A correlation of 

SNP density and CNV length was observed, with higher SNP density in shorter CNVs and 

lower SNP density in longer CNVs (p<2.2*10-16). 

Fewer CNVs were detected on average in Orcadians (0.91 CNV per person) than in 

South Tyroleans (1.77 per person) or Vis islanders (1.43 per person). Equal numbers of 

amplification and deletion events were detected in each of the populations (Table 6.1). 

The overall length distributions of observed CNVs were also very similar between the 

three population isolates (Figure 6.1). Most CNVs were small in length (94.1% of the 

CNVs were between 1kb to 300kb, mean length was 205.1kb, Table 1 and Figure 

2).The lengths of amplifications (259kb) were significantly greater (Mann-Whitney U 
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test, P<2.2*10-16) than those of deletions (142.4kb) (Table 6.1). 3778 out of 4016 

CNVs (94.1%) overlapped with CNVs reported in the Database of Genomic Variants. 

The 4016 CNVs (Appendix 1) were clustered into 743 non redundant CNVRs (Appendix 2) 

which covered a total of  187.95 Mb (6.6%) of the 22 autosomes. 649 CNVRs (87.3%) 

overlap reported CNVs in DGV. Most of the CNVRs contained either only deletions or only 

amplifications, but 59 regions harbored both types of variants (Table 6.2). In these 

‘gain-and-loss’ CNVRs, all of them contained at least one pair of CNVs whose boundaries 

were not equivalent from two individuals.  



 162

Table 1. Characteristics of Copy Number Variants (CNVs) in Dalmatian, Orcadian and South Tyrolean populations 

Population Sample 

size 

CNV carriers 

(percentage of carriers 

in population) 

Number 

of CNVs 

CNVs per 

person 

Amplifications Deletions CNV mean 

length (kb) 

Vis  965 702 (72.7%) 1384 1.43 803 581 216 

Orkney 691 367 (53.1%) 630 0.91 324 306 192.6 

South Tyrol  1133 895 (79.0%) 2002 1.77 1033 969 201.6 

Combined 2789 1964(70.4%) 4016 1.44 2160 1856 205.1 
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Figure 6.1 Distribution of CNV lengths in the three genetic isolate populations. 
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Table 6.2 Copy Number Variable Regions (CNVRs) in the three genetic isolate populations 

Population Number of 

CNVRs 

CNVRs 

overlapping 

reported regions 

Number of 

deletion only 

CNVRs 

Number of 

amplification only 

CNVRs 

CNVRs of both 

deletion and 

amplification 

CNVR 

mean 

length (kb) 

Vis  365 332 184 164 17 304.5 

Orkney 210 193 93 105 12 281.8 

South Tyrol 380 334 156 207 17 256.9 

Combined 743 649 323 361 59 253.0 
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6.3.2 CNV frequency and CNV sharing among populations   

Each CNVR was found in from 1 to 253 individuals, which made the overall frequency range 

of CNVRs to be from 0.00051 to 0.12882 (median=0.00102). The CNVs identified were 

generally of low frequency. 337 CNVRs (45.4%) were detected in only one individual and 321 

(43.2%) were shared by between 2 and 10 individuals. Only 37 CNVRs (5%) were present at a 

frequency >1% in all three population isolates.  

Different patterns of CNV frequency were observed in different populations (Figure 6.2); 588 

CNVRs (79.1%) were specific to just one of the three population isolates: 244 of them were 

detected only in Dalmatians, 112 only in Orcadians and 239 only in South Tyroleans; 96 

CNVRs were shared by two of the three populations (57 between South Tyroleans and 

Dalmatians, 25 between South Tyroleans and Orcadians, and 14 between Dalmatians and 

Orcadians); and 59 were present in all three populations, none of which were novo. Less than 

half of these population-specific CNVRs (279 out of 588) were reported previously, according 

to DGV. Rare CNVs were found to be mostly restricted to a single population, while more 

frequent CNVs were often shared by two or three populations (Figure 6.3a). A gradual 

increase of population mixture was observed as the frequency of CNVRs increased: more 

common CNVRs were often shared in more than one population whereas lower frequency 

CNVRs were more likely to present in a single population (Figure 6.3b). The more frequent 

CNVRs in one population (population frequency>1%) were often observed to be also frequent 

in other populations. In South Tyrol, the frequencies of more common CNVs closely correlated 

with those of Dalmatian and Orcadian CNVs (Pearson’s r=0.73, P=7.5*10
-18
 and r=0.43, 

P=0.005, respectively); the frequent Dalmatian CNVs also correlated with the frequent 

Orcadian and South Tyrolean CNVs (Pearson’s r=0.62, P=0.001 and r=0.65, P=5.2*10
-4
, 
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respectively), but there was no significant correlation between Orcadian and either Dalmatian 

or South Tyrolean CNVs of frequency>1% (Pearson’s r=0.38, P=0.1347 and r=0.22, P=0.4046, 

respectively).   

Of the 588 population specific CNVRs, more than half (337 CNVRs) contained only one CNV 

event. The mean length of CNVs in those population specific CNVRs was 250.3kb, 205.5kb 

and 195.6kb in length, for Vis, Orkney and South Tyrol, respectively, which were on average 

longer than the ones for shared CNVRs (mean length 198.4kb) (P=0.04). 

Figure 6.2 Venn diagram showing the number of CNVR shared between the three European 
genetic isolate populations.  
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Figure 6.3 CNVR sharing in Dalmatian, Orcadian and South Tyrolean populations. (a) The population make up for each shared CNVR 
(shared by at least two individuals): each vertical bar represents for a CNVR, the height of each bar is the number of CNV carriers for each 

CNVR; colour blocks depict the proportions of CNV carriers from each of the three populations, green=Vis, red=Orkney, blue=South Tyrol. 

(b) Summary of population presentations for CNVRs of different frequencies: each bar represents a group of CNVRs of a certain frequency 

(from occurring twice to more than 10 times), different colours indicate the proportion of CNVRs private to only one population (in dark 

grey), CNVRs present in 2 populations (in grey) and CNVRs present in all 3 populations (in light grey).  
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Figure 6.3 CNVR sharing in Dalmatian, Orcadian and South Tyrolean populations (Continued). 
CNV occurrence is the number of individuals carrying CNVs at a certain loci.  

 

6.3.3 Haplotype and SNP tagging for CNVs 

To determine if the CNVs in our study sample were tagged by SNPs and to explore haplotype 

structure around CNVs, a correlation analysis was carried out on the common CNVRs in Vis 

and Orkney samples (population frequency>1%): 2 of the 7 CNVRs in Vis, 1 of the 17 in 

Orkney and 15 of the 47 in South Tyrol were population specific, respectively. No tagging 

SNPs were found for any of these CNVRs with r
2
>0.8. 36 of these CNVRs overlapped CNVRs 

discovered in a large scale survey of tagging SNP for CNVs in UK samples (WTCCC, 2010). 

Tagging SNPs were found in only 8 of these 36 regions. Haplotype block detection was 
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performed for the 7 Vis and 17 Orkney CNVRs with SNPs 3Mb upstream and downstream of 

each CNVR boundary. One CNVR (CNVR271, Chr6:67058287-67111682), could be placed in 

a haplotype block with 5 adjacent SNPs in all three populations. In addition, two CNVRs 

(CNVR367, Chr8:15987084-16065839 and CNVR386, Chr8:106005821-106293050) formed 

two haplotype blocks with nearby SNPs in the South Tyroleans.  

 

6.3.4 Genetic Clustering of individuals according to CNV genotypes 

406 CNVR loci were observed multiple times in 1893 individuals (664 Dalmatians, 354 

Orcadians and 875 South Tyroleans). Each of those loci were coded for these individuals as 

“CNV locus” or “non-CNV locus”, then software programme Structure (Jakobsson et al., 2008; 

McQuillan et al., 2008; Pritchard et al., 2000) was used to determine how the individual 

clustered according to their possession of CNV. Graphical representation of membership in 

clusters for K=2, 3 and 4 is shown in Figure 6.4. The distribution of the probability of the data 

between successive values of K showed a peak at K=3 (Ln probability of data=-16991.8 for 

K=2, -16962.6 for K=3 and -17449.1 for K=4), therefore it is inferred that the most likely 

number of genetic clusters for these individuals was three, with clusters roughly corresponding 

to the three geographical locations. 284 of 875 South Tyroleans (32.4%) were assigned to 

Cluster 1, 259 of 663 (39.1%) Dalmatians assigned to Cluster 2 and 136 of 354 (38.4%) 

Orcadians assigned to Cluster 3, with membership coefficients >=50%.  
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Figure 6.4 Genetic Clustering of individuals according to CNV genotypes. Cluster membership according to analyses of genotypes at 406 
CNVR loci in 1893 individuals, for K=2, 3 and 4. Each inferred cluster is represented by a different color. Cluster 1, Cluster 2 and Cluster 3 

refers to Vis, Orkney and South Tyrol, respectively. 
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6.3.5 Gene content 

To test whether the detected CNVs were biased in any way towards genetic regions or were 

evenly distributed across the genome, the gene content of CNVs in the data set were 

investigated. 2211 CNVs in 441 CNVRs overlapped UCSC known genes. The mean number of 

genes covered by a CNV was 4.8, which was greater than the average gene content on 

autosomes (P=0.00574). After introducing SNP density as a covariate into this regression 

model, the significance still remains (P=0.00042). This result suggested a higher concentration 

of genes in CNVs. It was also found that the population specific CNVs overlapped more genes 

(on average 3.1) compared with common CNVs which were shared in more than one 

population (on average 2.3. p=3.097*10
-5
). No elevated G+C content was detected (on average 

40.41% in CNVRs) compared with the autosomal average G+C content (40.35%). 

6.3.6 Distribution along chromosomes 

To test whether there was any bias in the overall chromosomal distribution of CNVs, CNV 

density was compared in pre-specified chromosomal regions (i.e. peri-telometric regions, 

defined as the 10Mb region from the two most distal SNP on both chromosome ends and 

sub-centromeric regions, defined as the 10Mb region from the two SNPs which were most 

close to centromere) to that in the rest of the chromosome. A trend was observed towards 

enrichment in peri-telomeric and/or sub-centromeric regions (define 1Mb from both telomeres 

on a chromosome as peri-telomeric regions and 1Mb from centromere as sub-centromeric 

regions, the difference of CNV density in those regions compared to the rest of genome was 

significant at p<2.2*10-16 )(Figure 6.5).  
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Figure 6.5 The schematic distribution of CNVs on all autosomes, in a physical map. The length 
of each chromosome arm is adjusted to be 100Mb. Each bar comprises CNVs in a 1Mbp bin on 

the chromosomes. 

 

6.3.7 Segmental duplications and CNVRs 

Of the 743 CNVRs, 222 (98.1Mb, 3.4% of all autosomes) overlap reported segmental 

duplications (SDs) or putative rearrangement hotspots: 102 CNVRs (41.3Mb) overlap SDs but 

did not expand into the intervening regions between two SDs on the same chromosome; 153 

CNVRs (68.5Mb) were located in between two SDs of known rearrangement hotspots; the 

remaining 488 CNVRs (89.9Mb) were not in SD regions or known rearrangement hotspot 

regions; of these 488, 409 (62.2Mb) were population-specific. 

Though no difference in G+C content was detected in CNVRs in general, a small increase of 

G+C content (41.79%) was found in CNVRs outside SDs, compared with that of CNVRs which 

overlap SDs (39.76%) (P=1.78*10
-7
).  
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The proportion of CNVRs overlapping SDs was significantly lower for population-specific 

CNVRs (154 out of 588, 26.2%) than for shared CNVRs (68 of 155, 43.8%) (chi squared test, 

P<2.06*10
-16
),  

6.3.8 Kinship correlation of CNVs 

We were interested to test whether carriers of shared CNVs showed more than average 

relatedness and developed a method to do so by incorporating a kinship coefficient, k, into the 

analysis (see Methods). The kinship coefficient is a parameter not dependent on population 

frequencies that measures the overall genetic similarity relative to some base population 

between a pair of individuals. For each CNVR with at least two carriers, the pair-wise kinship 

coefficients were calculated for all carrier pairs, then the value of those kinship coefficients 

were compared to the population mean of pair-wise kinship coefficients of all pairs of 

individuals in the corresponding population. It was observed that for most CNVRs (63.4% in 

Vis, 76.8% in Orkney and 83.4% in South Tyrol), CNV carriers had higher values of kinship 

coefficients compared to the population mean, indicating that carriers of shared CNVs are 

indeed more related to each other. (Table 6.3) 

Many CNVs with higher mean kn could be found to segregate in known families. Two 

examples were presented to illustrate the segregation of CNVs in pedigrees (Figure 6.6). 

CNVR686, an amplification on chromosome 19, was detected in 6 individuals who all turned 

out to have come from the same family (Figure 6.6 a) and b)). The inheritance pattern of this 

CNVR appeared to be autosomal dominant. CNVR54, an amplification on chromosome 2, was 

detected in 8 individuals. 4 of them were from the same known family, 2 of them were 

parent-offspring from another family while the other two were singletons (Figure 6.6 c) and 

d)).  



 174

 

Table 6.3 Mean kinship coefficients of CNV carriers for CNVRs in three populations. 

kpop, pair-wise kinship coefficients in one population. kn, pair-wise kinship coefficients of CNV carriers for the nth CNVR. pnadj is the 

adjusted p value to describe significance of the differences of kinship coefficients among CNV carriers compared to the population mean 

pair-wise coefficients. 
 

 
 

 

Population Vis Orkney South Tyrol 

Mean kpop(±s.d) 0.000402±0.008027 0.001061±0.013336 0.001291±0.0137502 

Range of Mean kn 0 to 0.3125 0 to 0.3125 0 to 0.3125 

Total CNVRs (of more than one carrier) 172 112 205 

No. CNVRs with pnadj<0.05 (%) 109(63.4%) 86(76.8%) 171(83.4%) 
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Figure 6.6 Two examples of segregation of CNVs in pedigrees: CNVR686 and CNVR54. (a) The 

kinship matrix of 6 carriers for CNVR686. They are all from the same population. The mean kinship 

coefficient of any pair of these 6 carriers is k691=0.175, which is significantly higher than the 
population mean (adjusted p value<0.001) (b) The carriers for CNV686 placed in pedigree. Squares 

indicate male sex, circles indicate female sex. Filled squares or circles indicate CNV carriers. A cross 

through a square or a circle indicates the individual is either deceased or ungenotyped. (c) The 
kinship matrix of 8 carriers for CNVR54. They are all from the same population. The mean kinship 

coefficient of any pair of these 8 carriers is k55=0.078, which is significantly higher than the 
population mean (adjusted p value<0.001) (d) The inheritance of CNV54. The key to the pedigree 

presentation is the same as for section (b). 
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6.4 Discussion 

Copy Number Variation was profiled in three population isolates from UK, Italy and Croatia 

and representing a North-South, West-East geographical cline and components of the genetic 

diversity across Europe. This comparison of CNV characteristics was made possible by virtue 

of common choice of genotyping platform and copy number detection methods. 

In common with previous reports from various populations and cohorts, the great majority of 

individuals (70%) were found to be carrying at least one CNV. CNVs were also widespread in 

the genome: 6.6% in length of all autosomal regions showed evidence of CNV in one or more 

samples. The proportion of SNPs covered by CNVs was 7.8%. The density of SNPs in CNVRs 

was 175.3 SNPs per Mb, while that in non-CNVRs was 117.1 SNPs per Mb (p<2.2*10
-16
). The 

lower density of SNPs in regions outside of detected CNVRs indicates that CNVs which reside 

in the SNP-sparse regions might not be captured on the commercial SNP genotyping platforms 

which lack coverage in certain chromosomal regions. The SNPs distribute more sparsely in 

longer CNV regions compared to those in shorter regions, therefore the boundaries determined 

for longer CNVs were less certain, which reflects the limitation of the HumanHap 300K arrays 

in terms of SNP coverage. A number of detected CNVRs were represented by both gains and 

losses. These ‘gain-and-loss’ CNVRs could reflect cases where the reference genome contains 

both CNV alleles, but individual genomes are homozygous for one or other allele. If true, then 

gains and losses within the same CNVRs should have equivalent boundaries. However, in all 

observed cases the gain-and-loss CNVRs in fact contained at least one pair of CNVs from two 

individuals whose boundaries are not equivalent. Although precise boundary determinations 

were subject to some technical uncertainty, it does appear that these gain-and-loss CNVRs most 

likely reflect recurrent CNV changes at the same locus, which are initiated and/or resolved at 

slightly different points.  
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Similar to other genetic polymorphisms such as microsatellites and SNPs, it is show here that 

CNVs differ greatly among different populations. Indeed, the majority of CNVRs (588 out of 

743 CNVRs) were restricted to one population and were often of very low frequency, their 

non-sharing across populations could be due to sampling variances or the fact that they were 

recent and/or possibly deleterious events. On the other hand, only the most frequently occurring 

CNVs, which were likely of more ancient origin, were shared between the three population 

isolates, consistent with a more ancient and neutral evolutionary histories, and also their 

geographic separation. The longer length and higher gene content of the population-specific 

CNVRs compared to those of the common CNVRs also supported the hypothesis that they may 

be more deleterious and therefore kept to low frequencies, or, those are more recent mutations 

that have had insufficient time to experience disruptive recombination events.  

Wether SNPs can serve as a good proxy for CNVs has long been debated (Redon et al., 2006; 

McCarroll and Altshuler, 2007). Some studies suggested that deletion polymorphisms are 

generally in strong linkage disequilibrium and segregate on ancestral SNP haplotypes (WTCCC, 

2010; McCarroll et al., 2005; Hinds et al., 2006) while some others argue that although a 

number of CNVs are in strong linkage disequilibrium with nearby markers, accurate genotypes 

can only be captured for a small proportion of the tested CNVs (Redon et al., 2006). I attempted 

to investigate LD between SNPs and CNVs, but due to the general low frequencies of the 

CNVRs in our populations, only a small number were available for testing. No tagging SNPs 

were found for 7 CNVRs in Vis, 17 CNVRs in Orkney and 47 CNVRs in South Tyrol.  

These CNVRs were also found to be poorly tagged by SNPs in the WTCCC samples 

(supplementary information, WTCCC, 2010). Haplotype analysis revealed only three tagged 

CNVR, of which one CNVR (CNVR271, Chr6:67058287-67111682) was notable for being 
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shared by all three populations. It was argued in a survey of LD between CNV and SNP that 

most (77%) highly frequent (MAF>5%) CNVs could be well tagged by SNPs, whereas only 

23% of the rare CNVs could be similarly tagged (Conrad et al., 2010). The CNVs selected in 

the current study for LD analysis were generally of low frequency. Analysis of an expanded set 

of CNVRs is warranted before firm conclusions on this issue can be drawn. 

The CNV profiles in Vis and South Tyrol were more similar to each other compared to that of 

Orkney, in terms of number of shared CNVRs, correlation of CNV lengths and frequency. This 

may reflect their relative close geographical distances: Orkney is at 59 degrees north, whereas 

Vis and South Tyrol are both in Southern Europe. 

Genetic clustering analysis formally demonstrated that CNVs can be used to classify the three 

population groups studied here and one can predict that the same will be true for other human 

populations, providing a potentially useful and applicable genomic tool for ancestry and 

evolutionary studies.  

Consistent with other recent studies (Nguyen et al., 2006; McCarroll et al., 2008), it was found 

that CNVs tended to cluster in peri-telomeric /sub-centromeric regions, and commonly 

overlapped with segmental duplications and recombination hotspots, again consistent with the 

idea that they may serve well as ancestry markers.   

As in many other studies (Kim et al., 2008; Perry et al., 2008; Nguyen et al., 2008), a higher 

gene content was discovered in CNVRs. It is argued that there is a high G+C content in gene 

rich regions (Nguyen et al., 2008), which are more frequently subject to copy number change. 

However, no elevated G+C content was detected in the observed CNVRs in this study. 

Although high gene content could be due to the bias of SNP choice in commercial genotyping 
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arrays, after correcting for SNP density, the significance still remained.  Some have argued 

that most of these genes are under negligible selective constraint; the CNVs influencing disease 

genes might have been eliminated by purifying selection. It is also noted a significantly higher 

gene content within recent, population specific CNVRs. Further studies are warranted to test 

whether these are due to length of population specific CNVs being longer or they are under 

positive selection or can be linked (or elevated / diminished) to quantitative traits specifically in 

population isolates.  

Finally, it is shown by the application of kinship coefficients that the majority of rare CNVs are 

passing through germ-lines rather than being de novo variants, and therefore are heritable and 

provide an index of relatedness. The inheritance of CNVs could be observed in actual pedigrees, 

which confirmed the increased relatedness between CNV carriers. The similar relationship 

between genetic variants and kinship was observed in a study of the same population in Vis, 

which found kinship inferred from pedigree information was consistent with segregation of 

SNPs in the population (Vitart et al., 2010).  

Illumina HumanHap300 SNP genotyping platforms were used to determine copy number 

variant events in our analysis. Despite the relatively lower SNP content of the 300K microarray 

compared with products such as Illumina Human 1M and Affymetrix snp 6.0, the power of our 

method to detect CNVs from the 300K platform was adequate, and it was able to detect a large 

number of CNV events in the three isolated populations and draw conclusion of the differences 

between individuals from distinct communities in the context of CNV. However, it is argued 

that due to insufficient coverage of informative probes in certain chromosome regions (eg. gene 

sparse and segmental duplication regions) and the inability to discriminate higher number of 

copies (copy number>4) of a duplicated region for most CNV calling algorithms for SNP arrays, 
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it is hard to accurately quantify the true extent of human copy number variation (Cooper et al., 

2008). In light of whole genome sequencing project such as the 1000 Genome Project 

(http://www.1000genomes.org/), which provides a resource of whole genome sequences of 

multiple individuals (Sudmant et al., 2010), it is believed that we can benefit from high quality 

CNV detection directly from sequence data of samples, to better understand the diversity of 

CNVs within and between populations. In the meantime, mining the widely available SNP 

arrays coupled with family data of CNV calling represents a useful way of validating CNV 

calling and studying evolutionary history of CNVs.  

 

 

 

 

 

 

 

 

 

 

 



 181

 

 

 

 

 

Chapter 7 

 

Copy Number Variation and Quantitative Traits 
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7.1 Preface 

 

The rationale behind genome wide association studies (GWAS) is the common disease, common 

variant hypothesis, which assumes that the heritability in common diseases can be captured by 

relatively few common genetic variants in the form of single nucleotide polymorphisms (Wang 

et al., 2005). However, GWAS based upon SNPs have discovered that SNPs only account for a 

modest proportion of the total genetic variation, while a substantial proportion of the heritability 

of many diseases examined in GWAS remain unexplained. It is argued that other genetic variants, 

for example CNVs, may be a potential source of this so-called missing heritability (Manolio et 

al., 2009). On the other hand, rare variants of moderate to large effect sizes can also contribute to 

disease outcome (Wright et al., 2003), and studies which sequence a large fraction of the genome 

in people with extreme phenotypes (those at the extremes of trait distributions) may be 

particularly informative in identifying rare as well as common variants associated with common 

disease (Wang et al., 2005).    

 

The incorporation of the study of CNVs, as well as SNPs, in genetic association studies in 

becoming increasingly common. There are a growing number of reports of the impact of 

common and rare CNVs in various diseases, including in AIDS (Gonzalez et al., 2005), autism 

(Pinto et al., 2010; Wang L.et al., 2010), schizophrenia (Glessner et al., 2010a; The International 

Schizophrenia Consortium, 2008),  bipolar disorder (Zhang et al., 2009; Chen et al., 2010), and 

obesity (Wang K. et al., 2010; Glessner et al., 2010b). However, the association between CNVs 

and quantitative traits has rarely been studied. Only a few have been reported to date including 

those with body mass index (Wineinger et al., 2011; Sha et al., 2009) and aortic root diameter 

(Wineinger et al., 2011).  
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Metabolic syndrome comprises a combination of several risk factors for cardiovascular disease 

and is related to disorders such as type 2 diabetes (T2D), obesity, dyslipidemia, and hypertension 

(Lanktree and Hegele, 2008). Measurement of a combination of metabolic-related traits such as 

body mass index (BMI), fasting serum concentrations of lipids, indicators of glucose 

homeostasis (glucose and insulin) and blood pressure is used to identify individuals with 

metabolic syndrome (http://www.metabolicsyndromeinstitute.com). The study of genetic 

components for these traits can shed light on the etiology of metabolic disorders.    

 

In this chapter, the association of CNVs and seven metabolic-related quantitative traits (body 

mass index, waist circumference, hip circumference, subscapular skinfold thickness, suprailiac 

skinfold thickness, glucose and insulin) were investigated in 978 individuals from two European 

populations. Association analysis was performed between common CNVs and measures of these 

metabolic traits. The role of rare CNVs was also investigated. The results suggested that CNVs, 

(both common and rare) might contribute to variation in common disease risk and the level of 

disease-related quantitative traits. 

 

7.2 Methods 

 

7.2.1 Study sample, genotyping and phenotyping 

Study participants were enrolled in the CROAS study and ORCADES study, from Island of Vis, 

Croatia and Orkney Isles, Scotland, respectively. Informed consent was given by all participants 

and Ethical approval by the relevant Research Ethics Committees.  

 

The Dalmatian samples were genotyped on the Illumina Infinium HumanHap 300 v1 platform 
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while the Orcadian samples were genotyped on the Human Hap 300 v2 platform (Illumina, San 

Diego, CA, USA). Individuals with a call rate less than 90% were removed. Quality checks of 

recording of gender and IBD sharing between first- and second-degree relative pairs were 

performed with the PLINK program (http://pngu.mgh.harvard.edu/purcell/plink/), and 

individuals with discordant pedigree and genomic data or data values falling outside expected 

ranges were removed from the study. 1656 individuals (965 from Vis and 691 from Orkney Isles) 

passed quality control and were included in the CNV investigation.  

 

DNA copy number gain/loss was determined by a joint analysis using QuantiSNP and 

cnvPartition (see details in Chapter 6) which utilize signal intensity data from SNP probes and 

implement Hidden Markov Model and Circular Binary Segmentation algorithms respectively to 

identify abnormal copy numbers,.. A list of CNVs was generated in each population, defined by 

those CNVs which were identified by both approaches. After prediction of CNV intervals in 

each individual, overlapping CNVs were merged into CNV regions (CNVRs). A CNVR is a 

region spanning the boundaries of all CNVs at this locus; i.e., it represents a union of 

overlapping CNVs (Figure 7.1).   

 

Among the individuals for whom the CNVs had been determined, 1005 unrelated individuals 

were selected for association analysis. Those comprised 914 singletons (individuals who had no 

genotyped relatives), with the remainder being probands (the eldest genotyped member) and 

their genotyped spouse (if applicable) from families of size >=2.   

 

978 of the 1005 unrelated individuals genotyped took part in the biometrical examinations. 

Measurements were recorded on age, gender, height, weight, body mass index, waist 

circumference, hip circumference, subscapular skinfold thickness, suprailiac skinfold thickness, 
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and fasting glucose level and insulin level. Some individuals had one or more missing values for 

one or more of the above measurements. The descriptive statistics of the final set of participants 

in the association analysis is shown in Table 7.1. 

 

7.2.2 Construction of a list of candidate genes for metabolic phenotypes 

The CNVs which showed evidence for association in the analysis of metabolic phenotypes were 

compared with a list of candidate genes related to the seven metabolic traits. Only the core 

regions of each CNV were considered. The core region of a CNV was configured as in Figure 

7.1.  

 

The candidate genes for metabolic phenotypes came from four sources: 1) a literature review on 

candidate genes identified from association analysis on metabolic-related quantitative traits 

(BMI, glucose, insulin, low density lipoprotein cholesterol, high density lipoprotein, 

triglycerides); 2) a review of candidate genes for type 2 diabetes disease risk based on data from 

association studies (including meta-analyses), animal models of the disease, pharmacological 

and physiological studies, or studies of the Mendelian forms of the disease (Hancock et al., 

2008); 3) a review of candidate genes for obesity risk from the same author as in 2) (Hancock et 

al., 2008);  4) a study of CNVs categorised in DGV which overlapped candidate genes for  

metabolic syndromes (Lanktree and Hegele, 2008).  The gene names from each source were 

extracted and assembled as a list of all candidate genes for metabolic phenotypes which were 

related to the seven quantitative traits considered in this chapter. 
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Figure 7.1 Copy number variant regions (CNVR) defined in the study sample and configuration of 
the “core region” of a CNVR. The core region of a CNVR is the maximum region shared by all the 

individuals carrying CNV within the same CNVR. 
.  

7.2.3 Statistical analysis 

Statistical analysis was performed using R version 2.8.1.  

For common CNVs (frequency >1% in total sample defined by the above procedure) linear 

regressions were performed to identify associations between CNVs and the seven quantitative 

traits: body mass index, waist circumference, hip circumference, subscapular skinfold thickness, 

suprailiac skinfold thickness, glucose and insulin. A linear regression analysis was performed for 

each trait to evaluate the effects of possible covariates (age, sex, BMI, cohort), with only 

significant (P<0.05) covariates corrected for (Table 7.1). The residues of trait values (adjusted 
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for significant covariates) were then rank normalized with the R package GenABEL (Aulchenko 

et al., 2007) and were taken as trait values in the following analysis. A linear regression of 

individual copy number at each CNV locus upon trait values was performed for each of the traits, 

to test if the copy numbers were associated with metabolic phenotypes. Nominal significance 

was taken as P<0.05, and a Bonferroni correction was further performed to account for multiple 

testing (Blauw et al., 2008). The genes covered by CNVs which showed evidence for association 

were then compared with a list of candidate genes for metabolic syndromes. 

 

For rare CNVs (population frequency<1%), it is hypothesized that multiple rare CNVs may 

collectively contribute to phenotypic variation of the seven metabolic traits. First of all, the 

general burden of rare CNVs in individuals with moderate and extreme trait values was tested. 

Two methods were used: 1) a regression of number of rare CNVs carried on trait values to 

determine if the overall number of rare CNVs had an effect on the trait values; 2) a regression of 

rare CNV status (carrying no rare CNV or carrying one or more CNVs) on trait values, to find 

out if being a carrier of rare CNVs has any effect on the trait values. Secondly, a pathway 

analysis was conducted to find out if there was an enrichment of genes involved in metabolic 

pathways, in individuals with extreme trait values. For each trait, the samples were divided into 

two groups: a “moderate group” with trait values ranked in the 25%-75% range of distribution of 

all the values for this trait and an “extreme group” with trait values distributed in the upper 25% 

and lower 25% of the spectrum of all values.  The number of rare CNVs in each group was 

counted, and also the number of genes covered by those CNVs in the two groups. The rare 

CNVs which only belonged to the “extreme group” were selected and analyzed using both Gene 

Ontology (GO) and KEGG pathways, via a Web-based Gene Set Analysis Toolkit (WebGestalt 

http://bioinfo.vanderbilt.edu/ webgestalt/). 
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7.3 Results 

 

7.3.1 Basic Characteristics of the study sample 

The basic characteristics of the study sample, including age, sex, height, weight, BMI, waist and 

hip circumference, subscapular and suprailiac skinfold thickness, fasting glucose and insulin 

concentration are summarized in Table 7.1. The significant covariates (which were adjusted for 

in the following analysis) for each trait are also listed. 

 

7.3.2 Construction of candidate genes for metabolic phenotypes 

A literature review of association studies on quantitative traits (body mass index, low density 

lipoprotein cholesterol, high density lipoprotein cholesterol, and glucose, insulin, and 

triglycerides concentrations) for metabolic syndromes identified 46 candidate genes in 12 studies 

(Table 7.2). 177 candidate genes were identified in a literature review of genes which 

contributed to type 2 diabetes disease risk and 374 candidate genes for obesity disease risk 

(Hancock et al., 2008). 19 candidate genes for metabolic syndromes overlapped with reported 

CNVs in DGV (Lanktree and Hegele, 2008).    

 

The genes identified from the above sources were combined to generate a list of candidate genes 

for metabolic phenotypes. Overall, the list contained 613 genes.  
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Table 7.1 Descriptive statistics of participants and significant covariates for each trait  

 

 

 

 

 

 

n mean±s.d. significant covariants 

Age (years) 58.3±13.9

Females (%) 58.2

Height (cm) 167.0±9.6

Weight (kg) 78.1±14.9

BMI (kg/m2) 28.0µU/ml4.6 sex

Waist circumference (cm) 972 959.8±128.1 age, sex, BMI, cohort

Hip circumference (cm) 971 1035±100.6 age, sex, BMI

Subscapular skinfold thickness (cm) 971 249.9±111.5 age, sex, BMI

Suprailiac skinfold thicknesss (cm) 972 276.7±140.6 age, BMI, cohort

Glucose (mmol/L) 931 5.6±1.3 age, sex, BMI, cohort

Insulin (µU/ml) 926 8.3±17.1 age, sex, BMI, cohort

978

973
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Table 7.2 Genes associated with body mass index, low density lipoprotein cholesterol, high 
density lipoprotein cholesterol, and glucose, insulin, and triglycerides concentrations in 12 

studies 

 

BMI: body mass index, LDL: low density lipoprotein cholesterol, HDL: high density lipoprotein 

cholesterol, GLU: glucose concentration, INS: insulin concentration, TC: triglycerides 

concentration 

Gene Symbol Trait Method Reference

ABCA1 HDL GWAS,meta-analysis Kathiresan et al.(2008),Willer et al.(2008)

ABCB11 GLU GWAS Chen et al.(2008)

ACAA2 HDL meta-analysis Kathiresan et al.(2008)

ADCY5 GLU meta-analysis Dupuis et al.(2008)

ADRA2A GLU meta-analysis Dupuis et al.(2008)

ANGPTL3 TC GWAS,meta-analysis Kathiresan et al.(2008),Willer et al.(2008)

APOA1-C3-A4-A5 HDL,TC GWAS,meta-analysis Kathiresan et al.(2008),Willer et al.(2008)

APOB LDL,TC GWAS,meta-analysis Kathiresan et al.(2008),Willer et al.(2008)

APOE-C1-C4-C2 LDL GWAS,meta-analysis Kathiresan et al.(2008),Willer et al.(2008)

ATG4C TC meta-analysis Kathiresan et al.(2008)

BCL7B TC meta-analysis Kathiresan et al.(2008)

BUD13 HDL,TC meta-analysis Kathiresan et al.(2008)

C2CD4B GLU meta-analysis Dupuis et al.(2008)

CELSR2 LDL GWAS,meta-analysis Kathiresan et al.(2008),Willer et al.(2008)

CETP HDL GWAS,meta-analysis Kathiresan et al.(2008),Willer et al.(2008)

CILP2 LDL,TC GWAS,meta-analysis Kathiresan et al.(2008),Willer et al.(2008)

DGKB GLU meta-analysis Dupuis et al.(2008)

DOCK7 TC meta-analysis Kathiresan et al.(2008)

FADS1 GLU meta-analysis Dupuis et al.(2008)

FTO BMI candidate gene Frayling et al.(2007),Loos et al.(2008)

G6PC2 GLU GWAS,meta-analysis
Bouatia-Naji et al.(2008,2009),                      Dupuis

et al.(2008),Prokopenko et al.(2009)

G6PC3 GLU GWAS Chen et al.(2008)

GALNT2 HDL,TC GWAS,meta-analysis Kathiresan et al.(2008),Willer et al.(2008)

GCK GLU GWAS,meta-analysis
Dupuis et al.(2008),Prokopenko et al.(2009),Weedon

et al.(2006)

GCKR
GLU,INS,

TC

candidate gene,GWAS,

meta-analysis

Dupuis et al.(2008),Kathiresan et al.(2008),     Orho-

Melander et al.(2008),                           Sparso et

al.(2008),Willer et al.(2008)

GLIS3A GLU meta-analysis Dupuis et al.(2008)

HMGCR LDL meta-analysis Kathiresan et al.(2008)

LDLR LDL GWAS,meta-analysis Kathiresan et al.(2008),Willer et al.(2008)

LIPC HDL,TC GWAS,meta-analysis Kathiresan et al.(2008),Willer et al.(2008)

LIPG HDL GWAS,meta-analysis Kathiresan et al.(2008),Willer et al.(2008)

LPL HDL,TC GWAS,meta-analysis Kathiresan et al.(2008),Willer et al.(2008)

MADD GLU meta-analysis Dupuis et al.(2008)

MC4R BMI candidate gene Loos et al.(2008)

MLXIPL TC GWAS,meta-analysis Kathiresan et al.(2008),Willer et al.(2008)

MTNR1B GLU
candidate gene,       meta-

analysis

Bouatia-Naji et al.(2008),Dupuis et al.(2008),

Lyssenko et al.(2009), Prokopenko et al.(2009)

MVK/MMAB HDL GWAS Willer et al.(2008)

NCAN LDL,TC GWAS Willer et al.(2008)

PBX4 LDL,TC meta-analysis Kathiresan et al.(2008)

PCSK9 LDL GWAS,meta-analysis Kathiresan et al.(2008),Willer et al.(2008)

PROX1 GLU meta-analysis Dupuis et al.(2008)

PSRC1 LDL GWAS,meta-analysis Kathiresan et al.(2008),Willer et al.(2008)

SLC2A2 GLU meta-analysis Dupuis et al.(2008)

SORT1 LDL GWAS,meta-analysis Kathiresan et al.(2008),Willer et al.(2008)

TBL2 TC meta-analysis Kathiresan et al.(2008)

TRIB1 TC GWAS,meta-analysis Kathiresan et al.(2008),Willer et al.(2008)

ZNF259 TC, HDL meta-analysis Kathiresan et al.(2008)
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7.3.3 Common CNV association 

A total of 1164 individual CNVs were identified. All these CNVs could be merged into 407 

non-redundant CNVRs. 19 of these CNVRs (Table 7.3) had frequencies of more than 1% and 

were selected for association analysis with the seven quantitative traits. The CNVs in the 

selected 19 CNVRs covered 9.2 Mb with a mean length of 190.9 kb. Seven of the 19 CNVRs 

contained both copy number gains and copy number losses. 

 

Three common CNVs were associated with three metabolic traits with nominal levels of 

statistical significance (uncorrected p<0.05) (Table 7.4). CNVR729 was associated with BMI 

(p=0.0235), CNVR122 with waist circumference (p=0.0366) and CNVR447 with both waist 

circumference (p=0.0217) and insulin concentration (p=0.0226). None of these associations 

remained statistically significant after Bonferroni correction.  

 

The core region of CNVR122 overlapped two genes, GPR128 (G protein-coupled receptor 128) 

and TFG (TRK-fused gene). The core region of CNVR447 overlapped no known genes. The 

core region of CNVR729 overlapped with four genes, DGCR2, DGCR5, DGCR6 (DiGeorge 

syndrome critical region gene 2, 5 and 6) and PRODH (proline dehydrogenase (oxidase) 1). 

None of these six genes were known genes related to metabolic phenotypes.  
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Table 7.3 Characteristics of 19 common CNVs (frequency>1%) for association analysis with 
metabolic traits in the current study 

 

 

 

Table 7.4 CNVRs showed nominal significance (uncorrected p value of <0.05) in association 
with metabolic traits. 

 

 

 

 

Total Gain Loss

CNVR5 1 5 9223195 9310031 86837 16 16 0 1.636

CNVR122 3 122 101804733 101955538 150806 12 12 0 1.227

CNVR271 6 271 67058287 67111682 53396 28 0 28 2.863

CNVR297 6 297 168078929 168352184 273256 23 23 0 2.352

CNVR320 7 320 61075979 62372905 1296927 13 13 0 1.329

CNVR322 7 322 64144339 64593616 449278 12 3 9 1.227

CNVR390 8 390 137747933 137932941 185009 11 0 11 1.125

CNVR410 9 410 11430880 12227417 796538 18 0 18 1.840

CNVR447 10 447 47013328 47173619 160292 62 60 2 6.339

CNVR464 10 464 134913018 135284293 371276 26 23 3 2.658

CNVR491 11 491 133749532 134225383 475852 11 11 0 1.125

CNVR494 12 494 7876208 8121428 245221 28 19 9 2.863

CNVR501 12 501 31101381 31311573 210193 45 45 0 4.601

CNVR569 15 569 29704566 30721385 1016820 19 19 0 1.943

CNVR648 18 648 1917798 1970668 52871 14 0 14 1.431

CNVR727 22 727 15412698 15674251 261554 11 11 0 1.125

CNVR729 22 729 17257787 19792353 2534567 16 10 6 1.636

CNVR730 22 730 20659747 20897762 238016 11 9 2 1.125

CNVR734 22 734 23970628 24324013 353386 20 15 5 2.045

Length (bp)
Frequency

(%)

# Carriers
ID Chr Region Start (bp) End (bp)

Trait CNVR p value

BMI CNVR729 0.0226

Waist  circumference CNVR122 0.0366

CNVR447 0.0217

Insulin CNVR 447 0.0226
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7.3.4 Rare CNVRs and metabolic traits 

388 CNVRs had a population frequency of <0.01. The mean length of CNVs in these rare 

CNVRs was 197.9 kb, which in total covered 106.4 Mb of the genomic DNA. No correlation 

was found between the number of rare CNVs and trait values in any of the seven traits. Neither 

was there any observed correlation between the number of overall CNVs (both common and rare) 

and trait values. When comparing rare CNVs in “moderate” and “extreme” groups for each trait, 

no difference was found in the number of rare CNVs. However, there was a statistically 

significant enrichment of unique genes (genes only covered by rare CNVs from moderate group 

and genes only covered by rare CNVs from the extreme group) overlapped by CNVs from the 

extreme group (Table 7.5).  

 

For each of the seven traits, unique rare CNV-overlapped genes in moderate and extreme groups 

were each tested for enrichment in metabolic pathways. In GO and KEGG pathway enrichment 

analysis, no statistically significant enrichment (p>0.05) was found in either moderate groups or 

extreme groups, for any one of the seven traits. 
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Table 7.5 Number of rare CNVs and unique genes in individuals of moderate and extreme values for each of the seven traits 

 
Moderate: CNVs or unique genes in individuals whose trait values were in the middle 50% of the trait value distribution. Extreme: CNVs or unique genes 

in the remainder of individuals from the total sample. 

 

 

 

 

 

 

Moderate Extreme p Moderate Extreme p

BMI 239 229 0.6439 77 153 1.651*10
-5

Waist  circumstance 240 238 0.9271 70 147 1.495*10-5

Hip  circumstance 238 237 0.9634 71 144 4.194*10-5

Subscapular skinfold thickness 229 245 0.4624 71 152 5.938*10-5

Suprailiac skinfold thickness 230 233 0.8891 66 152 2.843*10-6

Glucose 233 236 0.8898 66 148 6.182*10-6

Insulin 233 246 0.2882 56 142 1.696*10
-6

Trait
Number of rare CNVs Number of unique genes
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7.4 Discussion 

 

Copy number variants, which are known to account for a significant proportion of human 

genetic polymorphism, have been predicted to play a role in the genetic susceptibility to 

common disease and disease-related quantitative traits. In this chapter, both common and rare 

CNVs were investigated in metabolic phenotypes.  

 

Type 2 diabetes (T2D) and obesity are two metabolic disorders characterized by a high glucose 

level in the context of insulin resistance and relative insulin deficiency and high value of body 

mass index (BMI), respectively. Other quantitative traits, such body fat mass, waist and hip 

circumference, subscapular and suprailiac skinfold thickness and blood triglycerides levels, are 

also important indicators of risk for metabolic syndromes. Despite successes in identifying 

genetic contributions to metabolic phenotypes, only a small part of the heritable component of 

these traits has so for been explained, mainly by common SNP variants. It has been reported that 

many of  the identified CNVs overlapped genes with important functions in metabolic 

pathways (Lanktree and Hegele, 2008), therefore one may hypothesise that copy number change 

in these genes could lead to functional alteration at the expression level, and thus affect 

susceptibility to metabolic syndrome and metabolic quantitative trait values. In the last few years, 

some studies have attempted to extend the investigation of effects of SNPs to CNVs on these 

metabolic phenotypes.  
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Shtir et al. studied genome-wide association between CNVs and T2D in 194 Caucasian patients 

from the Framingham Heart Study, but found little evidence of such an association (Shtir et al., 

2009). In a genome-wide CNV association study of body mass index (BMI) in the Chinese 

population, 3 CNVs were found to show a suggestive association with BMI; one of the genes 

covered by these CNVs was PPRR1 (pancreatic polypeptide receptor 1) which was a known 

gene related to obesity (Sha et al., 2009). The Wellcome Trust Case Control Consortium 

(WTCCC) carried out a genome-wide CNV association analysis using large samples and array 

comparative genomic hybridization and found a weak (p=3.9*10
-5
) association between a CNV 

and T2D. This CNV overlapped TSPAN8 which was reported to be associated with T2D in 

previous SNP studies (WTCCC, 2010). In a recent study of obesity with a focus on 39 CNVs in 

the Prader-Willi syndrome (PWS) critical region in 1000 unrelated Caucasians, 3 CNVs were 

found to be associated with increased body mass at nominal statistical significance. The known 

genes for PWS and obesity which were close to these 3 CNVs included NDN (necdin homolog), 

C15orf2 (Chromosome 15 open reading frame 2) and PWRN1 (Prader-Willi region 

nonprotein-coding RNA1). None of these genes showed evidence of association in the 

genome-wide SNP study with the same sample (Chen et al., 2011). None of the above 

associations remained statistically significant after adjustment for multiple testing. 

 

In the present association analysis of CNVs for seven metabolic traits (body mass index, low 

density lipoprotein cholesterol, high density lipoprotein cholesterol, and glucose, insulin, and 

triglycerides concentrations), the effect of 19 genome-wide common CNVs was evaluated.  
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Three common CNVs were associated with three metabolic traits with nominal statistical 

significance: CNVR729 with BMI (p=0.0235), CNVR122 with waist circumference (p=0.0366) 

and CNVR447 with both waist circumferences (p=0.0217) and insulin concentration (p=0.0226). 

The three CNVs overlapped six genes: GPR128 (G protein-coupled receptor 128), TFG 

(TRK-fused gene), DGCR2, DGCR5, DGCR6 (DiGeorge syndrome critical region gene 2, 5 and 

6) and PRODH (proline dehydrogenase (oxidase) 1). GPR128 is involved in the G-protein 

coupled receptor protein signaling pathway. TFG encodes several fusion oncoproteins and 

participates in several oncogenic rearrangements. DGCR2, DGCR5, DGCR6 all reside in 

chromosome 22q11.2 region. Deletions of the 22q11.2 have been associated with a wide range 

of developmental defects (notably DiGeorge syndrome, velocardiofacial syndrome, conotruncal 

anomaly face syndrome and isolated conotruncal cardiac defects) classified under the acronym 

CATCH 22. The DGCR2 gene encodes a novel putative adhesion receptor protein which could 

play a role in neural crest cells migration, a process which has been proposed to be altered in 

DiGeorge syndrome. DGCR6 is a candidate for involvement in DiGeorge syndrome pathology 

and in schizophrenia. However, the six genes’ molecular function and the relationship with 

metabolic traits and the onset of metabolic syndromes are still unknown. The above associations 

were also weak; none of them retained statistical significance after correction for multiple testing. 

Further analysis, both replication of the association analysis findings utilizing a larger sample 

size and functional studies, are needed to identify their potential role on metabolic phenotypes.  

 

The association analysis is based on the common disease-common variant hypothesis, therefore 

only common CNVs were considered. However rare CNVs, on the other hand, could also play 

an important part in explaining genetic variation in disease risk or levels of quantitative traits. 

Several studies found significant enrichment of rare CNVs in cases of mental disorders 
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compared to those in control individuals, and many of the rare CNVs overlapped genes which 

had functional relevance to those diseases (Pinto et al., 2010; The International Schizophrenia 

Consortium, 2008; Walsh et al., 2008; Williams et al., 2010). In order to identify rare variants 

related to metabolic traits, Cohen et al  sequenced candidate regions from individuals with 

extreme values of high density lipoprotein cholesterol (HDL-C), and found that nonsynonymous 

sequence variants were significantly more common in individuals with low HDL-C values than 

in those with high HDL-C values (Cohen et al., 2004). These findings suggest that rare variants 

may collectively contribute to variation in metabolic phenotypes. However, little attention has 

been paid to rare CNVs in genome wide CNV studies for metabolic syndromes. One of the few 

examples was an observation of enrichment of multiple large and rare CNVs in obesity cases, 

which disrupt several obesity candidate genes (Wang K. et al., 2010).  

 

In this chapter, the overall burden and gene content of rare CNVs for seven metabolic traits were 

examined. No excess burden of rare CNVs (either the sum rare CNVs possessed or the 

presence/absence status of any rare CNVs for an individual) was observed in individuals who 

had more extreme trait values for any of the seven traits. However, a significant enrichment of 

unique genes overlapped by rare CNVs in individuals with extreme trait values was found for all 

the traits. This result could suggest a functional difference of the rare CNV covered genes in 

individuals with moderate and extreme metabolic trait values. An enrichment analysis was then 

performed for the unique genes in the moderate and extreme groups, to test if there was an 

enrichment of genes involved in metabolic pathways in individuals with more extreme trait 

values. However, no statistically significant enrichment was found by neither GO nor KEGG 

pathway analysis.  
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The results in this chapter should be interpreted cautiously due to several study limitations 

recognised. First, the HumanHap 300K genotyping array might not be ideal to profile all CNVs 

in an individual genome. The SNP density of 300K genotyping array is comparatively low, and 

this platform is not primarily designed to capture copy number variants. SNPs in some regions 

such as segmental duplications are sparse. Therefore a proportion of CNVs might have gone 

undetected on the 300K platform. Second, the frequencies of common CNVs selected in the 

current study is generally low (only one of the 19 common CNVs had a frequency of >5%), 

which might lead to reduced power in association analysis. Additionally, at the time of this study 

the methods of analyzing rare CNVs for disease and disease-related QTs were still limited. The 

pathway enrichment analysis is only a primary approach to illustrate the general picture of all 

rare variants and to categorize those in grouped pathways for different biological functions. 

However, even if enrichment was found for genes in a particular pathway, it is still hard to 

determine which ones of all the rare variants were causative and which ones were not relevant. 

Finally, as SNP association has only identified a fraction of the loci contributing to phenotypic 

variation, it follows that CNVs may have an impact on the unrecognized risk loci. The present 

study is underpowered to conclude whether CNVs contribute to metabolic trait variance, but is 

will be of interest to investigate whether the impact of CNVs indicated in the current study is 

substantial,  by combining data from multiple large studies.  

 

In conclusion, there was some suggestive evidence of association between several common 

CNVRs and metabolic phenotypes, although none overlapped known candidate genes for 

metabolic phenotypes. No association with overall burden of rare CNVRs was observed, but 

significant enrichment of unique genes was found in individuals with extreme values of 

metabolic quantitative traits. Those genes, however, failed to show enrichment in metabolic 

pathways. These results suggest that CNVs may be potentially important for metabolic 
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phenotype variation. Further research is required to confirm or reject these initial findings. This 

should include studies employing improved (more sensitive) methods of identifying CNVs, 

(much) larger sample sizes and study populations in several global regions. In addition these 

should be complemented by molecular biological experiments to investigate functions of the 

CNVs, and improved and more robust pathway analysis methods to study rare variants. 
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Chapter 8 

 

Summary of thesis and future directions 
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Copy number variation is a type of genetic variation which has been extensively studied in 

recent years. With advances in methods/platform development for CNV detection which have 

enabled CNVs to be identified in multiple individuals in an efficient manner, numerous studies 

have endeavored to reveal features of CNVs in human population and their relevance to disease 

and disease-related phenotypes. However, our understanding of this kind of genetic variation is 

still limited.  

 

One very basic but still unanswered question is the scale of individual CNVs. In Chapter 3, 

using CNV data gained from five sequenced human genomes, I surveyed 12 studies which 

sequenced 33 human genomes, and obtained information of copy number loss (deletions) from 

five individuals, from three different ethnic groups. Generally, the deletions detected from 

sequencing data were short in length, compared to those detected from SNP or CGH arrays. The 

overlap of deletions between the five individuals was low. The two Asian genomes had more 

deletions in common but the concordance of deletions was low for the two European genomes. 

The CNVs shared by multiple individuals covered fewer genes than those private to only one 

individual. These differences could have true biological relevance, but could also be due to 

differences in platforms/algorithms choice and the small number of individual complete 

genomes available for analysis.  

 

Mining of genome wide SNP data can be used to extract CNV calls in large number of samples, 

which enables CNV studies at the population level. However, the choice of a reliable protocol to 

call CNVs from SNP data is an important issue to consider. In Chapter 4, to find out comparable 

CNV data at the population level, I selected seven studies which reported CNVs in HapMap 

samples, from a structured literature search including 778 articles which detected CNVs from 

SNP genotyping data. Large discrepancies were observed for CNVs identified in terms of total 
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occurrence and length. For the two HapMap samples common to six studies, concordance in 

CNV calling was low and results showed dependence on the genotyping platform and/or calling 

algorithm employed. Moreover, for two individuals in whom a direct physical mapping method 

was used, it was clear that only a small portion of CNV calls were detected from SNP 

genotyping data. This Chapter demonstrated that platform/algorithm choice could greatly 

influence the results of CNV calling and limited the use of SNP genotyping platforms to detect 

CNVs.  

 

In the following chapter I used Illumina 300K SNP intensity data from 965 individuals together 

with 8 HapMap samples to assess the performance of four CNV detection algorithms: 

QuantiSNP, cnvPartition, PennCNV and DNAcopy. Based upon concordance rates in duplicates, 

QuantiSNP and cnvPartition outperformed the other two algorithms on both sensitivity and 

specificity. However, it was also noted from the comparison of CNVs called from QuantiSNP 

and those validated from a previous study (Kidd et al., 2008) for the same 8 HapMap samples, 

that the algorithm only could recover a small portion of CNVs validated by direct physical 

methods, such as ESP mapping and array-CGH.  

 

In Chapter 6 I used a combination of QuantiSNP and cnvPartition to profile CNVs in 2789 

individuals from three European population isolates (Vis, Orkney and South Tyrol) who had 

been genotyped on the Illumina HumanHap 300K platforms. 4016 CNVs in 1964 individuals 

were detected, which clustered into 743 copy number variable regions (CNVRs). The frequency 

and distribution of these CVNRs was compared and shown to differ significantly between the 

Orcadian, South Tyrolean and Dalmatian populations. Consistent with the inference that this 

indicated population-specific CNVR identity and origin, I also demonstrated that CNVR 

variation within each population can be used to measure genetic relatedness.  
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In the last section, I looked for evidence of association between CNVs and seven 

metabolic-related quantitative traits: body mass index, waist circumstance, hip circumference, 

subscapular skinfold thickness, suprailiac skinfold thickness, glucose and insulin, in 978 

individuals from Vis and Orkney. Three out of 19 common CNVs tested showed nominal 

significance for association with one or more traits, but the significance didn’t remain after 

multiple-testing correction. None of them overlapped with known candidate genes for metabolic 

phenotypes. No excess burden of rare CNVs was observed in individuals with extreme trait 

values for any of the traits analyzed, but I did find that more genes were affected by rare CNVs 

in the individuals with extreme trait values. However, pathway analysis showed no significant 

enrichment of those genes in metabolic pathways.  

 

In summary, this thesis investigated current CNV detection methods, conducted a discovery 

study of CNVs in three European populations and attempted to test association of those CNVs to 

metabolic-related quantitative traits. This thesis made some contribution to the understanding of 

copy number variation, but future work is needed to further clarify the features and impact of 

CNVs on phenotypic outcomes in human populations.  

 

It was noted that the genotyping data gained from Illumina 300K arrays was not ideal for CNV 

detection, and there were various problems with current CNV calling algorithms. Therefore, 

improvements in genomic technologies are needed for more accurate CNV detection in the 

future. These include higher-resolution and higher-throughput platforms (SNP/CGH arrays), 

advances in next-generation sequencing technologies and more robust algorithms for CNV 

detection on those platforms. Molecular biology experiments are needed to validate CNVs 

detected in the current samples from SNP genotyping data. CNVs at the population level merit 
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further study. Studies such as the 1000 Genome Project (http://www.1000genomes.org/), which 

aim to accurately detect and genotype CNVs in multiple individuals, will shed more light on 

individual by individual variation, and on the origins and evolution of CNVs. Preliminary 

knowledge of genome-wide association between common CNVs and common diseases was 

gained, benefitting from large study design (WTCCC, 2010), however for complex traits and 

diseases, the ‘hidden’ heritability void left by GWAS would not always be accounted for by 

common CNVs (Conrad et al., 2010). Therefore one should consider and assess the impact of 

both common and rare CNVs on phenotypic outcomes. Last but not least, genetic analysis on 

CNVs alone is not sufficient to unravel all contributing factors for complex human traits. The 

combination of genetic approaches combining SNP and CNV variants in association studies, 

better algorithms to assess association between CNVs and disease or disease related phenotypes, 

functional studies of putative genes influenced by CNVs, refined bioinformatics tools for 

pathway analysis, systems biology and animal models need to be integrated and combined in 

order to provide a complete picture of the origins, structure and functional consequences of copy 

number variation.  
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