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SENERAL KIN RY
By H.S.Green, A.R.C.S.. B.S:.

Intredugtion

In the last half-century much attention has
besn devoted by theoretical hysiclists to the task
of providing an account of the macroscopic '
properties of matter in terms of its microscopic
structure. Indeed, it 1s clear that the
experisental verification of any theory of sub-
microscopic phenomena, which by their nature are
not susceptible to direct observation, must largely
rest on tne demonztration that the macroscopilc
consaquences of the microscopic hypotheses are in
agcord with experience. The fleld of study taareby'
exposed has proved ve y frultful, not only in
explaining otherwise pefplaxing rezularities in thai
behaviour of matter in bulk, but also as a means of
investigating the detailed laws which govern the
benaviour of atoms and molecules,

Greatest progress has beern made in the devel-

© vy Maxwell,

opment of the thecry of gases
Boltzmann, Hilbert, Chepman and Enskog. Due
mainly to the work of Born, the theorv of

= is also ressonably complete

(
cry=talline solids
and comprehensive, An examination of the extensive
work on the liquid state of matter, however,

revezls that no such coaprehensive theory has so



| far been evolved in this field. This is larzely
due to the fact that the molecules in a liuuld are
near together, and alsc in a disordered state, so
that one may not assure that the density is emall,
as in gases, or that an orderly lattice structure
cbtains, as in solide,

Attepts have nevertheless been made to axtend
both gas-theory and latiice dvnarics in an
approximative way to apply to the liguid phase.

Bnskog? tried to derive a generalisation of Boltzmann®s
ejquation for multiple encounters batwean the
molecules, but his result was not quite correctly
forrulated, and contained besldes an unknown

- function which inpeded all further devslopment,
Moreover, it will aspear later that the principal
error arising in the application of the theory of
gases to liquids is due not to the assunption of
*binary encounters®, but to the neglect of certain
effects depending on the interaction between the
molecules, More succesgsful attespts have been made
to modify crystal mechanics so as t¢ apply to
1iquids; of these, probablv the beat known is due

- to Lennard-Jonss and Bevanshim(‘), whose work has
the merit of successfully predicting physical
constants at temperatures as high as the critical

- peoint, The objaction to such developments is that

. the melecules of a liguid-do mot perform



oscillations about fixed lattice positicns, a
gonclusion which is in no way shaken by the evidence
of X=-ray scattering by liquids, that the solecules
have that degree of loca; order wnich one would
exyect of such a closs-packed structure,

For the épecial case of eguilibrium, the theory
of liquids is much better developed. In statistical
" mecnanics one has a general method which can be
| applied to give a formal but exact account of fluid
thersodnamics, and the only practical problem
remaining is that of maklng the formal results
intelligible, by aﬁproximatian or othermise., It is |
clear that any theorv of non-uniform flulds which
- claims to be rigorous must give results agreeing
with those derived from statistical mechanics in
this special case of equilibrium; till 1545, when
. this investigation began, no such theory was

aval iable, There already existed, however, a large

nuzber of fragrentary theories designed to give an
account of various properties of liguids with the
ald of special devices or sssumptions suited to each
particular purpose; one of the most recent is due
to Jatfé®. Suon work is well sumarissd by Frenkel”
in a recent publication; otuer aspects of progress

in the taeory of the 1iquid state have been



summarised by Butler @ and by Mott and Gurney (q).

This literature has no direct bearing on the
- present theory, and will not be discussed here.
Tha theory to bhe developed sprrings from twc maln sources,
The first is the kinetic theory of gaces, which
culminated in the arortive attemyt by Ens:og already
mentionad to generzlice the theory for liguids,
More recently the Russian physicist Viasov(” showed
that this kind of method can bda mads to vield
~ defipite results provided one is prrepared to make
. somewhst drastic approximations. These approx-
| imations can be avoided only by introduzing a
second idea: that of the 'multiple distribution
- functions®, of wnich the radisl distribution
function way be cited as the sinplest example.
- Such functions have been widely used in atomistic i
theories for some time, with ap lications to the
 scattering of X-ravs by liquids ", and, in a slightly
. dif"erent form, to the Brownian movement ("). The

(%) gosarves a

unassuring but elegant work of Yvon
special mention in this connection.
Kirkwood ' has recently realised the fundamental
irportance of the multiple distribution functions,
and treated special problems by this method., Since
the com unication of the fundasentzls of the present

5)

theory for publicatmn“ , he has also publizhed an



(% of wider scope, in which, from

important paper
the point of view of statistical mechanics and the

.~ Brownisn movement, he derives an eduation subsiane
tially edulvalent to (26) in this dissertation.
Although his derivation rests on an unproved

. hypothesis, and his method of time~averazing doe=

not a:pezr correct from the present standpoint, this
caper must be rezsrded as valuable confirzation of
the fundarentals of the present theory.

The onject of this dissertation is to develop
logically a basis from which all the properties of |
| liquids, at rest and in motion, can be investigated, |
'~ As the clazsical theory can always be obtained by |
a liriting ;:-récase from the quantum the ry and has |
. not the same wide range of validity of the latter, :
. guantur zethods have always been preferred; but |
as gumtue mechanics is much more difficult i
conceptuslly, the clas=ical foundations are caretullyi
stated before guantisation, Ore of the sutisfactory
results of the clas=ical theory 13, that wien®binary
encounters® are assumed, the theory coalezces with
the classical theory of gases, |

In the second chapter, on the equilibrium theory
of fluids, far new recults can be axpected, and the
main obiect 1s to show that all tie squilibrium
progerties follow rigorously from the foundations

in a way which is both simpler and more satisfactory



than the Darwin-Fowler method in statistical
| mechanics. The resulting proof of the Boltzsann
distribution lsw embodies no eszentially new ideas,
' but consists of a new symthesis of several detached
| principles, including the aprlication of ordinary
- tine-dependent perturbation theory to the density
mattix of von Bawuatux(ﬂ>md Dirm(‘s), Panlits
modification of the la®s of radicactive reactions for
the proof of a gonsral HeTheore -("o, Born's adiasbatic
;.érinclplea"), and finally a valid srplication of the
. method by which Maxwell first tried to establish the
Boltzmann law for gases., Aftervards, the squation of
gtate for 'classical' and 'quantum® liquids is
obtained, and Maver's theory oftihe phenomenon of
condensation™ discussed in the 1ight of the author's
work on this subject

Ir the final chaspter, an attempt is made to open |
- up a field never before satisfactorily investigsted:
: that of the trnsport pimncm in liquids. This
requires sometnuing more than a starectyped
application of the mathods devised by Hilbert,
Enapuan and Enskog, which were tried but found to
fail fin the caze of the multiple distritvution
functions; a ne® wethod of expansioun had tierefore
to be devisaed, The results make quite clear the
rezson why the gos formulae for the coefficients of

viscosity and tnerwal conduction fall so lsmentably



- entirely satisfactory.

anocalous features exhibited by liguid helium II,

when applied to ligquids; it is bescause these
coefficients consiszt of two terms, the first of
which is due to the thermal motion and decreases
with tempsrature, and the sscond of which 1s due to
the interrolecular forces and mcrt_sa,ses rapidly withl
the density; of these, only the first is determined
by gas-theory., No atterpt is made here to compare
the thecry with ex:reriment; this is being done -

elsewnere, with results whicik must be considered

Since the theory is quantised, a polnt of major
interest is whether 1t is cspable of explainiig the

On this guestion, the the ry i encouraging: the
eguation of state, for example, devistes widely

from the classical &Quation, but only at very low

te peratures ('h/k"f"vlo"” sec.). M initially |
surprieing result is that Quantum mechanics requires
no modificatlion of the classical equations of motion
and energy transfer, but only of their interpretation
in ter s of atomic events, Another significant
recult 1e that the prassure tensor and temperature
zradient which enter intec the dafinitions of these

' Quantities bear no direct relation to the pressure

and temperaturs thermcd narically defined, which



no doubt explains why the proporticnality laws
aprear to break down in He II,

Tae author wishes to acknowledge in this place
his profound indebtedness to the sugervision of
Profeszor Max Born, who nct ounly contributed most
of the ideas which began this theory, but by ils
goutinuous advice and encouragement, ascisted at

every staze of its further development.
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The vactor and tencor svmbolise in this lice
sertation is baszed on that devised by Chapman and
Milne ), extended where recessary to Q dimensions.

Vectors are once underléned, thust a , X ;

tensors are twice underlined: b , B - denotes

the unit tensor, and b the transpose of b .
The products of a tensor b with a vector a (both
vector:s) are written a.b and b-a ; the spur

product of two tensors b and b/ 18 written g:g’ ”

Below are li-ted psge numbers where synbols are

first introduced,
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CHAPTVR L: THE MOLWCULAR BUTION N
gical and Statistical S

In the application of the concept of probability
to experiencs, two quite distinst methods are
available. The method usually adopted begins by
defining the probabllity of the occurrence of a given
Bvent a= that fraction of the entire number of
posainilities which satisfies the condition unday
which the event is deamed to occur, Thnis procedure
alwzys leads to certain difficulties in practice.
If, as in statistical mechsnics, the enumeration of
the poseiblilities is made without direct reference
to experience, the 1dentity of the probadbility so
defined with any phyeical resality cannot be proved,
but only tested by experizent. If, however, as in
the kinetic theory of gases, the enuseratlon degends
on sows hypothetical experiment, the probability is
by defirition imprecise and lizble to vary from
experiment to experiment even while the experizental
conditlions ars apparently unchanged,

For example, in gas-theory the nuxber density n
of the zzo molecules at the point X mayvy be defined
in terss of the probablility ndx that the volume
elecent X , dx 18 occupled by the mas=-centre of
a molecule, In statisgtical machanice this
probability is detemined by enumeration f{rom an
asgexbly of artificislly constructed copies of the

- macroscople systew, but then the relation to the



phvsical reality is dulite obscured; whilst in the

‘kinetic theory of gases onc counts in lmagination the
number w$x of molecules in a volume $x surrounding

X which 1s small by macroscopic standards, yet large

enough to contain many molscules, - an ille-defined
grocedure which can give a value n/ only approx-
irately equal to the 1deal number density n~

These difficultie: can be avoided by the more
abstract but entirely logical method adopted in the
present expeosition. Here probablility is treated as
an g pricri coiwept: 1t 1s axiomatic that one can
attach to any conceivable event a nusber d&nifyinz
the probability of the occurrence of the esvent,

which conforms with certain laws colinciding with the |

laws of statiztical provability.  Thas, if A
reprasents the occurrence of any event, and P(F\)
the ;rovability of the occurrence of the event, one
nas

!

&
(1) p(R) = p(A-B) + p(A-~B),

(2) (ADB) D {P(B) > P},

in the symbollism of logic. From these, two principles

of fundamental importance for the present theory msy
be deduced:

11,



(1) The probability of B , amonz those events
. in which A 1is certain, is glven hy

(3)  pa(8) = pA-R)/phA).
(1i) If A and B are causally connected,
(4) p(A) = p(E).

It follows immedlately from (1) that 1f A and B
are lndependent, so that pa (B) = ?(B) » then
p(A-8)= pAMpB) | Tne deduction of (1i) from (2)
is self-evident when one observes that a causal
connection between A and B reauires ADB and

| BoiF .

1,

The significence of thsse rrinciples in the classical
|

theory of fluids wlll arcear as the thaory is de=
 veloped, When the quantum thaofy is Introduced,
however, they are found to be quite unnscessary, as
quantum mecharics incorporatss much of the theory of
probaniligy in its foundaticns; the way in which it
is iovolved is well known and will pot be discussed
asre,

2. ition danental

The fluid whose properties sre 10 be examined



is assumed to consist of N sisilsr molecules of mass|
m confined within a volume V . The configuration
of any molecule may be specified by a number (a )

of generalised coordinates X, ---Xa. , the first

13,

three of which may be chozen to be-the coordinstes of

. the mass-centre of the molecule., A moleculs is said

to occupy a volure clement dx =dxdx,dx; of real space

Cif its massecentre X =(x,,X3,%3) lies witiin the volume

. element; simllarly the molecule 1s sald o occupy

: the element dx = dxidx;.--cx, of phase space 1f its

 gensrallsed position vector X= (X%, X.) falls

| within the element. The temporal rate of chesnge X

of tie *position vector' X 1is represented by the

| 2nerallsed velocitglr X =iE, g, £.) , and é by the

| gensralised acceleration Lo T q' by }_ s 8toc,
The rrobagblility that at tise + the voluse |

&lerente aAx? o dx™ o otzs") (of phaze space,

| 1f a>3 ) are all occupied 1s denoted by

M(t,?s‘?---,_&“‘))ﬁab,&m.; for brevity ny,d,x0..,x%)

wlll often be c:::rntracted to m,(t-,;) " m,(zsfi s OF

sieply ny , the variables being sufficiently

| indicsted by the suffix 9 - It aa=3 , 4 is the

mmrber density of the molescules, and when ny is

constant, na/n? 1s the function referred to in

litersture as the radial distribution function;

if a>3 , the nusbar dansity is g‘f’.’?’jm il_q,d""‘f'l) -

Tha functions N, are comnnected by the relation



(5) [ rges 49" = (N=q) ny

- This is ea=ily proved with the help of the principle
(1) of §1, A now representing the occupation of

| each of tae volume elements dx® ... Ax® by

molecules, and B the occupation of dx* by a
further molecule. ccording to (3), the probability

of B when A is certain 1s 5?{;' dx@ | and

. the Intezral of this exyression must be, therfore,

. the total number of molecules, excluding the 9
whose positions are fixed, A the limiting case of

(5) whez q=0 , one has
- (6) § niox® =N

| (%) is also satiefied whem 9 = N , since N+
vanishes, by definition,
The .probability that &t time T the *volume'
[ dx?, ... dx¥ are occupied by molscules |
with *velogitied?® .gh)’ .inn _15{") in the elementary
ranges aL_g“’ e LLE"‘) recpectively is denoted by
306 3% - xDEL... E“‘Dﬁ dx“AE”; tne contracted forms
: f;(t’, %, By 5—;}'(5,@ or fci, will often bae used
instead of £ (t,x0. XVE%.. Y, 1f a=3 , §
coincides with the velocity distribution function of
the kinetic theory of gzases.



15,
It must be observed that the above definition of
f, is only legitimste when one ascumes that classical

mechanics is adequate for the description of

| molecular phenomena, since, according to the gensral

|
principles of quantum mechanics, 1t is atrictly .

|
imporsible to measurs the position and velocity of

a molecule simultaneousgly., The modifications which

. have to be made to adapt the theory to gquantum

requiresents will be discussed later ( §6).

The {2; gatisfv the relstion, analdgous to (5),

(1) gs Fari d”‘_..({"'m‘i'g(c’“) e (N_‘})'{:‘L >
also, clearly, - |
(8) S'(a')j- 54 ,}..‘.. AE = g -

Pursuing thils wmethod, one may define an

accelerstion distribution funcilon ¢4 such that

' 5 (4) gl @ e o R T
Gy (%" K VES - €PN YT uE™ 15 the

proabability that at tisze t the volume elements
87, dx® are occupied by molscules with velocities
E" , 48" and accelerations 7", dn®! respectively

Pl = - 9 ). The 94 satisfy
() [ gon duOTAE NI = 1),

and



i 2 ;
(10) S.“')S 9s :’;r' d,‘!’]"’ = ‘Fq, ; | |

The definitions and fundamental ecuaticns relating |
to the rate-of-agceleration distributicon function
hy (£, &)E;Z],E) etc. are now obvicus,
3 matics and ations atinuit

It 1s now proposed to wake a direct arprlication
of the seacond princirle (11) of §1 in order to
obtain a set of generalised contimiuity egquatlons
describing the wotion of the fluid, For tihls
gurpose, A must be interpreted as the ozcurrence
of a molecule at the point X (and with velocity
¥ )at tive + , and B as the occurrence of a
molecule at x—Edt at time t-cdt , These
gvents are clearly causally connected, and the
probabilities of their occurrence are tuemore
equal. Applyving the same consideration to a
*cluster® of 9 molecules, one has, on sum-ing over

all velocities,
(1) § 0§ $y (et w - Bk, EDTIAE = ng (6, %)
Hence, by subtraction from (8),

?’F 1 ) f}{- \.-'i 'C'
(12) g_“r)j (B +2 E-2%) T A

or,



i )
SRR s Uil e
where
‘i :
(14) g S ___L_ £1.) () — i ‘LE!J)
_“f'.j_ = 5- 5“:-; _:__” 5

o

is the averasge velocity of the molecule (( ) in the
cluster of 9 molecules whose pocitions are known.,
¥hen a=3 , the eguation of continuity of ordinary
hydrodynarics and the kinatic theory of gacses is
obtained from (13) siwply by putting 3-:-! 3 When
a>3 | the corresronding equation is obtained on
integrating over the internal coordinates of the
molecules,

The same principle may clearly be emploved to

snow that

. = |
(15) g (ﬁ’)gﬁ, (e-dt, x-E 4L, .E"l] #:Q])E‘L:]"E ‘fc',(,f,fs ’§>’5

' and hence that

(15) Q’F‘L = {g' . '34'1 l—-ﬁ“ . (£ ....,,”} =0,

¥here

(17) B (94 ﬁ"T—dﬂ]“

7.



is the average acceleration of the molecule ( L)

| in the cluster of Ch molecules whose podfions and

velocities are known, _‘l'he method of derivation of
*continuity eqguations' for 9y ‘and kg, , analogous to

' (13) and (16), is now guite obvious,

The mechanical properties of the svstem of N

molecules ars most easily obtained from the

| Hamiltonian function Hy for the entire system. One

" has

| i)
(18 R, = ZH"+EZ ¢ |

where H':’is the Hamiltonlan of the molecule ( | ) in
the avsen:e of the others, and 4;"‘-';- 4:{_’5"',’ 55)/\‘ is the
interaction ener:y between two molecules at 5"’ and |

X9 (1t is c snvenient to zdopt the convention

“2 0y, H 1s given by

fi9y H'= -&-_g"'-i'-'i.g'@w.,f.)

) l"}
 where +E" ‘3“ £9= *“'5 3*5("')5- rerresents the

- kinetic energy, and 1/ = +‘ ("5"9 the potential

eneryy of the molecule dus to the externsl forces as

well a= to its own internal configuration. The

Hamiltonian egquations for the entire sveten, namely

) 3
(20) 23,57, 4-%2“ ("39:'5+?9:t 93se)§;1§‘ +'CE” +§%

s=1 s,t=| Xy

18,



may be solved to obtain the (accelerstion' 7)) in the

form

I kadd 1" = 9=l (e"- = ?%J)

; Pqes . 2Yrt _? : L
(22) P = —J_Z ( 3‘ 9" -"* fs §{f>_.. or

3= oxy  oRs "/

| : ;
'and 977! s the recigroeal of the temsor q'”,

-

| Bhen a=3 , 3“’ reduces to the multiple m of the

unit tensor, and E'” to the external force acting |
! on the molecule (¢ ). !

The mean acceleration v,  of a molecule (i) in |
a cluster wnose pesitions and velocities are known 13;

aeasily obtained, with the help of (21), in the fom |

a . gt |
A J_ 9' 1) (q. 41
L ]Sf?*.,iﬁ A,—x"’ §1- }'

—
n
Lnd
S
=
\
b
1
=
—~J
-~
N
M

The most obvisus way of proving this result ls by & |
further application of the prirciple (1) of §1 to |
show that the probabllity that the voluse elsnent
X7V, Ax¥Y is ocouplied by a molecule with velocity
el 43—_’:“'“) is f_‘i_*_‘ aLlc_“f*"(,L_k:{"“). (23) may also be
obtalined dire:tlyhfm the formula (17) by re~vritiog
| i1t, with the aid of (9), in the forn

k)

N (k)
byltf T {_LE X

! K=
f”

]z

.
n -

(o G (3”'7-1)
(24) W' = (N-Q‘? g I?”

| 19.



' and substituting

|
' N ) ) — B R 5,
%(25) = Fn :ilS{'q =9 L (P ;;:'_41,,/}

| J
|whers S denoctes the Dirac dsita-~function,
Subztituting (23) in (16), one obtains the

importent eguation

3 1 2 {3 A ED R

|
[
[ie =7 5J o g ”-'. %y dassg®

‘which may be regsrded a: an integro-differential

equstion for toe dsterminatlon of & . As, however,

' it contains F‘i*' on the right-hand side, its solution

imuat be effected sither by making some ap;roximstive

‘assusgtion concerning the dependsnce of fw 08 5 G

‘Qr by pm—cﬁedmg to tie last sguation 1=N , Where

ime intesral term vanishes, since fum=O . Of

 gourse, the equaticn is not fully determinate by

1tsé1f 5 ©one may give FN any value as a function of

the x“ and %" at an initial time G , subject to

' the normalising condition

| (27 (aw) '.—F AxVAEY = N

| f.“SﬂCs L 2

;and (26) then deterninez the subse-uent variation,
Gq may he obtained by integration from (25),

but as such integrations can rarely be performed in

' practige, it is important to obtain the differential



equation which it satisfies and which provides the
best starting peint for avproximative evaluation,

| he derivation of this equation offers no diffi-

| culties; from (21) one obtains the *rate of

acceleration®

N

z Z 1)
(@8 = F (Empra”

[ W)
\.2 0= {f""_ Zﬁ ’f;ft;. /"

2.)
?—,‘Ij)/ kel =

— 1 =

J-|

| whose mean value Z, must be substituted in the

eguation for G -

: i 4 e N2 2 o (1))
2 2 ..__j.'ﬁ.a- -__j_‘l -f-_._‘l. < it
@) U 2 1T T - B 20} -
5. . llﬂf 0 - tl
8o far no distincticon has been made which
' identifies the moleculsr syste: under conslderation ‘

i with a liquid, as oppozed to a solid or a gas. ‘

sufficisntly zeneral to be a plicable to any form of

matter. However, it is important to be able %o

differentiate clearly between the three phases, and

| thelr characteristics are therafore now briefly |
stated. The solid iz distinguished from the fluid

' gtate by the exiatence of a degree of long-range

' order, 20 that the occurrence of two events A and
B separated by a long distance 1s not iwlependent, |
whereas for a fluid, according to §1, one nas

p(A-8)= p(ﬁ)p(@; thus, for example, in a fluid

Indeed, it mar be claimed for the foregoing that it is

| 21.



\ 22,
£ & x) = £ (x)£(x™  wnen (x® x| 1s largze, but
‘net in a solld,
| The distinction between liquid and gas is in
'abstract not so clsar, and may be sald even to |
!diaappeﬁr above the critical point; it 1s best |
:understood tarough the ;:-fmxiosmmcn of condsnsation,
'which will be discussed later., A rough distinction
may howaver be nade iv the following way., Tha
potential enerzy b(x” x%) betwsen two molecules at
x? and XV dscreases rapidly with the distance

between thelir masséecentres, and (except in the

grscial case of Coulomb forces, ayplicable to icns)
a distance r; , which is vary small by macroscopic
standards, may be specified, beyond which the

interaction may without error be assured to vanish
completely. In a liquid, there are many molecules
'within tnisfiist&me r; ©of sgiven molacule; in a |
- gas, tners are usually none, and the probabllity that
' there is wore than one is very small , except near
the point of condencsation. Tue neglect of this

' small prebability is equivalent to the assumption

of *binary encounters' in gss-theory. It will now
bes shovn that when this assumption is made, on
substituting 9=/ in (26) ons ohtains the Boltzmann
equation which is fundamental in the kinetic theory
of gases.

For this purpose, one assuses, with Boltzmann,



that the internal structurse of the molecules is
uniwportant, so that «=3 ; then the right-hand

' side of (26) reduces, when =1, to

‘-lﬁ“%%?' 5}";!10 dx g™ . To transform this into
| the B-?;.ta;ti-dann *collision intezral®, an ex ression
for 4, in termes of { 1s first required. Consider,
therefors, the motion of two molecules whicn at time
t have positions X%, x% (such that IxXx"|< 15 )
and velocities %, E® respectively; and suppose
that at time t, < t, when the molecules wers last |
' at a distance v, from one another, their positions |
and velocities were XU, x and E, §:"> res;ect- |
: ively. During the mction, asccording to the principle
| (ii) of §1, the configurational probability

| :E(t;’_*"',)&“,’ﬁ‘f_{m) okl dxPLEUEY must remsin unchanged;
also, by Liouville's theorem, the volume in phase
space dg_"‘dﬁ“’d{mcl_i_w is unaltered, Hence

o
v

( 30) F}_ (t's Eﬂ: -)S‘t}) E(;’_E.h’) = ‘Fi (to ) .’.‘-2): g: ‘)‘F‘ (t"’ é(:-’ Ze ./

since, as explained above, molecular events in
fluids which oozsur beyond the range of interaction
mast be considered independent.

Next one introiuces an gprproximative assumption
which 18 always made in gasetheory, that T, , Ef,') »
and f_t) may be replaced by t , x, and ,K_"‘) ou the
right-hand side of (30). As Y, 1s so small, the

resulting error is of microscopic order; neverthe-

2%



'less itlis important in explaining why, for example,
‘there zre small deviations from the Maxwelllan
velogcity distribution law, which is a rigorous
Icansequsnae of the Boltzaann =sguation, in eguilibrium |
* |sondssions. |
| W () ) «)
| To calculate ¥, and §, in termes of (", E,

and r:_;_g“’—_gf‘) » one may use the Haniltonian equatiocns

}cf mot ion

() E(\.!
(}1) du\"/(fh—} .E(. = °L'E/ = = % .

!Tm eignt functionally indegsndent intezrals

‘ek (c, 8", % =const, (k=18 ) of these squstions |
' Just suffice to determine r, , g;’ » and ﬁi') as the |
' soluticn of the slmultaneous esuations

|

(@) 9,(n, " Y =6lc, 505,

0

iSinae, however, all the Qk satiafy the equatlon .

| (33) m (S{ )"'_E,“)' %“ - _Z'% ” (_:ZE‘:\) '3_'_;"‘) ’
! EM 2) 2 _ . _
' 5, and §, , which are now expressed as functions

| of the O , satiafy the same aguation, and so does
the exyression for ;E_ obtained from (3%0). Tue

-2 oI 2
integral J;ff%-ﬁz,#f“&_g vanishes on ascount of the

inte ration over E/( vecsuse there are ng

24.



' molecules with infinite velocities); hence

(34) L (22,25 e il (5“)—;"9.%{7‘, tgg'%(,fé‘b}drg;?

z_x(‘) 2 j'g' )

where the domain of integraticn cover v may be
linmitied to the sphere of radius r; surrounding 5{').f
Tais integration is most convenlsently performed

oy imagining the sphere to be partitioned by

. elegntary tubes parallel to the vactor _Em‘_ﬁ{'); one

' may then integrate, first over a typical tube

_ |
specified by the cross-section radius b (perpesude I

iculsr from the centre of the sphere), and then over |

‘all values of b . At the bezinning of the tubs, |

-

whers (¥*Lg")r <0, the interaction between the
molecules is neglizible, and _Ef,‘) reduces to £ “ and
EYto £ ; at the and, the volues E” ana E®
of ¥ and £ have to be calculated with the help

of (32). Thus the right-hand side of (34) assumes

the form

q§ 1Bl (e )8, (6= 5, (65, (6o LE

which is the well-known Boltzmann collisisn integral.

One is thns assured that all the consaquences of
the Bc;ltzmam equation in gas-th=ory can be derived |
from the present tneory when it is assumed that
only binary encounters betwesn tne molecules are

important.

25.



6., Qusntisation of the Theory. |

At this juncture it is necesa=ry to considar |
carefully how the thnsory wust be modified in order |
to make it conform with the requirements of quantum i

mechanics, As is well-known, a formal correspondence

between classical and Quantum theory can hHe
gstablizned by replacing every classies] expresaion
dhaltyx®... W EY ... EP) wnioh 1e a function of positions
and velocities by the corresponding operator, |
represented by the *matrix’ 0{’(!:’!‘?... X 50! ..._§f$>’) -
in the X -regresentation. Such a matrix will often
be denoted by o4(x, _agﬁ, or simply by o . ne sum
(%4+B4) and the product (‘"‘tP‘l} of two operators ol
and '31’ are defined by the matrix equations !

(% + By ) 8 ,%7) = Ky (,x/) + foy (5:5),

i (g (3y) (x, %) = 5-‘3)5°‘1(-’53’—‘”)1”'1(5':-’5’()?3&5”'

he operators corresponding to the peosition

vector X", and the canonical momentum vector

Pt-‘nr_ gf-"._E_‘:) are specifisd by

i

With the aid of (35) and (36), the representative of

any function of time, coordinates, snd momenta can

26,



' be constructed. In perticular, one obtains for a

function Y,(x) of cooiinatas alone,
B UL
(37) Volxyx?) = Wlx) o §(xV=x9"),
;=

and for expressions of the form (F"'!x.,) and (% F,“D,
(B9 (5. <) = =k 2%Ex)
7, 0‘1 S5 = = ) 7)

/)
ok s
Xt

(38)

(4 p)05) =

The *trace' of an operator of the kind 0(14-; is
denoted oy 7(,4, (#4%1) , and defined by

i \ (440 few)l) xf‘}" H}f

: (39) 7(%-1 (0‘1.4") (’1;3&/)= 550(‘1*‘(5’5,)5(5 e ig“) i

| - except when 3=0 » 1t 1s an operstor of the kind

| oy, and must be distingulshed from the complete

: trace, which is a c-number. The complete trace
X (%) of Ay 12 defined by

(40) X&) = X [%d - Kb .

7(1“(041“) is the quantum transcription of the
classiczl exgression det('&,E)ﬂ‘é‘_{“*'%‘@@ﬂj;
conparing this expression with (40), one sses that

in quantum theory the opsration ScL_i_“‘“) is replaced
by goti‘**"'S(f‘"lﬁ(‘WQ, i.e., by the substitution of

7.



| X4 gor x4/

| Suppose that O {;,}g"; is the matrix represente [
| ative of the o.erator f?ar which corregponds to the

| veloeity distribution function f;(x £/, To preserve

‘ the analogy with the classical theory 1t is
convenient to normalise ]o?_ according to the ralation

(41) 7(14., CFQH) = (N"'j-)‘og >

| corrascending to (7); whilst the formula (8) now

. reads I
|

| (42) i o [ py .-='; ShAL X dx™ = g,

f
i (43) Py (x5 %) = ny (%)

This is one of the most importsut properties of the
matrix F‘t , that its disgonal elements are the-
values of the numbsr density function. It is seen ‘
at onee that O, ocoincides with the 'statistical
operatort or 'density matrix' mr.mduced into quamum

mechanics by von Neumann'
In order to formulate the equation m:tisfieé by

Pa » it is convenient to begin with py . Like £,

tils matrix may be given an arbifrary wvalue at tine

| t, , subjact to the Hermitian condition and the



normalisation
(44) X(FH) = N

| ite subseguent variaticn is then detsrmined by the
. Hsiszsenberg equsation

45) %n = [Hns Pud,

 where Hy 1s the Hamiltonisn operator constructed |
from tue formula (18), and [« p{] , in conformity |
with Dirac®s notation, means sisply -é (ﬁﬁ-ﬁﬁl Cne
may defire H, for any value of q by the equation
IJ)

(45) H1=ZH ks ¢V

=1 Jj.:l

g0 that, taking the trace of (45), one obtains

| N-| (‘N)
(47) ’B—E%_l = [Hn-rs P}t :ngn[qg ; F...:_l

The only ters of An HMPN] which does not obviously |
vanish is 7, [p™} pn] , and woen reduced to the form
gl [ (2pu+ pnpVix, x/) §(oe—x ) cxlr ye )
thig obvicusly vaulshes also after transformation to |
- a surface integral., (Taers are no molecules outside

| the ccufines of the voluwe VY ).

Repeating this procedure indefinitely, and



| cancelling the factor (N-d‘,)! whieh apiears, one
obtains

: z $ &4 +|)

I (48) %_E: = [Hﬁpf’q? = o EIX(‘” [4’ i ’ f'-’a.*l’],

|

| which is the fundamentzl equation satisfied by p; .
Now, it is well-known that the classical analogue of |

, tne'Poissan bracket? [°41 > {3{3 is

ol - A
?:' (9 ‘; i %1 i~ %1':‘%&%}/ -
and siuce F_" = 9“’-5.“ » in the transition to

clas:ical mechanics LHy, P35 ] becomes
4 ) \ - 9
Z{( g:é_ ___Pu u | '3'Fq, ___)-;-H f—i’},

=) Xl - FELI e
| and G, [4»‘ A P.,ﬂ—,l becomas
8o that in the limit K » o, (48) goes over into the
corresponding clascical equation (26). This ensures
that £in the region of high temperatures, whare the |
energy states are 20 numercus that they may be
replaced witnout errcr by a continuocus spectrum
(thus affectively writing 1 =0 ), the classical
| theory developed in previcus sections is fully
adeguate. In tie region ofvery low tesperatures,
however, the divergeuces detwesn classical and
' Quantusz thsory become important, and a Quantum
treatuent is sessential. To praéorve full generality,
- therefore, and dDecsuse the Quantum treatment is

- geldom more difficult than the claseical one, the
more important dasveloprments in the chapters which



follow will be made im the forzalism of the present
7-m ion.




| CH II: THERMODYNAMICS OF FLUIDS.

1. The General Method of Solution.

In order to calculate the dencity matrix Pn

| from the equstion (45), it must first be specified at
: gome initial time +t. . For this purpose one first
chooses any complete set of in@endent commuting

| operators 7“&) (r=1-- N’ ), and then sgecifies the
probability p.W=pa (U £") that at tiwe t, the
fluid 1s in the state [ for which the )\ have the
sirultanecus eigenvalues A . This repressnts the
 maximum of information which can be ascertained

| expericentally concerning the fluid, Let +N(€,=_¢) be
the eizenfunction corresponding to tre state A ,
satisfying the equation

N . F.
U SR e sV T = L ),
and normaliged in such a way that

(50) S(H) S | “}'N(lﬂi) lzﬂl‘?ﬁ cig&_‘:’ = N

Then, at time o , according to von Neumann and

Dirac,

(51)  pulx,x) = %Pn(l)wbn(l,z)‘-f/:(i,z‘_"»’-

One po=uible set of A 1s that set of operators

which commute with the Hamiltonian H. , and are
therefore counstants of the motion; 1t is convenient,



however, to choose the A in a slightly different

way, a3 follows, ﬁlppcaé the fluid 1s divided into a !
i number of groupe contalning 9,42, - 4w  molecules

K g+ Ga+ - +9. =N ), such that the interaction
betwesn molecules in different groups 1s very weak;
this may be effected, for example, by imaginary
surfaces described in the fluid, Then the )\ are
ghoser: to be the A, Ay, - A. which comute with

Ha,, Hga s Ha, respectively. Write
8o that I 1s very small compared with H,. Let
Ei»Es, - Ew be the eigenvalues of Hy,Hg,, - Haos |
 and put
(53) En = Bk etk Sw

;Then, in ths f,—rapmsentation, (45) reads

(54) o "*ﬁ*_(i‘) (En-€) pult;t!)

e e - B
Lf
Substituting \
_{;CEN—EA)*:
Pﬂ(i,l;’,) =k P; (E)LI’\’
— / e
(55) Uﬂi,i’) = ﬁuq_\"—(a.. € )€ 1}(15,-‘39,

(54) becomes, in matrix notation,



56y ok %,;:ru = e -

This eguation may be solved by writing

(57) "P; — F(o)+fztt)+p(1)+—--;

whare ;O(c) i= the value of F,] at time *, , given,
according to (51), by

(58) 0lo) U 1) = pul) g4/
and the 9(@ satisfy

(%) K B%I‘)-—- T pl)—pl U, = 0,1,3;"
| |
| |
The prodadIlity st any time £t that the fluld 1s
' in the state L 1s then ' |

- (60) f_’—"‘ - P(o)-l- p(|)+|:>(7.)+“'>

where p(w) (4)=p()(L,0), 8o that plo)= py. If

- (61) W = :v;u-, U= W,

' one obtains from (59)

(62) Y SJ(I) = MF(O) "‘j’(D} (iyia



= RP(@) = [ {Urw ple)Alfprons —Wplean +EOIWW } 4t

(63) = 4 {u0h(e) - UG +p(U] + 15 p0o) —plo)L]
| where :
(64) W, = 4 ﬁ; (W -wude, |

and siwmilerly, by an easy calculation not repreduced,

_ btz?a) = _é: fl w‘ZFCQJ_gw‘FCn) w+3w‘:(o)wz— J%)w3} :

(65) + W W, plo) -p(oyWs; Y = {w, plo)-ploywi b |
+ Wy plo) — plodw, , ‘ ;
whaere |
| |
(65) W, = & Sf (US W= WU ) d# .
Hence

p(l)(,t) =0
pOW=53 |us Uy (O pu (- pu W

(67) PG W)= i_—h}l’iwgiwa,ﬂ DU w0 b pu (£Y-pa(t) h

—i—#f ﬁ{w(ﬂ,(’)w,ajn)-l-lts;(t,t’) w(t,’t)]{ﬁ,(!l{)- Pn (ﬁﬁ
gt 4

.

As |} 1s small, the series (50) will converge qulckly,
especially when t—1, is small., Hsnce, to a

sufficiently high order of zpproximation, |
— ) AN (e 1O B () —Pa )
(68)  Pw L= PuL‘-/ "é{% UL in N 31:.

This eguation has a transparent phvsical significance,

5.



%'
‘when |wi(l,¢)|” is interpreted as the probability of a

transition from the state [ to the state (', or

' vice versa, in time t-t,.

One sees immedistely from (68) that a necessary
' condition for eguilibrium at time t, is

(69) Wt t)=o0 o pall=pult), ot L ama L]

in the sense that py ) and FN(E’) must be equal for
all [ and L' for wnich W(L () does not vanish.

This condition is also sufficient, as it secures the |
ident ical vanishing of .o(n ) , and nerce of all the

| p(u) except f(o)- . It will now be shown also that,
! starting from an arbitrary initial state, the fluld

| must agproach a state in which (69) 1s satisfied.

| For this purpose, one defires g Guantity §N by the
- egquat lon

(70) Sy = —kFpuW Log pull),

g0 that, by substitution from (68) and neglect of
squares and higher powers of the grall quantity

f {ljﬂ,’);" , one obtains

S = ~KZpu0) Loyl 5 Z [ TR 1lh e Log Rl

IS e e g S
| = K%'P,‘LbiojP,,,xl)-l-i‘_‘_;:_‘:[_m-hfaz‘ 1pal-pu }’!‘Dgiﬁ.(bj’,l



| state, uutil such a tize when p(2) becomes small .
 emough to be comgarable wita p(3) . Then the above

Thus S,.,, necassarily incressaz between the times
and t , unless (63) is satisfied, when it remalns
constant; and S, will thersfore continue to

increase while the fluld approacies the sguilibrius

. argument loses its validity, since Jfw(tt)w(lL" wthOyF |
. and 9’{uf(1,!9w.(l3ﬂ)-+1~f,d,€‘)w(!‘,t)} are not necessarily positive,

and, in-tead of further approsching the squilibrium
state, the fluld is subject to small random
fluctuations in the immedlals neighdbourhood of
equllibrium, From this polnt of view, phencasna
like the Browxnian movement are readily understood.
Corresponding to (70), cne haz for ome of the

grours containing 9e molecules, |

G5y  S.=~— k:?_' e (Le) Log Palle),
e

| where p,(Lc) 1s the provability that this group is

in the state /ﬂe . Since the groups are virtually
indepandent of one another,

“/

3 B = T pte

1
e=|

and, mbﬂtituting this value in (70), and rmmbarlng
that f PJ&) , one obtains

(74) Sh = E:;-; Se .



. All these propsrtiles of SN strongly suggest ih&t it |

is identical with the entropy of the fluid which is

defined in classical thermodynamics, but, pending a |

rigorous proef, no use is made of this presumption. |
So far, the way in whigh the P(-«) depend on the :

tine has not been explicitly determined, From

' (61) and (64) one cbtains

2 W) wa.t’ ,;
l

(75)

wa f,”)—- Z 2 L) {’.__1{(.5.{.) E-'—l.t“'ﬁrﬁ)f( Yy Su-JL V,'k ces l,&{’.y sti)ifaes-'-yfj)
L." Y Vz (Vrg-v,_ ) .‘,

' where hyv,=E—Els hy=E{-E » and t'=t —t,. Now,

| all those terwms which are periodic in t/ and _ |

| therefore oscillate about a small fixed value do not i
represent any real change in the fluld, and may be |

' regarded as vanishing. This appliss to zll terms :

in W(f,!’) except those for which v;=o0 , and to all

| terms In W;(Ll") except those for which v4+v=o .

Hence one has efisctively

| WL = ML) Sg e (£-to)
" VL), oL
u.ﬁ(.(,l): Ut; _._.é:__-Ez.f_. SE,‘E,.: ('f,' 'l:'o)

. /
where 2 means that terse for which EN'——E,.:r are |

| |
- omitted from the sumvation., The result is, that only
. those transl!tions occur which satisfy the principle |
of congsrvation of energy. This is the 'adlabatic

principle® discoversd in gquantum theory by Born (2°) :



39.
. the title resains appropriate in tne present

i aprlication, since the possibility of performming

| work on the fluld by moving the external constraints |

ha= not yet been considerad. It has besn assumed in

the forsgoing that the energy levels of the fluid |

are discrete, but it is eazily verifled that the

| adiabatic principle holds also for the continuous
gpectrum, It ie essily se=n, further, that the

adiasbatic principle holds not only for P(l ) and

| f(?—) s but for all the E)(u, P this extension was
| first proved by Born and Fock -,
| It has hesen shown thal w(i)ﬂ’) is dlagenal in
En , and the question now arices whether 1t can be
disgonal in any other combination of the ,(.f"}. Te
 decide tnis, let /\, be any combination of the A7
such that wu,;f}' ie disgenal in its eignvalue L .;
Then /\, commutes with \} as well as with tae other |
X *s, and tnereffore also with H,, according to
(52). 4s ) is tae sum of a nusber of arbitrarily
. selected taras 4:“5) $ Au maet coxcute with the
ci:“j) individually. The only constants of the motion,é
. however, which commute witi the potential ensrgy, |
. ars the momentum and angulsr mozentum., Hepce one has
N. ) . i
Ny Li== 5 =§__'_' Le

L
] ,

TMg

L1 A =Z N =

i

1) .
where /\ raprecents either F_"' » Or one component

and the sjuare of x"'A t‘zr'}. It thus sppears that W



can be diagonal only in those constantes of the motion

' whic
3. Tohe Byuiliprium Distribution Law

h ares alsc '"sumsational invariants®,

It is now possible tc determine the squilibrium

- fori assumed by (O from the conditlion for

eud

that

matr

as different enerzy or momentum stastes, which cannot

- (78)
| end,
(79)

whar

b

Pe

(80)

iibrium (69). It follows from this coudition

pa(t) muet have toe same value for all those

. states which can be connected by a chain of
. transitions not forbidden by the vanishing of the

ix elesents of W ; but that for states, such

' ve so comiected, pu(l) Will have differsnt values.

- Thue, in equilisrium,

'Dﬂu.) = P(EH) L'N)g

socording to (73),
l

p(Ens Ln) = I P‘-(Ee)

€=\

e E, 1s given in terms of the E, by (53), and
in terms of the L. by (77). It follows

. rigorously from tals that tie dependance of P and

on E, snd E, is given by

Log Pu(En) = BlAN—Ew

ey po(2) = f(AES,



41,
where ﬁ is a constant and Ay *é/\re . AJisin
| general a linear comwbination of the [ , but for
girplicity it is seswmed here that the méan monentum
and angular momentum of the fluld both vanish, in
which case A, 12 a constant, determined by the
condition '%Pu(ﬂvf; in the form

_.-FAN _Q"_FEN
(81) =

To deternine ? , one employs a well-known
fz#-;

An
external azengy is permitted to do work om the fluld

arguzent, stated concissly by Schrédinger

by moving the extemal constraints; the effsct of

this is to changs the eigenvalues Ey of the energy

of the fluid. Iu a swall change oE of the Ex,

the work done on the fluid is Zp.W By 5 the |
corrssponding change in the internal energy U,

| given by

(82) Uy = %’

(An-Ew)
> dpE, = 2" L{p(n... e} e,
il
L

and this must be TdS, , where | is the thermo-
dynamic tesperature and 5 the entropy. The



reciprocal of the integrating factor B of the
right-hand side of (83) must therxfore be a multiple
k of T (IB"'= kT ), and the entropy S, must be |

: . (An—En)
(84) —k8 T (Au=Ew) o F

apart frow an unimgortant constant. This justifies
the interpretation of the guentity defined in (70)
as the entropy. Finally, the free energy A= U~ TS
is given, apsrt from an unimportant constant, by the
equation (81).

The eguilibriuw expression for Py may be written
down at once with the aid of (51), (78) and (80);
it is

‘ Au"‘“"‘)
(85) On = ,ap(

in operational form, since one may now consider the
fluid as a whole, and put U=0. (¢=N;q,=-=quw=0.
Taking the complete trace of (85), one finds

_ﬁHn>

__B3Ax
(86) Nl T o= X (e ’

which is equivalent to (81); also, by repreated
application of (41), one obtains

BAny o Ky D § s K (P

(87) (N—g)! 2 o



In this way, all the equilibrium properties of the
fluid are in crincirle dsterzined,

The transition to classical, as opposed to
quactum theory, is easily made. (85) and (86)
may imwedistely be transcribed in the form

e £F(An-Hu)
', =

(88) NI -a_i?.An S'(u-l,j‘ —PH’N :=| = dx" ‘A—f

where H, is now interyreted as a function of
positions and velocities., Integration over the
velocities is readily performed, and, corresponding
to a dezrees of fresdom, one has

_pAw (Zwkf) gff “Fff"-"au”
(83) N!=z T R

where m,.-.- m, are the masses involved, and 'i_ is
the total potentizl energy of the fluid in a given

conficguration; also
i ey i
{30) 'Fi = g HfL £ 5

When this expreselon is substituted in (26), one

obtaing the eguation

() c‘- (e ’] ke -H)
My, L_\fg S }é Pgr1 0P ") G4
(91) ?7‘" "- (:f?,g J‘-l‘ '?XI J; J K‘[_ ‘??5' ]f}‘ 0,

430



44.
which is very useful for determining ths approximate

equilibrium value of n, for swall values of g ,
wneén the procedure of intezrating the known value

of ny 1e Imgracticable,

The preassure P*’ in a fluld in equilibrium 1is
defined themodynamically by the equation p’= - ’%ﬂ A
and may now be calculated with the help of the

L
forammla (86), which, on writing x= V’Z , assurss

the form

N
P o s IV e R - LA DL
50 that

™~

. — BN - GJ

BAN | oo 9 P WiT dn?’)
+3vg"‘j.§a"‘ Zale (s }.il“

(53) Mps T Prs

For simplicity, 1% 1s assumed iIn this section that
" a=3 , and that +‘:’ vaunishes, By symsetry, eadh
tem in the sumsation in the integrand of (93) has
the same value, so0 that this =squation may be '

reritten, according to (43) and (87), in the form

(), £ . [ () z)
B = i iy ) (57 By % 2 ) ma 1) clsels!

(94)
e =y gy § mrit)est

since n, 1s in eguilidbrium a function of r=ix?—x"|

only. If in (94) ons substitutes the classical
a_‘;pregsir;:pmx_,%” given by (91), one obtains the
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more useful formula

(35) Po = KT -—--é—S‘ i, (r) cf:x(f‘) cbr

which 1s the eguation of state, expressed in terms
of n(r) , itself a function of density and
ten, eraturs,

This form is valid only within the limits of the
classical theory; to obtain the corresponding
quantum formula, it is necessary to proceed as
follows., QOne has

N

() 2

%= |

0 [5“’{L"PH"(§,£>}]= (P M g P x, )
in the interior of the fluid. (When X" 1s near the
surface, the identity falle, as may be seen by
intezration over all space, when the right-hand side
vanishes,) The right-hand side of (96) may be
evaluated with the aid of the lemma that, if ¢ and
T are any two operators, and f(t) any power series
in T , then

5 F0= 506 = HRIG + FRIZ +f D

= S0 - SHDG P

(s7)

l

FIE’_ 6 , 5Dt + %-: {@J;ﬂr{.r)\,+ ;
_: Jz_. R ‘{ 51? E‘ﬂ,'f"/(f)] + -.’i;'. EQ,‘FM(T)] S .}

Where 6 =0r—<o » Gy =GT-6k (k=1,2,- ), and



{%3,P3} represents 4 4+ B4 °(¢> . This lemma is
easily proved by induction for f() = ", after
which the generalisstion 1s obvious, Substituting
6‘=;§? x| t=Hn , and )=+ F, one
obtains far the right-nand side of (96) the

ression
;.E 65, P Bi B0 4 80, P L, D,
where

oy 2 DY, et

J

. A o
(38) s, = K2 {~F
Substituting in (93) (this is now permissible, since
the comiutator in (96) has been evaluated), and
using the property X /oc‘~|f3N) =X(/3u°(~;‘l, one obtains
= (4?
SN, o PIEs Y 35\ ~PHNLx O TT XY
(99)ij£, FANP -5 J- f{ E/'{(“‘fﬁ?_‘#%'?j"'";:’,ﬁ }' =

and hence

= ey
S s R

where
L)
Plo = nKhH = k S riag (X (et >
101) 3 HY \ '
( ) %Nk’r‘l aLd %“ (FQ.L:-‘, :Er\sz, .J- E&(’..

The classical eguation of state (95) is obtalned
from (100) by writing Kk =o, since in classical
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theory T and T, are equal. In guantum theory,
howgver, this is not so, and the terms involving
F; : f:; , ate. in (100) obviously become more and
more important at lov temperatures., Thus it nay be
expected that the equation of state of a liquid near
absolute zero will show quite a different character
from that of liguids at ordinary terperatures, .

5. ZIhe Phenomenon of Condensaticn

In recent years much effort has been devoted to
the study of the process of condensation from the
gas to tone ligquld tarougn tioe exact developuent of the

equation of state as a power series in the density, thus:

- S
i : calEny)
(102) o = kT (= F =1 P

80 that the Qquantities — %?%;‘ are the so-called
virial coefficients, This development, first made
by Ursell *¥, was shown by Maver  to diverze at
a certain density for each temperature, which he
associated with the point of condensation, His
work, improved by Born and Ruchs ™/, and given a
quantum generalisation by Kahn m)’ has since become
the centre of considerable confusion and controversy.
By solving the equation (91) with g=2 and
substituting the value of n, so obtained in (95),
the author e has succeeded in obtaining an eguation

of state which gcan be developed in the form (102)
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but has a msauing alsc in the regicn in which (102)
diverges. In this way it 1s possible to elucidate
the nature of the singularity and gain a ¢lear
understanding of previcus work on this subject;
tue conclusions reached may be stated briasfly in
the following way.

With any finite values of N and V , it is
clear that the value of Ay/N  given by (89) 1s
O(‘;J , Yezaining finite as N> ; for, even
1f & 1shiven its minimur value &,—N, in the
integrand, Ay 1s O(N). Hence one sees that
the divergeuce of

o hS
(1081 Ay = Nk Ly (T D -Z EECE
for high but finite densities must be illusory.
This 1llusion 1s created by the a=zsusption that all
the f@, are independent of =, , whereas it is
clear from thelr definition as integrals over the
voluze V that the density is iluvolved when
s = O(N:‘-' , thougn the error entaliled in
extending the integration to the whdle of space is
negligible for swall s . Kahn (in his dissmtatioh“”%
Ch. 3, §6) is the victim of a similar illusion
when ne interprets the second branch of the
isotherm which he has found :& the isobar
comuonly supposed to connect the vapcur and the
ligquid; his error arises from assuming that all



49.

the ﬁ; are constants, and it is not hard to see that
the second branch is not an isobar but corresponds
to the liguid state.

In fact, the isobaric 'line of condensation' oun

' the isotherm in the p =V diagram has no fundamental

siznificance, but reprecents merely mixtures of the
ligquid and the gas, which have denzities represented
by the left and right end-points of the isobar

 respectively. Such mixturss cannot appear in the

- theory of a single phage, where the density is

assumed t0 be the same everywhere; tlgrefore one

nesd not expect to obtzin an isobaric part of t'he
isotherm, though stztes of supsrsaturation of the
vapour and superheating of the _.'Liquid ought to appear,
Tne isotherm thus obtained will not be very dif;‘arant!
from th® original concqption of van der ﬁaala, axcaptf
that in the limit N-> oo , the apparent divergence

of the series (102) will be marked as a branch point

at the minimum of the curve, from which spring two
brancnes associated with the llquid and ths gas
recpectively.

The diztinction between the liquid and gas is
roughly marked by the relative values of the two
terzs on the right-hand side of (95). For the gas,
the second term is negligible in comparison with
the first; for the liquid, the second term, increasing
rouzhly as the sjuare of the density, hecomes of

paramount lmportance.



1. Hydrodvnamics.
Fro: the fundamental equation (48), the laws of

hydrodynaxice will now be deduced with the full
geerality of Quantum mechanics, For simplicity it
will be assuwed that the internal degrees of freedom |
of ti® molecules are unlmportant, so that cone may
take a =3 , throughout the present chapter.

With the notation 1By} =+(%4f+ sy, one may
first define the wean velocity v_'-f;’ of a molecule
({) in a cluster of 9 molecules with known positlané

by the equation
- (104) g wug'(x) = 164 fzm.}'(i""') 2

| Since the expression {oﬁ, {%«;k corresponds t$o the

simple product dﬁﬁ., mjlaasical the_orv, and azj(rs;a)
to the integral {#f« J1 4", tnis definition s
fully eguivalent to the classical definition
aexpressed by (14). Sizilarly one dafines the
generalised 'tenperature’ 'TT;” of a molecule, in a
gluster of molecules whose positions are hmown! by

(105) Iy KT30x)= 110545 £ DY ICHIN

where

A 5] ; ) / /
(106) z;-}(aj‘?_‘/) = _.i-—‘. ‘2’ ().i)af) "'"&1' CZS) g{& ""5_’).
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is the particular velocity of (( ) relative to the
average motion, In clas=ical theory (105) zoes over
into the form

Mt _l ‘ 7 J))

oy 3mmakT = (R Ay G

wnere v§'= E"-uf; tms T, = T, s tue same as
the temperature defined in classical theory. In
quantum theory, [, is not the themodynamic
temperatum.} but coincides with the ‘dynamxic!
temperature, alresdy defined in (101) for the
special case of edquilibrium, when it has the same
value throughout the fluid.
i ) /50) )= (") “9 ""}(x x/)
(P‘”’p@——Fﬂa""")(zs,ﬂ)-"#{?'(E Pa +l°‘i?) (R"Ps+prR"/eR (5
- (108) = = (Zorr o) (B Py )20,

(48) may be written in the form
k2 p,tx x/)+ v"iz(.a,cu’r ,,,) {mz Flx,x’)
“‘-"i (‘f"’) 4”)91‘7 (x,%/) + Z (= ”’)Pe"—‘a-’f’)

(109) )J' , o ) 5+ (1,6-')’)51:_)5 h;hax!q,hj/
T [T Dy )5 s '

On putting X ——-5” in this equaticn, all terms on

the right-nand side vanish, lecaving

4 !
- _?_":1' .-?- e (l"\ {.L-‘.,) — ) B i
(110) . T{. = E 2{!—) ?--1-' > i L4 X,




This is formally the same as the equation of
continuity (13), the only difference being in the

=1
Let 1'1’ be any function of time and the

definition of u! and ng in terms of the atomic data.

coordinates x" ... x® . Tuen 1t follows from (110)
that
:
2T = n 2B - T F R (i
(111) A Hﬂ%ﬂ'{%m,(%q%/’

T
- where ?&_‘L"‘t— re; resants the operator ,5,% g _fé; )'@?_;‘.:;.
Now, by multiplying (109) vefore and after by

| Fj‘" , and taxing half the sum, one obtains
t..t‘g' {F‘;P‘ ’.H":E!)"' Ukz (B?CJJ 9)&{)‘) {ﬂ"d—?‘j}fl" '}(K x") |

i)
=L 2} (‘:'Lgk) *U.Q{P g[ ‘}'(l‘ e LJ-:Z (g% JJ af’/)(ﬂ, (x)x,

*i (4949013 P%,x%taw PO Gerx)
(112) J h { vr
-+ Z ‘H@#J'}"'” +9‘}""){’{F P( ’}(X,&/ SC&"""’"L)(""'”L'C()C“’ 1

SS(%'Q:H) t‘i-u) F’,-H {X x”g(xn}w) f@-l-l\oc{"‘fl‘.-ﬂ)&“(‘}fuf

Again writirg X = x/ , one is left with

c j G )
(113) =2 (m,, wi') + :L;;E ?_g;g)' ffF,PT‘P} 2 (x,x) = ng2)y

where

(114) o oo pPe P?g:“w* g (+0)

m:'qi' % J-.:', 'avc” "y
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The sazme eduatlion can be obtained by multiplying
the claesical eguation (26) by E‘” and integrating
over all the velocities, except that w»iifsR7fR‘F(,%)
is replaced by its classical analogue g.‘?.’jacgg‘f’f"'ﬁiiw.
Thus the equation of motiocn, llke the equation of
continuity, differs in quantum tnadry from the
classical eguation only in the definition of the
gusntites =hich appear, in terms of the stomic data.
At first 1t nay asppear straoze that gquantum

- mechanics requires no modification ol}‘the equstions of
| motion and continuity, and indeed, this result is in
strong contradiction to the work of Landau *¥, who
develcecped a quantun hydrodynamice in which the
hydrodyramical eguations the.selves have an operaticnhl
| form. Reftection shows, however, that Landau’s
equations can have no physical significance: the
ma.crosc;opia, visible changes in a fluid give no
- indication of the existeuce of quantum phenciena, and
must be described by the saze equations In clasceical
| and quantum theory. This is true even for liquid

- helium II, where the apparently abnormal viscosity,
thermal conductivity, ete. in no way conflict with
the macroscopic description of matter, althoug they
. cause one to suspect that Guantur pheromena are
| rezpondible. It 1is readily seen that the present
- theory greatly fTavours such an hypothesis, as the
evaluation of n, , u. , 7, ete. 1s quite

different in the classical and qQuantum formallisms,



80 that quantum complications are to be expected at

very low temperatures,

By uesing the formuls (111), with « " substituted
for _1’ » {(113) may be rewritten in tha fors

‘) g )
(115) mm;%% *J.% Tl = mngny’,
whare

(116) ‘éﬁ”= m 3§ Py b b )

- Further, on writing

{-'} P (1)

(l")
whare ;i‘ is defined by the equation
2
(118) Z  oxY) é—i.

(115) assumes the form

i) )
(119) iy & oug' ‘2333 By = L
This is to be regarded as the generzlisation
for mwolecular clusters ofthe equation oﬁnotion of
ordinary hydrodynamics, to which it reduces when
q= | « It 18 clear that the presaure tansor P 1
gonaists of two parts 511 and ,_L_" , of which the



first is dus to the thermal motion of themolecules,
and the second to the intermolecular forces, Only
the kinetic part k_,;j) of f;‘.;j)ls found in the kinetic
theory of gases, andthe validity of the theory reatsi
on the circumetance that the potential part LiJ St
which is roughly proportional to the sguare of the
density, is small; 1in liguide, however, far from
being small, the term _g;;") is the dominant one in the
complete expression,

To obtain the equstion of energy transport, take
nalf the sum of the scalar products of euuation (112)

with F_"') , and afterwards write x =x/, ‘e

result 1is

| i ( {J I‘J }
‘ “) gt )

(120) " - -22, nf,aé” : E‘-'s? —2fn1+.2§ i

since ‘I{f’q[!m}- f!fu]’fl‘.;?_()= M(Br\.g,k'ﬁ‘ 24 mng w mz N

¥ith the help ofequations (111) and (115), (120) is

now transformed to
?3 2 Py 5% p'he p¥H0x, %)

+1) ] 1
{121) | _ go S G2 A (- Delac 4

' NG G (k
dTyy = §3xgrmy + o)

“1*” ) 13 14-!)
=—Jr\."+‘%;§f: o(‘}_op‘j &1‘ )Q{'".5 .



where

(123) r_v_-»;’:” = miiiﬁi_ﬂ ]-__, }-v O 05,0,

Ay equation formally ldentlical with (122) may be
obtained from the classical eyuation (26) by |
multiplying by §f”, integrating over all velocities,
and then transforsing in the same way as abovs,
(122) ig not yet, however, the equation of energy
'transport, as it refers only to the themal energy of
wotion 73k’ﬂf). To obtaln a similar eduation for thsaI
'potential snergy, it must first be Iocaliseu by |
sharing the potential energy c{?" equally between the
two molecules ( () and (J' ). Then, substituting the

enerzy of one molecule

17 2D + (g ) _ e
(1Q4) 'T—lo') = % g ql)fi = S#, 9 "_":fti’ dL_’_‘_ q+1)
3=

in the formula (111), one obtains

a l)\
a‘L;:’ 251 %4;:5‘10--1-5‘%‘,,4;:7")&{5‘1"’)}+£*—rj; L"‘}T'; J
(125) g h=Z 1™ ST

Transforeing this equation with the nelp of (110)

leads to

l:l+z_ '%:‘;i" {"é-'.f"'-;ﬂ 4;- g-s)C g) I.JJ ‘1“)}

1 n’-w
RN L L0 &

. (126) - __Lh,"z {gg},g;};'ggm Ji— rl,,d-; Lart ._n;n)
— Z 7,

j
B
[



which may be rewritten in the form

; { "1"') 6 ), lgr)
(127) n, 0'11‘:1 £ “?73;)‘&2 V= B‘h"f‘" _‘t (S491 =44 ) ﬂ:
Y& =

Gi)

4 is defined as the solution of the e-uation

- where n
i ), ) 'y UL (341
(Jl)r_ g ?L"(J')'iilgh‘}” 4 (_’.; ‘41 )45 §+1 },

S 2o =%
) 2‘&") g,:?* L_i‘( ‘*')

=1 ¥ fq#)
(128) +J.. n -Z- (bl.ﬁ....u;/'i"l_(h"i“" —-"H +“1-H

X P

Then, on adding (122) and (127), cne obtains finslly |

I, 7 i : f‘j>.l ".. l") —_
(129) "‘1.‘%{1 += ;jq;‘j’i + Uég, Cr. 51} b

where
Ep T 2 () "T":’
(130) Uy = 3kTy'+ 1y
| and f
) “j} )
(131) 1 = oy T

To interpret the equation (129) correctly, it

- must be compared with

| } 3 1)
FJ‘ LA um. p*

\§ 10

%
i) 2-
(132) é"’"‘;ﬁt}-‘i’ E

which ie the eduation satisfied by the *visible*

[E3 )

energy -~ Ay , obtained by multiplying (119)



with «;' . Toe terus Jza,c,, ¢)°%s and &;Lz%ﬁ}-zﬁ

from (129) and (132) together represent tha work
done per unit time and volume on molecuies ocutside

the cluster of 9 molecules, and it follows that

()
¥

generalised energy flux, reducing to the ordinary

for energy balance must be interpreted as a
energy flux when 9= [« (129) 1s therefore the
aquation of energy transport in the usual form, and
it is apparent that the energy flux, like the
presasure tensor, consists of two parts, due to the
thermal motion and the intermolecular forces
respectively. Of these, only the first in eguation
(131) isobtained in gas-theory, but 1t may de
anticipated that the second, *potential* part is
preponderant in ligquids, '

Ithas already been observed that the equation
(48) possesses a great varlety of solutions,
corresponding to the very diverse forms which may
bq&fcribed to the density matrix Q, at an ifitial
time t. . In attempting a general solution of
practical value, however, it must be recognised
that the majority of theze solutions can occur only
under nighly abnormal conditious, the probability
of which iapxtremaly small, and that non-uniform
fluids occur in nature almost invarisbly as a razult
of some disturbance of & state of equilibrium., In
assessing the physical condition of & fluid



59.
axpericentally, the only inderendent guamtities which
one measures are the density, temperature, macroscoplc
velocity and external force throughout the fluid, and
1if these are uniform, the fluid is assumed to be in
equilibrium, |
Instead of specifying ni , T, , u!', ana P"

throughout the fluid, one may, at least for quite a

larze volume, specify these Quantitiss, together with

their space gradients %“ 2 %—’}é . 232;5 T o
' '?a_-E s =s» @bt a single point, most conveulently g
chosen to be the ventre of gravity of the cluster of
a molecules which is alwa s considered., Also, it

is necessary to speclify all except the force only

at some initial time t, , as the rates of change

| ?;.-3{:' > %—-E » «». ©Of the others are given by the
.hydrodymical equations of the previous secticn.

Accordingly it will belassumed that

- DUk
< ( 1 5e. Ok BT ot
(133) P‘}{K”i)‘/ = I?* (X,2, k) ,3251 ? %1%13 /
where the wg ( K= 1" 8 ) reprezent the values

() ~

no, T, 4 oand P assumed by ni', TV, «\’ and
P" at some point x, in the part of the fluid
consldered, and that the variation of py with t
and X, 1s accounted for by the varlation of the wi
andpneir space derivatives. For purposes of
syasetry, X, 1s most conveniently chosen to be

the mean centre of the points x“ and x*Y , thus:



ol o 1) xf&)/
s x - 5200

The difference between (, and ) 1s, that while p;
is explicitly a function of the independent variasbles
x? . x" apd t , P, 1s explicitly a function of
X, X, e s W, ... , and only gaplicitly

2%
'a function of t and Xg o It follows that

> 2k, ?ff"_“ SE e

2fs — E%ae‘ T oaee)T 2 f

= e e
2 = R B % e, () |

% A i)
From the definitions of hy , &;’, e fz..;" s

4, , ete., it follows that they alsc may be
e;pre ssed in terms of the wx and toeir space i
darivativea, for exemple, by putting x*'= xV in (133)
‘one cbtains n,= N1(" “’k;%’" ) and, more
‘gen=srally, if ¢y represents any of the Quantities

engunerated,
2 ... )
(136) cg = Gl eom, o)

‘the large letter always replacing the small to denote

explicit dependence on the <« , %’* AL
b

Corresiponding to (135), one has

= ‘3 i ?C ° "Blww = =R A
%{ 5%‘.\‘; "‘?‘f%k +3(3_gg %‘lﬁ }
2X,

M) 5l Sl sl sup . ey IR
S = k) W i



| B,

In a displacement of the centre of gravity
¥
X, = 7‘; ?; X2 % C‘i— is altered only on account of |
the varlation in the < ; hence

: 9
(a8 - z ?_5.3

The form of (137) sugzests the utility of an

expansion of all varisbles in powers of 2.F,

P gy
| 351'3';1_ » +++ » In the form ¢y = C.gf +c.,; +c1"-+ ~ |
where |

CYEE wu) 5 .
A DI / .
amy T F "iie.’ﬂ"—‘)ww,

139)

| 174 ‘ka C & wk}
Cq =2 ?__k . r _,.2 ) (x,

|

|

! and, quite geunerally, ¢ conslsts of terms involving :I
' Just v derivatives of the « . With the help of

' (137), s ace and time derivatives arepasily expanded

in the same way, the %p° being given by the |

| hydrodynamlcal equations

n a—.(n||~4-‘\'- |
-— — =1/,
ot )
2 9 I o e -LE |
- (140) ot 2xq
o (2)
; i 5 9T, -— : g (u )nl.&‘
g.n,xz_-,_gnl,,&‘._:...g_,m (E uj= -f’”u

Care ishecessary in the expamsion of intezrals

i )

1tke f22, g ¥ g0 take account of the fact
 that the values of wk, 2% , ... appesring in

IXg+1



| C1,+I are initially those at the centre of gravity |
I 94+ ) |
Xy = *1‘1.,., i?__:, X' of g+ | molecules, whereas

the expansion procedure refers always to values at the

polnt x, . Tuus, in expansion, (., must first be

|

replaced by S '
C § felel)s 2%a+

Coprtde ??ﬂgzl TR

‘where the displacement o of the centre of gravity is

|(141) d = X4 =Xy = gige) B Fa g
| p)
'and 5x has the significance
= ., 2
=feck 2 + patek gwkﬂ- }1
! < ?2‘1 rEeS 9_-7‘1,951 9(
Hence

;i gar) a1} b 32/ ._?_Ct‘ﬂ e (4s1)
) [N = (2 4G e fs
|
: . i
| When 0O , (q{ s (3 » +-. are kuown, it 1s
4 i

| easy to calculate the ¢c° , ' , <’ , ...
explicitly; forexample,

| ® (%) g x5 %
(143) o ‘D,
ng (%) = Py (
N | Rt L et el
B R s
- = “’,: £ l:;,.
s u(%) - m‘»(so {0y vy FOoX) > Y =3 a



. e vire
T;r,ofi) sknvfa) ‘5{ P‘} 4 } ¢ } (x, ’in

(145) A,
. T‘lw‘/"‘) 3k °£_J

¥ . i o {je
46 k) (6) = mAE5 ety b, x0,
(146) :
ﬁ;:’),(g:l - e ;g Pi !’ig} V‘J) }Lx)é/_)
*""‘:}.)??S{ - J—m siiF‘L el Jzo}‘-{;',-)oj {,_‘,,JS)
( 147) m) /el ., Yo ()o) f3+4$ RT /
) = £ 0} 7 = B 2SO Yt o
) (24+1) .
sl flot 4 ':) ﬁéi #4 N-|,+| el 4 p
() LA i |

e e

To determine p; , one requires to obeerve only |

that it may be obtained from 0, simply by writing
wk . Wk _ ... = 4 s

=7 25y 2%, s Which 1s the same as
postulating a state of eguilibrium in which the
density, temperature, etc., have uniformly the
values assumed at x, . What 1s needed, therefore,

is that equilibrium solution which wmakes

X|(FI !:.9 'h':o)
(149) ;,:l('? v2) = 3" l|\“<?

To satisfy the first of thease conditions, one nesd

ouly replace F"'.' by p“-Lu, 1in the solution of

[' iF‘i v"”} v.ma], 3k"r‘1. F/J{x )5

M/ S__é‘Q"’(___t1)AK(’#I}_J—£-?_é ha A,.%t:{‘_tfi dx (g+) |

63.



Ch, 2, §3; the second condition may then be
regarded as giving the relation between ' and the
thermodynamic tesperature T . In classical theory,
T, and T are identical, but in Quantum theory, to
satisfy the uncertainty principle, ™, , which is
proportional to the mean square momentum, must remain

finite as T tends to zero, and at low temperatures

T must be rezarded as a function of T, and n, given

implicitly by (149).
. In principle, the c° are now all determinate

with the help of (143) - (148). It 1s, however, clear

from considerations of symmetry alone that _Lf,‘""’(&"ﬁ and

m°(<") mist remain unchanged on reversing the sign of

f1)o

vy’ in the formulae (146) and (147), so that

(mle __ -_
'l:_._l -—mk|;=l_—,

{u) °

_.--[

(150)
= o0,

where | denmotes the unit tensor. Also, h{ = n(,

Je
u'(‘”::- u‘l " and —rlfl =

P |
and ny=u"=7Y _, , ete. In quantum theory, the

T; » 20 that n|/=u"’/ ‘I"m/

remaluing zero=-order expressions derived from (143) =

(148) cannot be much simplified, but on making the

‘transition to the classical theory by replacing P‘i
' 2T kT )2k
oy £5=ni (F )‘*’—"Pi""“’%“ ~4)’}

Sd-}_"” S_(K”-X“’) by Sol_};-“ , one obtains

\/“"m‘_— Vr“ ::"E‘,_ w

3

- l-\o I:J""o-,_.=
=T s k= ngkTiS5l 5 By TO-
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At present, nhowever, it is desirable to adhere to the

quantum theory, and (151) will not be used.
| It now follows from (137) and (140) that

ﬁ (152)(’%_'249°$J;P-2__; e Sj l)o [)Nfix@?c;-rf?.'kca

= Zu, " 3gn) X0’

and
YA - 4
’39& "':J._ Po,_gl- gaé (Ufl}o HGLLK 7‘;_&, '[‘__‘%
Cal Gl 3o ¥ °
3 [ 5k Cil s
53 -2 )28 (e i B RY o7

=0 [u. vl ,,_.2.1-'.2. w A g' ') {(2(1 >N1+Um/”z}dél'7 ?“

=1 Zkny) 2%

In the particular cases ¢, = ny, ul' 5! , these
formulae may be comparsd with those obtained directly
from the hydrodynacical equations, with the help of
' (137) and (138); for example,

' (154) %‘Fy:- ___i___ o ye (Mg U ‘;”) >

(48 r) ¥ o\ &
a5 )= -3 B 0T B E o)

It is obvious that N, cannot depend on the
particular inertial syvstem of reference, and is
therefore inavendent of w, and P”°=P | Further
comparison of (152) and (154) vields

9 ) o 2 ‘.1{: {2z, _Nq‘
(156) -%_—km, > %;;)"(Nq _1;)1',," - S %@) Eﬁl‘l\‘ Ax! >,
= =
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The form of U’ can be decided on general
grounds: it must be linear in _bf_‘ 5 'can contain in
addition only r =x"x", n,, and T, , and, besides
(156), must satisfy S‘N,‘_’ g;""d‘r_ = (N-0)nu, ; hence

one may write

2., \

-2

where 70 contains oenly v , n; , and T, _Ljf” 1s
obtained from UY° by subgtitﬁtipg - for ©
(interchange of x and X ). For all g , the
right-hand side of (150) now vanishes, because the
intezrand ig an odd function of v ; thus one
obtaing, as might be expected, ?%:.F_:a , in the
zoro-order, equilibrium, aprroximation., This
follows even more @asily in the classical theorv,
vaiid at high temperatures, where =0 ,

Next, comparing (153) and (155), one finds,

when 9=2,

‘{N:_ Un,) u{ug}__ . 2 S{Nz(uﬂ}_umj} a_é elr

{158) iy QNb 3_ (s anl?
s L2 LN, (Ueul)

.-1 lul)zt:,‘; (_Li-":g;{-%h%;&aﬁz 2@_‘;5 1=, =l },

since N, and Uj- U sontain XY and x? explicitly

(v ll

only in the combination r=X"-—X This equation

may be rezarded as an integral sgquation to determine
/
the non-rotational part of §No(u'-u')f ; the

solution 1s



(159) a2 00)f= T4 {RE i:ff;z;d PEEprdn -y
where R » 3tanding for the right-hand =ide of (158),
reduces in classical theory to (M9N‘ N"-r?‘r_- )2_.u, »
and V satisfies %."}3 =08

A noteworthy f;ature of (159) is the diverzence of
the right-hand side when

o | :
(160) %7 g ’:}:’ ¢ dr = —3k
namely, when the internal energy is changing at a
cartain rate with temperaturs., On approaching this
point, the average velociiy of two molecules relative
%~ one another becomes infinite at any separation; '
thls mesne that the condition of the fluid, even when
in equilibrium, is highly unstable for small
perturbations. One can hardly fail to associate such
a condition with condensation, or rather that
extremely unztable state which arises from super-
heat ing the 1liquid as far as pos:ible above the
boiling point. In rnomsal condensation, the rezion in
which (1609 is satisfied will be by-parsed in the
process of a very rapid transition from one density

to another,

4. ¥} i d_Thermal Condu

Althmgh the exsct determination of guantitles such

\/

/ / 9) - 2
as. P, ny o, (nay)” 5 etc. from the general



equations is a difficult matter, their form may be
deduced gquite sasily from elementary considerstions,
For example, f.’:-— R?ﬁ'fz"ﬁ/we,%’(': ,» as well as being

linear and homogeneous in the ?5‘“—;"' , can contain

x® and xV only in the combimation y=X"-x , the

—

variation with _)_€,={(’_<"’+ﬁ"/) being contained in the wy.
For brevity, the notation

2T "t'_,?“, 5 A~ 1-_ :
'&zg”g-—@;: b—_%1-t-" )b——z ‘..E_;
? 2 e
(161) b = £(& a1+ « 32 44)
t= /2 e el
bt = k(B F+ 2P -33FL)

1

is introduced, P./ can contain, besldes the o 's

D/ s e
R Jyws =i =0 L [E3E], = lueld=c
and [(Z3—w)P £=°== 3mk(nT)/= o identically;
hence it must have the form

+.
(162) P,/-::- LE Y.a + "é'_Z'g.r""éz‘f'.-l_?-'_.?""é

where € , ¢! , ¢, , and & contain only n(, T,
and v = I_:_yl. If ¢ and € are expandsd as power

series in y , one must have €ly) =é:'(°)-§:* étm(")%z*“'
and é;,(y)=€'z(°)+éz/°)%/4— . When P/ (and F° )
are traasformed to the wmonentum representation, they
becoxe diagonal, containing a factor S'(r_‘}’g“’y - the
mowentum states are discrete, as long as the volume

\/ is finite.



Nz/ is linear in the a's and b's; can
contain besides only ry , T, , and r=x®—x"V; 1%
is unaltered on replacing r by —r (interchange
of x and X® ); and satisfies sz”d;\_—: (N-DN/=c 3
hepnce it must have the form

(163) N,/ = vrb.r + ¥irot'r

where v and ¥ contain only hs T, , and r=Ir|,
N2 (UP4+u™)  1s linear in the a's and

b *s; ocan contain besides only n,, T, , and r ; |

it is unaltered on replacing r by -r ; and

satisfies (No(UM+yP)dr=2(N-)U{=0 ; hence

(164)  Ne(0% )= k(2 xr—4ra)+ K («"rne—L "’ﬂ;

where k and K+ contaln only h, , T, , and ,

Finally, N2U®Lu®) 1is livear in the o's
and D 's; can countaln besides only n,, T, , and
r 3 changes sign on replscing r by —r , and
satisfies SNf(_L_}i“’{.QEJ‘Qc{r_—_a ; hence

N2 (UP-UY) = v br+ U, r bk y +T rib.r

(165) Al vt st 4T rebir

o i

where ., v » v, s vl vi' » and vV, are functions
of n , T, , and r , largely detemmined by
equation (159).
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70.
It 1z nov possible %o calculate the coefficients
6f viscosity and thermal conduction in terms of the
gquantities already defined., According to (118), the
part L4 of the pressure tensor due to the inter-

‘molecular forces is given by

24 dx (¥

(166) %1.)‘:‘-:, S f“‘g__-r =

Expanding both sides of this e uation in accordance
with (137) and (142) respectively, one obtains

(167) =L = frrNe2E dr,
e | T

P IO / 2 dr

(168) 2-Li= 2 far N 20,

z : /AT / L

etc. Integrating these eguations with the help of
the boundsry condition él—?o as h;—>o , One has

(170) L -—Lj_cN:%ch = L [wN )Pl de L

I

and

A7) g = —Lfr N 22 dr
= i e rp ) O ar,



with the help of (163). Tae corresponding expressions
for _5"’ and 5,/ are obtained from (146); as already
obtained in (150), =_k_;’-_— nKT; L, whilst

ZRE —;k'_t 2 P’ =
i oDl = =

l

|

w

7+

N

=
o
o~

.‘,..
™
A
I
ot

The zero-order (equ ilibrium) formula for the

pressure tensor, nauely
13 B = (mkT — [ rNe0dr) L

may be compared with the expression for the thermo-
dynamic pressure given by (100); 1t 1s seen that the
classical equivalence breaks down at low tamperatures..
The first-order correction to the pressure tensor,

 m = § (s et )+ (v R )60 |

gives the coefficlent of viscosity ),.. » Which is
defined by the eQuation

(175) gl = — 2k

|on the understanding that b'=o . Clearly,

—_

L)

(176) = = 27*"2_5{‘1-(“) + Jll-s-, S rJ'V(r)C#/('")G(’I,

7i.



showing that viscosity in flulds is due to two
csunsas, ths thersmal motion of the molecules, and the
matual forces betwseen the molecules. Of these, only
the firet 1s considered in the kinetic theory of
gases; thils is justified by the circumstance that
the second, which is roughly proporticnal to the
square of the density, #s small. In liquids,
nowever, the second, *potential' term in (176), far
from being small, is the dominant one in the entire
exyression, The temperature dependence = -Ae C/T
sug-ested by de Guzaan >’ and established by
Andrade Gel for many liquids, 1s a direct consequence
of the proporticnality of v~ to N; (Y‘) » Which
contains the Boltzmenn factor ¢~ 70/KT,

The coefficlent of thermal conduction may bde
investigsted in a somewnat simllar way., According
to {128), the *potential® part ., of the thermal

flux vactor 1is given by

b (z)
(177) ?‘?;?cr)'f-—"l e (J fz nzc(r‘-(u u)ol.x
= Dk a2 (s 20) 9

so that, on expangion in tne usual way and omission |

 of obvicusly vanishing terms,

o 4 i§ 2
(170) %f.ﬁl ‘7:7:(

and, on integration,
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(179} n/ = _#‘5‘7— N/(u"’%«u“’iz“,)»g dor
o m/, (), 2
| 4 (= N2(uP% u)- 22 dx
In classical theory, where uv’%=y™° =y , this
‘reduces, by virtue of (164), to

(150) - [ + wtet) pled rids

a 1

For the *kiretic' term m/ of the thermal flux, one
finds from (147)

/
'/J__z:o

|£é’l%

70 S'k'rY —g‘_’

3 Sl
e (e a +¢€ at

4,‘_'7-

ey =~ Sy

where the double prize indicates the second derivative.
The thermal conductivity }L is defined by the
eqguation

(182) 9/ = - la

on the understanding that F: is the =ame averywhere,

80 that ——,a,% » OF 9_+: Ea » where

' ANT Lldrd
o 1~z,§17¢;{'n?§4=")"*‘

(183) € = ==
| T e g‘ M'wt $lry v dox

GMKT

Hence, classically and at high temperatures,

2 T N LY 34
(e = (i eaidvan (praiiin ) R,

3.



For gsses, the second term, which is roughly
proportional to the squars of th@ density, may be
neglectad, but for liguids it becomes of overriding
importance.

In quantum liquids, the situation 1s more complex,
and one has, instead of (180),

nf=-%{Fey, - (ve+ V"lg) ) dr

(185)
— § (ke + ktat)plee) vidr

according to (15?). Thus the simple lawr (182) ceases
to bold, and there is no thermral conddctivity in the
ordinary senze, This provides the key to the
snomalies found experimentally in liguid helium nesr
absolute zerc. As has already been noted, T, is equal!
to T at high tespersires, but remsins finite as |
tends to zero; 1t follows that a , which igthe
gradilent of T, , wmst be very small or vaﬁiah.naar
absolute zero, even where there are subotantial
variations in the thermodynamic temperature. Thus
only the first term in (185) i= important at very
low temperatures, and one reaches the surprising
conglusion that snergy transport is there governed
by the motion of the fluid,
5. Genmclusion

In one sense, the kinetic theory of liquids is

now complete, since an account has been given of all
those properties of fluids gzt rest and in motion
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which ars indspendent of foreign influences, such
as material surfaces. It would be idle to pretend,
however, that even a small part of the field has
been exhausted; con the contrary, if this »pgk has
merit, it congists xzainly in that it provides a
baslis for furtiher study. In particular, liguid
mixtures, plasticity, propagation of wave
disturbances, and surfsce phenomens have been
ziven no attention at all. Apart from these, many
interesting questions concerning nermal and
superiiuid 1liquids have been set azide because they
invelve much detall, and no rumericsl calculations
have been made for comparison with experiment,

This does not imply that the theory lacks
exyarimental verification. It has been seen that
the theory provides a qualitative explanstion of
many phencmena which have hitherto bsen only
imperfectly understood. Quite apart from thls, the
thecry makes contact in many places with the
kinetic thsory of gasaes and statistical mechanics,
which do not lack experimentzl confirmation, The
main ground for supiosing that the theory is correct,
however, isthat not s single ap: roximation,
siwplification, or assumption has been made the
validity of which hazs not been ashundantly confirmed
in many other fields,

15.
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