

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

Efficient, Scalable, and Fair

Read-Modify-Writes

Bharghava Rajaram

T
H
E

U
N I V E

R
S

I
T
Y

O
F

E
D

I N B
U

R
G

H

Doctor of Philosophy

Institute of Computing Systems Architecture

School of Informatics

University of Edinburgh

2014

Abstract
Read-Modify-Write (RMW) operations, or atomics, have widespread application in

(a) synchronization, where they are used as building blocks of various synchronization

constructs like locks, barriers, and lock-free data structures (b) supervised memory sys-

tems, where every memory operation is effectively an RMW that reads and modifies

metadata associated with memory addresses and (c) profiling, where RMW instruc-

tions are used to increment shared counters to convey meaningful statistics about a

program. In each of these scenarios, the RMWs pose a bottleneck to performance and

scalability. We observed that the cost of RMWs is dependent on two major factors –

the memory ordering enforced by the RMW, and contention amongst processors per-

forming RMWs to the same memory address. In the case of both synchronization and

supervised memory systems, the RMWs are expensive due to the memory ordering

enforced due to the atomic RMW operation. Performance overhead due to contention

is more prevalent in parallel programs which frequently make use of RMWs to update

concurrent data structures in a non-blocking manner. Such programs also suffer from a

degradation in fairness amongst concurrent processors. In this thesis, we study the cost

of RMWs in the above applications, and present solutions to obtain better performance

and scalability from RMW operations.

Firstly, this thesis tackles the large overhead of RMW instructions when used for

synchronization in the widely used x86 processor architectures, like in Intel, AMD, and

Sun processors. The x86 processor architecture implements a variation of the Total-

Store-Order (TSO) memory consistency model. RMW instructions in existing TSO ar-

chitectures (we call them type-1 RMW) are ordered like memory fences, which makes

them expensive. The strong fence-like ordering of type-1 RMWs is unnecessary for the

memory ordering required by synchronization. We propose weaker RMW instructions

for TSO consistency; we consider two weaker definitions: type-2 and type-3, each

causing subtle ordering differences. Type-2 and type-3 RMWs avoid the fence-like

ordering of type-1 RMWs, thereby reducing their overhead. Recent work has shown

that the new C/C++11 memory consistency model can be realized by generating type-

1 RMWs for SC-atomic-writes and/or SC-atomic-reads. We formally prove that this

is equally valid for the proposed type-2 RMWs, and partially for type-3 RMWs. We

also propose efficient implementations for type-2 (type-3) RMWs. Simulation results

i

show that our implementation reduces the cost of an RMW by up to 58.9% (64.3%),

which translates into an overall performance improvement of up to 9.0% (9.2%) for

the programs considered.

Next, we argue the case for an efficient and correct supervised memory system

for the TSO memory consistency model. Supervised memory systems make use of

RMW-like supervised memory instructions (SMIs) to atomically update metadata as-

sociated with every memory address used by an application program. Such a system is

used to help increase reliability, security and accuracy of parallel programs by offering

debugging/monitoring features. Most existing supervised memory systems assume a

sequentially consistent memory. For weaker consistency models, like TSO, correct-

ness issues (like imprecise exceptions) arise if the ordering requirement of SMIs is

neglected. In this thesis, we show that it is sufficient for supervised instructions to only

read and process their metadata in order to ensure correctness. We propose SuperCoP,

a supervised memory system for relaxed memory models in which SMIs read and pro-

cess metadata before retirement, while allowing data and metadata writes to retire into

the write-buffer. Our experimental results show that SuperCoP performs better than

the existing state-of-the-art correct supervision system by 16.8%.

Finally, we address the issue of contention and contention-based failure of RMWs

in non-blocking synchronization mechanisms. We leverage the fact that most exist-

ing lock-free programs make use of compare-and-swap (CAS) loops to access the

concurrent data structure. We propose DyFCoM (Dynamic Fairness and Contention

Management), a holistic scheme which addresses both throughput and fairness under

increased contention. DyFCoM monitors the number of successful and failed RMWs

in each thread, and uses this information to implement a dynamic backoff scheme to

optimize throughput. We also use this information to throttle faster threads and give

slower threads a higher chance of performing their lock-free operations, to increase

fairness among threads. Our experimental results show that our contention manage-

ment scheme alone performs better than the existing state-of-the-art CAS contention

management scheme by an average of 7.9%. When fairness management is included,

our scheme provides an average of 3.4% performance improvement over the constant

backoff scheme, while showing increased fairness values in all cases (up to 43.6%).

ii

Acknowledgements

First and foremost, I wish to thank my advisor, Dr. Vijayanand Nagarajan for

his wonderful guidance and support throughout my PhD studies. Being from a more

hardware-oriented background, Vijay inuited my potential in working on higher level

architecture when he accepted to guide me for my PhD thesis. His pleasant and often

optimistic demeanour cheered me through highs and lows during my studies. His abil-

ity of thoroughly analyze problems and their different dimensions in order to arrive at

pragmatic yet optimal solutions still amazes me. Whenever I encountered a problem,

he always stood by me and boosted my morale, as a result of which, I felt more en-

couraged and motivated work towards solving those problems. He also gave me me

the opportunity to be his teaching assistant for two semesters. This gave me a lot of

confidence in my continuing pursuit of joing and excelling in the academia. I can never

thank him enough for his efforts in making me a sound researcher.

Secondly, I would like to thank Christian Fencsch, who was my second supervior.

All the discussions I have had with him served to expand my understanding of the

subject. He is truly a vast reservoir of knowledge. In the same vein, I would like to

extend my thanks to Bjorn Franke, Mike OBoyle, and Murray Cole for the support they

gave me during my PhD. Their support was invaluable. A special mention to Muray

Cole for being in my doctoral dissertation and viva panel. His criticism was extremely

useful and also enlightening.

I would like to thank Marco Elver, and Andrew Mcpherson, who woorked with

me in 2 of the major contributions of my thesis. Both of them possessed the ability to

neatly organize things to the finest detail, which greatly influenced me in my approach

to my research career.

I would also like to thank me fellow countrymen, Karthik and Manik, with whom

I spent most of my free time. Karthik introduced me to the city of Edinburgh on my

arriva, and was with me through thick and thin for my first 2 years here. Just when I

was feeling sad about his departure to the USA, working for Synopsys, Manik came in

and gave me an opportunity to help him as Karthik helped me. I especially enjoyed all

my cooking sessions with them, and with Manik, our shared passion in gardening, and

gaming brought us closer.

iii

I would also like to thank my labmates, Elliot, Yuan, Thibault, Siddharth, Vasseil-

ious, Konstantina, Murali, and Kiran for their valuable help in cultivating my thesis to

the form it is now. Last but not the least, I would like to thank my parents, Rajaram

and Uma Rajaram without whom, I wouldnt be successful in my endeavours.

iv

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

Some of the material used in this thesis has been published in the following papers:

• Bharghava Rajaram, Vijay Nagarajan, Andrew J. McPherson, and Marcelo Cin-

tra. 2012. SuperCoP: a general, correct, and performance-efficient supervised

memory system. In Proceedings of the 9th conference on Computing Frontiers

(CF ’12). ACM, New York, NY, USA, 85-94.

• Bharghava Rajaram, Vijay Nagarajan, Susmit Sarkar, and Marco Elver. 2013.

Fast RMWs for TSO: semantics and implementation. In Proceedings of the 34th

ACM SIGPLAN conference on Programming language design and implementa-

tion (PLDI ’13). ACM, New York, NY, USA, 61-72.

(Bharghava Rajaram)

v

Dedicated to my late mother Uma Rajaram.

Life feels empty without you.

vi

Table of Contents

1 Introduction 1
1.1 The Era of Multicore Processors . 1

1.1.1 Limitations of Chip Multiprocessors 2

1.2 RMWs are important but expensive 4

1.3 Why are RMW operations expensive 6

1.3.1 RMWs in Synchronization 6

1.3.2 RMWs in Supervised Memory Systems 11

1.3.3 RMWs in Profiling . 12

1.4 Thesis Contributions . 12

1.5 Organization of the thesis . 15

2 Background 17
2.1 Synchronization in Multicore Processors 17

2.1.1 Synchronization is Expensive 18

2.2 Read-Modify-Write Instructions . 19

2.2.1 RMWs used in Synchronization 20

2.2.2 RMWs used in Profiling Parallel Programs 23

2.2.3 Historical Definition of RMW instructions 23

2.3 Overview of Memory Consistency Models 23

2.3.1 Sequential Consistency . 23

2.3.2 Total Store Order . 24

2.3.3 Relaxed Memory Order . 24

2.4 Total Store Order Consistency Model 25

2.4.1 Base TSO . 25

vii

2.5 Progress Guarantees in Synchronization 27

2.5.1 Blocking Progress condition 27

2.5.2 Non-blocking progress condition 28

2.6 Fair Synchronization . 29

2.7 Supervised Memory Systems . 31

2.7.1 Metadata and SMIs . 32

2.7.2 Atomic operations in Supervised Memory Systems 33

2.7.3 Types of Supervised Memory Systems 34

2.7.4 Supervised Memory Systems for Weaker Consistency Models 37

2.8 Summary . 37

3 Fast RMWs for TSO 38
3.1 Introducing the Problem . 40

3.2 Semantics of TSO RMWs . 45

3.2.1 Adding RMWs to the Base TSO model 45

3.2.2 Type-1 RMWs . 46

3.2.3 Type-2 RMWs . 50

3.2.4 Type-3 RMWs . 53

3.2.5 Summary . 55

3.3 C/C++11 implementation proofs . 56

3.3.1 A generic outline of the proof strategy 57

3.3.2 Instantiating the generic proof 59

3.4 TSO RMWs: Implementation . 60

3.4.1 Type-1 RMW . 60

3.4.2 Type-2 RMW . 61

3.4.3 Type-3 RMW . 66

3.5 Experimental Evaluation . 66

3.5.1 Implementation . 67

3.5.2 Cost of RMWs . 70

3.5.3 Execution time overhead . 72

3.6 Related Work . 73

3.7 Summary . 74

viii

4 SuperCoP: Memory supervision with correctness and performance 76
4.1 Introducing the Problem . 78

4.1.1 Base Model for a TSO Supervised Memory System 78

4.1.2 Correctness issues in a TSO supervised memory system . . . 80

4.1.3 Existing proposals which address correctness Issues in a TSO

supervised memory system 82

4.2 SuperCoP - Correctness of memory supervision for TSO consistency . 83

4.2.1 Revised Ordering Requirement of SMIs 83

4.2.2 Implementation of SuperCoP 84

4.2.3 How correctness is achieved in SuperCoP 86

4.3 Ensuring Atomicity in SuperCoP . 86

4.3.1 Atomicity based on fine grain locking 87

4.4 Experimental Results . 93

4.4.1 System Specification . 93

4.4.2 Simulation results for HARD 96

4.4.3 Scalability with respect to metadata updates 98

4.5 Summary . 100

5 DyFCoM: Performance and Fairness for Lock-free Programs 101
5.1 Introducing the problem . 102

5.2 Dynamic Contention Management for Performance 107

5.2.1 RMW/CAS contention management 107

5.2.2 Monitoring CAS success/fails for tuning Backoffs 109

5.2.3 Proposed Approach to Dynamic Contention Management . . 112

5.3 Dynamic Fairness Management . 115

5.4 Evaluation Methodology . 118

5.4.1 Execution Platform . 118

5.4.2 Benchmarks . 118

5.5 Experimental Results . 120

5.5.1 Dynamic Contention Management 120

5.5.2 Dynamic Fairness Management with contention management 123

5.6 Related Work . 126

ix

5.7 Summary . 127

6 Conclusion and Future Work 129
6.0.1 Summary of Contributions 129

6.0.2 Future Work . 133

Bibliography 136

x

List of Figures

1.1 Applications of Read-Modify-Writes and performance issues associ-

ated with them. In this thesis, we address 2 sources of overhead,

namely enforced memory ordering, and contention-based fails (in or-

ange boxes) . 5

1.2 Existing RMW implementation in TSO 8

2.1 Supervised Memory Instructions . 32

2.2 Metadata-data atomicity for supervised memory systems 33

2.3 Memtracker implementation of a supervised memory system. 35

3.1 Dekker’s Algorithm using RMWs 41

3.2 Additional memory orderings induced by type-1 RMW 47

3.3 Dekker’s with writes replaced by RMWs 48

3.4 Dekker’s with reads replaced by RMWs. 48

3.5 Dekker’s with RMWs used as memory barriers (different addresses) . 49

3.6 Memory ordering disallowed by a type-2 RMW 50

3.7 Scenario for proof of lemma 2. 51

3.8 Dekker’s with RMWs used as memory barriers (same address) 53

3.9 Memory ordering disallowed by a type-3 RMW 54

3.10 Write-deadlock scenario for Type-2 RMWs 62

3.11 Cost of type-1, type-2, and type-3 RMWs 70

3.12 Impact of the performance overhead of RMWs on overall performance. 71

4.1 Supervised Memory Instructions . 77

4.2 Base model for a TSO based supervised memory system. 79

xi

4.3 Correctness issues in a TSO supervised memory system 81

4.4 Implementation of SuperCoP . 84

4.5 Resolving correctness issues in SuperCoP. 85

4.6 Atomicity Violation in SuperCoP. 87

4.7 Solving Atomicity by fine grain locking. 88

4.8 Protocol for the proposed Directory locking mechanism to preserve

metadata-data atomicity. 89

4.9 Metadata-data atomicity with Directory locking 92

4.10 Performance comparison for the HARD supervision scheme 95

4.11 Scalability of supervised systems with respect to the number of SMIs

which update metadata . 99

5.1 Throughput (Ops/us) vs Number of threads. 103

5.2 Fairness vs Number of threads. 104

5.3 Lock-free queue with and without constant backoff. 109

5.4 Variation of optimal backoff with concurrency. 110

5.5 Lock-free queue with and without constant backoff. 111

5.6 Dynamic Contention Management for Performance 113

5.7 Variation of fairness with backoff values. 115

5.8 Dynamic Contention Management for Fairness 116

5.9 Dynamic Contention Management for Lock-free queues. 121

5.10 Dynamic Contention Management for Lock-free stacks. 122

5.11 Dynamic Contention Management for a shared counter. 123

5.12 Dynamic Fairness and Contention Management for Lock-free queues. 124

5.13 Dynamic Fairness and Contention Management for Lock-free stacks. . 125

5.14 Dynamic Fairness and Contention Management for a Shared Counter. 126

xii

List of Tables

3.1 Conventional RMW (type-1) vs proposed RMWs (type-2, type-3) . . 43

3.2 Mapping from C/C++11 to X86 . 56

3.3 Architectural Parameters . 67

3.4 Benchmark Characteristics . 68

4.1 Splash-2 Benchmark Suite . 94

4.2 Characteristics of Supervised Instructions for HARD 97

xiii

Chapter 1

Introduction

1.1 The Era of Multicore Processors

High Performance Computing (HPC) has been at the forefront of computer science

research as a driver of advancement in scientific research, by performing complex sim-

ulations in the fields of fluid dynamics, genetics, nuclear reactions, etc. HPC has also

found place in the financial world where large scale computing is required to perform

several complex computations including market simulations, and predictive analysis.

Increase in HPC is to be largely attributed to the increased performance of micropro-

cessors over the last few decades, which has been driven by Moore’s Law [Moore,

1965]. Moore’s law is the observation that, the number of transistors that can be made

available on silicon doubles approximately every 2 years. This period has further been

decreased to 18 months [Schaller, 1997].

This increase in the availability of transistors has had researchers working endlessly

on how to utilize the additional transistors in order to provide increased computing

power. Initial performance gains were achieved via frequency scaling. However, in-

creasing the frequency of operation of a microprocessor also leads to increase in power

consumption (and consequently heat generation). Since there is a limit to the power

budget of any silicon device, a power wall is reached, and processors have to rely on

alternate architectures to keep providing increased performance. Another bottleneck

to performance is the disparity in the speed of the processor and memory, otherwise

called the memory wall. Indeed, from 1986 to 2000, processor speed improved at an

1

Chapter 1. Introduction 2

annual rate of 55% while memory speed only improved at 10% [Wulf and McKee,

1995].

Due to the scalability issues of both frequency and memory speeds, the additional

transistor bounty was utilized to add additional hardware logic to a processor to ex-

ploit Instruction-level Parallelism (ILP) [Hennessy and Patterson, 2003]. ILP involves

performing several operations of a computer program simultaneously. The techniques

used to achieve ILP includes :- instruction pipelining - execution of multiple instruc-

tions are partially overlapped; out-of-order processing - instructions are made to ex-

ecute in any order as long as they do not violate data dependencies; supercsalar ex-

ecution - multiple execution units are used; branch prediction, speculative execution

etc.

However, the diminishing returns of ILP [Wall, 1991] has led to the use of thread-

level parallelism (TLP) [Herlihy and Shavit, 2008]. In the case of TLP, multiple pro-

cesses run in parallel, operating on the same or different data. To architecturally exploit

TLP, mainstream processor vendors have focused on using the available transistors to

add multiple processing cores on the same chip, otherwise called chip multiprocessors

(CMPs). Vendors like Intel, AMD, and Sun have already been shipping out processors

with multiple cores since the early 2000s. Starting with dual-core processors, the num-

ber of cores on a single chip has been increasing exponentially (e.g. Intel’s Xeon Phi,

Sun Niagara, etc).

1.1.1 Limitations of Chip Multiprocessors

While CMPs do provide increased performance, they suffer from limitations caused

due to the factors including the coherence protocol [Sorin et al., 2011], the underlying

consistency model [Adve and Gharachorloo, 1995], communication between proces-

sors, and efficient synchronization. In this thesis, we address two of the major problems

facing multicore processors in terms of both performance and programmability. They

are as follows.

Synchronization in Multicore processors: The increased computing power of

the CMPs can only be exploited with the design of parallel software, which involves

parallelizing existing algorithms to run on multiple cores simultaneously. Researchers

Chapter 1. Introduction 3

have adopted several parallel programming models to enable this, the most common

of which is the shared memory model [Culler et al., 1997]. In the shared memory

model, all processing cores share the same global memory space, to which they can

read and write asynchronously. In such a scenario, however, there will be concur-

rent accesses to the same memory address from multiple processors which race with

each other. Efficient synchronization mechanisms [Mellor-Crummey and Scott, 1991]

are required to facilitate control of these concurrent accesses through co-operation

amongst the processors, in order for correct execution of a parallel program. Synchro-

nization, while critical in assuring the correctness of multi-threaded programs, is also

a bottleneck to performance scaling in multicore processors, as evidenced by several

research works [Anderson, 1990; Attiya et al., 2011, 2006; Cederman et al., 2013a;

Graunke and Thakkar, 1990]. Indeed, efficient synchronization has been one of the key

problems in the parallel computing domain since its inception.

Scalability: Another problem plaguing multicore processors is their scalability

with regard to both performance and fairness [Cederman et al., 2013a]. Limitations

in parallelization and the communication performance between processors affects the

increase in performance that can be achieved by increasing the number of processing

cores. Also, since the different processors share the same memory space, contention

amongst processors limits scalability as well. It is preferable to decrease contention

and increase the concurrency of a parallel program for better performance. It is worth

noting that synchronization performance also does not scale well with the number of

processors.

Since efficient synchronization and improved scalability are crucial to getting the

most performance out of a multicore processor, we also need tools to enable program-

mers to create, debug, maintain, or otherwise support other programs and applications.

The difficulty in writing and debugging parallel code is a well known problem in par-

allel computing. Two of the main classes of programming tools which are required in

order to write efficient and correct parallel programs are the compiler/interpreter and

the debugger/profiler. Examples of debugging/profiling tools includes Valgrind [Se-

ward and Nethercote, 2005], Intel Pin [Luk et al., 2005], Memwatch, mtrace [LLC,

2010].

These tools help increase reliability, security and accuracy of parallel programs.

Chapter 1. Introduction 4

Firstly, reliability includes finding deadlocks, memory errors, and other factors that

cause lockups & crashes. Secondly, the security aspect of debugging involves finding

memory and threading vulnerabilities that can be exploited by hackers. And finally,

identifying memory corruption, and race conditions help increase the accuracy of par-

allel programs by eliminating erroneous results. Memory systems which allow for such

debugging during runtime, by maintaining auxiliary information about each memory

address, are otherwise called supervised memory systems.

1.2 RMWs are important but expensive

We observed that Read-Modify-Writes (RMWs) are indispensable to efficient syn-

chronization [Attiya et al., 2011], memory supervision/debugging, and profiling. RMW

primitives form the basis for several blocking and non-blocking synchronization mech-

anisms. This makes RMWs seldom avoidable in writing efficient parallel programs.

While used primarily in synchronization applications, RMWs also serve other impor-

tant applications. First of these are supervised memory systems used for debugging

parallel programs. Here RMW-like operations are used to update a memory address

and some auxiliary data associated with that memory address in an atomic fashion. The

auxiliary data is used to store information about that memory address, which is used to

alter program execution during runtime. Examples of debugging/profiling tools using

supervised memory include Valgrind [Seward and Nethercote, 2005], Intel Pin [Luk

et al., 2005], mtrace [LLC, 2010], etc.

RMWs are also used in updating statistics counters which are shared amongst sev-

eral threads. We introduce these applications in a little more detail in the background

chapter.

In each of the above applications, we observed that the performance of RMWs is

a severe bottleneck, affecting both efficiency, and scalability. In the following sec-

tion, we discuss why RMWs pose a serious challenge to achieving high performance

and scalability of parallel programs. We then identify the issues related to the perfor-

mance overhead of RMW operations in each of the application classes and present our

approach to tackling these issues.

Chapter 1. Introduction 5

Figure 1.1: Applications of Read-Modify-Writes and performance issues associated

with them. In this thesis, we address 2 sources of overhead, namely enforced memory

ordering, and contention-based fails (in orange boxes)

The application of RMWs is summarized in Figure 1.1. It is apparent that RMWs

are necessary in enabling effective and efficient parallel computing. We observe that

RMWs are much more expensive then regular reads/writes in contemporary proces-

sor architectures which implement weaker consistency models. RMW operations in

the Intel x86 architectures are particularly expensive and contribute significantly to

the overhead of synchronization mechanisms. Measurements on a stock 8-core Intel

Sandybridge processor, using the Splash-2 [Woo et al., 1995] benchmark suite showed

that the average latency of an RMW operation is 67 cycles. In comparison, regular

load and store instructions take around 4 cycles to complete [David Levinthal, 2009]

(close to the L1 data cache latency). This latency is further hidden by the out-of-order

execution model used by Intel processors. Similarly, on a 32-core Intel Xeon Proces-

sor, the average latency of an RMW instruction is 74 cycles across the SPLASH-2

benchmark suite. These measurements are further elaborated upon in chapter 3. In

combination with a comparatively higher frequency of synchronization operations, the

Chapter 1. Introduction 6

large latency of RMW operations presents a performance bottleneck for parallel pro-

grams.

Indeed, Attiya et al. [Attiya et al., 2011] call for processor designers to design

low cost RMWs, as concurrent programming is impossible without synchronization

mechanisms, which primarily use RMWs. Several research works, like [Attiya et al.,

2006; Michael, 2004; Natarajan and Mittal, 2014; Spear et al., 2008; Speziale et al.,

2011], have proposed algorithms where they consciously reduce the number of RMWs

in order to gain performance.

Also, the performance overhead of RMWs persists across its various applications.

For example, in supervised memory systems, overhead of even over 100% can be ex-

pected for the purpose of maintaining metadata-data atomicity [Nagarajan and Gupta,

2009]. In profiling applications, per-thread statistics counters are preferred over shared

counters (which need RMWs). Recent research by Dice et al. [Dice et al., 2013b]

shows how RMWs make profiling expensive and also propose approximate counters

to overcome limitations in performance and scalability.

Thus, in each of the above cases, there is a need to reduce the cost of RMWs. In this

thesis, we investigate the causes for the increased overhead of RMW operations, and

consequently propose solutions for the same. In the next section, we briefly discuss

our observations on the reasons for why RMWs are expensive. We then discuss our

approach to overcoming the bottleneck presented by RMW operations.

1.3 Why are RMW operations expensive

In this section we discuss why RMWs are expensive, contributing significantly to the

overall program execution time. We discuss the 3 applications of RMWs, namely

synchronization, supervised memory and profiling, separately, although the causes for

the increased RMW cost may overlap with each other for every application.

1.3.1 RMWs in Synchronization

Similarly to non-atomic memory operations, the cost of RMWs depends on several

design parameters. These include: the underlying memory architecture (cache size,

Chapter 1. Introduction 7

levels of cache, page size, etc.), the network architecture (like communication cost be-

tween processors, router architecture), cache coherence and consistency. While these

factors are common to all memory operations, RMWs incur additional overheads due

to its atomic nature and usage.

In this thesis, we focus on two of these unique sources of overhead with regard to

RMWs used in synchronization. Firstly, we observe that there is a mismatch between

the memory orderings required with an RMW and the orderings that are enforced by

practical implementations of RMWs. We attribute this to how RMWs are defined with

respect to their atomicity. Please note that this overhead occurs across all consistency

models (which also enforce memory ordering), and thus can be classified as a separate

source of overhead.

Secondly, we observe that contention amongst RMWs from different threads im-

pedes the scalability of synchronization mechanisms. Since RMWs compete to up-

date shared variables, some RMWs fail and have to be re-executed depending on the

synchronization mechanism. We observe that these contention-based fails of RMWs

contribute significantly to the overhead of concurrent programs.

We now discuss these causes in further detail. They are again described in an

elaborate manner in the later chapters in this thesis (chapters 3,4,5), which address

these issues with respect to the application of RMWs.

Overhead due to Memory Orderings enforced by RMWs: In the previous sec-

tions, we assumed a naive definition of atomicity in terms of non-interference from

other processors. Further exploration into how atomicity is defined yielded the ob-

servation that an exact understanding of what kind of interference is allowed or disal-

lowed greatly influences the cost of an RMW. This definition of atomicity, along with

the underlying memory consistency model [Adve and Gharachorloo, 1995] restricts

the ordering of memory operations around the RMW.

In this thesis, we specifically target the Total-Store-Order (TSO) consistency model.

In the stronger sequential consistency (SC), all memory operations are strictly ordered,

leading to poor performance in traditional implementations of SC. While recent ef-

forts [Lin et al., 2010; Blundell et al., 2009] have strived to reduce this performance

overhead, SC is still not existent in today’s commercial processors. On the other hand,

TSO is widely used in Intel’s and AMD’s x86 architectures, and also Sun’s SPARC

Chapter 1. Introduction 8

Figure 1.2: Existing RMW implementation in TSO - ordered like a memory fence.

processors. Also, as evidenced in the previous section, the cost of RMWs in TSO is

manifold the cost of regular memory operations. Weaker consistency models, like re-

lease consistency (RC) [Mirapuri et al., 1992; Machine and Staff, 1995], do not enforce

any memory ordering at hardware level, whilst relying on the programmer to insert ap-

propriate memory barriers. While TSO is the focus of this thesis, we also show how to

extend our work to weaker consistency models.

Existing RMW implementations in TSO require that the read and write of the

RMW occur together in the global memory order [Intel Corporation, 2009; SPARC In-

ternational, 1994; Gharachorloo, 1995; Sorin et al., 2011]. Since the underlying mem-

ory consistency model dictates the global memory order, the implementation of the

RMW is also dependent on the memory model. TSO relaxes the write→ read order-

ing and allows writes to be retired into the write-buffer; however, it requires writes to

complete in program order. Therefore, TSO requires writes that are before the RMW

in program order to be ordered before the write of the RMW. However, since read and

write (of the RMW) should occur together in global memory order, writes before the

RMW should also be ordered before the read of the RMW.

Thus existing RMW implementations first drain the write-buffer before performing

Chapter 1. Introduction 9

the RMW. To perform the RMW atomically, they read the cache block into the local

cache with read-write permissions and deny coherence requests to the cache block until

the write (of the RMW) completes. Only after the write completes, do they allow in-

structions following the RMW to be retired. In effect, existing RMW implementations

implicitly insert memory barriers before and after the RMW as shown in Figure 1.2.

This memory fence-like semantics of existing RMW implementations are the cause

for RMWs to be expensive in architectures which implement TSO consistency. In this

thesis, we investigate whether such a behavior is necessary for an RMW in order to

provide the required ordering when used in synchronization.

Ordering Requirements of RMWs: While discussing the cost of RMWs, it is im-

portant to understand the functionalities that are required by an RMW, and the context

in which it is used. For example, the RMWs used in synchronization are typically re-

quired to be strongly ordered [Boehm and Adve, 2008], i.e., they require acquire and/or

a release semantics [Gharachorloo, 1995]. An acquire semantics requires that memory

operations which follow the RMW should appear to perform after the RMW, while a

release semantics requires that all memory operations which precede the RMW should

appear to perform before the RMW. For instance, the RMW used in a lock operation

requires acquire semantics since memory operations within the critical section should

only be performed after the lock is obtained; conversely, an RMW when used in an

unlock operation requires release semantics. In some situations, for instance in barrier

synchronization, an RMW requires both acquire and release semantics.

In particular, our approach in this thesis is guided by the requirements of general

programs, in particular by just what properties are needed for the C/C++11 implemen-

tation [Becker, 2011; C, 2011]. Recent studies [Terekhov, 2008; Batty et al., 2011]

show how the new C/C++11 concurrency model can be implemented on a TSO ar-

chitecture. They introduce synchronization reads and writes of various flavors; these

reads and writes are referred to as atomics (SC-atomic-reads and SC-atomic-writes).

Batty et al. [Batty et al., 2011] have shown that the C/C++11 model is correctly imple-

mentable on TSO by replacing C/C++11 SC-atomic-writes and/or SC-atomic-reads by

RMWs, leaving other language constructs (reads, writes, fences) to be implemented

by plain TSO reads, writes and barriers. The ordering that an RMW provides should

Chapter 1. Introduction 10

be sufficient in being able to replace the SC-atomic-reads and SC-atomic-writes.

Contention-based Failures: Apart from the increased cost of RMWs due to mem-

ory ordering constraints, we observed that contention also contributes significantly to

the overall program execution time. Avoiding contended hot spots is a fundamental

principle in the design of concurrent data structures [Herlihy and Shavit, 2008]. Both

blocking and non-blocking algorithms suffer limitation to their scalability due to con-

tention. In blocking algorithms, the amount of time a thread holds a given lock, and

the granularity of the lock itself, have a significant impact on the overhead due to con-

tention. In contrast, for non-blocking algorithms, we observe that the overhead due to

contention is largely caused by the contention of the RMWs themselves; more specif-

ically, the work wasted due to RMW failures [Dice et al., 2013a; Hendler et al., 2010;

Morrison and Afek, 2013]. Consider lock-free algorithms for example. Most lock-

free algorithms like [Cederman et al., 2013b; Michael and Scott, 1996; Herlihy, 1991]

synchronize using read-modify-write (RMW) loops (particularly compare-and-swap

(CAS) loops). In a CAS loop, a thread observes the shared state, performs a compu-

tation, and uses a CAS to update the shared state (called the linearizing CAS). If the

linearizing CAS succeeds, this read-compute-update sequence appears to be atomic;

otherwise the thread must retry the loop. The requirement of atomicity of the CAS

loop implies that only one thread at a time can successfully complete a CAS loop. The

remaining CAS loops will result in failures of the CAS. With increased contention,

the number of CAS failures will increase resulting in poor throughput. This increased

contention can be in the form of increased number of concurrent threads, or reduced

amount of work done between successive synchronization operations. This is the main

limiting factor in the scalability of non-blocking algorithms. Thus, instead of con-

tention in itself, addressing the failures caused due to contention is an important chal-

lenge in increasing the performance of RMWs in synchronization.

Fairness issues due to contention-based failures: Apart from the performance

overhead incurred due to contention-based failures, fairness is also of significant con-

cern in concurrent programs especially under high contention. Fairness indicates how

equal a chance do all threads have when accessing a shared resource. This can be

Chapter 1. Introduction 11

of concern particularly in NUMA architectures where the latency of memory access

varies across different processing nodes. Also, low fairness indicates potential starva-

tion of certain threads, or an unequal distribution of work. High fairness means that all

threads have an equal opportunity to progress by accessing the shared resource.

Due to the progress guarantees of non-blocking algorithms, fairness is often com-

promised, where certain threads have more access to the shared resource (here a mem-

ory address accessed by an RMW) than others. In particular, the lock-free progress

guarantee may lead to a thread failing all its CAS loops and never getting an opportu-

nity to update the shared data structure. In fact, an extreme case of this is when all but

one thread fail their CAS loops i.e. one thread continues to perform successful CAS

loops while all other threads fail. This drastically affects fairness and even the overall

performance of the program. In order to enforce a level of fairness in the program, it is

necessary to ensure the fairness of RMWs performed by the concurrent threads. Thus,

in non-blocking algorithms, it is important to address the issue of fairness along with

performance in order to provide efficient synchronization.

1.3.2 RMWs in Supervised Memory Systems

Supervised memory systems make use of supervised memory instructions (SMIs) to

access some (or all) of the memory addresses. As mentioned earlier, SMIs are similar

to RMW operations, where they read the metadata associated with a memory address,

and update it atomically if required. An SMI can also potentially raise an exception on

reading metadata, if certain debugging criteria are met. Supervised memory systems

support both supervised and non-supervised instructions.

Similarly to synchronization, supervised memory systems order SMIs to ensure

correctness of supervision [Venkataramani et al., 2009]. Since any supervised instruc-

tion can cause an exception, all instructions should be ordered with respect to super-

vised instructions to guarantee precise exceptions [Bobba et al., 2011]. This ordering

requirement leads to heavy performance degradation in weaker consistency models.

The correctness problem in supervised memory systems and our approach to ensuring

correctness without compromising on performance is elaborated upon in chapter 4.

Chapter 1. Introduction 12

1.3.3 RMWs in Profiling

While RMWs used in profiling applications have no specific ordering requirements,

they are still afflicted by the issue of contention. In this vein, we address RMWs used

in profiling in a similar manner as RMWs used in non-blocking algorithms. Please

refer to chapter 5 for further discussion on this.

In summary, the two main factors which influence the performance overhead of

RMWs are the memory ordering constraints and the contention amongst processors in

accessing shared memory addresses via RMWs. While the issue of memory ordering is

important in both blocking and non-blocking algorithms, the issue of contention-based

RMW fails is more prevalent in non-blocking algorithms. This is due to increased

contention as evidenced by existing literature [Cederman et al., 2013a]. Additionally,

contention also degrades the fairness amongst threads in performing RMWs. Similarly

supervised memory systems suffer a larger overhead due to the ordering requirement.

Contention based fails do not occur in supervised memory systems, as the RMWs used

always succeed. Contention however does play a role in deciding the communication

cost involved in performing supervised instructions.

1.4 Thesis Contributions

This section describes the research contributions of the dissertation. Each contribution

addresses the performance issues of atomic RMWs in both blocking and non-blocking

synchronization mechanisms, by targeting the ordering constraints of RMWs or the

bottleneck due to contention based fails. As discussed in the previous section, the per-

formance overhead of RMWs due to their ordering constraints occurs universally in

all applications of RMWs. However, ordering requirements vary for different applica-

tions. In this regard, we target RMWs used for synchronization purposes and RMWs

used for supervised memory systems separately. RMW contention, however, is more

prevalent in non-blocking algorithms (lock-free programs) and thus, we address the

contention issue in this context alone. We also address contention in the context of

Chapter 1. Introduction 13

profiling applications

We briefly state the contributions in this thesis before discussing them in further

detail:

• Fast RMWs for TSO: In this work we argue for weaker TSO RMWs, where

atomicity is relaxed in order to avoid the memory barrier-like behavior of exist-

ing TSO RMW implementations (we call this type-1 RMWs). We observed that

strong barrier-like semantics of RMWs is not often required in concurrent pro-

grams. We considered two weaker definitions: type-2 and type-3 each causing

subtle ordering differences. Type-2 RMWs is a weakening of atomicity which

only prevents reads and writes of the same address as the RMW from appear-

ing between read and write (of the RMW) in the global memory order. Type-3

RMWs further weakens the atomicity by preventing only writes of the same ad-

dress as the RMW from appearing between read and write (of the RMW) in the

global memory order.

We formally specify how such weaker RMWs would be ordered, and show that

type-2 RMWs, in particular, can seamlessly replace existing type-1 RMWs in

common synchronization idioms – except in situations where a type-1 RMW is

used as a memory barrier. Recent work has shown that the new C/C++11 con-

currency model can be realized by generating conventional (type-1) RMWs for

C/C++11 SC-atomic-writes and/or SC-atomic-reads. We formally prove that this

is equally valid using the proposed type-2 RMWs; type-3 RMWs, on the other

hand, could be used for SC-atomic-reads (and optionally SC-atomic-writes). We

further propose efficient microarchitectural implementations for type-2 (type-3)

RMWs – simulation results show that our implementation reduces the cost of

an RMW by up to 58.9% (64.3%), which translates into an overall performance

improvement of up to 9.0% (9.2%) on a set of parallel programs, including those

from the SPLASH-2, PARSEC, and STAMP benchmarks.

• SuperCoP - Supervision for Correctness and Performance: This work dis-

cusses the implementation of memory supervision with both correctness and

performance i.e. a supervised memory system which maintains the memory

ordering required for correctness, while not compromising on performance. The

Chapter 1. Introduction 14

current state-of-the-art solution to ensuring correctness of supervised memory

systems is Bobba et al.’s Safe and efficient supervised memory systems [Bobba

et al., 2011]. Bobba proposed TSOall, which orders all SMIs and is universally

correct but inefficient. For better performance Bobba proposed TSOdata, which

does not order non-supervised with respect to supervised instructions and vice

versa. This solution is limited in its usage ,as discussed in chapter 4, despite its

higher efficiency.

While TSOall requires all SMIs to perform (as a whole) in-order with respect to

supervised and non-supervised instructions, we make the observation that cor-

rectness is ensured as long as SMIs merely read and process their metadata

in order. In other words, we reduce the correctness requirement of supervised

memory systems from SMI ordering to metadata read ordering. We propose Su-

perCoP, a supervised memory system in which SMIs read their metadata (data)

and process them (generating an exception if necessary) before retirement; Su-

perCoP allows the resulting writes to metadata (and data) to be retired into the

write-buffer. Since SuperCoP ensures correctness without making any assump-

tions about the supervision scheme, it is a generic solution to the correctness

problem. At the same time, since SuperCoP allows data and metadata writes to

retire into the write-buffer, it is efficient.

We compare the performance of SuperCoP, TSOdata, and TSOall, using the

HARD [Zhou et al., 2007] supervision scheme to test the different supervised

systems. Our experiments show that SuperCoP performs 16.8% better than

TSOall, and 6% better than TSOdata. It is worth noting that SuperCoP performs

better than TSOdata, even though TSOdata is not applicable to all supervised

systems.

• DyFCoM - Dynamic Fairness and Contention Management: We tackle the

drawback in the existing RMW contention management schemes and the fair-

ness degradation under contention by adopting a dynamic scheme which mon-

itors the progress of the different threads through their RMWs, and uses this

information to (a) tweak the contention-backoff parameters for optimal perfor-

mance, and (b) throttle threads in order to ensure a high level of fairness. In this

Chapter 1. Introduction 15

regard, we present DyFCoM (Dynamic Fairness and Contention Management) –

a holistic scheme which addresses both throughput and fairness in non-blocking

lock-free programs, by monitoring RMWs used in such programs and control-

ling their execution. With regard to throughput, we apply a backoff whenever

a CAS fails – similar to existing contention management schemes. However,

unlike the existing scheme, DyFCoM dynamically determines backoff values,

completely agnostic of the level of contention, concurrency, and the processor

architecture. We do this by periodically monitoring the throughput of individual

threads, and gradually change the backoff value based on this throughput.

Similarly, for fairness, we use the periodical throughput values to identify po-

tentially starving threads and deliberately fail the linearizing CAS instructions

of non-starving threads, increasing the chances for a starving thread to progress.

We provide a simple implementation of both these features by augmenting the

CAS instructions with the required monitoring, force-fail and backoff functions.

Our experimental results show that DyFCoM performs better than the existing

state-of-the-art CAS contention management scheme by an average of 7.93%.

DyFCoM shows increased fairness values in all cases (up to 43.64%).

1.5 Organization of the thesis

This thesis is organized into six chapters and are as follows:

The current chapter (chapter 1) introduces the problem tackled by this thesis,

namely high cost of RMW operations when used in synchronization, debugging/mon-

itoring, and/or profiling. This chapter also provides an outline of the thesis.

Chapter 2 presents a an elaborate background on RMW operations, and discusses

how they are used in synchronization mechanisms, both blocking and non-blocking.

Chapter 2 also discusses the fundamentals of a supervised memory system. Also, as

all the work presented in this thesis assumes TSO consistency, we provide a theoretical

model of the memory orderings guaranteed by TSO consistency as part of the global

memory order.

Chapter 3 discusses the weaker RMW instructions that we propose for TSO in

order to reduce their performance overhead. We also present related experimental

Chapter 1. Introduction 16

results that validate our approach.

Chapter 4 presents our work on supervised memory systems. We first discuss

the problems with correctness in supervised memory systems and then present our

approach to ensuring correctness.

In chapter 5, we discuss our proposed dynamic fairness and contention manage-

ment scheme that provides both increased performance and fairness for lock-free pro-

grams.

Finally, Chapter 6 concludes and offers reflections on the research work presented

in this thesis. We also discuss potential future directions for research in this area.

Chapter 2

Background

This chapter provides a bare bones introduction to synchronization, and Read-Modify-

Write (RMW) instructions, followed by an overview of the memory consistency mod-

els in use today. The Total-Store-Order (TSO) model is further elaborated upon as all

the work presented in this thesis targets the TSO consistency model. We then discuss

the progress guarantees provided by the various synchronization procedures, focus-

ing on lock-free programming. From the memory supervision perspective, we discuss

how atomic operations form the basis of a generalized supervised memory instruction

(SMI), and why atomicity is required for this case.

2.1 Synchronization in Multicore Processors

Attiya et al. [Attiya et al., 2011] identify two frequently used patterns of synchroniza-

tion - read-after-write (RAW) and atomic-write-after-read (AWAR). The RAW pattern

involves a process (or thread) writing to a shared memory address (say x), followed by

the same process reading from a different shared address (y), without writing to y in

between. Such a pattern checks for writes to y from other threads in order to implement

important synchronization mechanisms like mutual exclusion. Dekker’s algorithm is

the most significant example of RAW synchronization.

The AWAR pattern consists of a process (or thread) reading from a shared memory

address followed by the process writing to the same or another shared memory address,

where the read and write operations are atomic. In this thesis, we focus on the AWAR

17

Chapter 2. Background 18

synchronization pattern which make use of read-modify-writes (RMWs). An example

of the AWAR synchronization pattern is shown in Listings 2.1 and 2.2. The mechanism

is explained further in §1.3. It is worth noting that the RAW synchronization pattern

can also be transformed into AWAR and vice versa.

Another way to classify synchronization mechanisms is based on the thread progress

guarantees that the mechanism can provide. In this regard, synchronization mecha-

nisms can either be blocking, like locks, semaphores, barriers etc. or non-blocking, like

lock-free and wait-free algorithms [Herlihy and Shavit, 2008]. An algorithm is non-

blocking if the suspension of one or more threads will not stop the potential progress

of the remaining threads. On the other hand, in blocking algorithms, if a thread hold-

ing a lock is suspended, other threads may have to wait indefinitely for this lock to be

released. Newer synchronization mechanisms like transactional memory [Hammond

et al., 2004] borrows from both blocking and non-blocking algorithms.

2.1.1 Synchronization is Expensive

Effective synchronization is crucial in assuring the correctness of multi-threaded pro-

grams. However, synchronization primitives also pose a bottleneck to performance

scaling in multicore processors. This has been shown by several research works [An-

derson, 1990; Attiya et al., 2011, 2006; Cederman et al., 2013a; Graunke and Thakkar,

1990]. Attiya et al. [Attiya et al., 2011] showed that expensive synchronization cannot

be avoided in concurrent algorithms using RAW or AWAR synchronization patterns,

especially in weaker consistency models. A consistency model dictates the order of

memory operations from concurrent threads as it is observed globally. A recent study

by Cederman et al. [Cederman et al., 2013a] showed the limitations in the scalability

of concurrent algorithms using different synchronization mechanisms.

Synchronization performance is affected by the communication patterns exhibited

by threads, the cost of instructions used in the synchronization process, and the cache

coherence overhead. While the cache coherence overhead is not specific to synchro-

nization (it affects all memory operations in general), and the communication patterns

of synchronization are specific to the synchronization mechanism used, the cost of the

instructions used in synchronization is a common cause for poor performance of syn-

Chapter 2. Background 19

chronization across different mechanisms. The RAW synchronization patterns make

use of expensive memory fences or barriers, while AWAR makes use of read-modify-

write (RMW) instructions. We observe that RMWs used in synchronization are ex-

pensive in weaker consistency models and significantly contribute to the overhead of

synchronization concurrent programs.

In this thesis, we propose to achieve efficient synchronization by optimizing the

performance of RMWs in weaker consistency models. We focus on the total-store-

order (TSO) consistency model which is prevalent in the popular x86 processor archi-

tectures designed by Intel and AMD. Sun’s SPARC processors also make use of the

TSO consistency model.

2.2 Read-Modify-Write Instructions

An RMW is as a special machine instruction which reads a value from an address,

and replaces it with a modified value atomically [Intel Corporation, 2009; Herlihy

and Shavit, 2008; Michael and Scott, 1995a; SPARC International, 1994]. Exam-

ples of RMW instructions in SPARC/x86 processor architectures include atomic swap

(SWAP/XCHG), test-and-set (TAS), fetch-and-add (FAA), and compare-and-swap (CAS).

Initial RMW implementations in bus based multiprocessors locked the system bus [In-

tel Corporation, 2009] during the execution of an RMW, thereby explicitly ensuring

atomicity. Subsequent RMW implementations leverage the insight that it is sufficient

for an RMW to be logically atomic [Michael and Scott, 1995a]. To this end, the RMW

obtains exclusive permissions to the cache line addressed and locks it in the local cache.

The cache coherence protocol ensures that coherence requests from other processors

to this cache line are denied until the RMW completes and the lock is released. This is

adopted in the present Intel[Intel Corporation, 2009], AMD[Advanced Micro Devices,

2009], and SPARC[SPARC International, 1994] processor architectures. Commercial

processor architectures which have a relaxed memory ordering [Mirapuri et al., 1992;

Machine and Staff, 1995] often use a Load-Linked / Store-Conditional (LL/SC) pair

to implement an atomic primitive. The read and write of the RMW (Ra and Wa) 1

1Please note that we use the terms Ra for the read part of an RMW, and Wa for the write part of the
RMW throughout this thesis.

Chapter 2. Background 20

are implemented as two separate instructions, LL and SC, which loop indefinitely till

the write is successful without interruption. All RMW primitives can be implemented

using LL/SC primitives.

2.2.1 RMWs used in Synchronization

An RMW used in synchronization is typically a machine-level instruction where a

processor reads and writes to the same memory address atomically i.e. without the

interference of other processors. Typical RMW instructions used for synchronization

in commercial processor architectures include compare-and-swap (CAS), test-and-set

(TAS), fetch-and-add (FAA), and swap. Irrespective of whether the synchronization

mechanism is blocking or non-blocking, RMW operations (otherwise called atomic

operations), are predominantly used to achieve consensus in synchronization. Indeed,

Herlihy [Herlihy, 1991] showed that the ability to read and write to an address atom-

ically is critical to solve the consensus problem, which abstracts important synchro-

nization problems. It is not only difficult, but also impossible to implement some of

the synchronization constructs without RMW operations.

Now, RMWs are costly in mainstream processor architectures such as x86 and

SPARC, which support (variants of) Total-Store-Order (TSO). RMWs in these archi-

tectures are ordered similarly to a memory barrier [Intel Corporation, 2009; SPARC In-

ternational, 1994], incurring the cost of a write-buffer drain in the critical path. Even

in weaker consistency models, such as release consistency [Machine and Staff, 1995],

the RMWs are generally associated with memory barriers [Boehm, 2011]. Increased

cost of RMWs impacts the synchronization cost negatively.

Listing 2.1: Acquiring a Spinlock - xchg is an atomic swap instruction provided by x86

1 locked: ; Lock variable − locked = 1, unlocked = 0

2 dd 0

3 spin lock:

4 mov eax, 1 ; EAX register set to 1

5 xchg eax, [locked] ; Atomically swap EAX and the lock variable

6 test eax, eax ; Self−test EAX − Sets zero flag if EAX = 0

7 jnz spin lock ; Lock acquired if EAX = 0, If not redo loop

8 ret

Chapter 2. Background 21

Listing 2.2: Releasing a Spinlock

1 spin unlock:

2 mov eax, 0 ; EAX register set to 0

3 xchg eax, [locked] ; Atomically swap EAX and lock variable

4 ret

Almost all practical implementations of locking mechanisms, including spinlocks,

reader-writer locks, ticket locks make use of RMWs. For example, the acquire part of

a spinlock for an Intel x86 processor architecture [Intel Corporation, 2009] is shown in

Listing 2.1. Here, the EAX register is set to 1 and is atomically swapped with the lock

variable using the xchg instruction. This stores 1 in the lock variable, whose previous

value is stored in EAX. If this previous value was 0, the lock was free and has now

been acquired. If the previous value was 1, the lock is held by another thread, and this

thread retries to acquire the lock. Listing 2.2 shows how a lock is released. The EAX

register is set to 0, and is atomically swapped with the lock variable, thereby resetting

the lock. Once a thread acquires a lock, it can execute its critical section. The locking

mechanism ensures that only one thread at a time can enter its critical section. If the

atomic xchg instruction is replaced with a regular load and store, then other processors

can potentially write to the locked variable between the load and store. Thus, the

value returned by the load instruction can be stale, resulting in multiple processors

potentially acquiring the lock. It is worth noting that the RMW used in releasing

of a lock, can be replaced by a normal write operation in consistency models that

ensure write ordering (with respect to reads and writes). This includes the total-store-

order (TSO) consistency model that is implemented by x86 processor architectures.

However, locking mechanisms used in popular libraries, like pThreads, used RMWs in

both the acquire and release portions of a lock.

Listing 2.3: Pseudocode for enqueue operation

1 enqueue(queue t ∗Q, data∗ value) {

Chapter 2. Background 22

2 node = new node();

3 node−>value = value;

4 node−>next.ptr = NULL;

5 while(1) {
6 tail = Q−>Tail;

7 next = tail.ptr−>next;

8 if(tail = = Q−>Tail) {
9 if(next.ptr = = NULL) {

10 if(CAS(&tail.ptr−>next, next, node))

11 break;

12 else
13 CAS(&Q−>Tail, tail, next.ptr);

14 }
15 }
16 }
17 CAS(&Q−>Tail, tail, node);

18 }

Similarly to lock-based synchronization, lock-free and wait-free implementations

of standard data structures like queues, stacks, hash tables etc. also use RMWs to

complete their synchronization process. The pseudocode for the enqueue operation of

a lock-free algorithm for a queue [Michael and Scott, 1996] is shown in Listing 2.3.

Here, the node to be inserted into the queue data structure is created in Lines 2-4.

Lines 5-16 form a CAS loop, which repeats indefinitely until the enqueue operation is

successful. Inside the loop, first the tail node and the address of the node pointed to

by the tail node (Lines 6,7) are read. Then, the validity of the tail node (Lines 8,9),

and whether it has changed since the enqueue operation began are checked. Then the

tail node is updated atomically using a CAS (Line 10). If the update is successful, the

enqueue is complete. If not, the CAS loop repeats. The CAS is necessary here so that

only one processor at a time can update the queue. All other processors which attempt

to update the queue fail, can retry the operation.

Chapter 2. Background 23

2.2.2 RMWs used in Profiling Parallel Programs

RMWs are used in tools [Levon and Elie, 2004; Seward and Nethercote, 2005] and

applications [Afek et al., 2012; Lev and Moir, 2011] which make use of shared counters

to maintain certain statistics related to parallel programs. Statistics counters are used

to count events that may occur with high frequency while the value of the counter is

read infrequently, as is common for performance monitoring and diagnostics.

Simply incrementing a shared counter without ”synchronization” does not work for

multiple threads, because one threads update can overwrite anothers, thereby losing

the effects of one or more increments. Such counters can be made thread-safe by

protecting them with a lock, but in most modern shared memory multiprocessors, it is

preferred to increment the counter using RMW instructions like CAS, and FAA.

2.2.3 Historical Definition of RMW instructions

Gharachorloo [Gharachorloo, 1995], in his research on memory consistency models,

defined RMW instructions as aggressive and conservative. The aggressive definition

says that for an RMW to be atomic, there should be no writes to the location addressed

by the RMW. For the conservative definition, no writes should be allowed between the

read and write of the RMW i.e. Ra and Wa. We observe that these definitions are not

consistent with the implementation of RMW in various commercial processors.

Sorin and Mark Hill [Sorin et al., 2011], in their primer on consistency models,

define that an RMW is atomic as long as the read and write occur in the global memory

order [Lamport, 1978]. We adopt a similar definition methodology for an RMW, with

which we then explain the implementation of RMWs in different consistency models.

2.3 Overview of Memory Consistency Models

2.3.1 Sequential Consistency

Arguably the most intuitive memory consistency model is sequential consistency. Se-

quential consistency was first formalized by Lamport [Lamport, 1979]. Lamport first

called a single processor (core) sequential if the result of an execution is the same as

Chapter 2. Background 24

if the memory operations had been executed in the order specified by the program. A

multiprocessor is sequentially consistent if the result of any execution is the same as

if the operations of all processors (cores) were executed in some sequential order, and

the operations of each individual processor (core) appear in this sequence in the order

specified by its program. Due to the strict ordering constraint, traditional sequentially

consistent systems [Adve and Gharachorloo, 1995] do not make use of a write-buffer.

There are no practical implementations of SC ordering due to the large overhead due to

strict ordering. Although recent proposals [Blundell et al., 2009; Lin et al., 2010] show

that sequential consistency can be implemented with minimal overhead, these have not

been considered for practical implementation as of yet. We assume that sequentially

consistent systems have strict intra-processor ordering between all memory operations.

RMW instructions in Sequential Consistency: Since sequential consistency does

not make use of a write-buffer, and strictly enforces all memory ordering, Wa is exe-

cuted right after the Ra completes. any memory operation before the RMW has to be

completed before the R is performed. Any memory operation following the RMW in

program order, has to be retired only after the W completes.

2.3.2 Total Store Order

Total-Store-Order (TSO) is used in SPARC implementations and, more importantly,

approximately matches the memory consistency model of the widely used x86 archi-

tecture. TSO systems retire writes to a write-buffer, where all writes complete in FIFO

order. Subsequent reads can be retired before the write completes. Thus TSO sacrifices

read-write ordering. Also, reads which are to an address for which a write exists in the

write-buffer, obtains its value from the corresponding entry in the write-buffer. The

TSO model is further elaborated upon later in this chapter. The behavior of RMWs in

TSO is also discussed.

2.3.3 Relaxed Memory Order

In a yet weaker or relaxed memory order (RMO), the architecture in itself does not

enforce any ordering between any memory instructions. RMO systems preserve only

the ordering that is explicitly specified by the programmer with the use of fences.

Chapter 2. Background 25

Writes retire to the write-buffer, but are not constrained to complete in-order. Thus,

writes complete out of order. Also, reads can be issued out of order, and can also be

completed out of order with respect to writes. This creates the need for fences

RMW instructions in RMO: RMO systems does not impose any ordering con-

straint on RMWs. Practical RMO systems, like PowerPC and MIPS, typically use

LL/SC primitives, which allows reads/writes from the same processor to complete be-

tween LL and SC. However, due to the mechanism of LL/SC, reads following the

RMW cannot retire till the SC completes, as success of the LL/SC depend on the suc-

cess of the SC. The SC can, however, retire before the writes in the write-buffer if

there are no explicit fences inserted by the programmer. In the atomic ops library built

by HP labs [Boehm, 2011], the LL/SC pair in PowerPC, uses the lwsync (lightweight

sync) instruction whenever ordering is required.

2.4 Total Store Order Consistency Model

We elaborate on the TSO consistency model as used by x86 processor architectures

as this forms the basis for our proposal on weakening RMW operations in order to

provide better performance.

2.4.1 Base TSO

The base TSO model presented here follows Alglave [Alglave, 2010]. We present here

only a brief introduction to Alglave’s formulation published previously. Readers, par-

ticularly those familiar with alternative TSO formulations, should refer to Alglave’s

thesis for more details. The thesis has a proof of equivalence with the SPARC defi-

nition of TSO [SPARC International, 1992], which is separately shown by Owens et

al [Owens et al., 2009] to resemble the x86 multiprocessor model.

As usual in axiomatic memory models, we first derive a set of candidate executions

from a program. Each candidate execution contains a set of events and relations over

them, and represents a conceivable execution path (with control-flow unfolded, and

values for each read in the program). In the next step, the memory model will carve

out (via conditions on those relations) which of these candidate executions are allowed

Chapter 2. Background 26

by the model.

The events (memory reads, writes, and barriers) are annotated with their thread,

type, and for memory accesses the associated address and value. From the program we

derive the program order (po) relation, a local (per-thread) total order over events from

the same thread as they appear in the program. We also consider two relations which

are existentially quantified over: a reads-from map (rf) and write-serialization (ws),

both relations over events. The relation rf maps, for each read, the write that the read

takes its value from to the read. The relation ws is a linear order per location relating

all (and only) the writes to the same location, and represents the coherence order of the

system (in prior work, this relation is also called coherence co).

For ease of stating the memory model, we derive various additional relations from

the above. The from-reads relation (fr) relates a read to all writes to the same location

that come after (in ws) the write it reads from (given by rf). The external-reads-from

relation (rfe) is the subrelation of rf which is restricted to reads which read from a

different-thread write. The communication relation com is the union of ws, rfe, and fr.

A preserved-program-order relation (ppo) relates all memory operations from the

same thread in program order, according to TSO ordering rules. Thus it relates all

memory operations, except writes to program order-subsequent reads: In other words,

W
po−→W , R

po−→W , R
po−→ R all belong to ppo also.

A barrier-separated relation (bar) relates memory operations (on the same thread)

separated in program order by a memory barrier.

The behavior of a program is the set of corresponding execution witnesses which

are valid. A valid execution witness is one where the union of com, ppo, and bar

is acyclic, and satisfies the uniproc condition. The uniproc condition states that the

relation com is consistent with the per-thread order of memory operations to the same

location. The first condition says that a happens-before-like relation is acyclic. In this

case we call a linear extension of com, ppo, and bar the global-happens-before relation

(ghb). Informally, it is the global memory order (also known as execution order) in

which memory operations appear to perform.

Finally, the global-happens-before relation ghb is a total order which is a linear

extension of tso. Informally, it is the global memory order in which memory operations

appear to perform. It is worth noting that every execution witness can have multiple

Chapter 2. Background 27

legal global memory orders.

2.5 Progress Guarantees in Synchronization

Understanding progress guarantees provided by synchronization mechanisms is impor-

tant when optimizing the mechanism for performance or other parameters. Progress

of a thread is indicated by a thread successfully performing its synchronization oper-

ations. For example, a thread which successfully obtains a lock and then releases it

is deemed to have progressed. Any modification that is made to the synchronization

primitives should not compromise on the progress guarantees as it is vital to the pattern

of synchronization.

Traditionally, synchronization mechanisms have been classified as either blocking

or non-blocking based on their progress conditions. We now elaborate on each of these

progress conditions while also providing practical implementations of the same.

2.5.1 Blocking Progress condition

A blocking progress guarantee , such as locks, semaphores or barriers, are simple to

define in that when a thread which is in the middle of performing its synchronization

crashes or is suspended indefinitely, then other threads may have to wait indefinitely

in order to complete their own synchronization primitive. For example, consider the

case of a lock as shown in Listings 2.1 and 2.2. Assume that a thread t0 obtains the

lock by setting the lock variable. Any other thread attempting to obtain this lock will be

unsuccessful and keeps retrying to obtain the lock. Now, if t0 crashes without releasing

the lock i.e. resetting the lock variable, then other threads which try to get the lock

will see that the lock variable is set. This will cause these threads to assume that the

lock is still being held by another thread (t0) and will continue to retry acquiring the

lock. However, since t0 has crashed, the lock variable is never reset thus causing the

concurrent threads that are attempting to obtain the lock to spin indefinitely trying to

get the lock. In effect, such threads will never progress and thus are blocked by crashed

thread.

Blocking a thread is undesirable for many reasons. An obvious reason is that while

Chapter 2. Background 28

the thread is blocked, it does not perform any meaningful task. If the blocked thread

was performing a high-priority task, halting its progress is not preferable. Also, certain

interactions between locks can lead to error conditions such as deadlocks or livelock.

2.5.2 Non-blocking progress condition

Non-blocking progress conditions overcoming the main issue in blocking synchro-

nization by ensuring that a suspended or crashed thread does not affect the progress

of other threads. There are three non-blocking progress guarantees which vary in the

strictness with which they allow other threads to proceed. They are (a) wait-freedom,

(b) lock-freedom, and (c) obstruction-freedom.

2.5.2.1 Wait-freedom

Wait-freedom is the strongest non-blocking guarantee of progress, which ensures in-

dividual thread progress. This combines system-wide throughput with starvation-

freedom. An algorithm is wait-free if every synchronization operation completes in

a bounded manner i.e. the number of steps in the algorithm to complete an operation is

bounded. This property is critical for real-time systems in order to guarantee bounded

completion.

The flip side to wait-freedom is that its implementation is quite complex and in-

duces a large performance overhead [Herlihy, 1991]. This is because a system-wide

progress guarantee requires that each of the threads collaborates with remaining threads

and help each other progress instead of performing its own operations.

2.5.2.2 Lock-freedom

Lock-freedom allows individual threads to starve but guarantees system-wide progress.

An algorithm is lock-free if it satisfies that when the program threads are run suffi-

ciently long at least one of the threads makes progress i.e. can complete its synchro-

nization operation. All wait-free algorithms are lock-free. In fact, a lock-free algorithm

which is free of starvation is wait-free.

Lock-free algorithms are more prevalent in literature as compared to wait-free algo-

rithms. This is due to their less complicated structure, and lesser performance overhead

Chapter 2. Background 29

as compared to wait-free algorithms. A Lock-free algorithm typically implements its

synchronization operations as part of a compare-and-swap (CAS) loop where a thread

reads the state of the shared data structure, and updates the data structure if no other

thread has updated it in the meantime. This structure of a lock-free program is pre-

sented in greater detail in chapter 5.

2.5.2.3 Obstruction-freedom

Obstruction-freedom is the weakest non-blocking progress guarantee, which ensures

progress of a thread when all other concurrent competing threads are suspended. This

means that an algorithm is obstruction-free if at any point, a single thread executed in

isolation for a bounded number of steps will complete its synchronization operation.

All lock-free algorithms are also obstruction-free.

2.6 Fair Synchronization

The fair synchronization problem is to design an algorithm that guarantees fair access

to a shared resource among a number of concurrent threads. Fair access means that a

thread cannot be allowed to starve i.e. not progress, or to progress rapidly by having

a relatively higher chance of performing its synchronization operations. Fairness can

be a measured quantity, or a progress guarantee of its own. Taubenfeld’s work on fair

synchronization [Taubenfeld, 2013] states the case for strict fairness, where no process

can access a shared resource twice while some other process is kept waiting. There is

no limit on the number of processes that can access a resource simultaneously. With

such a requirement, threads which successfully perform their CAS loops should be

made to wait until all threads which failed their CAS loops are allowed to access the

shared object at least once. Taubenfeld attacks this problem in a seemingly blocking

manner. However, he assumes a progress condition which says that in the absence of

process failures, if a process is trying to complete its CAS loop, then some process,

not necessarily the same one, eventually completes its CAS loop. Apart from lock-

freedom, this progress condition also requires deadlock-freedom and livelock-freedom.

Indeed, Taubenfield’s approach to solving fairness works under the assumption of a

benevolent scheduler where lock-free algorithms behave in a wait-free manner.

Chapter 2. Background 30

Unlike the strict fairness mentioned above, weaker alternatives are also important

practically, especially in NUMA architectures [Cederman et al., 2013a]. As NUMA

architectures are becoming the standard in the microprocessor industry, fairness of

synchronization constructs is becoming more important. Possible differences in the

access latencies of competing threads for a memory location may even lead some of

them to starvation. Also, some threads can dominate others, by obtaining access to

the shared object several times consecutively, not allowing other threads to progress.

Although such an execution still guarantees lock-freedom, fairness is compromised. A

relevant definition of fairness was introduced into this context by Ha et al. [Ha et al.,

2007] comparing the minimum number of operations a thread had with the average

number of operations of all threads. This helps distinguishing cases of starving or less

served threads. For identifying the opposite cases we can compare the average number

of operations with the maximum ones among the threads. This helps to identify faster

or run-ahead threads. Since our goal is to address any unfair behavior, we use the

minimum of the two fairness measures (for starving and run-ahead threads) as the

overall fairness. Formally:

f airness(∆t) = min
{

N.min(ni(∆t))
∑i ni((∆t))

,
∑i ni((∆t))

N.max(ni(∆t))

}

where ni(t) is the number of successfully performed operations by the thread i,

in the time interval t. Fairness index values close to 1 indicate fair behavior, while

lower values imply the existence of a set of threads being treated differently from the

rest. The fairness index achieves value 1 when all the threads perform equal number

of operations, i.e. perfect fairness. The fairness index is 0 when at least one thread

completely starves. Several other fairness measures can be used, as mentioned by Jain

et al. [Jain et al., 1998]. We chose to go with the fairness measure described above due

to its simplicity and that it captures both extremes of starving and run-ahead threads.

Chapter 2. Background 31

2.7 Supervised Memory Systems

Memory supervision or Supervised Memory Systems refers to those techniques which

utilise metadata associated with every memory address, in order to provide support for

applications including race detection [Zhou et al., 2007], memory checking [Venkatara-

mani et al., 2009], deterministic processing [Devietti et al., 2009], empty/full bits [Agar-

wal et al., 1995; Alverson et al., 1990], record/replay [Narayanasamy et al., 2005],

information flow tracking [Qin et al., 2006; Suh et al., 2004; Venkataramani et al.,

2008] and transactional memory [Bobba et al., 2008]. In recent years, there has been

renewed interest in such memory systems. This additional data, or metadata, which

is used to store auxiliary information about the program memory, is then used to con-

trol and monitor memory accesses issued by the program. Metadata is accessed and

processed atomically with program data as shown in Figure 2.1. As we can see, each

memory read (memory write) is associated with auxiliary memory operations which

read metadata, process metadata (optionally) generating an exception, and (optionally)

update metadata; furthermore, the entire sequence of data and metadata operations is

performed atomically and is referred to as a supervised memory read - SMR (super-

vised memory write - SMW). Memory systems which support such supervised mem-

ory instructions (SMIs) are known as supervised memory systems. They serve as a

foundation for important tasks such as enhancing security, reliability and programma-

bility of applications – examples include memory trackers [Alverson et al., 1990; Suh

et al., 2004; Venkataramani et al., 2009; Zhou et al., 2004, 2007], transactional mem-

ory [Bobba et al., 2008], fine-grained synchronization [Zhu et al., 2007], and deter-

ministic processing [Devietti et al., 2009]. Supervised memory systems have become

increasingly attractive with the emergence of multicore and manycore architectures

which pose challenges in programmability and reliability.

Metadata is accessed and processed atomically with program data as shown in Fig-

ure 2.1. As we can see, each memory read (memory write) is associated with auxiliary

memory operations which read metadata, process metadata (optionally) generating an

exception, and (optionally) update metadata; furthermore, the entire sequence of data

and metadata operations is performed atomically and is referred to as a supervised

memory read - SMR (supervised memory write - SMW). Memory systems which sup-

Chapter 2. Background 32

Figure 2.1: Supervised Memory Instructions

port such supervised memory instructions (SMIs) are known as supervised memory

systems. As shown in Figure 2.1, each SMI is an RMW.

2.7.1 Metadata and SMIs

For simplicity, we use the full-empty bits supervision scheme [Agarwal et al., 1995;

Alverson et al., 1990] in order to explain the working of supervised memory systems,

and the issues associated with them. Full-empty bits is a supervision scheme which is

typically used for word level producer-consumer synchronization. Here, each memory

address is associated with a metabit (metadata with size 1 bit) which specifies whether

the memory address is full (1) or empty (0). Processors make use of supervised memory

writes (SMW) and supervised memory reads (SMR) to access data and metadata. A

producer can write to the memory address only if the metabit is set to empty, and sets

it to full once the write is complete. A consumer can read from a memory address only

if the metabit is full, setting it to empty on completion. If an SMW encounters a full

state, or if an SMR encounters an empty state, an exception is raised. An exception

in the case of full-empty bits retries the memory access for a fixed number of times,

and calls a trap handler if it still fails. The trap handler in turn decides to block the

operation, retry the operation, or wake up the thread that is causing the exception to be

raised in the first place.

Chapter 2. Background 33

Figure 2.2: This figure shows the need for metadata-data atomicity for supervised mem-

ory systems. Metadata of A is initially empty. If metadata-data atomicity is preserved,

SMR′(A) reads the value written by SMW(A). This is followed by SMW′′(A), which up-

dates A. The exception raised by SMW′′(A) prevents SMR′(A) from reading an incorrect

value. If metadata-data atomicity is violated, both SMW(A) and SMW′′(A) are performed

in an overlapped manner, and SMR′(A) ends up reading the data written by SMW′′(A),

instead of SMW(A).

2.7.2 Atomic operations in Supervised Memory Systems

One of the issues in supervised memory systems is that of metadata-data atomicity,

which dictates that metadata operations should be atomic with respect to the corre-

sponding data operations. Not observing this atomicity may lead to incorrect metadata

values. This means that a supervised memory operation has to be completed in an

atomic fashion as there may be concurrent metadata accesses from other processors.

This is done to ensure that any supervised instruction gets the most recent value of

metadata for its processing. The formulation of a supervised memory operation (Fig-

ure 2.1), along with the requirement for atomicity, shows that all supervised accesses

to memory are treated similarly to RMW instructions. There are, however, supervision

schemes which do not require RMWs for metadata access (e.g. DIFT).

Chapter 2. Background 34

Consider Figure 2.2, where both T0 and T2 perform an SMW to address A, while

T1 performs an SMR to the same address A. Assume that the initial metadata value for

A is empty. If atomicity is preserved, the data and metadata operations of SMW(A)

and SMW′′(A) cannot interleave with each other. This is illustrated in Figure 2.2,

where SMW(A) completes first, following which T2 tries to perform SMW′′(A). But,

the metadata of A at this point in time will be full which causes SMW′′(A) to raise

an exception. SMR’(A) from T1, however, can be performed and reads the value

written by SMW(A). Following this, SMW′′(A) is allowed to perform as SMR’(A)

would have restored the metadata state to empty. Thus, preserving atomicity results

in an execution pattern where SMR’(A) reads the value written by SMW(A), follow-

ing which SMW′′(A) updates the data in address A and the final metadata state of A

is full. If atomicity is not preserved, as shown in Fig. 2.2, both SMW(A) (from T0)

and SMW′′(A) (from T2) can potentially interleave with each other. Indeed, the figure

shows the scenario where SMW′′(A), which performs after SMW(A), does not see the

metadata update of SMW(A) (full) and thus proceeds without any exceptions being

raised. This causes SMR′(A) to read the value written by SMW′′(A) (as opposed to

SMW′(A)) and the final metadata state of A is empty (as opposed to full). This se-

quence is incorrect as it violates the full-empty bits supervision scheme by allowing

two consecutive writes to a memory location.

2.7.3 Types of Supervised Memory Systems

Supervised memory systems can be software based, or hardware assisted – the two

differ in how SMIs are performed, the way in which memory space is allocated for

metadata, and the way in which metadata-data atomicity is ensured.

(Software based supervised memory systems) In software supervised systems[Nethercote

and Seward, 2007a; Newsome and Song, 2005; Nethercote and Seward, 2007b], SMIs

are executed along with program instructions using the same processor pipeline i.e.

metadata read, its processing and metadata write are all performed as separate soft-

ware instructions. Some software based supervised memory systems track the order

of data coherence requests and mirror this order for metadata as well. This is called

coupled coherence or shadow coherence [Nagarajan and Gupta, 2009]. Other atom-

Chapter 2. Background 35

icity schemes include the use of transactional memory [Chung et al., 2008], where

supervised instructions occur as part of transactions which are either committed or

re-executed depending on whether metadata-data atomicity is intact or is violated.

The fact that software supervised systems execute additional instructions to operate

on metadata, results in a heavy performance overhead which sometimes exceeds 100%

[Nethercote and Seward, 2007a]

(Decoupled supervised memory systems) In decoupled systems described in [Chen

et al., 2006; Kannan, 2009; Vlachos et al., 2010], the application program and metadata

processing are performed in separate processors, called application core and metadata

core respectively. The application core feeds a stream of committed instructions to

the metadata core, which then performs the metadata operations for those instructions.

Decoupled systems are similar to software based supervision in the way SMIs are

performed, metadata storage is allocated, and how atomicity is ensured. Decoupled

systems, however, require one metadata core for every application core to provide the

best performance [Vlachos et al., 2010].

Figure 2.3: Memtracker implementation of a supervised memory system. An SMI (SM-

R/SMW) can be retired only after its metadata and data operations are completed.

(Hardware assisted supervised memory systems) The performance overhead of soft-

ware based supervision and the fact that decoupled systems require an additional core,

for every application core, to process metadata has led researchers to adopt hardware

assisted supervised memory systems. We concentrate on such hardware assisted su-

pervised memory systems [Qin et al., 2006; Suh et al., 2004; Venkataramani et al.,

Chapter 2. Background 36

2008, 2009; Zhou et al., 2007], where SMIs are performed entirely in hardware by

modifying the processor pipeline or adding extra hardware inside the processor itself.

We consider the case of Memtracker[Venkataramani et al., 2009], which is the state-

of-the-art hardware assisted supervised memory system. Memtracker performs the

metadata operations after the commit stage of the pipeline, as shown in Figure 2.3.

Here, the memory system is a tagged memory system, where the data width of each

address is extended to store the metadata along with program data. Thus, a read op-

eration to the data address also fetches the metadata. Similarly, a data write operation

can also write the metadata during the same access. An SMR instruction reads its data

and metadata as part of the processor pipeline. Once the instruction is ready to retire,

the metadata transition table operates on this metadata and generates an updated meta-

data value according to the supervision scheme. For an SMW instruction, the metadata

read is performed after the instruction is ready to retire. Both data and metadata are

written back once the metadata processing is complete. An instruction is retired only

when both data and metadata operations associated with it have completed. This im-

plementation does not incorporate a write-buffer, which implies that all instructions

are performed inorder. Thus Memtracker performs like an SC system.

For an SMI to be atomic in Memtracker, its metadata write should be atomic with

respect to its metadata read. Memtracker uses load replay to ensure metadata read

write atomicity. If the metadata value read by an SMI is modified by another processor

before the write completes, the metadata read is replayed. This is typically done by

observing the coherence requests from other processors.

In terms of metadata storage model, supervised memory systems are categorized as

either shared, or interleaved. In a shared metadata memory model, metadata and data

share the same memory space. For every data address, there is a corresponding meta-

data address. Also, multiple data addresses can share a single metadata address when

metadata for a number of addresses fit into the data word length of each memory loca-

tion. In an interleaved metadata memory model, the memory word length is extended

to fit the metadata for every address along with the data. Another possible metadata

storage model stores metadata in a separate cache. Since this model is wasteful of

space and energy, it is not considered for practical deployment.

Chapter 2. Background 37

2.7.4 Supervised Memory Systems for Weaker Consistency Mod-

els

Typically, memory supervision proposals, particularly hardware-assisted supervision

like memtracker, assume sequential consistency, or rather the absence of a write-buffer.

A few proposals address TSO/RMO, but fail to address the correctness issues defined

in [Bobba et al., 2011]. These correctness issues arise due to the violation of the

memory ordering semantics of supervised instructions. In this regard, we explain the

correctness issues that arise in memory supervision for weaker consistency models,

and define the ordering requirement for correctness. This is further elaborated upon in

chapter 4.

Decoupled memory supervision on the other hand does address weaker memory

consistency models, like in [Chen et al., 2006; Kannan, 2009; Vlachos et al., 2010],

but as mentioned earlier, decoupled supervision makes use of an additional processing

core to perform metadata computations. This can be seen as a 100% overhead as the

additional cores are used only to process metadata and not to execute the actual appli-

cation program. In this thesis, we focus on hardware-assisted supervision as compared

with decoupled supervision.

2.8 Summary

In this chapter, we first discussed the importance of synchronization in parallel com-

puting, and then elaborated on the significance of RMWs operations in performing

efficient synchronization. Since the cost of an RMW is dependent on the memory

consistency model (or the ordering imposed by the model), we also briefly describe

the various consistency models and how RMWs order themselves in each model. We

elaborated on the TSO model as it is necessary to understand how the global mem-

ory order in TSO is established. We then discuss the progress guarantees provided by

different synchronization mechanisms, including fairness guarantees. Finally, we dis-

cussed the operation of a supervised memory system, stressing on the requirement of

metadata-data atomicity. We also describe the basic structure of a supervised memory

system under sequential consistency.

Chapter 3

Fast RMWs for TSO

In this chapter, we discuss the behavior of read-modify-writes (RMWs) in processors

which adhere to the Total-Store-Order (TSO) consistency model, such as the popular

x86 architectures [Advanced Micro Devices, 2009; Intel Corporation, 2009] and Sun’s

SPARC [SPARC International, 1994]. As mentioned in earlier chapters, Read-Modify-

Write (RMW) instructions are primitive synchronization operations used to solve a va-

riety of concurrency problems. Herlihy [Herlihy, 1991] showed that the ability to read

and write to an address atomically is critical to solve the consensus problem, which

abstracts important synchronization problems. Most modern processor architectures

have support for such RMW instructions – examples include test-and-set (TAS), fetch-

and-add (FAA), compare-and-swap (CAS), and load-linked/store conditional (ll/sc).

Unfortunately, RMWs in TSO are expensive as compared to regular reads and

writes. Our study sheds light on why RMWs are expensive on TSO architectures.

Our observation led us to the conclusion that the memory ordering around an RMW

and how atomicity is defined plays a significant role in increasing RMW cost. In

the present TSO architectures, RMWs are ordered like a memory barrier, which re-

sults in the write-buffer being drained before performing an RMW. This write-buffer

drain makes an RMW expensive. The reason why an RMW is ordered like a barrier

is because of the confluence of the definition of atomicity it adheres to, and the con-

sistency model. Current TSO RMWs do not allow any memory operation to occur

between the read and write of the RMW 1 in the global memory order as specified by

1Ra denotes the read part, Wa the write part of the RMW

38

Chapter 3. Fast RMWs for TSO 39

the TSO model. As a result, when a thread performs an RMW, the writes that are in

the write-buffer of the corresponding processor must be completed before the RMW

is performed. Allowing any of these writes to complete between Ra and Wa may order

other read and write instructions between them.

We then study the ordering requirements of synchronization (typically acquire

and release), and see that the strict ordering that current TSO RMWs (we call it

Type-1 RMW) enforce is unnecessary for synchronization ordering. Also, we dis-

cuss the use of RMWs in implementing synchronization constructs for TSO as per the

C/C++11 concurrency model [Becker, 2011; C, 2011]. Batty et al. [Batty et al., 2011]

have shown that the C/C++11 model is correctly implementable on TSO by replac-

ing C/C++11 SC-atomic-writes and/or SC-atomic-reads [Terekhov, 2008] 2 by Type-1

RMWs, leaving other language constructs (reads, writes, fences) to be implemented

by plain TSO reads, writes and barriers.

As part of our approach, we propose to weaken the atomicity ordering of RMWs by

formulating two weaker RMWs: type2, and type-3. In both cases, we allow the write-

buffer to drain between the Ra and Wa. We still maintain atomicity by the existing

cache-locking scheme. Type-2 and Type-3 RMWs differ in the type of memory op-

erations whose coherence requests are served by the processor performing the RMW.

We show that such weaker RMWs still provide acquire and release ordering under the

TSO consistency model. We also prove that, similar to type-1 RMWs, we can replace

SC-atomic-reads and SC-atomic-writes with the weaker RMWs in order to implement

the C/C++11 consistency model.

Finally, we evaluate the weaker RMWs and compare their performance with the

stricter type-1 RMW. Our experimental results show increased efficacy of weaker

RMWs over stronger RMWs. With this evidence, we discuss how such weaker RMWs

can be provided in commercial architectures and how they should be used at the pro-

gram level.

2Please note that SC here is short for sequential consistency.

Chapter 3. Fast RMWs for TSO 40

3.1 Introducing the Problem

As mentioned earlier, RMWs are costly in current TSO architectures, where they are

ordered similarly to a memory barrier [Intel Corporation, 2009; SPARC International,

1994], incurring the cost of a write-buffer drain in the critical path. When an RMW

is issued, the write-buffer is first drained; then the read and the write (of the RMW)

are performed atomically – typically by locking the cache-line locally and denying co-

herence requests to the locked cache-line until the write completes. Thus, instructions

following the RMW are allowed to complete only after the write (of the RMW) and

the pending writes prior to it complete [Sorin et al., 2011]. As a quick illustration, we

measured an average latency of 67 cycles for an RMW on an 8-core Intel Sandybridge

processor, using the Splash-2 Woo et al. [1995] benchmark suite. Similarly, on a 32-

core Intel Xeon Processor, the average latency of an RMW instruction is 74 cycles

across the SPLASH-2 benchmark suite. This latency does not significantly change if

we insert a memory barrier (mfence instruction) after each RMW, strengthening the

hypothesis of a forced write-buffer drain. Since efficient synchronization is impor-

tant to effectively harness the power of multicores, it is highly desirable that RMWs

are efficient. Nevertheless, the optimization of RMWs has historically received little

attention [Attiya et al., 2011].

Semantically speaking, why are TSO RMWs ordered like a memory barrier? We

observe that the ordering of RMWs with other memory accesses in TSO depends on

the precise semantics of how atomic they have to be with respect to those other ac-

cesses. TSO can be defined in terms of a global memory order, a relation over memory

accesses in the program. Existing TSO RMWs are defined to prevent writes to any ad-

dress from appearing between the read and the write in this global memory order [Intel

Corporation, 2009; SPARC International, 1994]. We call this strict definition type-1

atomicity. We show that this strict atomicity definition, combined with the other TSO

ordering rules, results in type-1 RMWs being strongly ordered with respect to memory

operations before and after it, just like a memory barrier.

This strong ordering is exploited by programmers in various synchronization prim-

itives. Figure 3.1(a) shows the key steps involved in the implementation of Dekker’s

algorithm for achieving mutual exclusion and Figure 3.1(b) shows the same code in

Chapter 3. Fast RMWs for TSO 41

Figure 3.1: Dekker’s Algorithm: (a) code snippet. (b) reads and writes involved: W (x)

denotes a write to address x, R(x) denotes a read from address x. (c) using RMWs as

memory barriers. (d) replacing reads with RMWs. (e) replacing writes with RMWs. In

all subfigures, initially, x=y=0.

terms of reads and writes. For correctness, at least one of the reads should return

a value of 1; otherwise both of the threads can enter the critical section simultane-

ously. One way to ensure this is by inserting memory barriers between the writes

and the reads. In fact, since type-1 RMWs behave like memory barriers, they can be

used instead of memory barriers as shown in Figure 3.1(c). Alternatively, as shown in

Figure 3.1d (Figure 3.1e), correctness can also be ensured by replacing reads (and/or

writes) with RMWs, since type-1 RMWs are strongly ordered with respect to mem-

ory operations before and after it in program order. For the same reason, the C/C++11

concurrency model can be implemented on TSO by replacing SC-atomic-reads (and/or

SC-atomic-writes) with RMWs [Batty et al., 2011].

The goal of this work is to examine whether the ordering of TSO RMWs can be

weakened in ways that enable a more efficient implementation, while remaining strong

enough for it to replace existing RMWs in synchronization idioms. In other words, can

Chapter 3. Fast RMWs for TSO 42

we design fast yet portable RMWs for TSO?

Our approach here is guided by the requirements of general programs, in particular

by just what properties are needed for the C/C++11 implementation. Thus, this is hard-

ware design exploiting the freedom provided by language-level concurrency models,

and sufficing for those requirements.

Since the ordering semantics of an RMW depends on its atomicity semantics, our

approach to weakening the ordering semantics is through weakening the atomicity

semantics. In contrast to the strict type-1 atomicity which disallows writes of any

address between the read and the write, we consider two weaker atomicity definitions:

the type-2 atomicity which disallows only reads and writes of the same address as the

RMW; and the even weaker type-3 atomicity, which disallows only writes to the same

address as the RMW.

Our key contribution is to derive the ordering semantics of the proposed weaker

RMWs, and examine if the ordering is strong enough to replace existing RMWs in syn-

chronization idioms. Unlike a type-1 RMW, a type-2 RMW is not explicitly ordered

with respect to memory operations before and after it. Thus, a type-2 RMW cannot

be used as a memory barrier like in Figure 3.1(c). However, we show that a type-2

RMW appears strongly ordered with respect to any memory operation that synchro-

nizes with the RMW i.e. any memory operation from another thread that is to the same

address as the RMW. Indeed, like before, Dekker’s algorithm can be ported to TSO

by replacing reads (and/or writes) with type-2 RMWs. It is worth noting that in the

scenario shown in Figure 3.1c (Figure 3.1d), each of the RMWs appear to be strongly

ordered with respect to the writes (reads) from the other thread which synchronize with

the RMW; this strong ordering is again able to guarantee correctness. Consequently,

type-2 RMWs are able to replace existing RMWs in synchronization idioms. Consider

Figure 3.1(b) with the assumption that RMW (y) is ordered before W (y). Following

from the definition of type-2 RMWs, W (y) cannot be ordered between the read and

write of RMW (y) (Ra(y) and Wa(y)). Therefore, Wa(y) is also ordered before W (y) i.e.

Wa(y)→W (y). The underlying TSO ordering ensures the following orderings: W (x)

→Wa(y), and W (y)→Wa(x). This results in the ordering – W (x)→Wa(y)→W (y)

→Wa(x). Again, from type-2 atomicity definition, W (x)→Wa(X) implies that W (x)

→ Ra(X) Thus, we still observe that W (x) → RMW (x), although type-2 RMWs are

Chapter 3. Fast RMWs for TSO 43

not strongly ordered. For similar reasons, C/C++11 can be ported to TSO by replacing

SC-atomic-writes (and/or SC-atomic-reads) with type-2 RMWs. Thus, type-2 RMWs

are able to replace existing type-1 RMWs in all synchronization idioms, except when

used as a memory barrier.

Table 3.1: Conventional RMW (type-1) vs proposed RMWs (type-2, type-3)

Atomicity

Definition

Dekker’s

with reads

replaced by

RMWs?

Dekker’s

with writes

replaced by

RMWs?

Dekker’s

with

RMWs as

barriers?

C/C++11

by re-

placing

SC-atomic-

reads with

RMWs?

C/C++11

by re-

placing

SC-atomic-

writes with

RMWs?

type-1
3 3 3 3 3

type-2
3 3 7 3 3

type-3
3 7 7 3 7

A type-3 RMW is also not explicitly ordered with respect to memory operations

before and after it, and hence cannot be used a memory barrier (like a type-2 RMW).

However, unlike a type-2 RMW, it appears strongly ordered only with respect to a

write/RMW (but not a read) that synchronizes with the RMW. Therefore, Dekker’s al-

gorithm can be ported to TSO by replacing reads (but not writes) with type-3 RMWs.

Similarly, C/C++11 can be ported to TSO by replacing SC-atomic-reads (but not SC-

atomic-writes) with type-3 RMWs. Table 3.1 lists the different scenarios where type-

1, type-2, and type-3 RMWs can be used interchangeably. Since, type-2 and type-3

RMWs are not strongly ordered with respect to memory operations before and after it,

they do not provide barrier-like semantics provided by type-1 RMWs. Also, as men-

tioned above, type-3 RMWs cannot replace writes in Dekker’ algorithm (or C/C++11

SC-atomic-writes).

Chapter 3. Fast RMWs for TSO 44

In our final contribution, we propose efficient microarchitectural implementations

of the weaker RMWs, which, in contrast to existing implementations, do not incur the

cost of a write-buffer drain. Our implementation of a type-2 RMW allows instructions

following it to retire as soon as the read obtains exclusive ownership of the cache-

line and locks it locally. The write simply retires into the tail of the write-buffer –

thus the write-buffer drain is moved out of the critical path. To guarantee atomicity,

coherence requests to the locked cache-line are denied until the write (of the RMW)

and the pending writes prior to it complete. However, to prevent a potential deadlock

we need to ensure that the above pending writes will eventually complete, and not be

blocked by an RMW from another processor. We ensure this by tracking the list of

unique RMW addresses in per-processor bloom filters. When a pending write (before

the RMW) is found to conflict with the list of maintained RMW addresses, we revert

to draining the write-buffer, thus avoiding the possibility of a deadlock.

The type-3 RMW implementation is almost identical, with one difference. Since

type-3 atomicity permits reads to the same address as the RMW between the read and

the write, the read need not obtain exclusive ownership of the cache-line – leading

to a potentially more efficient implementation. Our experimental results from bench-

marks chosen from Splash-2, PARSEC, STAMP, and lock-free data structures show

that in comparison with the existing type-1 RMW, our proposed type-2 RMW (type-3

RMW) is up to 58.9% (64.3%) cheaper, which translates into an overall performance

improvement of upto 9.0%(9.2%)

We are not the first to propose weaker atomicity semantics for RMWs in general.

In fact, Gharachorloo et al. [Gharachorloo et al., 1993] have already observed that it

is sufficient for RMWs to use a type-3 definition for atomicity. However, in order for

their TSO specification to be compliant with the original TSO specification, additional

program order edges are added to RMWs, making the RMWs strongly ordered. In

other words, by explicitly adding additional program order edges, the RMWs in their

specification are effectively made equivalent to type-1 RMWs. In this work, we con-

sider the case in which the atomicity definitions are weakened, but additional program

order edges are not added to the RMW. Besides, our proposed type-2 atomicity defi-

nition, to the best of our knowledge has not been considered before. More on related

work in.

Chapter 3. Fast RMWs for TSO 45

3.2 Semantics of TSO RMWs

In this section we will propose definitions of atomicity weaker than the standard strong

definition for RMWs in TSO, and derive the ordering properties that apply. We will

then use those ordering properties to demonstrate the use of weakened RMWs in syn-

chronization – in particular, we will demonstrate when they are sufficient to implement

the C/C++11 concurrency model.

We begin with recalling the base TSO model (without RMWs) as described in

Chapter 2, and then add our new formulations of atomicity. As mentioned earlier,

our base TSO model follows Alglave [Alglave, 2010], where our atomicity definitions

fit most naturally. We add RMWs to the base TSO model, and derive the memory

orderings enforced by an RMW. We then show how the orderings enforced by the

RMW behave in different synchronization scenarios.

3.2.1 Adding RMWs to the Base TSO model

We now consider events coming from RMWs. These correspond to one read and one

write to the same location – we denote the read part of the RMW as Ra and the write

part of the RMW as Wa. In an RMW, the read part comes before the write in program

order – consequently, the read Ra reads an earlier value and not the value written by

Wa. In addition to this, Ra and Wa need to be performed atomically, where atomicity is

one of the following three definitions:

• Type-1 Atomicity. This is a strict definition of atomicity, used by existing TSO

RMWs [Intel Corporation, 2009; SPARC International, 1994], that prevents writes

of any address from appearing between the read and the write in the global memory

order. More formally, with type-1 RMWs added to the TSO model, valid execution

witnesses are ones which further impose that there is no event in ghb between Ra and

Wa.

• Type-2 Atomicity. This is a weakening which only prevents reads and writes of the

same address as the RMW from appearing between Ra and Wa in the global memory

order. More formally: {∀M(x) : M(x)
ghb−−→ Ra(x)∨Wa(x)

ghb−−→M(x)}.

Chapter 3. Fast RMWs for TSO 46

• Type-3 Atomicity. This is a further weakening which merely prevents writes of the

same address as the RMW from appearing between Ra and Wa in the global memory

order. More formally: {∀W (x) : W (x)
ghb−−→ Ra(x)∨Wa(x)

ghb−−→W (x)}.

It is important to note that even type-3 atomicity, the weakest of the atomicity

definitions, satisfies the notion of atomicity required for solving the consensus prob-

lem [Herlihy, 1991] – consensus being the abstract problem that models synchroniza-

tion idioms. Nonetheless, this does not imply that the three types of RMWs can be

used interchangeably. In fact, we shall see that each of the three atomicities gives rise

to RMWs that are ordered differently.

Atomicity-induced orderings. Each atomicity definition, by disallowing a specific

set of memory operations between Ra and Wa in the global memory order – effectively

requires both Ra and Wa of the RMW to be ordered identically with such disallowed

memory operations. For example, if just Ra (and not Wa) is originally ordered before a

disallowed memory operation M in the ghb (Ra
ghb−−→M), then atomicity requires Wa to

also be ordered before M (Wa
ghb−−→M) – otherwise M could end up between Ra and Wa

in the ghb. In other words, the atomicity constraint induces additional memory order-

ings – the atomicity relation ato is used to refer to such atomicity-induced orderings.

In the above example, the ordering Wa
ato−−→M would be an atomicity-induced ordering.

Accounting for such atomicity-induced orderings, the global memory order (ghb) is

the linear extension of the union of com, ppo, bar, and ato. A valid execution witness,

like before, is one which has an acyclic union of the above relations (including ato),

and satisfies the uniproc condition. Next, we will derive the atomicity-induced memory

ordering constraints for each of the atomicity definitions.

3.2.2 Type-1 RMWs

The strict type-1 definition of atomicity combined with TSO’s preserved program order

ensures that a type-1 RMW is strongly ordered with respect to memory operations

before and after it.

Lemma 1. An RMW placed between a write W1 and a read R2, results in the enforce-

ment of W1
ato−−→ Ra, Wa

ato−−→ R2 and consequently, W1
ato−−→ R2.

Chapter 3. Fast RMWs for TSO 47

Figure 3.2: Additional memory orderings induced by type-1 RMW

Proof. Type-1 atomicity mandates that either Wa
ghb−−→W1 or W1

ghb−−→ Ra. As shown

in Figure 3.2, W1
ppo−−→Wa. This implies W1

ato−−→ Ra. Next, we prove the second part:

Wa
ato−−→ R2. As shown in Figure 3.2, Ra

ppo−−→ R2. This implies that either R2 occurs after

Wa in the ghb or R2 is between Ra and Wa. Meanwhile, type-1 atomicity mandates that

there cannot be any writes between Ra and Wa in the ghb; in particular there cannot be

any writes to location z. This implies that even if R2 were to occur between Ra and Wa,

it can be safely be moved after Wa. This in turn implies Wa
ato−−→ R2. Finally, W1

ato−−→ R2,

because of transitivity (W1
ato−−→ Ra and Ra

ppo−−→ R2).

Such strongly ordered type-1 RMWs result in costly implementations that involve

a write-buffer drain; however, they can be used to port synchronization idioms to TSO

without requiring additional memory barriers. Below, we demonstrate how type-1

RMWs are used in various synchronization idioms:

Dekker’s: write-replacement. One way to ensure that Dekker’s algorithm works

on TSO architectures is to replace the writes with type-1 RMWs as shown in Fig-

ure 3.3 [Intel Corporation, 2009; SPARC International, 1994] In the above example,

we assume that the read R(y) from thread 0 reads the initial value of 0. For Dekker’s

algorithm to work the read R′(x) should read a value of 1. The following sequence

of orderings ensure this: Wa(x)
ato−−→ R(y)

f r−→W ′a(y)
ato−−→ R′(x) – where ato denotes the

additional orderings induced by atomicity.

Dekker’s: read-replacement. Using similar reasoning, it is easy to see that replac-

Chapter 3. Fast RMWs for TSO 48

Figure 3.3: Dekker’s with writes replaced by RMWs. In this and other examples that fol-

low, RMW (x,0,1) means that the RMW reads a value of 0 from location x and updates

it to 1

]

Figure 3.4: Dekker’s with reads replaced by RMWs.

Chapter 3. Fast RMWs for TSO 49

Figure 3.5: Dekker’s with RMWs used as memory barriers. The two RMWs access

different addresses z1 and z2.

ing reads with type-1 RMWs will also ensure that Dekker’s algorithm works on TSO

(Figure 3.4).

Dekker’s: RMWs as barriers. One simple way to make Dekker’s algorithm work

on TSO is to insert memory barriers between the writes and the reads, as the W → R

ordering enforced by the memory barriers would ensure correctness. Since type-1

RMWs order memory operations before and after it, they can very well be used instead

of the barriers. As shown in Figure 3.5, the following sequence of ordering ensures

correctness: W (x) ato−−→ R(y)
f r−→W ′(y) ato−−→ R′(x).

Implementing C/C++11 using type-1 RMWs. The C/C++11 concurrency model [Becker,

2011; C, 2011] is an adaptation of data-race-free-0 [Adve, 1993] which guarantees

SC for data race free programs. It introduces a variety of atomic memory operations

parameterized by different memory order parameters. Correct compilation depends

(among other things) on mapping these atomic memory operations to hardware prim-

itives. Batty et al. [Batty et al., 2011] recently proved that C/C++11 can be imple-

mented on X86-TSO by mapping C/C++11 SC-atomic-reads and SC-atomic-writes to

type-1 RMWs supported by x86 architectures (non-SC atomic reads and writes and

non-atomic accesses can simply be mapped to ordinary TSO reads and writes). In fact,

it is easy to adapt this proof and show that it is sufficient to map at least one of the

Chapter 3. Fast RMWs for TSO 50

Figure 3.6: Memory ordering disallowed by a type-2 RMW

SC-atomic-writes or the SC atomic reads to type-1 RMWs. This is elaborated upon

in the next section which deals with the proofs detailing the implementation of the

C/C++11 model using different RMWs. Informally, since TSO already preserves all

program orders except the W → R order, we only need to ensure SC-atomic-writes are

ordered with subsequent SC-atomic-reads; similarly to Dekker’s algorithm, this can be

accomplished by replacing either the reads or writes with type-1 RMWs.

3.2.3 Type-2 RMWs

We show that, unlike a type-1 RMW, a type-2 RMW placed between a write W1 and

a read R2 does not explicitly enforce any of W1
ghb−−→ Ra, Wa

ghb−−→ R2, or W1
ghb−−→ R2.

However, as shown in Figure 3.6, it disallows Ra
ghb−−→W1 and R2

ghb−−→Wa from being

enforced 3 – in effect, a type-2 RMW is implicitly ordered with respect to memory

operations before and after it.

Lemma 2. A type-2 RMW placed between two memory operations W1 and R2, disal-

lows the enforcement of the following two orderings: Ra
ghb−−→W1 and R2

ghb−−→Wa.

3Disallowing an ordering M1
ghb−−→ M2 (say) is not the same as enforcing M2

ghb−−→ M1. The latter
implies that M2 will occur before M1 in every valid global memory order, while the former implies that
it is not necessary for M1 to occur before M2 in every valid global memory order

Chapter 3. Fast RMWs for TSO 51

Figure 3.7: Scenario for proof of lemma 2.

Proof. Let us attempt to prove by contradiction by assuming the ordering Ra
ghb−−→W1 is

enforced. Since there is no ppo edge directly connecting Ra and W1, Ra
ghb−−→W1 we will

need to be enforced via a sequence of edges as shown in Figure 3.7. More specifically,

there has to be a write W ′(y) which conflicts with Ra(y) such that: Ra(y)
f r−→W ′(y)

ghb−−→
W1(x). But, Ra(y)

f r−→W ′(y) implies Wa(y)
ato−−→W ′(y), due to type-2 atomicity. This

leads to a cycle: Wa(y)
ato−−→W ′(y)

ghb−−→W1(x)
ppo−−→Wa(y).

Similarly for the other part let us assume R2
ghb−−→Wa. As shown in Figure 3.7,

this implies that there has to be a read R′′(y) which conflicts with Wa(y) such that:

R2(z)
ghb−−→ R′′(y)

f r−→Wa(y). But, R′′(y)
f r−→Wa(y) implies R′′(y) ato−−→ Ra(y), due to

type-2 atomicity. This leads to a cycle: Ra(y)
ppo−−→ R2(z)

ghb−−→ R′′(y) ato−−→ Ra(y).

Effect of implicitly ordered type-2 RMWs. Since a type-2 RMW neither enforces

W1→ Ra nor Wa→ R2, it also does not transitively enforce W1→ R2. Consequently, a

type-2 RMW is not ordered like a memory barrier; in the next section we will propose

an efficient implementation that does not incur the cost of a write-buffer drain. At the

same time, a type-2 RMW appears to be strongly ordered with respect to any memory

operation that synchronizes with the RMW i.e any memory operation from another

thread that is to the same address as the RMW. As shown in Figure 3.7, with respect

Chapter 3. Fast RMWs for TSO 52

to W ′(y) which synchronizes with Ra, W1 appears to be ordered before the RMW. This

is because, type-2 atomicity induces the ordering Wa(y)
ato−−→W ′(y), which results in

the sequence of orderings: W1(x)
ppo−−→Wa(y)

ato−−→W ′(y), thereby ensuring W1(x)→
W ′(y). Likewise, with respect to R′′(y) which synchronizes with Wa, R2(z) appears

to perform after the RMW – the sequence of orderings R′′(y)
ato−−→ Ra(y)

ppo−−→ R2(z)

ensures this. Consequently, type-2 RMWs can seamlessly replace existing RMWs in

synchronization idioms, as we will demonstrate next.

Dekker’s: write-replacement. Similarly to type-1 RMWs, Dekker’s algorithm will

continue to work with writes replaced by type-2 RMWs as shown in Figure 3.3. Since

R(y)
f r−→W ′a(y), R(y) ato−−→ R′a(y) (due to type-2 atomicity). Now, the sequence of order-

ings Ra(x)
ppo−−→ R(y) ato−−→ R′a(y)

ppo−−→ R′(x) ensures that Ra(x)
ghb−−→ R′(x). This in turn

implies that Wa(x)
ato−−→ R′(x), again due to type-2 atomicity.

Dekker’s: read-replacement. Using a similar reasoning, replacing reads with type-2

RMWs will also ensure that Dekker’s algorithm works on TSO (Figure 3.4). Since

Ra(y)
f r−→W ′(y), Wa(y)

ato−−→W ′(y) (due to type-2 atomicity). Now, the sequence of

orderings W (x)
ppo−−→Wa(y)

ato−−→W ′(y)
ppo−−→W ′a(x) ensures that W (x)

ghb−−→W ′a(x). This

in turn implies that W (x) ato−−→ R′a(x), again due to type-2 atomicity.

Dekker’s: RMWs as barriers (different addresses). A type-2 RMW cannot be used

as a memory barrier in Dekker’s algorithm if the RMWs used to replace the barri-

ers access different addresses, since they would not appear strongly ordered with one

another. As shown in Figure 3.5, it can potentially allow the following sequence of op-

erations – Ra(z1),R(y),R′a(z2), R′(x),W (x), Wa(z1),W ′(x),W ′a(z1) – which would lead

to R′(x) to read a value of 0.

Dekker’s: RMWs as barriers (same address). A type-2 RMW, however, can be

used as a memory barrier in Dekker’s algorithm if the inserted RMWs access the same

address, since this ensures that the RMWs appear strongly ordered to one another. As

shown in Figure 3.8, type-2 RMWs used in the above fashion ensure that R′(x) will read

the correct value of 1. To see why, first recall that based on our assumption R(y)
f r−→

W ′(y). This implies that Wa(z)
r f e−−→ R′a(z) (as the other possibility W ′a(z)

r f e−−→ Ra(z)

would result in the following cycle: W ′a(z)
r f e−−→ Ra(z)

ppo−−→ R(y)
f r−→W ′(y

ppo−−→W ′a(z)).

This in turn leads to the sequence W (x)
ppo−−→Wa(z)

r f e−−→ R′a(z)
ppo−−→ R′(x), ensuring that

Chapter 3. Fast RMWs for TSO 53

Figure 3.8: Dekker’s with RMWs used as a memory barrier. The two RMWs access the

same addresses z.

R′(x) reads the correct value.

Implementing C/C++11 using type-2 RMWs. We formally show that, similarly to

type-1 RMWs, C/C++11 can be implemented by mapping at least one of SC-atomic-

writes or SC-atomic-reads to type-2 RMWs. Recall that, since TSO already preserves

all program orders except the W → R order, we only need to ensure SC-atomic-writes

are ordered with subsequent SC-atomic-reads. Intuitively, since type-2 RMWs appear

strongly ordered when used in synchronization idioms, this can be accomplished by

replacing either the SC-atomic-reads or SC-atomic-writes with RMWs, as shown in

the next section.

3.2.4 Type-3 RMWs

We show that, similarly to a type-2 RMW, a type-3 RMW placed between W1 and R2

does not explicitly enforce any of W1
ghb−−→ Ra, Wa

R−→2 ghb, or W1
ghb−−→ R2. However,

unlike a type-2 RMW it disallows only Ra→W1 (but could allow R2→Wa) – in effect,

a type-3 RMW is implicitly ordered with respect to memory operations before it, but

not with those after it.

Chapter 3. Fast RMWs for TSO 54

Figure 3.9: Memory ordering disallowed by a type-3 RMW

Lemma 3. A type-3 RMW placed between two memory operations W1 and R2, disal-

lows Ra
ghb−−→W1 (but could allow R2

ghb−−→Wa to be enforced).

Proof. Proof of ¬Ra
ghb−−→W1 is identical to the first part of the proof of lemma 2. To

understand why R2
ghb−−→Wa is not disallowed, let us consider the second part of the

proof of lemma 2, where we assumed R2
ghb−−→Wa. As shown in Figure 3.7, this implies

that there has to be a read R′′(y) which conflicts with Wa(y) such that: R2(z)
ghb−−→

R′′(y)
f r−→Wa(y). Recall that type-2 atomicity induced the ordering: R′′(y) ato−−→ Ra(y),

which led to a cycle. However, such an ordering is not induced by type-3 atomicity,

which allows for reads to happen between the Ra(y) and Wa(y), and so there is no

cycle.

Effect of implicitly ordered type-3 RMWs. Since a type-3 RMW enforces neither

W1→ Ra nor Wa→ R2, it also does not transitively enforce W1→ R2. Consequently, a

type-3 RMW is not ordered like a memory barrier. At the same time, a type-3 RMW

appears to be strongly ordered with respect to any write/RMW that synchronizes with

the RMW. As shown in Figure 3.7, with respect to W ′(y) which synchronizes with Ra,

W1 appears to be ordered before the RMW. This is because type-3 atomicity induces

Wa(y)
ato−−→W ′(y), which in turn results in the sequence of orderings: W1(x)

ppo−−→Wa(y)
ato−−→W ′(y) which ensures this. On the other hand, with respect to the read R′′(y) which

Chapter 3. Fast RMWs for TSO 55

synchronizes with Wa, R2(z) does not appear to be ordered after the RMW, since type-

3 atomicity allows R′′(y) to occur between Ra(y) and Wa(y). Consequently, type-3

RMWs cannot seamlessly replace existing RMWs in synchronization idioms, as we

will demonstrate next.

Dekker’s: write-replacement. Unlike type-1 or type-2 RMWs, replacing writes with

type-3 RMWs cannot guarantee correctness (Figure 3.3). This is because type-3 atom-

icity is not able to induce R(y) ato−−→ R′a(y). Hence, the following sequence is allowed:

Ra(x),R(y), R′a(y), R′(x),Wa(x),W ′a(y) – which would lead to R′(x) to read 0.

Other Dekker’s scenarios. For the other Dekker’s algorithm scenarios (Figure 3.4,

Figure 3.5, and Figure 3.8) a type-3 RMW behaves identically to a type-2 RMW.

Implementing C/C++11 using type-3 RMWs. We formally show that C/C++11 can

be implemented by mapping SC-atomic-reads (and optionally SC-atomic-writes) to

type-3 RMWs. However, it is not sufficient (unlike type-1 and type-2 RMWs) for

only the SC-atomic-writes to be so mapped. Intuitively, since type-3 RMWs appear

strongly ordered only when synchronizing with writes or RMWs, but not reads, all

SC-atomic-reads need to replaced with RMWs. How this can be proven to implement

the C/C++11 concurrency model is discussed in the next section.

3.2.5 Summary

We show that type-2 RMWs can seamlessly replace type-1 RMWs in various synchro-

nization idioms, except when a type-1 RMW is used purely as a memory barrier. Given

that all modern TSO(-like) architectures have a dedicated memory barrier instruction,

there is no need to use an RMW as a barrier. Furthermore, type-2 RMWs can still be

used as a memory barrier provided such RMWs are forced to synchronize with each

other (by forcing them to access the same address). Similarly to type-2 RMWs, type-3

RMWs also do not behave like memory barriers. However, unlike type-2 RMWs, type-

3 RMWs only appear ordered with respect to writes/RMWs (but not reads) that syn-

chronize with the RMW; thus type-3 RMWs cannot seamlessly replace type-1 RMWs.

Nevertheless, we show that by replacing synchronization reads with type-3 RMWs, the

above synchronization idioms can still be implemented using type-3 RMWs.

Chapter 3. Fast RMWs for TSO 56

Table 3.2: Mapping from C/C++11 to X86

(a) read-write-mapping

Operation x86 Impl.

non-SC read mov

SC read lock xadd(0)

non-SC write mov

SC write lock xchg

(b) read-mapping

Operation x86 Impl.

non-SC read mov

SC read lock xadd(0)

non-SC write mov

SC write mov

(c) write-mapping

Operation x86 Impl.

non-SC read mov

SC read mov

non-SC write mov

SC write lock xchg

3.3 C/C++11 implementation proofs

In this section, we show how type-2 and type-3 RMWs can be used to implement the

C/C++11 concurrency model. 4 Recall that the C/C++11 concurrency model [Becker,

2011; C, 2011] has marked memory accesses of various kinds (only SC is important

on TSO, the properties of the others are automatically satisfied by normal reads and

writes on TSO). We work with the formal description in Batty et. al [Batty et al.,

2011]. For a particular execution of a program, various relations among the actions

corresponding to these operations are defined, including a happens-before relation;

modification order mo, a total order per atomic location on writes to that location;

and SC order sc, a total order on all SC atomic actions in the execution. There are

several consistency conditions which these relations must satisfy for the execution to be

consistent (briefly, both mo and sc must be consistent with happens-before; the ithb part

of happens-before must be acyclic (C/C++11 ithb refers to the inter-thread-happens-

4Please note that the C/C++11 implementation proofs were formulated by Dr. Susmit Sarkar, Uni-
versity of St. Andrews.

Chapter 3. Fast RMWs for TSO 57

before ordering, which involves the ordering from a release write to an acquire read of

another thread); certain shapes contradicting coherence must not occur within happens-

before; and reads must read from a happens-before consistent write). Furthermore, if

any consistent execution in the sense above has a data race, then the program as a

whole has no defined semantics.

Correct compilation to TSO depends (among other things) on mapping the atomic

accesses to TSO hardware primitives. Batty et al [Batty et al., 2011] prove correct-

ness for a few variant mappings on X86-TSO; specifically, the read-write-mapping

of Table 3.2(a) (from a prototype by Terekhov [Terekhov, 2008]), which maps SC-

atomic-reads and SC-atomic-writes to X86-TSO RMWs. It is easy to adapt their

proof and weaken the mapping, making only the SC-atomic-reads RMW’s as in Ta-

ble 3.2(b): read-mapping, or only the SC-atomic-writes RMW’s as in Table 3.2(c):

write-mapping. We now show that each mapping above would suffice for correctly

implementing C/C++11 using type-2 RMWs (and reprove for type-1), while for type-

3 RMWs, the read-write mapping and the read-mapping work. The write-mapping

would not work for type-3 RMWs, by Dekker’s counterexample in the work (Fig-

ure 3.3).

3.3.1 A generic outline of the proof strategy

The proof is fairly standard, following the proofs in [Batty et al., 2012, 2011]. In

particular, the way of constructing SC orders is derived from the earlier work.

Mapping read-from maps, and mo. First, the events occurring in the hardware mod-

els are related to the C/C++ actions from the corresponding program. For everything

except the C/C++11 SC atomics, this is straightforward, as ordinary reads and writes

correspond to C/C++11 reads and writes. For the SC actions, we assume that there

is a unique mapping that can be derived. Then the hardware rf relation corresponds

to the reads-from map of C/C++11, and the hardware ws relation (restricted to atomic

locations) corresponds to mo of C/C++11.

ghb contains the C/C++11 inter-thread-happens-before ordering ithb. We notice

that under any mapping (and any kind of RMW), each of the components of C/C++11

ithb are part of ghb, by the construction via release sequences. Thus the ghb is a greater

Chapter 3. Fast RMWs for TSO 58

relation than the C/C++11 ithb. The key notion in C/C++11 ithb is the release sequence,

which crosses threads from a write (release write) to a read (acquire read) that reads

from it. There are possibly intervening writes to the same location on the release

thread, and program order subsequent accesses on the acquire thread. Since external

reads-from (rfe), coherence (ws) and reads to other accesses on the same thread (part

of ppo) are all parts of ghb, ithb is contained within ghb.

Constructing the C/C++11 SC order. This part of the proof crucially depends on the

mapping, so we will have to parameterize the proof by the mapping. We consider, as

in the proof of SC actions on Power [Batty et al., 2012], an arbitrary linearization of

the union of posc, program-order on SC actions; wssc, ws restricted to SC actions;

frsc, which relates SC reads to all SC writes to the same location coherence-after the

write the read reads from; and erfsc, which relates a SC read and the last SC write in

coherence before the write, or that write if a SC write, that the read reads-from.

We will then show that these relations are included in the ghb relation, and thus

their union is consistent with ghb. As a corollary, by the acyclicity of ghb, we get that

the union is acyclic and thus can be extended to a linear SC order.

C/C++11 concurrency. Assuming we can construct the SC order as above, we are

now in a position to verify the consistency in C/C++11 of all behaviors permitted by

TSO (with the variant RMWs) for race-free C/C++11 programs:

• Acyclicity of ithb: First, the ithb is contained within ghb, which is acyclic.

• Consistency of happens-before and mo: Second, mo should be consistent with C/C++

happens-before (which we get by ws being included in ghb, and the uniproc condi-

tion).

• Coherence diagrams: Third, the coherence diagrams [Batty et al., 2011] CoRR,

CoRW, CoWR, and CoWW, must not be contradicted by the happens-before, which

we get by the construction of ghb.

• Consistency of SC order: Fourth, sc should be consistent with happens-before and

mo, which we get by our construction of sc.

• Reads read from a consistent write: Fifth, SC reads must read-from a write not

happens-after the sc-last SC write, which we get by construction of sc. Other reads

Chapter 3. Fast RMWs for TSO 59

must read from a happens-before consistent write, where we note that all reads read

from the last write to the same location in ghb. It is possible, however, that there is no

C/C++11 happens-before relating the read and write (hb is smaller than ghb). Then,

we find a race in the original C/C++ program, contradicting the race-free assumption.

• Constructing a race: Suppose we have found a read and a write that it reads-from that

are not C/C++11 happens-before related. We find the minimal such pair in ghb (we

know ghb is acyclic, so this is well-founded). Cut off the program without this read,

and anything program-order after that write. Now we add back the read, but read

from a C/C++11 allowed write; and it races with the original write. We complete the

program execution in any consistent way, to get a racy consistent execution. Note

that without speculative execution as in Power, this proof is much simpler than the

corresponding proof for Power [Batty et al., 2012].

3.3.2 Instantiating the generic proof

Now we fill in the pieces above for each atomicity definition and each mapping. The

remaining obligation is finding events in the TSO execution corresponding to the

C/C++11 SC atomics, and proving that posc, wssc, frsc, and erfsc are contained within

ghb.

Read-write-mapping and read-mapping. For these mappings, we consider the write

Wa of the RMW for the SC read, and the write (either by itself in the read-mapping, or

from the RMW for the read-write-mapping) for the SC write. Then poscis a part of ghb

(they are same-thread writes). wsscis a part of ghb by definition of write-serialization.

Every frscedge must be consistent with ghb, since the subsequent write cannot be in

ghb between Ra and Wa of the RMW, using any atomicity definition. Every erfscedge

must be consistent with ghb, since the write read-from must be coherence-before the

Wa of the SC read, and cannot come between Ra and Wa in any atomicity definition.

Write-mapping Here SC reads are mapped to plain reads, and thus there is no write

to use as above. Instead, we use the read as is for SC reads, and the read Ra of the

RMW for the SC write. Using this mapping, poscis a part of ghb (they are same-

thread reads). For write-serialization, wsscis a part of the ghb, since Ra of each write

must be before that write in fr. Likewise, erfscis a part of ghb, but the proof has two

Chapter 3. Fast RMWs for TSO 60

cases. For same threads, Ra of the write is ghb-before the read (same-thread reads).

For different threads, Ra from the write is ghb before Wa in fr, and Wa is before the SC

read in rfe. The last piece required is frsc. The SC read is certainly before in fr Wa of

the RMW, but we are now considering Ra as representing the SC action. For Type-1

and Type-2 RMWs, it is consistent to impose that the SC read is before Ra, since they

are to the same location, and no same-location actions can be in ghb between Ra and

Wa. Then we get the required result.

For Type-3 RMWs, since a read can be in between Ra and Wa of a RMW, this

strategy will not work. This is the point where the proof fails for Type-3 RMWs.

3.4 TSO RMWs: Implementation

In this section we first discuss how existing type-1 RMWs are implemented. We then

describe our proposed type-2 and type-3 RMW implementations. For the following

discussion we assume a chip multiprocessor with local L1 caches and a shared L2

cache; the local caches are kept coherent at the L2 cache level using a distributed

directory based coherence protocol.

3.4.1 Type-1 RMW

Recall that a type-1 RMW is strongly ordered with respect to memory operations be-

fore and after it: a type-1 RMW placed between write W1 and read R2 results in the

enforcement of W1→ Ra and Wa→ R2, where Ra/Wa are the read/write of the RMW

respectively. To enforce W1 → Ra, pending writes in the write-buffer (if any) must

complete before Ra can retire.

Furthermore, type-1 atomicity mandates that there should not be any conflicting

reads or writes (to the same address as the RMW) between Ra and Wa. To ensure this,

existing RMW implementations use a cache-line locking mechanism [Intel Corpora-

tion, 2009; Michael and Scott, 1995b; SPARC International, 1994]. The Ra obtains

read/write permissions for the cache-line, and locks it before it retires, thereby denying

coherence requests to the cache-line. Once Wa completes, the cache-line is unlocked.

To ensure that Wa → R2 is enforced, R2 is allowed to retire only after Wa com-

Chapter 3. Fast RMWs for TSO 61

pletes. In other words, reads that follow the RMW have to wait until: (a) all writes

prior to the RMW are performed (the write-buffer is drained) and (b) Ra and Wa are

performed. Thus, the type-1 RMW incurs the cost of a write-buffer drain and the cost

of performing Ra and Wa.

Gharachorloo et al. [Gharachorloo et al., 1991] proposed two techniques to provide

efficient memory ordering. Both these techniques can be used to improve the perfor-

mance of type-1 RMWs. The first one involves issuing the read-exclusive request for

all pending writes in parallel, to efficiently enforce the write-buffer drain. The actual

writes, however, are completed in-order, keeping with TSO. Parallel issue of the read-

exclusives will be serialized at the local L1 cache and at the directory, but will make

full use of the interconnect and overlap invalidation and acknowledgement messages

for all the pending writes. The second technique is to hide part of the write-buffer drain

latency through in-window speculation. Here, the instructions following the RMW are

speculatively executed, but are allowed to complete only after the RMW and all the

pending writes before it complete.

3.4.2 Type-2 RMW

Recall that a type-2 RMW is not explicitly ordered with respect to memory operations

before and after it in the program order. Since a type-2 RMW that is placed between

memory operations W1 and R2, does not enforce W1 → Ra, Ra need not wait for the

write-buffer to be drained. However, type-2 atomicity still disallows conflicting reads

or writes from appearing between Ra and Wa in the global memory order. Similarly to

a type-1 RMW, this is ensured using the cache-line locking mechanism. Like before,

Ra obtains read/write permissions for the cache-line, locks the cache-line, and then

retires. After this, Wa simply retires into the tail of the write-buffer. At this point the

RMW effectively retires, and allows memory operations following it (e.g. R2) to retire

(since Wa→ R2 is not enforced). Finally, when Wa reaches the head of the write-buffer

and completes, the cache-line is unlocked.

Write-deadlocks. The above implementation, while simple, can potentially result in a

deadlock. To guarantee type-2 atomicity, coherence requests to the cache-line locked

by an RMW are denied until Wa and the pending writes prior to it complete. If such a

Chapter 3. Fast RMWs for TSO 62

Figure 3.10: (a) shows a code segment that can cause a write-deadlock. (b) shows an

execution order with a cyclic dependency of non-occurring events resulting in a write-

deadlock. (c) shows how the cyclic dependency is removed by forcing a write-buffer

drain for both RMWs. The fr orderings are converted to rfe orderings

Chapter 3. Fast RMWs for TSO 63

pending write W1 is to a cache-line which has already been locked by another RMW′

from a different processor, then W1 (and hence Wa) will have to wait until W ′a completes.

If W ′a itself is stalled because of a similar write in its write-buffer, a deadlock manifests.

This is illustrated in the code segment shown in Figure 3.10(a), where W (x) oc-

curs before RMW(y), and W ′(y) occurs before RMW′(x) in program order. As shown

in Figure 3.10(b), let us assume that Ra(y) and R′a(x) have retired after locking their

respective cache-lines, while the writes (W (x) and W ′(y)) have retired into the write-

buffer and are yet to complete. Cache-line locking ensures that W (x) cannot com-

plete until W ′a(x) has completed, and W ′(y) cannot complete until Wa(y) has com-

pleted. However, since writes are ordered in TSO, Wa(y) cannot complete until W (x)

completes, and W ′a(x) cannot complete until W ′(y) completes. This leads to a write-

deadlock.

More formally, our assumptions can be represented by the two fr orderings: R′a(x)
f r−→

W (x) and Ra(y)
f r−→ W ′(y). Now, type-2 atomicity induces the two orderings: W ′a(x)

ato−−→W (x) and Wa(y)
ato−−→W ′(y). This in turn results in a cycle: W (x)

ppo−−→Wa(y)
ato−−→

W ′(y)
ppo−−→W ′a(x)

ato−−→W (x). Since each of the memory operations which are part of

the cycle have not yet performed, a deadlock ensues.

Deadlock avoidance. In order to ensure that the deadlock scenario discussed above

never occurs, we should guarantee that none of the pending writes before an RMW, are

to cache-lines locked by other RMWs – the deadlock safety property. To ensure this,

we propose a mechanism to dynamically maintain the set of unique RMW addresses

accessed by RMWs from all processors – the addr-list. Furthermore, we make this

addr-list available locally to each of the processors.

Now, when an RMW is performed, if none of the pending writes in the write-

buffer conflict with the addr-list, we can safely say that these writes are not to locked

cache-lines. On the other hand, if any of the pending writes conflicts with the addr-list,

the deadlock safety property is not guaranteed. In such a case, we revert to type-1

implementation by draining the write-buffer before performing the RMW – thereby

avoiding a deadlock.

There are two challenges to efficiently implementing this mechanism in hardware:

(a) keeping track of the RMW addresses in the addr-list efficiently; (b) keeping the

addr-list coherent across all processors. We implement the addr-list using a bloom

Chapter 3. Fast RMWs for TSO 64

filter [Bloom, 1970], which is a well understood mechanism for maintaining sets and

supporting membership queries. In order to keep the addr-list coherent we simply

broadcast the address whenever a new RMW address is encountered by a processor.

Our design exploits the fact that the number of unique RMW addresses is relatively

small – our experiments show that typically around 1% of the number of dynamic

RMWs are to unique addresses. This in turn means that the addresses of the RMWs

can be stored efficiently in a relatively small-sized bloom filter, with a low probability

of false positives. More importantly, the number of broadcasts required to keep the

addr-list coherent is minimal.

We now explain the working of our mechanism in more detail. When an RMW is

ready to perform, we first query the bloom filter for the RMW address. If the address

is not found in the filter, we insert the RMW address into the local bloom filter. In

addition to this, since the addr-list has changed, we broadcast the new address to all

processors. Each of the other processors, upon receiving the address, inserts the ad-

dress into its respective bloom filter and sends back an acknowledgement. Once all

acknowledgements have been received (or if the RMW’s address is found in the addr-

list in the first place), we query the bloom filter with the pending writes’ addresses.

If any of these write addresses are found in the addr-list, this flags a potential dead-

lock. Consequently, the write-buffer is drained before performing the RMW like a

type-1 RMW. On the other hand, if none of the pending writes’ addresses are found,

the RMW does not wait for the write-buffer to drain. It locks the cache-line and simply

retires, while the write of the RMW is retired into the write-buffer.

To see why our scheme is correct note that an RMW can lock the cache-line and

retire (with pending writes in the write-buffer) only when:

• c1: the RMW’s address is made visible to all processors

• c2: none of the pending writes conflict with the addr-list.

Now, c1 implies that any write (W ′) that could be potentially involved in a dead-

lock with the original RMW will conflict with the local addr-list. c2 implies that an

RMW with W ′ in its write-buffer will revert to type-1, thereby avoiding a deadlock.

Consider the deadlock scenario shown in Figure 3.10(c). Recall that in the deadlock

scenario, Ra(y) and R′a(x) have retired, but their respective pending writes W (x) and

Chapter 3. Fast RMWs for TSO 65

W ′(y) are unable to complete (inducing the two fr orderings: R′a(x)
f r−→W (x) and Ra(y)

f r−→W ′(y)). The fact that Ra(y) and R′a(x) have retired implies that both x and y must be

present in the bloom filter (from c1). In addition to this, W (x) and W ′(y) should have

checked the filter for conflicts (from c2). The assumed fr orderings imply that neither

of the writes conflicted with the bloom filter. This in turn implies that neither x nor y

are in the bloom filter leading to a contradiction.

False Positives.
Bloom filters suffer from false positives. The correctness of our scheme, however,

is not compromised due to false positives. A false positive may result from either an

RMW or a pending write checking the bloom filter. When an RMW, whose address

has not been encountered before, queries the bloom filter and the bloom filter returns

a false positive, the RMW address ends up not being broadcast. Similarly, when a

pending write queries the bloom filter and the filter returns a false positive, the write-

buffer is unnecessarily drained. The former case is safe, as any write which conflicts

with an RMW address (which causes a false positive) will also similarly return a false

positive. It is worth noting that false positives in this case may reduce the number of

RMW broadcasts. In the latter case, the unnecessary write-buffer drains will affect

performance. The correctness of the mechanism, however, is not affected.

Finally, in our design, the bloom filter keeps track of RMW addresses of all con-

texts. In other words, each bloom filter is independent of the thread context. While this

may increase the probability of false positives, it again does not present any correctness

issues.

It is worth noting that, the probability of false positives in the filter increases with

the number of elements inserted into it, leading to a performance degradation over time.

To handle this, we reset the bloom filters of all processors when the number of RMW

addresses inserted into the filter exceeds a certain threshold, which is a function of the

bloom filter configuration. To ensure correctness, when a processor receives a reset

request, it waits until all in-flight RMWs have completed, and responds subsequently.

Chapter 3. Fast RMWs for TSO 66

3.4.3 Type-3 RMW

Recall that a type-3 RMW, like a type-2 RMW, is not explicitly ordered with respect

to memory operations before and after it. Ra need not wait for the write-buffer to be

drained – it can retire even if there are pending entries in the write-buffer. However,

type-3 atomicity still disallows conflicting writes and other RMWs from appearing

between Ra and Wa in the global memory order. Since reads to the same memory

address can appear between Ra and Wa, it is sufficient for Ra to get read permissions

for the cache-line, unlike type-1/type-2 RMW which require read/write permission.

If the RMW is to a cache-line owned by the local cache, then it is locked in the

cache itself before retiring Ra, similar to type-1/type-2 RMWs. If the RMW is to

cache-line in shared state, however, locking the cache-line locally cannot prevent an

RMW from another processor, which also has the cache-line in its local cache, from

performing. To resolve this, we propose a directory locking protocol, wherein Ra to a

cache-line in shared state is locked in the directory by transitioning the cache-line to

a locked state. When Wa is issued from the write-buffer, the cache-line is transitioned

out of the locked state allowing subsequent coherence requests to the cache-line to be

serviced. This optimization removes any invalidation delay, incurred by the RMW,

from the critical execution path.

Once Ra obtains a lock and retires, Wa simply retires into the tail of the write-buffer.

At this point the RMW effectively retires, and allows memory operations following it

to retire. Thus reads that follow a type-3 RMW will only have to wait until Ra obtains

read permission for the cache-line and locks it. Finally, when Wa reaches the head

of the write-buffer and completes, the lock on the cache-line is released. Similarly to

type-2 RMWs, the implementation of type-3 RMWs also makes use of the bloom filter

mechanism to avoid deadlocks.

3.5 Experimental Evaluation

The primary goal of our experiments was to compare the cost of type-1, type-2, and

type-3 RMWs. Furthermore, we evaluated the impact of the different types of RMWs

on the overall execution time of the benchmark programs. Since RMWs are also

Chapter 3. Fast RMWs for TSO 67

used to implement C/C++11 SC-atomic-reads and/or SC-atomic-writes, we also in-

vestigated the performance of supporting C/C++11 concurrency model with type-1,

type-2 and type-3 RMWs. We briefly describe our implementation before discussing

the results.

3.5.1 Implementation

Table 3.3: Architectural Parameters

Processor 32 core CMP, inorder

Write-buffer 32-entry deep

L1 Cache private, 32 KB 4-way 2-cycle latency

L2 Cache shared, 1 MB per-core, 16-way 6-cycle latency

Memory 300 cycle latency

Coherence MOESI distributed directory

Interconnect 2D Mesh, 1-cycle link, 4-cycle router latency

Simulator. We use the GEM5 simulator to implement our baseline system, which

is an x86-based CMP composed of inorder processors, with local L1 caches and a

shared-distributed L2 cache. Cache latencies were obtained from CACTI [Murali-

manohar and Balasubramonian, 2009]. The baseline uses type-1 RMWs. The local

caches are kept coherent using a distributed directory based on the MOESI coherence

protocol. We chose inorder cores for our simulation as the GEM5’s out-of-order pro-

cessor model is unstable for full system simulation of the x86 processor architecture.

The choice of inorder cores, however, is a valid design point owing to the fact that

several present and future many-core processors, like the Intel Xeon Phi, Sun Niagara

T2, and NVIDIA GPUs, make use of inorder cores as opposed to out-of-order cores

to achieve better performance to power ratios. As mentioned in the previous section,

we implemented a parallel write-buffer drain mechanism. This improves the baseline

significantly over the serial write-buffer drain. We did not implement in-window spec-

ulation as it is not applicable to inorder processors. The architectural parameters for

Chapter 3. Fast RMWs for TSO 68

Table 3.4: Benchmark Characteristics

Code Suite Problem

Size

RMWs

per

1000

mem-

ops

% of

RMWs

ops

with

unique

ad-

dresses

% of

RMWs

ops

which

force

write-

buffer

drains

RMW

broad-

casts

per 100

RMW

ops

radiosity SPLASH-

2

room 15.56 0.28 0.06 0.26

raytrace SPLASH-

2

car 13.83 0.02 0.12 0.02

fluidanimate PARSEC medium 17.43 0.46 0.09 0.46

dedup PARSEC medium 8.10 3.31 0.20 3.12

bayes STAMP bayes+ 34.15 0.91 0.01 0.80

genome STAMP genome+ 6.19 0.64 0.10 0.52

wsq-mst Lock-

free

10000

nodes

23.41 3.80 0.07 3.71

Chapter 3. Fast RMWs for TSO 69

our implementation are presented in Table 3.3.

We modified the simulator to implement type-2 and type-3 RMWs with deadlock

avoidance. In our implementation, we used a 128B bloom filter with 3 hash functions.

It is worth noting that the only hardware overhead for type-2/type-3 RMWs is the 128B

bloom filter and a RMW threshold counter per processor. Also, we did not make use

of the threshold counter in our simulations as we ran only a single context which did

not require a bloom filter reset for good performance.

Benchmarks. We evaluate our technique using benchmarks in Table 3.4, which

includes both lock-based and a lock-free program. radiosity and raytrace are bench-

marks from the Splash-2 suite which primarily use RMWs in lock/unlock primitives.

Similarly, fluidanimate and dedup (from PARSEC) are also lock-based benchmarks.

It is worth noting here that we chose only the top two benchmarks from each suite,

in terms of the ratio of RMW instructions to other memory operations. We do this as

the Splash-2 and PARSEC benchmarks are optimized to reduce synchronization and

the resulting synchronization cost. Thus, even if we reduce the cost of RMWs, it may

not have an impact on the overall execution time of the benchmark. On the other

hand, lock-free programs use more RMWs taking advantage of low-latency commu-

nication on multicores. wsq-mst is a lock-free parallel spanning tree algorithm [Bader

and Cong, 2005] using Chase-Lev work stealing queue. bayes and genome, from the

STAMP (using TL2 [Dice et al., 2006]), use RMWs for locking writes in transactions

and to commit transactions. We ran the benchmarks in their regions of interest, with

the input sizes mentioned in Table 3.4.

C/C++11 concurrency. Because of the recency of the C/C++11 concurrency

model, there is no corpus of C/C++11 code to test our ideas on. We therefore modified

the wsq-mst program to make use of atomic reads/writes as prescribed by the C/C++11

model. wsq-mst uses Dekker-like synchronization to update the task queue pointers

while removing tasks from the queue; thus the read and write of this synchroniza-

tion primitive corresponds to an SC-atomic-read and SC-atomic-write respectively. As

mentioned earlier, the C/C++11 concurrency model can be realized by replacing SC-

atomic-writes and/or SC-atomic-reads with RMWs. We compare the performance of

the different types of RMWs by replacing either the SC-atomic-reads (wsq-mst rr) or

SC-atomic-writes (wsq-mst wr) with RMWs. We do not consider type-3 RMWs for

Chapter 3. Fast RMWs for TSO 70

0

20

40

60
C

yc
le

s

ra
dio

sit
y

ra
ytr

ac
e

de
du

p

flu
ida

nim
at

e
ba

ye
s

ge
no

m
e

wsq
−m

st_
wr

wsq
−m

st_
rr

Benchmarks

R1 & Wa Write−buffer Drain

Figure 3.11: Cost of type-1, type-2, and type-3 RMWs

write replacement here as that cannot guarantee correctness (as described in §2.5).

3.5.2 Cost of RMWs

We split the cost of an RMW in two parts: the cost of performing the read and write

(Ra/Wa); and the cost of handling the writes in the write-buffer. The average cost

of an RMW across the chosen benchmarks for type-1, type-2, and type-3 RMWs is

presented in Figure 3.11. As we can see, RMWs are expensive – the average cost

of type-1 RMWs is as high as 69 cycles. We also observe that the write-buffer drain

significantly contributes to the overall cost of an RMW (58.0% on average). We can

infer from this that a significant number of RMWs have at least one write in the write-

buffer which needs to send out invalidation requests. Also, a significant number of

RMWs are to shared cache-lines which explains the cost contributed by Ra/Wa.

Using type-2 RMWs, the cost of an RMW reduces by 38.6%-58.9% when com-

pared to type-1 RMWs across the benchmarks. As seen from Figure 3.11, a significant

portion of the performance improvement is by avoiding the write-buffer drain in the

general case. Recall that we revert to a write-buffer drain, when a write hits in the

bloom filter. As seen from Table 3.4, the average number of hits of pending writes in

Chapter 3. Fast RMWs for TSO 71

0

5

10

15

%
 o

f o
ve

ra
ll

ex
ec

ut
io

n
tim

e

ra
dio

sit
y

ra
ytr

ac
e

de
du

p

flu
ida

nim
at

e
ba

ye
s

ge
no

m
e

wsq
−m

st_
wr

wsq
−m

st_
rr

Benchmarks

type−1 RMW
type−2 RMW
type−3 RMW

Figure 3.12: Impact of the performance overhead of RMWs on overall performance.

Each bar represents the total execution time of RMWs as compared to the overall exe-

cution time of the benchmark when using type-1 RMWs.

the bloom filter is negligible for each benchmark, and is sometimes zero. This explains

the low write-buffer drain cost for type-2 and type-3 RMWs. It is worth noting that the

cost of Ra/Wa itself slightly increases when compared with type-1 RMWs as a portion

of the RMWs require broadcasts in addition to the invalidation request. The number

of such RMW broadcasts depends on the accuracy of the bloom filter. As shown in

the table, the percentage of RMWs that require a broadcast is less than 1.0% for most

lock-based benchmarks except for dedup (3.1%), which has a higher ratio of unique

RMWs to begin with. We have not presented the increase in network traffic due to

RMW broadcasts, as this number is negligible across all chosen benchmarks (<0.5%).

Type-3 RMWs reduce the cost of the RMW even further. The average cost of a

type-3 RMWs is lower than type-1 RMWs by up to 64.3%. Type-3 RMWs reduce the

cost of Ra/Wa but incur a similar write-buffer drain delay as type-2 RMWs.

C/C++11 concurrency. Similarly to lock-based benchmarks, we observe that us-

ing type-2 RMWs reduces the average cost of RMWs by 44.6% (write-replacement),

and 43.2% (write-replacement) respectively, over type-1 RMWs. As mentioned ear-

lier, type-3 RMWs cannot be used for write-replacement. For read-replacement, type-3

Chapter 3. Fast RMWs for TSO 72

RMWs provide an additional 11.6% improvement over type-1 RMWs.

It is worth noting that the cost of RMWs in read-replacement (wsq-mst rr) is higher

than in write-replacement (wsq-mst wr) for all types of RMWs; with read replacement,

there are more entries in the write-buffer per-RMW, which increases draining cost.

The cost of Ra/Wa, however, is oblivious to whether SC-atomic-read or SC-atomic-

write were replaced. In case of type-2 RMWs, we observe that the number of writes

conflicting with the bloom filter increases, thereby increasing the cost of an RMW.

Also note that this lock-free program, unlike traditional benchmarks, has more RMW

broadcasts (3.7%) owing to a relatively larger number of unique RMWs. This affects

the performance of type-2 and type-3 RMWs. However, the write-buffer drain cost

eclipses the broadcast overhead.

3.5.3 Execution time overhead

Although we achieve a significant reduction in the cost of an RMW in all chosen

benchmarks, its impact on the overall execution time depends on the ratio of RMW

operations to other memory operations. We call this the density of RMWs. Thus,

benchmarks with a larger RMW density benefit more from cheaper RMWs. Table 3.4

shows the ratio of the number of RMWs to the number of other memory operations in

each of the benchmarks. Figure 3.12 shows the impact of RMWs on the overall execu-

tion time for all the chosen benchmarks. As expected, lock-free algorithms suffer more

from expensive RMWs than lock-based algorithms. Similarly, bayes and wsq-mst also

spend a lot of time performing RMWs. Although genome is a lock-free benchmark,

the impact of RMWs on the overall execution time is less owing to a lower RMW den-

sity. This is because genome performs a lot more operations per transaction. As for

lock-based benchmarks, radiosity and fluidanimate spend more than 5.0% of their ex-

ecution time on RMWs. This, however, is not the case with raytrace and dedup. This

is a result of the effort put into optimizing traditional lock-based benchmarks. We can

extrapolate that other benchmarks from Splash-2 and Parsec will show an even lesser

impact of RMWs.

With type-2 RMWs, we get up to 9.0% reduction for bayes, where the write-buffer

drain almost but eliminated, as seen from Table 3.4. We also observe a significant

Chapter 3. Fast RMWs for TSO 73

reduction in the contribution of RMWs to the overall execution time in all other lock-

free benchmarks as well. Even radiosity and fluidanimate show a reduction in overall

execution time albeit lesser than 4%. Type-3 RMWs further improve the overall per-

formance over type-2 RMWs, but only by a minimal amount (<0.5%).

C/C++11 concurrency. As for the C/C++11 concurrency model, replacing read

atomics with RMWs results in a slightly higher overhead of RMWs as can be seen

from the figure. The best performance can be obtained by replacing read atomics with

type-3 RMWs (7.7% improvement over type-1 RMWs).

In summary, type-2 and type-3 RMWs are significantly cheaper than type-1 RMWs

across all chosen benchmarks. This translates to a significant reduction in the overall

execution time for the lock-free work stealing queue program which exhibits a higher

RMW density. Traditional lock-based programs also show an improvement in perfor-

mance. This improvement, however, is only visible in programs with a high RMW

density. Other benchmarks show a negligible improvement in performance.

3.6 Related Work

Memory ordering. Over the years, researchers have proposed a number of techniques

for achieving memory ordering efficiently [Blundell et al., 2009; Gniady et al., 1999;

Ladan-Mozes et al., 2011; Lin et al., 2012; Singh et al., 2012]. While any of the above

techniques can be used to efficiently implement the barrier-like ordering of a type-1

RMW, the goal of our work, however, is orthogonal. Instead of striving to implement

the barrier-like ordering, we ask the question as to why a TSO RMW should be ordered

like a memory barrier in the first place. Indeed, as we have shown through our weaker

type-2/type-3 RMWs, implementing a barrier-like ordering is not necessary.

Weaker atomicity RMWs. Gharachorloo et al. [Gharachorloo et al., 1993] were the

first to observe that it is sufficient for RMWs to use type-3 atomicity in the context of

various memory consistency models. However, in order for their TSO specification to

be compliant with the original TSO specification, they then added additional program

order edges to RMWs, making the RMWs strongly ordered – hence equivalent to type-

1 RMWs.

The load-reserve/store-conditional or load-linked/store conditional (LL/SC) instruc-

Chapter 3. Fast RMWs for TSO 74

tion is a classic example of an RMW in weaker models such as Power [Machine and

Staff, 1995] which uses type-3 atomicity semantics. None of the mainstream TSO ar-

chitectures, however, provide such an RMW. However, even if a TSO architecture were

to support such an RMW, it would be ordered like a type-1 RMW. This is because in-

structions following the LL/SC can only be retired after the SC completes, even if the

processing (M in RMW) can be performed immediately following the LL instruction.

Thus memory operations following such an LL/SC RMW will have to wait for pending

writes in the write-buffer, making the store-conditional act as a full barrier. In the case

of a type-2 or type-3 RMW, even if the read (Ra) and write (Wa) of the RMW are per-

formed separately, the retirement of Ra implies that instructions following it can retire

even before Wa completes in the write-buffer. This is true even in the case where the

RMW is followed by a branch (as part of a loop). Once Ra has performed, the branch

instruction following it can also be performed and retired. Even if the RMW fails in

the context of the program, the next RMW loop can begin performing. However, in the

case of an LL/SC, the success of LL alone cannot guarantee the successful execution

of the RMW. Thus, even if an LL/SC (eventually) succeeds, the memory instructions

following it have to be stalled until the LL/SCs success. This explains the barrier-like

behaviour of an LL/SC instruction in TSO. Hardware locking mechanisms. There

have been several proposals (e.g. [Vallejo et al., 2010]) which address issues related

to hardware based locking mechanisms. It is worth noting that these locks refer to

the synchronization primitive as a whole and not the RMW instructions used in these

primitives. These proposals primarily deal with lock contention and fairness. Our pro-

posal is orthogonal to such work as we deal with the overhead added by the RMW to

the local thread.

3.7 Summary

We observed that the atomicity semantics of an RMW is the key factor which affects

the RMW’s ordering semantics, its programmability, and its implementation cost. Ex-

isting TSO RMWs use a strict definition of atomicity (type-1) which results in the

RMW being strongly ordered like a memory barrier. Whereas type-1 RMWs are costly

to implement, they can be easily used in synchronization idioms on TSO without re-

Chapter 3. Fast RMWs for TSO 75

quiring additional memory barriers. In this work, we proposed two weaker atomicity

definitions: type-2 and type-3 atomicity; we formally derived how type-2 and type-

3 RMWs would be ordered, and demonstrated that the resultant ordering is strong

enough to implement various synchronization idioms using the weaker RMWs. We

then proposed efficient architectural implementations of the weaker RMWs – experi-

mental results show that our proposed type-2 RMW (type-3 RMW) is 58.9% (64.3%)

cheaper than an existing type-1 RMW on average.

Based on our analysis and experimental evidence, type-2 RMWs, while performing

almost as well as type-3 RMWs, are also able to seamlessly replace existing type-1

RMWs in common synchronization idioms – except in situations where an RMW is

used as a memory barrier. Thus, they appear to be a promising alternative to existing

type-1 RMWs. We also show how the proposed type-2 and type-3 RMWs can be

used to implement C/C++11 atomics – thus making it possible for the compiler to

transparently utilize the proposed RMWs to realize C/C++11 more efficiently.

Chapter 4

SuperCoP: Memory supervision with

correctness and performance

This chapter deals with the issue of memory supervision, where we tackle the prob-

lem of correctness of supervision in weaker consistency models. As described in the

first two chapters, supervised memory systems make use of auxiliary data associated

with each memory address (or blocks of memory addresses) in order to store mon-

itoring information regarding that particular address. This monitoring information

is used by supervised memory systems in order to perform important tasks such as

synchronization [Bobba et al., 2008], race detection [Savage et al., 1997] error detec-

tion [Venkataramani et al., 2009, 2008] etc.

Supervised memory systems make use of RMW operations to operate atomically

on both data and metadata. We revisit the formulation of Supervised Memory Instruc-

tions (SMIs) presented in chapter 1. A generic supervised memory instruction (SMI)

is shown in Figure 4.1. As we can see, each memory read (memory write) is accompa-

nied by additional memory operations which read metadata, process metadata (which

can potentially trigger an exception), and (optionally) update metadata; furthermore,

the entire sequence of data and metadata operations has to be performed atomically

and is referred to as a supervised memory read - SMR (supervised memory write -

SMW). Memory systems which support such supervised memory instructions (SMIs)

are known as supervised memory systems. As shown in Figure 4.1, each SMI is an

RMW.

76

Chapter 4. SuperCoP: Memory supervision with correctness and performance 77

Figure 4.1: Supervised Memory Instructions

The supervision model for the state-of-the-art hardware-assisted supervised mem-

ory system (Memtracker [Venkataramani et al., 2009]) was also presented in the back-

ground chapter. Such a supervision model assumes sequential consistency. Adding

features such as write-buffering which enables a weaker consistency model like total-

store-order (TSO), introduces certain correctness issues in the supervised memory sys-

tem like imprecise exceptions and metadata read reordering. The root cause for these

correctness issues lie in the supervision model and how SMWs and SMRs are ordered

with respect to each other and with other non-supervised instructions. In this way

SMIs behave like the type-1 RMWs described in chapter 3. Here, SMIs are ordered

like memory fences. While there are existing proposals which address these correct-

ness issues [Bobba et al., 2011], they either exhibit poor performance or cannot be

applied universally to all supervision schemes. Even in such cases, the SMIs are still

ordered like memory fences. For increased performance, the ordering is restricted to

SMIs and not regular read/write operations. Such a modification cannot be applied to

all supervision schemes as shown by the authors themselves. Thus, there is a need to

design a supervised memory system which provides correctness without compromis-

ing on performance. In this regard, we present SuperCoP - a supervision model which

overcomes the above correctness issues for all supervision schemes without trading-off

Chapter 4. SuperCoP: Memory supervision with correctness and performance 78

on performance.

The rest of the chapter is organized as follows. We first describe the correctness

issues that manifest in supervised systems for TSO consistency. We then provide our

solution - SuperCoP - for these correctness issues followed by how SuperCoP provides

correctness without compromising on performance. Now, SuperCoP changes the ex-

isting metadata-data atomicity present in Memtracker. Consequently, we present our

solution for the metadata-data atomicity issue in SuperCoP. Finally, we present the

simulation results comparing the performance of SuperCoP, TSOall, and TSOdata.

4.1 Introducing the Problem

When we extend existing supervised memory systems, like Memtracker, to weaker

consistency models, it is prudent to discuss the supervision model of the weaker con-

sistency model. In our case, we consider the total-store-order (TSO) consistency model

which is prevalent in the popular x86 processor architectures used in Intel, AMD and

Sun SPARC processors. We start with discussing the base TSO supervision model and

then follow it up with the correctness issues that arise in memory supervision due to

the consistency model.

4.1.1 Base Model for a TSO Supervised Memory System

The TSO consistency model, as discussed in chapter 2, is widely used in present day

systems, including Sun’s SPARC, Intel’s/AMD’s x86 and its variants. The base sys-

tem model we consider is similar to that in Safe Supervised Memory [Bobba et al.,

2011], which has a supervision mechanism similar to Memtracker [Venkataramani

et al., 2009]. The Memtracker proposal itself does not make use of a write-buffer

as shown in chapter 2. The base TSO model for supervised systems, however, includes

a write-buffer into which all SMW instructions are retired. This results in an imple-

mentation where an SMW instruction reads its metadata only when it is issued from

the write-buffer i.e. when it reaches the head of the write-buffer. Then, the metadata

is processed and the resulting metadata (if any) and data are written back to memory.

SMR instructions are processed in the same manner as in Memtracker. The resulting

Chapter 4. SuperCoP: Memory supervision with correctness and performance 79

Figure 4.2: Base model for a TSO based supervised memory system. An SMR is

retired after it has completed its data and metadata operations. An SMW is retired into

the write-buffer, and performs its data and metadata operations on reaching the head

of the write-buffer.

Chapter 4. SuperCoP: Memory supervision with correctness and performance 80

system model is described in Figure 4.2. Metadata-data atomicity is preserved in the

same way as in Memtracker i.e. metadata/data and metadata/data writes are issued

together. Atomicity between the read and write operations are ensured with a locking

mechanism.

4.1.2 Correctness issues in a TSO supervised memory system

Bobba et al. [Bobba et al., 2011] pointed out that retiring SMW instructions into the

write-buffer can causes correctness issues in the supervision scheme. It is possible

that an SMR (that follows an SMW) can read its metadata before the preceding SMW

in the write-buffer can read its corresponding metadata. This is called metadata read

reordering and can cause incorrectness in the supervision scheme. Furthermore, any

exception caused by an SMW in the write-buffer will not be raised until the SMW

reaches the head of the write-buffer. Thus the exception raised will be late or imprecise,

since subsequent instructions (which follow the SMW) may have already retired when

the exception is raised, again causing incorrectness in the supervision scheme, since

non-supervised writes do not read metadata.

Please recall the full-empty bits supervision scheme that was discussed in chapter 2

to explain the Memtracker supervision system and metadata-data atomicity. We use the

full-empty bits supervision scheme to illustrate both the correctness issues discussed

above. Consider the sequence of instructions shown in Figure 4.3(a). Here, SMR3(B)

(from T0) synchronizes with SMW4(B) (from T1), to ensure that SMR5(A) (from T1)

reads the value written by SMW2(A) (from T0). Initially, both A and B are in the full

state. In the expected execution sequence, T0 performs SMR1(A) reading the initial

value (1) into r1. SMR1(A) also sets the metadata of A to empty. Then SMW2(A)

writes the value 2 into A, reverting its metadata to full. T0 then performs SMR3(B)

which empties address B. This is followed by T1 writing into B (SMW4), and then

reading from A (SMR5). No exceptions are raised in this execution sequence. The

result of the execution is that SMR5(A) from T1 reads the value written by SMW2(A)

i.e. r3=2.

Now, it is possible that T0 is stalled or blocked, resulting in T1 executing its in-

structions first. In such a case, T1 first tries to perform SMW4(B). In Memtracker

Chapter 4. SuperCoP: Memory supervision with correctness and performance 81

Figure 4.3: (a) shows the intended sequence of execution. (b) and (c) show the ex-

ecution sequence in Memtracker and the base TSO model, when T1’s execution is

scheduled before T0. In Memtracker/TSOall, SMW4(B) results in an exception 1© block-

ing the thread until SMW3(B) is performed. This results in SMR5(A) reading the value

written by SMW2(A) 2©. In the base TSO model/TSOdata SMR5(A) is ordered before

SMW4(B) and reads the initial value of A 3©, which is incorrect. Also, SMR1(A) raises

an unnecessary exception 4©

Chapter 4. SuperCoP: Memory supervision with correctness and performance 82

(Figure 4.3(b)), this immediately raises an exception 1© and T1 is blocked until this in-

struction can successfully execute. T1 can resume its execution 2© only after SMR3(B)

completes i.e SMR3(B) updates the metadata of B to empty. Once T1 resumes, it per-

forms SMW4(B) followed by SMR5(A). This results in SMR5(A) reading the value

written by SMW2(A), as in the expected execution sequence.

In the base TSO model (Figure 4.3(c)), however, T1 retires SMW4(B) into the write-

buffer, and proceeds to perform SMR5(A) 3©. Since SMR5(A) reads a metadata state

of full, it does not raise any exception and reads the value 1 into r3 (setting metadata of

A to empty). The exception on writing to B (which is in full state) is raised only when

SMW4(B) is issued from the write-buffer. This imprecise exception combined with

the metadata read reordering that occurs when SMR5(A) reads its metadata before

SMW4(B), results in an incorrect value being read into r3. Also, with this execution

sequence, when T0 eventually performs SMR1(A), it reads a metadata value of empty

resulting in an exception 4©. Subsequent instructions are not performed till SMR1(A)

is successful, which does not happen within this execution sequence.

4.1.3 Existing proposals which address correctness Issues in a

TSO supervised memory system

Bobba et al. outline two systems, namely TSOall and TSOdata, to tackle these cor-

rectness issues. TSOall is the same as the Memtracker system model, with the only

difference being that TSOall allows unsupervised write instructions to retire into the

write-buffer. Thus, TSOall does not suffer from any correctness issues, but has a high

performance overhead as the write-buffer is not used efficiently. TSOdata is the same

as the base TSO model explained in Figure 4.2. Thus all correctness issues that afflict

the base TSO model also manifest in TSOdata. Bobba et al. prescribe TSOdata, how-

ever, only for supervision schemes that tolerate metadata reordering, like HARD [Zhou

et al., 2007]. Unfortunately, not all supervision schemes tolerate metadata reordering,

including full-empty bits. In summary, TSOall is correct but inefficient, and TSOdata

is not applicable to all supervision schemes, even though it is efficient. We propose

a general solution to the correctness issues in TSO based supervised systems without

compromising on performance. In this regard, we discuss the ordering requirement of

Chapter 4. SuperCoP: Memory supervision with correctness and performance 83

SMIs in the supervision model and show how it can be weakened in order to provide

increased performance.

4.2 SuperCoP - Correctness of memory supervision for

TSO consistency

4.2.1 Revised Ordering Requirement of SMIs

Since Memtracker/TSOall does not suffer from correctness issues, we can conclude

that inorder execution of SMIs is a sufficient condition to solve imprecise exceptions

in TSO based supervised systems. This inorder execution of SMIs, however, results in

a high performance overhead. However, such an ordering requirement results in poor

performance similar to sequential consistency. Since each SMI is both a read and a

write, the existing ordering under the TSO consistency model orders all normal reads,

writes and SMIs with other SMIs. Each SMI acts like a memory fence like in type-1

RMWs shown in chapter 3.

We observe that inorder execution of SMIs is not a necessary condition for cor-

rectness. Intuitively, the necessary condition to avoid metadata read reordering is to

guarantee that metadata reads (and processing) occur in program order. This will also

ensure that metadata reads of SMW instructions will be performed before subsequent

instructions retire. Thus, by enforcing metadata read ordering, both correctness issues

that plague TSO based supervised memory systems can be solved. We, therefore, re-

duce the correctness requirement of a supervised system. The proposed correctness

requirement is that metadata reads alone are to be performed inorder, rather than en-

tire SMIs being performed inorder. Since only metadata reads are to be performed

inorder, metadata and data writes can be retired into the write-buffer, which reduces

the performance overhead as compared to Memtracker. Hence we propose SuperCoP -

Supervision with Correctness and Performance, which ensures metadata read ordering

by separating metadata reads from metadata writes. SuperCoP does not enforce any

additional ordering as compared to the underlying TSO consistency model. The only

ordering which is relaxed is the write to read ordering. This extends to both data and

metadata. Thus, metadata or data reads can be reordered with respect to metadata or

Chapter 4. SuperCoP: Memory supervision with correctness and performance 84

Figure 4.4: Implementation of SuperCoP. All SMIs are separated into their constituent

operations and are retired separately. For an SMR, Rm/Rd are retired once they are

completed, and Wm is retired into the write-buffer. For an SMW, Rm is retired once the

read is complete. Wd /Wm are retired into the write-buffer.

data writes. SuperCoP only modifies the execution of SMIs to reflect this ordering.

This correctness requirement is applicable to weaker consistency models as well. As

long as metadata read ordering is maintained and metadata-data atomicity is guaran-

teed, data reads and/or data writes can be reordered with respect to other data reads

and/or reads.

It is worth noting that, SuperCoP orders SMIs similar to the type-2 RMWs de-

scribed in chapter 3. The performance improvement of SuperCoP when compared

with TSOall is also similar to that achieved by type-2 RMWs over type-1 RMWs.

4.2.2 Implementation of SuperCoP

The implementation of SuperCoP is illustrated in Figure 4.4. In SuperCoP, an SMR

performs its data read (Rd) and metadata read (Rm) as part of the processor pipeline.

Both read operations retire once they are completed. Then, the metadata is processed

and the resultant metadata write (Wm), if any, is retired into the write-buffer. Then

Chapter 4. SuperCoP: Memory supervision with correctness and performance 85

Figure 4.5: If T0 is scheduled before T1, SMW4(B) performs its Rm first, which raises

an exception 1©. The thread is then blocked until this Rm can succeed. In T0, SMR1(A)

retires its metadata write to the write-buffer, from which SMW2(A) reads its metadata

2©. SMW4(B) can finally perform after SMR3(B) completes its metadata write 3©. Now,

when SMR5(A) is performed, it reads the value written by SMW2(A). Thus, there is no

incorrectness.

Chapter 4. SuperCoP: Memory supervision with correctness and performance 86

the processor continues with its execution. This removes Wm from the critical path.

An SMW also performs its Rm as part of the pipeline, once address computation is

complete. The metadata is then processed following which Rm retires. Then, both data

write (Wd) and metadata write (Wm) are retired into the write-buffer. As we can see,

all metadata reads are performed in order, and instructions need only to wait for the

metadata read and processing to be complete for them to be retired. Unlike TSOdata,

we do not make any assumptions about the supervision scheme itself. This makes

SuperCoP applicable to all supervised memory systems.

4.2.3 How correctness is achieved in SuperCoP

Consider the same sequence of instructions as in Figure 4.3. The execution order as

per SuperCoP is shown in Figure 4.5. Assuming the same scenario (where T0 has

been stalled or blocked), T1 begins with the execution of SMW4(B). Since SuperCoP

performs metadata read of an SMW in the critical path, an exception is raised 1© as

the SMW is to a full location. This stalls T1 until the metadata of B becomes empty.

Now when T0 eventually begins execution, it performs the metadata and data read for

SMR1(A), and retires the metadata write to the write-buffer. The next SMI being an

SMW to A can read its metadata from the write-buffer itself through a read bypass

2©. The resulting metadata write and data write are retired into the write-buffer. This

is followed by SMR3(B). Once SMR3(B) completes its metadata write and updates

the metadata of B to empty, T1 is unblocked and proceeds with its execution 3©. It

is evident that SuperCoP’s execution order is the same as Memtracker/TSOall. It is

worth noting that SMR5(A) in T1 reads the value written by SMW2(A) which is the

expected result. This example shows how SuperCoP deals with the correctness issues

that manifest in TSO based supervised systems.

4.3 Ensuring Atomicity in SuperCoP

A consequence of separating metadata reads and writes in SuperCoP is that it can

violate metadata-data atomicity which in turn leads to incorrectness in metadata. An

example of this metadata-data atomicity violation is illustrated in Figure 4.6. For ease

Chapter 4. SuperCoP: Memory supervision with correctness and performance 87

Figure 4.6: Rm (from T0) retires and inserts Wm and Wd into the write-buffer. Meanwhile,

R′m (from T1) is performed and reads the same metadata value as Rm, instead of reading

the metadata value written by Wm, as Wd is performed after R′d .

of explanation, we use a generic supervision scheme instead of the full-empty bits

scenario.

Here, T0 performs SMW(A), and T1 performs SMR′(A). First, T0 performs and

retires Rm(A) in the critical path. Once the metadata processing is done, T0 retires

Wm(A) and Wd(A) into the write-buffer, which may have other entries above it. Mean-

while, SMR′(A) is performed in T1. R′m(A) reads the same metadata value read by

Rm(A). The metadata is processed and W′d(A) is retired into the write-buffer and is

immediately issued to the memory. Wd(A)-Wm(A) is then issued to memory. Here,

even though Wm(A) is ordered after R′d(A), Rm(A) does not read the metadata value

written by W′m(A). This violates metadata-data atomicity.

4.3.1 Atomicity based on fine grain locking

To ensure atomicity, either SMR′(A) should be allowed to perform only after SMW(A)

completes, or SMW(A) should be re-executed after SMR′(A) completes (similar to

Chapter 4. SuperCoP: Memory supervision with correctness and performance 88

Figure 4.7: Rm locks address A 1© prohibiting R′m from being performed 2©. Wm unlocks

A 3© following which R′m is performed successfully 4©. Thus, R′m correctly reads the

metadata written by Wm.

Memtracker). In case of the latter, Rm cannot be allowed to retire until its metadata

write has completed. Since this obviates any performance gain in separating metadata

read and write, we choose the former approach to implement atomicity. We ensure

that an SMI can be performed in an uninterrupted fashion, by using a fine grain lock-

ing mechanism to lock the address accessed by an SMI when the metadata read is

performed, and relinquish the lock when the metadata write is performed. All coher-

ence requests to locked addresses will be denied/delayed until the unlock operation

occurs. This will guarantee that no other SMI can access the metadata location locked

by an SMI until it completes. An execution pattern for a generic fine grain locking

based atomicity scheme is illustrated in Figure 4.7. 1© First, address A is locked by

Rm(A). 2© Now, when R′m(A) is issued, its coherence request is denied owing to the

lock on A. 3© The lock on A is relinquished when Wm(A) is issued to memory. 4©Now,

when R′m(A) is issued to memory, it locks A. Here, SMR′(A) reads both its data and

metadata from SMW(A), thus preserving metadata-data atomicity. A is later unlocked

when W′m(A) completes in the memory.

Chapter 4. SuperCoP: Memory supervision with correctness and performance 89

Figure 4.8: Protocol for the proposed Directory locking mechanism to preserve

metadata-data atomicity.

Chapter 4. SuperCoP: Memory supervision with correctness and performance 90

4.3.1.1 Atomicity using local cache locking

In order to implement fine grain locking, all SMIs can be considered on the lines of

conventional Read-Modify-Write (RMW) instructions. Conventional RMW instruc-

tions obtain write permissions to the cache block they address, and lock the cache

block in the local cache. Similarly, an SMI instruction should obtain exclusive per-

missions to the cache block it addresses, lock the cache block locally, and then retire

its write(s) into the write-buffer. If a metadata write is not generated, the cache block

is unlocked immediately. Otherwise, the lock is released when the metadata write is

issued from the write-buffer. Referring back to Figure 4.7, in 1©, Rm(A) gets write

permissions for A and locks the address in its local cache. R′m(A)’s request for A is

denied 2©, until the lock is relinquished 3©. Then R′m(A) obtains write permissions for

A by invalidating the copy in T0. An SMI performs invalidations only when a meta-

data write is generated. The invalidation, however, for both SMRs and SMWs occur in

the critical path, owing to which the cache locking scheme will suffer a performance

overheard similar to that of TSOall.

4.3.1.2 Atomicity using directory locking

To address the drawbacks in cache locking, we propose a novel atomicity scheme

which reduces the number of invalidations and pushes the remaining invalidations out

of the critical path. We make use of the underlying coherence protocol to implement

this atomicity scheme, which in our case is the directory protocol. Invalidations occur

when the metadata address is in the shared coherence state. If an SMI is issued to a

shared address, then the cache block it addresses is locked in the directory instead of

obtaining write permissions to it and locking it in the local cache. The lock is relin-

quished on completion of the SMI’s metadata/data write. For an SMR, invalidations

are carried out only if a metadata write is generated, thereby reducing the number of

invalidations as compared to the local cache locking scheme. For both SMW/SMR, in-

validations in the critical path are replaced by a directory access which is much cheaper.

The invalidation itself is removed from the critical path and is performed as part of the

write-buffer logic.

The protocol followed for the directory locking mechanism is outlined in Fig-

Chapter 4. SuperCoP: Memory supervision with correctness and performance 91

ure 4.8. Let us assume an SMI to address A. If A is in modified/exclusive state in

the local cache, the locking happens in the local cache (L1) itself. The corresponding

metadata write unlocks the cache block. If no metadata write is generated, then the

cache block is unblocked immediately. Like in local cache locking, all requests to a

locked cache block are denied by the processor.

The request is forwarded to the directory if a) A is not present in L1, or b) A is

in shared state and the SMI is a read which generates a metadata write, or c) A is in

shared state and the SMI is a write. The directory checks if there are any pending

requests to A. If there are pending requests to A in the directory, the request is inserted

into the directory queue and is serviced when there are no other requests to A ahead of

it in the queue. When the request gets serviced the cache block is transitioned into a

busy state, and an acknowledgement is sent to the requesting processor. The processor

retires the read operation on receiving a response from the directory. If the directory

receives a coherence request to a cache block in busy state, the request is queued in

the directory. The cache block is transitioned out of the busy state when the directory

receives a corresponding metadata write/data write.

Thus, the busy state acts like a lock. If an SMI which has obtained a directory lock

does not generate a metadata write (a miss in the local cache), a dummy write has to be

issued to unlock the address in the directory. It is worth noting that this dummy write

need not be issued in the critical path.

(Example scenario) The working of the directory locking based atomicity scheme is

illustrated in Figure 4.9, where T0 performs SMW(A) and T1 performs SMR′(A) (as

shown in Figure 4.7). Assume that A is initially shared between T0 and T1. First,

SMW(A) (from T0) performs its metadata read. 1© Since, A is in shared state, the

request is forwarded to the directory and 2© locks A (goes to busy state) in the directory.

3© The directory responds to the request so that Rm can be retired. 4© The metadata is

then processed (in T0) and the resulting metadata write is retired into the write-buffer.

It is worth noting that A is still in the shared state in the directory.

5© Now, when SMR′(A) (from T1) sends a read request to the directory, 6© it is

inserted into the directory queue, as A is in busy state. The metadata read of SMR′(A)

is not retired as it does not receive a response from the directory. 7© When Wm is

issued from T0’s write-buffer, 8© T1’s copy of A is invalidated, and 9© the lock on A

Chapter 4. SuperCoP: Memory supervision with correctness and performance 92

Directory

T0 T1

response

10

12
14

R ’(A)

11

13 lock A

15. T1 issues W (A) to unlock A

service R’(A)

response

15 W (A)m

m

inv.

Directory

T0 T1

7

8
9

W (A)
m

W (A)
d

unlock A

inv. ack.9

inv. ack.

9

Directory

T0 T1

R (A)
m

response
1

2

3
5

lock A 6

4

into the write bufferW (A)
m

W (A)
d

4. T0 retires ,

R ’(A)
m

R ’(A)
d

R’(A) queued

R’(A) = R ’(A) + R ’(A) md

*

*

Figure 4.9: Here, T0 performs SMW(A) and T1 performs SMR′(A). The sequence of

events are numbered in the ascending order. The figure on the left shows how SMW(A)

locks address A, and SMR’(A) is queued in the directory. The figure in the center

shows steps involved in unlocking A. In the figure on the left, SMR′(A) locks A, when it

is serviced by the directory. Eventually, SMR′(A) issues its metadata write to unlock A.

Chapter 4. SuperCoP: Memory supervision with correctness and performance 93

is relinquished by T0. The directory transitions the cache block A to modified state

owned by T0. Now, 10© SMR′(A)’s request is serviced by the directory, which 11© (&

12©) obtains the updated copy of the data and metadata from T0 and 13© locks A again,

by transitioning it to the busy state. 14© The directory acknowledges SMR′(A), so that

its metadata and data read can be retired. A is now again in shared state with both T0

and T1 having copies of it. 15© Eventually, SMR′(A) issues its metadata write to unlock

A in the directory.

4.4 Experimental Results

4.4.1 System Specification

We built a hardware simulation infrastructure using the PIN tool [Luk et al., 2005],

to simulate 16 processors connected in a mesh network. The interconnect has a link

latency of 1 cycle and router latency of 4 cycles. Each processor has a 32-entry write-

buffer, and a private 4-way 32KB L1. A MESI-based directory protocol is used to

keep all L1 caches coherent. The L2 cache (16-way 1MB/core) and the directory are

static address interleaved. Each instruction takes 1 cycle to execute, and it takes a total

of 4, 20, and 200 cycles to access the L1, L2, and main memory, respectively. As

mentioned in previous sections, we use a tagged memory system to store metadata for

the supervised system, where both metadata and data are stored together in the same

address. All memory operations are considered as supervised memory operations. We

evaluate the performance of TSOall, TSOdata, and SuperCoP using the SPLASH-2

[Woo et al., 1995] benchmark suite. The benchmarks and their respective input sizes

are listed in Table 4.1. We evaluate SuperCoP with both cache based locking and

directory based locking.

4.4.1.1 HARD supervision scheme

We demonstrate the efficacy of SuperCoP as compared to TSOall and TSOdata using

the HARD supervision scheme proposed by Zhou et al. [Zhou et al., 2007]. HARD

is used for race detection in multi-threaded software. It ensures that all accesses to a

shared variable are protected by at least one common lock. Each thread maintains a

Chapter 4. SuperCoP: Memory supervision with correctness and performance 94

Table 4.1: Splash-2 Benchmark Suite

Code Problem Size

Barnes 16K particles

Cholesky tk29.O

FFT 64K points

FMM 16K particles

LU (contiguous) 512x512 matrix, 16x16 blocks

LU (non-contiguous) 512x512 matrix, 16x16 blocks

Ocean (contiguous) 258 x 258 ocean

Ocean (non-contiguous) 258 x 258 ocean

Radiosity room, -ae 5000.0 -en 0.050 -bf 0.10

Radix 1M integers, radix 1024

Raytrace car

Volrend head

Water-Nsq 512 molecules

Water-Sp 512 molecules

variable called LockSet which is the union of all the locks currently held by the thread.

Each variable is protected by a Candidate Set which is the set of locks used to protect

the variable thus far. On every memory access, the candidate set is updated to include

the LockSet of the thread reading the variable.

Candidate sets are written at cache-block granularity, and form the metadata in this

system along with the state of the variable. A simple finite state machine is used to

transition variable states, that initializes blocks in private states and transitions them

to a shared state when they are accessed by multiple threads. On every data access,

the LockSet, the CandidateSet, and the variable state are used to detect a race, and an

exception is raised when a certain set of conditions are met. HARD uses Bloom filters

to efficiently represent them in hardware. We chose the HARD supervision to compare

the various supervised systems as it is an example of a supervision scheme which reads

processes and updates metadata. Also, the earlier work by Bobba et al. [Bobba et al.,

2011] uses HARD to compare TSOdata and TSOall.

Chapter 4. SuperCoP: Memory supervision with correctness and performance 95

0

10

20

30

40

50

%
 P

er
fo

rm
an

ce
 O

ve
rh

ea
d

ba
rn

es

ch
ole

sk
y

fm
m fft

lu_
c
lu_

nc

oc
ea

n_
c

oc
ea

n_
nc

ra
dio

sit
y

ra
dix

ra
ytr

ac
e

vo
lre

nd

wat
er

−n
sq

wat
er

−s
p

gm
ea

n

Benchmarks

TSOall
TSOdata
SuperCoP (CL)
SuperCoP (DL)

Figure 4.10: Performance overhead comparison for the HARD supervision scheme.

The performance numbers here represent the overhead suffered by the supervised

system when compared to an unsupervised system. For example, TSOall has a 38.89%

overhead compared to an unsupervised execution of the barnes benchmark. CL and

DL represent the cache locking scheme and directory locking schemes, respectively.

Chapter 4. SuperCoP: Memory supervision with correctness and performance 96

4.4.2 Simulation results for HARD

We compare the performance of TSOall, TSOdata, SuperCoP (with cache locking),

and SuperCoP (with directory locking) for the HARD supervision scheme. The exper-

imental results are shown in Figure 4.10. The percentage of SMIs which update meta-

data varies from 0.2% (fmm) to 57.8% (lu-contiguous) as shown in Table 4.2, with

an average (geometric mean) of 4.5%. We observe from Figure 4.10 that TSOdata

consistently performs better than TSOall as it retires SMWs to the write-buffer, while

incurring the same latency for SMRs. On an average, TSOdata performs better than

TSOall by 11.4%. With cache locking, SuperCoP performs worse than TSOdata for

all benchmarks (average of 8.3%), as invalidations for SMRs and SMWs which update

shared metadata are in the critical path. With directory locking, however, SuperCoP

outperforms TSOdata by 6% across all benchmarks.

It is worth nothing that, TSOall performs invalidations for both SMRs which update

metadata and SMWs in the critical path. TSOdata performs invalidations for SMRs

which update metadata in the critical path, while SMWs are completely performed in

the write-buffer. With the cache locking scheme, SuperCoP performs invalidations for

all SMIs which update shared metadata in the critical path. Since, invalidations of

SMRs and SMWs are performed in the critical path, the cache locking scheme incurs a

penalty close to TSOall. With the directory locking scheme, only SMRs which update

metadata to shared locations, and SMWs to shared locations incur a directory access

in the critical path, thereby providing better performance than even TSOdata.

We analyze the directory locking scheme in more detail. We observe that Su-

perCoP with the directory locking scheme performs much better than TSOdata for

benchmarks which have a higher percentage of SMIs that update metadata (fft - 39.5%,

lu-contiguous - 57.8%, lu-noncontiguous - 48.8%, ocean-contiguous - 14.5%, ocean-

contiguous - 20.9%, raytrace - 11%).

For radix, even though the percentage of SMIs which update metadata is com-

paratively less (5.5%), SuperCoP (with directory locking) performs much better than

TSOdata as a larger percentage of SMIs which update metadata are shared SMRs (re-

call that shared SMRs which update metadata are more expensive in TSOdata than in

SuperCoP) and the number of SMWs which update metadata to shared locations is

Chapter 4. SuperCoP: Memory supervision with correctness and performance 97

Table 4.2: Characteristics of Supervised Instructions for HARD

Code % of SMIs

updating metadata

Barnes 8.5

Cholesky 0.7

FFT 39.5

FMM 0.2

LU contiguous 57.8

LU noncontiguous 48.8

Ocean contiguous 14.5

Ocean noncontiguous 20.9

Radiosity 7.2

Radix 5.6

Raytrace 11.3

Volrend 0.2

Water-Nsq 6.2

Water-Sp 2.1

Chapter 4. SuperCoP: Memory supervision with correctness and performance 98

negligible. Similarly, in cholesky, the number of SMRs updating metadata are much

larger compared to SMWs which update shared metadata. SuperCoP (with directory

locking) performs worse than TSOdata for barnes, water-nsquared and water-spatial

as these applications issue a comparatively larger number of SMWs to shared loca-

tions. In case of fmm, even though the number of shared writes is large, the SMWs

which update shared metadata is very few (0.06%) in number compared to the number

of SMWs which update metadata in exclusive locations (21%). The overhead that these

SMWs cause in SuperCoP is offset by the number of SMRs which update metadata,

resulting in SuperCoP performing on par with TSOdata.

4.4.3 Scalability with respect to metadata updates

It can be seen from the results for HARD that the percentage of SMIs that update

metadata critically influences the performance of a supervised system. Thus, we can

study the scalability of the supervised systems by implementing a generic supervision

scheme, and varying the percentage of SMIs which update metadata. The cost asso-

ciated with a metadata update depends on whether the SMI is an SMR or an SMW.

Now, an SMR which updates metadata has a higher latency than an SMR which does

not update metadata. This is evident from the implementations of TSOall and TSO-

data where SMRs updating metadata result in an invalidation in the critical path. Also,

in SuperCoP, an SMR updating shared metadata must access the directory. The cost

of an SMW, however, depends on the coherence state rather than whether it updates

metadata or not. Thus, the performance overhead of the supervision scheme increases

proportionally with the percentage of SMRs updating metadata, which in turn depends

on the supervision scheme. This means that scalability of a supervised system can be

represented on the lines of metadata update percentages. In our experiments, we vary

the percentage of SMIs which update metadata from 5% to 100% .

(Simulation results for scalability) Figure 4.11 shows how the performance of Su-

perCoP scales with percentage of SMIs updating metadata as compared with TSOdata.

The execution time is averaged across all SPLASH-2 benchmarks and are normalized

with respect to the execution time of TSOall. We have not represented SuperCoP with

the cache locking scheme as it is evident from the results of the HARD supervision

Chapter 4. SuperCoP: Memory supervision with correctness and performance 99

0

0.2

0.4

0.6

0.8

1 ● ● ● ● ●

●
● ●

● ●●

●

●

●

●

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

5 20 50 100
Metadata update percentage

TSOall
TSOdata
SuperCoP (directory locking)

Figure 4.11: Scalability of TSOall, TSOdata, and SuperCoP with respect to the number

of SMIs which update metadata. The execution time is normalized to that of TSOall to

better represent the scalability. We only present SuperCoP with directory locking as we

have shown that it consistently performs better than the cache locking scheme.

scheme that the cache locking scheme performs as bad as TSOall.

Figure 4.11 shows that TSOdata provides the same performance improvement over

TSOall as metadata update percentage increases. It is worth noting that the only per-

formance improvement that TSOdata provides over TSOall is for SMWs, and even

if these SMWs update metadata, performance improvement for TSOdata over TSOall

will be the same. SMRs are performed in the same manner for TSOall and TSOdata.

Therefore, the only advantage that TSOdata provides over TSOall is the write-buffer.

In the case of SuperCoP, however, the latency of SMRs updating metadata is reduced

as compared to TSOall and TSOdata. SMWs incur a small penalty of accessing the

directory if it is to a shared location, which is constant across varying metadata up-

date percentage. Thus, SuperCoP performs better than TSOall and TSOdata as the

percentage of SMIs that update metadata increases.

Chapter 4. SuperCoP: Memory supervision with correctness and performance 100

4.5 Summary

Existing supervised memory systems, implicitly or explicitly, assume SC [Bobba et al.,

2011]. Bobba et al. proposed two systems; TSOall which has significant performance

overhead, TSOdata which is not general and still suffers from correctness issues for

certain supervision schemes. Bobba et al.’s work on safe supervised systems implicitly

assumes that inorder execution of SMIs ensures correctness. We reduce this correct-

ness requirement to metadata read ordering. To this end, we develop SuperCoP, which

separates metadata reads and writes, and ensures metadata read ordering by perform-

ing the metadata reads in the critical path. We also propose a directory locking scheme

to ensure metadata-data atomicity at a lower cost.

We demonstrate the efficiency of SuperCoP with respect to TSOall and TSOdata

using the HARD supervision scheme. Our experimental results using HARD show

that SuperCoP performs better than TSOall by 16.8% and TSOdata by 6%. We also

analyze the scalability of supervised systems with respect to the percentage of SMIs

which update metadata. It is evident from our experiments that SuperCoP scales better

than TSOall or TSOdata. Thus we show that SuperCoP is a correct and performance

efficient supervised memory system that is general, in that it is applicable to any su-

pervision scheme.

Chapter 5

DyFCoM: Performance and Fairness

for Lock-free Programs

This chapter addresses the issue of contention in the case of RMWs used in synchro-

nization and profiling applications. Please recall from the first chapter that, apart from

the orderings enforced by an RMW, contention also poses a bottleneck for RMW per-

formance. While we observe that contention of RMWs themselves is not a big prob-

lem, the way in which RMWs are used in synchronization (and profiling) increases

the performance overhead. The programs we examine use conditional RMWs (like

CAS, TAS, etc.) to enable synchronization (or counting). These programs are struc-

tured such that a successful conditional RMW from a thread will trigger the failure of

RMWs from concurrent threads, resulting in the re-execution of certain pieces of the

code in the concurrent threads, leading to a performance overhead. In addition, when

contention is involved, the fairness amongst concurrent threads in accessing shared

objects is also an issue to contend with. We use the term contention-based failures to

describe this issue.

In this work, we present DyFCoM: a Dynamic Fairness and Contention Management

scheme, to monitor the success and failure of RMWs and manage contention in order

to provide increased performance and fairness. We target finer-grained synchroniza-

tion mechanisms like lock-free programs, as contention is of greater concern in such

cases. We also evaluate our scheme with profiling applications using RMWs to update

shared counters.

101

Chapter 5. DyFCoM: Performance and Fairness for Lock-free Programs 102

In this chapter, we first present and motivate the problem of contention. This is

followed by the dynamic contention management scheme we propose to alleviate the

performance overhead owing to contention. Next, we present our dynamic fairness

management scheme. The contention management and fairness management schemes

are combined to form DyFCoM. Finally, we present our experimental results for DyF-

CoM when compared with similar contention management schemes, with regards to

both performance and fairness.

5.1 Introducing the problem

The poor scalability of traditional blocking algorithms led to the design of non-blocking

algorithms [Cederman et al., 2013a,b; Michael, 2002; Michael and Scott, 1996]. Such

algorithms, unlike blocking algorithms, ensure that threads competing for an update to

a concurrent data structure do not have their execution indefinitely postponed. Most

existing non-blocking algorithms provide a lock-free progress guarantee [Herlihy and

Shavit, 2008], ensuring that among all threads that compete to update the data struc-

ture, at least one will succeed – thereby ensuring system-wide progress. For other

progress guarantees (wait-freedom and obstruction-freedom), please refer to the back-

ground chapter. We focus on lock-free algorithms due to the large existing corpus of

programs, and its widespread usage.

Unfortunately, lock-free programs suffer from scalability issues with regard to both

throughput and fairness. Indeed, several works in literature [Cederman et al., 2013a;

Dice et al., 2013a; LaMarca, 1994; Morrison and Afek, 2013] show that on increasing

contention, throughput and fairness fall significantly. We observe a similar pattern

for performance and fairness in our experiments conducted on a 32-core Intel Xeon

processing platform as evidenced from Figures 5.1 and 5.2. We present the throughput

and fairness for micro-benchmarks operating on a concurrent queue, stack and a shared

counter. The fairness values fall to as low as 0.53 in the case of a lock-free stack

when running 64 threads. In case of performance, the throughput of the stack and

queue micro-benchmarks fall by a factor of as much as 70 going from 2 threads to

64 threads. The shared counter micro-benchmark falls by around a factor of 36 from

2 to 64 threads. We explain these benchmarks in detail in the section on evaluation

Chapter 5. DyFCoM: Performance and Fairness for Lock-free Programs 103

0

1

2

3

4

●

●

●

●
● ● ●

●

●

●

●
● ● ●

●

●

●

●

●
●

●

T
hr

ou
gh

pu
t (

O
ps

/u
s)

2 16 32 48 64
Number of threads

Queue
Stack
Shared Counter

Figure 5.1: This graph shows the variation of throughput of a lock-free queue,stack and

shared counter. Throughput is measured as the time taken for each lock-free operation

averaged across all threads. Please note that we present only enqueue operations for

queues and push operations for stacks. The results are similar for dequeue and pop

operations. Each thread performs either 1 million enqueue or dequeue operations for

queues. Similarly for stacks, each thread performs either 1 million pushes or 1 million

pops.

Chapter 5. DyFCoM: Performance and Fairness for Lock-free Programs 104

0

0.2

0.4

0.6

0.8

1

2 4 8 16 32 48 64

Fa
ir

ne
ss

 (
M

ax
. =

 1
)

Number of threads

Queue
Stack
Shared Counter

Figure 5.2: This graph shows the variation of fairness of a lock-free queue,stack and

shared counter. Each thread performs 1 million lock-free operations.

methodology.

We attribute the degradation in performance and fairness to the contention of RMWs

from concurrent threads. Most existing lock-free algorithms [Cederman et al., 2013b;

Gidenstam et al., 2010; Michael and Scott, 1996] synchronize using RMW loops (es-

pecially compare-and-swap (CAS) loops): a thread observes the shared state, performs

a computation, and uses a CAS to update the shared state (called the linearizing CAS).

If the linearizing CAS succeeds, this read-compute-update sequence appears to be

atomic; otherwise the thread must retry the entire loop. This is shown in Algorithm 1.

A CAS loop represents a lock-free operation. Here x is the shared variable, and y is a

thread-local variable. x is first read into y at the beginning of the CAS loop. For the

loop to be successful, CAS(x,y) should be successful. If x has been written by another

thread before the CAS is performed, the CAS loop (or operation) fails. Please note

that threads only use RMWs to access x. The requirement of atomicity of the CAS

loop implies that only one thread at a time can successfully complete a CAS loop.

The remaining CAS loops will result in failures of the CAS, and thus the respective

threads must re-perform their CAS loops. This is the main cause for the performance

overhead. With increased contention, the number of CAS failures will increase which

results in poor throughput. This increased contention can be in the form of increased

number of concurrent threads, or reduced amount of work done between successive

Chapter 5. DyFCoM: Performance and Fairness for Lock-free Programs 105

synchronization operations. Indeed, existing literature also attributes the degradation

in performance in lock-free programs to CAS failures [Dice et al., 2013a; Morrison

and Afek, 2013].

Algorithm 1 General structure of a Lock-free operation
loop

Set y← x

Perform Computation

CAS(x,y) //Linearizing CAS

if CAS successful then
Exit Loop //Thread progress

end if
end loop

The issue with fairness is due to the nature of the lock-free progress guarantee.

Since lock-free programs only guarantee system-wide progress, individual threads can

potentially starve, or run ahead of other threads. Increase in contention increases the

possibility of a thread to starve or run ahead. In either case, the access of the shared

data structure is unevenly distributed across the concurrent threads. Although higher

throughput is the generally preferred, maintaining fairness is equally important, espe-

cially in NUMA architectures where the latency of memory access amongst threads is

different especially between different NUMA nodes. Fairness, here, indicates the avail-

ability of shared resources (in this case - atomically accessed cache-lines) to different

threads. High fairness means that all threads have an equal opportunity to progress

by accessing the shared resource. This is preferable in order to reduce starvation and

unequal distribution of work.

Typically, fairness and performance are considered orthogonal wherein optimiz-

ing one parameter compromises the other. In such a case, a dynamic scheme which

constantly or periodically monitors the execution of the program can possibly address

both issues in a holistic manner. In this work, we study the impact of contention on

throughput and fairness and propose a universal mechanism which provides both high

throughput and fairness under high contention, irrespective of the program, or the syn-

chronization construct used. We start by showing how the existing state-of-the-art con-

Chapter 5. DyFCoM: Performance and Fairness for Lock-free Programs 106

tention management scheme [Dice et al., 2013a] is highly sensitive to the contention

and the program structure, We follow this with our dynamic contention management

scheme and show how it overcomes the drawbacks of existing schemes. We also show

how contention resolution affects the fairness measure. We then present our fairness

management scheme. Please note that the fairness measure we address is not a strong

guarantee, but a weak one where we try and ensure that all threads have equal op-

portunity in updating the concurrent data structure. Both the dynamic management

schemes involve monitoring successful linearizing RMW/CAS operations from each

thread. We use this information to implement a dynamic backoff-based contention

management to provide increased throughput. For fairness, we force-fail CAS loops

deliberately so that potentially starving threads get an opportunity to progress, over

faster threads. A potentially starving thread is one which performs a lesser number

of CAS loops than other threads in a given period of time. We finally present the

combination of both fairness and contention management (DyFCoM) and evaluate its

performance and fairness when compared with existing schemes.

In summary, our contributions are as follows:

• We show that the throughput of existing CAS contention management schemes is de-

pendent on the level of contention, concurrency (and the architecture). We also show

that the CAS contention management scheme impacts the fairness values adversely

in many cases.

• We propose DyFCoM, a dynamic fairness and contention management scheme, which

monitors successful RMWs, periodically determines the throughput of individual

threads, and dynamically alters backoff values for contention management. DyF-

CoM addresses fairness by holding back threads which have a higher throughput

and allowing potentially starving threads to complete their updates to the shared data

structure (in the presence of lesser contention).

• We also present a practical implementation of DyFCoM in the form of an RMW

library. In order to achieve increased throughput and fairness, programmers have

to simply replace the linearizing CAS operation in existing lock-free programs with

the CAS function provided by us. We augment the CAS function with the required

monitoring, backoff and force-fail methods in order to implement DyFCoM.

Chapter 5. DyFCoM: Performance and Fairness for Lock-free Programs 107

5.2 Dynamic Contention Management for Performance

This section first describes the existing state-of-the-art contention management scheme

proposed by Dice et al. [Dice et al., 2013a] and its drawbacks. Then we present our

dynamic contention management scheme which addresses these drawbacks.

5.2.1 RMW/CAS contention management

Dice et al. [Dice et al., 2013a] proposed a lightweight software-based contention man-

agement scheme which specifically addresses CAS operations. They study the impact

of typical contention management schemes like constant backoff, exponential backoff,

time-slicing and array-based signaling when they are applied to the CAS operations

used in lock-free algorithms. Out of the contention management approaches present

in this paper, the three simplest algorithms - constant backoff, exponential backoff and

time-slice - yielded the best results, primarily because they had very small overheads.

In this thesis, we present only the constant backoff scheme as it is the simplest to imple-

ment and has the least parameters to deal with. Also, it provides the best performance

of all contention management schemes proposed in the paper. The more complicated

approaches like array-based signaling were consistently outperformed by the simpler

approaches.

Listing 5.1: CAS library function

1 CAS(long ∗mem, unsigned long old, unsigned long new) {
2 unsigned long r;

3 asm volatile (”lock cmpxchgl %k2,%1”

4 : ”=a” (r), ”+m” (∗mem)

5 : ”r” (new), ”0” (old)

6 : ”memory”);

7 if (r == old)

8 return 1;

9 else
10 return 0;

11 }

Chapter 5. DyFCoM: Performance and Fairness for Lock-free Programs 108

Listing 5.1 shows the code for a CAS operation as used in programs. The function

CAS(mem,old,new) takes in the reference to the memory address (mem) whose contents

are to be compared with the value old. If the data stored in mem is equal to old, then

the cmpxchgl instruction (x86 assembly language instruction for a CAS) is successful

and writes mem with the value store in new. The cmpxchgl sets or resets the zero

flag depending on its success, which is typically then checked to see if the CAS is

successful or not. As part of the code, however, we store the value in mem in a local

variable r, which is then compared with old to indicate success (or failure) of the CAS.

Listing 5.2: CAS library function

1 CAS(long ∗mem, unsigned long old, unsigned long new) {
2 unsigned long r;

3 asm volatile (”lock cmpxchgl %k2,%1”

4 : ”=a” (r), ”+m” (∗mem)

5 : ”r” (new), ”0” (old)

6 : ”memory”);

7 if (r == old)

8 return 1;

9 else {
10 usleep(WAITING TIME);

11 return 0;

12 }
13 }

Listing 5.2 shows how the constant backoff contention management scheme is ap-

plied in the case of CAS operations. No per-thread state is required for this algorithm.

The only difference of a constant backoff CAS as compared with a normal CAS is that

if the native CAS fails, then the thread busy-waits for a platform-dependent period of

time, after which the CAS operation returns.

A drawback of this technique, which the authors also state, is that the backoff value

is platform dependent. Additionally, as we observe, the backoff value is also dependent

on the concurrency level (number of threads), and the level of contention, or the lock-

free program in question. Figure 5.3 shows the improvement in performance of a

lock-free queue when using the constant backoff contention management. We choose

Chapter 5. DyFCoM: Performance and Fairness for Lock-free Programs 109

0

0.5

1

1.5

2

2.5

3 ●

●

●

●
● ● ●

●

●

●

●

●

●

●

T
hr

ou
gh

pu
t (

O
ps

/u
s)

2 16 32 48 64
Number of threads

Without backoff
With backoff

Figure 5.3: This graph shows the variation of throughput of a lock-free queue with and

without the constant backoff contention management scheme. Each thread performs 1

million lock-free operations.

a backoff value of 250ns after iterating the experiments through several backoff values.

These results show that improving the contention performance of RMWs improves the

overall throughput of the program.

To study the sensitivity of the backoff value with concurrent level, we manually

varied the backoff value for each of the chosen thread counts. For each concurrency

level, we chose the highest throughput achieved with contention management. The

values presented in Figure 5.4 are the backoff values that are used to achieve this

optimal throughput. As it can be seen the optimal backoff value varies from 20ns to

2000ns. Thus, fixing the backoff value based on the architecture alone is not effective.

The backoff values also vary with the lock-free algorithm in use.

Thus, tuning these parameters per data-structure and concurrency level may yield

better results. Moreover, a dynamic tuning may provide a general, cross data-structure,

cross CPU, solution.

5.2.2 Monitoring CAS success/fails for tuning Backoffs

During our experiments, we observed an interesting pattern in the variation of through-

put with the backoff value, given the number of threads. Figure 5.5 shows the sensitiv-

ity of throughput with backoff value for a lock-free queue running 32 threads. We vary

Chapter 5. DyFCoM: Performance and Fairness for Lock-free Programs 110

0

500

1000

1500

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●
●

●

● ● ● ●

B
ac

ko
ff

va
lu

e
(n

s)

2 16 32 48 64
Number of threads

Queue
Stack
Shared Counter

Figure 5.4: This graph shows the variation of optimal backoff for a lock-free queue.

Each thread performs 1 million lock-free operations.

the backoff values from 10ns to 5000ns. From the graph, it is clear that the through-

put increases on initially increasing the backoff value. Throughput reaches a maximal

point (backoff of 500 ns) and then decreases on further increasing the backoff value.

We attribute this to the nature of how constant backoff contention management works.

In constant backoff, the thread which performs a failed CAS waits for a predetermined

time before continuing. During this waiting period, another thread which has already

started its CAS loop iteration has more chance to succeed. However, if the waiting

period is higher than the CAS loop latency, throughput gets degraded. Such a pat-

tern can be leveraged to design a dynamic contention management mechanism without

using any complex learning algorithms. Therefore, in our dynamic contention man-

agement scheme, we need to gradually increase the backoff value until it reaches peak

performance, and reduce backoff if the performance dips again on increasing backoff.

In order to achieve dynamic tuning, we first need a framework to provide some

runtime information about the program execution. Since the CAS instructions are

the core of the issue, we add thread-local counters to track the number of successes

and failures of the CAS instructions. The success of a CAS indicates the progress of a

thread, and failure indicates contention wherein the thread backs off before continuing.

Please note that only the linearizing CAS has to be monitored. As specified in the

background chapter, the linearizing CAS is the point at which the CAS loop (or lock-

Chapter 5. DyFCoM: Performance and Fairness for Lock-free Programs 111

0

0.05

0.1

0.15

0.2

●

●

●

●

●

●

●

●

●

●

T
hr

ou
gh

pu
t (

O
ps

/u
s)

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Backoff value (us)

Figure 5.5: This graph shows the variation of throughput of a lock-free queue on vary-

ing the constant backoff contention management scheme. The throughput increases

initially on increasing backoff, reaches a maximum value and falls again. Our scheme

proposes to achieve this maximal throughput.

free operation) is deemed to have completed atomically. This is shown in Listing 5.3.

Listing 5.3: CAS library function

1 #define CAS EPOCH 1000

2

3 unsigned long num fail, num success; //thread−local variables

4 unsigned long long start time, cur time, epoch time; //thread−local variables

5

6 static inline unsigned long long rdtsc(void) { //function to read the timestamp counter

7 unsigned hi, lo;

8 asm volatile (”rdtsc” : ”=a”(lo), ”=d”(hi));

9 return ((unsigned long long)lo)|(((unsigned long long)hi)<<32);

10 }
11

12 //start time is initialized to the value of the timestamp counter at the start of execution.

13 CAS(long ∗mem, unsigned long old, unsigned long new) { //modified CAS function.

14 unsigned long r;

15 asm volatile (”lock cmpxchgl %k2,%1”

16 : ”=a” (r), ”+m” (∗mem)

17 : ”r” (new), ”0” (old)

18 : ”memory”);

19 if (r == old) {

Chapter 5. DyFCoM: Performance and Fairness for Lock-free Programs 112

20

21 num success++;

22 cur time=rdtsc();

23 if(num success >= CAS EPOCH) {
24 epoch time = cur time−start time;

25 start time=rdtsc();

26 }
27 return 1;

28 }
29 else {
30 num fail++;

31 return 0;

32 }
33 }

We also use the hardware timestamp counters available in x86 architectures [Intel

Corporation, 2009] to obtain the time taken to complete a certain number of CAS

operations. We define a CAS EPOCH variable to hold the number of successful CAS

loops (1000 in Listing 5.3) whose latency is required. If the number of successful CAS

instructions is greater than this value, the time difference from start time and cur time

is stored in epoch time, and start time is reset to 0. start time should initially be set

before the CAS loop. With this setup we have the number of successful/failed CAS

instructions, and the amount of time it takes to complete CAS EPOCH number of CAS

loops. With this, we can obtain the throughput for every CAS EPOCH number of CAS

instructions.

5.2.3 Proposed Approach to Dynamic Contention Management

With the monitored information that we obtain from the framework described above,

we formulate our approach to tuning the backoff value dynamically as shown in Fig-

ure 5.6. We use the variable direction to keep track of whether we have to increase

or decrease the backoff value. Initially, direction is set to 1, epoch time old is set to

0, and backoff is set to 1. Assume that we sample every 1000 CAS successes. Once

1000 CAS successes is reached, we first check direction variable to check whether we

Chapter 5. DyFCoM: Performance and Fairness for Lock-free Programs 113

Figure 5.6: Dynamic Contention Management for Performance. The process detailed

in this flow chart is performed for every CAS instruction. Initial values for the variables

are as follows: direction = 1, epoch time old = 0. backoff = 1, backoff scaling factor k =

1, num success = 0.

Chapter 5. DyFCoM: Performance and Fairness for Lock-free Programs 114

have to increment or decrement the backoff. Now if the new recorded epoch time is

lesser or equal to old epoch time i.e. the time taken to perform 1000 CASs is lesser in

this set of 1000 than the previous set, then we increase the backoff value by a factor in

multiples of 2 (starting with 2).

This process will continue until the peak throughput is achieved, after which the

throughput tapers off as seen from Figure 5.5. In such a case, the new epoch time will

be greater than the old epoch time. At this point, the direction is changed to -1, and we

start to decrease the backoff value starting from a factor of 2 again. The mechanism

operates similarly when the direction is -1. However, the criterion for when to increase

or decrease backoff and the next change in direction differs.

For example, we start with the backoff value, direction, and epoch time old set to

1, 1, and 0ns respectively. Considering a pattern of change similar to Figure 5.5, where

the optimal backoff value is around 500ns, the throughput increases until the backoff

value reaches 1024ns. On the next set of 1000 successful CAS operations, the backoff

value will increase to 32768ns (1024ns x 64). With this backoff value, the throughput

is lesser than with a backoff of 1024ns. In this scenario, the direction is 1, and the

new epoch time is greater than the old epoch time. Thus, we start reducing the backoff

value and change the direction to -1. The new backoff value will be 16384ns (32768ns

/ 2). On the next set of 1000 successful CAS operations, the backoff value will further

fall to 4096ns, reduced by a factor of 4. The next backoff value in progression is 256ns

after which the direction will change again and reach 512ns. The proposed mechanism

will settle around this value.

We change the scale with which the backoff value is varied so that we prevent

shooting over the optimal point of operation.

We evaluate this dynamic contention management scheme with the constant back-

off contention management scheme. We study the sensitivity of the performance to

the sampling frequency. The other parameters are dynamically tuned and need not

be manually varied. The experimental results are provided at the end of this chap-

ter. In summary, we present a dynamic contention management mechanism wherein

we continuously monitor number of successful CAS instructions and the time taken

to perform a certain number of CASs, at a thread-local level. We use this informa-

tion to gradually tune the backoff value to achieve optimal throughput across different

Chapter 5. DyFCoM: Performance and Fairness for Lock-free Programs 115

0

0.2

0.4

0.6

0.8

1

2 4 8 16 32 48 64

Fa
ir

ne
ss

 (
M

ax
. =

 1
)

Number of threads

Without backoff
With backoff

Figure 5.7: Fairness with constant backoff

processor architectures, concurrency levels, and lock-free algorithms.

5.3 Dynamic Fairness Management

In addition to the need for tuning, contention management also skews the fairness

values and not necessarily in a positive manner. Figure 5.7 shows the change in fairness

values for a lock-free queue when constant backoff is applied. The fairness value
1 drops to as low as 0.562. Thus, if fairness is required along with performance, a

contention management scheme must work in tandem with a fairness management

scheme. Indeed, the mechanism we propose does exactly this, as described in the

following section.

Fairness, unlike throughput, is a trickier problem to tackle. For increased perfor-

mance, we required only thread-local counters and support variables. Whereas for

fairness, it is necessary to know the state of progress across all concurrent threads. The

problem of fairness is also different from performance in that the strength of fairness

required can be vastly different. In this work, we focus on a weaker fairness measure,

which is calculated on the basis of how far ahead or how far behind are certain threads

with respect to other threads.

We follow an approach similar to our dynamic contention management scheme in

1Fairness is measured as explained in chapter 2. A fairness value of 1 indicates perfect fairness, and
a value of 0 indicates no fairness.

Chapter 5. DyFCoM: Performance and Fairness for Lock-free Programs 116

Figure 5.8: In this flow chart variable force fail, cas diff and num fails are initially set to

0. MIN(success) indicates the minimum number of successful CASs across all threads.

thread success indicates the number of successful CASs from that particular thread.

Chapter 5. DyFCoM: Performance and Fairness for Lock-free Programs 117

order to solve the issue of fairness in lock-free programs. Unlike contention manage-

ment, however, we make use of the monitored performance metric across all processors

in order to maintain a level of fairness. The broad outline of our dynamic fairness man-

agement mechanism is as follows. Similarly to contention management, we track the

number of successful CAS instructions. Once every CAS EPOCH number of CAS in-

structions, the fairness algorithm checks the time taken to perform so many CAS loops,

across all threads. With this information, we use a concept we call force-failing, where

if we identify a thread to be ahead of the slowest thread, then we deliberately fail the

CAS loops of the faster threads by not performing the linearizing CAS. The number of

times we force-fail a CAS loop depends on how far ahead the thread is when compared

to the slowest thread.

This fairness management mechanism is illustrated in Figure 5.8. In this figure,

we use a variable force fail to indicate whether a thread is to deliberately fail its CAS

loop or not. force fail is set if the current thread has more successful CAS instructions

than the slowest thread, represented by cas diff. The number of successes of the slow-

est thread is represented by MIN(success). In the force-failing path of execution, we

increment the number of forced failures stored in num fails, and check if this value is

greater than cas diff. If so, then the force-fail variables are reset and we continue with

normal execution.

This leads to a very valid question of why we do not introduce a waiting time for the

faster threads instead of force-failing. The force-failing approach is more flexible than

the waiting approach, as stricter fairness guarantees can be ensured with this mecha-

nism. For example, in Taubenfeld’s work, fairness requires that a thread that performs

a successful CAS loop waits for all concurrent CAS loops (that fail) to complete before

performing its next CAS loop. Introducing a waiting period once a thread completes

its CAS loop will not solve this issue. In such a scenario, we just check if the previous

CAS loop of a thread was successful and if there are failed CAS loops in other threads.

If this criterion is satisfied, then the thread which performed the successful CAS loop

force-fails until all other threads register a successful CAS loop. The force-failing acts

like a polling mechanism to continuously check if the thread can continue with its reg-

ular execution. It is worth noting that such an execution will guarantee a fair lock-free

progress guarantee only with a benevolent scheduler as with Taubenfeld’s approach.

Chapter 5. DyFCoM: Performance and Fairness for Lock-free Programs 118

We evaluate our dynamic fairness management scheme with the fairness levels of

stock lock-free programs, with and without contention management. We study the

sensitivity of the fairness to the sampling frequency. The other parameters used in the

protocol are dynamically tuned and need not be manually varied. The experimental

results are provided at the end of this chapter. In summary, we present a dynamic

fairness management mechanism wherein we continuously monitor number of suc-

cessful CAS instructions and the time taken to perform a certain number of CASs, at

a thread-local level. We then use this information to compare the execution times of

CAS loops across threads, and proceed to throttle faster threads in order to provide

increased access of shared variables to slower threads. Also, due to its dynamic nature,

this approach works across architectures, concurrency levels, and lock-free algorithms.

5.4 Evaluation Methodology

In this section, we discuss the platform used for evaluating both our dynamic fairness

and contention management schemes. We also discuss the benchmarks used in detail.

5.4.1 Execution Platform

We performed our experiments on an Intel based workstation with 8 sockets of the

quadcore Intel Xeon L7555 (Nehalem) [Thomadakis, 2011] running at 1.87GHz. Each

processing core can support 2 hardware threads, taking the total count to 32 processing

cores, and 64 logical cores. The processing system is supported by 64 GB of DDR3

main memory running at 1333MHz. The Intel machine is provided with Quick-Path

Interconnect for connectivity between chips and I/O subsystem. In simultaneous mul-

tithreading (SMT) mode, two threads can share the resources on each physical core.

5.4.2 Benchmarks

In our experiments, we used the following programs to evaluate DyFCoM:

• Lock-free concurrent queue: We use the version of a lock-free queue presented by

Michael Scott and Maged Michael [Michael and Scott, 1996]. A brief listing of this

Chapter 5. DyFCoM: Performance and Fairness for Lock-free Programs 119

algorithm was shown in the introduction chapter. For the queue data structure, CAS

loops are used to insert elements (enqueue) and remove elements (dequeue) from the

queue. Like traditional queues, two pointers, front and rear (or head and tail), are

used to track the status of the queue. An enqueue operation inserts elements at the

front pointer, and a dequeue operation removes elements at the rear pointer.

• Lock-free concurrent stack: We adopt the lock-free stack algorithm presented by

Treiber [Treiber, 1986] for use in our experiments. Unlike the queue algorithm, both

of the two basic operations involving a stack (push and pop) work on a single pointer

(top). Since the purpose of this work is to study performance and fairness under con-

tention, we do not implement more advanced stack algorithms, elimination-backoff

stack (EB stack) [Shavit and Touitou, 1995]. EB stacks reduce contention by pairing

push and pop operations and eliminating them without even updating the stack.

• Shared concurrent counter: Each thread in the shared counter algorithm we imple-

ment, simply updates a shared variable using a CAS instruction. We first read the

shared counter value and update it with a CAS, making the update a CAS loop. We

also add an extra tag to the counter to avoid the ABA problem. The ABA problem oc-

curs when multiple threads (or processes) accessing shared memory interleave with

each other. A thread, on reading from a memory address twice, sees the same value

stored in the address indicating that the value has not changed. However, between

the two reads, the data could have changed twice returning it to its previous value.

For example, consider that thread t0 reads value A from address x. Thread t1 modifies

the value in x from A to B and back to A. Now, thread t0 reads from x again and sees

the value A. Thread t0 does not see the update of x by thread t1. The shared counter

algorithm represents all profiling applications using RMWs.

For our experiments, we used the lock-free versions of a concurrent queue, con-

current stack, and a shared counter as mentioned above. Each of the programs is a

micro-benchmark where all threads performs lock-free operations on a shared concur-

rent data structure. In each case we structured our experiments in such a way that each

thread performs 1 million successful CAS loops. In order to calculate the through-

put we consider the cumulative time taken by all threads in completing their lock-free

operations, and average it over the sum of the number of CAS loops performed suc-

Chapter 5. DyFCoM: Performance and Fairness for Lock-free Programs 120

cessfully. In case of the queue and stack benchmarks, we assign each thread as either

a producer or a consumer. In case of a queue, the producer enqueues 1 million values

to the shared queue, and the consumer performs 1 million dequeues. For a stack, the

producer performs only push operations, and the consumer performs pop operations.

For the shared counter, all threads increment a shared counter 1 million times in a CAS

loop. The level of contention is represented by the concurrency (number of threads),

which we vary from 2 to 64 in each of the experiments. It is worth noting that the

threads do not perform any work in between consecutive CAS loops other than regular

thread maintenance.

The throughput is measured as the number of successful lock-free operations i.e.

CAS loops per unit time period. The fairness is measured using the metric prescribed

in [Ha et al., 2007], as discussed in chapter 2. Please recall that the maximum value

of 1 for fairness indicates a perfectly fair execution where each thread has an equal

opportunity to perform their RMWs, and do perform their RMWs in the fairest manner.

A low fairness value indicates either a thread that runs ahead of other threads or a thread

that starves.

5.5 Experimental Results

In this section we present the results of the experiments we conducted based on the

evaluation methodology described above. We first present the results for our dynamic

contention management scheme in comparison with Dice et al.’s constant backoff

scheme. We follow this with an evaluation of our fairness management scheme. Fi-

nally we combine both the fairness and contention management schemes (DyFCoM),

and evaluate the combined scheme in terms of both fairness and throughput.

5.5.1 Dynamic Contention Management

5.5.1.1 Lock-free Queue

Figure. 5.9, shows the throughput of lock-free queue algorithm in terms of number of

operations per microsecond for the proposed dynamic contention management scheme

(MSQ-DCM) and the constant backoff scheme (MSQ-CB). For MSQ-CB, we manu-

Chapter 5. DyFCoM: Performance and Fairness for Lock-free Programs 121

0

0.5

1

1.5

2

2.5

3
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

T
hr

ou
gh

pu
t (

O
ps

/u
s)

2 16 32 48 64
Number of threads

CB
DCM(10)
DCM(100)
DCM(1000)
DCM(10000)

Figure 5.9: This graph shows the variation of throughput of a stock lock-free queue

(MSQ), with constant backoff (MSQ-CB), and with dynamic contention management

scheme (MSQ-DCM). The parameter indicates the sampling frequency.

ally tuned the backoff parameter for each of the execution points to provide optimal

performance. For the DCM scheme, we varied the sampling frequency from 10 to

10000. The sampling frequency is the number of successful RMW operations after

which the algorithm decides whether to change the backoff delay or not. We can see

from the figure that for a sampling frequency of 10, the overhead of MSQ-DCM out-

weighs any performance improvement over MSQ-CB. MSQ-DCM(10) consistently

performs worse than CB by upto 8.05%. Decreasing the sampling frequency (increas-

ing the number of RMWs sampled) to 100 shows a slight performance improvement

over MSQ-DCM(10). However, in some cases MSQ-DCM(100) performs worse than

MSQ-DCM(10) despite the reduced overhead of the DCM algorithm. This can be

attributed to the dynamic execution pattern, and also some interference from the un-

derlying operating system.

MSQ-DCM(1000) clearly outperforms MSQ-CB in most cases barring for the sce-

nario with 2 threads where it performs worse than CB by 0.71%. However, we also

see performance gains of upto 22.20%. MSQ-DCM(1000) provides an average perfor-

mance improvement of 11.60% over MSQ-CB. Although we chose the optimal back-

off delays for CB in our experiments, the increase in performance of DCM can be

attributed to the fact that DCM manipulates the backoff delay on a per-thread basis

Chapter 5. DyFCoM: Performance and Fairness for Lock-free Programs 122

0

0.5

1

1.5

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

T
hr

ou
gh

pu
t (

O
ps

/u
s)

2 16 32 48 64
Number of threads

CB
DCM(10)
DCM(100)
DCM(1000)
DCM(10000)

Figure 5.10: This graph shows the variation of throughput of a stock lock-free stack

with constant backoff (TS-CB), and with dynamic contention management scheme (TS-

DCM). The parameter indicates the sampling frequency.

and thus can tune each thread individually as compared to a constant backoff for all

threads. While increasing the sampled RMWs further to 10000 shows performance

gains for some concurrency levels (up to 25.57% over CB), it averages less than MSQ-

DCM(1000) (9.89%). Higher sampling numbers does not necessarily mean an in-

creased performance (due to reduced algorithm overhead), as the backoff delays are

changed with a lesser frequency. The final performance gains depend on the execution

pattern of the program, and cannot be theoretically ascertained.

5.5.1.2 Lock-free Stack

Lock-free stacks (Figure. 5.10) show a similar trend like with lock-free queues. TS-

DCM(1000) shows a performance gain of up to 30.06% compared to TS-CB (average

9.84%). Stacks, in general have a lesser throughput as compared to queues due to in-

creased contention for the single status pointer (top). Both the push and pop operations

contend for this pointer. In queues, enqueue operations contend with other enqueue op-

erations and dequeue operations contend with other dequeues. TS-DCM(10000) pro-

vides a slightly lesser performance advantage as compared with TS-DCM(1000) (<

1%) It is clear from these results that for both stacks and queues, a sampling number

of 1000 consistently provides a better performance than CB. We choose this sampling

Chapter 5. DyFCoM: Performance and Fairness for Lock-free Programs 123

1

1.5

2

2.5

3

3.5

4
●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●
● ●

●

T
hr

ou
gh

pu
t (

O
ps

/u
s)

2 16 32 48 64
Number of threads

CB
DCM(10)
DCM(100)
DCM(1000)
DCM(10000)

Figure 5.11: This graph shows the comparison of throughput of a stock lock-free shared

counter (LFC) with constant backoff (LFC-CB), and with dynamic contention manage-

ment scheme (LFC-DCM). The parameter indicates the sampling frequency.

point in our experiments for fairness management along with contention management.

5.5.1.3 Shared Counter

The shared counter microbenchmark, while showing similar trends (Figure. 5.11) to

queues and stacks, differs from them in that a sampling number of 10000 (LFC-

DCM(10000) provides almost twice the performance improvement (4.53%) provided

by LFC-DCM(1000) (2.33%). Also LFC-DCM(1000) performs worse than CB for

more concurrency levels than for queues and stacks.

5.5.2 Dynamic Fairness Management with contention management

We combine our dynamic fairness management (DFM) scheme with the dynamic con-

tention management (DCM) scheme in order to ascertain the trade-offs between fair-

ness and performance in DyFCoM. We only use the sampling point of 1000 RMWs in

the following experiments as it shows a consistently good performance improvement

for DCM over CB.

Chapter 5. DyFCoM: Performance and Fairness for Lock-free Programs 124

0

0.2

0.4

0.6

0.8

1

2 4 8 16 32 48 64

Fa
ir

ne
ss

 (
M

ax
. =

 1
)

Number of threads

CB−Fairness
DyFCoM−Fairness

0

0.5

1

1.5

2

2.5

3
●

●

●

●

●

●

●

●

●

●

●

●

●

●

T
hr

ou
gh

pu
t (

O
ps

/u
s)

CB−Throughput
DyFCoM−Throughput

Figure 5.12: This graph shows the comparison of fairness and throughput of a queue

with constant backoff (CB), and with dynamic fairness and contention management

scheme (DyFCoM).

5.5.2.1 Lock-free Queue

Figure 5.12 shows the comparison of DyFCoM(1000) with CB for a lock-free queue

with regards to both throughput and fairness. The throughput shows a similar trend

to DCM, although the increase in throughput differs from that of DCM. We only get

an average of 6.87% performance improvement for DyFCoM compared to CB. This

is because of the additional monitoring and control operations to be done for fairness

management on top of contention management. For fairness, we get an improvement

of up to 43.64% for DyFCoM. There are cases where DyFCoM achieves slightly less

fairness than CB. These are cases where CB already has a high level of fairness (>

0.93).

5.5.2.2 Lock-free Stack

Unlike with the queue, for a stack we improve fairness for all concurrency levels,

achieving an average improvement of 10.00% (Figure 5.13. However, similarly to

a queue, the performance improvement drops by around 3.71% when compared to

DCM(1000). However, we do achieve an average performance improvement of 6.14%.

Chapter 5. DyFCoM: Performance and Fairness for Lock-free Programs 125

0

0.2

0.4

0.6

0.8

1

2 4 8 16 32 48 64

Fa
ir

ne
ss

 (
M

ax
. =

 1
)

Number of threads

CB−Fairness
DyFCoM−Fairness

0

0.5

1

1.5

●

●

●

●

●

●

●

●

●
●

●

●

●
●

T
hr

ou
gh

pu
t (

O
ps

/u
s)

CB−Throughput
DyFCoM−Throughput

Figure 5.13: This graph shows the comparison of fairness and throughput of a stack

with constant backoff (CB), and with dynamic fairness and contention management

scheme (DyFCoM).

5.5.2.3 Shared Counter

For a shared counter, the performance drop is much larger compared to DCM than for

stacks or queues. The average performance improvement for DyCoM over CB is as

low as 0.73% for the counter micro-benchmark. On the other hand, we observe that

the fairness improvement is much larger (avg. 12.66%).

In summary, on average we get a performance improvement of 3.55% (up to

32.38%) for DyFCoM over CB across all the benchmarks considered and across all

concurrency levels. With DCM alone we get an average performance improvement of

7.93%. With regards to fairness, we show fairness improvements of up to 43.64% for

DyFCoM over CB. In the cases where the fairness level of DyFCoM is slightly less

than CB, the fairness is already very high, and thus the slight reduction is negligible.

This shows that DyFCoM provides better performance and fairness across different

lock-free algorithms, and concurrency levels without manually tuning the contention

management parameters.

Chapter 5. DyFCoM: Performance and Fairness for Lock-free Programs 126

0

0.2

0.4

0.6

0.8

1

2 4 8 16 32 48 64

Fa
ir

ne
ss

 (
M

ax
. =

 1
)

Number of threads

CB−Fairness
DyFCoM−Fairness

0

1

2

3

4
●

●

●

●
● ●

●

●

●

●
● ●

●

●

T
hr

ou
gh

pu
t (

O
ps

/u
s)

CB−Throughput
DyFCoM−Throughput

Figure 5.14: This graph shows the comparison of fairness and throughput of a shared

counter with constant backoff (CB), and with dynamic fairness and contention manage-

ment scheme (DyFCoM).

5.6 Related Work

There has been considerable work highlighting the issue of RMW contention in lock-

free data structures [Dice et al., 2013a; Morrison and Afek, 2013; Misra and Chaud-

huri, 2012; Cederman et al., 2012], all of which address the degradation in perfor-

mance with respect to contention. Dice et al. [Dice et al., 2013a] showed that simple

software contention mechanisms applied over CAS operations will greatly improve

performance under heavy/medium contention. However, they suffer a small overhead

under light contention. Also, the backoff parameters used is heavily dependent on the

processor architecture, contention, and concurrency. We overcome these drawbacks by

varying the backoff parameters dynamically depending on the measured throughput of

each thread. We also address the issue of fairness, which Dice et al. neglect.

Morrison and Afek [Morrison and Afek, 2013] proposed concurrent FIFO queues

using fetch-and-add (FAA) instead of CAS in order to reduce the performance over-

head due to failed CAS operations (FAA operations always succeed). Such an ap-

proach provides very good performance improvement, sometimes better than con-

tention management (up to 2.5X). However, the FAA-based scheme involves complete

revamping of the lock-free algorithm, which implies that other lock-free algorithms

have to be rebuilt from scratch. Also, fairness is not handled in the proposed scheme.

Chapter 5. DyFCoM: Performance and Fairness for Lock-free Programs 127

DyFCoM implements its contention management as part of the RMW library, leaving

the source code of the lock-free algorithm untouched. This eases the effort of the pro-

grammer, as just the simple act of replacing existing linearizing RMWs with managed

RMWs solves the issues of throughput, as well as fairness.

Hendler et al. [Hendler et al., 2010] proposed ”flat combining”, which serializes

synchronization regions to save on synchronization cost. Again, this work involved

rewriting existing lock-free algorithms in order to employ combining.

Using MCS queues also alleviates contention, as shown in [Dice et al., 2013a].

Here, RMWs are serialized and thus is similar to the case where all RMWs complete

successfully, like in [Morrison and Afek, 2013] (here CAS is replaced by FAA and

thus does not have the notion of success).

Taubenfeld [Taubenfeld, 2013] proposed a scheme to implement a strong fairness

guarantee wherein a thread which performs a successful linearizing operation waits

until all other threads which failed their operations complete their CAS loops success-

fully. Taubenfield does not employ a helping mechanism, but relies on a benevolent

scheduler to maintain lock-freedom. DyFCoM can be modified easily to implement

such a scheme. However, without a helping mechanism, we will still rely on the sched-

uler.

5.7 Summary

In this section, we proposed DyFCoM, a dynamic fairness and contention manage-

ment scheme which provides both increased fairness and throughput. We implemented

DyFCoM as part of the RMW library, by augmenting RMWs with backoff and force-

failing features. We monitor the success and failure of linearizing CAS operations and

use it to dynamically vary the backoff value for throughput and force-fail CAS loops

for fairness. Our experimental results show that DyFCoM provides better throughput

(avg. 7.93%) when compared with the state-of-the-art contention management scheme

when implementing contention management alone. After combining fairness manage-

ment, DyFCoM shows an average performance improvement of 3.35% compared to

the constant backoff scheme. DyFCoM also provides up to 43.64% better fairness.

The main advantage of DyFCoM is that it is independent of the contention and con-

Chapter 5. DyFCoM: Performance and Fairness for Lock-free Programs 128

currency conditions. For future work, we plan to extend DyFCoM to provide stronger

fairness guarantees by tweaking the fairness condition and the force-failing feature.

Chapter 6

Conclusion and Future Work

This chapter presents the summary of contribution of this thesis and discusses possible

future directions. The main contribution of this thesis is the study and optimization of

read-modify-writes (RMWs)when used in various applications such as synchroniza-

tion, memory supervision, and profiling.

6.0.1 Summary of Contributions

As discussed earlier in the first chapter,the main factors influencing the cost of RMWs

are the ordering semantics and contention-based failures. RMWs used for synchroniza-

tion suffers from both these problems. We address the ordering semantics of RMWs for

both blocking and non-blocking synchronization. Contention, however, is more preva-

lent in the non-blocking lock-free algorithms. Profiling applications also fall under the

classification of lock-free algorithms and thus also suffer from increased contention.

We attack both these application classes together. Memory supervision also suffers

from poor performance due to its ordering requirements for correctness. We discuss

this problem separately. In this thesis, we proposed – weaker RMWs for synchroniza-

tion purposes, an efficient supervision architecture which ensures correctness, and a

dynamic contention and fairness manager which provides better throughput and fair-

ness for lock-free programs, including profiling applications. We first summarize these

contributions in detail and discuss the effectiveness of each proposal.

129

Chapter 6. Conclusion and Future Work 130

6.0.1.1 Fast RMWs for Total-Store-Order Architectures

In our first contribution, we studied the behavior of RMWs in a weak consistency

model, specifically Total-Store-Order (TSO), in order to ascertain the causes for the

increased cost of RMWs. We observed that the atomicity semantics of an RMW is the

key factor which affects the RMW’s ordering semantics, its programmability, and its

implementation cost. Existing TSO RMWs use a strict definition of atomicity (we call

this type-1) which results in the RMW being strongly ordered like a memory barrier.

This makes type-1 RMWs costly to implement and perform. They can, however, be

easily used in synchronization idioms on TSO without requiring additional memory

barriers. In particular, the C/C++11 concurrency model can be implemented easily by

replacing the SC-atomic-reads and/or SC-atomic-writes with type-1 RMWs.

The ordering semantics required for these synchronization idioms, however, does

not necessarily need a barrier-like semantics for an RMW. In light of this, we pro-

posed two weaker atomicity definitions: type-2 and type-3 atomicity. We processed

to formally derive how type-2 and type-3 RMWs would be ordered in a TSO archi-

tecture. In order to assure programmers of the portability of these RMWs in imple-

menting synchronization primitives, we demonstrated that the resultant ordering of the

weaker RMWs is sufficient to provide the required ordering semantics, including for

the C/C++11 model.

In the weaker RMWs, we drain the write-buffer between the read and write of the

RMW in order to remove this cost from the observed cost of the RMW. In doing so,

however, there are scenarios wherein the execution may run into a deadlock, specifi-

cally due to writes which are in the write-buffer when the RMW is performed. In order

to avoid these write-deadlocks, we propose a mechanism to track unique addresses

accessed by RMWs and check the writes in the write-buffer against these addresses

before performing the RMW. We use a bloom filter for this purpose, in order to reduce

the implementation cost and the latency of operation of the mechanism. With this im-

plementation, our experimental results show that type-2 RMWs (type-3 RMWs) are

58.9% (64.3%) cheaper than an existing type-1 RMW on average. This results in up to

9.0% improvement in the overall execution time of the benchmarks we experimented

with.

Chapter 6. Conclusion and Future Work 131

Based on our analysis and experimental evidence, type-2 RMWs, while performing

almost as well as type-3 RMWs, are also able to seamlessly replace existing type-1

RMWs in common synchronization idioms – except in situations where an RMW is

used as a memory barrier. Thus, they appear to be a promising alternative to existing

type-1 RMWs. We also show how the proposed type-2 and type-3 RMWs can be

used to implement C/C++11 atomics – thus making it possible for the compiler to

transparently utilize the proposed RMWs to realize C/C++11 more efficiently.

In order to utilize these weaker RMWs with contemporary architectures effectively,

they have to be made available in hardware as separate instructions make use of unused

opcodes. On the programming side, the burden can either be left to the programmer,

or to the compiler. In cases other than when the programmer needs to utilize an RMW

as a fence, the weaker RMWs can be used to increase performance. For a compiler,

we have to perform a static analysis of the memory orderings enforced by RMWs, and

use type-1, type-2, or type-3 RMWs appropriately. We consider this to be one of the

future directions of the research work in this thesis.

6.0.1.2 Correct and Efficient Memory Supervision

In our second contribution, we addressed the usage of RMWs in supervised mem-

ory systems. Supervised memory systems use RMWs to access and update auxiliary

metadata associated with each memory address. Existing supervised memory systems,

implicitly or explicitly, assume sequential consistency. While working with weaker

consistency models, memory supervision is subject to correctness issues, including

imprecise exceptions and metadata-read reordering. Bobba et al. [Bobba et al., 2011]

proposed two systems; TSOall which has significant performance overhead, TSOdata

which is not general and still suffers from correctness issues for certain supervision

schemes, in order to overcome the correctness issues. Bobba et al.’s work on safe

supervised systems implicitly assumes that inorder execution of supervised memory

instructions to ensure correctness. Our study led us to the conclusion that this order-

ing requirement is too strong for correct supervision, and that metadata read ordering

is sufficient. To this end, we proposed SuperCoP, a supervision system which sep-

arates metadata reads and writes, and ensures metadata read ordering by performing

the metadata reads in the critical path, and retiring metadata writes to the write-buffer.

Chapter 6. Conclusion and Future Work 132

Doing so, however, compromises on the existing metadata-data atomicity. We tackle

this issue by designing a directory locking scheme to ensure metadata-data atomicity

at a lower cost.

We demonstrate the efficiency of SuperCoP with respect to TSOall and TSOdata

using the HARD supervision scheme. Our experimental results using HARD show

that SuperCoP performs better than TSOall by 16.8% and TSOdata by 6%. We also

analyze the scalability of supervised systems with respect to the percentage of SMIs

which update metadata. It is evident from our experiments that SuperCoP scales better

than TSOall or TSOdata. Thus we show that SuperCoP is a correct and performance

efficient supervised memory system that is general, in that it is applicable to any su-

pervision scheme. As such, there is no additional implementation cost except a change

in the control of execution in the processor pipeline. The directory locking scheme

has a similar overhead to the existing cache coherence schemes. Thus, at a relatively

low implementation cost, SuperCoP achieves correct supervision with increased per-

formance.

In summary, memory supervision has to be both correct and efficient. For supervi-

sion systems which modify the processor pipeline to perform supervision can achieve

both efficiency and correctness through our approach. Decoupled supervision systems

already address weaker consistency models but are wasteful in resource utilization

as mentioned in chapter 2. We propose that generic supervised instructions be made

available as part of the instruction set architecture (ISA), with the implementation as

proposed in our work. The only requirement for our approach is that the read and

write instructions of a supervised instruction be performed separately. The atomicity

is preserved by our directory locking scheme.

6.0.1.3 Fairness and Contention Management for Lock-free Programs

Finally we tackle the issue contention in both non-blocking synchronization and profil-

ing applications. Due to the increased dynamic frequency of RMWs in these applica-

tions, contention and more specifically RMW failures due to contention degrades the

performance. Additionally, these programs do not have any inherent fairness guaran-

tees. Existing proposals to address contention neglect fairness altogether.

Chapter 6. Conclusion and Future Work 133

In this work, we proposed DyFCoM, a dynamic fairness and contention manage-

ment scheme which provides both increased fairness and throughput. We implemented

DyFCoM as part of the RMW library, by augmenting RMWs with backoff and force-

failing features. DyFCoM monitors the success and failure of linearizing CAS opera-

tions and uses this information to dynamically vary the backoff value for throughput

and force-fail CAS loops for fairness. Our experimental results show that DyFCoM

provides better throughput (avg. 7.9%) when compared with the state-of-the-art con-

tention management scheme when implementing contention management alone. After

combining fairness management, DyFCoM shows an average performance improve-

ment of 3.4% compared to the constant backoff scheme. DyFCoM also provides up

to 43.6% better fairness. The main advantage of DyFCoM is that it is independent of

the contention and concurrency conditions. Another merit of DyFCoM is that it is im-

plemented as an RMW library. Programmers only need to use these managed RMWs

instead to regular RMWs in order to obtain increased performance and fairness.

6.0.2 Future Work

This thesis has addressed the applications of RMWs and the causes for the increased

cost of RMWs individually. The scenarios we consider are, however, limited. We

studied weaker RMWs and efficient memory supervision only with TSO architectures

alone owing to their widespread usage. For lock-free programs, we only consider

programs with a CAS loop. Although this covers a majority of the existing corpus of

lock-free programs, it is not a general solution to contention and fairness management.

Including these limitations, we describe possible future directions for research work

with regard to RMWs, keeping in mind our observations and conclusions on the use of

RMWs for various applications.

6.0.2.1 RMWs for Release Consistency

In this thesis we specifically tackled the ordering constraints of RMWs with respect

to TSO architectures. While the definitions of atomicity that have been derived in

this thesis is not specific to the consistency model, the orderings induced by atomic-

ity varies with the underlying enforced memory orderings defined by the consistency

Chapter 6. Conclusion and Future Work 134

model. In case of consistency models weaker than TSO, like release consistency (RC),

the induced atomicity orderings will drastically change. Also, generally in RC, the bur-

den of the ordering of RMWs lies with the programmer, who has to insert the required

fences before and/or after the RMW.

This burden can be lifted by providing generic RMWs which enforce all the re-

quired orderings for the sake of synchronization without sacrificing on the programma-

bility or performance. This cannot be done in software alone, as issues such as write-

deadlocks will still plague the implementation. Again, in order to implement generic

weaker RMWs in RC will require a comprehensive study of the orderings enforced

by RC and the atomicity orderings enforced due to this. With the increased usage of

ARM-based processors which implement RC, it will be interesting to study the power

budget of RMWs as well, along with the hardware required to implement weaker

RMWs.

6.0.2.2 Contention Management of Weaker RMWs

Since the weaker RMWs proposed in this thesis require architectural modifications,

we evaluated them with a full system simulator. We observed that such simulators per-

form badly under high contention and often underestimate the performance improve-

ment that can be provided with software contention management. Thus we were not

able to study the contention bottleneck of weaker RMWs. Theoretically, since weaker

RMWs lock a cache-line for a longer duration (until the write-buffer is drained), it

is possible that contention-based failures increase resulting in poor performance. It

will be worth the effort to transfer the software contention management scheme into a

hardware implementation and couple them with weaker RMWs.

In case of consistency models weaker than TSO, the memory ordering enforced

by the RMW in the form of user-inserted memory fences can be added to the con-

tention and fairness management code. With this, we obtain an RMW operation that

is monitored for success or failure and also adds the necessary fences to achieve cor-

rect synchronization. Programmers can customize the options provided by a managed

RMW. In such a case, however, issues such as write-deadlocks (if any) have to be

addressed in hardware.

Chapter 6. Conclusion and Future Work 135

6.0.2.3 Stricter Fairness and Other Progress Guarantees

This thesis addresses only a weak definition of fairness which is represented by a mea-

sured parameter rather than a theoretical guarantee. However, a strict fairness guaran-

tee, like the one enforced by Taubenfeld [Taubenfeld, 2013], requires a more complex

helping mechanism even for fairness. With a benevolent scheduler and OS, such help-

ing mechanisms can be done away with, but still mechanisms should be in place to de-

tect violation of the existing non-blocking progress guarantee. Implementing various

degrees of stricter fairness will be problem which finds use in real-time applications.

Also, the implementation of fairness guarantees will change with the existing thread

progress guarantee. Wait-free algorithms already make use of a helping mechanism in

order to guarantee individual thread progress. It has to be studied whether the fairness

guarantee supersedes the progress guarantee. Whichever be the case, it will be inter-

esting to see if implementation of one makes the other redundant.

Bibliography

Advanced Micro Devices (2009). AMD R© Architecture Programmer’s Manual.

Adve, S. V. (1993). Designing memory consistency models for shared-memory multi-

processors. PhD thesis, Madison, WI, USA. UMI Order No. GAX94-07354.

Adve, S. V. and Gharachorloo, K. (1995). Shared memory consistency models: A

tutorial. IEEE Computer, 29:66–76.

Afek, Y., Kaplan, H., Korenfeld, B., Morrison, A., and Tarjan, R. E. (2012). Cb-

tree: A practical concurrent self-adjusting search tree. In Proceedings of the 26th

International Conference on Distributed Computing, DISC’12, pages 1–15, Berlin,

Heidelberg. Springer-Verlag.

Agarwal, A., Bianchini, R., Chaiken, D., Johnson, K. L., Kranz, D., Kubiatowicz, J.,

Lim, B.-H., Mackenzie, K., and Yeung, D. (1995). The mit alewife machine: ar-

chitecture and performance. In Proceedings of the 22nd annual international sym-

posium on Computer architecture, ISCA ’95, pages 2–13, New York, NY, USA.

ACM.

Alglave, J. (2010). A Shared Memory Poetics. PhD thesis.

Alverson, R., Callahan, D., Cummings, D., Koblenz, B., Porterfield, A., and Smith, B.

(1990). The tera computer system. In Proceedings of the 4th international confer-

ence on Supercomputing, ICS ’90, pages 1–6, New York, NY, USA. ACM.

Anderson, T. E. (1990). The performance of spin lock alternatives for shared-memory

multiprocessors. IEEE Trans. Parallel Distrib. Syst., 1(1):6–16.

136

Bibliography 137

Attiya, H., Guerraoui, R., Hendler, D., and Kouznetsov, P. (2006). Synchronizing

without locks is inherently expensive. In Proceedings of the twenty-fifth annual

ACM symposium on Principles of distributed computing, PODC ’06, pages 300–

307, New York, NY, USA. ACM.

Attiya, H., Guerraoui, R., Hendler, D., Kuznetsov, P., Michael, M. M., and Vechev, M.

(2011). Laws of order: expensive synchronization in concurrent algorithms cannot

be eliminated. In Proceedings of the 38th annual ACM SIGPLAN-SIGACT sym-

posium on Principles of programming languages, POPL ’11, pages 487–498, New

York, NY, USA. ACM.

Bader, D. A. and Cong, G. (2005). A fast, parallel spanning tree algorithm for sym-

metric multiprocessors (smps). J. Parallel Distrib. Comput., 65(9):994–1006.

Batty, M., Memarian, K., Owens, S., Sarkar, S., and Sewell, P. (2012). Clarifying and

compiling C/C++ concurrency: from C++11 to POWER. In Proc. POPL.

Batty, M., Owens, S., Sarkar, S., Sewell, P., and Weber, T. (2011). Mathematizing C++

concurrency. In POPL, pages 55–66.

Becker, P., editor (2011). Programming Languages — C++. ISO/IEC 14882:2011. A

non-final recent version is available at http://www.open-std.org/jtc1/sc22/

wg21/docs/papers/2011/n3242.pdf.

Bloom, B. H. (1970). Space/time trade-offs in hash coding with allowable errors.

Commun. ACM, 13(7):422–426.

Blundell, C., Martin, M. M. K., and Wenisch, T. F. (2009). Invisifence: performance-

transparent memory ordering in conventional multiprocessors. In ISCA, pages 233–

244.

Bobba, J., Goyal, N., Hill, M. D., Swift, M. M., and Wood, D. A. (2008). Tokentm:

Efficient execution of large transactions with hardware transactional memory. In

Proceedings of the 35th Annual International Symposium on Computer Architecture,

ISCA ’08, pages 127–138, Washington, DC, USA. IEEE Computer Society.

Bibliography 138

Bobba, J., Lupon, M., Hill, M. D., and Wood, D. A. (2011). Safe and efficient super-

vised memory systems. High-Performance Computer Architecture, International

Symposium on, 0:369–380.

Boehm, H. (2011). The atomic ops project. HP Labs

http://www.hpl.hp.com/research/linux/atomic ops/.

Boehm, H.-J. and Adve, S. V. (2008). Foundations of the c++ concurrency memory

model. In PLDI, pages 68–78.

C (2011). Programming Languages — C. ISO/IEC 9899:2011. A non-final recent ver-

sion is available at http://www.open-std.org/jtc1/sc22/wg14/docs/n1539.

pdf.

Cederman, D., Chatterjee, B., Dang, N. N., Nikolakopoulos, Y., Papatriantafilou, M.,

and Tsigas, P. (2013a). A study of the behavior of synchronization methods in

commonly used languages and systems. In IPDPS, pages 1309–1320.

Cederman, D., Chatterjee, B., and Tsigas, P. (2012). Understanding the performance

of concurrent data structures on graphics processors. In Euro-Par, pages 883–894.

Cederman, D., Gidenstam, A., Ha, P. H., Sundell, H., Papatriantafilou, M., and Tsigas,

P. (2013b). Lock-free concurrent data structures. CoRR, abs/1302.2757.

Chen, S., Falsafi, B., Gibbons, P. B., Kozuch, M., Mowry, T. C., Teodorescu, R., Ail-

amaki, A., Fix, L., Ganger, G. R., Lin, B., and Schlosser, S. W. (2006). Log-based

architectures for general-purpose monitoring of deployed code. In Proceedings of

the 1st workshop on Architectural and system support for improving software de-

pendability, ASID ’06, pages 63–65, New York, NY, USA. ACM.

Chung, J., Dalton, M., Kannan, H., and Kozyrakis, C. (2008). Thread-safe dynamic

binary translation using transactional memory. In Proceedings of the 2008 IEEE

14th International Symposium on High Performance Computer Architecture, pages

279 –289.

Bibliography 139

Culler, D. E., Gupta, A., and Singh, J. P. (1997). Parallel Computer Architecture: A

Hardware/Software Approach. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 1st edition.

David Levinthal (2009). Performance Analysis Guide for Intel Core i7 Processor and

Intel Xeon 5500 processors.

Devietti, J., Lucia, B., Ceze, L., and Oskin, M. (2009). Dmp: deterministic shared

memory multiprocessing. In Proceeding of the 14th international conference on

Architectural support for programming languages and operating systems, ASPLOS

’09, pages 85–96, New York, NY, USA. ACM.

Dice, D., Hendler, D., and Mirsky, I. (2013a). Lightweight contention management for

efficient compare-and-swap operations. In Euro-Par.

Dice, D., Lev, Y., and Moir, M. (2013b). Scalable statistics counters. In Proceed-

ings of the Twenty-fifth Annual ACM Symposium on Parallelism in Algorithms and

Architectures, SPAA ’13, pages 43–52, New York, NY, USA. ACM.

Dice, D., Shalev, O., and Shavit, N. (2006). Transactional locking ii. In In Proc. of the

20th Intl. Symp. on Distributed Computing.

Gharachorloo, K. (1995). Memory consistency models for shared-memory multipro-

cessors. Technical report.

Gharachorloo, K., Adve, S., Gupta, A., Hennessy, J., and Hill, M. (1993). Specifying

system requirements for memory consistency models. Computer Systems Labora-

tory, Stanford University.

Gharachorloo, K., Gupta, A., and Hennessy, J. L. (1991). Two techniques to enhance

the performance of memory consistency models. In ICPP (1), pages 355–364.

Gidenstam, A., Sundell, H., and Tsigas, P. (2010). Cache-aware lock-free queues for

multiple producers/consumers and weak memory consistency. In Proceedings of

the 14th international conference on Principles of distributed systems, OPODIS’10,

pages 302–317, Berlin, Heidelberg. Springer-Verlag.

Bibliography 140

Gniady, C., Falsafi, B., and Vijaykumar, T. N. (1999). Is SC + ILP = RC? In In

Proceedings of the Twenty Sixth Annual International Symposium on Computer Ar-

chitecture, pages 162–171. IEEE Computer Society Press.

Graunke, G. and Thakkar, S. (1990). Synchronization algorithms for shared-memory

multiprocessors. Computer, 23(6):60–69.

Ha, P. H., Papatriantafilou, M., and Tsigas, P. (2007). Efficient self-tuning spin-locks

using competitive analysis. J. Syst. Softw., 80(7):1077–1090.

Hammond, L., Wong, V., Chen, M., Carlstrom, B. D., Davis, J. D., Hertzberg, B.,

Prabhu, M. K., Wijaya, H., Kozyrakis, C., and Olukotun, K. (2004). Transactional

memory coherence and consistency. SIGARCH Comput. Archit. News, 32(2):102–.

Hendler, D., Incze, I., Shavit, N., and Tzafrir, M. (2010). Flat combining and the

synchronization-parallelism tradeoff. In SPAA, pages 355–364.

Hennessy, J. L. and Patterson, D. A. (2003). Computer Architecture: A Quantitative

Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 3 edition.

Herlihy, M. (1991). Wait-free synchronization. ACM Trans. Program. Lang. Syst.,

13:124–149.

Herlihy, M. and Shavit, N. (2008). The Art of Multiprocessor Programming. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA.

Intel Corporation (2009). Intel R© 64 and IA-32 Architectures Software Developer’s

Manual. Number 253669-033US.

Jain, R., Chiu, D.-M., and Hawe, W. (1998). A quantitative measure of fairness

and discrimination for resource allocation in shared computer systems. CoRR,

cs.NI/9809099.

Kannan, H. (2009). Ordering decoupled metadata accesses in multiprocessors. In

Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microar-

chitecture, MICRO 42, pages 381–390, New York, NY, USA. ACM.

Bibliography 141

Ladan-Mozes, E., Lee, I.-T. A., and Vyukov, D. (2011). Location-based memory

fences. In SPAA, pages 75–84.

LaMarca, A. (1994). A performance evaluation of lock-free synchronization proto-

cols. In Proceedings of the Thirteenth Annual ACM Symposium on Principles of

Distributed Computing, PODC ’94, pages 130–140, New York, NY, USA. ACM.

Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed system.

Commun. ACM, 21(7):558–565.

Lamport, L. (1979). How to make a multiprocessor computer that correctly executes

multiprocess progranm. IEEE Trans. Comput., 28(9):690–691.

Lev, Y. and Moir, M. (2011). Lightweight parallel accumulators using c++ templates.

In Proceedings of the 4th International Workshop on Multicore Software Engineer-

ing, IWMSE ’11, pages 33–40, New York, NY, USA. ACM.

Levon, J. and Elie, P. (2004). Oprofile: A system profiler for linux.

Lin, C., Nagarajan, V., and Gupta, R. (2010). Efficient sequential consistency using

conditional fences. In In Proceedings of the Nineteenth International Conference on

Parallel Architectures and Compilation Techniques.

Lin, C., Nagarajan, V., Gupta, R., and Rajaram, B. (2012). Efficient sequential consis-

tency via conflict ordering. In Proceedings of the Seventeenth International Confer-

ence on Architectural Support for Programming Languages and Operating Systems,

ASPLOS XVII, pages 273–286, New York, NY, USA. ACM.

LLC, B. (2010). Free Memory Management Software: Valgrind, Memcached, Mtrace,

Leb128, Splint, Duma, Electric Fence, Memory Pool System, Mpatrol, Memwatch.

Books Nippan.

Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S., Reddi,

V. J., and Hazelwood, K. (2005). Pin: building customized program analysis tools

with dynamic instrumentation. In Proceedings of the 2005 ACM SIGPLAN con-

ference on Programming language design and implementation, PLDI ’05, pages

190–200, New York, NY, USA. ACM.

Bibliography 142

Machine, I. B. and Staff, A. C. I. (1995). PowerPC Microprocessor Common Hardware

Reference Platform: A System Architecture. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA.

Mellor-Crummey, J. M. and Scott, M. L. (1991). Algorithms for scalable synchroniza-

tion on shared-memory multiprocessors. ACM Trans. Comput. Syst., 9:21–65.

Michael, M. and Scott, M. (1995a). Implementation of atomic primitives on dis-

tributed shared memory multiprocessors. In High-Performance Computer Archi-

tecture, 1995. Proceedings., First IEEE Symposium on, pages 222 –231.

Michael, M. and Scott, M. (1995b). Implementation of atomic primitives on dis-

tributed shared memory multiprocessors. In High-Performance Computer Archi-

tecture, 1995. Proceedings., First IEEE Symposium on, pages 222 –231.

Michael, M. M. (2002). High performance dynamic lock-free hash tables and list-

based sets. In Proceedings of the Fourteenth Annual ACM Symposium on Parallel

Algorithms and Architectures, SPAA ’02, pages 73–82, New York, NY, USA. ACM.

Michael, M. M. (2004). Hazard pointers: Safe memory reclamation for lock-free

objects. IEEE Trans. Parallel Distrib. Syst., 15(6):491–504.

Michael, M. M. and Scott, M. L. (1996). Simple, fast, and practical non-blocking and

blocking concurrent queue algorithms. In Proceedings of the fifteenth annual ACM

symposium on Principles of distributed computing, PODC ’96, pages 267–275, New

York, NY, USA. ACM.

Mirapuri, S., Woodacre, M., and Vasseghi, N. (1992). The mips r4000 processor. IEEE

Micro, 12:10–22.

Misra, P. and Chaudhuri, M. (2012). Performance evaluation of concurrent lock-free

data structures on gpus. In ICPADS, pages 53–60.

Moore, G. E. (1965). Cramming More Components onto Integrated Circuits. Elec-

tronics, 38(8):114–117.

Bibliography 143

Morrison, A. and Afek, Y. (2013). Fast concurrent queues for x86 processors. In

Proceedings of the 18th ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, PPoPP ’13, pages 103–112, New York, NY, USA. ACM.

Muralimanohar, N. and Balasubramonian, R. (2009). Cacti 6.0: A tool to understand

large caches.

Nagarajan, V. and Gupta, R. (2009). Architectural support for shadow memory in

multiprocessors. In Proceedings of the 2009 ACM SIGPLAN/SIGOPS international

conference on Virtual execution environments, VEE ’09, pages 1–10, New York,

NY, USA. ACM.

Narayanasamy, S., Pokam, G., and Calder, B. (2005). Bugnet: Continuously recording

program execution for deterministic replay debugging. In Proceedings of the 32nd

annual international symposium on Computer Architecture, ISCA ’05, pages 284–

295, Washington, DC, USA. IEEE Computer Society.

Natarajan, A. and Mittal, N. (2014). Fast concurrent lock-free binary search trees. In

Proceedings of the 19th ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, PPoPP ’14, pages 317–328, New York, NY, USA. ACM.

Nethercote, N. and Seward, J. (2007a). How to shadow every byte of memory used by

a program. In Proceedings of the 3rd international conference on Virtual execution

environments, VEE ’07, pages 65–74, New York, NY, USA. ACM.

Nethercote, N. and Seward, J. (2007b). Valgrind: a framework for heavyweight dy-

namic binary instrumentation. In Proceedings of the 2007 ACM SIGPLAN con-

ference on Programming language design and implementation, PLDI ’07, pages

89–100, New York, NY, USA. ACM.

Newsome, J. and Song, D. (2005). Dynamic taint analysis for automatic detection,

analysis, and signature generation of exploits on commodity software. In Proceed-

ings of the Network and Distributed System Security Symposium, NDSS 2005.

Owens, S., Sarkar, S., and Sewell, P. (2009). A better x86 memory model: X86-tso. In

Proceedings of the 22Nd International Conference on Theorem Proving in Higher

Order Logics, TPHOLs ’09, pages 391–407, Berlin, Heidelberg. Springer-Verlag.

Bibliography 144

Qin, F., Wang, C., Li, Z., Kim, H.-s., Zhou, Y., and Wu, Y. (2006). Lift: A low-

overhead practical information flow tracking system for detecting security attacks.

In Proceedings of the 39th Annual IEEE/ACM International Symposium on Microar-

chitecture, MICRO 39, pages 135–148, Washington, DC, USA. IEEE Computer

Society.

Savage, S., Burrows, M., Nelson, G., Sobalvarro, P., and Anderson, T. E. (1997).

Eraser: A dynamic data race detector for multithreaded programs. ACM Trans.

Comput. Syst., 15(4):391–411.

Schaller, R. R. (1997). Moore’s law: Past, present, and future. IEEE Spectr., 34(6):52–

59.

Seward, J. and Nethercote, N. (2005). Using valgrind to detect undefined value errors

with bit-precision. In Proceedings of the annual conference on USENIX Annual

Technical Conference, ATEC ’05, pages 2–2, Berkeley, CA, USA. USENIX Asso-

ciation.

Shavit, N. and Touitou, D. (1995). Elimination trees and the construction of pools and

stacks: Preliminary version. In Proceedings of the Seventh Annual ACM Symposium

on Parallel Algorithms and Architectures, SPAA ’95, pages 54–63, New York, NY,

USA. ACM.

Singh, A., Narayanasamy, S., Marino, D., Millstein, T. D., and Musuvathi, M. (2012).

End-to-end sequential consistency. In ISCA, pages 524–535.

Sorin, D. J., Hill, M. D., and Wood, D. A. (2011). A Primer on Memory Consistency

and Cache Coherence. Morgan and ClayPool Publishers.

SPARC International, Inc., C. (1992). The SPARC architecture manual (version 8).

Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

SPARC International, Inc., C. (1994). The SPARC architecture manual (version 9).

Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Spear, M. F., Michael, M. M., and von Praun, C. (2008). Ringstm: scalable transactions

with a single atomic instruction. In Proceedings of the twentieth annual symposium

Bibliography 145

on Parallelism in algorithms and architectures, SPAA ’08, pages 275–284, New

York, NY, USA. ACM.

Speziale, E., di Biagio, A., and Agosta, G. (2011). An optimized reduction design to

minimize atomic operations in shared memory multiprocessors. In Parallel and Dis-

tributed Processing Workshops and Phd Forum (IPDPSW), 2011 IEEE International

Symposium on, pages 1300–1309.

Suh, G. E., Lee, J. W., Zhang, D., and Devadas, S. (2004). Secure program execution

via dynamic information flow tracking. In Proceedings of the 11th international

conference on Architectural support for programming languages and operating sys-

tems, ASPLOS-XI, pages 85–96, New York, NY, USA. ACM.

Taubenfeld, G. (2013). Fair synchronization. In Afek, Y., editor, Distributed Comput-

ing, volume 8205 of Lecture Notes in Computer Science, pages 179–193. Springer

Berlin Heidelberg.

Terekhov, A. (2008). Brief tentative example x86 implementation for C/C++ memory

model. cpp-threads mailing list, http://www.decadent.org.uk/pipermail/

cpp-threads/2008-December/001933.html.

Thomadakis, M. E. (2011). The architecture of the nehalem processor and nehalem-ep

smp platforms. A Research Report of Texas A& M University, Tech. Rep.

Treiber, R. K. (1986). Systems programming: Coping with parallelism. Technical

Report RJ 5118, IBM Almaden Research Center.

Vallejo, E., Beivide, R., Cristal, A., Harris, T., Vallejo, F., Unsal, O., and Valero, M.

(2010). Architectural support for fair reader-writer locking. In Proceedings of the

2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture.

Venkataramani, G., Doudalis, I., Solihin, Y., and Prvulovic, M. (2008). Flexitaint: A

programmable accelerator for dynamic taint propagation. In In 14th International

Symposium on HighPerformance Computer Architecture (HPCA-14.

Bibliography 146

Venkataramani, G., Doudalis, I., Solihin, Y., and Prvulovic, M. (2009). Memtracker:

An accelerator for memory debugging and monitoring. ACM Trans. Archit. Code

Optim., 6:5:1–5:33.

Vlachos, E., Goodstein, M. L., Kozuch, M. A., Chen, S., Falsafi, B., Gibbons, P. B., and

Mowry, T. C. (2010). Paralog: enabling and accelerating online parallel monitoring

of multithreaded applications. In Proceedings of the fifteenth edition of ASPLOS on

Architectural support for programming languages and operating systems, ASPLOS

’10, pages 271–284, New York, NY, USA. ACM.

Wall, D. W. (1991). Limits of instruction-level parallelism. SIGOPS Oper. Syst. Rev.,

25(Special Issue):176–188.

Woo, S. C., Ohara, M., Torrie, E., Singh, J. P., and Gupta, A. (1995). The splash-

2 programs: characterization and methodological considerations. In Proceedings

of the 22nd annual international symposium on Computer architecture, ISCA ’95,

pages 24–36, New York, NY, USA. ACM.

Wulf, W. A. and McKee, S. A. (1995). Hitting the memory wall: Implications of the

obvious. SIGARCH Comput. Archit. News, 23(1):20–24.

Zhou, P., Qin, F., Liu, W., Zhou, Y., and Torrellas, J. (2004). iwatcher: Simple, general

architectural support for software debugging. IEEE Micro, 24:50–56.

Zhou, P., Teodorescu, R., and Zhou, Y. (2007). Hard: Hardware-assisted lockset-based

race detection. In Proceedings of the 2007 IEEE 13th International Symposium on

High Performance Computer Architecture, pages 121–132, Washington, DC, USA.

IEEE Computer Society.

Zhu, W., Sreedhar, V. C., Hu, Z., and Gao, G. R. (2007). Synchronization state buffer:

supporting efficient fine-grain synchronization on many-core architectures. In Pro-

ceedings of the 34th annual international symposium on Computer architecture,

ISCA ’07, pages 35–45, New York, NY, USA. ACM.

	cover sheet
	Bharghava_Rajaram_s0978451

