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ABSTRACT

Emphysema is defined as the increase beyond normal in the size of
airspaces distal to the terminal bronchiole. Such increases in airspace size
are associated with a reduction in alveolar wall surface area per unit
volume of lung tissue (AWUYV). This study involved the development
and assessment of the fast interval processor (FIP) as a new automated
technique for measuring AWUV on histological sections of lung tissue.
A minimum of 726 individual field AWUV measurements were made
from each lung specimen, and frequency distributions of these AWUV
values were compiled for each of the 165 specimens in the study. Various
aspects of the frequency distributions were then used to establish the
normal range of AWUV values with advancing age in non-smokers, and
to assess the effects of age, sex and cigarette smoking on the amount and
distribution of microscopic emphysema within the lung.

Mean AWUV was found to decrease with advancing age in adult non-
smokers, and this decrease was considered to be normal. A range of
normal mean AWUYV values was established for subjects between the ages
of 21 and 93 years. No evidence was found to suggest that senile
emphysema exists in non-smokers. Microscopically assessed emphysema
(MAE) was defined as the condition where the mean AWUV
measurement of a lung was below the lower limit of the normal range.
Only 26% of the smokers studied had MAE as defined in this way,
suggesting the existence of a susceptible sub-group of smokers. Neither
the susceptibility to, nor the severity of, MAE were dose-related to tobacco
consumption in the cigarette smokers studied. There were no sex
differences in the incidence of MAE. MAE was found to be related to
macroscopic panacinar emphysema, but was not related to macroscopic
centriacinar emphysema. The 5th and 10th percentile values of the
AWUV frequency distribution were found to be related to the presence of
centriacinar emphysema. These results indicate that the early
(microscopic) lesions in centriacinar emphysema are also focal in their
distribution, and do not develop on a background of generalised MAE.

The two most common forms of macroscopic emphysema, centriacinar
and panacinar, are the consequence of different pathogenetic mechanisms.
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Smokers are not a homogeneous group with regard to the development of
microscopic emphysema. Studies of the pathogenesis of emphysema
which do not target those smokers who are susceptible to MAE cannot
elucidate the mechanisms responsible for the onset of the disease.
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PREFACE

The project described in this thesis involved the study of the amount and
distribution of microscopic emphysema in human lungs, in relation to
age, sex and cigarette smoking. The thesis comprises 5 chapters:

Chapter 1 contains an overview of the anatomy of the human lung, and
its growth and development. The first Chapter also includes descriptions
of the terminology and methodology used in studies of the epidemiology
and pathogenesis of pulmonary emphysema.

Chapter 2 includes descriptions of the lung specimens used and the
methods used in measuring airspace wall surface area per unit volume of
lung tissue.

Chapter 3 contains an introduction to a new method for measuring
airspace wall surface area on histological sections of lung tissue. The
development of this technique and its advantages over previously used
techniques are discussed.

Chapter 4 consists of a description of all results produced during this study.

In Chapter 5 the methods used and results obtained in the study are
discussed in relation to the current literature.

A short introductory paragraph is given at the beginning of each Chapter.
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1.1 INTRODUCTION

This chapter consists of an introduction to the study of pulmonary
emphysema in man. Before discussing the disease process, the anatomy of
the normal adult lung and its growth and development are described.
Pulmonary emphysema is defined, and the remainder of the chapter is
concerned with an account of the diagnosis, classification, epidemiology
and pathogenesis of emphysema. This chapter also includes a section
describing the various methods used in the assessment of the incidence
and severity of emphysema. Chapter 1 also contains a description of the
background to this study and its major aims.

1.2 ANATOMY OF THE ADULT LUNG

1.2.1 Gross Anatomy of the Lung

The adult lung is divided into lobes, each with its own bronchus. The right
lung has 3 lobes and the left has 2. Each lobe is sub-divided into
bronchopulmonary segments by incomplete fibrous septae, extending
inward from the pleural surface. Each segment is supplied by a segmental
bronchus. Smaller fibrous septae are present within each segment, and
these form the incomplete boundaries of the pulmonary (or secondary)
lobules. These are usually pyramidal in shape, with the apex towards the
bronchiole supplying the lobule. Each lobule contains 3-5 acinar units, each
of which is supplied by a terminal bronchiole (Thurlbeck, 1988).

1.2.2 The Airways

The conducting part of the human respiratory system starts with the
trachea. The trachea, a 10-11cm long cartilagenous tube, is lined with
ciliated columnar epithelium. Its cartilagenous support consists of 15-20
horseshoe-shaped rings of cartilage which are incomplete posteriorly. The
posterior part of the trachea consists largely of connective tissue and smooth
muscle. The trachea divides at its end into the 2 main bronchi.



The structure of the main bronchi is similar to that of the trachea. The right
main bronchus is slightly shorter than the left and is slightly wider in
transverse diameter. The main bronchi divide into lobar then segmental
bronchi. Further divisions occur in an uneven dichotomous manner, so
that the branches resulting from a division are not necessarily the same size.
All bronchi have cartilage in their walls.

Bronchioles are smaller airways than bronchi, and have no cartilage in their
walls. They continue to divide in the same manner as the bronchi, with
smaller branches becoming thin walled, until the terminal bronchiole is
reached. The terminal bronchiole is the last purely conducting airway of the
respiratory system.

1.2.3 The Acinar Unit

The respiratory tissue distal to the terminal bronchiole forms the acinus, or
acinar unit (Reid, 1958). Bronchioles within the acinus always contain
alveoli in their walls, and are called respiratory bronchioles. Each
respiratory bronchiole divides into an average of 3 further orders of
respiratory bronchioles, and each of these gives rise to increasing numbers
of alveoli and alveolar ducts, which are made up completely of alveoli
(Figure 1.1).

The alveoli are lined by thin squamous epithelium which consists of 2
main cell types. Type 1 alveolar epithelial cells have long cytoplasmic
extensions which form a complete thin layer covering most of the internal
surface of the alveoli. Type 2 cells cover only a fraction of the alveolar
surface. They occur singly or in small groups between the type 1 cells.
These cells are thought to secrete surfactant, which reduces the surface
tension of the alveoli. Type 2 cells are proliferative, and some daughter
cells are transformed into type 1 cells.

The average diameter of an alveolus is 250um (Weibel, 1963; Schreider &
Raabe, 1981). Around the openings of the alveoli is a supporting network of
elastic and collagen fibres. The elastic fibres permit expansion of alveoli
during inspiration and recoil on expiration, while the collagen fibres



FIGURE 1.1

The acinar unit. This figure shows a binary image of a complete acinar unit,
showing a terminal bronchiole (T); respiratory bronchioles (R), with alveoli
in the bronchiolar walls; alveolar ducts (D), and several individual alveoli
(A).

This image was produced using image processing software (Image 1.41
VDM) on an Apple Macintosh IIfx computer.
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prevent overdistension. Adjacent alveoli are separated by the alveolar
walls, which contain a network of elastic and collagen fibres.

1.2.4 Gas Exchange in the Lung

The main function of the respiratory system is to permit gas exchange,
which involves the uptake of oxygen by the blood, and the elimination of
waste gases. Oxygen in dissolved form passes from the alveoli to the
capillaries through the blood-air barrier (Figure 1.2), and carbon dioxide
passes in the reverse direction. The blood-air barrier consists of:

a) Alveolar epithelium

b) Interstitial space (in many areas, only fused basal laminae of
epithelium and endothelium)

¢) Capillary endothelium

1.2.5 Pulmonary Blood Supply

Branches of the pulmonary artery carry deoxygenated blood to the lungs.
The artery branches repeatedly within the lungs, with branches
accompanying the major bronchi, and ends in dense capillary networks.
Within the interalveolar septum the network consists of a single layer of

capillaries with extremely thin walls.

Oxygenated blood is drained from the capillary network into venules which
are derived from the pulmonary vein. Small branches of the pulmonary
vein communicate freely with each other and join to form large vessels
which ultimately accompany the arteries and bronchi to the hilum. The
pulmonary veins open into the left atrium of the heart, delivering
oxygenated blood for systemic distribution by the left ventricle (Williams et
al, 1989).



FIGURE 1.2

The blood-air barrier. This plate shows an electron microscope image of a
capillary situated within an alveolar wall (i.e. alveolar spaces (AS) on
either side of the capillary). At its thinnest (to the right of the capillary
lumen), the blood-air barrier consists of the fused basement membranes
(BM) of the alveolar epithelium (EP) and the capillary endothelium (E).
In its thicker areas, the blood-air barrier also contains the interstitial space
(IS) between the epithelium and endothelium. RBC = red blood cells
within the capillary. Scale: Imm = 0.125um.

From Murray (1986).



1.3 GROWTH AND DEVELOPMENT OF THE NORMAL LUNG

The conducting airways in the human lung are all formed before birth
(Bucher & Reid, 1961; Reid, 1967a; Thurlbeck, 1975; Murray, 1986). After
birth these airways increase in length and diameter until somatic growth
stops in adulthood. Lung dimensions are known to be related to body
height, and therefore, allowing for biological variation, tall adults have the
same number of conducting airways as short adults, but the tall person's
airways are larger (Thurlbeck, 1975).

Some alveoli are present at birth, although there are conflicting reports in
the literature as to the proportion of the adult number present in the
newborn (Dunnill, 1962a; Davies & Reid, 1970; Thurlbeck, 1975; Thurlbeck &
Angus, 1975). Nevertheless, it is generally accepted that the alveoli multiply
rapidly in the first year after birth (Dunnill, 1962a; Davies & Reid, 1970;
Hislop & Reid, 1974; Thurlbeck, 1975). Some of the terminal bronchioles
which were present at birth develop alveoli in their walls and thus, by
definition, become further generations of respiratory bronchioles (Reid,
1967a; Thurlbeck, 1975; Murray, 1986). This results in fewer, larger acinar

units.

The rapid multiplication of the alveoli slows down after the age of 2 or 3
years, but new alveoli continue to be formed after this (Davies & Reid, 1970;
Hislop & Reid, 1974; Thurlbeck, 1982). The exact age at which the adult
alveolar number is achieved is unclear. Dunnill (1962a) suggested that
alveolar multiplication stopped after the age of 8 years, and that from this
time until adulthood lung growth involved increases in the dimensions of
the alveoli. The results of other workers led them to agree with this
suggestion (Reid, 1967a; Davies & Reid, 1970; Hislop & Reid, 1974).

The work of Angus and Thurlbeck (1972) cast some doubt on this opinion
when they found a high degree of variation in alveolar number in adult
lungs from 32 subjects. Dunnill's theory had been based on the finding that
the number of alveoli in the lung of an 8 year-old subject was of the same
order of magnitude as the number found in a lung from a 'typical adult
male aged 25 years'. He therefore suggested that adult alveolar number was
achieved by the age of 8 years. Angus and Thurlbeck suggested the



possibility that due to the variability found in adult lungs, the 8 year-old
may have been destined to have more alveoli than the adult value used in
Dunnill's study, and that alveolar multiplication may not therefore have
been complete.

Lung dimensions are related to height, and male lungs are larger than
female lungs for a given body size (Thurlbeck, 1982). There are 2
possibilities regarding the size and number of alveoli in lungs of various
sizes:

1. The size of the alveoli varies according to lung size.

2. The number of alveoli varies according to lung size.

Thurlbeck (1967b) found that mean linear intercept measurements (Lm) (i.e.
the average distance between airspace walls) were not related to height.
Therefore the average size of the alveoli is not related to height (Thurlbeck,
1967b; Thurlbeck & Angus, 1975), rather, it would appear that tall people
have more alveoli than short people (Thurlbeck, 1982). Since height is
influenced by both genetic and environmental factors it seems likely that
new alveoli are formed after the age of 8 years (Angus & Thurlbeck, 1972).
In a study of alveolar wall surface area per unit volume of lung tissue
(AWUYV), McLean (1987) found that AWUV was not related to height,
suggesting that alveolar number rather than size is related to height.

It is now generally accepted that alveolar multiplication occurs after birth
and stops some time before somatic growth is complete (Thurlbeck, 1982).
The exact age at which formation of new alveoli ceases remains unclear.



1.4 DEFINITIONS OF EMPHYSEMA

The morphological appearance of emphysema in pathology specimens was
recognised as early as the 18th century, and the physiological and clinical
concepts of the disease were developed extensively in the 19th century
(Rosenblatt, 1972; Thurlbeck, 1976). However, until 1959 there was no
satisfactory definition of emphysema. With the development of improved
techniques for the preparation of inflated lung specimens (Gough &
Wentworth, 1949; Heard, 1958), by the 1950s pathologists became able to
study the anatomical appearance of pulmonary emphysema (Eriksson,
1991). Reid (1958) identified the respiratory unit of the lung as the acinus,
consisting of those structures distal to the terminal bronchiole. The
respiratory bronchioles, alveolar ducts and alveoli, which are distal to the
terminal bronchiole, are all involved in the gas exchange process.

At the Ciba Symposium on the terminology, definition and classification of
chronic pulmonary emphysema and related conditions (Ciba, 1959), it was
agreed that emphysema should be defined in terms of the acinus. The
proposed definition was:

'Emphysema is a condition of the lung characterised by increase
beyond the normal in the size of air spaces distal to the terminal
bronchiole either from dilatation or from destruction of their
walls.'

This original definition did not distinguish between overinflation, which
may take place in lungs which are structurally intact, and the disruption of
the lung architecture which occurs in emphysema. Various modifications
of this definition have since been made, all of which emphasise that a
destructive process is associated with emphysema.

The American Thoracic Society suggested that the definition of emphysema
should be:

'a condition of the lung characterised by abnormal, permanent
enlargement of air spaces distal to the terminal bronchiole
accompanied by the destruction of their walls.'

(American Thoracic Society, 1962).



This definition was refined by Snider and colleagues (1985) to exclude
airspace enlargement with fibrosis:

'Emphysema is defined as a condition of the lung characterised
by abnormal, permanent enlargement of air spaces distal to the
terminal bronchiole, accompanied by destruction of their walls,
and without obvious fibrosis." (Snider et al, 1985).



1.5 DIAGNOSIS OF EMPHYSEMA

Pulmonary emphysema is defined in morphological terms. Therefore,
although emphysema is clinically associated with airflow obstruction, its
diagnosis in the living patient is extremely difficult. Various methods are
used, with varying degrees of success, by clinicians, physiologists and
radiologists to diagnose emphysema. A brief description of some of these
methods is given below.

1.5.1 Clinical Examination

The assessment of physical symptoms alone does not provide sufficient
information for the diagnosis of emphysema. Recording the patient's
smoking history is important, since non-smokers rarely develop
emphysema (unless they have an inherited deficiency of proteinase
inhibitor (see section 1.9)). Physical symptoms such as breathlessness,
wheeze, cough and sputum production are often associated with
emphysema, but are not specific to this disease. Hyperinflation of the lungs
may occur in patients with emphysema, but this is also found in other
conditions such as asthma (Flenley, 1991).

1.5.2 Respiratory Function Tests

Several physiological tests of pulmonary function are used to investigate
the presence of emphysema. These include measuring the ratio of residual
volume to total lung capacity (RV/TLC) and the forced expiratory volume
in one second (FEV;). These are essentially tests of airways obstruction, and
do not necessarily relate to emphysema. Studies using diffusing capacity
(CO transfer factor) and studies involving analysis of the shape of pressure-
volume curves have had limited success in identifying patients with
emphysema (Flenley, 1991).

1.5.3 Chest Radiography

Radiological diagnosis of emphysema is made by recognising certain
features on chest X-rays, such as arterial deficiency patterns, lung height and
width measurements, size of the retrosternal space, heart size and the
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position of the diaphragm (Thurlbeck & Simon, 1978). Standard
radiological techniques have been found to be particularly unreliable in
diagnosing emphysema, and are not generally considered to be acceptable
when used alone (Reid & Millard, 1964; Thurlbeck & Simon, 1978; Pugatch,
1983; Bergin et al, 1986; Flenley, 1991).

1.5.4 Computed Tomography

There has been much interest in recent years in the use of computed
tomography scanning as a diagnostic tool in the study of emphysema. The
computed tomography (CT) scan has been found to be a more sensitive and
specific indicator of the presence and severity of emphysema than
pulmonary function tests (Bergin et al, 1986). CT scans can be used to
measure regional lung density and can locate emphysematous regions in
human lungs in life (Gould et al, 1988). Unfortunately, localised lesions
which are found in certain forms of emphysema (see section 1.6 below) are
not detected by this method. Until a range of normal CT densities relating
to age is established, the diagnosis of early emphysema using CT scanning
alone is not possible.

1.5.5 Diagnosis of Emphysema by Examining Lung Tissue

As described above, emphysema is defined in morphological terms.
Therefore, the accurate diagnosis of emphysema requires the examination
of lungs after their removal from the thoracic cavity, either during surgery,
or at post-mortem examination. The various methods used in the
assessment of emphysema are described in section 1.7 below.

11



1.6 CLASSIFICATION OF EMPHYSEMA

Although emphysema is often thought of as a single entity, the disease has
been recognised as occurring in various forms, each of which may be the
result of different pathogenetic mechanisms. Some forms of emphysema,
such as infantile lobar emphysema and Swyer-James Syndrome (Reid,
1967b) are not smoking-related, and will not be considered in this thesis.

Emphysema can be recognised by examining slices of fixed inflated lung
specimens with the naked eye, or using a hand lens or dissecting microscope
(macroscopic emphysema); or by examining tissue sections at a microscopic
level (microscopic emphysema). The various forms of emphysema are
described below.

1.6.1 Macroscopic Emphysema

A number of patterns of distribution of emphysema have been identified in
the lung, and macroscopic emphysema has been classified into 4 main types
according to these distribution patterns. The 4 main types of emphysema
are:

1. Centriacinar

2. Panacinar

3. Paracicatricial

4. Paraseptal

Each of these forms will be described below.

1.6.1.1 Centriacinar Emphysema

Centriacinar emphysema (also called centrilobular or proximal acinar
emphysema) is the most common form of emphysema. It involves the
enlargement of the airspaces around the respiratory bronchiole i.e. the
proximal acinus (Figure 1.3). This form of emphysema is often associated
with areas of black pigmentation (Figure 1.4). It tends to occur most
commonly in the upper lobes of the lung, and tends to be more severe in
the upper lobes (Thurlbeck, 1963a). Centriacinar emphysema is almost
exclusively associated with cigarette smoking (Weissler, 1987) and this may
account for the finding that it is more common in men than in women

12



FIGURE 1.3

A photograph of an area of inflated lung tissue showing centriacinar
emphysema. The emphysematous lesions are marked by the arrows.



FIGURE 1.4

This photograph shows an area of lung with centriacinar emphysema. This
specimen shows centriacinar pigmentation.

14



(Snider, 1983). It is also most commonly found in people living in the
polluted atmosphere of large cities. Centriacinar emphysema is a common
condition, found in more than 50% of autopsy lungs (Thurlbeck, 1963a).

1.6.1.2 Panacinar Emphysema

Panacinar emphysema (also called panlobular emphysema) is characterised
by progressive enlargement of all the alveoli in the acinus so that the
distinction between alveolar ducts and alveoli is lost (Figure 1.5). Airspaces
become progressively enlarged and gross simplification of lung structure
occurs (Weissler, 1987). Panacinar emphysema can be widespread
throughout the lung, but in severe forms it is commonly more
predominant in the lower lobes (Thurlbeck, 1963a). The severity of this
form of emphysema may vary from involving only small areas of the lung
in the mildest cases, to almost complete destruction of the alveolar tissue of
the lung.

Although centriacinar and panacinar emphysema have been described as
separate entities, they often occur in the same lung (Dunnill, 1987). As
centriacinar emphysema progresses and becomes widespread and severe, it
may be difficult to differentiate centriacinar from panacinar emphysema
(Snider, 1983). Some workers classify severe emphysema as centriacinar in
type on the basis of predominant involvement of the upper lung fields
(Pratt & Kilburn, 1970; Snider, 1983). However, once centriacinar lesions
have become confluent, the whole of the acinus becomes involved (Figure
1.6) and some workers believe that by definition, this type ot emphysema
should be called panacinar (Snider, 1983; Thurlbeck, 1976; Lamb, personal

communication).

There is some debate over whether centriacinar and panacinar emphysema
are different diseases at all (Mitchell et al, 1970; Anderson & Foraker, 1973).
It has been suggested that panacinar emphysema is a natural progression of
centriacinar emphysema (McLean, 1957; Crofton & Douglas, 1981).
However, the fact that widespread centriacinar emphysema can exist with
no evidence of panacinar emphysema suggests that there are differences
between these 2 types, and it is possible that the different patterns of
involvement of these 2 forms of emphysema reflect different pathogenetic
mechanisms (Weissler, 1987).
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FIGURE 1.5
A lung specimen showing widespread macroscopic panacinar emphysema.

Note the gross pigmentation, and complete disruption of the parenchymal

structure.
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FIGURE 1.6

This photograph shows the appearance of confluent centriacinar
emphysema (indicated by the arrows) at the apex of the upper lobe. Note
that the acinar structure has been completely destroyed in the areas of
confluence.
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1.6.1.3 Paracicatricial Emphysema

Paracicatricial or scar emphysema (Figure 1.7) occurs when scars are formed
within the lung parenchyma, either as a result of industrial lung disease, or
following non-resolution of an inflammatory process. Abnormally
enlarged airspaces which surround a scar lack any special distribution
within the acinus (Dunnill, 1987).

1.6.1.4 Paraseptal Emphysema

Paraseptal emphysema is predominantly sub-pleural in location (Figure 1.8)
and tends to be more severe in the upper lung zones. Its aetiology is not
understood - it may be the result of a congenital defect (Weissler, 1987).
When paraseptal emphysema occurs sub-pleurally it can result in
spontaneous pneumothorax in young adults.

It must be remembered that, while pure forms of each of the above
conditions may occur, it is more usual to find more than one type of
emphysema in any given lung (Dunnill, 1987).

1.6.2 Microscopic Emphysema

Until recently, the classification of different forms of microscopically
recognised emphysema was not common practice. However, various
patterns of microscopic tissue destruction have been recognised.

The loss of peribronchiolar alveolar attachments has been found to relate to
loss of airway support and consequent airflow obstruction (Linhartova et al,
1971; 1977; Petty et al, 1986). It is thought that the loss of these alveolar walls
occurs in emphysema (Saetta et al, 1985a; Petty et al, 1986; Nagai et al, 1991),
but there is some evidence to suggest that the attachments are not lost in all
emphysematous lungs (McLean et al, 1987), and this may help to explain the
variations in the decline of pulmonary function in patients with
emphysema.

Kim and co-workers (1991) have noted the distinction between microscopic

centrilobular and panlobular emphysema, assessed using non-quantitative
criteria, in smokers. Their results have indicated that these 2 forms of
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microscopic emphysema have different functional implications, and the
findings suggest that different pathogenetic mechanisms may be involved.
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FIGURE 1.7

A lung specimen showing paracicatricial emphysema (arrow) next to an
area of scarring (S).
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FIGURE 1.8

This photograph shows an example of paraseptal emphysema. The lesion is
situated sub-pleurally, and the surrounding parenchyma appears normal.
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1.7 METHODS USED IN THE ASSESSMENT OF EMPHYSEMA
SEVERITY

This section contains a brief description of some of the most commonly
used methods for assessing the severity of pulmonary emphysema. Some
of the advantages and disadvantages of the various methods are mentioned.

1.7.1 Macroscopic Assessments of Emphysema
Several techniques are used in the macroscopic assessment of emphysema.
In some of the techniques, the preparation of Gough-Wentworth paper-
mounted thin sections of whole lungs is recommended (Gough &
Wentworth, 1949). This is a laborious technique, and whole lung slices of
approximately 1cm thickness are often used instead.

1.7.1.1 The Ciba Method

The method proposed by the Ciba Guest Symposium in 1958 represented an
attempt to standardise the assessment of emphysema (Ciba, 1959). Using
this method, the average severity of centriacinar, panacinar or focal
emphysema is assessed for each lobe. Illustrations are provided as examples
of mild, moderate and severe emphysema. Using these standards and the
following guidelines, each lobe is graded as follows:-

Mild emphysema - less than 25% involvement of respiratory tissue
Moderate emphysema - 25%-50% involvement of respiratory tissue
Severe emphysema - more than 50% involvement of respiratory tissue

1.7.1.2 Ruyder's Grid Technique (Ryder et al, 1969)

A grid consisting of 5 equidistant radiating lines is drawn on a transparent
sheet of plastic, and this is superimposed on each paper-mounted lung
section, dividing the lung section into 10 equal regions. Each region is
examined and given an emphysema score from 0 - 3, where

0 = absent

1 = mild

2 = moderate
3 = severe
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The total emphysema score for each section is then calculated. This method
was designed for use with paper-mounted lung sections, but it can be used
on slices of fixed lung. Several variations on this method have been
described, using various numbers of zones (Heard & Izukawa, 1964;
Thurlbeck, 1967a) but they are all based on the same principle.

1.7.1.3 Thurlbeck's Panel Grading (Thurlbeck et al, 1969)
Paper-mounted sections of lung are graded according to the extent of
emphysema using a series of standard 10" x 8" photographs of paper-
mounted sections. Grades range from 0 to 100 and were chosen as follows:-

0 - normal lung (i.e. no visible emphysema)

20 - a good example of mild emphysema

50 - an example of moderate emphysema

80 -severe emphysema

100 - the worst case of emphysema encountered in that series of cases
Intervening standards at intervals of 10 were selected from a collection of
around 500 paper-mounted lung sections.

This grading system was updated in 1970 when the 5 original 'milestone’
standards were kept, but intervening standards were set at intervals of 5
between 0 and 50, and at intervals of 10 from 60 to 100 (Thurlbeck et al,
1970a).

The object of this method is to assign a grade to each lung section according
to the standard photograph which most closely resembles it. If the extent of
emphysema appears to fall between 2 standards, then an intermediate grade
should be given.

It should be stressed that the grades in this method represent 'arbitrary
intuitive milestones in the spectrum of severity of emphysema' (Thurlbeck
et al, 1969). The values do not represent percentages.

Although all of the above methods of assessing macroscopic emphysema
are quick and fairly simple to use, they are all subjective and semi-
quantitative. The results obtained using these methods are therefore likely
to vary according to the opinions and experience of the observer.
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1.7.1.4 Dunnill's Point Counting Technique (Dunnill, 1962b)

Fixed inflated lungs are cut into Icm parasagittal slices. A grid consisting of
a transparent plastic sheet with equidistant points on it is placed over each
slice. The lung tissue under each point is examined and classified as:-

1. Non-parenchyma (bronchi & blood vessels > 2mm in diameter)
2. Normal parenchyma
3. Abnormal airspaces

The number of points which lie on abnormal airspaces (i.e. >Imm in
diameter) is divided by the total number of points on parenchyma, and this
is expressed as a percentage.
This method is more objective than those described above, but it does have
a subjective element, since the classification of each point is based on the
judgement of the observer.

As Thurlbeck (1967a) noted, a major disadvantage of Dunnill's technique is
that it measures the extent of involvement of a lung by emphysema, but it
does not necessarily measure the severity of emphysema. No distinction is
made between 100% involvement with mild panacinar emphysema and
100% involvement with severe panacinar emphysema. In addition, no
distinction is made between types of macroscopic emphysema. Therefore,
using this technique, widespread panacinar emphysema would be given a
high score, while localised severe centriacinar emphysema would be given a
low score. For these reasons, the predominant type of macroscopic
emphysema should be noted when using this method.

1.7.1.5 Objective Methods for Assessing Macroscopic Emphysema
In the 1960s two automated techniques were described for the objective
assessment of macroscopic emphysema on lung sections. These were based
on the principle that an emphysematous lung would be less dense than a
normal lung. The devices described by Kory et al (1966) and Longfield &
Hentel (1966) both measured the amount of light transmitted through thin
sections of whole lungs. Longfield and Hentel experimented with the use of
sound and beta-radiation energy sources for transmission through the lung,
but found that light transmission gave the closest correlation to
conventional macroscopic assessments.
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The disadvantage of these methods was that they could only detect gross
changes in lung structure, and the measurements would be influenced by
variations in the thickness of the whole lung sections. Also, the degree of
pigmentation in the lungs - caused by blood or anthracitic deposits would
affect the light transmission through the lung slices and hence affect the
tissue density measurements.

1.7.1.6 Advantages and Disadvantages of Macroscopic
Techniques

All of the macroscopic assessment techniques above have their advantages
and disadvantages. A major advantage of examining whole lung slices is
that it allows a quick assessment of the type and extent of macroscopic
emphysema present. This does not involve selective sampling of small
areas of lung tissue. However, there are several important criticisms which
may be made regarding the available macroscopic techniques. With the
exception of the automated techniques described in section 1.7.1.5, none of
the macroscopic techniques described above are truly quantitative. They
allow lung specimens to be ranked according to greater or lesser degrees of
severity, but the grading involved is not on a linear scale, and therefore the
intervals between grades are not necessarily constant. It is therefore
inappropriate to use parametric statistics, including mean grades of
emphysema severity, in the comparison of various groups of subjects. Such
parametric analyses are frequently quoted in the literature, and are not
statistically valid.

The type of macroscopic emphysema detected in the lungs is often not
specified when using the popular assessment techniques. It should be noted
that if a mixture of emphysema types is present, the severity of each type
should be assessed separately.

Another major criticism of macroscopic techniques is that they are
insensitive to early emphysema. Macroscopic assessments are performed
using the naked eye, or, at most, a dissecting microscope, and airspaces of
Imm in diameter or larger are considered to be emphysematous. However,
the average diameter of a normal airspace has been shown to be in the
region of 250um (Weibel, 1963; Schreider & Raabe, 1981). Therefore, by the
time the average airspace diameter has increased to Imm, the airspace wall
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surface area available for gas exchange will have been reduced by as much as
75%, leading to a significant reduction in respiratory efficiency (Lamb, 1990).
Hence, macroscopic techniques assess only gross changes in lung structure,
and are representative of end-stage disease. In order to study the changes
involved in the onset of emphysema, it is necessary to assess the
parenchymal tissue at a microscopic level.

1.7.2 Microscopic Assessments of Emphysema

Various methods have been used in the microscopic assessment of
emphysema. These fall into 2 categories - subjective and objective
techniques. Some of the most well-known of these are described below.

1.7.2.1 The Destructive Index (Saetta et al,1985b)
Using this technique, histological sections of lung tissue are examined using
an eyepiece graticule (Weibel No.2). Airspaces lying under each point on
the graticule are classified as normal (N) or destroyed (D), according to
several criteria (Saetta et al, 1985b). The destructive index (DI) is calculated
using the formula:-

DI = D/ (D+N) x 100

Although much of the definition of the DI seems to be objective, Saito and
colleagues, in a study of the DI (Saito et al, 1989) found that the most
influential criterion for classifying an airspace as 'destroyed' was the
'classical emphysematous lesion', the definition of which is completely
subjective. Saito et al found that the DI was an extremely time-consuming
technique which was no better than conventional macroscopic assessments
of emphysema.

1.7.2.2 Picture Matching Technique

Nagai and co-workers (1989) described a technique which involves the
comparison of 3cm x 2cm x 5um histological sections of lung tissue with
standard photographs. Each section is given a grade from 0 - 10 where 0 =
normal lung and 10 = almost complete destruction of lung parenchyma.
Six sections are examined from each lung, and the mean of their scores is
used as the score for the entire lung.
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This method is similar in design to Thurlbeck's panel grading method, and
has the same disadvantages due to its subjectivity. The scale of grades is not
linear, and mean scores are therefore inappropriate. This is not a truly
quantitative method.

1.7.2.3 Classification of Two Forms of Microscopic Emphysema
Kim and co-workers (1991) used published descriptions of the features of 2
types of macroscopically recognisable emphysema (panlobular and
centrilobular) to develop a technique for assessing the presence of these 2
types on histological sections. The diagnosis of panlobular emphysema
(PLE) is made when the enlargement of airspaces involves the whole acinar
unit, and the distinction between alveoli and alveolar ducts is lost.
Microscopic centrilobular emphysema (CLE) is considered to be present
when sharply demarcated emphysematous spaces, separated from the acinar
periphery by intact alveolar ducts and sacs of normal size, are observed.

This method is essentially a means of classifying the microscopic patterns of
emphysema observed. These workers did not describe the relationship of
their microscopic classification of emphysema to the macroscopic patterns of
emphysema present in their sample. This method is non-quantitative in
nature, and the grading of the severity of the 2 forms of microscopic
emphysema is not involved.

1.7.2.4 The Mean Linear Intercept

The respiratory surface of emphysematous lungs is reduced due to the
destruction of alveolar walls. The mean linear intercept technique, and the
other objective techniques described below, involve the measurement of
this destruction in one form or another, in order to assess the extent of
microscopic emphysema.

The mean linear intercept is the most commonly used index of alveolar
destruction. The mean linear intercept (Lm) is essentially the mean
distance between alveolar walls. Lm is measured on histological sections
using an eyepiece graticule. Intercepts between alveolar walls and the cross-
hairs of the graticule (test-lines) are counted. Providing the lengths of the
test-lines are known, then

Lm = NxT /I
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where N = number of fields measured
T = test-line length
I = total number of intercepts

The Lm is used as an index of emphysema, where Lm is increased with
increasing emphysema. Alternatively, the surface area of the alveolar walls
can be calculated using a standard formula

SA =2V /Lm
where V is the volume of tissue (e.g. lung volume or unit volume)
(Aherne & Dunnill, 1982). The proof of this formula is given by
Underwood (1970).

Measuring Lm is very time-consuming, as it involves counting intercepts
on a large number of histological fields to ensure a large enough sample size
to give a reasonable estimate of the true average distance between alveolar
walls.

1.7.2.5 Image Analysis Techniques

The introduction of image analysis systems into the field of morphometry
has taken much of the effort out of surface area measurements. These
systems are either semi-automatic or fully automatic.

1.7.2.5.1 Semi-Automated Techniques

McCartney et al (1988) described a semi-automatic technique which was
based on the Lm principle. A series of parallel lines was drawn on a sheet of
transparent plastic, and superimposed on a projected image of each
histological field. An electronic pen was used to measure the length of lines
which fell across the airspaces, giving an indication of the increase in
airspace size associated with inherited emphysema in the Blotchy mouse.
This technique, although less labour-intensive than the Lm technique, was
relatively slow, taking 30 minutes to measure 5 fields.

It is possible to measure alveolar wall surface area using a digitising tablet.
A camera lucida attachment allows the perimeter of the alveolar walls to be
traced on a computer-linked digitising tablet using an electronic cursor.
Perimeter length can be converted to surface area using a standard

morphometric formula:-

28



SA =P x 4/r (Williams, 1977)
Some of McLean's early airspace wall surface area measurements were
made using this method (McLean, 1987) and the same principle was later
used with an interactive automated image analysis technique (section
1.7.2.5.2).

This technique, as with all microscopic morphometric techniques, involves
a sampling procedure. Sufficient fields must be measured to produce values
which are representative of the lung. This method is consequently very
slow.

1.7.2.5.2 Fully Automated Techniques
In 1964, Duguid and co-workers described an automated scanning system

which measured sections of lung tissue mounted on cine films. More
recently, McLean (1987) and Gould and colleagues (1988) used the IBAS
automatic image analysis system to measure the total airspace wall
perimeter in random fields of tissue sections.

The IBAS (Kontron Ltd., Watford, England) is a computerised system which
involves analysis of stored images of histological fields from tissue sections.
The system consists of a microscope equipped with a video camera. An
image of each selected histological field is captured using the camera and
transmitted to the image processing system. The IBAS stores images in a
digitised form, where digital images consist of arrays (512 x 512) of square
picture elements, or 'pixels’. The IBAS constructs 8-bit digitised images,
where 256 grey levels are recognised, ranging from 0 which represents white
and 255 representing black. A series of image processing adjustments can be
used to enhance the contrast of the image, which can then be edited by the
user to exclude unwanted details from the image. (e.g. Non-parenchymal
structures can be excluded when only the alveolar walls need to be included
in the measurement). Total airspace wall perimeter per unit area
(mm/mm?2) is then quantified automatically. The number of histological
fields measured must be large enough to produce a stable running mean.
This ensures that the sample is representative of each lung specimen.

Although this type of system produces very accurate measurements from
single histological fields, the interactive editing and enhancement of the
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digitised images is extremely time-consuming. Therefore, the number of
fields which can be measured is limited by the time it takes to measure a
single field.

1.7.2.6 Advantages and Disadvantages of Microscopic Techniques
The major advantages of microscopic techniques for assessing emphysema
severity are that they are sensitive to early emphysematous changes
(involving enlargement of airspaces which are still invisible to the naked
eye), and that they are often quantitative.

Unfortunately, by necessity all microscopic techniques involve some form
of tissue sampling, which, while providing sufficient information for an
overview of the lung or lobe, results in limited information if intra-lung
comparisons of individual measurements are required. The accuracy of all
sampling techniques depends on the method used for the selection of fields.
Traditionally-used manual methods such as Lm are extremely tedious and
time-consuming to perform, and the automated and semi-automated
techniques which have been available to date have all been slow enough to
limit the sample size which can feasibly be studied.

It was therefore recognised that there was a need to develop a new
automated technique for assessing airspace size in the objective diagnosis of
microscopic emphysema on tissue sections. The technique developed in
this study incorporated the Lm principle in a computerised scanning device,
the fast interval processor (FIP). The development and assessment of the
FIP are described and discussed in Chapter 3 of this thesis.
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1.8 THE EPIDEMIOLOGY OF EMPHYSEMA

This project involved not only the development of a new method for
assessing airspace size in human lung tissue, but also the study of the effects
of age, sex and cigarette smoking on airspace size. The study group in this
project was selected to show a range of ages and smoking histories in men
and women, and may not be truly representative of the Scottish population.
Nevertheless, a study of this type is related to epidemiological factors, and as
an introduction to this aspect of the study, the following section is a review
of the current evidence of the epidemiology of emphysema.

Epidemiological studies of pulmonary emphysema have generally been
based on observations of the incidence and severity of macroscopically
recognisable emphysema in lungs from autopsy specimens. These studies
have shown that emphysema, in particular the centriacinar form, is linked
to tobacco smoking. This conclusion has been based on the consistent
finding that emphysema occurs more frequently, and with increased
severity in smokers than in non-smokers (Anderson, Hernandez et al, 1964;
1966; Ishikawa et al, 1969; Ryder et al, 1971; Alli, 1972; Spain et al, 1973;
Thurlbeck et al, 1974; Bignon et al, 1980).

The incidence and severity of macroscopic emphysema increase with age in
smokers (Anderson ef al, 1966, Burgess & Burgess, 1966; Hernandez et al,
1966; Petty et al, 1967; Ryder et al, 1971, Anderson et al, 1972; Auerbach et al,
1972; Spain et al, 1973; Thurlbeck et al, 1974; Sutinen et al, 1978; Sobonya &
Burrows, 1983; Dijkman, 1986; Snider, 1989).

Increases in the incidence of macroscopic emphysema with advancing age
have also been reported in non-smokers (Thurlbeck ef al, 1974; Dijkman,
1986). However, there is substantial evidence that many of the changes
occurring with age in the lungs of non-smokers are normal, and should not
be confused with disease processes; in particular, the term 'senile
emphysema' should be avoided (Burgess & Burgess, 1966; Thurlbeck, 1990).

Macroscopic emphysema has been found more frequently in men than in

women, and is generally more severe in men (Alli, 1972; Anderson et al,
1972; Thurlbeck et al, 1974; Snider, 1983; 1989). This may be due to
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differences in smoking habit between the sexes (Anderson et al, 1966;
Snider, 1989), but it has been suggested that there are fundamental sex
differences in the susceptibility to emphysema (Anderson et al, 1972;
Thurlbeck et al, 1974; Bignon et al, 1980; Dijkman, 1986).

Emphysema has been found to occur more frequently in patients with a
genetic deficiency of the protease inhibitor, alpha-1-antiprotease, especially if
they are smokers (Laurell & Eriksson, 1963; Eriksson, 1964). The possibility
that other genetic factors may influence the incidence of emphysema has
been investigated but, with the exception of alpha-1-antiprotease deficiency,
no single genetic influence has been identified (Faling, 1983; Redline &
Weiss, 1989).

Occupations such as mining, with high level exposure to fine particulate
dust, are high risk occupations with regard to lung diseases including
emphysema, and individuals are particularly at risk if they smoke (Alli,
1972; Garshick & Schenker, 1989). Unfortunately it is often difficult to
separate the effects of smoking and occupational hazard in studies of this
type (Snider, 1989). The extent of the influence of air pollution on the
susceptibility to emphysema is thought to be a minor one (Snider, 1989),
although there is some evidence to suggest that the incidence of
emphysema is higher in highly polluted, industrial areas as opposed to
rural communities (Ishikawa et al, 1969; Alli, 1972; Thurlbeck et al, 1974;
Higgins, 1991). Obviously, this may be related to occupational exposure to
pollutants.

The techniques used in studies of the prevalence of microscopic changes in
the lungs due to emphysema have been non-quantitative in nature (e.g.
Auerbach et al, 1963; 1974). This may be due to the fact that the quantitative
techniques available have been tedious to use. For the same reason, the
limits of normal airspace size have not been defined, and therefore the
information required to meet the criteria for diagnosing microscopic
emphysema has not been available.

Clinical epidemiological studies of emphysema are difficult to perform

because, as discussed earlier, clinical diagnoses of emphysema are extremely
unreliable. Recent evidence has shown that CT scan density measurements
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relate to alveolar wall surface area measurements (Gould et al, 1988; Flenley,
1990; 1991; MacNee et al, 1991), and it is hoped that CT scanning may be used
in clinical epidemiological studies in the future, but the baseline data on the
range of normal CT density values with age have still to be obtained.
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1.9 THE PATHOGENESIS OF EMPHYSEMA

The information obtained from studies of early, microscopic emphysema
may shed some light on factors relating to the pathogenesis of emphysema.
It is therefore important to include an account of some of the theories of
pathogenesis in this thesis. The subject of the pathogenesis of emphysema
has received much attention in recent years, mostly relating to the protease-
antiprotease theory, the basis of which will be described. It is outwith the
scope of this thesis to give a detailed literature review of this subject, and
much of the information included here has been obtained from review
articles.

Several theories have been proposed to explain the mechanisms responsible
for the onset of pulmonary emphysema. One of the earliest theories to be
considered was that emphysema was due to the mechanical overinflation of
the lungs (Rosenblatt, 1972; Dunnill, 1987; Eriksson, 1991). This theory was
first proposed by Laennec in 1834. Laennec suggested that emphysema was
due to partial bronchial obstruction leading to a pressure increase in the
lung distal to the obstruction, which eventually led to tissue destruction
(Eriksson, 1991). This view was generally held for over 100 years.

However, normal alveolar walls have been shown to withstand extreme
overdistension without rupture, possibly due to the collateral ventilation
which occurs through the pores of Kohn (Anderson & Foraker, 1962). In
support of this, experimental attempts to produce emphysema by
obstruction of the bronchi have been unsuccessful (Eriksson, 1991). Also,
asthmatic patients do not develop destructive emphysema despite having
continuous or intermittent airflow obstruction (Pratt & Klugh, 1967). The
experimental results and findings in patients with asthma suggest that the
mechanical overdistension hypothesis is unlikely to be accurate.

It has been suggested that the onset of emphysema is related to
inflammation of the bronchi and bronchioles leading to weakening and
destruction of the alveolar walls (Gough, 1952; Reid, 1954; Leopold &
Gough, 1957; Anderson & Foraker, 1962; Anderson, Azcuy et al, 1964).
Although this theory was widely accepted for many years, the mechanisms
responsible for the alveolar wall destruction remained unknown.



Two major breakthroughs in the study of the pathogenesis of emphysema
occurred in the early 1960s. In 1963, Laurell and Eriksson reported on the
high incidence of emphysema in patients with an inherited deficiency of the
protease inhibitor alpha-1-antiprotease (also called alpha-1-antitrypsin). In
1964 Gross and colleagues produced an experimental form of emphysema in
rats by exposing them to the plant-derived proteolytic enzyme papain.

These two important studies and the many which followed led to the
development of a theory that unrestrained proteolytic activity (in particular
elastolytic activity) in the lung was the major pathogenetic mechanism
responsible for the development of pulmonary emphysema (Weissler,
1987). This hypothesis has become known as the protease-antiprotease
(elastase-antielastase, enzyme-inhibitor) hypothesis.

Several mechanisms are thought to be involved in creating the protease-
antiprotease imbalance in the lungs. In patients with inherited deficiency of
alpha-1-antiprotease (the most abundant protease inhibitor in the
circulation), normal levels of protease activity are thought to be sufficient to
overload the inhibitory capacity of the antiprotease, and this may lead to
tissue destruction.

In patients with normal circulating alpha-1-antiprotease levels, a localised
enzyme-inhibitor imbalance is thought to be related to tobacco smoking.
The introduction of tobacco smoke into the lungs is thought to initiate a

number of responses.

Smokers have been found to have an increased number of macrophages in
bronchoalveolar lavage fluid compared with non-smokers. It is thought
that macrophages migrate to the alveoli during the inflammatory response
to the presence of tobacco smoke (Janoff, 1983; Fels & Cohn, 1986).
Macrophages release chemotactic factors which attract neutrophils to the
alveoli, and induce the neutrophils to secrete elastase (Hunninghake et al,
1980; Janoff, 1985; Dunnill, 1987; Weissler, 1987). In experimental studies it
is the destruction of elastin molecules which leads to emphysema, and
therefore excess neutrophil elastase secretion may be linked to the onset of
human emphysema (Weissler, 1987).
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Cigarette smoke releases oxidants which are thought to be directly related to
tissue destruction. The oxidants in tobacco smoke may stimulate
neutrophils to release more elastase. Therefore, in addition to greater
numbers of neutrophils being present, each of these may also produce larger
than normal levels of elastase (Janoff, 1983; Gadek & Pacht, 1990). Oxidants
are thought to inactivate protease inhibitors, including alpha-1-antiprotease,
which inhibits trypsin and collagenase as well as elastase (Janoff, 1985;
Smith et al, 1986; Weissler, 1987). As described above, the uninhibited action
of proteases is thought to lead to destruction of the alveolar walls. In
addition to these destructive effects, the oxidising agents released by tobacco
smoke are thought to inhibit the action of the enzyme lysl oxidase, which
forms cross-links during elastin synthesis. This mechanism may directly
inhibit connective tissue repair by inhibiting elastin resynthesis following
injury by protease-antiprotease imbalance (Weissler, 1987, Gadek & Pacht,
1990).

It must be emphasized that the evidence supporting the protease-
antiprotease hypothesis is largely indirect. Much of the supporting evidence
has been obtained from experimental studies involving inducing
emphysema in laboratory animals. However, experimental emphysema is
invariably panacinar in type (Weissler, 1987), while the type most
commonly found in smokers is centriacinar (Thurlbeck, 1963a).

Some authors have attempted to use the protease-antiprotease hypothesis to
explain the variations in the mechanisms responsible for the onset of
centriacinar and panacinar emphysema. These workers have concentrated
on the ventilation/perfusion relationships within the lung (Cockcroft &
Horne, 1982; Dunnill, 1987) and have hypothesized that centriacinar
emphysema is the result of a localised imbalance, and panacinar
emphysema is the result of a systemic protease-antiprotease imbalance.
These theories are interesting and have received some recent support (Kim
et al, 1991).

The protease-antiprotease hypothesis is now widely accepted, and a vast
amount of experimental work is currently being performed on the
assumption that it is accurate. However, in accepting the hypothesis, a
point which is often overlooked is that while it is generally accepted that
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every smoker responds to the insult of tobacco smoke in the same way, not
every smoker develops emphysema (Sobonya & Burrows, 1983). As
Wewers and Gadek (1987) noted, there is a need for a precise definition of
the cellular and genetic basis for the considerable differences in susceptibility
of individual smokers to the adverse effects of cigarette use.
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1.10 BACKGROUND TO THIS STUDY

The various definitions of emphysema all include reference to the
abnormal enlargement of airspaces distal to the terminal bronchiole (Ciba,
1959; American Thoracic Society, 1962; Reid, 1967b; Snider et al, 1985).
Detailed studies of human lungs have shown that there is variation in
airspace size, but the average diameter in the adult is around 250um
(Weibel, 1963; Schreider & Raabe, 1981). The lung is a dynamic organ, and
its structure changes with advancing age in adulthood (Azcuy et al, 1962;
Thurlbeck, 1990); therefore, normal airspace size is likely to become altered
with age.

The need to establish the normal range of airspace size with age and sex was
recognised at the Ciba Guest Symposium (Ciba, 1959) but unfortunately the
limits of normal airspace size remain undefined.

As described earlier in this chapter, most of the studies of emphysema have
been based on macroscopic observations, with airspaces larger than Imm in
diameter considered to be emphysematous. Macroscopic techniques are
therefore insensitive to early emphysema, and most of the techniques
which have been available for assessing microscopic emphysema have been
tedious to use. In the course of this study, a new automated technique has
been developed for the accurate measurement of airspace wall surface area
per unit volume of lung tissue.
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1.11 AIMS OF THIS STUDY
The aims of this study were as follows:

1. To develop and assess a new automated technique for measuring airspace
wall surface area on histological sections.

2. To measure airspace wall surface area per unit volume of lung tissue
(AWUV) in a group of non-smokers' lungs; to investigate the relationship
between AWUV and age, and to establish a range of normal AWUV values.

3. To determine whether the AWUV /age relationship is the same in men

and women.

4. To examine the effect of smoking on AWUYV, by observing the
AWUV /age relationship in a group of smokers; and by using the
information obtained in the study of the non-smokers as the basis for an
anatomical diagnosis of microscopic emphysema.

5. To measure AWUV in a series of whole lung specimens to assess the
variation in AWUV measurements from the apex to the base of the lung.

6. To assess the extent of macroscopic emphysema in the study sample; to
study the relationship between the distribution of macroscopic emphysema
and the distribution of AWUV measurements within the lung; and to study
the relationship between macroscopic and microscopic emphysema.
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Chapter 2

Materials and Methods



This Chapter contains details of the tissue sample collected, and
descriptions of the methods used in preparing the lung specimens for
histology, assessment of macroscopic emphysema, a brief summary of the
morphometric technique used (details of this technique are discussed in
Chapter 3), and details of the methods used in data handling and statistical
analysis.

2.1 COLLECTION OF LUNG SPECIMENS

At the beginning of this project I intended to use a series of autopsy lung
specimens which were being collected by staff at the Institute of
Occupational Medicine in Edinburgh. These specimens were to be used as
controls in a study of the effects of dust exposure on the lungs. The lungs
came from accidental or sudden death victims, where death was not due to
respiratory disease. Full details of occupational history and smoking history
were obtained from interviews with relatives. Where occupational and
smoking history could not be obtained the specimens were excluded from
the study. None of these cases had any occupational dust exposure. The
aim was to collect a total of approximately 160 lungs representing male and
female smokers and non-smokers of a wide age range.

Unfortunately, funding for the Occupational Medicine project ended before
the collection of these specimens was complete. In addition, many of the
lungs were not fixed in inflation and were therefore unsuitable for this
study. As a result, only 30 of the specimens were included, and an
alternative source of lung specimens had to be found. Fourteen lungs were
collected from routine autopsies. Smoking histories were documented for
13 of these individuals. The remainder of the sample consisted of surgical
lung specimens. A previous study in the Pathology Department involved
collecting lobes or lungs which had been removed surgically as treatment
for a peripheral tumour. 40 of these specimens were included in this study,
and the collection of surgical specimens was continued. Smoking histories
and simple respiratory function data were obtained from clinical records for
all the surgical specimens.
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The final sample studied in this project consisted of 165 lung specimens. Of
these, 44 were lungs obtained at autopsy and 121 were lungs or lobes
obtained by surgical resection. Of this sample 125 individuals were smokers,
39 were non-smokers, and there was 1 individual whose smoking history
was unknown. The age range of the sample was 21 to 93 years (mean age
59.9 years). The age of one of the non-smokers was unknown, and this case
was excluded from all analyses involving age. The non-smoking group
included 16 males and 23 females, and the smoking group consisted of 95
males and 30 females. A detailed description of the numbers, sex and
smoking history of all the individuals in this study is given in Table 2.1.

Individuals were included in the non-smoking group only if they were
documented as 'lifelong non-smokers'. In the smoking group, length of
smoking history and the number of cigarettes smoked each day were
recorded when this information was available. These individuals were
divided into 3 sub-groups based on the extent of tobacco consumption as
follows:

1. Less than 20 cigarettes each day

2. Between 20 and 29 cigarettes each day

3. 30 or more cigarettes each day.

In order to study airspace surface area in relation to macroscopic
emphysema, the sample was subdivided into 2 groups based on the presence
or absence of macroscopically visible airspaces (i.e. larger than Imm in
diameter) in the mid-sagittal slice. The sub-group with evidence of
macroscopic emphysema was then further sub-divided. Firstly the sub-
group was split into 4 groups according to the type of macroscopic
emphysema, and then the severity of each type was assessed. The 4 groups
based on type of emphysema were as follows:

1. Centriacinar emphysema only

2. Panacinar emphysema only

3. Panacinar and centriacinar emphysema

4. Other types of macroscopic emphysema

Section 2.9 details the method by which macroscopic emphysema was
assessed.
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2.2 INFLATION AND FIXATION

All the specimens were inflated intra-bronchially with neutral buffered
formalin at a pressure of 25cm H,O using the 'natural contour' inflation
technique (American Thoracic Society, 1959). Buffered formalin was
introduced into the lung intra-bronchially via a plastic tube connected to a
reservoir of fixative situated 25cm above the specimen. Formalin was
allowed to flow into the bronchi until the pleural surface was smooth and
firm to the touch, and the natural contours of the pleura were established.
When the lungs were fully inflated, they were floated in buffered formalin
in a covered container for a minimum of 24 hours until fixation was
complete.

2.2.1 Preparation of Neutral Buffered Formalin (Kiernan, 1990)

4L 40% technical grade formaldehyde
260g Anhydrous di-sodium hydrogen orthophosphate (Na, HPO,)

160g Sodium di-hydrogen orthophosphate (NaH,PO,.H,0O)

Cold water
The buffer salts were dissolved in warm water and the solution allowed to

cool. Formaldehyde was added, and the mixture was made up to 40 litres

with cold water.
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2.3 SPECIMEN TRIMMING

The lungs were cut into 1cm parasagittal slices (usually 4 or 5 for each lung).
This was done by placing each lung in turn on a trimming board with 1cm
raised sides, with the hilar surface of the lung upwards. The lungs were
then sliced using a disposable stainless steel trimming knife with a 12"
blade.

2.4 TISSUE SAMPLING

Tissue blocks were cut from the fixed lungs using a 2cm x 2cm plastic
template. The block thickness was restricted to a maximum of 0.5cm, to
facilitate tissue processing. Different sampling techniques were used for the
lobectomy and whole lung specimens.

2.4.1 Single Lobe Specimens

Tissue blocks were cut from the lateral 2 parasagittal slices of the lobes. This
was in keeping with the sampling technique of a previous study of lung
function and structure. The lateral 2 slices were used because they
contained fewer large airways and vessels, and the non-respiratory
bronchioles were more likely to be transversely sectioned in these slices.
Sections from 40 of the lobes in the structure/function study were re-
analysed in this study. A minimum of 6 2cm x 2cm tissue blocks were cut at
random from the lateral 2 slices of each lobe. These blocks were sampled by
overlaying the lateral 2 parasagittal slices with a grid of 2cm x 2cm squares
on a transparent sheet (Figure 2.1). Six blocks were cut from each slice,
using a table of random numbers to provide the co-ordinates of each block.
Abnormal areas of tissue were excluded from the sample.

2.4.2 Whole Lung Specimens
The whole lung specimens were used to study the variation in airspace
surface area from apex to base of the lung. The sampling technique used was



2cm

13] 14| 15] 16 2cm
251 26

37 /"'\

N
{/ & -{_- i random blocks
y / v .=
7 \
{ﬁ,, —~

FIGURE 2.1

The sampling technique used for selecting tissue blocks from single lobe
specimens. The lateral 2 parasagittal slices of each specimen were overlaid
by a transparent sheet marked in 2cm x 2cm squares. Each square on the
sheet was numbered, and the position of the blocks was chosen by selecting
numbers from a random number table. Where the grid number fell over
an area of the tumour, another random number was selected, so that
abnormal areas of tissue were excluded from the sample. Six random blocks
were cut from each specimen in this way.
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as follows. Tissue blocks were cut from the mid-sagittal slice of each lung.
The mid-sagittal slice was chosen because of its size, representing the full
apex to base height of the lung. The mid-sagittal slice was divided into 6
zones, 3 in the upper lobe and 3 in the lower lobe as follows: The apex to
base height of each lobe was measured and divided by 3 to give the height of
each zone. The upper and lower lobes were then divided accordingly
(Figure 2.2). For simplicity, where the specimen was a right lung, the
middle lobe was considered to be part of the upper lobe. Two random 2cm x
2cm blocks were cut from each zone (a total of 12 blocks from each lung).
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FIGURE 2.2

A diagrammatic representation of the sampling design used with the whole
lung specimens. The mid-sagittal slice of each lung was divided into 6
zones based on the apex to base height of the upper and lower lobes (i.e.
zones A, B, C in the upper lobe; and zones D, E, F in the lower lobe). Two
random 2cm x 2cm tissue blocks were cut using a template from each zone,
to produce a sample size of 12 tissue blocks from each whole lung specimen.
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2.5 TISSUE PROCESSING

The formalin-fixed blocks were processed and embedded in glycol
methacrylate resin (GMA) using the procedure described below.

The tissue blocks were dehydrated through a series of alcohols, O.P spirit
and acetone, each for 2 hours at the concentrations shown below.

10% ethanol
20% ethanol
30% ethanol
50% ethanol
80% ethanol
64 O.P. spirit
64 O.P. spirit
74 O.P. spirit
74 O.P. spirit
acetone
absolute alcohol

The constituents of the GMA resin were as follows:
A. Infiltrating Solution

2 Hydroxyethyl methacrylate =~ 400ml

2 Butoxyethanol 40ml

Benzoyl peroxide 4g

(Benzoyl peroxide was added last and the mixture stirred automatically for 2
hours.)

B. Promoter Solution

Polyethylene glycol 400 8ml
N.N. Dimethylaniline Iml

The alcohol within the tissue was gradually replaced with infiltrating
solution over two to three days with fresh solution being added every 24
hours. The final solution of GMA was obtained by adding 1ml of the
promoter solution to 42ml of the infiltrating solution. The solutions were
then rotated for 5 minutes to ensure thorough mixing (Sims, 1974).
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When the final GMA mixture was prepared, plastic moulds (Park Scientific,
Northampton) were filled with the mixture, and the tissue blocks were
oriented within the GMA. The addition of the promoter solution caused an
exothermic polymerisation reaction, and to slow this reaction and prevent
bubbles forming in the GMA, the moulds were placed on crushed ice for an
hour. The moulds were then peeled off and the blocks hardened in an oven
at 60 degrees centigrade. Excess resin was then trimmed from the blocks
using a band saw and the blocks glued to wooden chucks prior to sectioning.
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2.6 TISSUE SECTIONING

Tissue sections were cut to 3um using a Reichart Jung Autocut with a
tungsten carbide knife. One section was taken to represent each block.

2.7 TISSUE STAINING
Sections were mounted on microscope slides and stained by the
Haematoxylin & Eosin method which gave a good contrast between the

tissue and the background, which is a prerequisite for image analysis.

Bullard's Haematoxylin and Eosin:

Bullard's Haematoxylin:

8g haematoxylin

16ml glacial acetic acid

144ml 50% ethanol

20g aluminium ammonium sulphate (ammonia alum)
250ml distilled water

8g red mercuric oxide

275ml 95% ethanol

330ml glycerol

18ml glacial acetic acid

40g aluminium ammonium sulphate

Preparation:

The haematoxylin was dissolved in 144ml 50% ethanol. 16ml glacial acetic
acid and a heated solution of 20g ammonia alum in 250ml distilled water
were added. The mixture was heated to boiling and 8g red mercuric oxide
were added. The solution was then cooled rapidly and filtered. 275ml 95%
ethanol, 330ml glycerol, 18ml glacial acetic acid, and finally 40g ammonia
alum were added. The resulting solution was mixed thoroughly and stored
at room temperature.
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Method:

Sections were stained in Bullard's haematoxylin at room temperature for 10
minutes, and washed in water for 2-3 minutes. The sections were then
differentiated in 1% acid alcohol, washed for 5 minutes in running tap
water, and counterstained in 1% eosin for 5 minutes. They were then
rinsed, dehydrated through graded alcohols and cleared in xylene prior to
mounting in DPX (adapted from Drury & Wallington, 1980).
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2.8 CHEMICALS

The chemicals used in this project were supplied by BDH Ltd, Poole, Dorset,
and Sigma Chemicals Ltd, Poole, Dorset. A full list of all chemicals used is
shown below.

BDH Ltd:-

Absolute alcohol

Aluminium ammonium sulphate
Anhydrous di-sodium hydrogen orthophosphate
Benzoyl peroxide

DPX

Eosin

Ethanol

40% Formaldehyde

Glacial acetic acid

Glycerol

Haematoxylin

O.P. spirit

Polyethylene glycol 400

Red mercuric oxide

Sodium di-hydrogen orthophosphate
Xylene

igma Chemicals Ltd:-
2 Butoxyethanol
2 Hydroxyethyl methacrylate
N N dimethylaniline
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2.9 MACROSCOPIC ASSESSMENT OF EMPHYSEMA

The mid-sagittal slice of each lung specimen was examined by an
experienced pathologist (DL), and the extent and types of macroscopic
emphysema present were assessed in the following manner: Each lung slice
was placed in a shallow tray containing enough water to just cover the
specimen. The cut surface of each slice was then examined carefully. The
types of emphysema observed in each lobe were recorded, and the extent of
each type described, i.e. where the specimen was a whole lung, the type and
extent of macroscopic emphysema in each of the lobes were recorded
separately. Any centriacinar lesions were counted. Where panacinar,
paraseptal, paracicatricial or bullous emphysema were present, the
percentage area of the slice involved was measured by tracing the outline of
the mid-sagittal slice onto a transparent sheet. (A bullous lesion was defined
as an emphysematous space of more than Icm in diameter (Figure 2.3)). The
emphysematous areas were then traced onto this sheet, the areas of the
tracings measured using graph paper, and the percentage of the lobe area
showing macroscopic emphysema was calculated.

The type of macroscopic emphysema in each lobe was recorded as follows:
1. Centriacinar emphysema only

2. Panacinar emphysema only

3. Both centriacinar and panacinar emphysema

4. Other types of macroscopic emphysema

The severity of each type of macroscopic emphysema was then graded for
each lobe as follows:
1. Centriacinar emphysema

Mild <10 lesions
Moderate 10 - 20 lesions
Severe >20 lesions

2. Panacinar, paraseptal, paracicatricial or bullous emphysema

Mild <10% area of mid-sagittal slice involved
Moderate involving 10% - 40% of mid-sagittal slice area
Severe >40% area of mid-sagittal slice involved
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FIGURE 2.3

This photograph shows a piece of lung tissue cut from the apex of the upper
lobe of a lung specimen showing bullous lesions (B). Note that the
diameter of these lesions is at least 1cm.
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2.10 THE FAST INTERVAL PROCESSOR (FIP)

The FIP is a fully automated scanning system which was used to measure
airspace wall surface area in this study. The FIP uses the same approach to
measuring surface area as the mean linear intercept (Lm) technique,
whereby the number of intercepts with a test-line is counted, and this figure
is used to calculate the average distance between intercepts. A value for
tissue surface area can be derived from Lm (Aherne & Dunnill, 1982).

A detailed description of the FIP, and a discussion of its development and
assessment are given in Chapter 3.
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2.11 THE DEFINITION OF AWUV

Airspace wall surface area measurements can be used to quantify the loss of
respiratory tissue due to emphysema. In this study airspace wall surface
area was measured and expressed as mm?/mm3 of lung volume, i.e. the
surface area of Airspace Walls contained in a Unit of lung Volume
(AWUYV) (Lamb et al, 1986; Gould et al, 1988).

AWUYV can be calculated in several ways using standard morphometric
formulae. It is possible to measure airspace wall perimeter in a unit of lung
area, and to convert this to AWUV using the formula:

Surface Area = Perimeter x 4/n (Lamb et al, 1986).

Alternatively, AWUV can be derived from a linear intercept measurement

using the formula:
Surface Area = 2V/Lm (Aherne & Dunnill, 1982).

As described in detail in Chapter 3, this is the method which has been used
to calculate AWUYV in this study. AWUV is expressed in mm?2/mm?3,

ie. V. =1mm?3. The formula thus becomes:

AWUV =2 /Lm (mm2/mm?3).
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2.12 DATA HANDLING

The FIP was controlled by a Plessey MIPROC computer. As the FIP scan
proceeded, intercepts with lung tissue were recorded (as described in
Chapter 3), and the intercept total for each Imm? field was stored on the
MIPROC. This created a large volume of data, and unfortunately the storage
capacity of the MIPROC was limited. All FIP results were therefore
transferred to the Edinburgh University Mainframe computer (Castle) for
storage and data manipulation. The data were transferred using the Kermit
communication package (Da Cruz, 1987).

When the data were transferred to the mainframe they were contained in
files which were in an inappropriate format for the statistical package used
in this study (Statistical Package for the Social Sciences (SPSS)). Each data
file was edited on Castle using the line editor 'EDIT' and the screen editor
'MICROEMACS'. (All data files were kept for long term storage on the
Castle archive system.)

SPSS was then used to convert each intercept total from the data files into
an AWUYV value, using the formulae described in section 2.11 above, and to
compute mean AWUV, mode AWUYV, and 5th, 10th, 90th and 95th
percentile AWUV values.
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213 ILLUSTRATION OF AWUV PATTERNS

As described above, the AWUV measurements from each individual 1mm?
field scanned in this study were stored on the Castle mainframe computer.
Since a list of numerical values would be difficult to interpret, an attempt
was made to use these values to illustrate the patterns of airspace sizes
within tissue sections.

An Apple Macintosh IIfx was used to construct several grids which were
designed to represent the pattern of AWUYV values in individual tissue
sections.

A blank grid, consisting of 121 small squares of equal size, was drawn using
Claris Macdraw II (Figure 2.4). The grid was intended to represent the 121
1mm? fields scanned by the FIP on a single tissue section (See Chapter 3 for
details). This grid was then imported into an image analysis package (Image
1.41 VDM), and each square in the grid was filled in with a grey shade
chosen to represent the AWUYV for a single field. Image 1.41 recognises 256
grey shades on stored images. These shades range from 0 - 255, where 0
represents white and 255 represents black. It was therefore simple to allocate
grey shades to squares representing AWUV measurements of 0 - 25.5
mm?/mm3, simply by multiplying the AWUV value by 10. AWUVs higher
than 25.5 mm?/mm?® were all given the maximum grey level value of 255.
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FIGURE 2.4

This figure shows a grid consisting of 121 squares of equal size. The grid was
created using Claris Macdraw on an Apple Macintosh IIfx. Each square is
intended to represent a single Imm? field on the area scanned using the FIP.
To create a 'grey level' grid to represent the pattern of AWUV values on a
single histological section, each square in the grid was filled with a grey
level corresponding to the AWUV measurement, using Image 1.41 VDM
image processing software. In this way, fields with high AWUV values
were represented by darker grey shades than those fields with low AWUV
values.

59



2.14 STATISTICAL ANALYSIS
The statistical tests used in this study are listed below.

The adequacy of the sample size of 6 tissue blocks per lobe was assessed by
calculating the mean AWUV and the standard error of the mean for the 6
blocks (726 histological fields). The 95% confidence limits of the mean were
then calculated using the formula CI = mean +/- 1.96(SEM), where CI is the
confidence interval, 1.96 is the value of the 't' distribution for large sample
sizes (from statistical tables), and SEM is the standard error of the mean.
The sample size was deemed to be representative if the confidence intervals
were within +/- 10% of the mean AWUV (Weibel, 1963).

The Spearman correlation coefficient (Siegel & Castellan, 1988) was used to
assess the relationship between AWUV and age in the smokers and non-
smokers. Regression analysis was used to describe further the AWUV/age
relationship in the non-smokers. Multivariate regression analysis was used
to assess the influence of sex on the AWUV/age relationship.

The apex to base distribution of AWUV measurements within the lung was
assessed using the Friedman 2-way analysis of variance (Siegel & Castellan,
1988), and the upper and lower lobe AWUV values were compared using
the Wilcoxon Signed Ranks test (Siegel & Castellan, 1988).

In general, no assumptions were made about the normality of the data, and
nonparametric statistics were preferred. This was particularly important in
the analysis of the apex to base variation in AWUV because, especially in
cases with low mean AWUYV, the frequency distribution of AWUV values
within the lung was not always normal.

All statistical tests were performed using the Statistical Package for the
Social Sciences (SPSS) (SPSS Inc., 1988). The 95% prediction limits for the
various regression equations were computed using the Minitab package
(Ryan et al, 1985).
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2.15 GRAPHICS

All the figures and tables in this thesis were constructed using the following
packages on an Apple Macintosh IIfx computer:

Claris Macdraw II 1.1 Claris Corporation
Mountain View
California
USA

Cricketgraph 1.2 Cricket Software
Malvern
Pennsylvania
USA

Image 1.41 VDM Image Processing and Analysis
National Institutes of Health
Research Services Branch
NIMH
USA

Microsoft Word 4.0 Microsoft Corporation
Redmond
Washington
USA
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Chapter 3

The Development
and Assessment of

a New Technique



3.1 INTRODUCTION

As described in Chapter 1, most of the methods used for assessing
emphysema are subjective, non-quantitative and insensitive to early
disease. The measurement of airspace wall surface area per unit volume of
lung tissue (AWUYV) has been found to be an efficient method for assessing
parenchymal tissue density. The increases in airspace size associated with
pulmonary emphysema can be expressed as decreases in AWUYV values
(McLean et al, 1992).

The term 'AWUV' was introduced by Lamb and colleagues in 1986. Their
technique for assessing AWUV involved measuring airspace wall
perimeter in a unit area of lung tissue, and converting this to AWUV using
the formula:

Surface Area per Unit Volume = Perimeter per Unit Area x 4/n
(Williams, 1977).

Airspace wall perimeter was measured in Imm? fields using a digitising
tablet, or an automated image analysis system (IBAS, Kontron Ltd,
Watford). Both of these techniques were labour-intensive and time-
consuming. (Although the IBAS was an automated system, the digital
image of each histological field had to be edited carefully to eliminate
unwanted objects from the measurement). Perimeter measurements were
made on sufficient fields to produce a stable running mean - usually 25-30
Imm? fields from each lung specimen. The average time to measure the
total perimeter in a single Imm? field was 5-10 minutes.

One of the aims of this project was to develop a new technique for
measuring AWUV, which would be faster and less labour-intensive than
the methods which had previously been used. The remainder of this
Chapter contains an account of the technique used, including a description
of the fast interval processor (FIP), its development and operation; an
account of the FIP's reproducibility; and an assessment of the compatibility
of FIP measurements with those made using an established morphometric
technique.
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Section 3.4 on the assessment of the FIP technique is divided into 3 sub-
sections with the standard headings 'Introduction’, 'Methods', Results' and
'Discussion’. These headings have not been used in their strictest sense in
this Chapter, and in particular, the 'Discussion’ sub-section contains some
results which seemed to be more appropriately placed as part of the
discussion of the differences between the FIP and an established image
analysis system.
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3.2 DEVELOPMENT OF A NEW TECHNIQUE FOR
MEASURING AWUV

The fast interval processor (FIP) (Figure 3.1) is a fully automated scanning
system which was developed by staff at the MRC Human Genetics Unit in
Edinburgh. The machine was originally designed as a pre-screening device
for cervical cytology specimens (Shippey et al, 1981; Tucker & Shippey, 1983).
It was adapted for use with lung tissue using software written by AS]
Farrow.

The FIP consists of a computer-linked Nikon inverted microscope with a
6.3x objective. The microscope is equipped with a motorised stage and a
charge-coupled device (CCD) linear image sensor. The sensor consists of a
stationary array of photosensitive units which recognise the optical density
pattern of histological specimens.

AWUV measurement using the FIP is accomplished using the same
method as the mean linear intercept (Lm) technique, whereby the number
of intercepts between a tissue component and a test-line is counted, and the
average distance between intercepts can be calculated, provided the length of
the test-line is known. A value for tissue surface area can be derived from
Lm using a standard morphometric formula:

Surface Area = 4V / Lm (Aherne & Dunnill, 1982).

The FIP scans tissue sections in the following manner. Each microscope
slide is mounted on the motorised stage. The stage is programmed to move
the section in the x-axis, past the stationary image sensor, which scans the
section electronically in the y-axis at 10um intervals. A digitised 'image’ is
formed by the electronic scan. This image consists of a grid of picture
elements or 'pixels’, each of which measures 2um x 2um. A user-defined
threshold level determines which pixels are recognised as stained tissue and
which are unstained background pixels.

Contiguous groups of thresholded pixels detected by each electronic scan are

treated together as 'intervals'. A size filter ensures that intervals of less
than 3 pixels (i.e. 6um) in diameter are ignored by the image sensor. This
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FIGURE 3.1

A photograph of the fast interval processor (FIP). The FIP consists of a
Nikon inverted microscope (M), controlled by a Miproc microprocessing
unit (MPU). Each histological section is mounted on the motorised stage
(S), and a digitised image of each scan is shown on the monitor marked 'A'.
Monitor 'B' displays the Miproc commands which are keyed in by the user.

65



filters out most of the small cells or dust particles which have been
thresholded, but are unwanted in the AWUV measurement.

An electronic signal is recorded by the computer each time the boundary
between tissue pixels and background pixels is detected by the image sensor.
Therefore 2 'intercepts' are counted for each interval (Figure 3.2). This is
equivalent to counting the number of intercepts between a test-line on a
graticule and the boundaries between tissue and background using the
conventional Lm technique. Two intercepts are counted for each alveolar
wall because both sides of the wall are involved in the gas exchange process
(Aherne & Dunnill, 1982). For ease of calculation, the intercept totals from
each Tmm? (i.e. unit area) are stored by the computer.

Each electronic scan creates a 'test-line’ Imm in length for each 1mm? field,
and, as fields are scanned at 10um intervals, the total test-line length is
100mm for each field (100 electronic scans Imm in length in each field).
The mean linear intercept can thus be calculated:

Lm = Total test-line length / Total number of intercepts

The morphometric formula for calculating tissue surface area is SA = 4V
/Lm (Aherne & Dunnill, 1982). However, in this case, 2 intercepts have
been counted for each airspace wall.

The formula thus becomes SA =2V / Lm.

The FIP has been programmed to recognise the edges of each Imm? field in
the y-axis. The image sensor can recognise if the first intercept at the top of
the field is a 'start' or 'end’ intercept for the interval. The same is true at
the bottom of each field (Figure 3.3). This ensures that there is no overlap

in intercept counts between adjacent fields.

During the FIP scan, the mechanical stage is capable of moving at speeds of
up to 2mm per second. However, an important feature of the 'lung'
program was that a binary image of the thresholded and non-thresholded
pixels should be produced while the tissue section was being scanned. This
feature has been included to enable the user to see the thresholded areas
detected by the image sensor, and to reject sections which contain large areas
of thresholded non-parenchymal tissue. The display of the binary image
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cannot be accomplished at speeds of greater than Imm per second.
Therefore the scan speed has been limited accordingly.
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FIGURE 3.2

This colour plate shows a binary image of lung tissue, created using Image
1.41VDM image processing software on the Apple Macintosh IIfx
computer. The black border surrounding the binary image represents the
boundaries of a single Imm? histological field. The black vertical line (T)

represents the electronic scan creating a test-line at 10um intervals across
the field. An intercept is counted when the boundary between tissue and
background density levels is encountered. There are therefore 2 intercepts
for each alveolar wall (one counted on entry of the test line into the wall,
and the second on its exit). Thus, arrows A, B, C and D represent the first
intercept for each alveolar wall and arrows A’, B', C' and D' represent the
second intercept counted for each wall.
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FIGURE 3.3

As in Figure 3.2, this colour plate is a digitised image of a histological field
from a section of lung tissue. Again, the black border represents the
boundaries of a single Imm? field, and the black vertical lines represent the
test lines created by electronic scans of the section by the FIP. Arrow A
indicates an intercept which is the first encountered by the test line on a
scan, and is recognised as the exit from tissue to background. The last
intercept on this scan is an entry into an alveolar wall, and this is shown by
arrow B. Arrows C and D indicate the first and last intercepts on a later scan
of the same field, but this time the first intercept occurs on the entry of the
test line into the alveolar wall, and the last intercept occurs on the exit from
another alveolar wall. These key intercepts are recognised as such by the
FIP, so that there is no overlap in intercept counts from one field to the
next.
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Each mechanical scan, or 'swathe' has been programmed to be 11mm long,
and 11 swathes are completed on each section from left to right, then back
from right to left repeatedly until the scan is complete (Figure 3.4). This
results in an area of 121mm? being scanned on each tissue section.
Experimentation with scans of various sizes showed that an 11mm x 11mm
scan was suitable.
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FIGURE 3.4

A diagrammatic representation of the 11 mechanical scans performed on
each histological section during FIP operation. Each section is scanned
from left to right, then right to left in 11 'swathes' over an area of 121mm?2.
On completion of measurements, the central field on the tissue section is

located automatically.
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3.3 FIP OPERATION

The methods used in the operation of the FIP are described below. User
input has been kept to a minimum, and with practice the initial steps can be
accomplished in a few minutes.

The microscope slide, on which the tissue section is mounted, is placed on
the microscope stage. The center of the tissue section is located using the
computer-driven motorised stage. This is achieved by measuring the
horizontal and vertical dimensions of each histological section, and
positioning the objective in the center. The co-ordinates of the central
Imm? field are recorded for future reference using an England Finder
graticule (Graticules Ltd., Tonbridge, Kent).

The next step is to select an appropriate threshold level to enable the image
sensor to discriminate between the stained airspace walls and the unstained
airspaces. The threshold levels recognised by the sensor have been given
arbitrary numerical values ranging from 0-35, where low numerical values
enable the sensor to recognise very pale pixels, and high threshold values
are required for densely stained pixels.

When a threshold level has been selected, the central ITmm? field is scanned,
and the binary image produced by this scan appears on a monitor.
Thresholded pixels appear white and background pixels black. By
comparing the binary image on the monitor with the 'live’ image which is
observed through the microscope eyepieces, the user can decide whether the
chosen threshold level is representative. If unexpected breaks appear in the
airspace walls in the binary image, the threshold has been set too high and
should be lowered. Conversely, if background pixels have been detected by
the sensor, the threshold level is too low and should be raised. The central
Imm? field can be scanned repeatedly until the user is satisfied that the
threshold level is appropriate.

When the threshold level has been set, the user enters the command which

initiates the fully automated scan of the tissue section. The central field of
each section is relocated automatically at the end of each scan. The intercept
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totals from each 1mm? field are stored on the computer at the end of the
scan.
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3.4 ASSESSMENT OF THE FIP

3.4.1 Introduction

After several months of test-runs and adjustments, the 'lung' program for
the FIP was finalised. Before using the FIP as a routine method for
measuring AWUYV, it was first necessary to ensure that the measurements
were reproducible and accurate. Intra- and inter-observer reproducibility
were assessed, and the FIP results were compared with those obtained using
the IBAS image analysis system, which has previously been used for
measuring AWUV (McLean, 1987; Gould et al, 1988; McLean et al, 1992).

3.4.2 Methods

3.4.2.1 Intra-Observer Reproducibility

Before beginning each measuring session on the FIP, a 'test section' was
scanned to assess the reproducibility of the machine. This section was
selected at random from the sample pool at the beginning of the project, and
retained for use as the test section for the remainder of the study. The test
section was scanned and its mean AWUYV recorded each time the FIP was

used.

To examine the intra-observer reproducibility of the FIP measurements, 20
AWUV values from the test section, obtained over a period of 6 months,
were analysed. The coefficient of variation of these values was calculated.
The coefficient of variation is defined as the standard deviation divided by
the mean value for a series of measurements. It gives an indication of the
extent of variation within that series, and is usually expressed as a
percentage value (SPSS Inc., 1988).

3.4.2.2 Inter-Observer Reproducibility

Ten cases were selected at random from the sample pool. AWUV was
measured using the FIP on a total of 100 histological sections from these
cases by a second observer (MRL). The second observer had no access to the
AWUV results from the original FIP scans. The AWUV measurements
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obtained by the 2 observers were compared using the Mann-Whitney U test
(Siegel & Castellan, 1988).

3.4.2.3 Comparison with an Established Technique

AWUV was measured on tissue sections from 40 lung specimens using the
FIP and the IBAS image analysis system. The relationship between the
results using the 2 methods was assessed by examining the degree of
correlation of the results and the linearity of this relationship was assessed
using regression analysis.

3.4.3 Results

3.4.3.1 Intra-Observer Reproducibility

The AWUV measurements from the test section ranged between 20.21 and
20.81 mm?2/mm?3, with a mean value of 20.58 mm2/mm?3 and a standard
deviation of 0.15. The coefficient of variation for this sample of 20 AWUV
measurements was 0.72%, indicating that the wvariation in the

measurements was minimal.

3.4.3.2 Inter-Observer Reproducibility

There were no significant differences between the AWUV measurements
obtained by the 2 observers (W = 9881.5, p = 0.68). The correlation
coefficient for the 2 sets of results was 0.986 (p < 0.001).

3.4.3.3 Comparison with an Established Technique

There was a high degree of correlation between the AWUV measurements
using the 2 techniques (r = 0.882, p < 0.001) (Figure 3.5). The results from the
FIP and IBAS were linearly related. However, some differences between the
two techniques were observed, with the FIP tending to give higher AWUV
than IBAS at low mean AWUYV levels, and lower results than IBAS in cases
where the mean AWUV was high (FIP = 4.94 + 0.63 IBAS).
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This graph shows the mean AWUV values from 40 lung specimens
measured using the FIP plotted against the mean AWUV
measurements obtained on the same specimens using the IBAS system.
The correlation coefficient describing the association between the
results of the two techniques is also shown on this Figure.
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3.4.4 Discussion

3.4.4.1 Reproducibility

The FIP was found to be a reliable machine which enabled measurements
with a high degree of intra- and inter-observer reproducibility to be made.
This was largely due to the extent of automation of this technique.
However, this level of automation has some disadvantages. There is no
facility for interactive editing of individual fields. Therefore, objects such as
some macrophages and dust particles, which are dark enough to be
thresholded and too large to be excluded by the size filter, cannot be
excluded from the measurement. Also, areas containing bronchioles and
blood vessels are likely to be included in the measurement. These
situations are likely to introduce errors. However, these errors will occur in
all measurements, and will affect all the FIP results to a similar degree.
Also, because the number of fields scanned by the FIP is so large, these
variations in AWUYV tend to stabilise in most cases.

A degree of editing is possible when using the FIP. Unlike the IBAS, where
interactive editing of the image can take place, using the FIP, the results
produced by each scan can be edited so that measurements from fields
containing a large proportion of non-parenchyma may be excluded from the
results. This is done by identifying the unsuitable fields using their England
Finder co-ordinates, locating the results from these fields on the computer
and deleting them from the results file. Alternatively, sections which
contain particularly large areas of non-parenchyma can be excluded from
the scan altogether.

These editing measures are very useful in most situations. However, due to
the lack of interactive editing of individual fields, sections from
oedematous lungs, or sections of poor quality are unsuitable for FIP analysis.
This is especially a problem when dealing with lungs obtained at autopsy,
where fluid and cellular infiltrate are often found in the alveoli.

The advantages of the FIP's automation are that it enables measurements to

be made at high speed on a large number of fields per section, and ensures
that the measurements are always made objectively.
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3.4.4.2 Comparison with an Established Technique

There was a close correlation between the results of the 2 methods used to
measure AWUV. However, the results were not identical because of the
fundamental differences between the 2 techniques.

The IBAS system was designed to produce highly accurate measurements
on individual 1mm? fields. (See section 1.7.2.5.2 for more details of IBAS).
The FIP scan involves obtaining an estimate of the distance between
airspace walls on many 1mm? fields (Figure 3.6A). However, although each
IBAS measurement is highly accurate, the number of fields measured from
each lung specimen is limited (Figure 3.6B) because of the time taken to
complete each measurement (it takes 5-10 minutes to measure each Imm?
field). This means that the sample of lung tissue measured has less chance
of being representative of the entire lung. The principal of 'do more less
well’, is fundamental to the success of sampling techniques because the
precision of an estimate is affected more by the number of sample images
measured than by the precision with which each single image is measured
(Gundersen & Osterby, 1981). Therefore the sampling technique employed
by the FIP, which scans 121lmm? in 2 minutes, should result in mean
AWUV measurements which are more representative of the structure of
the lung as a whole.

As well as producing a representative mean AWUV value for each lung
specimen, the size of the FIP sample produces AWUV measurements from
many individual histological fields (a minimum of 726 fields from a lung
with 6 sections). This enables more detailed assessment of lung architecture
if required.

Another important difference between the FIP and the IBAS is that an
interactive editing facility is available when using the IBAS, while the FIP
scan is fully automated with no such facility. As mentioned above,
unsuitable sections can be excluded from the FIP scan, and the results can be
edited, but there is still a tendency for errors to occur. Negative errors lead
to the underestimation of AWUV. These errors are usually caused by the
presence of bronchioles and their accompanying blood vessels in the tissue
section. An artificially low AWUYV is measured in the fields which include
these structures. Positive errors lead to the overestimation of AWUV.
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These diagrams demonstrate the contrast in the sampling used with the FIP
and IBAS techniques for measuring AWUV.

Figure 3.6A represents the area scanned on each tissue section using the FIP.
A total of 121 ITmm? fields are scanned and this allows detailed frequency
distributions of individual field AWUV measurements to be compiled.

Figure 3.6B shows that only a few Imm? fields are measured on each tissue
section using the IBAS system. The number of fields measured must be
adequate to provide a stable running mean of AWUV values, and this
usually involves measuring AWUV on 3 or 4 randomly selected Imm?
fields on each section.
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These are caused by thresholded inflammatory cells and debris on the tissue
section which are large enough to be measured.

These unavoidable errors do not create major problems in most cases,
because, as described above, they tend to cancel each other out. However, in
situations where the mean AWUYV is particularly low or high, the effects of
these errors become more obvious. In lungs where the average AWUYV is
very low, positive errors lead to a tendency for the FIP AWUV
measurements to be higher than IBAS measurements. In contrast, when
the mean AWUYV is extremely high, the effect of negative errors becomes
more obvious, and FIP values have a tendency to be lower than IBAS

values.

In an effort to assess the extent of the differences between the FIP and the
IBAS due to editing differences, 10 cases were selected at random from the
40 in the comparison study. Up to 247 results fields were excluded from the
results of the FIP scan. These were from histological fields which were
identified as containing structures such as bronchioles and blood vessels,
and would have been rejected from sampling using the IBAS system. The
mean AWUYV values obtained after excluding these fields varied from the
unedited results by not more than +/- 4% (Table 3.1). This form of editing
did not affect the relationship between the FIP and IBAS techniques (Figure
B.7)

It therefore appears that there are fundamental differences between the 2
techniques which cannot be explained by differences in the editing
procedure, and that these differences lead to differing absolute values of
AWUYV being produced. However, the changes in AWUV with age and the
differences between normal and emphysematous lungs are likely to be
similar using these 2 techniques.

The editing out of individual field results from the FIP scans was not
continued for the remainder of the study. However, as discussed above,
sections which were not suitable due to large areas of non-parenchyma, or
the presence of inflammatory infiltrate or oedema, were not scanned.
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TABLE 3.1

Mean AWUV values measured on 10 specimens using the IBAS and FIP
techniques. AWUYV values are expressed in mm?/mm?. Edited FIP values
are those obtained after editing the FIP results files. Figures in the
'Difference' column are the percentage differences between unedited and
edited versions of the FIP AWUV measurements for the same specimens.

IBAS

14.36
23.04
27.59
17.94
14.29
24.74
19.47
18.70
22.58
16.01

FIP

15.32
18.38
21.98
14.42
14.72
20.53
17.42
17.54
19.15
15.30

Edited FIP
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15.99
18.42
21.42
14.10
15.25
20.64
17.61
17.88
19.26
1553

Difference

+4.0%
+0.2%
-3.0%
-2.0%
+4.0%
+0.5%
+1.0%
+2.0%
+0.6%
+2.0%
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The relationship between FIP AWUV measurements and those made on
the same specimens using the IBAS.

Figure 3.7a shows the same graph as in figure 3.5, with the FIP
measurements unedited (correlation coefficient, r = 0.882, p < 0.001).

Figure 3.7b shows FIP AWUYV values after editing to exclude up to 247 fields
from the results files, plotted against IBAS AWUV measurements. The
degree of association between these variables is no greater than that found
between the unedited FIP results and IBAS results (correlation coefficient, r
= 0.862, p < 0.001).
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If data from the FIP are to be compared with IBAS results in the future, it is
possible to convert FIP values to IBAS equivalents, and vice-versa, using
the regression equation from the comparison of these techniques:

FIP AWUV =494 + 0.63 IBAS AWUV

As Thurlbeck (1976) noted, although all fully automated systems are subject
to errors, the same errors are introduced in all measurements, and
differences between normal and emphysematous lung tissue should still be
apparent.

The FIP has 2 major advantages over the IBAS. An extensive area is
scanned on each tissue section. This means that it is possible to examine the
patterns of AWUV values which exist within a lobe or a lung. The limited
sampling technique employed when using IBAS would make this type of
assessment difficult.

The other major advantage of the FIP is its speed. The scan rate used in this
study was Imm? per second. This enables AWUV measurements to be
made on a larger number of lung specimens than would have been feasible
using a slower method.
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3.5 CONCLUSIONS

The FIP scanning system is an efficient reliable technique which is easy to
use. Its major advantages over conventional morphometric techniques are
its speed and ability to scan large areas of tissue sections. These properties
make the FIP a useful device for measuring AWUV on large numbers of
lung specimens, and for assessing the AWUV patterns within histological
sections.



Chapter 4

Results



This Chapter contains the results of the studies of AWUYV in relation to
age, sex and smoking; the variation in AWUV from the apex to the base of
the lung; and the relationship between AWUV and macroscopic
emphysema. The section describing the results of the study of age, sex and
smoking in relation to AWUYV appears first in this Chapter, as it was felt
necessary to describe the changes in AWUV occurring with age before
describing the distribution of AWUV values within the lung.

Each section in the Chapter begins with an introductory paragraph relating
to that particular aspect of the study. The lung specimens used in each
section are described, but Table 2.1 in Chapter 2 gives a comprehensive
summary of the complete sample used in this study.

4.1 THE EFFECTS OF AGE, SEX AND SMOKING ON AWUV

4.1.1 Introduction

The measurement of airspace wall surface area per unit volume of lung
tissue (AWUV) was used in this study to assess the effects of age, sex and
smoking on parenchymal structure. The mean of all the AWUV
measurements for a lung specimen was used as a general measure of the
alveolar wall surface area within that lung. A more detailed study of the
patterns of tissue loss due to age and smoking took the form of analysis of
the frequency distributions of individual AWUV measurements. This
analysis was based on the fact that in the normal young adult lung, the left
of the AWUYV frequency distribution represents the least alveolated portion
of the acinus, i.e. the alveolar ducts and areas around the respiratory
bronchioles, and the right of the distribution represents the most alveolated
portion, i.e. the distal acinus (Figure 4.1).

163 cases were included in the age/sex/smoking analysis, and a frequency
distribution of the AWUV measurements from each histological field was
available for every case. To assess the changes in the shape of the AWUV
distribution due to age and smoking, the following aspects of the
distribution were analysed for each case:-
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FIGURE 4.1

Figure 4.1a is a binary image of a lung tissue section showing the
components of the acinar unit. The square boxes labelled P' and 'D’
represent Imm? fields in the proximal and distal regions of the acinus,
respectively. The structures represented on this diagram are a terminal
bronchiole (T), 2 respiratory bronchioles (R), acinar ducts (AD), and
single alveoli (A).

Figure 4.1b is the frequency distribution of AWUV measurements from
the FIP, made on tissue sections from a 21 year old male non-smoker's
lung. AWUYV values from fields in the proximal region of the acinus
are represented by the lowest AWUV values (which can be expressed as
the 5th percentile value of the distribution). The highest AWUV values
are found in the distal region of the acinus, occupied mainly by alveoli,
and this can be represented using the 95th percentile value of the
distribution. The 5th and 95th percentile values are indicated by the
vertical lines on this Figure (5th percentile AWUV = 14.65 mm?/mm?;
95th percentile AWUV = 29.13 mm?/mm?).
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a) Mean AWUV

b) Mode AWUV

c) 5th percentile AWUV

d) 10th percentile AWUV

e) 90th percentile AWUV

f) 95th percentile AWUV

The percentile AWUV values are the values below which a noted
percentage of all the AWUV measurements in the distribution fall.
Therefore, the 5th and 10th percentile AWUV values represent the left of
the distribution, and the 90th and 95th percentiles represent the right.

The modal value of the frequency distribution represents the peak of the
curve. Therefore a shift in the mode of the distribution to the left indicates
that the most frequently occurring AWUV value has decreased, and a shift
in the mode accompanied by a shift in the 5th and 10th percentile values
results in an increase in the skewness of the distribution.

4.1.2 The Use of Single Lobes in the Analysis of AWUV

115 of the 121 surgical specimens used in this study were single lobes. The
analysis of the AWUV values from 42 whole lung specimens showed that
using a careful sampling technique, the mean AWUYV from a single lobe
was representative of the mean AWUV for a whole lung, with the
exception of lungs showing extensive macroscopic emphysema. However,
even in these lungs, although the AWUYV values of the upper and lower
lobes differed, when the mean AWUV for the lung was abnormal, the
AWUYV values from both lobes were abnormal, although to differing
degrees. Therefore, for the purposes of this analysis, a single lobe has been
accepted as presenting an adequate representation of each lung. A detailed
description of the justification for accepting a single lobe as representative is

given in section 4.2 below.

4.1.3 Sampling Technique

The 95% confidence intervals around the mean AWUV were calculated for
20 specimens. In each case, where 6 blocks were selected from each lobe (726
fields), the 95% confidence interval was no more than +/- 5.6% of the mean
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(Table 4.1). The mean AWUYV values of these specimens ranged from 8.09 -
21.98mm?/mm?® (age range 21-72 years). This indicates that 6 blocks
constitute an adequate sample for AWUV measurements to ensure that the
mean AWUV is representative of the lobe.

4.1.4 The Relationship Between AWUYV and Age in Non-smokers
There was a negative relationship between mean AWUV and age in the 38
non-smokers studied (r = -0.78, p < 0.001). This negative relationship was
linear and resulted in a reduction in mean AWUV of approximately 30%
between the ages of 20 and 90 years (Figure 4.2). Table 4.2 contains details of
the age, sex and mean AWUYV values for each of the non-smokers.

The modal AWUYV value, and the percentile AWUV values all showed a
rate of decline with age which was similar to that found for the mean
AWUV (Figures 4.3, 4.4, 4.5).

The 95% prediction limits of the regression lines for each of the AWUV
values with age were calculated. The 95% prediction limits for values of
mean AWUYV are shown in Figure 4.6. These lines were used as the limits
of normality of AWUYV values for individuals between the ages of 21 and 93
years. Mean AWUYV values which fell below the lower 95% prediction
limit were described using the term Microscopically Assessed Emphysema
(MAE). Examples of the lower 95% prediction limit of mean AWUV for a
variety of ages are given in Table 4.3.

These results indicate that there is a normal loss of airspace wall surface area
with age in adult non-smokers. This tissue loss results in a shift of the
AWUV frequency distribution to the left (Figure 4.7). This implies that the
loss of parenchymal tissue associated with age in non-smokers is a
generalised loss involving the whole acinar unit. The generalised nature of
this tissue loss is illustrated in Figure 4.8. Figure 4.8a represents the AWUV
measurements from a single histological section of a 21 year-old non-
smoker. Figure 8b represents the scanned area on a section of lung from a
93 year-old non-smoker. Note that the decrease in tissue density in the
elderly individual has affected the whole of the 12Imm? area measured.
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TABLE 4.1 The information used to justify accepting 6 blocks as an
adequate sample size for AWUV measurements on single lobes. This table
shows the smoking history, mean AWUV value (mm?/mm?®, and the
standard error of the mean AWUV (SEM) measured on 6 tissue blocks from
20 subjects selected at random from the sample pool. Also shown are the
95% confidence interval of the mean AWUV (95% CI), and this figure
expressed as a percentage of the mean AWUV. In all 20 specimens, the 95%
confidence intervals of the mean AWUV were within +/- 5.6% of the mean
value.

Case Smoking Mean AWUV SEM 95% CI 95% CI

history (mmz2/mm32) (% _of mean)
1 S 19.88 0.15 0.29 1.5
2 S 1591 0.16 0.31 1.9
3 ns 15.99 0.11 0.22 14
4 ns 18.24 0.16 0.31 1.7
5 ns 21.90 0.18 0.35 1.6
6 ns 21.75 0.18 0.35 1.6
7 S 16.75 0.16 0.31 1.9
8 S 21.98 0.13 0.25 1.1
9 S 17.57 0.15 0.29 1.7
10 S 15.38 0.15 0.29 1.9
11 S 10.79 0.20 0.39 3.6
12 S 16.54 0.15 0.29 1.8
13 S 12.50 0.14 0.27 2.2
14 s 14.99 0.18 0.35 2.3
15 S 13.44 0.20 0.39 29
16 S 8.09 0.23 0.45 5.6
17 S 13.77 0.14 0.27 2.0
18 S 16.99 0.17 0.33 1.9
19 S 15.09 0.18 0.35 2.3
20 s 16.89 0.16 0.31 1.8

s = smoker, ns = non-smoker
SEM = standard error of the mean
95% CI = 95% confidence interval of the mean

89



30 1

25 1

20 1

15

10

Mean AWUV (mm2/mm3)
(]
° o

AGE (years)

FIGURE 4.2

Mean AWUYV plotted against age for the 38 non-smoking subjects. The
relationship between mean AWUV and age was negative (r = -0.78, p <
0.001) and linear (AWUV = 23.1 - 0.09AGE). Mean AWUV was reduced by
approximately 30% between the ages of 20 and 90 years.

90



0€'81 8L W [44
GT'6l 69 i | 4
gg'e6l 99 d 114
€021 ¥9 d 6L
0g4Ll £9 o 8L
0691 89 W L1
66'G1 99 N 91
8€'81 9¢ N SL
90°L1 1) N 4!
8CLL €9 N €L
15°0¢ 4%} W [4"
L891 0S = | IL
LT81 6% | 01
0681 6V d 6
8991 87 d 8
€L6l [43 W L
e I W 9
9881 0€ L | g
69°0¢ 8¢ W 4
84'1¢C toré W €
86'L¢ € W <
SL1C |4 N L
(gurur/urur)
ANMV 4OV Xds dSVvO
SNHAWIOAdS ASdOId

d[eWRd) =  ‘B[ew = A
eWW / AWW $¢°77 - €071 28uer ANMY
s1eak 9°GG ueaw ‘s1eak gg-1z aduer a8y

a3® JO J9pIO Ul PaISI] Ik Sase)

€e'sl €6 d 91
01%1 8 d S1
€0°Cl €8 d 1
1743 €8 | €1
88'S1 a8 d 48
v0°S1 8 d I
6091 6L - 01
€€91 LL N 6
071 74 - 8
LTYL VL N L
€91 0Z d 9
€1°0T LS d S
2981 4% ! 14
06'1C €c d €
ev'61 (44 d (4
8€°0C (44 d L
AmEExNEEv

ANMY 49V XdS dSVD
SNHWIOHdS ASdOLNV

suawpads Sunjows-uou g¢ 3y} 10§ SAN[EA A MYV UedW pue x3s 98y 7% 19V

91



Figures 4.3, 4.4 and 4.5 show the relationships between age and the
mode, 5th and 10th, and 90th and 95th percentile AWUV values in the 38
non-smoking subjects. These 3 figures illustrate the similarities in the
rate of decline with age of these aspects of the AWUV frequency
distribution.
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The relationship between modal AWUV and age.
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The relationship between age and the 10th and 90th percentiles.
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This graph shows the relationship between mean AWUYV and age for the 38
non-smokers, with the 95% prediction limits of this relationship indicated.
The 95% prediction limits were used as the limits of normal mean AWUV
for subjects aged between 21 and 93 years.
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TABLE 4.3 Some examples of the lower 95% prediction limit of the mean
AWUYV/age relationship in non-smokers (i.e. the lower limit of normal
AWUV for a given age). Age is shown in years, and AWUV values are
expressed in mm?/mm?3.

AGE Lower limit of normal mean AWUV

20 17.99
25 17.56
30 17.12
35 16.68
40 16.24
45 15.79
50 15.33
55 14.87
60 14.41
65 13.94
70 13.47
75 13.00
80 12.52
85 12.03
90 11.54
95 11.05
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FIGURE 4.7

Histograms of the AWUV frequency distribution for 2 non-smoking subjects.
Figure 4.7a is from a 21 year-old (mean 21.75mm?/mm?3, mode 22mm?2/mm?3,
5th percentile 14.65mm?2/mm?, 95th percentile 29.13mm?2/mm3), and 4.7b is
from a 93 year-old individual (mean 15.33mm2/mm3, mode 17mm2/mm?3, 5th
percentile 8.83mm2/mm?3, 95th percentile 21.96mm2/mm3). The mean, mode
and percentile values are lower in the 93 year-old, and this has resulted in a
shift of the frequency distribution to the left.
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FIGURE 4.8

The plates in Figures 4.8a and 4.8b show grey level grids representing the
AWUYV patterns on scanned areas of histological sections from the 2
subjects described in Figure 4.7. Figure 4.8a represents a 21 year-old non-
smoker, and Figure 4.8b a 93 year-old non-smoker. The density of grey
shades in the small squares shown in these plates are intended to reflect the
alveolar wall density in each Imm? histological field, so that a dark grey
shade reflects a high AWUYV value, and a low AWUYV is represented by a
pale grey shade. Therefore by comparing the grids from these 2 non-
smokers, it is possible to visualise the generalised nature of the alteration in
tissue density occurring in the lungs as part of the aging process.
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4.1.5 The Relationship Between AWUV and Age in Smokers

There was a decrease in mean AWUV with advancing age in the 125
smokers studied (r = -0.37, p < 0.001). This relationship is shown in Figure
4.9. The mode and percentile AWUV values were also negatively related to
age in the smoking group.

4.1.5.1 Mean AWUV

Some smokers (26%) had mean AWUYV values which were below the
normal limits for their age (i.e. these smokers had microscopically assessed
emphysema, or MAE as defined above). However most (74%) of the
smoking group had mean AWUV values which were within the normal
range (Figure 4.10). This indicates that within the smoking group a
minority of individuals developed MAE.

4.1.5.2 5th and 10th Percentile AWUV

37% of the smokers had 5th percentile AWUV values which were
abnormally low, and 34% had abnormal 10th percentile values. Since only
26% of smokers had abnormally low values for mean AWUYV, some
individuals without MAE had abnormal 5th and 10th percentile values.
This suggests enlargement of the airspaces at the proximal part of the
acinus, and may represent widening of the alveolar ducts. Figure 4.11a
shows an AWUYV distribution from a 59 year-old individual with a normal
mean AWUYV value whose 5th percentile value was abnormal. Figure 4.11b
represents the scanned area on a single tissue section from the same
individual.

These results suggest that the 5th and 10th percentile AWUV values may be
indicators of the earliest changes in parenchymal structure associated with
the onset of MAE, or focal lesions which may represent localised areas of
panacinar emphysema or centriacinar lesions.
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Mean AWUV plotted against age in 125 smokers. This relationship was
negative, and the association between mean AWUYV and age is indicated on
the graph by the correlation coefficient, r.
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FIGURE 4.10

Mean AWUV is plotted against age for the 125 smokers in the study sample.
Also shown on the graph are the limits of normal mean AWUYV (i.e. the
95% prediction limits of the AWUV/age relationship in the non-smoking
group). Mean AWUYV values which are below the normal limits indicate
the presence of microscopically assessed emphysema (MAE) and this figure
illustrates that only 26% of the smoking group had MAE.
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FIGURE 4.11

The diagrams in Figure 4.11 were created using AWUV data from a 59
year-old individual with normal mean AWUYV, but whose 5th
percentile value was abnormally low. In Figure 4.11a the frequency
distribution of AWUV measurements from this subject shows that the
relative frequency of AWUYV values to the extreme left of the histogram
is higher than that found in the young non-smoker represented in
Figure 4.7. However, rather than the shift in the distribution seen in the
93 year-old non-smoker in Figure 4.7, the shape of the distribution in
this individual has altered. The plate shown in Figure 4.11b illustrates
the focal distribution of low density areas on the histological section, and
these reflect focal airspace enlargement.
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FIGURE 4.11a

The AWUYV frequency distribution from a subject with normal mean AWUV
(15.53mm?2/mm3 and abnormal 5th percentile AWUV value (7.41mm?/mm?3).

FIGURE 4.11b

A plate showing the grey shade grid representing the AWUV pattern
observed on a scanned area from a single histological section from the same
subject as is represented in Figure 11a.
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4.1.5.3 Modal AWUV

In 19% of cases, the modal AWUV value was below normal, indicating that
the 'peak’ of the AWUYV distribution in these cases was shifted to the left.
All the cases with abnormally low modal AWUV values also had abnormal
mean AWUV values (i.e. MAE). In all but 1 case when the mode was
abnormal the 5th and 10th percentiles were also abnormal, leading to
skewness in the AWUV distribution. Figure 4.12 shows the AWUV
distribution from a 66 year-old, with abnormal mean and modal AWUV
values. Note the increase in the skewness of this distribution, indicating
widespread airspace enlargement.

4.1.5.4 90th and 95th Percentile AWUV

9% of the smokers had abnormally low values for the 90th percentile
AWUYV, and only 6% had abnormal 95th percentile AWUV values. In all
the cases with abnormal 90th and 95th percentile AWUYV values, the mean
AWUYV was abnormal, and in all but 1 case the mode was also abnormal.
Therefore these results represent individuals with widespread enlargement
of the airspaces across the acinar unit, i.e. extensive panacinar emphysema.
Figure 4.13 shows the AWUYV distribution and a grid representing the area
scanned on a tissue section from a specimen with abnormal 90th and 95th
percentiles (the subject was aged 74 years).

Of the 33 smokers with MAE, 21 (64%) had normal 90th and 95th percentile
AWUV values, suggesting that some normal airspaces were retained
within these lungs. However, it is possible that lung inflation may have
been irregular in some of the lungs.

4.1.6 The Influence of Smoking Habiton AWUV

Having found that only 26% of the smoking group had abnormally low
mean AWUYV values, the aim of this part of the study was to assess whether
these individuals were heavier smokers than those with normal mean
AWUV.

In the group of 125 smoking individuals, there were 26 subjects for whom

details of daily tobacco consumption could not be obtained. Of the 99
smokers with detailed smoking histories, 2 subjects smoked pipe or cigars
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FIGURE 4.12

The frequency distribution of AWUV values from a 66 year-old subject with
abnormal mean (10.22mm?2/mm3) and modal (7.00mm2/mm3) AWUV values.
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FIGURE 4.13a

Frequency distribution of AWUV measurements from a 74 year-old subject
with abnormal mean, mode, and percentile AWUV values (mean
6.50mm?2/mm?3, mode 1.00mm?/mm?3, 5th percentile 0.16mm?2/mm?3, 95th
percentile 16.07mm2/mm?3). This histogram shows that the most frequent
AWUV measurements in this specimen were less than or equal to Imm?/mm?®.

A grid showing grey shades representing the AWUV pattern on the scanned
area of a single tissue section from the same subject as described in Figure
4.13a above. The widespread airspace enlargement found in this specimen
is demonstrated by the uniformly pale grey shades in this plate.
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only. The remaining 97 were cigarette smokers, and details of the number
of cigarettes smoked each day were obtained. These smokers were divided
into 3 sub-groups as described in Chapter 2 (section 2.1). The numbers in
each of the 3 smoking groups are shown in Table 4.4. The age ranges in the
3 sub-groups were similar (Table 4.5).

One of the pipe/cigar smokers had MAE. No conclusions on the effect of
pipe or cigar smoking on the development of MAE can be drawn from this
result.

Twenty-four of the 97 cigarette smokers (25%) had mean AWUV values
which were below the normal range for their age. The individuals with
abnormal mean AWUYV values came from all 3 smoking sub-groups
(Figure 4.14). This indicates that individuals who developed MAE were not
necessarily heavier smokers than those who did not.

Table 4.6 shows the percentages of each smoking sub-group with abnormally
low AWUV values. Although more of the subjects in the sub-group of
heaviest smokers (30+ cigarettes per day) had MAE, the differences in
incidence between the sub-groups were not significant (x2 = 1.14, ns; Table
4.7). Percentile AWUYV values tended to be abnormal in a higher percentage
of the heaviest smoking group than in the 2 other groups (Table 4.6). In
particular, 44% of the group who smoked at least 30 cigarettes per day had
abnormally low 5th and 10th percentile AWUV values. Section 4.3.4.1
includes results which show that the 5th and 10th percentile values are
related to centriacinar emphysema. The results shown here therefore
indicate that centriacinar emphysema was related to cigarette consumption
in this group of smokers.

The severity of MAE was assessed by expressing the mean AWUYV as a
percentage of the value of the lower limit of normal AWUV for the
subject's age. Therefore, a percentage value of 100 or more indicated an
AWUV at or above the lower limit for the subject's age, and lungs with
MAE had AWUYV values which were less than 100% of the lower limit.
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TABLE 4.4 The number of subjects in each of the 3 sub-groups of cigarette
smokers.

MALE FEMALE TOTAL

Group 1 17 9 26
Group 2 32 V4 39
Group 3 28 4 32
TOTAL 77 20 97

Group 1 = 1-19 cigarettes per day
Group 2 = 20-29 cigarettes per day
Group 3 = 30 or more cigarettes per day

TABLE 4.5 The range of ages and AWUV values in each of the 3 sub-
groups of cigarette smokers.

AGE (years) AWUV (mm2/mm3)

Group1  33-74 (59.7) 6.49-21.98 (15.79)
Group 2 34-77 (59.6) 7.12-19.88 (15.73)
Group3  48-82 (62.7) 9.21-20.53 (15.19)

The 3 smoking sub-groups are based on the daily cigarette consumption, as
described in Table 4.4 above. Figures in brackets are the mean values for
each group.
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FIGURE 4.14

Mean AWUYV plotted against age for the 97 cigarette smokers with available
information on the number of cigarettes smoked each day. These smokers
have been divided into 3 sub-groups based on daily cigarette consumption,
and each sub-group is represented on the graph as a different symbol. This
Figure shows that the individuals with MAE came from all 3 sub-groups,
indicating that subjects who developed MAE were not necessarily heavier
smokers than those who did not.
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TABLE 4.6 The number of subjects in each smoking sub-group with
abnormal AWUYV values. The figures in brackets represent the percentage
of each sub-group with abnormal values for each value of the AWUV
frequency distribution.

Percentiles:
Mean Mode 5th 10th 90th 95th

Group 1 6 23%) 4 (15%) 8 (31%) 7 27%) 2 (8%) 1 (4%)
Group 2 8 21%) 6 (16%) 11 (28%) 10 (26%) 2 (%) 2 (5%)

Group 3 10 31%) 7 (22%) 14 (44%) 14 (44%) 4 (13%) 3 (9%)

TOTAL 24 (25%) 17 (18%) 33 (34%) 31 (32%) 8 (8%) 6 (6%)

TABLE 4.7 The number of subjects in each of the sub-groups of cigarette
smokers showing normal and abnormal mean AWUYV values.

Normal mean MAE TOTAL
AWUV
Group 1 20 6 26
Group 2 31 8 39
Group 3 22 10 32
TOTAL 73 24 97

The proportions of the three sub-groups with MAE were similar (x2 = 1.14,
ns), indicating that daily cigarette consumption was not the primary factor
in susceptibility to MAE.

Group 1 = 1-19 cigarettes per day

Group 2 = 20-29 cigarettes per day
Group 3 = 30 or more cigarettes per day
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When these percentage values were examined, similar ranges of values
were found in the 3 sub-groups of smokers, indicating that the severity of
MAE did not increase with daily cigarette consumption (Figure 4.15).

These results indicate that although heavy smokers were not necessarily
more likely to develop microscopic emphysema affecting the whole lung
than lighter smokers, they were more likely to have evidence of early or
focal tissue destruction, in particular centriacinar lesions (see section 4.3.4.1).

4.1.7 Sex Differences in the Relationship Between Mean AWUV
and Age

There were no sex differences in the relationship between mean AWUV
and age, either in the non-smokers (Figure 4.16) or in the smokers (Figure
4.17). Multivariate regression analysis confirmed that sex was not an
influential factor in the AWUV/age relationship. 27% of the male smokers
studied and 23% of the female smokers had MAE. This implies that neither
sex was more likely to develop MAE than the other.

4.1.8 Summary
In 76 of the smokers studied (61%) the changes in the shape of the AWUV
distribution with age were similar to those found in the non-smoking

group.

26% of the smokers had abnormally low mean AWUV values (i.e.
microscopically assessed emphysema (MAE)), while 37% had abnormal 5th
percentiles and 34% had abnormal 10th percentiles. Therefore, the 5th and
10th percentile values are more sensitive indicators of early or focal tissue
destruction than the mean AWUV.

Less than 10% of the smokers had abnormal 90th and 95th percentile values.

The abnormality of these AWUYV values is likely to represent panacinar
emphysema involving the whole lobe or lung.
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The likelihood of developing MAE did not appear to be simply related to
the number of cigarettes smoked each day, and the severity of MAE did not
appear to increase with increased daily cigarette consumption.

There were no sex differences in the AWUV/age relationship, either in the

smokers or in the non-smokers, implying that neither sex was more likely
to develop MAE than the other.
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FIGURE 4.15

The severity of MAE in each of the 3 sub-groups of cigarette smokers.

Mean AWUV has been expressed as a percentage of the lower limit of
normal mean AWUYV to indicate the severity of MAE in susceptible
individuals. This graph shows that the severity of MAE was not increased
with increased daily cigarette consumption.
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FIGURE 4.16

Mean AWUYV plotted against age in the non-smokers, with males and
females identified separately. This graph shows that there were no sex
differences in the AWUV /age relationship in the non-smokers.
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FIGURE 4.17

The relationship between mean AWUYV and age in the smoking subjects.
This graph shows the similarity of the AWUV/age relationships in the
male and female smokers, and illustrates that similar proportions of the
male and female sub-groups had MAE.
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4.2 THE DISTRIBUTION OF AWUV WITHIN THE LUNG

The aims of this part of the study were to assess whether the mean AWUV
from a single lobe could reasonably be used to represent the mean AWUV
for a whole lung, and to examine the relationship between the distribution
of AWUV values within the lung and the presence of macroscopic
emphysema. As discussed above, although the justification for using single
lobes was required for the study of AWUV in relation to age, sex and
smoking, the variation in AWUV within the lung should be discussed in
relation to the effect of age on AWUV. For this reason, the
AWUV/age/sex/smoking results were presented first.

4.2.1 Comparison of the Upper and Lower Lobes

The mean AWUYV values from the upper and lower lobes of 42 whole lung
specimens were obtained. The age range of this group was 22-93 years
(mean age 66 years). Twenty-four of the whole lung specimens were from
male subjects, and 18 from females. There were 12 non-smokers and 30
smokers in this group. The source of 34 lung specimens was autopsy
material, and 8 were pneumonectomy specimens.

The ratio of upper lobe mean AWUV to lower lobe mean AWUV was
calculated for all 42 specimens, and the frequency distribution of the ratios
was plotted (Figure 4.18). 81% of these cases had a ratio between 0.85 and
1.15 (i.e. the difference between the upper and lower lobe AWUV was not
more than 15%).

Eight lungs were found to have upper/lower lobe differences of more than
15%. In 7 of these cases, the upper lobe AWUV was lower than the lower
lobe AWUV. All but 1 of these 7 lungs had macroscopic panacinar
emphysema which occupied at least 40% of the area of the mid-sagittal slice
of the upper lobe, and at least 20% of this slice in the lower lobe. Re-
examination of the tissue sections from the lung without macroscopic
emphysema showed that the lower lobe had not been inflated to the same
degree as the upper lobe, and this had resulted in the difference in AWUV
between the 2 lobes. This lung had already been included in the other parts
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FIGURE 4.18

A frequency distribution of the ratios between upper lobe and lower lobe
AWUV values. This histogram shows that the majority (81%) of the whole
lungs studied had AWUV values in the upper and lower lobes which
differed by less than 15%.
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of the study (i.e. AWUV in relation to age, sex and smoking; AWUYV in
relation to macroscopic emphysema; and the relationship between
macroscopic and microscopic emphysema). Since the results from this
single lung were unlikely to affect the overall findings to any significant
extent, the results from this lung were not excluded from any of the
analyses described in this thesis.

The comparison of AWUV values from the upper and lower lobes
indicated that the differences in AWUV values between the upper and
lower lobes were related to the presence of moderate to severe macroscopic
panacinar emphysema, some of which may represent confluent centriacinar
lesions. Macroscopic centriacinar emphysema on its own (i.e. with no
panacinar involvement) was not related to upper/lower lobe AWUV
differences.

Forty-one of the 42 whole lungs studied had documented ages. It was
therefore possible to assess whether the upper and lower lobe AWUV
values were normal or abnormal, given the age of the subject. 30 of these
lungs had normal mean AWUYV values in both the upper and lower lobes,
7 had abnormal mean AWUV measurements in both the upper and lower
lobes, 3 showed an abnormal mean AWUYV in the upper lobe only, and 1
lung had an abnormal mean AWUYV in the lower lobe only. One of the
specimens with an abnormal mean AWUV in the upper lobe only was the
specimen mentioned earlier, where inflation of the lower lobe was
inadequate. The mean AWUYV for the whole lung was abnormal, and this
seems likely to be an accurate appraisal of the specimen as a whole.

Therefore, in 90% of these lungs, if MAE was present in one lobe, it was
present in the other lobe also. These results suggest that in diagnosing
microscopically assessed emphysema (MAE), a single lobe adequately
represents the whole lung.

4.2.2 The Distribution of AWUV Within the Lobes
Analysis of variance of the AWUV measurements from the 3 zones in each
lobe was used to assess the apex to base variation in AWUYV within the lobe.
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There was no apex to base variation within the upper or lower lobes in
lungs without macroscopic emphysema, or where the emphysema was of
the pure centriacinar type (Table 4.8). In cases with moderate or severe
panacinar emphysema there was a tendency for AWUV to increase from
the upper to lower zones of the upper lobe (Table 4.9). No such trend was
observed within the lower lobes of these lungs.

These results indicate that in order to obtain a representative sample from a
lung specimen, the upper lobe should be sampled widely from apex to base,
particularly when panacinar emphysema occupies 10% or more of the lobe
area.

116



(19491 %G a3 e Juedyruds *a7) 600 > d =

"ewasAyduwa drdoosooewr jo sad4y paxrw = paxn ‘ewasAydua srdossonew
reupeued amnd = gyg ‘ewasAydws drdodsorew reunenjusd amd = dvD ‘ewesdAyduwe ordodssomew = ordepy

czo=d wo=d 1iro=d Lzo=d 49071 ¥AMO1
«200=d «100=d cvo=d cgo=d 90T ddddN
AIAXIN AVd HVOD OUOVIAN ON

‘dueLIeA JO sISA[eue Aem-g UBWIPILL] Y} UO paseq dIe SIMSII 9SaYL UOHeLIeA Aue Jo adueoyudis ayy moys 03 pajonb
aIe saneA J ‘SanfeA ANMV Ul uonerrea aseq o} xade aqol-unyiim ayj Suiqusap sanea A3iqeqoig 8V 119V.L

117



Aq pardnooo wawmwads ayy jo eare |
%0% - %01 = 3jeIdpojy ‘ewasAydwa

amd "2'1) ewasAydwe reuneued Xue
Jo A}lI19A9S 0] UOWB[AI UI SaneA A

0'0>d =,
ewrasAydwa reuneued

eRI3eS-pIW 3y} JO %(0F Uey) 2I0W = a13A3G ‘ewasAydws reupeued UM eare
reupeued Summoys uawwads ay jo eare [epres-pru ayy jo %01 uey) sso[ = P

1s0=d czo=d 190=d FgOTUIMOT

x200=d $00=d cwo=d  FEOTUAddN
HYIAdS HLVIHAOW d'1IN
(ewasAydwa drdoosoroewr paxtw pue ewasAydure reuneued

UHM suawdads [[e WOy s}Nsar a1e 3[qe} Iy} Ul papnpug ‘ewresAydwa reuneued
IMV Ul uoneLeA aqol-uryyim ayj Suimoys sanjea AJ[iqeqorJ g% I19V.L

118



4.2.3 The AWUV Variation Within the Lung in Relation to

Age and Sex
Apex to base variation in AWUV measurements was not related to age in
this sample. The age ranges were similar in the various sub-groups with
and without macroscopic emphysema (Table 4.10). There were no sex
differences in the distribution of AWUV within the lung (Table 4.11).

4.2.4 Summary

The mean AWUYV values from the upper and lower lobes of 34 (81%) of the
42 whole lung specimens studied differed by not more than 15%.
Differences between AWUV measurements in the upper and lower lobes
appeared to be related to the presence of panacinar emphysema in the upper
lobe, some of which may have been due to the confluence of severe
centriacinar lesions.

Apex to base variation in AWUV measurements within the lung was not
found to be related to age or sex.

The mean AWUYV from a single lobe was found to be representative of the
AWUYV from the whole lung, provided an adequate sampling technique

was used, particularly in lobes with panacinar emphysema.

It was concluded that where the diagnosis of MAE is required, a single lobe
is representative of the whole lung.
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TABLE 4.10 The range of ages in the sub-groups of whole lung specimens
with and without macroscopic emphysema.

AgeRange @~ Mean Age

No macroscopic emphysema (n=20) 22-93 66.1
Macroscopic emphysema (n=22) 47 - 85 66.0

Ages are noted in years.
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4.3 MACROSCOPIC EMPHYSEMA

Evidence of macroscopic emphysema, defined as the presence of airspaces
larger than Imm in diameter, was assessed on the mid-sagittal slice of each
of the 165 lung specimens as described in section 2.9. The incidence of
macroscopic emphysema in the study sample, and the relationships
between macroscopic and microscopic emphysema are described in this
section.

4.3.1 The Incidence of Macroscopic Emphysema
In 83 of the 165 lung specimens in this study (50.3%) there was no evidence
of macroscopic emphysema. Table 4.12 shows the sex and smoking histories
of these cases. 54% were males and 46% were females. The age range in this
group was 21 to 93 years, with a mean age of 57.3 years.

Three (4%) of the cases without macroscopic emphysema had abnormally
low mean AWUYV values (Figure 4.19), 5% had low 5th percentiles, 4% low
10th percentiles, and 1 case (1.2%) had low 90th and 95th percentile AWUV
values. All other lungs had normal values in all aspects of the AWUV
distribution.

Evidence of macroscopic emphysema was found in 82 lung specimens. The
age range in this group was 34 to 85 years. Table 4.13 shows the sex and
smoking histories of the subjects with macroscopic emphysema and the
incidence of the various types of emphysema in these subjects.

4.3.2 Macroscopic Emphysema in the Non-smokers

Three of the subjects with macroscopic emphysema were non-smokers.
These were an 84 year-old woman with 9 centriacinar lesions in the upper
lobe; a 75 year-old woman with 6 centriacinar lesions in the upper lobe; and
a 77 year-old man with mild panacinar emphysema occupying 10% of the
upper lobe. The mean AWUV was normal in each of these 3 cases.
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TABLE 4.12 The number of male and female subjects with no evidence of
macroscopic emphysema.

Male Female TOTAL

Non-smokers 15 21 36
Smokers 30 16 46
TOTAL 45 37 82

In addition to the subjects listed in the table, one female subject with no
documented smoking history was found to have no evidence of
macroscopic emphysema. (This subject was included in the sample because
the specimen was a whole lung, and smoking history was not required for
the analysis of the variation in AWUV values from the apex to the base of
the lung). Therefore, the total number of subjects with no macroscopic
emphysema was 83.
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FIGURE 4.19

Mean AWUV plotted against age in the smoking subjects with no evidence
of macroscopic emphysema. Only 3 subjects (4%) had MAE. The symbols
representing 2 of these subjects overlap on this graph, this is indicated by the
§ symbol.

124



SIDOWS = § ‘SIPNOWS-UOU = GN

ewdsAydwn snoqmngq 1o [eydasered = Yygg10 ‘ewesdAydus

drdoosonew jo sad4y paxnu = qax[A ‘ewesAydus reupeued = 4vd ‘ewasdAyduwns reuneinuad = gy

[4:] € 0 9¢ 0 91 ) ¥e € TVLOL
91 L 0 c 0 c 0 6 ¢ ATVINdA
99 [4 0 14 0 148 L ¢ 0 HIVIA
TVIOL S SN S SN S SN S SN
YAHLO dIAXIN dvd 4vo
ewasAydwo

drdoosorew yim sdnoid-qns ay jo yoea ur syoalqns afewsy pue afeur jo LquINU YL €I'F H19VL

125



4.3.3 Sex Differences in the Incidence of Macroscopic Emphysema
Sixty-six of the 82 cases with macroscopic emphysema (80%) were male.
When broken down into the various types of macroscopic emphysema, the
numbers of females in each group became too small for statistical analysis.
However, the sex differences in the incidence of centriacinar emphysema
appeared to increase with the severity of emphysema (Table 4.14).

The sex differences found were not due to differences in the smoking habit
between the sexes, since all but 3 of the subjects with macroscopic
emphysema were smokers. It would appear from these results that the
males in this sample were more likely to develop macroscopic emphysema
than the females, and when macroscopic emphysema was present it was
more likely to be severe in males.

4.3.4 The Relationship Between Macroscopic Emphysema and AWUV
in the Smokers

4.3.4.1 Pure Centriacinar Emphysema

Pure centriacinar emphysema (i.e. with no evidence of any other types of
macroscopic emphysema) was found in 34 smokers' lung specimens. Its
severity was mild in 14 lungs, moderate in 13 and severe in 7 lungs (Table
4.14).

AWUV values were plotted against age for the 34 smoking subjects with
pure centriacinar emphysema (Figures 4.20 - 4.22). The limits of normal
AWUV are also shown on these graphs.

The relationship between mean AWUV and age in the subjects with
centriacinar emphysema was remarkably similar to the mean AWUV/age
relationship in the non-smokers. Only 15% of those smokers with
centriacinar emphysema had MAE.

Figure 4.21 shows that none of the cases with pure centriacinar emphysema

had abnormally low 90th or 95th percentile AWUV values. The 5th and
10th percentile AWUV values were abnormal in increasing proportions of
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TABLE 4.14 The incidence of pure centriacinar emphysema. Two of the
female subjects with mild centriacinar emphysema were non-smokers; the
remainder of the subjects listed in this table were smokers.

Male Female TOTA
Mild 10 6* 16
Moderate 8 5 13
Severe 7 0 7
TOTAL 25 11 36

* 4 smokers, 2 non-smokers
Mild = fewer than 10 CAE lesions in the mid-sagittal slice

Moderate = 10 - 20 CAE lesions
Severe = more than 20 CAE lesions
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FIGURE 4.20

Mean AWUYV plotted against age for the subjects with pure centriacinar
emphysema. The limits of normal mean AWUYV are also shown, and this
graph illustrates that 85% of these individuals had normal mean AWUV
values.
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FIGURE 4.21 shows that all 34 subjects with pure centriacinar
macroscopic emphysema had 90th and 95th percentile values above the
lower limit of normality.
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FIGURE 4.21a
The 90th percentile AWUV value plotted against age for the 24 subjects
with pure centriacinar emphysema.
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FIGURE 4.21b
The 95th percentile AWUV plotted against age for cases with pure
centriacinar emphysema.
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FIGURE 4.22 shows the relationships between age and the 5th and
10th percentile AWUV values in the subjects with pure centriacinar
macroscopic emphysema. The severity of centriacinar emphysema is
indicated on both of these graphs, with mild, moderate and severe
centriacinar emphysema shown as different symbols. These graphs
show that the incidence of abnormally low 5th and 10th percentile
AWUYV values was higher in the sub-groups with moderate and severe
centriacinar emphysema.
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FIGURE 4.22a
5th percentile AWUV plotted against age for those smokers with pure
centriacinar emphysema.
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FIGURE 4.22b

10th percentile AWUV values plotted against age for the subjects with
centriacinar emphysema.
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the groups with moderate and severe centriacinar emphysema (as defined
in Chapter 2 - section 2.9) (Figure 4.22).

These results suggest that MAE, described in terms of mean AWUYV, is not
related to centriacinar emphysema. The results also indicate that
centriacinar lesions are surrounded by normal parenchymal tissue, and that
the 5th and 10th percentile AWUYV values are more sensitive indicators of
the presence of focal emphysematous lesions than the mean AWUV.

4.3.4.2 Pure Panacinar Emphysema

The graph of mean AWUV against age for the 16 smoking subjects with
pure panacinar emphysema shows that 63% had MAE, (Figure 4.23). The
incidence of MAE increased with the severity of panacinar emphysema.
76% of all cases with MAE had some evidence of macroscopic panacinar
emphysema. Figure 4.24 shows that the severity of MAE was related to the
severity of panacinar emphysema.

Abnormal values of 90th and 95th percentile AWUV occurred more
frequently with increased severity of panacinar macroscopic emphysema
(Figure 4.25).

These results indicate that the incidence and severity of MAE are associated
with the incidence and severity of macroscopic panacinar emphysema, and
that abnormally low 90th and 95th percentile AWUV values occur in lungs
with macroscopic panacinar emphysema.

4.3.4.3 Mixed Macroscopic Emphysema

The AWUV/age relationships in the 26 lungs with evidence of both
centriacinar and panacinar types of macroscopic emphysema show that 58%
had abnormally low mean AWUV, 85% had abnormal 5th and 80%
abnormal 10th percentile AWUYV values; and 12% had low 90th and 8% low
95th percentiles (Figures 4.26-4.28).

Panacinar emphysema occupied more than 10% of the mid-sagittal slice in
65% of the specimens with mixed macroscopic emphysema. Given that
centriacinar emphysema on its own does not appear to be related to MAE, it
seems likely that the panacinar component of the macroscopically visible
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FIGURE 4.23

Mean AWUV plotted against age for the 16 smokers with pure panacinar
macroscopic emphysema. 63% of this group had MAE.
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Severity of panacinar emphysema:
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FIGURE 4.24

The severity of MAE expressed in relation to the severity of macroscopic
panacinar emphysema in those subjects with pure panacinar emphysema.
The severity of MAE has been shown by expressing the mean AWUYV for
each case as a percentage of the lower limit of normal mean AWUV. The
severity of panacinar emphysema was expressed in terms of the area of the

Severity of panacinar emphysema

mid-sagittal slice of each specimen showing panacinar emphysema.

This graph illustrates the finding that in subjects with pure panacinar
emphysema, the severity of MAE increased as the severity of panacinar

emphysema increased.
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FIGURE 4.25 shows the relationships between age and the 90th and
95th percentile AWUV values for the 16 smoking subjects with pure
panacinar macroscopic emphysema. The severity of panacinar
emphysema is indicated on the graphs as mild, moderate or severe.
Mild refers to panacinar emphysema which occupied less than 10% of
the mid-sagittal slice of the lung specimen, moderate panacinar
emphysema occupied between 10% and 40% of the mid-sagittal area, and
severe panacinar emphysema affected more than 40% of the mid-sagittal
area of the specimen.

The graphs in Figures 4.25a and 4.25b illustrate the finding that abnormal
values of the 90th and 95th percentiles of the AWUV frequency
distribution occurred more frequently with increasing severity of
panacinar macroscopic emphysema.
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FIGURE 4.25a
The 90th percentile AWUV plotted against age for the subjects with pure
panacinar emphysema.
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FIGURE 4.25b

The 95th percentile AWUV value plotted against age for subjects with pure

panacinar emphysema.
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FIGURE 4.26

Mean AWUYV plotted against age for the 26 lungs with a mixture of
panacinar and centriacinar macroscopic emphysema. 58% of these subjects
had MAE.
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FIGURE 4.27

The 5th and 10th percentile AWUYV values plotted against age in cases
where the macroscopic emphysema present was mixed in type. Figure
4.27a shows that 85% of these individuals had abnormally low 5th
percentile values, and Figure 4.27b shows that 80% had abnormally low
10th percentile values.
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FIGURE 4.27a
The 5th percentile AWUV plotted against age for those specimens with
mixed types of macroscopic emphysema.
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FIGURE 4.27b

10th percentile AWUYV values plotted against age for the cases with mixed
macroscopic emphysema.
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FIGURE 4.28

The 90th and 95th percentile AWUYV values plotted against age for the 26
specimens with mixed macroscopic emphysema. These graphs illustrate
the finding that 12% had abnormally low 90th percentile AWUV values,
and 8% had 95th percentiles below the limits of normality.
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FIGURE 4.28a
The 90th percentile AWUV plotted against age in cases with mixed
macroscopic emphysema.

® 95th percentile AWUV value
Limits of normal 95th percentile AWUV

351

E 251 e *

= ' T ."o o

% 201 - s’ .

E 151 °

£

g 104

g

j="

g 57

R
0 L T Ll 1
20 40 60 80 100

AGE (years)
FIGURE 4.28b

95th percentile AWUV values plotted against age in the 26 subjects with
mixed types of macroscopic emphysema.
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emphysema is linked to the presence of MAE. In 6 of the lungs with both
centriacinar and panacinar types of macroscopic emphysema, some of the
areas of panacinar emphysema were due to confluent centriacinar lesions. 5
of these specimens (83%) had MAE. In these 5 lungs, the AWUV values
from tissue blocks in areas avoiding the confluent lesions were found to be
abnormally low. This indicates that MAE was present elsewhere in these
lungs.

4.3.4.4 Other Types of Macroscopic Emphysema

Two smokers in this study had paraseptal emphysema, and 1 had apical
bullous lesions (defined as emphysematous spaces more than lcm in
diameter; Ciba, 1959). In each of these cases the emphysematous lesions
occupied less than 10% of the area of the lobe's mid-sagittal slice. The mean
and percentile AWUV values were normal for all 3 of these cases.

4.3.4.5 Summary

Mean AWUYV values were not affected by centriacinar emphysema or by
small areas of panacinar or paraseptal emphysema or bullous lesions (i.e.
occupying <10% of the lobe area). Mean AWUV was abnormal in
increasing numbers of lungs with increased severity of panacinar

emphysema.

The 5th and 10th percentile AWUV values became abnormally low with
increasing severity of centriacinar emphysema, but the 90th and 95th
percentiles were not affected by centriacinar emphysema.

The 5th, 10th, 90th and 95th percentile AWUV values all became abnormal
in increasing numbers of lungs with increasing severity of panacinar
emphysema.

These results indicate that in lungs with centriacinar emphysema, the lung
tissue between lesions may be normal, and therefore the mean AWUYV is
not a sensitive indicator of centriacinar emphysema. In general,
microscopically assessed emphysema, measured in terms of mean AWUYV,
is more closely related to panacinar emphysema.
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4.4 SMOKING HABIT IN RELATION TO MACROSCOPIC
EMPHYSEMA

Of the 97 subjects with documented daily cigarette consumption, only 38
had pure forms of macroscopic emphysema (9 cases of panacinar
emphysema, and 29 cases of centriacinar emphysema). Unfortunately there
were too few of these subjects with pure panacinar macroscopic emphysema
for detailed analysis of the relationship between its severity and the severity
of smoking habit to be performed.

Twenty-nine of the subjects with pure centriacinar emphysema had
documented daily cigarette consumption. These subjects were sub-divided
into 3 groups based on the severity of emphysema as described in detail in
section 2.9. The percentage of subjects smoking at least 20 cigarettes each day
was found to increase with increased severity of centriacinar emphysema
(Table 4.15). This result suggests that the severity of centriacinar
emphysema was related to the daily dose of tobacco.
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TABLE 4.15 The incidence of centriacinar emphysema in relation to daily
cigarette consumption.

<20 >20 Unknown TOTAL
Mild 7 (44%) 7 (44%) 2 (12%) 16
Moderate 3 (23%) 7 (54%) 3(23%) 13
Severe 2 (29%) 5(71%) 0 7
TOTAL 12 19 5 36

<20 = smoked less than 20 cigarettes per day
>20 = smoked more than 20 cigarettes per day
Unknown = daily cigarette consumption not documented
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4.5 SUMMARY OF FINDINGS

Tissue Sampling.
1. A sample size of 6 tissue blocks from each lobe was found to be adequate
for representative AWUV measurements.

The relationship between AWUV and age in non-smokers.

1. There was a negative linear relationship between AWUYV and age in 38
non-smokers, implying a normal increase in airspace size with advancing
age in adult lungs.

2. The limits of normality of AWUV between the ages of 21 and 93 years
were defined as the 95% prediction limits of the AWUV /age relationship.

3. The loss of airspace wall surface area with age in the non-smokers was
found to involve the whole acinar unit.

4. Microscopically Assessed Emphysema (MAE) was defined as a useful term
for describing the condition of the lung where the mean AWUV value was
below the 95% prediction limits.

The relationship between AWUV and age in smokers.

1. A negative relationship was found between AWUV and age in 125
smokers' lungs, but only 26% of the smoking group had abnormally low
mean AWUYV (i.e. MAE).

2. 37% of the smokers had abnormally low 5th percentile AWUV values,
and 34% had abnormal 10th percentiles, indicating that these percentile
values may be more sensitive indicators of early or focal tissue destruction
than the mean AWUV.

3. Less than 10% of the smokers had abnormal 90th and 95th percentile
AWUV values.

4. Severity of smoking habit was not found to influence the incidence or
severity of MAE.

141



5. The percentile AWUV values were found to be abnormal in more heavy
smokers than light smokers. This indicates that heavy smokers are more
likely to have early or focal tissue destruction, which may be centriacinar
emphysema - see 24 below; and in those cases with MAE, the whole acinar
unit may be involved.

Differences between the sexes in the AWUV/age relationship.

There were no sex differences in the relationship between AWUV and age
in the smokers and non-smokers. MAE was found in 26% of the male
smokers and 23% of the female smokers. This implies that neither sex is
more likely to develop MAE.

The apex to base variation in AWUV.
1. Centriacinar macroscopic emphysema was not related to differences in
mean AWUV between the upper and lower lobes.

2. Differences in mean AWUV values between the upper and lower lobe
were found in lungs with panacinar emphysema occupying at least 40% of
the mid-sagittal area of the upper lobe, and at least 20% of the mid-sagittal
area of the lower lobe.

3. The incidence of MAE was found to be similar in the upper and lower
lobes of the same lungs, suggesting that the mean AWUYV from a single lobe
is adequate for the diagnosis of MAE.

4. There was no apex to base variation in AWUV within lobes with no
macroscopic emphysema, or in lobes with pure centriacinar emphysema.

5. AWUV was found to increase from the upper to lower zones of the upper
lobe in some lungs with more than 10% of the mid-sagittal area of the lobe
showing panacinar (possibly confluent centriacinar) emphysema. This
indicates that to obtain a mean AWUV which is representative of a lung,
the upper lobe should be sampled widely from apex to base, particularly
when panacinar emphysema is present.

6. Apex to base variation in AWUV measurements was not related to age or
sex.
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The incidence of macroscopic emphysema.
1. 83 of the 165 lung specimens in this study had no evidence of any
macroscopic emphysema.

2. 80% of the lungs with macroscopic emphysema came from male subjects.

3. The sex differences in the incidence of centriacinar emphysema increased
with the severity of the disease.

4. Small areas of macroscopic emphysema were found in lungs from 3 non-
smokers. The AWUYV values (mean and percentiles) were normal in all 3
cases.

The relationship between centriacinar emphysema and AWUYV in smokers.
1. Pure centriacinar emphysema was found in 34 lung specimens in the
smoking group.

2. Mean AWUYV values were normal in 85% of the smokers with pure
centriacinar emphysema.

3. The 5th and 10th percentile AWUV values were abnormal in increasing
numbers of lungs with increasing severity of centriacinar emphysema. This
indicates that the 5th and 10th percentiles may be more sensitive indicators
of focal lesions than the mean AWUV.

4. The 90th and 95th percentile AWUV values were normal in 100% of the
lungs with pure centriacinar emphysema. This indicates that the
parenchymal tissue surrounding centriacinar lesions is normal.

The relationship between panacinar emphysema and AWUV in smokers.
1. Pure panacinar emphysema was found in 16 smokers' lung specimens.

2. The mean and percentile AWUV values were found to be normal in all

lungs where pure panacinar emphysema occupied less than 10% of the area
of the mid-sagittal slice of a lobe.
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3. The number of cases with normal mean and percentile AWUV values
was reduced with increasing severity of panacinar emphysema.

4. The 90th and 95th percentile AWUV values were abnormal in increasing
numbers of lungs in subjects with moderate and severe panacinar
emphysema. This result suggests that decreases in these percentile values
are related to panacinar and not centriacinar emphysema.

The relationship between AWUV and mixed types of macroscopic
emphysema.

1. Twenty-six lungs were found to have a mixture of centriacinar and
panacinar macroscopic emphysema. All 26 subjects were smokers. The
panacinar component of the macroscopic emphysema appeared to have
more influence on the AWUYV values in these lungs than the centriacinar
component.

2. Confluent centriacinar lesions were found in the upper lobe of 6 lungs
with a mixed pattern of macroscopic emphysema. In 83% of these
specimens, MAE was present in the lung tissue outwith the area of
confluence.

The relationship between AWUV and other types of macroscopic
emphysema.

Two lung specimens were found to have paraseptal emphysema, and one
had apical bullous lesions. These lesions occupied less than 10% of the mid-
sagittal area of each lobe, and the mean and percentile AWUV values were
normal in all 3 cases.

The relationship between MAE and macroscopic emphysema.
1. MAE was not related to focal (centriacinar) lesions or to small areas of

macroscopic emphysema.

2. In general, the presence of MAE appeared to be more closely related to
panacinar than to centriacinar emphysema.
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Chapter 5

Discussion



51 INTRODUCTION

The 'Discussion’ Chapter falls into 3 major parts:

1. A discussion of the use of the term '"AWUV' in measuring airspace wall
surface area (section 5.2).

2. Discussion of the study group and the methodology used in the study
(sections 5.3 and 5.4)

3. Discussion of the results of the study and their implications (sections 5.5 -
5.8).

The most important findings of the study are listed in section 5.9,
publications arising from the project are listed in section 5.10, and an
outline of some proposals for future work is presented at the end of the
Chapter in section 5.11.

The use of the FIP as a new technique in the study of emphysema formed a
vital part of this project. A discussion of the development and assessment
of this technique has been presented in Chapter 3, and therefore a detailed
discussion of the FIP is not repeated in this Chapter.
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5.2 THE USE OF AWUV IN THE STUDY OF MICROSCOPIC
EMPHYSEMA

This thesis has been based on measurements of Airspace Wall surface area
per Unit Volume of lung tissue (AWUYV). It therefore seems appropriate to
discuss the choice of this unit of measurement in assessing the effect of age,
sex and cigarette smoking on the amount and distribution of microscopic
emphysema in a group of human lungs.

The term 'AWUV' was introduced by Lamb and colleagues in 1986, and has
been used by D Lamb's research group ever since. The initials A W U V are
perhaps an unfortunate choice, since it is not immediately obvious that they
are the initials of a phrase describing a surface area measurement.
However, the term is now established in the literature (Gould et al, 1988;
Wilkinson, 1989; McLean et al, 1992), and to introduce another term at this
stage would only have caused confusion.

As described above, AWUYV is the surface area measurement of the alveolar
walls contained in a unit of lung volume (Imm?®). It is possible to
extrapolate from this type of measurement an estimate of the total alveolar
wall surface area in the whole lung. Estimates of this kind have been made
by several authors (Campbell & Tomkeieff, 1952; Weibel, 1963; Dunnill,
1964; Duguid et al, 1964; Thurlbeck, 1967a; 1967b; 1967c; Bignon et al, 1969).
Such estimates of total lung surface area depend on the assessment of an
accurate lung volume for each subject, or on the normalisation of the
measurements to correspond to a standard lung volume (Thurlbeck, 1967b;
1967c). Normalisation of surface area measurements was performed
because, as discussed in section 1.3, until recently it was thought that
alveolar size may have been related to lung size, and therefore that alveolar
surface area per unit lung volume would vary according to the size of the
lungs (Weibel, 1963; Hislop & Reid, 1974). However, the results of several
studies (Thurlbeck, 1967b; 1975; 1982; Matsuba & Thurlbeck, 1971; Schreider
& Raabe, 1981; McLean, 1987) have shown that alveolar size is relatively
constant, regardless of lung size. For this reason, AWUV can be used to
compare the structure of many lungs without correcting for lung
dimensions.
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The mean linear intercept can also be used to compare the tissue density of
lungs of various sizes, since it is also independent of total lung volume.
However, the concept of the mean linear intercept, that of estimating the
average distance between alveolar walls, is more difficult to grasp than the
actual measurement of tissue destruction which is represented by decreases
in AWUV. This is because AWUV is a direct measurement of the airspace
walls.

Another advantage of expressing AWUV per mm? of lung tissue is that
accurate AWUV measurements for each Imm? measured are available, and
this permits the detailed assessment of microscopic changes associated with
age and smoking. In particular, this form of expression of the results
allowed the patterns of emphysema within the acinar unit to be analysed.
Such detailed analyses of the exact location of microscopic emphysematous
lesions would not be possible using more traditional methods of lung

surface area measurement.

A useful property of AWUV measurements is that they can be compared
with the results of biochemical and morphometric studies of the connective
tissue component of the alveolar walls. This use of AWUYV is presently
being incorporated in a collaborative study involving the Pathology and
Biochemistry Departments of Edinburgh University. It is hoped that this
type of study will be helpful in identifying some of the specific mechanisms
relating to microscopic emphysema.

Although for this study it was most appropriate to express AWUV in terms
of mm?/mm?, if the results presented in this Thesis are to be compared with
mean linear intercept estimates or total lung surface area measurements
made by other research groups, AWUV can easily be converted to either.

147



5.3 THE STUDY GROUP

The lung specimens used in this study came from 2 sources - autopsy and
surgical material. As a result, various selection factors were introduced in
the sampling of these specimens. The advantages and disadvantages of a
mixed study group such as this are discussed below.

There were several reasons for including surgical specimens in this study.
Firstly, an earlier study in the Pathology Department involved comparing
morphometric analysis of lung structure with pulmonary function
measurements made on the same lungs, and therefore only surgical
specimens were appropriate (McLean, 1987). As described in section 2.1, 40
of these surgical specimens formed part of the group of surgical specimens
in the present study. However, since a different morphometric technique
was used in this study, each of the tissue sections from these specimens was
re-analysed.

Tissue sections from freshly fixed surgical material are usually of better
quality than those obtained from autopsy material, since they do not contain
desquamated alveolar lining cells, and there is less likelihood of the
presence of inflammatory infiltrate. Fortunately, surgical lung specimens
are readily available in this Pathology Department. The availability of high
quality tissue sections was particularly important in this study, since the FIP
was fully automated, and interactive editing of Imm? fields prior to their
measurement was impossible (see Chapter 3 for details).

Another advantage of using surgical specimens is that smoking histories are
usually readily available for patients undergoing surgery, and this is not
always the case with autopsy material. An additional reason for selecting
surgical material was the availability of pulmonary function data, which
will allow future analysis of the structure/function relationships in these
patients.

Several selection factors were influential in obtaining the 121 surgical lung
specimens. The subjects had to be fit enough to undergo major surgery, and
this led to the exclusion of many elderly patients (only 3 were over 75 years
old), and those patients with severely impaired pulmonary function,
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including many cases of advanced emphysema. The majority of the surgical
specimens came from patients who were undergoing surgical resection as
treatment of carcinoma, and therefore most (82%) were smokers. All of the
surgical specimens had peripheral tumours, and care was taken to cut the
sample blocks from tissue away from the tumour. Although the area of the
tumour was always avoided, it is possible that since lung cancer and
emphysema are both associated with tobacco smoking, the susceptibility
factors responsible for these conditions may be related, and this could have
affected the observed incidence of microscopic emphysema. The selection
factors involved in obtaining surgical specimens from non-smokers were
different from those relating to the smoking subjects, in that most of the
lesions were metastatic deposits or benign tumours (See Appendix).

Autopsy specimens are likely to be free of such selection factors, but there
were other disadvantages in using them in this morphometric study. None
of the autopsy subjects had died as a result of respiratory disease, and the
subjects were chosen to represent as wide an age range as possible.
Therefore, these subjects did not represent a random sample of the autopsy
population.

Technical problems were associated with the tissue sections from the
autopsy specimens. The presence on the sections of desquamated alveolar
lining cells in the alveoli, and evidence of terminal infection caused
problems when using the FIP due to the lack of interactive editing available.
Consequently, some tissue sections, and in certain cases some lungs, were
unsuitable for AWUV measurements.

The smoking histories of the autopsy cases were obtained from interviews
with relatives at the time of death, or from the clinical records of those
patients who died in hospital. For obvious reasons, smoking histories of
deceased individuals are difficult to substantiate, and this is a disadvantage,
particularly as it limits the number of certain lifelong non-smokers which
may be included in a study such as this.

The major reasons for selecting autopsy material were that tissue from older
subjects (especially those older than 75 years of age) could be obtained, and
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whole lungs could be collected for the study of the distribution of AWUV
measurements within the lung.

The 38 non-smokers included in this study (surgical and autopsy specimens)
were documented as being lifelong non-smokers, and this represents a
larger group of known non-smokers than has been reported previously in
studies of microscopic emphysema (Saetta et al, 1985b; Gould et al, 1988).

The group of smokers in the present study contained 125 subjects. Several
other workers have used various methods to study the incidence of
microscopic emphysema in smokers, but their study groups have invariably
been smaller than the one described here (Saetta et al, 1985b: n=23; Gould et
al, 1988: n=43; Nagai et al, 1989: n=41; Eidelman et al, 1990: n=23; Kim et al,
1991: n=34).
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5.4 METHODOLOGY

The methods used in any study, particularly a morphometric study, have a
significant influence on the results obtained. The influential features of the
methodology used in the present study are discussed below.

5.4.1 Lung Inflation and Fixation

In studies of pulmonary emphysema, it is essential to examine the lung in
its inflated state (Ciba, 1959; Heard, 1960; Thurlbeck, 1964; Dunnill, 1970;
Thurlbeck et al, 1970b; Sutinen et al, 1982; Dunnill, 1987). Several methods
of preparing inflated lung specimens are available, and these have been
described in detail by Silverton (1965) and Dailey (1973).

In the present study a standardised technique was required which was
capable of inflating and fixing surgical and autopsy specimens to a similar
degree. The major problem in inflating lung specimens for morphometry is
standardising the degree of inflation achieved. Several authors have
described the 'constant pressure’ inflation/fixation technique (Heard, 1958;
Dunnill, 1987; Thurlbeck, 1988). This technique involves applying an
arbitrary constant pressure of fixative throughout the inflation and fixation
process (Thurlbeck, 1976). For a constant pressure of fixative to be applied
during the fixation process, a tube conveying the fixative must be attached
to the bronchus. For this reason, the constant pressure technique is not
suitable for inflating lobectomy specimens, since the segmental or sub-
segmental bronchi are cut during surgery, leaving a stump too short to be
attached to the fixation apparatus (D Lamb, personal communication).

The method used for lung inflation and fixation in this study was the
'smooth contour' method (section 2.2). This is the simplest, quickest and
least expensive method of lung inflation, and using this method lungs are
fixed following inflation by submerging them in formalin solution until
fixation is complete (Gough & Wentworth, 1949; Wentworth, 1950;
American Thoracic Society, 1959; Heppleston & Leopold, 1961; Thurlbeck,
1976; Dunnill, 1987). This is a commonly used method for preparing lung
tissue for histological examination, and was appropriate for the present
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study since it enabled lobectomy, pneumonectomy and autopsy specimens
to be inflated to a similar degree.

A problem associated with fixing tissue in formalin, regardless of the
technique used, is tissue shrinkage. Further shrinkage usually occurs
during tissue processing, and this is discussed in section 5.4.2 below. The
inflation and fixation techniques described in this Thesis were standardised
as far as possible. However, it must be stressed that AWUV values obtained
using other inflation/fixation techniques are likely to differ from the values
quoted here.

5.4.2 Tissue Processing

Shrinkage of tissue components occurs during histological processing of
blocks of tissue. In particular, sections which have been embedded in
paraffin wax tend to shrink, and this is a major problem in morphometric
studies. Measurements made on paraffin sections should be adjusted to
correct for shrinkage (Weibel, 1963; Dunnill, 1964; Thurlbeck, 1967a; 1967b;
1967¢c). An additional problem with paraffin embedding is that the sections
become compressed to a variable extent during cutting (Leeson et al, 1985).
Unfortunately, lung tissue is particularly affected by these problems.

The processing technique used in this study involved embedding the tissue
blocks in glycol methacrylate resin. This processing technique produces
tissue sections with excellent preservation of morphology. A comparison of
the artefacts produced by paraffin and glycol methacrylate embedding was
performed in this laboratory by McLean & Lamb in 1983. They found that
while shrinkage and compression resulted in a decrease in the area of
paraffin embedded tissue sections by as much as 40%, shrinkage during
processing and compression due to section cutting were negligible when
glycol methacrylate resin was used as the embedding medium (McLean &
Lamb, 1983).
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5.4.3 Morphometric Techniques

The development and assessment of the FIP as a technique for measuring
AWUYV has already been discussed in Chapter 3. The purpose of this section
is to discuss tissue sampling in relation to the FIP and to summarise briefly
some important points in the use of the FIP.

5.4.3.1 Tissue Sampling Procedure

As with any morphometric technique involving the use of histological
tissue sections, AWUV measurements require tissue sampling. A
representative sample for AWUV measurements must be large enough to
give a precise estimate of the true mean AWUYV value for each lung. Of
course, the actual AWUV of the whole lung is unknown, but the precision
of the estimate can be assessed by calculating the 95% confidence intervals
around the mean. The true mean has a 95% probability of lying in the
range: Sample Mean +/- (1.96xXSEM), where SEM is the standard error of the
sample mean (Williams, 1977). A tissue sample can be considered to be
representative of the organ if the 95% confidence intervals of the mean are
within +/- 10% of the mean (Weibel, 1963).

An efficient sampling design involves obtaining a representative sample
with the minimum of effort (Mayhew, 1983). Using the FIP as the method
of measuring AWUYV ensured that an adequate number of fields was
scanned on each section. However, it was important to make sure that the
minimum number of blocks sampled from each lung constituted a
representative sample of that lung.

Forty of the surgical specimens included in this study were originally part of
a previous study of the structure/function relationships in the human lung
(McLean, 1987). Twelve tissue blocks were selected at random from the
lateral 2 sub-pleural slices of the fixed specimens, and this was found to be a
representative sample from each lung (McLean, 1987). The tissue processing
technique used in this and McLean's study involved embedding the lung
tissue blocks in glycol methacrylate resin, a process which is extremely time-
consuming and results in the production of an average of only 36
histological sections per week. The present study was designed to include
AWUV measurements on a large number of lung specimens, and in the
case of the surgical specimens, a representative mean value for the whole
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specimen was the major requirement. The sample size was therefore
reviewed. An attempt was made to reduce the number of blocks cut from
each lung as far as possible, while still ensuring that the sample was
representative of the specimen.

The 95% confidence intervals around the mean AWUV from 6 blocks of 20
specimens were found to be within +/- 5.6% of the mean (section 4.1.3).
This indicates that a sample of 6 blocks is adequate to produce a
representative AWUV value from a single lobe using the FIP. Weibel
(1963) suggested that 5-10 tissue blocks should be an adequate sample from a
lung, and other workers have used similar sample sizes in their studies of
lung structure (Thurlbeck, 1976; Langston et al, 1979; Saetta et al, 1985b;
Nagai et al, 1989; Saito et al, 1989).

The block size used in the present study was 2cm x 2cm. Blocks of this size
were used because the tissue sections cut from these blocks are an ideal size
to fit on a standard microscope slide. This size of block is particularly useful
in studying lung structure, since components of several acinar units are
found on each section. Similar sized blocks have been used by several other
groups in their microscopic studies of lung structure (Dunnill, 1964;
Thurlbeck, 1967b; 1967c; Saetta et al, 1985b; Gould et al, 1988; Nagai et al,
1989; Eidelman et al, 1990; 1991; Kim et al, 1991)

5.4.3.2 The FIP as a Technique for Measuring AWUV

As discussed in Chapter 3, the FIP has proved to be an excellent method for
measuring AWUV. It is much faster than previously used techniques, and
the reproducibility of its measurements is excellent - largely due to the fact
that it is fully automated. The high degree of automation of the system may
lead to some errors being introduced into the measurements, but as
Thurlbeck noted (Thurlbeck, 1976) these errors are likely to affect
measurements on normal and abnormal tissue alike. Therefore, the
relationships between AWUV and age, sex and smoking quoted in this
thesis are valid.

The comparison of the FIP results with those produced using the IBAS

system (see section 3.4.4.2) has drawn attention to the fact that, as with tissue
fixation and processing, the use of different techniques is likely to result in
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different values for AWUV. This point must be taken into consideration
when comparing the results of this study with those obtained in other
laboratories.
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5.5 THE EFFECTS OF AGE, SEX AND SMOKING ON AWUV

Three of the original aims of this study were related to assessing the effects
of age, sex and smoking on AWUV. These aims were approached firstly by
studying a group of non-smokers and observing the changes in AWUV
with age in men and women; and secondly by studying a group of male and
female smokers, and comparing the results from this group with the results
from the non-smokers to isolate the effects of smoking on AWUV. The
results of these aspects of the study are discussed below.

5.5.1 The Relationship Between AWUYV and Age in Non-smokers
The various definitions of emphysema which have been proposed all
include reference to the abnormal enlargement of airspaces distal to the
terminal bronchiole. To apply these definitions, quantitative data must be
obtained on the limits of normal airspace size.

In this study, mean AWUV was found to decrease with age in 38 non-
smokers, and this decrease was found to be linear. The 95% prediction
limits were plotted to indicate the range of AWUYV values which could be
expected in non-smokers with advancing age. The 95% prediction limits
represent the AWUV range within which 95% of non-smokers of a
particular age are likely to fall.

It is not appropriate to consider elderly patients with AWUV values within
the 95% prediction limits for their age as having senile emphysema, even
though their mean AWUV values are significantly lower than those of
subjects in early adult life. This view is in keeping with the approach to
tests of pulmonary function, where the progressive decline in lung function
from young adulthood with advancing age is accepted as normal (Cotes,
1979).

The non-smokers included in this study came from both urban and rural
areas of the country. Their only known pulmonary abnormality was the
small peripheral lesion for which resection was performed in the surgical
cases. It is reasonable to accept that these individuals represent a population
with normal lung structure, and to use the 95% prediction limits of mean
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AWUYV in relation to age as the limits of normal mean AWUV between the
ages of 21 and 93 years. Hence, if only those patients with mean AWUV
values below the 95% prediction limits of AWUV for non-smokers are
abnormal, the diagnosis and assessment of microscopic emphysema in
quantitative terms is made possible.

The entity of 'senile emphysema' has been described as the barely visible
macroscopic abnormality of the lung in the elderly (Reid, 1967b). The rate of
decline of AWUYV in the present study group might therefore have been
expected to increase with advancing age corresponding to the onset of senile
emphysema. However, as stated above, the decline in AWUV with
advancing age was linear and the AWUV measurements from all 38 non-
smokers fell within the 95% prediction limits of the regression line. There
was therefore no evidence to suggest that a sub-group of these non-smokers
might develop senile emphysema.

The Ciba report in 1959 recommended that the term 'senile emphysema’
should not be used until the normal range of size of airspaces in the lung at
different ages was established. Thurlbeck (1970; 1976; 1991) has also stated
that the changes in airspace size with age were a normal consequence of
aging, and that this should not be confused with the presence of
emphysema. Thurlbeck also found a linear change in airspace size with age
in his study of mean linear intercept measurements in macroscopically
non-emphysematous lungs from 25 subjects (Thurlbeck, 1967b).
Unfortunately however, the smoking histories of his subjects were not
recorded.

Using the limits of normal mean AWUYV as described above, microscopic
emphysema may be described as a condition of the lung in which the mean
AWUV measurement is below the lower limit of normality. An
appropriate term to describe this condition is microscopically assessed
emphysema (MAE). This conforms to the definition of emphysema as the
abnormal enlargement of airspaces distal to the terminal bronchiole.

Gould and colleagues (1988) reported on a structure/function study of the

lung which included the comparison of computed tomography (CT) scan
density measurements with AWUV measurements made on the same
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lungs. These workers found a linear relationship between the density of
lung tissue measured by CT scanning and AWUV measurements,
suggesting that it may be possible to use CT scanning to recognise early
emphysema in life. The results of the present study indicate that normal
lung density decreases with advancing age. Therefore, if CT scanning is to
be used in diagnosing emphysema in the patient during life, the range of
normal CT densities according to age should be established. In fact, all
clinical and pathological studies must take the age-related change in normal
values for mean AWUYV into account when identifying emphysema.

All 38 non-smokers in this study had mean AWUV values within the
normal range for their age, and the relationship between mean AWUV and
age was similar in men and women. Given that men have larger lungs
than women, even when height is taken into consideration (Thurlbeck,
1982), this result indicates that alveolar size is not related to lung size, and
therefore implies that larger lungs contain additional generations of alveoli
compared with small lungs. This conforms to the suggestion that alveolar
multiplication may continue throughout childhood (Emery & Wilcock,
1966, Nakamura et al, 1967, Angus & Thurlbeck, 1972), although obviously
the results of a study of adult lungs such as this can give no information on
the timing of completion of alveolar multiplication.

It thus appears unlikely that the published sex differences in the incidence
of macroscopic emphysema (Azcuy et al, 1962; Anderson et al, 1972;
Auerbach et al, 1974; Thurlbeck et al, 1974; Sutinen et al, 1978; Sobonya &
Burrows, 1983; Dijkman, 1986; Dunnill, 1987; Snider, 1989) are due to
differences between the sexes in normal airspace size.

Other aspects of the distribution of AWUYV values within a specimen can be
useful in examining age changes in lung structure. As described in section
4.1.1, in the normal lung, the 5th and 10th percentile AWUV values
represent fields in the proximal acinus and the 90th and 95th percentiles
represent the distal acinus, with the mean giving a general impression of
the density of tissue across the lung. The modal AWUYV value is useful in
assessing changes in the shape of the AWUYV distribution. Frequency
distributions of AWUV measurements could be compiled for each subject
in this study because the FIP measured AWUV in a minimum of 726 1mm?
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fields from each specimen. Analysis of the various aspects of the AWUV
distribution from individual lungs was performed in order to study
whether the loss in AWUV with age was localised to any one area of the
acinus, or whether the age change was generalised.

In the 38 lifelong non-smokers, the mode and percentile values of AWUV
were related to age in the same way as the mean AWUYV, i.e. the rate of
decline of mean, mode and percentile AWUV values with age were similar.
These results indicate that there was an even decrease in AWUYV across the
acinar unit. This is in contrast to the published opinion that in the aging
lung, the decrease in tissue density occurs specifically in the region of the
alveolar ducts, i.e. in the proximal acinus (Thurlbeck, 1976). However,
macroscopically recognisable panacinar increases in airspace size in the
elderly have previously been described (Azcuy et al, 1962; Reid, 1967b;
Thurlbeck, 1991), although as discussed above, it is inappropriate to describe
this change as emphysema.

5.5.2 The Effect of Smoking on Mean AWUV

Having established the limits of normal mean AWUYV in the study of the
non-smokers, the next step was to assess the relationship between mean
AWUYV and age in the smokers.

The mean AWUV /age relationship in the smokers was negative, but only
26% had mean AWUYV values which were below the normal limit for their
age (i.e. these smokers had MAE as described in section 5.5.1). This result
indicates that susceptibility differences may have existed within the group of
125 smokers. Differences in the susceptibility to macroscopic emphysema
have frequently been reported in the literature, as reviewed by Sobonya &
Burrows (1983).

In this study, the mean AWUYV/age relationship was similar in men and
women, and the percentages of these 2 groups who developed microscopic
emphysema were similar. These results are interesting, since macroscopic
emphysema has consistently been found to be more common in men
(Thurlbeck, 1963a; 1963b; Thurlbeck et al, 1974; Sutinen et al, 1978; Sobonya
& Burrows, 1983; Snider, 1989), and it has even been suggested that females

199



may have some protective factor against developing the disease (Sutinen et
al, 1978; Bignon et al, 1980). The results presented here suggest that this is
not the case with microscopic emphysema. These results also reinforce the
suggestion that airspace size is similar in men and women, and sex
differences in the incidence of macroscopic emphysema are therefore
unlikely to stem from inherent differences in the lungs of men and women.

The apparent lack of sex differences in the susceptibility to MAE suggests
that the pathogenetic mechanisms responsible for MAE may be different
from those relating to the most common form of macroscopic emphysema,
centriacinar emphysema. This point is discussed further in section 5.7.

Given that only a minority of the smoking group had MAE, as defined in
terms of mean AWUYV, the most obvious question to ask was 'were these
subjects simply heavier smokers than those who did not develop MAE?', in
other words, was susceptibility dose-related with respect to tobacco
consumption? Several workers have found that the relative incidence of
macroscopic emphysema was higher with increased tobacco consumption
(Anderson et al, 1966; Auerbach et al, 1972; Spain et al, 1973; Thurlbeck et al,
1974; Sobonya & Burrows, 1983).

In this study the presence of MAE did not appear to be due to the extent of
smoking habit. In addition, the severity of MAE was not related to daily
cigarette consumption.

The method chosen to record tobacco consumption was the number of
cigarettes smoked each day. This method was more appropriate for the
analysis of AWUYV in smokers than pack years data, because both pack years
and AWUYV are related to age, and thus the true relationship between the
degree of tobacco consumption and AWUV would be masked by the age
effect. It is accepted that smoking histories (including pack years estimates)
obtained by interviews with patients are subject to inaccuracies. When
questioned, many patients underestimate their tobacco consumption (Viegi
et al, 1991). Nevertheless, the 3 broad sub-groups of smoking habit selected
for the present study represent a range of tobacco consumption from light to

severe.
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Given that inaccuracies in smoking habit information do occur, it might be
expected that the subjects in all 3 sub-groups will have underestimated the
extent of their actual smoking habit, and yet even in the sub-group of
heaviest smokers, 69% of subjects had normal mean AWUV values for
their age. It would therefore appear that while tobacco smoking is
undoubtedly related to the onset of MAE (since MAE did not occur in any of
the non-smokers), the severity of the smoking habit is not the major factor
in determining an individual's susceptibility to MAE, or the severity of
MAE which susceptible individuals will develop. A similar opinion,
relating to macroscopically assessed emphysema, was expressed by
Anderson and colleagues (1966), who commented that since large numbers
of individuals with heavy tobacco consumption did not develop
macroscopic emphysema, the variations in susceptibility to the disease were
not accounted for by smoking habit alone. Pratt (1988) noted differences in
the susceptibility to centriacinar emphysema amongst heavy smokers. Pride
(1983) stated that the wide differences in susceptibility to airflow obstruction
in smokers, which may be related to emphysema, were not due to the
amount of tobacco smoked.
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5.6 THE DISTRIBUTION OF AWUV WITHIN THE LUNG

The various forms of macroscopic emphysema are not distributed
uniformly throughout the lung. In particular, centriacinar emphysema
occurs more frequently and is usually more severe in the upper lobes, and
in severe forms panacinar emphysema may be more predominant in the
lower lobes (section 1.6.1). When a sample includes single lobes obtained at
surgery, it is important to ensure that a single lobe is representative of the
whole lung. The descriptions of the general distribution of macroscopic
emphysema suggest that in specimens containing macroscopic emphysema,
a single lobe may not present a pattern of emphysema which is
representative of the whole lung. However, Wright and colleagues (1986)
noted that the upper and lower lobes of their series of pneumonectomy
specimens had similar grades of macroscopic emphysema, as assessed by
Thurlbeck's panel grading system.

5.6.1 AWUV Distribution in Relation to Macroscopic Emphysema
The results of the present study showed that macroscopic centriacinar
emphysema was not related to differences between the mean AWUV
values of the upper and lower lobes. Where differences in AWUYV between
the upper and lower lobes occurred, the mean AWUYV from the upper lobe
tended to be lower than that from the lower lobe. Contrary to expectations
based on the published trends in its distribution, these differences usually
occurred when panacinar emphysema occupied more than 10% of each lobe.
The most likely explanation for this is that some of the panacinar
emphysema present in the upper lobe was the result of the confluence of
severe centriacinar lesions, and this phenomenon is more likely to occur in
the upper lobe and in the apical region of the lower lobe.

In 41 of the 42 whole lungs studied it was possible to assess whether the
mean AWUV from each of the upper and lower lobes was normal or
abnormal. In 90% of these lungs, the diagnosis of MAE was the same in
both lobes (i.e. MAE was either present in both lobes or absent from both
lobes). Hence, with regard to MAE, in general, a single lobe was found to
give a representative diagnosis for the whole lung. This is in general
agreement with the results of Wright and colleagues (1986), and of
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Auerbach and co-workers (1963), who found that rupture of the alveolar
walls occurred to a similar degree in right and left lungs, and in the upper
and lower lobes of these lungs.

Lichros and colleagues (1991) found that the occurrence of microscopic
panlobular emphysema was similar in the upper and lower lobes of 41
lungs. This corresponds with the finding in the present study that the
incidence of MAE was similar in the upper and lower lobes.

When they examined the distribution of microscopic centriacinar
emphysema, Lichros and co-workers found that it occurred more frequently
in the upper lobes. It was suggested in section 4.1 that the 5th and 10th
percentile AWUV values may be more sensitive indicators of focal
microscopic lesions than the mean AWUYV (this point will be discussed
further in section 5.7). If this is the case, it would be interesting to note
whether these percentile AWUV values differ between the upper and lower
lobes. This is an area which requires some further work.

The study of the apex to base variation in AWUV values within individual
lobes showed that in the absence of macroscopic emphysema, or where the
macroscopic emphysema was of the pure centriacinar type, there was no
evidence of significant variation in AWUV from the apex to the base of
either the upper or the lower lobe. It has been suggested that in the upright
lung there is a gradient of alveolar size from the apex to the base (Glazier et
al, 1966). However, further work by the same group indicated that the
potential size of all the alveoli in the lung was the same, since the apex to
base gradient in alveolar size disappeared in the supine lung (Glazier et al,
1967). The results of the present study of whole lungs inflated under
standardised conditions, suggest that in anatomical terms, there is no apex
to base gradient in airspace size. This indicates that the gradient observed in
the above mentioned study by Glazier and colleagues was due to the
physiological influences on the upright lung.

In the present study, the distribution of AWUV measurements within
individual lobes was not related to the incidence of centriacinar
emphysema, but when panacinar emphysema occupied more than 10% of
the mid-sagittal area of the upper lobe, there was a tendency for an apex to
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base gradient of AWUV to exist. As discussed above, this may be related to
the presence of confluent severe centriacinar lesions. When the lungs with
mixed types of macroscopic emphysema were examined it was found that
panacinar emphysema was likely to occur elsewhere in the lung when
centriacinar lesions were large enough to become confluent.

Saetta and colleagues (1990), and Kim and colleagues (1991) have described
centrilobular and panlobular microscopic emphysema, but neither group
has commented on the distribution of these types of emphysema within the
lung. Lichros and co-workers (1991) commented on the incidence of
microscopic centrilobular and panlobular emphysema in the upper and
lower lobes. They did not comment on the upper/lower lobe differences in
incidence of mixed types of microscopic emphysema, but they did note that
the panlobular type was always predominant in such specimens. These
authors did not describe the distribution of the different types of microscopic
emphysema within individual lobes.

5.6.2 The Distribution of AWUYV in Relation to Age and Sex

There were no sex differences in the apex to base AWUV distribution
within the 42 whole lungs studied. This indicates that there were no sex
differences in the spatial distribution of MAE in this study group. This
result contradicts the common finding that there are sex differences in the
incidence of macroscopic centriacinar emphysema, and implies that MAE
incidence does not follow the same pattern of incidence as macroscopic
centriacinar emphysema.

The distribution of AWUV within the lung was not related to age.

Therefore, the tendency for some subjects to have upper/lower lobe
differences in AWUYV values was not due to advancing age.
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5.7 THE INCIDENCE OF MACROSCOPIC EMPHYSEMA

Macroscopic emphysema is identified by the presence of airspaces at least
Imm in diameter (Ryder et al, 1971). The classification of macroscopic
emphysema into 4 main types (as described in section 1.6) is accepted, but
there is little available information on the microscopic changes underlying
these macroscopic lesions. It is logical to assume that macroscopically
visible emphysema develops on a background of microscopic emphysema,
but an important point to consider is whether microscopic lesions are
present in the same patterns as their macroscopic counterparts. It is possible
that all macroscopic lesions, regardless of their type, develop on a
background of generalised (panacinar) microscopic emphysema. The
studies by Saetta, Kim, Lichros and colleagues (Saetta et al, 1990; Kim et al,
1991; Lichros et al, 1991) lead to the suggestion that various forms of
microscopic emphysema do exist which correspond to the documented
patterns of macroscopic emphysema. However, the assessments of
microscopic emphysema performed by these groups have been non-
quantitative, and they have not reported on the types of macroscopic lesions
identified in their lung specimens.

Various forms of macroscopic emphysema were found in 3 of the non-
smokers and in 79 of the smokers in this study group. In this section, the
incidence of macroscopic emphysema is described, and the relationships
between macroscopic emphysema, AWUV and microscopic emphysema are
discussed.

5.7.1 Macroscopic Emphysema in the Non-Smoking Group

Only 3 of the non-smoking subjects in this study had any evidence of
macroscopic emphysema. All 3 subjects were over 70 years of age, and the
macroscopic emphysema was focal or localised in nature. The mean
AWUV in all 3 specimens was within the normal range. This result shows
that small areas of panacinar emphysema, or focal lesions of the centriacinar
type, which represent abnormally large airspaces in small areas of the lung,
may not affect the overall mean AWUV values. This suggests that any
underlying microscopic emphysema is also focal in its distribution. These
types of lesions are best described as focal or localised macroscopic
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emphysema. This illustrates that the term 'emphysema’ should not be used
unqualified, but rather the type and severity of the observed lesions should
be described. For a patient or a lung as a whole to be considered as having
‘emphysema’ the term 'microscopically assessed emphysema' (MAE) is
useful, as it represents a mean AWUYV value outwith the 95% prediction
limits of AWUYV for the population, thus taking into account the age-
related changes in airspace size discussed in section 5.5.1.

5.7.2 Macroscopic Emphysema in the Smoking Group

Macroscopic emphysema is well documented as being more commonly
found in men than in women (Azcuy et al, 1962; Anderson et al, 1972;
Auerbach et al, 1974; Thurlbeck et al, 1974; Sutinen et al, 1978; Sobonya &
Burrows, 1983; Dijkman, 1986, Dunnill, 1987; Snider, 1989). The results of
this part of the study were in agreement with this finding, as the majority of
smokers with macroscopic emphysema were males, and this was true for all
types of macroscopic emphysema observed, with the exception of the single
female subject with a bullous lesion.

This result is interesting, particularly in view of the finding that there were
no sex differences in the incidence of MAE in the same study group (section
5.5.2). It may have been expected that the lack of sex differences were a
feature peculiar to this sample, since these smokers may not represent the
general smoking population. However, the sex differences in the incidence
of macroscopic emphysema indicate that this is not the case, rather, these
results indicate that there are fundamental differences between the
susceptibility to microscopic and macroscopic emphysema. It is possible that
although women are just as likely as men to develop microscopic
emphysema, they have some protective factor against developing
macroscopic emphysema. Alternatively, it may be some inherent feature in
smoking habits which makes women less likely to have macroscopic
emphysema (e.g. differences in brand preferred, smoking technique, etc ;
Anderson et al, 1972).

The incidence of macroscopic emphysema has previously been found to

increase with increased tobacco consumption (Auerbach et al, 1972; Spain et
al, 1973; Thurlbeck et al, 1974). In this study, details of daily cigarette

166



consumption were available for 97 smokers, and of these only 38 had pure
forms of macroscopic emphysema, which limited the extent of the analysis
which could be performed with the results from these specimens.
However, it did appear that the severity of centriacinar emphysema was
related to daily cigarette consumption.

Although MAE, defined in terms of mean AWUV, was not directly
influenced by daily cigarette consumption, the 5th and 10th percentile
values of AWUV were. The incidence of abnormally low 5th and 10th
percentiles increased with increased daily cigarette consumption. These
results provide support for the suggestion that low 5th and 10th percentile
values represent the focal microscopic lesions which lead to macroscopic
centriacinar emphysema (section 4.3.4.1). This suggestion is discussed
further in section 5.7.3.

5.7.3 The Relationship Between Focal Macroscopic Emphysema
and AWUV

The results in section 4.3.4 indicate that mean AWUYV is not usually

reduced below normal levels in subjects with pure centriacinar emphysema.

This suggests that the underlying microscopic lesions are also focal in their

distribution.

It may be suggested that the sampling technique used here resulted in the
omission of emphysematous areas of lung tissue. Careful examination of
the lung specimens showed that this was not the case. The sampling
procedure in this study was designed to produce a representative sample of
the lungs' structure (section 5.4), and areas containing macroscopic
centriacinar lesions were not avoided. Specimens with up to 80 centriacinar
lesions in a single lobe slice were found to have normal mean AWUV
values. It would appear therefore that the mean AWUYV is not a sensitive
indicator of focal emphysema.

The lack of association between focal emphysematous lesions and mean

AWUV was also evident in the 3 lung specimens with paraseptal and
bullous lesions. In each of these subjects, the focal lesions occupied less
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than 10% of the lobe area, and the mean AWUYV values were normal in
each case.

Macroscopic centriacinar emphysema is known to be related to tobacco
smoking, and has been found to be more severe with increasing dose of
tobacco consumption. As discussed above, this was also found to be the case
in those subjects in this study for whom detailed smoking habits were
documented (section 5.7.2). Interestingly, the frequency of abnormal 5th and
10th percentile AWUYV values was increased with increased daily cigarette
consumption. Also, the frequency of abnormal 5th and 10th percentiles
increased with increasing severity of macroscopic centriacinar emphysema.
These findings provide further evidence for the suggestion that abnormally
low 5th and 10th percentile AWUV values represent the presence of
centriacinar emphysema in lungs with normal mean AWUYV values.

The fact that the mean AWUYV was not usually reduced in cases with pure
centriacinar emphysema, and the finding that the 90th and 95th percentile
AWUYV values were normal in every case of pure centriacinar emphysema,
indicate that the parenchymal tissue surrounding centriacinar lesions is
normal, and hence that the underlying microscopic lesions are also focal.
This is in agreement with Sweet and co-workers (1961) who stated that even
in cases where centriacinar emphysema was advanced, a 'rim' of normal

tissue was to be found.

The results of this part of the study give further evidence that the
pathogenesis of centriacinar emphysema and MAE may be linked to
different mechanisms, and this evidence has been revealed by using one of
the most useful features of the FIP, the availability of individual AWUV
values from each Imm? field. These values have been used to provide
more specific information on the nature of emphysema than a single mean
value for a lung, which is produced by most other morphometric
techniques, could have supplied.

Kim and colleagues have used a different analysis, but have also utilised the
information from individual field measurements (Kim et al, 1991). They
found that the coefficient of variation in mean linear intercept
measurements was higher in lungs with subjectively identified microscopic
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centrilobular emphysema than in lungs with microscopic panlobular
emphysema. These results indicated that the tissue distribution around the
area of the lesions was heterogeneous (i.e. focal microscopic emphysema).
Kim and colleagues noted that the tissue surrounding these lesions
'‘appeared' normal. However, this observation was not substantiated by
quantitative data, and the subject's age was not taken into consideration.

5.7.4 The Relationship Between Macroscopic Panacinar Emphysema
and AWUV

If the mean value of AWUV is an indicator of generalised loss of airspace
walls throughout the lung, then it is reasonable to expect that it may be
related to macroscopic panacinar emphysema, which affects the whole of
the acinar unit (Reid, 1967b; Dunnill, 1987) and is said to be found
throughout the lung (Thurlbeck, 1963a). In this study, 76% of the smoking
subjects with MAE (indicated by mean AWUYV values below the lower limit
of normality for their age) also had macroscopic panacinar emphysema. In
addition, the incidence and severity of MAE were increased with increasing
severity of panacinar emphysema. As discussed in section 5.5.2, the
relationship between daily cigarette consumption and MAE was not clear.
The association between daily cigarette consumption and macroscopic
panacinar emphysema is also thought to be complex (Anderson et al, 1964;
Thurlbeck, 1976). Therefore, MAE and macroscopic panacinar emphysema
represent a single disease process with varying degrees of severity.

Every subject with abnormally low 90th and 95th percentile AWUV values
had macroscopic panacinar emphysema (in contrast, these values were
normal in every case of macroscopic centriacinar emphysema). The
frequency of abnormal 90th and 95th percentiles increased with increasing
severity of macroscopic panacinar emphysema. These results suggest that
abnormal values of the 90th and 95th percentile AWUV are associated with
widespread macroscopic panacinar emphysema.

It seems reasonable to assume that the 5th and 10th percentile AWUV
values will be reduced in most cases where the mean AWUYV is lower than
normal. It may therefore be suggested that in some circumstances, where
the mean AWUV is normal, abnormally low 5th and 10th percentiles are
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associated with early panacinar emphysema. In a cross-sectional study such
as this it is impossible to predict which of the young individuals with
abnormal 5th and 10th percentiles and normal mean AWUV will
eventually develop MAE or macroscopic panacinar emphysema, and which
will develop macroscopic centriacinar emphysema. Therefore, abnormally
low 5th and 10th percentile values of AWUV cannot be used in isolation to
predict the type of macroscopic emphysema which is likely to develop.
However, when the mean AWUYV is normal, they usually indicate the
presence of microscopic centriacinar emphysema rather than panacinar
emphysema.

The results discussed above suggest strongly that MAE is associated with the
presence of panacinar emphysema, and that MAE may represent an early
form of panacinar emphysema.

5.7.5 The Relationship Between Mixed Macroscopic Emphysema
and AWUV

Although several types of macroscopic emphysema have been described
(section 1.6), two or more of these types often co-exist in a single lung
(Dunnill, 1987). The distinction between panacinar and centriacinar
emphysema becomes particularly difficult when severe centriacinar lesions
become confluent in the upper lobe. There are conflicting opinions on how
to classify emphysema in such circumstances, and these opinions relate to
the authors' assumptions concerning the mechanisms responsible for the

development of confluent centriacinar emphysema.

Increasing severity of macroscopic centriacinar emphysema may take the
form of the appearance of new lesions, or of an increase in the size of
existing lesions (Pratt, 1988). Pratt has commented that the increase in size
of centriacinar lesions continues in some cases to confluence, and that this
should always be described as centriacinar emphysema, regardless of the
extent of destruction of the acinar unit (Pratt, 1988). If this is the case, it is
difficult to understand what the differences are between patients who have
severe centriacinar emphysema in which all the lesions are discrete, and
those who have confluence of the centriacinar lesions in the upper lobes.
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An alternative opinion is that confluent emphysematous lesions must be
classified as panacinar, regardless of their origin (Thurlbeck, 1976; D Lamb,
personal communication). Confluent centriacinar emphysema usually
occurs when macroscopic emphysema is widespread (Thurlbeck, 1976), and
in such cases, panacinar emphysema is often present elsewhere in the lung
(Sweet et al, 1961; Thurlbeck, 1963a; 1963b; 1976; 1991; Mitchell et al, 1970;
Spencer, 1985; Dunnill, 1987; Lamb, 1990).

In the present study, lung specimens from 26 smokers had evidence of both
macroscopic centriacinar and macroscopic panacinar emphysema, and 6 of
these specimens had severe confluent centriacinar emphysema in the upper
lobe. All of these had macroscopic panacinar emphysema to a varying
degree elsewhere in the lung, and 5 of the 6 (83%) had MAE. Of the 5
subjects with MAE, the AWUYV values of the majority of tissue blocks from
the lung specimen, including those blocks away from the confluent
centriacinar lesions, were below the normal range. Three specimens with
MAE and confluent centriacinar emphysema were whole lungs. In each of
these specimens, the upper lobe and lower lobe mean AWUYV values were
abnormal. These results show that MAE was present in the tissue outwith
the area of confluent centriacinar emphysema. 'Confluent centriacinar
emphysema' thus appears to be the consequence of the coincidence of 2
processes - centriacinar emphysema and MAE.
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5.8 THE CONCEPT OF 'EMPHYSEMA'

The discussion of the results presented in this thesis raises the problem of
defining what 'emphysema’ is. As stated in section 1.4 above, emphysema
is defined as:

'a condition of the lung characterised by abnormal, permanent
enlargement of air spaces distal to the terminal bronchiole,
accompanied by destruction of their walls, and without obvious
fibrosis' (Snider et al, 1985).

However, as described in section 1.6, and discussed in section 5.7,
emphysema exists in several forms, and can be considered to exist on the
basis of various criteria. Emphysema is therefore not a single entity, but
rather the term is a description of one or several patterns of tissue
destruction in a lung, each of which may have different pathogenetic
mechanisms and different causes.

Should emphysema be described in microscopic or macroscopic terms? The
definition suggests that normal airspace size should be defined, and once
this size is exceeded, emphysema exists. How far should the limits of
normality be exceeded before emphysema is recognised? What is the
functional significance of each of the microscopic and macroscopic patterns
of emphysema?

The functional significance of microscopic emphysema is still unclear. It is
possible that MAE may affect lung function more than small areas of
macroscopically visible emphysema, and may therefore be more important.

This study has involved the identification of a range of normal AWUV
values, and the description of microscopically assessed emphysema. The
identification of a sub-group of smokers who are susceptible to MAE will be
useful in studying the pathogenetic mechanisms responsible for this
process.

Most studies of the pathogenesis of emphysema fail to consider the various

types of emphysema as separate entities, with possibly different pathogenetic
mechanisms. An additional failing of such studies is that smokers are
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usually considered to be a homogeneous group. The results presented in
Chapter 4 of this thesis and discussed in this Chapter indicate that
differences in susceptibility within the smoking population must be
recognised before the pathogenesis of the emphysemas can be fully
understood.
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5.9 IMPORTANT FINDINGS OF THIS STUDY

A new method for assessing airspace wall surface area per unit volume of
lung tissue (AWUV) was developed and tested in the course of this study. It
was found to be reliable, reproducible and efficient.

The results of AWUV measurements in lung specimens from 38 lifelong
non-smokers indicated that airspace size increased with advancing age and
it was suggested that this increase is normal.

The limits of normal airspace size were established for subjects within the
age range 21 - 93 years, allowing the diagnosis of emphysema according to its
definitions.

No evidence was found to support the existence of senile emphysema.
Microscopically assessed emphysema (MAE) was suggested as a useful term
to describe the condition of the lung when the mean AWUV measurement

was below the normal limits.

MAE was found to exist in a minority of smokers, suggesting the existence
of a susceptible sub-group of smokers.

The susceptibility to MAE was found to be related to smoking, but neither
susceptibility to MAE nor severity of MAE appeared to be dose-related to

daily cigarette consumption.

There were no sex differences in the relationship between AWUYV and age,
either in the non-smokers or in the smokers, and the susceptibility to MAE
was not found to be more common in either sex.

The tissue surrounding macroscopic centriacinar emphysematous lesions
was found to be normal, and this suggests that the early lesions in

centriacinar emphysema are also focal in their distribution.

The 5th and 10th percentile AWUYV values were found to be more sensitive
indicators of focal macroscopic emphysema than the mean AWUV.
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MAE, as described in terms of mean AWUYV, was found to be related to
macroscopic panacinar emphysema, but was not related to macroscopic
centriacinar emphysema.

The results of this study suggest that different pathogenetic mechanisms are
responsible for macroscopic panacinar and centriacinar emphysema.

It should be noted that the results reported in this thesis are not intended to
represent definitive statements on the incidence of emphysema in the
general Scottish population. However, it is hoped that the study sample
described here is large enough for the results to make a useful contribution
to the study of the epidemiology of microscopic emphysema.
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5.10 PUBLICATIONS ARISING FROM THIS STUDY

Published papers

1. Gillooly M, Lamb D, Farrow AS]. New automated technique for
measuring emphysema on histological sections. | Clin Pathol 1991;44:1007-
1011.

2. Gillooly M, Lamb D. Airspace size in non-smokers' lungs: The effects of
age and sex. Thorax 1992; in press.

Papers submitted for publication

1. Gillooly M, Lamb D. Microscopic emphysema in relation to age and
smoking habit. Submitted to Thorax.

Presentations with published abstracts

1. Gillooly M, Farrow AS], Lamb D. New automated technique for the
assessment of emphysema on tissue sections. Thorax 1990;45:326P.

2. Gillooly M, Lamb D. Microscopic emphysema - its distribution within
the lung and its relation to age and smoking. Am Rev Respir Dis
1991;143(Suppl):A670.

3. Gillooly M, Lamb D. Microscopic emphysema in relation to age and
smoking. Thorax 1991;46:301P.

4. Gillooly M, Lamb D. Microscopic emphysema in relation to age and
smoking habit. Am Rev Respir Dis 1992;145 (Suppl):A762.

5. Lamb D, Gillooly M, Farrow AS]. Microscopic emphysema and its

variations with age, smoking and site within the lungs. Ann NY Acad Sci
1991;624:339-341.

Abstracts submitted for presentation
1. Gillooly M, Lamb D. Cigarette smoking and the susceptibility to

microscopic emphysema. British Thoracic Society, Winter Meeting,
London, December 1992.
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2. Gillooly M, Lamb D. Relationship between the centriacinar and
microscopic forms of emphysema. British Thoracic Society, Winter
Meeting, London, December 1992.
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511 PROPOSALS FOR FUTURE WORK

The FIP has proved to be a useful technique for measuring AWUV in a
large group of lung specimens. In its ability to provide accurate
measurements on many individual 1mm? fields it is a valuable system for
assessing the distribution of tissue density within the lung, and also for
examining patterns of tissue loss due to microscopic tissue destruction. It is
hoped that the FIP will now be used to provide more data on AWUV
measurements in a larger sample from the Scottish population. In
particular, AWUV will be measured in lungs from patients with end-stage
obstructive airways disease. Also, a larger number of young adult and
elderly smokers and non-smokers will be included to improve the age
distribution in the study sample.

Study of the distribution of 5th and 10th percentile AWUV values within
the upper and lower lobes of whole lung specimens should provide
information on the location of microscopic focal emphysematous lesions. It
will be interesting to discover whether the spatial distribution of these focal
lesions is similar to the distribution of macroscopic lesions, and this will
help to clarify whether in fact the microscopic lesions are necessarily
precursors of the macroscopic lesions. In addition, study of the 5th and 10th
percentile AWUV values within lungs with macroscopic confluent
centriacinar lesions should be performed to discover whether focal
microscopic lesions exist in the tissue elsewhere in these lungs.

An important area to consider is the relationship between AWUYV and lung
function. McLean and colleagues (1992) found that carbon monoxide gas
transfer was related to AWUV. However, the study group contained only 2
non-smokers, and the necessary information on the normal limits of
AWUV was not available to assess whether the AWUV values in the
smoking group were normal or abnormal. It will be useful to re-analyse
McLean's data in view of the information presented in this thesis on the
normal AWUV range.

Carbon monoxide transfer factor measurements are available for several of

the surgical specimens included in this thesis, and FEV, measurements are
available for all of the surgical specimens, including McLean's study group.
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Therefore, it is now possible to assess the relationships between lung
structure and function in non-smokers in relation to age, and in smokers
with and without MAE.

The alveolar walls attached to the outer aspects of the bronchioles are
important in the function of the peripheral airways. Destruction of these
peribronchiolar alveolar walls leads to premature bronchiolar collapse
during the expiratory phase of ventilation (Linhartova et al, 1971; 1973; Petty
et al, 1986; McLean, 1987). The loss of peribronchiolar alveolar walls can be
assessed by measuring the average distance between the alveolar wall
attachments to the bronchiolar wall; the inter-alveolar attachment distance,
or JAAD (McLean, 1987). A preliminary study by McLean (1987) has shown
that increases in IJAAD were not directly related to decreasing AWUV
measurements. However, as stated above, McLean's analyses using AWUV
were performed before the limits of normal AWUV with advancing age
were defined. In light of this, IAAD should be measured in a group of non-
smokers to establish the relationships, if any, between IAAD and age; and
between IAAD and AWUYV. When these relationships have been
established, IAAD measurements should be made in lungs from smokers
with normal mean AWUV values and in smokers with MAE. Using the
results of these studies, the following questions should be answered:

Is there a change in IAAD with age?

Is there a relationship between IAAD and AWUYV in non-smokers?

Is there any apex to base variation in JAAD measurements within whole
lung specimens?

Is alteration in mean IAAD associated with smoking history?

Is alteration in mean IAAD independent of MAE?

Is IAAD related to alterations in the 5th or 10th percentile AWUV value?

Is IAAD related to macroscopic centriacinar or macroscopic panacinar
emphysema?

Is there a pattern of attachment loss which is unrelated to other forms of

microscopic or macroscopic emphysema?

The results of the present study permit the isolation of specific groups of
smokers, and this should be used in studying the pathogenesis of the
various types of emphysema.
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Macroscopic centriacinar emphysema has been associated with bronchiolar
inflammation (Thurlbeck, 1976; Cockcroft & Horne, 1982; Kim et al, 1991). A
study of the inflammatory cell population within the bronchiolar walls has
been planned, and this will involve immunocytochemical techniques, and
possibly interactive colour image analysis. The aim of such a study is to
investigate the relationship between the numbers of inflammatory cells and
microscopic measures of emphysema including mean AWUYV, 5th and 10th
percentile AWUYV values, and IAAD.

It has been suggested that the pathogenesis of panacinar emphysema may be
related to a systemic process (Thurlbeck, 1976; Cockcroft & Horne, 1982; Kim
et al, 1991). Using the information obtained in the present study, it is
possible to identify sub-groups of smokers showing susceptibility to the
various forms of emphysema. Preliminary work is underway in the
Pathology Department to use tissue from smokers' lungs to investigate
some of the systemic factors which may be related to susceptibility to MAE
and macroscopic panacinar emphysema.
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Appendix



This appendix contains a summary of specimen details for the study sample,
including the sex and age in years of each subject. The specimen
description, cause of death for the autopsy specimens and diagnosis of the
lesion in the surgical specimens are also listed.

Abbreviations:
f - female

m - male

R - right

L - left
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New automated technique for assessing
emphysema on histological sections
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Abstract

The assessment of emphysema in human
lungs has traditionally been based on
observations made on whole lung slices.
These methods are inappropriate for the
study of early emphysema, because as
much as 75% of the alveolar wall surface
area may have been lost by the time
airspaces are visible to the naked eye. A
new, automated image analysis system,
the Fast Interval Processor (FIP), was
used to measure airspace wall surface
area per unit volume of lung tissue
(AWUYV). AWUYV was measured on his-
tological sections of lung tissue and
expressed in mm?’/mm? The study sam-
ple consisted of resection specimens
from 40 patients (32 men and 8 women

whose ages ranged from 23-74 years).

Histological sections from the inflated
specimens were scanned using the FIP,
and a mean AWUYV value was calculated
for each. The intra- and interobserver
reproducibility of this method of
measuring AWUV were examined. The
results obtained using the FIP were also
compared with those from an estab-
lished image analysis system.

The FIP is a fast, efficient technique
which gave highly reproducible results
comparable with those obtained with an
established and much more time con-
suming measuring technique.

Emphysema is defined as ‘‘a condition of the
lung characterised by abnormal, permanent
enlargement of airspaces distal to the terminal
bronchiole, accompanied by destruction of
their walls, and without obvious fibrosis™.'

Emphysema has traditionally been assessed
by examining whole lung slices for the
presence of macroscopically recognisable
emphysema.”” By the time emphysematous
spaces are visible to the naked eye, however,
as much as 75% of the alveolar surface area
may have been lost.* Macroscopic assessments
are therefore inappropriate for the study of
early emphysema.

Various attempts have been made to assess
the extent of early emphysema on histological
sections, but the methods used have tended to
be subjective and non-quantitative.’"!

The mean linear intercept (L m) has become
the standard technique for measuring alveolar
surface area on tissue sections, an approach
intended to reflect the loss of respiratory tissue
due to emphysema.?*'*'* As Nagai et al repor-

ted, however," in addition to being labour
intensive, this is also a time consuming tech-
nique, taking an average of 45 minutes for one
section.

Semiautomatic and automatic image
analysis systems take much of the effort out of
microscopic measurements of emphysema.
These systems give accurate measurements on
individual fields. The sampling procedure,
however, is limited by the time taken to com-
plete each measurement, usually around five
minutes for a single histological field.”*?'

Methods

THE TECHNIQUE

The Fast Interval Processor (FIP) (fig 1) is a
rapid scanning device which was developed by
staff at the Medical Research Council Human
Genetics Unit in Edinburgh. It is a prototype
version of a scanner which is now commercially
available as the “Cytoscan” (Image Recogni-
tion Systems, Warrington, Cheshire, England).
The machine was originally designed as a
prescreening device for cervical cytology
specimens®? and has been adapted for use with
lung tissue. The FIP uses the same approach as
the mean linear intercept (Lm) technique,
whereby the number of intercepts of tissue
with a test line is counted, and this figure is used
to calculate the average distance between inter-
cepts. A value for tissue surface area can be
derived from Lm.*

The FIP consists of a computer-linked
Nikon inverted microscope equipped with a
motorised stage and a Fairchild CCD linear
image sensor. The sensor consists of a station-
ary array of photosensitive units which recog-
nise the optical density pattern of the specimen.
Each histological section is scanned electron-
ically in the y-axis by the sensor at 10 um
intervals. Sections are scanned mechanically in
the x-axis by moving the stage in 1 um steps.
The scanning rate is 2000 1 um steps per
second, so the stage moves continuously.

In total, an area of 121lmm? is scanned on
each histological section. As the stage is moved
the section passes, and is scanned by, the
stationary linear image sensor. The image
obtained from the scan consists of a grid of
picture elements or “pixels”. A user-defined
threshold limit determines which pixels are
recognised as tissue pixels and which are back-
ground pixels. A size filter ensures that groups
of thresholded pixels less than 6 um in diameter
are ignored. This gets rid of most of the cells,
debris, and background “noise’’ which may be
thresholded. Contiguous groups of thresh-
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Figure 1

Figure 2 A
diagrammatic
representation of an FIP
scan. (A) Sections are
scanned mechanically in
the x-axis using the
motorised stage and
electronically in the y-axis
with the stationary linear
image sensor. ( B) The
sensor scans the section at
10 pm intervals, each
electronic scan producing a
test-line 1 mm in length.
(C) Intercepts with the
test-line and tissue borders
are recorded. (D) A total
of 121 1 mn?’ fields are
scanned on each tissue
section. The arrows
indicate the direction of
the mechanical scan.

The Fast Interval Processor (FIP).

olded pixels in one scan line are treated
together as ““intervals”. Intercepts with the
electronic “test-line”” and the start and end of
each interval—that is, two intercepts for each
interval—are recorded (fig 2).

For ease of calculation, intercept totals from
each 1 mm?’ field (unit area) are stored by the
computer. Each electronic scan creates a ‘“‘test-
line” 1 mm in length for each field, and as fields
are scanned at 10 um intervals the total test-line
length is 100 mm for each field (100 electronic
scans 1 mm in length in each field). The mean
linear intercept can thus be calculated:
Lm=total test-line length/total number of

intercepts
As two intercepts have been counted for each
airspace wall (interval) the formula for surface
area is:
SA=2V/Lm*
Airspace wall surface area per unit volume
(AWUV) is expressed in mm?mm’
(V=1mm?). The formula thus becomes:
AWUV=2/Lm (mm?/mm?)
Histological sections from 40 lungs were scan-
ned using the FIP. The central coordinates of
these sections were recorded using an England
Finder Graticule (Graticules Ltd, Tonbridge,
Kent, England) so that each Imm?field could be
relocated.

Gillooly, Lamb, Farro

SAMPLING TECHNIQUE

Lungs or lobes were obtained from 40 surgicz
resections for peripheral tumours. Of these, 3
patients were male and eight were female, witl
ages ranging from 23 to 74 years. The resecte:
lung or lobe (hereafter referred to as lobe, as i
most cases the complete lung was not availabl
for study) was immediately inflated with formc
saline at 25 cm H,0 and fixed in formol salin
for 24 hours, and then cut into 1 cm thic
parasaggital slices. The lateral two slices wer
overlaid by a grid of 2 cm X 2 cm squares on

transparent sheet, and six 2 cm X 2 cm block
were cut from each slice, using a table
random numbers to provide the coordinates o
each block (fig 3). The blocks were then embed
ded in glycol methacrylate before being cut int
3 um thick sections and stained with haema
toxylin and eosin.

TISSUE PROCESSING

The sections used in this study were initiall
prepared as part of a study of the dimensions ¢
small airways. It was therefore important t
ensure that the distortion of the tissue due t
processing was kept to a minimum. For thi
reason, glycol methacrylate (GMA) was used a
the embedding medium, as it had been show
to produce negligible shrinkage or compres
sion.”As this processing method is extremel
time consuming, however, (only two cases ar
processed in a week), and because small airwa
morphology was not a concern of this study, th
possibility of using paraffin wax embedde
tissue was examined.

Tissue sections from 12 of the 40 cases wer
available for studying the differences in result
produced by embedding in paraffin wax c
GMA. Each section was scanned routinel
using the FIP, and two mean AWUYV value
calculated for each case—a GMA mean AWU’
and a paraffin wax mean AWUV. The resull
from the paraffin wax sections were correcte
for shrinkage as follows. The tissue block are
was measured before processing and the areac
the cut section measured after processing. Th
ratio of these measurements was used to com
pute the area shrinkage, and the square root ¢
this gave the linear shrinkage. The reciprocal ¢
this figure was used as the correction factor. A
AWUYV results from the paraffin wax embedde
blocks were multiplied by the correction factc

—_—— —_— —_—
Direction of stage movement
Total scan area
Intercepts T
‘Test ling’ 1
Tissue section Scanned area Lt
Sensor 10pm
‘Test lines’ 11mr
x 1]
ul A
BE, </
| 11
-
Tmm

Microscope Photosensitive sensor
slide (stationary)

®

-1 mm—=

-— 1T mm——e
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Figure 3 The method of
random sampling of blocks
from the lung slices. A 2
cm % 2 cm square grid was
overlaid on the lateral two
parasagitial slices cut from
the fixed inflated specimen
after resection. A table of
random numbers was used
to give the co-ordinates of
the six blocks to be taken
from each slice.

Figure 4 Mean AWUV
measured on paraffin wax
embedded blocks plotted
against mean AWUV
measured on glycol
methacrylate blocks from
the same lungs. The
correlation coefficient for
these points is also shown.

2cm
il213 1a
13 lial 1 2em
s &
7 b,
Az
i X Random blocks
// ——
’

prior to comparison with the AWUVs from the
GMA blocks. The correlation between the
results using these two embedding media was
then assessed.

COMPARISON WITH AN ESTABLISHED METHOD

To test whether the AWUYVs obtained using
the FIP were comparable with the results of
previous studies, the mean AWUYV values of
the 40 lobes were compared with the results for
the same lobes using the IBAS2 semiautomatic
image analysis system (Kontron Elektronik
Ltd, Watford, Hertfordshire, England). This
system has been used to measure AWUYV in the
past, and has been shown to give highly
accurate and reproducible results.?' 2%

INTRAOBSERVER REPRODUCIBILITY

Histological sections from 10 lobes were selec-
ted at random from the sample. These were
scanned a second time, and the mean AWUYV
for each lobe compared with the mean AWUV
from the first scan.

INTEROBSERVER REPRODUCIBILITY
Ten lobes were chosen at random from the total
of 40. These were scanned by a second
observer, and the mean AWUYV values
obtained were compared with the results of the
first observer. (The 10 lobes used for this
comparison were not necessarily the same lobes
which were used in the intraobserver
reproducibility trial).

All statistical tests were carried out using the
Minitab package.

30+
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p<0-001
25+
20
4
g o
£ 157 % °
E L™
a [ ]
L
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L T L T L L
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Figure 5 The mean AWUYV from each lobe from the
FIP is plotted against the mean AW UV obtained using
the IBAS2. The correlation coefficient for these points ts
also shown.

Results

There was a strong correlation between the
mean AWUVs from the paraffin wax and GMA
embedded blocks (r = 0-796; p < 0-001)
(fig 4).

There was a good correlation between the
FIP results and the IBAS2 results (r = 0-882;
p < 0:001). The mean AWUYV values obtained
by the two methods are plotted in fig 5.

A high degree of correlation was found
between the results of the first and second scans
by the same observer (r=0-995; p < 0-001)
and between the results of the FIP scans by two
different observers (r = 0-984; p < 0-001).

Discussion

The FIP gave comparable results using
paraffin wax and GMA embedded tissue taken
from the same cases when paraffin wax results
were corrected for shrinkage. This result
indicates that it is feasible to use paraffin wax
embedded sections to measure the mean
AWUYV for a lung. Therefore, if the time
available for tissue processing is limited, and if
the measurement required is a single AWUV
value for a lung, then tissue sections processed
in paraffin wax are of adequate quality for use
with the FIP, provided that shrinkage of the
block is taken into consideration in the calcula-
tion of AWUV.

A high degree of correlation was found
between the AWUYV results from the FIP and
those from the IBAS2, but the results from the
two systems were not identical for two major
reasons.

First, the two systems work on fundamen-
tally different principles. IBAS2 results are
based on very accurate measurements from
small areas of lung. FIP results are based on
morphometric estimates from wider areas of
lung. Such estimates are likely to be more
representative of the overall state of the lung,
according to the principle of “do more less
well”’, because the precision of an estimate is
affected more by the number of sample images
measured than by the precision with which the
single image is measured.*®
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Figure 6 A
diagrammatic
representation of the
differences in sampling
technique between the
IBAS2 and the FIP. (A)
Using the IBAS2, three or
four single 1 mm® fields are
selected at random from
each section. ( B) Using
the FIP, 121 1 mm’ fields
are scanned on each
section.

Histological section O i *
= 6 2cm
—1
Random 1mm? fields =t =
- 2Ccm—-

Second, an interactive editing function is
available on the IBAS2, while the FIP is fully
automated. This means that any non-paren-
chymatous tissue which is thresholded will be
measured using the FIP, but not using the
IBAS2. In general, errors caused in this way do
not account for a large part of the FIP result,
because the sample size is so large that positive
errors caused by, for example, macrophages in
the alveolar spaces (if they are too large to be
excluded by the size filter), will be cancelled out
by negative errors, such as lumina of bron-
chioles or arterioles. Areas of non-parenchyma
which are likely to affect the measurement to a
large extent can be excluded from the analysis
by editing the results as described below.

Although there were differences between the
methods, the correlation between the results
was considered close enough for FIP AWUVs
to be acceptable as representative of the
alveolar surface area of the histological sections
measured. For comparisons with previous
studies FIP results can be converted to IBAS2

equivalents using the regression equation for,

the line which best fits the points in fig 5. A
similar conversion may also be required if the
FIP results are to be compared with surface
area measurements using other image analysis
systems.

The FIP produced negligible intra- and
interobserver variation. The reproducibility is
largely due to the high degree of automation of
the system. This has its advantages and dis-
advantages. While it ensures the objectivity of
the measurements, it also means that it is
impossible to edit the image presented to the
system. Because of this, sections from
oedematous lungs or sections of poor quality
are unsuitable for FIP analysis. This is
especially a problem when dealing with lungs
obtained at necropsy, where fluid and cellular
infiltrate are often found in the alveoli. A
degree of editing is possible, however, whereby
intercept totals from fields which contain a
large amount of cells or debris may be excluded
from the results. This is done by identifying
individual fields using their England-Finder
coordinates, locating the results from these
fields on the computer, and deleting them from
the results file. Alternatively, sections which
contain a large proportion of non-parenchyma
may be excluded from the scan altogether.

It is feasible to edit out intercept totals from
the results in this way because the area scanned
in each section is so large. An area of 121 mm?®
was scanned on each section in this study,
leading to at least 1000 1 mm? fields for each
lobe, as opposed to an average of 30 fields using
the IBAS2 (fig 6). The scanning of such a large

Gillooly, Lamb, Farrc

Histological section

11imm

--"‘"'—-—'

S~

Area of section scanned using F

- 2cm—P-

area on each section is one of the maj
advantages of the FIP. It is possible to rela
the AWUYV values for each individual field
the histological section and study the AWU
patterns, and hence the patterns of microscop
emphysema within a lobe or lung. (It should t
noted that the size of the FIP scan can 1
altered according to the requirements of tl
operator. The area of 121 mm?® was adequa
for the purpose of this study).

The other major advantage of the FIP is i
speed. Scanning at a rate of 2 mm? per secon
12 histological sections can be scanned
around 30 minutes, and much of this time
involved in positioning the microscope slid
and setting threshold limits (the manual input
It is therefore possible to assess emphysema |
amuch larger number of cases than would has
been feasible using a slower method.

We conclude that the FIP is a rapid scannir
system which can be used to assess alveolar wa
surface area in histological sections. It is a use:
friendly device giving highly reproducib
results which are comparable with tho:
produced using an established image analys
system. The combination of its speed an
the large number of fields analysed make tt
FIP a valuable method for assessing ear
emphysema in groups of subjects, and fc
investigating the patterns of early emphysemn
within the lung itself.

We thank Dr Malcolm Lang for his help with the interobserv
reproducibility assessment. This study was funded by Norm:
Salvesen Trust for Emphysema Research.
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