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Abstract 

Neuromesodermal progenitors (NMPs) are bipotent progenitors, located at the caudal 

end of the embryo and are essential for axis formation. These stem cell-like progenitors 

possess the ability to self-renew and differentiate to both mesodermal and neural 

lineages, such as skeletal muscle and spinal cord derivatives. These progenitors arise 

at E8.5 and are localised in the caudal lateral epiblast (CLE), a posterior region of the 

embryo near the primitive streak. Later in development, they reside in the tail bud until 

cessation of axial elongation at E13.5. Throughout these stages NMPs are 

characteristically marked by co-expression of T(Bra) (Brachyury) and Sox2. This 

characteristic is also present in in vitro NMPs, which can be derived from Epiblast 

Stem Cells (EpiSCs) through treatment with Wnt/β-catenin signalling agonists and 

Fgf2, which simulates their in vivo environment. 

Protein and mRNA profiling of NMPs and mutant phenotypes in vivo supports the 

hypothesis that a non-canonical Wnt pathway, the Wnt/Planar Cell Polarity pathway 

(PCP) could be involved in NMP fate decision and/or maintenance. This thesis focuses 

on understanding more about the role of PCP by aiming to identify the spatio-temporal 

profile of Wnt/PCP pathway components in NMP regions during axial elongation, as 

well as determining its role in NMP behaviour through manipulation of this pathway 

via in vivo and in vitro assays 

Employing in situ hybridisation and immunohistochemistry techniques, key Wnt/PCP 

components, including Pk1, Vangl2 and Ptk7, were confirmed to be present in in vivo 

and in vitro NMPs, thus, providing strong evidence that Wnt/PCP may be involved 

regulating NMP behaviour.  

Disruption of Wnt/PCP signalling through overexpression of Wnt/PCP components 

was tested in refined in vivo and in vitro assays. Overexpression of Vangl2 and Ptk7, 

but not Pk1 in NMPs regions in vivo resulted in loss of contribution to neural lineages, 

as well as lower contribution to NMP regions themselves. Similarly, Wnt/PCP 

components were disrupted in vitro through generation of dox-inducible 

overexpression cells lines for Wnt/PCP components. These lines were used to generate 

NMPs from an optimised novel alternative source Epiblast-Like Cells (EpiLCs), 

however no clear affect to lineage was observed.  
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Overall this work has successfully advanced our knowledge of Wnt/PCP mediated 

control of NMP differentiation and maintenance, and provided a finer grained 

description of the relationships between them.  

  



  vii 

Contents 

Declaration ................................................................................................................... i 

Acknowledgements .................................................................................................... iii 

Abstract ....................................................................................................................... v 

List of Tables ........................................................................................................... xiv 

List of Figures ......................................................................................................... xvii 

List of Abbreviations .............................................................................................. xxi 

Chapter 1: Introduction ............................................................................................ 2 

1.1 General Introduction .......................................................................................... 2 

1.2 Early Mouse embryo development - pluripotency and lineage segregation ...... 2 

1.2.1 Pre-implantation .......................................................................................... 2 

1.2.2 Post-implantation, establishment of the anterior/posterior axis .................. 3 

1.2.3 Gastrulation and the primitive streak .......................................................... 3 

1.2.4 Cell fate during gastrulation ........................................................................ 4 

1.3 Neuromesodermal Progenitors (NMPs) ............................................................. 6 

1.3.1 Evidence for bipotent progenitors during axial elongation ......................... 6 

1.3.2 Location of NMPS ...................................................................................... 7 

1.3.2.1 Node- Streak border (NSB) and Caudal Lateral Epiblast (CLE) ......... 7 

1.3.2.2 Chordoneural Hinge (CNH) ............................................................... 10 

1.3.3 Cessation of axial elongation .................................................................... 11 

1.3.4 T(Bra) and Sox2 co-expression marks NMPs ........................................... 11 

1.3.4.1 T(Brachyury) - T(Bra)........................................................................ 12 

1.3.4.2 Sox2 ................................................................................................... 12 

1.3.5 In vitro derivation of NMPs ...................................................................... 13 

1.3.5.1 Source cells for NMPs in vitro ........................................................... 14 

1.3.5.2 Pre-implantation ESCs - LIF/FCS and 2i/LIF ESCs.......................... 14 

1.3.5.3 Post-implantation - EpiSCs and EpiLCs ............................................ 15 

1.3.6 Important signalling pathways for NMPs ................................................. 17 

1.3.6.1 Fgf ...................................................................................................... 17 

1.3.6.2 Canonical Wnt/β-catenin Signalling .................................................. 18 

1.4 Planar Cell Polarity (PCP) ............................................................................... 19 

1.4.1 Wnt/Planar Cell Polarity (PCP) as a candidate for NMP regulation ........ 19 



  viii 

1.4.2 Roles of Wnt/PCP in embryonic development ......................................... 21 

1.4.3 Mechanism of core Wnt/PCP pathway action .......................................... 23 

1.4.3.1 Core Wnt/PCP components and their interactions ............................. 23 

1.4.3.2 Disruption of Wnt/PCP ...................................................................... 24 

1.4.3.3 Wnt/PCP Downstream Signalling ...................................................... 24 

1.4.4 Core Wnt/PCP in vertebrates .................................................................... 25 

1.4.4.1 Tyrosine-protein kinase receptor Ror (Ror1 and Ror2) ..................... 25 

1.4.4.2 Protein tyrosine kinase 7 (Ptk7) ......................................................... 26 

1.4.5 Wnt/PCP & Fate choice ............................................................................ 28 

1.4.5.1 Wnt ligands - Wnt5a, Wnt5b, Wnt11 ................................................ 28 

1.4.5.2 Fzd 1, 3, 6, 7 ....................................................................................... 31 

1.4.5.3 Dvl1,2,3 .............................................................................................. 34 

1.4.5.4 Vangl and Pk ...................................................................................... 35 

1.4.5.5 Celsr ................................................................................................... 38 

1.4.5.6 Ror ...................................................................................................... 39 

1.4.5.7 Ptk7 .................................................................................................... 40 

1.4.6 New avenues of investigation ................................................................... 41 

1.5 Scope of the Thesis .......................................................................................... 43 

Chapter 2: Materials and Methods ........................................................................ 45 

2.1 Materials ........................................................................................................... 45 

2.1.1 General Reagents ...................................................................................... 45 

2.1.2 Instruments/Equipment ............................................................................. 51 

2.1.3 Antibodies ................................................................................................. 53 

2.1.3.1 Primary Antibodies ............................................................................ 53 

2.1.3.2 Secondary Antibodies ........................................................................ 55 

2.1.4 Solutions Prepared .................................................................................... 56 

2.1.5 Primers ...................................................................................................... 56 

2.1.5.1 PCR Primer Sequences ...................................................................... 56 

2.1.5.2 RT-qPCR Primers .............................................................................. 57 

2.1.6 Kits Used ................................................................................................... 58 

2.2 Methods ............................................................................................................ 59 

2.2.1 Embryology ............................................................................................... 59 



  ix 

2.2.1.1 Animal Husbandry/ Maintenance of mice ......................................... 59 

2.2.1.2 Embryo and adult tissue collection and dissection ............................ 59 

2.2.1.3 Grafting cells from in vitro culture into embryos .............................. 60 

2.2.1.4 Electroporation of embryos ................................................................ 60 

2.2.1.5 Rolling culture of embryos................................................................. 61 

2.2.2 Histology ................................................................................................... 61 

2.2.2.1 Sample Fixation ................................................................................. 61 

2.2.2.2 Preparation of cryostat sections ......................................................... 62 

2.2.3 Immunofluorescence ................................................................................. 63 

2.2.3.1 Immunofluorescent staining on Mouse cryosections ......................... 63 

2.2.3.2 Immunofluorescent staining on Mouse wholemount embryos .......... 64 

2.2.3.3 Immunofluorescent staining on cultured cells ................................... 65 

2.2.4 Imaging ..................................................................................................... 66 

2.2.4.1 Immunohistochemistry on cryosections ............................................. 66 

2.2.4.2 Immunohistochemistry on wholemount embryos .............................. 66 

2.2.4.3 Immunohistochemistry on in vitro cultured embryos ........................ 66 

2.2.4.4 Image Analysis ................................................................................... 66 

2.2.5 DNA Cloning Methods ............................................................................. 70 

2.2.5.1 Restriction Enzyme Digestions .......................................................... 70 

2.2.5.2 Agarose Gels ...................................................................................... 71 

2.2.5.3 Gel Electroporesis .............................................................................. 71 

2.2.5.4 DNA purification ............................................................................... 72 

2.2.5.5 Quantification of DNA concentration ................................................ 72 

2.2.5.6 Dephosphorylation of linear DNA ends ............................................. 72 

2.2.5.7 Generating Wnt/PCP plasmids using DNA fragment ligation ........... 73 

2.2.5.9 Preparation of selective bacterial plates ............................................. 81 

2.2.5.10 Preparation of chemically competent bacteria ................................. 81 

2.2.5.11 Plasmid transformation into DH5α bacteria ..................................... 82 

2.2.5.12 Plasmid purification from bacteria ................................................... 82 

2.2.5.13 Plasmid sequencing .......................................................................... 82 

2.2.5.14 Polymerase Chain Reaction (PCR) .................................................. 83 

2.2.6 RNA Methods ........................................................................................... 86 



  x 

2.2.6.1 Total RNA isolation ........................................................................... 86 

2.2.6.2 cDNA synthesis .................................................................................. 86 

2.2.6.3 In situ hybridisation on whole mount embryos .................................. 86 

2.2.7 Cell Culture ............................................................................................... 87 

2.2.7.1 Cell lines ............................................................................................ 87 

2.2.7.2 Incubation ........................................................................................... 87 

2.2.7.3 LIF/FCS Culture ................................................................................ 87 

2.2.7.4 Culturing ESCs on irradiated MEFs in LIF/FCS ............................... 89 

2.2.7.5 N2B27 Medium .................................................................................. 89 

2.2.7.6 2i/LIF Culture .................................................................................... 89 

2.2.7.7 EpiSC Culture .................................................................................... 91 

2.2.7.8 Cryopreservation ................................................................................ 91 

2.7.7.9 Flow Cytometry ................................................................................. 92 

2.7.7.10 2i/LIF to EpiLCs Differentiation ..................................................... 93 

2.7.7.11 In vitro derivation of Neuromesodermal Progenitors (NMPs) from 

Mouse EpiSCs ................................................................................................ 93 

2.7.7.12 Generation of transgenic inducible overexpressing ES cells (2i/LIF)

 ........................................................................................................................ 94 

Chapter 3: Examining polarity in NMP regions during axial elongation .......... 98 

1.1 Introduction & Aims .................................................................................. 98 

3.2 NMP regions across axial elongation express Pk1 .......................................... 99 

3.3 Examining localisation of Wnt/PCP component protein distribution in NMPs

 ................................................................................................................................ 99 

3.3.1 NMPs express Ptk7 protein during axial elongation (early headfold to 

E13.5) ............................................................................................................... 101 

3.3.2 Notochord and anterior NSB/CNH cells express Fzd6 protein during axial 

elongation (late headfold - E13.5) .................................................................... 111 

3.3.3 NMPs express Vangl2 protein during axial elongation (early headfold - 

E13.5) ............................................................................................................... 115 

3.3.4 Sub-optimal Wnt/PCP antibodies ........................................................... 120 

3.3.5 Summary of Wnt/PCP component localisation in NMP regions ............ 122 

3.4 Visualising polarity during development by examining organelle location .. 124 



  xi 

3.4.1 –Optimisation of Nuclear Envelope and Golgi Immunohistochemistry . 124 

3.4.2 –Polarity visualisation from prestreak to E11.5 ...................................... 127 

3.5 Discussion ...................................................................................................... 138 

3.5.1 The profile of Wnt/PCP components implicates Wnt/PCP signalling in 

regulating NMP behaviour ............................................................................... 138 

3.5.2 Asymmetric distribution of Vangl2 in CLE suggests activity of Wnt/PCP 

signalling .......................................................................................................... 139 

3.5.3 Wnt/PCP activity in NMP regions may be regulated by Wnt co-receptor 

Ptk7 .................................................................................................................. 143 

3.5.4 Wnt/PCP may regulate other tissues during axial elongation ................. 144 

3.5.5 Conservation of similar cell polarity dynamics and cell movements 

between CLE and CNH. ................................................................................... 145 

Chapter 4: Deriving NMPs from EpiLCs in vitro .............................................. 148 

4.1 Introduction & Aims ...................................................................................... 148 

4.2 EpiLC are more homogeneous in morphology than EpiSCs ......................... 149 

4.3 Putative NMPs, T(Bra) and Sox2 co-expressing cells can be generated from 

EpiLCs.................................................................................................................. 149 

4.4 Optimisation of variables to enhance putative NMP proportions .................. 154 

4.4.1 Experimental Set-up ................................................................................ 154 

4.4.2 Putative NMPs were more abundant at Day 2 ........................................ 155 

4.4.3 Unbiased analysis to determine the best combination of variables ........ 156 

4.4.3.1 Analysis methodology ...................................................................... 156 

4.4.3.2 Putative NMP proportions are higher in the absence of replating step

 ...................................................................................................................... 160 

4.4.3.3 Increasing duration of EpiLC differentiation enhances putative NMPs 

proportions ................................................................................................... 163 

4.5 qRT-PCR comparison between NMPs derived from EpiSCs and EpiLCs .... 165 

4.5.1 Experimental overview ........................................................................... 165 

4.5.2 EpiLC derived NMPs Day 2 are most similar to EpiSC derived NMPs . 165 

4.6 NMPs derived from EpiLCs and EpiSCs express similar levels of Wnt/PCP 

components .......................................................................................................... 170 

4.7 Grafting of prospective EpiLC derived NMPs............................................... 175 



  xii 

4.8 Discussion ...................................................................................................... 180 

4.8.1 NMPs can be derived from EpiLCs ........................................................ 180 

4.8.2 Comparison of derivation of NMPs from EpiLCs and EpiSCs .............. 180 

4.8.3 EpiLC-NMPs and EpiSC-NMPs are similar but distinct ........................ 183 

4.8.4 Derivation of EpiLC-NMPs requires further optimisation ..................... 186 

Chapter 5: Manipulating Wnt/PCP signalling in NMPs .................................... 188 

5.1 Introduction & Aims ...................................................................................... 188 

5.2 Wnt/PCP perturbation in vivo ........................................................................ 190 

5.2.1 Generation of Wnt/PCP overexpression constructs ................................ 190 

5.2.2 Electroporation of Wnt/PCP constructs in NMPs ................................... 192 

5.2.2.1 Validation of electroporated Wnt/PCP constructs ........................... 194 

5.2.2.2 Ptk7 or Vangl2 overexpression impedes NMP neural differentiation 

and NMP persistence in the CNH ................................................................ 194 

5.3 Wnt/PCP perturbations in vitro ...................................................................... 208 

5.3.1 Generation of inducible Wnt/PCP mutant cell lines as a novel tool to 

modulate Wnt/PCP signalling during NMP differentiation ............................. 208 

5.3.2 Validation of inducible Wnt/PCP cell lines ............................................ 209 

5.3.2.1 Efficiency of Dox-induction is substantial for all generated cell lines

 ...................................................................................................................... 209 

5.3.2.2 RFP faithfully reports Wnt/PCP component overexpression .......... 210 

5.3.3 Overexpressing Wnt/PCP components in EpiLC derived NMPs ........... 214 

5.3.3.1 Overexpression of Wnt/PCP components in vitro does not substantially 

alter T(Bra) and Sox2 during NMP derivation ............................................ 215 

5.3.3.2 Overexpression of Wnt/PCP components in vitro does not substantially 

alter NMP differentiation ............................................................................. 219 

5.3 Discussion ...................................................................................................... 227 

5.3.1 Overexpression of Vangl2 but not Pk1 impedes NMP neural 

differentiation and NMP persistence in the CNH in vivo ................................ 227 

5.3.2 Ptk7 overexpression impedes NMP neural differentiation and NMP 

persistence in the CNH in vivo ........................................................................ 230 

5.3.3 Wnt/PCP has distinct roles in regulating NMP behaviour ...................... 232 



  xiii 

5.3.4 Discrete actions of overexpressing Wnt/PCP in vitro and in vivo systems

 .......................................................................................................................... 233 

Chapter 6: Conclusion and Working Model ....................................................... 235 

References ............................................................................................................... 238 

Appendix ................................................................................................................. 266 

  



  xiv 

List of Tables 

Table Title Page  

1.1 
Summary of Wnt/PCP component expression during axial elongation 

and mutant phenotypes. 

29 

2.1 Details of General Reagents 45 

2.2 Instrument/Equipment Details 51 

2.3 Primary Antibody Details 53 

2.4 Secondary Antibody Details 55 

2.5 PCR Primer Sequences 56 

2.6 RT-qPCR Primer Details 57 

2.7 Details of Kits 58 

2.8 Fixation Protocols 62 

2.9 Pre-Processing Settings PickCells 67 

2.10 Single z-slice Segmentation Settings (PickCells) 67 

2.11 2D to 3D Segmentation Settings (PickCells) 68 

2.12 ‘Replated’ Conditions - Columbus Analysis Parameters 69 

2.13 ‘Not Replated’ Conditions - Columbus Analysis Parameters 69 

2.14 Inducible Cell Line Columbus Analysis Parameters 69 

2.15 Restriction Enzyme Details 71 

2.16 Alkaline Phosphatase Reaction 73 

2.17 Gibson Assembly Mastermix 74 



  xv 

2.18 
Fragment Amplification and Backbone Restriction Digest for TetO-

Ptk7-T2A-GFP 

75 

2.19 
Fragment Amplification and Backbone Restriction Digest for CAG-

Ptk7-T2A-RFP 

75 

2.20 
Fragment Amplification and Backbone Restriction Digest for CAG-

Ptk7ΔICM-T2A-RFP 

75 

2.21 
Fragment Amplification and Backbone Restriction Digest for CAG-

sPtk7-T2A-RFP 

76 

2.22 
Fragment Amplification and Backbone Restriction Digest for CAG-

Vangl2-T2A-RFP 

77 

2.23 Gibson Assembly Reaction 77 

2.24 
Fragment Amplification and Backbone Restriction for CAG-Pk1-

T2A-RFP 

78 

2.25 T4 DNA Ligase Reaction 79 

2.26 PFX Reaction 83 

2.27 Thermocycling for PFX Reactions 83 

2.28 Q5 Reaction 84 

2.29 Thermocycling for Q5 Reactions 85 

2.30 LIF/FCS Media Composition 88 

2.31 N2B27 Media Composition 89 

2.32 2i/LIF Media Composition 90 

2.33 Excitation and Emission Wavelengths of Fluorophores 92 

2.34 EpiLC Media Composition 93 



  xvi 

2.35 Concentration of P2Lox Plasmids Used for Nucleofection 96 

3.1 Details of trialled Wnt/PCP component antibodies. 102 

3.2 

Summary of published in situ reports for genes associated with 

Wnt/PCP signalling, and summary of findings in this thesis, 

including unpublished data from the Wilson lab. 

123 

4.1 Contribution of GFP Cell Lines and Cell Types Following Grafting 177 

  



  xvii 

List of Figures 

Figure Title Page  

1.1 Location of Neuromesodermal Progenitors (NMPs). 8 

1.2 Wnt/PCP signalling and tissue polarity. 22 

2.1 Conversion of electroporation plasmids to generate p2lox inducible 

cell line plasmids. 
80 

3.1 In situ hybridisation for Pk1. 100 

3.2 Ptk7 protein profile in E9.5 tail bud sections, using Abcam-Ab62074. 103 

3.3 Ptk7 protein profile in E10.5 and E12.5 tail bud sections, using 

Abcam-Ab62074. 
104 

3.4 Ptk7 protein profile at early headfold stage, using Proteintech 17799-

1. 

105 

3.5 Ptk7 protein profile at late headfold stage, using Proteintech 17799-1. 106 

3.6 Ptk7 protein profile at early somitogenesis, using Proteintech 17799-1. 108 

3.7 Ptk7 protein profile in E9.5 tail bud, Proteintech 17799-1. 109 

3.8 Ptk7 protein profile in E10.5 - 13.5 tail bud, Proteintech 17799-1. 110 

3.9 Fzd6 protein profile from late headfold to E9.5 tailbud.  113 

3.10 Fzd6 protein profile from E11.5 to E13.5 tailbud. 114 

3.11 Vangl2 protein profile in late head fold and early somitogenesis 

embryos. 
116 

3.12 Vangl2 protein profile in 3-4 somite embryos. 117 

3.13 Vangl2 protein profile from E9.5 to E12.5 tail bud. 119 

3.14 Trialled optimisation of immunohistochemistry using antigen retrieval 

and fixation types. 
121 

3.15 LaminB1 (Nuclear Envelope) immunohistochemistry from E6.5 to 

E10.5. 

125 

3.16 LaminB1 (Nuclear Envelope) trialled optimisation. 126 



  xviii 

3.17 GM130 (Golgi) immunohistochemistry optimisation. 127 

3.18 Polarity in pre-streak embryos.  129 

3.19 Polarity in mid-streak embryos.  130 

3.20 Polarity during early somitogenesis. 132 

3.21 Polarity in the posterior embryo during early somitogenesis. 133 

3.22 Polarity in E9.5 tail bud. 134 

3.23 Polarity in E10.5 tail bud. 136 

3.24 Polarity in E11.5 tail bud. 137 

3.25 Cell movements in NMP regions during axial elongation.  147 

4.1 Morphology of EpiSC and EpiLC colonies.  149 

4.2 Generating putative NMPs from EpiLCs. 150 

4.3 T(Bra) and Sox2 co-expressing cells can be derived from EpiLCs. 151 

4.4 EpiLC cultures contain a high proportion of dead cells. 152 

4.5 Optimisation of EpiLC plating density.  153 

4.6 Optimisation of variables to enhance putative NMP proportions. 155 

4.7 ‘Not Replated’ cultures at Day 2 and Day 3. 157 

4.8 ‘Replated’ cultures at Day 2 and Day 3. 158 

4.9 Optimisation and limitations of segmentation by Columbus Software. 159 

4.10 Proportion of T(Bra) and Sox2 double positive cells and total number 

of cells per variable. 
161 

4.11 Averaged proportions of EpiLC-NMPs per density and per EpiLC 

differentiation. 
162 

4.12 Colony morphology is dependent on length of EpiLC differentiation. 164 



  xix 

4.13 qRT-PCR to compare NMPs derived from EpiSC and EpiLC.  165 

4.14 qRT-PCR analysis to compare NMP derived from EpiSC and EpiLC - 

Pluripotency, NMP and Hox genes. 
168 

4.15 qRT-PCR analysis to compare NMP derived from EpiSC and EpiLC - 

Mesoderm, Neural and Endoderm associated genes. 

169 

4.16 Fzd6 expression in in vitro cultures. 172 

4.17 Ptk7 expression in in vitro cultures. 173 

4.18 Vangl2 expression in in vitro cultures. 174 

4.19 Experimental overview of grafting GFP positive EpiLC-NMPs to 

NSB of wildtype embryos - Cell Differentiation 

175 

4.20 Experimental overview of grafting GFP positive EpiLC-NMPs to 

NSB of wildtype embryos - Cell Grafting 
176 

4.21 EpiLC-NMPs can contribute to axial tissue when grafted to NMP 

regions. 
178 

4.22 EpiLCs cannot integrate when grafted to the NMP regions. 179 

5.1 Generated Wnt/PCP overexpression RFP labelled plasmids. 191 

5.2 Experimental set up for electroporation of E8.5 embryos with 

Wnt/PCP overexpression plasmids. 
193 

5.3 Red Fluorescent Protein was aggregated or localised to the cytoplasm. 193 

5.4 Ptk7 and Vangl2 are overexpressed in targeted electroporated cells. 195 

5.5 Overview of semi-quantitative analysis of RFP+ contribution. 196 

5.6 Representative anterior to posterior images of tissue types scored.  197 

5.7 Representative sections of RFP+ mesoderm contribution.  198 

5.8 Single embryo results for electroporation with CAG-RFP.  200 

5.9 Single embryo results for electroporation with CAG-Ptk7. 201 

5.10 Single embryo results for electroporation with CAG-Pk1. 202 

5.11 Single embryo results for electroporation with CAG-Vangl2.  203 



  xx 

5.12 Comparison of average RFP+ contributions between groups. 204 

5.13 Overexpression of Ptk7 and Vangl2 disrupts NMP behaviour. 207 

5.14 Wnt/PCP overexpression cell lines show high levels of inducibility. 212 

5.15 Inducible cell lines overexpress Wnt/PCP components. 213 

5.16 Flow cytometry analysis to verify induction during NMP derivation. 216 

5.17 Flow cytometry analysis to verify induction during NMP derivation. 217 

5.18 T(Bra) and Sox2 intensity following induction during NMP 

differentiation - RFP(control), Ptk7, Ptk7 and Ptk7ΔICM cell lines. 

220 

5.19 T(Bra) and Sox2 intensity following induction during NMP 

differentiation - sPtk7, Pk1 and Vangl2 cell lines. 
220 

5.20 Overexpressing Wnt/PCP components during NMP differentiation. 221 

5.21 Flow cytometry analysis to verify induction during NMP 

differentiation.  

222 

5.22 T(Bra) and Sox2 intensity following induction during NMP 

differentiation - RFP(control) and Ptk7.  

224 

5.23 T(Bra) and Sox2 intensity following induction during NMP 

differentiation - Ptk7ΔICM and sPtk7 
225 

5.24 T(Bra) and Sox2 intensity following induction during NMP 

differentiation - Pk1 and Vangl2 
226 

6.1 Working model of Wnt/PCP regulation of NMP behaviour. 236 

  



  xxi 

List of Abbreviations 

AB Antibody 

AVE Anterior Visceral Endoderm  

BABB 1 Benzyl Alcohol: 2 Benzyl Benzonate 

BM Basement Membrane 

CE Convergence and Extension  

CHIR CHIR99021 

CLE Caudal Lateral Epiblast 

CNH Chordoneural Hinge 

CRM Centre for Regenerative Medicine 

DAPI 4’ , 6-diamidino-2-phenylindole 

DMSO Dimethylsulphoxide  

Dox Doxycycline 

DVE Distal Visceral Endoderm 

E Embryonic Day  

EMT Epithelial to Mesenchymal Transition  

EpiLC Epiblast-Like Cells 

EpiSC Epiblast-derived Stem Cells 

ESCs Embryonic Stem Cells 

EXE Extraembryonic Ectoderm 

Fig. Figure 

FCS Foetal Calf Serum 

GFP Green Fluorescent Protein  

GOI Gene of Interest 

hf head fold 

HF High Fidelity 



  xxii 

ICE Inducible Cassette Exchange Locus 

ICM Inner Cell Mass 

IHC Immunohistochemistry 

ISH In Situ Hybridisation 

KSR Knock out Serum Replacement 

L Lateral 

LIF Leukemia Inhibitory Factor 

LM Lateral Mesoderm 

LUT Look Up Table 

MEF Mouse Embryonic Fibroblasts 

MRC Medical Research Council 

NEAA Non-essential Amino Acids 

NMP Neuromesodermal Progenitor 

NSB Node-Streak Border 

OD Optic Density 

PBS Phosphate-buffered saline 

PCP Planar Cell Polarity  

PCR Polymerase Chain Reaction 

PD03 PD0325901 

PE  Primitive Endoderm  

Pen/Strep Penicillin/Streptomycin 

PFA Paraformaldehyde 

PS Primitive Streak 

PXM Paraxial Mesoderm  

RFP Red Fluorescent Protein  

RT°C Room Temperature 

S Supplementary 



  xxiii 

SEM Standard Error of the Mean 

T(Bra) T(Brachyury) 

T2A Thosea Asigna virus 2A 

TC Tissue Culture 

TCA Trichloroacetic Acid 

TE Trophectoderm 

VE Visceral Endoderm 

vs Versus 

WT Wildtype 

  



   

 2 

Chapter 1: Introduction  

1.1 General Introduction 

This chapter will include a general introduction to early Mouse (Mus musculus) 

embryo development, the process of gastrulation and axial elongation. Followed by 

the evidence for the existence of Neuromesodermal Progenitors (NMPs), the bipotent 

progenitor responsible for neural and mesodermal (paraxial and tail bud mesoderm) 

lineage production during axial elongation. I will discuss where they are found, 

important signalling pathways for their maintenance and differentiation, before 

describing their generation in vitro from multiple embryonic stem cell (ESC) sources. 

Therein I will introduce Wnt/Planar Cell Polarity (PCP) Signalling as a potential 

candidate for regulating NMP behaviour. I will provide a review of the literature, 

considering where its components have been reported to be expressed, Wnt/PCP 

mutant phenotypes as well as applicable functional roles. Finally, I will briefly discuss 

new methods of investigating its role in mammalian systems. 

1.2 Early Mouse embryo development - pluripotency 
and lineage segregation 

1.2.1 Pre-implantation 

Mammalian embryo development begins after fertilisation with the generation of a 

single cell totipotent cell (zygote), which possesses the ability to give rise to all 

embryonic and extraembryonic lineages. This ability remains following subsequent 

symmetric divisions which produce progressively smaller but identical cells, called 

blastomeres (Tarkowski and Wróblewska, 1967). Upon asymmetrical cell division at 

the morula stage (16-32 cells, embryonic day (E) 2.5) two visibly distinct populations 

exist, polarised cells at the outer edge and inner cells at the core of the developing 

morula. Following cavitation (E3.5)(Smith and McLaren, 1977), the blastocyst is 

formed, in which previously polarised cells contribute to cells of the trophectoderm 

(TE), and inner cells contribute to form the inner cell mass (ICM). This is the first 

point during development when lineage contribution potential segregates between 

cells, with cells of the ICM retaining totipotent potential, and cells of the 

trophectoderm limited to cells of extra-embryonic lineages only (reviewed in Saiz and 

Plusa, 2013). Further lineage segregation follows at E4.0 when the embryo hatches 
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from surrounding zona pellucida membrane, and cells of the ICM form the pre-

implantation epiblast and primitive endoderm (PE) lineages (reviewed in Gardner, 

1998). Cells of the TE and PE go on to form extra-embryonic tissues which support 

the developing embryo. Cells of the pre-implantation epiblast however remain 

pluripotent, meaning they have the capacity to become derivatives of all three 

embryonic germ layers to form the embryo proper (reviewed in Arnold and Robertson, 

2009; Stower and Srinivas, 2014). 

1.2.2 Post-implantation, establishment of the 
anterior/posterior axis 

Around E5.0 implantation occurs, and the morphology of the embryo changes to form 

the ‘egg cylinder’, named due to its shape. The embryo at this stage is elongated along 

the proximal-distal axis, and a cavity has formed within the centre of the epiblast cells. 

The epiblast is surrounded by extraembryonic tissues, above lies the extraembryonic 

ectoderm (EXE) derived from the TE, and enveloping both, the visceral endoderm 

(VE) derived from the PE. Anterior and posterior identities are determined by 

interactions between secreted factors from these different tissues, including Wnts, 

Nodal and bone morphogenic protein (BMP). Ultimately a specialised signalling 

centre is specified in the distal VE (DVE) (reviewed in Arnold and Robertson, 2009). 

The DVE expresses factors which antagonize TGF-beta and Wnt signalling activity, 

including left-right determination factor 1 (Lefty1) and Cerberus (Cer1). From E5.5 

onwards the cells of the DVE expressing these factors migrate anteriorly and are 

replaced by new cells expressing Cer1 and Lefty1 which form the anterior VE (AVE) 

(reviewed in Arkell and Tam, 2012; Stower and Srinivas, 2014) . 

1.2.3 Gastrulation and the primitive streak 

At around E6.5, gastrulation initiates, marking inception of the three germ layers, 

ectoderm, mesoderm and definitive endoderm (Arkell and Tam, 2012). The primitive 

streak, appears as cells converge to what is now the posterior of the embryo, at the 

opposite side to the AVE (reviewed in Beddington and Robertson, 1999; Arnold and 

Robertson, 2009). Cells of the epiblast that were initially a cup shaped epithelium 

undergo epithelial to mesenchymal transition (EMT) characterised by loss of apical-

basal polarity and breakdown of basement membranes and cell-cell contacts (reviewed 
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in Nakaya and Sheng, 2008). This allows the cells to delaminate and migrate through 

the streak emerging to form cells of nascent mesoderm and definitive endoderm 

between the epiblast and the VE. During gastrulation BMP4, Nodal and Wnt3 

reinforce each other’s expression (Ben-Haim et al., 2006), and are essential for this 

process, highlighted by defects in gastrulation and mesoderm formation when 

components are mutated ;Wnt3 (Liu et al., 1999), Nodal (Conlon et al., 1994), BMP4 

(Winnier et al., 1995). Moreover correct EMT of cells is dependent on Fibroblast 

growth factor receptor (Fgfr1) and Fibroblast growth factor 8 (Fgf8) which is 

expressed in the primitive streak (Crossley and Martin, 1995). Fgf8-/- mutants are 

characterised by an accumulation of cells in the primitive streak, which ingress but fail 

to leave (Sun et al., 1999). This accumulation is also present in Fgfr1-/- mutants which 

also exhibit aberrant mesodermal patterning as well as reduction of Snail, a key factor 

in normal EMT (Ciruna and Rossant, 2001; Deng et al., 1994; Yamaguchi et al., 1994).  

1.2.4 Cell fate during gastrulation 

Between E6.5-E7.5 the primitive streak elongates distally from the posterior pole until 

it reaches the distal tip of the embryo. Cells to the anterior of the primitive streak form 

a specialised structure, the node, the Mouse equivalent to the Spemann’s organiser 

(Xenopus) or Hensen’s node (Chick, Gallus domesticus). Extensive lineage tracing and 

grafting experiments have been conducted and reviewed to create detailed fate maps 

of cells during gastrulation (Beddington, 1994; Kinder et al., 1999, 2001; Lawson, 

1999; Lawson et al., 1991; Lu et al., 2001; Tam and Behringer, 1997; Wilson and 

Beddington, 1996). The fate of cells emerging from the primitive streak is dependent 

on the timing and anterior-posterior site of their ingression. The first cells ingressing 

at the posterior streak, closest to high BMP4 signalling from ExE, are fated to form 

extraembryonic tissues (Winnier et al., 1995). Mesoderm emerging later from the 

intermediate and anterior streak, give rise to lateral plate, paraxial and cardiac 

mesoderm. Whilst cells ingressing closest to the anterior tip of the primitive streak, 

form mid-line axial mesendoderm tissue, including cells of the node, notochord, 

prechordal plate, and definitive endoderm (DE) (reviewed in Arnold and Robertson, 

2009). Cells that do not travel through the streak but remain in the epiblast form 

ectoderm, giving rise to surface ectoderm and neural tissues. 
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During this time, key genes associated with subsequent cell fate are upregulated in 

somewhat overlapping regions of the embryo. These include several mesoderm 

markers; T(Brachyury) or T(Bra), is expressed broadly throughout the primitive streak, 

node and notochord; Eomesodermin (Eomes) expressed in the anterior streak; Caudal- 

type homeobox protein 2 (Cdx2) expressed broadly in the primitive streak; MIX1 

homeobox-like 1 (Mixl1) expressed in the intermediate primitive streak; and Mesoderm 

posterior 1 (Mesp1) a cardiac progenitor marker is expressed in streak and more 

anterior tissues. Forkhead box protein A2 (Foxa2) is expressed in the most anterior 

streak, and labels anterior mesendoderm (bipotent mesodermal and endodermal 

lineages), as well as the prechordal plate and anterior midline endoderm (Arnold and 

Robertson, 2009). Anterior neuroectoderm is marked by orthodenticle homeobox 2 

(Otx2) expression (reviewed in Arnold and Robertson, 2009).  

Despite this apparent regionalisation of cell fate associated with differential expression 

of key genes, this does not truly reflect the developmental potential of these cells. In 

experiments where anterior or posterior pieces of the E7.5 epiblast were grafted to the 

testis capsule, no differences were detected in terms of their potential to contribute to 

all germ layers (Beddington, 1983). Thus, although the fate of epiblast stem cells is 

determined by their positioning in the epiblast their potential remains adaptable. 

As gastrulation progresses the node and primitive streak remain localised at the distal 

and posterior of the embryo respectively. The production of presomitic mesoderm by 

the streak drives somitogenesis, the process by which somites are made. Pluripotency 

disappears at the onset of somitogenesis reflecting at least in part the loss of 

pluripotency gene Oct4 (Osorno et al., 2012). Tissue is added along the axis 

sequentially from the rostral to the caudal end by cells derived from the primitive 

streak and adjacent epiblast, in a process termed axial elongation. As the axis extends 

the primitive streak remains at the most caudal end. Subsequently the primitive streak 

becomes enclosed by the posterior neuropore which is the temporarily open region of 

the neural plate that forms anterior to the primitive streak. 

 forming the posterior neuropore, until E10.5 when it closes to form the tail bud. From 

this point the tailbud is the source of cells for continuing body axis elongation until 

E13.5 when axial elongation arrests (reviewed in Wilson et al., 2009).  



   

 6 

1.3 Neuromesodermal Progenitors (NMPs) 

1.3.1 Evidence for bipotent progenitors during axial elongation 

Fate mapping and retrospective clonal analysis experiments have indicated the 

presence of progenitors in vertebrate throughout axial elongation which have the 

capability to persist, as well as differentiating to generate both mesodermal (paraxial 

and tail bud mesoderm) and neural tissue (reviewed in Wilson et al., 2009).  

Evidence supporting this idea came from fate maps generated based on cell tracing 

studies in cultured embryos. In chick, single cells labelled within Hensen’s node, the 

chick equivalent to the Mouse node, were found to contribute to more than one tissue 

(somite and notochord or notochord and ventral neural tube), and thus had dual fates 

(Selleck and Stern, 1991). Moreover, these initial findings were supported by similar 

cell labelling experiments performed in Mouse embryos. Cells labelled within the 

epiblast at the prospective organiser region were able to contribute descendants to 

multiple tissue lineages, as well as contributing to cells remaining in the node region 

(Lawson et al., 1991). Labelling of the node in late streak and headfold (hf) stage 

embryos also provided evidence of similar multipotent cells, with labelled cells 

forming clones consisting of both mesodermal and neural lineages. Furthermore, 

labelling of cells more anterior to the node, did not have the same result, with only 

contribution to neuroectodermal tissues (Forlani et al., 2003). Thus together, these 

studies in chick and Mouse suggested the presence of cells with the ability to persist 

and additionally contribute to multiple lineages. 

Experiments using retrospective clonal analysis were key in understanding more about 

these stem-like cells, specifically their persistence throughout axial elongation. These 

clonal analysis studies exploit a non-functional modified form of the lacZ gene, laacZ 

which spontaneously repairs, leading to the expression of β-gal in the revertant cell, 

and all its descendants (Bonnerot et al., 1987). Initially, use of this laacZ reporter 

driven by myotome (muscle progenitor of the somite), or neural specific promotors, 

and subsequent retrospective clonal lineage analysis identified the presence of stem 

cells in both myotome and nervous system formation (Mathis and Nicolas, 2000; 

Nicolas et al., 1996). Both systems reported clones, spanning large areas of the axis. 

Characteristics of these clones suggested that a pool of self-renewing cells with the 
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ability to differentiate and contribute to tissues throughout axial elongation existed for 

both mesodermal and neural lineages.  

Furthermore, the presence of bipotent cells was finally confirmed using the insertion 

of laacZ driven by the ubiquitously expressed Rosa26 locus, which was not restricted 

to report a specific lineage. Retrospective clonal analysis of this line finally verified 

the presence of bipotent axial progenitors during axial elongation, termed 

Neuromesodermal Progenitors (NMPs), which can contribute to both neuroectodermal 

and mesodermal tissues (Tzouanacou et al., 2009). Clones from E8.5 and E10.5 

embryos suggested that these progenitors were present in a single progenitor pool 

continually throughout elongation, peaking in size between gastrulation to early 

organogenesis, and then decreasing during tail bud stage. These experiments 

confirmed the presence of NMPs during axial elongation and provided insight in to 

where these progenitors were located, nevertheless they did not confirm the exact 

location of NMPs. 

1.3.2 Location of NMPS 

1.3.2.1 Node- Streak border (NSB) and Caudal Lateral Epiblast (CLE) 

The location of neuromesodermal progenitors was revealed using a combination of 

multiple and single cell lineage tracing and transplantation experiments, in which 

tissue from a labelled donor was grafted to a host to establish what tissue types it could 

give rise to.  

As mentioned above, multipotent cells were first identified in the node region in chick 

(Selleck and Stern, 1991) and in Mouse (Beddington, 1994; Lawson et al., 1991) 

located at the most anterior primitive streak (Fig. 1.1A). The morphology of the node 

is initially a rosette of cells at the distal tip of the egg cylinder, which evolves to form 

a distinctive morphology with a ‘pit’ of ciliated cells surrounded by radially arranged 

‘crown’ cells in a horseshoe which disappear around the 7 somite stage (Bellomo et 

al., 1996; Jurand, 1974; Sulik et al., 1994).  
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Figure 1.1 Location of Neuromesodermal Progenitors (NMPs)  
(A) DAPI stained sagittal section at E8.5 (2-5 somite embryo) illustrates position of the notochord 
(noto), node, crown of the node, rostral node (RN), and the node-streak border (NSB) which contains 
NMPs. (B) Schematic of E8.5 (2-5 somite) embryo illustrates the position of the Caudal Lateral Epiblast 
(CLE), in which NMPs additionally reside (L1-L3). The CLE is adjacent to the primitive streak (PS). (C) 
Following neuropore closure at E9.5, NMPs are found in the tail bud, here shown for E10.5, until axial 
cessation at E13.5. During this time NMPs reside in the chordoneural hinge, which constitutes the 
caudalmost region of the ventral neural tube in contact with the notochord. Images modified from 
(Wymeersch et al., 2016). s- somite, L - lateral, St-Streak. 
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The node consists of two layers, namely the dorsal layer (dorsal node), a highly 

proliferative layer which is contiguous with the epiblast, and the ventral layer (ventral 

node) which is adjacent to the primitive streak and relatively quiescent.  The ventral 

layer and the streak appear to be separated by basement membrane except for the 

extreme anterior end of the streak, however cell mixing between these layers is not 

thought to be extensive (Bellomo et al., 1996). 

Following epiblast fate map experiments by Lawson et al., (1991), the fate of cells in 

the node and primitive streak at E8.25-E8.5, early somitogenesis, was examined in 

Mouse through DiI labelling of cells in specific locations (Wilson and Beddington, 

1996). Ventral node showed predominantly notochordal fate, although additional 

hindgut labelling was also present, perhaps due to unintended labelling of adjacent 

endoderm cells. Moreover, as labelled cells also remain in the node following culture, 

this suggests notochord progenitors reside in the ventral node. Labelling the dorsal 

node in addition to the ventral node showed additional labelling of neurectoderm and 

paraxial mesoderm, showing distinct fates for these two node layers. Additionally, 

distinctions were found between labelled regions of the streak, with rostral streak fated 

for paraxial mesoderm, and caudal for lateral mesoderm (Smith et al., 1994; Wilson 

and Beddington, 1996). 

Further detailed fate maps were constructed using homotopic grafts of GFP-expressing 

cells from the node and streak regions (Cambray and Wilson, 2007). In line with 

previous reports, cells of the streak gave rise to paraxial mesoderm (rostral most four-

fifths of the streak), or lateral mesoderm (most caudal fifth of the streak), and cells of 

the ventral node contributed to notochord cells only. However cells at the junction 

between the caudal most node, and the rostral most part of the primitive streak, termed 

the node-streak border (NSB), were the only cells that could give rise to multiple 

lineages, namely notochord, neural tube (ventral), and paraxial and tailbud mesoderm 

along the length of the axis (Cambray and Wilson, 2007). The fate of cells in the 

epiblast lateral (L) to the primitive streak, termed the caudal lateral epiblast (CLE), 

was also investigated. Two distinct regions were found, the most rostral three-fifths 

(L1-L3) contributed to paraxial mesoderm and neural tube, whilst the caudal fifth (L5) 

showed lateral mesoderm contribution with negligible contribution to neural lineages 
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(Cambray and Wilson, 2007). NSB and CLE cell are also biased in their contribution 

to lineages, with NMPs residing in the NSB and CLE giving rise to more ventral and 

dorsal neural tube respectively (Cambray and Wilson, 2007). 

Altogether this work established a fate map of cells located in the posterior of the 

Mouse embryo at early somitogenesis. In summary, cells residing in the NSB and CLE 

can contribute to both neural and mesodermal lineages during axial elongation 

confirming these regions as the only possible location for neuromesodermal 

progenitors (Fig. 1.1A-B). Further heterotopic grafts undertaken revealed a pattern 

within the CLE, whereby posterior and medial cells were more likely to contribute to 

mesoderm, while anterior and lateral cells tended to adopt neural fates. However 

NMPs in all locations showed extensive plasticity: their eventual fate as neurectoderm 

or mesoderm was determined by their environment (Wymeersch et al., 2016).  

1.3.2.2 Chordoneural Hinge (CNH) 

In homotopic grafts of the NSB, and to a lesser extent, the CLE resulted in labelled 

cells residing in a specific area of the tail bud, termed the chordoneural hinge (CNH), 

which constitutes the caudalmost region of the ventral neural tube in contact with the 

widened notochordal plate (Cambray and Wilson, 2002, 2007) (Fig. 1.1C). These 

experiments supported the idea that there is a cellular continuity between the primitive 

streak and the CNH. Grafting of CNH regions derived from E10.5-E12.5 embryos into 

E8.5 NSB resulted in contribution to both neural and mesodermal tissue, as well the 

CNH itself (Cambray and Wilson, 2002). Importantly this was not possible using tissue 

from other regions of the tailbud, including adjacent tail bud mesoderm (TBM) 

(McGrew et al., 2008). Moreover, serially passaging through consecutive CNH to NSB 

was possible, with continuous contribution to axis and CNH, indicating that the CNH 

of E10.5- E12.5 embryos and the NSB are equivalent (Cambray and Wilson, 2002). 

Supporting the idea that NSB and CNH are a continuum through development, 

orientation of key gene expression domains, are mirrored between the node/primitive 

streak regions and tailbud (Cambray and Wilson, 2002). Despite differences between 

species morphology the presence of bipotent stem cells contributing to neural and 

mesodermal lineages have also been identified in chick, with comparable organisation 

within the axis (reviewed in Wilson, Olivera-Martinez and Storey, 2009). 
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In conclusion, despite limitations of individual experiments, together these fate map, 

retrospective clonal analysis, homotopic and serially grafting experiments demonstrate 

the presence of a pool of bipotent progenitors during axial elongation, residing initially 

in the NSB and CLE of E8.5 embryos and then in CNH region of the tail bud. The 

potency of these cells to form only neural and mesodermal lineages has since been 

verified using kidney capsule grafts, confirming these cells not pluripotent 

(Wymeersch et al., 2016).  

1.3.3 Cessation of axial elongation 

Axial elongation terminates at E13.5, although the mechanism by which this occurs is 

not fully understood. Many mutant mice with short tails have been described, with 

premature axial termination thought to reflect disruption of NMP behaviour. Indeed at 

least some of these mutants are known to affect NMP behaviour directly. Conversely 

axial elongation has been associated retinoic acid induced apoptosis (Shum et al., 

1999), as well as a loss of important NMP maintenance factors which decrease 

gradually before disappearing by E13.5 (Cambray and Wilson, 2007). Additionally, 

mice with homozygous mutations in homeoboxb13 (Hoxb13) exhibit longer tails, 

suggesting a role for this gene in axial cessation (Economides et al., 2003).  

1.3.4 T(Bra) and Sox2 co-expression marks NMPs 

As mentioned above, areas in which NMPs reside during axial elongation exhibit 

similar spatial expression of important regulatory genes. These including, Wnt3a, 

Fgf8, T(Bra), Caudal Type Homeobox 2 (Cdx2), Even-skipped homeobox 1 (Evx1) and 

NKX1 homeobox 2 gene (Nkx1.2, also Sax1). The expression of these genes however 

is never restricted solely to NMP residing areas (Cambray and Wilson, 2007)cam, and 

despite extensive investigations currently no single gene marker which uniquely 

identifies NMPs has been reported. Instead, in several vertebrate species regions 

containing NMPs are hallmarked by the co-expression of neural marker SRY-box2 

(Sox2) and primitive streak/nascent mesoderm marker T(Bra)(Martin and Kimelman, 

2012; Olivera-Martinez et al., 2012). T(Bra) and Sox2 co-expressing cells are 

consistently found in the Mouse NSB/CLE and CNH throughout axial elongation 

(Wymeersch et al., 2016). Furthermore, in Mouse, Sox2 and T(Bra) co-expressing 

cells reach their maximum numbers during mid-trunk formation, coinciding with an 
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inferred peak in NMP numbers based on retrospective clonal analysis (Tzouanacou et 

al., 2009; Wymeersch et al., 2016). Moreover T(Bra) and Sox2 co-expression is lost 

at E13.5 coinciding with cessation of axial elongation. However it should be noted that 

co-expression of these two factors may not be exclusive to NMPs, as mesoderm-

committed midline streak also contains some cells expressing both components 

(Wymeersch et al., 2016).  

1.3.4.1 T(Brachyury) - T(Bra) 

T(Bra) is a T-box transcription factor, whose expression is one of the earliest hallmarks 

of streak formation, and is essential for gastrulation (Beddington et al., 1992; Rivera-

Perez and Magnuson, 2005; Thomas and Beddington, 1996; Wilson and Beddington, 

1997; Wilson et al., 1995). T(Bra) is a direct target of Wnt3a signalling and at late 

gastrulation T(Bra) is expressed in the node, the notochord, and newly formed 

mesoderm (Wilkinson, Bhatt and Herrmann, 1990; Yamaguchi et al., 1999; Cambray 

and Wilson, 2007). Expression of T(Bra) persists in the tail bud, labelling the 

notochord, CNH and tail bud mesoderm (Cambray and Wilson, 2007). Homozygous 

mutations for T(Bra) have relatively normal gastrulation but later truncations are 

present in caudal regions, with loss of notochord and mesoderm, which ultimately 

leads death around E10.5 (Beddington et al., 1992; Rashbass et al., 1994; Wilkinson 

et al., 1990). This phenotype is shared but less severe for heterozygous mutations, with 

evidence suggesting abnormalities are due to defects in cell movements which cause 

accumulation of cells in the primitive streak (Wilson and Beddington, 1997; 

Yanagisawa et al., 1981). As previously mentioned T(Bra) is a target of Wnt 

signalling, but also is reported to target components of both Fgf and Wnt signalling 

pathways (Casey et al., 1998; Evans et al., 2012; Yamaguchi et al., 1999a). 

1.3.4.2 Sox2 

Sox2 is one of a large family of transcription factors, which share homology within 

their HMG-box DNA binding domain (Schepers et al., 2002). Sox2 and other members 

of the subfamily group B are mostly associated with high expression in the nervous 

system including in adult tissue, but they are also expressed in early embryogenesis 

(Pevny et al., 1998; Sarkar and Hochedlinger, 2013; She and Yang, 2015; Wood and 

Episkopou, 1999). Sox2 expression initiates at the pre-implantation stage, and is 
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restricted to the ICM of blastocysts. Following implantation, it is expressed throughout 

the epiblast before becoming restricted to more anterior regions by E7. From the onset 

of somitogenesis Sox2 is expressed highest in neurectoderm but also found in 

endoderm as well as the developing germ cells (Avilion et al., 2003; Wood and 

Episkopou, 1999). Homozygous mutants of Sox2 are embryonic lethal, and die around 

implantation, reflecting its importance in blastocyst stage embryos (Avilion et al., 

2003). Sox2 has been shown to have a specific enhancer (N1), controlling its 

expression in streak and CLE regions during development (Yoshida et al., 2014). 

Activation of this enhancer was shown to be dependent on dual action of Wnt3 (Wnt/β-

catenin) and Fgf8 signalling (Takemoto et al., 2005). Interestingly, it has recently been 

shown that T(Bra) and Sox2 mutually repress each other’s expression such that NMPs 

exist in a Sox2-low, T(Bra)-low state (Koch et al., 2017). 

In summary, unique T(Bra) and Sox2 expression generally represents cells of 

mesoderm and neural fate, respectively, whereas co-expression labels bipotent NMPs. 

Maintenance of their co-expression and overall NMPs numbers appears to be highly 

regulated by feedback at the transcriptional level, and between mutually-reinforcing 

Fgf and Wnt/β-catenin signalling.  Various essential components of these feedback 

mechanism include (Nkx1.2) (Delfino-Machin et al., 2005; Schubert et al., 1995), and 

Caudal-related homeobox (Cdx) genes (Chawengsaksophak et al., 2004; Savory et al., 

2009).  

1.3.5 In vitro derivation of NMPs 

Neuromesodermal progenitors have also recently been generated in vitro from diverse 

sources, namely Mouse embryonic stem cells (ESCs), Epiblast stem cells (EpiSCs), as 

well as human ESCs (Gouti et al., 2014; Tsakiridis et al., 2014; Turner et al., 2014). 

These in vitro NMPs display a similar phenotype to in vivo NMPs, including co-

expression of T(Bra) and Sox2, and other markers characteristic of NMP identity. In 

clonal assays, single cells can produce both neural and mesoderm cell types, providing 

further evidence that these cells are equivalent to their in vivo counterparts (Tsakiridis 

and Wilson, 2015). Functionally similarity to in vivo NMPs was further demonstrated 

when they were grafted into NSB regions of Mouse embryos, and contributed to both 

mesodermal and neural lineages (Gouti et al., 2014). In all cases NMPs have been 
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derived through dual activation of Fgf signalling, using Fgf ligands and Wnt/β-catenin 

signalling, using CHIRON99021 (CHIR) a potent agonist of this signalling pathway, 

or recombinant Wnt3a (N2B27/CHIR/FGF) (reviewed in Henrique et al., 2015)(Gouti 

et al., 2014). These in vitro derived NMPs are a transient population, which following 

prolonged culture over a few days will terminally differentiate. 

1.3.5.1 Source cells for NMPs in vitro 

As mentioned above NMPs have been generated in vitro from Mouse ESCs and 

EpiSCs through treatment with Fgf and Wnt agonists. These two source populations 

are both stem cells, in that they can self-renew, by dividing to give rise to exact copies 

of themselves, permitting them to be propagated indefinitely, and additionally can 

differentiate, shown by multilineage differentiation in vitro and teratoma formation 

when grafted to adult mice (Tesar et al., 2007). However these cell types are very 

different in terms of behaviour, morphology culture requirements, transcriptional and 

epigenetic profiles and differentiation potential (reviewed in Morgani, Nichols and 

Hadjantonakis, 2017). 

1.3.5.2 Pre-implantation ESCs - LIF/FCS and 2i/LIF ESCs 

ESCs can be derived from the ICM of preimplantation E4.5 embryos (Evans and 

Kaufman, 1981; Martin, 1981). They were initially grown in the presence of foetal calf 

serum (FCS) on Mouse embryonic fibroblasts (MEFs), termed feeders, which promote 

self-renewal of ESCs through the productions of Leukaemia Inhibitory Factor 

(LIF)(Smith et al., 1988). MEFs can be replaced by addition of recombinant LIF and 

coating of plates with a gelatine substrate (LIF/FCS). ESCs are considered equivalent 

to the ‘naïve’ preimplantation epiblast, and if placed under the environment of host 

embryo, exhibit all attributes of epiblast identity and potency (reviewed in Nichols and 

Smith, 2009).  

However, ESCs cultured in LIF/FCS are not homogeneous: individual cells exhibit 

differences in transcriptome, self-renewal probabilities and developmental potentials 

(reviewed in Morgani, Nichols and Hadjantonakis, 2017). ESCs are primed for lineage 

specification/differentiation through Oct4/Sox2 driven FGF4 activation of the ERK 

pathway (reviewed in Silva and Smith, 2008). In LIF/FCS conditions this activation 

of differentiation is inhibited by factors within the FCS, however since serum is 
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undefined this can be variable, as too can directed differentiation from these cultures 

which commonly contain a minority of cells spontaneous differentiation (Morgani et 

al., 2017; Ying and Smith, 2003). As an alternative ESCs can be cultured with LIF in 

defined culture conditions (N2B27) where the addition of  two inhibitors (2i), 

PD0325901 (PD03) (MEK/Erk pathway inhibitor) and CHIR (GSK3β inhibitor and 

Wnt/β-catenin agonist) which serve to neutralise inductive differentiation stimuli, 

together termed 2i/LIF (Silva and Smith, 2008; Silva et al., 2008). Cells cultured in 

2i/LIF conditions are much more homogeneous, with reduced expression of lineage 

markers and significantly less spontaneous differentiation. Thus this condition is 

referred to as the ‘ground’ or ‘naïve’ state pluripotency (Marks et al., 2012; Morgani 

et al., 2017; Nichols and Smith, 2009; Silva and Smith, 2008). 

In summary, despite similarities in pluripotency between ESCs in LIF/FSC and 2i/LIF 

culture, due to the homogeneity of cells in 2i/LIF culture it is considered more 

advantageous as a starting population for cell differentiation.  

1.3.5.3 Post-implantation - EpiSCs and EpiLCs 

Mouse EpiSC lines have been derived from post implantation Mouse epiblasts from 

E5.5 to E8 (Brons et al., 2007; Osorno et al., 2012; Tesar et al., 2007). The culture 

requirements for EpiSC are distinct from ESCs, with propagation promoted by serum-

free culture (N2B27) with the addition of Fgf and Activin (N2B27/FGF/Activin) on 

fibronectin substrate (Brons et al., 2007; Tesar et al., 2007). EpiSC cells can also be 

generated in vitro directly from ESCs cell lines by long term culture of ESCs in EpiSC 

conditions, a process involving extensive cell death and differentiation (Turco et al., 

2012). Reversion to the ESC state from EpiSCs, however, is extremely inefficient 

(Guo et al., 2009; Zhang et al., 2016). 

The distinct functionality of ESC and EpiSCs is demonstrated by the efficient 

integration of ES cells in pre-implantation but not post-implantation embryos (Evans 

and Kaufman, 1981; Huang et al., 2012; Martin, 1981), and EpiSCs in post-

implantation embryos but not preimplantation ones (Huang et al., 2012; Tesar et al., 

2007). Like ESCs, EpiSCs express the core pluripotency factors Oct4, Sox2 and 

Nanog, but lack the expression of naive pluripotency markers such as Esrrb and Nr5a2 

(Guo et al., 2009; Tesar et al., 2007). Instead, EpiSCs express many post-implantation 
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embryo markers including Fgf5, Otx2 and Lefty, and are thought to be ‘primed’ for 

differentiation (primed state).  

Initially EpiSCs were thought to correspond to early post-implantation embryos (E5-

E6) (Tesar et al., 2007) however a comparison of the transcriptome of multiple EpiSC 

lines with carefully staged embryos throughout gastrulation revealed that they do not 

resemble any one postimplantation stage, instead having a distinct EpiSC identity 

(Kojima et al., 2014a). Furthermore, their expression of lineage markers including 

mesoderm markers T(Bra), Eomes, Mixl1, endoderm markers Foxa2, Sox17, suggests 

that at least subpopulations of these cells are similar to early primitive streak cells 

(Kojima et al., 2014b). Generally, EpiSCs cultures are very heterogenous and 

vulnerable to spontaneous differentiation. In accordance, sub-populations relating to 

early (pluripotent) and later lineages (differentiation) have been described (Han et al., 

2010). Adding to the complexity of EpiSC, comparison of multiple EpiSC lines 

indicated significant variation between lines in terms of the levels of key gastrulation 

markers including T(Bra) and overall differentiation potential (Bernemann et al., 

2011). The cause of this variation is still not understood but was not correlated to how 

these EpiSCs were derived (Bernemann et al., 2011). 

A third state akin to the post-implantation epiblast, epiblast-like cells (EpiLCs), has 

also been described. 2i/LIF cultures, treated with Activin and Fgf in defined media 

with the addition of knock out replacement serum (KSR) (N2B27/Activin/Fgf/KSR) 

pass through a transient EpiLC state with cells being transcriptionally dynamic over 3 

days of culture, characterised by a wave of cell death upon day 3 (Hayashi and Saitou, 

2013; Hayashi et al., 2011, 2012). This EpiLC state is termed ‘formative’, and thought 

to be representative of E5.5-6.25 embryo stages, transcriptionally reflecting a mid-

point between ‘naïve’ (ESCs) and ‘primed’ (EpiSC) states. At 48 hours EpiLCs are 

transcriptionally reflective of E5.75 embryos, with levels of both pluripotent and 

differentiation markers, lower than those for ESCs and EpiSCs respectively. They 

form a near-homogenous population of cells exhibiting minimal spontaneous 

differentiation (Hayashi et al., 2011). Despite the identification of this advantageous 

starting population for differentiation protocols, exploration of its functional abilities 

have been limited to the derivation of primordial germ cells, a lineage whose 
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differentiation is not possible with EpiSC. So far there has been no publication using 

EpiLCs as a starting population for generation of in vitro NMPs.  

In summary, distinct stages of epiblast development are reproducible in vitro; stable 

‘naïve’ (ESCs) and ‘primed’ (EpiSCs) states, and transient ‘formative’ (EpiLCs) and 

NMPs. They represent a developmental continuum which we can exploit to further our 

understanding of developmental mechanisms. However, many questions remain 

unanswered in terms of the robustness or reliability of some of these cells lines, 

including EpiSCs which contain lots of variance between and within cell lines. 

Additionally, it remains unclear if EpiLCs could be a utilised as an alternative to 

EpiSCs especially as a starting population to generate NMPs from. 

1.3.6 Important signalling pathways for NMPs  

The activity of several signalling pathways has been implicated in the maintenance 

and fate choice of NMPs during axial elongation, these include Wnt/β-catenin and FGF 

signalling. 

1.3.6.1 Fgf 

The Fgf signalling pathway consists of a family of extracellular ligands, receptors and 

intracellular signalling components (reviewed in Dorey and Amaya, 2010). Fgfs are 

characterised by a shared core of 140 amino acids and affinity for heparan sulphates. 

Many Fgf ligand family members are expressed in the streak and tail bud during axial 

elongation, and of particular interest are Fgf8 and Fgf4 (Cambray and Wilson, 2007; 

Crossley and Martin, 1995). Loss of both Fgf4 and Fgf8 signalling in early gastrulation 

results in embryonic lethality, with mutants showing axial truncations, which are 

phenotypes that could include disruptions in NMP behaviour (Naiche et al., 2011). 

Only when double conditional mutants were generated was a reduction in paraxial 

mesoderm identified, which appeared to be due to reductions in paraxial precursors 

rather than problems with EMT (Boulet and Capecchi, 2012). Moreover as previously 

mentioned Fgf8-/- and Fgfr1-/- mutants have problems in gastrulation with cells failing 

to undergo correct EMT (Sun et al., 1999). These conditional mutants also appeared 

to have ectopic neural tubes, suggesting NMPs may have shifted their fate from 

mesoderm to neural lineages in the absence of Fgf signalling (Boulet and Capecchi, 

2012). Furthermore Fgf is essential for the derivation of in vitro NMPs, and has 
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additionally been associated with inhibition of neural commitment from EpiSC 

cultures (Gouti et al., 2014; Greber et al., 2010).  

 In summary, in both in vitro and in vivo systems, Fgf is crucial for regulating NMP 

behaviour. 

1.3.6.2 Canonical Wnt/β-catenin Signalling  

Like the Fgf signalling pathway, Wnt signalling pathways are highly evolutionarily 

conserved pathways involved in the regulation of many crucial aspects of 

development. All Wnt pathways consist of secreted Wnt glycoproteins which signal 

through Frizzled (Fzd) family of receptors and additional co-receptors (reviewed in 

Komiya and Habas, 2008). Wnt signalling can be dependent on β-catenin stabilisation 

(canonical) or alternatively β-catenin independent (non-canonical). Much of the 

investigation into the role of Wnt signalling in NMP maintenance and fate choice has 

focused on specifically canonical Wnt/β-catenin signalling, which requires recruitment 

of β-catenin to activate downstream targets.  

Wnt3a secreted glycoprotein is key to activation of this pathway, and is upstream of 

many mesoderm associated gene targets including T(Bra), T-Box protein6 (Tbx6) and 

Mesogenin1 (Msgn1)(Yamaguchi et al., 1999; Nowotschin et al., 2012). Mutations of 

Wnt3a or its targets show strikingly similar phenotypes, with reduction in presomitic 

mesoderm as well as formation of ectopic neural tube (Chapman and Papaioannou, 

1998; Nowotschin et al., 2012; Yoshikawa et al., 1997). These phenotypes highlight 

the importance of canonical Wnt/β-catenin signalling for mesoderm differentiation, 

and suggest that when absent NMPs revert to neural fate. In accordance overexpression 

of Wnt3a specifically in caudal regions (under Cdx2 enhancer) prevents the formation 

of neural tissues, however axial defects are still present (Jurberg et al., 2014). Direct 

interference with β-catenin levels has influenced similar fate decisions. NMPs in 

mesodermal fated regions of the CLE could be diverted to neural differentiation when 

β-catenin was conditionally downregulated (Wymeersch et al., 2016). 

Evidence has also supported the idea that Wnt/β-catenin signalling may also be 

important for maintenance of the NMP progenitor pool. When β-catenin levels were 

reduced during axial elongation NMPs numbers were simultaneously reduced 
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(Wymeersch et al., 2016). In addition the activation of Wnt/β-catenin signalling is 

essential for the generation of NMPs from EpiSCs in vitro (Gouti et al., 2014).  

This apparent paradox between the need for Wnt/β-catenin signalling for both 

differentiation and maintenance can be partly resolved by the seemingly dose-

dependent action of Wnt3a and T(Bra). Experiments utilising chimeric embryos with 

varying cell levels of T(Bra) showed that cells lacking T(Bra) were biased towards 

neural differentiation compared to those expressing high T(Bra) which formed 

mesoderm precociously (Wilson and Beddington, 1997). Moreover, Wnt3a 

hypomorph mutants show a graded phenotype, with increasing levels of Wnt3a 

necessary for increasingly more posterior mesoderm (Greco et al., 1996). Thus distinct 

levels of Wnt/β-catenin appear to be required for regulating the behaviour of NMPs 

toward different lineages and continuation of axial elongation. 

In summary, both canonical Wnt signalling and Fgf play an important role in the 

balance between maintenance of NMPs and their differentiation towards mesodermal 

and neural fates in vivo and in vitro. However, it remains unresolved whether the 

balance of canonical Wnt/β-catenin and Fgf signalling is all that is needed to determine 

neural fate, or whether additional pathways play a critical role in this balance? 

1.4 Planar Cell Polarity (PCP) 

1.4.1 Wnt/Planar Cell Polarity (PCP) as a candidate for NMP 
regulation  

NMPs are bipotent, giving rise to tissue of both mesodermal and neural lineages. NMP 

derivatives include; pre-somitic mesoderm which forms somites (paraxial mesoderm) 

that give rise to future muscle and bone; and neural tissues that form the neural tube 

and give rise to future spinal cord.  

Phenotypically mutants of components that are important for NMP regulation are 

characterised by abnormalities in overall body axis, including shortening or curvature 

of the anterior-posterior (AP) axis, and loss or gain of NMP derivatives. With 

alterations in the balance of maintenance and differentiation of NMPs leading to 

premature termination or, alternatively, the overproduction of neurectoderm or 

mesoderm leading to inappropriate morphology. Individual mutations of components 
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of the noncanonical Wnt/Planar Cell Polarity (PCP) signalling pathway result in 

shortened anterior-posterior axis phenotypes (reviewed in Table 1.1). It is not clear if 

this shortening is due to an axial truncation, however this phenotype may suggest that 

these components have a role in regulating NMP behaviour. Furthermore, many of 

these components have been reported to be expressed in NMP-containing regions 

during axial elongation, supporting the idea they may be involved (reviewed in Table 

1.1). 

As mentioned previously, non-canonical (β-catenin independent) signalling pathways 

downstream of Wnt signalling via Fzd receptors are known to play important roles in 

development. One of these, the Wnt/Planar Cell Polarity (PCP) is pivotal for 

establishing planar cell polarity which is critical for coordinating morphogenetic 

behaviours of individual cells and cell populations (reviewed in Gray, Roszko and 

Solnica-Krezel, 2011).  

Cell polarity refers to an intrinsic bias in internal cell organisation. Planar cell polarity 

is perpendicular to apicobasal polarity, and thus internal cellular components are 

localised asymmetrically over the plane of the tissue, usually towards an external 

structural landmark or signal, known as tissue polarity (Fig. 1.2) (reviewed in Strutt 

and Strutt, 2009). Wnt/PCP exists on two levels, at a cellular level and at a tissue level. 

Wnt/PCP components are initially uniformly expressed within an individual cell (Fig. 

1.2A) until Wnt/PCP activity is established through intercellular and intracellular 

interactions (Fig. 1.2C). This promotes the characteristic asymmetric localisation of 

cellular organelles including Golgi and cytoskeleton (Carvajal-Gonzalez et al., 2016; 

Sepich et al., 2011), as well as core Wnt/PCP components, associated with Wnt/PCP 

activity (Fig. 1.2B) (reviewed in Bornens, 2008).  

Research has provided evidence of two systems that contribute to PCP, namely, the 

Fat/Dachsous (Ft/Ds) system and the core Wnt/PCP system, with the interactions 

between the two unclear even in well studied Drosophila models (Reviewed in 

Lawrence, Struhl and Casal, 2007). Mutants of the Ft/Ds pathway Ft4-/- and Ds1-/- 

show minor axial defects with shorter axes and curly tails, however they are mostly 

characterised by substantial kidney defects (Mao et al., 2011; Saburi et al., 2008, 

2012). Due to the more severe axial defect phenotypes exhibited by mutations of the 
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core Wnt/PCP pathway, as well as the reported expression of core Wnt/PCP genes in 

NMP regions this thesis will focus on their role in NMP behaviour. 

1.4.2 Roles of Wnt/PCP in embryonic development 

The importance of core Wnt/PCP components were first described in Drosophila over 

30 years ago, with Wnt/PCP mutants having visually striking defects in the orientation 

of the hairs and bristles in Drosophila wing (Gubb and Garcia-Bellido, 1982). 

Components of the Wnt/PCP pathway are highly evolutionarily conserved and are 

crucial for important vertebrate developmental processes. In vertebrates, the most 

documented role has been in convergence and extension (CE), the process by which 

the body axis narrows (converges) and elongates (extends) along the anterior-posterior 

axis during early development (reviewed in Mlodzik, 2002; Roszko, Sawada and 

Solnica-Krezel, 2009). In Zebrafish, Wnt/PCP has been shown to additionally regulate 

the plane of cell division during this process (Gong et al., 2004; Quesada-Hernández 

et al., 2010). Neural tube closure is also a common defect in Wnt/PCP vertebrate 

mutants, including those of Vangl2 and Celsr1, due to CE defects (Doudney and 

Stanier, 2005). In addition to CE defects Wnt/PCP mutants also characterised by 

disruption in orientation of sensory hair cells of the inner ear, hair follicles, cilia in 

node cells and airway epithelium, axon guidance and limb elongation (Antic et al., 

2010; Borovina et al., 2010; Curtin et al., 2003; Gao et al., 2011; Goodrich, 2008; Gros 

et al., 2010; Guo et al., 2004; Montcouquiol et al., 2003; Song et al., 2010; Tatin et al., 

2013). 

Parallels of Drosophila asymmetric distribution of core components have been 

identified in many of these vertebrate Wnt/PCP systems, and thus considered 

evolutionarily conserved. PCP is most often described in flat epithelial layers but it is 

also known to be important for more three dimensional (3D) mesenchymal tissues 

including the heart, however in these systems the asymmetric distribution of core 

Wnt/PCP proteins is not well understood (Le Garrec et al., 2013; Pop et al., 2013). 

Furthermore, it remains possible that Wnt/PCP components are required for processes 

that are not related to Wnt/PCP.  
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Figure 1.2 Wnt/PCP signalling and tissue polarity. 
Schematic depiction of the establishment and propagation of epithelial tissue polarity through 
interactions between core Wnt/PCP components. (A) Core Wnt/PCP components are initially 
universally expressed in the cell, and organelles (i.e Cilia and Golgi) are randomly localised. (B) When 
cells become polarised (tissue polarity), Wnt/PCP components and organelles (i.e Cilia and Golgi) are 
polarised within individual cells and across neighbours in a unified direction. (C) Planar polarity is 
established through intercellular and intracellular interactions between core Wnt/PCP components. 
These interactions resolve to two complexes at opposing sides of the cell, these are Vangl-Celsr-Pk and 
Fzd-Celsr-Dvl-In/Di. Downstream pathways of Wnt/PCP activation active on Rho GTPases, Rho-
associated kinase (ROK) and JNK-type mitogen activated protein kinase (MAPK) cascade. Names in 
brackets are Drosophila. Inspired and adapted from (Yang and Mlodzik, 2015). 
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1.4.3 Mechanism of core Wnt/PCP pathway action 

Much of the research on the mechanism of Wnt/PCP initiation and propagation 

through tissues has been done with Drosophila. This model has been pivotal in 

uncovering interactions between different components. I will first discuss some of the 

findings using Drosophila, before discussing recent findings in vertebrate systems. 

1.4.3.1 Core Wnt/PCP components and their interactions 

Classically this pathway is composed of six proteins. Three of the components are 

transmembrane; Frizzled (Fzd) receptors ; Van gogh like (Vangl) -van gogh 

(vang)/strabismus in Drosophila ; Celsr (also starry night) - flamingo (fmi) in 

Drosophila; and three are cytoplasmic; Prickle (Pk); Dishevelled (Dvl) ;and 

Inversin/Diversin (In/Di)- Diego (Dgo) in Drosophila (reviewed in Yang and 

Mlodzik, 2015). 

Through interactions between components, these separate into two complexes at 

opposing sides of the cell, which provide the basis for planar polarisation (Fig. 1.2B). 

These interactions which occur intercellularly and intracellularly, result in the 

formation of a Fzd-Celsr-Dvl-In/Di (Fzd-Fmi-Dvl-Dgo) protein complex on one side 

and a Vangl-Celsr-Pk (Vang-Fmi-Pk) complex on the opposite side of the same cell.  

Interactions between the complexes are generally thought to be inhibitory 

intracellularly, which serve to localise complexes to mutually exclusive regions (Fig. 

1.2C). This is mediated by Pk which inhibits Fzd-Dvl formation by binding to Dvl. 

Moreover the distinct localisation of these complexes is amplified by Vangl (vang) 

which recruits Pk to the membrane (Bastock, 2003; Das et al., 2004; Jenny et al., 2003; 

Tree et al., 2002). Dgo however antagonises this effect on Dvl and serves to protect 

the Fzd/Dvl complex.  

In contrast intercellular interactions mutually reinforce and stabilise PCP across a field 

of cells (reviewed in Yang and Mlodzik, 2015). It has been suggested that because 

Celsr (fmi) co-localises to both Fzd and Vangl (vang), it may function through 

homophilic adhesion to facilitate interaction between the two complexes on the cell 

surface of neighbouring cells (Chen et al., 2008; Lawrence et al., 2008; Struhl et al., 
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2012; Strutt and Strutt, 2008; Wu and Mlodzik, 2008). This intercellular bridging is 

thought to be key to the establishment and propagation of PCP across tissues.  

1.4.3.2 Disruption of Wnt/PCP 

In Drosophila the tight regulation of Wnt/PCP can be disrupted by either loss or gain 

(overexpression) of core Wnt/PCP genes, which leads to random distribution of other 

core factors and mis-orientation of hair cells (Seifert and Mlodzik, 2007; Yang and 

Mlodzik, 2015).  

The propagation of planar polarity between cells is demonstrated by the finding that 

disruption of planar polarity is not limited to cells with altered levels of components, 

but can also affect the orientation of wildtype neighbours (Wu and Mlodzik, 2008). 

Fzd-Vang interactions through Celsr (fmi)-promoted intercellular bridge formation is 

thought to be key to this process, with Fzd acting as a provider of cues and Vangl 

(vang) as a receiver (Struhl et al., 2012; Wu and Mlodzik, 2008, 2009). Conversely 

disruption in levels of cytoplasmic components, including Pk and Dvl do not have 

effects on neighbouring cells suggesting their primary involvement in intracellular 

rather than intercellular polarity signalling (Strutt and Strutt, 2007; Veeman et al., 

2003; Wu and Mlodzik, 2009).  

1.4.3.3 Wnt/PCP Downstream Signalling 

Despite extensive research the exact mechanisms by which these six core components 

activate downstream signalling, these remain elusive. Interaction between Fzd and 

Dvl, and subsequent juxtamembrane subcellular localisation of Dvl appears to be 

important in activating downstream signalling but it is unclear exactly how this is 

mediated (Axelrod, 2001; Wong et al., 2003). This complex has been associated with 

a multitude of downstream targets including, Rho GTPases, Rho-associated kinase 

(ROK) and the JNK-type mitogen-activated protein kinase (MAPK) cascade (Fig. 

1.2C) (reviewed in Mlodzik, 2002; Veeman, Axelrod and Moon, 2003; Yang and 

Mlodzik, 2015). These downstream pathways generally converge on cytoskeletal 

regulation which is essential for coordinating dynamic movements intracellularly 

(organelles) and intercellularly (coordinating movement of cells themselves) 

(reviewed in Strutt and Strutt, 2009; Wallingford, 2012). The contribution of these 
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downstream effectors appears very context dependent, and it is unknown if activation 

of these pathways is dependent on asymmetric localisation of components. 

1.4.4 Core Wnt/PCP in vertebrates  

As mentioned, Drosophila has provided a sophisticated genetic model in which 

interactions between components could be investigated. Much less is known about 

how Wnt/PCP operates in mammalian species. This is due in part to the presence of 

multiple homologs for each component, between which there is redundancy in 

function. In Mouse, there are two Vangl, four Pk, ten Fzd receptors, three Celsr and 

three Dvl homologs. Despite high conservation of sequences between Drosophila and 

vertebrate species there still may be some differences in how the components function 

in Wnt/PCP signalling. In addition, the readout of cell orientation in Drosophila 

epithelia is simplified by the presence of obvious phenotypes such as aberrant wing 

hair cell orientation. 

To combat this complication, investigations on Wnt/PCP mechanisms in vertebrates 

have utilised simple systems in which cell orientation is obvious. One of the most 

firmly established Mouse Wnt/PCP models is the mammalian auditory epithelium 

(Montcouquiol et al., 2003). In Mouse the inner ear consists of mechanosensory hair 

cell bundles which each have a bundle of actin-based stereocilia arranged in a crescent 

shape. In wildtype mice, the orientation of these cells are highly regulated, as seen 

with the tissue wide coordination of stereocilia orientation across cells in the tissue. 

However, in Wnt/PCP mutants the orientation of these stereocilia bundles are 

disrupted, and appear random, with complete loss of tissue polarity. Use of this system 

as a read out of Wnt/PCP signalling functionality has aided the more recent 

identification of other components that are involved in Wnt/PCP signalling in 

vertebrates. These include two families of tyrosine kinase Wnt/PCP co-receptors, Ror 

and Protein tyrosine kinase 7 (Ptk7).  

1.4.4.1 Tyrosine-protein kinase receptor Ror (Ror1 and Ror2) 

Tyrosine-protein kinase receptor Ror1 and 2 (Ror1, Ror2) encode transmembrane 

proteins which serve as Wnt co-receptors. Binding between Wnt5a and Ror2 has been 

identified in in vitro systems, and the downstream effects examined (Mikels and 

Nusse, 2006; Oishi et al., 2003). Moreover Ror2 has thus been identified as an 
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important modulator of several Wnt5 induced non-canonical responses including 

activation of JNK, inhibition of Wnt/β-catenin signalling, and phosphorylation of Dvl 

proteins (Gao et al., 2011; Ho et al., 2012; Mikels and Nusse, 2006; Nishita et al., 

2010; Nomachi et al., 2008). During limb development Wnt5a and Ror2 interactions 

are important for establishing Wnt/PCP through phosphorylation of Vangl2 which 

appears to mediate its activity (Gao et al., 2011).  

1.4.4.2 Protein tyrosine kinase 7 (Ptk7) 

Protein tyrosine kinase 7 (Ptk7), also known as Colon carcinoma kinase-4 (CCK-4) 

due to its discovery in colon carcinoma cells, encodes an evolutionarily conserved 

transmembrane protein with tyrosine homology (Lu et al., 2004; Mossie et al., 1995). 

Ptk7 was first identified as a potential Wnt/PCP component after inner ear polarity 

defects were found in mutants (Lu et al., 2004). Additionally, like many components 

of Wnt/PCP signalling, mutations in Ptk7 have been implicated in many human neural 

tube defects (Wang et al., 2015). Further investigations in multiple vertebrates have 

now shown roles for Ptk7 in CE, gastrulation, neurulation and Wolffian duct 

elongation (Caddy et al., 2010; Lu et al., 2004; Paudyal et al., 2010; Williams et al., 

2014; Xu et al., 2016; Yen et al., 2009). Yet despite these investigations many 

questions regarding its signalling function remain unanswered.  

Xenopus has been the most utilised model in dissecting these interactions but species 

differences make it hard to determine if they are conserved in Mouse. Ptk7 consists of 

seven immunoglobulin(Ig) domains, a transmembrane domain and a catalytically 

inactive tyrosine kinase intracellular domain (Kroiher et al., 2001). Despite being 

catalytically inactive this intracellular domain has been shown to have interactions in 

Xenopus with β-catenin (perhaps antagonistically) and Dsh, which is thought to be the 

route through which Ptk7 elicits Wnt/PCP signalling (Puppo et al., 2011; Shnitsar and 

Borchers, 2008). Correspondingly the transmembrane and extracellular domain has 

been implicated in interacting with extracellular components of Wnt signalling, 

including Wnt ligands, Fzd receptors, and co-receptors in Xenopus models. These 

interactions include components of both Wnt/β-catenin; Wnt3a and LRP6 (Wnt/β-

catenin co-receptor) and Wnt/PCP; Wnt5a and Ror2 (Bin-Nun et al., 2014; Martinez 
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et al., 2015; Peradziryi et al., 2011; Podleschny et al., 2015; Puppo et al., 2011; 

Shnitsar and Borchers, 2008).  

Although, the role of Ptk7 in activating Wnt/PCP is firmly established, its role in 

Wnt/β-catenin signalling is debated. This is due to contradicting evidence supporting 

and refuting its role in this pathway, suggesting its role is highly context dependent 

(reviewed in Peradziryi, Tolwinski and Borchers, 2012). Recently experiments on 

Zebrafish even provided evidence that in some contexts Ptk7 can promote Wnt/PCP 

whilst inhibiting Wnt/β-catenin signalling, suggesting a role in modulating the 

pathway choice following Wnt activation (Hayes et al., 2013).  

Adding to the complexity of Ptk7, it has also been identified as a target of membrane 

type-1 matrix metalloproteinase (MT1-MMP/MMP14) (Golubkov and Strongin, 

2012; Golubkov et al., 2010, 2011). Ptk7 is cleaved by MMP14 in its extracellular Ig 

domain close to the transmembrane domain, producing a secreted extracellular 

fragment. A novel Ptk7 chuzhoi mutant, in which an additional cleavage site is present, 

exhibits neural tube defects typical of Wnt/PCP disruption, suggesting excessive 

extracellular proteolysis causes the defects seen in Ptk7 mutants (Golubkov et al., 

2011; Paudyal et al., 2010). Recent evidence has also implicated Vangl2 in the 

trafficking of MMP14 within the cell (Williams et al., 2012).  

In summary Ptk7 has been identified as an important regulator of Wnt/PCP pathway. 

As well as interacting with Wnt/PCP specific components Ptk7 has also been identified 

to interact with Wnt/β-catenin specific components though its role in this pathway 

remain controversial. Furthermore, in Zebrafish systems Ptk7 has been shown to 

activate Wnt/PCP whilst attenuating Wnt/β-catenin signalling, suggesting a role in 

switching between Wnt pathways. Overall Ptk7s actions are somewhat context-

dependent and many unknowns remain in terms of its function, specifically in Mouse 

models were investigations have been limited. 

The idea that a co-receptor for Wnt signalling may be involved in choosing between 

Wnt/PCP and Wnt/β-catenin pathways is especially interesting in the context of NMP 

regulation, where the balance between maintenance and differentiation depends on 

unknown factors regulating Wnt/β-catenin signalling. 
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1.4.5 Wnt/PCP & Fate choice 

Most investigations into the role of Wnt/PCP have focused on how Wnt/PCP 

modulates cytoskeleton to influence cell movement or morphology rather than cell 

fates. However, there is some evidence that components of Wnt/PCP are important for 

cell fate decision. For example, in Drosophila some components are essential for the 

asymmetric cell division which underlies the development of the sensory organ 

precursors (Gho and Schweisguth, 1998). Examples of this in vertebrate are limited 

but are of increasing interest. To establish the potential role of the core Wnt/PCP 

pathway in NMP behaviour below I will examine the literature for each component in 

terms of its described mRNA and protein expression during axial elongation, mutant 

phenotypes and functions potentially relevant for NMP behaviour. Findings are 

summarised in (Table. 1.1); note that for many of the components gene expression and 

mutant phenotype data was collated from research focused on neuroectodermal 

development in which caudal structures were not fully described. 

1.4.5.1 Wnt ligands - Wnt5a, Wnt5b, Wnt11 

The specific Wnt signalling pathway that is activated, either non-canonical (including 

Wnt/PCP signalling) or canonical (β-catenin dependent), is partially dependent on 

which Wnt ligand binds to surface receptors. As previously discussed, Wnt3a is the 

key Wnt ligand involved in Wnt/β-catenin signalling, Wnt5a and Wnt11 however are 

thought to be primarily responsible for activating Wnt/PCP signalling, across 

vertebrate species (Andre et al., 2015; Gros et al., 2010; Heisenberg et al., 2000; Tada 

and Smith, 2000)(reviewed in Logan and Nusse, 2004; Kikuchi et al., 2012). As 

mentioned previously, interactions between Wnt5a and co-receptor Ror2 resulting in 

downstream activation of Wnt/PCP have been reported in vitro and in vivo models. In 

the limb bud Ror2 is imperative for sensing Wnt5a dosages across the tissue, 

suggesting a dose-dependent activation of Wnt/PCP signalling is important (Gao et al., 

2011).  

Wnt5a is expressed in the primitive streak and in the tail bud during axial elongation. 

Wnt5a appears as a gradient in the primitive streak, which is localised to caudal regions 

when compared to Wnt3a which extends more anteriorly. In the tailbud Wnt5a is 

broadly expressed and is present in presomitic mesoderm and endoderm  
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Table 1.1 Summary of Wnt/PCP component expression during axial elongation and mutant phenotypes. 

Summary of gene 
expression data 
based on 
published in situ 

hybridisation 
reports, and axial 

truncation 
phenotypes 

based mutant 
reports in the 
literature. ’xx’ 
(dark green) - 
highly expressed 
in region, ‘x’ (light 
green) - 
expressed in the 
region, ‘-‘ (red) - 
not expressed in 
the region, ‘n/d’ - 
no data , ‘n/s’ no 
sections to 
confirm CLE 
expression. Axial 

truncations 
graded ‘xx’ (dark 
green) - severe 
when no tail or 
extremely short 
tail was exhibited, 

‘x’ (light green) - curly or kinked tail, ‘-‘ (red) no axial truncation phenotype, and ‘n/d’ no data. Additionally, reported cellular localisation of these proteins is indicated. 
PS - primitive streak, NSB- Node streak border, CLE - caudal lateral epiblast, TB - tail bud
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(Takada et al., 1994a). Wnt11 is expressed in a punctate pattern from E6.75 at the 

posterior of the embryo. Expression then splits into two distinct expression domains, 

the node and the most caudal primitive streak, including extraembryonic mesoderm. 

At E8 expression in the node disappears but expression in the caudal end of the embryo 

persists, strongest in rostral somites and the tail tip, until at least E11.5 (Andre et al., 

2015; Kispert et al., 1996). 

Wnt5a-/- mutants exhibit caudal truncation, with loss of tail and significant shortening 

of the anterior-posterior (A-P) axis (Yamaguchi et al., 1999b). Despite this caudal 

defect, expression of many genes implicated in axial elongation, including, Fgf8, 

T(Bra), Evx1 are maintained in these mutants. Defects in cell proliferation have been 

identified, suggesting a role for Wnt/PCP in this process (Yamaguchi et al., 1999b). 

Axial defects in Wnt11-/- mutants have not been described in detail, however these 

mutants die before birth due to severe defects in kidney development (Majumdar et 

al., 2003). Wnt11-/- and Wnt5a-/- double mutants show an exacerbation of axial 

shortening suggesting redundancy between the two (Andre et al., 2015). These mutants 

have disruptions in CE which results in abnormal notochord development and 

patterning of the axis. They also exhibit defects in EMT with ectopic expression of 

adhesion markers and accumulation of NMPs in the tail bud. Additionally, 

upregulation of Sox2 and down regulation of T(Bra) protein is present in the tail bud 

of these mutants as well as disruption in somite formation suggesting that Wnt5a and 

Wnt11 may have a role in NMP behaviour. In these mutants expression of Vangl1, in 

the notochord is decreased, suggesting interactions between Wnt11/Wnt5a with 

Wnt/PCP signalling (Andre et al., 2015). Overall it is unclear if the disruption to NMPs 

and their derivatives are a direct consequence of loss of Wnt/PCP signalling in Wnt5-

/-;Wnt11-/- mutants or an indirect consequence of abnormal notochord formation due 

to defects in convergence and extension. These mutants also exhibit shortening of the 

Wnt3a expression domain in the tail bud, raising the possibility that Wnt5a/Wnt11 may 

interact with Wnt/β-catenin pathway activation through regulation of Wnt3a. This 

potential interaction has been reported in several contexts before including Mouse limb 

development, in which Wnt5a promotes β-catenin degradation (Topol et al., 2003). 

However this regulation is not well understood, and in other contexts and species 
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Wnt5a has also been shown to have agonistic effects on this pathway (reviewed in 

Logan and Nusse, 2004; Kikuchi et al., 2012).  

In summary, Wnt5a and Wnt11 are known regulators of the Wnt/PCP pathway and are 

expressed in the caudal regions of the embryo, in which NMPs reside during axial 

elongation. Wnt5a-/- mutants exhibit a more severe axial truncation than Wnt11-/- 

mutants, however axial disruption is enhanced in double knock outs, providing further 

evidence that they may have role in regulating NMP behaviour. These Wnt5a-/-; 

Wnt11-/- mutants also exhibit increased levels of Sox2, decreased levels of T(Bra) 

protein and reduced mesoderm formation, suggesting again that NMPs are not properly 

regulated in these mutants. However, determining whether these observations are due 

to direct disruption of NMPs remains elusive due to severe disruptions in CE which 

cause major disruption to tissues adjacent to NMPs, including adjacent notochord. 

Vertebrate models have also shown Wnt5a-Ror complexes are important for dose-

dependent activation of Wnt/PCP across tissues, which is potentially interesting in 

terms of NMPs which also require Wnt/β-catenin signalling in a dose-dependent 

manner. Additionally, the reported inhibition of Wnt3a and downstream β-catenin 

signalling by Wnt5a also raises the possibility that this could also be happening in 

NMP areas, and could be a potential mechanism by which Wnt/β-catenin levels could 

be regulated.  

1.4.5.2 Fzd 1, 3, 6, 7 

In total, there are 10 different Fzd family members in mammals, with some evidence 

supporting the involvement of Fzd1,3,6 and 7 in Wnt/PCP signalling. Deciphering 

their role in Wnt/PCP is complicated due to functional redundancy between different 

family members. The details of Wnt-Fzd specificity are still relatively unknown, with 

many interactions between family members and co-receptors yet to be discovered. 

In general Mouse mutants for Fzd family members are less severe than for other core 

Wnt/PCP components. Fzd1-/- show no apparent phenotype, whilst Fzd2-/- mutants 

are associated with cleft palate defects (Yu et al., 2010, 2012). Only a small proportion 

of Fzd7-/- mutant display cardiac abnormalities, with the majority exhibiting no 

phenotype except for a kinked tail. More severe phenotypes are produced with double 

knockouts, with Fzd2-/-;Fzd7-/- exhibiting severe defects in CE and open neural tube, 
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phenotypes associated with Wnt/PCP mutants (Wang et al., 2016; Yu et al., 2012). 

Genetic interactions were observed when Fzd1, Fzd2 and Fzd7 were crossed with non-

functional Vangl2 (looptail) mutant, as double mutants had enhanced frequency of 

neural tube defects; however, it is still not clear if this interaction is specifically 

through Wnt/PCP signalling. Additionally Fzd7-/- kinked shorted tail phenotype is 

enhanced in Fzd7-/-;Wnt5a-/+ double mutants which have a significantly higher tail 

truncation (Yu et al., 2012).  

Unlike Fzd1,2 and 7 whose roles in Wnt/PCP are still relatively unknown, Fzd3 and 

Fzd6 are more established as Wnt/PCP signalling activating receptors. Fzd6 was first 

identified to have a role in Wnt/PCP when hair follicles in Fzd6-/- mutant were found 

to be orientated aberrantly in random orientations (Guo et al., 2004; Wang et al., 2006). 

Fzd3 also appears to signal through Wnt/PCP, and is important in axon growth and 

guidance in the forebrain (Hua et al., 2014). Fzd3-/-;Fzd6-/- double mutants show 

disrupted inner ear sensory hair cell orientation and neural tube closure defects akin to 

those of Vangl2-/- (looptail mutants), and additionally shortening of the axis with an 

apparent curly tail (Wang et al., 2006).  

In the literature, the expression for Fzd1,3,6,7 has been reported between E8.5 and 

E10.5 on wholemount embryos (Borello et al., 1999). Fzd1 expression is found in 

many mesoderm structures, and is initially expressed strongly in the intermediate 

mesoderm and rostral edge of newly formed somites, with some weak expression in 

the presomitic mesoderm. From the reported in situ hybridisations Fzd1 in the tail bud 

is unclear, but does look to be expressed to a weaker extent than that described 

previously for mesodermal structures. During somitogenesis Fzd3 is expressed 

strongly in the dorsal neural tube, but is additionally present in somites. Its expression 

is particularly strong in the neural folds of E8.5 embryos, but is also present in more 

posterior regions, including the tail bud. This expression in the tail bud is reported up 

to E10.5, with expression in the CNH never verified. At E8.5 Fzd6 is expressed along 

the entire length of the notochord and underlying endoderm. Additionally, it is present 

at the rostro-lateral edge of newly formed somites from E9.5 (Borello et al., 1999). 

From the reported data Fzd6 appears to be expressed in the tail bud however it is not 

clear exactly where it is localised due to lack of transverse sections. Fzd7 is expressed 
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along the ventro-lateral borders of newly formed somites (akin to Fzd1), as well as 

expression in distinct areas of presomitic mesoderm at low levels. It is also expressed 

in the ventromedial neural tube (Borello et al., 1999). In the reported expression 

patterns Fzd7 does not appear to be expressed in the tailbud for any stage. 

In summary Fzd1, 3, 6, 7 are expressed in overlapping but distinct areas in embryonic 

development. Many appear to be expressed in mesoderm and mesodermal derivatives, 

however they are additionally expressed in neural tissues. Overall the extent and tissue 

specificity of expression in the tail bud for each family member is unclear due to 

minimal descriptive data in these areas. However, it does appear that of all Wnt/PCP 

Fzd family members, Fzd3 and Fzd6, mutants of which have the more severe 

truncations, are more highly expressed in caudal regions from E8.5 to E10.5. 

Reports of Fzd1,3,6,7 protein expression are limited. Fzd3 and Fzd6 has been 

identified in the inner ear, where these components are known to control the orientation 

of hair cells through Wnt/PCP. In this tissue Fzd3 and Fzd6 protein is asymmetrically 

distributed within cells. This profile in the inner ear is lost in non-functional Vangl2-

/- (looptail) mutants in which normal levels of Fzd3 and Fzd6 protein are present but 

not asymmetrically localised (Wang et al., 2006). Asymmetric localisation of Fzd6 has 

also been reported in cells of the epidermis; similarly this asymmetry is lost in non-

functional Vangl2-/- (looptail) or Celsr1-/- (crsh) mutants (Devenport and Fuchs, 

2008).  

In summary, of all the Wnt/PCP Fzd family members, Fzd3 and Fzd6 represent the 

best candidates for potential regulation of NMP behaviour. Despite limitations in 

published in situ data they appear to be expressed in the tail bud during axial 

elongation, meaning they are in the right place at the right time to have an influence 

on NMP behaviour. Additionally, their mutants exhibit severe axial truncations, which 

could be due to abnormal regulation of NMP maintenance or differentiation, though it 

is not clear from the described data if there is a biased loss of one tissue type, or if all 

are affected equally.  



   

 34 

1.4.5.3 Dvl1,2,3 

There are three mammalian Dvl family members which, as previously mentioned, have 

functions in both Wnt/β-catenin and Wnt/PCP pathways through interactions with Fzd 

receptors (Mlodzik, 2016). Dvl proteins share three highly conserved domains; N-

terminal DIX domain, which activates Wnt/β-catenin targets including Axin; PDZ 

domain, which mediates interactions with Fzd receptors; and C-terminal DEP domain, 

which has been linked to Wnt/PCP function of Dvl (Axelrod et al., 1998; Wong et al., 

2003) (reviewed in Wallingford and Habas, 2005; Mlodzik, 2016). Cytoplasmic 

localisation of Dvl is important for Wnt/β-catenin signalling. In contrast, Wnt/PCP 

signalling requires membrane translocation of Dvl protein (Wu, Klein and Mlodzik, 

2004; Wallingford and Habas, 2005). Limiting levels of Dvl has been proposed as an 

explanation to why activation of one pathway may downregulate another (Wallingford 

and Habas, 2005). Additional proteins may also be involved in regulating Dvl 

downstream activation of pathways. These include Naked Cuticle (Nkd) family 

members which have been shown to interact with the PDZ domain of Dvl and appear 

to antagonise Wnt/β-catenin signalling. However more investigation in to its function 

in Mouse is needed to understand its role in regulating of signalling pathway balance 

(Rousset et al., 2001; Wharton et al., 2001; Yan et al., 2001). As previously mentioned 

Wnt5a-Ror2 interactions are also known to phosphorylate Dvl proteins, however the 

function of this phosphorylation is not completely understood (Ho et al., 2012). 

Expression data for Dvl family members is lacking in the literature, with only few 

embryo stages described. In one report, Dvl3 is described from E7.5 to E9. Dvl3 is 

initially expressed highly in the neural fold and neural plate, as well as the primitive 

streak. Later at E8.5 highest levels are found in the somites and developing CNS, 

before being expressed in almost all other tissues of the embryo at low levels at E9 

(Bois et al., 1996). Similar descriptions are reported for Dvl1 and Dvl2, with high 

levels in the developing CNS and somites, and all other tissue expressing low levels at 

E10.5 (Tissir and Goffinet, 2006). Thus, all Dvl family members are expressed to some 

extent in all tissues, probably a reflection of their role in both Wnt pathways. 

Dvl2-/- mutants have a low survival rate and display many cardiac abnormalities, 

neural tube defects and skeletal malformation. Of those that survive, approximately a 
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quarter have a kinked tail phenotype (Hamblet, 2002). Dvl3-/- mutants also exhibit 

cardiac defects, however no skeletal or truncation defects are reported (Etheridge et 

al., 2008). Dvl1-/-  mutants are associated with abnormalities in social interaction, and 

display wildtype tails (Lijam et al., 1997). Dvl1-/-;Dvl2-/- mutants have more severe 

skeletal malformations which are not limited to caudal tissues, and they frequently 

display tightly curled tails (Hamblet, 2002). Similar phenotypes are described for 

Dvl2+/-;Dvl3-/- mutants which appear to have a shortened axis with absence or 

truncated kinked tails (Etheridge et al., 2008). 

In mammalian systems reports of the localisation of Dvl proteins in Wnt/PCP contexts 

are limited to the inner ear. In the inner ear Dvl1, 2 and 3 proteins are all found to be 

asymmetrically localised (Etheridge et al., 2008; Lee et al., 2012; Wang et al., 2005). 

This asymmetry is not as prominent versus other asymmetrically localised proteins. In 

Vangl2-/- (looptail) mutants this asymmetric juxtamembrane location of Dvl2 is lost 

(Wang et al., 2005).  

In summary, Dvl2 represents the best candidate to have function in regulating 

Wnt/PCP in NMPs. Loss of this protein results in kinked tail phenotype, suggesting 

mis-regulation of NMP populations. In addition, Dvl2, as with all Dvl family members, 

is expressed throughout the developing embryo including the tailbud region, providing 

support for the idea that these may play a role in NMP behaviour. Its role in both 

signalling pathways also offers a potential mechanism by which Wnt signalling may 

be modulated during axial elongation. 

1.4.5.4 Vangl and Pk 

There are two mammalian Vangl family members, Vangl1 and Vangl2. As previously 

mentioned these family members form a complex with Pk which is important in 

establishing Wnt/PCP. There are four Prickle homologs in the Mouse genome, Pk1 

and Pk2 are the two most closely related to that of Drosophila, with Pk3 and Pk4 being 

more distinct with unknown functions in Wnt/PCP signalling. 

Vangl2 mutant looptail (Lp) was one of the first mutants used to demonstrate the 

functional significance of Wnt/PCP in mammalian systems (Murdoch et al., 2001). Lp 

mutants have a missense mutation in cytoplasmic domain of Vangl2 protein which 
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results in a dominant mutant phenotype. Since its discovery, additional Vangl2 mutants 

have been generated, all of which exhibit disruptions in hair cell orientations, severe 

neural tube defects, as well as iconic looped tails (Yin et al., 2012). Knockouts of 

Vangl1 have neural tube closure defects but do not appear to have truncations of the 

body axis or looped tail phenotype (Antic et al., 2010; Torban et al., 2008). Human 

mutations of VANGL1 and VANGL2 are both associated with several neural tube 

defects including spina bifida (Kibar et al., 2010; Lei et al., 2010). In Mouse, embryos 

with mutations in both Vangl1 and Vangl2 show a greater proportion of Wnt/PCP 

defects, showing redundancy between the two family members (Torban et al., 2008). 

These mutants also exhibit an accumulation of cells at the primitive streak which is 

akin to those exhibited by Wnt5a-/-;Wnt11-/- mutants (Andre et al., 2015). Double 

mutations of Vangl2 and Wnt5a, Celsr1 (crsh), Dvl family members, Ptk7, Ror2 or 

Scribble, a key regulator of apicobasal polarity, exhibit enhanced severity in Wnt/PCP 

disruption phenotypes, highlighting the importance of Vangl2 in regulating Wnt/PCP 

(Etheridge et al., 2008; Gao et al., 2011; Lu et al., 2004; Murdoch et al., 2014; Qian et 

al., 2007). Pk1 and Pk2 are essential for apicobasal polarity during early development 

resulting in embryonic lethality in full knock outs prior to gastrulation (Tao et al., 

2012). Alternative mutants with partial disruption of the Pk1 protein have been 

generated, and show skeletal abnormalities including a truncated tail (Liu et al., 2014; 

Yang et al., 2013). The expression of other genes, including Fgf8, Vangl2 and Wnt5a 

are also disrupted in the limb bud of these mutants. Axial defects in Pk2 mutants have 

not been reported.  

Vangl1 and Vangl2 expression during embryo development has not been fully 

described in the literature although some publications do exist examining its 

expression in relation to neural tube defects. Vangl1 is expressed at E8 in the floor 

plate and notochord throughout the anterior-posterior body axis (Pryor et al., 2014; 

Torban et al., 2008). Additionally, Vangl1 appears to be present in the caudal regions 

of the embryo including the primitive streak, although the exact location of its 

expression was not examined in the tail bud. Throughout the timepoints examined E8-

E13.5 Vangl1 expression remains high in the notochord. At E9.5 it appears that Vangl1 

may be additionally expressed in the tail bud. Vangl2 expression is reported from E7 

to E10. Its expression is closely associated with neuroectodermal tissues throughout 
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this time but also appears to be expressed in other non-neural tissues, including caudal 

mesoderm and hindgut. Additionally Vangl2 appears to be expressed in the streak and 

in the tail bud, though the exact localisation remains elusive due to lack of sections for 

these regions (Kibar et al., 2001; Pryor et al., 2014). Pk1 and Pk2 expression patterns 

have been described between E5.5 to E9 (Bekman and Henrique, 2002; Crompton et 

al., 2007). At E5.5 Pk1 is restricted to the posterior epiblast, whilst Pk2 expression in 

limited to the node. At gastrulation in situ hybridisation on sections reveal that Pk1 

expression is highest in the CLE and streak, which continues to headfold stage. Pk1 

expression is additionally found in the node, paraxial mesoderm and the neural folds. 

At E9.5 Pk1 expression is high in the tail bud however lack of sections make it 

impossible to determine any tissue specific localisation of this expression pattern 

(Bekman and Henrique, 2002; Crompton et al., 2007). 

Due to its key role in Wnt/PCP signalling, the localisation of Vangl proteins has been 

described in an array of Mouse tissues, including neuroectoderm, node, notochord, 

oviduct, inner ear, limb bud (Andre et al., 2015; Antic et al., 2010; Gao et al., 2011; 

Montcouquiol, 2006; Torban et al., 2007, 2008; vandenBerg and Sassoon, 2009). In 

these tissues, Vangl family members are typically reported as asymmetrically 

distributed within cells, a hallmark of Wnt/PCP activity, and co-localised with Pk 

family members. This asymmetry of Vangl2 is lost in Wnt/PCP mutants which exhibit 

diffuse expression of Vangl2 on all membranes (Gao et al., 2011; Qian et al., 2007). 

This diffuse Vangl localisation is also reported in wildtype limb buds in locations 

where Wnt/PCP is inactive (Gao et al., 2011). Reports of Pk protein are far fewer, but 

include asymmetric localisation in cells of the ventral node, inner ear, and limb bud 

(Antic et al., 2010; Deans et al., 2007; Gao et al., 2011). In Vangl2 mutants Pk 

localisation is disrupted (Yin et al., 2012). 

In summary both Vangl1 and Vangl2 are expressed predominantly in neurectoderm 

and notochord, but also in more caudal structures including the tail bud, suggesting 

they could be involved in regulation of NMP behaviour. In line with this, Pk1 which 

forms a complex with Vangl is well described in the literature and is highly expressed 

in NMPs of the CLE, and the tail bud during axial elongation. Mutations of these 

components all cause truncation phenotypes characteristic of mis-regulated NMP 
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behaviour. Together these findings provide strong evidence for the involvement of 

Vangl and Pk complexes in regulating NMP behaviour during axial elongation. 

1.4.5.5 Celsr 

Celsr1, Celsr2 and Celsr3 are the mammalian homologs to the Drosophila Fmi gene. 

They have redundancy between them, with upregulation of other family members 

when one is knocked out (Cortijo et al., 2012).  

In situ hybridisations for Celsr family members have been described in detail from 

E5.5 to E8, including embryo sections showing expression in the CLE, where NMPs 

reside (Crompton et al., 2007; Formstone and Little, 2001; Hadjantonakis et al., 1998, 

1997; Shima et al., 2002). All Celsr family members are first detected throughout the 

E5.5 epiblast. At E7.5 Celsr1 is highest in the streak and the node but is also found 

elsewhere. Celsr2 and Celsr3 are also expressed in the primitive streak at E7.5 but 

higher levels are found in the prospective anterior neuroectoderm. At headfold stage 

(E8) expression of all family members is widespread but highest in the neural folds. 

Additionally, the streak and the adjacent CLE, were NMPs reside, are positive for all 

members. Later stages are described in less detail, making it unclear to what extent 

CNH regions express Celsr family members (Shima et al., 2002). From E9.5, broad 

but distinct expression in neuroepithelium is present for each family member. 

Additionally, these members appear to be expressed in the tailbud, highest and more 

broadly for Celsr1 than the other family members. 

In the literature, there are very few reports of the protein distribution of Celsr family 

proteins in mammalian species. In Drosophila wing, Celsr is found at proximal and 

distal cell edges. In Fzd mutants its localisation is more fragmented at the boundary 

(Usui et al., 1999). Celsr2 protein has been examined in E18 Mouse whisker and 

neurons, and Celsr1 in oviduct epithelium (Shima et al., 2002). In these tissues Celsr 

proteins are localised to opposing membranes within in the same cell in accordance to 

the localisation of Celsr described in Drosophila (Shi et al., 2014).  

Two mutants for Celsr1 have been identified from mutagenesis screens, namely spin 

cycle (scy) and crsh (Curtin et al., 2003). Like other members of the core Wnt/PCP 

pathway these mutant exhibit severe neural tube defects. Although their axial 
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phenotype is not thoroughly described in the literature their AP axis appears severely 

truncated (Curtin et al., 2003). Additionally, these mutants exhibit mis-orientation of 

hair cells from the earliest stage that hair bundle orientation is detectable. Mutants of 

Celsr2 and Celsr3 have been generated, but their phenotype has only been described 

in terms of forebrain development, thus it remains unclear if they also exhibit axial 

defects (Tissir et al., 2010; Zhou et al., 2008). Mutants of Celsr2 and Celsr3 have also 

shown Celsr family members to be critical for Wnt/PCP dependent differentiation of 

apicobasal polarised pancreas progenitors (Cortijo et al., 2012). 

In summary, all members of the Celsr family are expressed in the CLE regions where 

the NMPs reside during embryonic development, and this expression continues to later 

in axial elongation where they are expressed in the tail bud. Mutants of Celsr1 also 

have severe truncations in caudal structures akin to those described for Vangl2 

mutants. Altogether this data suggest that Celsr family members could be involved in 

regulation of NMPs during axis elongation. 

1.4.5.6 Ror 

The expression profiles for Ror family members has been described from E7.5 to E8.5 

(Ror1) and E7.5 to E11.5 (Ror2) (Matsuda et al., 2001; Verhey van Wijk et al., 2009). 

Ror1 expression is restricted to anterior neuroectodermal tissue from E7.5 to E8.5. 

Conversely, Ror2 is expressed at E7.5 in the primitive streak. At E8.5 Ror2 is 

expressed highly in the neuroepithelium but is also expressed to high levels in neural 

and non-neural tissues in more posterior regions. At E9.5 Ror2 is expressed highly at 

the caudal end of the embryo including in presomitic mesoderm (Takeuchi et al., 

2000). This high expression in the tailbud continues to E11.5 (Verhey van Wijk et al., 

2009). Ror2 protein has been described in the literature in endoderm development, 

during which it is not asymmetrically localised (Yamada et al., 2010).  

Ror2-/- mutants exhibit dwarfism, with short limbs and truncated tail (Nomi et al., 

2001; Takeuchi et al., 2000). In Ror2-/- mutants the expression domain but not the 

intensity levels of T(Bra) were reduced, reflecting smaller presomitic mesoderm found 

in these mutants which also have smaller somites. (DeChiara et al., 2000; Schwabe et 

al., 2004). Ror1 does not exhibit a truncated body axis phenotype (Takeuchi et al., 

2000).  
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In summary, due to its restricted expression in anterior tissues and its lack of truncation 

phenotype Ror1 is unlikely to have a role in influencing NMP behaviour during axial 

elongation. Ror2 on the other hand represents a strong candidate, being expressed in 

caudal regions of the embryo from E7.5 to E11.5 and with knock out mice exhibiting 

tail shortening, phenotypic of NMP mis-regulation. Additionally, the smaller 

presomitic mesoderm and somites in these mutants may reflect its importance in 

specification of mesodermal fate.  

1.4.5.7 Ptk7 

Ptk7 expression during Mouse embryo development has been described in the 

literature but not in much detail especially in NMP regions. Ptk7 is first described in 

head fold stage embryos, in which levels of Ptk7 are highest in caudal regions of the 

embryo, and lower levels in the neuroepithelium and somites. This pattern of high level 

of Ptk7 in caudal embryo regions continues later into development to E9.5 (Paudyal et 

al., 2010).  

Mutants for Ptk7, exhibit truncation and kinking of the body axis and severe neural 

tube defects (Paudyal et al., 2010; Yen et al., 2009). Ptk7-/- mutants are 

morphologically normal prior to early somite stages, however by 5-somite stage, the 

axis of these embryos are shorter and wider than even Ptk7-/+ littermates (Lu et al., 

2004; Yen et al., 2009). The nodes of these mutants are also significantly wider, the 

presomitic mesoderm thinner and the somites shorter (A-P), a product of CE defects 

identified in these regions (Yen et al., 2009). Conversely T(Bra) conditional Ptk7 

knockouts do not exhibit the same severity of CE associated neural tube defects but 

still exhibit coiled tails (Xu et al., 2016). 

In the literature Ptk7 protein has always been reported to be localised to the cell 

membrane (Lu et al., 2004; Paudyal et al., 2010). Unlike core Wnt/PCP components 

Ptk7 protein is not associated with asymmetrical localisation, and localisation remains 

unchanged when Vangl2 (looptail) or Celsr1 are mutated (Lu et al., 2004; Paudyal et 

al., 2010). Additionally no change in Vangl2 or Celsr1 was identified in Ptk7 mutants 

(Paudyal et al., 2010).  



   

 41 

In summary, due to its high expression in caudal regions during embryonic 

development and the axial truncations exhibited by Ptk7 mutants, Ptk7 represents a 

potential candidate for NMP regulation.  

Altogether the literature has provided some useful information and insight to which 

Wnt/PCP components represent the best candidates to investigate in terms of NMP 

behaviour regulation. Overall many of the components are expressed in the node/streak 

and later tailbud regions during axial elongation. All Celsr family members and Pk1 

were confirmed to be specifically expressed in the CLE, but unfortunately the literature 

could not provide this specificity for the other Wnt/PCP components, or for any gene 

expression specifically in the CNH. Furthermore, due to the lack of gene expression 

in NMP regions, Fzd7 and Ror1 are unlikely to have roles in NMP behaviour. However 

at least one family member of each gene was found to be expressed in node/streak or 

tailbud supporting the idea that this signalling pathway may be active in NMP regions 

during axial elongation.  

Overall axial defects were most severe for Celsr2, Fzd3, Fzd6, Ptk7, Vangl1, Vangl2 

and Wnt5a mutants, which all exhibited truncation of the axis. This provides strong 

evidence that the Wnt/PCP pathway is important for correct axial elongation, further 

supporting the idea that this pathway regulates NMP behaviour. In the most severe 

cases neural tube closure was the most predominant defect, however disruption to a 

variety of mesodermal structures (presomitic mesoderm, somites and skeletal defects) 

were additionally reported in Wnt5a, Ptk7 and Ror2 mutants. Together this suggests 

that disruption of Wnt/PCP may bias NMP differentiation.  

Moreover, the dual role of Ror2, Ptk7 and Dvl in both Wnt/PCP and Wnt/β-catenin 

signalling pathways provides a potential mechanism by which Wnt/β-catenin 

signalling could be modulated in NMPs . 

1.4.6 New avenues of investigation 

To date investigation into the role of Wnt/PCP in Mouse development has been limited 

to the use of non-functional or full mutant knock outs. These mutants show severe 

disruptions in the axis from gastrulation onwards and this precludes the interpretation 

of roles for Wnt/PCP in developmental processes that follow this initial disruption. 
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Furthermore, this is particularly evident when considering the role of Wnt/PCP in 

NMP behaviour. Defects in CE coincide with the start of axial elongation, making it 

impossible to determine if axial defects are due to impaired CE alone or to true 

alterations in NMP behaviour. In other animal models including Zebrafish or Xenopus, 

tools are available to conditionally disrupt Wnt/PCP in a spatial and time dependent 

manner. This has ultimately resulted in a greater understanding of the role of Wnt/PCP 

in tissues beyond these early developmental disruptions (reviewed in Gray, Roszko 

and Solnica-Krezel, 2011).  

In Mouse systems tools to conditionally disrupt Wnt/PCP are limited but available. 

One option is electroporation which permits the introduction of DNA in a time and 

spatial dependent manner. Despite the advantages, it has not been fully exploited and 

only a few investigations reporting its use. One report uses electroporation to disrupt 

Wnt/PCP via introduction of non-functional Vangl2 constructs in ciliated cells of 

Mouse brain ventricles (Guirao et al., 2010). However recent work on spinal cord 

regeneration showed that simply overexpressing wildtype Pk1 or Vangl2 constructs is 

enough to perturb Wnt/PCP signalling, and alter cell division planes (Albors et al., 

2015). Experiments introducing exogenous Vangl2 in clusters of Mouse inner ear cells 

via retrovirus, showed that disruption in cell orientation is not only limited to cells 

with Wnt/PCP disruption but also but also in their neighbours (Sienknecht et al., 2011). 

This work aligns with current understanding of Wnt/PCP signalling, where 

under/overexpression of single components is considered enough to overwhelm the 

delicately balanced system and disrupt its function. Despite the evidence supporting 

the use of overexpressing wildtype Wnt/PCP components to disrupt its signalling and 

the advantages of electroporation, to date this system has not been utilised further. 

Another alternative, but underutilised system to investigate Wnt/PCP is examination 

of cell polarity based on the positioning of organelles. As mentioned previously, cell 

polarity is characterised by the asymmetric organisation of components within a cell, 

which includes the aforementioned Wnt/PCP component proteins (Vangl, Pk etc.), but 

additionally includes organelles within the cell (Bornens, 2008). In the literature both 

Golgi, and more recently Centrosomes have been used as indicators of individual cell 

polarity (Boehm et al., 2010; Carvajal-Gonzalez et al., 2016). Studies analysing cell 
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polarity and division dynamics were first conducted on simple epithelia with either 

planar (flat) geometry or simple axes to work with (Blankenship et al., 2006; Concha 

and Adams, 1998). However following gastrulation embryo development in vertebrate 

becomes complicated quickly with dynamic cell movements in all three dimensions 

which cannot be analysed using simple 2D systems. Advances in technology have been 

made to try and overcome this problem and quantitatively analyse 3D polarity 

information. One of the first was examination of the embryonic Mouse heart, a highly 

complex structure with 3D looping of tissue (Le Garrec et al., 2013; Pop et al., 2013). 

This study pioneered simple analysis of polarity based on nuclear elongation and 

organelle positioning within the cell. This analysis would be particularly interesting in 

NMP regions where the presence of Wnt/PCP/tissue polarity has not yet been 

investigated. Of increasing interest is the CLE region, a curved epithelia of T(Bra) and 

Sox2 co-expressing cells whose fate appear to be determined by their location and not 

by the expression of any specific gene.  

1.5 Scope of the Thesis  

Taken together the in-depth review of Wnt/PCP mutant phenotypes and the expression 

profile of Wnt/PCP components in NMP regions outlined above, hold support for the 

idea that Wnt/PCP signalling may be important for NMP regulation during axial 

elongation. However, many unknowns remain. Despite the reported expression of 

mRNA the presence of Wnt/PCP proteins have yet to be investigated specifically in 

NMP regions. Additionally, a refined investigation is essential to affirm a role for 

Wnt/PCP signalling in the regulation of NMPs, and furthermore specifically what this 

role is in terms of maintenance and/or differentiation of these bipotent progenitors.  

In this thesis I aim to provide answers to some of these unknowns. In Chapter 3 I 

investigate expression patterns of Wnt/PCP component mRNA and protein 

specifically in NMP regions. Complementarily to this, the polarity of cells within NMP 

regions throughout axial elongation are investigated by examining the positioning of 

individual cell organelles. In Chapter 4 I investigate the ability to derive NMPs from 

an alternative in vitro stem cell population, subsequently characterise this population, 

and examine the presence of Wnt/PCP proteins in these cultures, as well as those 

previously described. Finally, in Chapter 5, I describe the generation of tools to disrupt 
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Wnt/PCP signalling in vivo and in vitro, and their implementation to investigate and 

unlock the true role of Wnt/PCP in NMPs maintenance and differentiation. 
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Chapter 2: Materials and Methods 

2.1 Materials 

2.1.1 General Reagents 

Table 2.1 Details of General Reagents 

Product Vendor Catalogue Number 

0.25% Trypsin EDTA, Phenol red  Gibco  25200-056 

10 mM dNTP Mix  Invitrogen  18427-013 

100mm x 20mm TC-Treated Culture 

Dish  
Corning 430167 

1Kb and 100bp Ladder NEB N3232L, N3231L 

35 x 10mm Tissue Culture Dish Falcon 35-3001 

3 M Sodium Acetate 
Thermofisher 

Scientific 
R1181 

5’ T5 exonuclease NEB M0363 

50 mM 2-Betamercaptoethanol Gibco  31350-010 

Accutase ® Solution Sigma A6964 

Agarose, ultra pure Invitrogen 16500-500 

Amaxa P3 Primary Cell 4-D 

nucleofector X Kit L  
Lonza V4XP-3012 

Ammonium Chloride Acros Organics 423285000 

Ampicillin Calbiochem 171254 

Anti-digoxigenin (DIG)-AP Roche 11093274910 

Aquatex Merck Millipore 108562 

B27 Gibco 17504-044 

Bacto™ Agar BD 214010 

Benzyl Alcohol  Sigma Aldrich 8421 
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Benzyl Benzoate  Sigma Aldrich B6630 

Bovine Fibronectin Sigma Aldrich F1141 

Bovine Serum Albumin Sigma A8412 

CellCarrier-96 Black, Optically Clear 

Bottom, Tissue Culture Treated, 

Sterile, 96-Well with Lid 

PerkinElmer 6005550 

CHIR 99021 (CHIR) Axon 1386 

Chloroform Fisher Scientific 67-66-3 

Costar ® 10 ml Stripette ®  

Corning 

Incorporated 4101 

Costar ® 12 well clear TC-treated 

multiple well plates, individually 

wrapped, sterile 

Corning 3513 

Costar ® 24 well clear TC-treated 

multiple well plates, individually 

wrapped, sterile 

Corning 3524 

Costar ® 25ml Stripette ®  

Corning 

Incorporated 4251 

Costar ® 48 well clear TC-treated 

multiple well plates, individually 

wrapped, sterile 

Corning 3584 

Costar ® 50ml Stripette ®  
Corning 

Incorporated 4501 

Costar ® 5ml Stripette ®  
Corning 

Incorporated 4051 

Costar ® 6 well clear TC-treated 

multiple well plates, individually 

wrapped, sterile 

Corning 3516 

Costar ® 96 well clear flat bottom TC-

treated microplate 
Corning 3595 

Coverglasses/Menzel-Glaser Agar Scientific L4338-1 

CryoTube ™ Vial Thermo Scientific 377224 
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DAPI  Biotium 40043 

DAPI (flow cytometry) Molecular Probes D1306 

Dimethyl Sulfoxide (DMSO) VWR Chemicals 23500.26 

DMEM/F-12 Gibco 12634-010 

Donkey Serum Sigma/Abcam D9663/Ab166643 

Doxycycline Hyclate 

(Doxycycline/Dox) 
Sigma D9891 

Dulbecco's Phosphate Buffered Saline Sigma D8537 

Ethanol Absolute AnalaR 

NORMAPUR® 
VWR 101074F 

Facs Cell Strainer Tube  Falcon 352235 

Fast-Read 102 Cell Counter Biosigma S.r.l BVS100 

FGF basic (bFGF)  R&D 233-FB-025/CF 

Fibronectin from bovine plasma Sigma F1141 

Filter Tip Bevelled 10 µl StarLab S1121-3810 

Filter Tip Bevelled 50 µl StarLab S1120-2810 

Filter Tip Universal 1000 µl Greiner Bio-one 740288 

Foetal Calf Serum (FSC) Gibco 10270 

G418 Sulphate PAA P27-011 

Gelatine (Embedding) Sigma Aldrich 48722 

Gelatine (TC) Sigma G1890 

Glasgow Minimum Essential Medium 

(GMEM) 
Sigma G5154 

Glycine Sigma G8898-500G 

High Vaccum Silicone Grease VWR Chemicals 331353N 

HiSpeed Plasmid Maxi Kit Qiagen 12662 
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HyPure™ Molecular Biology Grade 

Water 
GE SH30538.02 

Human Acitivin A PeproTech 120-14E 

Isoamyl Alcohol Fisher Scientific  A393 

Isopropanol, 99.5%, for molecular 

biology, DNAse RNAse and Protease 

free 

Acros Organics   327272500 

Kanamycin Calbiochem 420311 

KnockOut ™ Serum Replacement 

(KSR) 
Gibco 10828-028 

L- Glutamine 200 mM  ThermoFisher   25030-024 

Labelling Tape Anachem SL9355 

Laminin (from Engelbreth-Holm-

Swarm murine sarcoma basement 

membrane) 

Sigma L2020 1mg/ml  

LB Broth, Miller (Luria-Bertani) BD 244620 

Lightcycler® Multiwell Plate 384, 

White 
Roche 4729749001 

Lightcycler® Probes Master Roche 4887301001 

M13 Forward and Reverse Primers Invitrogen N52002/ N53002 

M2 Medium Sigma M7167-100ml 

MEM non-essential amino acids 

(NEAA) 
Gibco 11140-035 

Methanol AnalaR Normapur ® VWR 20847.24 

Microtube 1.5ml Sarstedt 72.692.005 

Millex®-GP syringe filter unit, 0.22 

μm, diameter 33 mm, gamma 

sterilized 

Millipore 

SLGP033RS 

Millex®-GP syringe filter unit, 0.45 

μm, diameter 33 mm, gamma 

sterilized 

Millipore 

SLHP033RS 
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Molecular Biology Grade Water Hyclone SH30538 

M-MLV Reverse Transcriptase Invitrogen 28025-013 

N2 Gibco 17502-048 

Neurobasal ® Medium Gibco 21103-049 

Paraformaldehyde (PFA) Sigma Aldrich P6148 

PCR Tubes - 8-Strip Sarstedt 72.991.002 

PD0325901 (PD03) Axon 1408 

Penicillin-Streptomycin (10000 U/ml) Gibco 15140-122 

Phenol Fisher Scientific A9311 

Phosphate Buffered Saline (PBS) 

Tablet 
Sigma P4417 

Phosphate Buffered Saline (PBS) Sigma D8537 

Phusion DNA Polymerase  NEB M0530 

Plain Stubs  Agar Scientific G307 

Poly-L-Orthinine Solution Sigma P4957 

Polysine™ Microscope Slides VWR 631-0107 

Prolong ® Gold Antifade Reagent Life Technologies P36930 

Random Primers Invitrogen 48190-011 

Recombinant Human Fgf Basic 

(146aa) 
R&D 233-fb-025 

Recombinant human/rat/Mouse 

Activin A 
Peprotech 120-14E 

Recombinant mWnt-3a R&D 1324-WN/CF 

RNAse-free ddH2O Roche  

Rnase H 
New England 

Biolabs 
M0297L 

RNase-free Eppendorf tubes Ambion Invitrogen AM12400 
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RNaseOut™ Recombinant 

Ribonuclease Inhibitor 
Invitrogen 1077-019 

Safe-Lock® Tubes Eppendorf T9661 

Snap-cap Tube Falcon 352059 

Sodium Acetate Fisher Scientific  R1181 

Sodium Azide (NaN3) Sigma Aldrich S2002 

SP6/T7 Transcription Kit Roche 10999644001 

Standard Petri Dishes 90 mm, Single 

Vent 
Sigma 101R20 

Stop Solution  Promega M199A 

Subcloning Efficiency ™ DH5α ™ 

Competent Cells 
Invitrogen 18265-017 

Sucrose Sigma S0389 

SYBR® Safe DNA Gel Stain Invitrogen S33102 

T4 DNA ligase  NEB M0202L 

Taq DNA Polymerase Kit  Qiagen 201203 

Transfer Pippettes Sarstedt 86.1172.010 

Trichloroacetic Acid Sigma Aldrich T6399 

Tris Base Fisher BP152-1 

Triton™ X-100 Sigma T8532 

UltraPure ™ Agarose Invitrogen 16500100 

UltraPure ™ Dnase/Rnase-Free 

Distilled Water 
Gibco 10977 

Universal Tube Sterilin  128/FS 

Universal (rolling culture) NUNC   

Universal Container Flow Seal Cap  Thermo Scientific 128A/FS 

Vectashield Non-Hardening Medium Vector Labs H-1200 
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Xgal Promega V394A 

 

2.1.2 Instruments/Equipment 

Table 2.2 Instrument/Equipment Details 

Equipment Company 

4D- nucleofector ™ System Core Unit/X 

Unit 

Lonza 

Attoflour ™ Cell chamber Life Technologies 

Blue Light Transilluminator Sygene 

BTX Electro Square Porator ECM 830  BTX, San Diego, CA, USA 

Centrifuge 5702 Eppendorf 

Cool LED Illumination unit - pE-300 CoolLED 

DNA Engine thermal cycler, PTC-200 BioRad 

Forceps for embryo dissection Dumostar 

Gel Tanks Engineering & Design Plastics Ltd. 

‘Genetrode’ electrode  BTX Model 516 

Glass Coplin Staining Jar, cat 107 Thermo Fisher 

ImmEdge Hydrophobic PAP Pen, H4000 Vector 

IncuShaker, 10 L H1010 BR13-00 Benchmark Scientific 

Leica Cryostat, CM1900  Leica Microscopes systems 

LightCycler® 480 Instrument II  Roche 

LSR Fortessa BD 

Nanodrop ND1000 Spectrophotometer Thermofisher Scientific 

NanoVue Plus Spectophotometer GE healthcare 

Olympus BX-61 Olympus 
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Olympus Cat SZH-121, dissection 

microscope 

Olympus 

Olympus IX51 Microscope (TC) Olympus 

Operetta High-Content Imaging System Perkin Elmer 

ORCA-R2 monochrome camera  Hamamatsu 

Retiga 2000R Scientific Camera QImaging 

Roller Bottle Aparatus BTC engineering 

Sanyo CO2 incubator Sanyo 

Slides and Coverslips Scientific Lab Supplies 

SP8 Inverted Confocal Microscope 

system  

Leica Microscopes systems 

StereoZoom SMZ-U dissection 

microscope 

Nikon 

SUB Aqua 18 Plus Waterbath Grant 

Thermomixer compact Eppendorf  

TProfessional Standard Thermocycler Biometra 

UV Transilluminator - G:BOX F3 Syngene 
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2.1.3 Antibodies 

 Before use in immunohistochemistry all primary and secondary antibodies diluted in 

blocking solution were spun at 13000rpm in eppendorf tubes for 5 minutes at RT°C 

(room temperature), care was then taken not to aspirate the liquid at the very tip to 

minimise use of aggregated antibody.  

2.1.3.1 Primary Antibodies 

Table 2.3 Primary Antibodies 

Target Supplier Catalogue 

Number 

Raised 

in 

Clonal type Dilution 

Celsr1 Abcam Ab196600 Rabbit Polyclonal 1:100 

Celsr2 Abcam Ab90817 Rabbit Polyclonal 1:100 

Celsr2 Protein Tech 19940-1-

AP 

Rabbit Unknown 1:100 

Celsr2 (Shima et al., 

2002) 

n/a Mouse Monoclonal 100% 

serum 

Celsr3 Protein Tech 19939-1-

AP 

Rabbit Unknown 1:100 

Collagen IV  Abcam Ab19808 Rabbit Polyclonal 1:200 

Dvl1 Protein Tech 14314-1-

AP 

Rabbit Unknown 1:100 

Dvl2 NEB 3224 Rabbit Monoclonal 1:100 

Dvl2 NEB 3216 Rabbit Polyclonal 1:100 

Fzd 3 Abcam  Ab75233 Rabbit Polyclonal 1:200 

Fzd 3 Abcam  Ab102965 Rabbit Polyclonal 1:200 

Fzd 6 Abcam  Ab98180 Rabbit Polyclonal 1:100 

Fzd 6 Abcam  Ab128916 Rabbit Monoclonal 1:200 

Fzd 6 Protein Tech 13982-1-

AP 

Rabbit Unknown 1:100 
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Fzd 6  R&D  AF1526 Goat Polyclonal 1:15 

γ-Tubulin Abcam Ab11316 Mouse Monoclonal 1:250 

GM130 BD 

Transduction 

610823 Mouse Monoclonal 1:400 

LaminB1 Abcam Ab16048 Rabbit Polyclonal 1:1000 

/1:500 

Nkd2 Abcam Ab170804 Rabbit Polyclonal 1:100 

Pericentrin Abcam Ab4448 Rabbit Polyclonal 1:2000 

Prickle2 Abcam Ab65964 Rabbit Polyclonal 1:100 

Prickle2 Abcam Ab183652 Rabbit Polyclonal 1:100 

Ptk7 Protein Tech 17799-1-

AP 

Rabbit Unknown 1:100 

Ptk7  Abcam Ab62073 Rabbit Polyclonal 1:50 

Ptk7  Abcam  Ab62074 Rabbit Polyclonal 1:50 

Ror2 Santa Cruz A17-SC 

83034 

Goat  Polyclonal 1:50 

Sox2 Abcam  Ab92494 Rabbit Monoclonal 1:200 

T(Brachyury) R&D AF2085 Goat Polyclonal 1:200 

Vangl1 Abcam Ab176575 Rabbit Monoclonal 1:200 

Vangl1 Abcam Ab80055 Rabbit Polyclonal 1:100 

Vangl2 Abcam Ab76174 Rabbit Polyclonal 1:100 

Vangl2 Abcam Ab60172 Goat Polyclonal 1:200 

Vangl2 Merck 

Millipore 

ABN373 Rabbit Polyclonal 1:500 

Wnt11 Abcam Ab31962 Rabbit Polyclonal 1:100 

Wnt11 Abcam Ab96730 Rabbit Polyclonal 1:100 

Wnt11 Abcam Ab176910 Rabbit Polyclonal 1:100 
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2.1.3.2 Secondary Antibodies 

Wnt5a Abcam Ab174100 Rabbit Polyclonal 1:100 

Wnt5a R&D AF645 Goat  Polyclonal 1:60 

ZO-1 Invitrogen 33-9100 Rabbit Monoclonal 1:400 

Table 2.4 Secondary Antibodies 

Target 

Species 

Species 

Raised in 

Fluorophore Company Catalogue Number 

Goat Donkey 488 Molecular 

Probes 

Alexa Flour ® A-11055 

Goat Donkey 555 Molecular 

Probes 

Alexa Flour ® A-21432 

Goat Donkey 568 Molecular 

Probes 

Alexa Flour ® A11057 

Goat Donkey 647 Molecular 

Probes 

Alexa Flour ® A21447 

Mouse Donkey 488 Molecular 

Probes 

Alexa Flour ® A21202 

Mouse Donkey 555 Molecular 

Probes 

Alexa Flour ® A-31570 

Mouse Donkey 568 Molecular 

Probes 

Alexa Flour ® A10037 

Mouse Donkey 647 Molecular 

Probes 

Alexa Flour ® A31571 

Rabbit Donkey  488 Molecular 

Probes 

Alexa Flour ® A21206 

Rabbit Donkey 555 Molecular 

Probes 

Alexa Flour ® A-31572 

Rabbit Donkey 568 Molecular 

Probes 

Alexa Flour ® A10042 
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2.1.4 Solutions Prepared 

Standard molecular biology solutions were prepared according to (Sambrook and W 

Russell, 2001). Frequent solutions included: 

• 4% (w/v) PFA: PFA dissolved in PBS (pH 7.4) 

• DNA loading dye: Orange G (Sigma) 0.25%, glycerol (Fisher) 30%, in water. 

• PBS (not for cell culture): 5 PBS tablets/L water 

• TBE: Tris Base (Fisher) 22.5 mM, orthoboric acid (Fisher) 22.5 mM, EDTA 

500 μM pH 8.0, in water. 

• 15% sucrose (w/v) solution: sucrose dissolved in PBS (pH 7.4) 

• 15% sucrose (w/v) 7% gelatin solution: gelatin dissolved in 15% sucrose 

solution at 37; 

• 50% Rat serum culture medium: 50% heat inactivated Rat serum and filtered 

50% DMEM supplemented with 0.1% Non-essential Amino Acids (NEAA) 

and 2 mM L-glutamine (using a 0.45 µm filter). After mixing, 1µL/mL of 

penicillin-streptomycin was added.  

• PBS-T: PBS with 0.1% Triton X-100 

• Blocking buffer: 5% Donkey serum and 0.01% sodium azide in PBS 

• Antibiotic stock 

Ampicillin 1000x: 100 mg ampicillin powder in 1 mL DNase/RNase-free H2O 

Kanamycin 1000x: 50 mg kanamycin powder in 1 mL DNase/RNase-free H2O 

Following filtration through a 0.22 µm filter, stocks were kept at -20°C for long 

term storage, and once thawed were stored at 4°C for no longer than 2 weeks. 

 

2.1.5 Primers 

2.1.5.1 PCR Primer Sequences 

Table 2.5 PCR Primer Sequences 

Target Forward  Reverse Use in thesis 

Pk1  GATCCAGAGAC

TCTCGCAGG 

GTGATGTTGG

ACAACGC 

ISH probe generation 

Rabbit Donkey 647 Molecular 

Probes 

Alexa Flour ® A-31573 

Rabbit Donkey 405 BioLegend 

DyLight 

406409 
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M13 

(Invitrogen) 

GTAAAACGACG

GCCAG 

CAGGAAACA

GCTATGAC 

TOPO Sequencing 

p2lox 

sequencing 

primers 

GCTGTTCTCCT

CTTCCTCATCTC 

TCCCCCTGAA

CCTGAAACAT 

p2lox sequencing 

 

PCR primers used for Gibson assembly and conventional cloning found in section 

2.2.5.7. 

2.1.5.2 RT-qPCR Primers 

These were designed using web-based Roche Universal Probe Library (UPL) System 

Assay Design. UPL probes are 165 short dual-labelled hydrolysis probes which are 

choosen specifically to match the gene of interest, and ensure amplification detected 

in RT-qPCR reactions is specific to this gene of interest.  

Table 2.6 RT-qPCR Primers Details 

Target Forward Primer Reverse Primer UPL Probe 

Oct4 GTTGGAGAAGGTGG

AACCAA 

CTCCTTCTGCAGG

GCTTTC 

95 

Fgf8 CAGGTCCTGGCCAA

CAAG 

GGTCTCCACAATG

AGCTTCG 

29 

Foxa2 AAGTAGCCACCACA

CTTCAGG 

TGGCCCATCTATT

TAGGGAC 

32 

Cdx2 CACCATCAGGAGGA

AAAGTGA 

CTGCGGTTCTGAA

ACCAAAT 

34 

Evx1 CAGGGAGAACTACG

TTTCAAGAC 

GCCGGTTCTGAAA

CCACA 

66 

Nkx1.2 CCAATCGGGTCACA

GGAG 

CGCATCCTCAGCT

TCCTC 

13 

Ptk7 AGGCTGAGCCCCAC

TACAT  

GGAAATCCTCAGG

AACTGTTTG 

67 

Tbx6 CCGAGAAAATGGCA

GAAACT 

GTGTATCCCCACT

CCCACAG 

21 
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Wnt3a AATGGTCTCTCGGG

AGTTTG 

CTTGAGGTGCATG

TGACTGG 

53 

Pax6 GTTCCCTGTCCTGTG

GACTC 

ACCGCCCTTGGTT

AAAGTCT 

78 

Sox1 GTGACATCTGCCCCC

ATC 

GAGGCCAGTCTGG

TGTCAG 

60 

Sox2 GTGTTTGCAAAAAG

GGAAAAGT 

TCTTTCTCCCAGC

CCTAGTCT 

34 

Mesp1 ACCCATCGTTCCAGT

ACGC 

AGCATGTCGCTGC

TGAAGA 

89 

T(Bra) CAGCCCACCTACTG

GCTCTA 

GAGCCTGGGGTGA

TGGTA 

100 

Sox17 CACAACGCAGAGCT

AAGCAA 

CGCTTCTCTGCCA

AGGTC 

97 

HoxA6 CCCTGTTTACCCCTG

GATG 

GGTAGCGGTTGAA

GTGGAAT 

47 

HoxA4 TCCTCGTCCTCGTTA

CTGCT 

TCCAATCCTGGCA

AAGTTGT 

62 

HoxD13 GGAACAGCCAGGTG

TACTGTG 

GGCTGGTTTAAAG

CCACATC 

5 

TBP 

(housekeeping) 

GGGGAGCTGTGATG

TGAAGT 

CCAGGAAATAATT

CTGGCTCA 

97 

SDHA 

(housekeeping) 

CAGTTCCACCCCACA

GGTA 

TCTCCACGACACC

CTTCTGT 

71 

 

2.1.6 Kits Used 

Table 2.7 Details of Kits 

Product Vendor Catalogue Number 

Absolutely RNA Miniprep Kit  Agilent Technologies 400800 

DNA Clean & Concentrator™-5 Zymo Research Corp D4003 

Lonza Amaxa P3 Primary Cell 4-D 

nucleofector x L+Kit L (12RCT) 

Lonzo V4XP-3012 F-

10984 
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Plasmid Maxi Kit  Qiagen  12162 

Platinum PFX Thermofisher 11708-013 

Q5 High Fidelity DNA polymerase NEB M0491S 

QIAprep Spin Miniprep Kit  Qiagen  27104 

QIAquick Gel Extraction Kit  Qiagen  28704 

rAPid Alkaline Phosphatase Roche, Sigma 

Aldrich 

4898133001 

Zero blunt ™ PCR cloning kit with 

pCR™-bluntII-TOPO vector 

Invitrogen  K280002/450245 

 

2.2 Methods 

2.2.1 Embryology 

2.2.1.1 Animal Husbandry/ Maintenance of mice 

Wildtype (WT) MF1 (outbred) Mouse strain was housed and bred in the Animal Unit 

of the Medical Research Council (MRC) Centre for Regenerative Medicine (CRM) 

according to the provisions of the provisions of the Animals (Scientific Procedures) 

Act (1986).  

All mice were maintained in a stabilized environment on a 10 hours light, 14 hours 

dark cycle. Embryos at specific developmental stages were obtained by setting up 

timed matings overnight and inspecting the presence of vaginal plugs the following 

morning. Embryonic day (E)0.5 was designated to the day at noon when plugs were 

observed, assuming copulation occurred at midnight. 

2.2.1.2 Embryo and adult tissue collection and dissection 

Pregnant females were culled by cervical dislocation by Animal Unit staff. The uterus 

was extracted from the abdominal cavity, the decidua then placed in M2 Medium 

(Sigma) at room temperature. Adult tissue was removed at the same time and placed 

in M2 medium (Sigma) at room temperature (RT°C). Using forceps, the decidua and 

Reichert’s membrane were removed from the embryo, and when necessary adult tissue 

further dissected in M2 medium under a zoom stereo microscope (Olympus, Nikon). 
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Special care was taken for embryos for ex vivo culture for which the yolk sac, amnion 

and the ectoplacental cone were kept intact. Samples for immunohistochemistry were 

fixed as described in 2.2.2.1.  

2.2.1.3 Grafting cells from in vitro culture into embryos 

Grafting was performed under a dissecting stereomicroscope using a hand pulled 

micropipette. Cells were cultured in 6-well plates and then scraped from the plate using 

a 20-200 µl pipette tip. The resulting cell sheets were placed close to the embryos and 

drawn into the micropipette by gentle suction using a mouth pipette. The cells were 

gently blown out, and a small cell clump containing 10-20 cells was sucked into the 

mircropipette again and placed close to the opening of the micropipette. The embryo 

was held loosely in place with forceps while the micropipette was inserted in the region 

of interest to create an opening. Cells were then gently expelled as the micropipette 

was drawn out of the embryo, leaving a short string of cells lodged in the epiblast 

(Huang et al., 2012).  

2.2.1.4 Electroporation of embryos  

Electroporation was performed by Catarina Martins Costa and Dr Filip Wymeersch. 

Electroporation was performed as described in (Huang et al., 2015). Briefly, embryos 

with 2-6 somites (E8.5) were dissected and transferred to PBS. A DNA solution 

containing 1.2 µg/µL (or 3 µg/ml, in independent experiments) of circular expression 

plasmid in 1xPBS with 0.01% Fast Green dye was prepared. This was microinjected 

into the amniotic cavity using a mouth pipette and a fine glass injection needle, 

prepared from a glass capillary (1.5mm outside diameter) using a micropuller equipped 

with a heating element.  

Immediately after microinjection, embryos were placed in PBS, between a pair of 

parallel 0.5 mm diameter, 1 mm long, L-shaped, gold tipped ‘Genetrode’ electrodes 

(BTX Model 516), set 5 mm apart, and electroporated by using a BTX Electro Square 

Porator ECM 830 (BTX, San Diego, CA, USA). Embryos were positioned with their 

node/anterior streak pointing towards the positive pole; the targeted area of 

electroporation was the caudal end of the embryo, including the NSB and CLE, within 

which NMPs are found. Electroporation conditions were optimised to minimise 
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embryo damage and maximise DNA uptake. Several conditions were tested, and the 

ideal settings were defined as follows: 30 V in 3 pulses of 30 ms duration each, with a 

1s interval between pulses. Following electroporation, embryos were transferred to M2 

to recover for a few seconds and then placed in culture for rolling 24 hours as described 

below 2.2.1.5. 

To evaluate the success and record the zone of electroporation, after 2hr each 

individual embryo was taken out of culture briefly imaged, in brightfield, red 

fluorescence and green fluorescence (to assess auto fluorescence). This allowed the 

cells to incorporate the electroporated plasmid and express the encoded proteins. 

Embryos with damage to extraembryonic tissues, or those not successfully 

electroporated, were discarded and the remaining were imaged again. Another 

selection took place, in which embryos that had not developed well were discarded; a 

beating heart, closed headfolds and embryonic turning were the three main features 

considered to represent normal development. 

2.2.1.5 Rolling culture of embryos 

Embryos were cultured according to Huang et al., 2012. Briefly up to three embryos 

were cultured in rotating bottles containing 1ml/embryo pre-warmed, pre-gassed 50% 

Rat serum:50% culture medium. Each bottle was connected to a gas drum continually 

providing 5%CO2:5%O2 balanced N2 (BTC Engineering) inside a 37°C incubator. 

Heat-inactivated Rat serum was prepared according to (Hogan et al., 1994; Martin and 

Cockroft, 2008). Animal bleeding was performed in house by Valerie Wilson, Filip 

Wymeersch and myself. 

2.2.2 Histology 

2.2.2.1 Sample Fixation 

2.2.2.1.1 Tissue for sectioning 

Dissected embryos for embedding and sectioning were fixed with 4% (w/v) PFA in 

PBS at 4°C overnight unless stated otherwise. 

Alternative fixation was used to optimise immunohistochemistry performance for 

specific antibodies, the details are outlined in the Table 2.8 below  
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Table 2.8 Fixation Protocols  

Fixation Type Fixation Length/Temperature 

3.7% (w/v) PFA in 0.1% PBS-T Overnight at 4°C 

10% (w/v) Trichloroacetic Acid (TCA) 

in ddH2O (Ice cold) 

1 hour at 4°C 

Methanol  -20°C for 1 hour  

 

Following fixation samples were washed with PBS for three 5 minute washes before 

being processed for embedding. 

2.2.2.1.2 Tissue for wholemount immunohistochemistry 

Dissected embryos for wholemount immunohistochemistry were fixed for 2 hours at 

4°C with either 4% (w/v) PFA in PBS or on occasion 3.7% (w/v) PFA in PBS for 

specific protocols. Embryos were then washed in 0.1% (v/v) Triton in PBS. 

2.2.2.1.3 Cultured cells 

Following at least one quick wash with PBS, cultured cells were fixed with fresh 4% 

(w/v) PFA in PBS at RT°C for 10 minutes. PFA was removed and fixed cells were 

washed for at least 2 minutes gently with PBS three times.  

2.2.2.1.4 Embryos for In Situ Hybridisation 

Embryos for use in in situ hybridisation were transferred to 4% (w/v) PFA in PBS 

(pH7.4) and fixed overnight at 4°C. The following day the samples were rinsed three 

times with DEPC-treated PBS and dehydrated through a series of methanol (VWR) 

concentrations (25%, 50%,75% and 100% (v/v) methanol in DEPC-treated PBS). 

Embryos were stored in 100% methanol at -20°C in Safe-Lock ® tubes (Eppendorf). 

2.2.2.2 Preparation of cryostat sections 

Following washes fixed samples for embedding were transferred into a bijou vials with 

15% (w/v) sucrose solution, for between 2 hours and overnight at 4°C depending on 

sample size. The sucrose solution was then replaced with melted 15% (w/v) sucrose, 

7% gelatin (Sigma-Aldrich) solution. Samples were kept at 37°C and allowed to sink 

to the bottom of the vial. The samples were transferred and orientated in a metal based 
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mould underneath a dissecting microscope using pointed dentist tools. Once in 

position the sucrose/gelatin solution was placed carefully on ice to set. Samples were 

frozen by holding the metal base of the mould close to the surface of liquid nitrogen. 

Blocks were stored at -80°C, and allowed to equilibrate for at least a few hours in the 

chamber of the cryostat (Leica CM1900, Leica Microsystems). Samples were 

sectioned at 7µm thickness and were stored at -80°C until required. 

2.2.3 Immunofluorescence 

2.2.3.1 Immunofluorescent staining on Mouse cryosections 

Slides containing cryostat sections were thawed at RT°C for 10 minutes. To remove 

the gelatin, slides were then placed into a coplin staining jar (ThermoFisher) 

containing preheated PBS and left in a water bath at 50°C. Sections were carefully 

circled with a PAP pen (Vector) to keep reagents localized on tissue specimens. All 

steps were conducted by adding small droplets onto outlined sections in a humidified 

box in the dark at RT°C.  

Sections were permeabilised with 0.5% (v/v) Triton-X100 in PBS for at least 15 

minutes. Excess fixative was quenched with either 0.5 M Glycine pH7.5 in PBS or 50 

mM NH4Cl (Acros Organics) in PBS for at least 15 minutes. Non-specific antigens 

were blocked with a blocking buffer, consisting of 5% Donkey serum (v/v) in PBS 

with 0.1% NaN3 for at least 1 hour. Primary antibodies (Table 2.3) were diluted in 

blocking solution according to manufacturers’ suggested or optimised concentrations, 

and added to the sections for at least 1 hour, but more commonly overnight at 4°C. 

Sections were washed with PBS three times for 5 minutes. Secondary antibodies 

(Table 2.4) were diluted 1:1000 in blocking solution and added to the sections for 1 

hour at RT°C. The sections were then washed with PBS three times for 5 minutes, the 

last of which contained DAPI (1:1000) (Biotium). Upon completion of staining the 

slides were mounted using either Prolong® Gold Antifade Reagent (Molecular Probes) 

or Vectasheild non-hardening medium (Vecta Labs) with a coverslip. Mounted 

sections were stored at 4°C until imaging. 

When use of this protocol did not result in clear and strong fluorescence signal, antigen 

retrieval was sometimes performed prior to staining. Following 10 minutes of 

cryosection thawing at room temperature, the slides were placed in a plastic slide 
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holder and submerged in a plastic lidded box containing 10 mM sodium citrate pH 6.0. 

Antigen retrieval was performed in a standard microwave for a total of 10 minutes, 

ensuring the temperature never reached boiling point and topping up with ddH2O when 

necessary to ensure constant molarity of solutions. Slides were then cooled before 

further processing as described above without the need to remove the gelatin. 

When two or more primary antibodies raised in different host species were used for 

multicolour immunofluorescent detection, the primary antibodies would be incubated 

together. When primary antibodies had the same host species they would be stained 

sequentially. 

Positive controls based on EST gene profile concentrations, and negative controls 

sections for which the primary antibody incubation was left out were run alongside 

each immunohistochemistry. 

2.2.3.2 Immunofluorescent staining on Mouse wholemount embryos 

Following fixation embryos were permeabilised with 0.1% (v/v) Triton™ in PBS for 

at least 1 hour. Excess fixation was then quenched using 0.5M Glycine pH7.5 in PBS 

or 50mM NH4Cl (Acros Organics) in PBS for at least 1 hour at room temperature. 

Embryos were washed for 15 minutes 3 times with 0.1% (v/v) Triton™ PBS.  Embryos 

were then placed in blocking solution, 5% Donkey serum (v/v) in PBS with 0.1% 

NaN3, overnight at 4°C.  

Primary antibodies (Table 2.3) diluted in blocking solution were left to incubate at 

RT°C, unless stated otherwise, on shaker for at least 2 overnights depending on the 

success of staining. After washing for 15 minutes three times with 0.1% (v/v) Triton™ 

in PBS, the secondary antibody diluted 1:1000 in blocking solution was added to the 

embryos again for 2 overnights in the dark at RT°C unless stated otherwise. After 

washing for 15 minutes three times with 0.1% Triton™ in PBS, if applicable DAPI 

diluted 1:1000 was incubated for 5 minutes, before performing another wash. 

In preparation for imaging with clearing agent, 1 Benzyl Alcohol: 2 Benzyl Benzonate 

(BABB) (Becker et al., 2013), embryos were serially dehydrated into methanol. First 

in 50% methanol 50% (v/v) 0.1% Triton™ in PBS for 10 minutes, then 80% methanol 
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20% (v/v) 0.1% Triton™ in PBS for 10 minutes and finally in 100% methanol which 

was refreshed once. Embryos were then stored in methanol until imaging. In 

preparation for imaging embryos were placed individually in a Attoflour ™ Cell 

Chamber and then BABB solution for clearing was added on top and mixed carefully 

with a transfer pipette. Following imaging, embryos were placed back in methanol and 

stored at 4°C if re-imaging was necessary. 

When using two or more primary antibodies for multicolour immunofluorescent 

detection, the antibodies were stained sequentially. Except for the use of T(Bra) 

antibody (R&D) which was used alongside any other primary antibody. 

2.2.3.3 Immunofluorescent staining on cultured cells 

Following fixation cells were permeabilised with 0.5% (v/v) Triton™ in PBS for at 

least 15 minutes at room temperature. Fixative was quenched using either 0.5M 

Glycine pH7.5 or 50mM NH4Cl (Acros Organics) for 15 minutes at room temperature. 

Cells were washed gently 3 times with PBS, before incubating in blocking solution 

5% Donkey serum (v/v) in PBS with 0.1% NaN3 for at least 1 hour.  

Primary antibodies were diluted in blocking serum and incubated for 1 hour at RT°C. 

The cells were then washed three times for 5 minutes in PBS. Secondary antibodies 

diluted 1:1000, unless stated otherwise, in blocking solution were added to the cell for 

1 hour at RT°C in the dark. Cells were washed with PBS for 5 minutes three times, 

with the final wash containing DAPI 1:1000 (Biotium) if necessary. In some instances, 

cells only had 2 washes between stages to prevent cell loss.  

When two or more primary antibodies raised in different host species were used for 

multicolour immunofluorescent detection, the primary antibodies would be incubated 

together. When primary antibodies had the same host species they would be stained 

sequentially. 
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2.2.4 Imaging 

2.2.4.1 Immunohistochemistry on cryosections  

Mounted sections were imaged using an upright fluorescence stereomicroscope, 

Olympus BX-61 fluorescence compound microscope (Olympus), with an ORCA-R2 

monochrome camera (Hamamatsu) driven by Volocity software.  

2.2.4.2 Immunohistochemistry on wholemount embryos 

Wholemount immunohistochemistry embryos were imaged using Leica SP8 Inverted 

confocal microscope with LAS X Software (Leica). Images were processed for figures 

using ImageJ (FIJI). 

Images of wholemount embryos from grafting experiments were acquired with digital 

camera (QimaginG) attached to a Nikon AZ100.  

2.2.4.3 Immunohistochemistry on in vitro cultured embryos 

Cultured cells were imaged using an Olympus IX51 inverted microscope, with Retiga-

2000R Fast camera (QImaging). Cells following immunohistochemistry were imaged 

in the Operetta High-Content Imaging System (Perkin Elmer), using the Harmony 

Content Analysis Software (Perkin Elmer), linked to Columbus software (Perkin 

Elmer). Images of 96 well plates were acquired with 10x (whole well acquired) or 20x 

(quarter well acquired) objectives. 

2.2.4.4 Image Analysis 

2.2.4.4.1 PickCells/NESSY 

• Conversion of files 

Large embryo image ‘.TIF’ files, greater than 5GB were converted to ‘.ICS’ format, 

using ImageJ plug-in ‘Bio-Format Exporter’, before importing to PickCells for 

analysis. All other in vitro files were imported to PickCells as ‘.TIF’ format. 

• Segmentation 

Segmentation of nuclei for PickCells analysis was conducted with Nessy (Nuclear 

Envelope Segmentation System) Software created by Dr Guillaume Blin (Lowell Lab, 

University of Edinburgh). All segmentation settings for in vitro samples were 

optimised on reference images containing a high number of overlapping cells which 
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are the most challenging to segment. For embryo segmentation, regions of interest 

(NMP regions) were used to optimise settings. Multiple segmentation attempts were 

performed to optimise settings for all samples. The same segmentation settings were 

applied to all samples in a single experiment. Specific settings for all stages of 

segmentation using Nessy are outlined below. 

1) Pre-processing 

Pre-processing of images was performed to enhance edges of cells to aid their 

identification and maxima were identified which are the starting points of nuclear outer 

edge tracing (Table 2.9).  

Table 2.9 Pre-processing Settings PickCells 

In vitro samples In vivo samples 

Scale:2.5 

Maxima:2.5 

Scale:2 

Maxima:2 

 

2) Single z-stack segmentation 

Settings were optimised to aid creation of cell edge traces based on the maxima 

calculated previously. Then for each sample type a classifier was trained by selecting 

valid and in valid shapes, and applied to the initial cell traces to improve cell 

recognition (Table 2.10). 

Table 2.10 Single z-slice Segmentation Settings (PickCells) 

In vitro samples In vivo samples 

Search Radius: 3 

Delta: 0.1 

Min Radius: 12 

Max Radius: 36 

Shape Selection: tailored 

classifier  

Search Radius: 3 

Delta: 0.11 

Min Radius: 6 

Max Radius: 35 

Shape Selection: tailored classifier 
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3) 2D to final 3D segmentation 

2D single z-stack segmentation slices were combined to create a final 3D segmentation 

result by choosing settings, including expected final 3D volume and overlap of 2D z-

stack slices. (Table 2.11). 

 

4) Editing incorrect segmentation 

Despite optimisation of settings some cells remained incorrectly segmented. 

Common mis-segmentations, including segmentation of gaps between cells, 

missing cells and oversegmentation, were corrected using NESSY segmentation 

editor. Note that segmentation of cells at the edge of images in in vitro samples 

was not possible. 

5) Centriole Detection 

Identification of Centrosomes with PickCells spot detector was conducted using the 

following settings, Radius - 0.5, Sigma - 0.1 and minimum intensity -50. 

2.2.4.4.2 Using Columbus on Operetta acquired images 

Acquired images using the Operetta were processed using Columbus Image Data 

Storage and Analysis system. Optimised segmentation settings are outlined below. 

Average intensities of Sox2 and T(Bra) were exported for each cell in each well. 

Table 2.11 2D to 3D Segmentation Settings (PickCells) 

In vitro samples In vivo samples 

Min Volume: 2500 

Max Volume: 25000 

Search Radius: 43.2 

Min Overlap: 0.7 

Allowed Slice Jumps: 2 

Split Tolerance: 4 

Other: Finalisation & Deletion 

of Flat structures 

Min Volume: 1500 

Max Volume: 4750 

Search Radius: 25 

Min Overlap: 0.75 

Allowed Slice Jumps: 2 

Split Tolerance: 4 

Other: Finalisation & Deletion of Flat structures 
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Minimum thresholds for T(Bra) and Sox2 positivity were defined for each experiment 

by judgment of cell negativity.  

Table 2.12 ‘Replated’ Conditions- Columbus Analysis Parameters 

Nuclei Method C (common threshold: 0.3. Area: 30microns) 

Select Populations Area (>80,<400), DAPI Intensity (>200, <4000), Roundness 

(>0.5) 

Sox2 Positive >60 

T(Bra) Positive >50 

 

Table 2.13 ‘Not Replated’ Conditions- Columbus Analysis 

Parameters 

Nuclei Method C (common threshold: 0.3. Area: 30microns) 

Select Populations Area (>70,<300), DAPI Intensity (>200, <2000), Roundness 

(>0.7) 

Sox2 Positive >60 

T(Bra) Positive >50 

 

Table 2.14 Inducible Cell Line Columbus Analysis Parameters 

Nuclei Method C (common threshold: 0.4/0.5. Area: 30microns) 

Select Populations Area (>50,<650), DAPI Intensity (>150, <11000), Roundness 

(>0.7) 

Sox2 Positive >150 

T(Bra) Positive >100 
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2.2.4.4.3 Using ImageJ on Immunohistochemisry sections 

2.2.4.4.3.1 Details of the Rainbow RGB Look up table 

ImageJ was used to process images. Look up tables were applied to expression data. 

Details of LUT ‘Rainbow RGB’ below. 

 

2.2.4.4.3.2 Creating red blood cell autofluorescence overlay 

Red blood cell overlay was created by capturing autofluorescence of red blood cells 

using an unused channel. This was converted to a layer on Inkscape or traced, coloured 

yellow, and overlaid on corresponding images. 

2.2.5 DNA Cloning Methods 

2.2.5.1 Restriction Enzyme Digestions 

DNA digestions typically were incubation of 1-10µg of DNA with 5-100 units of the 

appropriate restriction enzymes, in excess, in the appropriate buffers and conditions as 

recommended by the manufactures. (NEB). Digestions were generally performed for 

1 hour, or 2 if sequential enzyme digestion was necessary, followed by 20-minutes of 

heat inactivation if appropriate. Incubations were performed in a DNA Engine thermal 

cycler (BioRad) or TProfessional Standard Thermocycler (Biometra).  
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Table 2.15 Restriction Enzymes Details 

Product Vendor Cat # 

EcoRI-HF NEB R3101S 

XhoI NEB R0146S 

BamHI NEB R0136S 

NotI-HF NEB R3189S 

SmaI NEB R0141S 

AscI NEB R0558S 

AgeI -HF NEB R3552S 

BstBI NEB R0519S 

KasI NEB R0544S 

 

2.2.5.2 Agarose Gels 

To generate electrophoretic gels, UltraPure ™ Agarose (Invitrogen) was mixed with 

TBE and heated with a microwave until the agarose powder was fully melted. The 

solution was allowed to cool but not solidify, and SYBR® Safe DNA Gel Stain 

(Invitrogen) was added at 1:1000 dilution to allow the visualisation of nucleic acids. 

The solution was mixed, and poured into a gel mould and allowed to set at RT°C. The 

concentration of agarose mixed with TBE varied from 1-2% (weight/volume) 

depending on the size of the DNA fragment to be visualised. 

2.2.5.3 Gel Electroporesis 

The samples to be analysed were mixed with DNA loading dye (dye added at 1:6 

dilution), loaded into a well of the prepared electrophoresis gel submerged in TBE, 

and subject to electrophoresis at 70V-100V for 30-90 minutes, depending on the size 

of the DNA to be visualised. A DNA ladder was loaded next to the samples for size 

comparison, 1kb DNA ladder or 100bp DNA Ladder (NEB). After completion of the 

run, the gel was imaged under an ultraviolet transilluminator (G:BOX F3, Syngene) to 

verify the correct size of the DNA fragment. 
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2.2.5.4 DNA purification 

2.2.5.4.1 Using gel purification kits 

When DNA was separated in agarose gels by electrophoresis (2.2.5.3), a gel slice 

containing the desired band was excised using a clean scalpel on a Blue Light 

Transilluminator (Syngene) and transferred to an Eppendorf tube. The excised band 

was then purified using QIAquick Gel Extraction Kit (Qiagen) following 

manufacturer’s instructions. Note that some PCR product for use in cloning were also 

purified usingQIAquick Gel Extraction Kit (Qiagen) without gel electrophoresis 

following manufacturers guidelines. PCR products for further use in in situ probe 

production were purified using DNA Clean & Concentrator ™ columns (Zymo 

Research Corp).  

2.2.5.4.2 Using ethanol precipitation 

Ethanol precipitation was also used to purify DNA further. Briefly 0.1volume 3M 

sodium acetate/H2O pH5.2 solution to 1 volume of DNA sample was added with 2x 

volumes of -20°C 100% ethanol. This was vortexed for 10 seconds, and placed in -

20°c for 1 hour. DNA was pelleted by centrifuging at 14,000 g for 30 minutes at RT°C. 

Supernatent was removed and pellet was washed and centrifuged with 200µl of fresh 

70% ethanol/H2O solution at 4°C. Purified DNA was obtained by air drying the pellet 

and resuspended in appropriate volume DNase/RNase free H2O (Gibco). 

2.2.5.5 Quantification of DNA concentration 

The concentration of DNA in solution was measured using a NanoVue Plus 

Spectophotometer (GE Healthcare) or Nanodrop, ND-1000 (ThermoFisherScientific) 

according to the manufacturer’s instructions. 

2.2.5.6 Dephosphorylation of linear DNA ends 

rApid Alkaline Phosphatase (Roche, Sigma Alrich) was used according to 

manufacturer’s instructions to prevent self-ligation of DNA fragments by removing 

the 5’ phosphoryl termini and thus reduce vector background in ligase reactions. 

Briefly linear DNA was incubated with 1xrAPid Alkaline Phosphotase (Table 2.16) 

for 10 minutes at 37°C, then the enzyme was heat inactivated by incubating at 75°C 

for 2 minutes. 
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Table 2.16 Alkaline Phosphatase Reaction 

Reagent Amount 

Linearised DNA up to 1µg 

Buffer 2µl 

Alkaline Phosphatase 1µl 

 

2.2.5.7 Generating Wnt/PCP plasmids using DNA fragment ligation 

Pk1 plasmid sequence was generated based on Mus musculus prickle planar cell 

polarity protein 1 sequence (NM_001033217.4 -NCBI), chosen due to homology to 

Pk1 sequence previously used to disrupt Wnt/PCP signalling in Axolotl neural 

regeneration (Albors et al., 2015). Vangl2 plasmid sequence was generated based on 

NM_033509.4 sequence (NCBI). Wildtype Ptk7 sequence was generated based on 

Mus musculus protein tyrosine kinase 7 sequence (NM_175168.4 -NCBI).  

Plasmids were created by subcloning amplified inserts into backbones using either 

Gibson assembly (Gibson, 2011) (Ptk7 & Vangl2) or conventional cloning (Pk1). For 

Gibson Assembly subcloning, gene inserts were created by designing gene specific 

primers to predicted sequences on NCBI database, and amplifying sequences from 

plasmids (Ptk7 based constructs) or embryonic cDNA (Pk1 and Vangl2 constructs).  

T2A fragments, encoding a ‘self-cleaving’ 2A peptide (Kim et al., 2011), were made 

either by amplification from plasmid, or by annealing of primer pairs. These peptides 

are thought to ‘self-cleave’ through the action of ribosome skipping during the 

synthesis of a peptide bond close to its C-terminus (Kim et al., 2011). These inserts 

were subcloned in to a backbone containing CAG and RFP. Overall efficiency of 

Gibson Assembly was low, but successful for generation of Ptk7 and Vangl2 

constructs. Despite further optimisation including, purification of insert, adjustment of 

ligation ratios, and de-phosphorylation of the backbone, ultimately attempts to create 

a CAG-Pk1-T2A-RFP plasmid using Gibson Assembly were unsuccessful. Instead 

this plasmid was created using conventional cloning techniques, through a 4-way 

ligation of amplified inserts and a CAG backbone. 
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2.2.5.7.1 Using Gibson Assembly 

2.2.5.7.1.1 Home-made Gibson assembly mastermix 

Mastermix (Table 2.17) was prepared on ice, 10µl aliquots were made and stored at -

20°C. 

Table 2.17 Gibson Assembly master mix  

Reagent Volume 

(2x) 

Final conc (1x) 

1M Tris-HCl 40µl 100mM 

1M MgCl2 4µl 10mM 

dNTPs (100mM) 3.1µl 0.2mM each 

Phusion DNA polymerase (2U/µl) 5µl 0.5U/reaction (25U/ml) 

5’ T5 exonuclease (10U/µl) 0.32µl 0.16 U/reaction (8U/ml) 

dH2O 147.48µl  

 

2.2.5.7.1.2 Creating fragments for Gibson assembly  

Fragments were designed and created for use in Gibson assembly based on the NEB 

Gibson Assembly ® cloning kit instruction manual. Briefly primers were designed to 

amplify fragments with appropriate overlaps. These primers were used with PFX 

Platinum or high-fidelity Q5 polymerase (as described below) in PCR reactions to 

create all fragments needed. Note that fragments that were too small to amplify by 

PCR were created by annealing primers by heating primer mix to 95°c and allowing 

to cool. Backbone was also cut with appropriate restriction digestion enzymes. All 

fragments and backbone were gel purified. 

Note that RFP originates from commercially available ptagRFP-N (Evrogen). 
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Table 2.18 Fragment Amplification and Backbone Restriction for TetO-

Ptk7-T2A-GFP 

Plasmid Insert Forward Primer Reverse Primer 

TetO-Ptk7-

T2A-GFP 

1-Kosak-

Ptk7 

(plasmid) 

ATCCAGCCTCCGG

GCCGGCCGGCGCG

CCACGCCACCATG

GGAGCCCGCCCGC

TG 

ACCACCAGATTGAA

AATACAAATTTTCA

CCCTGCTTGCTGTCT

GCAGGGCTG 

 2- GFP 

(plasmid) 

GGTGAAAATTTGT

ATTTTCAATCTGGT

GGTGGCTCCGGAG

AGGGCAGAGG 

GAATTCGATATCAA

GCTTATCGAGCTTA

CTTGTACAGCTCGT

CCATGCCGAG 

  Name Restriction Digestion 

Enzyme 

 Backbone PGK -TetO- AscI 

 

Table 2.19 Fragment Amplification and Backbone Restriction Digest for 

CAG-Ptk-T2A-RFP 

Plasmid Insert Forward Primer Reverse Primer 

CAG-Ptk7-

T2A-RFP 

1-Kosak-Ptk7 

(TetO-Ptk7-

GFP plasmid) 

3299bp 

CGGTACCGCGGGC

CCGGCCGGCCGGC

GCGCCACGCCACC

A 

CGACCGGTGGATCC

CGTGGGCCAGGATT

CTCCTCGACGTC 

  Name Restriction Digestion 

Enzyme 

 Backbone CAG-RFP SmaI 

 

Table 2.20 Fragment Amplification and Backbone Restriction Digest for 

CAG-Ptk7ΔICM-T2A-RFP 

Plasmid Insert Forward Primer Reverse Primer 
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CAG-

Ptk7ΔICM-

T2A-RFP 

1- Ptk7 

(plasmid) 

2084bp 

CGGTACCGCGGGC

CCGGCCGGCCGGC

GCGCCACGCCACC

A 

ATACAAATTTTCAC

CCTGGATCATCTTG

TATGGGGGAGGG  

 2- t2a 

(plasmid) 

124bp 

TACAAGATGATCC

AGGGTGAAAATTT

GTATTTTCAATCTG 

CGACCGGTGGATCC

CGTGGGCCAGGATT

CTCCTCGACGTC 

  Name Restriction Digestion 

Enzyme 

 Backbone CAG-RFP SmaI 

 

Table 2.21 Fragment Amplification and Backbone Restriction Digest for 

CAG-sPtk7-T2A-RFP 

Plasmid Insert Forward Primer Reverse Primer 

CAG-

sPtk7-T2A-

RFP 

1- Kosak 

ATG 

(primer 

annealing) 

40bp 

GATCCAGCCTCCG

GGCCGGCCGGCGC

GCCACGCCACCAT

GGGAGCCCGCCCG

CTG 

CAGCGGGCGGGCT

CCCATGGTGGCGTG

GCGCGCCGGCCGG

CCCGGAGGCTGGA

TC 

 2- Ptk7 

(plasmid) 

600bp 

GCCACGCCACCAT

GGAAAAACTCAAG

TTCACGCCACCAC

C 

ATACAAATTTTCAC

CCTGGATCATCTTG

TATGGGGGAGGG 

 3- t2a 

(plasmid) 

124bp 

TACAAGATGATCC

AGGGTGAAAATTT

GTATTTTCAATCT

G 

CGACCGGTGGATCC

CGTGGGCCAGGATT

CTCCTCGACGTC 

  Name Restriction Digestion 

Enzyme 

 Backbone CAG-RFP SmaI 
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Table 2.22 Fragment Amplification and Backbone Restriction for CAG-

Vangl2-T2A-RFP 

Plasmid Insert Forward Primer Reverse Primer 

CAG-

Vangl2-

T2A-RFP 

1- Kosak-

Vangl2 

(plasmid) 

1586bp 

AATTCCTCGAGCTC

AAGCTTGCCGCCA

CCATGGACACCGA

GTCCCAGTACTCG

G 

CCTCTGCCCTCTCCG

GAGCCCACAGAGGT

CTCCGACTGCAGCC

GC 

 2- t2a 

(primer 

annealing) 

103bps 

TGCAGTCGGAGAC

CTCTGTGGGCTCCG

GAGAGGGCAGAGG

AAGTCTGCTAACA

TGCGGTGACGTCG

AGGAGAATCCTGG

CCCAGTCGCCACC

ATGGTGTCTAAG 

CTTAGACACCATGG

TGGCGACTGGGCCA

GGATTCTCCTCGAC

GTCACCGCATGTTA

GCAGACTTCCTCTG

CCCTCTCCGGAGCC

CACAGAGGTCTCCG

ACTGCA 

  Name Restriction Digestion 

Enzyme 

 Backbone CAG-RFP BstBI, AgeI 

 

2.2.5.7.1.3 Gibson assembly protocol 

Mastermix described above was defrosted on ice, and components added to the mix 

(Table 2.23). This reaction was incubated for 50°C for at least 15 minutes up to 

maximum of 60 minutes if 2 or more fragments were to be inserted. 2µl of reaction 

was then transformed in bacteria. The remainder was stored at -20°C to be transformed 

in future if needed. Control reactions containing backbone only were also carried out 

and transformed to check for self-ligation of the backbone.  

Table 2.23 Gibson Assembly Reaction  

Reagent Volume/Concentration  

Mastermix 10µl (x1) 

Backbone 50ng 
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Insert fragment(s) 1:3, 1:5 molar ratio (vector:insert) 

(50-250ng) 

Water up to10µl 

 

2.2.5.7.2 Using Conventional cloning and T4 ligase 

2.2.5.7.2.1 Designing primers to create fragments for conventional cloning 

Conventional cloning was used to create CAG-Pk1-RFP. For this, primers were 

designed to amplify fragments with appropriate restriction sites at their ends. 

Fragments were created using High Fidelity Q5 Polymerase. They then underwent 

digestion with fragment specific restriction enzyme (Table 2.24), gel purified and then 

used in T4 ligase reaction as described below Table 2.25. 

Table 

2.24 

Fragment Amplification and Backbone Restriction for CAG-Pk1-

T2A-RFP 

Plasmid Insert Forward Primer Reverse Primer 

Sequence Restriction 

site 

Sequence Restrictio

n site 

CAG-

Pk1-

T2A-

RFP 

Kosak-

Prickle 

CTAGCTCG

AGGCCGC

CACCATG

CCTTTGGA

GATGGAA

CC 

XhoI  

 

CTGCTCCACTCT

GGCTTTC 

EcoRI 

Prickle

-T2A 

GAGCAGG

TTTCGCTA

ACGAG 

EcoRI CATGGGCGCCT

GGGCCAGGATT

CTCCTCGACGT

CACCGCATGTT

AGCAGACTTCC

TCTGCCCTCTCC

GGAGCCAGAAA

TGATACAGTTTT

TGC 

KasI 

RFP CTAGGGC

GCCATGG

TGTCTAAG

KasI CATGGCGGCCG

CTCAATTAAGT

TTGTGCCCCA 

NotI 



   

 79 

 

2.2.5.7.2.2 Ligation of conventional cloning fragments using T4 Ligase 

Linear fragments created using conventional cloning techniques were ligated using T4 

ligase (NEB) according to manufacturer’s instructions Briefly, a 20µl reaction was 

carried out (Table 2.25) and left at 16°C overnight. Both 1:3 and 1:5 vector to insert 

molar ratio was used. The reaction was then heat inactivated by incubating for 10 

minutes at 65°C. 

Table 2.25 T4 DNA Ligase Reaction 

Component Amount  

T4 Ligase Buffer (x10) 2µl 

Vector DNA 40 – 75ng 

Insert DNA(s) 1:3, 1:5 molar ratio (vector:insert) 

Nuclease-free water up to 20µl 

T4 Ligase 1µl 

 

2.2.5.7.3 Preparation of gene specific p2lox plasmids  

To generate Wnt/PCP specific inducible cell lines, A2lox.Cre ES cells needed to be 

targeted via nucleofection with gene specific p2Lox plasmids (Iacovino et al., 2011, 

2014). To generate Wnt/PCP p2lox plasmids, the Wnt/PCP genes of interest (GOI) 

were subcloned into a p2Lox plasmid. P2lox plasmids and Wnt/PCP plasmids (Fig. 

2.1), underwent double digestion with either EcoRI (Ptk7 inserts) or XhoI and NotI 

(Pk1 and Vangl2). This allowed the excision of excess EGFP from the p2Lox plasmid, 

GGCGAAG

A 

 Name Restriction 

Digestion 

Enzyme 

  

Backb

one 

CAG XhoI & 

NotI 

  



   

 80 

and creation of gene of interest (GOI)-T2A-RFP insert from the Wnt/PCP plasmids. 

These pieces underwent gel electrophoresis and subsequent gel extraction and 

purification of the correct DNA fragments. P2lox plasmid backbone, and individual 

GOI fragments were ligated with T4 ligase. Correct ligation was confirmed by 

restriction digest and sequencing using forward and reverse primers.  Note that RFP 

alone plasmid was cloned by Matt Malaguti (Lowell Lab, MRC Centre for 

Regenerative Medicine). 

 

Figure 2.1 - Conversion of electroporation plasmids to generate p2lox inducible cell line plasmids.  
Wnt/PCP inducible cell lines were created by generating p2lox plasmids specific for each Wnt/PCP 
component. Wnt/PCP plasmids created for electroporation experiments (2.2.5.7), and p2lox backbone 
were digested with either EcoRI or XhoI and NotI, then underwent ligation to create final 
p2lox.Wnt/PCP plasmids for use in nucleofection to create Wnt/PCP cells lines.  
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2.2.5.8 pCR™-BluntII-TOPO plasmid 

DNA fragments were ligated to pCR™-bluntII-TOPO vector using Zero Blunt ™ PCR 

cloning kit (Invitrogen) according to manufacturer’s instructions. Briefly 4µl of 

purified PCR products were incubated with 1µl salt solution and 1µl pCR™-bluntII-

TOPO vector for 30 minutes at RT°C. The solution was then plated with the addition 

of 10µl of Xgal on Kanamycin selection agar plates. 

2.2.5.9 Preparation of selective bacterial plates 

LB-agar was prepared by the Wash Staff at the MRC CRM, by dissolving 1.5% 

Bacto™ Agar (BD) in LB. LB-agar was melted by microwaving the mixture and 

allowing it to cool but not set. The appropriate antibiotic was added at 1:100 dilution, 

and approximately 10mls of the mixture were poured into 90mm standard Petri Dishes 

(Sterilin). The LB-agar was left to solidify at RT°C before use. Plates were stored at 4 

°C for no longer than 2 weeks. 

Ampicillin 1000x stocks were prepared by dissolving 100mg ampicillin powder 

(Calbiochem) in 1ml DNase/RNase-free water (Gibco) and filtering the solution 

through a 0.22µm filter (Millipore). Kanamycin 1000X stocks were prepared by 

dissolving 50mg kanamycin powder (Calbiochem) in 1ml DNase/RNase-free water 

(Gibco) and filtering the solution through a 0.22µm filter (Millipore). Antibiotic stock 

aliquots were kept at -20°C, and upon thawing an aliquot was kept at 4°C for no longer 

than 3 weeks. 

2.2.5.10 Preparation of chemically competent bacteria 

A 3ml overnight culture was diluted into 200 ml of LB medium and incubated at 37°C 

with rotation at 180rpm until its optical density at a wavelength of 600nm (OD)600 

reached 0.6 absorption units. The bacteria were collected in 50ml sterile falcon tubes 

and centrifuged for 10 minutes at 4300rpm at 4°C. The pellet was re-suspended at 

25mls of ice cold 0.1M CaCl2, incubated for 25 minutes on ice and centrifuged as 

described above. The pellet was resuspended in 10ml of ice cold 0.1M CaCl2 and kept 

at 4°C overnight without rotation. 2ml of 80% glycerol were added and mixed gently 

with the bacterial solution, which was then divided into 200µl aliquots, snap frozen in 

liquid nitrogen and stored at -80°C. 
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2.2.5.11 Plasmid transformation into DH5α bacteria 

Plasmids were transformed into chemically competent DH5α Escherichia coli 

(Invitrogen) according to the manufacturer’s instructions. Fewer than 200ng of DNA, 

in a solution of 10µl or less, were added to an Eppendorf containing 50µl of DH5α 

bacteria thawed on ice, and gently mixed. The mixture was incubated on ice for 20 

minutes before being heated to 42°C for 50 seconds in a water bath, then placed on ice 

for a further minute. 100µl liquid LB was added to each reaction, and incubated at 

37°C in a thermoshaker for at least 45 minutes. The mixture was then plated on to 

selective preheated LB plates overnight at 37°C.  

2.2.5.12 Plasmid purification from bacteria 

To purify plasmid DNA from bacteria, clones of transformed bacteria were picked and 

inoculated in 5ml of LB medium supplemented with relevant antibiotic drug selection 

using 14ml Round Bottom Snap Cap tubes (Falcon). Bacteria were cultured in an 

incubated shaker (Incu-Shaker, Benchmark Scientific) set a 37°C/ 200rpm overnight. 

Bacterial cells propagating the plasmid DNA of interest were collected by 

centrifugation of the culture at 13000rpm for 10 minutes. Plasmid DNA was purified 

from the pellet using QIAprep Spin Miniprep Kit (Qiagen) or Qiagen Plasmid Maxi 

Kit (Qiagen). 

Quantity and purity of the purified DNA were determined and diagnostic restriction 

digestion and subsequent sequencing was performed. 

2.2.5.13 Plasmid sequencing 

Sequencing of plasmids was performed by GenePool service at the University of 

Edinburgh, making use of the BigDye ® Terminator Cycle Sequencing technology 

(Invitrogen). 6µl solution samples sent to the service consisted of 300-500ng plasmid 

DNA and 1µl of 3.2µM primer solution. Sequencing reads were analysed using ApE 

software. SNPs were checked using online databases. 
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2.2.5.14 Polymerase Chain Reaction (PCR)  

2.2.5.14.1 Platinum™ PFX PCR 

Platinum ™ PFX DNA Polymerase (ThermoFisher) was used to amplify DNA when 

high fidelity of amplification was needed. PCR using PFX was performed according 

to manufacturer’s instructions, reaction as follows, 

Table 2.26 PFX Reaction 

Reagent Volume Final Concentration 

10x PFX amplification buffer 5µl 1x 

50mM MgSO4 0.5 – 2µl  0.5 -2mM 

dNTP mix (10mM each) 1.5µl 300µM each 

Forward Primer (10µM) 1.5µl 300nM 

Reverse Primer (10µM) 1.5µl 300nM 

Platinum ® Pfx DNA 

Polymerase 

0.4µl 1unit/reaction 

10x PCRx Enhancer Solution 

(for optimisation) 

0-15µl Variable depending on 

optimisation 

Autoclaved, distilled water To 50µl  Variable 

 

Note that in cases where amplification was poor, 10x PCRx Enhancer Solution was 

used to enhance amplification. 

Thermal cycling was performed using a DNA Engine thermal cycler (BioRad) or 

TProfessional Standard Thermocycler (Biometra). The cycle conditions were, 

Table 2.27 Thermocycling PFX 

Step Temperature Duration (mins:sec) Repeats 

Initial 

Denaturation 

94°C 05:00  

Denaturation  94°C 00:15 <34 cycles 
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Annealing 57-72°C 00:30 

Extension  68°C 00:30+ 

(1:00 per kb) 

Final 

Extension  

68°C 5:00  

Annealing temperatures were based on manufacturers’ instructions and optimisation 

using NEB Tm Calculator online resource.  

2.2.5.14.2 Q5 PCR 

Thermal cycling was performed using Q5® High-Fidelity DNA Polymerase (NEB) in 

cases where PFX did not amplify the sequence efficiently due to limited primer within 

Gibson assembly protocols. 

PCR using Q5 was performed according to manufacturer’s instructions, reaction as 

follows, 

Table 2.28 Q5 Reaction  

Component Volume Final 

Concentration 

5x Q5 Reaction Buffer 10µl 1x 

10mM dNTPs 1µl 200µM 

10µM Forward Primer 2.5µl 0.5µM 

10µM Reverse Primer 2.5µl 0.5µM 

Template DNA Variable <1000ng 

Q5 High-Fidelity DNA Polymerase 0.5µl 0.02U/µl 

5x Q5 High GC Enhancer (for 

optimisation) 

0-10µl Variable 

Nuclease-Free Water Up to 50µl Variable 
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Note that in cases where amplification was poor and contained GC-rich targets 

(>65%), 5x Q5 High GC Enhancer Solution was used to optimise melting temperature 

(Tm) and improve specificity and/or yield of Q5 reactions.  

Thermal cycling was performed using a DNA Engine thermal cycler (BioRad) or 

TProfessional Standard Thermocycler (Biometra). The cycle conditions were, 

Table 2.29 Thermocycling for Q5 Reactions 

Step Temperature Duration 

(mins:sec) 

Repeats 

Initial 

Denaturation 

98°C 00:30  

Denaturation  98°C 00:10  

> x34 
Annealing 58-72°C 00:30  

Extension  72°C 00:30 per 

kb 

Final Extension  72°C 02:00  

 

2.2.5.14.3 Quantitative real time PCR (qRT-PCR) 

Quantitative real-time PCR was performed using the Roche LightCycler ® 480 Real-

Time PCR System, alongside the Universal ProbeLibrary (UPL) system, in which 

short nucleic acid probe coupled to a fluorophore and a quencher that specifically binds 

the DNA region to be amplified. Primers were tested on a cDNA sample and verifying 

the presence of a single amplicon on an electrophoretic gel. Serial dilution was run 

beside analysed samples. These serial dilutions consisted of diluted amplified 

amplicon or diluted cDNA samples. qRT-PCR experiments were carried out in 384-

well plates, using an 8µl reaction volume. This consisted of 4µl (1x) LightCycler ® 

480 Probes Master, 1.2µl of Water, 0.36µl of forward and reverse primers (10µM, 

450nM final), 0.08µl UPL probe (100nM final), and 2µl template cDNA. Cycling 

conditions according to manufactures instructions (45 cycles). 



   

 86 

To normalise expression values for each gene of interest for each biological sample, 

the average expression value of the gene of interest in 3 replicate reactions was divided 

by the average expression value of house-keeping genes (geomean of TBP and 

SDHA). Error bars were created by calculating the standard error of the mean between 

normalised replicates. All sample levels shown relative to 2i/LIF samples. 

2.2.6 RNA Methods  

2.2.6.1 Total RNA isolation 

Total RNA was extracted from cultured cells using the Absolutely RNA Miniprep Kit 

(Agilent Technologies), following manufacturer’s instructions. The concentration of 

the isolated RNA was measure using NanoVue Plus Spectrophotometer (GE 

Healthcare) or Nanodrop (ThermoScientific). 

2.2.6.2 cDNA synthesis 

First-strand cDNA synthesis was performed using M-MLV Reverse Transcriptase 

(Invitrogen) following manufacturer’s instructions. To digest the RNA template, 1µl 

(5U) RNase H (NEB), which specifically hydrolyses RNA which is hybridised to DNA 

was used according to manufacturer’s instructions. All samples were generated from 

the same predicted concentraton of RNA, and were diluted separately in the same 

volume water  

2.2.6.3 In situ hybridisation on whole mount embryos 

In situs were performed by Catarina Martins Costa and Filip Wymeersch. 

In situ hybridisation for Pk1 were conducted as described in (Cambray and Wilson, 

2007). Briefly to produce probes, gene specific primers for Pk1 NM_001028389 from 

(Okuda et al., 2007) were dissolved to 100µM and used in 50µl PCR reaction with Q5 

polymerase to pick up the amplicon from a pool of cDNA, prepared from RNA isolated 

from different embryonic Mouse tissues. The choice of cDNA was made on the 

relative abundance of the transcript in various tissues, reported in online databases 

(Unigene, NCBI). 

A small proportion of the PCR sample was electrophoresed on an agarose gel to check 

the presence of the amplicon. The remaining PCR sample was cleaned up using DNA 

Clean & Concentrator ™ columns (Zymo Research Corp), eluted and concentrated 
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into 6µl ddH2O. The concentration was quantified and maximum volume 3µl was used 

to clone the amplicon into pCR®II-TOPO® (Invitrogen), transformed in DH5α 

bacterial cells and plated on Kanamycin selection plates. Bacterial clones were picked 

and screened for the incorporation of the amplicon by extracting DNA and performing 

a diagnostic enzymatic digestion. The sequence and orientation of the amplicon was 

checked by DNA sequencing using M13 (-20) Forward and M13 Reverse (Invitrogen) 

sequencing primers. 

2.2.7 Cell Culture 

2.2.7.1 Cell lines 

2.2.7.1.2 Wild-type embryonic stem cell lines 

E14JU09 ES cells are a clonal line derived by the Transgenic Unit in our Institute from 

ES cells obtained from chimeric embryos generated with E14tg2a ES cells. They have 

a 129/Ola genetic background and are hypoxanthine phosphoribosyl transferase 

deficient. They have a high propensity for germline colonisation (observation made by 

the Transgenic Unit staff). 

2.2.7.1.3 Transgenic lines 

Ubiquitously expressing GFP cells used for grafting were, C2 (Guo et al., 2009) and 

A-EGFP (Gilchrist et al., 2003). A2.Lox cells used to make Wnt/PCP inducible cell 

lines were donated from Lesley Foresters (MRC Centre for Regenerative Medicine) 

which originated from (Iacovino et al., 2011, 2014). 

2.2.7.2 Incubation 

All cultures were incubated 37°C with 5% CO2. Cell lines were routinely checked for 

mycroplasma by PCR analysis (performed by Tissue Culture Staff). A Fastread 

haemocytometer (Kisker Biotech) was used to count cell numbers when required. 

2.2.7.3 LIF/FCS Culture 

Composition of undefined ES cell culture media hereinafter termed LIF/FCS are 

outlined in Table 2.30. 
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Table 2.30 LIF/FCS Media Composition 

Component Volume Components/Stock 

Concentration 

Final 

Concentration 

Glasgow Minimum Essential 

Medium (GMEM, Sigma) 

500mls   

Foetal Calf Serum (FCS, Gibco) 51ml  10% 

L-Glutamine/ pyruvate solution 11ml 5.5ml- 100mM 

sodium pyruvate 

(Invitrogen) 

5.5ml – 200mM L-

glutamine 

(Invitrogen) 

Sodium 

pyruvate 1mM 

L-Glutamine 

2mM 

Non-Essential Amino Acids 

(NEAA, Gibco) 

5.5mls  1x 

0.1M 2-mecaptoethanol 1.1ml   

LIF supplement (TC facility) 570µl 100,000U/ml 

(1000x) 

100U/ml (1x) 

 

Cells passaged in LIF/FCS were passaged when they reached approximately 80% 

confluency. To passage ES cells cultured in LIF/FCS, 9cm treated cell culture dishes 

were coated with 0.1% (w/v) gelatine (Sigma) in PBS for 15 minutes prior to cell 

passaging. The medium was aspirated from the cells, and the cells were washed twice 

with sterile PBS (Sigma). 0.05% solution of trypsin EDTA (1:5 dilution of 0.25% 

Trypsin EDTA, Gibco in PBS) was added to the culture, and moved to 37°C until cell 

detachment (usually 2 minutes). 10 volumes of LIF/FCS was then added to the cells 

to quench the trypsin EDTA. The cells were broken by pipetting up and down, 

transferred to universal tube(Sterilin) and spun at 300g for 3 minutes.  The medium 

was aspirated and the cell re-suspended in fresh LIF/FCS medium and plated at the 

desired density on the prepared gelatinised dish, after aspiration of the gelatine 

solution. Cells were split between 1:8 and 1:15 at each passage depending on the cell 

line. 
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2.2.7.4 Culturing ESCs on irradiated MEFs in LIF/FCS 

Donated MEFs were isolated and irradiated by Dr Aida Costa (Lowell Lab). The day 

before ES cells were to be added MEFs were defrosted and re-suspended in LIF/FCS 

media and plated on untreated 10cm tissue culture plates. The following day media 

was aspirated before ESC cells were added on top suspended in LIF/FCS media. Media 

was changed everyday, and cells passaged when cells became confluent. 

2.2.7.5 N2B27 Medium  

Components of chemically defined medium hereinafter termed N2B27 are outlined in 

Table 2.31. 

Table 2.31 N2B27 Media 

Composition 

Component Volume 

DMEM/F12 (Gibco) 25ml 

Neurobasal (Gibco) 25ml 

L-Glutamine (Invitrogen) 500µl 

2 -mercaptoethanol  100µl 

Non Essential Amino Acids 

(NEAAs)(Invitrogen) 

500µl 

N2 (Gibco) 250µl 

B27 (Gibco) 500µl 

 
2.2.7.6 2i/LIF Culture 

The composition 2i/LIF culture media is similar to the composition of N2B27 as 

described above except for the exclusion of NEAA, and with addition of 2 inhibitors, 

1µM PD0325901 (Axon) and 3µM CHIR99021 (Axon), and 100U/ml LIF (Table 

2.32). This media is herein termed 2i/LIF. 
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Table 2.32 2i/LIF Media 

Composition 

Component Volume 

DMEM/F12 (Gibco) 25ml 

Neurobasal (Gibco) 25ml 

L-Glutamine (Invitrogen) 500µl 

2 -mercaptoethanol  100µl 

N2 (Gibco) 250µl 

B27 (Gibco) 500µl 

LIF 50µl 

PD0325901/PD03 (Axon) 5µl 

CHIR99021/CHIR (Axon) 15µl 

 

To passage ES cells cultured in 2i/LIF, plates were coated in poly-L-ornithine (Sigma) 

(re-used) for at least 2 hours at 4°C. The poly-L-ornithine coating was removed and 

replaced with 5µg/ml laminin (Sigma) (v/v) in PBS for at least 2 hours at 4°C. The 

medium was aspirated from the cells, the cells washed with sterile PBS (Sigma) and 

Accutase (Sigma) was added to the cells. Cells were incubated in accutase at 37°C for 

no longer than 2 minutes, then this was quenched with 5 volumes of 2i/LIF media. 

Cells were detached by pipetting up and down until the majority of cells were 

detached, and then transferred to a universal (Sterilin) and pelleted at 400g for 3 

minutes. The medium was aspirated and the cells re-suspended in fresh 2i/LIF medium 

and plated at the desired density on the prepared poly/laminin coated plates, after 

aspiration of the laminin solution. Generally, cells cultured in 2i/LIF were seeded at a 

density of 100,000 cells/cm2 and passaged after 3 days or at a density of 50,000 

cells/cm2 and passaged after 4 days, and routinely plated on 6 well plates. 



   

 91 

2.2.7.7 EpiSC Culture 

The composition of EpiSC culture media, herein termed N2B27/Activin/FGF is the 

same as the composition of N2B27 as described above except that it is supplemented 

with fresh,  

• 20ng/ml (final) –Recombinant human/rat/Mouse activin A (Peprotech) 

• 10ng/ml (final) –Recombinant human Fgf Basic (R&D systems) 

To passage EpiSC, plates were coated with 7.5µg/ml bovine fibronectin (Sigma-

Aldrich) and were left at RT°C for at least 5 minutes. EpiSCs were passaged when 

they reached 60-80% confluency. Medium was aspirated from the cells, the cells 

washed with sterile PBS (Sigma) and 200µl of accutase (Sigma) was added. Cells were 

incubated at 37°C for about 1 minute, and then tapped carefully against the bench in 

order to detach and break cells into small clumps of about 4-8 cells. Accutase was 

quenched through the addition of un-supplemented N2B27 media. The desired density 

was then transferred to a universal (Sterilin) containing more N2B27 media. Cells were 

then pelleted through centrifugation at 300g for 3 minutes, the excess media aspirated 

and the cell re-suspended in Activin/FGF/N2B27, and plated on to the prepared 

fibronectin covered plates after aspiration of the fibronectin solution. EpiSC were 

routinely passaged in 6well plates at a density of 1:8 to 1:15 every other day depending 

on the cell line. 

2.2.7.8 Cryopreservation 

2.2.7.8.1 Cell Freezing 

To cryopreserve cells, they were subject to trypsinisation/accutase treatment and 

pelleting following standard passaging routines described above. Once the supernatant 

was aspirated off, the cells were re-suspended in FCS+10% dimethylsulphoxide 

(DMSO) for FCS based cultures, or in knockout serum replacement (KSR)(Gibco) 

+10% DMSO. 1ml of FCS/KSR +DMSO solution was used for each aliquot frozen 

(usually cells from a single 6 well plate well per aliquot). The resuspended cell solution 

was then aliquoted to a cryovial and immediately placed on dry ice. These were then 

transferred to -80°C for short-term storage or to liquid nitrogen tanks for long-term 

storage. 
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2.2.7.8.2 Cell Defrosting 

To defrost cells, prewarmed media appropriate to cell type was placed into a universal. 

The frozen aliquot of cells was thawed in a water bath at 37°C and immediately added 

to the aliquoted media. Cells were then pelleted and supernatant aspirated. The cells 

were re-suspended in the appropriate culture medium and plated on to pre-coated 

plates. 

2.7.7.9 Flow Cytometry 

2.7.7.9.1 Sample preparation  

Cell samples were prepared for flow cytometry by generating single-cell suspensions 

with standard passaging methods and following pelleting, the cells were re-suspended 

in a FACS buffer consisting of 4-10% FCS (v/v) in PBS. Cells were passed through a 

cell strainer into a 5ml tube (Falcon) and kept on ice. To distinguish live and dead 

cells, final concentration of 0.1µg/ml DAPI (Molecular probes) was added to each 

sample (dead cells being positive for DAPI). Flow analysis was performed on the LSR 

Fortessa (BD). The lasers used to excite each fluorophore, and the optical filters used 

to detect emissions are shown in Table 2.33. 

Table 2.33 Excitation and Emission Wavelengths of 

Fluorophores 

Fluorophore Laser Optical Filter (Fortessa) 

GFP 488nm B525/50 

RFP 561nm YG582/15 

DAPi 405nm V450/50 

 

2.7.7.9.2 Sample analysis 

Flow cytometry experiments were performed as recommended by the manufacturers 

equipment. The software used on the machines was FACSDiva. 10,000 cells were 

analysed for each sample, and E14Ju09 ES cells with and without DAPI staining were 

used as negative controls. Further negative controls are outlined with each experiment. 
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2.7.7.9.3 Data Analysis 

Data generated by the analysers was exported as ‘.fcs’ files. Analysis was performed 

with the FlowJo software. Debris was excluded by gating using forward scatter and 

side scatter. Comparison of the amplitude and height of the side scatter signal was used 

to exclude doublets. Dead cells were then excluded by gating for DAPI-negative cells. 

Gating to calculate percentages of positive and negative cells was performed using 

E14JU09 fluorescently negative cells unless stated otherwise.  

2.7.7.10 2i/LIF to EpiLCs Differentiation 

Similar to the protocol described in (Hayashi et al., 2011). 2i/LIF cells were LIFted as 

for passaging, counted and plated at specified density on plates pre-coated with 

7.5µg/ml bovine fibronectin (Sigma-Aldrich). Cells cultured in EpiLC media, a 

N2B27 based media, herein named N2B27/Activin/FGF/KSR, Table 2.34, 

supplemented with, 

• 20ng/ml (final) –Recombinant human/rat/Mouse activin A (Peprotech) 

• 10ng/ml (final) –Recombinant human Fgf Basic (R&D systems) 

Table 2.34 EpiLC Media Composition  

Component Volume 

DMEM/F12 (Gibco) 25ml 

Neurobasal (Gibco) 25ml 

L-Glutamine (Invitrogen) 500µl 

2 -mercaptoethanol  100µl 

Knock Out Serum Replacement 500µl 

N2 (Gibco) 250µl 

B27 (Gibco) 500µl 

 

2.7.7.11 In vitro derivation of Neuromesodermal Progenitors (NMPs) from 
Mouse EpiSCs 

The generation of in vitro neuromesodermal progenitors (NMPs) was performed as 

described in (Gouti et al., 2014). Briefly, following accutase treatment and spinning as 
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per normal passaging, EpiSCs were re-suspended, counted and plated at 2105cells/cm2 

in N2B27 media supplemented with  

• 3µM (final) CHIR99021 Wnt agonist (Axon) 

• 20ng/ml (final) –Recombinant human Fgf Basic (R&D systems) 

Herein termed N2B27/CHIR/Fgf EpiSCs were cultured in these conditions for 48-72 

hours, with media change when appropriate. 

2.7.7.12 Generation of transgenic inducible overexpressing ES cells 
(2i/LIF) 

Inducible overexpressing ES cells were generated using an inducible cassette 

exchange rapid recombination system described by (Iacovino et al., 2011, 2014). 

Briefly this system allows for rapid generation of conditional inducible murine ES 

cells by targeting genes into an Inducible Cassette Exchange (ICE) locus, a locus 

encoding a doxycycline-inducible floxed cre within the HPRT locus, which replaces 

itself with an incoming floxed gene of interest. This is achieved by generating p2lox 

plasmids of the gene of interest inserts (described in 2.2.5.7.3 and Fig. 2.1) and 

nucleofecting into A2lox.Cre Mouse ES cells. Cells lines to overexpress Ptk7, two 

Ptk7 dominant negative, Vangl2, Pk1 and RFP alone (control) were generated using 

this system.  

2.7.7.12.1 Removing A2lox.Cre mES cells from Mouse Embryonic Fibroblasts 
(MEFs). 

A2lox.cre Mouse ES cells were donated by Lesley Forrester’s lab (MRC, CRM) and 

were originally cultured in LIF/FCS conditions on irradiated MEFs. In order to remove 

irradiated MEFs from the culture the ESCs were treated with trypsin for 2 minutes, re-

suspended in ESC media, spun to remove trypsin and re-suspended in ESC media. To 

minimise MEF number in the culture this cell/media mix was then placed on an 

untreated 9cm dish for 45 minutes to an hour to allow MEFs but not ESCs to attach, 

then the supernatant containing ESCs was removed, cells counted and moved to 

LIF/FCS (29,090 cells/cm2 on gelatine) or 2i/LIF (10,526 cells/cm2 on pre-treated 

poly/laminin) culture conditions. Cells were then passaged as described in 2.2.7.3 

(LIF/FCS) and 2.2.7.6 (2i/LIF) until no MEFs were present in the culture. Numbers of 

MEFs remaining in LIF/FCS culture conditions decreased with increasing passaging, 
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however cells were prone to differentiation. Contrastingly in 2i/LIF conditions, MEF 

numbers were already negligible in early passages. Typically, by passage 3 no MEFs 

were present in the culture, and cells formed normal 2i/LIF cell colonies with minimal 

differentiation of cells. Due to the minimal differentiation of cells in 2i/LIF conditions, 

as well as low MEF numbers, this condition was chosen for nucleofection with 

generated p2Lox.Wnt/PCP plasmids. 

2.7.7.12.2 G148 Kill curve for 2i/LIF cell culture  

Upon nucleofection, the neomycin gene, downstream from gene of interest site, is 

repaired in cells correctly targeted, which allowed the use of G418 selection to screen 

for correctly targeted clones. As 2i/LIF does not contain serum, which may enhance 

G418 action, a titration of G418 was done using wildtype 2i/LIF ES cells to ensure 

that similar concentrations to (Iacovino et al., 2011, 2014) would not damage correctly 

targeted cells. A kill curve was performed in 2i/LIF conditions using 0-200µg/ml of 

G148. Following 5 days of treatment with G148 all cells in 200µg/ml treatment well 

had died, thus this concentration, which is the same as that for culture with serum, was 

used to check positively targeted cell lines following nucleofection. 

2.7.7.12.3 Recombination of p2lox plasmids in 2i/LIF Culture using 
nucleofection 

The day before harvesting A2lox cells for recombination, Cre expression was induced 

by treatment with doxycycline (dox) 1µl/ml, or left in culture without dox (-dox 

control). Poly-l-ornithine was added to 9cm treated dishes, one for each cell line plus 

control, which was left to incubate overnight in the fridge. The following day this was 

replaced with laminin and left for 2 hours in the fridge, until being replaced by 2i/LIF 

medium and prewarmed to reduce cell death by placing in the incubator.  

Dox was refreshed 2 hours before (except for the -dox control). The nucleofection kit 

used was the Lonza Amaxa P3 Primary Cell 4D nucleofector x L + Kit L (Lonza). 

Cells were accutased as normal and 500,000 cells were spun down for each construct, 

and resuspended in 82µl P3 4D nucleofector x solution and 18µl supplement. 4mg (or 

10µl maximum) miniprep DNA was added to each and mixed gently (Table 2.35). 

CAG-RFP plasmid was used as a positive control with -dox cells to get an idea of 

nucleofection efficiency. The plasmid/solution mix was transferred into the cuvettes 
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and gently tapped to ensure no bubbles were present between electrodes. Using a 4D 

Nucleofector ™ System, programme CG-104 for Mouse embryonic stem cells was 

applied to each cuvette. Contents of each cuvette was removed and added to pre-heated 

poly/laminin coated plate.  

 

 

2.7.7.12.4 Selection and expansion of single dox-inducible clones 

Nucleofection efficiency was checked after 2 days by examination of RFP expression 

in -dox control plate, and 200ng/µl of G418 selection in fresh media was added to each 

plate including this control. Once all the colonies in the -dox control were dead, usually 

7 days, single colonies from nucleofected plates for each construct were transferred to 

pre-coated wells of a 96 well plate, and pipetted up and down to make into single cells. 

These cells continued to be passaged once they reached confluency into subsequently 

bigger wells until they reached 6 well plate. The induction of each clone was tested by 

flow cytometry and clones with high induction were then frozen until needed. 

  

Table 2.35 Concentration of P2Lox Plasmids Used for 

Nucleofection  

Plasmid DNA Conc  Volume Final Conc 

p2lox:CAG-Ptk7-T2A-RFP 240ng/µl 10µl 2.40µg 

p2lox:CAG-Ptk7ΔICM -

T2A-RFP 

275ng/µl 10µl 2.75µg 

p2lox:CAG-sPtk7-T2A-RFP 257ng/µl 10µl 2.57µg 

p2lox:CAG-Vangl2-T2A-

RFP 

213ng/µl 10µl  2.13µg 

p2lox:CAG-Pk1-T2A-RFP 417ng/µl 6µl 2.50µg 

p2lox:RFP (control) 543ng/µl 4.7µl 2.55µg 
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2.7.7.12.5 Recombination to generate cell lines 

Pk1 clone picking and induction efficiency analysis was carried out by MSc Student Catarina Martins Costa 

Recombination via nucleofection of A2lox.Cre cell lines with PCP p2Lox plasmids 

was conducted for all plasmids to create individual cells lines. Control RFP only cell 

line was also generated using P2Lox-RFP plasmid created by Mattias Malaguti 

(Lowell Lab). Overall targeting efficiency was high, and following G148 selection, at 

least 100 colonies survived for each cell line from the initial 50,000 cells that were 

nucleofected. Individual cell colonies were picked, passaged through gradually bigger 

wells, and the induction efficiency tested.  
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Chapter 3: Examining polarity in NMP regions 
during axial elongation 

1.1 Introduction & Aims 

From the comprehensive review of published in situ hybridisations and functional data 

for Wnt/PCP components, several questions remain concerning the full spatial and 

temporal profile of these components and tissue polarity, specifically in NMP regions. 

This information is key to understanding the role of Wnt/PCP signalling in the 

regulation of NMP behaviour and as such makes the three specific aims of this chapter, 

outlined below, 

(1) Despite published in situ hybridisation data for many Wnt/PCP components it 

remains unknown if many of these components are expressed in NMP regions during 

axial elongation. I aim to provide a more fine-grained description of their role in NMP 

regions by performing in situ hybridisations of Wnt/PCP components, and 

comprehensively examine the NMP regions, NSB, CLE and CNH during axial 

elongation.  

(2) Establishment of Wnt/PCP in individual cells and propagation of tissue polarity to 

neighbouring cells is reliant on asymmetric distribution of many core Wnt/PCP 

components, including Vangl and Pk. When Wnt/PCP is not active these core 

components are uniformly distributed. Thus, examination of mRNA alone cannot 

provide conclusive evidence that Wnt/PCP is active. For Wnt/PCP activity to be 

determined the localisation of Wnt/PCP component proteins needs to be examined. I 

aim to examine the profiles of Wnt/PCP components at a protein level to decisively 

determine if Wnt/PCP is active in NMP regions.  

(3) An alternative but underutilised system to investigate cell polarity is through the 

examination of organelle positioning within the cell. This strategy has been exploited 

primarily in flat epithelial systems to understand Wnt/PCP polarity, but has also been 

used in early embryo development to understand cell polarity and cell movements 

during gastrulation. So far NMP regions have not been examined, and therefore for the 

final objective I aim to use a similar strategy to understand more about polarity of 

NMPs and cell movements that occur in NMP regions. 
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3.2 NMP regions across axial elongation express Pk1 

In situ hybridisations were performed and images assembled by MSc Student Catarina Martins Costa  

Despite previous documentation of Wnt/PCP component expression profiles using in 

situ hybridisation these were not focused on NMP-containing areas, and thus their 

localisation in these areas remained unclear. Therefore, in situ hybridisation probes 

were cloned and transcribed for Pk1, results documented in Figure 3.1. Pk1 mRNA 

was present at all examined stages, from E7.5 to E10.5. At E7.5 and E8.5 Pk1 detection 

was broadly expressed in the embryo, including posterior tissues: node, primitive 

streak and adjacent CLE (Fig. 3.1A-B). This is in alignment with previous reports 

which describe its expression in these areas (Crompton et al., 2007). At E9.5 and E10.5 

Pk1 mRNA was found along the full length of the embryo (anterior and posterior 

tissue) (Fig. 3.1C-D). Examining tail bud sections confirmed expression of Pk1 in the 

mesoderm (somites and tail bud), neural tube, gut and the CNH. 

Note that intense localised labelling was present along the amniotic cavity at E7.5 and 

the gut at E9.5. As this was limited to the edges of cavities which are prone to probe 

trapping, and because asymmetric distribution of Pk1 mRNA has not been previously 

reported it was assumed to be an artefact of probe trapping.  

In summary Pk1 mRNA was found to be broadly expressed in early stages of 

embryonic development (E7.5-E10.5) including NMP containing regions (NSB and 

CLE and CNH).  

3.3 Examining localisation of Wnt/PCP component 
protein distribution in NMPs 

In the absence of comprehensive information on the protein localisation of Wnt/PCP 

components in NMP regions, antibodies for these were sourced and trialled. Antibody 

performance was assessed by similarity to published protein distribution either at the 

cellular level (location within the cell), or tissue level. Where possible positive controls 

were used alongside samples, and chosen based on information from published data as 

well as online resources (Unigene, NCBI). In total 32 antibodies were tested, details 

of which are outlined in Table 3.1. 
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Figure 3.1: In situ 
hybridisation for Pk1. 
Figure shows 
wholemount in situ 
hybridisation to 
detect Pk1 in (A) 
E7.5, (B) E8.5, (C) 
E9.5 and (D) E10.5 
wholemount (W) 
embryos, and 
corresponding 
transverse (T) and 
sagittal (S) sections. 
PS- primitive streak, 
PT- probe trapping, 
Post - posterior, Ant - 
Anterior, PXM - 
paraxial mesoderm, 
NOTO- notochord, 
TBM - tail bud 
mesoderm, G-Gut, 
NT- neural tube, CNH 
chordoneural hinge. 
Tiled microscopic 
acquisitions were 
stitched using FIJI 
software (Preibisch et 
al., 2009). 
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Four antibodies were adequate for reliable protein visualisation following 

optimisation. These were: anti-Ptk7 17799-1-AP (Proteintech), anti-Ptk7 ab62074 

(Abcam), anti-Fzd6 AF1526 (R&D) and anti-Vangl2 ABN373 (Merck Millipore). 

These were utilised to further examine protein distribution in NMP-containing areas 

during axial elongation. 

3.3.1 NMPs express Ptk7 protein during axial elongation (early 
headfold to E13.5) 

All three antibodies recognising Ptk7 protein showed specific and strong staining. Ptk7 

Abcam 62073 will not be discussed further as the other antibodies showed superior 

staining. Ptk7 had been only briefly described in the literature, with mRNA reported 

to be predominantly found in caudal regions from headfold stage to E9.5 (Paudyal et 

al., 2010). Additionally its protein had been described as non-asymmetrically localised 

to the cell membrane using commercially unavailable transgenic reporter lines and 

generated antibodies (Lu et al., 2004; Paudyal et al., 2010; Yen et al., 2009). 

Immunohistochemistry using Ptk7 Abcam-62074 antibody was performed on 

transverse sections for E9.5, E10.5 and E12.5 (Fig. 3.2, Fig. 3.3). Throughout these 

examined stages Ptk7 protein was always localised to the cell membrane and levels in 

anterior sections were very low, in keeping with published reports of Ptk7 localisation. 

In E9.5 anterior tail bud sections, Ptk7 expression was highest in the neuroectoderm 

and flanking paraxial mesoderm, but was also present in the notochord, and the dorsal 

gut (Fig. 3.2A). Strikingly more ventral regions of the gut, the intermediate and ventral 

mesoderm appeared to have relatively lower levels of Ptk7. In more posterior sections 

Ptk7 was expressed in all tissues to some level (Fig. 3.2B). Expression was highest in 

all mesoderm and neuroectoderm, including dividing cells, characterised by rounded 

morphology, condensed chromosomes and location on the ventricular surface of the 

emerging neuroectoderm (Fig. 3.2C) as noted previously (Noctor et al., 2001). In these 

sections Ptk7 protein expression was lowest in the notochord and gut. Overall Ptk7 

expression at E9.5 was generally broad, with specific levels of expression dependent 

on specific tissue type. 
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Table 3.1: Details of trialled Wnt/PCP component antibodies. 
Table documents all antibodies trialled to detect Wnt/PCP component proteins. Outlined are general antibody details, including source, catalogue number, species the 
antibody was produced in, clonal type and any associated publications using the antibody are outlined. Additional details of histological protocol used in the trial are 
outlined, including tissue fixation type, embryo stage of tissue, positive control tissues and the dilutions trialled. Finally details of antibody performance, rated from ‘-
‘  were no adequate staining was observed to ‘***’ when antibody performance was the best. PFA – Paraformaldehyde, PFA-T - Paraformaldehyde with triton, TCA – 
Trichloroacetic Acid, Conn. Tissue – Connective Tissue. 
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Figure 3.2 Ptk7 protein profile in E9.5 tail bud sections, using Abcam-Ab62074. 
Figure details immunohistochemistry of Ptk7 protein performed using Abcam 62074, on E9.5 Mouse 
transverse tailbud sections. Schematic shows approximate anterior to posterior positioning of (A) 
anterior tailbud and (B) posterior tailbud sections. Ptk7 protein is membrane bound and expressed 
highest in neuroectoderm (NE), notochord (NOTO) and dorsal gut, and low in lateral mesoderm (LM) 
in anterior sections (A). In posterior tail bud sections Ptk7 is expressed highest in NE (including dividing 
cells, arrowhead in (C)), NOTO and lowly in the gut. RainbowRGB look up table (LUT)/ colourmap 
applied to Ptk7 expression level in A’’ and B’’. Captured image intensity values from 0 (low) to 255 
(high) were transformed to a specific colour along the LUT/colour map spectrum detailed above 
images. 

 

At later stages, E10.5, E12.5, (Fig. 3.3A-C), Ptk7 protein was present at some level in 

all tail bud tissue, but highest in the mesoderm. Akin to observations at E9.5 stages, 

the gut and the notochord had relatively low level of expression. However, unlike at 

E9.5 the neuroectoderm, which at this stage has closed to form the neural tube, it was 

relatively much lower, and similar to that of notochord, gut and surface ectoderm. 

Additionally, at these stages Ptk7 appeared to be apically localised within the posterior 

neural tube.  

Overall Ptk7 protein recognised by this antibody had a broad expression pattern in the 

tail bud during axial elongation. Generally, Ptk7 levels in the tail bud were highest in 
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the open neuroectoderm and mesoderm, and relatively low in the notochord, gut, 

surface ectoderm and closed neural tube.  

 

 

Figure 3.3 Ptk7 protein profile in E10.5 and E12.5 tail bud sections, using Abcam-Ab62074. 
Figure details immunohistochemistry of Ptk7 protein performed using Abcam Ab62074, on (A) E10.5 
and E12.5 Mouse transverse (B) anterior and (C) posterior tail bud sections. Ptk7 protein is membrane 
bound and expressed highest in the mesoderm, including paraxial mesoderm (PXM). Ptk7 is lowest in 
surface ectoderm (SE), notochord (NOTO), neural tube (NT) and gut. RainbowRGB look up table (LUT) 
applied to Ptk7 expression level in A’’,B’’ and C’’, LUT details above images. 

 

Immunohistochemistry was also performed using Ptk7 antibody from Proteintech- 

17799-1, which was a more sensitive antibody than the one previously described from 

Abcam. The performance of the antibody afforded the opportunity to do wholemount 

staining on early embryos in addition to those performed on sections. During 

wholemount immunohistochemistry the amniotic membranes of the embryo was 

pierced to allow the antibody to access the epiblast.   
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Figure 3.4 – Ptk7 protein profile at early headfold stage, using Proteintech 17799-1. 
Immunohistochemistry of Ptk7 protein using Proteintech 17799-1 on wholemount embryos at early 
headfold. Yellow dashed line on schematic indicates approximate parasagittal z-slice shown in (A) and 
(B). Ptk7 is high in the node. In anterior tissue (Ba) Ptk7 is expressed highly in developing foregut (FG). 
In posterior regions (Bb), Ptk7 is expressed in cells of the epiblast (EPI) and adjacent mesoderm (M). 
Ptk7 – Grayscale or Rainbow LUT, details of which are detailed below the image. Posterior to right-
hand side in A-B. 

 

In wholemount early headfold embryos, Ptk7 was expressed highest in cells at the 

distal and posterior regions of the embryo, most notably the mesoderm cells flanking 

the primitive streak (Fig. 3.4Bb) and the edge of the node (Fig. 3.4A-B). Adjacent cells 

of the epiblast also expressed Ptk7 but at a lower level, and extraembryonic cells were 

negative. In the anterior of the embryo cells of the foregut also express Ptk7 (Fig. 

3.4Ba). 
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Figure 3.5 – Ptk7 protein profile at late headfold stage, using Proteintech 17799-1. 
Immunohistochemistry of Ptk7 protein using Proteintech 17799-1 on a parasagittal section from head 
fold stage embryo. Yellow dashed line on schematic indicates approximate medial-lateral position of 
section shown in (A-C). Ptk7 expression is high cells of the node (P-Pit cells) and node-streak border 
(NSB) (arrows, D-E). Additionally, Ptk7 is expressed in NMPs of the caudal lateral epiblast (CLE), and 
adjacent mesoderm (M). Anterior (left), Posterior (right). 

 

In late head fold stage para-sagittal sections Ptk7 protein was highly expressed in the 

posterior of the embryo compared to the anterior (Fig. 3.5A-C). Ptk7 appeared to be 

lower in the cells of the node pit, labelled by high brachyury expression however 

surrounding cells, including cells at the node streak border expressed high levels of 

Ptk7 (Fig. 3.5D-E) as did mesoderm cells and adjacent caudal lateral epiblast (CLE) 

(previously epiblast).  

Wholemount immunohistochemistry was additionally performed on embryos 

undergoing somitogenesis, and embryos imaged with confocal microscopy. 

Comparable Ptk7 protein profiles were found to that described for headfold stages. 

Looking transversely, cells in the anterior head folds show minimal levels of Ptk7 
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protein when compared to cells in the posterior of the embryo (Fig. 3.6A). Cells of the 

primitive streak and newly formed mesoderm, had the highest level of Ptk7 protein, 

whilst adjacent NMPs in the CLE showed a medium level of Ptk7 expression which 

was the most intense in dividing cells on the apical surface (Fig. 3.6Bc). Panning 

through z-slices confirmed the intensity of Ptk7 protein was consistent in NMPs 

throughout all distal to proximal levels of the CLE (Fig. 3.6Ba-f). Cells of the ventral 

node and NSB had high levels of expression akin to that for newly formed mesoderm, 

whilst cells of the dorsal node had similar levels to cells of CLE. 

Immunohistochemistry on E9.5 transverse tissue showed differential staining to the 

alternative Ptk7 Abcam-62074 antibody. Unlike the previous antibody, the notochord 

and gut were positive for Ptk7, as confirmed with T(Bra) double staining (Fig. 3.7A-

C). Opposing previous observations, the same level of Ptk7 was seen throughout the 

whole transverse section and not just in cells of the mesoderm and neuroectoderm 

which had been reported before. Akin to previous stages, dividing cells in the neural 

tube had intense Ptk7 staining (Fig. 3.7B).  

To investigate Ptk7 protein profile across tissues in more detail, 

immunohistochemistry was performed on sagittal sections. This also afforded the 

examination of the CNH, were the NMPs reside. Sagittal sections confirmed a 

consistent level of Ptk7 protein in the gut, neural tube and notochord (Fig. 3.7D-I). 

Overall Ptk7 protein expression was highest in the neuroectodermal folds and tail bud 

mesoderm., and lower in the ventral gut and underlying lateral mesoderm. 

Additionally, there was a general decrease of Ptk7 protein from posterior to anterior 

tissue, in line with observations using the other antibody. Double staining of T(Bra) 

and Ptk7 allowed close examination of the CNH, where the NMPs reside (Fig. 3.7E-

I). Ptk7 was present within the CNH at the same level as surrounding notochord, neural 

tube, gut and tail bud mesoderm. 

To examine whether this pattern in the tail bud persisted into later embryonic stages, 

Ptk7 immunohistochemistry was performed on sagittal sections from E10.5 -E13.5 tail 

bud (Fig. 3.8A-D). At all stages a gradient of Ptk7, high in posterior, low in anterior 

tissue was observed. Ptk7 protein was broadly expressed throughout the tail bud. 
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Unlike the previous antibody no reduction of Ptk7 in the neural tube was found from 

E10.5 – E13.5. 

 

Figure 3.6 – Ptk7 protein profile at early somitogenesis, using Proteintech 17799-1. 
Immunohistochemistry of Ptk7 protein using Proteintech 17799-1 on a wholemount early 
somitogenesis embryo. (A) Single transverse z-slice, Ptk7 is low in headfolds (HF), high in the caudal 
embryo (right). Yellow dashed lines on schematic indicates approximate transverse z-slices of 
magnified caudal embryo shown in (Ba-f). Ptk7 is consistently expressed in NMPs of the caudal lateral 
epiblast (CLE) including those dividing (Bc, arrowheads), cells of the mesoderm (M) and primitive 
streak (PS), node-streak border (NSB, Be) and node (f).  
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Figure 3.7 – Ptk7 protein profile in E9.5 tail bud, Proteintech 17799-1. 
Immunohistochemistry of Ptk7 protein using Proteintech 17799-1, on E9.5 Mouse transverse (A-C) and 
sagittal sections from E9.5 (D-I). T(Bra)-red, marks mesoderm including notochord. In transverse 
sections (A-C) Ptk7 is expressed in all tissue types, including neuroectoderm (NE) including dividing 
cells (arrowhead), notochord (NOTO), gut and paraxial mesoderm (PXM). Sagittal sections (D-H), and 
magnification (E-I). Ptk7 is expressed highly in posterior tissues, including chordoneural hinge (CNH)-  
red dashed box, Ptk7 expression is lowest in lateral mesoderm (LM). Anterior to left, posterior to right 
for sagittal sections. Ptk7 – Grayscale or Rainbow LUT(detailed below the image).  



   

 110 

 

Figure 3.8 – Ptk7 protein profile in E10.5 - 13.5 tail bud, Proteintech 17799-1. 
Immunohistochemistry of Ptk7 protein using Proteintech 17799-1, Mouse (A) E9.5, (B) E11.5, (C) E12.5 
and (D) E13.5 sagittal sections. Ptk7 is highest in the posterior tail bud but is generally expressed in all 
tissue types, including tail bud mesoderm (TBM), paraxial mesoderm (PXM), neural tube (NT), and gut. 
Ptk7 – Grayscale or Rainbow LUT (detailed below images). DAPI- Blue. 
 

In summary both antibodies performed well and reported membrane bound Ptk7 

protein highly expressed in the posterior tissues as reported previously in the literature 

via in situ hybridisation (Lu et al., 2004; Paudyal et al., 2010; Yen et al., 2009). Both 

antibodies showed Ptk7 immunofluorescence in cells located in the posterior portion 

of the embryo from the streak stage right up until the end of axial elongation at E13.5. 

However notable differences in Ptk7 protein localisation were found between two Ptk7 

antibodies. The second antibody from Proteintech detected Ptk7 broadly in all tissues 

of the tail bud at all stages, however the first antibody from Abcam did not detect Ptk7 

protein in the closed neural tube, notochord and gut. This is likely to reflect the 

detection of different Ptk7 epitopes by the two antibodies. The first antibody, Abcam 

62074, recognises a 15 amino acid peptide towards the N-terminus of Ptk7 protein 

found in the extracellular domain. The second antibody, Proteintech 17799-1-AP, 

conversely recognises a peptide sequence towards the C-terminal of Ptk7 protein, in 
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the cytoplasmic domain. Between these two antibody recognition sites lies the region 

at which Ptk7 can be cleaved by MMP14, which results in the production of a N-

terminal soluble fragment and membrane bound C-terminal (Golubkov et al., 2010). 

Thus observed differences in Ptk7 protein localisation between these antibodies is 

likely to reflect the differences in Ptk7 protein state, with the first (Abcam 62074) 

detecting non-cleaved Ptk7 absent for the notochord, gut and neural tube, and the 

second (Proteintech 17799-1-AP) detecting both cleaved and uncleaved Ptk7 protein 

throughout the tail bud.  

3.3.2 Notochord and anterior NSB/CNH cells express Fzd6 
protein during axial elongation (late headfold - E13.5) 

Previously Fzd6 had only been briefly described in the literature, in which mRNA was 

reported to be expressed along the entire length of the notochord and underlying 

endoderm from E8.5 to E9.5. However posterior limits of this expression at these 

stages were not shown in detail and expression patterns at other timepoints remain 

unknown (Borello et al., 1999). Similarly little had been reported on Fzd6 protein in 

posterior tissue during development, although it had been reported as asymmetrically 

localised within cells of the inner ear and in the Mouse epidermis (Devenport and 

Fuchs, 2008; Wang et al., 2006). To examine some of these unknowns, successful 

immunohistochemistry staining for Fzd6 protein was obtained using Fzd6-AF1526 

(R&D) on Mouse embryo sections from late headfold to E13.5 (Fig. 3.9). 

At late headfold Fzd6 protein, was localised to the cell membrane, and was restricted 

to cells in the distal region of the embryo specifically those of the notochord, ventral 

node, crown of the node and node streak border (NSB) (Fig. 3.9A). Fzd6 was highest 

in the ventral node, and was flanked by two areas of lower expression, the notochord, 

and the node streak border (NSB) (Fig. 3.9B). In these cells Fzd6 does not appear to 

be asymmetrically localised. Cells of the dorsal node (DN) and the primitive streak 

were negative. 

In E9.5 transverse tail bud sections, Fzd6 protein was expressed highly in the 

notochord, and at relatively lower levels in gut, highest in cells adjacent to the 

notochord (Fig. 3.9C-D). Additionally, expression was found in the surface ectoderm 

(SE) including the ventral ectodermal ridge of the tail bud (Fig. 3.9C) aligning with 
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previous reports of Fzd6 in Mouse epidermis (Devenport and Fuchs, 2008). All other 

cells including those of the neural tube were negative for Fzd6 protein. Sagittal 

sections showed that this pattern was not limited to posterior tissue, but was also found 

in anterior regions of the notochord (Fig. 3.9E). In CNH regions, Fzd6 was 

predominantly expressed in cells of the notochord, including those cells in the CNH 

(Fig. 3.9F). 

This expression of Fzd6 protein along the length of the notochord, and underlying gut 

continues from E11.5 to E13.5 (Fig. 3.10A-F). Throughout this time the notochord 

exhibited high level of Frizzled protein, with adjacent underlying gut also expressing 

Fzd6 protein but to relatively lower levels. Fzd6 was also detected at low levels in the 

surface ectoderm. In all regions were Fzd6 was found to be expressed it was 

predominantly localised to the cell surface but did not appear asymmetrically localised 

within individual cells. 

Consistent with this data, previously Fzd6 mRNA had been reported in the notochord 

and the gut between E8.5-E10.5 (Borello et al., 1999). Thus, Fzd6 is expressed most 

highly in the notochord, including cells immediately underlying NMP-containing 

areas in NSB and CNH, and additionally in the gut and surface ectoderm throughout 

axial elongation. In these areas Fzd6 did not appear to be asymmetrically localised in 

individual cells, unlike the previously reported distribution of Fzd6 in the inner ear and 

Mouse epidermis (Devenport and Fuchs, 2008; Wang et al., 2006). 
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Figure 3.9– Fzd6 protein profile 
from late headfold to E9.5 
tailbud. 
Immunohistochemistry of Fzd6 
protein on sagittal and transverse 
mouse tail bud sections from (A-
B) late headfold, (C-D) E9.5 
transverse (E-F) E9.5 sagittal 
embryos. Fzd6 is expressed in 
cells of the notochord (noto), 
node, crown and most anterior 
node-streak border (NSB). Fzd6 
protein is expressed throughout 
the notochord, including 
chordoneural hinge (CNH), 
underlying endoderm and 
surface ectoderm at E9.5.  
Notochord (NOTO), surface 
ectoderm (SE), tail bud 
mesoderm (TBM), 
neuroectoderm (NE), paraxial 
mesoderm (PXM), ventral 
ectodermal ridge (VER). Fzd6 – 
Grayscale or Rainbow LUT 
(detailed above images). DAPI- 
Blue. Auto-fluorescent red blood 
cells are labelled yellow with 
overlay.  
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Figure 3.10 – Fzd6 protein profile 
from E11.5 to E13.5 tailbud. 
Immunohistochemistry of Fzd6 
protein on sagittal and transverse 
mouse tail bud sections from (A-B) 
E11.5, (C-D) E12.5 and (E-F) E13.5 
embryos. Fzd6 protein is 
expressed throughout the 
notochord, including 
chordoneural hinge (CNH), 
underlying endoderm and surface 
ectoderm from E11.5 to E13.5. 
Notochord (NOTO), surface 
ectoderm (SE), tail bud mesoderm 
(TBM), neuroectoderm (NE), 
paraxial mesoderm (PXM). Fzd6 – 
Grayscale or Rainbow LUT 
(detailed above images). DAPI- 
Blue. Auto-fluorescent red blood 
cells are labelled yellow with 
overlay.  
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3.3.3 NMPs express Vangl2 protein during axial elongation 
(early headfold - E13.5) 

Previously Vangl2 had only been briefly described in the literature, in which mRNA 

was reported to be expressed in neuroectodermal tissues from E7- E10 (Kibar et al., 

2001; Pryor et al., 2014; Torban et al., 2008). Its expression was also described in non-

neural tissues in caudal regions however the exact localisation of this was not shown 

in any detail. To examine these unknowns immunohistochemistry for Vangl2 was 

performed with Vangl2-ABN373 antibody (Merck Millipore) on sections throughout 

axial elongation. As Vangl2 protein had previously been reported to be asymmetrically 

distributed in tissues with active Wnt/PCP signalling (Gao et al., 2011), careful 

attention was given to the localisation of Vangl2 protein.  

In late headfold embryos Vangl2 protein, which was found to be localised to the cell 

membrane, was expressed broadly throughout the embryo (Fig. 3.11A-B). Generally, 

the level of Vangl2 expression was lowest in anterior tissue. At the distal regions 

Vangl2 protein was highest in cells of the notochord, ventral node and crown of the 

node (Fig. 3.11C). Cells surrounding these areas, including cells of NSB, and dorsal 

node, also expressed Vangl2, but at lower levels. Asymmetric localisation of Vangl2 

was hard to determine in these sections due to the 3D nature of the tissue that was 

sectioned.  

At early somitogenesis stage the difference in expression levels between anterior and 

posterior tissue was more established (Fig. 3.11D). Cells of the headfold had relatively 

lower levels of Vangl2 than in cells at the posterior of the embryo (Fig. 3.11E-F). Both 

newly formed presomitic mesoderm and CLE, where NMPs reside, expressed Vangl2 

to the highest levels, however it was difficult to assess if its localisation was 

asymmetric within cells (Fig. 3.11E).  

This trend continued to later stages of somitogenesis (3-4 somites), when high levels 

of Vangl2 protein were found at the posterior of the embryo, as well as in the  
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Figure 3.11 – Vangl2 protein profile in late head fold and early somitogenesis embryos. 
Immunohistochemistry of Vangl2 protein on (A-C) late headfold, and early somitogenesis (D-F) mouse 
sagittal sections. In late headfold embryos, Vangl2 is expressed in the posterior of the embryo (A-B) 
including cells of the epiblast, and in cells of the notochord (noto), node, crown and node-streak 
border (NSB), red boxed region (C). Dorsal node (DN) has lower Vangl2 expression. In early 
somitogenesis embryo sagittal sections (D) Vangl2 is expressed highly in posterior tissues (E), including 
NMPs in the caudal lateral epiblast (CLE) and presomitic mesoderm (M). Vangl2 is lower in anterior 
headfolds (F). Vangl2 – Grayscale or Rainbow LUT (detailed above images). In all images, anterior to 
left, posterior to right. 
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developing somites (Fig. 3.12A-C). At this stage, Vangl2 protein was present in the 

cells of the presomitic mesoderm, and in NMPs residing in the CLE. In some cells of 

the CLE Vangl2 protein appeared to be predominantly localised to lateral membranes 

rather than apical (cavity-facing) or basal (basement membrane-facing) cell 

membranes, suggesting that Vangl2 may be asymmetrically localised in these cells 

(Fig. 3.12D-G). Some cells in the presomitic mesoderm also appeared to have 

enhanced Vangl2 protein on some membranes relative to others however a pattern in 

the specific membrane localisation was not clear (Fig. 3.12D-G).  

 

Figure 3.12 – Vangl2 protein profile in 3-4 somite embryos. 
Immunohistochemistry of Vangl2 protein on a sagittal 3-4 somite embryo section. Vangl2 is expressed 
in several tissues including paraxial mesoderm (PXM) (A-C). Magnified posterior regions (D-G), show 
asymmetric Vangl2 protein localisation (arrowheads) in many NMPs of the caudal lateral epiblast (CLE) 
and some cells of the presomitic mesoderm (M). Vangl2 – Grayscale or Rainbow LUT (detailed above 
images). In all images, anterior to left, posterior to right. 
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At E9.5 Vangl2 protein had a wide distribution across the tail bud. (Fig. 3.13A-B). 

Inspection of the CNH, verified by T(Bra) expression, showed that Vangl2 was highest 

in the notochord, but was also present in surrounding tissue including the CNH, where 

NMPs reside, as well as cells in the gut and neuroectoderm (Fig. 3.13C-D). In more 

anterior tissue, the neural tube was positive for Vangl2, whilst flanking somites 

(paraxial mesoderm) were negative (Fig. 3.13E).  

At later stages, E10.5-E12.5 (Fig. 3.13G-O), Vangl2 expression remained broad in the 

tail bud, however cells of the notochord had higher levels of Vangl2 protein, just as in 

E9.5 (Fig. 3.13I,L,O). As described previously for E9.5, tissue surrounding the 

notochord remained positive for Vangl2, but at a lower level. In anterior tailbud 

Vangl2 expression in the neural tube remained high whilst flanking somites had 

relatively lower levels of Vangl2 (Fig. 3.13M). At all stages from E9.5- E12.5 it was 

hard to determine if Vangl2 protein distribution within cells was asymmetrically 

distributed across the tissue, even though some cells clearly had biased localisation of 

Vangl2 protein across their membrane.  

In summary, broad expression of membrane bound Vangl2 was found throughout axial 

elongation from late headfold to E13.5. Initially Vangl2 was highest in the node region 

of late headfold embryos, however following the onset of somitogenesis Vangl2 was 

highly expressed in the CLE where NMPs reside. Interesting cells of the CLE appeared 

to exhibit asymmetric distribution of Vangl2 akin to previous descriptions of areas 

containing active Wnt/PCP signalling (Gao et al., 2011). Later in development from 

E9.5-E12.5 Vangl2 was broadly expressed in the tail bud including the CNH but 

highest in the notochord, however in these regions asymmetric distribution of Vangl2 

was difficult to examine. Additionally in more anterior tail bud tissue, somites 

expressed Vangl2 to a much lower level than neural tissue in line with previous reports 

of Vangl2 protein and Vangl2 mRNA in the neural tube (Kibar et al., 2001; Pryor et 

al., 2014; Torban et al., 2007, 2008). 
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Figure 3.13 – Vangl2 protein profile from E9.5 to E12.5 tail bud. 
Immunohistochemistry of Vangl2 protein on (A-D) E9.5 sagittal tail bud and (E-F) anterior transverse, 
(G-I) E10.5, (J-L) E11.5, (M-O) E12.5 mouse sections. Vangl2 is broadly expressed in the tail bud from 
E9.5-E12.5, including cells of the CNH (red dashed box), cells of the tail bud mesoderm (TBM), 
neuroectoderm (NE), neural tube (NT) and gut, but is highest in the notochord (NOTO). Vangl2 is 
lowest in paraxial mesoderm (PXM) in anterior sections (E-F). Vangl2 – Grayscale, T(Bra) - Red. In all 
sagittal images, anterior to left, posterior to right. Auto-fluorescent red blood cells are labelled yellow 
with overlay.  

  



   

 120 

3.3.4 Sub-optimal Wnt/PCP antibodies 

The results described above came from using four out of a total of 32 antibodies that 

were tested, the other 28 antibodies were sub-optimal and not adequate for use. Before 

coming to this conclusion attempts were made to improve the immunohistochemistry 

results using these antibodies.  

Antibodies were initially trialled via immunohistochemistry using embryonic tissue 

fixed in 4% Paraformaldehyde (PFA). After limited success, antigen retrieval, by 

heating slides (Shi et al., 2011) was trialled on sub-optimal antibodies. Fig. 3.14A-B 

documents immunohistochemistry using Vangl1 – 176575 (Abcam) on E10.5 tissue 

fixed with PFA with and without antigen retrieval. Although there was increased signal 

detection following antigen retrieval this was non-specific and did not reflect Vangl1 

expression previously described as specific to the notochord/neural tube (Torban et al., 

2008). This trend was typical for all antibodies trialled with antigen retrieval.  

In a further attempt to optimise immunohistochemistry, alternative fixation methods: 

Trichloroacetic acid (TCA) (Hayashi et al., 1999), PFA-Triton (PFA-T) and methanol, 

were trialled for some antibodies. Overall PFA-T and methanol did not alter specificity 

of antibody staining when compared with PFA in tissue of interest. However, some 

differences were seen with TCA fixation. Control samples, including oviduct 

responded well to TCA fixation, in overall intensity of staining and heterogenetic 

expression across the tissue in compliance with that previously reported (Fig. 3.14D, 

Vangl1-176575, for an example). However, despite apparent improvement in control 

tissues, embryonic tissues showed homogenous and seemingly unspecific staining 

across whole embryo sections in all cases (Fig. 3.14C).  

In summary, steps were taken to optimise these antibodies for Wnt/PCP detection, 

however despite improvements in staining for control tissues antibody performance 

remained inadequate for use on embryonic tissue. 
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Figure 3.14 Trialled optimisation of immunohistochemistry using antigen retrieval and fixation 
types. 
Immunohistochemistry of Vangl1 protein using Abcam 176575 antibody, on Mouse E10.5 PFA fixed 
sections (A) with and (B) without antigen retrieval, and on (C) TCA fixed E10.5 and (D) positive control 
oviduct tissue without antigen retrieval. Antibody was diluted 1:100. (A-D) show DAPI (blue) and 
Vangl2 (greyscale), A’-D’ Vangl1 alone, and A’’-D’’ magnification of A’-D’. Auto-fluorescent red blood 
cells are labelled yellow with overlay. Antigen retrieval and TCA fixation did not result in the 
improvement of Vangl1 detection. 
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3.3.5 Summary of Wnt/PCP component localisation in NMP 
regions 

The data described so far in this chapter (3.2/3.3), unpublished data from the Wilson 

Lab (Wnt5a/Ptk7 in situs), and the published in situ hybridisation data reviewed in 

Chapter 1.4.5 (Table. 1.1), were combined and documented in Table. 3.2. Together 

these data confirm that core Wnt/PCP components Pk1, Celsr1-3 and Vangl2 and 

Wnt/PCP co-receptor Ptk7 are all found in the CLE, the location of NMPs prior to tail 

bud formation. Additionally, Wnt5a, Fzd6, Vangl2 and Ptk7 were found in the CNH, 

where NMPs reside in the tail bud during axial elongation. Altogether these data 

suggest that Wnt/PCP components have the right spatio-temporal profile to potentially 

regulate NMP behaviour during axial elongation. 
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Table 3.2 Summary of published in situ reports for genes associated with Wnt/PCP signalling, and 
summary of findings in this thesis, including unpublished data from the Wilson lab. 
Light green (x) - reports of genes expressed in primitive streak, node, caudal lateral epiblast or tailbud 
during axial elongation, Dark green (xx) - reports of distinct high expression in these regions, Grey 
(n/d)- no data or (n/s) no sections of this region reported, Red (-) no expression of gene in region. 
References for published reports or associated figures included on right hand column. Primitive streak 
(PS), node-streak border (NSB), caudal lateral epiblast (CLE), tail bud (TB), notochord (noto), in situ 
hybridisation (ISH), immunohistochemistry (ISH).  
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3.4 Visualising polarity during development by 
examining organelle location 

Planar cell polarity is not only characterised by the presence and asymmetry of key 

Wnt/PCP protein components but also by the positioning of cellular structures, the 

most described being the cells of the inner ear whose hair bundles coordinate to 

orientate in a unified direction when Wnt/PCP is active (Curtin et al., 2003; 

Montcouquiol et al., 2003; Wang et al., 2006). In lieu of hair bundles during early 

embryonic development an alternative indicator of polarity was sought. Organelles 

within cells, including cytoskeleton components (Centrosomes) and endomembranes 

(Golgi), provided good alternatives, as their relative localisation indicates the polarity 

of the cell (Bornens, 2008; Burute et al., 2017). Of particular interest was the use of 

Golgi apparatus to track polarity, which had been previously described in the literature 

to examine polarity changes during EMT in chick (Boehm et al., 2010; Nakaya and 

Sheng, 2009).  

Therefore, to gather information about polarity in early Mouse development, 

specifically in regions where NMPs reside, immunohistochemistry was performed 

using antibodies for nuclear envelope (LaminB1), to track individual cells and Golgi 

apparatus (GM130) to examine individual cell polarity.  

3.4.1 –Optimisation of Nuclear Envelope and Golgi 
Immunohistochemistry 

LaminB1 antibody from Abcam was used to track nuclear envelope in three 

dimensions in wholemount embryos. LaminB1 protein contributes to the nuclear 

envelope (Camps et al., 2015) and therefore the use of this antibody permitted the 

visualisation of the outer surface of the nucleus. This was advantageous versus DAPI, 

which is not specific to the nuclear envelope, but instead labels the whole nucleus, 

including structures within. LaminB1 immunohistochemistry was performed on an 

E6.5 prestreak embryo (Fig. 3.15A). Panning through the embryo showed that nuclei 

of neighbouring cells were closely associated in all three dimensions, within individual 

z-planes, and between z-planes (Fig. 3.15Aa-h). Despite this close association being 

neighbouring cells LaminB1 allowed for easy distinction between individual cells, 

which would not be possible with DAPI staining. Immunohistochemistry of nuclear 
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envelope were then performed on later embryonic stages E8.5-E10.5 (Fig. 3.15B-D). 

Unfortunately, LaminB1 failed to show distinct nuclear envelope staining in thicker 

specimens, with nuclear envelope intensity decreasing with increasing thickness. This 

was particularly disappointing for the E9.5 tail bud for which individual cells of the 

notochord and CNH could were not detectable (Fig. 3.15D). 

To improve antibody penetration, increasing primary and secondary antibody 

temperature was trialled (Fig. 3.16). Unfortunately increasing incubation temperature 

for primary and/or secondary antibody made no difference to the detection of nuclear 

envelope in thicker tissue. In all conditions, consistent disparities between LaminB1 

detection on the surface and in the core of specimens was present (Fig. 3.16A-D).  

 

 

Figure 3.15 LaminB1 (Nuclear Envelope) immunohistochemistry from E6.5 to E10.5. 
Wholemount confocal images of LaminB1 immunohistochemistry of (A) E6.5 prestreak embryo, with 
magnified region (Aa-Ah) showing cells are closely associated within (green arrows) and between (blue 
arrows) z-slices. In (B) Late headfold (3-4 somites) (anterior on left, posterior on right), (C) E9.5 tail 
bud and (D) E10.5 tailbud, LaminB1 intensity is lost in thicker tissues. Nuclear envelope - magenta, 
Basement Membrane - cyan. Embryos positioned anterior to right, posterior to left.  
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Figure 3.16 LaminB1 (Nuclear Envelope) Trialled Optimisation. 
Above is overview of trialled optimisation of LaminB1 immunohistochemistry to improve signal 
penetrance. Despite increasing temperature of primary and/secondary antibody incubation, a 
significant disparancy of signal intensity was observed between cells on the surface and those in 
deeper tissues. (A,C, E,G). 1-4 shows LaminB1 staining (greyscale) for each condition, and magnified 
area for each B,D,F,H respectively, LaminB1 – grayscale or rainbow LUT. 

 

Optimisation of organelle specific antibodies was then undertaken. An Abcam 

antibody specific for cis-Golgi matrix protein (GM130), a key protein found in Golgi 

membrane (Nakamura et al., 1995) was trialled on E7.5 embryos using a number of 

different fixatives. Immunohistochemistry with methanol was unsuccessful, however 

fixation with PFA and PFA-Triton enabled visualisation of Golgi (Fig. 3.17A-B). 

Golgi detection was cleaner, (less background) and clearer (defined punctate staining) 

with PFA-Triton fixation versus PFA alone. As distinct Golgi visualisation was 

essential for visual analysis of cell polarity, PFA-Triton fixation was preferentially 

used as the fixation method in subsequent experiments.   



   

 127 

 

Figure 3.17 GM130 (Golgi) immunohistochemistry optimisation. 
GM130 (Golgi) immunohistochemistry on prestreak embryos resulted in cleaner and clearer 
visualisation of Golgi using (B) PFA-Triton fixed embryos versus (A) PFA fixation alone. Dashed 
bounded box depicts magnified images on the right. GM130 (Golgi) – grayscale, basement membrane 
– cyan, nuclear envelope - magenta. 

 

3.4.2 –Polarity visualisation from prestreak to E11.5 

Previously examination of cell polarity dynamics during early Mouse development 

had only been briefly described in the literature. This was limited to early gastrulation, 

when polarity of cells was monitored undergoing epithelial to mesenchymal transitions 

(EMT) in the primitive streak, through analysis of nucleus-centrosome axes (the axis 

drawn from the nucleus to the centrosome) (Burute et al., 2017). In the epiblast 

Centrosomes were initially localised close to the cavity, resulting in coordination of 

nucleus-centrosome axes throughout the epiblast towards the cavity. This coordination 

was then lost at the onset of EMT when Centrosomes repositioned in individual cells 

to point towards the streak, resulting in the nucleus-centrosome axes thus becoming 

inverted as cells travelled through the streak. To understand the dynamics of cell 

polarity and cell movement in NMP stages in a similar way, nuclear envelope 

(LaminB1) and optimised Golgi (GM130) co-staining and 3D confocal imaging was 

performed on embryos from E6 (prestreak) to E11.5.  
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In pre-streak embryos, epiblast Golgi faced inwards towards the proamniotic cavity as 

previously described in the literature for Centrosomes (Burute et al., 2017) (Fig. 

3.18A). Visually assigned nucleus-Golgi axes (by proximity) indicated that individual 

cells were polarised towards the cavity and together cells were coordinated in this 

polarity throughout the epiblast (Fig. 3.18Aa-i). 

In streak stage embryos, the streak was located by the absence of basement membrane 

in transverse views (Fig. 3.19A). Cells of the epiblast not in the primitive streak had 

Golgi localised close to the proamniotic cavity, suggesting they were polarised towards 

the cavity akin to cells of pre-streak embryos (Fig. 3.19B). However, cells located in 

the streak did not show similar alignment of polarity to the proamniotic cavity. Instead 

their polarity appeared random and uncoordinated (Fig. 3.19B). This was also clear in 

transverse views were the positioning of Golgi in streak areas was further from the 

cavity than in the epiblast (Fig. 3.19C-D). These findings were in agreement with 

previously documented observations during Mouse gastrulation using Centrosomes, 

and with Golgi staining described for the chick during epithelial to mesenchymal 

transitions (EMT) (Burute et al., 2017; Nakaya and Sheng, 2009). As these findings 

were in keeping with previous reports of polarity and cell movement at this stage, later 

embryos, which had not previously been documented in the literature, were 

subsequently analysed.  
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Figure 3.18 - Polarity in 
pre-streak embryos. 
Confocal images from 
wholemount immuno-
histochemistry using 
Gm130 (Golgi) – grayscale, 
LaminB1 (nuclear 
envelope) – magenta and 
collagen IV (basement 
membrane) – cyan, on (A) 
pre-streak embryos. Cells 
of the epiblast (EPI) are 
aligned to the proamniotic 
cavity (PC), yellow 
arrowheads show assigned 
nucleus-Golgi vector of 
individual cells bounded by 
white arrowheads (Aa-Ai) 
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. 
Figure 3.19 - Polarity in mid-streak embryos. 
Confocal images from wholemount immunohistochemistry using Gm130(Golgi) – grayscale, LaminB1 (nuclear envelope) – magenta and collagen IV (basement 
membrane) – cyan, on (A) Mid-streak (transverse z-slice) (B) early streak (sagittal z-slice). Cells of the epiblast (EPI) are aligned to the proamniotic cavity (PC). In streak 
embryos, primitive streak (PS) is marked by loss of basement membrane (cyan). Cells within the PS and in the presomitic mesoderm (M) are not coordinated in their 
polarity (yellow arrows). 
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A sagittal view of an early somitogenesis embryo, permitted assessment of polarity in 

multiple tissue types (Fig. 3.20A). Unfortunately, nuclear envelope staining was not 

adequate to determine the polarity of individual cells, however an impression of 

polarity was possible by considering the position of Golgi within tissues. In the 

somites, all Golgi faced the centre of the somite, suggesting that all cells were aligned 

in their polarity (Fig. 3.20B). Alignment of Golgi was also found in the CLE at the 

posterior of the embryo where NMPs reside, but not in adjacent presomitic mesoderm 

where Golgi localisation appeared random (Fig. 3.20C). Examining transverse z-

planes of the posterior showed this area in more detail (Fig. 3.21A-E). NMPs within 

the CLE had Golgi localised to the cavity, whilst cells in the presomitic mesoderm and 

streak had random Golgi positioning. In addition, cells within the node and crown of 

the node showed uniform polarity with the Golgi apparatus facing the ventral side of 

the embryo (Fig. 3.21A). NMPS residing in the CLE remained apical-basally polarised 

throughout the posterior z-planes, and appeared to exhibit uniform polarity from 

medial to lateral regions.  

At E9.5, the nuclear envelope staining was again incomplete for cells deepest within 

the tissue, meaning individual cells and their individual polarity could not be 

determined, however despite this observations of polarity could still be made. Golgi 

of neuroectodermal cells were polarised toward the ventricular side (Fig. 3.22A-B). 

Cells in the underlying notochord did not display the same coordination, and Golgi 

position in this tissue appeared random (Fig. 3.22B). This was akin to the tail bud 

mesoderm which also exhibited random Golgi localisation (Fig. 3.22C). Transverse 

views through the posterior of the E9.5 tail supported observations of random Golgi 

localisation in tail bud mesoderm and coordination of neuroectoderm Golgi to the 

dorsal edge (Fig. 3.22D). However, this coordination was not consistent throughout 

the whole neuroectoderm and appeared to be lost at the caudal neuropore, the region 

which subsequently closes to form the caudal neural tube containing the CNH 

(Nikolopoulou et al., 2017). At the caudal neuropore localisation of Golgi at the dorsal 

neuroectoderm edge was observed in lateral regions, however at the midline 

coordinated Golgi localisation appeared to be lost and instead was random resembling 

that of cells at the primitive streak (Fig. 3.22D).  
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Figure 3.20 - Polarity during early somitogenesis.  

Confocal images from wholemount immunohistochemistry using Gm130(Golgi) – grayscale, LaminB1 (nuclear envelope) – magenta and collagen IV (basement 

membrane) – cyan, on embryo during early somitogenesis. Nuclear envelope staining was not optimal enough to allow the polarity of individual cells to be 

monitored. (A) Sagittal z-slice, showed coordinated Golgi in the (B) paraxial mesoderm (PXM) and (C) posterior embryo regions including NMPs in the caudal lateral 

epiblast (CLE) and the presomitic mesoderm (M).  
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Figure 3.21 - Polarity in 
the posterior embryo 
during early 
somitogenesis. 
Confocal images from 
wholemount immuno-
histochemistry using 
Gm130(Golgi) – grayscale, 
and collagen IV (basement 
membrane) – cyan- added 
dashed line, on embryos 
during early 
somitogenesis. 
Schematic below 
indicates approximate 
distal to proximal location 
of z-slices (A-E). NMPs in 
the CLE (white arrows), 
and cells of the node and 
the node streak border 
(NSB) are polarised. Cells 
of the primitive streak (PS) 
and presomitic mesoderm 
(M) (grey arrows) are not.  
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Figure 3.22 - Polarity in E9.5 tail bud. 
Confocal images from wholemount immunohistochemistry using Gm130(Golgi) – grayscale, LaminB1 
(nuclear envelope) – magenta and collagen IV (basement membrane) – cyan, on E9.5 tail bud. (A) 
Sagittal z-slice, showing coordinated Golgi in the polarised (B) neuroectoderm (NE), and 
uncoordinated Golgi in the notochord (NOTO) and (C) tail bud mesoderm (TBM). (D) Transverse z-slice 
(yellow dashed line on A shows approximate anterior-posterior z-slice position), through CNH region 
shows cells at the midline (brackets) are not polarised and resemble those found in the streak.  
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At E10.5 and E11.5 similar observations were made. Golgi in the tail bud mesoderm 

again had random localisation, whereas Golgi in the neural tube were coordinated (Fig. 

3.23 and Fig. 3.24). However, Golgi at the most posterior tip of the neural tube, the 

CNH, appeared slightly less coordinated than Golgi in the dorsal or more anterior 

neural tube, at both E10.5 and E11.5 (Fig. 3.23D,F, Fig. 3.24B,E). Transverse views 

highlighted these differences, with anterior neural tube tissue appearing to have Golgi 

closely localised to the neural tube cavity, whilst in more posterior neural tube, Golgi 

within the CNH appeared to be localised randomly akin to those in the primitive streak 

(Fig. 3.23D,F, Fig. 3.24B,E). This was clearer in E10.5 embryos but also appeared to 

be present in E11.5.  

In summary, the analysis of polarity and cell movement using Golgi positioning in 

early embryos reflected that previously reported in the literature and thus encouraged 

analysis of later embryonic stages which had not yet been investigated. In embryos 

undergoing early somitogenesis cells of the node, node-streak border and NMPs 

residing in the CLE have uniform polarity towards the amniotic cavity. Conversely 

this polarity was lost as cells underwent EMT and travelled through the streak, forming 

unpolarised presomitic mesoderm, akin to observations of previous embryo stages. 

Across later stages of axial elongation (E9.5 to E11.5) Golgi in mesoderm derivatives; 

notochord and tail bud mesoderm, were not coordinated in their localisation or 

alignment. In neuroectoderm, cells were polarised to the dorsal edge, except for 

regions of the CNH, where NMPs reside. Cells of the CNH appeared to be less 

coordinated in their polarity with random Golgi localisation reflecting that of the 

primitive streak. This suggests that NMPs in the CNH may be losing polarity and 

undergoing cell movements similar to that of the primitive streak. 
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Figure 3.23 - Polarity in E10.5 tail bud. 
Confocal images from wholemount immunohistochemistry using Gm130(Golgi) – grayscale, LaminB1 (nuclear envelope) – magenta and collagen IV (basement 
membrane) – cyan, on (A) E10.5 tail bud. At E10.5 cells in the (B) neural tube (NT), (C) tail bud mesoderm (TBM) and (D) notochord (NOTO). Transverse z-slices through 
(E) anterior and (F) posterior tail bud (approximate positions of these are shown by yellow dashed lines in (A), show cells in the CNH (white arrows) of posterior slices 
are less polarised than those in anterior regions (grey arrow).  
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 Figure 3.24 - Polarity in E11.5 tail bud. 
Confocal images from wholemount immunohistochemistry using Gm130 (Golgi) – grayscale, LaminB1 (nuclear envelope) – magenta and collagen IV (basement 
membrane) – cyan, on (A) E11.5 tail bud. At E10.5 cells in the (B) neural tube (NT), (C) notochord (NOTO) and Gut are shown. Transverse z-slices through (D) anterior 
and (E) posterior tail bud (approximate positions of these are shown by yellow dashed lines in (A). Cells in the CNH (white arrows, (B’) of posterior regions are less 
polarised than those in anterior regions (grey arrow). This is also visible in the sagittal anterior and posterior planes of view (D-E).   



   

 138 

3.5 Discussion 

3.5.1 The profile of Wnt/PCP components implicates Wnt/PCP 
signalling in regulating NMP behaviour  

From the comprehensive review of published expression data for Wnt/PCP 

components in (1.4.5) it appeared that Wnt/PCP components may be expressed at the 

right time and in the right place for Wnt/PCP signalling to potentially regulate the 

behaviour of NMPs. However, this published data was far from complete, specifically 

for the CLE and CNH, and thus it remained unclear if Wnt/PCP components were 

indeed expressed there. The objective of the work described in this chapter was to 

address some of these limitations, with much of the research focused on examining the 

protein localisation of key Wnt/PCP components in NMP regions. 

Pk1, Ptk7 and Vangl2 were all found to be expressed in the CLE, where NMPs reside 

at the onset of somitogenesis (Fig. 3.1; Fig. 3.2-8; Fig. 3.11-3). The presence of these 

Wnt/PCP components in the CLE supports the contention that Wnt/PCP signalling 

could regulate NMP behaviour. Generally, it is assumed that all members of the core 

Wnt/PCP pathway are needed for this pathway to be active. Despite attempts to 

investigate the presence of other members including, Celsr, Dvl, Ror and Fzd this was 

not possible with the available (sub-optimal) antibodies. However, support for the 

presence of these additional components comes from other published reports. All 

members of the Celsr family have been reported to be expressed in the CLE (Crompton 

et al., 2007) and in situ hybridisation reports for Dvl1 and Ror2 described expression 

in the adjacent primitive streak but did not report sections to confirm expression in 

CLE regions (Bois et al., 1996; Matsuda et al., 2001). The only family members that 

have been shown to be unequivocally absent in CLE regions include Fzd6, which was 

limited to expression in node, node-streak border, and notochord (Fig. 3.9-10), Pk2, 

and Wnt co-receptor Ror1 (Crompton et al., 2007; Matsuda et al., 2001). However, 

these represent single members of larger families which have functional redundancy 

between members, and as discussed, these other family members including Pk1 and 

Ror2 have been shown to be expressed either in or adjacent to the CLE. Therefore, 

evidence provided in this thesis, reinforces the belief that most Wnt/PCP components 

are present in NMPs residing in the CLE supporting their potential role in regulating 

NMP behaviour.  
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Previously expression of Wnt/PCP components had been reported in the tail bud but 

never confirmed in the CNH region, where NMPs reside. This present work confirms 

that Pk1, Vangl2 and Ptk7 are broadly expressed in the tail bud during axial elongation. 

Pk1 expression was confirmed in the CNH (Fig. 3.1) from E9.5 to E10.5 in line with 

previous reports (Bekman and Henrique, 2002; Crompton et al., 2007), and Vangl2 

and Ptk7 protein were confirmed to be in the CNH from E9.5 to E12.5/13.5 (Fig. 3.13, 

Fig.3.2-3, 3.7-8). Despite not being able to verify the presence of other components in 

the CNH, the continuity between the streak and the CNH that has been reported before 

(Cambray and Wilson, 2002) suggests that the expression of Wnt/PCP components in 

the streak may be conserved in the CNH. Of course, this is not yet proven, and further 

examination of this region is needed to confirm this hypothesis. As with the CLE, few 

Wnt/PCP components have been reported to be absent in the tail bud, these include, 

Ror1 and Fzd7. As for other components, many have been reported to be expressed in 

the tail bud but not confirmed specifically in the CNH. Therefore, despite less reports 

of Wnt/PCP components in the literature, the work outlined in this chapter has 

supported the concept that Wnt/PCP signalling may regulate NMPs in the CNH 

throughout axial elongation.  

Another interesting finding is that examined Wnt/PCP components do not appear to 

weaken in their expression towards the end of axial elongation at E13.5. Moreover it 

has previously been reported that the expression of components involved in regulation 

of NMPs, including Fgf8 and Wnt3a decline as tail elongation arrests, with levels 

significantly decreased by E12.5 (Cambray and Wilson, 2007). Vangl2 (Fig. 3.13), 

Ptk7 (Fig. 3.8) in CNH and Fzd6 in the notochord (Fig. 3.10) appear to maintain the 

same expression levels throughout axial elongation including between E12.5-E13.5 

stages. This suggests that if Wnt/PCP is involved in regulating NMP behaviour it is 

not directly regulating the cessation of axial elongation.  

3.5.2 Asymmetric distribution of Vangl2 in CLE suggests 
activity of Wnt/PCP signalling 

Asymmetry of Wnt/PCP components is important for the establishment and 

propagation of Wnt/PCP signalling across polarised tissues, and therefore considered 

a read out of Wnt/PCP activity. Vangl2 and Fzd6 protein has been previously reported 
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in the literature in other systems, including the cells of the inner ear and limb bud 

development, in which their asymmetric distribution is associated with active 

Wnt/PCP signalling (Gao et al., 2011; Montcouquiol, 2006). I hoped to examine the 

presence of asymmetry to confirm the activity of Wnt/PCP signalling in NMP regions 

during axial elongation. In my investigations Vangl2 was found to be localised to the 

membrane in NMP-containing regions, the CLE and the CNH throughout axial 

elongation (Fig. 3.11-13). Despite this membrane localisation of Vangl2 identification 

of asymmetry was difficult in these tissues. Over all stages examined, Vangl2 was only 

identified as asymmetric across multiple cells during early somitogenesis (Fig. 3.11). 

Vangl2 protein in NMPs of the CLE appeared to be predominantly localised to lateral 

membranes and absent from apical (cavity facing) or basal (basement membrane 

facing) membranes, and thus polarised along the anterior-posterior axis. Although this 

asymmetry isn’t as clear as that previously described for the inner ear, it is akin to that 

described for epidermis development in which the cells are asymmetrically polarised 

along the anterior posterior axis (Devenport and Fuchs, 2008; Montcouquiol, 2006). 

These observations support the hypothesis that Wnt/PCP is active in NMPs residing in 

the CLE. However, it is not clear if Wnt/PCP is active across all regions of the CLE, 

thus further investigation into Vangl2 distribution in this tissue is necessary. The CLE 

is a curved epithelium, making observations of polarity across the tissue difficult. 

Confocal microscopy may provide the best alternative to analyse the distribution of 

Vangl2 as it can provide three-dimensional information about Vangl2 localisation. In 

summary, the observations provided in this chapter confirm that Wnt/PCP is active in 

some NMPs of the CLE, and promotes investigations into its functional role regulating 

NMP behaviour at this developmental stage. 

Despite identification of membrane localised Vangl2 in NMP regions in all stages 

examined, coordinated asymmetry of this protein across multiple cells was never 

clearly identified in the CNH, and this complicates interpretation of whether Wnt/PCP 

is truly active in NMPs of the tail bud (Fig. 3.12). The reasons for these observations 

could be threefold; Vangl2 asymmetry could be present but the orientation of the tissue 

may preclude its visualisation, or Wnt/PCP signalling could be active but its activity 

does not require asymmetric distribution of components, or these areas may not have 

Wnt/PCP activity. To understand which possibility is the most likely it is necessary to 
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take in to consideration findings published for other systems in which Wnt/PCP is 

active, this is described below. 

Reports in dynamic and complex tissues during chordate development, present 

difficulties in examining asymmetric distribution compared with simple Drosophila or 

vertebrate inner ear models. In Mouse epidermis Vangl2, Celsr and Fzd6 asymmetric 

localisation has been verified by exploring different planes of view (Devenport and 

Fuchs, 2008). Sagittal views obscured the asymmetric localisation of components, 

however, the use of planar views dramatically improved visualisation of asymmetry 

across many cells. Due to the complex nature of the CNH in the work presented here 

sagittal sections were utilised. However, this may have prevented easy observation of 

asymmetric distribution. Unlike the epidermis however, the CNH is not composed of 

a simple epithelium, but is more complex and three-dimensional. It is therefore 

difficult to know what plane would be best to examine asymmetric localisation of 

components. For this reason, future investigations should focus on imaging these cells 

with confocal imaging which would allow multiplane/multiangle investigations into 

the distribution of Vangl2 in the CNH.  

The second possibility for why coordinated asymmetry is not present, is that 

asymmetry may not be essential for Wnt/PCP activity. Wnt/PCP signalling has been 

shown to be essential for the elongation of the limb bud, and CE in the node and 

notochord in Mouse, however the asymmetric localisation of Wnt/PCP components in 

these regions have remained elusive. In the limb bud, Vangl2 protein localisation is 

biased in some cells but the orientation of this bias is not coordinated across the whole 

tissue (Gao et al., 2011). Additionally, Vangl1 has been reported in the notochord 

during early Mouse development, but this does not appear to be asymmetric in the 

majority of cells (Andre et al., 2015). Together this work suggests that asymmetry of 

Wnt/PCP components including Vangl2 may not need to be coordinated across every 

cell for Wnt/PCP to be active. However, this idea opposes findings in Drosophila in 

which asymmetry of components is essential for generating and propagating Wnt/PCP 

across tissues (reviewed in Yang and Mlodzik, 2015). This paradox between 

Drosophila and vertebrate systems may be resolved by considering the complexity and 

three-dimensional nature of vertebrate systems in which Wnt/PCP may operate via 
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different mechanisms. However, this proposal remains untested. Overall the pattern of 

Vangl2 localisation observed in the CNH is akin to other tissues, namely node, 

notochord and limb bud, in which Wnt/PCP was found to be active, but asymmetric 

distribution was not visualised in every cell. Thus, the apparent lack of coordination 

in Vangl2 asymmetry across the CNH, does not necessarily determine that Wnt/PCP 

is not active in these regions. 

Other evidence supports the idea that Wnt/PCP is active in these regions. In Wnt/PCP 

mutants Vangl1 and Vangl2 asymmetrical localisation is reported to be lost in cells of 

the inner ear, limb bud and notochord (Andre et al., 2015; Gao et al., 2011; Qian et al., 

2007). In these mutants Vangl2 localisation is found to be more unbiased and diffuse 

across the membranes of individual cells, with an overall loss of signal intensity at 

boundaries. The Vangl2 localisation observed in the CNH regions does not reflect the 

Vangl2 distribution in Wnt/PCP mutants. In CNH regions Vangl2 is observed to be 

intensely localised on some but not all membranes equally, and thus it does not appear 

to be diffuse or uniformly distributed throughout the membranes of individual cells. 

Thus, although no coordination in asymmetric distribution of Vangl2 is obvious in 

these cells, the strong membrane localisation of Vangl2 which is not uniformly 

distributed, provides support for the idea that Wnt/PCP is active in these regions.  

Taken together the distribution of Vangl2 observed in the CNH, along with published 

observations in other systems supports the idea that Wnt/PCP is likely to be active in 

the CNH. As mentioned further investigations need to be carried out to understand 

more about the true nature of Vangl2 localisation in these areas and to examine other 

read outs of tissue polarity within these areas.  

In summary, evidence provided in this thesis lends further support to the belief that 

Wnt/PCP signalling is active in at least some NMPs of the CLE, encouraging further 

investigation into its role in regulating NMP behaviour. In addition, conservation of 

Wnt/PCP activity in the CNH is not as clear from the data collected so its role in this 

region remains contentious. 
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3.5.3 Wnt/PCP activity in NMP regions may be regulated by 
Wnt co-receptor Ptk7 

Ptk7 is considered a Wnt signalling co-receptor, and has been identified as an 

important regulator of the Wnt/PCP pathway in many developmental processes 

including CE and gastrulation. However, many aspects of Ptk7 signalling function are 

still unknown and in different contexts it has been shown to interact with components 

of both Wnt/β-catenin signalling and Wnt/PCP signalling. This interaction with both 

pathways makes it particularly interesting in terms of NMP behaviour, as NMPs 

require a tight regulation of Wnt/β-catenin signalling for maintenance and 

differentiation. Ptk7 had previously been reported to be upregulated in caudal regions 

of the embryo (Paudyal et al., 2010), and in this chapter a key objective was to verify 

its expression in NMP regions during axial elongation. 

For the identification of Ptk7 protein two antibodies were used, both detected Ptk7 

levels to be highest in the tailbud in keeping with previous reports (Paudyal et al., 

2010). Additionally in these observations Ptk7 protein was always membrane bound, 

a localisation known to be associated with Wnt/PCP activity (Berger et al., 2017a). 

However, notable differences in Ptk7 protein profile across the tailbud were found 

between the two Ptk7 antibodies. The first antibody (Abcam) recognises a 15 amino 

acid peptide sequence in the N-terminus found in the extracellular domain of Ptk7 

protein, whilst the second antibody (Proteintech) recognises a peptide sequences 

towards the C-terminus in the cytoplasmic domain. Between these two antibody 

recognition sites lies a region which can be cleaved by MMP14, resulting in the 

production of a N-terminal soluble fragment and membrane bound C-terminal 

(Golubkov et al., 2010). Thus when the first antibody (Abcam) recognises membrane 

bound protein, this is uncleaved Ptk7. Conversely the second antibody (Proteintech) 

can detect both cleaved and uncleaved protein. This permitted the identification of 

regions in which Ptk7 cleavage was or was not present. The second antibody detected 

all forms of Ptk7, throughout the posterior region of pre-somitic embryos (from E7.5) 

and the tail bud to the end of axial elongation (E13.5), including NMPs residing in the 

CLE and CNH. However, the first antibody (Abcam) showed absence of uncleaved 

protein in the notochord, gut, surface ectoderm and closed neural tube from E9.5- 
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E12.5. This indicates that MMP-14 is likely to be expressed in these specific areas 

during axial elongation. 

This difference is interesting in terms of how Wnt/PCP might be regulated in these 

areas. The functional relevance of this cleavage of Ptk7 by MMP14 isn’t fully 

understood, however novel Ptk7 chuzhoi mutants which have an additional 

extracellular cleavage site exhibit neural tube defects synonymous with disruptions in 

CE and Wnt/PCP signalling (Golubkov and Strongin, 2012). It remains to be 

determined whether disruption in these mutants is caused by the additional shortening 

of the extracellular soluble fragment of Ptk7 protein, portions of which have known 

interactions with Wnt/PCP components (reviewed in Berger, Wodarz and Borchers, 

2017), or due to quenching of MMP14 proteolysis which may prevent the normal 

physiological levels of cleaved Ptk7 protein. Either way, work reported here shows 

that cleaved Ptk7 is found specifically in the notochord, gut, closed neural tube and 

surface ectoderm. Interestingly Wnt/PCP regulation of CE has been reported 

extensively in the notochord, so the fact that cleaved Ptk7 is specifically found here 

suggests it may be involved the regulation of this process. 

Thus, this research has identified the presence of Ptk7 protein in NMP regions 

throughout axial elongation. Questions remain on the functional role of Ptk7 in these 

areas, and if cleavage of Ptk7 determines the function of Ptk7. Altogether this evidence 

promotes further investigation into the role of Ptk7 in NMP dynamics. 

3.5.4 Wnt/PCP may regulate other tissues during axial 
elongation 

This chapter identified the presence of Pk1, Vangl2, Ptk7 in NMP regions during axial 

elongation. However strikingly these components were not limited to only NMP 

regions, and were sometimes even expressed higher in other non-NMP regions. This 

was particularly the case for Vangl2, whose expression was present in the node and 

notochord of late headfold embryos (Fig. 3.11), and later was highly expressed in the 

notochord from E9.5-E12.5 (Fig. 3.13). Additionally, Fzd6 protein was found to be 

exclusively expressed in the notochord, node and node-streak border in late headfold 

embryos (Fig. 3.9), and later restricted to notochord, including the anterior most CNH, 

underlying endoderm and surface ectoderm from E9.5- E13.5 (Fig. 3.9-10).  
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A role for Wnt/PCP signalling in the notochord is already well established in the 

literature, in which it regulates cell movements during CE (reviewed in Gray, Roszko 

and Solnica-Krezel, 2011). Vangl1 protein in the notochord has already been reported 

(Andre et al., 2015), however the novel identification of Vangl2 and Fzd6 in notochord 

in the present work, provide further evidence for Wnt/PCP signalling in this tissue. 

The presence of Wnt/PCP components and signalling in the notochord may initially 

seem unrelated to NMP behaviour, however the notochord is an important source of 

signals during development (reviewed in Corallo, Trapani and Bonaldo, 2015). Signals 

originating from the notochord have been implicated in controlling patterning and 

proliferation of many tissues across the axis, and furthermore there is also evidence 

that the posterior most notochord (CNH) may also regulate NMPs. Experiments in 

chick in which Hensens Node, the chick equivalent of the NSB, was removed, resulted 

in loss of caudal mesoderm and neural structures despite there still being NMPs in the 

adjacent CLE (Charrier et al., 1999). Thus, the notochord may acts as a vital niche to 

maintain NMPs, and disruption to this structure could have drastic effects on NMP 

behaviour. In this thesis, the identification of Fzd6 and Vangl2 in the notochord, 

including anterior most node-streak border suggests that Wnt/PCP is active in regions 

adjacent to NMPs and thus may regulate NMP behaviour. This has important 

consequences on the interpretation of axial defects exhibited by Wnt/PCP knock out 

mice. Loss of caudal structures in these mutants may primarily be because of 

disruption in notochord, rather disruption of Wnt/PCP directly in NMPs. Thus, to tease 

apart direct and indirect effects of Wnt/PCP signalling on NMP behaviour Wnt/PCP 

needs to be disrupted in a spatial and temporal specific manner. 

3.5.5 Conservation of similar cell polarity dynamics and cell 
movements between CLE and CNH. 

The examination of Wnt/PCP signalling using the localisation of Wnt/PCP 

components as described above can allow the examination of Wnt/PCP signalling 

within tissues. However, examining localisation of organelles within the cell can also 

be used to understand its polarity. Previously polarity changes and movements of cells 

in the streak had been investigated during gastrulation by examining the localisation 

of Centrosomes within cells (Burute et al., 2017). The work described in this chapter 

aimed to understand more about cell movements and polarity in NMP regions by 
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applying a similar strategy. By co-staining for nuclear envelope and Golgi the polarity 

of individual cells and the coordination of this polarity across tissues was examined. 

In this work observations in early gastrulation embryos were akin to those previously 

described for this stage in the literature (Burute et al., 2017). Cells of the epiblast were 

initially coordinated in their apical basal polarisation towards the proaminiotic cavity, 

which was subsequently lost in cells which underwent EMT and moved through the 

streak to form pre-somitic mesoderm (Fig. 3.19). A model for this process is 

summarised in (Fig. 3.25).  

It was unknown if this process continued in NMP regions, and if the NMPs were 

polarised or not in the CLE or CNH. The work here provides evidence to suggest that 

NMPs reside in areas in which similar changes in polarity and dynamic cell 

movements are taking place. Similar profiles of Golgi localisation were described 

during early somitogenesis, and in the tail bud. NMPs in the NSB and CLE were 

coordinated in their polarity toward the pro-amniotic cavity, whilst cells of the streak 

and presomitic mesoderm did not have coordination of polarity between neighbours 

(Fig. 3.21). These differences were conserved later in development, when cells within 

the most posterior neuroepithelium, adjacent to the notochord (CNH), also show 

uncoordinated Golgi localisation, strikingly different to all other regions of the neural 

tube (Fig. 3.22D, Fig. 3.23D,F, Fig. 3.24B,E). Thus, the process by which NMPs 

differentiate, to stay as polarised neural cells or become mesoderm (unpolarised), is 

likely to be conserved during axial elongation. This finding also implicates regulation 

of polarity as an important step in this fate choice. However, many questions remain, 

as it is not clear how polarity may be regulated in these regions. Additionally, the data 

described here can only determine the presence of apical-basal polarity, with more 

complex analysis needed to examine planar polarity in these areas. The CLE, which is 

a flat epithelium is the least morphologically complex region containing NMPs, and 

thus provides a location in which tissue polarity might be easiest to identify. Moreover, 

as described above, NMPs in the CLE express both Ptk7 and Vangl2, suggesting 

Wnt/PCP is active in this area. Initial steps have been taken to quantitatively analyse 

planar polarity in the CLE using nuclei and Centrosome positioning (Appendix S-

Fig.3.1 & 3.2). This is an exciting but complex area of new research, and it is hoped 
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that it will provide more information about how NMPs are polarised, and the 

consequence of this polarisation on their behaviour. 

 

 
Figure 3.25 - Cell movements in NMP regions during axial elongation.  
NMPs in the (A) caudal lateral epiblast (CLE) at E8.5 and (B) the chordoneural hinge (CNH) from E9.5 
to E13.5 appear to undergo similar polarity dynamics and cell movements during axial elongation (C). 
NMPs (blue) are initially polarised with Golgi (pink) polarised towards the cavity (proamniotic, for CLE 
and neural tube cavity, for CNH). Subsequently individual NMPs lose coordination of polarity (become 
unpolarised) (white) and move away from the epithelium to form unpolarised presomitic mesoderm 
(PSM)(red). This pattern is similar to that described previously for cells moving through the primitive 
streak (PS) (Burute et al., 2017). BM - Basement membrane, NT - Neural Tube, Noto - Notochord, Ant 
- Anterior, Post - Posterior.   
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Chapter 4: Deriving NMPs from EpiLCs in vitro 

4.1 Introduction & Aims 

As mentioned in the introduction (1.3.5), NMPs have been generated in vitro from 

Mouse ESC and EpiSCs through activation of Fgf and Wnt/β-catenin signalling (Gouti 

et al., 2014; Tsakiridis et al., 2014; Turner et al., 2014). However, both these sources 

do not represent homogeneous starting populations and within these cultures there can 

be significant transcriptome variations and both are prone to spontaneous 

differentiation (reviewed in Morgani, Nichols and Hadjantonakis, 2017). Currently 

many questions remain unanswered in terms of the robustness or reliability of 

differentiation from these cells states. As previously mentioned cells cultured in 2i/LIF 

offer a more homogeneous starting point, with reduced expression of lineage specific 

markers and significantly less spontaneous differentiation (Silva and Smith, 2008; 

Silva et al., 2008). Recently an intermediate state between ESCs and EpiSC has been 

generated from 2i/LIF cultures, from which more robust differentiation could be 

possible (Hayashi and Saitou, 2013; Hayashi et al., 2011, 2012). These are termed 

EpiLCs, and following 48 hours of differentiation from 2i/LIF transcriptionally reflect 

E5.75 embryos. Despite their identification as an advantageous starting population 

exploration of their functional abilities have been limited to derivation of primordial 

germ cells. In this chapter I aim to investigate: 

• If cells co-expressing T(Bra) and Sox2 (a hallmark of NMPs) can be generated 

from EpiLCs 

And thus: 

• What combination of variables are optimal for maximising T(Bra) and Sox2 

co-expressing cells 

• Determine if these derived putative NMPs from EpiLCs, transcriptionally and 

functionally equate to in vitro EpiSC derived NMPs and in vivo NMP 

respectively 
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4.2 EpiLC are more homogeneous in morphology than 
EpiSCs 

In my hands culturing EpiSCs was not reproducible due to variable spontaneous 

differentiation, which in some cases even resulted in terminal differentiation of the 

whole culture. EpiSCs derived from the same wildtype cell line but of different passage 

numbers show this spontaneous differentiation, with EpiSC colonies surrounded by 

more differentiated cells (Fig. 4.1A-B). As mentioned above EpiLC may provide a 

more homogeneous starting point compared with EpiSCs. Ultimately if the starting 

point of differentiation is homogeneous then the products of differentiation may have 

a better chance of a predictable, homogeneous phenotype. Before considering EpiLCs 

as an alternative source of in vitro NMPs, I was interested if EpiLCs display a less 

heterogeneous phenotype than EpiSCs. Indeed, EpiLCs consistently formed tightly-

packed colonies akin to those of EpiSCs but without the presence of differentiated cells 

(Fig. 4.1C), suggesting they may offer a suitable alternative source of in vitro NMPs. 

 

Figure 4.1 – Morphology of EpiSC and EpiLC colonies.  
Brightfield images of wildtype (E14Ju09) EpiSCs cultured in N2B27/Activin/FGF, passage 13 (A), 
passage 18 (B) and EpiLCs (C) derived from wildtype 2i/LIF cultured cells through culture on fibronectin 
with N2B27/Activin/FGF/KSR media for 48 hours. Both EpiSCs cultures have more spontaneous 
differentiation, indicated by larger, less rounded, flatter cells (arrows) than EpiLC cultures however 
the colony morphology ( of both is strikingly similar. 

 

4.3 Putative NMPs, T(Bra) and Sox2 co-expressing 
cells can be generated from EpiLCs 

Due to similarities between EpiSC and EpiLC culture, initial trials to derive NMPs 

from EpiLCs were conducted using a similar protocol to derive NMPs from EpiSC as 

described in (Gouti et al., 2014) (Fig. 4.2). Briefly, 2i/LIF cultured cells were placed  
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Figure 4.2 – Generating putative NMPs from EpiLCs. 
Experimental set up used to derive T(Bra) and Sox2 positive cells from EpiLCs. EpiLC cells were initially 
derived by seeding 2i/LIF wildtype cultured cells in EpiLC conditions, N2B27/Activin/FGF/KSR media, 
according to (Hayashi and Saitou, 2013), for approximately 48 hours, before lifting and replating in 
NMP conditions according to (Gouti et al., 2014) in N2B27/CHIR/FGF for either 2 or 3 days.  

 

in EpiLC conditions for approximately 48 hours as described in (Hayashi and Saitou, 

2013). These were then dissociated with Accutase and re-plated in N2B27/CHIR/FGF 

media on fibronectin in the same manner EpiSC are used to derive NMPs (Gouti et 

al.,2014). As cell death has been widely reported at Day 3 of EpiLC culture (Hayashi 

et al., 2011), EpiLCs cells were plated at a number of densities, from 1800cells/cm2 

which is commonly used for derivation of NMPs from EpiSC, to a higher density of 

2600 cells/cm2. NMPs are generally found from Day 2 from EpiSC derivation, and 

because EpiLCs represent an earlier embryonic state, I expected to see emergence of 

NMPs on Day 2 or Day 3. To evaluate the presence of NMPs in the culture conditions, 

T(Bra) and Sox2 co-expression, a hallmark of NMPs, was detected using 

immunohistochemistry.  

At all densities, and at both days, colonies with cells expressing both T(Bra) and Sox2 

(T+/S+) were identified (Fig. 4.3). In these cultures, not all observed cells were T+/S+. 

Some T(Bra) single positive (T+/S-), Sox2 single positive (T-/S+) and double negative 

for T(Bra) and Sox2 (T-/S-) cells were also found at all plating densities. Overall there 

was considerable death at all densities, visible by the number of dead cells floating in 

the culture, ultimately resulting in very few attached colonies remaining in each well 

(Fig. 4.4). As cell death had been reported previously for EpiLCs and because it is 

considered as a normal observation in other differentiation systems, I continued to 

optimise this protocol (Hayashi et al., 2011; Ying and Smith, 2003).  

To optimise the plating density a high-throughput system was utilised. Cells were 

seeded in 96 well plates and collected at Day 2 (Fig. 4.5). Following fixation cells were 
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Figure 4.3 – T(Bra) and Sox2 co-expressing cells can be derived from EpiLCs. 
T(Bra)-red and Sox2- green immunohistochemistry on cells fixed on either Day 2 or Day 3, show that these cells co-express both markers.  
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Figure 4.4 – EpiLC cultures contain a high proportion of dead cells. 
Day 2 Brightfield images show many dead cells floating in the culture (black arrows) surrounding alive 
cells attached to the plate (white arrows) 

 

labelled using DAPI, and imaged with an Operetta High-Content Imaging System, 

which allows the imaging of whole wells/plates. At the plating density reported to 

produce a high proportion of NMPs (Gouti et al., 2014), very few colonies were 

present (Fig. 4.5a). Instead a plating density of 260,000 cells/cm2 generated an 

equivalent cell density after EpiSC differentiation (Fig. 4.5i).  

In summary, T(Bra) and Sox2 co-expressing cells, putative NMPs, can be generated 

from EpiLC through dual activation of Fgf and Wnt/β-catenin signalling for 

approximately 48-72 hours, similarly to that previously described from Mouse ESCs 

and EpiSCs. However due to wide-spread cell death EpiLCs need to be plated at a 

significantly higher density than EpiSCs.  
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Figure 4.5 – Optimisation of EpiLC plating density.  

Plating density of EpiLC was optimised using high-through put system which allowed the imaging of whole 96 well plate wells. DAPI staining is shown for EpiLC cells 
plated in 96 well plate in NMP promoting conditions for 2 days. Density of cells doubles between each well from left to right (a-h). Well (h), was the optimum density 
for generating EpiLC-NMP colonies. (i) shows single field of view. 
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4.4 Optimisation of variables to enhance putative NMP 
proportions 

4.4.1 Experimental Set-up 

Following optimisation of density, I set up a multivariate experiment to achieve the 

highest proportion of T+/S+ putative NMPs, from EpiLCs. Overall experimental set-

up is documented in (Fig. 4.6). 

The variables were: 

(1) Timepoint of NMP differentiation. T+/S+ cells were previously observed on 

both Day 2 and Day 3 in preliminary experiments (Fig. 4.3), so both were 

examined. 

(2) EpiLC differentiation duration. Timepoint of EpiLC/NMP differentiation 

media change. Cell survival appeared to be variable in experimental repeats 

where the exact time of replating on Day 2 varied. This may reflect their 

dynamic gene expression between 24-72 hours of EpiLC culture (Hayashi et 

al., 2011). Therefore, a systematic series of five timepoints between 42-54 

hours in EpiLC conditions was tested to determine whether this affected the 

efficiency of T+/S+ cell production, these were: 42 hours, 45 hours, 48 hours, 

51 hours, and 54 hours into EpiLC differentiation.  

(3) Replating of EpiLCs. To test whether the extensive cell death in EpiLC- NMP 

culture (Fig. 4.4) was a result of passaging cells at the transition from EpiLC to 

NMPs differentiation, cells were either passaged (‘Replated’) or not (‘Not 

Replated’). To compensate for the probable increase in cell density from 

leaving cells attached to the dish during the media change, cells were plated at 

a series of lower densities for ‘Not Replated’ condition.  

(4) Plating density. It had previously been observed in EpiSC cultures that high 

cell densities have effects on the level of T(Bra), Tsakiridis/Karagianni 

(unpublished observations). Therefore a series of densities were assayed at 

each stage where cells were plated: for culture in ‘Not Replated’ series, 

densities between 625-6,250 cells/cm2 were examined, while in the ‘Replated’ 
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series, 2i/LIF cultured cells were plated at 16,000 cells/cm2 and EpiLCs re-

plated at 6,250-132,000 cells/cm2 . 

Image analysis was performed on cells immunostained with T(Bra) and Sox2 

antibodies. 

 

 

Figure 4.6 – Optimisation of variables to enhance putative NMP proportions. 
Experimental set up to optimise variables to enhance putative NMP proportions in EpiLC-NMP 
cultures. Variables were: (1) NMP differentiation, (2) EpiLC differentiation duration (3) Replating of 
EpiLCs (‘replated’ or ‘not replated’) and (4) plating density.  

 

4.4.2 Putative NMPs were more abundant at Day 2 

In cultures where NMPs are generated from EpiSC, T+/S+ cells appear following 48 

hours of treatment in NMP conditions, and remain in the culture until at least 72 hours. 

To examine the temporal dynamics of putative NMPs in my EpiLC derived cultures, 

the presence of T+/S+ cells was compared between Day 2 and Day 3 samples for all 

conditions. 

In ‘Not Replated’ conditions T+/S+ cells were found consistently at all EpiLC 

differentiation durations on Day 2 (Fig. 4.7A). In comparison ‘Not Replated’ 

conditions at Day 3 did not show the same pattern of T(Bra) and Sox2 co-expression 

(Fig. 4.7B). Although some T+/S+ cells were present in the culture at Day3, T(Bra) 

and Sox2 expression appeared mutually exclusive in most cells. This was hard to 

confirm for all cells, specifically those in more domed colonies, where cells and their 

expression signal overlapped. These domes tended to have the highest expression of 



   

 156 

Sox2 at their core, typically surrounded by T(Bra) positive cells. Flat and sparse cells 

surrounding large colonies were typically T-/S- in Day 3 cultures. 

Similar trends were found in ‘Replated’ conditions, with Day 2 cultures typically 

having more T+/S+ cells (Fig. 4.8A), while on Day 3 T(Bra) and Sox2 again appeared 

to be mutually exclusive in most cells (Fig. 4.8B).  

In summary, putative NMPs (T+/S+), were plentiful in Day 2 cultures, however by 

Day 3, most of these cells had already become T(Bra) and Sox2 single positive. This 

suggests that differentiation of these putative NMPs present at Day 2 occurs quickly, 

with cell differentiating to specific lineages between 48-72 hours of culture. 

4.4.3 Unbiased analysis to determine the best combination of 
variables 

4.4.3.1 Analysis methodology 

Although it was clear that T+/S+ cells were more abundant at Day 2, it was not clear 

what combination of plating condition, timing of NMP condition transfer or density 

was optimal to obtain the highest proportion of T+/S+. Thus, further analysis was 

carried out on the Day2 immunohistochemistry data for ‘Not Replated’ and ‘Replated’ 

conditions. Columbus Software was utilised to determine levels of T(Bra) and Sox2 

for individual cells over all conditions, data which were subsequently used to 

determine the proportion of T+/S+ cells within each condition. 

To determine levels of T(Bra) and Sox2 for individual cells segmentation of individual 

cells was conducted with Columbus software using optimised settings for each plating 

condition (Fig. 4.9). Despite undergoing optimisation, segmentation performed by the 

software was not perfect and some errors of over segmentation and under segmentation 

were detected through manual inspection of segmented field. 
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Figure 4.7 – ‘Not 

Replated’ cultures 

at Day 2 and Day 3. 

Cells co-expressing 
T(Bra)- red, and 
Sox2-green were 
more abundant in 
‘Not Replated’ 
conditions on Day 2 
than Day 3. In Day 3 
‘Not Replated’ 
cultures T(Bra) and 
Sox2 was mutually 
exclusive for many 
cells, and cultures 
were characterised 
by domed colonies 
of Sox2 positive 
cells (green arrow) 
surrounded by 
T(Bra) positive 
cells. Flatter 
negative cells were 
also abundant at 
Day 3 (grey arrow). 
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Figure 4.8 – 

‘Replated’ cultures 

at Day 2 and Day 3. 

Cells co-expressing 
T(Bra)- red, and 
Sox2-green were 
more abundant in 

‘Replated’ 
conditions on Day 2 
than Day 3. In Day 3 
‘Not Replated’ 
cultures T(Bra) and 
Sox2 was mutually 
exclusive for many 
cells, and cultures 
were characterised 
by domed colonies 
of Sox2 positive cells 
surrounded by 
T(Bra) positive cells.  
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Figure 4.9 – Optimisation and limitations of segmentation by Columbus Software  
Images show outcome of segmentation performed by Columbus Software (Perkin Elmer) using 
optimised settings on immunohistochemistry images for ’Replated’ conditions at 42 hours, and 41 
hours and 54 hours for ‘Not Replated’. (A) DAPI only, (B) Optimised segmentation (C) Filters used to 
remove mis-segmented cells from the analysis by (Ca) DAPI Area (Cb) DAPI Intensity and (Cc) Cell 
roundness. (discarded cells – red , kept cells – green).  
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Incorrectly segmented cells were removed by applying filters based on cell 

morphology or DAPI intensity, which were optimised for each condition (Fig. 4.9C). 

These filters removed incorrectly segmented cells based on cell size (DAPI area), 

DAPI intensity, and roundness of the cells (Fig. 4.9Ca-c). Typically, flatter cultures 

(e.g. those for shorter EpiLC differentiation in ‘Replated’ conditions) segmented well. 

Conversely domed colonies, in which cells were overlapping, did not segment well, 

with the software unable to distinguish between individual cells. To minimise incorrect 

segmentation, areas with overlapping cells were removed from the analysis by filtering 

out cells with high DAPI intensity, and unusual cell shape (usually the result of under-

segmentation). For ‘Not Replated’ conditions this resulted in the exclusion of many 

cells from the analysis, but those that were included were mostly correctly segmented 

and thus still valuable for the analysis (Fig. 4.9). 

Following segmentation, the levels of T(Bra) and Sox2 were reported for each 

individual cell via Columbus software. Note data from well ‘Not Replated’ at 48 hour 

EpiLC differentiation at highest density was excluded from further analysis due to 

abnormally high DAPI values which filtered out too many cells. To calculate the 

proportion of cells that were double positive for T(Bra) and Sox2, minimum threshold 

levels for both channels were defined by judgement of negative expression levels. For 

each well, cells were then assigned to four quadrants based on these parameters: double 

negative (T-/S-), T(Bra) single positive (T+/S-). Sox2 single positive (T-/S+) and 

double positive (T+/S+). To compare between wells, proportion of cells in these 

quadrants was calculated for all wells, and are documented (Fig. 4.10), including total 

cell numbers for each (Fig. 4.10B). Additionally, to observe trends within variables, 

the average proportion of cells for each quadrant for ‘Not Replated’ and ‘Replated’ by 

density and by EpiLC differentiation duration were calculated (Fig. 4.10).  

4.4.3.2 Putative NMP proportions are higher in the absence of replating 
step 

Comparing the proportion of T+/S+ cells between ‘Not Replated’ and ‘Replated’ 

showed that ‘Not Replated’ wells typically had a higher proportion of putative NMPs 

across all EpiLC differentiation lengths and densities (Fig. 4.10A). Examining average 

T+/S+ proportions across all EpiLC differentiation lengths showed that ‘Not Replated’  
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Figure 4.10 – Proportion of T(Bra) and Sox2 double positive cells and total number of cells per 
variable.  
(A) Cells from each condition were split quadrants in terms of their T(Bra) and Sox2 intensity. These 
were:  T(Bra) single positive (T+/S-)- red, Sox2 single positive (T-/S+)-green, double positive (T+/S+)- 
yellow - percentage of total well shown, and double negative (T-/S-)- grey. Thresholds for Sox2 and 
T(Bra) were set based on visual analysis of positivity. (B) Total cells counted in each well for each 
condition. A-J, low density to high density. * this sample was excluded due to the loss of too many 
cells during segmentation filtering. N=1 for each condition.  
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typically had twice as many putative NMPs across densities compared with wells from 

‘Replated’ conditions (Fig. 4.10A). Thus, not replating cells from EpiLC during NMP 

derivation was key to achieving high levels of putative NMPs. Notability ‘not 

replating’ was not associated with reduced cell death in the culture, with an overall 

similar extent of death between ‘Not Replated’ and ‘Replated’ samples.  

In ‘Replated’ wells the proportion of T(Bra) positive cells (T+/S+ and T+/S-) was 

lower than that for ‘Not Replated’ wells (Fig 4.10A,4.11A). This showed that T(Bra) 

expression was generally lower in ‘Replated’ versus ‘Not Replated’ conditions and 

could potentially be the limiting factor in overall NMP number. For both conditions, 

the highest proportion of T+/S+ cells were typically found at the lowest plating 

densities, when the proportion of T+/S- was also highest. Conversely the proportion 

of T-/S+ cells was highest at higher densities. Thus, T(Bra) and Sox2 positivity 

appeared to be inversely correlated.  

 

 

Figure 4.11 – Averaged proportions of EpiLC-NMPs per density and per EpiLC differentiation. 
Averages by density and by EpiLC differentiation length outlined in Fig. 4.10. Percentages of T+/S+ 
(EpiLC-NMPs) are included on bar chart. 
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In summary, dissociating and replating EpiLCs before transferring to NMP conditions 

has a negative effect on the proportion of putative NMPs and T(Bra) positive cells. 

Additionally, putative NMP proportions are highest at lower densities however this 

effect is less influential than the ‘Replating’ variable.  

4.4.3.3 Increasing duration of EpiLC differentiation enhances putative 
NMPs proportions  

EpiLCs exhibit a dynamic transcriptome between 24-72 hours of EpiLC culture 

(Hayashi et al., 2011). Thus, I was interested whether EpiLC differentiation length 

affected the efficiency of putative NMP production. Comparing T+/S+ proportions 

over EpiLC differentiation lengths for both conditions, the proportion of putative 

NMPs were typically lower for shorter EpiLC differentiation lengths, 42-45 hours 

(Fig. 4.10A). This was particularly striking in ‘Replated’ conditions for 42 hours 

differentiation timepoint, in which many wells exhibited 0% putative NMPs 

proportions. Conversely ‘Replated’ conditions at 54 hours of EpiLC differentiation at 

the same densities exhibited proportions of putative NMPs between 10-31% (Fig. 

4.10A). Highest putative NMP proportions were found for longer EpiLC 

differentiation lengths (48-54hr) for ‘Not Replated’ conditions. Averaging proportions 

of quadrants for all well densities, showed that on average 40%, 32% and 38% of cells 

after 48hr, 51hr and 54 hr EpiLC differentiation respectively, of total cell numbers are 

putative NMPs (Fig. 4.11B). Thus, in summary increasing duration of EpiLC 

differentiation before transferring cells to NMP conditions results in an enrichment of 

putative NMPs proportions.  

However, cells with longer EpiLC differentiation duration were prone to detaching 

from the plate, and this was reflected in overall lower numbers of cell analysed for 

these conditions (Fig. 4.10B). In both ‘Not Replated’ and ‘Replated’ conditions, for 

42-51hours of EpiLC differentiation conditions, the number of cells included in the 

analysis increased with increasing plating density. However, for those that underwent 

54 hours of EpiLC differentiation total cell numbers remained low even with 

increasing cell seeding densities. Detaching of cells was confirmed by inspection of 

stitched field of view images (Fig. 4.12). ‘Not Replated’ condition wells in which 

media was changed following 54 hours of EpiLCs differentiation had large areas in 

which cells are absent (Fig. 4.12B). This was a drastic reduction in well coverage 
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compared to those cultured in EpiLC conditions for only 41 hours, which had cells 

distributed equally over the entire well (Fig.4.12A). To investigate this further 

‘Replated’ conditions were compared in a similar manner. Wells for which EpiLCs 

differentiation was longer had significant loss in well coverage relative to those with 

less EpiLC differentiation (Fig. 4.12C-D). Cell colonies between these wells also 

differed in terms of their morphology, with colonies being more domed with longer 

EpiLC differentiation (Fig. 4.12E-F). Together this suggests that duration of EpiLC 

differentiation determines how well cells attach to the well substrate and each other. 

Considering all variables, conditions in which cells were not dissociated and replated, 

and which had a longer EpiLC differentiation, resulted in the highest proportions of 

putative NMPs. However, considering the significant detachment of cells after 54 

hours of EpiLC differentiation, 51 hours of EpiLC differentiation provide an 

alternative condition for appropriate for use in future experiments. 

 

 

 

Figure 4.12– Colony morphology is dependent on length of EpiLC differentiation. 
In both ‘Not Replated’ and ‘Replated’ Conditions, cells with longer EpiLC differentiation were prone to 
detaching from the plate. ‘Not Replated’ (A) at 42 hours, and (B) at 54 hours. ‘Replated’ (C) at 42 hours, 
and (D) at 54 hours. Closer inspection of ‘Replated’ conditions (plated at the same density) showed 
that cell colonies with longer EpiLC differentiation were also more domed, shorter (E) versus (F) longer 
EpiLC differentiation. 
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4.5 qRT-PCR comparison between NMPs derived from 
EpiSCs and EpiLCs 

4.5.1 Experimental overview 

Following the optimisation of variables to maximise putative NMP numbers from 

EpiLCs (4.4), I was interested whether putative NMPs generated from EpiLCs were 

transcriptionally equivalent to EpiSC derived NMPs. The differences in gene mRNA 

expression profiles were compared using qRT-PCR analysis. To maximise putative 

NMP numbers from EpiLCs and limit cell detachment, samples were collected from 

conditions with 51 hours of EpiLC differentiation, without replating (‘Not Replated’ 

condition) at Day 2 (Fig. 4.13). Additionally, to examine the further differentiation of 

these cells, samples were additionally collected at Day 3. Control samples included in 

the analysis were, 2i/LIF culture starting population, EpiLC at 51 hours, NMPs derived 

from EpiSCs (48 hours) and their EpiSC starting population (all N=3 biological 

replicates, except EpiSC N=4, and Oct4 N=2). 

 

Figure 4.13 – qRT-PCR to compare NMPs derived from EpiSC and EpiLC. 
Overview of EpiLC-NMP derivation to collect samples for qRT-PCR. Brightfield image shows typical 
colony of Day 2 sample. 

 

4.5.2 EpiLC derived NMPs Day 2 are most similar to EpiSC 
derived NMPs 

qRT-PCR results for all samples are documented in (Fig. 4.14) and (Fig. 4.15), all 

expression levels were calculated relative to 2i/LIF and error bars represent calculated 

standard error of the mean (SEM). qRT-PCR was performed for the analysis of 

pluripotency, NMP associated and lineage specification markers.  
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Pluripotency marker Oct4 was expressed at negligible levels in EpiLC derived NMPs 

for Day 2 and Day 3, comparable to those for EpiSC NMPs samples and much lower 

than levels for 2i/LIF and EpiLCs which are associated with more pluripotent states 

(Fig. 4.14A). The expression of Sox2, a pluripotency marker in early development and 

later a marker of neural lineage, was twice as high in NMPs derived from EpiLCs than 

those from EpiSCs. As Oct4 was low in these samples, the increase in Sox2 indicated 

higher level of neural identity in NMPs derived from EpiLCs versus those from 

EpiSCs, which was further increased in Day 3 samples. Together these markers 

indicate that putative NMPs from EpiLCs lose pluripotency to a similar extent to 

EpiSC derived NMPs, but may have more neural characteristics.  

Next primitive streak markers characteristic of embryo and in vitro derived NMPs 

were investigated , these were, Fgf8 (Crossley and Martin, 1995), Cdx2 (Beck et al., 

1995; Deschamps and van Nes, 2005), Evx1 (Bastian and Gruss, 1990; Cambray and 

Wilson, 2007), Nkx1.2 (Schubert et al., 1995), Ptk7 (Lu et al., 2004), Wnt3a (Takada 

et al., 1994) and T(Bra) (additionally a mesoderm marker)(Wilkinson et al., 1990) 

(Fig. 4.14B). NMPs derived from EpiSC and EpiLCs showed comparable levels of 

Fgf8, Cdx2, Evx1, Nkx2.1 and Ptk7, suggesting a similarity between these two 

populations. However, Wnt3a and T(Bra) were significantly lower in NMPs derived 

from EpiLCs versus those from EpiSCs (verified using two-tailed unpaired t test).  

Thus, despite similarities in gene expression characteristic of NMPs, NMPs derived 

from EpiLCs and EpiSC are not identical. Expression of T(Bra) and Wnt3a are 

generally associated with Wnt/β-catenin signalling, and therefore suggested that this 

pathway may be less active in NMPs derived from EpiLCs. Comparing Day 2 and Day 

3 EpiLC derived NMPs, Day 3 samples tended to exhibit lower levels of NMP 

markers, in keeping with the idea that they might be losing NMP identity and 

differentiating. 

In development, the anterior-posterior identity of axial tissues is regulated by the 

sequential activation of the Hox genes along the axis (Deschamps and van Nes, 2005). 

A selection of Hox genes were examined to compare the axial identity of these two 

NMPs populations. HoxA4 is associated with anterior cervical domains (Horan et al., 

1994), HoxA6 with thoracic domains (Kostic and Capecchi, 1994), and HoxD13 with 
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caudal domains (Deschamps and van Nes, 2005). HoxA4 and Hoxa6 had previously 

been reported to be higher in EpiSC derived NMPs compared to EpiSC (Gouti et al., 

2014). This trend was also present for EpiLC derived NMPs, which had higher levels 

of HoxA4 and HoxA6 compared with EpiSCs (Fig. 4.14C). HoxA4 and HoxA6 tended 

to be higher in putative NMPs derived from EpiLC than those from EpiSC, suggesting 

there may be subtle differences between the two populations. Previously low 

expression of HoxD13 had been reported in EpiSC derived NMP culture (Gouti et al., 

2014). In line with this, all samples tested for HoxD13, including EpiLC derived NMPs 

exhibited low expression levels. In summary, NMPs derived from EpiLCs displayed 

upregulation of specific Hox genes characteristic of EpiSC derived NMPs. 

To further dissect similarities between NMPs derived from EpiSC and EpiLCs, lineage 

specific markers were investigated (Fig. 4.15). Markers of emergent paraxial 

mesoderm Tbx6 (Chapman et al., 1996) and skeletal and cardiac mesoderm Mesp1 

(Saga et al., 1996), were lower in EpiLC derived NMPs, suggesting this culture 

contained less mesoderm fated cells (Fig. 4.15A). Conversely EpiLC NMPs had higher 

levels of both neural lineage markers Pax6 (Bernier et al., 2001) and Sox1 (Pevny et 

al., 1998) compared with EpiSC derived NMPs (Fig. 4.15B). Moreover, Sox1 levels 

were significantly higher in EpiLC-NMPs day 3 samples than day 2 samples 

suggesting increasing neural differentiation in these samples. Finally endoderm 

markers FoxA2 (also present in node/notochord) (Sasaki and Hogan, 1993), and 

Sox17(Kanai-Azuma et al., 2002) showed distinct differences between the two NMP 

populations (Fig. 4.15C). FoxA2 was significantly lower in NMPs derived from 

EpiLCs, while Sox17 was higher compared to EpiSC derived NMPs.  

Overall the profile of many developmental markers in EpiLC derived NMPs 

corresponded to those of EpiSC NMPs, suggesting many parallels between these two 

populations. This was especially true for many genes characteristically upregulated in 

in vivo and in vitro NMPs including specific Hox genes. However, NMPs derived from 

EpiLCs did show some distinct differences, with significantly lower levels of Wnt3a 

and T(Bra) and mesoderm lineage markers, indicating a deficiency in Wnt/β-catenin 

signalling. Concurrently EpiLC NMP also exhibited higher transcript levels of neural 

lineage markers. Thus, despite many similarities between the two populations some   
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Figure 4.14 –qRT-PCR analysis to compare NMP derived from EpiSC and EpiLC - Pluripotency, NMP 
and Hox genes. 
qRT-PCR analysis of genes (A) associated with pluripotency, (B) upregulated in vivo NMPS and 
additionally (C) Hox genes. Levels of gene expression are all relative to 2i/LIF sample. Errorbars 
represent standard error of the mean, N=3 for all genes except Oct4 (N=2) and EpiSC (N=4). Statistical 
significance was assessed by performing a t test (two-tailed), p-values are shown. * indicates if a gene 
is associated with additional tissue types. EpiLC sample was collected following 51 hours of EpiLC 
differentiation, and NMP sample is from 48 hours of NMP differentiation from EpiSCs. 
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Figure 4.15 –qRT-PCR analysis to compare NMP derived from EpiSC and EpiLC - Mesoderm, Neural 
and Endoderm associated genes. 
qRT-PCR analysis of genes (A) associated with mesodermal (B) neural and (C) endoderm tissues. 
Details are the same as those described for Fig. 4.14. 
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differences did exist. 

4.6 NMPs derived from EpiLCs and EpiSCs express 
similar levels of Wnt/PCP components 

Although expression of Wnt/PCP components during in vivo development had been 

described in the literature, albeit sparsely, no investigation of Wnt/PCP component 

expression in in vitro cultures has ever been reported. For this reason, and to compare 

the differences between EpiLC and EpiSC derived NMPs, immunohistochemistry for 

Fzd6, Ptk7 and Vangl2, was carried out on cells cultured in different conditions (Fig. 

4.16-8).  

Fzd6 protein was only present at low levels in 2i/LIF and EpiLC cultures, where 

protein was found to be diffuse and not membrane specific (Fig. 4.16A-F). Fzd6 

protein levels were increased in EpiLC derived NMPs, and more specific to the cell 

surface (Fig. 4.16G-I), but lower compared to EpiSC and EpiSC derived NMPs in 

which the protein was more abundant (Fig. 4.16J-O). Fzd6 which is specific to 

notochord during in vivo development (3.3.2) appeared ubiquitously expressed in 

EpiSCs and EpiSC derived NMPs, as well as EpiSC, suggesting Wnt/PCP signalling 

may be present in these cultures.  

Ptk7 protein was detected using Proteintech antibody which recognises both cleaved 

and uncleaved forms of Ptk7 protein. Membrane bound Ptk7 protein was observed 

ubiquitously in all culture conditions tested (Fig. 4.17). However distinct Ptk7 levels 

were observed, with Ptk7 protein more abundant and more intense at the cell 

membrane in NMPs derived from either EpiSC and EpiLC, and EpiSC (Fig. 4.17I-R) 

compared to 2i/LIF and EpiLC cultures (Fig. 4.17A-F).  

Vangl2 protein was detected in low levels in 2i/LIF and EpiLC cultures, for which 

protein distribution appeared diffuse and not membrane specific (Fig. 4.18A-F). 

Vangl2 protein was much higher in EpiSCs, and NMPs derived from both EpiSC and 

EpiLCs. In these cultures Vangl2 localisation was not diffuse but instead localised to 

the cell membrane, and for all NMP samples appeared to be intensely localised in some 

cells more than others.  
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Overall, immunofluorescence intensity tended to increase with the differentiation state 

of the cell cultures, with NMPs having the highest levels of Wnt/PCP components 

examined. This aligns with previous descriptions of these components after 

gastrulation (3.3.1-3.3.3), suggesting Wnt/PCP may be active from this point in in vivo 

and in vitro systems. Comparing the levels between NMPs derived from EpiSCs and 

EpiLCs, Ptk7 and Vangl2 tended to be similar, however Fzd6 appeared to be slightly 

lower in NMPs derived from EpiLCs.  
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Figure 4.16 - Fzd6 expression in in vitro cultures. 
Figure shows immunohistochemistry of Fzd6- greyscale, in in vitro cultures of (A-C) 2i/LIF, (D-F) EpiLCs 
(51 hours), (G-I) EpiLC derived NMPs, (J-L) EpiSCs, and (M-O) EpiSC derived NMPs Day 2 of 
differentiation. DAPI - blue 
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Figure 4.17 - Ptk7 expression in in vitro cultures. 
Figure shows immunohistochemistry of Ptk7- greyscale, in in vitro cultures of (A-C) 2i/LIF, (D-F) EpiLCs 
(51 hours), (G-I) EpiLC derived NMPs, (J-L) EpiSCs, and (M-O) EpiSC derived NMPs Day 2 (P-R) and Day 
3 of differentiation. DAPI - blue  
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Figure 4.18 - Vangl2 expression in in vitro cultures. 
Figure shows immunohistochemistry of Vangl2- greyscale, in in vitro cultures of (A-C) 2i/LIF, (D-F) 
EpiLCs (51 hours), (G-I) EpiLC derived NMPs, (J-L) EpiSCs, and (M-O) EpiSC derived NMPs Day 2 (P-R) 
and Day 3 of differentiation. DAPI - blue  
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4.7 Grafting of prospective EpiLC derived NMPs 

Grafting conducted by Prof Val Wilson, Ex Vivo Embryo Culture and Imaging aided by Dr Filip 

Wymeersch.  

Following the identification of similarities between NMPs derived from EpiSC and 

EpiLCs, I was interested to test if these cells also exhibited parallels in their in vivo 

developmental potential. NMPs derived from EpiSC had previously been shown to 

extensively contribute to both neural and mesodermal tissues when grafted to the 

Node-streak Border (NSB), the site of NMPs at the onset of somitogenesis (Fig. 4.20B) 

(Gouti et al., 2014).  

 

Figure 4.19 – Experimental overview of grafting GFP positive EpiLC-NMPs to NSB of wildtype 
embryos - Cell Differentiation. 
Cell lines ubiquitously expressing GFP were seeded from 2i/LIF to EpiLC cuture conditions for 51 hours, 
and subsequently in NMP conditions for 2 days 
 

Thus, to assess the functional capabilities of prospective NMPs derived from EpiLCs, 

these were grafted in the same manner. NMPs from EpiLCs were generated from two 

ubiquitously expressing GFP 2i/LIF cultured cells, C2 (Guo et al., 2009) and A-EGFP 

(Gilchrist et al., 2003) under optimised conditions (Fig. 4.19). Small groups of GFP 

transgenic cells were grafted in the NSB of wildtype embryos at 2-3 somite stage. They 

were initially imaged, to assess the success of the grafting, before being placed in to 

ex vivo rolling culture for 48 hours (Fig. 4.20). Embryos were then collected, dissected 

and imaged a final time.  

.  
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Figure 4.20 – Experimental overview of grafting GFP positive EpiLC-NMPs to NSB of wildtype 
embryos - Cell Grafting. 
Cells lines ubiquitously expressing GFP were seeded from 2i/LIF to EpiLC cuture conditions for 51 
hours, and subsequently in NMP conditions for 2 days, (A) were then grafted in to the NSB (NMP 
region) of wildtype embryos. Following imaging they were further grown in rolling culture for 48 hours 
before imaging again to determine contribution to the embryo. Contribution of GFP positive cells to 
wholemount embryos was classified as either, no GFP, non-integrated or integrated. To be classified 
as integrated, GFP positive cells had to be widely dispersed among wildtype (GFP negative) 
 cells and not as a clump. As a control EpiLCs cultured for approximately 48 hours were also grafted 

in the same way. (B) EpiSC-NMPs previously contributed extensively to the caudal axis when grafted 

to the NSB in the same manner (Gouti et al., 2014).  
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Contribution of GFP positive cells was scored using images of wholemount embryos 

and assigned to three categories: no GFP, non-integrated or integrated (Fig. 4.20A). 

To be classified as integrated, GFP positive cells had to be widely dispersed among 

wildtype (GFP negative) cells, whereas non-integrated cells formed self-adherent 

clumps. 2i/LIF cultured cells cultured for 48 hours in EpiLC conditions are 

transcriptionally akin to pre-gastrulation embryos (Hayashi et al., 2011), and therefore 

these were additionally grafted as a negative control group as they were expected to 

not integrate. Contribution analysis is summarised in Table 4.1 below. 

 

Grafting of the C2-GFP cell line resulted in no successful integration of either EpiLC 

or EpiLC-NMPs, this data is documented in (S-Fig. 4.1). In contrast, grafting using 

the A-EGFP cell line resulted in successful integration of GFP positive cells in 4/6 

grafts using EpiC-NMPs (Fig. 4.21A-H) compared with the EpiLC control group for 

which integrated cells were not observed (0/3) (Fig. 4.22A-E). The successful 

integration of EpiLC-NMPs into these embryos showed contribution to tissues of the 

tail bud (Fig. 4.21B,D), and trunk (Fig. 4.21F,H) with verification of specific tissue 

contribution dependent on future examination of sections. The remaining two out of 

the six EpiLC-NMP grafted embryos contained only non-integrated GFP clumps (Fig. 

4.21I-L). However these clumps were also observed in embryos with successful 

EpiLC-NMP integration (2/4) (Fig. 4.21B,H), suggesting EpiLC-NMPs had low 

contribution efficiency. Collectively this data suggests that EpiLC-NMPs can 

contribute to caudal tissues when grafted to in vivo NMP regions, with verification of 

specific tissue contribution dependent on future examination of sections. However, 

compared with the extensive incorporation of EpiSC-NMPs described previously  

  

Table 4.1 – Contribution of GFP cells lines and cell types following grafting 

C2 Cell Line  A-EGFP Cell Line 

Cell Type 
Contribution  

Cell Type 
Contribution 

No 

GFP 

Non-

Integrated Integrated  
No 

GFP 

Non-

Integrated Integrated 

EpiLC 

NMPs 
5/6 1/6 0/6 

 

EpiLC 

NMPs 
0/6 2/6 4/6 

EpiLC 

(control) 
0/2 2/2 0/2 

 

EpiLC 

(control) 
0/3 3/3 0/3 
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Figure 4.21 – EpiLC-NMPs can contribute to axial tissue when grafted to NMP regions. 
Figure shows initial grafts (first column Aa-Ka) of EpiLC derived NMPs in to the NSB of E8.5 embryos 
at 0hr for 6 embryos in total, as well as images of (Ab-Kb) wholemount and (B,D,F,H,J,L) magnification 
of GFP+ contribution after approximately 48 hours of rolling culture. Embryos A-G show incorporated 
GFP+ cells contributing to axial tissues, and embryos I-K have non-integrated GFP clumps. GFP – green 
and auto fluorescence captured with the RFP channel – red. Integrated cells (white arrows), non-
integrated clumps (black arrows). Overall the level of integration was lower than that previously 
described for EpiSC-NMPs. (Fig. 4.20B). 
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Figure 4.22 - EpiLCs cannot integrate when grafted to the NMP regions. 
Figure shows (Aa-Ea) initial grafts of EpiLC (differentiated for approx. 48-52 hours) in to the NSB of 
E8.5 embryos at 0hr for 3 embryos in total, as well as images of (Ab-Eb) wholemount and (B,D) 
magnification of GFP+ areas after approximately 48 hours of rolling culture. All embryos show no 
integration of grafts. Non-integrated clumps (black arrows). GFP – green and autofluorescence 
captured with the RFP channel – red. 

 

 

(Gouti et al., 2014), ultimately EpiLC-NMPs appear to have inferior NMP 

functionally in this context.  
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4.8 Discussion 

4.8.1 NMPs can be derived from EpiLCs 

EpiLCs represent a so-called ‘formative’ state, and are a homogeneous population of 

cell generated from 2i/LIF cultures. Following 48 hours of EpiLC differentiation cells 

are transcriptionally akin to E5.75 embryos (Hayashi et al., 2011). In the work 

described in this chapter the objective was to assess if NMPs could be derived from 

EpiLCs, a seemingly advantageous starting population versus more heterogenous 

EpiSCs. The work has demonstrated the robust derivation of T(Bra) and Sox2 double 

positive cells, characteristic of NMPs, from EpiLC culture, through activation of Fgf 

and Wnt/β-catenin signalling (Fig. 4.2-4.3), the traditional method of deriving NMPs 

from EpiSCs and ESCs (LIF/FCS) cultures (Gouti et al., 2014).  

The effect of multiple variables on putative NMP proportions in these cultures was 

additionally explored using a high-throughput system and permitted the identification 

of optimal conditions for EpiLC-NMP derivation (Fig. 4.10-11). Finally, these 

optimised EpiLC-NMP cultures were compared with EpiSC-NMP cultures with regard 

to their transcriptional profile (Fig. 4.14-15), Wnt/PCP component expression (Fig. 

4.16-18) and in vivo function (Fig. 4.21) to determine any inherent differences. Despite 

some apparent differences, overall many parallels existed between EpiLC-NMP and 

EpiSC-NMP cultures, providing evidence that EpiLC-NMP are similar to in vivo 

NMPs. In summation, this work deriving NMPs from homogeneous EpiLCs sources 

provides evidence of a novel in vitro differentiation protocol capable of producing 

cultures that mimic in vivo NMPs.  

4.8.2 Comparison of derivation of NMPs from EpiLCs and 
EpiSCs  

Following 48 hours of EpiLC differentiation, EpiLCs transcriptionally represent E5.75 

embryos (Hayashi et al., 2011). On the other hand, EpiSCs which are derived from 

E5.5- E7.5 embryos, represent a later differentiation state termed ‘primed’, reflected 

by their expression of lineage markers (Brons et al., 2007; Kojima et al., 2014b; Tesar 

et al., 2007). As EpiLCs and EpiSCs represent different embryonic states, it was of 

particular interest to study what the consequences would be for moving to EpiLCs to 

EpiLC to NMP deriving conditions.  
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Overall it was apparent that derivation of NMPs from EpiLCs results in a phase of 

extensive cell death (Fig. 4.4). This phase does not occur when deriving NMPs from 

EpiSCs and, ultimately meant that plating density was 100x higher for EpiLCs 

compared with that for EpiSC to have the same plate coverage (Fig. 4.5). Even the 

adjustment of ‘not replating’ cells did not prevent this extensive cell death. However 

the process of EpiSC derivation from pluripotent ESCs is also characterised by 

extensive cell death that persists over many cell passages until EpiSCs are fully derived 

(Turco et al., 2012). Given these points it appears that cell death is a ‘normal’ and 

essential process in differentiation from more pluripotent states.  

In NMP derivation from EpiLCs this process occurs quickly compared with the 

prolonged process of EpiSC derivation, and does not appear to impede progress to 

NMP differentiation. In fact death has also been described in other differentiation 

processes including neural differentiation (Ying and Smith, 2003). It is considered that 

cells unable to convert to new conditions and differentiate accordingly, are eliminated 

by apoptosis (reviewed in Morgani, Nichols and Hadjantonakis, 2017). In conclusion, 

the extensive death exhibited by EpiLCs towards NMP cultures mimics that of EpiSC 

derivation, and thus appears to be a normal process of cell differentiation. Derivation 

of NMPs from EpiLCs has the advantage in that it is quicker than deriving EpiSCs, 

which is prolonged and can be a heterogenous process (Bernemann et al., 2011). 

Nonetheless, whether the difference in the timing of the described extensive death 

between EpiLCs and EpiSCs has advantages in terms of the final NMPs derived, 

remains to be determined.  

Another striking difference between NMP derivation from EpiLC and EpiSC was the 

temporal dynamics of T(Bra) and Sox2 co-expression. This co-expression, 

characteristic of NMPs was used to determine the presence of NMPs in the culture. 

T(Bra) and Sox2 co-expression appears following 48 hours of culture of EpiSC in 

NMP conditions, and persists for a further 48 hours approximately before expression 

becomes mutually exclusive (Gouti et al., 2014). In this chapter, it was shown that 

T(Bra) and Sox2 double positive cells, are present following 48 hours of culture of 

EpiLC in NMPs conditions (Fig. 4.3). This double positivity does not appear to persist, 

with T(Bra) and Sox2 becoming mutually exclusive in just 24 hours, suggesting they 
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had differentiated (Fig. 4.7B). Yet upon examination of the transcriptional data EpiLC-

NMPs at this time do not appear to have lost their NMP identity, with markers of 

NMPs continuing to be expressed at a similar level to samples taken 24 hours 

previously (Fig. 4.14B,C). Moreover, they did not appear to be more differentiated 

when lineage specific markers were examined (Fig. 4.15). 

In conclusion, the temporal dynamics of NMPs in EpiLC-NMP cultures needs further 

refinement to understand differences between EpiLC-NMPs and EpiSC-NMPs. 

Further investigations could utilise confocal microscopy to substantiate the 

proportions of T(Bra) and Sox2 double positive cells at 72 hours (Day 3) of EpiLC-

NMP differentiation. This should also be complemented with a time course of 

transcriptional profiling to further describe the behaviour of cells in this dynamic 

differentiation process.  

Of all the variables investigated, two appeared to be most important in determining the 

proportion of EpiLC-NMPs present in the culture. The first was the process of 

replating the EpiLCs before placing them in to NMP culture conditions. Reliably 

EpiLC-NMPs were more abundant in cultures in which cells were not detached and 

replated, but instead where only the media was changed (Fig. 4.11). Thus, the process 

of disrupting cell-cell contacts was obstructive to overall NMP numbers. Cell-cell 

contacts are also important for EpiSCs, which require passaging in small clumps of 

cells to survive (Chenoweth et al., 2010; Tesar et al., 2007). Moreover, the colonies of 

EpiSC and EpiLC cultures at 48 hours appeared strikingly similar, with cells closely 

associated (Fig. 4.1). This supports the idea that cell-cell contacts are important for 

regulating T(Bra) and Sox2 levels during differentiation toward NMPS, perhaps even 

implicating Wnt/PCP signalling for which cell-cell contacts are thought to be crucial. 

Considering this, Wnt/PCP components Fzd6 (Fig. 4.16,O), Ptk7 (Fig. 4.17I,O,R) and 

Vangl2 (Fig. 4.18I,O,R), were all identified in NMPs derived from EpiSC and EpiLC. 

In fact, Ptk7 and Vangl2 were even expressed in EpiSC cultures albeit to a lower level 

(Fig. 4.17-18L). Together this evidence supports the idea that cell-cell contacts are 

important for derivation of NMPs from EpiLCs and EpiSC, and additionally that this 

derivation may be mediated by the same Wnt/PCP signalling.  
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The second variable which enhanced EpiLC-NMP proportions was the length of 

EpiLC differentiation. Cultures which had longer EpiLC differentiation tended to have 

higher EpiLC-NMP proportions (Fig. 4.11). This finding is somewhat counter intuitive 

as these cells had waited the longest to receive ‘posteriorising’ signals from CHIR and 

Fgf treatment, and therefore potentially risk becoming more anteriorised. 

Nevertheless, EpiLC differentiation is a dynamic process, with many genes 

upregulated as EpiLCs differentiate, including Wnt3a and Fgf5, which may enhance 

NMP derivation (Hayashi et al., 2011). Another thing to consider is that the colonies 

in cultures with longer EpiLC differentiation are more domed, with cells appearing to 

be more closely associated (Fig. 4.12). As discussed above cell-cell contacts appear to 

be important for enhancement of EpiLC-NMPs, so this could also play an important 

role. In conclusion, longer EpiLC differentiation was associated with increased 

EpiLC-NMP number, however the exact mechanisms by which this is achieved 

remains to be fully understood.  

4.8.3 EpiLC-NMPs and EpiSC-NMPs are similar but distinct 

Comparison between NMPs derived from EpiLCs and EpiSCs was possible through 

examination of their transcriptional profile and in vivo potential. Some of the identified 

differences and similarities between the two populations are now discussed.  

Transcriptionally EpiLC-NMPs and EpiSC-NMPs were analogous in concurrent 

downregulation of pluripotency markers and upregulation of gene associated with in 

vivo NMPs from their starting population, EpiLCs and EpiSCs respectively (Fig. 4.14). 

Moreover EpiSC-NMPs and EpiLC-NMPs were more like one another than any other 

control cell type included in the analysis. With that said, specific differences did 

emerge from the transcriptional analysis. With significantly lower Wnt3a and T(Bra) 

mRNA in EpiLC-NMPs it was evident that Wnt/β-catenin signalling was diminished 

in these samples compared with EpiSC-NMPs (Fig. 4.14B). This was also evident in 

the general (not significant) decrease in mesoderm specific markers (Fig. 4.15A) and 

marked (significant for Sox1) increase in neural markers of EpiLC-NMPs (Fig. 4.15B) 

compared with EpiSC-NMPs. 
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 In conclusion despite the co-expression of T(Bra) and Sox2 protein, as well as the 

specific expression of NMP expression markers, EpiLC-NMPs appear to have 

concurrently a lower mesodermal and higher neural identity compared to EpiSC-

NMPs. This is likely to have consequences on their differentiation potential, indeed 

preliminary evidence from these current investigations suggest that there may be a 

neural bias of these cells, with significantly increased levels of Sox1 in Day 3 EpiLC-

NMP differentiation samples which was not matched by increases in examined 

mesoderm markers (Fig. 4.15). With that said, the inclusion of larger spectrum of 

mesoderm and neural markers would be essential in future investigations to confirm 

any potential differentiation bias.  

Following the confirmation of similarities between EpiSC-NMPs and EpiLC-NMPs 

with transcriptional analysis, EpiLC-NMPs were tested functionally with in vivo 

grafting to NMP sites. EpiLC-NMPs were grafted to the NSB, in which NMPs reside 

and their tissue contribution was analysed the following day. EpiSC-NMPs grafted to 

this region had previously incorporated extensively to the caudal axis of embryos in 

15/15 embryos (Gouti et al., 2014).  

Despite contributing to some caudal tissues, EpiLC-NMPs showed less efficiency in 

their contribution with only 5/6 embryos exhibiting integration of grafted cells (Fig. 

4.21). EpiLC-NMPs did not appear to have a bias to either mesodermal or neural 

tissues, however future examination of sections is essential to confirm this. Thus, 

despite similarities in gene expression and T(Bra) and Sox2 co-expression EpiLC-

NMPs are not functionally equivalent.  

This poorer contribution could have occurred for several reasons. Sub-optimal 

integration is characteristic of developmental asynchrony where two tissues do not 

match developmentally and the ability of the donor cells to colonise the host embryo 

is restricted. Thus, suggesting that grafted EpiLC-NMPs might not represent the exact 

temporal profile of NMPs needed for integration to host embryos. In this study HoxA4, 

HoxA6 and HoxD13 were also examined to determine any potential asymmetry. Hox 

genes are expressed in a spatio-temporal manner during embryo development 

(Deschamps and van Nes, 2005). No significant differences were identified between 

the EpiSC-NMPs and EpiLC-NMPs samples (Fig. 4.14C). Despite this preliminary 
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evidence against developmental asynchrony the examination of more Hox genes is 

necessary to allow for a more robust conclusion.  

Another explanation for the sub-optimal contribution of EpiLC-NMPs could be 

because of a reduction in the overall number of grafted cells with NMP potential. As 

the same technique was used for grafting of EpiLC-NMPs in this thesis and for EpiSC-

NMPs previous reported (Gouti et al., 2014), the reduction in NMP number would be 

most likely to be due to a dilution of NMP number in a mixed population of EpiLC-

NMP cultures. Indeed, considering the T(Bra) and Sox2 analysis only 48% of the cells 

were reported as T(Bra) and Sox2 double positive even in the most optimal conditions 

(Fig. 4.10A). This is a dramatic reduction from the 90% reported for NMP derivation 

from EpiSCs (Gouti et al., 2014). However, for this analysis many cells had to be 

excluded due to the highly-domed nature of EpiLC-NMP colonies (Fig. 4.9). Thus, the 

estimation in EpiLC-NMP number reported in these experiments is likely to represent 

an underestimation of the absolute number of NMPs in EpiLC-NMP cultures. Further 

investigations are essential to get a better estimate of true proportions of NMPs in 

EpiLC-NMPs cultures. This might be done using confocal imaging which would allow 

the co-expression of T(Bra) and Sox2 to be determined in these domed colonies. 

Moreover, grafting experiments provide only an indication of the NMP potential of 

these cells, but cannot confirm if these cells are truly bipotent, and can contribute to 

both neural and mesodermal lineages. To do this retrospective clonal analysis of 

single-cell seeding of EpiLC-NMPs would need to be carried out, similar to those 

described for EpiSC-NMPs (Tsakiridis and Wilson, 2015). These experiments, in 

which clones generated by single cells are analysed in terms of their expression of 

lineage specific markers, would also indicate any inherent bias of these EpiLC-NMPs.  

To sum up, the transcriptional analysis and functional testing of EpiLC-NMPs revealed 

many similarities between EpiSC-NMPs and EpiLC-NMPs, suggesting these cells are 

much alike. Transcriptional differences appear modest, however functionally EpiLC-

NMPs are less efficiently with in vivo grafting. Further experiments are essential to 

understand the true reason for this, and to determine if EpiLC-NMPs truly represent 

bipotential progenitors. With that said, evidence presented in this thesis endorses the 
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use of EpiLCs as a novel starting population for the generation of cells which have 

many properties of in vivo NMPs and in vitro EpiSC-NMPs.  

4.8.4 Derivation of EpiLC-NMPs requires further optimisation 

Even the most optimised conditions for derived EpiLC-NMPs resulted in 

approximately 50% of the culture co-expressing T(Bra) and Sox2 (Fig. 4.10) versus 

the 90% of NMPs described from EpiSC (Gouti et al., 2014). Although this could be 

an under estimation of NMP number due to the exclusion of many domed colonies 

which could not be segmented accurately, and thus not included in the analysis. 

However low numbers of T(Bra) and Sox2 co-expressing cells could be due to 

suboptimal levels of Fgf or CHIR (Wnt/β-ctaenin signalling) which are essential for 

NMP derivation. Moreover, in the high-throughput screen for optimal conditions, the 

neural marker Sox2 tended to dominate the cultures. With only a few exceptions, Sox2 

expression was consistently higher versus T(Bra) for all conditions tested (Fig. 4.10B). 

Furthermore, the lower levels of Wnt3a and T(Bra) (Fig. 4.14B), genes associated 

Wnt/β-catenin signalling, and the higher levels of neural markers compared with 

EpiSC-NMPs (Fig. 4.15B), support the idea that EpiLC-NMPs cultures exhibit neural 

bias. Furthermore, maintaining the correct balance between T(Bra) and Sox2 is 

thought to be crucial for deriving NMPs (Koch et al., 2017). Moreover, reported 

optimisation of EpiSC-NMPs, proved that suboptimal levels of Fgf or CHIR was 

enough to drastically reduce NMP numbers, and enhance the emergence of Sox single 

positive cells at the detriment of T(Bra) positive cells (Gouti et al., 2014). Indeed Fgf 

has been shown to inhibit neural differentiation (Greber et al., 2010), and T(Bra) being 

a direct target of Wnt/β-catenin signalling (Wilkinson et al., 1990).  

Taken together, evidence points to a suboptimal level of Fgf and CHIR in EpiLC-NMP 

cultures. In future experiments Fgf and CHIR should be titrated to determine optimal 

levels. As T(Bra) expression appears to be the limiting factor simple titration 

experiments could be carried out using a T(Bra)- GFP reporter cell line (Tsakiridis and 

Wilson, 2015). This simple method would also circumvent the limitations that come 

with segmenting domed colonies.  
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As discussed above, this present work indicates some routes to optimisation but shows 

future research is needed, building on these new insights. Ideally this would allow for 

the eventual development of a robust protocol to produce cultures containing a high 

proportion of pure EpiLC-NMPs. Only at this point would it be prudent to compare 

the robust-ness and quality of NMPs derived from EpiSCs and EpiLCs, to determine 

if one source is superior over the other. With that said, the EpiLC-NMP protocol as it 

stands already offers an alternative starting population for NMP differentiation 

protocols which avoids the need of EpiSCs derivation which can be unpredictable and 

variable (Bernemann et al., 2011). 
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Chapter 5: Manipulating Wnt/PCP signalling in 
NMPs 

5.1 Introduction & Aims 

As previously described in the introduction (1.4.5) there is a growing body of evidence 

to suggest that Wnt/PCP may play a role in regulating NMP behaviour. This evidence 

includes reports of Wnt/PCP component expression in caudal regions during axial 

elongation. Additionally, there is a loss of caudal tissue in Wnt/PCP mutants, 

associated with dysregulation of NMP maintenance and/or differentiation (Table. 1.1). 

Moreover, this is supported by the identification of core Wnt/PCP components Pk1 

(3.2) and Vangl2 (3.3.3), and Wnt/PCP co-receptor Ptk7 (3.3.1) expression in in vivo 

NMPs during axial elongation in this thesis. Still, these components were not solely 

limited to expression in NMPs but were also identified in adjacent regions, including 

the notochord. Further of Wnt/PCPs role, its receptor, Fzd6 (3.3.2) is uniquely 

expressed in notochord, including that adjacent to NMPs in the CNH. Consequently, 

the localisation of Wnt/PCP components in adjacent regions complicates the 

interpretation of axial defects in Wnt/PCP mutants. Essentially, loss of caudal 

structures could either be a direct consequence of NMP specific disruption of Wnt/PCP 

or an indirect consequence of extensive Wnt/PCP disruption in the posterior of the 

embryo. Hence to fully dissect the role of Wnt/PCP signalling in regulating NMP 

maintenance and differentiation directly, conditional targeting of Wnt/PCP disruption 

is essential. Conditional disruptions of Wnt/PCP have been demonstrated in the 

literature, through the introduction of exogenous Wnt/PCP components (Albors et al., 

2015; Guirao et al., 2010; Sienknecht et al., 2011). Consequently, the delicate balance 

of antagonistic interactions between components are disturbed, leaving Wnt/PCP 

signalling in these cells defunct.  

Other questions remain regarding the regulation of Wnt/β-catenin signalling during 

axial elongation. Activation of this pathway is implicated in the maintenance of NMPs 

as well as their differentiation to mesoderm. Nevertheless, it is not known how this 

dual role of Wnt/β-catenin signalling is achieved. The recent identification of 

seemingly inhibitory influences of Wnt/PCP pathway components on Wnt/β-catenin 

signalling, advocates a potential role of Wnt/PCP in regulating NMP behaviour. Of 
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interest is Wnt co-receptor Ptk7, which can promote Wnt/PCP while attenuating 

Wnt/β-catenin signalling in Zebrafish development (Hayes et al., 2014). 

Notwithstanding, these remain uncharted areas of investigation in terms of NMPs 

during Mouse axial elongation.  

Based on the above, the aim of the research described in this chapter was to advance 

knowledge of the role of Wnt/PCP signalling in NMP behaviour with a goal of 

answering key questions that remain unsolved including: 

(1) Is Wnt/PCP activity in NMPs involved in the regulation of NMP maintenance 

and/or differentiation? 

(2) Does Ptk7 have an active role in Wnt/PCP activity in NMPs? 

To address these, experimental goals included: 

• Adaption and utilisation of tools to conditionally disrupt Wnt/PCP signalling 

in in vitro and in vivo NMP systems 

• Systematic study of the effects of disrupting Wnt/PCP signalling on NMP 

maintenance and differentiation in these systems 
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5.2 Wnt/PCP perturbation in vivo 

5.2.1 Generation of Wnt/PCP overexpression constructs 

As outlined in the above the introduction of exogenous wildtype Wnt/PCP components 

is enough to disrupt Wnt/PCP. Electroporation offers a simple method through which 

exogenous DNA can be precisely introduced into a small number of cells. 

Electroporation of CLE and NSB had recently been optimised, and therefore provided 

a method by which exogenous Wnt/PCP components could be introduced specifically 

in NMPs (Huang et al., 2015). More importantly in this thesis the identification of Ptk7 

(Fig. 3.5-3.6) and asymmetric Vangl2 (Fig. 3.12) implicated the activity of Wnt/PCP 

in this region. In total five fluorescently labelled gene overexpression plasmids were 

generated for use in in vivo electroporation experiments (Fig. 5.1). These included 

CAG-Vangl2-T2A-RFP (CAG-Vangl2), CAG-Pk1-T2A-RFP (CAG-Pk1), and 

CAG-Ptk7-T2A-RFP (CAG-Ptk7) generated based on wildtype sequences.  

Despite reports of Wnt/PCP disruption with overexpression of Pk1 and Vangl2 (Albors 

et al., 2015), comparable disruptions had not been fully described for Ptk7 

overexpression. Instead dominant negative constructs had been reported to disrupt 

Ptk7 function. A soluble Ptk7 (sPtk7), consisting of only small portion of extracellular 

Ptk7 domain including the cleavage site of MMP14 results in neural tube defects 

characteristic of Ptk7 chuzhoi mutants (in which an extra MMP14 cleavage site is 

present) (Paudyal et al., 2010; Shin et al., 2008). Thus, endogenous Ptk7 activity may 

be disrupted by competing for its cleavage by MMP14. This was potentially interesting 

in terms of NMP regulation as distinct regions of Ptk7 protein proteolysis were 

identified during axial elongation (3.3.1). Hence, two putative dominant negative Ptk7 

constructs were generated, CAG-Ptk7ΔICD-T2A-RFP (CAG-Ptk7ΔICD) and CAG-

sPtk7-T2A-RFP (CAG-sPtk7). CAG-sPtk7, had the same sequence as the soluble 

Ptk7 described in (Shin et al., 2008), consisting of only a small portion of the 

extracellular domain (6th and 7th Ig domains) of wildtype Ptk7. Putative dominant 

negative CAG-Ptk7ΔICD included all extracellular Ig domains, the transmembrane 

domain of wildtype Ptk7, but no intracellular domain (ΔICD). This construct was 

generated to potentially compete with endogenous Ptk7 for binding of extracellular   
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Figure 5.1 – Generated Wnt/PCP overexpression RFP labelled plasmids. 
Figure shows plasmid maps for generated overexpression plasmids. Each plasmid is labelled with the 
Wnt/PCP gene of interest, the NCBI sequence from which it was cloned, as well as the structure or 
reference paper they were generated based on. All plasmids drive gene of interest with CAG promotor 
and kozak sequences, with gene of interest linked to tag red fluorescent protein (RFP) with T2A 
sequence encoding a 2A cleavage peptide. Also included is expected post-translation structure and 
location of protein. For Ptk7 constructs MMP-14 cleavage site is indicated by red arrow. ICD – 
intracellular domain, Ig – immunoglobulin.   



   

 192 

interaction partners reported to include Wnt3a, Wnt5a and Ror2 (reviewed in Berger, 

Wodarz and Borchers, 2017).  

All plasmids were designed to have the gene of interest, driven upstream by a CAG 

promotor, known to promote high level of gene expression (Niwa et al., 1991; Okabe 

et al., 1997) followed by a Kosak sequence to aid initiation of translation (De 

Angioletti et al., 2004). The stop codon of each gene was replaced by a T2A sequence 

followed by tag Red Fluorescent Protein (tagRFP). Inclusion of the T2A sequence, 

meant the protein of interest would be fused to the RFP via a self-cleavage 2A peptide 

(Kim et al., 2011; Ryan et al., 1991). These ‘self-cleaving’ peptides are though to 

function by disrupting the ribosome during translation which leads to the separation of 

two adjacent peptides (Kim et al., 2011). This system allows for accurate reporting of 

protein expression without compromising the activity or stability of the protein. This 

was important for the proteins of interest, specifically Vangl2 and Ptk7 which have 

been shown to interact with components via regions near to their Carboxyl-terminus 

(Belotti et al., 2012; Montcouquiol, 2006; Puppo et al., 2011; Shnitsar and Borchers, 

2008; Torban et al., 2004; Wehner et al., 2011; Yao et al., 2004). 

5.2.2 Electroporation of Wnt/PCP constructs in NMPs 

Electroporation and embryo culture was performed by MSc Student Catarina Matins Costa and Dr 

Filip Wymeersch. 

To determine if perturbation of Wnt/PCP signalling by overexpression of either 

Vangl2, Ptk7 or Pk1 would affect cell fate decisions of NMPs, overexpression 

constructs were electroporated into Mouse embryos in NMP containing regions (CLE 

and NSB) (Fig. 5.2A). An RFP overexpression plasmid was used as a control. 

Following 2 hours of ex vivo rolling culture, embryos were examined for RFP 

expression. Those correctly targeted, reported frfby RFP expression, were further 

cultured for 22 hours after which they were dissected, imaged, fixed, embedded and 

cryosectioned (Fig. 5.2B). In transverse embryo sections RFP intensity was low, but 

bright enough to see without use of RFP antibody staining. RFP was localised to the 

cytoplasm, and was also frequently found as aggregations, small red fluorescent dots 

(Fig. 5.3D). Before undergoing analysis to identify a possible bias in the fate of 
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electroporated NMPs, the overexpression of Wnt/PCP components in electroporated 

cells was confirmed.  

 

Figure 5.2 – Experimental set up for electroporation of E8.5 embryos with Wnt/PCP overexpression 
plasmids. 
Figure shows experimental set up for analysis of electroporation of Wnt/PCP plasmids. (A) E8.5 
embryos were electroporated with fluorescently labelled Wnt/PCP overexpressing plasmids, targeting 
specifically NMP regions, the caudal lateral epiblast (CLE) and the node-streak border (NSB). (B) 
Following 2 hours of ex vivo culture, wholemount embryos were imaged and selected for further ex 
vivo culture based on the presence cells expressing RFP. Following a total of 24 ex vivo rolling culture, 
the embryos were imaged, fixed, embedded and sectfioned in preparation for further analysis. 
 

 

 

Figure 5.3 – Red Fluorescent Protein was aggregated or localised to the cytoplasm. 
Transverse sections of electroporated embryos show the localisation of RFP. RFP was found as 
aggregates (grey arrow) and in the cytoplasm (white arrow). DAPI - blue, RFP - red. 
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5.2.2.1 Validation of electroporated Wnt/PCP constructs  

Immunohistochemistry and imaging was performed by MSc Student Catarina Martins Costa 

To verify that RFP expression was associated with an increase of Wnt/PCP protein, 

immunohistochemistry of Vangl2 and Ptk7 on electroporated embryo sections were 

performed using antibodies specific to each respective protein (Fig. 5.4). Vangl2 and 

Ptk7 proteins were only found at the cell membrane as expected, and never in 

aggregates (Fig. 5.4D,L). RFP positive cells had higher levels of each respective 

protein versus RFP negative cells, which expressed only endogenous Ptk7 and Vangl2. 

The different localisation of RFP (cytoplasm) and Wnt/PCP proteins (cell membrane) 

within the cell also indicated correct cleavage of T2A peptide. In conclusion, cells 

electroporated specifically overexpressed Wnt/PCP components. Consequently, the 

value of further analysis of electroporated cells to examine their potential fate bias was 

confirmed.  

5.2.2.2 Ptk7 or Vangl2 overexpression impedes NMP neural 
differentiation and NMP persistence in the CNH 

DAPI staining, section scoring and targeted electroporation diagrams were carried out by 

MSc Student Catarina Costa 

With the purpose of identifying a bias in the fate of electroporated NMPs, semi-

quantitative analysis was performed to examine the contribution of electroporated cells 

to specific tissue lineages along the axis. At least 5 embryos with similar targeted 

electroporated areas (specifically in the midline and CLE), for each treatment group 

were selected for analysis. Every other slide (containing between 5-6 sections) was 

scored for the presence of RFP+ cells anteriorly to posteriorly (Fig. 5.5A), starting 

from where the first RFP+ cell was found (Fig. 5.5B). Each section was scored based 

on the percentage contribution of RFP+ cells per tissue type (versus all cells in that 

tissue type). These tissues were either PXM (somites, presomitic mesoderm and tail 

bud mesoderm) or neural tube (NT), or additionally in more posterior tissue the CNH 

(Fig. 5.5C), representative images documented in (Fig. 5.6). The density of RFP+ 

contribution in each was graded: negative (0% RFP+), Low (1-20%), Medium (20-

60%) or high (>60%) (Fig. 5.5D). Representative images illustrating the   
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Figure 5.4 – Ptk7 and Vangl2 are overexpressed in targeted electroporated cells. 
(A-H) Ptk7 immunohistochemistry on transverse sections of CAG-Ptk7-T2A-RFP electroporated 
embryos shows targeted (RFP positive – white arrow) cells have increased levels of Ptk7 (green) 
compared with un-electroporated (RFP negative – grey arrow) neighbours. (I-P) Vangl2 
immunohistochemistry on transverse sections of CAG-Vangl2-T2A-RFP electroporated embryos shows 
targeted (RFP positive – white arrow) cells have increased levels of Vangl2 - green compared with un 
electroporated (RFP negative – grey arrow) neighbours.  
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Figure 5.5 –Overview of semi-quantitative analysis of RFP+ contribution. 
To identify any potential bias in the fate of electroporated NMPs, semi-quantitative analysis 
undertaken. (A) For each embryo, every other slide containing between 5-6 sections was (B) scored 
for the presence of RFP+ cells sequentially from anterior to posterior sections, beginning from where 
the first RFP+ cell was found. (C) Each individual section was scored based on the percentage 
contribution of RFP+ cells per tissue type (versus all cells-DAPI in that tissue type), tissue types were 
neural, mesoderm and neuromesodermal progenitors (NMPs) (in posterior CNH sections only). (D) The 
density of RFP+ cells within each tissue was graded into categories. (E) To investigate a potential 
lineage-bias the relative levels of RFP+ density was calculated by comparing the category of 
contribution between neural and mesoderm.  
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Figure 5.6 – Representative anterior to posterior images of tissue types scored.  
Representative images to show regions scored across the axis from (A) anterior through (B) to the 
most posterior tissue (C). Neural (green) included neural tube, Mesoderm (meso) (red) included 
paraxial mesoderm (anterior) and tail bud mesoderm (posterior), and finally the NMPs region (purple) 
was the CNH which was limited to posterior sections. 

 

categorisation of RFP+ levels for mesoderm, including sections were RFP was 

aggregated are documented in (Fig. 5.7).  

To evaluate the capacity of electroporated NMPs to differentiate to either lineage or 

remain in the NMP region, the contribution to the neural, mesoderm and CNH was 

calculated for each embryo. This is represented as percentage of each category across 

all sections (Fig.5.5D / Fig. 5.8a-11a). To further investigate a potential lineage bias, 

the relative levels of neural versus mesoderm RFP+ contribution per scored section 

was calculated by comparing contribution categories (Fig. 5.5 E). Each section was 

categorised to have either, neural bias -neural contribution was greater than mesoderm 

(N>M), mesoderm bias - mesoderm contribution was greater than neural (M>N), or 

no bias - in which categories were equal for both lineages (N=M). These are 

represented as percentage of each category across all scored sections (Fig. 5.8b-5.11b). 

Results of this analysis for each embryo is documented for RFP control (Fig. 5.8), Ptk7 

(Fig. 5.9), Pk1 (Fig. 5.10) and Vangl2 (Fig. 5.11). Supplementing examination of 

individual embryos, results were pooled per experimental group and averaged in terms 

of RFP+ density for each tissue type and tissue bias (Fig. 5.12). 
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Figure 5.7 – Representative sections of RFP+ mesoderm contribution.  
Representative images show categorised contribution, here for mesoderm. (A) section with low (1-
20%) contribution, in which only a low number of aggregates (white arrows) were present, (B) medium 
(20-60%) and (C) High (>60%) contribution of RFP+ cells to mesoderm tissues. 

 

Individual embryos for control group displayed unique variance in lineage 

contribution which appeared to be related to targeted electroporated area (Fig. 5.8). 

Embryos 1,5,6 exhibited enhanced contribution to mesoderm lineages. With a higher 

proportion of all sections containing at least 20% RFP+ positivity in mesoderm tissue, 

versus contribution to neural (Fig. 5.8c), and additionally more mesoderm versus 

neural contribution within sections (Fig. 5.8d). Consequently these findings were not 

unexpected as these embryos were electroporated in regions associated with bias to 

mesoderm lineages (streak and posterior tissue) (Cambray and Wilson, 2007; 

Wymeersch et al., 2016). Conversely embryos with more lateral electroporation, 

Embryos 2 and 4, displayed preference to neural contribution, both between and within 

sections. Moreover embryo 3 in which electroporation included streak and CLE, had 

no significant preference to either lineage. Despite variation in lineage bias between 

individual embryos, the overall lineage contribution was balanced when these were 

averaged for the whole group (Fig. 5.10). In total 87% and 89% of all sections 
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contained RFP+ contribution in neural or mesoderm respectively (Fig. 5.10A,B). 

Furthermore 37% and 35% of all sections contained at least medium (20%+) levels of 

RFP+ density in neural or mesoderm respectively. In addition, within individual 

sections there were comparable levels of bias towards mesoderm or neural tissues, 

suggesting an overall balance in NMP differentiation toward either lineage. 30% and 

35% of sections displayed preference to neural or mesoderm contribution, and 35% 

with equal mesoderm and neural contribution (Fig. 5.10C). Notably in the control 

group, RFP+ NMPs were always found in the CNH of all analysed embryos, with 

contribution to 97% of all CNH sections (Fig. 5.10D). In summary, despite variability 

between individual embryos, overall NMPs gave rise to both neural and mesodermal 

lineages in a balanced way, and additionally persisted in the CNH. This confirmed that 

electroporated NMPs cells are viable and behave as expected in this assay, and 

permitted further analysis of embryos electroporated with Wnt/PCP constructs.  

Pk1 electroporated embryos displayed similar trends in lineage and CNH 

contributions. Overall the percentage of negative sections was slightly higher in Pk1 

group but comparable to control group. In total 22% and 24% of Pk1 sections were 

negative for RFP+ cells in neural and mesoderm tissue respectively, versus 13% and 

11% (control group) (Fig. 5.12A,B). Consistent with the control group, the relative 

levels of mesoderm or neural contribution across sections, and neural verses mesoderm 

within sections was variable between individual embryos (Fig. 5.10a-b). Considering 

this variation, no clear association between lineage bias and electroporated region in 

these individual embryos could be identified. Overall the lineage bias per section in 

the Pk1 group reflected the balance described previously for the control. The 

proportion of individual sections with mesoderm or neural bias was comparable at 

35% and 29%, even if slightly higher for mesoderm, with the remaining 35% 

displaying equal balance of neural and mesoderm contribution (Fig. 5.12C). Pk1 

electroporated embryos additionally showed similar contribution to CNH sections 

versus controls. 100% of CNH sections contained RFP+ cells compared with 97% for 

control group (Fig. 5.12D).  
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Figure 5.8 - Single embryo 

results for electroporation with 

CAG-RFP.  

Results of semi-quantitative 
analysis for individual embryos 
for CAG-RFP electroporated 
embryos. For each embryo, a 
schematic representation is 
included to indicate the 
approximate targeted area (red) 
based on images taken 2 hours 
following electroporation 
including off-targeted areas 
represented by red surround (a) 
The percentage of all scored 
sections in each RFP density 
category, for neural (green), 
mesoderm (red) and NMP (blue) 
tissues. Percentage of sections 
with no contribution is shown as 
a number on the bar chart (b) 
Relative levels of neural versus 
mesoderm RFP+ contribution per 
individual section, grey indicating 
proportion of those with equal 
contribution to both tissues. The 
percentage in each category is 
shown by the number.  (N- neural, 
M-mesoderm, NMP- 
neuromesodermal progenitor. 
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Figure 5.9 - Single embryo 
results for electroporation with 
CAG-Ptk7.  
Results of semi-quantitative 

analysis for individual embryos 

for CAG-Ptk7 electroporated 

embryos. For each embryo, a 

schematic representation is 

included to indicate the 

approximate targeted area (red) 

based on images taken 2 hours 

following electroporation 

including off-targeted areas 

represented by red surround (a) 

The percentage of all scored 

sections in each RFP density 

category, for neural (green), 

mesoderm (red) and NMP (blue) 

tissues. Percentage of sections 

with no contribution is shown as 

a number on the bar chart (b) 

Relative levels of neural versus 

mesoderm RFP+ contribution 

per individual section, grey 

indicating proportion of those 

with equal contribution to both 

tissues. The percentage in each 

category is shown by the 

number.  (N- neural, M-

mesoderm, NMP- 

neuromesodermal progenitor. 
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Figure 5.10 - Single embryo results 
for electroporation with CAG-Pk1.  
Results of semi-quantitative 

analysis for individual embryos for 

CAG-Pk1 electroporated embryos. 

For each embryo, a schematic 

representation is included to 

indicate the approximate targeted 

area (red) based on images taken 

2 hours following electroporation 

including off-targeted areas 

represented by red surround (a) 

The percentage of all scored 

sections in each RFP density 

category, for neural (green), 

mesoderm (red) and NMP (blue) 

tissues. Percentage of sections 

with no contribution is shown as a 

number on the bar chart (b) 

Relative levels of neural versus 

mesoderm RFP+ contribution per 

individual section, grey indicating 

proportion of those with equal 

contribution to both tissues. The 

percentage in each category is 

shown by the number.  (N- neural, 

M-mesoderm, NMP- 

neuromesodermal progenitor. 
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Figure 5.11 - Single embryo results 
for electroporation with CAG-
Vangl2.  
Results of semi-quantitative analysis 

for individual embryos for CAG-

Vangl2 electroporated embryos. For 

each embryo, a schematic 

representation is included to 

indicate the approximate targeted 

area (red) based on images taken 2 

hours following electroporation 

including off-targeted areas 

represented by red surround (a) The 

percentage of all scored sections in 

each RFP density category, for neural 

(green), mesoderm (red) and NMP 

(blue) tissues. Percentage of sections 

with no contribution is shown as a 

number on the bar chart (b) Relative 

levels of neural versus mesoderm 

RFP+ contribution per individual 

section, grey indicating proportion of 

those with equal contribution to 

both tissues. The percentage in each 

category is shown by the number.  

(N- neural, M-mesoderm, NMP- 

neuromesodermal progenitor. 
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Figure 5.12 - Comparison of average RFP+ contributions between groups. 
Averaged percentages of scored sections for each group according to RFP+ density in (A) Neural, (B) 
Mesoderm or (D) NMP. (C) Neural versus mesoderm contribution per section averaged for each group. 
Percentages shown for each category. Colour code as stated in Fig. 5.8-11. 

 

In summary electroporation of Pk1 did not affect the bias of tissue specific or CNH 

contribution of NMPs, akin to that described previously for control group. 

Distinctly diverging results were found for Ptk7 and Vangl2 electroporation compared 

with both control and Pk1 electroporation groups. Overall the proportions of sections 

with neural contribution in Vangl2 and Ptk7 were markedly reduced compared with 

control. 59% and 51% of sections examined over all Ptk7 and Vangl2 embryos 
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respectively, had no RFP+ cell contribution (Fig. 5.12A). Furthermore, in Ptk7 and 

Vangl2 groups no sections contained High (>60%) neural contribution, compared to 

21% for control group. Mesoderm contribution was less affected in Ptk7 and Vangl2 

groups but did exhibit an increase in number of sections with no RFP+ contribution 

compared with control, (31% Ptk7, 26% Vangl2 and 11% control) (Fig. 5.12B). Most 

revealing however was a shift in the balance between neural and mesodermal lineages 

within sections (Fig. 5.12C). Proportion of individual sections with higher contribution 

to mesoderm versus neural tissue sections was 52% for Ptk7 and 49% in Vangl2 

groups, much higher than 35% reported for control (Fig. 12C). Conversely only 8% of 

Ptk7 and 5% of Vangl2 group sections had bias toward neural contribution within cells, 

drastically lower than the 30% previously described for the control group. Thus, cells 

electroporated with either Vangl2 or Ptk7 appeared to have reduced differentiation to 

neural lineages.  

This bias was also clearly identifiable through examination of individual embryos. In 

Ptk7 electroporated group only one individual embryo (embryo 3), out of six, had more 

sections with RFP+ contribution in neural tissue than that for mesoderm tissue (Fig. 

5.9a), and had a larger proportion of individual sections with neural > mesoderm bias 

compared with mesoderm > neural bias (Fig. 5.9b). In comparison, only a single 

embryo (embryo 1), out of five, in the Vangl2 electroporated group displayed a 

marginally higher proportion of neural RFP+ sections (80%) than mesoderm RFP+ 

sections (77%) (Fig. 5.11a). Yet all embryos in the Vangl2 electroporated group 

displayed a preference for neural lineage when proportions of mesoderm and neural 

contribution was compared within sections (Fig. 5.11b).  

Regarding NMP maintenance, both Ptk7 and Vangl2 electroporation groups exhibited 

reduced contribution to the NMP regions compared with control group. RFP+ cells 

were localised in the CNH region in 78% and 59% of scored CNH sections for Ptk7 

and Vangl2 respectively, significantly lower than 97% previously described for RFP 

control group (Fig. 5.12D). Taken together this evidence suggests that targeted 

overexpression of Vangl2 and Ptk7 in NMPs prevents their normal differentiation to 

neural but not mesodermal lineages, and additionally prevents NMPs from persisting 

within the CNH  
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To summarise this experiment, exogenous DNA was incorporated into NMPs during 

early somitogenesis through a targeted electroporation technique. Contribution of 

cells, targeted with electroporation of control constructs, showed that the behaviours 

of targeted NMPs was normal, and they subsequently gave rise to cells of neural and 

mesoderm lineage in equal measure, as well as persisting in the CNH through self-

renewal (Fig. 5.13A). Similar contribution to tissues of both lineages and CNH was 

evident when NMPs were instead electroporated with Pk1 constructs. In contrast, 

discernible differences in NMP behaviour were apparent when Vangl2 or Ptk7 

constructs were electroporated (Fig. 5.13B). Overall the proportion of electroporated 

NMP descendants forming neural tissues was substantially reduced, as to where the 

number of descendants contributing in the progenitor zone (CNH) (Fig. 5.13B). 

Additionally, electroporated cells appeared to preferentially contribute to cells of 

mesodermal lineages versus neural lineages. Thus, overexpression of Wnt/PCP 

components Ptk7 and Vangl2 is adequate to alter the behaviour of NMPs, both in terms 

of their maintenance and differentiation choices. 
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Figure 5.13 - Overexpression of Ptk7 and Vangl2 disrupts NMP behaviour. 
(A) Electroporation of neuromesodermal progenitors (NMPs) in the caudal lateral epiblast (CLE) with 
Pk1 or RFP (control) overexpression constructs results in these NMPs contributing to all tissues as 
normal, with descendants persisting in the chorodoneural hinge (CNH) through self-renewal, and 
differentiating to contribute to both mesodermal and neural lineages equally. (B) Electroporation of 
NMPs in the CLE with Vangl2 or Ptk7 overexpression constructs results in these NMPS contributing to 
less cells of neural lineages and NMPs of the CNH. Thus, NMPs lose their ability to persist in the CNH, 
and additionally exhibit a bias towards mesodermal lineages at the expense of neural lineages.  
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5.3 Wnt/PCP perturbations in vitro 

The in vivo overexpression assays described above permitted the collection of strong 

evidence supporting the role of Vangl2 and Ptk7 in regulating NMP behaviour. 

Motivated by these findings, mechanisms underlying the cell fate bias induced by 

Wnt/PCP component overexpression were investigated. These in vivo experiments 

constitute a sensitive and reliable technique for testing the function of specific genes 

during development, however it is time consuming, difficult to scale up and the timing 

of perturbation is limited by accessibility. Furthermore, the ability to derive NMPs in 

in vitro assays provides an alternative more accessible system in which investigations 

can be undertaken. Crucially in Chapter 4 the presence of Fzd6 (Fig. 4.16), Ptk7 (Fig. 

4.17) and Vangl2 (Fig. 4.18) proteins in in vitro derived NMPs were identified. The 

identification of Wnt/PCP components in these culture systems implicates the activity 

of Wnt/PCP signalling further supporting the alternative use of in vitro assays to study 

the role of Wnt/PCP in NMPs. 

5.3.1 Generation of inducible Wnt/PCP mutant cell lines as a 
novel tool to modulate Wnt/PCP signalling during NMP 
differentiation 

Introduction of exogenous DNA in in vitro culture systems is possible using 

electroporation in a similar manner to that described above for in vivo systems. 

Nonetheless a more robust system which would allow the overexpression of Wnt/PCP 

components in a more controllable way was advocated. Specifically, one able to 

overexpress components homogenously across a whole culture dish at any desired 

timepoint. For this reason an inducible cell line system recently published by (Iacovino 

et al., 2011) was utilised. This system permits the generation of gene of interest 

inducible cells lines, which over express inserted gene of interest with the simple 

addition of dox to the media. This is achieved through the insertion of incoming DNA 

(gene of interest - GOI) using an ICE (inducible cassette exchange) target locus which 

is located downstream of a doxycycline (tetracycline) responsive promoter (TRE) 

(Iacovino et al., 2011). 

Cell lines were generated by subcloning (GOI-T2A-RFP), from the plasmids described 

in (Fig. 5.1) and nucleofecting each of them into the specialised receiver cell line. The 
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inclusion of T2A-RFP ensured that Wnt/PCP induction could be monitored simply. In 

total five Wnt/PCP overexpression-RFP cell lines were generated in 2i/LIF conditions, 

these were cPtk7, cPtk7ΔICM, csPtk7, cPk1 and cVangl2. A RFP only inducible cell 

line was additional generated for use as a control (cRFP) (generated by Matt Malaguti, 

Lowell Lab).  

5.3.2 Validation of inducible Wnt/PCP cell lines  

Pk1 clone picking and induction efficiency analysis in collaboration with MSc Student 

Catarina Martins Costa 

5.3.2.1 Efficiency of Dox-induction is substantial for all generated cell 
lines 

All clones for each cell line showed high induction efficiency, as determined by flow 

cytometry (S-Fig.5.1) or fluorescent microscopy, (S-Fig.5.2). For Ptk7 and Ptk7ΔICM 

picked clones, induction was verified visually by inducing gene expression through 

addition of dox and checking RFP levels in alive cells after 24 hours. 100% of clones 

for both Ptk7 (8/8) and Ptk7ΔICM (7/7) cells lines showed good induction of RFP after 

24 hours following the addition of dox. RFP appeared to homogenous for all cell 

clones, except for Ptk7 clone 6, in which was more heterogenous. RFP positive cells 

were never found in controls which were not treated with dox. To understand more 

about the dynamics and variation of induction between generated cell lines and clonal 

lines, more detailed analysis was done using flow cytometry. A threshold of RFP 

positivity was applied to each sample using wildtype 2i/LIF cells as a control for RFP 

positivity. Overall the RFP levels of all control (-dox) samples were comparable to 

that for wildtype 2i/LOF cells, with negligible averages of RFP positive cells. For all 

clonal lines and for all genes, there was a significant shift in RFP increasing expression 

between +dox and -dox treatment group. This shift affected the whole population for 

most clonal lines, except for sPtk7 clones 1,2,3, which appeared to have a minor 

separate negative population of cells. Average RFP positivity was high for all cell 

lines, 99.9% (sPtk7), 86.1% (Pk1), 89% (Vangl2) and 99.5% RFP. Cell lines with the 

highest inducibility had the lowest variability between clones, and vice versa. No 

differences in morphology or survival between -dox and +dox treated cells for all gene 

inducible cell lines. 



   

 210 

The clones chosen for use in experiments in this thesis were, Ptk7 - Clone 3, Ptk7ΔICM 

- Clone 5, sPtk7 - Clone 2, RFP - clone 1, Pk1 - clone 5, Vangl2 - clone 3. 

The efficiency of induction of each clone was verified using fluorescent microscopy 

for cPtk7 and cPtk7ΔICM cell lines cultured in 2i/LIF conditions (Fig. 5.14A). 24 

hours after the addition of dox in 2i/LIF culture conditions, RFP appeared to be 

homogenously distributed in all cells of the culture for both cell lines (Fig. 5.14Aa,c). 

RFP positive cells were never found in controls in which addition of dox was absent 

(Fig. 5.14Ab,d).  

To understand more about the dynamics and variation of induction between generated 

cell lines more refined and detailed analysis was executed for the remaining cell lines 

using flow cytometry in 2i/LIF culture conditions. A threshold of RFP positivity was 

calculated using wildtype 2i/LIF cultured cells (negative for RFP). All cell lines 

exhibited negligible induction of RFP in the absence of dox in 2i/LIF culture (Fig. 

5.14B) (csPtk7 0%, cPk1 0%, cVangl2 0.2% and cRFP 0.5%). In contrast 24 hours 

following dox induction all cell lines exhibited extensive levels of RFP positivity in 

2i/LIF culture. The highest was for cRFP, in which 99% of cells were RFP positive, 

with csPtk7, cPk1 and cVangl2 having 98%, 90.1% and 85.5% RFP positivity 

respectively (Fig. 5.14Ba-d).  

Taken together the visual and flow cytometry analysis of generated cell lines, showed 

robust and high inducibility of inserted gene of interest, as visualised by RFP 

expression levels. Importantly this induction was specific to the addition of dox to the 

culture. In addition, no differences in morphology or survival were visible between -

dox and +dox treated cells for all inducible cell lines. 

5.3.2.2 RFP faithfully reports Wnt/PCP component overexpression 

To verify that induced RFP positivity observed by fluorescence microscopy and flow 

cytometry was associated with an increase of Wnt/PCP protein, 

immunohistochemistry of Ptk7 and Vangl2 were conducted on fixed wells of cVangl2 

and cPtk7 respectively. cPtk7 cultures incubated without dox had low levels of 

endogenous Ptk7 protein (Fig. 5.15Af). Conversely the levels of Ptk7 protein 

following 24 hours of dox were notably higher (Fig. 5.15Ac). Additionally, highest 
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levels of Ptk7 protein were associated with higher RFP expression levels. Similar 

increases in Vangl2 protein were obtained in cVangl2 cultures treated with dox for 24 

hours, for which RFP induction was confirmed by flow cytometry (data not shown). 

Without dox treatment, the levels of Vangl2 protein were significantly lower, akin to 

expected endogenous levels (Fig. 5.15Be).  

In conclusion, the addition of dox to Wnt/PCP cell lines results in increased levels of 

Wnt/PCP components, which can be monitored by the presence of RFP. Consequently, 

this permitted the use of these cell lines to investigate the role of Wnt/PCP in NMP in 

vitro cultures.  

 

  



   

 212 

 

 

Figure 5.14 - Wnt/PCP inducible overexpression cell lines show high levels of inducibility. 
(A) Brightfield and RFP live images taken of generated Ptk7 and PtkΔICM inducible cell lines, in the 
presence (+dox)(a,c) and absence (-dox)(b,d) of dox in 2i/LIF culture conditions. All cells show 
homogenous for RFP induction (white arrows) in +dox conditions. RFP was never found in cells not 
treated with dox (white arrows show RFP autofluorescence in detached cell).(B) Flow cytometry 
analysis of (a) sPtk7, (b) Pk1, (c) Vangl2, and (d) RFP inducible cell lines, in 2i/LIF culture conditions 
with dox (+dox – red) and without dox (-dox – grey). All show high levels of levels of RFP positivity. 
Threshold of RFP positivity based wildtype (non-fluorescent) 2i/LIF. 
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Figure 5.15 - Inducible cell lines overexpress Wnt/PCP components. 
(A) Immunohistochemistry of Ptk7 overexpressing cell lines, show that Ptk7 is expressed at a higher in 
cultures were dox (+dox) has been added (c), compared to endogenous level of Ptk7 seen in the 
absence of dox (-dox control) (f). Increase in Ptk7 protein also corresponded increased levels of RFP 
(b). (B) Immunohistochemistry of Vangl2 protein on Vangl2 inducible cells lines, with (b-c) and without 
dox (e-f) show that Vangl2 protein is found at a higher level when induced, compared to endogenous 
Vangl2 protein (-dox control).  
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5.3.3 Overexpressing Wnt/PCP components in EpiLC derived 
NMPs 

In Chapter 4 a novel in vitro differentiation protocol was presented which mimicked 

the developmental stages of NMPs during axial elongation. It was decided to take 

advantage of the scalability of this in vitro assay to test if the described effects of 

overexpressing Wnt/PCP components in vivo (5.2) can be mirrored in this in vitro 

assay. 

Media used to derive NMPs in vitro traditionally contains (CHIR), a potent activator 

of Wnt/β-catenin signalling (Henrique et al., 2015). CHIR inhibits cytoplasmic 

glycogen synthase kinase 3 (GSK3) which has known interactions with Dvl family 

proteins. As Dvl family proteins are also shared by the Wnt/PCP pathway it is not clear 

if CHIR additionally disrupts Wnt/PCP signalling through its inhibition of GSK3 

protein. Consequently, to investigate the true effect of overexpressing Wnt/PCP in 

NMPs derived from EpiLCs CHIR was not included in the culture. Alternatively, 

recombinant Wnt3a protein was used to activate Wnt/β-catenin signalling in these 

cultures. This alternative Wnt agonist had been utilised previously to derive NMPs 

from EpiSCs and had generated T(Bra) and Sox2 co-expressing cells to the same 

extent as CHIR (Gouti et al., 2014).  

In Chapter 2 the expression of Wnt/PCP components Fzd6 (Fig. 4.16), Ptk7 (Fig. 4.17) 

and Vangl2 (Fig. 4.18) in in vitro culture conditions was reported. Thus, suggesting 

that Wnt/PCP may be active in EpiLC-NMPs and may have a role in regulating NMP 

differentiation. Additionally, the level of these proteins tended to increase with 

differentiation state, low in EpiLC and higher in EpiLC-NMPs, thus suggesting that 

Wnt/PCP component expression is upregulated on the way to NMP state. Therefore 

Wnt/PCP signalling may additionally be important for the derivation of NMPs in vitro. 

To test the effect of Wnt/PCP overexpression in the process of NMP derivation and 

differentiation from NMPs, dox was added to cultures in a time dependent manner. 

These preliminary investigations are described below.  
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5.3.3.1 Overexpression of Wnt/PCP components in vitro does not 
substantially alter T(Bra) and Sox2 during NMP derivation 

To test the effect of Wnt/PCP overexpression during the derivation of NMPs, EpiLC-

NMPs were derived from 2i/LIF cultures for each Wnt/PCP cell line using the 

optimised protocol from Chapter 4 (Fig. 5.16). Dox was added to induce Wnt/PCP 

component overexpression at the transition between EpiLC and EpiSC culture 

conditions (+dox). Subsequently cells were collected 48 hours later for analysis. 

Negative controls samples were also included for each cell line, in which dox was not 

added (-dox). Two replicates were set up for each cell line. 

 

 

Figure 5.16 - Overexpressing Wnt/PCP components during NMP derivation.  
Experimental design for overexpressing Wnt/PCP components during NMP derivation from EpiLCs. 
Dox was added to the media following 51 hours of EpiLC differentiation, and samples were collected 
48 hours later for analysis with flow cytometry and immunohistochemistry. 

 

As induction efficiency had only been previously examined in 2i/LIF culture 

conditions, the induction efficiency EpiLC-NMPs was examined to ensure it 

remained high despite the more differentiated culture state. RFP levels were 

inspected using flow cytometry (Fig. 5.17). RFP positivity for each sample was 

determined using a threshold of RFP positivity determined by an untargeted parental 

cell line sample (negative for RFP). Overall induction levels for all cell lines were 

high with at least 90% of cells being RFP positive (Fig. 5.17A-F) (cPtk7- 90.3%, 

cPtk7ΔICM - 99.9%, csPtk7 - 100%, cPk1 - 96.6%, cVangl2 - 95.5%, cRFP - 99.5%, 

respectively). However, cell lines that had the highest induction efficiency also 

displayed small levels of induction without doxycycline (-dox). This was highest for 
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csPtk7 and cRFP (control), which respectively displayed 9.1% and 7.8% of RFP 

positive cells without the addition of dox (Fig. 5.17C,F). Despite this small level of 

induction in controls without dox, the induction was significantly higher in the +dox 

samples, and thus comparisons between the two samples would still be valuable.  

In summary, overexpression cell lines had high levels of induction following the 

addition of dox in cell differentiating toward NMP state. Despite some induction 

without dox addition, the differences between +dox and -dox (control) groups was 

substantial enough for all cell lines to warrant analysis of differences between 

treatment groups. 

In the in vivo NMP assays described previously (5.2), the overexpression of Vangl2 

and Ptk7 in NMPs disrupted differentiation to neural lineages as well as inhibiting their 

persistence in the CNH (NMP progenitor zone). To assess the effect of Wnt/PCP 

component overexpression on NMP derivation in vitro, the levels of T(Bra) and Sox2 

were analysed and compared for +dox and -dox (control) samples for all cell lines 

using immunohistochemistry. Any differences in neural marker Sox2 would indicate 

changes in the neural potential of these cells, and additionally analysis of T(Bra) would 

allow the examination of NMP number. As this in vitro assay resulted in the 

overexpression of Wnt/PCP components in at least 90% of cells (as verified by flow 

cytometry), I expected any changes to be extensive throughout the culture.  

Unfortunately, despite extreme care and sensitive processing, many cells were lost 

during the immunohistochemistry process. However, given that most cells would be 

overexpressing the Wnt/PCP components (90%, based on flow analysis), it was 

expected that a reduction in cells would not obstruct the identification of real 

differences between treatment groups. Acquired images underwent segmentation as 

described previously in Chapter 4, and values for T(Bra) and Sox2 expression intensity 

were generated.  
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Figure 5.17 - Flow cytometry analysis to verify induction during NMP derivation. 
Inducible cells lines (A) cPtk7, (B) cPtk7ΔICM, (C) csPtk7, (D) cPk1, (E) cVangl2 and (F) cRFP all showed 
high levels of inducibility when dox was added in EpiLC conditions. Additionally, controls in which dox 
was not added showed low levels of RFP intensity but this is overall significantly lower than that for 
dox (+dox) samples. Flow cytometry analysis was performed as described in Fig. 5.14. 
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To understand the inherent variability of this assay, RFP control cell lines were 

examined first. For the RFP control the mean T(Bra) intensity observed was steady 

between replicates of each treatment type (Fig. 5.18A), however between treatment 

types there was a considerable variation (means were 190 for both -dox replicates, and 

224 and 223 for +dox replicates). This was also apparent when Sox2 intensity was 

examined between replicates and treatment groups (Fig. 5.18B). In -dox replicates 

mean Sox2 intensity was 137(R1) and 149(R2), however for +dox replicates these 

were considerably lower at 114(R1) and 105(R2). Thus, despite the only difference 

being overexpression of RFP, the intensity profiles of T(Bra) and Sox2 between +dox 

and -dox treatment groups was substantial. When the mean of both replicates was 

compared between treatment groups the standard deviation was 24 for both T(Bra) and 

Sox2 intensity. This indicated that there was considerable noise in this assay. Meaning, 

any differences identified between treatment groups of the other cell types, would have 

to be larger than this baseline variation to be considered significant. 

Differences in Sox2 and T(Bra) intensity between treatment groups was then carried 

out on all other Wnt/PCP overexpression cell lines. For T(Bra) the standard deviation 

between means from -dox and +dox treatment groups was consistently the exact same 

or lower than that detected for RFP (control), csPtk7-24, cPtk7ΔICM- 15, csPtk7- 12, 

cPk1 - 13, cVangl2 - 18 versus RFP control -24) (Fig. 5.18C,E & Fig. 5.19A,C,E). 

This indicated that overexpressing Wnt/PCP components had no detectable affect 

within this assay. Moreover, Sox2 intensity differences between treatment groups was 

conservative. For four out of five Wnt/PCP cell lines, the standard deviation between 

means of treatment group replicates was lower than that described for cRFP control 

(cPtk7 - 11, csPtk7- 9, cPk1 - 7, versus control - 24) (Fig. 5.18D, Fig. 5.19B,C), 

particularly for Vangl2 whose standard deviation was only 1 (Fig. 5.19F). However, 

cPtk7ΔICM cell line in which Ptk7 transmembrane and extracellular is overexpressed, 

had a standard deviation of 31 (Fig. 5.18D). For this group the average Sox2 intensity 

without dox treatment was 162, and with dox treatment decreased to 118, suggesting 

that the overexpression of this Ptk7 fragment may inhibit the acquisition of neural 

identity in these cells (Fig. 5.18F).  
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In summary, upon examination of Sox2 and T(Bra) intensity between +dox and -dox, 

no substantial differences in phenotype were observed for any cell lines. The only 

notable difference was a reduction of Sox2 following induction of Ptk7ΔICM 

construct, but more replicates would need to be carried out to confirm the robustness 

of this finding. Due to the lack of significant differences in T(Bra) and Sox2 intensity, 

the number of T(Bra) and Sox2 co-expressing cells were not investigated.  

5.3.3.2 Overexpression of Wnt/PCP components in vitro does not 
substantially alter NMP differentiation 

Another outstanding question was whether over expressing Wnt/PCP components 

would have a greater effect on NMP differentiation, akin to what was observed in in 

vivo electroporation experiments. EpiLC-NMPs were derived from all Wnt/PCP 

inducible cells lines. Dox was added to NMPs, and then analysis was carried out 24 

hours later following their subsequent differentiation as described in Chapter 4 (Fig 

5.20).  

To ensure induction of Wnt/PCP components, samples underwent flow cytometry 

analysis as described previously in 5.3.3.1. Clear reductions in inducibility efficiency 

were apparent compared with that previously described above for EpiLC induction 

(Fig. 5.15). Most notably cPk1 induction was reduced from 96.6% of cells with RFP 

positivity (in EpiLC) to 51% (in NMPs) (Fig. 5.21D). All other cell lines exhibited at 

least 74% induction, specific values were, cPtk7- 79.9%, cPtk7ΔICM - 92.2%, csPtk7 

- 92.4%, cVangl2 - 74.6% and cRFP (control) - 97.7% (Fig. 5.21A-C,E-F). As with 

induction in EpiLCs, RFP positivity was also found in -dox controls. RFP expression 

was negligible in cPtk7, cPtk7ΔICM, cPk1 and cVangl2 cultures, in which less than 

1% of cells expressed RFP (Fig. 5.21A-B,D-E). Conversely csPtk7 and cRFP cell 

cultures had 4.2% and 9.3% of cell expressing RFP respectively (Fig. 5.21C,F).  

In summary, there was a reduction in inducibility of cells lines in NMP conditions 

compared to that previously described at EpiLCs state. Regardless all cell lines 

nevertheless exhibited high levels of induction following the addition of dox. 

Moreover, despite low induction without dox addition, the differences between +dox 

and -dox (control) groups was substantial enough for all cell lines to warrant analysis 

of differences between treatment groups.  
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Figure 5.18 - T(Bra) and Sox2 intensity 
following induction during NMP 
derivation - RFP (control), Ptk7 and 
Ptk7ΔICM cell lines. 
Box and whisker plots showing the 
distribution of T(Bra) and Sox2 intensity per 
well in conditions with (+dox) and without 
(-dox) dox addition during NMP derivation 
from EpiLCs. Two replicates are shown for 
each inducible cell line (R1/R2). Box and 
whisker plots show minimum, maximum, 
median, the upper and the lower quartiles, 
and below the mean intensity value 
(green). Standard deviations were 
calculated by comparing the average mean 
(of both replicates) between conditions 
(+dox/-dox).  

 

 

 

 

Figure 5.19 - T(Bra) and Sox2 intensity 

following induction during NMP derivation - 

sPtk7, Pk1 and Vangl2 cell lines. 

Box and whisker plots showing the distribution 
of T(Bra) and Sox2 intensity per well in 
conditions with (+dox) and without (-dox) dox 
addition during NMP derivation from EpiLCs. 
Two replicates are shown for each inducible 
cell line (R1/R2). Box and whisker plots show 
minimum, maximum, median, the upper and 
the lower quartiles, and below the mean 
intensity value (green). Standard deviations 
were calculated by comparing the average 
mean (of both replicates) between conditions 
(+dox/-dox).  
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Figure 5.20 - Overexpressing Wnt/PCP components during NMP differentiation.  
Experimental design for overexpressing Wnt/PCP components during NMP differentiation from 
EpiLCs. Dox was added to the media following 2 days of NMP differentiation, and samples were 
collected 24 hours later for analysis with flow cytometry and immunohistochemistry. 

 

In the in vivo NMP assays described previously (5.2), the overexpression of Vangl2 

and Ptk7 in NMPs prevented differentiation to neural lineages as well as inhibiting 

their persistence in the CNH (NMP progenitor zone). To assess the effect of Wnt/PCP 

component overexpression on NMP differentiation in vitro, the levels of T(Bra) and 

Sox2 were analysed using whole well microscopy and compared for +dox and -dox 

(control) samples for all cell lines using immunohistochemistry. As cultures are dense 

following 3 days of NMP differentiation it is impossible to segment images, however 

given that at least 50% of cells (as verified by flow cytometry) overexpressed the 

Wnt/PCP components, any changes were expected to be apparent through visual 

comparison. Any differences in expression of neural marker Sox2 between -dox and 

+dox treatment would indicate a change in the neural potential of these cells.  

Whole well images made of stitched fields of view for each cell line and condition are 

documented in (Fig. 5.22-24). High RFP expression in +dox but not -dox conditions 

for each cell lines confirmed the high level of Wnt/PCP expression induction 

previously reported with flow cytometry. Examining cRFP control (Fig. 5.22A), Sox2 

expression was dominant in both +dox and -dox conditions, and T(Bra) was also 

present but to a lower extent. There were no clear phenotypic differences between 

+dox and -dox control. In cPtk7 cell samples Sox2 dominance was not as apparent as 

that for cRFP control, though Sox2 expression between +dox and -dox wells were 

comparable (Fig. 5.22B). Moreover, so was the overall expression of T(Bra) in the 
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Figure 5.21 - Flow cytometry analysis to verify induction during NMP differentiation. 
Inducible cells lines (A) cPtk7, (B) cPtk7ΔICM, (C) csPtk7, (D) cPk1, (E) cVangl2 and (F) cRFP all showed 
high levels of inducibility when dox was added following 2 days of NMP differentiation. Additionally, 
controls in which dox was not added show some low levels of RFP intensity but this is overall 
significantly lower than that for dox (+dox) samples. Flow cytometry analysis was performed as 
described in Fig. 5.14. 

 

dish, implying that Ptk7 overexpression had no notable effect on EpiLC-NMP 

differentiation in this assay. For cPtk7ΔICM and csPtk7 cell lines, Sox2 was dominant 

in the culture versus T(Bra) levels following 24 hours of NMP differentiation, 

illustrating an obvious preference for neural differentiation for these cell lines (Fig. 

5.23A-B). Sox2 protein levels were comparable in +dox and -dox conditions for these 

cell lines, suggesting that overexpression of Ptk7ΔICM and sPtk7 construct had 

minimal global effects on the culture. This also appeared to be true for Pk1 and Vangl2 
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overexpression, although comparisons were more difficult due to significant cell 

detachment during immunohistochemistry processing (Fig. 5.24A-B). With that said, 

there appeared to be no discernible differences between +dox and -dox treatment 

groups for both these cell lines. 

 In summary, no detectable differences were found between with and without 

Wnt/PCP component overexpression, suggesting they may have negligible impacts on 

Sox2 or T(Bra) intensity during the 24hours examined.  

Taken together, the overexpression of Wnt/PCP during NMP derivation and NMP 

differentiation in vitro, did not appear to have an obvious effect on either T(Bra) or 

Sox2 expression. Consequently, Wnt/PCP may not be important for NMP derivation 

or differentiation. Conversely the lack of phenotype could also reflect the suitability 

of the assay. In the NMP derivation experiment there was considerable variation in the 

control cell line, and thus inherent variability in the assay may be masking the effect 

of overexpressing Wnt/PCP components. Furthermore, it was impossible to examine 

subtle effects in the whole well fluorescent microscopy images of the NMP 

differentiation experiment. To conclude, despite the lack of phenotype when Wnt/PCP 

components are overexpressed during NMP derivation and differentiation, additional 

more refined experiments are essential to assert these initial findings.  
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Figure 5.22 -  T(Bra) and Sox2 intensity following induction during NMP differentiation - RFP(control) and Ptk7. 
Immunohistochemistry of T(Bra) and Sox2 for (A) cRFP (control) and (B) cPtk7 cell lines, in conditions were dox was present (+dox) or absent (-dox) during EpiLC-NMP 
differentiation.   
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Figure 5.23 -  T(Bra) and Sox2 intensity following induction during NMP differentiation - Ptk7ΔICM and sPtk7. 
Immunohistochemistry of T(Bra) and Sox2 for (A) cPtk7ΔICM and (B) csPtk7 cell lines, in conditions were dox was present (+dox) or absent (-dox) during EpiLC-NMP 
differentiation.   
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Figure 5.24 -  T(Bra) and Sox2 intensity following induction during NMP differentiation - Pk1 and Vangl2. 
Immunohistochemistry of T(Bra) and Sox2 for (A) Pk1 and (B) Vangl2 cell lines, in conditions were dox was present (+dox) or absent (-dox) during EpiLC-NMP 
differentiation.  
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5.3 Discussion  

As previously discussed in the introduction (1.4) there is a growing body of evidence 

to suggest Wnt/PCP plays a role in regulating NMP behaviour. Research presented in 

Chapter 3 (3.2 and 3.3) and Chapter 4 (4.6) confirmed that Wnt/PCP components Fzd6, 

Ptk7 and Vangl2 are expressed in or adjacent to in vivo NMP regions, and in in vitro 

NMPs respectively. Furthermore Wnt/PCP mutants are characterised by axial 

truncations, in which caudal structures are lost during axial development. This 

phenotype is generally associated with improper regulation of NMP self-renewal or 

their tissue specific differentiation. However due to the global effect of these knock 

outs remained unclear whether phenotypes were a direct effect on disrupting Wnt/PCP 

in NMPs specifically or due to widespread changes in the posterior of the embryo.  

For this reason, the aim of the work reported in this chapter was to advance knowledge 

of the role of Wnt/PCP signalling specifically in terms of regulating NMP behaviour. 

To achieve this, experimental goals included the generation of in vivo and in vitro tools 

to manipulate Wnt/PCP in in vitro and in vivo systems. Overexpression Wnt/PCP 

plasmids were developed for use in electroporation experiments which specifically 

allow the integration of Wnt/PCP components in in vivo NMPs at the start of 

somitogenesis, and the subsequent disruption of Wnt/PCP signalling. This permitted 

the dissection of global roles for Wnt/PCP in the general tailbud (Wnt/PCP knockouts), 

and the specific roles of Wnt/PCP in NMPs at this distinct timepoint in development 

(this thesis). In complement to in vivo systems, a previously described method of 

conditionally overexpressing genes (Iacovino et al., 2011, 2014), was adapted to allow 

for the conditional overexpression of Wnt/PCP components in vitro. Using these two 

systems the roles of Wnt/PCP signalling in NMPs were investigated by examining the 

tissue type contribution of NMPs with disrupted Wnt/PCP signalling. These findings 

are discussed further below.  

5.3.1 Overexpression of Vangl2 but not Pk1 impedes NMP 
neural differentiation and NMP persistence in the CNH in vivo 

Initial investigations of the role of Wnt/PCP began in in vivo systems focused on the 

CLE, the location of NMPs during early somitogenesis. Earlier in this thesis (Chapter 

2) core Wnt/PCP component Vang2 (Fig. 3.12) and Pk1 (Fig. 3.1), as well as Wnt/PCP 



   

 228 

co-receptor Ptk7 (Fig. 3.6) were found to be expressed in this region, suggesting these 

may be directly involved in regulating NMPs. Moreover, Vangl2 was identified as 

asymmetrically expressed in this area, further supporting the idea that Wnt/PCP 

signalling was active in NMPs that reside there.  

This location is targetable by electroporation (Huang et al., 2015), a system that had 

been utilised to disrupt Wnt/PCP in previous vertebrate systems (Albors et al., 2015; 

Guirao et al., 2010). Overexpression of Wnt/PCP components is considered enough to 

overwhelm the delicately balanced system of antagonistic interactions between 

components that are essential for the initiation and propagation of Wnt/PCP signalling 

through tissues. Therefore, in order to further understand the relationship between 

Wnt/PCP signalling and NMP behaviour overexpression plasmids for Vangl2, Pk1 and 

Ptk7, were therefore generated. This permitted a ‘triple attack’ on the Wnt/PCP 

machinery, at the level of membrane, cytoplasm, and co-receptor respectively (Fig. 

5.1), all components I had identified to be present in this region.  

The plasmids were electroporated in to the CLE of embryos, and following 24 hours 

of ex vivo culture underwent analysis. This experiment aimed to address three 

questions. These were, does Wnt/PCP disruption (1) prevent normal NMP 

differentiation to mesoderm or neural lineages? (2) alter the balance of NMP 

differentiation between mesoderm and neural lineages? (3) change the persistence of 

NMPs in the progenitor region (CNH)? The inclusion of a cleavable T2A flanked by 

a RFP protein permitted the descendants of electroporated NMPs to be tracked, 

permitting the identification of any bias in NMP behaviour when Wnt/PCP was 

disrupted.  

Analysis of control group, electroporated with RFP control plasmid confirmed that 

electroporated NMPs were viable and behaved normally, contributing to both neural 

and mesodermal tissues equally and persisting in the NMP region (CNH) (Fig. 5.8) 

(Cambray and Wilson, 2007; Huang et al., 2015; Wymeersch et al., 2016). Compared 

to controls, Pk1 did not significantly affect the persistence of NMPs in the CNH, 

suggesting NMP self-renewal was not affected by Pk1 overexpression (Fig. 5.12D). 

Moreover, NMPs electroporated with Pk1 showed little reduction in contribution to 

mesoderm or neural tissues, between which there was no obvious bias (Fig. 5.12A-C).  
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Conversely a strikingly different phenotype was obtained with the electroporation of 

Vangl2 (Fig. 5.11). Vangl2 overexpression resulted in an overall reduction in 

contribution along the axis (Fig. 5.12A-B) and to NMPs of the CNH (Fig. 5.12D). This 

strongly suggests that Vangl2 overexpression inhibits the ability of NMPs to remain 

in the progenitor region, and thus contribute to less axial tissue. Additionally, a bias 

between mesodermal and neural contribution was also identified by comparing the 

contribution of descendants within individual sections (Fig. 5.12C). A dramatic loss 

of neural contribution bias compared with control groups was observed, which 

implicates a role for Wnt/PCP signalling in NMP neural differentiation.  

This distinction in phenotype between Vangl2 and Pk1 overexpression was not 

expected based on their previously reported roles in Wnt/PCP signalling. As 

mentioned in the Introduction (1.4.3.1), when Wnt/PCP is active, membrane localised 

Vangl2 and cytoplasmic Pk1, are co-localised and form a complex with Celsr proteins 

on one side of the cell (reviewed in Yang and Mlodzik, 2015). Pk proteins are recruited 

to the membrane by Vangl proteins where they function to inhibit Fzd-Dvl complexes 

forming nearby (Bastock, 2003; Das et al., 2004; Jenny et al., 2003; Tree et al., 2002). 

Thus, Vangl2 and Pk1 are thought to be essential for the initiation of core Wnt/PCP 

protein asymmetry, and subsequent Wnt/PCP signalling. Furthermore the 

overexpression of Pk1 or Vang2 during spinal cord regeneration of Axolotl results in 

similar phenotypes (Albors et al., 2015). Despite these reports, the evidence supplied 

by this current work suggests distinct roles for Vangl2 and Pk1 in the maintenance and 

differentiation of NMPs. This idea is supported by other evidence where they are 

known to have discrete interactions with other Wnt/PCP components. As mentioned 

earlier, Pk1 is known to interact with cytoplasmic components, including Dvl, whose 

downstream targets converge on cytoskeletal regulation. On the other hand Wnt5a has 

been shown to mediate the formation of complexes between Vangl2 and Wnt co-

receptor Ror2, resulting in the phosphorylation of Vangl2 protein (Gao et al., 2011). 

In addition Vangl2 may also interact with Fzd, when they are co-localised at the edges 

of neighbouring cells through Celsr bridging (Chen et al., 2008; Lawrence et al., 2008; 

Struhl et al., 2012; Strutt and Strutt, 2008; Wu and Mlodzik, 2008).  
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In conclusion, despite the close association between Vangl2 and Pk1 in Wnt/PCP 

initiation and propagation, the distinct interactions with other component may explain 

the different phenotypes observed. The unique reported interaction of Vangl2 with 

Ror2 which is mediated by Wnt5a highlights a particularly interesting avenue for 

further investigation, especially given that expression of these components has been 

reported in NMP regions during axial elongation (Fig. 3.15) (Matsuda et al., 2001; 

Takada et al., 1994b; Verhey van Wijk et al., 2009; Yamaguchi et al., 1999b). 

Nevertheless, many questions remain in terms of how changes in NMP behaviour are 

mediated by Wnt/PCP.  

Wnt/PCP has also been implicated in determining the orientation of cell divisions 

(reviewed in Gray, Roszko and Solnica-Krezel, 2011), and therefore may be a 

mechanism by which Wnt/PCP regulates NMP maintenance of NMPs in the progenitor 

zone. Of course, tracking cell division in NMPs in vivo can be extremely difficult due 

to their location within the tail bud. With that said, in vitro models could offer a more 

accessible system in which this could be examined. 

It is possible that the difference in phenotypes between Pk1 and Vangl2 overexpression 

is not mediated by dysregulation of downstream cytoskeletal targets (downstream of 

Pk1) but perhaps by interactions between cells mediated by Vangl2. Moreover, given 

the derivatives of NMPs are either highly polarised (neural cells) or not (cells of 

mesoderm) (Fig. 3.20-22), the ability of NMPs to differentiate to either lineage may 

be determined by their ability to activate Wnt/PCP. It is not a stretch to imagine a NMP 

overexpressing Vangl2, unable to activate Wnt/PCP and coordinate with neighbouring 

cells, and thus subsequently travelling through the streak to form unpolarised 

mesoderm. 

5.3.2 Ptk7 overexpression impedes NMP neural differentiation 
and NMP persistence in the CNH in vivo 

Electroporation of Ptk7 in NMPs in vivo resulted in a strikingly similar phenotype to 

that described for Vangl2. Electroporation of Ptk7 reduced the capacity of NMPs to 

contribute to neural tissue and persist in NMPs regions (Fig. 5.9, Fig. 5.12). This 

similarity between Ptk7 and Vangl2 overexpression was somewhat surprising, as Ptk7 

and Vangl2 have distinct roles in Wnt/PCP signalling. Unlike Vangl2, Ptk7 is not 
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considered a core Wnt/PCP component, but rather a Wnt co-receptor. Ptk7 interacts 

with components of the Wnt/PCP pathway, including Wnt5a (Martinez et al., 2015) 

and fellow co-receptor Ror2 (Martinez et al., 2015; Podleschny et al., 2015). However 

Ptk7’s additional interactions with Wnt/β-catenin signalling family members, Wnt3a 

(Peradziryi et al., 2011) and β-catenin (Puppo et al., 2011), make its downstream 

actions unclear and perhaps context dependent. Furthermore as Ptk7 has not been 

overexpressed before in NMPs it is difficult to interpret its actions. Moreover, the 

parallels between Vangl2 overexpression which disrupts Wnt/PCP and Ptk7 

overexpression, could be interpreted as an anti-Wnt/PCP influence of Ptk7, with 

increased Ptk7 mediated actions inhibiting Wnt/PCP signalling.  

With that said, the identical phenotypes between Vangl2 and Ptk7 also implicates a 

common mechanism of action of their overexpression. Vangl2 and Ptk7 are not known 

to interact directly with knock out of either not affecting the localisation of the other 

(Paudyal et al., 2010). Conversely they both share Ror2 as a common interaction 

partner (Gao et al., 2011; Martinez et al., 2015; Podleschny et al., 2015), which is not 

shared by Pk1. Another connection between Vangl2 and Ptk7 is metalloproteinase 

MMP14. Vangl2 has been implicated in regulating the availability of MMP14 

(Williams et al., 2012). When Vangl2 is knocked down in Zebrafish studies, the 

availability of MMP14 outside the cell increases, implicating Vangl2 in regulation of 

MMP14 availability. Moreover Ptk7 is cleaved by MMP14 in its extracellular domain 

generating a secreted extracellular fragment (Golubkov et al., 2010). Wnt/PCP axial 

truncation phenotypes are apparent in Ptk7 chuzhoi mutants which an extra MMP-14 

cleavage site suggesting MMP-14 cleavage may be important aspect of Ptk7 

interaction with Wnt/PCP (Paudyal et al., 2010).  

In conclusion despite no direct interactions between Ptk7 and Vangl2 reported in the 

literature, indirect links between these proteins are clear. Moreover, these connections 

provide some explanation for the parallel NMP behaviour phenotypes that are 

determined when they are overexpressed, and unlock an exciting new area of 

investigation going forward. Nonetheless, many questions remain unanswered. For 

example, it is not clear if asymmetry of components is essential for NMP regulation? 

Also how does disrupting MMP14 affect NMP behaviours and what are the actions of 
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cleaved and uncleaved Ptk7? Additional tools are now available precisely for such 

investigations. As described in 5.2.1, modified Ptk7 constructs, sPtk7 and Ptk7ΔICM 

(Fig. 5.1), have been generated but not yet utilised in electroporation experiments. 

These would allow further dissection of the role of Ptk7 in NMP behaviour. 

Specifically, sPtk7 contains the small extracellular portions of Ptk7 which contains the 

MMP14 cleavage site. This would enable the verification of MMP14 role in the Ptk7-

Vangl2 regulation of NMP behaviour. 

5.3.3 Wnt/PCP has distinct roles in regulating NMP behaviour 

Previously Wnt/PCP mutants have been found to exhibit severe axial defects with an 

overall loss of caudal structures. Detailed examination of several of these mutants, 

demonstrated many mesoderm defects due to disruptions in CE and EMT (Andre et 

al., 2015; Paudyal et al., 2010; Yen et al., 2009). Moreover, an accumulation of NMPs 

had been reported in Wnt5a/Wnt11 double knock outs (Andre et al., 2015). The work 

undertaken in this chapter does not demonstrate any similar defects or disruptions in 

the mice with specific overexpression of Ptk7 and Vangl2 in NMPs. In contrast to the 

accumulation of NMPs in the streak of global knock outs Wnt/PCP mutants, NMPs 

electroporated with Ptk7 or Vangl2 did not show any complications when travelling 

through the streak, and incorporated normally with neighbouring cells of the neural 

tube and mesoderm (Fig. 5.7). In fact, less rather than more electroporated cells were 

found in NMPs regions (CNH), suggesting cells with disrupted Wnt/PCP actively 

leave NMPs regions through the primitive streak (Fig. 5.12). Additionally NMPs with 

Ptk7 and Vangl2 overexpression preferentially contributed to mesoderm tissue, in 

contrast to loss of mesoderm described for Ptk7 mutants (Yen et al., 2009).  

In conclusion, the effect of disrupting Wnt/PCP globally during early development is 

vastly different to localised disruption of Wnt/PCP in NMPs. This suggests that CE 

and EMT phenotypes in Wnt/PCP mutants are not a direct consequence of losing 

Wnt/PCP signalling in NMPs. This dual role of Wnt/PCP in caudal tissues is not 

particularly surprising, given that Wnt/PCP components were identified in other 

tissues including notochord, situated adjacent to NMPs residing in the CNH and node-

streak border (3.2). This underlines the importance of studying Wnt/PCPs role in 

NMPs in a conditional system.  
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5.3.4 Discrete actions of overexpressing Wnt/PCP in vitro and 
in vivo systems 

Motivated by observations using in vivo systems, an alternative high-throughput and 

accessible system in which the mechanism underlying Wnt/PCP signalling in NMPs 

could be further investigated was sought. The ability to derive NMPs in in vitro assays 

provided a suitable alternative, and importantly Wnt/PCP components had been 

identified in these cell cultures previously (4.6).  

Thus, overexpression cell lines were generated using an adaptable dox inducible in 

vitro system described previously (Iacovino et al., 2011, 2014). The results indicate 

that inducibility was high in both 2i/LIF (Fig. 5.14) and EpiLC cultures (Fig.5.17, Fig. 

5.21), with at least 50% of total cells overexpressing the Wnt/PCP gene of interest. 

Subsequently, these cell lines were used to test the effect of Wnt/PCP overexpressing 

at two distinct timepoints. The first, during derivation of EpiLC-NMPs and the second, 

during differentiation from EpiLC-NMPs, using the EpiLC-NMP derivation protocol 

previously described in Chapter 4. T(Bra) and Sox2 levels were used as a read out of 

any effects on NMP behaviour by Wnt/PCP overexpression.  

In the NMP derivation experiment there was no evidence of an effect of induction. 

However, the considerable variation in the control cell line between induced and non-

induced population (Fig. 5.18A-B), and this inherent variability in the assay may mask 

the effect of overexpressing Wnt/PCP components (Fig. 5.18-19). Furthermore, no 

differences were identified between induced and non-induced populations during 

NMP differentiation. However, it was impossible to examine subtle effects in the 

whole well fluorescent microscopy images of this NMP differentiation experiment 

(Fig. 5.22-24). To conclude, no obvious phenotype was observed when Wnt/PCP 

components were overexpressed during in vitro NMP derivation or differentiation. 

The results reported above create something of a paradox between the observable 

phenotype of Wnt/PCP overexpression in in vivo assays, but not in in vitro assays. This 

could be for several reasons, one of which could be due to limitations of the in vitro 

assays used. Further investigations should focus on refining these assays to confirm 

the presence of a phenotype. For example, confocal microscopy of these cultures 

would provide more accurate dynamics of T(Bra) and Sox2 intensities, and may permit 
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the identification of subtle phenotypes. Conversely, increasing the length of time 

Wnt/PCP components are induced for, may allow for more observable phenotypes.  

Another rationale for the lack of phenotype could be that Wnt/PCP is not being 

disrupted. This is highly unlikely given that the same gene sequences were used in 

both in vitro and in vivo inducible systems (Fig. 2.1). Additionally, the induction of 

Ptk7 and Vangl2 was shown to be specifically overexpressed in these cell lines upon 

the addition of dox to a significant level (Fig. 5.15). Unfortunately, disruption of 

Wnt/PCP signalling is difficult to monitor, as many downstream effectors converge on 

cytoskeletal changes. However, given that Wnt/PCP and Wnt/β-catenin may be 

antagonistic, perhaps examining activation of Wnt/β-catenin may allow the 

confirmation of Wnt/PCP disruption. As described in the introduction (1.4) Wnt/PCP 

activity can also be monitored by examining the intrinsic asymmetry of individual 

cells. Thus, disruptions to Wnt/PCP signalling in these cell cultures could potentially 

be inferred from examining patterns of organelle positioning between cells. Moreover, 

this would also provide a method to confirm disruptions of Wnt/PCP in in vitro 

cultures when components are overexpressed.  

Finally, another possible reason for the lack of phenotype in in vitro assays is that these 

assays may represent a sub-optimal model of in vivo NMP development. Despite many 

similarities transcriptionally and functionally between in vitro and in vivo derived 

NMPs (reviewed in Henrique et al., 2015) their environments are distinct. NMPs in 

vitro are confined to flat two-dimensional cultures, whereas in vivo NMPs are 

integrated in a complex three-dimensional architecture. Moreover NMPs in vivo are 

close to other tissues which may act as a niche sustaining their development and 

behaviour. These supporting cells are simply not present in in vitro cultures, the 

consequences of which are not fully understood. Thus, future development of three-

dimensional culture systems may provide a more fitting system in which Wnt/PCP and 

polarity of NMPs could be investigated.  
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Chapter 6: Conclusion and Working Model 

Although the role of Wnt/PCP in regulation of NMPs in early embryonic development 

was suspected the mechanisms and the dynamic nature of this regulation were poorly 

defined. This thesis set out to provide a finer grained view of that relationship in 

several key areas. This thesis aimed to explore the hypothesis that Wnt/PCP regulated 

NMP behaviour in two ways. First by examining the localisation of Wnt/PCP 

components in NMP regions during axial elongation in vivo (Chapter 3) and in vitro 

(Chapter 4). Secondly by disrupting Wnt/PCP signalling conditionally in NMPs, and 

observing any change in NMP behaviour (Chapter 5). Based on these findings a 

working model has been created to describe the potential mechanisms by which 

Wnt/PCP controls NMP behaviour (Fig. 6.1).  

Based on the literature Wnt/PCP activity is likely to be regulated by both internal and 

external factors (Fig. 6.1A). Intrinsically, cells need to have Wnt/PCP machinery in 

order for asymmetry to take place and for cells to become polarised (reviewed in Yang 

and Mlodzik, 2015). Even when only one component is lost (in knock out mutants), 

the result is severe disruptions to planar polarity which has dramatic consequences for 

axial development. External factors suspected of influencing Wnt/PCP in NMP 

regions have included Wnt5a, a key ligand in Wnt/PCP signalling, and co-receptors 

such as Ptk7 and Ror2.  

This thesis has confirmed and extended some of the existing findings. In this thesis, 

Ptk7, Vangl2 and Pk1 were identified in NMPs regions throughout axial elongation 

(3.2/3.3). Moreover, confirming NMPs have internal and external factors associated 

with Wnt/PCP activation (Fig. 6.1A). Furthermore, monitoring of polarity and cell 

movement in NMPs regions, using organelle positioning, illustrated that similar 

dynamics of polarity are continuing in NMP regions throughout axial elongation 

(summarised in Fig 3.25). Cells in the NMP regions (CLE and neuroectoderm of the 

CNH), are initially coordinated in their polarity. This coordination is subsequently lost 

in some cells, which migrate to become cells of the mesoderm, with those left behind 

thus forming future neural tissues (Fig. 6.1A). 
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Figure 6.1: Working Model of Wnt/PCP regulation of NMP behaviour. 
(A) Wnt/PCP activity is regulated by both internal and external factors. NMPs in early somitogenesis 
reside in the caudal lateral epiblast (CLE) and then the posterior neural tube (NT), known as the 
chordoneural hinge (CNH) following tail bud formation (see Fig. 3.25). NMPs in these areas lose 
polarity as they travel through the streak to form presomitic mesoderm (PSM), with those remaining 
forming neural tissue. When Wnt/PCP is disrupted at the level of (B) Wnt/PCP machinery with 
overexpression (via electroporation) of Vangl2, or at the level of (C) co-receptors with the 
overexpression (via electroporation) of Ptk7, a similar phenotype is observed. Electroporated cells (red 
outline) are less likely to remain in the neuroepithelium, or in the CNH region (red dashed box), and 
instead actively form presomitic mesoderm (PSM), thus shifting the balance of NMP fate choice and 
maintenance.   
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Disrupting Wnt/PCP illustrated that Wnt/PCP is indeed key for this NMP behaviour. 

Disrupting Wnt/PCP by overexpressing components of core machinery, Vangl2 (Fig. 

6.1B) or co-receptor, Ptk7 (Fig. 6.1C), specifically in the CLE, resulted in a distinct 

phenotype. NMPs were unable to contribute to neural lineages as they would normally 

with these cells preferentially choosing mesodermal fate. Additionally, the ability of 

NMPs to persist in the CNH was decreased when Wnt/PCP was disrupted. Thus, 

regulation of NMP behaviour is dependent on Wnt/PCP signalling through Vangl2 and 

Ptk7 expression. Furthermore, this phenotype was not shared by cytoplasmic 

component Pk1 overexpression, suggesting that regulation of NMP behaviour is 

independent of Pk1.  

Altogether, this research implicates Wnt/PCP signalling as an important regulator of 

NMP behaviour, however many questions remain regarding the mechanism behind 

this regulation. With Wnt/PCP disruptions known to be important for coordinated cell 

polarity between neighbours, is NMP fate controlled by cell-cell contact alone? Or 

does Wnt/PCP directly or indirectly control downstream activation of genes important 

for NMP status, such as T(Bra) and Sox2? Moreover, does Wnt/PCP act 

antagonistically with Wnt/β-catenin signalling to strike a balance between 

differentiation and maintenance of NMPs? Indeed, Vangl2 and Ptk7 share interactions 

with Ror2 an additional Wnt co-receptor, thus is Ror2 the master regulator of NMP 

behaviour? Additionally, Vangl2 can control the localisation of MMP14, which is 

important for the cleavage of Ptk7 during CE. Thus, does this represent an additional 

layer of Wnt/PCP control of NMP behaviour? 

In conclusion, this work successfully extends our knowledge on Wnt/PCP mediated 

control of NMP differentiation and maintenance, and provide a finer grained 

description of the relationships between them. It accomplished this by the development 

and deployment of novel research tools and the use of both in vivo and in vitro 

techniques. However new insights provided raise a whole new series of questions. 

Answering these will require further investigation, as well as application and 

development of new methodologies. 
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Appendix 

 

S-Fig. 5.1 – Flow cytometry analysis of sPtk7, Prickle1, Vangl2 and RFP inducible clones. 
(A) Flow cytometry analysis of (a) sPtk7, (b) Prickle1, (c) Vangl2, and (d) RFP inducible clones, under 
2i/LIF culture conditions with dox (+dox – red) and without dox (-dox – grey), plotted for 6 separate 
clones for each cell line. Threshold of RFP positivity was added based on flow analysis of wildtype 2i/LIF 
conditions to determine number of RFP positive cells (RFP+), shown as a percentage. For all graphs, 
RFP positivity is plotted against percentage maximum for each sample. (B) Calculated averages, and 
standard deviations (s.d) of RFP+ percentages between clones of the same cell line.
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S-Fig. 5.2 – All clones picked for Ptk7 and Ptk7ΔICM cell lines were inducible. 
Brightfield and RFP live images taken of generated (A) Ptk7 and (B) PtkΔICM inducible cell lines, in the 
presence (+dox) and absence (-dox) of dox in 2i/LIF culture conditions. All cells shows homogenous for 
RFP induction, except for Ptk7 clone 6 in which some colonies were negative (grey arrow) and some 
were positive (red arrow). RFP was never found in cells not treated with dox. 
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Examining polarity in in vivo using PickCells 3D image analysis Software 

Following visual analysis of polarity in vivo during axial elongation using golgi and 

nuclear envelope markers (3.2.4), it remained unknown if this could be quantified to 

examine the presence of planar cell polarity. High quality staining was needed for both 

the nuclear envelope and organelle staining for this to be possible. As further 

optimisation of LaminB1 was not possible (3.2.4.1), analysis was limited to early stage 

embryos in which laminB1 penetrance was adequate to identify individual cells. Triple 

immunohistochemistry and imaging was performed on early somitogenesis embryos, 

using LaminB1(nuclear envelope), γ-tubulin and T(Bra) antibodies and high resolution 

3D confocal microscopy (S-Fig. 3.1A). γ-tubulin, a key player in centrosome and 

cytoskeleton regulation (O’Toole et al., 2012) was chosen as a replacement of GM13), 

golgi antibody previously described (3.2.4.1). This antibody detected protein in more 

distinct and compact spots compared with the elongated golgi staining (S-Fig. 

3.1Ac/d), which was advantageous when using the software detection.  

Images were processed in a similar manner to those for in vitro analysis (6.2.1). Nuclei 

were segmented using NESSY software, and Centrosomes identified from γ-tubulin 

staining using Spot finder function (S-Fig.3.1B). Despite thorough optimisation of 

segmentation settings many mis-segmented cells remained in the final segmentation 

result, and were most common in the CLE region (S-Fig. 3.1Ba). These included 

missing cells (false negative - red arrow) and false positive cells (white surround 

arrow). The CLE was particularly hard to segment as the cells are bundled very close 

together, and unfortunately due to the time needed to correct this segmentation this 

was not possible in the scope of this thesis. Centrosome identification using Spot finder 

was very successful at identifying Centrosomes in the CLE regardless of γ-tubulin 

spots being very closely localised between nuclei (red arrow) (S-Fig. 3.1Bb). 

Despite imperfect segmentation results, to explore the capabilities of the software and 

general polarity further, assignment of Centrosomes to nuclei was performed 

regardless. First nuclei and Centrosomes residing the CLE were separated from all data 

before assignment was performed. This was performed to prevent nuclei in the CLE 
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being assigned incorrectly to Centrosomes lying in adjacent pre-somitic mesoderm and 

streak (blue arrow) (S-Fig. 3.1Bb).  

Nuclei and Centrosomes inhabiting the CLE were isolated by creating a region of 

interest using a PickCells function, and associating objects to it (S-Fig. 3.2Aa). T(Bra) 

was used as a landmark to place the CLE boundaries and avoid objects of the streak 

(S-Fig. 3.2Ab) and a 3D object of the CLE region was created (S-Fig. 3.2Ac). 

Assignment was then carried out between the isolated CLE-nuclei and the CLE 

Centrosomes similarly to that described before for in vitro (S-Fig. 3.2B). This 

association showed clear apical-basal polarity of cells, with all polarity vectors pointed 

towards the cavity of the embryo. Unfortunately, no conclusion regarding PCP can be 

drawn from this association map as inaccurate segmentation, including missing cells 

(red arrow) may have propagated assignment mistakes to surrounding neighbours, 

making it impossible to determine if coordination of cells in areas is real PCP.  

In summary, using PickCells software on 3D high resolution it was possible to generate 

polarity maps of areas containing NMPs. From these, strong apical basal polarity in 

NMPs was observed, however current limitations in segmentation prevented any 

conclusions about planar cell polarity in these areas.  
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S-Fig. 3.1 – PickCell Analysis of polarity during early somitogenesis. 
 (A) High resolution 3D confocal images of early somitogenesis embryos immunostained with (a) 
LaminB1 (nuclear envelope)- magenta, (b) T(Bra)- red and (c)γ-tubulin (Centrosomes) - grey; dashed 
bounded box shows magnified area. d) shows immunohistochemistry using gm130 (Golgi) as described 
in (3.2.4). (B) a) segmentation result using PickCell software, magnification of dashed bounded box 
and z-stacks show mis-segmentation in the CLE (red arrows - false negative segmentation, white arrow 
- false positive segmentation). b) Spot finder identification (yellow circles) of γ-tubulin spots; red 
arrow- identification of near Centrosomes. Blue arrows- centrosomes of the PSM, which are close to 
NMPs of the CLE. 
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S-Fig 3.2 – Assignment of Polarity vectors in the CLE of early embryos. 
(A) a) Creation of CLE region containing NMPs based on T(Bra) levels to avoid cells in the streak. b) CLE 
object created and represented in 3D (B) 3d view of polarity map. Centrosomes and nuclei assigned to 
CLE region object are then assigned to each other to create 3d polarity vectors. Centrosomes -green, 
nuclei- magenta, polarity vectors (red), red arrow shows gap in segmentation. Lat - lateral, med - 
medial, dis. - distal, prox. - proximal. 
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S-Fig 4.1 – Grafting of EpiLC-NMPs and EpiLCs using C2 GFP Cell Line. 
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