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Abstract 

A variety of approaches are available for modelling wave propagation in fractured 

rock. Analytical solutions for the diffracted seismic wavefield produced by a 

fracture are only available for single cracks with simple geometries, i.e. circular 

or elliptical, and in most cases are only valid in the far field. The use of numerical 

approaches is essential in order to simulate the diffracted wavefield produced by 

any realistic distribution of fractures. In the first part of this thesis we introduce 

a new numerical method that combines a numerical method with an analytical 

method. The numerical method we implement is the pseudospectral method and 

the analytical method is the equivalent medium theory. The method is applicable 

for both P and S waves. We model the seismic wave propagation in fractured rock 

using the pseudospectral method. The fractures are treated as planes of weakness 

using the concept of the linear slip deformation or displacement discontinuity 

model. The implementation of fractures with a vanishing width in the finite 

difference grid is done using an equivalent medium theory. 

The objective is to investigate the effects of lengthscale (size) and spatial distri-

butions of fractures on the characteristics of propagating waves. We demonstrate 

that the waveforms can be significantly affected by the presence of fractures with 

different lengthscales relative to the wavelength, and we also show that different 

spatial distributions of fractures can give characteristic features on the wavefields, 

implying that information about fracture distributions in natural rock may be ob-

tained directly from seismic data. 



ii 	 Abstract 

An important effect of the presence of fractures on wave propagation is seismic 

attenuation. Seismic attenuation is recognised as a potentially important quantity 

in reservoir characterisation. Seismic attenuation is, in general, a combined effect 

of absorption (intrinsic attenuation), which is affected by lithological parameters, 

and scattering (apparent) attenuation, which is related to structural parameters. 

Which of these two mechanisms dominates in any given situation depends on the 

relative wavelengths of the seismic wave and the heterogeneities of the fracture 

system. In the second part of the thesis, we deal exclusively with scattering at-

tenuation. Synthetic modelling studies with and without intrinsic attenuation 

show that the contribution of scattering attenuation is significant. Scattering in-

volves no energy loss, but produces a more extended, lower amplitude wavetrain 

by the resulting interference. It is dependent on the nature of small-scale fluctu-

ations in the earth parameters and is found to be frequency dependent. For the 

numerical simulations we use the method introduced in the thesis that can accu-

rately model the effects of scattering in a fractured network. The various fracture 

patterns examined are patterns of development of a population of fractures in-

volving nucleation, growth, branching, interaction and coalescence created by a 

multiscale cellular automaton model. 

The objective of this thesis is to examine the behaviour of scattering attenua-

tion at different fracture patterns characterised by different statistical properties, 

fracture population geometry and criticality. We examine scattering attenuation 

in a range of frequencies for each one of the fracture patterns and demonstrate the 

frequency dependence. The comparison of the pattern of scattering attenuation 

with frequency between different fracture patterns shows that there is a change 

that can be attributed to the changes in the statistical properties of the fracture 

population. We conclude by examining the existence of direct links between frac-

ture properties and scattering attenuation patterns, that scattering attenuation 

can be used for the characterisation of a fractured reservoir. 
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In the final part of the thesis, we concentrate on seismic attributes that respond 

directly to the fluid presence, and in particular on static fluid effects on the 

compliances of the porous and fractured rocks. We simulate the fluid movement 

in the fractured medium with a model of pore fluid pressure diffusion. From the 

simulation we can monitor the pore pressure changes in the medium at consecutive 

times. As a result of the changes in pore pressure the effective stress will change 

in the medium. We use an empirical relationship to estimate the changes in 

compliances of the fractured rock due to the effective stress changes, and use 

a 2-D finite difference method to model the wave propagation in the medium 

before and during the fluid injection. The objective is to examine if there is 

clear indication of the pore pressure changes in the synthetic seismograms. We 

conclude from this study that P-waves are not sensitive to pore pressure changes, 

as opposed to S and coda waves that are very sensitive. Also pore pressure 

increase seems to cause a shift of energy towards lower frequencies. Finally, the 

fluid effects on the wavefleld vary significantly with the source-receiver direction 

and a similar dependence is noticed in the frequency shift. 
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Notations and conventions 

In this section all the mathematical variables and other abbreviations that are 

used throughout the thesis are explained. They are arranged by chapters in the 

order of their appearance. 

Chapter 2 

Symbol Meaning 

P density 

Ui displacement 

stress 

forcing 

eki strain 

Cijkl elastic stiffness 

t time 

k spatial wavenumber 

f(k) Fourier transform of function f(x) 

k(N) Nyquist wavenumber 

N number of grid points 

'y (x) reduction function 

traction acting across a fracture 

ZN normal fracture compliance tensor 

ZT tangential fracture compliance tensor 

1 



Notations and conventions 

Chapter 3 

Symbol Meaning 

p(x,z,t) amplitude of the wavefleld 

x horizontal distance 

z vertical distance 

U velocity 

W angular frequency 

f source frequency 

wavelength 

VP P-wave velocity 

Vs S-wave velocity 

dx grid spacing in the horizontal direction 

dz grid spacing in the vertical direction 

Chapter 4 

Symbol 	 Meaning 

s(t) 	 source time function 

Chapter 5 

Symbol Meaning 

fracture semi-length 

C(r) two-point correlation function 

N total number of grid points 

Nd number of pairs of points whose distance 

is less than r 

kp P-wave spatial wavelength 

k5  S-wave wavelength 



Notations and conventions 

Symbol Meaning 

<> mean length of fractures 

fracture density 

Nf  number of fractures 

S surface of medium 

Chapter 6 

Symbol Meaning 

North-South principal stress 

cr2  vertical principal stress 

0'3 East-West principal stress 

o angle from the maximum compressive 

stress 

coefficient of internal friction 

Qs-,(W) scattering attenuation 

Q' (w) coda wave attenuation 

Q 1  (w) anelastic or intrinsic attenuation 

A(w) amplitude spectrum of a wave 

A0(w) amplitude spectrum of a source 

wave speed 

K susceptibility 

L(y) maximised logarithm likelihood 

n number of data points 

p number of unknown parameters 

S2 
R residual sum of squares 

Yi data points 

'y(Xj) calculated values of data points based on 

a polynomial fit 



Notations and conventions 

Chapter 7 

Symbol Meaning 

P(G) probability density 

n(x) refractive index 

incident wave 

U j scattered wave from the j-th crack 

u3  external displacement field acting upon 

the j-th crack 

qf3 operator that determines the scattering 

property of the j-th crack 

rj  location of the centre of the j-th crack 

Oi orientation of the j-th crack 

n number density of the crack distribution 

E peak strain energy stored in a volume 

—E energy loss 

/3 acoustic wave speed 

k normalised wavenumber 

Chapter 8 

Symbol Meaning 

k vertical permeability 

kh horizontal permeability 

porosity 

77 viscosity 

C compressibility 

P pressure 

0 volumetric flow rate  



Notations and conventions 

Symbol Meaning 

L length 

A cross-sectional area 

LP pressure drop 

K absolute permeability 

V fluid flow rate vector 

g gravity acceleration 

Re Raynolds number 

D depth 

q mass rate of injection per unit volume of 

reservoir 

jj strain rate 

f(i,j) Boolean function 

Dij  diffusion tensor 

ea ) lattice vector 

Aa  relaxation parameter 

pq local equilibrium pressure 

C cohesion 

07 
 eff 
ij effective stress 

T friction 

a Terzaghi coefficient 

proportion of deviatoric stress still present 

after rupture 

tr relaxation time 

t dimensionless timescale 

Ts static friction 

Td dynamic friction 

ly ratio between differential stress and cohe- 

sion 

X ration between isotropic stress and pore 

fluid pressure 

parameter that determines how far the 

medium is from rupture 



Notations and conventions 

Chapter 9 

Symbol Meaning 

sijkl elastic compliance tensor of the back- 

ground medium 

8k1 excess compliance tensor due to the pres- 

ence of fractures 

Sq  surface area of the qth displacement dis- 

continuity 

[n.] local 	displacement 	discontinuity 	across 

the surface 

ni local normal to the fracture surface 

IP polar angle 

0 azimuthal angle 

TI normal component of traction 

At, required time step for diffusion process 

D1  diffusivity along a fracture 

diffusivity normal to a fracture 

C (x) cohesion 

Appendix A 

Symbol Meaning 

Zmax  maximum value of compliance 

x x-coordinate of a point in a fracture 

1 half-length of a fracture 



Notations and conventions 

Appendix C 

Symbol Meaning 

mixing viscosity 

18 solvent viscosity 

10 oil viscosity 

S water saturation 

S0  oil saturation 

Sg  gas saturation 

S residual oil saturation 

PC capillary pressure 

mobility of a fluid phase 

f. water fractional flow 

fo oil fractional flow 

kr  relative permeability 

Qt total volumetric injection rate 



CHAPTER 1 

INTRODUCTION 

1.1 Research Motivation and Objectives 

Fractures and fracture systems are crucial for hydrocarbon production. In order 

to produce oil and gas economically from a fractured reservoir, it is critical that 

a thorough investigation of the fracture network is made. From a strictly geo-

mechanical point of view a fracture is the surface in which a loss of cohesion has 

taken place. In general, a fracture in which relative displacement has occured 

can be defined as a fault, while a fracture in which no noticeable displacement 

has occurred can be defined as a joint. A fracture can also be defined, in a 

more general way, as the discontinuity which breaks the rock beds into blocks 

along cracks, fissures or joints, and along which there is no displacement parallel 

with the planes of discontinuity. Basically, whether a fracture is considered a 

joint or a fault depends on the scale of investigation, but in general, that which 

is called a fracture corresponds to a joint. When there are fracture-controlled 

reservoirs, understanding the subsurface networks is important, for instance to 

optimize well planning and production. A large portion of oil and natural gas in 

the world is trapped in tight reservoirs (Nelson, 1985). In such formations, often 

the only practical means of extracting the gas/oil is to use the increased drainage 

surface provided by natural fractures, which controls fluid storage and mobility. 
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The reverse effect is that fractures can provide the paths for the injected steam 

or water to bypass the matrix pores, and cause the slow-down or termination of 

hydrocarbon production (Massonnat et al., 1994). In both situations, locating the 

subsurface fractured zones and obtaining the fractures physical properties, such 

as fracture orientation and density will help to optimise the field development 

plan. 

Fractures found in reservoirs can have a wide range of scales (from microcracks 

to formation-scale fractures and large faults). They can act both as permeable 

pathways to fluid migration and also as significant storage. As low permeability 

reservoirs, particularly carbonates, are exploited the need to adequately char-

acterise the distribution and properties of fractures within the subsurface will 

increase. One of the key issues in attempting to characterise fracture systems is 

to identify the "hydraulic backbone" of the system. Fractured reservoir rocks are 

made up of two porosity systems. One is the intergranular formed by void spaces 

between the grains of the rock, and a second is formed by void spaces of fractures 

and vugs. In compact, brittle rock of relatively low intergranular porosity, such 

as compact limestones, shales, shaly sandstones, schists, etc, porosity is normally 

caused by rock fracturing. In such an environment, a good knowledge of the 

fracture network will give us an insight in the possible directions of fluid flow. 

The knowledge of possible fluid flow paths gives us the "hydraulic backbone" of 

the system. Many studies have shown that relatively few large fractures may 

contribute to flow within a system and so the accurate characterisation of this 

hydraulic subset is of vital importance to optimise production in these heteroge-

neous and complex reservoir systems. 

Although many logging tools and log-analysis methods, have been designed to 

view the subsurface fractures cutting through a borehole, their usage is limited by 

the high cost and small sampling area. The information obtained is very valuable 

about the subsurface fracture geometry (borehole teleview), fluid content, spac- 
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ing, and connectivity. However, the interpolation of fracture-network properties 

over a field is inevitably inaccurate when there are only a few wells with fracture 

information. 

Seismic methods are the most commonly used tools in hydrocarbon prospect-

ing to infer fracture patterns and fracture properties. A seismic survey has the 

advantage of low cost, wide coverage, and deep penetration. Theoretical and 

laboratory studies (Nur, 1971; Crampin and Bamford, 1977; Hudson, 1980, 1981, 

1990, 1994) have shown that fractures can induce anisotropy into seismic prop-

erties of the rock. The seismic survey has the potential to be a powerful tool to 

detect and characterise subsurface fractures. One of the most popular methods in 

seismic fracture detection uses the shear-wave splitting techniques. These tech-

niques have been used successfully in locating the fractured zones in many field 

studies (Queen and Rizer, 1990; Liu et al., 1991). Another method of estimating 

fracture parameters is from azimuthal P-wave data. That is based on the fact 

that P-waves show azimuthal variations in propagation attributes i.e. velocity, 

reflectivity, amplitude, as a function of rock properties such as fracture-induced 

seismic anisotropy. P-waves are cheaper to acquire, have higher signal-to-noise 

ratio, and are more commonly available in 3D than shear wave data. However, 

the use of P-wave data in fracture detection and characterisation is not fully 

exploited. There has been both theoretical work and field observations showing 

the correlation between the fractured zones and the azimuthal variations in P-

wave amplitude and velocity (Crampin and Bamford, 1977; Lynn et al., 1996; 

Rueger, 1996). The outputs of these studies often took the form of anisotropy 

mapped over the survey areas. Some authors converted the amount of anisotropy 

to crack density, according to the penny-shaped crack model (Hudson, 1980, 1981, 

1990, 1994). However, they did not take into account realistic in-situ physical 

conditions, including subsurface temperature, pressure, nature of fracture fill-

ing material, seismic frequency, and the hydraulic interaction between fractures. 
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Critical problems remain in estimating the subsurface fracture properties under 

in-situ reservoir conditions. Gaps also exist in integrating all the information 

measured at core, log and seismic (including P- and S-wave surveys) scales for 

fracture characterisation. 

The key issue in seismic monitoring experiments is to interpret the information 

we get, and estimate fracture properties, i.e. fracture density, spatial distribution 

and fracture lengthscale. In order to explain the characteristics of seismic waves 

recorded during seismic surveys, we need to have better understanding of the ef-

fects of fractures on seismic waves. There are available theoretical approaches that 

describe the response of seismic waves to fractures. Such theoretical models are 

available for the short and the long wavelength cases. The range of wavelengths 

used in most seismics is from A = 1cm to A = 1km. Scalelengths in a reservoir 

can vary from large basin description (described as megascale) relating to the 

field wide variability across depositional systems; to the macroscale, where distri-

butions of lithofacies on the well-to-well scale and the geometric distribution of 

reservoir compartments is important, the cross-bed mesoscale with features such 

as ripple laminations; to the smallest microscale which includes grains, pores, 

crystals, minerals or even pore throats. When the wavelength is smaller than 

the lengthscale of the fracture (short wavelength) we have the ray theory, single 

scattering (e.g. Knopoff and Hudson, 1964; Aki and Richards, 2002; Barley et 

al., 1982) and multiple scattering theories (e.g. Landers and Clearbout, 1972; 

Hudson, 1980b; Wu, 1994; Wesley, 1965; Ryzhik et al., 1996). That is the range 

at which traditional seismic experiments image structures at large scalelengths 

and they obey the inequality a/A > 1/4, where a is the size of the fracture and A 

is the wavelength. When the wavelength is much greater than the lengthscale of 

the fractures (long wavelength), we can use an equivalent medium theory where 

we consider fractured blocks as equivalent anisotropic solids (e.g. O'Connell and 

Budiansky, 1974; Hudson, 1980; Schoenberg, 1980; Nishizawa, 1982). Equivalent 
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medium theory has a range of validity to the left of the operative seismic wave-

length with a limit of of/A < 1/8, so that features with scalelengths smaller than 

the seismic wavelength are resolved. In principle, it seems that the role of equiv-

alent medium theory could he to fill the lower scalelength portion of the seismic 

resolution, and so provide information on a complete spectrum of reservoir fea-

tures. However, those methods are valid for small disorder but they fail at large 

disorder (i.e. high fracture density, complicated fracture networks). That intro-

duces serious limitations in the application of the methods for the examination 

of fractured networks. 

More recently, it has been realised that seismic waves can be used to monitor 

changes in an oil or gas reservoir as a function of time. The influence of poros-

ity, permeability, and fluid properties on the elastic characteristics of rocks was 

studied by Terzagi (1943), Frenkel (1944) and Biot (1941), Biot (1956a), Biot 

(1956b). Those research results are employed, either in their qualitative or quan-

titative form, in a number of seismic exploration technologies. When used in 

conjunction with reservoir simulations, seismic monitoring will probably become 

a powerful tool in reservoir management. 

Field monitoring experiments had some success in some cases. However, that 

does not mean that we fully understand the effects of fluids and transport prop-

erties on seismic wavefields. Also such results indicate that the petrophysical 

models used in the monitoring of fluid flow are good approximations. That may 

be true in a number of cases, but we have not achieved yet models that can 

describe with sufficient accuracy and reliability a variety of cases, especially com-

plicated ones. A deeper insight into the process of wave propagation in rocks, as 

well as the development of a set of quantitative petrophysical models for a variety 

of reservoir environments is needed. It is obvious from the above mentioned that 

there are still gaps between the theoretical predictions of rock properties and the 

actual measured ones. 
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One of the objectives of the thesis is to examine the effect of fracture parameters 

on seismic waves. We realised that there are limitations on the equivalent medium 

theory, in both cases of short and long wavelength, when it is used for fracture 

characterisation, based on the concept of seismic anisotropy. The limitations are 

that it cannot provide information about fracture size, length distribution and 

spatial distribution. We propose to use numerical methods to model discrete 

fractures. Numerical methods are not restricted in any way. For the numerical 

modelling we use the pseudospectral method. Discrete fractures are implemented 

in the finite difference grid using the equivalent medium theory. The combination 

of a numerical method with the equivalent medium theory, overcomes the limi-

tations of the equivalent medium representation of the medium, gives accurate 

representation of the fractures, and produces reliable synthetic seismograms. We 

use the synthetic seismograms for a detailed examination of the effect of fracture 

size, length distribution and spatial distribution on seismic waves. 

The other objective of the thesis is the examination of the effect of fluid flow on 

seismic waves and the identification of characteristic features on seismic signa-

tures that can be attributed to fluid flow. Despite recent theoretical developments 

in the field of rock physics, there is usually no actual link between the seismic re-

sponse of fractured reservoirs and the fluid properties in the fractures. We use an 

empirical relationship that describes fracture compliance changes as the traction 

on the fractures changes due to pore pressure changes, while properties of the 

intact background rock are assumed constant. We simulate the fluid movement 

in the fractured network with a model of pore fluid pressure diffusion. We use the 

2-D finite difference method presented in the previous chapters of the thesis to 

model the wave propagation before and during fluid injection. The aim is to ex-

amine any direct indication of pore pressure changes in the synthetic seismograms 

for a common fracture network 
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1.2 Description of this thesis 

In this thesis we present the theoretical background and the implementation of 

a new numerical modelling technique. This technique is used to examine wave 

propagation in a fractured network with discrete fractures of different sizes and 

of various spatial distributions. Also we present a simulation of fluid flow in the 

fractured network, and we investigate the link between pore pressure changes 

and seismic signatures of fractures. In the first section of Chapter 2 we describe 

the methods that are used to simulate wave propagation in a fractured network. 

There are a number of theoretical methods depending on the size of the fractures 

compared to the wavelength. Analytical solutions are available for the short and 

long wavelength cases. When the wavelength is smaller than the scale length, 

wave propagation is described by the ray theory, single scattering and multiple 

scattering theories. When the wavelength is much greater than the length scale 

of the fractures, finite fracture openings and details of the spatial distributions of 

fractures can be neglected and fractured blocks can be considered as equivalent 

or effective anisotropic solids, thus applying the effective medium theories. 

In the following section, we present the pseudospectral method that is used in 

the numerical simulation of wave propagation. We describe the implementation 

of the wave equation in the finite difference grid, the representation of the medium 

in each grid cell and the absorbing boundary conditions. 

In the final section, we describe the implementation of fractures in the isotropic 

background medium, which is the key issue of our method. We use an effective 

medium theory to calculate the elastic parameters for the cells that are intersected 

by fractures. The linear slip interface model (Schoenberg and Sayers, 1995) is 

used to calculate the effective compliance of the medium for each grid cell. The 

theoretical background of the implementation in a fractured network, is presented 

in details. 
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In Chapter 3 we examine the accuracy of the modelling technique presented in 

Chapter 2. We begin by considering some general limitations introduced by the 

pseudospectral technique and the implementation of fractures using an equivalent 

medium theory. In the next section, we present a detailed examination of the 

limitations in grid spacing related to the frequency and the size of the fractures. 

We continue with an examination of the vertical and the lateral resolution of the 

model, and in the final sections we present the results of three numerical examples 

where we show the accuracy of the modelling technique. 

After introducing the modelling technique in Chapter 2 and examining its accu-

racy and validity in Chapter 3, in Chapter 4 we apply the model to examine the 

effect of fracture parameters on seismic wave propagation. Firstly, we examine the 

effect of fracture size. The aim of this section is to understand the behaviour of 

the fractures in three main cases, when fractures are larger than the wavelength, 

when fractures have the same size with the wavelength, and when fractures are 

smaller than the wavelength. Secondly, we examine the spatial distribution of 

fractures. We present the cases of uniform, Gaussian, exponential and gamma 

distributions of fractures that have the same size. This examination shows the 

effect of spatial distribution on wave propagation, both on synthetic seismograms 

and the frequency content. Finally, we discuss the case of fractures having various 

scalelengths, which is usually the case in earth, and we also present the results 

for a power-law size distribution. 

In Chapter 5 we introduce a realistic fracture model and we examine multiple 

scattering in a medium with a complicated fracture network. We use the re-

sults of a multiscale cellular automaton (Narteau, in press) to create a fractured 

medium that attempts to model the natural rock. Basically, it is a model of 

rupture whose outputs can be compared with different aspects of the structural 

patterns observed in the formation and evolution of a population of strike-slip 

fractures. Fracture formation and evolution is a result of fracture interaction and 
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pre-existing material heterogeneity. In natural data, there is a growing body of 

evidence that indicates that neighbouring fractures interact and that fracturing 

processes at every scale are strongly dependent on the interrelated evolution of 

pre-existing faults. The model describes important generic characteristics of the 

faulting patterns generated during the formation and evolution of fractures. We 

model the wave propagation at each stage of the evolution of the fracture network, 

and examine scattering attenuation of P-waves. Therefore we are able to inspect 

the interaction of each individual feature of the fractures that are examined in 

Chapter 4 and their joint effect on the wavefield. 

In Chapter 6 we use a meanfield theory to continue the examination of scat-

tering attenuation, and investigate different aspects of wave propagation. In the 

meanfield theory the variations of the properties of the wavefield are averaged, 

thus we obtain a mean effect of the fractures. We present the theoretical back-

ground for the estimation of scattering attenuation. We use different realisations 

of random distributions of fractures and estimate the mean wavefield for all the 

realisations. We consider different fracture sizes and the results are compared 

with the results presented in Chapter 5. In order to obtain more accurate results, 

we select a window to keep only the first arrivals. We examine the effect of travel 

distance and angle of scattering on the estimation of scattering attenuation. 

Until Chapter 6, when we refer to fractures we assume that fractures are dry. 

In real earth fractures may be filled with fluid, and they are the main path that 

fluid flows through. In Chapter 7 we present the fundamentals of fluid flow. In 

the first section, we give a brief presentation of the various modelling techniques 

of fluid flow. In the next section, we introduce the two basic flow models, the 

equivalent continuum and the discrete network model. We briefly describe phase, 

viscosity and compressibility, and present some typical values of those parameters. 

We present the single phase properties, that is permeability, porosity, saturation, 

capillary pressure, mobility and fractional flow. We describe the basic parameters 



18 	 INTRODUCTION 

that control fluid flow, and explain how those parameters are linked to describe 

fluid flow in the form of differential equations. Finally, we describe Darcy's law 

and based on that we get a general equation for single-phase flow. 

In Chapter 8, after presenting in Chapter 7 the basic concepts of fluid flow, 

we examine the dual simulation of fluid flow and seismic wave propagation in 

a fractured medium. In the first section we refer to the theoretical model. We 

explain how the solid phase and the fluid phase are implemented in the model. In 

the next section, we give a detailed description of the BGK model that we use for 

the numerical modelling of fluid flow. We concentrate on single phase fluid. In the 

following section, we present the interaction between the solid and the fluid phases 

and the basic assumptions applied in the numerical modelling. The flow of fluid 

through fractures will effect the elastic properties of the medium as well as the 

stress distribution. In the next section, we give a detailed description of fracture 

compliance variations due to pore pressure changes. Following that, we consider 

effective static stress changes due to pore pressure changes, and the possible 

evolution of the fracture network. We apply the above for simplicity in the case of 

vertical fractures under anisotropic stress. Finally, we present numerical examples 

based on the theoretical model. We use the fluid flow simulator to generate 

pore pressure maps at consecutive stages. The pore pressure variations, result 

in variations in the elastic properties, following the theoretical model presented 

in the previous section. For each one of the consecutive stages, we simulate 

wave propagation using the modelling technique presented in Chapters 2 and 

Chapter 3. We examine the case of single and multiple azimuths, and discuss the 

possibility of establishing a direct link between pore pressure changes and seismic 

wave properties, such as amplitude, arrival time or frequency spectra. 



CHAPTER 2 

Wave propagation in fractured 

media: Equivalent medium theories 

and numerical simulations 

2.1 Introduction 

Fracture systems have been actively studied for the last 25 years. That interest 

was motivated to a large extent by the siting of hazardous waste disposal sites 

in crystalline rocks, by the problems of multiphase flow in fractured hydrocarbon 

reservoirs, and by earthquake hazards and the possibility of prediction. According 

to different points of view various definitions can be given to a fracture, but from 

a strictly geo-mechanical point of view a fracture is the surface in which a loss of 

cohesion has taken place. Since rupture refers to a process which results in the 

loss of cohesion of a given material, a fracture is then the result of a rupture. In 

general, a fracture in which relative displacement has occurred can be defined as 

a fault, while a fracture in which no noticeable displacement has occurred can be 

defined as a joint. A fracture can be defined, in a general way, as the discontinuity 

which breaks the rock beds into blocks along cracks, fissures, joints or whatever 

they may be referred to as, and along which there is no displacement parallel 

with the planes of discontinuity. Fractures exist on a wide range of scales from 
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microns to hundreds of kilometers, and it is known that throughout this scale 

range they have a significant effect on processes in the Earth's crust including 

fluid flow and rock strength. 

Fractures are a result of a variety of geological processes (Menéndez et al., 1999), 

including thermal gradients, mechanical effects of an ambient stress field, com-

bined effects of a stress concentration at the crack tips and chemical weakening 

of molecular bonds ahead of the crack tip by the mechanism of stress corrosion 

(Atkison, 1984; Atkinson and Meredith, 1987). From the examination of frac-

tured reservoir case histories (Stearns and Friedman, 1972), the most probable 

fractured reservoirs are expected to occur in brittle reservoir rock of low porosity 

where favourable tectonic events have developed. In this case the resulting frac-

tures are large and very extended and are, therefore, called macrofractures. Such 

reservoirs are in fractured basements, where the oil and gas in place may be held 

within an extensive fracture network rather than within the matrix porosity of the 

formation. Most basement rocks are hard and brittle with very low matrix poros-

ity and permeability. In basement reservoirs matrix porosity is effectively close to 

zero and most of the storage capacity and permeability is due to fractures. Such 

reservoirs are the Edison and Mountain View Fields in the San Joaquin Valley 

of California; the El Segundo, Wilmington and Playa Del Rey Fields in the Los 

Angeles Basin (Eggleston, 1948; McNaughton, 1953); the La Paz-Mara Fields in 

Venezuela (Smith, 1951); and the Amal Field in Libya. If the rock is less brittle 

and has a high intergranular porosity, the fractures are generally of limited ex-

tend and with relatively small openings and are, therefore, called microfractures. 

In the thesis, we mainly consider fractured carbonate reservoirs. Such reservoir 

is the Mara-LaPaz fields of Venezuela, where matrix porosity does not exceed 

3% and permeability is 0.lrnd. Production was, in this case, the result of frac-

ture permeability. Another example is the Selma fractured chalk reservoir of the 

Gilbertown field in Alabama, where fracture porosity existed as a secondary trap 
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for oil migrating from the older Eutaw sands. 

The variations of fracture characteristics is so irregular and complicated, that 

the description of a fractured reservoir is very difficult. Such characteristics are 

the opening (width), size and nature of fracture. If the single fracture is associ-

ated with the reservoir environment, another essential characteristic, the fracture 

orientation, will result. For a multi-fracture network important parameters are 

the fracture density and distribution. All those characteristics are critical for 

successful fracture detection and evaluation. Variations on those parameters will 

affect seismic waves traveling in the reservoir. In order to interpret seismic re-

flection data from such a reservoir, we need theoretical models that can relate 

fracture properties to characteristics of the seismic data. 

2.2 Analytical methods 

In the Earth's crust there are fractures of all lengthscales (Yielding et al., 1992). 

Fractures will respond in a different way depending on the wavelength scale of 

seismic waves. Analytical solutions that describe seismic wave response are avail-

able for the short and the long wavelength cases. 

For the case that the wavelength is smaller than the lengthscale of the frac-

tures we have the ray theory, single scattering and multiple scattering theories. 

For the ray theory to be applicable wavelengths should be much smaller than the 

lengthscale of spatial variations in material properties. However, ray theory is not 

capable of describing diffraction effects. A theory that can describe accurately 

single scattering is the Born approximation (Knopoff and Hudson, 1964; Aki and 

Richards, 2002). It has been applied successfully to scattering Rayleigh waves 

(Hudson, 1967), and when the amplitude of the source signal is relatively small, 

so limited scattering becomes significant (Barley et al., 1982). However, that the- 
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ory is not applicable to multiple scattering cases. Theories that describe multiple 

scattering are the parabolic approximation (Landers and Clearbout, 1972; Hud-

son, 1980b), the "complex-screen" (Wu, 1994) and the diffusion approximation 

(Wesley, 1965; Ryzhik et al., 1996). In addition to multiple scattering, diffraction 

effects can be described by the parabolic approximation or by the geometrical 

theory of diffraction (Achenbach et al., 1982). Nevertheless, the special case of 

P to S scattering, or vice versa, cannot be described accurately by the parabolic 

theory (McCoy, 1977). 

When the wavelength is much greater than the lengthscale of the fractures, 

we can neglect finite fracture openings and details of the spatial distributions of 

fractures and can consider fractured blocks as equivalent or effective anisotropic 

solids. The parameters of such an effective model will depend on the orientation 

and intensity of the fracture set(s) and the properties of the material filling the 

fractures, as well as on the elastic coefficients of the host rock. At the core of that 

approach is the idea that a heterogeneous medium can be seen as an equivalent 

homogeneous medium, i.e. its properties are the same as those of a homogeneous 

medium. This strategy is valid for small disorder but is bound to fail at large 

disorder. A number of authors have presented effective medium theories that 

give the overall properties of elastic material that have fractures (e.g. O'Connell 

and Budiansky, 1974; ?; Nishizawa, 1982). All those techniques, although each 

one is using a different approach, they all need to calculate the response of a 

single fracture. This can be calculated in the limit in which the thickness of the 

crack vanishes (Walsh, 1965; Garbin and Knopoff, 1973; O'Connell and Budi-

ansky, 1974; ?). Fractures are either assumed to be dry (Walsh, 1965; Garbin 

and Knopoff, 1973; O'Connell and Budiansky, 1974; Hudson, 1981), fluid-filled 

(Anderson et al., 1974; Garbin and Knopoff, 1975; O'Connell and Budiansky, 

1977; Hudson, 1981), or partially saturated (Hudson, 1988). Although usually 

fractures are described as circular ("penny-shaped"), there is a number of other 
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implementations. Budiansky and O'Connell (1976) introduced elliptical fractures. 

Spheroids of a non-zero thickness were studied by some authors (Eshelby, 1957; 

Anderson et al., 1974; Kuster and Toksoz, 1974; Nishizawa, 1982; Sayers, 1988; 

Hudson, 1994), and non-elliptical thin fractures have also been examined (Mavko 

and Nur, 1978; Walsh and Grosenbaugh, 1979). 

2.3 Numerical methods 

Seismic numerical modelling is a technique for simulating wave propagation in 

the earth. The objective is to predict the seismogram that a set of sensors would 

record, given an assumed structure of the subsurface. The computation of syn-

thetic seismograms is an essential component of full waveform inversion schemes 

for determining subsurface earth structures. There are many approaches to seis-

mic modeling. Carcione et al. (2002) classify them into three main categories: 

direct methods, integral-equation methods, and ray-tracing methods. 

To solve the wave equation by direct methods, the geological model is approxi-

mated by a numerical mesh, that is, the model is discretised in a finite numbers 

of points. These techniques are also called grid methods and full-wave equation 

methods, the latter since the solution implicitly gives the full wavefield. Direct 

methods do not have restrictions on the material variability and can be very 

accurate when a sufficiently fine grid is used. Furthermore, the technique can 

handle the implementation of different rheologies and is well suited for the gen-

eration of snapshots which can be an important aid in the interpretation of the 

results. A disadvantage of these general methods, however, is that they can be 

more expensive than analytical and ray methods in terms of computer time. 

Integral-equation methods are based on integral representations of the wavefield 

in terms of waves, originating from point sources. These methods are based on 
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Huygens' principle, formulated by Huygens in 1960 in a rather heuristic way. 

When examining Huygens' work closer, we can see that he states that the wave-

field can, in some cases, be considered as a superposition of waveflelds due to 

volume point sources and, in other cases, as a superposition of waves due to 

point sources located on a boundary. Both forms of Huygens' principle are still 

in use today and we have both volume integral equations and boundary inte-

gral equations, each with their own applications. These methods are somewhat 

more restrictive in their application than the above direct methods. However, 

for specific geometries, such as bounded objects in a homogeneous embedding, 

boreholes, or geometries containing many small-scale cracks or inclusions, integral 

equation methods have shown to be very efficient and to give accurate solutions. 

Due to their somewhat more analytic character, they have also been useful in the 

derivation of imaging methods based on the Born approximation (i.e. Cohen et 

al., 1986 and Bleistein et al., 2001). 

Asymptotic methods or ray-tracing methods are very frequently used in seismic 

modeling and imaging. These methods are approximate, since they do not take 

the complete wavefield into account. On the other hand, they are perhaps the 

most efficient compared with the rest of the methods. Especially for large, three-

dimensional models the speedup in computer time can be significant. In these 

methods, the wavefield is considered as an ensemble of certain events, each arriv-

ing at a certain time (traveltime) and having a certain amplitude. Asymptotic 

methods, due to their efficiency, have played a very important role in seismic 

imaging based on the Born approximation for heterogeneous reference velocity 

models. Another important application of these methods is the modeling and 

identification of specific events on seismic records. 
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2.4 Comparison of modeling methods 

After presenting the various techniques that approximate the solution of the wave 

equation, I continue with a comparison of those techniques. In general the direct 

methods presented do not have restrictions on the type of constitutive equation, 

boundary conditions, and source type, and allow general material variability. 

For instance, the numerical solution of wave propagation in an anisotropic poro-

viscoelastic medium, which is suitable to describe a reservoir environment, is 

not particularly difficult in comparison with simple cases, such as the acoustic 

wave equation that describes the propagation of dilatational waves. In order to 

handle such complex constitutive equations using an integral-equation method or 

an asymptotic method, we need to make simplifying assumptions. On the other 

hand, direct methods are certainly more expensive in terms of computer time and 

storage requirements. 

Finite differences are simple to program and when the accuracy required is 

moderate they are very efficient compared to other methods. A good choice 

can he an FD algorithm which is second order in time and fourth order in space. 

Pseudospectral methods on the contrary may be computationally more expensive, 

that is the computation time is longer than the equivalent FD computation, 

but have much higher accuracy and relatively lower background noise especially 

when staggered differential operators are used. These operators are also suitable 

when in the model we have large variations of Poisson's ratio (e.g. a fluid-solid 

interface). In 3-D cases, pseudospectral methods give very high accuracy and 

need only a minimum number of grid points, so they are the best choice when 

there are limitations in the computer storage required. However, when we need 

a dense grid of points, as in the case of fine-layering, scattering inhomogeneities, 

the FD method is more convenient. 

When we are interested in modeling surface topography and curved interfaces, 
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the method that gives us the best results is the finite element method. The 

method's accuracy and stability can compete with the other techniques. However, 

finite element methods become unstable when Poisson's ratio varies greatly. In 

general, FE methods are suitable for engineering problems, where interfaces are 

well defined in contrast with geological interfaces. In these interfaces for accurate 

modeling we require nonstructured grids. That is one of the main advantages 

of FE, especially when we are dealing with complicated 3D models. Despite of 

that, generally FE methods are preferred for seismic problems that involve the 

propagation of surface waves in complex topographies. 

Integral equations contains a Green's function that describes the wave prop-

agation in the embedding medium. For certain geometries, such as boreholes 

or other boundaries, media containing cracks, and inclusions of bounded extent, 

these methods are relatively efficient compared to direct methods. The reason 

for this efficiency is that the number of unknown functions to be determined is 

confined to a bounded region. The price to pay for this reduction in unknowns 

is the fact that the system matrix is full, whereas direct methods usually have 

sparse system matrices that can be solved in an efficient way. Since integral-

equation methods can explicitly account for the boundary conditions at crack 

boundaries or borehole walls, these methods can provide accurate results for the 

specific geometries mentioned. Also, for deriving analytical imaging methods, 

integral-equation techniques are very well suited, and are often used together 

with asymptotic methods. 

Asymptotic methods aim at the calculation of approximate solutions for the 

wave equation that are valid for high frequencies. Asymptotic methods calculate 

the solution up to a smooth error. In fact, they calculate only the most singular 

part of the solution, which is characterized by a traveltime function and an am-

plitude function. The traveltime function is a solution of the eikonal equation; 

the amplitude function is a solution of the transport equation. Due to their corn- 
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putational efficiency, asymptotic methods are widely applied in the generation 

of synthetic seismograms and the solution of inverse problems such as traveltime 

tomography and migration. 

2.5 Boundary conditions 

The simulation of waves by direct methods in unbounded domains requires a 

special treatment for the boundaries of the necessarily truncated computational 

domain. The imposition of artificial boundaries introduces spurious reflections 

which will affect the accuracy of numerical solutions. Although we can overcome 

the problem by increasing the size of the model, it is not always feasible because 

of the large amount of computer memory required for long-time solutions. It 

is thus highly desirable to eliminate these reflections. Two solutions have been 

proposed for this purpose: absorbing boundary conditions (ABCs) and absorbing 

layers. 

The ABCs consist of introducing some suitable local boundary conditions that 

simulate the outgoing nature of the waves impinging on the borders. Smith (1974) 

proposed an ABC for finite-difference and finite element methods. In this method, 

the Dirichlet and Neumann conditions are used alternatively, and the solutions 

from these two conditions are superimposed. Although easy to implement, this 

method greatly increases the computation time. A widely used ABC in seismic 

modeling proposed by Clayton and Engquist (1977) is the one-way wave equa-

tion based on the paraxial approximations of the acoustic or elastic equations. 

Similar approaches were proposed by several authors, including Reynolds (1978). 

Although effective for small incidence angles, these absorbing boundary condi-

tions degrade for large angles of incidence. Furthermore, they are known to have 

instability problems when the Poisson's ratio is greater than 2.0 (Mahrer (1986); 

Stacey (1988)). Another approach is to add a spatial filter or damping taper to 
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the boundaries (Cerjan et al. (1985); Kosloff and Kosloff (1986)). In this so-called 

sponge absorber method, the transition zone from the inner region to the outer 

boundary should be thick and smooth. Liao et al. (1984) developed an ABC 

based on the principle of plane wave and interpolation. Although effective even 

for perpendicular inhomogeneous boundary intersecting the absorbing boundary, 

Liao's ABC requires double precision for stability. 

Layer models are an alternative to ABCs. The idea is to surround the do-

main of interest by some artificial absorbing layers in which waves are trapped 

and attenuated. For elastic waves, several models have been proposed. For in-

stance, Sochacki et al. (1987) suggest adding inside the layers some attenuation 

term, proportional to the first time derivative of the elastodynamic equations. 

The main difficulty is that when entering the layers, the wave "sees" the change 

in impedance of the medium and then is reflected artificially into the domain 

of interest. The use of smooth and not too high attenuation profiles allows us 

to weaken the difficulty but requires the use of thick layers (Israeli and Orszag, 

1981). Berenger (1994) proposed a highly effective perfectly matched layer (PML) 

as an absorbing boundary condition for electromagnetic waves. It has since been 

widely used for finite-difference and finite element methods (e.g., Chew and Wee-

don (1994); Liu (1997)). Chew and Liu (1996) first proved that such a perfectly 

matched layer also exists for elastic waves in spite of the coupling of S- and 

P-waves at an elastic interface. In the continuous limit, the PML has zero reflec-

tion to the regular elastic medium, although a small reflection can result from 

discretization in the PML scheme. Hastings et al. (1996) independently imple-

mented the PML ABC for two-dimensional problems using potentials. The PML 

ABC has also been extended to model acoustic waves and electromagnetic waves 

in lossy media (Liu (1997); Liu and Tao (1997)) as well as electromagnetic and 

elastic waves in cylindrical and spherical coordinates (Liu (1999); He and Liu 

(1999)). The previous works, however, have been developed for electromagnetic, 
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acoustic, and elastic waves in solids. Currently there is limited work done for 

the implementation of the PML to elastic waves in porous media. . Such is the 

work of Collino and Tsogka (2001) where they incorporate the PMLs into the 

stress-velocity formulation. Also Zeng et al. (2001) extended the PML to trun-

cate unbounded poroelastic media for numerical solutions using a finite-difference 

method. They adopted the method of complex coordinates (Chew and Weedon 

(1994); Liu (1997); Liu and Tao (1997)) to formulate the PML for poroelastic 

media. 

2.6 Simulation of wave propagation using a 

pseudospectral method 

2.6.1 Wave propagation in anisotropic media 

The wave equation for an inhomogeneous anisotropic medium is 

Ü j  = 
	

(2.1) 

where p, u, a, and f represent density, displacement, stress and forcing, respec-

tively (Wu and Lees, 1997). Stress a and strain e are related by Hooke's law 

oij = c/ ç e/, 	 (2.2) 

where Cijkl  are the elements of the elastic fourth-rank stiffness tensor. It obeys the 

laws of tensor transformation and has a total of eighty-one components. However, 

not all eighty-one components are independent. In those equations Einstein's 

summation convention is implied. If we combine equations (2.1) and (2.2), we 

obtain the wave equation in an analytic form: 
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In the models we examine, we have isotropic mediums in which anisotropy is 

introduced by the presence of fractures. Equation (2.3) is the equation that 

describes the wave propagation in general heterogeneous anisotropic media. 

2.6.2 The pseudospectral method 

Finite difference modeling of wave equations in the seismic context began around 

1970. Alford et al. (1974) note that fourth-order FD is superior to the second-

order FD for the 2-D acoustic (ji = 0) wave equation. Many production codes 

for solving the elastic wave equation were upgrated from second-order to fourth-

order FD around 1986. The numerical techniques employed so far to study seismic 

ware scattering problems include the Maslov theory (Chapman and Drummond, 

1982), the finite-difference method (FD) (VanBaren et al., 2001; Saenger and 

Shapiro, 2002), the pseudospectral method (PS) (Fornberg, 1988), the finite-

element method (FE) (Lysmer and Drake, 1972), the boundary element method 

(Benites et al., 1992; Pointer et al., 1998; Liu and Zhang, 2001) and the spectral 

finite-difference method (Mikhailenko, 2000). 

In this study we use the pseudospectral method to simulate wave propagation 

in media with discrete distributions of fractures. PS methods originally were not 

used extensively, but gradually received much attention in the literature. Kosloff 

and Baysal (1982) test a Fourier-PS method on two 2-D acoustic model problems 

and find it more effective than a FD scheme. Johnson (1984) applies the Fourier-

PS method to a 3-D acoustic problem, and Kosloff et al. (1984) to a 2-D elastic 

problem. After comparing second-order and fourth-order FD against Fourier-PS 

on a number of 2-D elastic problems (Fornberg, 1987) (as shown in Figure 2.1), 

it became clear that PS method would decidedly outperform second-order and 

fourth-order FD methods. The result of the comparison is not model dependant. 

Equivalent resuls were found by other researchers too. 
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Figure 2.1: Contour curves for the variable medium, schematic illustrations of the 
initial and end states of the test runs, and numerical results for the test 
problem (variable f displayed); comparison between different methods 
and grid sizes (Fornberg, 1987) 

Figure 2.2 shows the computation geometry with the absorbing boundaries in 

the PS computation. While FD approximates spatial derivatives of field vari-

ables by differences, the pseudospectral method uses the derivative property of 

the Fourier transform, namely that the differentiation in space domain is a multi-

plication of the Fourier transform in the wavenumber domain by ik, where k is the 

spatial wavenumber (Wu and Lees, 1997). The equations for the differentiation 
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in the 2-D case are 
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Figure 2.2: Schematic representation of the computational grid used in the appli-
cation of the pseudospectal method. The shaded area is the absorbing 
boundary 

The effect of this change is equivalent to an infinite-order (limited by grid size) 

difference scheme (Fornberg, 1987) and is accurate for all the Fourier components 

with the possible exception of the Nyquist frequency. Using this idea, we substi-

tute the spatial difference scheme with a Fourier and inverse Fourier transform 

pair. A minimum of two nodes per wavelength (theoretically) is needed to get an 

accurate derivative, compared with FD that normally requires 10-20 nodes per 
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wavelength (Alford et al., 1974). So if we have limited computer memory, we can 

obtain much higher frequencies or, equivalently, can accommodate much larger 

models. Also accuracies of FD methods are measured by the order of polynomi-

als that are approximated exactly, whereas PS methods are measured by which 

frequency components are best approximated. PS methods thus seem to be more 

natural than FD methods in dealing with waveform propagation containing sinu-

soidal elements. 

There are, however, some disadvantages to PS methods, namely that a periodic 

medium and a periodic source is implicitly assumed. This results in a wraparound 

effect that is difficult to estimate and remove. Signals with frequencies higher than 

Nyquist may arise from heterogeneous structural variations, source function, and 

source spatial distribution, and thus aliasing effects on the wavefield can become 

significant. We try to mitigate those unwanted effects by introducing absorbing 

boundary conditions, and by having a large model space. 

Summarizing, the main advantage of the pseudospectral method is that it is 

numerically very stable, and for a given accuracy, requires fewer grid points per 

wavelength than traditional finite differencing (Fornberg, 1987). So for a desired 

accuracy it makes less computations and therefore it is faster than the FD meth-

ods, and also has much less memory requirements. On the other hand, the use of 

PS methods introduces wraparound effect and the use of an absorbing boundary 

is necessary to remove it. 

2.6.3 Calculation of spatial derivatives 

The pseudospectral methods used in forward modeling of seismic waves are mainly 

based on the Fourier and Chebyshev differential operators. Gazdag (1981) first 

and Kosloff and coworkers later applied this technique to seismic exploration 

problems (e.g., Kosloff and Baysal, 1982; Reshef et al., 1988). Mikhailenko (1985) 
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combined transform methods (e.g., Bessel transformations) with FD and analyt-

ical techniques. 

The sampling points of the Fourier method are xj = j dx = j max /(Nx  - 

1) 	(j 	. . . , N, - 1), where X fllax is the maximum distance and N is the 

number of grid points. For a given function f(x), with Fourier transform f(k), 

first and second derivatives are computed as 

of 
19X Dx2  

(2.5) 

where k is the discrete wavenumber. The transform f to the wavenumber domain 

and the transform back to the space domain are calculated by the fast Fourier 

transform (FFT). The derivatives of two real functions - two adjacent grid lines of 

the computational mesh - can be computed by two complex (direct and inverse) 

FFTs. The two functions are put into the real and imaginary parts, the FFT is 

performed, the result is multiplied by ik, and the inverse FFT gives the derivatives 

in the real and imaginary parts. Staggered operators that evaluate first derivatives 

between grid points are given by 

k(N) 

Dq5 	ikexp(+ikdx/2)0(k)exp(ikx), 	 (2.6) 

where k(N) = 'ir/dx is the Nyquist wavenumber. The standard differential oper-

ator requires the use of odd-based FFTs (i.e., Nx  should be an odd number). This 

is because even transforms have a Nyquist component which does not possess the 

Hermitian property of the derivative (Kosloff and Kessler, 1989). The approxi-

mation (2.4) is accurate up to the Nyquist wavenumber. If the source spectrum 

is negligible beyond the Nyquist wavenumber, we can consider that there is no 

significant numerical dispersion due to the spatial discretisation. Hence, the dis-

persion relation is given by 

—siri 	
(ckdt)212 

dt 

2 dt ck 
	

L 

(-- 
2 )= 
	1 - 2 	(-1) 	

(21)! 
(2.7) 

 1=2 
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which for a second-order time integration can be written as 

- 2 • _ 1 ckdt 
w = —sin 

dt 	
(2.8) 

Because k should be real to avoid exponentially growing solutions, the argument 

of the inverse sine must be less than one. This implies the stability condition 

kmaxCdt/2 < 1, which leads to a cdt/dt < 2/7r, since kmax  = rr/dx (a is called 

the Courant number). Generally, a criterion a < 0.2 is used to chose the time 

step (Kosloff and Baysal, 1982). The Fourier method has periodic properties. In 

terms of wave propagation this means that a wave impinging on the left boundary 

of the grid will return from the right boundary (the numerical artifact called 

wraparound). 

The Chebyshev method is mainly used in the velocity-stress formulation to 

model free surface, rigid and nonreflecting boundary conditions at the boundaries 

of the mesh. Chebyshev transforms are generally computed with the FFT, with 

a length twice of that used by the Fourier method (Gottlieb and Orszag, 1977). 

Since the sampling points are very dense at the edges of the mesh, the Chebyshev 

method requires 1-D stretching transformation to avoid very small time steps. 

Because the grid cells are rectangular, mapping transformations are also used 

for modeling curved interfaces to obtain an optimal distribution of grid points 

(Fornberg, 1988; Carcione, 1994) and model surface tomography (Tessmer and 

Kosloff, 1994). 

The Fourier and Chebyshev methods are accurate up to the maximum wavenum-

ber of the mesh that corresponds to a spatial wavelength of two grid points (at 

maximum grid spacing for the Chebyshev operator). This fact makes these meth-

ods very efficient in terms of computer storage (mainly in 3-D space). 
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2.6.4 Absorbing Boundary Conditions 

Previous studies have shown that reduction of both amplitude and time deriva-

tive of a physical quantity in a boundary layer effectively attenuates the physical 

quantity in consecutive computations, leaving no reflected and transmitted dis-

turbances (Cerjan et al., 1985). The process for modifying the physical quantity 

U is 

= 	(old) 	 (2.9) 

where 'y = 'y(x) or 'y = y(z) , is the reduction function that departs from zero 

only in a restricted boundary layer on the grid perimeter as shown in Figure 2.2. 

The coordinates x and z are measured from the edge of the computational grid. 

As we mentioned before PS methods intrinsically treat all physical quantities as 

spatially periodic and, as a result, all energy transmitted and reflected through 

the boundary will travel (wrap) back into the grid. This symmetry consideration 

requires that 'y  should be symmetrical with respect to its central line (at grid 

boundary), since it should perform identically for waves incident from either 

side. The ideal reduction function will be as smooth as possible with values 

large enough to eliminate transmission and derivatives small enough to reduce 

reflections, and with a boundary layer as thin as possible. The reduction function 
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we use in the 128 x 128 computational grid for the modelling is 

For the left and top boundaries 

y(x) = exp {—[0.O25 (Li  —x)]2 }, 

(z) 	= exp {- [0.025 (L - z)12} , (2.10) 

where i=1, 2 

For the right and bottom boundaries 

'y(x) = exp {—[O.O25(x—L)]2 } 

'y(z) = exp {- [0.025 (z - L)]2} (2.11) 

where j=3, 4 

For the left and top boundaries we use L1  = L2  = 16, and for the right and 

bottom boundaries L3  L4  = 111 

2.6.5 Implementation of fractures 

Liu et al. (2000) examined the published fracture models and classified them 

into three broad groups, which are schematically shown in Figure 2.3. Model 

(a) portrays a plane distribution of small cracks and model (b) portrays a plane 

distribution of contacts. Both models can be replaced with an equivalent fracture 

of constant aperture with appropriate material infill as demonstrated by Hudson 

and Liu (1999) in model (c). 

To obtain the effective parameters of fractured media, fractures are treated as 

infinitely thin highly compliant interfaces inside a solid rockmass. Following the 

concept of the linear slip deformation or displacement discontinuity model of 

(Schoenberg, 1980), a fracture can be represented as a boundary across which 

the displacements are discontinuous whereas the stresses remain continuous. To 

first order the displacement discontinuity and the tractions are linearly related, 
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that is, 

[u] = Z-r, 	 (2.12) 

where [u] is the average displacement discontinuity, T is the traction acting across 

the fracture, and Z is called the fracture compliance tensor, which is an elastic 

parameter of the medium. This linear relationship is consistent with the usual 

seismic approximation of infinitesimal strain. In addition, there has been some 

experimental verification of the DDM model by Pyrak-Nolte et al. (1990) and 

Hsu and Schoenberg (1993). Essentially Equation (2.12) is a boundary condition 

of the fracture surfaces. In a finite difference algorithm, the relationship can 

be implemented by requiring a displacement jump across grid points on either 

side of the interface, proportional to the local (continuous) stress traction. The 

implementation of the displacement jump is relatively simple, even with Z being 

a function of position on the fault plane, providing the interface lies along a given 

plane of the finite difference grid. In nature, fractures have finite length. To 

implement a finite fracture we take Z = 0 at locations on the plane exterior to 

the fracture. The question that remains is how to implement the constraint that 

Plane distribution of small cracks 

Plane distribution of contacts 
—2bH 

Thin layer of weak material infills 

Figure 2.3: Schematic illustration of three fracture models. (a) A plane distribution 
of small cracks; (b) a plane distribution of contacts, and (c) a thin layer 
of weak solid material with a constant aperture (Liu et al., 2000) 
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Z - 0 on the tips of the fracture. We taper off the value of Z following the 

formulation of the crack opening displacement introduced by Kashanov (1984). 

The value of Z has its maximum value in the centre of the fracture and reduces 

to 0 at both fracture tips following a hyperbolic pattern. The rate at which the 

value of compliance reduces depends strongly on the length of the fracture. 

In the pseudospectral method, the medium is discretised into small rectangular 

grids and we find the elastic parameters of the equivalent medium for each grid 

cell. For each grid intersected by a fracture (or portion of fracture), the elastic 

medium within the cell surrounding the fracture, together with the embedded 

segment of the fracture, are replaced by an equivalent anisotropic medium. Muir 

et al. (1992) showed how the elastic parameters could be found for a cell enclosing 

an interface between two elastic media. 

The discretisation of the fracture in the finite difference grids is shown schemati-

cally in Figure 2.4. This method was first used by Coates and Schoenberg (1995). 

In Figure 2.4(a) we show the whole fractured medium. Then we take a very small 

area of the medium in Figure 2.4(b), to show how the fractures are represented 

in the finite difference grid. Figure 2.4(c) shows the discretisation of the fractures 

in the grid, where the shaded areas are the finite difference grid cells intersected 

by one or more fractures, whilst the plain areas are the cells which include only 

the background rock. Finally, in Figure 2.4(d) we show the whole medium again, 

but this time each cell is either shaded or plain, depending on whether fractures 

are present. By comparing Figure 2.4(d) with Figure 2.4(a), where we have the 

medium with the actual fractures, we can see that the discretisation of the frac-

tures is very accurate. The grid cell size is very important for the discretisation 

of the fractures. To achieve high accuracy, we choose grid sizes smaller or equal 

to the size of the smallest fractures. Thus any size of fracture can be represented 

accurately by the elastic parameters of the effective medium in each finite dif-

ference grid cell. The variables required for the effective medium calculation in 
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each cell are the length of the fracture, its orientation, and the local value of the 

fracture compliance tensor. In the numerical models that will be presented later, 

fractures are represented as finite lines of which we know the starting and the 

ending points. Using simple algebra we can define the equation of any line that 

passes between two points. Knowing the equation that describes each fracture, 

we can locate the intersections of the fractures with the horizontal and vertical 

boundaries of each cell (if any) and calculate the length and orientation of the 

fracture segment lying in each cell. The effective medium for each cell may then 

be calculated using these values and the method for estimating the fracture corn- 
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Figure 2.4: Schematic illustration of fracture discretisation in the finite difference 
grid. In (a) we show the fractured medium that we want to examine. In 
(b) we present a very small area of the whole model, and (c) shows the 
same area discretised in the FD grid. Finally, (d) shows again the whole 
medium where, this time, the fractures are discretised. By comparing 
figures (a) and (d), we can see the high accuracy of the discretisation. 
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pliance tensor outlined in the following section. The tapering of the value of the 

fracture compliance Z is explained in detail in Appendix A. 

2.6.6 Comparison of 2D and 3D simulation 

In the following chapters we concentrate on 2D numerical modelling for the ex-

amination of fracture parameters and their effect on seismic waves. However, in 

real earth both the geological structures as well as the sources of the waves are 

3D. In this section we discuss the differences in the waveforms due to this. To 

do so, we examine the amplitude of the waves at a distance from the source, and 

compare the two cases. Let's take first the case of a point source in an infinite 

homogeneous medium, which is the case in 3D. Let's imagine two wave fronts, 

which make two spherical shells whose centres are the coincided location of the 

source. The radius to the outer shell is r2, which is greater than that of the radius 

of the inner shwll r1. Thus, the surface areas of the outer and inner shells are 47rr 

and 47r, respectively. By energy conservation, the total energy flowing through 

the outer shell and the inner shell at a given time should be kept the same so 

that we have E2  = E1, where E is the energy. From that we have 12S2  = 1181, 

I247r =1147r2 and 12  = (r1/r2) 211 , where I is the energy intensity. If we 

substitute energy intensity by its equivalent we have pw2u = (ri /r2) 2 pw2u, 

which leads to u2  = (r1/r2)u1 , where p is the density, w the frequency, and u 

is the amplitude. To generalise this relation with the inner shell becoming a 

constant reference shell closer to the source and the outer shell a generic one we 

have u = (r0/r)u0. This states that the amplitude is decaying against 1/r for the 

waves generated by a point source. Since the shape of the wavefront is spherical, 

this is generally referred as the geometric spreading for spherical waves. 

For an infinitely long line source, that is the case in 21), the shape of the wave 

front is cylinder, and that is called the cylindrical wave. Following once more en- 
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ergy conservation we have E2  = E1. From that we have 12S2  = IjSj, 1247r2 L 

1147r1 L and 12 = (r1/r2)I1 , where L is the length of the cylinder axis. If we sub-

stitute energy intensity by its equivalent we have jpW2U1 = (ri /r2)pw2u, which 2 	2

leads to n2  = v'/u. To generalise this relation with the inner shell becom- 

ing a constant reference shell closer to the source and the outer shell a generic 

one we have u = / 7u0. This state that the amplitude is decaying against 

1/fr for waves generated by a line source. Since the shape of the wavefront 

is cylindrical this is generally referred as the geometric spreading for cylindrical 

waves. It is clear from the above discussion that when we use 2D numerical mod-

elling, we have some incosistency in the amplitude of the wave due to geometrical 

spreading. In addition to that, there is the issue of the structures being three 

dimensional.In 2D modelling information on connectivity is lost resulting in a 

higher fraction of isolated and dead end pores, thus leading to lower connectivity 

values (Carmeliet et al., 2004). Also the flow mechanism has a 3D character, 

which cannot be represented accurately by a 2D model Finally, 2D modelling as-

sumes a constant height, predicting width and length. Since experience indicates 

height growth occurs in many reservoirs, this is a limitation of 2D modelling that 

leads to overly optimistic fracture lengths and poor transport predictions. 3D 

modelling can be more accurate, but more input data is needed. It matches both 

pressure behaviour and fracture geometry. 

2.6.7 Effective compliance of a fractured medium 

Effective medium calculus is used to calculate the elastic parameters that are 

associated with a given cell through which a fracture passes. In the simple case 

of an unfractured cell, where the cell is occupied only by the background rock, 

the calculation of the compliance tensor is straightforward. Assuming that we 

know the elastic parameters of the host rock, we calculate the compliance tensor 
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8k1 as follows 

it - p1/52 , 
	 (2.13) 

- 	 A = p(V-2V), 	 (2.14) 

1 0 \-1 
Sjjk1) 	- Cijkl = 

A 	A 0 0 0 

XA+2,a 	A 0 0 0 

A 	AA+2i000 

o OjiOO 

o OO[L0 

o OOo, 

(2.15) 

where Vp and Vs are the P-wave and S-wave velocities in the medium, respec-

tively, Cjjkj is the 6 x 6 matrix form of the stiffness tensor for the unfractured 

medium, and A, /2 are the Lamé constants. 

That way the only unknown elastic parameters are the ones from the cells that 

are intersected by the fracture. According to Coates and Schoenberg (1995) 

equivalent medium calculus is used to calculate the elastic parameters that are 

associated with a given cell through which the fracture passes. From knowledge of 

the equivalent medium in each cell, we define the appropriate elastic parameters 

at each point of the finite-difference grid. Muir et al. (1992) showed how the 

elastic parameters could be found for a cell enclosing an interface between two 

elastic media. The idea was to use the equivalent layered medium for the cell, 

where the layers were assumed parallel to the interface and the relative amounts 

of each constituent are propotional to the amount of that constituent within the 

cell. 

In the presence of fractures the average strain € in an elastic homogeneous solid 

with volume V containing N f  fractures with surfaces Sr  (r = 1,2,... , N1) can 

be written as 

6ij  = (Sijkl + Sjjkl) k1, 
	 (2.16) 
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where a is the average stress tensor, k1 is the matrix compliance tensor in the 

absence of the fractures, and Sk1  is the extra compliance tensor resulting from 

the fractures. The additional strain is given by (Hill, 1963; Hudson and Knopoff, 

1989), 

SklUk1 = 	 ([u n + [u] n) dS, 	 (2.17) 
r=1' Sr 

where ui  is the ith component of the displacement discontinuity on Sr  and ni  is 

the ith component of the fracture normal. If all fractures are aligned with fixed 

normal n, we may replace each fracture in V by an average fracture having a 

surface area S and a smoothed linear slip boundary condition given by 

(2.18) 

whereTp  is the traction on the fracture, [i] is the average displacement disconti-

nuity on the fracture, and the quantities {Z} depend on the interior conditions 

and infill of the fracture (Schoenberg and Sayers, 1995; Sayers and Kachanov, 

1995). The traction 'r is linearly related to the imposed mean stress a or, more 

precisely, to the traction apqnq  which would exist on the crack face if the displace-

ments were constrained to be zero. 

Liu et al. (2000) used a model of a simple fracture in an unbounded medium 

and proposed that the traction can be written as 

T 
	 (2.19) 

Equation (2.18) becomes 

[i;] Zipapqnq. 	 (2.20) 

Inserting (2.20) into (2.17) and after some tensor algebra, we get, 

Nf  

	

sk1ak1 = -- 
S 
-- (Z j,n1n + Zkn1rt + Zlnkn + Z lnkn) Uki, 	(2.21) 

where S is the mean area of fracture; so the fracture induced excess compliance 

8ijkl 

S -- 

	

- 4 
(Z j,rtin + Zkn1n + Zlnkn + Z1nkn), 	(2.22) 
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where D f  is 
N 

Df— 1S V (2.23) 

If the fracture set is statistically invariant under rotations about n, only two terms 

in Z are required (Schoenberg and Sayers, 1995); a normal fracture compliance 

ZN and a tangential compliance ZT. Thus 

ZNnn + ZT (6 - nn) = ZT8 + (ZN - ZT.) nri3, 	(2.24) 

where 6jj  is the Kroneker delta. By inserting (2.24) into (2.22), we have 

3ijkl = 	[ZT (ikn1n + 6jknini + Silflkflj + Slflkfl) + 4 (ZN - ZT) flifljflkflh]. 

(2.25) 

Following Coates and Schoenberg (1995), in the case of 2-D media in a grid cell 

intersected by a fracture, equation (2.23) becomes 

N1/l 
Df= A' (2.26) 

where Al is the length of the segment of the fracture lying within the cell, and 

LA is the area of the 2-D cell. If L is defined for each cell intersected by a fracture 

so that, 
1 — 1 

LA' 

then equation (2.25) finally becomes 

(2.27) 

f N f  
8ijkl - 	[ZT (6kn1rt + 6jkfllTti + 5ilkj + 5j1flkfli) + 4 (ZN - ZT) flifljTtkTll], 

(2.28) 

which is the equation we use for the calculation of the excess compliance tensor. 

So the induced excess compliance tensor of a cell depends on the normal ZN  and 

the tangential ZT  fracture compliance, the number N f  of the fractures inside the 

cell, the length Al of each fracture (or segment of fracture), and the orientation 

of each fracture estimated by the normals n. The total compliance tensor for the 

fractured cells is the effective compliance tensor s7j, which characterises the cell 

and is 
eff_ 0 

Sij 	-ijkl  + StikI. 	 (2.29) 



Wave propagation in fractured media: Equivalent medium theories and 
46 	 numerical simulations 

If we want to determine the stiffness Cijkl, we transform the Sjk1 to the conven-

tional (two-subscript) condensed 6 x 6 matrix notation, 11 - 1, 22 - 2, 33 -* 3, 

23 -* 4, 13 -+ 5, 12 -* 6, with factors 2 and 4 introduced as follows : Sijkl 

when both of p, q are 1, 2, or 3; 2Sjkj 	S when one of p, q is 4, 5, or 6; and 

4Sijkl 	S pq  when p, q are any of 1, 2, 3, 4, 5, or 6. The inverse of the compliance 

matrix S pq  gives the effective elastic constants or stiffness matrix Cpq. Using the 

same transformation as for the compliance, we transform the stiffness from the 

condensed (two-subscript) to the normal notation (cpq  " Cijkl)- 

To summarise the general course of action we follow to represent a fracture 

medium using the equivalent medium theory is the following. Firstly, we calculate 

the elastic parameters (elastic stiffness or compliance) for the cells of the medium 

that are not intersected by the fracture. Secondly, to calculate the stiffness tensor 

for the fractured cells we take into account the effect of the existence of the 

fracture. So, we invert the Cijkl stiffness tensor of the background medium to 

find the respective compliance matrix 4k1'  where the subscript b denotes the 

background compliance. Thirdly, we add to this the excess compliance S{3k1  of 

the fractured rock occupying the same cell, where the subscript f denotes the 

excess compliance of the cell as a result of the existence of the fracture surface. 

Finally, if we want to get the stiffness tensor of the fractured cells we invert the 

compliances. It is very important that all compliances and stiffnesses refer to the 

fracture coordinate system. 

2.7 Summary 

In this chapter, we described the method used to model wave propagation in a 

fractured medium, and also the implementation of fractures in the finite differ- 

ence grid. To solve the wave equation in an elastic medium, there are analytical 
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methods and numerical methods. Analytical methods are available only for the 

short and long wavelength cases. On the contrary numerical methods do not have 

significant limitations. Numerical methods are classified into direct methods, in-

tegral equation methods and ray tracing methods. Direct methods approximate 

the geological model by a numerical mesh, integral-equation methods are based on 

integral representations of the wavefield, while in ray-tracing methods the wave-

field is considered as an ensemble of certain events. We compared the methods 

and concluded that for the case of complicated fractured medium direct methods 

are most suitable for the modelling. We chose to use the pseudospectral method 

among the direct methods, because it gives the most accurate results especially 

in complicated cases. In order to simulate waves in an unbounded medium in 

a computational domain, we need to use boundary conditions. We presented a 

review of the two basic boundary conditions, the absorbing boundary condition 

and the absorbing layers. In this thesis, for the modelling of wave propagation in 

a fractured medium we used the pseudospectral method. The wave equation for 

an inhomogeneous medium is solved by an approximation that uses the derivative 

property of the Fourier transform. We gave a detailed description of the calcula-

tion of spatial derivatives by the pseudospectral method. We used an absorbing 

boundary condition in order to deal with reflected and transmitted disturbances. 

The fractures were implemented using an effective medium formula. We used 

the linear slip deformation or displacement discontinuity model. According to 

that model a fracture is represented as a boundary across which the displace-

ments are discontinuous, whereas the stresses remain continuous. We discretised 

the medium into small finite difference grids and applied the effective medium 

in each grid cell. The effective medium is described by the stiffness tensor or 

its inverse, the compliance tensor. For the unfractured grid cell the calculation 

of the tensor is straightforward, directly from the elastic parameters of the host 

rock. For the fractured grid cells, for the calculation of the tensor we take into 

account the host rock tensor and an excess tensor due to the fractures. The excess 
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compliance tensor depends on the normal and the tangential fracture compliance, 

the number of fractures inside the grid cell, the length of each fracture segment 

inside the grid cell, and the orientation of each fracture segment estimated by the 

normals on the fracture. We concluded by giving a detailed description of the 

calculation of the effective medium for each grid cell. 



CHAPTER 3 

Accuracy of fracture modelling 

using the pseudospectral (PS) 

method 

3.1 Introduction 

Modelling synthetic seismograms may have different purposes - for instance, to 

design a seismic experiment (Ozdenvar et al., 1996), to provide for structural 

interpretation (Fagin, 1992) or to perform a sensitivity analysis related to the 

detectability of a petrophysical variable, such as porosity, fluid type, fluid sat-

uration, etc. Modelling algorithms can also be part of inversion and migration 

algorithms. In Chapter 2, we introduced a technique for modelling wave prop-

agation through a complicated fractured medium. The wave equation is solved 

using the pseudospectral method and the fractures are implemented in the finite 

difference grid using an equivalent medium theory. Although there are available 

analytical methods for complicated earth structures such as fractured reservoirs, 

which are the cases I will examine, analytical methods are intractable. Only fully 

numerical methods are capable of accounting for the whole wavefield. However, 

the precision of the numerical methods is restricted by the numerical model and 

numerical dispersion. The PS method that is used for the modelling, has no 

IN 
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spatial truncation errors for Fourier components of the grid, so truncation errors 

depend only on the chosen time integration. This is a significant improvement 

over other methods (Gazdag, 1981). Even though PS methods require more com-

putation per grid element than finite difference (FD) methods, the increase in 

accuracy more than compensates for this because the number of grid points per 

wavelength can be reduced radically (Wu and Lees, 1997). It has been shown 

that the PS approximation is the limit of a finite-difference approximation of 

increasing (to infinite) orders of periodic functions (Fornberg, 1987). 

In this chapter we examine the issue of accuracy of the solution of the wave 

equation by the pseudospectral method, and the modelling of wave propagation 

based on that. We discuss two important sources of error, the truncation error 

and the aliasing effect. We also consider the limitations of the PS technique. We 

examine the constraints in grid spacing related to signal frequency and related to 

the size of the fractures. Those limitations are very important for the accuracy 

of the modelling and they are necessary to have clearly distinguished wavelets. 

3.2 Accuracy of PS method 

Depending upon the method employed, the grid size must be considerably smaller 

than the half-wavelength of the shortest wave component for reliable computa-

tions. This is a consequence of truncation errors, which are particularly large for 

the shortest waves due to approximation of the continuum space derivative terms 

by finite-difference expressions. These errors can be minimised by computing the 

space derivatives with high accuracy for all wavelengths. A condition for accuracy 

is that the data be band-pass limited by the highest (Nyquist) spatial frequencies 

that can be represented on the computational grid. The Nyquist frequency UN 

is half the sampling frequency of the signal. Any frequency present in the signal 

that is greater than the Nyquist frequency by the amount L\v will be indistin- 
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guishable from the lower frequency UN - Av. Thus we have alias signals that fall 

within the frequency band in which we are primarily interested and appear to 

be legitimate signals. To avoid this, filters are used before sampling to remove 

frequency components higher than the Nyquist frequency. This must be done 

before sampling because afterwards the alias signals cannot be recognised. 

The truncation error is a result of the Taylor series type of derivation, where the 

error comes from the truncation of the series. The form of the error is written in 

terms of some high-order derivatives. Using a model of uniform velocity Gazdag 

(1981) established criteria for stability and estimated the truncation errors. He 

found that there is no interaction between Fourier modes, and thus each Fourier 

component maintains its identity; only its phase angle changes with increasing 

time. 

Let us consider the two-dimensional acoustic wave equation for a plane 

02 
P 	2 8 P 	c92p 

(3.1) t2 OX 2 (9Z2 

where p(x, z, t) is the amplitude of the wave field, representing displacement or 

pressure, t is time, x and z are horizontal and vertical distances, and v is the 

velocity, respectively. For homogeneous media (v = constant), the solution of 

equation (3.1) can be expressed by finite Fourier series, providing the data spec-

ifying the initial conditions are band-pass limited and periodic with respect to 

x and z. Let these conditions be set by the wave field p and its rate of change 

3p/0t at t = 0. The solution to the equation (3.1) may be written 

p(x, z, t) = 	P(k, k, t = 0)exp[i(kx + kz + wt)], 	(3.2) 
k k 

where P(k, k, t = 0) is the finite Fourier transform of the wave field at t = 0. 

Equation (3.2) does not account for evanescent modes. The dispersion relation 

w = +v(k 2 + k2)'!2 	 (3.3) 
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governs the independence between the wavenumbers of spatial frequencies k and 

k and the frequency w. The positive and negative values of w in equation (3.3) 

correspond to waves traveling in opposite spatial directions. 

From the wave field given at times t and t - At, the value at time t + At is 

approximated by the expression 

2 32o(t) 	a2p(t)
2  p(t + At) 2p(t) - p(t - At) + v 	+ a 	

)At. 	(3.4) 
OX2 

To simplify the notation, the independent variables x and z within the bracket 

p(t) etc. are implicit. The space derivative terms in equation (3.4) are computed 

from differentiation (3.2): 

02  a 
= 	 = —(k+k)p(x,z,19X 2 (9Z2 	 X 	z t). 

k x  k 
(3.5) 

To examine the numerical stability and accuracy, equation (3.4) can be shown in 

a matrix form: 

[ pfl+i I - [(2 - 1,2 (k + k)At2 ) 	1] [ pTh 1 
- 	 , 	(3.6) 

[ 	 1 0 [pm_i] 

where p72+l = p(t) and pfl = p(t - At). The necessary conditions for stability 

require that the eigenvalues of the matrix in equation (3.6) are less than or equal 

to 1.0 in magnitude (Boore, 1972; Smith, 1985). The phase change 9 of a Fourier 

coefficient within At time is given by 

9 = v[k 2 + k]'/2At. 	 (3.7) 

Gazdag (1981) concludes that the solution is stable for all waves when 

[(1/Ax)2  + (1/Az)2]112 vAt < 1/7, 	 (3.8) 

and when Az = Ax this becomes 

uAt/Ax < v/-2-/7. 	 (3.9) 
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The differencing error in equation (3.4) is given by 

= 
E(t) = -2 E 	, - 4,6,8, ... 	 (3.10) 

1=4 

For most practical purposes the lowest order estimate of the numerical error E 

introduced by the discretisation is adequate, 

34p(t) (At)4 

- 	3 	
(3.11) 

t4 	12  

Another parameter that is examined when we deal with numerical computation 

is the aliasing effect. Only a finite set of spatial frequencies can be represented 

on a computational grid without ambiguity. When frequency is higher than the 

cut-off (Nyquist) frequency of the grid, Fourier coefficients loose their identity 

when sampled at grid points. It is customary to refer to this effect as aliasing. 

The numerical solution of the wave equation in inhomogeneous media can lead 

to aliasing errors, which can also be regarded as truncation errors in the (kr , k) 

domain, even if the wave initially contains no spatial frequencies greater than the 

Nyquist frequencies. The reason is that multiplication with the velocity func-

tion gives rise to some broadening of the spatial frequency content of the wave 

during certain time intervals. This is particularly true when the wave encoun-

ters regions of strong velocity variations. When the aliasing errors are great, the 

wave shape deteriorates. The pulse shape is very well preserved in a constant 

velocity region. However, the reflected and transmitted wave shapes are some-

what distorted, depending upon the pulse width in comparison to the grid size. 

Wider pulses, having narrower frequency bands, suffer fewer aliasing errors than 

do shorter pulses. Therefore, the magnitude of aliasing errors depends upon the 

relationship between the frequency spectrum of the true solution and the highest 

frequency which can be supported by the computational grid. A qualitative con-

clusion from Gazdag (1981) is that the pulse width should exceed the grid size 

by a factor between 2 and 4. This is reasonable, and intuitively obvious, if we 

consider that the velocity change defined over the grid is limited by the grid size 
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Ax. We are not dealing with ideal reflecting surfaces, but with models having a 

smooth velocity function between any two sets of grid points. This suggests that 

the reflecting surface has a thickness of at least Ax. The pulse width should, 

therefore, be considerably wider than the grid spacing itself. Generally, the effect 

of truncation in frequency domain is almost independent of the numerical method 

used. Therefore, aliasing effects are ignored when the accuracy of the method is 

considered. 

3.3 	Constraints in grid spacing related to signal 

frequency 

When planning the modelling, we should follow certain steps to ensure the ac-

curacy of the method. First, from the maximum source frequency and mini-

mum velocity, we find the constraints on the grid spacing (Carcione et al., 2002), 

namely, 

dx <Vmin . 	 (3.12) 
frnax 

The equal sign implies the maximum allowed spacing to avoid aliasing; that is, 

two points per wavelength. The actual grid spacing depends on the particular 

scheme,We examine four different cases of grid sizes, which vary from the ones that 

are smaller than the wavelength to the ones that are greater than the wavelength. 

In all four cases the source, receivers and the fractures are situated in an ideal 

elastic (VP  = 3300 ms 1, Vs = 1800 ms 1, p = 2200 kgm 3) full space. The 

size of the fractures is constant in all the models and are 100 in long. The 

receiver array at which vertical and horizontal particle displacements are recorded 

is horizontal and 100 in above the shallower fracture. The source is located at 

the centre of the modelling area and 100 in above the receiver array. Figure 3.1 

shows a schematic representation of the model used. The source type is a vertical 

force. The source signal is a Ricker wavelet (Ricker, 1977) with a varying peak 
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frequency for each case and a pulse initial time of 0.1 sec. 
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Figure 3.1: Schematic representation of the model used for the examination of con-
strains in grid spacing related to signal frequency. The star indicates the 
source position, while the triangles indicate the receivers. 

In the first case we have a source peak frequency f = 33 Hz(.A = 100 rn) and 

grid spacing 10 m that remains the same for all models. That means that the 

relationship between grid size and wavelength will be \ = 10 x (grid spacing), so 

that criterion (3.12) is easily satisfied. We calculate the ratios of equation (3.12) 

for the P-wave velocity and the S-wave velocity and we find 50 m and 28 m 

respectively, which are greater than the grid spacing (dx = dz = 10 in). Figure 3.2 

shows the horizontal component of synthetic seismograms recorded at the receiver 

array. We present the part of the seismogram where the waves reflected from the 

fractures are shown. That is the reason why time starts from 0,30s in the vertical 

direction. The validity of equation (3.12) is confirmed by the very clear reflections 

from the fractures as well as a very clear signal. 

In the second case we have a source peak frequency f = 66 Hz(A = 50 m) 

That means that the relationship between grid size and wavelength will be 

A = 5 x (grid spacing). We calculate the ratio dx of (3.12) for the P-wave 

velocity and the S-wave velocity and we find dx = 	= 25 m and 14 m 

respectively, both greater than the grid spacing. Figure 3.3 shows the horizontal 
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Figure 3.2: Reflected waves from the fractures. We use the same model to examine 
the limitations of the modelling related to the relationship between grid 
size and wavelength. The model used to examine the accuracy of the 
modelling related to the grid size and the wavelength, is the same in all 
the cases. In this case A = 10  (grid spacing). 

component of synthetic seismograms recorded at the receiver array. In this case 

equation (3.12) is valid, and that is the reason why we have very clear reflections 

from the fractures. However, we can see the presence of some noise, compared to 

Figure 3.2. 

In the third case we have a source peak frequency f = 165 Hz(A = 20 m). 

That means that the relationship between grid size and wavelength will be A = 

2 x (grid spacing), which is almost on the boundary of criterion (3.12). We 

calculate the ratio of equation (3.12) for the P-wave velocity and the S-wave 

velocity and we find 10 m and 5.45 in respectively, which are for the P-wave 

velocity equal and for the S-wave velocity less than the grid spacing. Figure 3.4 

shows the horizontal component of synthetic seismograms recorded at the receiver 

array. In this case equation (3.12) is valid only for the P-wave. We can see the 
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Figure 3.3: Reflected waves from the fractures. In this case A = 5 x (grid spacing). 

reflected waves clearly, but in this case the noise in the recording is considerably 

higher compared to the previous cases. 
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Figure 3.4: Reflected waves from the fractures. In this case A = 2 x (grid spacing). 
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Finally, we examine a case where we have a source peak frequency f = 

1650 Hz(A = 2 m). That means that the relationship between grid size and 

wavelength will be \ = 	x (grid spacing). We calculate the ratio of equa- 

tion (3.12) for the P-wave velocity and the S-wave velocity and we find 1 m and 

0.55 iii respectively, which are for both waves much less than the grid spacing. 

Figure 3.5 shows the horizontal component of synthetic seismograms recorded at 

the receiver array. We can see that noise is very strong when criterion (3.12) is 

not satisfied for either wave. 
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Figure 3.5: Reflected waves from the fractures. In this case A = 1/5 x (grid spacing). 

In conclusion, the grid size should be at least smaller than 1/4 of the wavelength, 

for a reasonable result. If the wavelength is less than two times the grid size, then 

the results are not so good. 
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3.4 Constraints in grid spacing related to the 

size of the fractures 

Another important factor for modelling is the grid spacing compared with the 

fracture size. We examine different cases in order to test the limit of the grid 

spacing for which we can model accurately the effect of each individual fracture 

on the wavefield. The fracture scale is not a function of grid size. We only examine 

different scales and grid sizes in order to find possible limitations in the modelling 

technique. In all four examined cases the source, receivers and the fractures are 

situated in an ideal elastic (VP  = 3300 nis', Vs = 1800 rns 1, p = 2200 kgm 3 ) 

full space. The size of the fractures is constant in all the models and they are 10 m 

long. The receiver array at which vertical and horizontal particle displacements 

are recorded is horizontal and 10 x (grid spacing) above the shallower fracture. 

The source is located at the centre of the modelling area and 10 x (grid spacing) 

above the receiver array. The source type is a vertical force. The source signal is 

a Ricker wavelet (Ricker, 1977) with a peak frequency of 25 Hz for each case and 

a pulse initial time of 0.1 sec. 

In the first case we use a grid spacing of 100 in (dx = dz = 100 iii). 

That means that the relationship between grid size and fracture size will be 

(grid spacing) = 10 x (crack length). Figure 3.6 shows the horizontal compo-

nent of synthetic seismograms recorded at the receiver array. We present the part 

of the seismogram where the reflected waves from the fractures are expected to 

be recorded. Due to the big size of the grid cell compared to the fracture size, we 

cannot see reflected waves from the fractures. That is because the cracks are very 

small compared to the grid size, so they do not affect significantly the compliance 

ckl of the equivalent medium in the grid cell. The strong noise in the synthetics 

is a result of the small wavelength compared to the grid size. In this case the 

wavelength is less than two times the grid size, which is the constraint we found 
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in the previous section. In the following cases the constraint is met, so any noise 

present in the synthetics is solely a result of limitations in grid spacing. 
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Figure 3.6: Reflected waves from the fractures. We use the same model to examine 
the limitations of the modelling related to the relationship between grid 
size and fracture size. In this case (grid spacing) = 10 x (crack length). 

In the second case we use grid spacing of 50 in (dx = dz = 50 m). That means 

that the relationship between grid size and fracture size will be (grid spacing) = 

5 x (crack length). Figure 3.7 shows the horizontal component of synthetic 

seismograms recorded at the receiver array. The size of the grid cell is still big 

compared to the fracture size, but we can see some reflected waves from the 

fractures, although not very clear. The reason for that is the same as in the 

previous case. 
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Figure 3.7: Reflected waves from the fractures. In this case (grid spacing) = 5 x 
(crack length). 

In the next case we use grid spacing of 10 m (dx = dz = 10 in). That means 

that the relationship between grid size and fracture size will be (grid spacing) 

(crack length). Figure 3.8 shows the horizontal component of synthetic seismo-

grams recorded at the receiver array. In this case we have reflections that are 

clearly outlined in the synthetics and are much more distinguishable compared 

to the previous cases. That indicates that in order to have clearly distinguishable 

reflections in the synthetics from seismic modelling, the grid size should have 

maximum size equal to the size of the fractures in the examined medium. 

In the final case we use grid spacing of 1 m (dx = dz = 1 m). That means 

that the relationship between grid size and fracture size will be (grid spacing) = 

1-0  X (crack length). Figure 3.9 shows the horizontal component of synthetic 

seismograms recorded at the receiver array. In this case we also have very distinct 

reflections. Besides that, the reflected waves have higher amplitude compared to 

the previous case, which makes reflections between different fractures easier to 
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Figure 3.8: Reflected waves from the fractures. In this case (grid spacing) = 
(crack length). 

distinguish. That happens because each fracture affects greatly the compliance of 

each grid cell, thus giving very strong reflections. In conclusion, we can say that 

in order to have reflected waves that are clearly distinguished in the synthetics 

generated by the seismic modelling, the grid size should have maximum size no 

bigger than the size of the fractures in the examined medium. 

3.4.1 Resolution of the modeling 

Resolution refers to the minimum separation between two features such that we 

can tell that there are two features rather than only one. With respect to seismic 

waves, we may think of (a) how far apart (in space or time) two interfaces must 

be to show as separate reflectors (vertical resolution) or (b) how far apart two 

features involving a single interface must be separated to show as separate fea- 

tures (horizontal resolution). Clearly, the ability to see and distinguish features 
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Figure 3.9: Reflected waves from the fractures. In this case (grid spacing) = 	x 
(crack length). 	

10 

depends on the signal/noise ratio and the knowledge and experience of the inter-

preter. Where a correct model is used for interpretation, it is possible to exceed 

conventional resolution limits, that is, if we know a priori exactly what we are 

looking for in very good data, then subtle differences can be used to locate and 

identify it. If seismic wavelets were extremely sharp, resolution would not be a 

problem. However, real seismic wavelets involve a limited band of frequencies 

and hence have appreciable breadth. 

3.4.1.1 Vertical resolution 

Let us first consider resolution in the vertical direction. For two horizontal re-

flectors a distance Az apart, the deeper reflection lags behind the shallower by 

the fraction 2z/X of a wavelength. The limit on how close the two reflections 

can be, and remain separable is the essence of the problem of vertical resolution. 

We can tell there are two waves when the arrival of the second wave causes a 
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perceptible change in the appearance of the first wave. 

Rayleigh (Jenkins and White, 1957) defined the reasonable (separable) limit as 

being when the two events are separated by a half-cycle so interference effects are 

minimized. For a boxcar frequency spectrum the wavelet shape is that of a sinc 

function. The Rayleigh criterion is equivalent to a width of approximate 2/3i, 

where v,, is the upper frequency limit of the boxcar. Thus we must record higher 

frequencies if we are to achieve higher resolution (Sheriff, 1977). The acceptable 

threshold for vertical resolution is generally a quarter of the dominant wavelength. 

This is subjective and depends on the noise level in the data. Sometimes in 

real dara the quarter-wavelength criterion is too generous, particularly when the 

reflection coefficient is small and no reflection event is attainable. Sometimes 

the criterion may be too stringent, particularly when events do exist and their 

amplitudes can be picked with ease. 

We examine two general cases of fracture sizes to see if different sizes affect 

the resolution criterion. In the first case the fracture length is larger than the 

wavelength so the fracture acts as an interface, while in the second case the 

fracture size is smaller than the wavelength so it acts as a single scatterer. First, 

we examine the case when the fracture acts as an interface. The grid size of the 

model is 128 x 128 with grid spacing dx = dz = 30 in. The source and receivers 

are situated in an ideal elastic full space (VP  = 3300 ms 1,V8  = 1800 ms 1, 

p = 2200 kgm 3). The receiver array at which vertical and horizontal particle 

displacements are recorded is horizontal and 1020 in above the fracture. The 

fractures are 1320 in long. The source is located at the centre of the receiver 

array. The source type is a vertical force. The source signal is a Ricker wavelet 

with a peak frequency of 25 Hz and a pulse initial time of 0.1 sec. In the medium 

we have two fractures, both 1320 in long. The wavelenghts are 132 in for P-wave 

and 72 in for S-wave, which are much smaller than the fracture length. The 

examination of the resolution we present here is based on the wavelength of the 
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P-wave. First we show the horizontal component in the case of a single fracture, 

in order to be able to compare the effect of the existence of the second fracture 

and the vertical resolution. Figure 3.10 shows clearly the reflected P- and S-waves 

from the fracture. 
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Figure 3.10: Reflected waves from a single fracture. In this case the fracture length 
is much greater compared to the wavelenght, and the fracture acts as 
an interface. 

In Figure 3.11 we examine the case of two fractures of the same size as in the 

previous model. The vertical separation of the fractures is 1/4 of a wavelength. 

By comparison between Figures 3.11 and 3.10 we have on the P-wave arrivals a 

clear reflection immediately after the reflection from the first fracture. Also on the 

S-wave arrivals we have another reflection as in the P-waves, immediately after 

the reflections from the first fracture. Also on the S-waves, we have diffractions 
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that seem to be from the fracture tips at 1.4 s starting at trace number 24 until 

trace number 44. That is a feature that is also present in Figure 3.10, but the 

diffractions are stronger in Figure 3.11. 
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Figure 3.11: Reflected waves from two fractures that act as an interface. The vertical 
separation of the fractures is 1/4 of a wavelength. 

In the next case the vertical separation is 1/2 of a wavelength. In this case 

for the P-waves the reflections from the two fractures become more obvious, 

although they are not yet completely separated. On the other hand the S-wave 

reflections are clearly separated and we can easily see two distinct arrivals. That 

is because for the S-waves the distance between the two fractures is almost equal 

to a wavelength. The reflected waves are shown in Figure 3.12. 

When the vertical distance between the two fractures becomes equal to the 

wavelength (P-wave wavelength), the P-wave reflections from the two fractures 

become distinct. The difference in the arrival time of the P-waves varies between 
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Figure 3.12: Reflected waves from two fractures that act as an interface. The vertical 
separation of the fractures is 1/2 of a wavelength. 

0.15 and 0.3 seconds, as shown in Figure 3.13. In addition, for the S-wave the 

difference in the arrival time of the S-waves varies between 0.4 s and 0.6 s, for 

the receivers at large and small distances respectively. 

When the vertical distance between the two fractures is large, the reflections 

from the fractures are clearly distinguished, as expected. However, there may 

be cases where due to the large distance, reflections from one fracture overlap 

reflections from the other fracture. That is the case in our model when the 

vertical distance is twice the wavelength. As is shown in Figure 3.14, the reflected 

P-wave from the second fracture partly overlaps the reflected S-wave from the first 

fracture at about 1.3 s. 

Based on the definition of the vertical resolution, we can see that in Figure 3.11 

the arrival of the wave from the second fracture, both in P- and S-waves, causes 
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Figure 3.13: Reflected waves from two fractures that act as an interface. The vertical 
separation of the fractures is equal to a wavelength. 

a perceptible change in the appearance of the first wave. So we can say that the 

two waves are resolved, and when the distance between two fractures is a quarter 

of a wavelength, the two fractures can be distinguished. 

Next, we examine the case when the fracture acts as a single scatterer. The grid 

size of the model is 128 x 128 with grid spacing dx = dz = 10 m. The source 

and receivers are situated in an ideal elastic full space (Vp = 3300 ms 1,Vs = 

1800 ms, p = 2200 kgrn 3). The receiver array at which vertical and horizontal 

particle displacements are recorded is horizontal and 340 m above the fractures. 

The fractures are 25 m long. The source is located at the centre of the receiver 

array. The source is the same as in the previous models. There are two fractures 

in the medium, both are 25 m long. The wavelength is 132 m for the P-wave 

and 72 m for the S-wave , which is greater than the fracture length. A vertical 
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Figure 3.14: Reflected waves from two fractures that act as an interface. The vertical 
separation of the fractures is twice a wavelength. 

distance of a quarter of a wavelength between the two fractures, is sufficient in 

order to distinguish between the reflections coming from the two fractures. As an 

example we show the reflections when the two fractures are a wavelength apart. 

The reflected P- and S-waves are shown in Figure 3.15. We can see clearly the 

distinct reflections from the two fractures. 

3.4.1.2 Lateral resolution 

Lateral resolution refers to how close two reflecting points can be situated hori-

zontally, yet be recognized as two separate points rather than one. The Fresnel 

zone is often taken as limiting horizontal resolution on unmigrated seismic data 

(Sheriff and Geldart, 1980) although other factors such as signal/noise ratio, trace 

spacing (sampling), three-dimensional effects, and so on, also affect how far apart 
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Figure 3.15: Reflected waves from two fractures that act as single scatters. The 
horizontal separation is twice a wavelength. 

fractures have to be to be distinguished as separate features. 

Generally, two reflecting points that fall withing the Fresnel zone are considered 

indistinguishable as observed from the earth's surface. The Fresnel zone depends 

on wavelength, and it also depends on frequency. For example, if the seismic signal 

riding along the wavefront is relatively high in frequency, then the Fresnel zone is 

relatively narrow. The smaller the Fresnel zones, the easier it is to differentiate 

between two reflecting points. Hence, the Fresnel zone width is a measure of 

lateral resolution. Besides frequency, lateral resolution also depends on velocity 

and the depth of the reflecting interface (the radius of the wavefront): 

r 	(z/2)112  = (v/2)(t/f)112 , 	 (3.13) 

where r is the Fresnel zone radius, z is the vertical distance between the fracture 

we examine and the receivers, A is the wavelength, t = 2z/v is the travel time of 

a reflected wave from the fracture for a coincident source and receiver, and v is 
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the wave speed. Since the Fresnel zone generally increases with depth, as we can 

see in equation (3.13), spatial resolution also deteriorates with depth. 

Horizontal uncertainty always exceeds vertical uncertainty, often by a factor of 

at least 2. Schneider (1978) gives an example showing that 5 % velocity error 

smears the position of a discontinuity over a horizontal distance equal to 5 % of 

the depth; local velocities are usually not known better than this. 

As in the case of vertical resolution we examine here two cases, when fractures 

act as interfaces and when they act as single scatters. The elastic full space and 

the position of the source and the receivers are the same as in the case of vertical 

resolution. In both cases (fractures as interfaces and fractures as single scatters), 

the grid size of the model is 128 x 128 with grid spacing dx = dz = 10 m. 

We first start from the case when the fracture length is greater than the wave-

length, thus acting as an interface. The wavelength for the P-waves is 66 m and 

for the S-waves is 36 m, while the fractures are 400 in long. We start by examining 

the case of a single fracture. The source is located at the center of the medium 

(x=640m) and at 300m depth (z=300m). The fracture is horizontal and it is 

located at 640m depth (z=640m). It starts from x=200m and ends at x=600m, 

that is below the source and on its left side. We will use the resulting wavelet as a 

basis for comparison, to distinguish the effect of the second fracture. Figure 3.16 

shows the PP, PS and SP, and SS reflected waves from a single fracture. We can 

also see some reflections from the fracture tips. 

In the following we examine the lateral resolution when there are two fractures 

for a variety of horizontal distances between the two fractures. We examine the 

distances of 1/4 of a wavelength, 1/2 of a wavelength, and equal to a wavelength. 

That is 16 m, 33 m, and 66 m, respectively for each case. Compared to the 

fracture length which is 400 in all distances are much smaller than the fractures. 

The radius of the Fresnel zone from equation (3.13) is 105.9 m for the P-waves 
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Figure 3.16: Reflected waves from a single fracture that acts as an interface. 

and 78.23 m for the S-waves. That means that in all cases the fractures are inside 

the Fresnel zone, and normally we do not expect to distinguish them. However, 

as we will show in the synthetics in all the cases there are reflections coming from 

the two fractures and the arrivals can be identified. We believe that is due to 

the fact that the features are very long, so a significant part of the fracture is 

outside the zone. It is due to that part, that we get the reflections from which we 

can identify the two fractures. Figure 3.17 shows the case when the horizontal 

distance between the two fractures is 1/4 of a wavelength, that is 16 m, and in 

Figure 3.18 we show the case when the two fractures are a wavelength apart, that 

is 66 m. We can see that in both cases, as we have stated earlier, the wavelets 

do not show significant differences and in both cases the two fractures can be 

resolved from the reflected waves. 
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Figure 3.17: Reflected waves from two fractures that act as an interface. The hori-
zontal distance is 1/4 of a wavelength. 
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Figure 3.18: Reflected waves from two fractures that act as an interface. The hori-
zontal distance is equal to a wavelength. 

When fractures are smaller than the wavelength, thus acting as single scatters, 

the radius of the Fresnel zone is an important factor in the lateral resolution. We 
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examine the cases when the distance between the two fractures is 1/4, 1/2, equal 

to, and 2 times a wavelength, that is 33 m, 66 m, 132 m, and 264 m, respectively. 

The fractures length is 45 m in all cases. The radius of the Fresnel zone, following 

equation (3.13), is almost 150 m for the P-waves and 111 m for the S-waves. We 

begin by showing the synthetic seismograms when we have a single fracture, 

which will be used as a reference for the evaluation of the lateral resolution. 

Figure 3.19 shows the horizontal component of the synthetic seismograms, where 

we can see the first arrivals of the PP waves at 0.2 s, the first arrivals of the 

PS and SP waves at 0.4 s, and the first arrivals of the SS waves at 0.5 s. The 

arrivals recorded between the reflected PP waves and the reflected PS and SP 

waves are diffracted waves from the fracture tips, and they are present on the 

followin figures too in some of them more clearly than the others. 
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Figure 3.19: Reflected waves from a single fracture that acts as a single scatter. 

Figure 3.20 shows the synthetic seismograms when the two fractures are a quar-

ter of a wavelength apart. As we can see on the synthetic seismograms we cannot 

identify the two fractures. That is because the horizontal distance between the 
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two fractures is 33 in while the Fresnel zone radius is 150 in and 111 in, for the 

P- and S-waves respectively. However, there is an indication on the PS and SP 

waves on the distant receivers from the source (from trace number 1 until trace 

number 20) that there is a second arrival, but it is not very clear. 
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Figure 3.20: Reflected waves from two fractures that act as a single scatters. The 
horizontal separation is 1/4 of a wavelength. 

When the distance between the two fractures becomes half a wavelength, the 

synthetics show more arrivals that indicate two distinct fractures. As shown in 

Figure 3.21, the wavelets are overlapping and we cannot obtain any reliable infor-

mation for the characeristics of the fractures, as expected, because the horizontal 

distance between the fractures is smaller than the radius of the Fresnel zone. 

Figure 3.22 shows the synthetic seismogams when the horizontal distance equals 

a wavelength. In this case the horizontal distance between the fractures is 132 m, 

which is very close to the radius of the Fresnel zone for the P-waves (150 m) 

and larger than the radius for the S-wave (111 m). We can identify that on the 

synthetic seismograms where we see two reflections of PS and SP waves and SS 

waves that clearly have different characteristics. Although the synthetic seismo- 
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Figure 3.21: Reflected waves from two fractures that act as a single scatters. The 
horizontal separation is 1/2 of a wavelength. 

grams are not completely resolved, we can surely say that we are dealing with 

two scatters. Especially for the S-waves that the horizontal distance is greater 

than the Fresnel zone radius, the two reflections are more distinctly separated. 

Finally, when the two fractures are two wavelengths apart, both P- and S-waves 

are outside the Fresnel zone. As a result both reflections are clearly resolved, and 

we can identify the reflections coming from each fracture as shown in Figure 3.23. 

However, we can say that even smaller distances, for example a wavelength, are 

good enough to be able to identify the existence of two fractures. 

3.5 Summary 

In this chapter, we examined the accuracy of fracture modelling using the PS 

method. We presented the truncation error, considering the simple case of the 

two-dimensional acoustic wave equation. The truncation error is a result of the 
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Figure 3.22: Reflected waves from two fractures that act as a single scatters. The 
horizontal separation is equal to a wavelength. 
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Figure 3.23: Reflected waves from two fractures that act as a single scatters. The 
horizontal separation is twice a wavelength. 

Taylor series type of derivation that is used in the PS method. Another impor- 
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tant factor that we examined is the aliasing effect. The magnitude of aliasing 

errors depends upon the relationship between the frequency spectrum of the true 

solution and the highest frequency which can be supported by the computational 

grid. In general, aliasing effects are ignored when the accuracy is considered 

because they are independent of the numerical method. 

In order to have clearly distinguished wavelets and reasonable modelling results, 

there are some limitations in the grid spacing of the finite difference grid. We 

examined constraints in grid spacing related to signal frequency and related to the 

size of the fractures. We used a simple model and considered different grid sizes 

compared to the wavelength and compared to the fracture size. We concluded for 

the first constraint that the grid size should be at least smaller than 1/4 of the 

wavelength, and for the second constraint that the grid size should have maximum 

size no bigger than the size the fractures in the examined medium. Finally, we 

presented a detailed examination of the resolution of the method. We examined 

the vertical and the lateral resolution. In the case of vertical resolution, we found 

that a quarter of a wavelength is the minimum distance between two fractures 

that is needed to be able to distinguish the two fractures. However, more distance 

is needed to have distinct arrivals. On the other hand, for the lateral resolution 

the minimum distance found is half a wavelength. However, distinct arrivals are 

visible for a distance of a wavelength. 



CHAPTER 4 

Fracture modelling using the 

pseudospectral (PS) method 

4.1 Introduction 

In Chapter 3, we examined the accuracy of fracture modelling using the PS 

method. We concluded to some limitations in the modelling, which we apply in 

all the models we present in the rest of the thesis. Besides accuracy, another 

important aspect of the modelling is the reliability of the results. It is very 

important besides accurate to have realistic results. 

In this chapter, we examine some simple cases of fractured models and we 

examine the reliability of the generated synthetic seismograms. In the first model 

we estimate the arrival times using the ray tracing theory and we compare them 

with the results of the modelling. The rest of the models we present are some 

basic cases in fracture modelling. The cases we examine are reflections from 

a single fracture, channel waves trapped between two fractures, and reflections 

from a fractured layer. We focus on the types of waves that are present in the 

synthetics, and we attempt to evaluate the ability of the modelling technique to 

give a reliable seismogram, that exhibits all the resulting types of waves. 

79 
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4.2 	Reliability of synthetic seismograms 

The first step is to compare results generated by our modelling method with 

those obtained by another method. This has been done by Coates and Schoen-

berg (1995), Nihei and Myer (2000) and Nihei et al. (2000), who compared the 

synthetic seismograms from the Coates and Schoenberg method described with 

the exact solutions using boundary element methods. We assess the accuracy by 

comparing the synthetic seismograms generated by the modelling with the ray 

theoretical traveltimes. 

The model geometry used for accuracy testing is shown in Figure 4.1. The 

source, receivers and the fracture are situated in an ideal elastic full space (Vp = 

3300 ms',Vs  = 1800 ms, p = 2200 kgm 3). The same background medium is 

used for consistency also in the models presented in the following section, except 

from the final model. The receiver array at which vertical and horizontal particle 

displacements are recorded is horizontal and 340 in above the fracture. The 

fracture is 300 in long. 

The source is located at the centre of the receiver array, but not above the center 

of the fracture. The source type is a force in the z-direction. The source time 

function is 

s(t) = f  - 2 [nf (t - t0)]21 e_t_t0)12 	 (4.1) 

The source wavelet is a Ricket wavelet with a pulse initial time of 0.1 sec and 

a frequency of 25 Hz. The same source is used throughout the models in this 

chapter, except for differences in frequency and wavelengths. 

Figure 4.1 also shows the different kinds of waves generated by the source that 

interact with the fracture. The source generates both P and S waves. When they 

reach the fracture boundary those waves are reflected and we record PP,- (shown 

in blue in Figure 4.1), PS,- and SP, (both shown in red in Figure 4.1), and SS,-

waves (shown in green in Figure 4.1). The subscript r refers to waves that are 
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Figure 4.1: Schematic representation of the model used for the testing of the accuracy 
of the modelling method. The figure also shows the ray paths of the 
different kind of waves generated by the source that interact with the 
fracture. 

reflected from the fracture, and the subscript d refers to waves that are diffracted 

from the fracture tips as shown in Figure 4.1. PP-waves will be the first to arrive 

at the receivers. Those are waves that travel both before and after the reflection 

as P-waves. The next arrivals will be the PS,- and SP,-waves. The PS,-waves 

travel as P-waves from the source to the fracture, and after the reflection as S-

waves from the fracture to the receivers. The case of SP,-waves is the complete 

opposite to PS,-waves. The arrivals of those two different types of waves happen 

at the same time, because the source-fracture and fracture-receiver distances are 

equal. As a result, the distance that they travel as P- and as S-waves is exactly 

the same in both cases, so both of them are labeled as PS,-waves in Figure 4.1. 

Finally the SSr-waves arrive at the receivers, after they travel both legs as 5-

waves. In addition to the reflected waves, there are waves diffracted from the 

crack tips. We have P- and S-wave diffractions, and also conversion from P- to 

S-waves and vice-versa, that are diffracted from the tips of the fracture. Those 

waves are presented in Figure 4.1 as PPd-  (shown in blue), PSd-  and Sd  (both 

shown in red) and SSd-waves (shown in green). 
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Figure 4.2: Comparison between the theoretical ray traveltimes and the synthetic 
seismograms generated by the modeling method. We present (a) the 
horizontal (x) and (b) the vertical (z) components of the seismograms. 
As we can see from the figure they are in very good agreement with the 
theoretical traveltimes, thus verifying the accuracy of the method. 

We calculate the theoretical ray traveltimes and overlay them on the synthetic 

seismograms. Figures 4.2(a) and (h) show the horizontal-(x) and the vertical-(z) 

components respectively of the synthetic seismograms together with the theoreti-

cal ray traveltimes. As we can see from Figure 4.2, there is a very good agreement 

between the theoretical ray traveltimes and the synthetic seismograms. All possi-

ble types of waves are accurately reproduced in the synthetic seismograms. Owing 

to the type of source that we implement, we can see strong arrivals at short offsets 

on the horizontal component and strong arrivals at long offsets on the vertical 

component. In addition to that, the diffracted waves from the tips of the fracture 

and the PP- and PPd-waves are not visible in the horizontal component, but 

they are clearly present in the vertical component and follow the theoretical trav-

eltimes. That is expected because the source generates vertical displacements, 

so very close to the source and very far away from it, the horizontal displace-

ment is negligible. Another aspect of the comparison between the theoretical and 

the synthetic seismograms is that they give us further insight into the waveform 
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patterns. In general, the comparison shows good agreement between theoretical 

and synthetic seismograms. The interaction between the incident wavefield and 

the fracture is exhibited successfully, and the reflected and diffracted waves are 

presented. 

4.3 Numerical examples 

In this section we present results from the modelling of some simple cases to 

examine the reliability of the method for the seismic simulation of fractures. We 

examine some typical geometries that are common in real earth. The models are 

simple, because the aim is to exhibit the capability of the method to generate a 

realistic synthetic seismogram. We begin with the simple case of a single fracture. 

In this case we examine the implementation of the fracture in the finite difference 

grid using the equivalent medium theory presented in Chapter 2. We focus on 

the generated types of waves, and we examine whereas the method can account 

for all the waveforms present in such cases. The waveforms we examine are the 

direct, reflected and diffracted P and S waves. In the second case, we examine a 

model where seismic waves are trapped between two parallel fractures. That is a 

more complicated case, and it occurs quite frequently in seismic exploration. The 

seismic waves undergo multiple reflections and we test the ability of the method to 

present the interaction between upgoing and downgoing waves between the two 

fractures and the amplitude decay due to the multiple reflections. Finally, we 

present a high velocity layer of fractures that is situated between two unfractured 

layers. Such a geological structure is encountered in fractured reservoirs. In this 

case, we examine the effect of the layering on the reflections of the fractures and 

the ability of the method to generate realistic synthetic seismograms in such a 

complicated case. 
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4.3.1 Model 1: Reflections from a single fracture 

The first case we examine is a simple horizontal fracture in an otherwise isotropic 

medium. The background medium parameters are the same as the ones used in 

the previous model. 
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Figure 4.3: The geometry used for the synthetic experiment. Horizontal and vertical 
particle displacements are recorded at the array 300 in above the fracture. 
The receiver array has an aperture of 1280 in. The vertical stress source 
is located at the centre of the receiver array. 

Figure 4.3 shows the model geometry. The receiver array at which vertical and 

horizontal displacements are recorded is horizontal and 300 in above the fracture. 

The maximum source-to-receiver offset is 640 in. The fracture is 600 in long 

and the "fracture compliance matrix" becomes zero at each end of the fracture, 

as it is described in Appendix A. For the cells containing the fracture we take 

ZN = ZT = 2/ji, which generates an extra displacement. The source is located 

at the centre of the receiver array. We use a grid of 128 x 128 grid cells, in which 

the spatial-grid step is 10 in and the time step is 0.001 sec. 

In this model we examine the simple case of a fracture parallel to the grid, in 

a homogeneous medium. In Figure 4.4 (a) and (b) we show the horizontal and 
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Wavaflald generated by the fracture - Horizontal component 	Wavefleld generated by the fracture - Vertical component 

Figure 4.4: (a) The horizontal (parallel to the fracture) and (b) the vertical (normal 
to the fracture) particle displacements in the absence of the fracture. It 
is obvious that the medium is isotropic because we don't have shear wave 
splitting. (c) The horizontal (parallel to the fracture) and (d) the verti-
cal (normal to the fracture) particle displacements due to the reflected 
wavefleld generated by the fracture. The wavefleld presented in (c) and 
(d) is the difference between the wavefleld in the presence and in the 
absence (shown in (a) and (b)) of the fracture. We can see the three 
different arrivals which are, starting from first to last arrival, the P-P 
waves, the P-S and S-P waves, and the S-S waves. 

vertical components of the particle displacements caused by the source in the 

absence of the fracture. This might represent a "null hypothesis" for field data. 

Our source, as we mentioned before, is not a pure P-wave. Figure 4.5 shows the 
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source radiation. From that source P- and S-waves are going to be generated at 

the same time. We can see that in the horizontal component (x-direction) we 

have very strong S-wave and in the vertical component (z-component) we have 

very strong P-wave. In Figure 4.4 (a) and (b) we can see the direct P-waves only 

on the receivers near the source and the direct S-waves which propagate along 

the whole of the horizontal receiver array. 

Source Radiation - x-component 
	

Source Radiation - z-component 

Figure 4.5: Source radiation for the horizontal and the vertical component. We can 
see that the source creates both a P and an S wave, that have maximum 
amplitude at the vertical and the horizontal direction, respectively. 

In Figure 4.4 (c) and (d) we have the horizontal and vertical components of the 

particle displacements of the reflected waves from the fracture. The direct waves 

are much stronger than the reflected waves, so in order to avoid any shadowing of 

the reflected waves, we remove the direct waves from those figures. These figures 

show us a clear view of the waves reflected off the fracture. The first arrivals after 

0.2 sec are the P-P waves. They are better recorded on the vertical component. 

At 0.3 sec we have the second arrivals, which are converted waves, either P-S or 

S-P. That is happening because in our model the source and the receivers are at 

the same distance from the fracture, so both waves travel half the distance as 

P-waves and the other half as S-waves. The final arrivals just before 0.4 sec are 

the S-S waves. Those waves are better recorded by the horizontal components. 
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4.3.2 Model 2: Channel waves trapped between two frac-

tures 

In this case there are two horizontal fractures, parallel to each other and parallel 

to the grid, with a length of 700 m. The medium we are using is exactly the same 

isotropic medium as in Model 1. 
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Figure 4.6: The geometry used for the experiment to produce the synthetic seismo-
grams. Channel waves are caused by the scattering between the two 
fractures. Immediately after exiting the two-fractures channel, horizon-
tal and vertical particle displacements are recorded at the receiver array. 
The receiver array has an aperture of 1280 m. The vertical stress source 
is located 850 in away from the receiver array. 

Figure 4.6 shows the experimental geometry. The receiver array is vertical and 

is located immediately after the end of the fractures, so as to record the multiple 

reflections of the channel waves. The minimum source-to-receiver offset is 850 m. 

As in Model 1 the "fracture compliance matrix" becomes zero at each end of the 

fractures (see Appendix A). Also the values of ZN and ZT are the same as in 

Model 1. The source is located in-between the two fractures, 100 in below the 

first fracture and 100 in above the second fracture, and is just 50 in away from 

their starting point. The source type and the grid are the same as in Model 1. 
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Channel waves - Horizontal component 
	 Channel waves - Vertical component 

Figure 4.7: (a) The horizontal (parallel to the fracture) and (b) the vertical (normal 
to the fracture) particle displacements caused by the channel waves. It is 
obvious from both figures that energy is trapped in between the two frac-
tures and what we see on figures (a) and (b) are the multiple reflections 
of the trapped waves. 

The geometry of the model is such, that the generated waves from the source 

will be multiply reflected by the two fractures, thus leading to channel waves. As 

we know, two kinds of boundary conditions can produce channel waves : (a) the 

impedance contrast is so great that the reflection coefficient is very large (nearly 

unity); (b) waves within the waveguide are incident on the boundary at an angle 

greater than the critical angle so that total reflection occurs and little energy leaks 

through the boundary (Sheriff and Geldart, 1980). For the isotropic medium in 

our case the existence of the two fractures creates the waveguide phenomenon 

and we expect waves to bounce back and forth at different angles within the 

waveguide. For most of the angles, there is destructive interference between 

the different waves, but for certain angles, there is constructive interference and 

consequently a strong buildup of energy reflected at these angles. After exiting 

the waveguide the waves are recorded by the receivers, where we would expect 

to see clear patterns of multiple reflections. This indeed is the case in Figure 4.7 

(a) and (b). Multiple reflections in such cases are also demonstrated by Wu et al. 
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(2002) and Nihei et al. (2002). That proves the validity of the method employed 

to do the simulation. 

Let us have a more thorough look at Figure 4.7. We have the horizontal and 

the vertical components of the synthetic seismograms. One major difference 

between the two components is that direct waves only appear in the horizontal 

components, which means that we only have direct S-waves. That is more or 

less expected. We mentioned at the beginning of this section that the source is a 

force in the z-direction, so the P-waves will propagate in the z-direction and the 

S-waves in the x-direction. As a result, when the P-waves enter the waveguide 

they are multiply reflected. On the other hand we do have direct S-waves at 0.45 

sec, as we can see on the figure. Also we have some wide angle arrivals at 0.4 

sec. Those arrivals are possibly converted P-S waves. The first arrivals of the 

reflected waves appear at 0.58 sec on the vertical components and at 0.59 sec on 

the horizontal components. 

Figure 4.7 clearly exhibits the multiple reflections of the seismic waves between 

the two fractures. A great amount of energy is trapped in the waveguide. That 

is expressed by the high amplitude of the waves observed in the area between the 

two fractures. However, there is significant energy outside the fractures. That is 

because the impedance contrast between the background medium and the fracture 

elastic properties is not strong enough to cause total reflection. Furthermore, 

after the first reflected waves that arrive at the receivers, the following reflected 

waves exhibit amplitude decay. That can be attributed to the loss of energy that 

happens at each reflection. In general, the model represents successfully multiple 

reflection and scattering phenomena and it also exhibits reliably the amplitude 

decay expected in such cases. 
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4.3.3 Model 3: Reflections from a fractured layer 

I move now to a more complicated case. That case is a three-layer model with 

the middle layer fractured. In the first layer the P- and S-wave velocities are 

respectively, Vp = 3300rns 1, Vs = 2350rns 1, and the density is p = 1700kgm 3. 

In the second layer, which is the fractured one, the P- and S-wave velocities are 

respectively, Vp = 42007-ns 1, Vs = 2490rns 1, and the density is p = 2700kgrn 3. 

The third layer, which acts as a halfspace, is a medium equivalent to the first 

layer, and the values of the P- and S-wave velocities as well as the density are 

the same as those of the first layer. 
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Figure 4.8: The geometry used for the experiment to produce the synthetic seismo-
grams. The two layers and the halfspace under the second layer are 
shown. Inside the second layer there are ten vertical, parallel fractures. 
Horizontal and vertical particle displacements are recorded at the re-
ceiver array. The receiver array has an aperture of 1280 in. The vertical 
stress source is located at the centre of the receiver array. The receiver 
array is located 400m above the bottom of the first layer. 

Figure 4.8 shows the model geometry. The receiver array at which vertical and 

horizontal particle displacements are recorded is horizontal. It is located 400 in 

above the top of the second layer. The maximum source-to-receiver offset is 

640 in. The first layer starts at the top and has a thickness of 700 in. The second 

layer has a thickness of 200 in. The halfspace starts at a depth of 900 in until 

1280 in. The first layer and the halfspace have the same properties. In the second 
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layer, we have ten vertical parallel fractures. The fractures form two groups of 

five fractures each. Each fracture is 140 in high with a spacing of 50 in. The two 

groups are 300 in apart. Following the previous models the fracture compliance 

matrix becomes zero at each end of the fractures and for the cells containing the 

fracture we take ZN = ZT = 2/ti. The source is located at the centre of the 

receiver array and has the same properties as in the two previous models. Also, 

we use the same grid as in the two previous cases. 

Figure 4.9 shows the synthetic seismograms. Figures 4.9 (a) and (b) show the 

horizontal and the vertical particle displacements assuming that the second layer 

is not fractured. We have removed from both synthetic seismograms the direct 

waves, so as to have clear reflections from the interfaces between the different 

media. The first arrivals are the PP waves at 0.28 sec, which are clearly recorded 

on the vertical component. Those waves travel as P-waves on the first layer, 

they are reflected at the interface, and they travel back to the receivers also as 

P-waves. The next arrivals are the converted PS waves at 0.33 sec, that are 

clearly recorded on the horizontal component. Those waves are also recorded on 

the vertical component at wide angles. Those waves travel as P-waves in the first 

layer and after the reflection they are converted to S-waves. The next arrivals are 

the PPPP waves at 0.38 sec, that are clearly recorded on the vertical component. 

They travel as P-waves in both the first and the second layers before and after 

the reflection on the interface between the second layer and the halfspace. The 

next recorded waves are the PPSS waves at 0.45 sec which are not clearly visible 

on the two extremes of the receiver array on either of the components. Those are 

the waves that travel as P-waves in the first and the second layer and after the 

reflection on the interface they are converted to S-waves and continue like that 

to the receivers. The final arrivals are the PSSS waves at 0.5 sec that are clearly 

recorded on the horizontal component. Those waves are waves that travel as P-

waves in the first layer, convert to S-waves at the interface between the first and 
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Figure 4.9: (a) The horizontal (normal to the fractures) and (b) the vertical (parallel 
to the fractures) particle displacements in the absence of the fractures. 
The only reflections present are from the two interfaces. (c) The horizon-
tal (normal to the fractures) and (d) the vertical (parallel to the fracture) 
particle displacements in the presence of the fractures. We have reflec-
tions both from the interfaces and the fractures. In all four figures the 
direct waves are removed from the synthetics. 

the second layer and stay as S-waves after the reflection at the second interface. 

Figure 4.10 shows all the waves mentioned above and their paths through the 

layers. 
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Figure 4.10: Wave paths through the layers 

Figures 4.9 (c) and (d) show the horizontal and the vertical particle displace-

ments when we include the fractures in the second layer. In that case we have 

reflected waves both from the interfaces between the layers and from the frac-

tures. The waves reflected at the first interface (PP and PS waves) are unaffected 

by the existence of the fractures. On the contrary, PPPP, PPSS and PSSS waves, 

travel through the fractures before and after the reflection on the second interface. 

That is the reason why the wavelets of those waves are distorted compared with 

Figures (a) and (b). Those wavelets also exhibit significant scattering due to the 

fractures. In general, the synthetic seismograms show the expected features, such 

as reflections and scattering due to the existence of two interfaces and a fractured 

layer. 

4.4 Summary 

In this chapter we presented some example cases of modelling to exhibit the 

validity of the technique introduced in Chapter 2. We began by a simple case 
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of a single fracture where we generated the synthetic seismograms. We used 

the ray tracing theory to estimate the arrival times of the various wave types. 

We compared the theoretical ray traveltimes for the model with the synthetic 

seismograms generated for the same model. The comparison showed very good 

agreement that indicates the validity of the modelling. Following, we presented 

three models where we discussed the reflections from a single fracture, channel 

waves and reflections from a fractured layer. From the models we concluded that 

the method describes successfully the effects of reflection and diffraction from 

the fracture tips. An important feature of the method is the satisfactory repre-

sentation of multiple reflections, as shown in the synthetic seismograms. That 

is significant because multiple reflection is the most common case in fractured 

reservoirs. Equally important is the reliable presentation of scattering in the syn-

thetic seismograms. As a general conclusion, the modelling results show that the 

method can generate in a reliable way the effects of the interaction between the 

seismic wave and the elastic medium. 



CHAPTER 5 

Effects of sizes and spatial 

distributions 

5.1 Introduction 

The problem of the scattering of seismic waves by cracks is a subject of interest 

for geophysicists because it has many applications concerning the Earth's crust: 

oil and gas prospecting, the theoretical study of the nucleation process of earth-

quakes and, more generally, investigation of the propagation of seismic waves in 

heterogeneous media. Results from deep drilling experiments (Kelner et al., 1999) 

have shown that the upper 10 km of the continental crust are highly fractured 

and that most of the reflections registered in the upper crust during reflection 

experiments come from fracture zones and faults rather than from lithological 

boundaries (Emmermann and Lauterjung, 1997). In this chapter we study the 

propagation of seismic waves through media containing fractures with different 

sizes and spatial distributions by performing numerical simulations using the 

method presented in Chapter2. 

Scaling in fracture systems has become an active field of research in the last 25 

The content of this chapter has been published in GJI (Vlastos S., Liu E., Main I.G., and 

Li X.-Y., Numerical simulation of wave propagation in media with discrete distributions of 

fractures: effects of fracture sizes and spatial distributions, 152, 649-668, GJI) 
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years motivated by practical applications. In the case of the hydrocarbon indus-

try, scaling laws provide a key to predicting the nature of subseismic fracturing 

(below the limit of seismic resolution), which can significantly influence reservoir 

and cap rock quality, from seismically resolved faults. The numerous studies of 

fracture-system scaling in the literature do indeed suggest that scaling laws exist 

in nature. They also indicate, however, that such scaling laws must be used with 

caution and with due regard to the physical influences that govern their validity. 

In recent years the power law distribution has been increasingly employed to de-

scribe the frequency distribution of fracture properties and geometry. However, 

a power law is not an appropriate model in all cases, and other distributions that 

have been used include the log normal, gamma, and exponential laws. 

The variations in space of fracture characteristics, such as size and orienta-

tion, are highly irregular and complicated. Therefore, the study of a fractured 

reservoir must follow a special pattern, beginning with the examination of lo-

cal basic characteristics of single fractures, only afterwards continuing with the 

examination of a multifracture system. Single fracture parameters refer to the 

intrinsic characteristics, such as opening (width), size and nature of fractures. If 

the single fracture is associated with the reservoir environment, another essential 

characteristic, the fracture orientation, will result. The multi-fracture param-

eters refer to the fracture arrangement (geometry) which further generates the 

bulk unit, called the matrix block. The number of fractures and their orientation 

are directly related to fracture distribution and density. When fracture density 

is related to lithology, another parameter of particular interest, called fracture 

intensity, is obtained. Fracture intensity is used to associate the fractures with 

the lithology and the tectonic mechanisms within layers which contributed to the 

formation of the fractures. This parameter may define the role played by the 

intrinsic characteristics of each layer (permeability, porosity, cementation, etc.) 

during the fracturing process, by the thickness of the layer and by its structural 
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location (top, center, or bottom of the structure). 

In this chapter we examine the effect of two fracture characteristics. One is the 

size of fractures, and the other one is the spatial distribution. We suppose that 

all the fractures have the same opening displacement, which is very small. We 

examine the influence of different scalelength distributions and also a variety of 

spatial distributions, and we are looking for characteristics in the waveflelds due 

to the variations of those characteristics. 

5.2 	Effect of fracture size 

In this part we mainly concentrate on the examination of the effect of the size 

of fractures relative to the wavelength. To ensure consistency of the results from 

different models we use the same background medium in all the cases. This 

guarantees that any variation in the features of the wavefield is due solely to the 

scalelength (size) or the spatial distribution of the fractures. The matrix param-

eters are Vp = 3300ms' and Vs = 1800rns' for the P- and S-wave velocities, 

respectively, and the density is p = 2200 kgm 3 . For demonstration purpose, we 

assume that the fracture compliances are ZT  = ZN  = 5.6 - 10 10CPa 1. Those 

are the same fracture compliances as the ones used in the models presented in 

Chapters 3 and 4. The source is located at the centre for all the models. The 

source wavelet is a Ricker wavelet with a dominant frequency of 25Hz and a 

pulse initial time at 0. 1s. We use a grid size of 256 x 256, with a spatial grid-step 

of 10m and a time-step of 0.001s. For each of the two spatial distributions we 

consider two different fracture sizes. 

In the first case, we examine fractures that are distributed in space in a nearly 

regular way. In all cases we have a total number of 60 fractures. The fracture 

semi-lengths are, a = 0.1A and a = )., where A is the wavelength. Figure 5.1 
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shows the model where the fracture size is a = 0.1\, representing point like 

scatterers. Figure 5.2 (a), (h) and (c), shows snapshots of the wavefleld, calculated 

by the methods outlined in Chapter 2. The snapshots are taken at consecutive 

times, 250 ms, 350 ms and 450 ms, respectively, after the initialisation of the 

source. When the wavelength is larger than the size of the fractures the snapshots 

show clearly the P- and S-waves propagating through the fractured medium. 

Each fracture acts as a single scatterer, and each one of them becomes a source 

of a secondary wavefleld, as shown by the wavefronts that are not centered at 

the source on Figure 5.2. When dealing with such wavelengths, which are long 

compared with the size of the fractures, the secondary waveflelds have a much 

smaller amplitude than the coherent P and S wavefleld. The wavefleld then 

principally reflects the overall properties of the fractured solid. 

25 50 75 100 125 150 175 200 225 250 

25 50 75 100 125 150 175 200 225 250 

Figure 5.1: Model geometry when fractures have a nearly normal distribution and 
the size of the fracture is a = 0.1\. 

In the following, we examine fractures for which a = A. That means that the 

actual size of fractures (2a) is bigger than the wavelength. Figure 5.3 shows 

the geometry of the model. When the incident wavelength is shorter than the 

crack length, we are in the strong scattering regime. Figure 5.4 (a), (b) and (c), 

shows snapshots of the wavefleld taken at consecutive times, 250 ms, 350 ms and 
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(c) 

Figure 5.2: Snapshots taken at consecutive times, (a) 250 ms, (b) 350 ms, and (c) 
450 ms, after the initialisation of the source for the model shown in 
Figure 5.1. 

450 ms, respectively, after the initialisation of the source. Due to the size of the 

fractures, each cluster of fractures behaves as a single interface. Compared to 

Figure 5.2, the wavefront of the reflected waves is not now circular but is instead 

significantly distorted. That is because the reflection comes from an interface that 

has size bigger than the wavelength. As a result, in the snapshots, strong coherent 
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reflected energy from the 'interfaces' can be identified, with strong interference 

patterns in the wavefront. 
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Figure 5.3: Model geometry when fractures have a nearly normal distribution and 
the size of the fractures is a = A. 

In the next case, we examine a completely random distribution of fractures to 

avoid clustering patterns of fractures. The two models we examine have the same 

number and the same size of fractures as in the cases when we have near regular 

distribution. We start by examining once more fractures for which a = 0.1A. 

Figure 5.5 shows the model of the fractures. Figure 5.6 (a), (b) and (c), shows 

snapshots taken at consecutive times, 250 ms, 350 ms and 450 ms, respectively, 

after the initialisation of the source. Examination of the snapshots shows similar 

features of the wavefield with those seen in Figures 5.2 and 5.4. However, it is 

apparent that the reflected wavefleld is strongly attenuated compared to the case 

of near regular distribution. That is because in the near regular distribution there 

is more constructive interference between the reflected waves from the fractures. 

Finally, we examine the same distribution for fractures with a = A. Figure 5.7 

shows the model of the fractures. Figure 5.8 (a), (b) and (c), shows snapshots 

taken at consecutive times, 250 ms, 350 ms and 450 ms, respectively, after the 

initialisation of the source. The snapshots show similar features with Figure 5.4. 
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We can see very clear reflections from interfaces as expected from the size of the 

fractures. However, it is apparent that the reflected wavefield in Figure 5.8 is 

not as coherent as in Figure 5.4 for the case of the nearly regular distribution. 

The explanation is that when the fractures are randomly distributed they cannot 

form large clusters that may be treated as a single reflector, thus acting almost 
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Figure 5.5: Model geometry when fractures have a completely random distribution 
and the size of the fractures is c = 0.1A. 

as individual boundaries and the amplitudes of the reflected waves depend on the 

interference between the various reflections. Comparing the snapshots between 

the two different distributions we can see that there is strong and coherent energy 

in areas with high fracture clustering, i.e. in Figures 5.2 and 5.4 

5.3 Effect of spatial distributions 

We continue by undertaking a more detailed examination of the most common 

spatial distributions of fractures. We attempt to model four different simulations 

of distributions of fractures. In each model, there are 100 fractures randomly 

distributed in a 1280 in x 1280 in area. The geometric model used for the 

investigation is shown in Figure 5.9. 

To create the various random distributions of fractures we use an algorithm 

that generates four arbitrary distributions, featuring different qualitative char-

acteristics, as shown in the following section. We use parent distributions for 

the fracture centre spacings that are (a) random uniform, (b) Gaussian, (c) ex- 
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Figure 5.6: Snapshots taken at consecutive times, (a) 250 ms, (b) 350 ms, and (c) 
450 ms, after the initialisation of the source for the model shown in 
Figure 5.5. 

ponential, and (d) Gamma. In the cases where we have overlapping of fracture 

positions, we remove the overlapping fractures and generate new fractures un-

til the desired number of fractures is reached. As a result of this process, the 

final crack distribution is not necessarily random. Nevertheless, the purpose of 

this section is to illustrate how different distributions affect multiple scattering. 
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Figure 5.7: Model geometry when fractures have a completely random distribution 
and the size of the fractures is c = A. 

The generation of the different fracture distributions is presented in detail in the 

following section. 

5.3.1 Generation of fracture distributions 

In this section we will explain how we generate the various distributions of frac-

tures. The fracture distributions presented in the numerical simulations are the 

following: (a) a random uniform, (b) a Gaussian, (c) an exponential, and (d) a 

Gamma distribution, as shown in Figure 5.9. The algorithm utilizes a different 

random number generator (Press et al., 1997), that varies according to the dis-

tribution we want to simulate. For each distribution, the generator is applied 

once to give x-coordinates, and completely independently once more to give z-

coordinates. Both x- and z-coordinates are afterwards normalised to the grid size 

of the model. 

Those pairs of x- and z- coordinates are the centres of the distributed fractures. 

The resulting distribution of fractures, without any alterations, is the parent spa-

tial distribution. The size and orientation of the fractures are given as an input 
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Figure 5.8: Snapshots taken at consecutive times, (a) 250 ms, (b) 350 ms, and (c) 
450 ms, after the initialisation of the source for the model shown in 
Figure 5.7. 

to the algorithm. In this paper all the fractures are parallel to the grid. Sub-

sequently, the algorithm examines the fractures for any overlapping cases. We 

define overlapping as the case where the distance between the centres of two frac- 

tures is less than a predefined value. In the current application of the algorithm, 

we examined only the horizontal distances between pairs of fracture centres hay- 
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Figure 5.9: Models used to compute snapshots from spatially distributed fractures. 
The four different models, (a), (b), (c) and (d), illustrate different sta-
tistical distributions of fractures. P and S waves are generated at the 
source (represented by a star) and travel inside the medium. 

lug the same z-coordinate. For simplicity in this realisation we deliberately avoid 

modelling intersected cracks, that is, conjugate fracture sets. However, in theory, 

such a case can also be modelled with the method we use. In this case, the second 

overlapping fracture is excluded from the distribution. After testing for overlap-

ping, the remaining number of distributed fractures is counted. If that number is 

less than desired, the resulting distribution of fractures is rejected. The number 



Effects of sizes and spatial distributions 	 107 

of fractures following the parent spatial distribution is raised by 5. A new group 

of fractures, spatially distributed according to the parent distribution, is chosen. 

The new group of fractures follows the same procedure that we described above. 

This process continues until the desired number of non-overlapping spatially dis-

tributed fractures is reached. A flow chart of the filtering algorithm is presented 

in Figure 5.10. 

The final spatial distribution of the fractures is a result of the parent distribution 

after applying data filtering, so we call this the daughter spatial distribution. 

The spatial correlation in the daughter population is then determined by the 

two-point correlation function of the fracture centre locations in two dimensions. 

Figures 5.11, 5.12, 5.13, and 5.14 show the independent probabilities P(x) and 

P(z) as a function of the x- and z-coordinates of the centres of the fractures, for 

the daughter distributions (a), (b), (c), and (d) of Figure 5.9. In the same figures 

we show the two-point correlation function C(r), for each of the four parent 

distributions, defined as 

C(r) = 	Nd(r), 	 (5.1) 

where N is the total number of points and Nd is the number of pairs of points 

whose distance is less than r (Hentschel and Proccacia, 1983). 

5.3.2 Numerical simulations 

In the following simulations, each fracture has the same length, 2a = 30m, where 

a is the radius or the half length of the fracture. The surrounding solid (matrix) 

has P- and S-wave velocities Vp = 3500 ms', Vs = 2000 ms 1 , and density 

p = 2200 kgm 3. The source is now located at the upper left corner of the model. 

The source type is a vertical force. A Ricker wavelet with a dominant frequency 

of 40 Hz is used, so that kc = 1.08, and k3a = 1.88 (where k = 27f/Vp 

and k5  = 27f/Vs  are the P- and S-wavenumbers), or equivalently A/2o = 2.9 
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Figure 5.10: Flow chart of the algorithm used to generate the four spatial distribu-
tions of fractures shown in Figure 5.9. 

and .A/2c = 1.67 (where A = Vp/f and ) 	Vs/f are P- and S-wavelengths, 

respectively). For demonstration purposes, in all models we have used fracture 

compliance ZN = ZT = 5.6• 10 10 [CPa] 1  at the elementary scale. 

The resulting snapshots taken at t=100 ms, t=200 ms, and at t=300 ms are 

given at Figure 5.15, Figure 5.16, and Figure 5.17 respectively. As we can see 
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Figure 5.11: Statistical properties of the random uniform distribution of fractures 
in Figure 5.9(a). (a) Probability plot of the coordinate of the centre of 
fractures along the x-direction, (b) Probability plot of the coordinate of 
the centre of fractures along the z-direction, (c) Two-point correlation 
function of the parent distribution of fractures. 

from Figure 5.9, fractures are more clustered in models (b) and (c), whereas they 

are more uniformly distributed and more scattered in models (a) and (d). In 

the extreme case of model (c), where the fractures are exponentially distributed, 

they are all concentrated in a small area around the source, forming a big clus-

ter. That results in a lot of energy being trapped inside the cluster, between 

the various fractures. We observe the effect of the high clustering in the snap- 

shots of the wavefield propagation at consecutive times. The wavefronts shown on 

the snapshots represent the statistical average effect of the fractures encountered 
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Figure 5.12: Statistical properties of the Gaussian distribution of fractures in Fig-
ure 5.9(b). (a) Probability plot of the coordinate of the centre of frac-
tures along the x-direction, (b) Probability plot of the coordinate of 
the centre of fractures along the z-direction, (c) Two-point correlation 
function of the parent distribution of fractures. 

throughout the wave path, thus resulting in the main expected P and S wave-

fronts. The energy attenuation becomes clearer at 300 ms, where we see a lot of 

energy remaining in the area of the fracture cluster, whereas the main wavefront 

of the S-wave is almost fully attenuated. In model (b) where the fractures follow 

a Gaussian distribution, the fractures also form a big cluster in the centre of the 

model, but in this model they occupy more space and the distance between the 

various fractures is greater. In this case, similar to model (c), we see a significant 
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Figure 5.13: Statistical properties of the exponential distribution of fractures in Fig-
ure 5.9(c). (a) Probability plot of the coordinate of the centre of frac-
tures along the x-direction, (b) Probability plot of the coordinate of 
the centre of fractures along the z-direction, (c) Two-point correlation 
function of the parent distribution of fractures. 

amount of energy trapped in the fracture cluster. However, we can observe from 

the snapshots that there is more energy coming through the cluster. The opposite 

case of the two previous ones is described in model (d). In this case the fractures 

follow a Gamma distribution (a power-law with an exponential tail), thus forming 

a number of small clusters that are significantly distant from each other. It is 

observed in the snapshots that in this case the main P- and S-wave arrivals are 

once again clearly observed, and have the highest amplitude compared with the 
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Figure 5.14: Statistical properties of the Gamma distribution of fractures in Fig-
ure 5.9(d). (a) Probability plot of the coordinate of the centre of frac-
tures along the x-direction, (b) Probability plot of the coordinate of 
the centre of fractures along the z-direction, (c) Two-point correlation 
function of the parent distribution of fractures. 

rest of the cases. We believe that the small size of the clusters formed with a 

Gamma distribution, lets most of the energy propagate through the whole model, 

because the cluster does not trap a significant amount of energy inside it. Fi-

nally, model (a), where fractures are randomly uniform distributed, describes a 

case where there is no clustering. The fractures are distributed throughout the 

whole medium. Although the snapshots show some trapped energy between the 

fractures, the main wavefield propagation is quite clearly observed. 
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Figure 5.15: Snapshots taken at t=100 ms. (a) to (d) correspond to fracture distri-
butions (a) to (d) in Figure. 5.9. The numbers on the top and on the 
left side of the snapshots are the model dimensions. We present the 
x-component of motion. 

In summary, we can see that the wavefield propagates with the least energy 

attenuation when we have the least fracture clustering as shown in model (d), 

while attenuation increases with the increase of clustering as shown in models 

(a), (b) and (c). 

In the following, we take the models of Figure. 5.9 and calculate the synthetic 

seismograms. The receivers are positioned along the z-direction and shifted by 



200 40i 
0 

20 

50 

50 

x-axis 
t00 IUUU IUU 

x-axis 

(a) 

Mn 

N 

30 

x-axis 
200 400 600 800 1000 1200 

(d)o 

20 

x-axis 

(c) 

CD 

CD 
N 

114 	 Effects of sizes and spatial distributions 



Effects of sizes and spatial distributions 	 115 

x-axis 

(a) 0 . • 
'+UU OtJU OUU IUUU LUU 

• 00 

ioc 

'C SOC 	 . 	
- # 

N 

SOC 

x-axis 
200 	400 	600 	800 	1000 	1200 

(b)° 

200 . 
k 

400 

60( 

N  

80( 

100 . 

120 ---'- 	
:- 	-. 

(c) 
x-axis 

'uu 'fUU OUU Oyu IUUU I'CUU 

:• 

Figure 5.17: Snapshots taken at t=300 ins. 

is the source dominant frequency, in model (b) it is at about 49 Hz, in model (c) 

it goes up to about 67 Hz, and in model (d) it is at 60 Hz. In terms of distance 

that the wave travels between two consecutive scatterings, in model (a) we have 

the longest distance and in model (c) the shortest. In model (a) we do not see any 

frequency shift of the energy, while in model (c) we see the maximum frequency 

shift indicating that there is a systematic shift of energy to higher frequencies 

when the multiple scattering dimension becomes shorter. 



116 
	

Effects of sizes and spatial distributions 

(0) 

 

 

is 

0,0 	0.1 	0.2 	0,3 	0.4 	0.0 	0.6 	0.1 	0.0 	0.0 	1.0 

Time In seconds 

(0) 

)(d) 

20 	 40 	 60 	 80 	 100 

Frequency (Hz) 
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and (d) correspond to the fracture distributions of Figure 5.9 (trace 
number 100). 
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Another feature in the spectra is the local minima of the amplitude. The first 

local minimum is observed at 30 Hz where the length of the fractures is approx-

imately a quarter wavelength. There are also local minima at around 38 Hz, 

58 Hz and 70 Hz. Those minima can be a result of the constructive or destructive 

interference of multiply scattered waves from the fractures. Finally we notice 

that the amplitude of the wavefield from distribution (b) is much smaller and 

has relatively low frequency content compared with the other distributions. This 

is possibly because in this case the local fracture density along the wave path 

towards the receivers is higher than the other cases. This example demonstrates 

clearly that different distributions of fractures have a significant influence on 

multiple scattering. 

5.4 Power-law (fractal) distribution of fracture 

sizes 

The final example is used to model wave scattering from discrete fractures with a 

scalelength distribution. The model we use is given in Figure 5.19(a), where the 

variation of crack sizes follows a von Kármán correlation function, which gives a 

power-law distribution (Wu, 1982). We can also use other correlation functions, 

such as Gaussian or exponential functions. The model shown in Figure 5.19(a) is 

generated with a correlation length of 40 in. In this model we have 400 fractures 

randomly distributed in a 2560x2560 m2  area. The source is a vertical force, it is 

located in the centre of the model, and is represented by a star in Figure 5.19(a). 

The longest fracture is 100 m and the shortest 10 m. The mean length of the 

fractures < a > is 27.5 m, and the fracture density of the medium E = N1  < 

a >2  /S is 0.046, where N1  is the number of fractures and S is the surface of the 

medium. For the estimation of fracture density we desided to choose the above 

definition, instead of E = N f  <a2  > /S. (Queen and Rizer, 1990) discuss the two 
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definitions of fracture density and conclude that the later definition emphasize 

the contribution of cracks with large sizes. The peak frequency is 40 Hz, which 

gives kci ranging from 0.36 to 3.6 for P-waves and from 0.63 to 6.3 for S-waves, 

where k is the wavenumber, the P-wave velocity is 3500 ms-1  and the S-wave 

velocity is 2000 ms 1 . 
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Figure 5.19: (a) Model used to compute synthetic seismograms in a fractured 
medium with power-law distribution of fracture sizes. (b) Illustration 
of the sizes of fractures in model (a), that follow a power-law distribu-
tion. (c) Power spectra of fracture size distributions shown in (a). (d) 
Cumulative number of the fractures of model (a) plotted against the 
fracture size. 
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Figures 5.19 (b), (c) and (d) illustrate the statistical attributes of the size distri-

bution of the fractures. Figure 5.19(b) shows the different sizes of fractures in the 

model. Figure 5.19(c) shows the power spectrum of the fracture size distribution 

(plotted in log-log scale). We see that the variation can be fitted with a straight 

line. Such a model, that is, with a linear variation of the logarithm of the power 

spectrum with the logarithm of the spatial wavenumber, is a power-law distri-

bution, often called a fractal (Bonnet et al., 2001). Figure 5.19 (d) shows the 

variation of the incremental number of fracture population in the corresponding 

range of fracture sizes. To examine the behaviour of the wavefield due to the frac-

tal distribution of fractures, we take snapshots at consecutive times, t=200 ms, 

t=250 ms, t=300 ms and t=350 ms. The snapshots are presented in Fig. 5.20. 

As we can see from the snapshots, the behaviour of the wavefield is very compli-

cated. Clearly, the main P- and S-waves are fading away (heavily attenuated) as 

they propagate through the medium. This can be attributed solely to the scat-

tering taking place as the wavefield propagates through the high fracture density 

clusters, since there is no intrinsic anelastic absorption in the model. That is 

confirmed by the snapshots, where we can see high energy concentrated at the 

exact positions of the fracture clusters. That is particularly clear in Fig. 5.19(d), 

where we have high amplitudes in the areas of fracture clusters resulting in strong 

coda waves, and at the same time low amplitudes of the main P- and S-waves. 

5.5 Summary 

From the numerical examples we may come to some interesting conclusions. 

Firstly, we can see the importance of the spatial distribution of fractures in a 

medium. Our results show that in areas with fracture clustering, there is strong 

and coherent energy. Also, high clustering results in high local fracture densities, 

which can cause the energy to be trapped in a certain area. This in turn increases 
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Figure 5.20: Snapshots from model in Fig. 11(a) taken at (a) t=200 ms, (b) 
t=250 ms, (c) t=300 ms, and (d) t=350 ms. 

the complexity of the wavefield and makes individual phases and their identifica-

tions very complicated. Also, we observe that different spatial distributions result 

in different frequency content on the recorded wavefield. The scattering reduces 

the P and S wave amplitude, in the time domain, and filters or introduces new 

frequencies in the frequency domain. As we expect frequency-dependent seismic 

scattering depends on the spatial distribution of fractures (Leary and Abercrom-

bie, 1994). In addition, of great importance is the fracture size relative to the 
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wavelength, independent of the spatial distribution. It is demonstrated that, 

when fractures are smaller than the wavelength, they act as point scatterers and 

generate coherent secondary wavefields according to Huygens' principle, whereas 

when the size approaches the wavelength they act as individual interfaces and the 

wavefield is more complicated. To complete our study, we have examined a case of 

fracture sizes that follow a power-law or fractal distribution. The wavefield gen-

erated shows very strong coda waves. This observation confirms the importance 

of spatial and scalelength distributions in modelling fractured rock. 

Numerical modelling techniques, such as the one presented here, can be a useful 

tool in the understanding of the important role of fractures and their effects on 

wave propagation. The knowledge gained by such studies may ultimately lead 

to the extraction of valuable information about the fracture distributions in nat-

ural rocks, directly from seismic data. In addition, our method may potentially 

provide a test of fracture imaging using seismic methods (as demonstrated by 

Nihei et al., 2000), and purely statistical characterisation of fractured reservoirs 

based on the concept of seismic scattering. However, the idealised fracture distri-

butions examined here, while providing insight, must be replaced by ones which 

more closely reflect the physics of fracture growth in any realistic application. 

This topic is the subject of the next chapter. 



CHAPTER 6 

Evolution of fracture networks and 

multiple scattering of seismic waves 

in fractured rock. 

6.1 Introduction 

In Chapter 4, we investigated the effects of fracture sizes and spatial distribu-

tions on seismic waves. When we examine the properties and the behaviour of a 

fracture network, it is very important to create a more realistic network that will 

represent more closely the properties of fractures in natural rocks. Here we use a 

model of rupture designed to reproduce structural patterns observed in the for-

mation and evolution of a population of strike-slip faults and fractures (Narteau, 

in press). This model is a multiscale cellular automaton with two states. An 

active state represents actively slipping fracture segments. A stable state rep-

resents 'intact' zones in which the fracturing process is confined to a smaller 

scale. At the elementary scale, the transition rates from one state to another 

are determined with respect to the magnitude of the local strain rate and a time 

The content of this chapter has been submitted in GJI (Viastos S., Narteau C., Liu E, and 

Main I.G., 2003, Numerical study of scattering attenuation in fractured media: the effects of 

scalelength on multiple scattering attenuation, submitted in May 2003 in GJI) 
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dependent stochastic process. At increasingly larger scales, healing and fractur-

ing are described according to geometric rules of interaction between active fault 

segments based on fracture mechanics. A redistribution of the strain rates in the 

neighbourhood of active faults at all scales ensures long range interactions and 

non-linear feedback processes are incorporated in the fault growth mechanism. 

Typical patterns of the development of a population of faults are presented in-

volving nucleation, growth, branching, interaction and coalescence. The material 

properties are uniform, so the complex behaviours result solely from the random 

fluctuations and physical interactions. Consequently, the entire process of fault 

development is an emergent property of the model of fault interaction and does 

not depend on pre-existing material heterogeneity. 

We use the realistic representations of a fracture network to examine scattering 

attenuation and investigate the effects of this process in the wavefleld properties. 

Seismic attenuation is recognised as a potentially important quantity in reservoir 

characterisation. Attenuation has been associated with fractures, petrophysi-

cal properties, and the general viscous motion of saturating fluid (Leary, 1995a; 

Leary, 1995b). Attenuation of seismic waves except that caused by geometric 

spreading is caused by intrinsic absorption (viscous damping) or by scattering. 

Which of these two mechanisms dominates in any given situation depends on 

the relative wavelengths of the seismic wave and the acoustic heterogeneities of 

the fracture system. In the models presented here the results are related only to 

scattering attenuation. Scattering involves no energy loss, but produces a more 

extended, lower amplitude wavetrain by the resulting interference. 

We model seismic wave propagation in each model that represents the con-

secutive stages of the evolution of the fracture network. We use the method 

presented in Chapter 2 for the numerical modelling of the wavefield propagation 

in the medium. We show snapshots of the wavefleld at a certain time step for each 

stage of the evolution and demonstrate how the changing characteristics of the 
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fractures affect wave propagation. We examine scattering attenuation of P-waves 

for a range of frequencies. We show how variations in the properties of the frac-

tured medium due to the evolution of the fractures are exhibited in the behaviour 

of Q'. We calculate the scattering attenuation as a function of frequency for 

each stage and fit the results with a polynomial. We use a statistical method 

to pick the best fit and examine the variation of the polynomial. Finally, we 

present seismic traces at two source-receiver directions, parallel and perpendicu-

lar to the fracture orientation, to examine the azimuthal dependence of scattering 

attenuation. Our results show that there is a significant frequency dependence of 

scattering attenuation, and that high values of attenuation observed at certain 

frequencies may be linked to characteristic lengthscales of fractures. Also frac-

ture density varies as the network evolves, resulting in significant changes in the 

amplitude of attenuation. In addition, our results show that scattering is also 

dependent on the angle of the propagation directions, relative to the orientation 

of the fractures. 

6.2 Generation and evolution of fracture net- 

Ii!ALS) d 

In this study we use a multi-scale cellular automaton model by Narteau (in press) 

to generate the fracture patterns. It is a multi-scale model of rupture of a crustal 

shear zone under constant external forcing and reproduces different structural 

properties that are observed in the formation and evolution of a population of 

strike-slip fractures. In this model a 2-dimensional regular lattice of cells models 

a crustal shear zone. At the elementary scale of a fracture segment, a non-

stationary stochastic process controls the formation and the evolution of a pop-

ulation of strike-slip fractures. Geometric rules of fault interactions based on 

fracture mechanics and a redistribution mechanism of the strain rates define how 
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a fracturing state is measured at different scales and the local strain rates evolve 

from one another. 

From a uniform state at t = 0, an evolving population of fracture segments cre-

ates a heterogeneous spatial distribution of the strain rates. In regions where the 

strain rates are high, the microfracture density increases, the fracturing process 

reaches the segment scale and new fault segments may link together in larger 

faults. In regions where the strain rates are low, the healing process may deacti-

vate fracture segments and reduce the length of active fractures. In response to 

tectonic loading, this permanent internal process of evolution between the strain 

rates and a population of fault segments may be described as a 'self-organised' 

process (Sornette et al., 1994). 

The whole system is polarised by the orientation of the tectonic loading and 

its pre-existing damages. o, 92, and 0'3  are the compressive principal stresses. 

In the model these principal stresses are North-South, vertical and East-West 

respectively, and, with respect to the Coulomb-Mohr's theory of fault orienta-

tions, only vertical strike-slip fracture segment can form. Pre-existing damage 

favours right-lateral fractures and new segments grow following a main direction, 

at an angle 9 from the maximum compressive stress. 9 is taken close to N30°W 

implying a conventional coefficient of internal friction u 	0.6. More detailed 

description of the mechanisms of interaction between fractures, the evolution of 

the network and the creation of new fracture patterns is given in Appendix B. 

In the models of fracture networks presented in this chapter the evolution of the 

fracture patterns happens under a 'low' tectonic loading. Figure 6.1 shows stages 

(a)-(1) of a fracture network as it evolves in time as described before. Although 

there is no clear boundary between them, it is possible to distinguish different 

phases in the evolution of the fracture patterns. 
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Figure 6.1: Fracture patterns that represent consecutive stages at the evolution of 
the fracturing. In this figure we present stages (a) - (f). The horizontal 
direction is the x-direction (metres) and the vertical direction is the y-
direction (metres). 
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Figure 6.2: Fracture patterns that represent consecutive stages at the evolution of 
the fracturing. In this figure we present stages (g) - (1). The horizontal 
direction is the x-direction (metres) and the vertical direction is the y-
direction (metres). 
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Stage (a) is the start of the nucleation stage where we have the first active cells, 

but no fractures of length two cells or more. At stage (b) we have the formation of 

the first fractures from the interaction of adjacent active cells. At that stage the 

growth phase begins and coexists with the nucleation phase. Stages (c) and (d) 

show the continuation of the nucleation phase together with the growth phase, 

where we have an increasing number of fractures appearing on the medium. Most 

of the fractures have an orientation close to the main direction of shear slip. At 

stage (e) the system reaches the percolation threshold, where a connected fracture 

network spans the model space. At stage (f) the system has the maximum number 

of active cells. In stages (g) and (f) there is no characteristic lengthscale of 

the fractures since the correlation length is infinite. At stage (g) we have the 

beginning of the interaction phase which continues for stages (h) and (i). At 

stage (h) the growth phase ends and the system moves towards relaxation. Stage 

(j) is the initiation of the concentration phase where we have the formation of 

major fractures from smaller ones. That phase continues for stages (k) and (1), 

until the system reaches a stable state and only major fractures 

6.3 Wave propagation in an evolving fracture 

network 

We conduct forward modelling of wave propagation for each one of the mod-

els that represent stages (a)-(l) (Figures 6.1 and 6.2) of the fracture network 

evolution, to examine the variation in scattering attenuation and its frequency 

dependence. To ensure consistency between the different models we use the same 

background medium in all the cases. The background medium parameters are 

VP  = 3300ms', V' = 2000ms', p = 2200kgrn 3 . For the implementation of 

the fractures we assume that the fracture compliance's are constant having values 

ZT = ZN  = 5.6 10'°[CPa]'. 
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Figure 6.3: Snapshots taken at 350 ms after the initialisation of the source. Figures 
(a),(b),(c),(d),(e) and (f), correspond to the respective fault patterns of 
Figure 6.1. The horizontal direction is the x-direction (X 10 metres) and 
the vertical direction is the y-direction (X 10 metres). 
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Figure 6.4: Snapshots taken at 350 ms after the initialisation of the source. Figures 
(g),(h),(i),(j),(k) and (1), correspond to the respective fault patterns of 
Figure 6.21. The horizontal direction is the x-direction (X 10 metres) 
and the vertical direction is the y-direction (X 10 metres). 
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We use a grid of 256X256 elements, with spatial grid-step lOin and time-step 

O.00lsec. The source wavelet is a Ricker wavelet with a dominant frequency of 

30Hz and a pulse initial time of 0.1s. The source is located in the centre of the 

models (x = 1280m, z = 1280m). For each model we generate synthetic seismo-

grams, and output snapshots that describe the wave propagation at consecutive 

time steps. Figures 6.3 and 6.4 shows snapshots of the wavefield taken at 350rns 

after the initialisation of the source, for the consecutive stages of the evolution 

of the fracture network that are shown on Figures 6.1 and 6.2.The snapshots 

show a clear variation at the different stages of the fracture evolution. At the 

beginning of the nucleation [stage (a)] there are only a few active cells, all of 

which are much smaller than the wavelength. Therefore they act as individual 

point scatterers and the wave travels undisrupted with a circular wave front. At 

stages (b)-(d) the first fractures are created and also interaction and formation 

of large fractures happens. As a result some fractures act as point scatterers 

and others that are larger than the wavelength act as reflectors. In addition, 

fracture density increases, and there is strong attenuation and high anisotropy, 

that makes the wave front elliptical. The long axis of the ellipse usually follows 

the dominant direction of fracturing. However, that is not in agreement with our 

results. This inconsistency is a result of the implementation of fractures in the 

multiscale cellular automaton technique. According to the technique a fracture is 

not a continuous feature but is made up of a number of fractured cells, each one of 

which has its own direction of fracturing. So even if as a total the fracture has a 

certain direction, each fractured cell acts individually and may have a completely 

different orientation of fracturing. That gives an ellipse with an orientation of 

the long axis that does not coincide with the orientation of the generated frac-

ture. At stage (e) we are at the percolation threshold, and at stage (f) we have 

the highest fracture density, while at stage (g) the system begins to relax. All 

those three cases have high anisotropy due to the high fracture density and high 

scattering attenuation, with the maximum occurring at stage (f). As a result at 
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those stages the wavefront in the snapshots is elliptical instead of circular. The 

remaining stages are the relaxation process, where the number of fractures de-

creases and very long fractures form. We are now in the short-wavelength limit 

where reflection off the megafaults dominates and the medium is otherwise ho-

mogeneous. As a consequence the scattering attenuation is again low, and the 

wavefronts become circular again. 

6.4 Scattering attenuation 

Various results about frequency dependence of attenuation are presented by Main 

et al. (1990). If the seismic wavelengths ) are much greater than the size 0Z of 

the scatterers and the number of scatterers is small enough to ignore multiple 

scattering, then Q is found to be frequency-dependent according to Q cx 

where w is an angular frequency. This classic behaviour is known as Rayleigh 

scattering. Hudson (1981) applied the theory of scattering to a sparse fracture 

system. Hudson (1981) and Hudson (1986) also present theories for seismic ve-

locity in a homogeneous cracked medium, which show that velocity depends on 

the crack density and aspect ratio, as long as the crack radius remains small com-

pared to the seismic wavelength (long wavelength limit, kcx << 1 where k is the 

wavenumber). In contrast, Wu (1982) and Wu and Aki (1985) modelled the ob- 

served scattering in the earth for the case of kc 	1. They used smoothly varying 

heterogeneous distributions of small cracks, and found that the dimension that 

determines the scattering attenuation is the lengthscale of the heterogeneities in 

crack density and geometry and not the dimension of an individual crack. Lerche 

(1985) and Lerche and Petroy (1986) modelled the case of multiple scattering of 

a dense array of microcracks with a range of sizes. For a Gaussian distribution of 

microcrack radii they found Q cx w3, similar to Rayleigh scattering. However, 

if the power spectrum of the heterogeneities is a power law, then the frequency 
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dependence of Q is given by Q cxc (w)') with 'y = 3 - v, or 'y = m - 1 (Wu 

and Aki, 1985), also a power law. Leary (1995a) based on evidence from the 

Cajon Pass borehole logs and seismic scattering for a power law distribution of 

fractures in crustal rock, suggested that a power law frequency dependence of 

Q-1  = f 057  is due to a scale-dependence of fracture density, C(u) v 04 . It is 

possible, as Leary (1995a) indicates, when seismic waves encounter fractures of 

a given size, energy is scattered and the amount of energy scattered scales as a 

power of fracture size. 

6.4.1 Estimation of scattering attenuation 

The dependence of scattering attenuation on frequency may be described by 

terms that are not linearly related to the first power of frequency. To examine 

how scattering attenuation depends on frequency and on the different scales of 

heterogeneities, we use the models presented in Figure 6.1. We estimate Q for 

each fracture pattern, and examine the effect of the fracture lengthscale and the 

frequency dependence of Q'. The estimation of Q' requires a method that is 

robust and can handle the rapid spatial changes in the recorded waveforms. We 

use the spectral method (Aki and Richards, 2002), which calculates Q' values 

from the fit of a straight line to the spectral ratio of receiver and source power 

spectra recorded at different distances. It is assumed that the receivers lie along 

a common raypath from the source. Another assumption of the method is that 

the two power spectra can be linearly related by a simple attenuation operator. 

Deviations from a linear spectral ratio are treated as noise, and averaging the 

spectra is usually required to give stable estimates of attenuation. 

The amplitude spectrum A(w) of a wave after travelling a distance L in an 

attenuating medium is given by Aki and Richards (2002) 

w  
A(w) AQexP[_ 2Q ] 	 (6.1) 
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where A0(w) is the amplitude spectrum of the source, c is the wave velocity, 

and Q(w) is the attenuation factor of the medium. We replace Q(w) by Qs(w), 

because in the numerical model intrinsic attenuation is not considered. We obtain 

the scattering attenuation Q' (w) as a function of frequency, 

2a A(w) 
Q'(w) 

= wLAo(w) 	
(6.2) 

To calculate the amplitude spectrum A(w) of the primary pulses, seismograms are 

windowed around the first P-wave arrival. The seismograms are Fourier trans-

formed and the spectral ratio A(w)/A0(w) is computed. This ratio may in some 

cases yield negative values, corresponding to a magnification of the input sig-

nal caused by focusing effects of the heterogeneities. To calculate the scattering 

attenuation Q' (w) we transform equation (6.2) into, 

In(A(w) 
- - 

wQ1(w)L 	 (6.3) 
A0(w) - 2a 

We calculate the spectral ratios for the receivers at different distances from the 

source, and plot them as a function of distances. We fit a straight line to the 

values and from the slope of the line we calculate the scattering attenuation. 

That is for one frequency, and to calculate Q 1  (w) for a range of frequencies we 

follow the same procedure for each frequency. Q' is evaluated in the frequency 

band of f = 0Hz to 100Hz. 

6.4.2 Sensitivity of scattering attenuation 

We now present the attenuation factor Q' values for the angular frequency range 

(w = 0 - 628Hz) (w = 27f) for the fracture patterns presented in Figure 6.1. 

The results at very low and very high frequencies relative to the Ricker wavelet 

frequency of 30 Hz may not be accurate due to their low energy content. We also 

show properties of the evolution of the medium or properties of the heterogeneities 

in conjunction with the attenuation factor, to have a better idea on how the 
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evolution of the medium parameters may be linked systematically to changes 

in the attenuation factor. Figure 6.5 shows the normalised 'susceptibility' as a 

function of deformation for the states (a)-(e) of the fractured medium evolution 

as defined in Narteau (in press). Susceptibility K (the probability of fractured 

elements to create a connected network) is a good approximation of the correlation 

length of the system. If K = 1, the correlation length is infinite which indicates 

the percolation threshold. Deformation is presented as a percentage of total strain 

in the medium. In an evolving medium strain will constantly grow as it evolves, so 

in this case deformation is representing a time scale of the evolution. The dotted 

lines in Figure 6.5 indicate the stages when the fracture populations (a)-(e) shown 

in Figure 6.1 occur. For each stage we show the respective plot of the attenuation 

factor as a function of frequency. At each plot the solid lines represent the values 

of the attenuation factor, while the two dotted lines show the upper and lower 

limits of the error bars. Starting from state (a), susceptibility has a very low 

value. At that stage we have only microscopic structures which are active cells 

and they are distributed throughout the medium, but there are no fractures. The 

attenuation factor has a small fluctuation on its values but on average it has very 

low values. That is expected due to the microscopic structures, compared to the 

wavelength, that do not cause significant scattering. At stages (b)-(d) fractures of 

different and increasing lengthscale, as well as microscopic (one-cell) structures, 

begin to appear. Susceptibility rises exponentially from stage (b) to stage (d), 

because once the first fractures are created together with the growing procedure 

they undergo an interaction procedure which leads to larger fractures. 

In all stages the attenuation factor is much higher than in stage (a) because 

the size of the fractures is larger and even comparable to the wavelength. At 

stage (b) we have a global maximum at w = 208Hz and two local maxima at 

w = 411Hz and w = 454Hz. Those maxima may be directly linked with the 

characteristic lengthscales of the fractures. At stages (c) and (d) fractures have 
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Figure 6.5: Normalised susceptibility as a function of deformation for stages (a)-(e) 
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the attenuation factor as a function of frequency. 
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longer sizes and the attenuation factor is higher than stage (h). We have two 

maxima, a global one at w = 251Hz and a local one at w = 447Hz, which 

implies that there are two dominant lengthscales. This illustrates the fact that 

scattering tends to more energy to higher frequencies, not present in the original 

signal at 30 Hz. At stage (e) we are one step before normalised susceptibility 

reaches one (the percolation threshold). Damage is still distributed via fractures 

and microscopic structures as in the previous stages. However at that stage there 

is no more dominant scalelength. Attenuation factor in this case is much higher 

than the previous stages, because fracture density is higher. Nevertheless, the 

pattern of attenuation factor is very different from the previous stages. It has 

small fluctuations, but generally we can say it is a straight line dropping from 0.4 

to 0. 1, with no clear maximum. The absence of a clear pick is a confirmation that 

we have no characteristic scattering lengthscale in our system. This is consistent 

with the power-law frequency-size distribution of connected cluster length in the 

percolation problem 

Figure 6.6 shows the damage of the system as a function of deformation. The 

damage is defined as the ratio between the number of active cells and the number 

of stable cells as a percentage. "Deformation" here as in Figure 6.5 is propor-

tional to the time scale of the evolution (strain rate is assumed constant). The 

dotted lines indicate the times when the fracture populations (f)-(h) shown in 

Figure 6.1 occur. Stage (f) has the highest damage, and after that the system 

moves towards relaxation and damage drops at constant rate at stages (g) and at 

stage (h) it reaches 1/5 of the value at stage (f). At stage (h) all the small-scale 

damage disappears, so from that stage on there are only fractures left and no 

more microscopic structures. In all three stages we are still above the percolation 

threshold, so there is no characteristic lengthscale. 
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The attenuation factors at stages (f) and (g) have almost the same frequency 

dependence. The amplitude of attenuation is higher than stage (e) in both cases 

because fracture density is higher. It follows the same pattern as in stage (e) and 

declines at an almost constant rate with frequency having small fluctuations in 

the value. At stage (g) there is a possible local maximum at w = 208Hz, but it is 

not very clear. That may imply that after the percolation threshold the system 

is getting reorganised and a new characteristic lengthscale dominates. At stage 

(h) the microscopic fractures disappear. As a result the damage has a very low 

value, which means that the number of active cells is less than the previous stages, 

even though the fractures that do exist are very large. Therefore, scattering is 

less, as shown in the attenuation factor that has values around 0.1 compared to 

average values between 0.3 and 0.4 in stages (f) and (g). Attenuation is almost 

independent of frequency with only small fluctuations in its values. The change 

in the pattern of attenuation factor at stage (h), shows that it is a potential way 

of identifying changes in the properties of heterogeneities, notably the degree of 

concentration of strain on megafaults. 

Figure 6.7 shows the normalised length of the fractures of the medium as a 

function of cumulative deformation. Cumulative deformation is proportional to 

the time scale of the evolution, and the dotted lines indicate the stages when 

the fracture populations (i)-(l) shown in Figure 6.1 occur. At the final stages of 

the evolution of the system which are shown here, there is no more nucleation of 

new fractures. However, existing fractures interact and form big fractures that 

span along the whole medium. That is demonstrated in Figure 6.7, where we 

see that the normalised length rises steeply, although it has some fluctuations, 

until it reaches a maximum and it becomes constant at the two final stages. At 

stage (i) the attenuation factor has a very similar pattern and values to that of 

stage (h). It is almost constant for all frequencies, although it slightly decreases 

at high frequencies. However, in that stage the local maximum that was not 
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clearly seen at stage (h) is stronger here at w = 263Hz. The seismic wave 

probably "recognises" a characteristic lengthscale as it travels in the medium. 

At stage (j) the first major fracture appears (Figure 6.1j), which is a result of 

fracture interaction. That important change in the properties of the medium 

is clearly shown in the scattering attenuation (Figure 6.7j). At that stage we 

have even lower fracture density so attenuation factor has lower values. It starts 

from a low value at small frequencies and it rises until it reaches a maximum 

at w = 282Hz and then drops constantly. We expect that this maximum in 

attenuation factor is linked with the lengthscale of the major fracture. At stage 

(k) normalised length reaches its maximum values and the system is almost at 

the end of the evolution. The major fracture is already formed and here we have 

the formation of smaller secondary fractures that have almost the same size. The 

attenuation factor shows almost the same pattern as in stage (j), but in this case 

there is a global maximum at w = 276Hz, a local maximum at w = 392Hz and 

possibly another local maximum at w = 509Hz (Figure 6.7k). So the global 

maximum is slightly shifted to a lower frequency compared with stage (j), which 

may indicate a small change in size, and we also have a clear local minimum 

and another one which is not obvious. The two local minima may be linked 

with the fact that at that stage the medium has other heterogeneities that on 

average they have two distinct dominant lengthscales. The final stage (1) when 

the system reaches stability has similar attenuation factor pattern to stage (k), 

with one global and two local maxima. However, the global maximum is shifted 

to a slightly smaller frequency and the two local maxima are shifted to slightly 

higher frequencies (Figure 6.71). That can be interpreted as small changes in the 

dominant lengthscales. 
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6.4.3 Attenuation analysis 

In this section we continue the examination of attenuation and concentrate on 

its behaviour with frequency, and the effect of the continuous changes of the 

properties of the heterogeneities. We examine the parameter ln(A/A0) for each 

stage of evolution for a number of receivers with lri(w) for the same frequency 

range as in the previous section. Figures 6.8 and 6.9 show ln(A/A0) as a function 

of ln(w) for the stages of evolution (a)-(l) and for a number of receivers. In 

general, the behaviour of attenuation can be divided into two distinct areas. In 

the small to middle frequency range, it declines almost linearly with frequency 

until it reaches a minimum for a value of 1n(w) between 4 and 5, which is between 

w = 54Hz and w = 150Hz. In the middle to high frequency range attenuation 

rises following an almost quadratic variation. When analysing the results we note 

that the results for very low and very high frequencies may not be very accurate. 

However, there are stages that the general conclusions do not apply, for example 

stages (k) and (1). Also, for the same evolution stage there is different behaviour of 

attenuation for different receivers. That is expected because seismic waves follow 

different paths to arrive at different receivers, thus encountering different fractures 

that affect in a different way the amplitude of seismic waves. To have a consistent 

analysis, for each stage we average the values at each frequency for receivers at 

different distances. By doing so, we obtain the net effect of the various fractures 

affecting the wave propagation. For a better understanding we fit a polynomial to 

the data which can accurately describe the attenuation variations with frequency. 

We examine polynomials with degree from 1 to 8, in order to achieve a good fit. 

We use a statistical information criterion to determine the optimal polynomial 

degree and examine each state. The most commonly used statistical criteria are 

the Schwarz Information Criterion proposed by Leonard and Hsu (1999), Akaike's 

(1978) Information Criterion and the Bayesian Information Criterion. 
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Figure 6.8: Attenuation lm(A/A0 ) as a function of frequency for stages (a)-(f) of the 
evolution of the fracture network. Notice that for each frequency we 
have more than one data points. That is because we have measurements 
taken at receivers at various distances from the source, so absorption 
varies with distance. 
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For cases where the number of data are ri > 46, computer simulations have 

shown that BIG is superior to the rest of the statistical criteria (e.g. Koehler and 

Murphree, 1988). In our case we have n = 103. The BIG criterion is given by 

the following equation, 

BIC = L) - 1 —pin( 
'a
--), 	 (6.4) 

2 	2ri 

where L(y) is the maximised logarithm likelihood, ri is the number of data points 

we have, and p is the number of unknown parameters in the model, in our case 

the degree of the polynomial we want to fit. That parameter is actually an extra 

penalty for the increase of the complexity of the model. The maximum logarithm 

likelihood is given by, 

L(y) = —ln(S), 	 (6.5) 

where S2  is the residual sum of squares and it is, 

Th 

s = 	- 'y(x j)] 2 	 (6.6) 
i= 1 

where yj  are the data points and y(xi) are the calculated values of the data 

points based on the polynomial fit. We apply the BIG criterion for all the stages 

of evolution and examine polynomials of order 1 to 8 as a best fit. Figures 6.10 

and 6.11 show the BIG criterion for the stages (a)-(l) of evolution for the various 

orders of polynomial. We can see that the order of polynomial with the highest 

BIG value is not consistent for all the stages. However, in most of the cases a 

polynomial of order 5 gives us the best fit, so for consistency we decide to fit the 

data for all the stages with such a polynomial. 
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Figure 6.11: Plot of the BIG criterion, as defined in equation (6.4), as a function of 
the degree of the polynomial that we fit to the data. The degree of the 
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Figures 6.12 and 6.13 shows the averaged data of ln(A/A0) with 1n(W) for all the 

stages of evolution together with the polynomial fit to the data. We can see that 

the fit to the data in most of the cases is very good. In general we can see the same 

behaviour as in the attenuation factor. Stage (a) can be divided in two areas, the 

small to middle frequency range which is linear until a minimum at a value of 

In(w) slightly higher than 4, and the middle to high frequency which is quadratic 

and rises until a very high maximum. That behaviour changes at stage (h) until 

stage (d). Here we have a steep almost linear dip for most of the frequency 

range until a minimum at 1n(w) slightly greater than 5.5. However, at that linear 

part we see significant fluctuation from the linear behaviour between 4.5 and 

5.5. The remaining part is characterised by a very steep quadratic increase. At 

stage (e) until stage (g) the linear dip is much more prominent with almost no 

fluctuations and the minimum value is the lowest among all the stages. Also the 

remaining data show a clear linear behaviour until the global maximum. At stage 

(h) until stage (j) we have a different behaviour. At those stages we can divide 

the data in three discrete areas. In the low to middle frequency range we see 

again a linear decrease until a local minimum this time around 1n(w) = 4. In the 

middle to high frequency range ln(A/A0) starts from the local minimum, then it 

moves towards higher values and drops to a global minimum around 1n(W) = 5.5. 

Finally, there is the high frequency area where we see a rapid linear increase. In 

the last stages (k) and (1) we have the same distinction in three areas although 

the behaviour is different. The small frequency range is a linear decrease until a 

global minimum. The middle to high frequency part is on average a straight line 

around ln(A/A0) = 0, which means that at the stages of relaxation and when 

the system is stable A A0. It is also important to note that at those stages we 

have the final formation of a major fracture that is up to 5 times longer than the 

wavelength, so the seismic wave is not significantly attenuated by those features. 

The final part of the data is steeply increasing following a linear trend. 
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Figure 6.12: Plot of attenuation with frequency averaged over the values for different 
receivers for all the frequencies (straight line). We also show the fit to 
the data by the polynomial of degree 5 (dotted line). By comparing 
the two plots we can see that the polynomial gives a very good fit. The 
plots are for states (a)-(f) of the fracture evolution. 
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Figure 6.13: Plot of attenuation with frequency averaged over the values for different 
receivers for all the frequencies (straight line). We also show the fit to 
the data by the polynomial of degree 5 (dotted line). By comparing 
the two plots we can see that the polynomial gives a very good fit. The 
plots are for states (g)-(1) of the fracture evolution. 
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6.4.4 Waveform characteristics 

Scattering attenuation depends on fracture density and fracture lengthscales, as 

we showed in Section 6.4.2. Another parameter affecting attenuation is the source-

receiver orientation in comparison with the orientation of the fractures. That 

effect is generally called azimuthal anisotropy (Liu and Zhang, 2001). In this 

section we will examine the variation of scattering attenuation for two distinct 

source-receiver orientations, one parallel and one normal to the dominant orienta-

tion of the fractures. Although the effect of azimuthal anisotropy was previously 

taken into account in the estimation of attenuation by averaging attenuation es-

timated for different azimuths, we want to examine in details those two extreme 

cases for the effects of fracture density, lengthscales, and azimuth. Also we will ex-

amine the waveforms for confirmation of the behaviour of scattering attenuation 

at different stages, as presented in the previous section. 

Figure 6.14 shows the displacements recorded at a receiver which is at x=700m 

and y=300m, and the source-receiver orientation is almost parallel to the dom-

inant orientation of the fractures. Waveforms (a)-(l) correspond to the states 

(a)-(l) shown in Figure 6.1. In Figure 6.14a we have clear P- and S-waves arrival, 

and minor scattering between 0.45sec and 0.62sec. In Figures 6.14b, 6.14c, and 

6.14d the amplitude of the P-waves gradually reduces and scattered coda waves 

energy becomes significant. That is exactly what we see in Figures 6.5b, 6.5c, 

and 6.5d. Figures 6.14e, 6.14f, and 6.14g show strong attenuation of the P-

waves, i.e. there is a limited amount of energy in the P-waves. In these figures 

we have the smallest P-waves amplitude but very emergent S-waves due to S-P 

scattering. 

The energy is redistributed in the coda-waves that have much higher energy than 

in the previous cases. Also the coda-waves shows a variety of frequency contents. 

Figures 6.14h and 6.14i show a change in the properties of the waveform. Once 
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Figure 6.14: Displacement recorded at a receiver situated at x==700m and y=300m 
for each one of the states (a) - (1) shown in Figure 6.1. The source-
receiver direction is parallel to the dominant direction of fracturing. 

more there is high energy in the P-waves and S-waves and some scattering that 

distributes energy in the coda-waves, although scattering is significantly lower 
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than before. That is in agreement with the results in Figures. 6.6h and 6.7i. An 

interesting feature of the waveforms here is that the amplitudes of the S-waves 

are higher than the amplitudes in Figure 6.14a, which result from constructive 

interference between reflected waves. It seems that the P-waves are not affected 

and there may be a simple explanation for that. When the source-receiver direc-

tion is parallel to the dominant direction of fracturing, P-waves are polarised in 

the propagation direction while S-waves are polarised normal to that direction. 

Finally, Figures 6.14j, 6.14k, and 6.141, show even less scattered energy on the 

coda waves and strong P- and S-waves. 

Figure 6.15 shows the displacements recorded at a receiver that is at x=2250m 

and y=720m. The source-receiver direction in that case is normal to the dominant 

direction of fracturing. Waveforms (a) - (1) correspond to states (a) - (1) shown in 

Figure 6.1. By comparing Figures 6.14 and 6.15, one clear observation is that the 

displacements due to the P-waves in Figure 6.15 are lower than in Figure 6.14, 

while the displacements due to the S-waves are higher in Figure 6.15 than in 

Figure 6.14. That is because in Figure 6.15, P-waves propagate normal to the 

orientation of the fractures while in Figure 6.14 they travel along the direction of 

the fractures, therefore suffering more attenuation in Figure 6.15. The opposite 

happens with S-waves because their direction of polarisation is normal to the one 

of P-waves, and as a result they are less attenuated. (The other reason for the 

difference in displacement is the source radiation). 

We now present scattering attenuation for the dominant frequency of the source, 

for each one of the states in Figure 6.16. The circles represent states (a) - (1) and 

the x-axis is the deformation as in Figures 6.6, 6.7, and 6.8. State (a) has the 

lowest attenuation, then we see a steep rise until state (b) which is the initialisa-

tion of growth. Attenuation continues to increase more gradually at states (c) and 

(d), followed by a steep rise in attenuation between (d) and (e), which continues 

between (e) and (f) where the maximum attenuation occurs. In Figures. 6.14f 



Evolution of fracture networks and multiple scattering of seismic waves in 
fractured rock. 	 - 	 155 

(a) 

I 
I 
I 
I 

I! 

I 
I 
I 
I 
I 
0.35 U.4U 0.45 0.50 0.55 0.60 0.65 0.70 0.75 

Time [sec] 

Figure 6.15: Displacement recorded at a receiver situated at x=2250m and y=720m 
for each one of the states (a) - (1) shown in Figure 6.1. The source-
receiver direction is normal to the dominant direction of fracturing. 

and 6.15f, the waveforms show the maximum attenuation. This coincides with 

the state of evolution were there is the maximum fracture density and fractures of 

all the different lengthscales. Afterwards the localisation of the deformation along 

major fractures occurs and thus at stages (h) and (i) fracture density decreases. 
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As a result, attenuation decreases significantly. Finally there is a dominant major 

fracture with some intermediate sized fractures, which makes reflection dominate 

and scattering attenuation even lower. We can see the continuous decrease in 

Figure 6.16, until it reaches the minimum at state M. 
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Figure 6.16: Scattering attenuation at the dominant source frequency (f = 30Hz), 
for each one of the stages (a)-(l) of the evolution. The circles on the 
graph represent the values at the consecutive stages of evolution. 

6.5 Summary 

We have calculated and examined the snapshots of the wavefield for the various 

fracture models provided by C.Narteau. The results demonstrate the influence 

of the changing fracture density and lengthscale of the fracture on the wavefield 

propagation. We can see that on the initial stages, when fracture density is low 

and the fracture size is less than the wavelength, anisotropy and absorption are 

low and the fractures act as individual point scatterers. At the percolation thresh- 

(h) 

a) 
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old, fracture density becomes high and therefore high absorption and scattering 

is visible in the snapshots and we also have high anisotropy that makes the wave-

front elliptical. At later stages when we have the concentration of fractures to a 

small number of major fractures, fracture density is lower, so the wavefront be-

comes circular once more, but the size of fractures is bigger than the wavelength 

and they act as interfaces which give very strong reflections. 

In all the states the amplitude of the scattering attenuation factor shows max-

imum and minimum values at certain frequencies which we believe can be at-

tributed to the statistical properties of the medium at the certain stage, ie. char-

acteristic lengthscale of fractures. That indication becomes stronger by the lack 

of such features when the medium is in a stage that no characteristic lengthscale 

exists, which is at or above the percolation threshold. Also there is a very clear 

change in the properties of the attenuation factor when the properties of the 

medium change significantly, such as in the case when we have the creation of the 

first fractures or the percolation threshold or the creation of a major fracture. In 

such cases we have important alterations in the value of the attenuation factor 

and also to the behaviour with frequency. 

Similar changes are observed in the frequency dependence of Q'. The seismic 

waveforms validate the scattering attenuation results. They show a link between 

changes in fracture density and lengthscale of heterogeneities and variations in 

scattering attenuation. They also exhibit the importance of azimuth in the effects 

of scattering attenuation on P- and S-waves. The results in this study give a very 

clear picture about the potentials of using scattering attenuation as a means of 

describing the properties of a medium and identifying dominant lengthscales of 

fractures. Although in the real data it is not easy to discriminate between scatter-

ing attenuation and intrinsic attenuation, as it is using a numerical technique, we 

believe that attenuation measurements can be used successfully towards an accu-

rate characterisation of a fractured reservoir. In real data fractures are commonly 
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vertical. In such cases the most commonly used method for fracture imaging is 

vertical seismic profiling (VSP). Acquisition of VSP data involves a surface source 

that is located either close to the well head (zero-offset case) or away from the well 

head (offset VSP) and a geophone in the well bore. Several traces are recorded 

at the same geophone depth, then edited and summed. A VSP generally gives 

better data than surface seismic methods because the energy does not have to 

travel as far and therefore undergoes less attenuation. Consequently, the reso-

lution of a VSP is usually appreciably better than that of surface seismic data. 

There are different types of VSP's from which the one used for vertical fractures 

is the walkaway VSP. A walkaway VSP is a repeated VSP survey along several 

walkaway lines having different azimuths. That allows the seismic interpreter to 

estimate azimuthal anisotropy around the well, that may indicate aligned vertical 

fractures and anisotropic horizontal stresses. When integrated with other types 

of anisotropy measurements, walkaway VSP data can contribute significantly to 

an improved image of the subsurface. 



CHAPTER 7 

Estimation of scattering attenuation 

from the mean wavefield 

7.1 Introduction 

In the last chapter I presented numerical simulations of the effect of crack distri-

bution and crack lengthscale on the dispersion and attenuation of elastic waves 

for a single realisation. With a number of such results it is also possible to 

predict average wavefield quantities for averages over a statistical ensemble of 

medium realizations. In this chapter, we use the ensemble-averaged wavefield to 

examine scattering attenuation and the attenuation coefficient Q' for a range 

of different crack sizes. The aim is to theoretically investigate the dependence of 

the attenuation of elastic waves due to crack scattering on the property of crack 

distributions. 

Wave propagation in a continuous random medium can often be described by 

a stochastic linear differential equation. A stochastic equation is a family of 

equations depending upon a parameter u which ranges over a space in which 

a probability density p(c) is defined. The probability density p(o) determines 

the probability of a given value of a and therefore of the corresponding equation 

of the family. The coefficients in such an equation characterize the propagation 
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medium. They may include its refractive index n(x), its density p(x), its dielectric 

constant, etc. A random medium is a family of media, each is defined by one 

value of a, and each with its own index n(x, oz), density p(x, cr), etc. The variable 

p(a) gives the probability of each member of the family. The inhomogeneous term 

represents the source of the waves, which may either be random or deterministic 

(i.e., not random). A random medium may also consist of a random distribution 

of discrete scattering objects distributed throughout some fixed medium within 

which waves can propagate. This description is appropriate when matter is viewed 

on a molecular scale, so we are interested at the distribution of the molecules but 

not at the properies of the medium they are inside. Propagation in such a medium 

can be analysed in terms of stochastic equations. 

The practical reason for studying stochastic equations is the belief that their 

solutions represent physical phenomena which could not be satisfactorily inves-

tigated in any other way. Let us consider, for example, the propagation of an 

electromagnetic wave through air. Because the wave travels so fast, it is adequate 

to assume that the air molecules do not move during the passage of the wave. If 

the locations of all the molecules were known, one could in principle determine 

how they scatter the wave. However, the full details of the scattered wave would 

be too complex to be useful. Furthermore it is out of the question to determine 

the locations of all the molecules. In view of these two difficulties, it is hoped 

that the observable features of the wave scattering will be determined by the 

gross features of the molecular distribution. Therefore the actual distribution of 

molecular positions is replaced by a random medium, i.e., a collection of molec- 

ular distributions with a probability associated with each. The mean particle 

density and some other statistics of the random medium are adjusted to equal 

the corresponding properties of the actual particle distribution. Then the mean 

scattered waves and other statistics of the random waves are presumed to equal 

the corresponding properties of the actual wave. 
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7.2 Mean wavefield 

In this section we will describe the basic ideas that form the mean wavefield 

theory. Theories on wave propagation in random media predict average wavefield 

quantities for averages over a statistical ensemble of medium realizations. When 

we relate the theoretical results on scattering attenuation with real data we make 

two basic assumptions. Firstly, in practice we are interested in the properties 

of a specific geological medium and we have to replace ensemble averaging by 

spatial averaging of a single realization that requires the medium to be ergodic. 

We assume that this condition is satisfied. Secondly, different functions of the 

recorded wavefield differently take into account the wavefield fluctuations caused 

by scattering. Therefore, different attenuation estimates are obtained dependent 

on what wavefield function is being averaged (Sato, 1982; Wu, 1982). 

The ensemble-averaged wavefield is describe by the meanfleld theory (Keller, 

1964). The mean wavefield was applied to examine the effect of randomly dis-

tributed cracks by Yamashita (1990). Following Yamashita (1990), we assume 

N cracks, and N is assumed to be very large. The density of crack distribu-

tion is, however, assumed to be low. The crack distribution is assumed to be 

homogeneous to simplify mathematical analysis. All the cracks are assumed to 

be stationary during the scattering process. The crack surfaces are assumed to 

be stress-free (cavity). The relative displacement is assumed to occur across the 

crack surface no matter how small a disturbance is incident on the crack. In other 

words, no criterion is assumed for the occurrence of relative displacement across 

the crack. 

Let us denote by u0  the incident displacement wave in the absence of any crack. 

The total displacement field is then the sum of incident wave n0  and the contri- 
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bution i4 from the j-th crack: 

U=u0 +U. 	 (7.1) 

The wave w scattered from the j-th crack can be expressed as 

= 
	 (7.2) 

where u3  is the external displacement field acting upon the j-th crack and the 

operator 'T determines the scattering property of the j-th crack. The stochastic 

property of the crack is assumed to be described by the location of the centre of 

the crack, the crack length and the crack orientation. The stochastic property 

of each crack is assumed to be independent of that of the other cracks. The 

configurational average of u from Equations(7.1) and (7.2) is 

<U >= uo+f W(< u 	 (7.3) 

where p is the probability density function, r j  is the location of the centre of the 

j-th crack, O j  is the angle to denote the orientation of the j-th crack, c j  is the half 

length of the j-th crack, and m is the number density of the crack distribution. 

The quantity < ui >j represents the external displacement field acting on the 

j-th crack averaged over all possible configurations of all the other scatterers. 

Foldy (1945) introduced the following approximation in Equation 7.3: 

<Ui  >j< U>• 	 (7.4) 

That approximation reduces Equation(7.3) to the form of an integral equation 

N n 
<u >= u + 	f  W(< u 	 (7.5) 

i=1  

Foldy's approximation (Equation 7.4) is thought to be valid as N —* oo. 

A result of the meanfield theory is that when we examine scattering attenuation, 

the resultant attenuation is mainly a statistical effect (Sato, 1982; Wu, 1982) 
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caused by averaging different realizations of the wavefield having individual phase 

fluctuations. The real scattering attenuation of seismic wavefields is smaller than 

that of the meanfield. In the following section, we present in details the theoretical 

background and the estimation of scattering attenuation from the meanfield and 

the theoretical background. 

7.3 Estimation of scattering attenuation using 

the meanfield theory 

Attenuation of seismic waves is caused by scattering and absorption (intrinsic 

attenuation). Attenuation by scattering depends on how fast rock parameters 

vary in space and how large these variations are. Scattering attenuation and 

absorption are important parameters for rock characterization. Both can have 

the same order or one can be stronger than the other dependent on the geology. 

Attenuation due to scattering can dominate in heterogeneous media. 

Theoretical (analytic) and numerical studies demonstrate that scattering pro-

duces apparent attenuation with distance in a manner similar, in some respects, 

to intrinsic loss mechanisms (Wu, 1982; Richards and Menke, 1983; Frankel and 

Clayton, 1984; Malin and Phinney, 1985). Scattering also causes variations in 

waveforms and amplitudes across seismic arrays (Ringdal and Husebye, 1982). 

Numerical techniques have several advantages over analytic treatment of scatter-

ing. We can produce synthetic seismograms for any point on the grid. It includes 

all multiply scattered waves, converted waves (P to 5, S to P), diffractions, and 

caustics. Most theoretical studies of seismic scattering assume the first Born ap-

proximation, which states that only single scattering occurs and that scattering 

losses from the primary wave can be neglected (Pekeris, 1947; Chernov, 1960). 

This approximation is valid only for weakly scattering media and appears map- 
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propriate for many portions of the crust (Hudson and Heritage, 1981; Richards 

and Menke, 1983). Unlike some approaches to scattering which assume the ray 

approximation, the numerical methods are not restricted to certain ratios of wave-

length to scatterer size and can be used for media with velocity fluctuations over 

a wide range of lengthscales. Amongst other things both Born and ray approxi-

mations violate the principle of energy conservation because they do not include 

multi-scattering energy. 

Scattering attenuation is quantified by the parameter QS1  in analogy to Q 1  

which is a measure for anelastic or intrinsic attenuation. In addition to the 

attenuation of the direct wave, scattering causes the excitation of the seismic 

coda. Within the framework of single scattering theory the coda following the 

direct wave arrival is composed of single scattered wavelets, which are generated 

at the random heterogeneities of the medium. According to Aki (1980) coda Q 

(Qc) has to be identified with the total transmission Q, i.e. QC1  = Q' + Q'. 

The coda decay with time is controlled by a geometrical spreading term and 

by QC . To find an estimate of the scattering attenuation, we take a volume of 

material that is cycled in stress at a frequency w, then a dimensionless measure 

of the internal friction (or the anelasticity) is given by 

1 	AE 
(7.6) 

Q(w)2irE' 

where E is the peak strain energy stored in the volume and —E is the energy 

lost in each cycle because of imperfections in the elasticity of the material. The 

definition is rarely of direct use, since only in special experiments it is possible to 

drive a material element with stress waves of unchanging amplitude and period. 

More commonly, one observes either (i) the temporal decay of amplitude in a 

standing wave at fixed wavenumber or (ii) the spatial decay of amplitude in a 

propagating wave at fixed frequency. Both cases give a solution to Equation (7.6) 

in the limit /E -* dE -* 0. They describe an exponential decay with distance 

or time. The most common situation involves attenuation of a signal composed 
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of a range of frequencies, and we make the strong assumption that attenuation is 

a linear phenomenon, in the sense that a wave may be resolved into its Fourier 

components, each of which can be studied in terms of (i) or (ii), and that subse-

quent Fourier synthesis gives the correct effect of attenuation on actual seismic 

signals. In the case of either (i) or (ii), for a medium with linear stress-strain 

relation, wave amplitude A is proportional to E' 2. (For example, A may repre-

sent a maximum particle velocity, or a stress component in the wave. We assume 

also that Q >> 1, so that successive peaks have almost the same strain energy). 

Hence, 
1 	1A 

Q(w) = r A 	
(7.7) 

from which we can obtain the amplitude fluctuations due to attenuation. In 

this chapter we will concentrate on case (ii). In order to derive a form A = 

A(x) for distance x, a particular wave peak can be followed along a distance dx, 

and the gradual spatial decay of A can be observed. (We assume here that the 

direction of maximum attenuation is along the x-axis, which is also the direction of 

propagation). Then AA = (dA/dx)A, where A is the wavelength given in terms of 

w and phase velocity c by A = 27rc/w. Equation (7.6) becomes 	= f 	dx, 

with the exponentially decaying solution 

A(x) = A0(x)exp[— wx ----]. 	 (7.8) 
2cQ 

From observations of exponentially decaying values of A(x), we use Equation (7.8) 

to define the value of a spatial Q. In the case of a plane wave, the amplitude 

spectrum A(w) after passing an attenuating medium with thickness z0  is given by 

applying Equation (7.8) by Aki and Richards (2002) for a variety of frequencies. 

Equation (7.8) becomes 

A(w) = AQ(w)exP[_2Q 
wzo 

 ] 	 (7.9) 

where A0 (w) is the amplitude spectrum of the initial signal at z0 	0, ozo  is the 

wave velocity and Q(w) is the quality factor of the medium. We replace Q(w) by 
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Q(w), because in the numerical models intrinsic attenuation is absent and the 

energy loss of the direct wave is caused by scattering only. We obtain 

Q'(w) = — 
2u0 
--ln[A(w)/A0(w)]. 	 (7.10) 
wzo  

To calculate the amplitude spectrum A(w) of the transmitted wave, the seismo-

grams at the receiver line are either used in their original form or we use a window 

to remove the coda waves. We will refer to this in details in the following section. 

The seismograms are Fourier transformed and the spectral ratio A(w)/A0(w) is 

computed. This ratio may in some cases yield negative apparent values of Q' (w), 

corresponding to a magnification of the input signal caused by focusing effects of 

the heterogeneities, or by amplification of noise in A0(w). 

7.4 Numerical results 

In this section we present the models used to examine scattering attenuation as 

well as the synthetic seismograms created for the different cases. We theoretically 

study, the attenuation of acoustic waves due to crack scattering by employing the 

idea of mean wave formalism. We examine a model of fractures distributed in 

a uniform way. Scattering attenuation depends strongly on the size of fractures 

compared to the wavelength. It has been shown by Yomogida and Benites (2002) 

that when the size of scatterers is compared with the wavelength scattering at-

tenuation is similar to the cavity case. When the crack length is much smaller 

than the wavelength then scattering attenuation becomes considerably smaller. 

That happens because only the volume of heterogeneities and not the detailed 

shape is an essential factor in scattering. Another important factor is the angle 

between the orientation of the cracks and the direction of propagation of the 

incident wave. As cracks are aligned more obliquely to the incident wave, atten-

uation becomes smaller, particularly when the wavelength becomes much shorter 

than the representative size of heterogeneities. Also, Yamashita (1990) stated 
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that the attenuation coefficient Q decays in proportion to k-' in the high fre-

quency range (wavelength much shorter than the crack length) and its growth is 

proportional to k2  in the low frequency range (wavelength much longer than the 

crack length), where k is the wavenumber. 

We begin by generating the medium. We use the random uniform distribution 

of fractures presented in Chapter 5 (Figure 5.9a). We create 10 different models 

by slightly changing the positions of the centre of the fractures by 1.5 or 2.5 

metres from the original model, in a random way. We use the numerical tech-

nique presented in Chapter 2 to model seismic wave propagation through each 

of the different fracture models. The model examined consists of 100 fractures. 

The speed of acoustic waves is 2000ms'. To obtain the meanfield we can use 

four different techniques (Shapiro and Kneib, 1993). The mean wavefield can be 

obtained by : (a) stacking individual records without any traveltime corrections, 

(b) stacking the wavefield after traveltime corrections, (c) by stacking amplitude 

spectra of individual records, and (d) by averaging the logarithms of amplitude 

spectra. Those methods give different scattering-attenuation estimates dependent 

on what wavefield function we are averaging. The two first procedures differ by 

the inclusion or exclusion of the traveltime correction. The two last procedures 

differ only by what is made first: averaging (stacking) or taking the logarithm. 

Usually it is assumed that both the dependence of the logarithm of the averaged 

amplitude spectrum in <A > and the average of logarithms of amplitude spectra 

<mA > on distance can be fitted by a straight line. The underlying assumption 

here is that the corresponding attenuation estimates which are determined from 

the slope of the fitted line are independent on travel distance. In this work we 

use technique (a), so we stack individual records taken at the same receiver for 

each one of the 10 different models. We use records taken at the same receiver so 

we do not need to make any traveltime correction. The technique is illustrated 

in Figure 7.1. 
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Figure 7.1: Sketch of the averaging procedure. The meanfleld results from averag-
ing records without phase corrections and without traveltime corrections 
(Shapiro and Kneib, 1993) 

We use a Ricker wavelet with dominant frequency is 40 Hz, thus having a wave-

length of 50 in, given that the velocity of the acoustic waves is 2000rns 1. All 

the fractures have the same size in each model. We examine different sizes of 

fractures and each model contains 100 fractures. The fractures have half size of 

5 in, 15 in, 25 in and 50 in, respectively. The density of the background medium 

is p = 2200kgm 3, and it is the same as in the models presented in previous 

chapters. The model used in the following simulations contains 128x128 grid 

points with a grid interval of 10m. The source is situated in the centre of the 

model and the receiver line is horizontal at 300 in depth. We put one receiver at 
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each grid point, so the distance between adjacent receivers is 10m. We record the 

synthetics for each of the 10 different models and then stack the records taken at 

each receiver to get the mean wave. We keep the source wavelength constant at 

a frequency of f = 40Hz, thus having a wavelength .A = 507n and wavenumber 

k = 0.126. 
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Figure 7.2: Geometry of the model used to examine scattering attenuation of the 
mean wavefleld 

Figure 7.2 shows the geometry of the model where we show the direct waves 

recorded at the receiver 90 as well as the boundary reflections. Figure 7.3 shows 

the waveforms recorded at receiver 90 for models 1 to 8 and Figure 7.4 shows 

the waveforms recorded at the same receiver for models 9 and 10, the mean wave 

corresponding to the average of models 1-10 and the source waveform that is 

recoded when we have no fractures in the medium. The case examined in this 

model is when fractures have half-size a of 5 in. The product of wavenumber k 

and half-size a is ka = 0.63, or ka 1, which is why there is a significant coda 

in the individual models. 

We estimate the arrival time of the direct wave and the boundary reflections 

based on the geometry of the model for receiver 90. The estimated arrival time of 
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Figure 7.3: Waveforms recorded at receiver 90 for models 1 to 8 in the case of kc = 
0.63. In each model we change the position of the fractures in a random 
way 
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Figure 7.4: Waveforms recorded at receiver 90 for model 9 and 10 in the case of 
kct = 0.63. We also show the mean wave recorded at the same receiver 
and the source waveform for a model without fractures. The mean wave 
is the mean value of the signal recorded for each one of the model 

the direct wave is 0.298s which is in good agreement with the synthetic seismo-

grams presented in Figures 7.3 and 7.4. Also we have boundary reflections that 

have estimated arrival times between 0.58s and 0.65s from the upper boundaries 

and between 0.85s and 0.95s from the distant boundaries. We confirm those find-

ings from Figure 7.4 where we show the waveform for a model with no fractures 

and clearly shows the direct wave and the boundary reflections. The waveforms in 

Figures 7.3 and 7.4 for each model show the direct waves near 0.3s and a strong 

reflection near 0.6s. That reflection as we explained is a boundary reflection. 

There is also another boundary reflection near 0.9s, which is not as strong as the 

one at 0.6s. In each model we see reflections from fractures that are recorded at 

different times. For instance, there is a reflection in model 1 near 0.45s while the 
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same reflection is in model 4 near 0.43s and in model 8 we have two relfections 

between 0.4 and 0.43s. That is expected because in each model fractures are situ-

ated at different positions, so the wave finds a different number of fractures while 

it propagates towards the receiver for each model. In the mean wave we have the 

boundary relfections at 0.6s and 0.9s, two reflections between 0.4 and 0.5s, and 

another reflection at 0.72s, which is present in most of the 10 models. All the 

other reflections are canceled when we stack the traces. Figure 7.5 shows four 

snapshots of the mean wavefield taken at consecutive times. It shows the strong 

mean wavefield propagating through the medium and secondary waves that are 

generated by the fractures. In this case the fracture size is much less than the 

wavelength (c = A/5), so each fracture becomes a source of secondary wave. We 

can see that in the last two snapshots, where significant scattering occurs. This 

implies that longer path lengths have a more complex mean wavefield. That is 

expected because at long paths we have strong scattering, that gives strong coda 

waves which make the wavefield complicated. 

Figure 7.6 shows the waveforms recorded at receiver 90 for models 1 to 8 and 

Figure 7.7 shows the waveforms recorded at the same receiver for models 9 and 

10, the mean wave and the source waveform for a model without fractures, when 

fractures have half-size a of 15 in. The product of wavenumber k and half-size a 

is ka = 1.89. 

As in the previous case, the direct waves arrive at the receiver at about 0.3s 

after the initialisation of the source. Also we can see in the wavelets from all 

the models that the boundary reflection at 0.6s is present, however it seems that 

the amplitude of the reflection is smaller. There is a clear reflection near 0.44s 

which is present in all the models. There is also a number of minor arrivals, 

that are different for each model due to the different positions of the fractures. 

Compared to the previous case, the amplitude of the direct wave is smaller and 

also there are stronger coda waves, compared to the cases in Figures 7.3 and 7.4. 
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Figure 7.5: Snapshots of the mean wave taken at consecutive times in the case of 
ka = 0.63 

That is because in this case, the fractures are larger than in the previous case 

(o = A/3). As a result, we see stronger scattering attenuation, so more energy 

is redistributed to the coda waves. We would expect in the mean wave, the 

arrivals from the randomly positioned fractures to be canceled after the averaging 

procedure. However, we see clearly the boundary reflection near 0.6s and at 0.9s. 

That happens because the boundaries are the same in all models and they give the 

same arrivals in all models, so they are not affected by averaging. Also the arrival 
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Figure 7.7: Waveforms recorded at receiver 90 for model 9 and 10 in the case of 
kct 	1.89. We also show the mean wave recorded at the same receiver 
and the source waveform for a model without fractures 

at 0.44s is present in the mean wave. That is an effect of multiple reflections from 

the fractures, and the existence of such an arrival in the mean wave indicates the 

non-perfect averaging. The larger size of fractures leads to higher scattering and 

the application of the concept of the mean wave is limited. Figure 7.8 shows four 

snapshots of the mean wavefleld taken at consecutive times. The snapshots show 

the mean wavefleld and some secondary waves. The secondary waves are more 

strongly attenuated as shown in the waveforms too. 

Figure 7.9 shows the wavelets recorded at receiver 90 for models 1 to 8 and 

Figure 7.10 shows the wavelets recorded at the same receiver for models 9 and 

10, the mean wave and the source waveform for a model without fractures, when 

fractures have half-size o of 25 m. The product of wavenumber k and half-size ci 
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Figure 7.8: Snapshots of the mean wave taken at consecutive times in the case of 
kcE = 1.89 

is kc€ = 3.15. 

In this case the boundary reflections are not clearly distinguishable as in the 

previous cases, however we can identify the arrivals from the waveforms at 0.6s 

and 0.9s. Here we have large fractures and the wave is strongly attenuated before 

it reaches the boundary, so the reflections are not as strong as previously. A 

common characteristic in all models is that there are not distinct reflections. Once 
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Figure 7.9: Wavelets recorded at receiver 90 for models 1to 8 in the case of ka = 3.15 
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Figure 7.10: Wavelets recorded at receiver 90 for model 9 and 10 in the case of 
kc& = 3.15. We also show the mean wave and the source waveform for 
a model without fractures, recorded at the same receiver 

more that is an effect of strong scattering, while at the same time we see clear coda 

waves. We see some reflections immediately after the direct wave at 0.32, 0.35 and 

0.37s, but after 0.5s the wavelet is a result of less coherent scattering. The size of 

the fractures is equal to the size of the wavelength (ct = )/2), therefore fractures 

act as interfaces, that give strong scattering and attenuation. Figure 7.11 shows 

four snapshots. Although the wavelet is more attenuated than in the previous 

case, we cannot see significant differences from the previous case. 

Finally, Figure 7.12 shows the wavelets recorded at receiver 90 for models 1 to 8 

and Figure 7.13 shows the wavelets recorded at the same receiver for models 9 and 
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Figure 7.11: Snapshots of the mean wave taken at consecutive times in the case of 
ka = 3.15 

10, the mean wave and the source waveform for a model without fractures, when 

fractures have half-size a = 50m. The product of wavenumber k and half-size c 

is kc = 6.3. 

In the models studied here the fracture size is larger than the wavelength. We 

have very strong attenuation. We can see strong reflections at 0.32, 0.34 and 

0.4s. The most dominant feature of the waveforms for all the models are the 
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Figure 7.13: Wavelets recorded at receiver 90 for model 9 and 10 in the case of 
ka = 6.3. We also show the mean wave and the source waveform for a 
model without fractures, recorded at the same receiver 

strongly scattered waves, which makes identification of individual reflections very 

difficult. That is expected due to the size of the fractures that are larger than the 

wavelength. Another effect of the long fractures is the strong reflections that give 

direct waves with high amplitude. That is because fractures act as individual 

interfaces. The same features are visible in the mean wave, where we can see a 

clear reflection near 0.41s, and some other features which we cannot say if they 

are reflections or the result of scattering. The same results are more obvious in 

the snapshots shown in Figure 7.14. In the final snapshot we can see the strong 

scattering. The scattering is so strong that it distorts the circular shape of the 

propagating mean wave. 
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Figure 7.14: Snapshots of the mean wave taken at consecutive times in the case of 
kce = 6.3 

We use the results of the numerical modelling and follow the method we pre-

sented in the previous section (Section 6.4.1) to estimate scattering attenuation. 

Figure 7.15 shows scattering attenuation Q' as a function of angular frequency 

w. In this figure, we also include the case of ko = 4.41. We take as accurate only 

the results for frequencies from w = 50Hz up to w = 500Hz. We can see a general 

shift of the maximum attenuation that is relevant to the normalised wavenumber 

ka. However, due to the strong coda waves the amplitudes are not very smooth 
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and it is not possible to obtain very clear results for scattering attenuation. 
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Figure 7.15: Estimation of scattering attenuation Q 1  as a function of frequency w 
for the mean wave. We examine the cases of ka = 0.63, 1.89, 3.15, 4.4 
and 6.3 

7.5 	Estimation of scattering attenuation 

The existence of coda waves immediately after the direct arrivals, especially in 

the cases of fractures that are long compared to the wavelength, introduced sig-

nificant complications to the extraction of accurate results about attenuation of 

the mean waves for different cases of fracture sizes. For the estimation of scatter-

ing attenuation, we concentrate on the direct arrivals. To obtain the amplitude 

spectra A(i) of the primary pulses, seismograms are windowed around the direct 
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arrivals. We examine different kinds of windowing techniques in order to find the 

one that best fits in our case. The simplest window is the boxcar window. In the 

boxcar window we choose a function w(t) multiplied by the wavelet. We select 

a certain time range for which w(t) = 1 that corresponds to the duration of the 

direct wave, and we set w(t) = 0 for the remaining time. Thus we only keep the 

direct waves and the rest of the wavelet is omitted. Another window is the sine 

window. We multiply all the wavelet by the function w(t) = sinc() = 

where T = 3.0. A similar window is the Fejer Kernel window. The function is 

w(t) = sinc2() = [817)]2 where T = 3.0. A different window is the cosine win-

dow. The function is w(t) = +1 when 0 < t < and w(t) = + cos (57rtT) when 

<t <T where T = 3.0. The Hanning and the Hamming window are also very 

similar and they have functions w(t) = +cos() and w(t) = 0.54+0.46cos(), 

where T = 3.0. The final windows we examine are the triangular and the Gaussian 

window. The functions are w(t) = 1 - where T = 3.0 and w(t) = exp(—at2) 

where a = 0.5. After testing all the windows, we find out that the boxcar window 

is the only one that keeps the direct arrival unchanged and removes the coda 

waves. 

7.5.1 Effect of travel distance 

We use the boxcar window while analysing the power spectra for the previous 

models. We add a new model to the above models for which a = 35m, therefore 

for this model a = 	and ka = 4.41. The position of the fractures and the layout 1.5 

of the model is the same as in the other models. The only difference is the size 

of the fractures. To estimate scattering attenuation we follow the process we ex-

plained in a previous section (Section 6.4.1). We take the waveforms of the mean 

wavefield that are recorded in receiver 90 for each one of the models. We window 

the waveforms around the first-arrival. We use the waveforms that are recorded at 

the same receiver, so the waves travel through the same distance, thus we do not 
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need to make any travel-distance corrections. The waveforms are Fourier trans-

formed to obtain the amplitude spectra A(w) of the primary pulses. Figure 7.16 

shows the amplitude spectra as a function of the normalised wavenumber for five 

different cases of ka. The figure also includes the source amplitude spectra for 

comparison. The amplitude spectra of the windowed meanfield shows the same 

decay and shift of the dominant frequency. Now the spectra is smooth because 

random fluctuations caused by non-perfect averaging are largely left outside the 

window. We can see that when the fractures are smaller than the wavelength, 

which corresponds to normalised wavenumber ka < 3.15, there is a shift of the 

peak frequency towards lower values and the corresponding amplitude is less than 

the initial source amplitude. On the other hand, when fractures become larger 

than the wavelength (ka = 4.4 and 6.3), the behaviour is completely opposite and 

there is a shift of the peak frequency towards higher values and at the same time 

the amplitude is significantly higher compared to the initial source amplitude 

at the high frequencies. This indicates that as the size of the fracture becomes 

larger, scattering attenuation becomes higher and the energy is redistributed to 

the coda waves. We can see that for ka = 4.4 the redistribution procedure of 

the energy from lower towards higher frequencies starts and it is complete for 

ka = 6.3, when most of the energy is at high frequencies. That is the effect of 

the strong reflections due to the large size of the fractures. 

We calculate the slope of the curve 	over travel-distance. From Equa- 

tion (7.8) we get, In A("))  = —( fQ')r, where A(w) is the amplitude of the wave-

form recorded at a receiver at a distance r from the source, A0(w) is the amplitude 

of the waveform recorded at the source, and /EE? is the acoustic-wave speed. We 

fit a least-square line to the data for each model and from the slope of the line 

we calculate scattering attenuation Q'. Figure 7.17 shows the values In A( )  

for the different models and the least-square line for the dominant frequency 

of 40Hz. In Figure 7.17,(a) to (e) correspond to the normalised wavenumber 
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Figure 7.16: Amplitude spectra as a function of the normalised wavenumber (kcx) for 
the various models we examined. We also show the source amplitude 
spectra for comparison 

ka = 0.63, 1.89, 3.15, 4.41, and 6.3, respectively. The fluctuations of the values of 

indicate that scattering attenuation depends significantly on the distance. 

That may be an effect of the different paths that the wave travels to reach the 

receiver and especially on the different fractures that the wave interacts with. 

The scattering of the log values away from the least-square fit line is because the 

spatial averaging does not suppress incoherent energy sufficiently, due to the high 

fracture density in our models. This indicates that the mean wavefield theory may 

not be valid in cases of high fracture density. Another possibility is that the fluc-

tuations from the linear fit is an effect of the window we applied. As the travel 

distance becomes larger the wavefield fluctuates stronger and there is a larger 

portion of energy transferred to the coda. In the region of strong fluctuations, 
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which is when the fracture size becomes equal or larger than the wavelength, it is 

very hard to determine for a certain trace where the first arrival ends and where 

the coda begins. 

Generally, we can conclude that travel distance affects scattering attenuation es-

timates. At short travel-distances meanfield attenuates mainly because of arrival-

time fluctuations of individual records. With increasing travel-distance, ampli-

tude fluctuations play an increasing role in meanfield attenuation. In Figure 7.17 

the variation of the slope of the least-square fit line, indicates that the dependence 

becomes stronger as fractures become longer compared to the wavelength. From 

the slope of the least-square fit for different values of kce we obtain an estimate 

of scattering attenuation for each case. Figure 7.18 shows scattering attenuation 

as a function of the normalised wavenumber ka. We see that scattering at-

tenuation becomes higher as the normalised wavenumber increases until kce = 4.4. 

After ka = 4.4 scattering attenuation decreases, which is in agreement with the 

results of previous works (Frankel and Clayton, 1986, Frenje and Juhlin, 2000). 

7.5.2 Effect of azimuth from crack normal 

Another important factor that affects scattering attenuation is the angle from 

crack normal. We examine scattering attenuation for the same models of the 

previous section. We investigate scattering attenuation as a function of the angle 

from the fracture normal. In all the models we put the source at the position with 

coordinates x==630m and y=630m. We take 11 receiver lines each one of which 

has a number of receivers at different distances from the source. Each receiver line 

is at a different angle from the fracture normal. The angles are 0°, 10°, 20°, 30°, 

45°, 60°, 70°, 80°, and 90°. We examine the cases of ka = 0.63 and ka = 1.89. 

For each direction we use a maximum number of 30 receivers. We get the least- 

A(w) square fit line for each angle. Figures 7.19 and 7.20 show the values 	as 
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Figure 7.17: Variation of ln4)  as a function of the travel distance for the dominant 
frequency of 40Hz. Figures (a) to (e) correspond to the normalised 
wavenumbers ka = 0.63, 1.89, 3.15, 4.41, and 6.3, respectively. Each 
cross refers to a measured value at each receiver, and the solid line is 
the least-square fit 

a function of the different angles from the fracture normal for the normalised 

wavenumber ka = 0.63. In Figure 7.19, figures (a) to (f) correspond to 0°, 100, 
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200,  300 ,  45°, 60° from the fracture normal respectively, and in Figure 7.20, (a), 

(b) and (c) correspond to 70°, 80°, and 90° from the fracture normal respectively. 

As in the previous section there is a strong fluctuation of the values around the 

least square-fit line. The fluctuation becomes even stronger for angles of 30°, 

45°, and 60°. Figure 7.21 shows the resulting scattering attenuation Q' as a 

function of the angle from the crack normal of the fracture. We can see that 

as the angle becomes higher the error bars become more significant. If we fit a 

line to the values of each angle, we find that scattering attenuation Q' increases 

with respect to increasing angle from the fracture normal. That means that the 

lowest value of Q 1  is obtained when the wave propagates normal to the fracture 

and the highest when the wavelet propagates parallel to the fracture. The general 

trend does not apply for the angles of 20° and 60°. That may be just an effect of 

the path that the waves travel for certain angles. Moreover, there does not seem 

to be any reason why those two angles should have this kind of different behavior, 

except from statistical fluctuations from the general trend. Another interesting 
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feature is that for 0° , 30°, 70° and 90° the values of Q' are apparently negative, 

an effect of the interaction of the wavefield with the cracks and it corresponds to a 

magnification of the input signal caused by focusing effects of the heterogeneities 

(Roth and Korn, 1993). 

We also examine the effect of the azimuth from the fracture normal for the same 

models for larger fractures (ka = 1.89). Figures 7.22 and 7.23 show the values 

as a function of the angles from the fracture normal for the normalised 

wavenumber koz = 1.89. In Figure 7.22, (a) to (f) correspond to 00,  100, 200 , 

30°, 450,  60° from the fracture normal respectively, and in Figure 7.23, (a), (b) 

and (c) correspond to 70°, 80°, and 900  from the fracture normal respectively. In 

general for each angle the plots have the same trend as in the case of ka = 0.63. 

However, it is obvious that the absolute values of lr -J)  are significantly higher 

than the case of ka = 0.63 presented in Figures 7.19 and 7.20. That is an effect 

of the large sizes of fractures resulting in high attenuation. Figure 7.24 shows the 

resulting scattering attenuation Q 1  as a function of the angle from the fracture 

normal. 

7.6 Summary 

In this chapter we have applied the mean wavefield theory to study scattering 

attenuation variation with the size of the fractures and the angle of incidence. 

To generate the mean wavefield we use ten models where the positioning of the 

fractures is slightly different and we average the wavefield recorded at each re-

ceiver for all models. We calculate 1r -J) , where A(w) is the amplitude of the 

averaged recorded wavefield and A0() is the amplitude of the source wavefield. 

We assume that the dependence of the logarithm of the averaged amplitude spec-

trum on distance can be fitted by a straight line. The underlying assumption 

here is that the corresponding attenuation estimates which are determined from 
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Figure 7.19: Variation of 1n ) as a function of the travel distance for various an- 
gles of incidence measured from the fracture normal for the normalised 
wavenumber kco = 0.63. (a) to (f) correspond to 01, 101, 200, 300, 450 , 

600  from the fracture normal respectively 
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wavenumber ka = 0.63. (a), (b) and (c) correspond to 700,  80°, and 
90° from the fracture normal respectively 

the slope of the fitted line are independent on travel distance. That assumption 

is usually valid but it may not be valid in cases of very high fracture density with 

strong anisotropy and intense scattering. From the slope of the straight line we 

calculate scattering attenuation Q'. Although the results show some distinct 

features of the variation of scattering attenuation Q 1  with k, the strong coda 

waves in some cases can lead to misinterpretation of the results. There is also 

an effect of the travel distance. When we fit a straight line to the results of 

those results come from receivers at different distances from the source. 
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Figure 7.21: Scattering attenuation Q 1  as a function of the angle from the crack 
normal. Error bars represent standard deviations. The figure is for the 
normalised wavenumber kc = 0.63 

Shapiro and Kneib (1993) found that the shorter the travel distance, the bet-

ter the spatial averaging suppresses fluctuations. Non-perfect averaging leads to 

a meanfleld "tail" at large distances. If we decide to limit our study only to 

receivers at small distances we will not obtain a reliable estimate of scattering 

attenuation. Therefore, we decide to use a window around the direct arrivals. 

It is clear that the estimations of the scattering attenuation obtained from log-

arithms of amplitude spectra will depend on the length and type of window to 

extract the direct arrivals. The second aspect of windowing is the window shape. 

The choice of a window shape always has to compromise between the amount of 

variance and bias introduced. The choice of a window function is less important 

because averaging smooths and bias, partly averages away. We have decided to 
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use a boxcar window, which has different length and limits depending on each 

individual waveform in order to use only the direct arrival. All the results from 

the slopes of the linear fit for each ka are gathered to study scattering attenuation 

Q' as a function of normalised wavenumber ka. We see that Q 1  becomes high 

as the normalised wavenumber ka increases until it reaches ka = 4.41, and at 

this point the fracture size becomes larger than the wavelength. After that point 

scattering attenuation declines (i.e. ka = 6.3) 

For high frequencies each fracture excites scattered waves of significant ampli-

tude, with the largest corresponding to wavelengths comparable to the fracture 
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Figure 7.24: Scattering attenuation Q 1  as a function of the angle from the crack 
normal. The figure is for the normalised wavenuinber ko = 1.89 

size. For low frequencies, wavelengths much larger than the size of the fractures, 

the waves excited by each fracture are negligible but the fractured medium excites 

a reflected wave as if it was one heterogeneous medium of some effective thick-

ness. Those effects on the overall scattered wavefield by a fracture distribution 

are depicted in Figure 7.25. 

Finally, we examine the effect of the angle of incidence on the wavelet from the 

fracture normal on scattering attenuation Q 1. We calculate the logarithms of 

amplitude spectra for different angles starting from 0° up to 90°, and then fit a 

straight line to the data for each angle. From the slope scattering attenuation 

Q 1  can be estimated. Scattering attenuation Q 1  increases constantly from 00 

to 90°. However, there are some exceptions in that trend with negative values in 
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Figure 7.25: (a) Schematic view of distortion of the primary wave by the cluster 
of cavities in both forward and backward scattering cases. In the for-
ward case, the primary wave is attenuated with little distortion of its 
waveform, and producing weak late arrivals. This is not true in the 
backward case, which produces many late arrival phases of significant 
amplitude. (b) Schematic view of how a cluster of cavities produces 
scattered waves in different frequencies or wavelength ranges. For high 
frequencies, waves scattered by each cavity are strong. In low frequen-
cies (wavelength much larger than the size of each cavity), the entire 
cluster produces scattered waves as if it were a single large heteroge-
neous body. Figure taken from Yomogida et al. (1997) 

some cases. This is almost certainly an effect of the magnification of the input 

signal caused by focusing effects of the heterogeneities. It is interesting to note 

that the highest value of Q' is for 700  and not for 90°. In general, the highest 

value of Q 1  is when the wave travels parallel to the fracture and the lowest value 

when the wave travels normal to the fracture. 



CHAPTER 8 

Single-phase flow in porous media: 

Theory and numerical modelling 

8.1 Introduction 

Until this point we have examined seismic wave propagation in a fractured net-

work, and presented the basic theory of wave propagation and the available tech-

niques of analytical and numerical solutions to the wave equation. A new tech-

nique has been introduced to describe the wave propagation through a fractured 

medium and to study the effects of fracture properties on the wave attributes. 

However, we assume that the fractures are filled with gas, which is not always 

realistic. In this chapter we introduce the existence of fluid in the fractures. 

Fracture networks often form the only significant paths for fluid flow in im-

permeable rocks, such as carbonates. In permeable rocks, such as sandstones, 

fracture can often dominate the conductivity by providing quick routes for fluid 

movement and the matrix provides storage for fluid. Networks of fractures also 

control many crustal processes, such as deformation. There is a very practical side 

to the study of fractures and associated fluids, as reviewed by Pollard and Aydin 

(1988): "They influence mineral deposition by guiding oreforming fluids, and they 

provide fracture permeability for water, magma, geothermal fluids, oil and gas. 

199 
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Because joints may significantly affect rock deformability and fluid transport, 

they are considered by engineering geologists in the design of large structures". 

During the design and construction of many major engineering projects, the ef-

fects of fractures on deformation and permeability have been considered as one 

of the most important factors. Also in large near surface excavations, changes in 

fluid pressure within a fracture network may play a key role in controlling the 

stability of a structure. 

The upper crust is complicated in terms of its components and structure; under 

most circumstances it may be described as a system of rock-blocks separated by 

fractures that may be filled with fluids. Such systems exhibit complex, discontin-

uous behaviour and generally are anisotropic and spatially heterogeneous. The 

rock-block system may be subject to a complex loading history due to superposed 

tectonic events at various scales and to human activities. Fluid flow may not be 

uniformly distributed within such rock-block systems and it is the aperture of a 

fracture that determines its transmissivity. Many field experiments and borehole 

data have revealed that the movement of ground water in fractured rock masses 

is dominantly controlled by a small proportion of fractures (e.g.Neretnieks, 1985; 

Bourke et al., 1985; Nolte et al., 1989; Michie, 1996; Barton et al., 1985; Jones et 

al., 1999). 

In general, the response of a sub-surface flow system to a hydraulic perturba-

tion is governed by the geometric attributes of the system and the properties of 

fluids. Deformation can affect fluid migration due to changes in fracture network, 

including the closure and opening of hydraulic conduits, as well as the creation 

of new ones. The converse is also true, fluid pressure can change the effective 

stress within the rock and, thus, the shear stress required to cause slip and di-

lation along discontinuities. Under most circumstances a rock-block system may 

be treated as a deformable discrete medium, within which the geometry and me-

chanical properties of discontinuities, the cleformability of the rock-blocks and 
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the stress state (including fluid pressure distribution) control the deformation 

and flow, often producing large finite strains and non-linear behaviour. 

In this chapter we present the fundamentals of single phase fluid flow. We go 

through the derivation and meaning of the macroscopic transport equations for 

single phase flow in porous media and discuss how they are solved. We start by 

showing some basic concepts relating to porous media and to single phase flow. In 

the following we refer to the material balance and Darcy's law approach to flow in 

porous media and show the equation for single phase compressible flow in porous 

media. Based on those theoretical ideas, we introduce a numerical technique that 

simulates fluid flow in a fractured network. We describe in detail the fundamental 

assumptions for the simulation and the physical mechanisms that are involved. 

8.2 Flow models 

In terms of mathematical models, simulations of fluid flow through a rock-block 

system fall into one of two models: (1) equivalent continuum, and (2) discrete 

network. 

The equivalent continuum assumption or homogenisation principle can be used 

to apply continuum-based numerical methods to problems in discontinua. Such 

an assumption is valid only when a characteristic volume considered in a prob-

lem is not less than its Representative Element Volume (REV). The REV is a 

critical volume that should be larger than the volume of the process domain if 

all equivalent constitutive properties become constant (Odling, 1997; Jing and 

Stephansson, 1997). Based on continuum methods, numerical models for under-

ground fluid transport require descriptions of the hydro-geological properties of 

all the materials, and can be constructed with different levels of details. Some-

times, however, these parameters may he difficult or impossible to measure at an 
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appropriate scale. In these cases, numerical modelling can still be used to help 

develop a conceptual understanding to some degree. Due to its simplicity and 

ease of implementation, continuum modelling is commonly used. 

On the other hand, discrete network models assume that the hydraulic behaviour 

can be represented by the conductivity of individual discontinuities. Discrete frac-

ture networks can be generated if the hydraulic properties of each fracture, such as 

fracture size, orientation, connectivity, transmissivity and storability, can be de-

termined. Otherwise, simulated fracture networks may need to be generated with 

properties from the same statistical distributions as the real system. The out-

come of such models can be evaluated in terms of the overall hydraulic behaviour 

at various length scales and the models tested by comparing with measured data. 

In general, discrete network models can be used in three ways to study the 

deformation and fluid flow of a rock-block system (Long, 1996): (1) As a tool 

for conceptual evaluation or model-based process investigations (e.g. Smith and 

Schwartz, 1984; Long and Witherspoon, 1985; Zhang and Sanderson, 1995; Zhang 

and Sanderson, 1998). In this case, the requirements for characterization of a 

rock-block system as an equivalent continuum is examined. (2) As a practical 

tool for site-specific simulations (e.g. Zhang and Sanderson, 1996; Zhang and 

Sanderson, 2001; Zhang et al., 1999b). In these cases, an equivalent continuum 

may not be defined, and discrete network modelling is an alternative. (3) As a 

tool to build continuum approximations, as in the estimation of large-scale per-

meability by averaging local-scale measurements. Several equations have been 

developed to estimate the permeability tensor by combining hydraulic and ge-

ometric data of fractures (Oda, 1986; Oda et al., 1987; Lee et al., 1995). The 

idea of estimating continuum properties from discrete network models has been 

extended by others (Hudson and La Pointe, 1980; Long and Witherspoon, 1982; 

Hsieh et al., 1985; Cacas et al., 1990). The 2-D permeability tensor of a rock-block 

system has been evaluated by Zhang et al. (1996) based on the distinct element 
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method for discrete networks, and the effects of network geometry examined. 

Recently, percolation models have been applied to examine geometric properties 

and transport phenomena observed in porous and fractured rocks (e.g. Englman 

et al., 1983; Charlaix et al., 1987; Gueguen and Dienes, 1989; Balherg et al., 1991; 

Berkowitz and Balberg, 1992; Zhang and Sanderson, 1994; Zhang and Sanderson, 

1998). For fracture networks near the percolation threshold, a fractal structure 

develops. Attempts have been made to model and characterize such structures 

and to compare their hydraulic properties with the fractal properties of well tests 

predicted by Barker (1988) (e.g. Stauffer, 1985; Sahimi, 1987; Zhang and Sander-

son, 1998; Sanderson and Zhang, 1999). There are also discrete fracture networks 

models for the transport of groundwater. However, unlike distinct element meth-

ods, such models have no coupling of deformation and fluid flow, and only allow 

examinations of the effects of the geometric attributes of fractures on flow. 

8.3 Fluid flow in fractured systems 

It is believed that in tight rocks fluid flow happens mainly through systems of 

fractures and such reservoirs are only accessible via fracture porosity. It is very 

important to know the concepts related with such a system and which affect the 

flow through such a system. We begin by introducing the meaning of a fractured 

system. In this context, we imply systems (such as in many carbonate reservoirs) 

where small scale conductive fractures occur but most of the oil is in the rock 

matrix. In certain non-porous fractured rock reservoirs (e.g. fractured volcanics), 

it is possible to have all the oil in the fractures but these are less common. 

Typically, in porous fractured systems fracture porosity is ç 	0.1 - 1% (Sorbie 

and McDougall, 1998) of bulk volume. The main geometric features of fractures 

which are thought to affect fluid flow are the fracture orientation, width, aperture, 

conductivity, connectivity and spacing. 
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Special cases of fluid flow occur in stylolites and vugs. Stylolites are frequently 

found in limestones. They are laterally extensive features formed by grain-to-

grain saturated contacts caused by the phenomenon of pressure solution. These 

features may significantly reduce vertical permeability thus causing systems con-

taining them to have very low (k/k,1 ) ratios (at certain scales). Vugs are disso-

lution "holes" in a carbonate rock caused by diagenetic reactions. 

The most widely used simulation models for modelling flow in fractured systems 

are the dual porosity models. They have separate conservation/ flow equations for 

the matrix and the fractures and matrix-fracture flow is represented by transfer 

functions. They are most frequently used to model multiphase flow in fractured 

carbonates. Variants of this model allow for; (i) flow only in fractures and (ii) flow 

in both fractures and matrix. In the following sections we limit our examination 

to single phase fluid flow, and we present only the corresponding features and 

theoretical equations of multi phase fluid flow in Appendix C. 

8.3.1 Single phase rock properties 

The main properties of the rock that affect single phase flow are the permeability 

(k), porosity 0, k/q5 correlations, and the permeability anisotropy. By permeabil-

ity (k) we refer to the conducting capacity of a rock. The unit of permeability 

is Darcy (D) and milliDarcy (mD). Typical permeabilities for reservoir rocks are 

between 1 - 1OD (very high), 0.1 - 1D (high), 30 - lOOrnD (medium low), 

1 - 30mD (low), < lrnD (very low). Permeability can be anisotropic and is a 

second-order tensor. 

Porosity is the fraction of a rock that is pore space, and it varies from =0.25 for 

a fairly permeable rock down to =0.1 for a very low permeability rock. There 

may he an approximate correlation between k and 0. Fluid travels in a rock 

through pores and pore throats. Pores are the tiny connected passages that exist 
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in permeable rocks; typically of size 1 /Lm to 200 hum. The narrower constrictions 

between pore bodies are referred to as pore throats. It is the narrower throats 

that control the capillary entry pressure in a drainage process. 

It has been found in many systems that there is a relationship between per-

meability, k, and porosity, ç.  Broadly, higher permeability rocks have a higher 

porosity. Since permeability can be directional, it is possible to have k 	ky,, 74  k 

in a given system. This is often seen in practice when comparing the horizontal 

permeability, (kh), with the vertical permeability, (ku). Often, it is found that 

(kV /kh < 1), i.e. there is more resistance to vertical flow than horizontal flow. 

8.3.2 Reservoir fluid properties 

Fluid in a reservoir has some characteristic properties. We will briefly describe 

the phase, the viscosity and the compressibility, in order to have a general un-

derstanding. A basic property of the fluid is its phase, which is a chemically 

homogeneous region of fluid separated from another phase by an interface. We 

assume here that phases are immiscible. 

The viscosity of a fluid is one of the main properties describing a fluid in Darcy's 

law. It is a measure of the (frictional) energy dissipated when it is in motion 

resisting an applied shearing force. Units are Pa . s (SI) or poise (metric). The 

most common unit in oilfield applications is centiPoise (cP). Typical examples 

are water viscosity at standard conditions, ij 	lcP; typical light North Sea 

oils have 1c ' 0.3-0.6cP at reservoir conditions (T 200°F; P 4000-6000psi); at 

reservoir conditions, medium viscosity oils have 77, "-i  1-6cP; moderate viscous 

oils have i '-'-i  50-1000cP and tars may have 17 up to 10000cP. 

Finally, compressibility (c) of oil or gas can be defined in terms of the vol- 

ume (V) change or density (p) change with pressure: c = —(1/V)(aV/3P) = 
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(1/p)(ap/3P). This quantity is normally expressed in units of psi-'. Typical 

ranges of coinpressibilities in units of 10 6psi 1  are: (a) for formation rock 3-10, 

(b) for water 2-4, (c) for undersaturated oil 5-100, (d) for gas at 1000psi 900-1300, 

and (e) for gas at 5000psi 50-200. 

8.4 	Differential equations for fluid flow in reser- 

voirs 

The processes occurring in petroleum reservoirs are basically fluid flow and mass 

transfer. Up to three immiscible phases (water, oil, and gas) flow simultaneously, 

while mass transfer may take place between the phases (chiefly between the gas 

and oil phases). Gravity, capillary, and viscous forces all play a role in the fluid 

flow process. 

The model equations must account for all these forces, and should also take 

into account an arbitrary reservoir description with respect to heterogeneity and 

geometry. The differential equations are obtained by combining Darcy's law for 

each phase with a simple differential material balance for each phase. In this 

section, we derive the simple differential equation that describes single-phase 

flow. 

8.4.1 Darcy's law 

It was established experimentally by Darcy (1956) that the fluid flow rate is 

linearly related to the pressure gradient in a fluid saturated porous medium. 

Darcy's law for single-phase flow states that in a horizontal system the volumetric 

flow rate, Q, through a sample of porous material of length L and a cross-sectional 
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area A, is given by: 

	

KAzP 	
(8.1) 

where AP is the applied pressure drop across the sample, j is the viscosity of the 

fluid, and K is the absolute permeability of the medium. In the general form we 

can write Darcy's law in the following form: 

V = - = -
KDP
-, 	 (8.2) 

A 	77 Ox 

where V = Q/A is the vector fluid velocity field, OP/ax is the fluid pressure 

gradient, and K is the permeability tensor. Note that the negative sign in Equa-

tion (8.2) indicates that the pressure declines in the direction of flow. 

The differential form of Darcy's law may be generalized to three dimensions as 

follows: 

- 	 (8.3) 
Tj 3x 

- 	

77 (9y 	
(8.4) 

- - - 	 (8.5) 

where V, Vt,, and V are the x-, y-, and z-components of the fluid flow rate vector, 

V, oriented in some arbitrary direction in three-dimensional space. 

Equations (8.3), (8.4), and (8.5) do not take gravity into account, and must be 

modified to include gravity terms. The gravity term becomes larger with depth. 

The deeper the fluid is in earth the larger the gravity factor will be. In simple 

words that means that a fluid that is deep in the earth will need a higher pore 

pressure gradient in order to have the same velocity as another fluid situated in 

a shallower area. For generality, we shall take the depth, D, to be an arbitrary 

function of the coordinates, (x, y, z). Then the differential form of Darcy's law 

becomes: 

V.
K. 

 ( 
3P 3D 

= -( 	- pg). 	 (8.6) 
77 Ox 	Ox 
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K3P 3D 
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where p is the density of the fluid and g  is the acceleration due to gravity. 

In order to apply Darcy's law we have the following limitations (Mavko et al., 

1998): (a) Darcy's law applies to representative elementary volume much larger 

than the grain or pore scale; (b) Darcy's law is applicable when inertial forces 

are negligible in comparison to pressure gradient and viscous forces, and the 

Reynolds number is small (Re zt 1 to 10). The Reynolds number for porous 

	

media is given by Re = 	where p is 	fluid density, ij is the fluid viscosity, 

v is the fluid velocity, and 1 is a characteristic length of fluid flow determined 

by pore dimensions. At high Re, inertial forces can no longer be neglected in 

comparison with viscous forces, and Darcy's law breaks down; (c) some authors 

mention a minimum threshold pressure gradient below which there is very little 

flow (Bear, 1972), and (d) when the mean free path of gas molecules is comparable 

to or larger than the dimensions of the pore space, the continuum description of 

gas flow becomes invalid. In these cases, measured permeability to gas is larger 

than the permeability to liquid. This is sometimes thought of as the increase in 

apparent gas permeability caused by slip at the gas-mineral interface. This is 

known as the Klinkenberg effect (Bear, 1972). 

8.4.2 General equation for single-phase flow 

We examine the simplest case of one-dimensional, single-phase, compressible flow, 

in order to show the basic considerations in deriving a differential equation for 

fluid flow. We will make this equation more general to include the cases of two and 

three dimensions. In deriving the equation for one dimension, the possibilities 

that the cross-sectional area for flow A, as well as the depth D, are functions 
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of the single space variable x are included. Also a term for injection of fluid is 

added by using a variable, q, equal to the mass rate of injection per unit volume 

of reservoir (a negative q implies extraction). That term incorporates the case of 

fluid injection, which is a common method used during oil production, or fluid 

extraction. Finally, we take into account that the density of the fluid will be 

changing with time. (Frequently, the porosity of the medium, 0, can also change 

with time.) 

Let us consider a mass balance about the box in Figure (8.1). The box has 

length x; the left face has area A(x), the right face has area A(x + Ax). The 

rate at which fluid mass enters the box at the left face is given by: 

p(x) V(x) . A(x) = (ApV). 	 (8.9) 

The rate at which fluid leaves at the right face is: 

p(x + x) V(x + Ax) A(x + Ax) = (ApV) A . 	(8.10) 

The volume of the box is A/x. Here A indicates the average value of A between 

x and x+x. Then the rate at which fluid mass is injected into the box is qAAx. 

The mass contained in the box is q5,oAz.x. Then the rate of accumulation of 

mass in the box is a(5rho)A/x  Since mass must be conserved, we have: at 

[rate in] - [rate out] + [rate injected] = [rate of accumulation]. 	(8.11) 

Thus 

(ApV) - (ApV) +  + qAx = Ax. (8.12) at 
Dividing by Lx gives: 

- (ApV) +A  - (ApV) 
Lx 	

____ 
+ A = 	

at 	
(8.1 3) 

Taking the limit as Lx -* 0 and that A -f A(x), p -i p(x), etc., we obtain: 

a(ApV) +Aq=A3f). 	 (8.14) 
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Figure 8.1: Differential elements of volume for one-dimensional flow 

We can continue the above equation as follows: 

_ A  a( 	+ Aq =A 
O(OP)  - a(V) 	O(OP)
at - 	ax + q = at 	

(8.15) 
Ox 

The x-component of the velocity vector V is given by equation (8.6): 

	

vx =— 
	

-. 	 (8.16) 
ij Ox 

By Equations (8.15) and (8.16) we take: 

a 	
)]+q 

KXDP) 
+ = 

a(p) 	a 
{( 	) 

pK (01J 	a(45P))faP\ 
(8.17) p 	q 	 =( - 	

ax 	at ax 	ax 	OP at 

8.5 The theoretical model for fluid flow mod- 

elling 

When we examine fluid flow in a fractured network, two phases take part in the 

process, the solid phase - that is the rock - and the fluid phase. In this section, we 
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present the theoretical models that we use describe the two phases. During the 

process of fluid flow, the two phases interact. We also present the algorithm that 

describes the coupling between the two phases (Maillot et al., 1999). We start 

by the solid phase and describe the equation of motion, the constitutive relations 

describing the mechanical response of the medium to stresses, and Hooke's law. 

For the fluid phase we describe the diffusion equation with a source term pro-

portional to volume variations of the medium. Finally, we describe the coupling 

between the two phases, the slip condition and the friction law for the brittle 

behaviour. 

8.5.1 The solid phase 

In the framework of the infinitesimal deformation theory, the displacement accel-

erations are related to the stress tensor by Cauchy's equation of motion: 

al u j  
p - 	- - = Vo jj , 	 (8.18) 

which relates the stresses U2 j in the medium to the displacement field u and the 

rock density p, in the absence of external forces. This is the equation we intend 

to solve by a finite difference approximation. In order to solve this equation, we 

need a constitutive relationship between the stress and the strain cij 	and 

hence the displacements. 

8.5.2 The constitutive relations 

Before presenting the constitutive relations, we separate the total stress in the 

medium a(x,t) into: (i) a pre-stress component o ij (t), due to, for example, 

the lithostatic pressure, and to tectonic loading stresses; and (ii) a component 

a(x, t) due to the fractures in the medium: 

ajj(x, t) = a(t) + 07,j  (X, t), 	 (8.19) 
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where the pre-stress 

Uipj(t) = ij a(0) + tf(i,j)ckl6j, 	 (8.20) 

is a sum of the initial pre-stress a(0) and of stresses due to the strain rates 

cij applied during t. The strain rates cj are constant in space and time. They 

represent strains due to a uniform tectonic loading of the medium. Cijkl are the 

elastic stiffnesses, and f(i,j) is a Boolean function with values 1 or 0 specifying 

whether the component Eij of the loading strain rates is applied or not. 

During tectonic straining and at any point in the medium not undergoing failure, 

stresses and strains are linearly related through Hooke's law 

a(x,t) = ckl(X)€k1(X,t). 	 (8.21) 

8.5.3 The fluid phase 

Macroscopically, we may consider fluid flow in porous rocks as well as in fracture 

zones as a process of fluid pressure diffusion, with anisotropic diffusivities varying 

spatially and temporally by several orders of magnitude, and pore pressures also 

presenting high local variations. When fluids are injected into a porous rock mass 

at a sufficiently high pressure we can have two possible types of fracture processes. 

Depending on the fluid and rock properties and on the local stress field, hydraulic 

fracturing or induced seismicity may occur. However, any changes in the frac-

ture network will almost certainly complicate the identification of pore pressure 

changes in seismic signatures, so we keep the fracture network unchanged. Such 

models are called 'static' in terms of the stress field, and the fracture network is 

used only to account for the porosity and permeability. A major simplification 

of the model is that the fluid is assumed to have the same bulk modulus K f  as 

the solid K3  (Maillot and Main, 1996). We also assume that both fluid and solid 

phases are chemically inert and at constant temperatures, that the implicit void 

spaces are fully collected, and the porosity 0 is uniform and constant. Only a 
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single phase of fluid is considered. We combine mass conservation, Darcy's law 

and a linear equation of state [P1 = pf0 (1 + p/Ks)], to obtain the time evolution 

of the fluid pressure p: 

D - ( ''- --' 	 (8.22) 

where 

Dij 	= 	Kij 	 (8.23) 

is the diffusion tensor, with ij and ijj (x, t) respectively the viscosity of the fluid 

and the permeability of the matrix. We add the last term of Equation (8.22), 

which acts as a pore pressure source or sink, to include the effect of solid matrix 

isotropic stress variations (the stress is taken as positive in tension). This term 

encompasses the transient stresses of the seismic radiations (in fact only of the 

P-waves, since the S-waves do not make volume changes) as well as those of the 

static stress, as Equation (8.22) is integrated over time. That is the first coupling 

between the solid and the fluid phases in this model. 

We use a lattice Boltzmann method to solve Equation (8.22), which is valid 

in the most general media with anisotropic, heterogeneous and time-dependent 

diffusivity [Equation (8.23)] (see Maillot and Main, 1996). The lattice Boltzmann 

model is an approach for the solution of the pore pressure diffusion equation. 

It is based on the construction of a simplified microscopic discrete model which 

macroscopically obeys the partial differential equation to be modelled. It provides 

unconditionally stable, easily implemented, and efficient numerical algorithms. It 

consists of the streaming and relaxation of particle densities along the axes and 

at the nodes of a regular lattice. 

Bhatnagar- Gross- Kro ok (BGK) models, that are described in the next section, 

were introduced by Quian et al. (1992) who gave a simple and clear description 

of this relaxation method "if N(t) is a quantity at time t and N is its predicted 
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value, then N(t + 1) is given by 

N(t + 1) = (1 - ))N(t) + ANp, 	 (8.24) 

where ) is the relaxation parameter, which must be between 0 and 2 to ensure 

numerical stability. In our model, we let the relaxation parameters be space, time, 

and direction dependent, and add a static term, to obtain a diffusion BGK model 

which supports anisotropy, spatial and temporal gradients of the diffusivity, and 

gravity effects, which are all necessary features of a realistic model of pore fluid 

diffusion in the earth. 

8.5.4 The lattice BGK model 

The physical space is discretised by a regular lattice with nodes denoted x, while 

the discrete times are denoted t, with a space step 'y and a time step T. Each 

node x has b nearest neighbours x + 'ye, (a=1 .... b), where eQ  are the lattice 

vectors. The basic variable of the model is the pore fluid pressure P, (x, t) going 

in the direction of eQ. It relates to the total pore fluid pressure P(x, t) through 

P(x,t) - 	P(x,t), 	 (8.25) 

and its evolution is described by the following lattice Boltzmann equation 

PQ (x+yeQ,t+Y)APQ +AQPeq  +QQ , 	(8.26) 

b 

3(P - P) + tQheQ , 	 (8.27) 13 
13=1 

and all terms on the right hand side of Equation (8.26) are evaluated at (fr, t). 

Since the relaxation parameters AQ (x, t) in Equation (8.26) have been made space, 

time, and direction dependent, they will lead to a diffusion tensor Dij  (Equa-

tion 8.23) in the macroscopic diffusion equation. The local equilibrium pressure 
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P(x, t) plays the role of the predicted value in Equation (8.26) and is defined 

as 

P'(x, t) = tP(x, t). 	 (8.28) 

The velocity of the fluid does not appear explicitly here because we aim at 

modelling the diffusion equation. By adding a velocity term to the equilibrium 

distribution of Equation (8.28), the convection-diffusion equation can in principle 

be easily obtained by the same method, but this is beyond the scope of this thesis. 

In this case the velocities can be calculated once the local pressure gradients are 

known. Various partial differential equations can be obtained depending on the 

choice of the equilibrium distribution. The first term in Equation (8.27) only 

ensures that the total pressure P(x, t) is conserved by the relaxation step, and the 

second term in Equation (8.27) accounts for gravity effects. h(x, t) is a function 

of the body force due to gravity and of the relaxation parameters A (x, t). 

In the above equation we adopt the summation convention of repeated indices 

only on Latin indices. We will also make use of the parity symmetry of the 

lattice which implies ea 	— e+b/2 and t = t+b/2. To keep this symmetry, we 

further assume that A,,= )'+b/2.  The lattice Boltzmann in Equation (8.26) can 

be understood to be a two step process: (i) a streaming step which moves the Pci, 

to neighbouring nodes, and (ii) a relaxation step which decreases the difference 

- pq in each direction. 

8.5.5 Brittle behaviour 

We assume that cohesion C and an internal friction coefficient ri fully specify 

conditions for failure for the rock mass. We apply the standard Mohr-Coulomb 

criterion to the effective stress of to determine where and when failure occurs 

[Figure (8.2)]. Although the criterion determines in which mode and in which 

direction a fracture occurs and grows, we will, however, not make use of the infor- 
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mation about the orientation of the fracture because it is implicitly determined 

by the stress distribution computed from the equation of motion. In other words, 

the criterion is used simply to determine whether or not a node reaches failure. 

This is applied to a given point in space, not to a given plane. We therefore look 

for any plane at that point such that 

	

- naeff > c, 	 (8.29) 

where r is the friction of the plane, and u'ff is the effective mean normal stress 

calculated from the effective stress 

eff Clij=C7ij - cö jj P. 	 (8.30) 

This equation is the second (and last) coupling between the solid and the fluid 

phases in our model. The Terzaghi coefficient ci ( 0 < o < 1) may be defined 

through macroscopic or microscopic considerations (e.g. Nur and Byerlee, 1971), 

but is usually close to 1 when dealing with fracture processes (Scholz, 1990, p.30). 

We assume oz = 1 in this study. When and where rupture occurs, the stress is 

divided into the deviatoric and isotropic components. Failure does not change 

the isotropic part, crkk, which still follows Hookes law (Equation (8.21)). The 

deviatoric part follows the simple friction law 

C7ij 	t) = jj(x, t0 )( + ( 1 - Of (t - t0 )) 	(for t > to), 	(8.31) 

where (0 < C <1) is the proportion of deviatoric stress still present after rup-

ture, which is a measure of the seismic efficiency (( = Y/7-3  in Figure (8.2)). 

Seismic efficiency is the proportion of potential energy available for radiation 

during dynamic failure. For an elastic medium with constant stiffness it is the 

ratio of the radiated energy to the total energy. to  is the time of onset of rupture, 

and f a sine shape function which goes from 1 to 0 during relaxation time, t,, 

defined through the timescale 

-= 	tr 	
(8.32) 

r 
 (x/C8) 
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t is the ratio between the time, tr, taken by the rupture and the time taken by 

a shear wave (of velocity C8 ) to travel by one lattice step Ax. The length Ax 

may be interpreted as the thickness of the fracture gouge (Nielsen and Tarantola, 

1992). The dimensionless timescale t controls the duration of rupture, and hence 

the spectrum of the seismic radiation. If it is very large (in the order of a few hun-

dred), there is essentially no seismic radiation and failure occurs quasi-statically. 

In this case the seismic efficiency is low. If it is very small, high frequencies 

are emitted, and the seismic efficiency is high. Numerically, however, if t < 1, 

strong numerical dispersion occurs and the calculated seismic radiation is not 

accurate. However, as seismic radiations are not allowed to trigger ruptures, the 

actual choice of t should have no bearing on the birth and growth of fractures. 

Also in the implementation of the theoretical model in this thesis, the choice of 

tr does not influence the behaviour of the medium. However, the dynamic value 

Td, combined with the distribution of cohesions C, has a drastic influence on the 

medium. The dynamic value Td is a proportion of the static value 're . 

Td 

to 	 t r +tO 	t 

Figure 8.2: Friction as a function of time during dynamic failure used in our model 
(Equation (8.31). T represents any component of the deviatoric stress 
tensor. y8: static friction (before failure); Yd: dynamic friction (after 
failure); to: time of onset of rupture; t1.: relaxation time (JVlaillot et al., 
1999). 
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With the friction law [Equation (8.31)], the characteristic length of slip as de-

fined by Boore (1981) is replaced by a characteristic time of decay of the friction 

from its static to its dynamic value, regardless of the slip velocity. A phenomenon 

of spreading of the rupture front follows, over a distance Vrtr (V is the veloc-

ity of propagation of the rupture, close to C8 ), that is similar to that induced 

by a characteristic length of slip. This friction law [Equation (8.31)], although 

rather simple, thus retains an important feature of dynamic rupture (Nielsen et 

al., 1995). 

8.6 Numerical implementation 

The numerical model for fluid flow was inherited from Dr. Maillot, who originally 

created the algorithm. The algorithm is written in High Performance Fortran 

and runs in a parallel machine. Some changes were made to the algorithm on 

the visualisation of the resulting pore fluid pressure maps, as well as on the 

implementation of the pre-existing fracture network. The overall algorithm for the 

simulation of fluid flow and the evolution of the fracture network due to changes in 

pore pressure, may be described as follows. The pore pressure diffuses according 

to Equation (8.22) and to specified values at injection points. During the diffusion 

regime, the occurrence of failures is constantly checked with Equation (8.29) and 

Equation (8.30). The last term of Equation (8.22) is null because, in the first-

order model, pore pressures do not perturb the stress field. When failure occurs, 

the pressure diffusion is stopped and we enter the elastic regime: stresses are 

updated according to the equation of motion (Equation 8.18), Hooke's law (in 

the forms of Equations (8.19), (8.20), and (8.21), and the friction law at broken 

points (Equation 8.31). Seismic radiation is generated at the broken points, pore 

pressures are updated according to the last term of Equation (8.22) only, and 

again, new failures are checked with Equation (8.29) and Equation (8.30). When 
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no further failures are triggered, the kinematic energy in the medium is absorbed 

by adding a small force proportional and opposite to the gradient of the stress in 

order to converge to the static state (this simulates the natural process of seismic 

attenuation). A static state is reached when the maximum displacement velocity 

has been reduced by a factor of io. The elastic regime is then finished. The 

prescribed dynamic values of friction at broken points are relaxed (that is, when 

the elastic regime is entered again, stresses at previously broken points will be 

updated according to Equation (8.18) rather than Equation (8.31). Diffusivities 

may be updated at broken points according to desired values in fractures. The 

new static state of stress serves as a starting point to resume the pore pressure 

diffusion regime. 

In order to define the initial state of the medium in a way that when and how 

fractures will start can be controlled, there are three dimensionless numbers that 

are defined: 
a1  - U2 

C 	
(8.33) 7=  

	

011  +(72 	
(8.34) x= 

	

- a1 	
(8.35) e 	e air  - a2r  

where a1  and a2  are the principal components of the stress ajj, a and a, those 

	

of the effective stress, and 	and 	those 	required to trigger rupture (Fig- 

ure (8.3)). All stresses and the pore pressure are uniform at the beginning of a 

simulation. 

'y is the ratio between the differential stress and the cohesion, which controls 

the opening mode of the fractures. In the case of a heterogeneous cohesion C, its 

minimum value within the medium is taken in Equation (8.33). If-y < 1, fractures 

would occur mainly in mode I (that is when displacements are perpendicular to 

the fracture surface). In the model used in the thesis we examine only induced 

fracturing, rather than hydrofracturing, so we always specify 7> 1 (i.e we only 
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c 	2 	0 l r  Y? y1 	normal 
2r 	 stress 

Figure 8.3: Diagram of the Mohr-Coulomb failure criterion at the initial state of the 
simulation. The internal friction ii and the cohesion C(x) are medium 
properties that define the failure envelopes (diagonal lines). (01, a2) are 
the principal components of the stress tensor; (o, o), of the effective 
stress; and (°

Fe 
r) 0r) represent the effective stress required for rupture. 

P is the pore pressure, which triggers the first failure. Further failures 
may be triggered either by the same mechanism or by a local increase of 
91 - 92 due to elastic redistributions of stresses around a failed element 
(Maillot et al., 1999). 

consider mode II fractures). X is the ratio between the isotropic stress and the 

pore fluid pressure. 'lb determines how far the medium is from rupture at the 

beginning of the simulation. The lower m/', the closer the medium is to rupture. 

The choice of these three parameters determines completely the initial stress 

state of the medium. The model can be applied in both the cases of injection or 

extraction, providing we make the corresponding choice of parameters. 

8.6.1 Assumptions 

In this section we will make some remarks regarding both the theoretical and 

numerical parts of the model. We compare our implementation with the general 

case of arbitrary bulk moduli of the solid and the fluid phases. We compare Equa- 
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tions (8.18)-(8.23) with the ones developed by Rice and Cleary (1976). The pore 

pressure diffusion equation (Equation 8.22) is equivalent to the relevant equation 

of Rice and Cleary (1976) in the framework of our assumptions (equal bulk mod-

uli of fluids and solids, full connection of pores, etc.), with the differences that we 

replaced the permeability K by a tensor in order to account for the anisotropic 

fracture permeabilities, and that the porosity 0 appears explicitly in our equation. 

However, Rice and Cleary (1976) considered one of the governing equations of a 

porous medium strain by adding strain compatibility conditions. We have not 

included these conditions here, thus strain compatibility is not guaranteed in our 

model. This can be interpreted as a "one-way" coupling by comparing our pore 

pressure evolution [Equation (8.22)] and Hooke's law [Equations (8.19), (8.20), 

and (8.21)]. As a result, in our model only stresses influence the pore pressure, 

and not vice versa. The simplification was first suggested by Bell and Nur (1978). 

A simple solution to this problem (Rice and Cleary, 1976), at least in the static 

state, is to replace the stress by the effective stress [Equation (8.30)] in Hooke's 

law [Equations (8.19), (8.20), and (8.21)] and in the equilibrium equation [Equa-

tion (8.18)], which then becomes Vjo,~ff = oVP. That means that "reverse" 

coupling is a result of the local pore pressure gradients that act formally as body 

forces in the equilibrium of effective stresses. However, the "reverse" coupling is 

not applied in this study because it is computationally too intense. Stress equilib-

rium would have to be calculated at each diffusion time step. Such calculations 

involve either a full time integration of elastic stresses across the computation 

grids, or an inversion procedure. The possibility of applying another approach 

has been examined, but is not in the scope of this thesis. Therefore, we have 

finally retained only two fluid-rock couplings, the "one-way" coupling presented 

above, and the use of the effective stress in the failure criterion. 

Thus, coupling between solid and fluid phases essentially occurs around new 

or growing fractures. There are, however, more coupling processes. Those are 
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the influence of the stress perturbations away from faults on the permeability 

and the porosity, which are not taken into account. The resulting variations of 

permeability could in principle be included in the model if a particular rock is to 

be modelled for which an experimental relationship between applied stress and 

permeability variations is available. 

Concerning timescales, that of the fluid diffusion is much greater than those of 

the sliding on a fault and of the seismic radiations. It is therefore reasonable 

to stop the fluid diffusion each time a failure starts, and to restart it when the 

stress has again reached a static state. The pore pressure, however, does play 

a role in the first timescale because it is instantaneously perturbed by compres-

sions/dilatations of the rock matrix due to the passage of seismic P-waves, and 

this in turn perturbs the effective stress. 

Mode I (tension) fractures are at this implementation not allowed in the model. 

Only mode II (shear) fractures can occur. There is therefore no fracture-induced 

dilatancy, and the pore pressure on the fault is not modified by the rupture 

process. It may only be modified by the injection of fluid, or by stress changes in 

the volume around the fracture rather than along it. 

8.7 Summary 

In this chapter we presented a mathematical model that simulates single phase 

fluid flow. We introduced the two basic mathematical models, the equivalent 

continuum and the discrete network model. We also discussed the basic prop-

erties of the rock and the reservoir fluid, that affect single phase flow. For the 

mathematical model of fluid flow we used continuous mechanics. We described 

the pore fluid pressure variations by a diffusion equation and the solid matrix is 

described by the dynamic equation of motion. The model includes the generation 
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of new fractures due to changes in pore pressure, but this is not examined here 

because it is not in the scope of the thesis. 

In the model we included two major simplifications. The first one is that the 

fluid and solid phase bulk moduli are equal, which limits the model to constant 

compressibilities. The second simplification is that the model does not include 

strain compatibility conditions, which amounts to neglecting elastic stress vari-

ations due to local pore pressure gradients. The model includes the interaction 

between the solid and the fluid phase by two features. Firstly, the influence of 

the pore fluid pressure on rupture via effective stress, and secondly, the influ-

ence of the volumetric deformation on the pore fluid pressure. For the solution 

of the diffusion equation we use a lattice BGK model based on a macroscopic 

approach of lattice gases. The model can handle anisotropy, heterogeneity and 

time dependence of the diffusivity. 

In general, this chapter presents the theoretical background of the mathematical 

model that we use to model single phase fluid flow. The implementation of the 

model and the numerical modelling results are discussed in the following chapter. 



CHAPTER 9 

Dual simulation of fluid flow and 

seismic wave propagation in a 

fractured network: Effects of pore 

pressure 

9.1 Introduction 

In the previous chapter, we have presented the basic concepts of single phase fluid 

flow simulation. We introduced a numerical simulation technique to describe fluid 

flow in a fractured network. Using such a simulation, we will be able to examine 

the direct effects of fluid flow in seismograms. That will initially give us an 

indication of which properties are mostly affected, and provides the possibilities 

of inferring the variations of fluid properties directly from seismic data. 

The idea that seismic waves can be used to identify the presence of fluids and the 

transport properties of rocks takes its root from theoretical studies that go back at 

The content of this chapter has been submitted in GJI (Viastos S., Schoenberg M., Maillot 

B., Liu E., Main I.G, and Li X.-Y., 2004, Dual simulation of fluid flow and seismic wave 

propagation in a fractured network: Effects of changes in pore pressure on seismic signature, 

submitted in May 2004 in GJI) 
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least 50 years. More recently, many examples in time-lapse or 4D seismic surveys 

have demonstrated that seismic waves can be used to monitor changes in oil or 

gas reservoirs as a function of time. Probably the earliest 4D project was that 

conducted by Arco in 1982/83 on the Holt reservoir in north Texas, documented 

by Greaves and Fulp (1987). This was a fireflood, in which air was pumped 

down into the reservoir sand and ignited as an enhanced oil recovery mechanism. 

A small 3D survey was recorded prior to the fireflood. It was repeated during 

the flood, and again at the end. The seismic pictures were quite dramatic and 

demonstrated the effects of the flood very well. This work was ahead of its time. 

Gradually, a number of repeat surveys was acquired. This allowed time-lapse 

analyses to he conducted, and some of these early studies have been published, 

for example Gawith and Gutteridge (1996), and Johnson et al. (1998). An early 

application of the 4D method was to track steam injection for heavy oil extraction 

projects, and this has seen commercial use in places as far apart as Canada and 

Indonesia. Good example are published by Jenkins et al. (1997) and Waite and 

Sigit (1997), especially since this case history involves visible pressure effects as 

well as those due to temperature. In 4D seismic commonly, several 3D seismic 

surveys of the same reservoir made at different times are compared (e.g. Hirsche 

et al., 1990; Johnston, 1997). A common practice in such cases is that differences 

in reflection amplitude or impedance are interpreted in terms of reservoir changes 

(e.g. Johnston, 1997; Sonneland et al., 1997). 

In this chapter we explain how pore pressure changes affect fracture compli-

ance, thus leading to variations in seismic signatures. During production from 

a reservoir, the movement of fluids is accompanied by substantial change in the 

pore pressure field. As fluid drains, pore pressure in general decreases, increas-

ing the effective pressure on fractures, grain boundaries and microcracks. Higher 

static load on such surfaces decreases their compliance non-linearly and decreases 

fracture opening and/or pore throat size, thus increasing the stiffness of the 
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rock (increasing compressional and shear velocities) and decreasing permeabil-

ity (Schoenberg, 2002). Conversely, pore pressure buildup leads to a decrease 

in effective pressure and an increase in rock compliance. If we can establish a 

relation, that links pore pressure changes with rock compliance variations, we 

may be able to predict static effective stress from the knowledge of the dynamic 

properties (wavespeed and their associated polarisations), and in particular, to 

probe the pore pressure field changes induced by fluid movements. 

We present a theoretical formula that directly links pore pressure changes with 

fracture compliance variations. We implement the formula on the numerical sim-

ulation and apply the technique in an initial model. In this thesis we concentrate 

on seismic attributes that respond directly to the presence of fluids, and in par-

ticular on static fluid effects on the compliances of porous and fractured rocks. 

9.2 	Effects of pore pressure 

Fracture surfaces, grain boundaries, microcracks and joint faces are much more 

compliant and therefore more sensitive to stress than the intact rock. Following 

this assertion the properties of the fractured rock are analysed based on changes 

in fracture compliance and fracture anisotropy as the traction on the fractures 

varies due to pore pressure changes, while properties of the intact background 

rock are assumed to be constant. During fluid injection pore pressure generally 

increases, resulting in a decrease in the effective pressure on fractures, grain 

boundaries and microcracks. Lower static load on such surfaces increases the 

compliance in a non-linear way and increases fracture opening and/or pore throat 

size, thus decreasing the stiffness of the rock (decreasing compressional and shear 

velocities) and increasing permeability (Schoenberg, 2002). In this section we will 

explain the implementation of the effects of pore pressure changes in the elastic 

properties of the rock. As we mentioned in Section 8.6, coupling between the two 
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phases happens around the fractures. Therefore, we are interested in the effect 

of pore pressure changes in the area of the fractures, not in the intact rock. That 

is based on the assumption that fluid flows mainly through the fractures. We 

concentrate mainly in the fracture compliance, and present a theoretical formula 

that directly links pore pressure changes with fracture compliance variations. We 

also examine the local variation of effective stress and present the case of fractures 

under anisotropic stress. 

9.2.1 Estimation of fracture compliance 

The corresponding theory that describes the estimation of effective compliance 

for a fractured medium is presented in details in Chapter 2, in the fracture imple-

mentation section. For a volume V assumed to be homogeneous except for the 

presence of compliant surfaces across which displacement discontinuity can occur 

(Schoenberg and Sayers, 1995), 

Eij = [si + 8ijk1119k1 = SijklhUkl + 	f 
([uJn + [u]n)dS. 	(9.1) 

q Sq 

Strain tensor 6ij and stress tensor 0k1  are the dynamic strain and stress due 

to the passing of a seismic wave whose wavelength is taken to be much larger 

than the linear extent of the volume V; Sjjklh is the elastic compliance tensor 

of the background medium, Sijkl f  is the excess compliance tensor due to the 

presence of fractures or other surfaces across which displacement discontinuity 

occurs; Sq  is the surface area of the qth displacement discontinuity; [uj] is the 

local displacement discontinuity across the surface; and nj is the local normal to 

the fracture surface. 

For a set of aligned compliant surfaces, or fractures, with orientation defined by 

unit normal n, it is assumed in 'linear slip deformation' theory that there exists 

a linear relation between the integral of the displacement discontinuity [ui] due 
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to the passage of a wave across all the fractures and the dynamic traction Ujknk 

on a plane parallel to the fractures; i.e. 

Iq [Li 1dS 	 (9.2) 

where Zjj  is the symmetric non-negative definite "fracture compliance tensor" (of 

dimension stress-') of this set of aligned fractures in the 1,2,3 coordinate system. 

Substituting Equation (9.2) into Equation (9.1), we have, 

Sjjkl Sjjkjh  + Sijkl1 = 8ijklb + (Zknln + ZJkn1n + Zjnkn + Zinkn). (9.3) 

Those expressions for Sijklf  satisfy the symmetry conditions of the 4th rank com-

pliance tensor, 8ijkl = 8ijlk, 8ijkl = 8 jikl, 8ijkl = 8klij. For a vertical fracture set 

with a horizontal unit normal given by 

ni = 5j,cos9 + 6i2SflO, 	 (9.4) 

the excess fracture compliances are found by substituting Equation (9.4) into 

Equation (9.3), where 9 is measured from fracture normal. 

9.2.2 Estimation of effective static stress traction on 

aligned fractures 

In the subsurface, first let static stress be of opposite sign than the usual conven-

tion so that compression is positive. Then, in a porous medium, the relationship 

between effective static stress o,,ff  and the applied external static stress cr t  is 

given by 

Ueff 	- PI, 	 (9.5) 

where P > 0 is pore pressure and a is a scalar empirical factor (usually a < 1). 

In some cases of anisotropy, oJ should be most likely replaced by an anisotropic 

tensor. For isotropy, though, the usual practice is to assume c = 1. As pore pres-

sure is isotropic, symmetry considerations dictate that on any surface, changes 
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in pore pressure can only change the normal component of traction; tangential 

components of traction are invariant to pore pressure changes. One may think of 

a pore pressure drop as allowing the grains and other parts of the rock mass to 

"settle" into one another. Such compaction generally decreases the acoustic com-

pliance of the compliant surfaces and the permeability of the fracture network. A 

pore pressure rise generally does the opposite. The assumption that Z depends 

on the static effective stress traction on the fracture faces contains a far reaching 

implication - that effective stress changes influence the fracture parameters but 

does not cause a great number of new fractures to open suddenly, which would 

undermine the assumption of a more or less deterministic functional relationship 

between static stress and fracture parameters. 

We assume an anisotropic state of external static stress with one of the principal 

directions of the stress tensor being the vertical with principle stress 03, and let 

the horizontal 1- and 2-directions be the other principle directions with principle 

stresses cr1  and a2 , respectively. Consider the set of compliant surfaces at a 

particular orientation with a normal unit vector specified in polar coordinates by 

sin qcos9 

sin çi5sinO 	, 	 (9.6) 

cos 

where q is the polar angle and 0 is the azimuthal angle. The effective stress 

traction, a vector acting on that fracture plane, is, 

a1  - P 	0 	0 	sin çbcos0 	(0'1  - P)sinçbcos8 

0 a2  - P 	0 	sinsin9 	(92  - P)sinsinO , (9.7) 

0 	0 0'3  - P 	COSO 	 (93  - P)cos 
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The normal component of this traction, denoted by T1, is 

(al  - P)sinçbcosO 

= [ sincosO, sinsinO, cos ] 	(a2  - P)sinsin9 

(0'3 - P)coscb 

= —P + 
91 + U2 + + 0 1  U229  - 91+92 - + a - a21 

cos2. 

(9.8) 

For vertical fractures, the normal is horizontal, q = 7r/2 and cos2ç = —1. Then 

from Equation (9.8), the normal component of traction becomes 

a1 +a2  a1 —a2 
+ 	cos2O 

2 	2 	
(9.9) 

At any orientation, the tangential components of traction are independent of P. 

9.2.3 The case of vertical fractures under anisotropic 

stress 

For a medium with a continuous distribution (over orientation) of fracture sets, a 

fracture compliance density tensor Z3 (nk)  can be defined over a unit hemisphere 

(u.h.s.). From Equation (9.3), the excess compliance due to the fracturing may 

be written as an integral over the solid angle Q, 

8ijkl1 	f 	[Zik(flq)fllnj + Zjk(flq)fllfli + Zil(flq)flkflj + Zjl(flq)flkflil  d. 
u.h.s. 

(9.10) 

Under anisotropic static stress, slip interfaces will be subjected to different trac-

tion as a function of orientation, and the traction will have a tangential compo-

nent except on fractures normal to a principal stress direction. For simplicity, we 

assume that the fracture sets, or sets of compliant surfaces, at all orientations 

are rotationally symmetric, i.e. they remain rotationally symmetric. Rotational 

symmetry of the fracture set implies that the fracture compliance matrix in the 
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coordinate system convenient to the fractures depends on two compliances: a nor-

mal compliance ZN and a tangential compliance ZT. Following that the fracture 

compliance tensor Z jj  becomes 

Zij 	— nn)ZT+nnZN = ZT6ij (ZN - ZT)nn. 	(9.11) 

In the model that we present here we only consider vertical fractures. In this 

medium, the fracture normals lie in the (1,2)-plane and an arbitrary fracture 

normal is given in initial notation by Equation (9.4). The integral over the unit 

hemisphere reduces to an integral over the unit semi-circle, in particular, let 

—7r/2 < 0 < 7/2. For rotationally symmetric fractures, Z jj  is given by Equa-

tion (9.11), and substitution of Equations (9.11) and (9.4) into Equation (9.10) 

gives 

Z 
T  (0) 

Sijk1
=f

/2 
/2 	4

[6k(1icos& + 6i2sinO)(Sjicos0 + S2sin0)+ 

Sk(SllcosO + 612sinO)(6icos8 + 62sinO)+ 

5l(k1cosO + 8k28iTh0)(5j1CosO  + 52sin0)+ 
(9.12) 

6l(6k1cosO + 6k2SZn9)(lCOSO + 6 2sinO)dO 

+ 
 f/2

[ZN(0) - ZT (0)] (5 1cos0 + 5 2sin0)(6 icosO + ö 2sinO) 
r 

(41COSO + 42Sin&)(611cosO + 512sirtO)dO. 

For n3  = 0 we have s331 	0 for arbitrary vertical fractures. For rotationally 

symmetric fractures, we see from Equation (9.12) that 

Sijk3 	0,i,j,k= 1, 2. 	 (9.13) 
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This results in a compliance matrix in 6X6 condensed notation of the form: 

S111  S,. 0 0 0 S161  

S121  S221  0 0 0 S261  

o 00 0 0 0 

O 0 0 S44  S45  0 

O 0 0 S45f  S55  0 

S16  S261  0 0 0 S66  

which is the form of a monoclinic medium with up-down symmetry (the 1,2-plane 

is the mirror plane of symmetry). 

Let us consider the case of a vertically fractured medium (with rotationally 

symmetric fractures) subject to an anisotropic external stress field with princi-

pal external stresses o, 92  and cr3  in the 1-, 2-, and 3-directions, respectively. 

As a preliminary simplifying assumption let the fracture compliances at any an-

gle be independent of the tangential component of effective stress traction on 

the fracture faces and depend on just the normal component, ri(9), given by 

Equation (9.9). 

A reasonable approach is to assume very compliant fractures at low normal stress 

with fractures approaching low values asymptotically as normal stress becomes 

large. Approximating such dependence by exponential decay functions, we may 

write, 

Zjv(9) = ZN(0) + {ZN0(9) - ZN(9)] e_T&T8), 	 (9.14) 

ZT(9) = ZT(8) + [ZT0(9) - ZT(0)J eT&VTT. 

This is the general case where the parameters governing the exponential decay 

functions are themselves functions of 9. However, in the model examined here we 

assume that ZN, ZN0 , TN, ZT, ZT0 , TT are independent of 0 and Equation (9.15) 
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becomes 

ZN(&) = ZN + [ZNO - ZNØQ] e_TO)/TN, 	 (9.15) 

ZT(0) = ZT + [ZTO  - ZT] eTOVTT. 

The 0-dependence is just through the cos20 dependence of Tj. Note that as T-L  is 

an even function of 9, ZN and ZT  are also even functions of 9. Now integrating 

over all values of 9 from —ir/2 to 7/2 will give the excess compliance tensor for 

this stressed medium as a function of a1 , 0'2  and pore pressure P. Immediately 

it may be seen that S161  = S26f = S45  = 0 as these involve integrating an 

odd function times an even function from —7r/2 to 7r/2. Thus a consequence 

of these assumptions and simplifications is that if the background medium is 

of orthorombic or higher symmetry, the long wavelength equivalent medium is 

orthorombic. So the 6X6 compliance matrix becomes 

S111  S121  0 0 0 0 

S121  S22 f  0 0 0 0 

S f  = 
o 00 0 0 0 . 	(9.16) 
0 0 0 S44f  0 0 

0 0 0 0 S551  0 

0 0 0 0 0 S66 

In the simulations presented in this chapter, the coefficients TT and TN are em-

pirically set to 1.35MPa. Also the compliances at zero stress have been set to 

= 5.681 . 10 9CPa', ZN0  = 2.8409 10 °GPa 1, and the compliances at 

infinite stress are ZT00  = ZT0 /5 and ZN 	ZNO/2. 
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9.3 Numerical simulation of wave propagation 

during the fluid injection 

In the examples presented in this section, we have implemented the fluid flow 

model in 2D using a 256 X 256 'd2q9' lattice for the BGK diffusion model. Fol-

lowing the terminology of Quian et al. (1992), a 'd2q9' lattice is a 2D square 

lattice where each node is connected to eight neighbours: four horizontally and 

vertically, four at 45° , and itself. The boundary conditions are periodic, that is, 

the top side of the grid links to the bottom side, and the left side to the right side. 

The plane of computation is taken to be horizontal, justifying the absence of a 

gravity term in Equation (8.22) and an injection well is inserted in the centre. 

The dimension of the model is characterised by the length scale L representing the 

overall extent of the model, and the timescale T being the duration of the fluid 

injection at the well. The spatial discretisation is Ax = 10m, and therefore the 

dimension of the model is 2560m X 2560m. The errors expected in the diffusion 

model are of the order O(€2),  with € = L.x/L = (/td/T)'/2  (Maillot and Main, 

1996). Atd  is the required time step for the diffusion process. The diffusivity D, 

must satisfy Dtd/zx2  < 1. The time step is /td = is. 

The diffusivity in the model was set as follows: in the unfractured (background) 

rock, it is isotropic and is equal to D = 10-Ws-'. In the fractures, the principal 

components are D1  along the local direction of the fractures and D2  normal 

to the fractures, with D1  = 104D and D2  = 102 D. For the solid state we 

assume an isotropic background medium, so anisotropy is caused only by the 

presence of fractures. The background medium parameters are Vp = 3300m/s, 

V = 2000m/s, that are the P- and S-wave velocities. The rock density is set to 

p 	2200kgm 3  and the internal friction is also constant and set to 0.6. 

We examine the case of a pre-existing fractured network, which is hydrauli 

cally conducting. The fracture patterns are generated by a stochastic multiscale 
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cellular automaton model (Narteau, in press) and provided to the author by 

Dr.Narteau. The matrix is considered to be isotropic, and the fractures are 

aligned. The map of cohesions C(x) was constructed based on the fracture net-

work. The cohesion is on average 10 times higher in the unfractured areas than 

in the fracture positions. As we mentioned above, the initial conditions are very 

important because they define the state of the medium at the initialisation of the 

simulation. We will not refer to the initial conditions at this stage, because we do 

not include the generation of new fractures in the following results. That is be-

cause in the current study we want to concentrate on the effects of fluid flow and 

the evolution of the fracture network will complicate the results, thus not giving 

us the ability to be certain that the features are due to the pore pressure changes. 

Therefore in the following simulations the fracture network remains unchanged. 

In the fractured medium fluid is injected in the centre of the model and present 

a pore-pressure map at four consecutive time steps. Figure 9.1 shows the pore-

pressure maps at 10, 40, 70, and 100 hours after the initialisation of the injection. 

The area shown in this figure is a small area around the injection point, and not 

the whole modelled area. The black lines represent the pre-existing fractures. 

The values of the pore pressure are presented by a colour code explained on the 

right side of each map. The emergence of an elliptical pore pressure contour can 

be seen at 100 hours, aligned with its semi-major axis parallel to the fracture 

orientation. 

To model the seismic wave propagation accurately in a complicated network 

of fractures, we use a the finite-difference technique introduced in Chapter 2 of 

this thesis. For each cell of the finite-difference grid the properties of the elastic 

material is given by an equivalent medium based on the theory described in 

Chapter 2. By applying a dense grid we have very high resolution and accuracy in 

the representation of the rock properties. When the fluid injection starts the pore 

pressure changes affect greatly rock properties. As shown in the previous section 
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Figure 9.1: Pore pressure map in a small area around the injection point 
(1000X1000rn). The figures show the pore pressure at four consecutive 
times, 10, 40, 70, and 100 hours, after the initialisation of the injection 
of the fluid. The black lines are the pre-existing fractures of the medium. 

fracture compliances change with the variation of pore pressure. At each time 

step of the fluid flow simulation, we calculate the corresponding dynamic effective 

elastic properties of the rock based on the formulas we presented. Therefore, we 

have a continuous feedback from the changing elastic properties due to the pore 

pressure changes into the seismic simulation. In that manner we can produce 

consecutive time-lapse data and examine the potential of extracting information 

about the pore pressure changes directly from seismic waves. 

For the seismic simulation the background medium parameters are VP  = 

3300ms' and V,' = 2000ms 1  for the P- and S-wave velocities, and the den- 
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sity is p = 2200kgm 3. We use 256X256 grids, with spatial grid-step 10m and 

time-step of 0.001see. The source wavelet is a Ricker wavelet with a dominant 

frequency of 40Hz and a pulse initial time of 0.1s. The source is located at the 

centre of the model (x = 1280m, y = 1280m), exactly at the same position of 

the fluid injection point, so the waves travelling to the receivers will be greatly 

affected by pore pressure changes. 

9.3.1 Single azimuth 

Initially, we record the seismic waves at a receiver located at x = 1000m and 

y = 3007n, at consecutive stages of the injection numerical simulation. Figure 

9.2 shows the model configuration used for the seismic simulations. The source-

receiver direction is at a 16° angle with the y-direction, while on average the 

direction of the fractures is at a 30° angle with the y-direction. So the source-

receiver angle relative to the fracture normal direction in average is 104° (red line 

on Figure 9.2). We examine the variation for different azimuths (remaining lines 

in Figure 9.2) in the next section. 

Figure 9.3 shows the x-component of the wavelets recorded at the receiver. 

The black trace is recorded at the pre-injection stage when pore pressure is equal 

throughout the model and is used as a reference. Then we start the fluid injection 

and we get feedback from the pore pressure changes at 10, 40, 70, and 100 hours 

after the initialisation of the injection as shown in Figure 9.1. We simulate the 

wave propagation for the medium at the four consecutive time steps of the fluid 

injection. The red, green, blue, and orange traces are recorded at the receiver at 

a stage 10, 40, 70, and 100 hours after the injection initialisation, respectively. 

There are clear variations on the characteristics of the waveforms as pore pressure 

changes. The direct P-waves recorded at 0.37 sec, do not seem to be affected 

by the pore pressure changes and seem to maintain the same amplitudes. In 
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Figure 9.2: Configuration of the model used for seismic modelling at consecutive 
stages of fluid injection. The source is located at the centre of the model 
(x = 1280'rn, y = 1280m) and the single receiver where we record the 
seismic waves is located at x = 1000in and y = 300m. Also the re-
ceivers used to examine azimuthal dependence are shown together with 
the azimuths for each case. 

contrast, the S-wave and the coda waves exhibit strong amplitude changes which 

can be uniquely attributed to the pore pressure changes, since all other parameters 

remain constant. This is in agreement with the results presented by Liu et al. 

(2002). Angerer et al. (2002) also showed that P-waves are less affected by pore 

pressure changes compared to S-waves during CO2  injection. In details, for the 

S-waves we can say that there is almost a similar pattern; as the pore pressure 

gets higher the amplitude of the wave gets higher. We can see that the orange 

wavelet has the higher amplitude, which represents the state at 100 hours after 

fluid injection, when the pore pressure is higher compared with the rest of the 

cases. On the contrary, for the coda waves (after 0.65 sec), they seem to be 

affected by pore pressure in an opposite way. So it has higher amplitude at the 

pre-injection stage (black wavelet) and lower amplitude when the pore pressure 
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is the greater (orange wavelet). 
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Figure 9.3: Wavelets recorded at an individual receiver for consecutive pore pressure 
stages. The black wavelet represents the pre-injection stage, and red, 
green, blue, and orange represent stages of the fluid injection at 10, 40, 
70, and 100 hours after the injection, respectively. 

To examine further the effects of pore pressure on the wavelet, we show in Figure 

9.4 the spectrum of each of the wavelets presented in Figure 9.3. We can see a 

significant shift of the peak frequency towards lower frequencies as the injection 

proceeds. Starting from the pre-injection point where the most energy is near 

40 Hz, we end up in the stage 100 hours after the injection where most of the 

energy is at 30 Hz. This indicates a systematic increase of attenuation with the 

increase of pore pressure. The magnitude of the peak frequency shift is about 

10 Hz. Another feature seen in the spectrum is that at the initial stages of the 

injection, at 10 and 40 hours after the initialisation the energy is distributed 

in two frequency ranges compared to the rest of the cases where the energy is 

concentrated in a certain frequency range. This may be because the initial stages 

are a sort of a transition state of the system between the pre-injection and the 
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after-injection states. 
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Figure 9.4: Spectrum of the waveforms shown in Figure 3, representing seismic waves 

recorded at different stages of the fluid injection. The colour code corre-
sponds to the one used in Figure 3. 

It is a usual practice in time-lapse seismic monitoring to examine the difference 

of measurements for two consecutive time-steps, in order to evaluate the effect of 

pore pressure changes. For the model shown in Figure 9.2, we conduct forward 

modelling for the pre-injection state, and the states 10, 40, 70, and 100 hours 

after the fluid injection. From each simulation snapshots of the seismic wave are 

generated at 150 ms, 250 ms, 350 ms, and 450 ms, after the initialisation of the 

source. To examine the effect of pore pressure changes, we take the pre-injection 

stage as a reference stage and find the difference between the snapshots of each 

stage after injection and the pre-injection stage. Figures 9.5, 9.6, 9.7, and 9.8 show 

the snapshots at consecutive time steps, which are the results of the difference 
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between the simulation stages at 10, 40, 70, and 100 hours after the fluid injection 

and the pre-injection stage, respectively. From all the figures we can see that the 

area of strong differences in the seismic signal have the elliptical shape that its 

long axis almost follows the direction of the fractures. Also the strong differences 

are concentrated in the centre of the model, which is exactly where the injection 

of the fluid happens, i.e. the highest differences in pore pressure. Those features 

indicate that the dual simulation shown here can map the effect of pore pressure 

changes in seismic wave propagation. By taking a closer look, especially at each 

snapshot taken 450 ms after the initialisation of the source, when the seismic wave 

has covered a significant part of the modelled area, we can see that gradually the 

area of strong difference spreads gradually from the injection point outwards, 

following an ellipse which is exactly the shape of the fluid front. 

9.3.2 Azimuthal dependence 

Another important aspect of the pore pressure effect is the azimuthal dependence 

on seismic signatures. We conduct the same simulations as above and record the 

seismic waves at three receivers, at the same distance from the source, so we will 

have almost the same attenuation due to the distance travelled by the seismic 

wave, and at 90°, 130° and 180°, from the fracture normal. This is repeated for 

each of the four states of the fluid flow simulation shown in Figure 9.1. Figure 

9.9 shows the differences in the horizontal components recorded at the three 

receivers at each azimuth. The differences are computed between: (a) 10 and 40 

hours after injection, (b) 10 and 70 hours after injection, and (c) 10 and 100 hours 

after injection. Figure 9.10 shows the corresponding difference in the frequency 

spectra. 

In general, this is another confirmation that P-waves are not greatly affected in 

contrast to S-waves and coda (or scattered) waves. Along the fractures (azimuth 
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90°) we can see the strongest difference in S-waveforms, while at direction normal 

to the fractures (azimuth 1801), the strongest difference is in coda (or scattered) 

waveforms. As the pore pressure increases further, this effect becomes stronger, 

as expected. It is interesting to note that there is a variation of the frequency 

content with azimuth. The greatest frequency shift occurs at an azimuth of 180° 

where a significant amount of energy is shifted from 50-60 Hz towards 30-40 Hz. 

At 130° azimuth, energy moves between the same frequency ranges, but in a 

smaller degree. Finally, at 90° azimuth there is a much more limited shift of 

energy, and in addition there is significant energy present at the range of 50-

60 Hz. In this case the energy is redistributed to both low and high frequencies, 

in a transition phase, before it shifts to systematically lower frequencies as angle 

increases from the fracture normal. 
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Figure 9.5: Snapshots at consecutive time steps (150 ms, 250 ms, 350 ms, 450 ms 
after the source initialisation), which show the difference between the 
simulation of the medium 10 hours after the injection of the fluid and 
the pre-injection stage. 
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Figure 9.6: Snapshots at consecutive time steps (150 ms, 250 ms, 350 ms, 450 ins 
after the source initialisation), which show the difference between the 
simulation of the medium 40 hours after the injection of the fluid and 
the pre-injection stage. 
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Figure 9.7: Snapshots at consecutive time steps (150 ms, 250 ms, 350 ms, 450 ms 
after the source initialisation), which show the difference between the 
simulation of the medium 70 hours after the injection of the fluid and 
the pre-injection stage. 
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Figure 9.8: Snapshots at consecutive time steps (150 ms, 250 ms, 350 ms, 450 ms 
after the source initialisation), which show the difference between the 
simulation of the medium 100 hours after the injection of the fluid and 
the pre-injection stage. 
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Figure 9.9: Differences in horizontal components recorded at receivers having dif-
ferent azimuths from the fracture normals. Figures (a), (b), and (c) 
correspond to the differences between pore pressure 10 and 40 hours, 10 
and 70 hours, and 10 and 100 hours after injection, respectively. 

9.4 Summary 

We have conducted systematic dual numerical simulations of fluid flow and seismic 

wave propagation. For the fluid flow simulation the fluid is injected at the centre 
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Figure 9.10: Differences in frequency spectra of the signals corresponding to the 
same cases as in Figure 9.9. (a), (b) and (c) represent increasing time 
difference between the examined stages as in Figure 9.9 

of the model and at selected time steps after the injection information about 

pore pressure is collected. Variations in pore pressure lead to variations in the 

effective stress. We use an empirical relationship between the effective stress 

changes and respective changes in the compliance of the rock. Therefore, at each 

selected time step of the fluid simulation, we obtain complete information about 

the updated elastic properties of the medium, and use them to perform seismic 

simulation. This process gives seismic data at consecutive time steps when pore 

pressure changes, which is synthetic time lapse seismic data. The simulations in 

the thesis focused on the examination of the effects of pore pressure changes on 

seismic wave attributes. 

These initial simulations show a different response between P-waves and S- and 

coda-waves to pore pressure changes. P-waves seem to be less affected or affected 
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in a limited way, while S- and coda-waves are strongly affected. We see that the 

amplitudes increase with increasing pore pressure. Also the frequency spectrum 

shows significant variations with pore pressure. There is an important shift of 

the peak frequency towards lower frequencies (implying strong attenuation) as 

pore pressure increases. However, it is possible that this frequency shift may be 

due to normal attenuation. Throughout the consecutive time steps the fractured 

medium does not change, which means that normal attenuation would be the 

same in all cases. Therefore when we find the differences in frequency spectra 

between different time steps, the results are solely due to the effects of fluid flow. 

We also examined the effects of pore pressure changes on seismic signatures, 

related to the angle of incidence of seismic waves. In the simulation presented 

in this chapter fractures comprise the main path where the fluid moves in the 

reservoir, that is why the fluid front is an ellipse with its long axis parallel to the 

fracture orientation. Parallel to the fracture orientation we observe very strong 

amplitude difference in the S-waves as pore pressure changes, while normal to 

that direction the strong difference is observed in the coda (or scattered) waves. 

Finally, we show that the greater shift of energy in frequency happens when 

seismic waves travel normal to the flow path. 

Finally, we presented snapshots of seismic waves at different stages of the fluid 

flow process. The snapshots show significant amplitude variations on seismic 

waves, that accurately describe the evolution of the fluid front. This indicates 

the validity of the technique we presented. 

In the real field variations in fluid flow properties are examined with time-lapse 

seismic monitoring. It is a newly established tool for reservoir process observation 

and improved reservoir management. Commonly, several 3-D seismic surveys 

of the same reservoir at different times are compared. Differences in reflection 

amplitude or impedance are interpreted in terms of reservoir changes. In addition 
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to surface seismic surveys, high frequency (lower kilohertz range) crosshole data 

are used for monitoring reservoir processes. Also under development are active 

seismic reservoir monitoring techniques by permanently installed downhole source 

and receivers. 

To conclude, we have exhibited that our study can help to provide a greater 

insight in the systematic effects of pore pressure changes on seismic waveforms and 

attenuation, and to identify potential ways to estimate pore pressure changes from 

seismic data. The results presented here form part of our strategy to establish 

a direct link between pore pressure changes and potentially diagnostic variations 

on seismic waves. 



CHAPTER 10 

Discussion and Conclusions 

10.1 Summary of the main results 

The aim of this thesis was to investigate the characterisation of fluid flow in frac-

tured reservoirs, directly from seismic data. We concentrated on the theoretical 

investigation of the subject and tried to establish theoretical formula that link 

fluid flow properties with elastic properties of the medium, which can be identified 

directly from seismic wave attributes. The examination was based on numerical 

modelling both of seismic wave propagation and of fluid flow. 

We started the examination from the numerical modelling of seismic waves. 

There is a number of techniques available for modelling wave propagation. Ana-

lytical methods describe in details and accurately the physics of the wave prop-

agation in a medium and the interaction with a single fracture. However, when 

we deal with a complicated network of fractures those methods have serious lim-

itations. On the other hand numerical modelling techniques can describe com-

plicated cases successfully, but the resulting waveform has the properties of the 

mean effect of the fractures. Therefore we miss important information regard-

ing the effects of each single fracture in a multiple fracture environment. We 

introduced a technique that uses a combination of the two methods. We used the 

pseudospectral method to model the wave propagation in the whole medium. Lo- 
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cally at each grid cell in the finite difference grid, we used an equivalent medium 

representation of the elastic properties. This new method by combining the two 

techniques, does not have the limitations of each individual technique and proves 

to be a reliable method for numerical modelling. 

This new method needed to be validated and examined for the results. The 

grid spacing of the finite difference grid is limited from the maximum source 

frequency and the minimum wave velocity. In general, the wavelength should 

be about five times larger than the grid size, in order to have clear reflections 

without noise interference. We also examined grid spacing compared to fracture 

size. We concluded that the maximum grid size should be equal to the size of the 

fractures examined. To conclude this part, we examined the vertical and lateral 

resolution of the technique. For the vertical resolution, a vertical distance of a 

quarter of a wavelength between two fractures, is sufficient in order to distinguish 

between the reflections coming from the two fractures. On the other hand, lateral 

resolution depends on frequency, velocity and the depth of the reflecting interface. 

Also lateral uncertainty always exceeds vertical uncertainty by a factor of at least 

two. Generally, those limitations are valid for any fracture orientation, but they 

may vary slightly depending on the source and receiver deployment 

Following we examined how fracture parameters affect seismic wave propaga-

tion. First, we examined spatial distribution of fractures. Spatial distribution 

affects clustering which is a parameter that controls scattering. In areas of heav-

ily populated fracture clusters, there is strong and coherent energy. Also high 

fracture clustering results in high local fracture densities, which can cause the en-

ergy to be trapped in a certain area (localisation processing). We also observed 

that various spatial distributions of fractures give different frequency spectra on 

the recorded wavefield. Another parameter that affects the behaviour of fractures 

is fracture size. We found that fractures act as single scatterers and they become 

sources of secondary wavefield when their size is smaller than the wavelength. On 
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the contrary, when fractures are longer than the wavelength they act as interfaces 

and they generate strong reflections. 

We examined the evolution of such a fracture network and investigated multiple 

scattering at each consecutive stage. At the initial stages of the evolution the size 

of fractures is less than the wavelength and fracture density is low. We examined 

scattering attenuation and we found that the attenuation factor shows global 

and local maximum values that correspond to certain frequencies. As fractures 

become longer the maximum values of attenuation appear at higher frequencies. 

When the system reaches the percolation threshold, fracture density becomes 

high thus leading to significant scattering and the waveform becomes elliptical. 

At the percolation threshold, we have no maximum values of the attenuation fac-

tor. After the percolation threshold, the system gets reorganised, the generation 

of new fractures stops and the existing ones start interacting to form longer frac-

tures. Scattering attenuation factor is smaller in this case compared to the cases 

before the percolation threshold and it does not exhibit significant variations with 

frequency. At the final stages, we have the formation of a major fault. The size of 

the fault is bigger than the wavelength, which results in strong reflections rather 

than scattering. 

We continued the examination of scattering attenuation but in this case by 

averaging the effect of the fractures. To do so we used the meanfield theory. 

The results showed that scattering attenuation becomes higher as the normalised 

wavenumber rises until it reaches ka = 4.41, and at this point the fracture size 

becomes larger than the wavelength. After that point scattering attenuation de-

clines (i.e. ka = 6.3). For high frequencies each fracture excites scattered waves 

of significant amplitude with the largest corresponding to wavelengths compa-

rable to the fracture size. For low frequencies, that correspond to wavelengths 

much larger than the size of the fractures, the waves excited by each fracture are 

negligible but the fractured medium excites a reflected wave as if it was one het- 
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erogeneous medium of some effective thickness. Finally, we examined the effect 

of the angle of incidence of the seismic wave on scattering attenuation. We found 

that scattering attenuation rises constantly from 00  to 90°, where the angle is 

measured from the fracture normal. That means that 00  is the crack normal and 

90° is the fracture plane. It is interesting to note that the highest value is for 70° 

and not for 90°. 

When we examined the effect of fracture parameters, we assumed that fractures 

are dry. In order to make our models more realistic, we introduced a fluid flow 

simulation technique for single-phase fluid. We presented a theoretical formula 

that links pore pressure changes due to fluid flow with corresponding changes in 

the elastic properties of the fractured medium. We used the fluid flow simulator 

in conjunction with the seismic modelling technique to examine the effect of pore 

pressure changes on seismic waves. The results showed a different response of P-

waves, S-waves and coda-waves to pore pressure changes. P-waves seem to be less 

affected or affected in a limited way, while S-waves and coda-waves are strongly 

affected. We recognised that the amplitude of the seismic waves increases with 

increasing pore pressure. Also, an important shift of the peak frequency towards 

lower frequencies (implying strong attenuation) is present, as pore pressure in-

creases. Those results refer to a single azimuth case. It is very important to 

examine what happens when the seismic waves travel at different angles towards 

the fractures. We examined the azimuthal dependence of the effects of pore pres-

sure changes, for three different angles. We observed that parallel to the fracture 

orientation there are very strong differences in the amplitude as pore pressure 

changes, while normal to that direction the strong differences are in the coda 

waves. In addition to the amplitude variations, we also notice variations in the 

frequency content. There is redistribution of energy to lower frequencies due to 

scattering as pore pressure rises. The greater shift of energy in frequency hap-

pens when seismic waves travel normal to the flow path, that is normal to the 
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fractures. 

10.2 Discussion of the results and implications 

In this thesis we have introduced a new technique for the numerical modelling 

of wave propagation in a fractured medium. The method can deal with multiple 

scattering cases without having any limitations on the number of fractures present 

in the medium. The representation of the wavefield is highly accurate as long as 

sufficient grid elements are available. However, numerical modelling techniques 

in general have a limit in the maximum size of fractures they can deal with 

compared to the grid size. That poses serious limitations in the cases of long 

fractures. If we use very wide gridcells to include the fractures inside them, then 

in order to have high accuracy we will have constraints on the source wavelengths 

we can use. In order to avoid this scenario, we divide long fractures into smaller 

ones, that can be included in smaller grid cells. That can be easily done because 

the elastic properties of each grid cell are represented by the equivalent medium. 

When adjacent fractured cells have the same elastic properties, then the seismic 

wave will recognise them as a continuous fracture, no matter how we implement 

it on the numerical model. 

The most important characteristic of the technique, is the combination of a nu-

merical technique with an analytical method. Therefore we have the accuracy 

and the exact solution of the wave equation that an analytical method gives, 

together with the lack of limitations in the properties of the fractures provided 

by the numerical method. This method can be a useful tool in the understanding 

of the important role of fractures and their effects on wave propagation. The 

knowledge gained by such studies may ultimately lead to the extraction of valu-

able information concerning the fracture distributions in natural rocks, directly 

from seismic data. Such a study of different fracture distributions was presented 
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in this thesis. It showed that scattering is strongly dependent on the spatial 

distribution of fractures. When we have fractures that are distributed in such 

a way that leads to high local fracture densities, the wavefield is complex and 

that makes individual phases and their identification very complicated. Having 

in mind that we examined 2-D models, it is clear that strongly fractured areas 

should be investigated by 3-1) techniques. The limitations introduced by 2-D 

modelling compared to 3-D modelling was briefly examined in a previous chap-

ter. In the 2-1) approximation the source is a line source of infinite length. There 

are ways of making a correction to our synthetic seismograms so as to resemble 

synthetic seismograms resulting from a point source. As shown by Vidale et al. 

(1985) an approximate SH source seismogram can be obtained by convolving the 

line source seismograms with 1/-I/t-and  differentiation with respect to time. This 

is equivalent to a deconvolution with 1/ \/, an approach used by other authors 

(e.g. Crase et al., 1990). 

Our investigation showed that another critical parameter is frequency. We have 

shown that the frequency content of the wavefield depends on spatial distribu-

tions. That also is in agreement with findings from other researchers, who found 

that frequency-dependent seismic scattering depends on fracture spatial distri-

bution. Therefore the usual examination of seismic data at certain frequency 

is not enough. Depending on the spatial distribution of the fractures, we may 

loose a lot of information, if we examine the wrong frequency range. Therefore 

a thorough investigation of seismic scattering should cover a wide range of fre-

quencies. For example, lets take the case of coda waves, which is one of the usual 

effects of scattering. Coda waves is the result of energy that is redistributed to 

frequencies other than the source frequency. In real earth we have complicated 

spatial distributions and in some cases fractures have also power law or fractal 

size distributions. Such an environment gives very strong coda waves and very 

complicated waveforms. If we limit our examination in a certain frequency range, 
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we will loose all the information included in the coda waves. 

In the initial stages of the investigation we examined fracture networks of certain 

properties. In the earth fracture networks are not static but they are evolving 

with time. We have conducted a systematic numerical study of scattering atten-

uation in such an evolving fracture network. Once more the examination showed 

that scattering attenuation is frequency dependent. However, that dependence 

varies with the frequency range examined. Also the relationship between scatter-

ing attenuation and frequency has significant variations at different stages of the 

fracture evolution. The parameters that vary while a fracture network evolves 

are fracture density and fracture size. The results indicate that one of those 

parameters or both of them, control frequency dependence. It is demonstrated 

that there is a proportional relationship between scattering attenuation and frac-

ture density, because scattering becomes stronger as fracture density becomes 

higher. Following, strong scattering leads to the generation of coda waves and 

to a shift in frequency of a significant amount of energy. In addition, the mech-

anism of scattering is also sensitive to fracture scalelength. The results showed 

that scattering attenuation has in some cases maximum values at certain fre-

quencies. Those frequencies possibly correspond to wavelengths comparable to 

the dominant scalelength of the fractures. That is visible in most of the evolution 

stages, especially at the later stages when we have few dominant scalelengths. At 

the percolation threshold, where we have no dominant scalelength, we have no in-

dication of a maximum scattering attenuation at any frequency range. Although 

the combined effect of fracture density and scalelength on frequency dependence 

is very complicated to analyse with a single examination, this study showed the 

potentials of using scattering attenuation as a means of describing the properties 

of a medium and identifying dominant scalelengths of fractures. Although in real 

data it is not easy to discriminate between scattering attenuation and intrinsic 

attenuation, we believe that attenuation measurements can be used successfully 
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towards a more detailed characterisation of a fractured reservoir. 

In seismic exploration, for a typical seismic dataset with a source that generates 

a range of wavelengths, the wavefleld will interact with the various heterogene-

ity distributions. The resulting data will represent a mixture of the scattering 

regimes. Heterogeneities of smaller scales are usually larger in number than large-

scale features. However, both features may contribute equally to the data. So the 

question that arises is what feature, if any, dominates the seismic response, and 

how can we recognise that feature? Two parameters that control the response 

are the scattering strength of the individual scatterers and the wavetype that is 

analysed. For example, when we have compressional waves, dry open fractures 

dominate over those with a water, oil or cement fill. On the contrary, for shear-

waves the directional scattering is more distinctive for thin fractures than those 

with a larger aspect ratio. Therefore, the multicomponent seismic response of 

each group of heterogeneities may be different. Such results are important in 

interpreting the multicomponent seismic response, as not all reservoir features 

can be satisfactorily correlated to productivity. The seismic response also de-

pends upon the way each class of heterogeneity such as pores and fractures, are 

organised within the medium. However, spatial distribution of heterogeneities of 

different scalelengths is not random. Small-scale features must be constrained to 

some extent by the distribution of larger scale features. Therefore the reservoir 

could be organised into groups of entities determined by the largest physical scale-

length downwards. On the other hand, there is evidence of a fractal distribution 

for some aspects of a fracture network (Yielding et al., 1992). No matter how the 

heterogeneities of various scalelengths are distributed, the main question is how 

the various scattering processes combine, and what information do we get from 

seismic? 

The idea of a simple anisotropic system as a basic building block for the effective 

seismic response of a medium containing many different heterogeneities is of high 
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importance to data processing and interpretation. However the question remains 

on how we can image reservoir features and what rules are there available for the 

interpretation. We can get results through a selection of appropriate data, where 

certain features are known clearly to dominate. One such case, is the detection 

of fracture swarms known to exist in the Austin Chalk in Texas, using shear 

wave amplitudes (Mueller, 1992). In that case a direct correlation was made 

between the anisotropic shear-wave behaviour and natural fracture distributions. 

Another approach used was the combination of anisotropic analysis with standard 

3D reservoir seismic (Davis et al., 1993) to provide an integrated multicomponent 

interpretation. It is clear that numerical modelling technique is of great value and 

if used in conjuction with real data it can be a powerful tool. However, it may be 

necessary to design appropriate experiments to properly "tune in" the method 

to the distributions we are interested in according to the case we examine. This 

must be achieved using geophysical and engineering data, as well as knowledge of 

temporal variations of the anisotropic behaviour. Such experiments may help to 

give us an answer to the question about which wavefleld characteristic indicates 

the reservoir properties, and how can we take full advantage of seismic anisotropy 

for reservoir characterisation. 

In the last chapters of the thesis we examined the effect of the presence of fluid 

in wave propagation. Fluid flows in the rock pores and inside fractures. Here we 

assumed that the main path of the fluid is through fractures. Usually we have the 

presence of more than one fluid phases, but here for simplicity we used single phase 

fluid. An immediate effect of fluid is that it changes the elastic properties of a 

fracture. The elastic properties are directly affected by pore pressure changes. As 

a result the seismic signature of the fracture will change following the variations 

of pore pressure. That is the basic idea of time-lapse seismic data. Such data 

are used today to examine fluid flow and relevant pore pressure changes. We 

investigated such cases and we found out that S-waves and coda-waves are the 
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ones affected more. That means that the exploration techniques for such cases 

should be based more on S-wave records in order to be able to find even small 

changes in pore pressure. Such small changes can be very important in cases of 

CO2  injection. Frequency also is a critical tool, because frequency shift is strong 

as pore pressure increases. Once more, data that cover wide frequency ranges 

are needed. There is also azimuthal dependence of the observed variations. 5-

waves are more affected parallel to the flow path while coda-waves normal to 

that path. To sum up, numerical time lapse seismic data can give a clear view of 

the fluid front, as we have shown, which is of great importance. However, fluid 

affects in a different manner each kind of wave. To limit the uncertainties of our 

findings we need the combination of P and S wave data. It is very important to 

extend the frequency range of the recorded data to include energy that is shifted 

in frequency due to scattering. The effect is expected to be different on P and S 

waves. Finally, our data should cover a variety of azimuths. Based on the results 

we will be able to determine the direction of flow and therefore the direction of 

fracturing. The combination of such data with numerical modelling results like 

the ones presented here, can give detailed information about the effect of fluid 

flow on seismic waves. 

Time-lapse (or 4D) seismic data have proven their value in reservoir manage-

ment. Time-lapse seismic is the comparison of 3D seismic surveys at two or more 

points in time. Successive time-lapse images give better understanding of the 

movement of fluid phases, the spacial changes in pore fluid saturation and in vol-

umetric pressure. Also they help in the identification of by-passed oil and in-fill 

drilling opportunities. Finally, 4D data are used to constrain reservoir models, 

predict flow units and flow, and improve the performance of enhanced oil-recovery 

programs. One of the most successfull 4D projects to date was carried out in the 

Draugen field, offshore Norway for operator Shell and its partners. That involved 

a 1990 base survey and a 1998 monitor survey to obtain the results. The conclu- 
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sions were that a very clear time-lapse signal could be observed on the difference 

data set. Also time-lapse yielded information on the location of the waterfronts 

and seismic history matching of the dynamic reservoir model reduced uncertain-

ties in the forecast for the production profile. Finally, time-lapse results impacted 

the location of a new production well within six months of the completion of the 

acquisition. This success story was the result of the combination of time-lapse 

data and a simulator that was updated by the real data. It is clear how im-

portant is the use of a simulating tool and how succesfull it can be when it is 

combined with real data. Another case where 41) time-lapse seismic played an 

important role is the Foinaven Active Reservoir Management Project. Foinaven, 

190 km west of the Shetland Islands, is the first producing field in the deep water 

Atlantic Margin basin. It is a joint venture between BP, Shell and Schlumberger. 

One of the most obvious features in this study was the overall strengthening of 

amplitudes which was attributed to evolution of gas in the reservoir. 

4D seismic modelling is also used as part of integrated tools for reservoir en-

gineering, when it is combined with time-lapse seismic and production data. In 

such a study by Huang (2001) an initial static reservoir description is used for 

simulator model building. The simulator model is used to generate synthetic 

time-lapse seismic data which in turn are compared to measured time-lapse data 

in a model optimisation loop. Model optimisation is accomplished through nu-

merical minimisation of an objective function formed from the errors between 

the data measured in the field and the ones predicted by the current model state. 

That is called seismic history matching. The potentials of 41) time-lapse seismic 

modelling was also shown by Olden et al. (2001) in a work that examined the 

effect of fluid flow and stress change in a hydrocarbon reservoir. They concluded 

that time-lapse seismic method could solve significant operational problems. 

To finalise, the purpose of time-lapse seismic measurements is to be able to 

monitor the reservoir during production or improved oil recovery by detecting 
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induced changes in the seismic attributes. In time-lapse simulations, the aim is 

to develop a realistic reservoir model, which agrees with all available static and 

dynamic information from which we can make accurate future predictions about 

reservoir performance and plan further developments. Also time-lapse modelling 

is important because it helps us understand how changes in pore pressure and 

saturation, impact on the PP and PS waves. 

10.3 Suggestions for future work 

The results presented in this thesis form a part of a strategy to establish a direct 

link between pore pressure changes and variations on seismic signatures. The 

idea is to identify potentially diagnostic variations on seismic waves. The initial 

examination presented in this thesis shows some promising results for the further 

use of numerical modelling techniques to evaluate fracture and fluid flow prop-

erties. However, there are still steps forward to be taken to make the method 

more accurate and realistic. Starting from the numerical modelling technique, an 

important issue is the limitation of boundary reflections. We applied an absorb-

ing boundary but still in some cases the synthetic seismograms showed reflected 

waves from the boundaries. A solution to that problem may be the implemen-

tation of the PML (Perfectly Matched Layer) technique in the boundaries of the 

finite difference grid. 

So far in seismic modelling we considered 2-D cases. One of the priorities should 

be to extend the technique to 3-D, in order to be able to capture more efficiently 

fracture properties. Such a tool will give the ability to examine other effects 

of fractures, such as shear-wave splitting, that is not possible with a 2D model. 

Also, it would be possible to have a more detailed image of the fracture network, 

taking into account all the possible interactions between fractures. 
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The introduction of fluid flow in the fractured network gave us the chance to ex-

amine the effect of pore pressure changes on seismic signatures. That is an initial 

step towards a complete model that can produce accurate numerical time-lapse 

data. In the fluid flow modelling technique the assumption that the fluid has the 

same bulk modulus with the solid needs modification. Also further examination 

is needed for the relationship between pore pressure changes and the variations 

they cause to the elastic properties of the fractures. Detailed testing of this rela-

tionship is critical for the accuracy of the model. Finally the implementation of 

multi-phase fluid, will make the model correspond more closely to what happens 

in real earth, where we have cases of two-phase and even three-phase fluid (water, 

gas and oil). 

To conclude, the 3D seismic modelling technique will also require the extension 

of the fluid flow model to 3D. The combination of both models can be used for 

forward modelling of heterogeneous reservoirs to identify the likely responses that 

might he observed. It will provide the ability to model fractured reservoirs where 

complex geometries result in unusual and often highly anisotropic flow regimes. It 

will make it possible to capture the complex spatial distributions and connectivity 

of fractured reservoirs. The models could be integrated with available well based 

fracture data by comparing the geometry of the intersected fractures with real core 

or image based fracture data. The ability to perform dynamic simulations through 

discrete fracture network models in conjunction with information of the pressure 

derivative can be used to help resolve such properties as fracture connectivity, 

lengthscale and permeability, which are the controlling factors of fluid flow in 

fractured reservoirs. 



References 

Achenbach, J., Gautesen, A., and McMaken, H., 1982, Ray Methods for Waves 

in Elastic Solids: Pitman, London. 

Akaike, H., 1978, Bayesian analysis of the minimum aic procedure: Annals of the 

Institute of Statistical Mathematics, 30, 9-14. 

Aki, K., and Richards, p., 2002, Quantitative Seismology: University Science 

Books, Sausalito, California, second edition. 

Aki, K., 1980, Scattering and attenuation of shear waves in the lithosphere: 

J. Geophys. Res., 85, 6496-6504. 

Alford, R., Kelly, K., and Boore, D., 1974, Accuracy of finite-difference modelling 

of the acoustic wave equation: Geophysics, 39, 834-842. 

Anderson, D., Minster, B., and Cole, D., 1974, The effect of oriented cracks on 

seismic velocities: J. Geophys. Res., 79, 4011-4015. 

Angerer, E., Crampin, S., Li, X.-Y., and Davis, T., 2002, Processing, modelling 

and predicting time-lapse effects of overpressured fluid-injection in a fractured 

reservoir: Geophys. J. Int., 149, 267-280. 

Atkinson, B. K., and Meredith, P. G., 1987, The theory of subcritical crack 

growth with applications to minerals and rocks, in Atkinson, B., Ed., Fracture 

Mechanics of Rock: Academic Press, 111-166. 

267 



References 

Atkison, B. K., 1984, Subcritical crack growth in geological material: J. Geo-

phys. Res., 89, 4077-4114 

Balberg, I., Berkowitz, B., and Drachsler, G., 1991, Application of a percolation 

model to flow in fractured hard rock: J. Geophys. Res., 96, 10015-10021. 

Barker, J., 1988, A generalized radial-flow model for pumping tests in fractured 

rock: Water Resour. Res., 24, 1796-1804. 

Barley, B., Hudson, J., and Douglas, A., 1982, S to P scattering at the 650 km 

discontinuity: Geophys. J. R. astr. Soc., 69, 159-172. 

Barton, N., Bandis, S., and Bakhtar, K., 1985, Strength, deformation and con-

ductivity coupling of rock joints: Int. J. Rock Mech. Min. Sci. and Geomech. 

Abstr., 22, 121-140. 

Bear, J., 1972, Dynamics of Fluid in Porous Media: American Elsevier Publishing 

Company, Dover, New York. 

Bell, M., and Nur, A., 1978, Strength changes due to reservoir-induced pore 

pressure and stresses and application to lake oroville: J. Geophys. Res., 83, 

4469-4483. 

Benites, R., Aki, K., and Yomogida, K., 1992, Multiple scattering of SH waves 

in 2-D media with many cavities: Pure and Appl. Geophys., 138, 353-390. 

Berenger, J., 1994, A perfectly matched layer for the absorption of electromag-

netic waves: J. Comput. Phys., 114, 185-200. 

Berkowitz, B., and Balberg, I., 1992, Percolation approach to the problem of 

hydraulic conductivity in porous media: rhansport  in porous media, 9, 275-

286. 

Biot, M., 1941, General theory of three-dimensional consolidation: J. Appl. Phys., 

12, 155-164. 



References 	 269 

Biot, M., 1956a, Theory of propagation of elastic waves in a fluid-saturated porous 

solid-I: Low frequency range: J. Acoust. Soc. Am., 28, 168-178. 

Biot, M., 1956b, Theory of propagation of elastic waves in a fluid-saturated porous 

solid-I: Higher frequency range: J. Acoust. Soc. Am., 28, 179-191. 

Bleistein, N., Cohen, J., and Stockwell, J., 2001, Mathematics of multidimen-

sional seismic imaging, migration and inversion: Springer. 

Bonnet, E., Bour, 0., Odling, N., Davy, P., Main, I., Cowie, P., and Berkowitz, 

B., 2001, Scaling of fracture systems in geological media: Rev. Geophys., 39, 

347-383. 

Boore, D., 1972, Finite-difference methods for seismic wave propagation in het-

erogeneous materials, in Alder, B., Fernhach, S., and Rotenberg, M., Eds., 

Methods in computational physics: Academic Press, 21-22. 

Boore, D., 1981, Constitutive properties of faults with simulated gouge:, in Me-

chanical Behaviour of Crustal Rocks, AGU Gophys. Monogr. AGU, 24, 103-

120. 

Bourke, P., Durrance, E., Hodgkinson, D., and Heath, M., 1985, Fracture hydrol-

ogy relevant to radionuclide transport: Report AERE-R 11414 of the Atomic 

Energy Research Establishment, Harwell. 

Budiansky, B., and O'Connell, R., 1976, Elastic moduli of a cracked solid: 

Int. J. Solids Struct., 12, 81-97. 

Cacas, M., Ledoux, E., De Marsily, G., and Tillie, B., 1990, Modelling fracture 

flow with a stochastic discrete fracture network: calibration and validation 1: 

The flow model: Water Resour. Res., 26, 479-489. 

Carcione, J., Herman, G., and ten Kroode, A., 2002, Y2K Review Article - 

Seismic modeling: Geophysics, 67, 1304-1325. 



270 
	 References 

Carcione, J., 1994, The wave equation in generalized coordinates: Geophysics, 

59, 1911-1919. 

Carmeliet, J., Delerne, K., Vandersteen, K., and Roels, S., 2004, Three-

dimensional liquid transport in concrete cracks: Int. J. Numer. Anal. Meth. 

Geomech., 28, 671-687. 

Cerjan, C., Kosloff, D., Kosloff, R., and Reshef, M., 1985, A nonreflecting bound-

ary condition for discrete acoustic and elastic wave equations: Geophysics, 50, 

705-708. 

Chapman, C., and Drummond, R., 1982, Body-wave seismograms in inhomo-

geneous media using maslov asymptotic theory: Bull. Seism. Soc. Am., 72, 

277-317. 

Charlaix, E., Guyon, E., and Roux, 5., 1987, Permeability of a random array of 

fractures of widely varying apertures: Transport in Porous Media, 2, 31-43. 

Chernov, L., 1960, Wave Propagation in a Random Medium:. 

Chew, W., and Liu, Q., 1996, Perfectly matched layers for elastodynamics: A 

new absorbing boundary condition: J. Comp. Acoust., 4, no.4, 72-79. 

Chew, W., and Weedon, W., 1994, A 3-1) perfectly matched medium for modified 

Maxwell's equations with stretched coordinates: Microw. Opt. Technol. Lett., 

7, 599-604. 

Clayton, R., and Engquist, B., 1977, Absorbing boundary conditions for acoustic 

and elastic wave equations: Bull. Seism. Soc. Am., 67, 1529-1540. 

Coates, R., and Schoenberg, M., 1995, Finite-difference modeling of faults and 

fractures: Geophysics, 60, 1514-1526. 

Cohen, J., Hagin, F., and Bleistein, N., 1986, Three-dimensional born inversion 

with an arbitrary reference: Geophysics, 51, 1552-1558. 



References 	 271 

Collino, F., and Tsogka, C., 2001, Application of the perfectly matched absorbing 

layer model to the linear elastodynamic problem in anisotropic heterogeneous 

media: Geophysics, 66, 294-307. 

Crampin, S., and Bamford, D., 1977, Inversion of P-wave velocity anisotropy: 

Geophys.JR. astr. Soc., 49, 123. 

Crase, E., Pica, A., Noble, M., McDonald, J., and Tarantola, A., 1990, Robust 

elastic nonlinear inversion: application to real data: Geophysics, 55, 527-538. 

Darcy, H., 1956, Les fontaines publiques de la ville de dijon: Dalmont, Paris. 

Davis, T., Shack, E., and Benson, R., 1993, Coalbed methane multicomponent 

3D reservoir characterization study, Cedar Hill, San Juan Basin, New Mexico: 

Expanded Abstracts, 63rd SEG Meeting, 175-180. 

Eggleston, W., 1948, Summary of oil production from fractured rock reservoirs 

in California: Bull. Am. Assoc. Petrol. Geol., 2, 1352-1355. 

Emmermann, R., and Lauterjung, J., 1997, The German Continental Deep 

Drilling Program KTB: Overview and major results: Geophys. J. Int., 102, 

18179-18201. 

Englman, R., Cur, Y., and Jaeger, Z., 1983, Fluid flow through a crack network 

in rocks: J. Applied Mechanics, 50, 707-711. 

Eshelby, J., 1957, The determination of the elastic field of an ellipsoidal inclusion 

and related problems: Proc. R. Soc. Lond. A., 241, 376-396. 

Fagin, S., 1992, Seismic modeling of geological structures: Applications to explo-

ration problems: Geophysical Development Series, 2: Society of Exploration 

Geophysicists. 

Foldy, L., 1945, The multiple scattering of waves. I. General theory of isotropic 

scattering by randomly distributed scatterers: Phys. Rev., 67, 107-119. 



272 
	

References 

Fornberg, B., 1987, The pseudospectral method: comparisons with finite differ-

ences for the elastic wave equation: Geophysics, 52, 483-501. 

Fornberg, B., 1988, The pseudospectral method: accurate representation of in-

terfaces in elastic wave calculations: Geophysics, 53, 625-637. 

Frankel, A., and Clayton, R., 1984, A finite difference simulation of wave propaga-

tion in two-dimensional random media: Bull. Seismol. Soc.Am., 74, 2167-2186. 

Frankel, A., and Clayton, R., 1986, Finite difference simulations of seismic scat-

tering: Implications for the propagation of short-period seismic waves in the 

crust and models of crustal heterogeneity: J. Geophys. Res., 91, 6465-6489. 

Frenje, L., and Juhlin, C., 2000, Scattering attenuation:2-D and 3-D finite differ-

ence simulations vs. theory: J. Appl. Geophys., 44, 33-46. 

Frenkel, J., 1944, On the theory of seismic and seismo-electric phenomena in 

moist soils: J. Phys. USSR, 8, 230-241. 

Garbin, H., and Knopoff, L., 1973, The compressional modulus of a material 

permeated by a random distribution of circular cracks: Q. appl Math., 30, 

453-464. 

Garbin, H., and Knopoff, L., 1975, Elastic moduli of a medium with liquid-filled 

cracks: Q. appl Math., 33, 301-303. 

Gawith, D., and Gutteridge, P., 1996, Seismic validation of reservoir simulation 

using a shared earth model: Petroleum Geoscience, 2, May. 

Gazdag, J., 1981, Modeling the acoustic wave equation with transforms methods: 

Geophysics, 54, 195-206. 

Gottlieb, D., and Orszag, S., 1977, Numerical analysis of spectral methods: 

Soc. Ind. Appl. Math. 



References 	 273 

Greaves, R., and Fuip, T., 1987, Three dimensional seismic monitoring of an 

enhanced oil recovery process: Geophysics, 52, 1175-1187. 

Gueguen, Y., and Dienes, J., 1989, Transport properties of rocks from statistics 

and percolation: Mathematical Geology, 21, 1-13. 

Hastings, F., Schneider, J., and Broschat, S., 1996, Application of the perfectly 

matched layer (PML) absorbing boundary condition to elastic wave propaga-

tion: J. Acoust. Soc. Am., 100, 3061-3069. 

He, J., and Liu, Q., 1999, A nonuniform cylindrical FDTD algorithm 

with improved PML and quasi-PML absorbing boundary conditions: 

IEEE Trans. Geosci. Remote Sensing, 37, 1066-1072. 

Hentschel, H., and Proccacia, I., 1983, The infinite number of generalised dimen-

sions of fractals and strange attractors: Physica D, 8, 435-444. 

Hill, R., 1963, Elastic properties of reinforced solids: some theoretical principles: 

J. Mech. Phys. Solids, 11, 357-372. 

Hirsche, W., Sedgwick, G., and Wang, Z., 1990, Seismic monitoring in enhanced 

oil recovery: Internat. Tech. Mtg., CIM Petr. Soc./Soc. Petr. Eng., Preprints, 

2, 72-1-72-13. 

Hsieh, P., Neuman, S., Stiles, G., and Simpson, E., 1985, Field determination 

of the three-dimensional hydraulic conductivity tensor of anisotropic media: 

2.Methodology and application to fractured rocks: Water Resour. Res., 21, 

1667-1676. 

Hsu, C.-J., and Schoenberg, lvi., 1993, Elastic waves through a simulated fractured 

medium: Geophysics, pages 964-977. 

Huang, X., 2001, Integrating time-lapse seismic with production data: A tool for 

reservoir engineering: The Leading Edge, 20, 1148-1153. 



274 	 References 

Hudson, J., and Heritage, J., 1981, The use of the born approximation in seismic 

scattering problems: Geophys. J. R. astr. Soc., 66, 221-240. 

Hudson, J., and Knopoff, L., 1989, Predicting the overall properties of composite 

materials with small-scale inclusions or cracks: Pure and Appi. Geophys., 131, 

551-576. 

Hudson, J., and La Pointe, P., 1980, Printed circuits for studying rock mass 

permeability: mt. J. Rock. Mech. Min. Sci. and Geomech. Abstr., 17, 297-

301. 

Hudson, J., and Liu, E., 1999, Effective elastic properties of heavily faulted struc-

tures: Geophysics, 64, 479-485. 

Hudson, J., 1967, Scattering surface waves from a surface obstacle: Geo-

phys. J. R. astr. Soc., 13, 441-458. 

Hudson, J., 1980, Overall properties of a cracked solid: Math. Proc. Camb. Phil. 

Soc., 88, 371-384. 

Hudson, J., 1980b, A parabolic equation for elastic waves: Wave Motion, 2, 

207-214. 

Hudson, J., 1981, Wave speeds and attenuation of elastic waves in material con-

taming cracks: Geophys. J. R. astr. Soc., 64, 133-150. 

Hudson, J., 1986, A higher order approximation to the wave propagation con-

stants for a cracked solid: Geophys. J. R. astr. Soc., 87, 265-274. 

Hudson, J., 1988, Seismic wave propagation through material containing partially 

saturated cracks: Geophys. J. Int., 92, 33-37. 

Hudson, J., 1994, Overall properties of materials with inclusions or cavities: Geo-

phys. J. Int., 117, 555-561. 



References 	 275 

Israeli, M., and Orszag, S., 1981, Approximation of radiation boundary condi-

tions: J. Comput. Phys., 41, 115-135. 

Jenkins, F., and White, H., 1957, Fundamentals of Optics: McGraw-Hill, New 

York. 

Jenkins, S., Waite, M., and Bee, M., 1997, Time-lapse monitoring of the Dun 

steamfiood: A pilot and case study: The Leading Edge, 16, September. 

Jing, L., and Stephansson, 0., 1997, Network topology and homogenisation 

of fractured rocks, in Jamtveit, B., and Yardley, B., Eds., Fluid Flow and 

Transport in Rocks: Mechanisms and Effects: Chapman and Hall, 192-202. 

Johnson, D., McKenny, R., Verheek, J., and Almond, J., 1998, Time-lapse seismic 

analysis of fulmar field: The Leading Edge, 16, October. 

Johnson, 0., 1984, Three-dimensional wave equation computations on vector 

computers: Proc. IEEE, 72, 90-95. 

Johnston, D., 1997, A tutorial on time-lapse seismic reservoir monitoring: J. Petr. 

Tech., 49, 473-475. 

Jones, M., Pringle, A., Fulton, I., and O'Neill, S., 1999, Discrete fracture network 

modelling applied to groundwater resourse exploitation in southwest Ireland, in 

McCaffrey, K., Lonergan, L., and Wilkingson, J., Eds., Fractures, Fluid Flow 

and Mineralization: Geological Society, Special Publications, 155, 83-103. 

Kashanov, M., 1984, Elastic solids with many cracks and related problems: 

Adv. Appl. Mech., 30. 

Keller, J., 1964, Stochastic equations and wave propagation in random media: 

Proc. Symp. appl. Math., 16, 145-170. 

Kelner, S., Bouchon, lvi., and Coutant, 0., 1999, Numerical simulation of the 

propagation of p waves in fractured media: Geophys. J. Int., 137. 



276 
	

References 

Knopoff, L., and Hudson, J., 1964, Scattering of elastic waves by small scale 

inhomogeneities: J. acoust. Soc. Am., 36, 338-343. 

Koehler, A., and Murphree, E., 1988, A comparison of Akaike and Scwarz criteria 

for selecting model order: Appi. Stats., 37, 187-195. 

Kosloff, D., and Baysal, E., 1982, Forward modeling by the fourier method: Geo-

physics, 47, 1402-1412. 

Kosloff, D., and Kessler, D., 1989, Seismic numerical modeling:, in Oceanographic 

and geophysical tomography, 249-312. 

Kosloff, R., and Kosloff, D., 1986, Absorbing boundaries for wave propagation 

problems: J. Comp. Phys., 63, 363-376. 

Kosloff, D., Reshef, M., and Loewenthal, D., 1984, Elastic wave calculations by 

the fourier method: Bull. Seism. Soc. Am., 74, 875-891. 

Kuster, G., and Toksoz, M., 1974, Velocity and attenuation of seismic waves in 

two-phase media: Part 1. Theoretical formulations: Geophysics, 39, 587-606. 

Landers, T., and Clearbout, J., 1972, Numerical calculations of elastic waves in 

laterally inhomogeneous media: J. Geophys. Res., 77, 1476-1482. 

Leary, P., and Abercrombie, R., 1994, Frequency dependent crustal scattering and 

absorption at 5-160 hz from coda decay observed at 2-5 km depth: Geophys. 

Res. Lett., 21, 971-974. 

Leary, P., 1995a, The cause of frequency-dependent seismic absorption in crystal 

rock: Geophys. J. Int., 122, 143-151. 

1995b, Quantifying crustal fracture heterogeneity by seismic scattering: 

Geophys. J. Int., 122, 125-142. 



References 	 277 

Lee, C., Deng, B., and Chang, J., 1995, A continuum approach for estimating 

permeability in naturally fractured rocks: Engineering Geology, 39, 71-85. 

Leonard, T., and Hsu, J., 1999, Bayesian methods: Cambridge University Press, 

New York. 

Lerche, I., and Petroy, D., 1986, Multiple scattering of seismic waves in fractured 

media: Velocity and effective attenuation of the coherent components of P 

waves and S waves: Pure and Appl. Geophys., 124, 975-4019. 

Lerche, I., 1985, Multiple scattering of seismic waves in fractured media: Cross-

correlation as a probe of fracture intensity: Pure and Appl. Geophys., 123, 

503-542. 

Liao, Z., Wong, H., Yang, B., and Yuan, Y., 1984, A transmitting boundary for 

transient wave analysis: Sci. Sinica A, 27, 1063-1076. 

Liu, Q., and Tao, J., 1997, The perfectly matched layer for acoustic waves in 

absorptive media: J. Acoust. Soc. Am., 102, 2072-2082. 

Liu, E., and Zhang, Z., 2001, Numerical study of elastic wave scattering by cracks 

or inclusions using the boundary integral equation method: J. Comp. Acoust., 

9, 1039-1054. 

Liu, E., Crampin, S., and Queen, J., 1991, Fracture detection using crosshole sur-

veys and reverse vertical seismic profiles at the Conoco Borehole Test Facility, 

Oklahoma: Geophys. J. Int., 107, 449-463. 

Liu, E., Hudson, J., and Pointer, T., 2000, Equivalent medium representation of 

fractured rock: J. Geophys. Res., 105, 2981-3000. 

Liu, E., Tod, S., and Li, X.-Y., 2002, Effects of stress and pore pressure on seismic 

anisotropy in cracked rock: GSEG Recorder, September, 93-98. 



References 

Liu, Q., 1997, An FDTD algorithm with perfectly matched layers for conductive 

media: Microw. Opt. Technol. Lett. , 14, 134-137. 

Liu, Q., 1999, Perfectly matched layers for elastic waves in cylindrical and spher-

ical coordinates: J. Acoust. Soc. Am., 105, 2075-2084. 

Long, J., and Witherspoon, P., 1982, Porous media equivalents for networks of 

discontinuous fractures: Water Resour. Res, 18, 645-658. 

Long, J., and Witherspoon, P., 1985, The relatonship of the degree of interconnec-

tivity to permeability in fracture networks: J. Geophys. Res., 90, 3087-3098. 

Long, J., 1996, Rock Fractures and Fluid Flow - Contemporary Understanding 

and Applications: National Academy Press, Washington. 

Lynn, H., Simon, K., Bates, R., and Van Dok, R., 1996, Azimuthal anisotropy in 

P-wave 3-D (multiazimuth) data: Leading Edge, 15, No.8, 923-928. 

Lysmer, J., and Drake, L., 1972, A finite element method for seismology:, in 

Methods in computational physics II, Seismology Academic Press, 181-216. 

Mahrer, K. D., 1986, An empirical study of instability and improvement of absorb-

ing boundary conditions for elastic wave equation: Geophysics, 51, 1499-1501. 

Maillot, B., and Main, I., 1996, A lattice BGK model for the diffusion of pore fluid 

pressure, including anisotropy, heterogeneity, and gravity effects: Geophys. 

Res. Lett., 23, 13-16. 

Maillot, B., Nielsen, S., and Main, I., 1999, Numerical simulation of seismicity 

due to fluid injection in a brittle poroelastic medium: Geophys. J. Int., 139, 

263-272. 

Main, I., Peacock, P., and Meredith, P., 1990, Scattering attenuation and the 

fractal geometry of fracture systems: Pure and Appl. Geophys., 133, 283-304. 



References 	 279 

Maim, P., and Phinney, R., 1985, On the relative scattering of p and s waves: 

Geophys. J. R. astr. Soc., 80, 603-618. 

Massonnat, G., Umbhauer, F., and Odonne, F., 1994, The use of 3-D seismic in 

the understanding and monitoring of waterfiooding in a naturally fractured gas 

reservoir: AAPG Bulletin, 78,no.7, 1155. 

Mavko, G., and Nur, A., 1978, The effect of nonelliptical cracks on the compress-

ibility of rocks: J. Geophys. Res., 83, 4459-4468. 

Mavko, G., Mukerji, T., and Dvorkin, J., 1998, The rock physics handbook: Tools 

for seismic analysis in porous media: Cambridge University Press. 

McCoy, J., 1977, A parabolic theory of stress-wave propagation through inhomo-

geneous linearly elastic media: J. Appi. Mech., 44, 462-468. 

McNaughton, D., 1953, Dilatency in migration and accumulation of oil in meta-

morphics rocks: Bull. Am. Assoc. Petrol. Geol., 37, 217-231. 

Menéndez, B., David, C., and Darot, M., 1999, A study of the crack network in 

thermally and mechanically cracked granite samples using confocal scanning 

laser microscopy: Phys. Chem. Earth A, 24, 627-632. 

Michie, U., 1996, The geological framework of the sellafield area and its relation-

ship to hydrogeology: Quarterly J. Engineering Geology, 29, S13—S27. 

Mikhailenko, B., 1985, Numerical experiment in seismic investigation: J. Geo-

phys., 58, 101-124. 

Mikhailenko, B., 2000, Seismic modeling by the spectral-finite difference method: 

Phys. Earth. Planet. Inter., 119, 133-147. 

Mueller, M., 1992, Using shear-waves to predict lateral variability in vertical 

fracture intensity: Geophysics, 12, 29-35. 



References 

Muir, F., Dellinger, D., Etgen, J., and Nichols, D., 1992, Modeling elastic wave-

fields across irregular boundaries: Geophysics, 57, 1189-1193. 

Narteau, C., in press, Formation and evolution of a population of strike-slip faults 

in a multiscale cellular automaton model: Geophys. J. Int. 

Nelson, R., 1985, Geologic Analysis of Naturally Fractured Reservoirs: Gulf Pub. 

Co., Book Division, Houston. 

Neretnieks, I., 1985, Transport in fractured rocks: Proceedings, Memories of 

the 17th Int. Cong. Of IAH, Int. Assoc Hydrogeolog, Tucson, Arizona, USA, 

Vol.17, 301-318. 

Nielsen, S., and Tarantola, A., 1992, Numerical model of seismic rupture: J. Geo-

phys. Res., 97, 15291-15296. 

Nielsen, S., Knopoff, L., and Tarantola, A., 1995, Model of earthquake recur-

rence: role of elastic wave radiation, relaxation of friction, and inhomogeneity: 

J. Geophys. Res., 100(B7), 12423-12430. 

Nihei, K., and Myer, L., 2000, Natural fracture characterisation using passive 

seismic waves: Gas Tips. 

Nihei, K., Nakagawa, S., and Myer, L., 2000, VSP fracture imaging with elastic 

reverse-time migration: VSP fracture imaging with elastic reverse-time migra-

tion:, 1784-1751. 

Nihei, K., Nakagawa, S., Myer, L., and Majer, E., 2002, Finite difference mod-

elling of seismic wave interactions with discrete, finite length fractures: 72th 

Annual Internat. Mtg., Soc. Expi. Geophys., Expanded Abstracts, 1963-1966. 

Nishizawa, 0., 1982, Seismic velocity anisotropy in a medium containing oriented 

cracks - transversely isotropic case: J. Phys. Earth, 30, 331-347. 



References 	 281 

Nolte, D., Pyrak-Nolte, L., and Cook, N., 1989, The fractal geometry of flow paths 

in natural fractures in rock and the approach to percolation: PAGEOPH, 131, 

111-138. 

Nur, A., and Byerlee, J., 1971, An exact effective stress law for elastic deformation 

of rock with fluids: J. Geophys. Res., 76, 6414-6419. 

Nur, A., 1971, Effects of stress on velocity anisotropy in rocks with cracks: J. Geo-

phys. Res., 76, 2022-2034. 

O'Connell, R., and Budiansky, B., 1974, Seismic velocities in dry and saturated 

cracked solids: J. Geophys. Res., 79, 5412-5426. 

O'Connell, R., and Budiansky, B., 1977, Viscoelastic properties of fluid-saturated 

cracked solids: J. Geophys. Res., 82, 5719-5735. 

Oda, M., Hatsuyama, Y., and Ohnishi, Y., 1987, Numerical experiments on per-

meability tensor and its application to jointed granite at Stripa mine, Sweden: 

J. Geophys. Res., 92, 8037-8048. 

Oda, M., 1986, An equivalent continuum model for coupled stress and fluid flow 

analysis in joined rock masses: Water Resour. Res., 22, 1845-1856. 

Odling, N., 1997, Fluid flow in fractured rocks at shallow level in the Earth's crust: 

An overview, in Holness, M., Ed., Deformation-enhanced Fluid Transport in 

the Earth's Crust and Mantle: Chapman and Hall, 289-320. 

Olden, P., Corbett, P., Westerman, R., Somerville, J., Smart, B., and Koutsabe-

loulis, N., 2001, Modeling combined fluid and stress change effects in the seis-

mic response of a producing hydrocarbon reservoir: The Leading Edge, 20, 

1154-1163. 

Ozdenvar, T., McMechan, G., and Chaney, P., 1996, Simulation of complete 



282 	 References 

seismic surveys for evaluation of experiment design and processing: Geophysics, 

61, 496-508. 

Pekeris, C., 1947, Note on the scattering of radiation in an inhomogeneous 

medium: Phys. Rev., 71, 268. 

Pointer, T., Liu, E., and Hudson, J., 1998, Numerical modeling of seismic waves 

scattered by hydrofractures: application of the indirect boundary element 

method: Geophys. J. Int., 135, 289-303. 

Pollard, D. D., and Aydin, A., 1988, Progress in understanding jointing over the 

past century: GSA Bull., 100, 1181-1204. 

Press, W., Teukoisky, S., \Tetterling, W., and Flannery, B., 1997, Numerical 

Recipies in Fortran 77: the Art of Scientific Computing (Vol.1 of Fortran 

Numerical Recipies: Cambridge University Press, Cambridge. 

Pyrak-Nolte, L., Myer, L., and Cook, N., 1990, Transmission of seismic waves 

accross single natural fractures: J. Geophys. Res., 95, 8617-8638. 

Queen, J., and Rizer, W., 1990, An integrated study of seismic anisotropy and the 

natural fracture system at the conoco borehole test facility: J. Geophys. Res., 

95, 11255-11273. 

Quian, Y., D'Humieres, D., and Lallemand, P., 1992, Lattice BGK model for 

Navier-Stokes equation: Europhys. Lett., 17, 479-484. 

Reshef, M., Kosloff, D., Edwards, M., and Hsiung, C., 1988, Three-dimensional 

elastic modeling by the fourier method: Geophysics, 53, 1184-1193. 

Reynolds, A. C., 1978, Boundary conditions for the numerical solution of wave 

propagation problems: Geophysics, 43, 1099-1110. 



References 	 283 

Rice, J., and Cleary, M., 1976, Some basic stress diffusion solutions for fluid-

saturated elastic porous media with compressible constituents: Rev. Geophys. 

Space Phys., 14, 227-241. 

Richards, P., and Menke, W., 1983, The apparent attenuation of a scattering 

medium: Bull. Seismol. Soc. Am., 73, 1005-1022. 

Ricker, N., 1977, Transient Waves in Visco-elastic Media: Elsevier, Amsterdam. 

Ringdal, F., and Husebye, E., 1982, Application of arrays in the detection, loca-

tion, and identification of seismic events: Bull. Seismol. Soc. Am., 72, S201-

S224. 

Roth, M., and Korn, M., 1993, Single scattering theory versus numerical mod-

elling in 2-D random media: Geophys. J. Int., 112, 124-140. 

Rueger, A., 1996, Variation of P-wave reflectivity with offset and azimuth in 

anisotropic media: SEG Annual Meeting Abstracts, 66, 1810-1813. 

Ryzhik, L., Papanicolaou, G., and Keller, J., 1996, Transport equations for elastic 

and other waves in random media: Wave Motion, 24, 327-370. 

Saenger, E., and Shapiro, 5., 2002, Effective velocities in fractured media: a 

numerical study using the rotated staggered finite-difference grid: Geophysical 

Prospecting, 50, 183-194. 

Sahimi, M., 1987, Hydrodynamic dispersion near the percolation threshold: 

Scaling and probability densities: J. Phys. A. Math. Gen., 20, L1293-L1298- 

Sanderson, D., and Zhang, X., 1999, Critical stress localisation of flow associated 

with deformation of well-fractured rock masses, with implications for min-

eral deposits:, in Fractures, Fluid Flow and Mineralization Geological Society 

Special Publication, 155, 69-81. 



284 	 References 

Sato, H., 1982, Amplitude attenuation of impulsive plane waves in random media 

based on traveltime corrected mean wave formalism: J. Acoust. Soc. Am., 71, 

564-599. 

Sayers, C., and Kachanov, M., 1995, Microcrack-induced elastic wave anisotropy 

of brittle rocks: J. Geophys. Res., 100, 4149-4156. 

Sayers, C., 1988, Inversion of ultrasonic wave velocity measurements to obtain the 

microcrack orientation distribution function in rocks: Ultrasonics, 26, 73-77. 

Schneider, W., 1978, Integral formulation for migration in two and three dimen-

sions: Geophysics, 43, 49-76. 

Schoenberg, M., and Sayers, C., 1995, Seismic anisotropy of fractured rock: Geo-

physics, 60, 204-211. 

Schoenberg, M., 1980, Elastic wave behaviour across linear slip interfaces: 

J. Acoust. Soc. Am., 68, 1516-1521. 

Schoenberg, M., 2002, Time dependent anisotropy induced by pore pressure vari-

ation in fractured rock: J. Seismic Exploration, 11, 83-105. 

Scholz, C., 1990, The Mechanics of Earthquakes and Faulting: Cambridge Uni-

versity Press, Cambridge. 

Shapiro, S., and Kneib, G., 1993, Seismic attenuation by scattering: theory and 

numerical results: Geophys. J. Int., 114, 373-391. 

Sheriff, R., and Geldart, L., 1980, Exploration Seismology: Cambridge University 

Press. 

Sheriff, R., 1977, Limitations on resolution of seismic reflections and geo-

logic detail derivable from them:, in Seismic Stratigraphy - Applications to 

Hydrocarbon Exploration AAPG Memoir 26, Tulsa: American Association of 

Petroleum Geologists, 3-14. 



References 	 285 

Smith, L., and Schwartz, F., 1984, An analysis of the influence of fracture geome-

try on mass transport in fractured media: Water Resour. Res., 20, 1241-1252. 

Smith, J., 1951, The Cretaceous limestone producing areas of the Mara and 

Maracaibo district, Venezuela: Proc. Thirld World Petrol Cong., 56-71. 

Smith, W. D., 1974, A nonreflecting plane wave boundary for wave propagation 

problems: J. Comp. Phys., 15, 492-503. 

Smith, G., 1985, Numerical solution of partial differential equations: Finite dif-

ference methods: Clarendon Press. 

Sochacki, J., Kubichek, R., George, J., Fletcher, W., and Smithson, 5., 1987, 

Absorbing boundary conditions and surface waves: Geophysics, 52, 60-71. 

Sonneland, L., Signer, C., Veire, H., and Pedersen, L., 1997, Four-dimensional 

seismic on Gulifaks: J. Petr. Tech., 49, 497. 

Sorbie, K., and McDougall, 5., 1998, The fundamentals of single and multiphase 

flow through porous media: Course presented at the Department of Petroleum 

Engineering, Heriot-Watt University. 

Sornette, D., Miltenberger, P., and Vanneste, C., 1994, Statistical physics of fault 

patterns self-organized by repeated earthquakes: Pure and Appl. Geophys., 

142, 491-527. 

Stacey, R., 1988, Improved transparent boundary formulations for the elastic-

wave equation: Bull. Seism. Soc. Am., 78, 2089-2097. 

Stauffer, D., 1985, Introduction to Percolation Theory: Taylor and Francis, 

London. 

Stearns, D., and Friedman, M., 1972, Reservoirs in fractured rock in stratigraphic 

oil and gas fields classification, exploration methods and case histories: Am. 

Assoc. Petroleum Geologists, Mem. 16, 82-106. 



References 

Terzagi, K., 1943, Theoretical soil mechanics: Wiley. 

Tessmer, E., and Kosloff, D., 1994, 3-D elastic modeling with surface topography 

by a Chebychev spectral method: Geophysics, 59, 464-473. 

VanBaren, G., Mulder, W., and Herman, G., 2001, Finite-difference modeling of 

scalar-wave propagation in cracked media: Geophysics, 66, 267-276. 

Vidale, J., Helmberger, D., and Clayton, R., 1985, Finite-difference seismograms 

for SH waves: Bull. Seis. Soc .Am., 75, 1765-1782. 

Waite, M., and Sigit, R., 1997, Seismic monitoring of the Duri steamflood: 

Application to reservoir management: The Leading Edge, 16, September. 

Walsh, J., and Grosenbaugh, M., 1979, A new model for analysing the effect of 

fractures on compressibility: J. Geophys. Res., 84, 3532-3536. 

Walsh, J., 1965, The effect of cracks on the compressibility of rock: J. Geo-

phys. Res., 70, 381-389. 

Wesley, J., 1965, Diffusion of seismic energy in the near range: J. Geophys. Res., 

70, 5099-5106. 

Wu, R.-S., and Aki, K., 1985, Scattering characteristics of elastic waves by an 

elastic heterogeneity: Geophysics, 50, 582-589. 

Wu, H., and Lees, J., 1997, Boundary conditions on a finite grid: Applications 

with pseudospectral wave propagation: Geophysics, 62, 1544-1557. 

Wu, C., Harris, J., and Nihei, K., 2002, 2d finite-difference seismic modelling of an 

open fluid-filled fracture: comparison of thin-layer and linear-slip models: 72th 

Annual Internat. Mtg., Soc. Expl. Geophys., Expanded Abstracts, 1959-1962. 

Wu, R.-S., 1982, Attenuation of short period seismic waves due to scattering: 

Geophys. Res. Lett., 9, 9-12. 



References 	 287 

Wu, R.-S., 1994, Wide-angle elastic wave one-way propagation in heterogeneous 

media and an elastic wave complex-screen method: J. Geophys. Res., 99, 751-

766. 

Yamashita, T., 1990, Attenuation and dispersion of SH waves due to scattering 

by randomly distributed cracks: PAGEOPH, 132, 545-568. 

Yielding, G., Walsh, J., and Watterson, J., 1992, The prediction of small scale 

faulting in reservoirs: First Break, 10, 449-460. 

Yomogida, K., and Benites, R., 2002, Scattering of seismic waves by cracks with 

the Boundary Integral Method: Pure and Appi. Geophys., 159, 1771-1789. 

Yomogida, K., Benites, R., Roberts, P., and Fehler, M., 1997, Scattering of elastic 

waves in 2-D composite media II. waveforms and spectra: Phys. Earth Planet. 

Inter., 104, 175-192. 

Zeng, Y., He, J., and Liu, Q., 2001, The application of the perfectly matched layer 

in numerical modeling of wave propagation in poroelastic media: Geophysics, 

66, 1258-1266. 

Zhang, X., and Sanderson, D., 1994, Fractal structure and deformation of frac-

tured rock masses:, in Fractal and Dynamic Systems in Geoscience Spring-

Verlag, 37-52. 

Zhang, X., and Sanderson, D., 1995, Anisotropic features of geometry and per-

meability in fractured rock masses: Engineering Geology, 40, 65-75. 

Zhang, X., and Sanderson, D., 1996, Numerical modelling of the effects of fault 

slip on fluid flow around extensional faults: J. Struct. Geol., 18, 109-119. 

Zhang, X., and Sanderson, D., 1998, Numerical study of critical behaviour of 

deformation and permeability of fractured rock masses: Marine and Petrol. 

Geol., 15, 535-548. 



References 

Zhang, X., and Sanderson, D., 2001, Evaluation of instability in fractured rock 

masses using numerical analysis methods: the effects of fracture geometry and 

loading direction: J. Geophys. Res., 106, 26689-26706. 

Zhang, X., Sanderson, D., Harkness, R., and Last, N., 1996, Evaluation of the 

2-D permeability tensor for fractured rock masses: Int. J. Mech. Min. Sci. and 

Geomech. Abstr., 33, 17-37. 

Zhang, X., Powrie, W., Harkness, R., and Wang, S., 1999b, Estimation of per-

meability for the rock mass around the shiplocks of the Three Gorges Project, 

China: Int. J. Mech. Min. Sci. and Geomech. Ahstr., 36, 381-397. 



APPENDIX A 

Effects of fracture tips 

An important parameter in the accurate modelling of natural fractured rocks is 

the realistic implementation of the effects of fractures in wave propagation. The 

main issue is the realistic representation of the finite extent of a fracture, and 

especially the two fracture tips. To exhibit the end of the fracture at both tips, 

we should have no displacement outside those points, thus the compliance tensor 

Z should be 0. A way of expressing the change in the compliance is to keep the 

compliance constant along the fracture and drop to 0 at the crack tips. However, 

the sudden drop of the value is not very realistic, and there is no similar case in 

natural systems that demonstrates extreme changes of values. We believe that it 

is more realistic to represent the changes in Z as a gradual reduction towards 0 

at the fracture tips. Following Kashanov (1984) the compliance at each point of 

the fracture is given by: 

Z = 
Zmax[l - (x/l)2]

112 , 	 (A.1) 

where Zmax  is the maximum value of the compliance in the centre of the fracture, 

I is half the length of the fracture and x is the x-coordinate of the position of a 

point in the fracture. The coordinates of the right and the left fracture tips are 

+1 and —1, respectively. From Equation A.1, for the centre of the fracture (x = 0) 

the compliance is Z = Zmax , whilst for the fracture tips (x = ±1) the compliance 

is Z = 0. So the value of compliance is maximum in the centre of the fracture 
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and reduces gradually following a hyperbolic function until it reaches 0 in both 

fracture tips. As we can see from Equation A.1 the rate of reduction depends 

on the size 21 of the fracture, so the larger the fracture, the more gradually the 

compliance reduces. 

In Appendix A we described the implementation of fractures in the finite differ-

ence grid and the calculation of the effective compliance of a fractured medium. 

Equation 2.28 calculates the excess compliance tensor, that expresses the fracture 

influence. The excess compliance tensor is estimated for each of the fractured grid 

cells of the medium, thus the value of the compliance Z should remain constant 

inside each grid cell. To calculate the compliance for each of the grid cells, from 

Equation A.1 we find the values of the compliance for the two nodes of each cell, 

and take the average of the two values as the effective value of the compliance 

throughout the cell. That is illustrated in Figure A.1, where the curve represents 

the value of the compliance following Equation A.1, and the stepped line is the 

average value of the compliance we use for each grid cell. In the case where a 

grid cell is intersected by multiple fractures (or parts of fractures) the compliance 

is taken to be the average value of the compliances due to each of the fractures 

independently. 

To understand the effect of the fracture tips on the wavefield, we model the case 

of a single fracture in which, in the first case, the compliance remains constant 

throughout the fracture and drops to 0 at the tips, and, in the second case, the 

compliance reduces following our implementation. The model we use is presented 

in FigureA.2. 

For the two cases we compare the wavelets of a number of traces and the results 

are presented in Figure A.3. The wavelets presented in Figure A.3 do not include 

direct waves, because they are not affected by the fracture tips, and so are identi-

cal. Also, the amplitude of the wavelets is normalised between the several traces. 
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However, the relative amplitude between the wavelets for each individual trace 

remains accurate. From the comparison between the wavelets, we first observe 

that there is a time difference between the SS-waves when we have constant com-

pliance and when the compliances reduce gradually, with SS-waves of the latter 

case being slower. That may be due to the sensitivity of S-waves in changes of 

anisotropy. By changing the compliance from constant to variable, we effectively 

change anisotropy, and that is only visible in the SS-wavelets. However, when 

zT 1— )2  
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Coordinate system of the fracture (-I,!) 

Figure A.1: Schematic representation of the reduction of the value of compliance 
Z along a fracture. The red line represents the value of compliance 
following Equation A.1 by Kachanov (1984). The green line represents 
the way we approximate that function in our implementation. 
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Figure A.2: Model used to examine the effect of the fracture tips on the wavefield 
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we observe the wavelets from traces 100 and 120 we see that the time difference 

in the SS-waves disappears. The waves observed at those receivers come from 

waves diffracted from the crack tips and from waves refracted at the fracture, 

in contrast with the rest of the receivers, where we have diffracted and reflected 

waves. Also, we can observe variations in the amplitude. In traces 20, 40, and 

60, where the receivers are above the fracture, so we have reflected and diffracted 

waves, the amplitude of the waves when the compliance is constant is higher than 

the amplitude when the compliance follows our implementation. On the other 

hand, in trace 80, when the waves are only diffracted, we have opposite results. 

Finally, in traces 100 and 120, where we have refracted and diffracted waves, the 

amplitudes seem to be almost identical. We see that reflection and refraction are 

decisive factors in the wavelet pattern. More research needs to be done on those 

topics to examine how they affect the waves. 

Another parameter that we have not examined is the effect of the length of the 

fracture. From Equation A.1 we can see that if we have a fracture of short length 

1 then the reduction of the compliance would be severe, whilst when the fracture 

is very large we will have a very smooth reduction that can approximate the case 

of the constant compliance throughout the fracture. That has to be tested by 

modelling various sizes of fractures and the respective wavelets, to find out at 

what point the approximation of constant compliance is satisfactory. 
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Figure A.3: Comparison of the wavefields generated by two different implementa-
tions of the fracture compliance. Solid-line wavelets represent the case 
of a constant compliance that drops to 0 at the fracture tips, while 
dotted-line wavelets represent our implementation, based on Kachanov's 
(1984) concept, where compliance reduces gradually. The trace numbers 
correspond to depths 200, 400, 600, 800, 1000 and 1200 oil. 
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APPENDIX B 

Fracture evolution 

At the smallest scale, the dynamical system is determined by a time dependent 

stochastic process with two states of fracturing (active and stable). In the active 

state, the fracture segment interacts with adjacent active segments, while in the 

stable state, the fracture segment does not interact with adjacent active segments. 

At larger scale, the state of fracturing is determined by purely geometric rules of 

fracture interaction based on fracture mechanics. In addition to these short range 

interactions, a redistribution mechanism in the neighbourhood of active fractures 

ensures long range interactions. Thus, non-linear feedback processes are incor-

porated in the fracture growth mechanism. It is possible to distinguish different 

phases in the evolution of fault patterns, which are the nucleation, growth, coa-

lescence and interaction, concentration, and branching phases. 

In the initial stages of the nucleation phase we have isolated active fracture 

segments. Since fracture interaction is negligible, these fracture nuclei have a 

random homogeneous spatial distribution, and their number increases at a con-

stant rate. The strain rates remain virtually uniform and only small fluctuations 

can be distinguished in the neighbourhood of the fracture nucleus. Nevertheless, 

they favour the accumulation and the concentration of the strain rates on the 

fracture segment and at the fracture tips while they impede it on each side of the 

fault. 
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While the nucleation process continues, the strain rates are primarily concen-

trated at the process zones of the fracture nucleus. In these process zones, the 

intensity of the micro-fracturing process increases and fractures at all scales may 

organise themselves more efficiently. During the growth phase, the fracture tips 

move faster as the fracture gets bigger. During the growth phase, new fracture 

segments always interact positively with fracture nucleus to form larger faults. 

The new fractures have an orientation close to the main direction. 

When the nucleation process is almost nonexistent and as the growth process 

continues, the ratio between the length of the fractures and their distance in-

creases and the fractures begin to interact. There are three types of interaction: 

Overlap of process zones when two fractures propagate towards the same zone, 

overlapping shadow zones when two parallel fractures propagate simultane-

ously, and (iii) overlap of shadow and process zones in any step-like discontinuity. 

These interactions can efficiently modify the geometry of the fracture network 

and new fracture patterns emerge. The fracture population will have a dense 

composition of fractures with different lengths. Fractures may coalesce and form 

bend patterns while other fractures may produce en-echelon patterns. 

From the hierarchy established at the end of the interaction phase, the fracture 

network evolves toward a stable system based on the coexistence of major faults. 

During this period within the evolution of the fracture network, major fractures 

in steady interaction increase their strain rates by removing the strain rates from 

minor fractures. The active fracture network becomes less compact. Major frac-

tures of different lengths emerge with increasing simpler geometry. Branching 

and step-overs disappear but bends between regular segments may persist. The 

strain rates remain concentrated on the major fractures. During this concentra-

tion phase, the longest fractures have larger strain rates. Along these fractures, 

the strain rates are more uniform and may vary according to the alignment of the 

fracture segment with respect to the main direction and structural irregularities. 
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The fracture network may also evolve differently under a higher tectonic load-

ing. For a larger amplitude of tectonic loading the nucleation phase activates 

a larger number of fracture nuclei. From this multitude of fracture nuclei, the 

growth phase initially produces a denser fracture network. The larger number 

of fractures and the higher amplitude of the tectonic loading results in a more 

complex distribution of the strain rates and a more irregular fracture geometry. 

That phase of evolution is called the branching phase. 



APPENDIX C 

Multi-phase fluid flow in porous 

media 

In Chapter 8 we discussed the main concepts of single phase fluid flow. Also 

we introduced a numerical simulation technique for single phase fluid flow in a 

fractured network. The simulation can be extended to include multi phase fluid 

flow, but this is not in the scope of this thesis. In this Appendix, we will present 

the fundamental theoretical concepts for multi phase fluid flow. 

C.1 Fluid flow in fractured systems 

The basic features that describe single phase fluid flow, are also valid for each 

phase in multi phase fluid flow. Those features are described in section 8.4. In 

addition, when we have multiple fluid phases, we have to describe the interaction 

between the phases. 

The interaction between fluids during fluid flow in a fractured system is de-

scribed by miscible displacement. Whereas oil and water are immiscible fluids 

(i.e. they do not mix and are separated by an interface), some fluids are fully 

miscible (i.e. they mix freely in all proportions). When a gas (or other fluid) is 

injected into an oil reservoir and the fluids are miscible, this is referred to as a 
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miscible displacement. When a miscible solvent (s) displaces an oil (o), the pres-

sure in each and the local pressure gradients are the same (there is no capillary 

pressure since there is no interface). The mixing between the solvent and the oil 

can occur locally by dispersion and by fingering. The displacement is described 

by a generalised convection-dispersion equation where the mixing viscosity, 77(c) 

is a function of the concentration of the solvent, c (or oil). Often, the solvent 

viscosity is below that of the oil (i.e. ij, < 	which tend to cause an instability 

to develop in the displacement known as viscous fingering. 

C.2 Multi phase rock/fluid properties 

In the case of multi phase flow some of the properties that describe the flow are 

the same but they have different meaning compared to the single phase and there 

are also some new properties. We will describe in this section saturation, residual 

saturation, relative permeability, capillary pressure, mobility, and the fractional 

flow. 

The saturation refers to a single phase (oil, water, gas) and is the fraction of 

the pore space that it occupies (not of the total rock and the pore space volume). 

The symbols we use are S, S, and 5g  respectively for oil, water, and gas. 

For a certain medium we have S, + S + S9  = 1. The residual saturation of a 

phase is the amount of that phase (fraction of pore space) that is trapped or is 

irreductible; e.g. after many pore volumes of water displace oil from a rock, we 

reach residual oil saturation, 8Qr At the residual saturation the corresponding 

relative permeability of that phase is zero. Typically, in a moderately water wet 

sandstone, Sor r.1 0.2-0.35. The amount of trapped or residual phase depends on 

the permeability and wettability of the rock. 

The relative permeability is a quantity that describes the amount of impairment 
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to flow of one phase on another. It is defined in the two phase Darcy law and 

depends on the saturation of the phase. The wettability is a measure of the pref-

erence of the rock surface to be wetted by a particular phase. The wettability of 

a porous medium determines the form of the relative permeabilities and capillary 

pressure curves. The usual cases are water wet, oil wet and intermediate wet 

systems. Where water is the preferential wetting phase we refer to a water wet 

system. Water occupies the smaller pores and forms a film over all of the rock 

surface, even in the pores containing oil. Where oil is the preferential wetting 

phase we refer to an oil wet system. Oil occupies the smaller pores and forms a 

film over all of the rock surface - even in the pores containing water. Finally, an 

intermediate wet formation is where some degree of water wetness and oil wetness 

is shown by the same rock. Some different types of intermediately wet system 

have been identified known as mixed wet and fractionally wet. 

The difference in pressure between two (immiscible) phases is the capillary pres-

sure. It is defined as the non wetting phase pressure minus the wetting phase 

pressure. It depends on the saturation and for two faces the capillary pressure is, 

P(S) = P0 - P, (for a water wet porous medium). A typical capillary pressure 

and relative permeability curve is shown in Figure C.I. This example is for a 

moderately water-wet system. In the figure residual saturations are evident (S 

and S0 ). 

The mobility of a phase (e.g. A or )) is defined as the ratio of the effective 

permeability of that phase (e.g. k=k krw; k0 k kro) divided by the viscosity of 

that phase 	= (k. krw)/pw; ,\ = (k. kro)/po). Finally, the fractional flow of 

a phase is the volumetric flow rate of the phase under a given pressure gradient, 

in the presence of another phase. The symbols for water and oil fractional flow 

are f and  f0 and they depend on the phase saturation, S: f = Q/Q; ft = 

Q,/Q. The fractional flows play a central part in Buckley-Leverett theory of linear 

displacement which starts from the conservation equation: 3S/Ot = —3f/3x; 
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Figure C.1: Schematic figures for capillary pressure (left figure) and relative perme-
ability (right figure) for a water wet system. 

3S0 /Ot = —0f0 /3x. 

C.3 Differential equations for two phase fluid 

In reservoir simulations, we are primarily concerned with modelling the displace-

ment, within a porous medium, of oil by either water or gas. While the displacing 

fluid may be immiscible with the fluid being displaced, within the porous medium 

simultaneous flow of the two fluids takes place. The fluid that wets the porous 

medium is the wetting phase (and we use the subscript w) and the other is the 

nonwetting phase fluid (and we use the subscript n). In a water-oil system, water 

is most often the wetting phase; in an oil-gas system, oil is the wetting phase. 

Because of surface tension and the curvature of the interfaces between the two 

fluids within the small pores, the pressure in the nonwetting fluid is higher than 

the pressure in the wetting fluid. The difference between these two pressures is 
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the capillary pressure, P: 

(C.1) 

We accept, as an empirical fact, that the capillary pressure is a unique function 

of saturation: 

P. - P = P, (S.) 	 (C.2) 

C.3.1 Darcy's law in two phase flow 

Darcy's law is extended to multiphase flow by including the phase pressures and 

describe how they are involved in causing each fluid to flow. The superficial 

velocities for the nonwetting (Va) and wetting fluids (V) are: 

V = —(VP - pgVD), 	 (C.3) 
i' m  

V = — K. (VP - pgVD), 	 (C.4) 

where 71n  and r are the respective viscosities, and Pn  and  Pw  the respective 

densities. K and K are the effective permeabilities for flow for each of the two 

fluids. Because the simultaneous flow of the two fluids causes each to interfere 

with the flow of the other, these effective permeabilities must be less than or 

equal to the single-fluid permeability, K, of the medium. Relative permeabilities 

are therefore defined by: 
K 

	

krm  = K 	
.5 

K 

	

K 	
(C.6) 

Again we accept as an empirical fact that these relative permeabilities are unique 

functions of the saturation. Typical relative permeability curves are shown in 

Figure C.2. 

We rewrite Darcy's law now, using the relative permeabilities: 

Kkrn  
(VP V = - 	- pgVD), 	 (C.7) 

An 
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Figure C.2: Typical curves for two-phase data. A.Capillary pressure. B.Relative 
permeabilities for the wetting and non-wetting phases (after Sorbie and 
McDougall, 1998) 

V 	_Kkrw(VP - pgVD), 	 (C.8)
AW  

C.3.2 Conservation of each phase 

Except for the accumulation term, the same considerations that were applied in 

the single phase flow are also applied here to derive a differential equation of flow 

for each phase. To obtain the accumulation term, we note that the amount of 

mass of each phase in a differential volume is the product of the volume of the 

differential element, the porosity, the density of the phase, and the saturation of 

the phase. The rates of accumulation for the 1-D case are for the nonwetting 

phase A/x and for the wetting phase AAx. Hence the continuity at 

equation for two phase flow is: 

—V. (cpV) + aq,, = 	, 	 (C.9) 
at 

—V. (cxp V) + cq = a 3(qp S ) 
at 	

(C.10) 

where a is a geometric factor. 
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C.3.3 The differential equations for two-phase flow 

By combining Equations (C.7) with (C.9) and Equations. (C.8) with (C.10), we 

a set of simultaneous differential equations that describe two-phase flow: 

V 
[ PnR7rn 

	

	 O(cbp71S) 
(VP7  - pgVD)] + cq = 

	

' 	(C.11) 
Pn 	 at  

V. [PwKkrw(Vp - pgVD)] + aq,, = oz 
	

(C.12) 
/LW 	 at 

These equations are extremely general in their applicability, including the effects 

of compressibility, capillary pressure, and the relative permeability, as well as 

spatial variations of the absolute permeability and the porosity. 

C.3.4 Pressure differential equation 

Equations (C.11) and (C.12) are not the only ones that describe the two phase flow 

problems. There are alternative pairs of equations that concentrate on different 

properties of the medium. The first of this pair is a pressure equation that 

primarily describes how pressure varies with time and position. The primary 

objective in deriving the pressure differential equation is to eliminate the time 

derivatives of saturation. To do this, we begin by expanding the time derivatives 

of Equations (C.9) and (C.10) to obtain: 

—V (cpV) + cq,1  = c[pS30at + OS,-, 	+ Op. 	(C.13) 
dP, at 	at 

(c.14) 
dPw  at 	at 

We divide Equation (C.13) by ozp, and Equation (C.14) by a pw, and add the 

resulting equations. Then using the fact that S + Sw  = 1, we obtain: 

ai 	aP —(1/a'p)V. 	 = -- 

(C.15) 
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where: 

(qn/pn) + (q./p.), 	 (C.16) 

is the total volumetric injection rate, and 

Cn 
=dp,

(C.17) 
A, dP71  

c = --- 	 (C.18) 
Pw dP 

are fluid compressibilities, analogous to the single-phase compressibility. Note 

that time derivatives of saturation are absent from Equation (C. 15) .We can also 

use an average pressure defined by: 

Pay9  = (P + P)/2, 	 (C.19) 

so the individual phase pressures are defined in terms of the average pressure and 

the capillary pressure by: 

Fn = Payg  + 	 (C.20) 

Pw  = P."q - Pc. 	 (C.21) 

We also use the phase mobilities, ) and A,, that are given by: 

(C.22) 

Aw  = Kkrw/riw . 	 (C.23) 

P is usually quite small relative to Pavg.  We can also ignore the variation of aPn 

and a,ow  with position. Then Equation (C.15) can be simplified to: 

V 	+ Aw)VPavg  + Qt Oct
aPavg

. 	 (C.24) 
at 

where Ct is a total compressibility defined by: 

Ct 	(1/0)(dcb/dPavg) + (Sc + Sc,,). 	 (C.25) 
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C.3.5 Saturation differential equation 

The other alternative pair of equations is the saturation differential equation. In 

deriving the saturation equation we can focus on either the wetting or the non-

wetting phase. Here we choose, quite arbitrarily, the wetting phase. Assuming 

that the solution to Equation (C.24) is known, P may be obtained from Equa-

tion (C.21)and then V obtained from Equation (C.8). Equation (C.10), which 

involves V,, may then be used for the saturation equation. 

However, a more significant saturation equation can be obtained, one that in-

volves the total velocity (V = V + Vu,). To this end, we first obtain the wetting 

phase velocity in terms of the total velocity. From Equations (C.1), (C.7), (C.8), 

(C.22), and (C.23), we get: 

	

VP, = VP - \7P 1 	 (C.26) 

V = —\(VP - pgVD), 	 (C.27) 

V = —(VP - pg7D). 	 (C.28) 

Combination of the these three equations and rearrangement yields: 

) n AwVPc  = AwVn  + \nVw  + )n)tw(Pn - pw)gVD. 	(C.29) 

We define a total velocity by: 

Vt  = Vn + V. 	 (C.30) 

Using Equation (C.30) to eliminate V, we obtain: 

(An  + A)V = AV + A')[VP  + (Pw - p)gVD]. 	(C.31) 

Let us define the following functions of saturation: 

fwA. 	 (C.32) +A  
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_ ')' dP - - 	 (C.33) 
+ dS 

A typical curve of fw  vs. S is shown in Figure C.3. 

The negative sign is included in the definition of h to keep it positive, since P 

is a decreasing function of SW . Equation (C.31) then becomes: 

VW  = fV - hVS + )mf(p - p)gVD. 	 (C.34) 

and Equation (C.10) can be written in the following final form for the saturation 

equation: 

3 (qpw SW ) 
\7. (cphVS) —V (apWfW)[ +\fl(pW-pfl)gVD]+qW =

at 	
(C.35) 

The first term (which involves the capillary pressure) strongly suggest that it is 

essentially parabolic in nature, unless capillary effects are unimportant. In that 
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case, the two centre terms that involve velocity and gravity become important, 

but their significance is not so obvious. 

In the region of the reservoir we take q = Qt = 0 and we have 

Vw  = fVt  - hj,VSL, + 	 - p)gVD. 	 (C.36) 

and Equation (C.35) can be simplified to: 

(1/)V. (ahVS) - 	.VSw =
at 

+ (1/)v (CvD), (C.37) 

where 

Gw  = 	 - pn)g, 	 (C.38) 

is another function of saturation. Equation (C.37) may be either parabolic or 

hyperbolic in nature, depending on the importance of the capillary pressure term 

relative to the convection term. When capillary pressure effects dominate, h 

is large, and Equation (C.37) behaves like a parabolic problem. When capillary 

pressure effects are small or absent or, more importantly sometimes, when veloc-

ities are large, then the convection term dominates, and the equation approaches 

the first-order nonlinear hyperbolic equation: 

vs = asw  
-- + (1/c)V. (oCVD). 	(C.39) 

C.3.6 Diffusion-convection equation 

Equation (C.37) can be regarded as a non-linear variation of the diffusion-

convection equation: 

DV 2C - V. VC 
=ac 	

(C.40) 
at 

which governs multidimensional miscible displacement. Here D is diffusivity and 

C is concentration. The first term of the equation is the diffusion term and, when 

it dominates, it behaves like the parabolic heat conduction equation. On the other 
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hand, when the diffusion term is small, the centre term i.e. the convection term, 

dominates and the equation approaches the first-order hyperbolic equation: 

—V-VC 	 (C.41) at 

The first-order character of Equation (C.40) may be made more clearly by ex-

panding the left-hand side: 

ac ac C ac -vt ---- - 	- V— = 	 (C.42) 
Ox Oz 0  at 

Equation (C.42) can thus be seen to be a multidimensional equivalent of the 

one-dimensional equation. 
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SUMMARY 
We model seismic wave propagation in media with discrete distributions of fractures using the 
pseudospectral method. The implementation of fractures with a vanishing width in the 2-D 
finite-difference grids is done using an effective medium theory (that is, the Coates and Schoen-
berg method). Fractures are treated as highly compliant interfaces inside a solid rock mass. 
For the physical representation of the fractures the concept of linear slip deformation or the 
displacement discontinuity method is used. According to this model, the effective compliance 
of a rock mass with one or several fracture sets can be found as the sum of the compliances 
of the host (background) rock and those of all the fractures. To first order, the background 
rock and fracture parameters can be related to the effective anisotropic coefficients, which 
govern the influence of anisotropy on various seismic signatures. We test the validity of the 
method and examine the accuracy of the synthetic seismograms by a comparison with theo-
retical ray traveltimes. We present three numerical examples to show the effects of different 
fracture distributions. The first example shows that different spatial distributions of the same 
fractures produce different wavefield characteristics. The second example examines the effects 
of variation of fracture scale length (size) compared with the wavelength. The final example 
examines the case of fractures with a power-law (fractal) distribution of sizes and shows how 
that affects the wavefield propagation in fractured rock. We conclude that characterization of 
fractured rock based on the concept of seismic anisotropy using effective medium theories 
must be used with caution. Scale length and the spatial distributions of fractures, which are 
not properly treated in such theories, have a strong influence on the characteristics of wave 
propagation. 

Key words: cracked media, effective medium theory, fractures, finite-difference methods, 
wave propagation. 

1 INTRODUCTION 

Numerical modelling techniques are now becoming very common 
for understanding the complicated nature of seismic wave propa-
gation in fractured rocks. The scientific community has shown an 
increasing interest in this subject, and currently there are a vari-
ety of approaches for forward modelling. Analytic expressions for 
the description of elastic wave propagation in the presence of frac-
tures are only available for rather simple cases, that is, single cracks 
with simple geometries (Mal 1970), and in most cases are only 
valid in the far field (Liu et al. 1997). In complex situations, so-
lutions based on Born or Rytov approximations may be used (Wu 
& Aki 1985). These approximations become accurate in the limit 
of low-frequency wave propagation and low contrast between scat-
ters and the host rock. However, they have limitations when dealing 

© 2003 RAS 

with large-scale inclusions or fractures such as those encountered 
in hydrocarbon reservoirs. On the whole, several non-numerical ap-
proaches exist for the computation of elastic wavefields that take 
into account multiple scattering, but few are valid for large sizes 
and short wavelengths. When the size of inclusions is substantially 
less than the wavelength, various equivalent medium theories are 
available (see the review by Liu et al. 2000). However, the presence 
of spatial correlations of different systems cannot be accounted for 
with any effective medium theory. Therefore, the use of numeri-
cal methods seems to be the only way that is capable of providing 
accurate solutions without a restriction of the size-to-wavelength 
ratio. 

The numerical techniques employed so far to study seismic 
wave scattering problems include the Maslov theory (Chapman & 
Drummond 1982), the finite-difference method (FD) (van Baren 
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et al. 2001; Saenger & Shapiro 2002), the pseudospectral method 
(PS) (Fornberg 1988), the finite-element method (FE) (Lysmer & 
Drake 1972), the boundary element method (Benites et al. 1992; 
Pointer et al. 1998; Liu & Zhang 2001) and the spectral finite-
difference method (Mikhailenko 2000). In this study we use the 
pseudospectral method to simulate wave propagation in media with 
discrete distributions of fractures. In contrast with the widely used 
FD method, the PS method substitutes the spatial difference scheme 
with a Fourier and inverse Fourier transform pair. A minimum of two 
nodes per wavelength (theoretically) is needed to obtain an accu-
rate derivative, compared with FD which normally requires 10-20 
nodes per wavelength (Alford etal. 1974). This is one of the major 

advantages of the PS method. However, there is a drawback in the 
use of the PS method. It intrinsically treats all physical quantities 
as spatially periodic and, as a result, all energy transmitted and re-
flected through the boundary will travel back into the grid. These 
artefacts often mask important features of real modelled signals. 
This deficiency can be mitigated by modifying the wavelet near the 
grid boundary in such a way that the wave amplitude is attenuated. 

Fractures with a vanishing width in the 2-D finite-difference 
grids are implemented using an effective medium theory (fol-
lowing Coates & Schoenberg 1995). In the literature, there have 
been several such theories that attempt to predict effective proper-
ties of a rockmass containing distributed fractures. In this paper, 
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Figure 1. Schematic illustration of fracture discretization in the finite-difference grid. In (a) we show the fractured medium that we want to examine. In 
(b) we present a very small area of the whole model and (c) shows the same area discretized in the FD grid. Finally, (d) shows again the whole medium where, 
this time, the fractures are discrctized. By comparing (a) and (d) we can see the high accuracy of the cliscretization. 
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fractures are treated as highly compliant interfaces inside a solid 
rock mass. We represent the fractures using the displacement dis-
continuity method (DDM) by Schoenberg (1980). We examine the 
validity of the method, and test the accuracy of the synthetics pro- 

10 

20 

30 

40 

50 

60 

70 

to 

90 

100 

Ito 

120 

diffracted 	 reflected 
waves 	 waves 

vpv 

,   

7  
	

Y V VT YV 

10 20 30 40 50 60 70 80 90 100 110 120 

Figure 2. Schematic representation of the model used for the testing of 
the accuracy of the modelling method, and representation of the ray paths 
of the different kind of waves generated by the source that interact with the 
fracture. 
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duced from the modelling. We choose a simple case to model and 
compare the synthetic seismograms with the theoretical ray trav-
eltimes. After testing the method, we present some numerical ex-
amples. First, we examine the effect of the spatial distribution of 
fractures on the wavefield propagation. Secondly, we examine dif-
ferent sizes of fractures, having the same spatial distribution, and 
we attempt to associate the different features of the waveforms with 
the attributes of the fractures, and in particular their sizes. Finally, 
we model the scattering of the wavefield by fractures with a scale 
length distribution. The fractures in our model follow a power-law or 
fractal distribution up to a maximum length smaller than the model 
space, that is, below the percolation threshold. Power-law size distri-
butions are the most common form encountered in natural data sets 
where a broad bandwidth of data is available (Bonnet etal. 2001). 

2 IMPLEMENTATION OF FRACTURES 
(THE COATES AND SCHOENBERG 
METHOD) 

To obtain the effective parameters of fractured media, fractures are 
treated as infinitely thin highly compliant interfaces inside a solid 
rockmass. Following the concept of the linear slip deformation or 
displacement discontinuity model of Schoenberg (1980), a fracture 
can be represented as a boundary across which the displacements 
are discontinuous, whereas the stresses remain continuous. To first 
order the displacement discontinuity and the tractions are linearly 
related, i.e. 

[u] = Zr, 	 (1) 

where [u] is the average displacement discontinuity, r is the traction 
acting across the fracture and Z is called the fracture compliance 

7.2 	 2.2 

Figure 3. Comparison between the theoretical ray traveltimes and the synthetic seismograms generated by the modelling method. We present (a) the horizontal 
(x) and (b) the vertical (z) components of the seismograms. As we can see from the figure they are in very good agreement with the theoretical traveltimes, thus 
verifying the accuracy of the method. 
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tensor, which is an elastic parameter of the medium. This linear 
relationship is consistent with the usual seismic approximation of 
infinitesimal strain. In addition, there has been some experimental 
verification of the DDM model by Pyrak-Nolte etal. (1990) and 
Hsu & Schoenberg (1993). Essentially, eq. (1) is a boundary con-
dition of the fracture surfaces. In a finite-difference algorithm, the 
relationship can be implemented by requiring a displacement jump 
across gridpoints on either side of the interface, proportional to the 
local (continuous) stress traction. The implementation of the dis-
placement jump is relatively simple, even with Z being a function 

of position on the fault plane, providing the interface lies along a 
given plane of the finite-difference grid. In nature, fractures have 
finite length. To implement a finite fracture we take Z = 0 at loca-
tions on the plane exterior to the fracture. The question that remains 
is how to implement the constraint that Z —s 0 on the tips of the 
fracture. We taper off the value of Z following the formulation of the 
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crack-opening displacement introduced by Kachanov (1984). The 
value of Z has its maximum value in the centre of the fracture and 
reduces to 0 at both fracture tips following a hyperbolic pattern. The 
rate at which the value of compliance reduces depends strongly on 

the length of the fracture. 
In the finite-difference method, the medium is discretized into 

small rectangular grids and we find the elastic parameters of the 
equivalent medium for each grid cell. For each grid intersected by 
a fracture (or portion of fracture), the elastic medium within the 
cell surrounding the fracture, together with the embedded segment 
of the fracture, are replaced by an equivalent anisotropic medium. 
Muir etal. (1992) showed how the elastic parameters could be found 
for a cell enclosing an interface between two elastic media. The 
discretization of the fracture in the finite-difference grids is shown 
schematically in Fig. 1. This method was first used by Coates & 
Schoenberg (1995), and therefore it is referred to as the Coates and 
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Figure 4. Example 1: model used to compute snapshots from spatially distributed fractures. The four different models, (a)—(d), illustrate different statistical 
distributions of fractures. P and S waves are generated at the source (represented by a star) and travel inside the medium. 
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Schoenberg method in this paper. In Fig. 1(a) we show the whole 
fractured medium. Then we take a very small area of the medium 
in Fig. 1(b), to show how the fractures are represented in the finite-
difference grid. Fig. 1(c) shows the discretization of the fractures in 
the grid, where the shaded areas are the finite-difference grid cells 
intersected by one or more fractures, whilst the plain areas are the 
cells that include only the background rock. Finally, in Fig. 1(d) 
we show the whole medium again, but this time each cell is either 
shaded or plain, depending on whether fractures are present. By 
comparing Fig. 1(d) with Fig. 1(a), where we show the medium 
with the actual fractures, we can see that the discretization of the 
fractures is very accurate. In the numerical examples presented in 
this paper we use in some cases a grid size of 128 x 128 and in 
other cases 256 x 256. The grid cell size is very important for the 
discretization of the fractures. To achieve high accuracy, we choose 
grid sizes smaller than or equal to the size of the smallest fractures. 

Simulations of wave propagation in fractured rock 653 

Thus any size of fracture can be represented accurately by the elastic 
parameters of the effective medium in each finite-difference grid 
cell. The variables required for the effective medium calculation in 
each cell are the length of the fracture, its orientation and the local 
value of the fracture compliance tensor. In the numerical models 
that will be presented later, fractures are represented as finite lines 
for which we know the starting and the ending points. Using simple 
algebra we can define the equation of any line that passes between 
two points. Knowing the equation that describes each fracture, we 
can locate the intersections of the fractures with the horizontal and 
vertical boundaries of each cell (if any) and calculate the length and 
orientation of the fracture segment lying in each cell. The effective 
medium for each cell may then be calculated using these values and 
the method for estimating the fracture compliance tensor outlined 
in Appendix A. The tapering of the value of the fracture compliance 
Z is explained in detail in Appendix B. 
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Figure 5. Snapshots taken at t = 100 ms. (a)—(d) correspond to fracture distributions (a)—(d) in Fig. 4. The numbers on the top and on the left-hand side of 
the snapshots are the model dimensions. We present the x-component of motion. 
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3 VALIDATION 

The first step is to compare results generated by our modelling 
method with those obtained by another method. This has been done 
by Coates & Schoenberg (1995), Nihei & Myer (2000) and Nihei 
et al. (2000), who compared the synthetic seismograms from the 
Coates and Schoenberg method described with the exact solutions 
using boundary element methods. We assess the accuracy by com-
paring the synthetic seismograms generated by the modelling with 
the ray theoretical traveltimes. 

The model geometry used for accuracy testing is shown in Fig. 2. 
The source, receivers and fracture are situated in an ideal elastic 
(Vp = 3300 ms, V. = 1800 m s, p = 2200 kg in -3)  full space. 
The receiver array at which vertical and horizontal particle displace-
ments are recorded is horizontal and 340 m above the fracture. The 
fracture is 300 m long. The source is located at the centre of the 
receiver array. The source type is a vertical force. The source signal 
is a Ricker wavelet (Ricker 1977) with a peak frequency of 25 Hz 

x-axis 
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and a pulse initial time of 0.1 s. Fig. 2 also shows the different kinds 
of waves created by the interaction of the waves generated by the 
source and the fracture. The source generates both P and S waves. 
When they reach the fracture boundary those waves are reflected 
and we have PP, PS,, SP, and SS, waves. PP,.-waves will be the 
first to arrive at the receivers. Those are waves that travel both before 
and after the reflection as  waves. The next arrivals will be the PS,. 
and SP waves. The PS,. waves travel as P waves from the source to 
the fracture, and as S waves from the fracture to the receivers. In the 
case of the SP, waves, the case is the complete opposite. The arrival 
of those two different types of waves happens at the same time, be-
cause the source—fracture and fracture—receiver distances are equal. 
As a result, the distance that they travel as Pandas S waves is exactly 
the same in both cases, so we present both of them as PS waves in 
Fig. 2. Finally, the SS,. waves arrive at the receivers, which travel both 
legs as S waves. In addition to the reflected waves, there are waves 
diffracted from the crack tips. We have P- and S-wave diffractions, 
and also conversion from P to S waves and vice versa, which are 
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diffracted from the tips of the fracture. These waves are presented 
in Fig. 2 as PP,,, PSI,, SPd  and SSa waves. 

We calculate the theoretical ray traveltimes and overlap them on 
the synthetic seismograms. Figs 3(a) and (b) show the horizontal 
(x) and the vertical (:) components, respectively, of the synthetic 
seismograms together with the theoretical ray traveltimes. As we 
can see from both figures, we have very good agreement between the 
theoretical ray traveltimes and the synthetic seismograms. All types 
of waves are accurately represented in the synthetic seismograms. 
Owing to the type of source that we implement, we have strong 
arrivals at short offsets on the horizontal component and strong 
arrivals at long offsets on the vertical component. In addition to that, 
the diffracted waves from the tips of the fracture and the PP and 
PPa waves are not visible in the horizontal component, but they are 
very clearly demonstrated in the vertical component and follow the 
theoretical traveltimes. This is expected because the source causes 
vertical displacements on the medium, so very close to the source 
and very far away from it, the horizontal displacement is negligible. 
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Another aspect of the comparison between the theoretical and the 
modelled data is that they give us further insight into the waveform 
patterns. For instance, we can see in both Figs 3(a) and (b) that 
in the areas of superposition between the reflected waves from the 
fractures and the diffracted waves from the tips we have maximum 
amplitude in the wavefield, as a result of constructive interference. 
This gives us valuable information concerning the medium we are 
examining. 

4 NUMERICAL EXAMPLES 

The PS method has been used to model the seismic wavefield 
reflected and diffracted by fractures. We examine the influence 
of different fracture parameters on the displacements. In par-
ticular, we are interested in understanding the effects of spa-
tial distributions, the scale length distribution of fractures and 
looking for characteristics in the wavefields owing to different 
distributions. 
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Figure 7. Snapshots taken at 1 = 300 ms. 
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Figure 8. Comparison of synthetic seismograms and corresponding spec-
tra from various distributions of fractures: (o) no fractures, (a)-(d) corre-
spond to the fracture distributions of Fig. 4 (trace number 100). 

4.1 Fracture spatial distribution 

The first example is given in Fig. 4, in which we attempt to model 
four different simulations of random fracture distributions. In each 
model, there are 100 fractures randomly distributed in a 1280 x 
1280 in  area. To create the various random distributions of frac-
tures we used an algorithm that generates four arbitrary distribu-
tions, featuring different qualitative characteristics. We use parent 
distributions for the fracture centre spacings that are (a) random 
uniform, (b) Gaussian, (c) exponential and (d) Gamma distribution. 
In the cases where we have overlapping of fracture positions, we re-
move the overlapping fractures and generate new fractures until the 
desired number of fractures is reached. As a result of this process, 
the final crack distribution is not necessarily random. Nevertheless, 
the purpose of this paper is to illustrate how different distributions 
affect multiple scattering. The generation of the different fracture 
distributions is presented in detail in Appendix C. In this simulation, 
each fracture has the same length, 2cr = 30 m, where a is the radius 
or the half-length of the fracture. The surrounding solid (matrix) has 
P- and S-wave velocities Vp = 3500 m s t , Vs = 2000 in s and 
density p = 2200 kg m 3 . The source is located at the left-hand 
corner of the model. The source type is a vertical force. A Ricker 
wavelet with a dominant frequency of 40 Hz is used, so that k,,cs = 
1.08 and ka = 1.88 (where k = 27rf/Vp and k = 27r f/V5  
are the P and S wavenumbers), or equivalently X,,/2a = 2.9 and 
X,/2u, = 1.67 (where A = Vp/f and ?, = Vs/f are P and S 
wavelengths, respectively). For demonstration purposes, in all mod-
els in the paper we have used fracture compliance ZN = ZT  = 
5.6 x 10_I0  G Pa-' at the elementary scale. 

The resulting snapshots taken at t = 100, 200 and 300 ms are 
given at Figs 5-7, respectively. As we can see from Fig. 4, fractures 
are more clustered in models (b) and (c), whereas they are more 
uniformly distributed or more scattered in models (a) and (d). In the 
extreme case of model (c), where the fractures are exponentially dis-
tributed, they are all concentrated in a small area around the source, 
forming a big cluster. This results in a lot of energy being trapped in-
side the cluster, between the various fractures. We observe the effect 
of the high clustering in the snapshots of the wavefield propagation 
at consecutive times, concentrating mainly on the mean wavefield. 
The wave fronts shown on the snapshots represent the statistical av-
erage effect of the fractures encountered throughout the wave path, 
thus resulting in a mean wavefield. The energy attenuation becomes 
clearer at 300 ms, where we see a lot of energy remaining in the 
area of the fracture cluster, whereas the mean wavefield almost does 
not exist. In model (b) where the fractures follow a Gaussian dis-
tribution, the fractures also form a big cluster in the centre of the 
model, but in this model they occupy more space and the distance 
between the various fractures is greater. In this case, similar to model 
(c), we have a significant amount of energy trapped in the fracture 
cluster. However, we can observe from the snapshots that there is 
more energy coming through the cluster, and that gives a fairly clear 
image of the mean wavefield of at least the P wave. The opposite 
case to the two previous ones is described in model (d). In this case 
the fractures follow a Gamma distribution (a power law with an 
exponential tail), thus forming a number of small clusters that are 
significantly distant from each other. It is observed in the snapshots 
that in this case the mean wavefield, for both P and S waves, is most 
clearly observed and has the highest amplitude compared with the 
rest of the cases. We believe that the small size of the clusters formed 
means that a lot of energy is not kept inside them, letting most of 
the energy propagate through the whole model. Finally, model (a) 
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where fractures are randomly uniformly distributed, describes a case 
where we do not have any clustering. The fractures are distributed 
throughout the whole medium. Although the snapshots show some 
trapped energy between the fractures, the mean wavefield propaga-
tion is quite clearly observed. To sum up the results, we can see that 
the wavefield propagates with the least energy attenuation when we 
have the least fracture clustering as shown in model (d), while atten-
uation increases with increasing clustering as shown in models (a)—
(c), respectively. 
In the following, we take the models of Fig. 4 and calculate the 
synthetic seismograms. The receivers are positioned along the 
z-direction and shifted by 1050 m in the x-direction. The cases 
we compare are (o) no fractures, (a) random uniform distribu-
tion, (b) Gaussian distribution, (c) exponential distribution and (d) 
Gamma distribution. Fig. 8 shows comparisons of waveforms of the 
x-component of motion from trace number 100, that corresponds to 
the depth of 1000 m, of each of the models and their correspond-
ing Fourier spectra. In the figure we observe a noticeable shift of 

25 50 75 100 125 150 175 200 225 250 
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energy to frequencies higher than the dominant frequency. If we 
compare the global maxima for all the cases examined, we can see 
in model (a) that the maximum energy is at approximately 40 Hz, 
which is the source dominant frequency, in model (b) it is at approx-
imately 49 Hz, in model (c) it goes up to approximately 67 Hz, and 
in model (d) it is at 60 Hz. In terms of the distance that the wave 
travels between two consecutive scatterings, in model (a) we have 
the longest distance and in model (c) the shortest. Combining that 
with the observation that in model (a) we have no frequency shift 
of the energy, while in model (c) we have the maximum frequency 
shift indicates that there is a systematic shift of energy to higher fre-
quencies when the multiple scattering dimension becomes shorter. 
Another feature of the spectra is the local minima of the ampli-
tude. The first local minimum is observed at 30 Hz where the length 
of the fractures is approximately a quarter wavelength. There are 
also local minima at around 38, 58 and 70 Hz. These minima can 
be a result of the constructive or destructive interference of multi-
ply scattered waves from the fractures. Finally, we notice that the 
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Figure 9. Example 2: model used to compute snapshots from randomly distributed fractures having different sizes compared with the source wavelength: 
(a) (Y = 0.IA, (b)a = A and (c)a = 2A. 
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amplitude of the wavefield from distribution (b) is much smaller 
and has a relatively low-frequency content compared with the other 
distributions. This is possibly because in this case the local fracture 
density along the wave path towards the receivers is higher compared 
with the other cases. This example demonstrates clearly that differ-
ent distributions of fractures have a significant influence on multiple 
scattering. 

4.2 Effects of fracture scale length 

The second example is used to examine wave scattering in a frac-
tured medium where fractures have different sizes compared with 
the source wavelength. To ensure consistency of the results from 
different models we use the same background medium in all cases, 
which guarantees that any variation in the features of the wavefield 
is a result of the variation in the size of the fractures. The matrix 
parameters are Vp = 3300 m 	and V. = 1800 m s for the 

x-axis  

P- and S-wave velocities, respectively, and the density is p = 2.2 
g cm-3. The source is a vertical force and is located at the centre 
for all the models. The source wavelet is a Ricker wavelet with a 
dominant frequency of 25 Hz and a initial pulse time at 0.1 s. We 
use a grid size of 256 x 256, with a spatial grid step of 10  and 
a time step of 0.001 s. In all the models we have 50 fractures that 
follow a completely random distribution to avoid clustering pat-
terns. We examine three different cases of fracture sizes, ce = 0.1 A, 

= A and ot, = 2A, where a is half the fracture length and A is 
the wavelength. 

Fig. 9 shows the models of the different sizes of fractures we ex-
amine, while Fig. 10 shows the respective snapshots taken at 350 ms. 
We observe in model (a) that when the wavelength is larger than the 
size of the fractures, we have a clear image of the propagation of 
P and S waves through the fractured medium, and each individual 
fracture acts as a point scatterer that becomes a secondary source. 
On the other hand, when the size of the fractures is equal to or larger 

y-uYis 

Figure 10. Snapshots taken at! = 350 ms. (a)-(c) correspond to fracture models (a)-(c) in Fig. 9. The numbers on the top and on the left-hand side of the 
snapshots are the model dimensions. We present the x-component of motion. 
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than the wavelength, they act almost as individual boundaries and 
the amplitudes of the reflected waves depend on the interference be-
tween the various reflections. In addition, following the results of the 
previous section on the effects of the fracture distribution together 
with the effects of the scale length, strong and coherent energy will 
be present in areas of high fracture clustering where fractures form 
large clusters and have a large size, thus acting as a single reflector. 

4.3 Power-law (fractal) distribution of fracture sizes 

The final example is used to model wave scattering from discrete 
fractures with a scale length distribution. The model we use is 
given in Fig. 11(a), where the variation of crack sizes follows a 
von Kirmán correlation function, which gives a power-law distri- 
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bution (Wu 1982). We can also use other correlation functions, such 
as Gaussian or exponential functions. The model shown in Fig. 11(a) 
is generated with a correlation length of 40 in. In this model we have 
400 fractures randomly distributed in a 2560 x 2560 m2  area. The 
source is a vertical force and is located in the centre ofthe model, and 
is represented by a Star in Fig. 11(a). The longest fracture is 100 in 
and the shortest is 10 in. The mean length of the fractures (a) is 
27.5 in, and the fracture density of the medium s = N f(a)2/S is 
0.046, where N F  is the number of fractures and S is the surface of 
the medium. The peak frequency is 40 Hz, which gives cs ranging 
from 0.36 to 3.6 for P waves and from 0.63 to 6.3 for S waves, 
where k is the wavenumber, the P-wave velocity is 3500 ms and 
the S-wave velocity is 2000 ms. Figs I 1(b)-(d), illustrate the at-
tributes of the size distribution of the fractures. Fig. 11(b) shows 
the different sizes of fractures in the model of Fig. 11(a). Fig. 11(c) 
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Figure 11. (a) Example 3: model used to compute synthetic seismograms from fracture distribution with power-law distribution of fracture sizes. (b) Illustration 
of the sizes of fractures in model (a), that follow a power-law distribution. (c) Power spectra of fracture size distributions shown in (a). (d) Cumulative number 
of the fractures of model (a) plotted against the fracture size. 
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shows the power spectrum of the fracture size distribution presented 
in Fig. 11(a) (plotted on a log—log scale). We see that the variation 
can be fitted with a straight line. Such a model (i.e. with a linear 
variation of the logarithm of the power spectrum with the logarithm 
of the spatial wavenumber) is a power-law distribution, often called 
a fractal (Bonnet et al. 2001). Fig. 11(d) shows the variation of the 
incremental number of the fracture population in the corresponding 
range of fracture sizes. To examine the behaviour of the wavefleld 
arising from the fractal distribution of fractures in the medium, we 
take snapshots at consecutive times, t = 200, 250, 300 and 350 ms. 
The snapshots are presented in Fig. 12. As we can see from the snap-
shots, the behaviour of the wavefleld is very complicated. Clearly, 
the P and S mean waves are fading away as they propagate through 
the medium. This can be attributed to the scattering taking place 
as the wavefleld propagates through the high fracture density clus-
ters. This is confirmed by the snapshots, where we can see high 
energy concentrated at the exact positions of the fracture clusters. 

This is particularly clear in Fig. 12(d), where we have high ampli-
tudes in the areas of fracture clusters resulting in strong coda waves, 
and at the same time low amplitudes of the mean P and S waves. 

5 CONCLUSIONS 

We have used the pseudospectral method to study the effect of dif-
ferent attributes of fractures on the wavefleld characteristics. The 
fractures have been implemented in finite-difference grids using 
an effective medium theory. The method can deal with multiple 
scattering cases without having any limitations on the number of 
fractures included in the medium. The representation of the wave-
field is highly accurate as long as sufficient grid elements are avail-
able, and in very good agreement with the theoretical ray travel-
times. Note that in addition to our work presented in this paper, as 
far as we know the Coates and Schoenberg method has also been 
implemented by Nihei & Myer (2000) and Nihei et al. (2000) on 
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Figure 12. Snapshots from model in Fig. 11(a) taken at (a) t = 200 ma, (b) t = 250 ma, (c) f = 300 ms and (d) f = 350 ins. 
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staggered grid FDs, and by Chunlin Wu on variable grid FDs (Wu 
et al. 2002). 

From the numerical examples we come to some interesting con-
clusions. First, we can see the importance of the spatial distribution 
of fractures in a medium. Our results show that in areas with fracture 
clustering, there is strong and coherent energy. Also, high cluster-
ing does result in high local fracture densities, which can cause 
the energy to be trapped in a certain area (localization processing), 
increasing the complexity of the wavefield and making individual 
phases and their identification very complicated. Also, we observe 
that different spatial distributions give different frequency content 
on the recorded wavefield. This as we might expect means that 
frequency-dependent seismic scattering depends on the spatial dis-
tribution of fractures (Leary & Abercrombie 1994). In addition, also 
of great importance is the fracture size relative to the wavelength, 
independent of the spatial distribution. It is demonstrated that when 
fractures are smaller than the wavelength, they act as single scat-
terers and generate secondary wavefields, whereas when the size 
approaches the wavelength they act as individual interfaces and the 
wavefield is more complicated. To complete our study, we examined 
the case of fracture sizes that follow a power-law or fractal distri-
bution. The wavefield generated shows very strong coda waves and 
is very complicated. The observation confirms the importance of 
spatial and scale length distributions in modelling fractured rock. 

Numerical modelling techniques, such as those presented here, 
can be a useful tool in the understanding of the important role of 
fractures and their effects on wave propagation. The knowledge 
gained by such studies may ultimately lead to the extraction of 
valuable information concerning the fracture distributions in nat-
ural rocks, directly from seismic data. In addition, our method may 
potentially provide a test of fracture imaging using seismic meth-
ods (as demonstrated by Nihei et al. 2000), and characterization of 
fractured reservoirs based on the concept of seismic scattering. 

6 COLOUR ONLINE 

Colour versions of Figs 2, 3, 8 and B I are available online at Black-
well Synergy, www.blackwell-synergy.com. 
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APPENDIX A: EFFECTIVE 
COMPLIANCE OF A FRACTURED 
MEDIUM 

Effective medium calculus is used to calculate the elastic parame-
ters that are associated with a given cell through which a fracture 
passes. In the simple case of an unfractured cell, where the cell is 
occupied only by the background rock, the calculation of the com-
pliance tensor is straightforward. Assuming that we know the elastic 
parameters of the host rock, we calculate the compliance tensor so 

as follows: 

(Al) 

A=p(V-2V). 	 (A2) 

A+ 2,a 	A 	A 	0 0 0 

A A+2i A 0 0 0 

A 	A A+2js 0 0 0 
(sJk,) 	= Cjjk/ 

= 	0 	0 	0 	.e 0 	0 

0 	0 	0 	OjiO 

0 	0 	0 	00s 

(A3) 

where V1  and V, are the P- and S-wave velocities in the medium, 
respectively, Cilki is the 6 x 6 matrix form of the stiffness tensor for 
the unfractured medium, and A and js are the Lamé constants. 

In the presence of fractures the average strain e in an elastic 
homogeneous solid with volume V containing Nf  fractures with 
surfaces Sr  (r = 1, 2..... Nf ) can be written as 

= (s 51  + skI)akl. 	 (A4) 

where o-  is the average stress tensor, S,kI  is the matrix compliance 
tensor in the absence of the fractures and slik,is  the extra compliance 
tensor resulting from the fractures. The additional strain is given by 
(Hill 1963; Hudson & Knopoff 1989), 

= I 	
f ([uJn 1  + [ u1]n1 )dS, 	 (AS) 

where u j  is the ith component of the displacement discontinuity on 
S. and ni  is the ith component of the fracture normal. If all fractures 
are aligned with fixed normal n, we may replace each fracture in V 
by an average fracture having a surface area S and a smoothed linear 
slip boundary condition given by 

[0,] = 	 (A6) 

where t,, is the traction on the fracture, [0] is the average displace-
ment discontinuity on the fracture and the quantities {Z 1, } depend on 
the interior conditions and infill of the fracture (Sayers & Kachanov 
1995; Schoenberg & Sayers 1995). The traction t,, is linearly related 

to the imposed mean stress a-  or, more precisely, to the traction 0' 1,q!t q  

that would exist on the crack face if the displacements were con-
strained to be zero. 

Liu etal. (2000) used a model ofa simple fracture in an unbounded 
medium and proposed that the traction can be written as 

tp  = 	 (A7) 

eq. (A6) becomes 

[0] = Zipapq nq . 	 (A8) 

Inserting eq. (A8) into eq. (AS) and after some tensor algebra, we 
obtain 

= 	L5(ZIkn,n /  + Z15 n1n1  + Zltnkn f  + ZJfnkn I )ak, 

(A9) 

where S is the mean area of fracture; so the fracture induced excess 
compliance ijkl Is 

5ijkI = 	(ZtkntnJ + Zjnjn, + Z11n5n1 + ZJInknI). 	(AlO) 

where Df  15 

D= NfS 
 Z . 	 (All) 

If the fracture set is statistically invariant under rotations about n, 

only two terms in Z are required (Schoenberg & Sayers 1995); a 
normal fracture compliance ZN and a tangential compliance Zr. 

Thus 

Z,, = ZNn f nJ + ZT(SIJ - nnj ) = ZT&J + (ZN - ZT)nl n,, 

(Al2) 

where hj is the Kronecker delta. By inserting (Al2) into (AlO), we 

have 

D 
Sj (  = --[ZT(Skn,nJ + 3jk!i + 8iikj + 611,tsn1 ) 

+4(4 - ZT)n,nJnknh]. 	 (A 13) 

Following Coates & Schoenberg (1995), in the case of 2-D media 
in a grid cell intersected by a fracture, eq. (All) becomes 

NEAl 
 

AA 

where Al is the length of the segment of the fracture lying within 
the cell and AA is the area of the 2-D cell. If L is defined for each 
cell intersected by a fracture so that 

1 	Al 
 

then eq. (Al 3) finally becomes 

s f151  = N [Zr(hrtnjn, + 8 jkfllfli + 81n 5n1  + S,nen,) 

+4(4 - ZT)nnJnkn,]. 	 (A16) 

which is the equation we use for the calculation of the excess com-
pliance tensor. So the induced excess compliance tensor of a cell 

depends on the normal ZN and the tangential Z1  fracture compli-

ance, the number Nf  of the fractures inside the cell, the length Al 
of each fracture (or segment of fracture) and the orientation of each 
fracture estimated by the normals n. The total compliance tensor 

for the fractured cells is the effective compliance tensor s, which ijkl 
characterizes the cell and is 

= 	k1 + i/kI' 	 (A 17) 
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If we want to determine the stiffness c.1, we transform sijkl  to 
the conventional (two-subscript) condensed 6 x 6 matrix notation, 
11 — 1,22 -+ 2,33 - 3.23 - 4,13 -+ 5,12 --* 6, with factors 
of 2 and 4 introduced as follows: s,.1  — s when both of P, q are 1, 
2, or 3; 2s j , -+ s1, when one ofp, q is 4,5 or 6; and 4s95, + Spq  when 
p, q are any of 1,2,3,4,5 or 6. The inverse of the compliance matrix 

gives the effective elastic constants or stiffness matrix Cr4. Using 
the same transformation as for the compliance, we transform the 
stiffness from the condensed (two-subscript) to the normal notation 
(c1,4  --v C4j5/). 

APPENDIX B: EFFECTS 
OF FRACTURE TIPS 

An important parameter in the accurate modelling of natural frac-
tured rocks is the realistic implementation of the effects of fractures 
in wave propagation. The main issue is the realistic representation 
of the finite extent of a fracture, and especially the two fracture tips. 
To exhibit the end of the fracture at both tips, we should have no 
displacement outside those points, thus the compliance tensor Z 
should be 0. A way of expressing the change in the compliance is to 
keep the compliance constant along the fracture and drop to 0 at the 
crack tips. However, the sudden drop of the value is not very realis-
tic, and there is no similar case in natural systems that demonstrates 
extreme changes of values. We believe that it is more realistic to 
represent the changes in Z as a gradual reduction towards 0 at the 
fracture tips. Following Kachanov (1984) the compliance at each 
point of the fracture is given by 

Z=Zm. x [l —(x//)2] t12, 	 (B 1) 

where Zmax  is the maximum value of the compliance in the centre 
of the fracture, 1 is half the length of the fracture and x is the x-
coordinate of the position of a point in the fracture. The coordinates 
of the right and the left fracture tips are +1 and —1, respectively. 
From eq. (B 1), for the centre of the fracture (x = 0) the compliance 
is Z = Zm,x, whilst for the fracture tips (x = +1) the compliance 
is Z = 0. So the value of the compliance is maximum in the centre 
of the fracture and reduces gradually following a hyperbolic func-
tion until it reaches 0 in both fracture tips. As we can see from 
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Figure B2. Model used to examine the effect of the fracture tips on the 
wavefield. 

eq. (B I) the rate of reduction depends on the size 2/ of the frac-
ture, so the larger the fracture, the more gradually the compliance 
reduces. 

In Appendix A we described the implementation of fractures in 
the finite-difference grid and the calculation of the effective compli-
ance of a fractured medium. Eq. (A 16) calculates the excess com-
pliance tensor, which expresses the fracture influence. The excess 
compliance tensor is estimated for each of the fractured grid cells 
of the medium, thus the value of the compliance Z should remain 
constant inside each grid cell. To calculate the compliance for each 
of the grid cells, from eq. (BI) we find the values of the compliance 
for the two nodes of each cell, and take the average of the two values 
as the effective value of the compliance throughout the cell. This is 
illustrated in Fig. BI, where the curve represents the value of the 
compliance following eq. (B 1), and the stepped line is the average 
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Figure Bi. Schematic representation of the reduction ofthe value of compliance Z along a fracture. The curve represents the value of compliance following 
eq. (B I) of Kachanov (1984). The stepped line represents the way we approximate that function in our implementation. 
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Figure B3. Comparison of the wavefields generated by two different implementations of the fracture compliance. Solid-line wavelets represent the case of a 
constant compliance that drops to 0 at the fracture tips, while dotted-line wavelets represent our implementation, based on Kachanov's (1984) concept, where 

the compliance reduces gradually. The trace numbers correspond to depths 200, 400, 600, 800, 1000 and 1200 m. 

value of the compliance we use for each grid cell. In the case where 	To understand the effect of the fracture tips on the wavefield, 

a grid cell is intersected by multiple fractures (or parts of fractures) 	we model the case of a single fracture in which, in the first case, 

the compliance is taken to be the average value of the compliances 	the compliance remains constant throughout the fracture and drops 

arising from each of the fractures independently, 	 to 0 at the tips, and, in the second case, the compliance reduces 
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following our implementation. The model we use is presented in 
Fig. B2. For the two cases we compare the wavelets of a number of 
traces and the results are presented in Fig. B3. The wavelets pre-
sented in Fig. B3 do not include direct waves, because they are not 
affected by the fracture tips, and so are identical. Also, the am-
plitude of the wavelets is normalized between the several traces. 
However, the relative amplitude between the wavelets for each in-
dividual trace remains accurate. From the comparison between the 
wavelets, we first observe that there is a time difference between the 
SS waves when we have constant compliance and when the com-
pliances reduce gradually, with SS waves of the latter case being 
slower. This may be a result of the sensitivity of S waves to changes 
of anisotropy. By changing the compliance from constant to vari-
able, we effectively change the anisotropy, and this is only visible 
in the SS wavelets. However, when we observe the wavelets from 
traces 100 and 120 we see that the time difference in the SS waves 
disappears. The waves observed at those receivers come from waves 
diffracted from the crack tips and from waves refracted at the frac-
ture, in contrast to the rest of the receivers, where we have diffracted 
and reflected waves. Also, we can observe variations in the ampli-
tude. In traces 20, 40 and 60, where the receivers are above the 
fracture, so we have reflected and diffracted waves, the amplitude 
of the waves when the compliance is constant is higher than the 
amplitude when the compliance follows our implementation. On 
the other hand, in trace 80, when the waves are only diffracted, we 
have opposite results. Finally, in traces 100 and 120, where we have 
refracted and diffracted waves, the amplitudes seem to be almost 
identical. We see that reflection and refraction are decisive factors 
in the wavelet pattern. More research needs to be done on these 
topics to examine how they affect the waves. 

Another parameter that we have not examined is the effect of the 
length of the fracture. From eq. (BI) we can see that if we have 
a fracture of short length I then the reduction of the compliance 
would be severe, whilst when the fracture is very large we will 
have a very smooth reduction that can approximate the case of the 
constant compliance throughout the fracture. This has to be tested 
by modelling various sizes of fractures and the respective wavelets, 
to find out at what point the approximation of constant compliance 
is satisfactory. 

APPENDIX C: GENERATION 
OF FRACTURE DISTRIBUTIONS 

Scaling in fracture systems has become an active field of re-
search over the previous 25 years motivated by practical appli-
cations. In the case of the hydrocarbon industry, scaling laws 
provide a key to predicting the nature of subseismic fracturing 
(below the limit of seismic resolution), which can significantly in-
fluence reservoir and cap rock quality, from seismically resolved 
faults. The numerous studies of fracture-system scaling in the lit-
erature do indeed suggest that sealing laws exist in nature. They 
also indicate, however, that such scaling laws must be used with 
caution and with due regard to the physical influences that gov-
ern their validity. Over recent years the power-law distribution 
has been increasingly employed to describe the frequency distri-
bution of fracture properties and geometry. However, a power law 
is not an appropriate model in all cases, and other distributions that 
have been used include the log-normal, gamma and exponential 
laws. 
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In the main part of this paper, we examine the effect of different 
spatial distributions of fractures on the wave propagation. The frac-
tures are distributed as follows: (a) a random uniform, (b) a Gaus-
sian, (c) an exponential and (d) a Gamma distribution, as shown in 
Fig. 4. The algorithm utilizes a different random number genera-
tor (Press etal. 1997), which varies according to the distribution we 
want to simulate. For each distribution, the generator is applied once 
to give x-coordinates, and completely independently once more to 
give z-coordinates. Both x- and z-coordinates are afterwards nor-
malized to the grid size of the model. 

These pairs of x- and z-coordinates are the centres of the dis-
tributed fractures. The resulting distribution of fractures, without 
any alterations, is the parent spatial distribution. The size and ori-
entation of the fractures are given as an input to the algorithm. In 
this paper all the fractures are parallel to the grid. Subsequently, the 
algorithm examines the fractures for any overlapping cases. We de-
fine overlapping as the case where the distance between the centres 
of two fractures is less than a predefined value. In the current appli-
cation of the algorithm, we examined only the horizontal distances 
between pairs of fracture centres having the same z-coordinate. For 
simplicity in this paper we deliberately avoid modelling intersected 
cracks, that is, conjugate fracture sets. However, in theory, such a 
case can also be modelled with the method we use. In this case, 
the second overlapping fracture is excluded from the distribution. 
After testing for overlapping, the remaining number of distributed 
fractures is counted. If that number is less than desired, the resulting 
distribution of fractures is rejected. The number of fractures fol-
lowing the parent spatial distribution is raised by 5. A new group of 
fractures, spatially distributed according to the parent distribution, is 
chosen. The new group of fractures follows the same procedure that 
we described above. This process continues until the desired num-
ber of non-overlapping spatially distributed fractures is reached. A 
flow chart of the filtering algorithm is presented in Fig. Cl. The 
final spatial distribution of the fractures is a result of the parent dis-
tribution after applying data filtering, so we call this the daughter 
spatial distribution. The spatial correlation in the daughter popu-
lation is then determined by the two-point correlation function of 
the fracture centre locations in two dimensions. Figs C2-5 show the 
independent probabilities P(x) and P(z) as a function of the x- and 
z-coordinates of the centres of the fractures, for the daughter distri-
butions (a)—(d) of Fig. 4. In the same figures we show the two-point 
correlation function C(r), for each of the four parent distributions, 
defined as 

C(r) = 	Na(r), 	 (CI) 

where N is the total number of points and Nd is the number of pairs 
of points where the distance is less than r (Hentschel & Proccacia 
1983). 

The probability plots in Figs C2-5 confirm that the random num-
ber generator does create random uniform, Gaussian, exponential 
and Gamma distributions, respectively, of centres of fractures along 
the two grid directions. The two-point correlation functions of the 
parent spatial distributions, are shown in Figs C2(c), 0(c), C4(c) 
and C5(c). The random uniform distribution has correlations that 
peak in the medium range, the Gaussian and the exponential peak in 
the short range, and the Gamma is the most broad-band distribution. 
Thus the ratio of wavelength to correlation length will be greatest 
for the random uniform distribution, and smallest for the Gamma 
distribution. 
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Figure Cl. Flow chart of the algorithm used to generate the four spatial distributions of fractures shown in Fig. 4. 
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Modeling seismic wave propagation during fluid injection in a 
fractured network: Effects of pore fluid pressure on time-lapse 
seismic signatures 
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IAN G. MA/N, School of GeoSciences, University of Edinburgh, UK 
MICHAEL SCHOENBERG, Lawrence Berkeley National Laboratory California, U.S. 

F luid flow in the earth's crust plays an important role in a 
number of geologic processes. In carbonate reservoirs, fluid 
flow is thought to be controlled by open macrofractures. The 
movement of fluids in the fractured media results in changes 
in the pore pressure and consequently causes changes in the 
effective stress, traction, and elastic properties. Many recent 
examples in time-lapse or 4D seismic surveys have demon-
strated that seismic waves can be used to monitor changes 
in oil or gas reservoirs as a function of time (e.g., Landrø, 
2002; Angerer et al., 2002). 

During production from a reservoir, the movement of 
fluids is accompanied by substantial change in the pore 
pressure field. As fluids drain, pore pressure decreases, 
which increases the effective pressure on fractures, grain 
boundaries, and microcracks. Higher static load on these sur-
faces decreases their compliance nonlinearly and decreases 
fracture opening and/or pore throat size, thus increasing 
the stiffness of the rock (by increasing compressional and 
shear velocities) and decreasing permeability (Schoenberg, 
2002). Conversely, pore pressure buildup due to injection 
leads to a decrease in effective pressure and an increase in 
rock compliance. 

Fractured rock is often modeled as a relatively rigid, 
defect-free, "background" medium with embedded sets of 
linear slip interfaces. A linear slip interface is a surface across 
which anomalously large strain occurs due to the passage 
of a wave. In linear slip deformation theory, the large strain 
is approximated by a displacement discontinuity across the 
surface that is linearly related to the dynamic traction act-
ing on the interface (to the first order). The dynamic elastic 
properties of the rock are determined by adding the com-
pliance tensor of the background to an excess fracture com-
pliance tensor associated with the fractures (e.g., Liu et al., 
2000). The linear parameters governing the infinitesimal 
slip on these planes have been shown to depend on the sta-
tic stress state in a highly nonlinear and most likely hys-
teretic manner. If such relations are established, we may 
begin to be able to predict static effective stress based on 
dynamic properties (wave speeds and their associated polar-
izations) and ultimately explore the pore pressure field 
changes induced by reservoir drainage or other fluid move-
ment. 

The main purpose of this study is to examine the effect 
of pore pressure changes on seismic wave propagation (i.e., 
amplitude, frequency, etc.). This is achieved by using a dual 
simulation of fluid flow and seismic propagation in a com-
mon fracture network (developed by Vlastos et al., 2004). 
The flow simulation updates the pore pressure at consecu-
tive time steps, and thus the elastic properties of the rock, 
for the seismic modeling. The simulation allows us to effec-
tively evaluate the validity of inferring changes in fluid 
properties directly from seismic data. Our results indicate 
that P-waves are not as sensitive to pore pressure changes 
as S-waves or coda (scattered) waves. The increase in pore 
pressure causes a shift of the energy toward lower fre-
quencies, as shown by changes in the spectrum (as a result  

of attenuation). In addition, the fluid effects on the wave-
field vary significantly with the source-receiver direction (i.e., 
the azimuth relative to the fracture orientation). 

Simulation of fluid injection. At a macroscopic scale, fluid 
flow in porous rocks and fracture zones can be considered 
an anisotropic diffusive process that varies spatially and tem-
porally by several orders of magnitude. At this scale, pore 
pressures can also have high local variations. Injecting flu-
ids into a porous rock mass at sufficiently high pressures 
results in two possible fracture processes—hydraulic frac-
turing or induced seismicity—depending on the fluid and 
rock properties and the local stress field. However, because 
changes in the fracture network will complicate the identi-
fication of pore pressure changes in seismic signatures, we 
have chosen to keep the fracture network unchanged. This 
type of model is "static" in terms of the stress field, and the 
fracture network is used only to account for the porosity and 
permeability. We assume that both fluid and solid phases 
are chemically inert and at constant temperatures, that the 
implicit void spaces are fully connected and that the poros-
ity q5 is uniform and constant. Only the single phase of fluid 
is considered. We combine mass conservation, Darcy's law 
and a linear equation of state [pf  = p1.  0.i-p/K1)], to obtain 
the time evolution of the fluid pressurep: 

(1) Or Or1  dx 

where p  is the fluid density at the initial stress state, Pj  is 
the fluid density at pressurep, and K1  is the bulk modulus 
of the solid. 

D,(x,y,t)=!-LK11 (x.y.t) 	 (2) 
Oil 

Equation 2 is the diffusivity tensor, and rj and K(x,y,t) are 
the viscosity of the fluid and the permeability tensor of the 
matrix, respectively. We use the lattice Boltzmann method 
to solve equation 1, which is valid for the most general 
media with anisotropic, heterogeneous and time-dependent 
diffusivity. 

In the examples presented below, we have implemented 
the fluid flow model in 2D using a 256 x 256 "d2q9" lattice 
for the BGK diffusion model. Following the terminology of 
Quian et al. (1992), a "d2q9" lattice is a 2D square lattice 
where each node is connected to eight neighbors; four hor-
izontally and vertically, and four at 450  The boundary con-
ditions are periodic, where the top side of the grid links to 
the bottom side, and the left side to the right side. The plane 
of computation is horizontal, justifying the absence of a 
gravity term in equation 1. An injection well is inserted in 
the center. The dimension of the model is characterized by 
the length scale L that represents the overall extent of the 
grid, and the timescale T that represents the duration of 
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Figure 1. Pore-pressure FF85/IS in a sissall area around the injection point (1000 X 1000 rn) at four consecutive tunes, 10, 40, 70, and 100 hours, after 
the initialization of the injection of the fluid. The black lines are the p1-c-existing ractieres. 

the fluid injection at the well. The spatial discretizotion is linear way and increases fracture opening and/or pore 
Ax=10 m, and therefore the dimension of the model is 2560 throat size, thus decreasing the stiffness of the rock (decreas-
x 2560 m. In the model, the diffusivity for unfractured ing compressional and shear velocities) and increasing per-
(isotropic) background rock is D=10-3m2s. In the fractures, meability (Schoenberg, 2002). The model that we examine 
the principal components are D7  along the local direction of here has nearly parallel 2D fractures, i.e., the fracture direc-
the fractures and D, normal to the fractures, with D1=104D tion lies in the (1,2)-plane (Figure 1). We consider the effects 
and D2=102D. The time step is At,=1 s. 	 on this model when subjected to an anisotropic external 

We examine the case of a pre-existing, hydraulically con- stress field with principle external stresses denoted by a,, 
duct-ive, fracture network with fluid injected in the center 09  and a in the 1-, 2-, and 3-directions, respectively. 
of the model. Figure 1 shows the resulting pore-pressure 	As a simple assumption, let the fracture compliances at 
maps at 10, 40, 70 and 100 hours after the initialization of any angle be independent of the tangential component of 
the injection, 	 effective stress traction on the fracture faces and dependent 

on the normal component, r±(0), given by: 
Effects of pore pressure on fracture compliance. Fracture 	 - 
surfaces, grain boundaries, microcracks and joint faces are 	 x(0)= -p+ + C".+ 	cos28 	(3) 
much more compliant and thus sensitive to stress than intact 	 2 	2 

rock. Fractured rock properties therefore are analyzed based where 0 is the angle relative to the normal direction of frac-
on fracture compliance. Fracture anisotropy that changes as tures, p is the pore pressure, and a and a, the principal 
the traction on the fractures varies with pore pressure prop- stresses in the horizontal 1- and 2-directions. We assume 
erties of the intact background rock are assumed to he con- highly compliant fractures at low normal stress with frac-
stant. During fluid injection, pore pressure generally ture compliances asymptotically approaching low values as 
increases, resulting in a decrease in the effective pressure normal stress becomes large (Schoenberg, 2002). 
on fractures, grain boundaries and micro cracks. Lower sta- Approximating such dependence by an exponential decay 
tic load on such surfaces increases the compliance in a non- function (neglecting any hysteretics) yields: 
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Figure 2. Wavelets recorded at a receiver located at x=1 000 ni and y=.300 
in for consecutive pore pressure stages. Black represents the pre-injection 
stage, and red, green, blue, and orange represent 10, 40, 70 and 100 hours 
after the injection, respectively. 
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Figure 3. Spectrotin of the waveforms shozwi in Figure 2 representing 
different stages of the fluid injection. The color code corresponds to the one 
used in Injure 2. 

4N(0) = 45  (0) + [ZN0  (0)— ZN, (6)ie ve 	(4) 

Z (0) = Zr.  (0) + [Z (0)— Z (0)1e1 !r,(0) 	 (5) 

for a general case where the parameters governing the expo-
nential decay functions are themselves functions of 0. 
However, in the model examined, 	Zr , Z. and Z v.  
are not functions of 0. The coefficients rT and TN have been 
empirically set to 1.35 MPa. The compliances at zero stress 
are 7-,,, =5.68l10 9 GPa" and Z. =2.8409l0'°GPa and the 
compliances at infinite stress are ZT  = ZT  /5 and ZN = Z5,  /2. 

Seismic simulation using finite difference method. From 
equations 4 and 5, we compute the effect of the pore pres-
sure changes on fracture compliance, from which we can 
compute the dynamic effective elastic properties of the rock 
(e.g., Liu et al., 2000). 

Then we use a finite-difference method that can simu-
late wave propagation in complicated fractured networks 
with fractures at arbitrary angles (Vlastos et al., 2003) to 
examine the potential of extracting information about the 
pore pressures directly from seismic waves. 

Figure 2 shows an example of the x-componerlt of the 
waves recorded at a receiver located at x=1000 in and y=300 
m at consecutive stages of the injection numerical simulation. 
The source of the seismic waves is located at the center of the 
medium (x=1280 in, y=1280 m), exactly at the same position 
as the fluid injection point, so the waves traveling to the 
receivers will be greatly affected by pore-pressure changes. In 
they-direction, the source-receiver angle is 16° while the aver-
age fracture direction angle is 30°. The source-receiver angle 
relative to the fracture normal direction averages 104°. The 
waveform in black (Figure 2) is recorded at the pre-injection 
stage when pore pressure is equal throughout the model (used 
as a reference). The waveforms in red, green, blue and orange 
are recorded at 10, 40, 70, and 100 hours after the initializa-
tion of the fluid injection, respectively. Generally we can see 
variations on the features of the waves as pore pressure 
changes. The direct P-wave at 0.37 s does not seem signifi-
cantly affected by pore pressure changes. In contrast, the shear 
wave and the coda waves exhibit strong amplitude changes 
attributed to the pore pressure changes. In addition, pore pres-
sure affects the spectrum (Figure 3). As pore pressure builds, 
there is a gradual shift of shear-wave energy towards lower 
frequencies, indicating systematic increase of attenuation. The 
magnitude of the peak frequency shift is about 10 Hz. The P-
wave amplitudes are less affected when compared to the 
shear-waves, which agree with the laboratory results of Prasad 
(2002). 

It is common in time-lapse seismic monitoring to exam-
ine the difference in measurements for two consecutive time-
steps, to evaluate the effect of pore pressure changes. We 
conducted forward modeling for the pre-injection state, and 
the states 10, 40, 70, and 100 hours after the fluid injection. 
Snapshots of the seismic wave are generated for each simu-
lation at 150, 250, 350, and 450 ms, after the initialization of 
the source. To examine the effect of pore pressure changes, we 
determine the difference between the pre-injection stage and 
the snapshots of each stage after injection. Figures 4 and 5 show 
examples of the snapshots at consecutive time steps, which 
are the results of the difference between the simulation stages 
at 70 and 100 hours after the fluid injection and the pre-injec-
tion stage, respectively From Figures 4 and 5 we can see that 
the area of strong differences in the seismic signal have an ellip-
tical shape with the long axis paralleling the fracture direc-
tion. Also, the strongest differences are concentrated in the 
center of the model, or the injection site, with the highest dif-
ferences in pore pressure. The results indicate that the dual 
simulation shown here can accurately map the effect of pore 
pressure changes in seismic wave propagation. Specifically, 
when the seismic wave has covered a significant part of the 
modeled area (at 450 ms after source initialization), the area 
of strong difference spreads gradually from the injection point 
outwards, following an ellipse exactly the shape of the fluid 
front. 

Finally, we examine the azimuthal dependence of seismic 
waves on fluid pressure. The waveforms are recorded at three 
receivers, at almost the same distance from the source, and at 
90°, 130° and 180° from the fracture normal. This is repealed 
for each of the four states of fluid flow simulations shown in 
Figure 1.. Figure 6 shows the differences in the horizontal coni-
ponents recorded at the three receivers at each azimuth. The 
differences are computed between: (a) 10 and 40 hours after 
injection, (b) 10 and 70 hours after injection, and (c) 10 and 
100 hours after injection. Figure 7 shows the corresponding 
difference in the frequency spectra. In general, the P-waves 
are not greatly affected in contrast to shear-waves and coda 
or scattered waves as shown in Figure 6. Along the fractures 
(azimuth 90°), we can see the strongest differences in shear 
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Figure 4. Snaps/lots at consecutive time steps (150, 250, 350, avid 450 ms after the source initialization), which s/ooze the difference between the siniihs-
hon of the medium 70 hours alice the injection of the fluid and the pro-injection stage. 

waveforms, while at normal to the fractures (azimuth 1800) 
the strongest difference is in coda or scattered waveforms. As 
the pore pressure increases, this effect becomes stronger. It is 
interesting to note that there is a variation of the frequency 
content of the waveforms with azimuth. The greatest fre-
quency shift occurs for an azimuth of 1800 where a significant 
amount of energy is shifted from 50-60 Hz towards 30-40 Hz. 
At an azimuth of 130°, energy moves between the same fre-
quency ranges are much smaller (negligible). 

Finally, at a 90° azimuth there is a much more limited shift 
of energy, but significant energy present at the range of 50-60 
Hz. In this case the energy is redistributed to both low and 
high frequencies, in a transition phase, before it shifts to sys-
tematically lower frequencies as angle increases from fracture 
normal. 

Discussion and conclusions. We have conducted systematic 
dual numerical simulations of fluid flow and seismic wave 
propagation in a common fractured network. For the fluid flow 
simulation the fluid is injected in the center of a horizontal 

fractured layer, and at selected time steps after the injection, 
information about pore pressure is collected. Variations in 
pore pressure lead to variations in the local effective stress. 
We use an empiricai relationship between the effective stress 
changes and respective changes in the compliance of the rock. 
Therefore, at each selected time step of the fluid simulation, 
we obtain complete information about the updated elastic 
properties of the medium, and use these to perform seismic 
simulation. This process gives results in seismic data at con-
secutive time steps with varying pore pressures, or synthetic 
time lapse seismic data. 

Our results show a different response between P. shear-, 
and coda waves to pore pressure changes. P-waves seem to 
he less affected or affected in a limited way, while shear- and 
coda waves are strongly affected, which supports the theo-
retical results of Liu et al. (2002) and field evidence of Angerer 
et al. (2002). Also, the amplitudes increase with increasing pore 
pressure and the frequency spectrum shows significant vari-
ations with pore pressure. There is an important shift of the 
peak frequency towards lower frequencies (implying strong 
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Figure 5. Snapshots at consecutive tone steps (150, 250, 350, and 450 ins after the source initialization), which show the difference between the simula-
tion Of the ?neaznni 101) hours after the injection of the fluid and the p60-I17jection stage. 

attenuation) as pore pressure increases. Another important 
aspect of our study is the azimuthal dependence of these 
effects. Fractures comprise the main path where the fluid 
moves in the reservoir, which is why the fluid front is an 
ellipse with its long axis oriented parallel to the fracture ori-
entation. We also observe very strong amplitude differences 
in the shear-waves parallel to the fracture orientation and the 
coda waves normal to the fracture orientation, as pore pres-
sure changes. Finally, we show that the greater shift of energy 
in frequency happens when seismic waves travel normal to 
the flow path. We conclude that significant diagnostic inter-
pretation may be made by examining time-lapse shear-waves 
and coda-wave data, especially prior to any study that ana-
lyzes wave attenuation. 

Suggested reading. "Discrimination between pressure and fluid 
saturation changes from time-lapse seismic data" by Landro 
(GEopilysics, 2001). "Processing, modelling and predicting time-
lapse effects of overpressured fluid-injection in a fractured reser- 

voir" byAngerer etal. (Geophysical Journal Internat-ional,2002). "The 
effects of stress and pore fluid pressure on seismic anisotropy in 
cracked rocks" by Liu et al. (Canadian SEG Recorder, 2002). 
"Equivalent medium representation of fractured rock" by Liu et 
al. (JGR, 2000). "A lattice BGK model for the diffusion of pore fluid 
pressure, including anisotropy, heterogeneity, and gravity effects" 
by Maillot and Main (Geophysical Research Letters, 1996). "Acoustic 
measurements in unconsolidated sands at low effective pressure 
and overpressure detection" byPrasad (GEOPI-fo'SiCs, 2002). "Lattice 
BGK models for Navier-Stokes equation" by Quian et al. 
(Europhysical Letters, 1992). "Tune dependent anisotropy induced 
by pore pressure variation in fractured rock" by Schoenberg 
(Journal of Seismic Exploration, 2002). "Numerical simulation of 
wave propagation in media with discrete distribution of fractures: 
effects of fracture sizes and spatial distributions" by Vlastos et al. 
(Geophysical Journal International, 2003). "Dual simulation of fluid 
flow and seismic wave propagation in a fractured network: effects 
of pore pressure on seismic signature" by Vlastos et al. (Geophysical 
Journal International, 2004). TLE 
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