
GENERAL KINETIC THEORY OF LIQUI IB

THESIS

SUBMITTED BY

HUBERT SYDNEY GREEN

A.R.C.S., B.So. (Royal

College of Science,

ISaivnrsity of London)

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY.

EDINBURGH UNIVERSITY

April 1347.



Contents.

page

Introduction 1

Symbolism 3

Chapter I: The Molecular Distribution FUnctions

1. Tm Logical and Statistical Basl3 10

2. Notation and Fundamentals 12

3. Kinematics and Equations of Continuity IS
4. Mechanics and Equations of Motion 18

% Application to Gas-Theory 21

6. Quantisation of the Theory 26

Caapfcer II: of Fluids

1. The General Method of Solution 32

2. The B-fheore® and trie Adiab&tic Prlncipi©36
3. The Equilibrium Distribution Lm 40

4. Tie Equation of State for Fluids 44

5. The Phenomenon of Condensation 47

Chapter III: Theory of Non-Unifor® Fluids

1. Hydrodynamics 50

2. Tbe General Method of Expansion 58

3. The Zero-Order Solution arid Condensation 63
4. Viscosity and Thermal Conduction 67

5. Conclusion 74

Beferernes 76



A GKNhfAL Ki: '■TIC T^PH^ OF LI: iJIDS

% fUQ it'y ,t.§,a,a

Introduction

In the last half-century much attention has

been devoted by theoretical . fcysicista to the tack

of providing an account of the macroscopic

properties of matter in terns of Its microscopic

structure. Indeed, it is clear that the

expert &■,. tal verification of any theory of sub-

microscopic phenomena, which by their nature are

not SU8CU tlble to direct observation, must largely

re t on the demonstration that the macroscopic

consequences of tne microscopic hypotheses are in

accord with experience. The field of study thereby

exposed has proved vs y fruitful, not only in
>

explaining otherwise perplexing regularities in tne

behaviour of matter in bulk, but also as a means of

investigating the detailed las?3 which govern the

behaviour of atoms and molecules.

Greatest progress has beer, made in the devel¬

opment of the t leery of gases05 by Maxwell,

Boltzmann, Hiibert, Chapman and Enskog. -Due

mainly to the work of Born, the theory of

crystalline solids^ is also reasonably coup let®

arid comprehensive. An examination of the extensive

work on the liquid state of matter, however,

reveals that 110 such comprehensive theory has so
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far be^n evolved in this field. This, is largely

due to the fact that toe molecules in a liquid are

near together, and also in a disordered state, so

that one may not assume that the density is small,

as In gases, or that an orderly lattice structure

obtains, as in solids.

Atte pts have nevertheless been made to extend

both gas-theory and lattice dynamics in an

approximative way to apply to the liquid phase.

Enskogtrie! to derive a generalisation of Boltzmsnh*s

equation for multiple encounters between the

molecules, but his result was not quite correctly

formulated, and contained besides an unknown

function waieh imp-sled all further development.

Moreover, it will appear later that the principal

error arising in the application of the t icory of

gases to liquids is due not to the assumption of

♦binary encounters*, but to the neglect of certain

effects depending on the interaction between the

molecules. More successful attempts have been made

to modify crystal mechanics so as to apply to

liquids; of these, probably the best known is due

to Lernv-jrd-Jones ana Devonshire^, whose work has

the merit of successfully predicting physical

constants at temperatures as high as the critical

point. The objection to such development3 is that

the molecules of a liquid do not perform



oscillations about fixed lattice positions, a

conclusion which is in no way shaken by the evidence

of X-ray scattering by liquids, that the olecules

have that degree of local oner which one would

ex,est of such a close-packed structure.

For the special case of equilibrium, the theory

of liquids is mucn oetter developed. In statistical

mechanics'5' one has a general method which can be

applied to give a formal but exact account of fluid

themodynamics, and the only practical problem

remaining is that of making the formal results
/

intelligible, by approximation or otherwise. It is

clear that any theory of non-uniform fluids which

claims to be rigorous saist give results agreeing

with those derived from statistical mechanics in

this special case of equilibrium; till 1345* when

this investigation began, no such theory was

avai able. There already existed, however, a large

number of fragmentary theories designed to give an

account of various properties of liquids with the

aid of special devices or assumptions suited to each

particular' purpose; one of the most recent is due

to Jaffe C. Suea *vork is well sum arised by Frenkel^
in a recent publication; other aspects of progress

in the taeary of the liquid state have been



4*
(?) (4)

summarised by Butler 7 and by Mott and Gurney .

Tills literature has no direct bearing on the

present theory, and will not be discussed here.

The theory to be developed springs from two main sources.

The first is the kinetic theory of ga-es, which

culminate i in the abortive attest t by f&s: og already

mentioned to generalise the theory for liquids.

More recently the Bussian physicist Vlasov showed

that this kind of method can be made to yield

definite results provided one is prepared to make

somewhat drastic approximations. These approx¬

imations can be avoided only by introducing a

second idea: that of the *multiple distribution

functions*, of which the radial distribution

function may be cited as the simplest example.

Such functions hove been widely used in atomistic

theories for soma time, with applications to the

scattering of X-rays by liquids and, in a slightly

dlf erent form, to the Brownish movement''^. The

unassuming but elegant work of TVon ^ deserves a

special mention in this connection.

llrtorood fea* recently realised the fundamental

importance of the multiple distribution functions,

arid treated special problems by this method. Since

the com unication of the fundamentals of the present

theory for publication1'5^, he has also published an



important paper<K> of wider scope, in which, from

the point of view of statistical mechanics said the

Brownisn movement, be derives m filiation substan¬

tially equivalent to (Zo) in this dissertation.

Althonga his derivation rests on an improved

hypothesis, and his method of tiro-averaging does

not appear correct from t e present standpoint, this

t aper must be regarded as valuable confirmation of

the funda entals of the present theory.

Too o .ject of this dissertation is to develop

logically a basis from which all the properties of

liquids, at re t and in motion, can be investigated.

As the claa: ical theory ca always be obtained by

a li iting process from the quantum the ry and has

not the same wide range of validity of the latter,

quantum methods have always been preferred; but

as quanturn mechanics is much more difficult

conceptually, the clas ical foundations are carefully

stated before quantisation. One of the s tisfactory

results of the classical theory is, that w en*binary

encounters* are assumed, the theory coalesces with

the classical theory of g&sss.

In the second chapter, on the equilibrium theory

of fluids, fm- new results can be expected, and the

main 003 ct is to show that all tii® equilibrium

properties follow rigorously from the foundations

in. a way which is both sim; ler and more satisfy to ry



than toe Darwin-Fowler net hod in statistical

mechanics. The resulting proof of the Boltzuann

distribution laps embodies no essentially new ideas,

but consists of a new synthesis of several detached

principles, including the application of ordinary

ttoe-dependent perturbation theory to the density

matrix of vcu lieumann07 and Dlrac08^ Pauli*s

moiification of the laws of radioactive reactions for

the proof of a general H-TlBoreaill<i/, Bom's auaba,tic

principle^0', and finally a valid application of the

method by which Maxwell first tried to establish the

Bolt smarm law for gases. Afterwards, the equation of

state for 'classical* and * quantum* liquids la

b.

obtained, and Mayer* s theory ofthe phenomenon of

uss

(Zi)

condensationdiscussed in trie light of the author's

work on this subject

Id the final chapter, an attempt is made to open

up a field never before satisfactorily investigated:

that of the trnsport poenomoaa in liquids. This

requires something more than a stereotyped

application of the methods devised by HUbert,

(Shaman and Ifcskog, which ware tried but found to

fail in the case of tne multiple distribution

functions; a ne^ method of expansion had therefore

to be devised. The results make quite clear the

reason why the gas formulae for the coefficients of

viscosity and tarsal conduction fail so laiaentably



when at plied to liquids; it is baiau se these

coefficients consi t of two terns, the first of

which is due to the thermal motion and decreases

with temperature, and the second of which is due to

the Interuolecular forces and increases rapidly with

the density; of these, only the first is determined

by gas-theory. Ho attempt is made here to compare

the theory with ex e.ria»nt; this is being done

el. caer®, with results which must be considered

entirely satisfactory.

Since the taeory is quantised, a point of mador

interest is whether it is capable of explaining the

anomalous features exhibited by liquid helium II.

On this question, the the ry i encouraging: the

equation of state, for example, deviates widely

from the classical equation, but only at- very low

te paratopes (-k/kT~I o~ sec.). An initially

surprising result is that quantum mechanics requires,

no modification of the classical equations of motion

and energy transfer, but only of their interpretation

in ter s of atomic events. Another significant

result is that the pressure tensor and temperature

gradient which enter into the definitions of these

quantities bear no direct relation tc the pressure

and temperature tuermcd namlcally defined, which



8.

no doubt explains why the proportionality laws

appear to break down in He II.

T e author wishes to acknowledge in this place

his profound indebtedness to the supervision of

Professor Max 8om, who not only contributed moat

of the ideas which began this theory, but by his

continuous advice and encouragement, assisted at

every stage of its further development.

f



Symbolism

The vector and ten or symbolism in this lis*

sertatIon is based on that devised by Chapman and

Milne0), extended where necessary to a dimensions.

Vectors re once underlined, thus: 5- , X i

tei sors are twice underlined: b , jo . J. denotes
the unit tensor, and b the transpose of b .

The products of a tensor b with a vector a (both

vectors) are written a.b and Jg'B. ; the spur

product of t o tensora b and b/ is written kcj/ •

Below are li ted page numbers where symbols are
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CHAPTER I; TH3 MTLtCULAR DISTHIT1TI0N FtBCTIOtS

1. The Logical and Statistical Basis

In trie application of the concept of probability

to experienc-, t o quite distinct methods are

aval labia. The method usually adopted begins by

defining the probability of the occurrence of a given

went a - that fraction of the entire number of

possioilitle which satisfies the condition under

which the event is deemed to occur. T is procedure

always leads to certain difficulties in practise.

If, as in statistical mechanics, the enumeration of

the possibilities is made without direct reference

to experience, the Identity cf the probability sc

defined with any physical reality cannot be proved,

but only tested if experiment. If, however, as in

trie kinetic theory of gases, the enumeration depends

on soma hypothetical experiment, the probability is

by definition imprecise and liable to vary from

experiment to experiment even while the experimental

conditions are apparently unGhange i.

Ibr example, in gas-theory the number density vn

of the gas molecules at the point x may be defined

in terms of the probability olx that the volume

ele ent x , cU is occupied by the mas—centre of

a mol oule. In statistical n-ecnanlos this

probability is determined by enumeration from an

assembly of artificially constructed copies of the

macroscopic system, but then tne relation to the



physical reality is *aite obscured; whilst in the

kinetic theory of gases one counts in imagination the

number t-v'Sx of molecules in a volume &$. surrounding

x. which is small by macroscopic standards, yet large

enough to contain many molecules. - an ill-defined

procedure which can give a value k' only approx¬

imately e&ual to the ideal number densitv ^ .

These difficultle can b© avoided by the more

abstract but entirely logical method adopted in the

present exposition. Here probability is treated as

an a tricri concept: it is axiomatic that one can

attach to any conceivable event a number signifying

the probability of the occurrence of the event,

which conforms with certain laws coinciding with the

laws of statistical probability. Thus, if A

represents the occurrence of any event, and A)
the probability of the occurrence of the event, one

-has

(1) p(R)- p«VB>^PA'~e>

(2) (A D8) O { ^ P Ay)K

in the symbolism of logic. From these, two principles

of fundamental importance for the present theory may

be deduced:



(i) The probability of 3 , among those events

in which A is certain, is given by

(3) p*(ej> = p ^'s-» P'A/-

(li) If A and 6 are causally connected,

(4) pia) = pee).
It follows immediately from (i) that if A and 8
are Independent, so that pA [8)=* p:£) , then
pi^-^ - p^)p(e; . The deduction of (li) from (^)
is self-evident whan one observes that a causal

connection between A and B requires AdB and

83 A .

The significance of these irincipl^s in the cln Heal

theory of fluids will a- ear as the theory is de¬

veloped. When the quantum theory is introduced,

however, they are found to be quite unnecessary, as

quantum mechanics incorporates much of the theory of

probability in its foundations; the way in which it

is involved is well known and will not be discussed

here.

2. cna ffand^q^tnis

The fluid whose properties ;re to be examined



is assumed to consist of N sitdl^r molecules of mass

m confined vitdixi a volume V . The configuration

of any molecule ma? be specified by a number (a)
of generalised coordinates X\ - X* ^ the first
three of whioh may be chosen to be-the coordinates of

the mass-centre of the molecule. A molecule is said

to occupy a volume element of real space

if its mass«-centre *s(x,>xz7*5) 11®?- within trie volume

element; similarly the molecule' is said to occupy

the element dx « eU,^--- c^«. of phase space if its

generalised position vector x=-(xl9sz,- • • xj falls
within the ©lament. Tea temporal rate of change x

of the *position vector* *. is represented by the

)0, arid £ by the

generalised scoeleration 2] » t] by J» , etc.
The probability that at ti&e "t" the volume

elements dx'" , dgw » ... dx(<v (of phase space,

if a>3 } are all occupied is denoted by

ru ■ ,Z.iC°) TT cL>xi:); for brevity »V**,S "J •••,***})
will often be contracts'! to , h^(x) , or
simply «o^ , the variables being sufficiently
indicated by the suffix . If cx—i , >-4 is the

number density of the molecules, and when n,, is

constant, ^rvf is the function referred to in
literature as the radial distribution function;

The functions are connected by the relation

if a> i , tne number density



(5) f (M-t)'H

Tills is easily proved with the help of the principle

(i) of ^1, A now representing the occupation of
each of the volume elements d*{° ... dx1** by

molecules, and B the occupation of cOk1^ by a

further molecule. According to (35, the probability

of B when A is certain is , and

the integral of this ex; ression must he, tharfore,

the total number of molecules, excluding the ^
whose positions are fixed. As the limiting case of

(5) when , one has

(S) $ «Lx"> — N

($) is also sat is fled when = N , sine©

vanishes, by definition.

The probability that at time t the ♦volume*

elements ct*6), ... Ax1^ are occupied by molecules

with ♦velocities?* ... in ths elementary

ranges dli%) , ... respectively is denoted by

l*>*(>''' X4?£*'* "£<*9tTthe contracted forms
*•= I '

or fp will often be used
instead of It a—3 , f,
coincides with the velocity distribution function of

the kinetic theory of gases.



It assist be observed, that the above definition of

is only legitimate when one asBiases that classical

mechanics is adomate for the description of

molecular phenomena, since, according to the general

principles of quantum mechanics, it is strictly

imio. sible to rnea are the position and velocity of

a molecule simultaneously, The modifications which

have to be oada to adapt the theory to quantum

requirements will be discussed later (f 6).
The satisfy the relation, analogous to (5)»

(7) ft fy. = .N—p-f,. > J
also, clearly,

(8> y f,}], ^ ■

Pursuing this isethod, one map define, an
'

acceleration distribution function such that

the

pro&baMllty that at time t the volume elements
.

£" , olxt:t are occupied by molecule? with velocities

I'"' , cUf1'' and accelerations 2]'', cUj',) respectively
( i = ^ ). The oj<j.satisfy

(3) ftj 3y, - «< W.)9» ,

and



(10) J S 71, Jq"' = h

16.

The definitions and fundamental epilations relating

to the rate-of-acceleraiIon distribution function

etc. are now obvi us.

3- Klne; -tics and Fqu tionpqx Continuity

It is now proposed to y.nke a direct aril lest Ion

of tiie second principle (li) of J 1 Is order to
obtain a.set of generalised continuity equati ne

describing trie .otion of the fluid. For this

purpose, A must be interpreted as the occurrence

of a molecule at the point X (and with velocity

X ) at tirx.e t" , and 8 as the occurrence of a

molecule at at tioie -t-cUr . These

events are clearly causally connected, and the

probabilities of their occurrence are theidore

equal. Applying the same consideration to a

*cluster* of <j, molecules, one ha;?, on sum ing over
all velocities,

an j w J p [*-<*, s-i«, -H'M.)

Hence, by subtraction from (8),

(1p, ^c£+iX'%)i^y=o>
or,
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(13)

wham

222^- -+- "2f -^~ri * ~\ )— °-=rt ^ ;t , 22 1 '

(14) U.^ -1-— %

is the average velocity of the molecule (c ) in the

cluster of molecules whose positions axe known.

When cc~3 , the equation of eoct inuity of ordinary

byorodynsmtc& ani the kinetic theory of ga^es is

obtained from (13) siuply by putting I ; when
<x> ^

, the corresponding equation Is obtained on

integrating over the int :?rmal coordinates of the

molecules.

The same principle may clearly be employed to

snow that

(15) J b?Jg,

and hence that

(IS)

where

(17) <= £ J?-'f



is the average acceleration of the molecule ( t )

in tne cluster of ^ aoleculas whose poi&ions and
velocities are known. The method of derivation of

•continuity equations* for and Kj, , analogous to
(13) and (16), is now Quite obvious-.

4* Mechanics and Equations of Motion.

The iT-s^hanical properties of the system of N
molmnltm are moet easily obtained frocn the

HatPiltonian ftmctioc. Hw for the entire system. One

has

N
N |.i „ ''J'

(18) h„ • - ?: H ' "I" * f ''
V - I Jj

where H'' is trie Ha-:i 1 tonian of the molecule ( i ) in

the anseri ne of tne others, and is the

interaction oner.;;/ between two molecules at x,:' and

20' . (It is convenient to adopt the convention
<>'P % • '•)
f =■ O). ri is given by

(i_■)
/.•) I K (■) ,, (.") v»<:) , _ _<»)

(13) h = -xi * j- ■+•

where rejresects the

kinetic energy, and y'" ~ the potential

energy of the molecule due to the external forces as

well as to its own internal configuration. The

fed 1tonian equations for the entire system, namely
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may be solved to obtain the (acceleration* z\l!} in the
form

(2D q<-> = -<■>->. (p"- X ^',0I

where

(2- ) P(:) - -X s ^±7> 51 - ' *** i Sstal Vxj:7 V*J -frcps** Sfr -2T<r 5

and is the reciprocal of the tenser g,;)
Wnen a— 3 , g'7 reduces to the multiple ^ of the

unit tent or, and P'" to the external force acting

on the molecule (( ).

The mem acceleration of a molecule { I) la
a cluster whose positions and velocities are known is

easily obtained, with trie help of (21), In the form

(a?) W
J

The most obvious way of proving this result is by &

further application of the principle (i) of |» 1 to
show that the probability that the volume ele:mt

x"*+,'» Ax'**" is occupied by a molecule with velocity

is V* <Lx'*+0cLt(%+,). (23) ®ay also fee
hp

obtained directly fro® trie formula (I?) fey re-writing

it, witti trie aid of (9), in the form

(24) w"=-J— c (3H"^r v;' ff cM'rr d-i'V10* (M-<p! J •" J / I -I Kn+,



and substituting

**** ^
where $" den.:4a. the Dirac delta-function.

Substituting (23) in (l6), ore obtains the

important equation

which mm be regarded as an irdegro-cilfferastial

equation for the dietermination of . As, however, i
it contains on trie right-hand side, its solution

must be effected either by making some ash roxiaetive

assumption concerning the dependence of on ,

or by proceeding to the last equation f~*ts , where
tne integral term vanishes, since Tn+i"0 . Of

course, the equation is not fully determinate by

itself; one may give )N any value as a function of

the x,;' arid at an initial time t«> , subject to

the normalising condition

(27) n %

and (26) then deter, dues toe subse uent variation.

^ may be obtained by integration from (25),
but m such integrations can rarely be performed in

practice, it is important to obtain the differential



equation which it satisfies arid which provides the

best starting point for approximative evaluation.

The derivation of this equation offers no diffi¬

culties; from (21) one obtains the * rata of

acceleration*

whose mean value must be substituted in the

equation for ^ :

(23) * !,«■• h> si0)}- O |
5. &■ liC(|tl9P„Vo Gfla-V^Qry

So far no distinction has been mad© which

Identifies the molecular system under consideration

with a liquid, as opposed to a solid or a gas.

Indeed, it m&r be claimed for the foregoing that it is

sufficiently general to be a, plicable to any form of

matter. However, it is important to be able to

differentiate clearly between the three phases, and

their characteristics are therefore now briefly

stat"d. The solid is distinguished from the fluid

state by the existence of a degree of long-range

order, so that the occurrence of two ©vents A and

B separated toy a long distance is not iniependent,

wnereas for a fluid, according to $ 1, one has

p(A 'g)= p(A)t>(B) J thus, for example, in a fluid



when |xf-K0;| is large, but

not in a solid.

The distinction between liquid and gas is in

abstract not so clear, arid mm be said even to

disappear above the critical point; it is best

understood through the phenomenon of condensation,

|which will be discussed later. A rough distinction

may bcwevar be sss.de in the following way. Trie

! potential energy xCj)) between two molecules at
; x!'> and x<J decreases rapidly with the distance

between their masskcentres, and (except in the

special case of Coulomb forces, applicable to ions)
a distance v0 , which is very small by macroscopic

standards, may be specified, beyond which the

interaction mar without error be assumed to vanish

completely. In a liquid, there are many molecules

; within thi^distance of a^lvan molecule; in a

gas, tners are usually none, and the probability that

there is sore than one lb very small , except near

the point of condensation. The neglect of this

small probability is equivalent to the assumption

of * binary encounters* in gas-theory. It will now

be shown that when this assumption is made, on

substituting cj= | in (2b) one obtal ne the Boltsmann
equation which is fundamental in the kinetic theory

of gases.

For this purpose, one assumes, with Boltzmann,



that the internal structure of the molecules is

unimportant, so that a = 3 j then the right-hand

side of (26) reduces, when ep- I , to
tUcU}l)dX^J . To transform this into

the Boltsmann *001113100 integral*, m ax ression

for £ in tens® of -f, is first required. Consider,
therefore, the motion of two molecules which at time

t have positions X(l)» &h) (such that lx'l)—xf,)| < r0 )
and velocities V"» re; pectively; an! suppose

that at time t0 < t » when the molecules were last

at a distance r# from one another, their positions
and velocities were , x^ and ^1° » respect¬

ively. During the motion, according to the principle

(ii) of <|>1, the conf igurat ional p ronubility

f2(t)^ i'?I<v|) {,)cVflh) must remain unchanged}
also, by Liouvllle's theorem, the volume in phase

space cU'^ci-xMti|(,)dt<v is unaltered. I-fence

{30) £"#>'*•>shir

since, a® explained above, molecular events in

fluids which occur beyond the range of interaction

must be considered independent.

Hext one iatroducee an approximative assumption
i

which is always made in gas-theory, that "to , xJJ ,

and X^ may be rep laced by t , x(> ) , and on the
right -hand side of (30). A3 v; is 30 small, trie

resulting error is of microacopic order; nevsrthe-



leas itjis important in explaining wiry, for example,
there are small deviations fron: the Maxwellian

velocity distribution law, which is a, rigorous

consequence of the Boltsnann equation, in equilibria

conditions.

To calculate ijj and in terms of J(° ,

and r= x^-x^ > on© may use the Hamilton is®. equations

of motion

The eight functionally independent integrals

©k Cz, I°\ P^)=const. (k — l • 2 ) of these equations
fU»t suffice to determine r0 » » and Jp as the
solution of the simultaneous equations

(j?) e„a,,if,i*> = ew.fe»VIIM), ,c'i - r° •

Since, however, all the satisfy the equation •

( 33) m (5(0-|(0)4 Ig* - ^ ' i^to" %'•') ?

>» (i) >»a)
J0 and £0 , which are now expressed as functions

of the Op , satisfy the ease equation, and so does
the expression for obtained fro® (30). The

integral vanishes on account of the

inte ration over |'x ( because there are ng
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molecules with infinite velec it ies); hence

1 ^ -j

(34) -k ff j"((f-f)-(£,%(0^
where tm domain of integral; idn over r may be

llmitied to the sphere of radius re surrotmding x";.
Tais integration is most conveniently performed

by imagining the sphere to he partitioned by
y(l) u /h

elacntary tubes parallel to the vector I ; one

.may then integrate, first over a typical tube
V1"

specified by the cross-section radius b. (perpend¬
icular from the centre of the sphere), arid then over

all values of b , At the beginning of the tube,

where '')•!: <0, the interaction between the
molecules is negligible, and Jj* reduces to V\ and

f(0x) to |<x) ; at the end, the values %(0'md £(t)/
cf V'J and |f*' have to be calculated with the help
of (3?). Thus the right-hand side of (34) assumes

the form

«iy-i'"iif, i,d"% *1™
which is the well-known Boltzioann colllai n integral.

One is thus assured that all the consequences of

the Boltzmann equation in gas-theory can be derived

from the present theory when it is assumed that

only binary encounter© between the molecules axe

important.



6. Cu cut isat ion of toe Hieorv.

At IMs juncture it is neeesa.ry to consider

carefully Cos? the theory mmt be modified in order

to &ake it conform •rith the requirements of quantum

mechanics. As is '••-ell-known, a formal correspondence

between classical and quantum theory can He

established by replacing every classical expression

cC^lt,• >S'V%'']• ■ ■ which It a function of positions
and velocities by the corresponding operator,

fipresented by the 'matrix* x(<*V'}/ • ■ -x^'O ,

in the -representation. Sich a matrix will often

be denoted by or eiwply by . The sum

and the product ("Spv or two operators ^
and (3^ are defined by tee matrix equations

+• (3^)(x ,x// =• ,*/) +• p+ ^5, 57y >

t35>
«,|S>)Ca,a0- f?>f&.

The operators corresponding to the position

vector x':), and the canonical moment urn vector

are specified by

x':,c^ ,*') - jT^ 7
(36) c,/ __ *2- if" .

With the aid of (35) and (36), the representative of

any function of time, coordinates, and momenta can



be constructed. In particular, one obtains for a

function *V^(i of coo in tes alone,

%
(37) 7,(5,34'; - ?,<2sVTT fOi'J-£'K,

and for expressions of trie form and ^

(P';W)(«.S'; - - A >
<38)

The ♦trace* of an operator of the kind is

denoted by X^+i ("S+i1 , and defined by

(33) (*,*')=

except when , it is an operator of the kind

dy and must be distinguished from trie complete
trace, which is a encumber. The complete trace

XK) of 1$ defined by

(40) X^l) =s"- Xj £ »

X^+i^+J is the quantum transcription of the
classical expression j J <*^ + | C*; \) CU^+04,|^+" ; by

comparing this ex;. ression with (40), one sees that

in quantum theory the operation 45is replaced

by \ 4x^+,;/J(af1+4-X1+1' , i.e., by the substitution of



P'"' for **■'»,
Suppose that f-%Is the matrix represent-

ative of the operator p^ which corresponds to the
velocity distribution function >V . To preserve

the analogy with the classical theory it is

convenient to normalise according to the relation

(41) tC^+i =■ % '

corres ending to (7); whilst the formula (8) now

reads

(4?) J J ft TT p

or

(43) fa (s , *) - '"H (2O

This is one of the mowt important properties of the

matrix fa , that its diagonal elements are the
values of the number density function. It is seen

at ones that fa coincides with the * statistical
operator* or *density matrix* introduced into quantum

mec.iatiiC r by von Ifeassann11'7 and Diracl,?/.
In order to formulate the equation satisfied by

h , it is convenient to begin with j:N , Like ,
this matrix may be given an arbitrary value at time

tc , subject to the Hermitian condition arid the



normalisation

(44) *(f») -

its subsequent variation is than determined by the

He.i senbe rg equai ion

(45) ?eg - o«, p~-,

where nN is the Hauiltonian operator constructed

from the formula (18), arid [**> 0 , in conformity

with Dirac* a notation, means singly~£fyfirfv$ ®ie
may define for any value of ^ by the equation

(46) fi = Z m''+ SX <f>'h
t •—i 5)-i

so that, taking the trace of (45), one obtains

( ,|7) fVil + , fn J

The only tern of which doe - not obviously

vanish is pNj , and when reduced to the form
-i f . f (*"•>(>«+p«pj"9(!., *0Jap
this obviously vanishes also after transformation to

a surface integral. (There are ng> molecules outside

the coiifines of trie volume V ).

Repeating this procedure indefinitely, and



cancelling the factor (nI-^)! which 344 ears, one

obtains

^ • )

(48) ^& sr [H«pp<j. J -+" X A^, ^ > P<j>i J ,
>tr •

which is the fundamental aquation satisfied by p«j. .

How, it is wsli-known that the classical analogue of

tha*Poisson bracket* , (2% „ is

and since jg.1'- * , In the transition to
elasie&l seebasics becomes

4 xz-2 -p"0. *£* - %t:>. l£%}
•X) - J •y£c> '225° J ?

*»<* tf''r"J Pi+1 3 becomes
ff q';)~'' 9-^±t:, <=L*'i+°0) m*. i '

so that in tie limit ~k -> o » (48) goes over into the

corresponding classical equation (26). This ec uras

that kin the region of high temperatures, where the

energy state-, are so numerous that they may be

replaced without error by a continuous spectrum

(thus effectively writing )> the classical

theory developed in previous sections is fully

adequate. In the region ofvery low temperatures,

however, the divergences between classical and

quantum theory become important, and a quantum

treatment is essential. To preserve full generality,

therefore, and because the quantum treatment is

seldom more difficult than the classical one, the

more important developments in the chapters which



folio* will be made la the tomalim of the present

section.



CHAPTER II; THERMODYNAMICS OF FLUIDS.

The General Method of Solution.

In order to calculate the density matrix

from the equation (4t>)» it must first be specified at

some initial time "to . For this purpose one first

chooses any complete set of indg.-endent commuting
-V tr) .

operators a ( r =->•■• N ), and then specifies the

probability frAX)= (f( "'XN)) that at time % the
fluid is in the state 1 for which the X'' have the

si ultaneous eigenvalues X . This represents the

maximum of information which can be ascertained

experimentally concerning the fluid. Let be

the eiganfunction corresponding to t e state X ,

satisfying the equation

(49)

and normal iced in such a way that

(50) J ?!! J I+«(*>*> I* IT cIs';' " N! '

Then, at time t0 , according to von Neumann and

Birac,

(51) pP'd,-s'i>
One possible set of A is that set of operators

which commute with the Hamilton!an hw , and are

therefore constants of the motion; it is convenient,



however, to choose the A in a slightly different
•

way, as follows. Suppose the fluid is divided into a

number of groups containing , ■■■ molecules

( ^i-+ ■ • ), such that the interaction
between molecules in different groups is very weak;

this may be effected, for example, by imaginary

surfaces described in the fluid. Tnen the A are

chosen to be the A,, X2j Aw which com ute with

H<y> 5•'' respectively. Writo

so. that v is very small compared with Hh . Let
be the eigenvalues of , W<^, ... (4_,

and put

(52) Hn — H1,+ H1j+-' + H^+

(53) E"* - ^ + EZ+ * • • +

Then, in the £-representation, (45) reads

(54) cfc (EH-e^>pN«,t9
>l:

+• 5" «?<'>

Substituting

(5 ) becomes, in matrix notation,
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(56) ifgN = l/'Pro '*"•

This aquation may b© solved by writing

(57) p~ = pio) -+- p(») -+- p(O -f-• • • >

where p(o) is the value of pN at time t0 , given,
according to (5U» by

(> p(o) (Xt') =
and the p(X) satisfy

(59) Jfe 2fS£^=:

The probability at any time "t > t0 t xat tns fluid is

in the state X is tnen

(bO) ^ |><Xd-p(0 + "' >

where f>M (JL) = pM U>l), -so that p(o) = , If

(61) X0- = C V- cU , V" = L /">^ to

one obtains fro: (59)

(62) A fir) = -UTptO -ff,



— i.^./ — "ufj3(o)vj—"US^OIIAJJ> dt
— L ^Vo) - 2W{Co)Uf + f(o)liSlj r IS, f}(°) -ptojUf, ?

where

(64) 'UT =r £ f CWUf-U/w9*Ur,j *o

•and similarly, by an easy calculation not reproduced,

- (o)-3'U)LpCo)VJ+3'UJp(:o)bj'1-
(rys * +• w{vs, pco) -pco)w, y ~ {w, f/o)-pA>>ut, ]p

■+ Wj pCo.) — ffo)WL ?

where

w2 = | ^ (•ur,^-wur,)<i* .

(6?)

Hence

|p (0(A) = c
pu;a)= £*5 i™a,*';r{pNttf-pwa>t

++*2" {p* '>- f*$]R x/

As U- is anal1, the series (60) will converge quickly

especially when -t-tc is small. Banco, to a

sufficiently high order of approximation.

(68) PnX - P~S,
/

Tnis equation has a transparent physical significance



when \VfiL)lOlZ is interpreted, as the probability of a

transition ftorn the state £ to the state I '.or
viae versa, in time t~te .

2. Tiie E~Theory, ^nd tue fldla&jLtio Prlr.oij-.:^
Or;© sees immediately from (68) that a necessary

condition for equilibria® at tirae t„ is

(65) yj0.^(^=0 err foU)- fVitf/1, oM L cwa £/
in the sense that Cl) and pNa1) must be equal for
all X and I' for which UStt,tf) does not vanish.
This condition is also sufficient, as it secures the

identical vanishing of p(i7 , aikl hei.ee of all the
p(^) except p Co . It will now be shown also that,
starting from an arbitrary initial state, the fluid

must approach a state in which (6$) is satisfied.

For this purpose, one defines a quantity SN by the

equal ion

(70) ^ ("V ° pN ) ?

20 that, by substitution from (68) and neglect of

squares and higher powers of the small quantity

It, one obtains

SN = - \a.^iOtoj pN»)+g2 I+% *«>}
(n)

=

X x tv £>.£



Thus oN necessarily increases between the times i,
and t , unless {69) is satisfied, when it remains

constant; and SN will therefore continue to

increase while the fluia approaches the equilibrium

state, until such a time when piz) becomes small
enough to be comparable with pi3 . Then the above

I

argument loses its validity, since

and. wf^()jare not necessarily positive,
and, in toad of further api reaching the equilibrium

state, the fluid is subject to small random

fluctuations in tbe immediate neighbourhood of

equilibrium. Fro® this point of view, phenomena

lite the Brownie® movement are readily understood.

Corresponding to (70), one has- for one of the

groups containing molecules,

(J2) S —k*^- jpe(Jik) Jtoy p8vW,e ie

where p^Ji€) is the probability that this group is
in the state ie . Since toe groups are virtually

independent of one another,

(73) fHa)- 7=.' p°^'
and, substituting this value in (70), and remembering

that T MeU<, — i , one obtains
ie 1



All these properties of SN strongly suggest that it
is identical with the entropy of the fluid which is

defined in classical thermodynamics, but, pending a

rigorous proof, no use is Bade of this preempt ion.

So far, the way in which the p60 depend on the
time has not been explicitly determined,. From

(bl) and (04) on® obtains

, , xVU,lO A"**'. . , JWU,(# = Sa^±V(t,

Ufsu}t")s: 2 2±^-L>)v(Li^ vt'c&iitf-Vi
t< v,Xi tv,4-vi.) ^

where kv, "£.-£= , arid i'« * -t0. Now,
all those terms which are periodic in t' and
therefore oscillate about a small fixed value do not

represent any real change in the fluid, and may be

regarded as vanishing. This applies to all terms

in except those for which yf = a , and to all
terms in "Uf{lLjU) except those for which y,+v2 = o .

Heme one has effectively

w a,i')=vit.t-OSc^i c-t-t-.)
<7b)

UT, us). *rs!e-th
• cN tM

j
where 2. means that terms for which £N-EN are

omitted from the sum ation. The result is, that only

those transitions occur which satisfy the principle

of conservation of energy. This is the 'adiabatic

principle* dissevered in. quantum theory by 0orn(i°-;



the title regains appropriate in the present

application, since tag possibility of perform!ng

work on the fluid by moving the external constraints

ha,- not yet been considered. It has baen assumed in

the foregoing that trie energy levels of the fluid

arc discrete, but it is' easily verified that the

adiabutic principle holds also for the continuous

spectrum. It is eastly seen, further, that the

adiabatic principle holds not only for p(i) and
p(r.) , but for all the ; this extension was
first proved by Bern and Fock

It hae been shown that UfiM', is diagonal in

, and the question now arises whether it can be
(r)

diagonal In any otner combination of the i . To

decide this, 1st /iN be any combination of the X"
such that bfUjl'; is diagonal in its eignvalue LN .

Then AN commutes with V* as well as Pith tlm other
X *s, and thereofore also with hN, so -ordiiig to

(52). As V is the sum of a number of arbitrarily

selected terms <j>°^ , dXK mast coa&ute with the •
individually. The only constants of the motion,

however, which commute with the potential energy,

are the mmentm and angular mmntm. Hence one has

(77) AN-|A:,-e|,A.;1 —- r CZ •— '

. i-) ..

where i\ represents either j»" , or one component
and the square of x,-'a It thus appears that W



ami be diagonal only in those constants of the motion

which aro also *summotional invariants*.

3. The Equilibrium Distribution Las*

It is now possible to determine the equilibrium

form assumed by pN from the condition for
equilibrium (63). It follows from this condition

that pH(X.) must have toe same value for all those
states which can be connected by a chain of

transitions not forbidden by the vanishing of the

matrix elements of W ; but that for states, such

as different energy or momentum states, which cannot

be so con: sated, fvj(l) will have different values.
Thus, in equilibrium,

where E^ is given in terns of the Ee by (53)# sncl

i-N in terms of the Le by (77). It follows

rigorously from txiis that the dependence of j>N and
on Eh and c3e is given by

(7$) [V = p , lN3 ,

and, according to (73)#

(7>) L„) - jT p.(h



where |§ is a constartt and An - Ae . AN is in
general a linear cpeMnaf ion of the LN , hut for
simplicity it is assumed here that the mem momentum

and angular moment ant of the fluid both vmil ah, in

which case AK is a constant, determined by the

condition "ZpM(*) = ! in the fonsX

(81) 4-f»- „ x

To dtermine 3 , one employs a well-known

arg -merit, stated concisely by SchrOdlnger An

external agency is permitted to do work on the fluid

by moving the external constraints; the effect of

this is to Chang? the eigenvalues of the energy

of the fluid. In a small change ctEN of the cM ,

the work done on the fluid is X pNU/ ; the
corresponding change in the internal energy UN ,

given by

(82) UH hT pK60 En ,X

03CG#ed@ this hy

2 ^;tEN = J -ef!lA', HllpA.-£«))• En
( 3) *

=■ -2
X

and this must be TolSH , where T is the thermo¬

dynamic temperature and SN the entropy. The



reciprocal of the integrating factor of the

right-har d side of (83) rauat thwrfore be a multiple

k of T » i kT ), and the entropy jn must be

_ /3 (■** -en)
(84) -kg T vAw — Xr

i A

apart from an unimportant coastant, This justifies

the interpretation of the quantity defined in (70)
as the entropy. Finally, the free energy AN= U«.~TSH
is given, apart from an imlm, .or taut constant, by the

equation (81).

The equilibrium expression for pN may be written
down at once with tne aid of (51), (78) and (80);
it is

(85) pN -

in operational form, since one may now consider the

fluid as a whole, aid put 1>=0. (^* = - = pw»o),
Taxing the complete trace of (85), one finds

_6«" v

(86) Nj-t = x - '

which is equivalent to (8l); also, :y retreated

application of (41)» one obtains

-f5A~ - A LA,« 5 • • • XN U~'* ""'tj.
(87) (M-gH-C. P p^-<V>L/V*1 ~ 1
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In tins ''-ay, all the equilibrium properties of the

fluid are in rincij le determined.

Tm transition to classical, as opposed to

quantum theory, is easily made. (85) and (86)

may toediately be transcribed in the form

An" •"W
Jw =

<88)
N! 4.-**" -

where hn is now interc.rated as a function of

positions and velocities. Integration over the

velocities is readily performed, and, corresponding

to a decrees of freedom, one has

_ fiAn (*ir C f-?f jT^ TT <jl*''
(89) N.'jt r J

where jvl,-.- »via are the masses involved, and ±, is
the total potential energy of the fluid in a given

eonf igurat ion; al so

t -Si ±1*'-
n rvv, • • * , I • — '

(SO) f " -i-1m Z
%n„k-r;v

When this expression is substituted in (26), on©

obtains the equation

(31) bn + hrj
2z" krv rj£ j=i €> J -*xM

o
>



which is very useful for date raining the approximate

equilibrium value of for small values of j ,
when the procedure of integrating the known value

of is impracticable.

4 Tng^upticn pf ^%e for Fluids.
The pressure p° in a fluid in equilibrium is

defined therciodyuamically by the equation p'— ^y4 »
and may now be calculated with the help of the

formula (86), which, on writing x® v 3J , assures

the form

n^ r (N)f rPWHC^h>v%)7T-W
(92) H!jT? = V )-)■*■ 1 J-' 1J-=> i '

so that

(S3) «(w^y- « ^
For simplicity, it is assured in this section that

<x-3 t and that vf,'J vanishes. By symmetry, each
term in the summation in the integrand of (93) has

tue same value, so that this equation may be

rewritten, according to (43) ana (8?)» In the form

j3f° — 8 t-'?'^(.) +2L^Jfctt)"*&'']cU")clxw
=s. ^1 "+* r^Uy-)cL^>

since k^. is in equilibrium a function of tt- i»U)-x'"i

only. If in (94) on - substitutes the classical

expression. for given by (51), one obtains the



mora useful formula

05) p° = V,kT —

which Is the equation of state, expressed In terms

of fvaXr) , itself a function of density and

ten a., e rators.

Tills form is valid only within the limits of the

classical theory; to ootain the corresponding

quantum formula, it Is necessary to proceed as

follows. One has

<96) Z hn*
1 — I *

in the interior of the fluid. (When x'M is near the

surface, the identity falls, as may he seen by

integration over all space, whan the right-hand side

vanishes,) The right-hand side of (96) may be

evaluated with the aid of the lemma that, if cT and

v are any two operators, and f(x) any power series

in x , then

= <rt c//r) - "(*)+£ f '"(•*)- ■■■
Tf a! 3!

(97) =■ -jr{X,Wx)}+ ii WV+ "'
-U- cfc | L ' 'it;J + • • ■ ]

where <fx =• trx-xtf > ~ ( k~ '> h '" )» arK*



r&iresents . This lemma i

easily proved by induction for -f(V) = t>, after
which the generalisation is obvious. Substituting

N L>

<5" — 27 p'"'-*'" , r =hn , end -fM - _£~^r, one
; — i

obtains far the right-iand side of (36) the

expression

where

„^ c j_ k- ,;>2 _ i. :=r r'V^' ^y} .(38) cr ~ dc X -jt*. ^ ^

Substituting in (93) (this is now permissible, since

the com utator in (96) hah been ev:luated), and

U3ing the property [3^) =X(j3**n , one obtains

)

and hence

(100) p9 = p,° -h ixlpV -+• f/H— >

where

p,' - -i
(101)

iNkT, = X, (iu ctc-

The cla slcal equation of state (95) is obtained

from (100) by writing k—o , since in classical



theory T and 17 are equal. In quantum theory,

however, this is not so, and the tanas involving

f?3° * p/ » etc. in (100) obviously become more and j
■ore Important at lo"7 temperatures, Thus it may be

expected that the aquation of state of a liquid near

absolute zero will show quit© a different character

from that of liquids at ordinary temperatures.

5. The Phenomenon of Condensation

In recent years much effort has bean devoted to

the study of the process of condensation from the

gas to the liquid through the exact development of the

equation of state as a power series in the density, thus

4 _L_ f3,n?
(102) kt* f . "st, s-+-1 1

so that the quantities - |+y~ are the so-called
virial coefficients. This development, first made

by fir sell(2S', was shown by Mayer to di verge at

a certain density for ©ash temperature, which he

associated with the point of condensation. His

work, improved by Born and fUchs cifcy, and given a

quantum generalisation by Kalm l>' , has since become

the centra of considerable confusion and controversy.

By solving tue equation (21) with and

substituting the value of h.x so obtained in (35)>
/ 2-2,')

the author hits succeeded in obtaining an equation

of state which can be developed in the form (102)



but has a meaning also in the region in which (102)

diverges. In this way it Is possible to elucidate

the nature of the singularity and gain a clear

understanding of previous work on this subject;

txie conclusions reached may be stated briefly in

the following way.

With any finite values of N and V , it is

clear that the value of AN/ n given by (89) is
0(\ , remaining finite as Ni ; for, even

if <E is^iven its minimum value in the

integrand, A* is o(n)« Htace one sees tha,t

the divergence df

r. ,-r-l)--£PsK'5 v
(103) An ^ I^ 1 ^ si, S-<r \ r

for high but finite densities must be illusory.

This illusion is created by the assumption that all

the pj are independent of , whereas it is
clear from their definition as integrals over the

volume V that the density is involved when

s o;n , though tne onor entailed in

extending the integration to the whdle of space is

negligible for m all s . Kahn (in his dissertation

Ch. 3, ^6) is toe victim of a similar illusion
when he interprets the second branch of the

isotherm which he has found s the isobar

com. only supposed to connect the vapour and the

liquid; his error arises from assuming that all



the ft>s ara constants, and tt is not hard to see that
the second branch is not an isobar but corresponds

to the liquid state.

In fact, the isobarlc *1100 of condensation* 011

the isotherm in the p -V diagram has no fundamental
significance, but represents merely mixtures of the

liquid and the gas, which have densities represented

by the left 3nd right end-points of the isobar

respectively. Such mixtures cannot appear in the

theory of a single phase, where the density is

assumed to be the sane everywhere; therefore one

need not expect to obtain sari isobaric part of the

isotherm, though states of supersaturat ion of the

vapour and superheating of the liquid ought to appear.

Tne isotherm thus obtained will not be very different

from the original conception of van der laals, except
«

that in the lisdt Na* <*> , the apparent divergence

of the series (102) will be marked as a branch point

at the minimum of the curve, from which spring two

branches associated with the liquid and the gas

respectively.

The distinction between the liquid and gas is

roughly marked by the relative values of the two

terms on the right-hand side of (35). Fbr the gas,

the second term is negligible in comparison with

the first; for the liquid, the second term, increasing

roughly as the square of the density, becomes of

paramount importance.



ffMTO m: THCTY QF m-mmm TOD?

1- ftrdroavnamlcs.

From the fundamental equation (48)^ the laws of

hydrodynamics will new be deduced with the full

geierality of Quantum mechanics. For simplicity it

will be assumed that the internal decrees of freedom

of the molecules are unimportant, so that one may

take <x = 3 , throughout the present chapter.

With the notation -i(?^ft^), one may

first define the mean velocity of a molecule

( 1 ) in a cluster of <p molecules with known positions
by the epilation

(104) 'ClLJ — ift '

Since the expression (S^ corresponds to the
simple product in classical theory, and

to the integral if *■! * this definition is

fully equivalent to the classical definition

expressed by (14). Similarly one defines the
—f—f/)

generall 3Qd •temperature* of a molecule, in a

cluster of molecules whose positions are known, by

(105)

where

3^ k-r,"W=-SJ^hh-

(106) v?U,2') - -t phs,2s0 -*?<*> Sh
'



is the particular velocity of ( l ) relative to tiie

average motion. In classical theory (105) £oes over

into the form

(107)

.('•) Y i:) ——r—0)
where \ thus 11 — I f is the 3ame as

the tamporature defined in classical theory. In

quantum theory, TJ" is hot the thermodynamic
«

temperature, but coincides with the ♦dynamic*

temperature, already defined in (101) for the

special case of equilibritsi, when it has the same

value throughout the fluid.

Since

p' - (p"'fi +ft f')" 'ft "■"ft f''/ '
C108 ) « " •* (#<»+&:*)

(48) may be written in the form

ct^p,<*>*'.)+-£
-i^ [fV-, tr:>-

(10^) )S (x't+'l. **lix
1 = 1

On putting x — x' in this equation, all terms on

the right-hand side vanish, l aving

(110) "SI • (^<£-4. ) — ^ y"uNh
: = 1

51.

jd*>xO



This Is formally the same as the equation of

continuity (13)» the only difference being in the

definition of w'j' and ^ in tersrs of the ato io data.
Let tp be any function of time and the

coordinates x?) ■ ■ • v^} . Then it follow from (110)
that

<1U) d':'j^ ;?« * * >

jL %.
where re* resents the operator

Now, by . ultiplying (103) before and after by

|a':' , and ta&lng half the sum, one ootains

=(§£?+
•+- ^ ))ifrp0y}te>x'^i£(Fel-?f'u)f\te»*O

(ll<?) l . %ti J4+^'-

-i'lj
Again writing * — */ , one is left with

(113) plte.x) =

where

<U4) -2,r = - i p'+-p':'-J



The same equation can oe obtained by multiplying

the classical equation (26) 'ay and Integrating

over all the velocities, except that
• * m,

is replaced by its classical analogue Zl}'£i!>IT<Ll
» ~ — Ic-I

Thus the equation of action, like the equation of

continuity, differs in quantum theory from the

classical equation only in the definition of the

quantites which appear,in terms of the atomic data.

At first it may appear strange that quantum

mechanics requires no modification of/the equations of
motion and continuity, an$ indeed,'this result is in

strong contradiction to the work of Landau/1*, who

developed a quantum hydrodynamics in which the

hydrodynamical equations the selves have an operational

for®. Reflection shows, however, that Landau* s

equations can have no physical significance: the

macroscopic, visible changes in a fluid give no

indication of the existence of quantum phenomena, and

must be described by the same equations in classical

and quantum theory. This is true even for liquid

hsliiim IX, where the apparently abnormal viscosity,

thermal conductivity, etc. in no way conflict with
the macroscopic description of matter, althoug they

cause one to suspect that Quantum phenomena are

responsible. It is readily seen that the present

theory greatly favours such an hypothesis, as the

evaluation of , u^' , i"1' , etc. is quite
different in the classical and quantum formalisms,



so that quanta® complications are to b© expected at

very low temperatures.

By tiffing the formula (111), wfffe ^ substituted
for , (113) may be rewritten in the form

(115) nniqi'>
J

where

(116) k'£l) = ^*1 (■*■>*)

Further, on writing

017) ^

where Z '' is defined by the equation

(118) T VS'il'ii- "t?, T2'->J* •»"' '
I J

(115) assufteo the form

1 , .. lh" ' p';3
(119) nan.^ ^ ^lj/ ' 1 ^

This is to be regarded as the generalisation

for molecular clusters ofthe equation ofaction of

ordinary hydrodynamics, to which it reduces when

<\= \ . It is clear that the pressure tensor
qonsists of two parts k^' and , of which the



first is due to trie thermal motion of the^aolecules,
and the second to t he intermolecular forces. Only

(•" ) {.*' )
trie kinetic part of is found in tne kinetic

theory of gases, and/the validity of the theory rests
!<•'))

on the circumstance that the potential part ,

which is roughly proportional to the square of the

density, is small; in liquids, however, far from

being small, the term I J' is the dominant one in the
->

complete expression.

To obtain the equation of energy transport, take

half the sum of the scalar products of equation (112)
with , and afterwards write x=*/« The

result is

2.(3
(120) 'ssr

since ^L'+ H >

With the help ofequations (111) and (115)» (120) is
now transformed to

3 wr'+j- z p"}-e';,r
<121>

= 4'. z

and then, with the aid of (116), to the form

Z {h<P'-t'+h» 'h'i^'-'i'1
(122) 1

. I I'V') in Ijj/V'}
= - J 3P„, - <»»» ^ »



where

(133) nyf , Pi >4 }<}■'

An aquation formally Identical with (122) may be

obtained from the classical equation (26) by

multiplying by £"z, Integrating over all velocities,

and then transforming in the same way as above.

(122) is not yet, however, the equation of eoeigy

transport, as it refers only to the thermal energy of

motion 2-kT£; . To obtain a similar equation for the
potential energy, it mst first be localised by

sharing the potential energy <p ^ equal ly between the

two molecules ( i ) and )„ Then, substituting the

energy of one molecule

(1~4) T':) - i X ^ c/ix (^l)* * *♦' —% \~ iJ •

in the formula (111), one obtains

Transforming this equation with the help of (110)
leads to



which may be rewritten in the form

(127) T3?n. i-f, |iW " «"> *> ' - '

where ja|l is defined as the solution of the equation

<128>'"

Then, on adding (I0?) and (127), one obtains finally

(125) ^ 6 >

where

(130) = |kT,<;'+ fj'

and

(131) Vv; = -'»I+-V'
To interpret the equation (1?$-) correctly, it

must be compared with

c, 'h1 (•> p':>
,oi i.-i . K, = ru «*■« • 1 .

(132)

which is the equation satisfied by the 'visible*

energy <^u , obtained by multiplying (115)



r\ «2-/ i:P "3 !•'/ /.i Jl Q- p'-h
r; i til . Tne terms Stjgj and ub • T 'H

J J
from (122) and (132) t gather represent tue work

done per unit time and volume on molecules outside

toe cluster of ^ molecules, and it follows that
for energy balance ^ must be interpreted as a
generalised energy flux, reducing to tne ordinary

energy flux when > (122) Is therefore the

equation of energy transport in the usual form, and

it is apparent that the energy flux, like the

pressure tensor, consists of two parts, due to the

thermal motion and the intermolecular forces

respectively. Of these, only the first in equation

(131) i ajobt ained in gas-theory, but it may be
anticipated that the second, 'potential* part is

preponderant in liquids.

T.;e General Methpd pf E^aoalori.

It|hao already been observed that the equation
(4i3) possesses a great variety of solutions,

corresponding to tte very diverse forms which may

bsja oribed to the density matrix pN at an i&tial
time "tt, . ix. attainting a general solution of

practical value, however, it mat be recognised

that the majority of these solutions can occur only

under highly abnormal conditions, the probability

of which isjextremely small, and that non-uniform
fluids occur in nature alraost invariably as a result

of some disturbance of a state of equilibrium. In

assessing the physical condition of u fluid



experimentally, the only independent quantities which

on© measures axe the density, temperature, macroscopic

velocity arid external force throughout the fluid, and

if toes© are uniform, the fluid is assumed to be in

equilibrium.

Instead of specifying r\.|° , ~f,(' , if'," , and P(,i
throughout the fluid, one may, at least for quite a

large volume, specify these quantities, together with

their si ace gradients g" , , ...
, at a single point, most convenientlyoJZ

chosen to be the centre of gravity of the cluster of

^ molecules which is alwa s considered. Also, it
is necessary to specify all except the force only

at some initial time tb , as the rates of change

, ... of the others are given by the

hydrodynamics! equations of the previous section.

Accordingly it will bejassumed that

O / / , 9<Ok 22^K ...

(133) p"k *> 92s% ' y

where the { k- 8 ) represent the values

/v, , "Ij , if, and P assumed by n.J" , l~u , and
£U) at sooie point in the part 01 turn fluid

considered, and that the variation of with h
and *1 is accouj.tea for by the variation of the ^k.

andjthair space derivatives. R>r purposes of
symmetry, Is most conveniently chosen to be
the meats centre of the points and x':v/ , time:



I /**»+ X1"')
(134) £\ - 3-1 5,

Tue difference between fa arid ^ is, that while p?
is explicitly a function of the independent variables
x'*'

, and "t" t la explicitly a function of

» x':,/ » cok , » ... » and only illicitly
a function of -t and & . It follows that

J-

From the definitions of ' # ^ ,

, etc., it follows that they also may be

expressed in terms of toe r*>k and tosir space

derivatives; for example, by putting in (133)
one obtains ry # add, more
gene rally, if c^ represents any of the quantities
enumerated,

(13S) s - C,b£,«*,;?gS- )
the large letter always replacing the small to denote

explicit dependence on the , ... .

■"02^
Corresponding to (135)» one has

- Z{X*^ •;sr>t+""l
X 1 5w|^ >t 3 2>ii2lt -1

(137)
= *9* +• 75* x- J~5w **"'}

— I -2!2<^/



In a disi lacement of the centra of gravity
%

~

% %t & * *s altered only on account of
the variation in the ^ ; hence

M_e. y- ^CK ■= *(138) ^

The form of <13?) suggests the utility of an

ex? ansion of all variables in powers of ,

2^^ , ... » in trie form •» ?
where

«■ ,^k 1 >

r r .— *5- . r; /vc. - -a ~ CK cx,^k 1^
(139) * k ^

c* =
^ K —•* k,iV^a?t- ^S-7

and, quite generally, consists of terms involving

just derivatives of the <^k . With the help of

(137), s. ace and tirr.e derivatives arenasily expanded
in the same way, the Jpg* being given by the
hvdrodynarnica! equations

0+ &t p

(140) It-' "
I*1 kl? « - ~

Care isjpeeesBary in the expansion of integrals
like <VI ct^+" to take account of the fact

j
that the values of n>K , , ... appearing in

^+1



are initially those at the centre of gravity
t"M l;y

= ~^r] & of a+\ molecules, whereas
tha expansion procedure refers always to values at the

point xt> , Thus, in expansion, C^+i im&t first be
rei laced by

r a- d ' -v- i (— d):
-1+1 —

f/here the displacement cL of the centre of gravity is

x'*-h x««»>
(141) = ycf„ -x, - Si

and ^ has the significance
-rS2?* 2. -p 2^ • " J

Hence

(142) -*• -

When p£ • pi * Pi 5 are known, it is
to calculate the C'

ex iicitly; fo^example,

easy to calculate the c" , c' , c" , ...

(143)
= faha.O i

affco-> <'°= ~ P'"'- ~u"►rv U£(x)
(144) vt" = ~ *— *



(MS)
= 2£D^p (*>*);

(145)
k'^S)=
hf'tx) - ?&>*);=1

(147
cy^a)=i-dWhil*PM1 -<-2r^k7yV^l-flfe-4)
w% - j?.-®" J^'" K -( l-ii ) ) . r -.i'V Ak »

-fe£T
- <5"'-s,)-&,e ■

3. Tiie Zero-Qrier Solution ana Condensation

To determine , one requires to observe only

that it may be obtained from ^ simply by wr iting
9u?(c 71"^>ic _ — .

^5, _ - 0 , wMon Is toe as
postulating a stats of equilibrium in which the

density, temperature, etc., have uniformly the

values assumed at \.v . What is needed, therefore,
is that equilibrium solution which makes

X, If. x"J— °,
(l43) X,(f,y,"») = 3~-'n«T- .

To satisfy the first of these conditions, one need,

only replace &'' by in the solution of



Gil. 2, ^3J tlia second condition may than be
regarded as giving the relation between "H and the

thermodynamic t&q.arature T . In classical theory,

~Ti and T are identical, but in quantum theory, to

satisfy the uncertainty principle, TJ" , which is

proportional to toe mean square amentum, must remain

finite as T tends to zero, and at L.v; temperatures

T ff«dst be re yarded as a function of IT and rvi , given

implicitly by (143).
In principle, the c" are now all determinate

with the Help of (143) - (148). It is, however, clear

from considerations of symmetry alone that k|0,,o(x^and
rry'j00C^})must remain unchanged on reversing the sign of

vj" in the formulae (I4S) and (147), ao that

/ i >

where X denotes tne ui.it tensor. Also, Kf = a,,

u-j"0 =. u, , and T^0 — -pj » so that rx{ = u6,' = t/',== 0

and tof = "ff == o , etc. In quantum theory, the
remaining zero-order expressions derived from (143) -

(148) cannot be much simplified, but on making the

transition to the classical theory by replacing p|
w >4 ma
§dx'n/ by j ciV'' , one obtains

a'P- u, i 4"= i
HSli -J).-• k'vm »u-r c. , . .'

p ~ M ^ ^ l< 1 ( m ij _ ) ^

k("?° =
(150)

rw
(»)°



At present, however, It is desirable to adhere to the

quantum theory, and (151) will not he used.

It now follows from (137) and (140) that

and

(&)'- ± £•§'
- ki*'£

In tae particular oases y%[? 7^ , these
formulae may be compared with those obtained directly

fro® the hydrodynamical equations, with the help of

(137) and (138); for example,

(154) (§?y=-£)

(155) ~ it, ••n»42»^~t A1 •

It Is obvious that cannot depend on the

particular inertial system of reference, and is

therefore in eg er.dent of <£, and P ',0— JP . Further

comparison of (152) and (154) yields

(15S) .|ick,X<4'v^ ■



Tiie form of U^J0 can be decided on general
grounds: it salt oa linear in , can contain in

addition only r - p-c, , and 1J , and, besides

(156), must satisfy u^elr =. (M-i) n,a( ; hence
one may write

(157) o^"° = uf°= *,+ wfsi'S r-i-r'jt,),
where Tb contains only r , ^ , acid TJ. yf° is
obtained from tLj'0 by substituting —r for n

{interchange of x.r,) said ). For all ^ , the
right-hand side of (156) vanishes, because the

integrand is an odd function of r ; thus one

obtains, as might be expected, -= o , In the

zero-order, equiliorium, approximation. This

follows even more easily in tlie classical theory,

valid at high temperatures, where V^—e .

Next, comparing (153) sa^d (155), one finds,

when ^ = Z ,

since Nz and U1"-yf contain x" and A'v explicitly
only in the combination r- Tills equation

may be regarded as an integral equation to deter? lne

the non-rotational part of ; the

solution is



(i55) +a

where , standing for the right-hand tide of (158),
reduces in clas? ioaI t henry to /*4?2&— -r2-r,2£)i ).2.. u,»^*yvi ^ vn/^*2
and d satisfies = 0 .

A note*orthy feature of (I5cj) la the divergence of

the right-hand side when

(160) ( bU° f = -3K.0 ( I J »"M

namely, wnen tne internal energy is changing at a

certain rate with temperature. On approaching this

pint, the average velocity of two molecules relative

t one another becomes infinite at any separation;

tnis means that the condition of the fluid, even when

in equilibrium, is highly unstable for snail

perturbations. One can hardly fail to associate such

a condition ith condensation, or rather that

extremely unstable state which arises from super¬

heating the liquid as far as possible above the

boiling point. In normal condensation, the region in

which (1604 is satisfied will be by-parsed in the

process of a very rapid transition from one density

to another.

4. Viscosity and Then al Con duct ion in Fluids

Althsgfe the exact determination of quantities such

as y 9 ' » etc. from the general



equations is a difficult matter, their form may be

deduced quite easily from elementary considerations.

Wot example, p/=P,, as well as being
linear and homogeneous in the , can containp-^ I

xf0 and xf,)/ only in the combination y=y;-xA) , the

variation with being contained in the <vk .

R>r brevity, the notation

. — t3 o.^— ^yl • k — JL , a I ! b*— 2l , P .£-~ ' & -*x,> > b ®S~' ; 6 ^ - >

<161} b = - rfe,'-1 A/\
it X/2. P+-1 p-2, -2_ . P J. )k = ^L.™<r 4kf r^-~J

is introduced. P,7 can contain, besides the a 1 s

and i> * s, only nj , ~TJ , and y , arid satisfies
- k/ - <= .yg§p2_.-

and -1)2^7 I,^3^k(^,r;)/^= o tdent ical ly;
hence it must have the form

(162) P,7 — «.*» J?- & +■ t62y-t -J+-'1 5

where 6, , , 6,. * and contain only n., , T~, ,

and y »■ ly | . If £, and 6* are expanded as power
series in y , one must have 6((yj - (='\ t°)jLy +-^/(<vX + -••
arid 62.67) = +■ ■■■ . When P/ (and P/ )

»/

are transformed to the mo entura representation, they

become diagonal, containing a factor - the

momentum states are discrete, as long as the volume

V is finite.



Ni is lineal* in the <x*s and fc> * s; -can

contain besides only , 17 , aid r--xir)~Xu ; it

is unaltered on replacing £ by -jr (interchange
of xU) aid xft) ); and satisfies jNidr- ;
hence it must have the form

(1B3) N/ — yr.b.r 4-

where v and y+ contain only h.(, Tj~ , and r— jr( ,

NiCi/^-hU^y is linear in the a*s and
b *s; can contain besides only nf , Tj~ » and r* ;
it is unaltered on replacing r by -r ; and

satisfies fozCy^+u^Olr; = *2(n-0 ; hence

(164) N£ (u<»4- u[i;^) — k(a,rr-i 4- k"Y*7r; £ —j- t-7dT^

where « and <T contain only a, , T7 * and r* ,

Finally, x is linear in the a*a

arid t? • s; can contain besides only nt, U , and
r ; changes sign on replacing r by — r , arid

satisfies (y^Lu'^Mr•= o I hence

N£C^'- ^i}/) "U».bo +- Vz r. b.y r 4- xp r\i? . r

4-vj"l7r +-v^"r.btr r +v^"rtj!ir

i
j—. "b

wiiere -utt , » 77 » n0+ , vj , and d2 are functions
of n, , Tj" , and y~ , largely determined by
equation (159).



70.

It Is no® possible to calculate the coefficients

<S£ viscosity and thermal conduction in terms of the

quantities already defined. According to (118), the

tart X. of the pressure tensor due to the inter-

molecular forces is given by

(166) §,„•!, =■- [Kl •

Standing both sides of this @ nation in accordance

with (137) and (142) respective-ly, one obtains

(is?) = Ar'

(168)

(lbqy 3- . L/y =T - 2. . fc-r Kl/7 2^ __L -^L- : fl-r r r N/i&dr

etc. Integrating these equations with the help of

the boundary condition I -^ ° as o,=>o , one has

(17°) r - -d:J"rH*|^Lr = [rKizM^^r i-
and

(171) X' - -J; Jr ^
= __L. I ri (vb + v+J+) <*r ,



with tile help of (I03). Tne corresponding expressions

and k'
r\ =1

for k° and k are obtained from (146); as already

obtained in (150), k°=? njkTJl, whilst

1 s r -fc* -21 p/1
(US)

— — *5? (tiJ»+■ •
V,

The zero-order (aqu i lib rim) formula for the

pressure tensor, namely

(173) fe; = (k,^ ±

may be compared with the expression for the thermo¬

dynamic pressure given by (100); it is seen that the

classical equivalence breaks down at low temperatures.

The first-order correction to the pressure tensor,

(174) pf- - +iy)'-i(:yb + y+fe+)<PfrM>;
gives the coefficient of viscosity J*- , which is
defined by the equation

(175) p.f - -2/^t

on the understanding that ^ —o . Clearly,

{176) u. = 3*' tLCo) _i_ r2^r)4>/^)cOr>
/ .-** 11> «>



showing that viscosity in fluids is due to two

causes, the thermal motion of the molecules, arid the

mutual forces between the molecules. Of these, only

the first is considered in the kinetic theory of

gases; this is justified by the circumstance that

the second, which is roughly proportional to the

square of the density, 4s small. In liquids,

however, the second, •potential' term in (17b), far
from being small, is the dominant one in the entire

—cL.
expression. Toe temperature dependence j*. = A-£

(zq)
suggested by de Guzman and established toy

indrade Uo for many liquids, is a direct consequence

of the proportionality of vW to H£(y) # which

contains the Boltzmann factor JL~

The coefficient of t hernial conduct ion may be

investigated in a somewhat similar way. According

to (128), the •potential* part >y 1 of the thermal

flux vector is given by

(177) Jd

so that, on expansion in the usual way and omission

of obviously vanishing terms,

(178) i&ffkrlHhtP-tf-
and, 011 integration,



(175)

WCig'+uPt-g «Lr
In classical theory, where 0^=^'°= u, , this
reduces, by virtue of (I04), to

(180) «/- -£ [(KS + KV)

For the •kinetic* term of the thermal flux, one

finds from (147)

/ r V JL _j_ S~kTi )(~
. m 12? 1 /— ^2.*v> -^v.ay ^ a~ A- ^ £
(181) L ^ -

= -1£} («-1-tfV")
-W ^ '

where the double prime Indicates the second derivative

The thermal conductivity jt is defined by the
e^uafcion

(182) 1/ jU

on trie understanding that j2° is the same every"here,
so that , or ^ - eu , where

N

_'3N> 4/('r)r- <£r;
(IB3) £ —- — _52lL ' ' 3 «"•

^ c " <ptr) *•
1 J 'S^V((0 k.T~t -) "S^v<

bfence, classically and at high temperatures,

(184) > -



For gases, the second term, which is roughly

proportional to the square of the density, may be

neglected, but for liquids it becomes of overriding

importance.

In quantum liquids, the situation is more complex,

and one has, instead of (180),

■

rx ( =r -J5. rST<Sf ± . (vk + V+tf~) pir)(185) j
-,g J + K+£?)£'(*) rid.r ^

according to (157). Thus the simple Im (182) ceases

to hold, and there is no thermal conductivity in the

ordinary sense. This provides the key to the

anomalies found experimentally in liquid helium near

absolute zero. As hah already been noted, "J" is equal

to ~T at high tamperc&res, but remains finite as

tends to zero; it follows that a. , which isjthe
gradient of TJ , mist be very small or vanish near
absolute zero, even where there are substantial

variations in the thermodynamic temperature. Thus

only the first term in (185) is important at very

low temperatures, and one reaches the surprising

conclusion that energy transport la there governed

by the motion of the fluid.

5. Conclusion

In one sense, the kinetic theory of liquids is

now complete, since m account has been given of all
those properties of fluids at rest and in motion



which are independent of foreign Influences, such

as material surfaces. It would be- Idle to pretend,

however, that even a small part of the field has

been exhausted; on the contrary, if this vosk has

merit, it consists mainly in that it provides a

basis for further study. In particular, liquid

mixtures, plasticity, propagation of wave

disturbances, and surface phenomena have been

given no attention at all. Jpart from these, many

interesting questions concerning normal and

superfluid liquids have been set aside because they

involve much detail, and no numerical calculations

have been made for comparison with experiment.

this do©s not imply that the theory lacks

ax. er latental verification. It has been seen that

the theory provides a qualitative explanation of

many phenomena which have hitherto bean only

imperfectly under-stood. Quite a^art from this, the

theory makes contact in many places with the

kinetic theory of gases and statistical mechanics,

which do not lack experimental confimat ion. The

main ground for supiosing that the theory is correct,

however, is fiat not a single ap roximation,

simplification, or assumption has been male the

validity of which has not bean abundantly confirmed

in many other fields.
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