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Abstract

Computational systems biology is an emerging area of resehat focuses on understanding
the holistic view of complex biological systems with the hef statistical, mathematical and
computational techniques. The regulation of gene expyessi gene regulatory network is
a fundamental task performed by all known forms of life. listeubsystem, modelling the
behaviour of the components and their interactions canigeayseful biological insights. Sta-
tistical approaches for understanding biological phenwarseich as gene regulation are proving
to be useful for understanding the biological processesateaotherwise not comprehensible
due to multitude of information and experimental difficefti A combination of both the ex-
perimental and computational biology can potentially léadystem level understanding of
biological systems.

This thesis focuses on the problem of inferring the dynarofagene regulation from the
observed output of gene expression. Understanding of thardics of regulatory proteins in
regulating the gene expression is a fundamental task indaltiuieg the hidden regulatory mech-
anisms. For this task, an initial fixed structure of the netwe obtained using experimental
biology techniques. Given this network structure, the psmal inference algorithms make use
of the expression data to predict the latent dynamics oEtmation factor proteins.

The thesis starts with an introductory chapter that fam#es the reader with the physi-
cal entities in biological systems; then we present thecblaamework for inference in tran-
scriptional regulation and highlight the main features wf approach. Then we introduce the
methods and techniques that we use for inference in bidbgietworks in chapter 2; it sets
the foundation for the remaining chapters of the thesis.p@&ha3 describes four well-known
methods for inference in transcriptional regulation witbgand cons of each method.

Main contributions of the thesis are presented in the falgwhree chapters. Chapter 4 de-
scribes a model for inference in transcriptional regutatising state space models. We extend
this method to cope with the expression data obtained froftipfeiindependent experiments
where time dynamics are not present. We believe that theliamarrived to package methods
like these into customised software packages tailorediédodists for analysing the expression
data. So, we developed an open-sources, platform indepeimiglementation of this method
(TFInfer) that can process expression measurements wotbdical replicates to predict the
activities of proteins and their influence on gene expressigiene regulatory network.

The proteins in the regulatory network are known to intevéti one another in regulating
the expression of their downstream target genes. To takénttm account, we propose a novel
method to infer combinatorial effect of the proteins on gergression using a variant of fac-



torial hidden Markov model. We describe the inference meisgma incombinatorial factorial
hidden mode{cFHMM) using an efficient variational Bayesian expectatnaximisation al-
gorithm. We study the performance of the proposed modebusimulated data analysis and
identify its limitation in different noise conditions; theve use three real expression datasets
to find the extent of combinatorial transcriptional regidiatpresent in these datasets. This
constitutes chapter 5 of the thesis.

In chapter 6, we focus on problem of inferring the groups a@it@ns that are under the
influence of same external signals and thus have similactsfien their downstream targets.
Main objectives for this work are two fold: firstly, identifyg the clusters of proteins with
similar dynamics indicate their role is specific biologioachanisms and therefore potentially
useful for novel biological insights; secondly, clustgrimaturally leads to better estimation of
the transition rates of activity profiles of the regulatorgteins. The method we propose uses
Dirichlet process mixtures to cluster the latent activitgfpes of regulatory proteins that are
modelled as latent Markov chain of a factorial hidden Markwadel; we refer to this method
as DPM-FHMM. We extensively test our methods using simdlaied real datasets and show
that our model shows better results for inference in trapsonal regulation compared to a
standard factorial hidden Markov model.

In the last chapter, we present conclusions about the wagepited in this thesis and
propose future directions for extending this work.
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Chapter 1
Introduction

This chapter provides the background on biological systamasintroduces the terminologies
used throughout this thesis. It starts with a discussiouatiee importance of system level
understanding of the biological systems. Then it introduite biology of gene regulation
while identifying key components of basic biological syste Experimental techniques used
to obtain the quantitative measurements of these biolbgystems are briefly discussed while
identifying the potential sources of noises in these measants. Then it describes the ap-
proach followed in this thesis to analyse the data obtaineah biological systems. Finally,
this chapter provides a summary of the rest of the chaptalsedhesis and highlights the main
contributions of the thesis.

1.1 Systems Biology

Biological systems are comprised of large sub-systemsiti@tact selectively and nonlin-
early to produce coherent behaviour. The sub-systems iplexrbiological systems are often
diverse and multi-functional in nature. This behaviounhigadepends on combination of ele-
ments and the specific elements in the sub-systems. Néditheub-systems nor the elements
of the sub-systems can produce the same functionality latisa due to the symbiotic nature
of the underlying system. To understand the behaviour dbgical systems, experimental and
computational research is combined to get system-level gfethese complex systems. This
approach is often referred to 8gstems biologySystems biology is an emerging field that can
potentially unveil the basic functionality of living orgems and can lead to breakthroughs in
medical science and engineering.

Molecular biology, on the other hand, focuses on the indialaelements of complex bio-
logical systems. It states that the complex behaviour dbgioal systems is the result of the
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interaction of these simple elements. Molecular biology peoduced a large volume of in-
formation related to genome sequence and protein propefiigs information, alone, can not
help to understand the basic functionalities of biologgatems as the interactions between
the components of these complex biological systems ardypaderstood. Also, these biolog-
ical systems are the result of evolution so focusing on tiséesy-level understanding can help
to solve the mysteries of complex biological processess Tblistic view is the main driving
force behind the approach advocated in systems biology.

Computational approaches in systems biology (usuallyrmedeto as computational sys-
tems biology (Kitano, 2002)) are necessary to tackle theitadé of information. Even in
the simplest of living organisms such as unicellular baafe¢he amount of experimental mea-
surements and related biological information is so vagtiths.not possible to analyse all that
without efficient computational techniques. Also, poorlyderstood biological phenomena
can be modelled in computational models that have provendeige useful biological in-
sights. Due to the intrinsic complexity of biological syst®and vast amount of experimental
data, a combination of experimental and computationalaggtres promises to provide deeper
understanding of biological systems.

1.2 Biological Systems

All living organisms consist of one or more cells. The celsda membrane that separates the
internal components of the cellular machinery from the mykenvironment. Among other
components of the cellular machinery such as organelleésatbaequired for various cellular
functions, the most important one is the genetic matergtl igresponsible for producing var-
ious types of proteins and enzymes required for the impbdeltular functions and for the
survival of cells. The genetic material is compartmengaligithin nucleus in case @ukary-
otes( including multi-cellular organisms) whereas f®karyoteqbacteria and archaea) lack
a defined boundary to separate the genetic material fronegt@fthe cellular machinery. The
genetic material consists of double strandisxyribonucleic acidDNA) which is mainly
used to store the genetic information for development amdtfaning of the cells. DNA is
one of the three types diopolymerthat is produced by living organisms; other two types are
ribonucleic acid(RNA) and proteins.

The DNA in the cell is organised into long structures callddomosomesDNA consists
of two strands ofiucleotidgoined together to form a helix. These nucleotides are muelad
units that serve as the basic building blocks of DNA. It is sleguence of these nucleotides
that stores the genetic information. Four nucleotides sesgnt in a DNA strand: adenine(A),



guanine (G), cytosine (C) and thymine (T).g®&neis a segment of DNA that contains long
sequence of nucleotides encoding the instructions for tbdyztion of a particular type of
protein.

A genomeconsists of the collection of all the chromosomes insidecle The informa-
tion encoded in the form of chromosomes contains the bloepequired for the synthesis of
proteins that are of vital importance. The process of s\gisiveg proteins from the information
stored in DNA is calledyene expressionUnderstanding of gene expression is of paramount
importance as this process is the core function performedllbynown forms of life. Gene
expression process serves the basis for cellular diffietet and mainly controls function
and behaviour of cells. The genetic code stored in the genwterial is interpreted by gene
expression which gives rise to organismlenotype

1.2.1 The Regulation of Gene Expression

Biological cells are made up of several thousand proteiasititeract with one another. Each
cell produces different proteins while sensing differem¢éionmental conditions e.g., when
sugar molecules are sensed, the cells react by produciygneszhat can transport the sugar
into the cell. Gene expression is the process that producésegproteins required for the
survival and functioning of living cells.

The production of proteins based on the encoded instrigiimithe gene requires other
components of the regulatory machinery to work in an orchkstanner. Generally, all the
genes contain a regulatory region calfgomoter(Fig. 1.1). An enzyme called RNA poly-
merase (RNAp) binds to the promoter region of a gene and dyeDMNA double helix to start
reading (transcribing) the encoded sequence to generasemger RNA (MRNA) which is a
complementary copy of the nucleotide sequence encodedelyethie. This is the first step of
gene expression and is callednscription The direct interaction between genes and TFs is
the simplest form ofranscriptional regulation The mRNA produced at this stage of gene ex-
pression is not in the mature form and needs processing toremature mMRNA. Next major
step in gene regulation (excluding the post-transcrigtiomodification of the mRNA produced
in case of eukaryotes) is the translation of mRNA to funaigroducts called proteins.

During transcription, the RNAp binds to the promoter regadmlmost all the genes. The
rate of transcription is, however, mainly governed by splgmioteins called transcription factor
(TF) proteins. TFs are synthesised as the result of trgytgmmiof genes in a cell which are in
turn regulated by other TFs. TFs change the transcriptitenattheir target genes by binding
to the specific sites in promoter region of their target génissregulatory elements, Fig. 1.1).
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When a TF is bound to a target gene, it changes the affinitybgtidity per unit time) that
RNAp also binds the promoter to produce a mRNA molecule.

TFs can increase or decrease the rate of transcription oftéinget genes based on which
they are categorised astivatorsor repressorsDepending on a specific environmental change,
these transcription factors usually change from activenawtive state. Active transcription
controls the rate at which specific target genes are trdvestinto mRNA and translated into
proteins. This set of interactions among TF proteins, gandther cellular components form
a network calledyene regulatory networfGRN, figure 1.2). GRN is a dynamical system that
determines the rate of production of different proteins.

Generally, each mRNA molecule is translated to a proteirclvimay serve a wide range
of purposes. In some situations, protein will accumulatidatell-wall to serve the structural
need. In some other cases, these proteins are enzymesdhadeat to speedup a chemical
reaction. The rest of them carry out other functions of lyvaoells such as repairs within the
cell.

1.2.2 Combinatorial Transcriptional Regulation

It is understood that the process of transcription for aipalgr gene is under the control of
multiple TFs where the interactions between TFs regulatiegarget gene play an important
role. The combinatorial control of multiple TFs over the Begsion of a gene have different
biological functions: this can result in differential eggsion of the target gene; it can also
act as a step in transcription whereby multiple signals fbfferent environmental stimuli
are integrated. The interactions between TFs can be irrelftéorms too: TFs form protein
complexes that regulate the target gene; multiple TFs boutite promoter region of the target
gene at the same time and contribute towards the expreddioag@ene at different rates; all the
TFs having combinatorial control over the expression ofjiiee are only required to be bound
during transcription. Itis due to the combinatorial tramstional regulation that two interacting
TFs with low concentrations are more likely to transcribe target gene compared to when
only one TF with low concentration is bound to the target génevhich case transcription
will not be initiated due to the low concentration of the $engegulator). In case when two
TFs are bound to the target gene simultaneously, and thénlgisdes of the regulators are not
adjacent, the combinatorial control requires the inteing@®NA to be looped to facilitate the
interactions.

There are many regulatory proteins that have combinatodatrol over the expression
of their target genes in yeast regulatory network and in érigével organisms in particular.



In yeast regulatory network, TF Pho2 is known to act in coapen with other TFs in the
network. It requires Pho4 to activate the transcription lmb®and Swi5 for the transcription
of HO respectively (Bhoite et al., 2002). Another exampleh&f combinatorial regulation is
human interferor2 gene which is only regulated when all three of its regulates bound

to it in the active form. This shows the powerful role playgddombinatorial transcription
regulation in integrating the physiological signals asttiree activator of interferofi-gene are

actually driven by three signal transduction pathwaysdfa and Gann, 2002).

1.3 Experimental Methods

To study the regulation of gene expression, we need to measeMmRNA expression levels
of the genes experimentally in response to different envitental signals. The changes in
the expression profile of a gene indicate that the gene isrgan important role under the
experimental conditions by altering the rate of productdrthe encoded proteins under the
influence of TFs. Measuring the proteins produced duringe gepression would be ideal to
analyse the gene regulation; however, experimental difiecsumake it very hard to measure it.
The mRNA expression levels of genes are relatively easierdasure owing to technological
advancements such as DNA microarrays.

Chromatin Immunoprecipitation (ChIP) with Microarray {ghor ChlP-on-chip is microar-
ray based technology that is used to analyse the bindingeaifepproteins to DNA sequences
on a genome-wide scale. These type of proteins are more camifoaund in thechromatin
of the nucleus. The chromatin is the collection of DNA andteirs that comprise the nu-
cleus of the cell. Using ChIP-on-chip, the interactions itgins of interest such as TFs with
gene sequences can be obtained; this set of interactionsecalewed as a static picture (or
wiring) of the GRN. This architectural information proves to befukm statistical modelling
of regulatory interactions. We will describe these methadsext sections.

1.3.1 Microarray Technology

DNA microarray technology has made it possible to measweskpression profiles of large
number of genes in a genome. A DNA microarray is a solid serfaith thousands of micro-
scopic DNA spots. Each DNA spot on the microarray, cafieztbe contains a small amount of
a particular DNA sequence which is used to attract the comgieary DNA (cCDNA) sequence
of the sample. The main idea behind DNA microarralgybridisationof complementary DNA

strands (figure 1.3). Complementary DNA sequences havertpegy that the complemen-
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tary strands of DNA will pair with each other due to the conmpémtary nucleotide base pairs.
DNA strands with higher number of complementary base paillshave stronger bonds and
thus will remain hybridised after washing off. The sampleoséexpression level is to be mea-
sured is fluorescently labelled and after binding to its cDdé¢herates a signal that depends on
the strength of the hybridisation. Total strength of thgnsil from the spot on the microarray
depends on the amount of the sample bound to the probes aptitaiThen the intensity of the
microarray spot (under the influence of experimental caortor query sample) is compared
to the intensity of the reference microarray spot to asséw are changes in the expression
level due to the changes in environmental/experimentalitions.

labelled target (sample)
fixed probes

5558

different features
(e.g. bind different genes) |

Fully complementary Partially complementary
strands bind strongly strands bind weakly

Figure 1.3: Hybridisation of the target to the probe in DNA microarray (Wikipedia, 2012b).

The underlying assumption of microarray data analysisasttie strength of the signal from
microarray represents its relative expression. In ordeotapare the measured levels (or in-
tensity of the signal), normalisation of the measured isitégs is required to make meaningful
comparison. In order to find those genes which significantr-@xpressed or under-expressed
given the query and reference sample (ggndR respectively), then the relative expression
level of gend can be computed as

G = 9
R

This ratio provides a measure for characterising the geassdon their expression levels.

(1.1)

These ratios are also termedfakl changesUsing this measure, gene with fold change of two

8



b0724
b0435
b0721
b1891
b1038
b0032
b0728
b2092
b2093
b3116
b3268
b1819
b0727
b0855
b2091
b3599
b0037
b1494
b4382
b1879
b4383
b3724
b1075
b3115
b0462
b3317
b0827
b2059
b2991
b3312
b3311
b3112
b4287
b3688
b3315
b3726

Figure 1.4: Gene expression values from microarray experiments can be represented as heat
maps to visualise the result of data analysis. This heat map shows the expression values of
a subset of genes from Graham et al. (2011); genes expression measurements are clustered

using hierarchical clustering algorithm.



can be considered as up-regulated by factor of two; howgeegs that are down-regulated by
a factor of 2 have fold change which is 0.5. To overcome thiblem, fold change ratios are
usually analysed after taking the logarithm (base 2) whiclpces a continuous spectrum of
values. Figure 1.4 shows the expression measurementses e fold changes) in the form
of a heat map where the these expression measurements@atuaiered using hierarchical
clustering in Cytoscape (Smoot et al., 2011; Morris et @11). More transformation and
normalisation techniques for microarray data are desgrith€uackenbush et al. (2002).

1.3.1.1 Sources of Noise in Microarray Experiments

Primarily, there are two sources of noise in gene expressieasurements: biological and
technical.

The process of gene regulation is intrinsically stochasticature (McAdams and Arkin,
1997; Nachman, 2004). All the events in gene regulation asd¢tanscription, post-transcriptional
modification and decay of mMRNA are subjected to variability dence this process cannot be
described deterministically. Due to this, statistical migdusing gene expression data to de-
scribe the hidden biological phenomena should take thialgity into account.

While conducting microarray experiments, there are manotofa that can influence the
outcome of the experiment such as hybridisation efficierfcglifferent probes, temperature
conditions, amount of sample per probe, sample solutiopgst@s. Another major source of
noise could be due to samples taken from different cultufégse potential sources of noise
should be taken into account before making predictions &helexpression patterns of genes.

1.3.2 Chromatin Immunoprecipitation with Microarray

Also known as ChiIP-on-chip, it combines the chromatin imoprecipitation with microarrays
to find the interactions between proteins and DMAvivo on a genome-wide scale. Using
this technique, experiments can be conducted for an omgatasfind all the protein-DNA
interactions that provide a overall picture of the genomgenrconsideration. Lee et al. (2002)
conducted a ChlP-on-chip experiment on yeast to find thelasmy interactions that have
been used as the fixed structure of yeast regulatory netwastatistical models where such
information is required.

A ChIP-on-chip experiment can be divided into two major @sasThe first phase starts
with cross-linkingin which a protein of interest (POI) is cross-linked to a DNégaence.
Then the cells are broken down to obtain cross-linked PORRNmMplexes using immuno-
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Figure 1.5: Overview of the workflow of ChlIP-on-chip (in wet-lab) experiment (Wikipedia,

2012a).

precipitation (IP). After this, the cross-linking of prateDNA sequences is reversed and the
single stranded DNA obtained are labelled with fluorescagsé.t The DNA segments are then
poured into a microarray for hybridisation to form doubleastled DNA fragments. Finally,
the microarray is illuminated with fluorescent light and ¢bgrobes on microarray that are
hybridised to labelled segments emit light signals withaigtared with the help a camera. This
phase is the wet-lab portion ChIP-on-chip experiments asdimmarised in figure 1.5. In the
second phase, the raw data in the image captured by the certieea used to obtain numerical
values that are used in statistical analysis. This constihe dry-lab phase of a ChIP-on-chip
experiment.

1.4 Inference in Transcriptional Regulation

Inferring the quantitative relationship between TFs angegewithin the GRN is an area of in-
tensive research (Lawrence et al., 2010). Most of the mestfadhis task use gene expression
measurements to analyse the operation of GRNs. A majorgmoblith the use of the expres-
sion data generated from high-throughput techniques tshkautput signal is affected by the
modulation of TFs as well as by the intra- and inter-cell@gignalling mechanism and many
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Figure 1.6: A bipartite network of genes and TFs

other cellular processes. Inference of the hidden mecimag@erning the regulation of genes
only from gene-expression is a challenging task given tirgseactions. Problems associated
when modelling these data are: TF expression is often noidyoav; while post-transcriptional
regulation makes the task of modelling more difficult. Thektaf extracting the structure and
dynamics of cellular processes is difficult because of tbehststic nature of the underlying
dynamical system involving many hidden factors.

Gene regulatory network can be viewed as a network of pretaind genes where TFs are
regulating the production of proteins by controlling thepeession rate of their downstream
targets (figure 1.6). In this setting, genes and TFs are tdesof this bipartite network and
the edges between the TFs and genes are the regulatoryctiiesabetween the nodes of the
network. Only the expression measurement of genes areabl@ivith a certain degree of
noise; the task of modelling is to infer the latent profile§ 66 that are mainly driving the reg-
ulation of genes; these TF are in turn under the influence @ivkrexperimental/environmental
conditions.

1.4.1 Our Approach

Owing to recent advancements in high-throughput techmsiquee et al., 2002; Boyer et al.,
2005; Harbison et al., 2004), a lot of connectivity inforioatis available about GRN, but there
is a need to analyse this qualitative connectivity infoiiorato generate quantitative network
structures. Many statistical techniques are availablegfare transcription analysis that are
reviewed in detail in chapter 3. We propose to use latentibégimodels for inferring the
relationship among latent TF activities with the observedegexpression measurements. We
have used factorial hidden Markov models (FHMM) to modelrdglation of gene expression
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under the influence of TFs using both linear and non-lineadet®o The FHMM provides a
natural way to model the regulation of genes by multiple T$®&@a describe later in this thesis.

The structure of the regulatory network in terms of the imtéons between genes and TFs
is presumed known in the methods proposed in this thesig.eTdre two primary methods of
obtaining this structural information. One is to determihe architecture of the GRN exper-
imentally by techniques such as ChIP-on-chip that provalsetatic picture of the regulatory
interactions between all the TFs and genes on genome-wadie Sthe other source of informa-
tion about the architecture of GRN is biological literatuBgological databases such as ecocyc
(Karp et al., 2002; Keseler et al., 2011) or biocyc (Caspi.eQ08) provide enormous infor-
mation about the regulatory interactions so the regulatetywork architecture can be compiled
from these database. Itis important to note that both thmseas of network architectural data
are known to include false positives and false negatives p@babilistic approach towards in-
ference is able to identify the these and therefore pro\adasans of generating new biological
hypotheses.

The methods proposed in this thesis are primarily focusednalysing expression data
from time-course microarray experiments. However, we alsipose an extension of San-
guinetti et al. (2006) where time-independent version efrttodel is derived (in chapter 4).
The model presented in chapter 5 for combinatorial trapgonal regulation is also derived
for non time-series data in appendix A.

One of the highlights of the proposed models in this thesthésprobabilistic nature of
the models. The probabilistic approach towards inferemoeiges a principled way to handle
the noise in the expression measurements as well as to Hams#epositives/negatives in the
network architecture data. It is also important to asseaagdibility intervals with the results
obtained using gene transcription analysis. As the metivegzropose are fully probabilistic in
nature, our methods are able to infer confidence measuresiaesl with the inference results.

1.5 Outline of the Thesis

The rest of the thesis is organised as follows:

Chapter 2: This chapter introduces the methodologies that are usedghout this thesis. It
starts with a brief introduction to the Bayesian inferen@arfework; then it introduces differ-
ent classes of latent variables models such as linear dgahsystems and hidden Markov
models. Then we describe Bayesian nonparametric methddgaaus on Dirichlet process
and Dirichlet process mixtures. Finally, we introduce apgmnate inference technigues such
as variational Bayesian inference and Markov chain MontdoGMCMC) sampling.
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Chapter 3: This chapter provides a review of prominent statisticéli@ence techniques for
transcriptional regulation. We review four of these methatdepth and describe the advan-
tages and disadvantages of these methods.

Chapter 4. This chapter describes a model for inference of TF ao#igitisingstate space
model(SSM) and extend it to analyse the expression data with enldgnt experimental con-
dition possibly with replicate. It also discusses a novpkrmsource and platform independent
implementation of this method with an intuitive user iné&é. The work presented in this
chapter is published IRRIB2009(Asif and Sanguinetti, 2009) arioinformatics(Asif et al.,
2010) and used for modelling of transcriptional regulatioRolfe et al. (2011).

Chapter 5: This chapter includes a statistical method for infereniceoonbinatorial interac-
tions of TFs in GRN on genome-wide scale. It describes a novthod based on factorial
hidden Markov models to explore the combinatorial naturérafscription regulation. An
efficient variational Bayesian expectation maximisatippraach is proposed for posterior in-
ference in the model with a detailed analysis on real andlsitedi data. This work is published
in Bioinformatics(Asif and Sanguinetti, 2011).

Chapter 6: This chapter introduces an approach for simultaneousante and clustering of
TF profiles from gene expression data. The proposed metlieis ithe latent chains (TF pro-
files ) of the FHMM and also clusters the latents chains usorgarametric mixture modelling.
We propose a collapsed Gibbs sampling approach for the namgdric mixture modelling in
this model and perform the detailed analyses of the modegusmulated and real datasets.

Chapter 7: This chapter discusses possible future directions farekhg the work presented
in this thesis.
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Chapter 2
Methodologies

This chapter introduces the basic framework for Bayesid&rémce with an introduction to
different classes of Bayesian networks. It then providesief imtroduction to approximate
inference using variational inference and MCMC samplingwdrds the end, an introduc-
tion to Bayesian nonparametric methods is presented wdtlgsing on nonparametric mixture
modelling using Dirichlet process mixture models.

2.1 The Framework of Bayesian Inference

Bayesian inference is a branch of statistics in which alin®iof uncertainty about the system
under consideration are expressed in terms of probabilithes an initial step for Bayesian
inference, a model is used to characterise the system thselglrepresents the system that
we want to model. This mathematical model contains someawmRkiparameters that we want
to infer. The unknown parameters of the model are treatedradom variablego account
for the uncertainty associated with these parameters. ddan@riables can be thought of as
guantities whose values are not fixed but subject to vanatity chance; arobability distri-
butiondescribes the probability of a random variable taking ofed#nt values. We ugerior
distributionsto reflect our prior belief about the values of these unknoarameters. After
seeing the data, the unknown parameters of the model aréagpaising Bayes’ rule to obtain
posterior distributiondor the unknown parameters of the system. The posterionlalisions
over unknown parameters of the system represent our pashedief after seeing the observed
behaviour of the system.

Bayes’ rule defines the logic of uncertainty in the observeldaviour of a system (Jaynes
et al., 2003). To understand the Bayes’ rule, let us congidezxample system that we want
to model; the set of unknown parameters of the model for yssesn are denoted b and
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the data generated by this system is denotedbyVe collect our prior knowledge about the
unknown parameters of the model in the form of prior distiitoufor ©. In most simple form,
Bayes’ rule is given by

likelihood x prior

posterior= normalising factor 1)
or
p(2|©) p(©)
Op)=——+—=- 2.2
p(©|D) o(D) (2.2)

The above equation can be interpreted as "degree of beti€lefore and after observing
D. p(O©) is theprior belief about® before observing the datp(» |©) represent thékelihood
function of the observed data; likelihood function represehow probable the data is for a
given setting of the paramete®& p(©|?D) is the posteriorbelief after observing the data.
p(D) is themarginalprobability of data. Our belief about the outcome of the eysis subject
to the observed behavioup ) of the system so we define it in termsaainditionalprobabilities.
Conditional probabilities reduce the set of possible omes based on the condition that some
event have already occurred or known to occerg., the probability of a certain range of
values for the paramete®is increased based on the condition tivais observed; similarly,
the probability of a certain range of values for the paransefeis decreased after observing
D.

An important aspect of Bayesian inference is that the unkneavameters and the observed
data are all treated as random random variabtiddenor latent variablesare random vari-
ables that are not observed directly; but they can be irddren the observed variables with
the help of inference. These variables are sometimes irggeto physical quantities in the
system under consideration such as TF concentrations inahigext of GRN which can not
be measured for practical reasons. In some other situatiess variables refer to an abstract
concept such as cluster membership in the context of clogteFhe main advantage in using
random variables is the reduction in the dimensionalityhef dlata. This is achieved by ac-
cumulating many observed variables into one abstractyahi#t helps to understand the data
better. The reduction of dimensionality in case of clusigican be seen in fewer number of
clusters compared to the number of observations.

One of the main advantages in using Bayesian inference ietheeed complexity of the
model obtained by the use ofarginalisation This method automatically prefers simple mod-
els that sufficiently explain the observed data withouteasing the complexity of the model.
This is true even when prior over the unknown parameters@rpletely uninformative (Tip-
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Figure 2.1: Bayesian network for joint distribution p(a, b, c)

ping, 2004). However in practice, this approach requirésgiration over the variables and in
complex systems sometimes these computations are aadllyiittractable. Then, approxi-
mation techniqueg.g., MCMC sampling and variational approximation are used wiach
described later in this chapter.

Conditional independends a widely used concept in Bayesian inference. In case eéthr
random variables, b andc such that the conditional distribution afis independent of the
value ofb given the value o€,

p(alb, c) = p(alc) (2.3)

thena s said to be statistically independenttogiven the value o€. The conditional indepen-
dence can also be derived from the joint distributiomahdb as follows:

p(a,blc) = p(alb,c)p(bc)
= p(@lc)p(bic)

by using product rule of probabilities with equation (2.Byr two random variablesandb to
conditionally independent of a third varialdeone of the above two conditions must be true
for all possible of the variable. This independence relationship plays a very importarg rul
in probabilistic modelling. Using conditional independenelation, the structure of the model
and the computations needed for inference and learningrap@ifsed to a significant deal.

2.2 Bayesian Networks

Bayesian networks are graphical representation of theitondl independencies between ran-
dom variables of a model in a form of directed acyclic grapA@). Conditional independence

in Bayesian networks implies that the random variablesésaa DAG) are only dependent on

its parents and independent of other nodes in DAG given rsna
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The nodes in the Bayesian network are random variables aadtell links represent the
probabilistic relationships among the nodes of the netwdrke following joint distribution
over random variables, b andc

p(a,b,c) = p(alc)p(blc)p(c) (2.4)
can be represented as a Bayesian network as shown in figur&H&Joint distribution is fac-
tored into simpler probability distributions by the apgliion of product rules of probabilities
and this factorisation holds for any choice of the joint klisttion. The arrows in this figure
represent the probabilistic relation between two randonakées that can be observed or la-
tent. The node in the graphical model is thparentof nodesa andb as there are directed
edges fromato b andc. In general, the joint distribution for a Bayesian netwoak de written
as a product of the individual probability distributionscén be written as

p(x) = |_| POXv[Xpa(v)) (2.5)

veVv

wherepa(v) is the set of parents of noddn the graphical model anxdrepresents the random
variables in the Bayesian network.

2.2.1 Dynamic Bayesian Networks

To model the time dynamics of the sequential data, Bayesamarks are adapted to represent
the sequence of variables over time to form dynamic Bayesgwork (DBN). In this case,
the observed data can not be treatedndependent and identically distributédi.d), so we
need to model the sequence of observation under the assimntipéit the sequence follows a
Markov processMarkov process is a stochastic process Witirkov property it implies that
the conditional probability of the observation at presdatesonly depends on the previous
state.

P(%|X1,- - %—1) = P(X|%—1)

In this case, equation (2.5) becomes

T
p(x) = t|1 P(Xe[% 1) (2.6)

whereT is the total number of observations. Equation (2.6) is atsmn adirst order Markov
chain(figure 2.2).

A simple example of DBN is the HMM which is shown in figure 2.%1€éfshaded nodes in
Bayesian networks are considered observed variables thilether nodes are latent variables.

18



E—@0—0—®

Figure 2.2: A first order Markov chain

2.2.2 Hidden Markov Models

Let z be a latent variable for each of the observatigns a sequence of observations in
equation (2.6) where; can have different dimensionality thag. If we move the Markov
property assumption to the latent variabtesnstead ofx;, then the resultant graphical repre-
sentation can be shown as figure 2.3. Based on the discretmtnwous choices for latent
variablez;, we can get two different types of models. If both the latertt abserved variables
are Gaussians with a linear dependence of the conditiosalliitions on their parent nodes
then we gelinear dynamical systemwhereas if the latent variables are discrete then we obtain
hidden Markov model@HMM). The general class of these models is caB&ate space model
(SSM).

In a HMM, latent variable; is a multinomial random variable that describes which state
the latent variable is responsible for generating obsenvat. These variables can be thought
of asK dimensional vectors where only one entry of the vector isneno (1-ofK representa-
tion). The joint probability of a HMM can be written as

T T
p(X,Z) = p(z1) [|1 p(Zt\Ztl)] ~ |1 P(Xt|z) 2.7)

whereX = {X1,X2,...,XT} andZ = {z1,2,,...,z7}. In the HMM jargon,p(z|z_1) is called
transition probabilityor transition ratewhile p(x|z ) is calledemission probabilityThe initial
transition probability at = 1 has a special meaning; it specifies the initial value ofmlate

()
® 0 ©

Figure 2.3: A hidden Markov model
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variablez; and is usually denoted g The transition probabilities are usually denoted&y
with K(K — 1) independent parameters encoding the probabilities

Ajk = p(zt,k = l‘thl’j = l); 0< Ajk <1, ZAjk =1 (2.8)

The emission probability vectop(xt|z;,B), with B as the parameter for this distribution
consists oK values corresponding € possible states of the latent varialzle Now the joint
probability of all the variables can be specified as

T T
p(X,Z[®) = p(za|m) [ﬂ P(z|z-1,A) -t|1 p(xt|z:,B) (2.9)

where® = {A, B, 1t} is the set of model parameters. The basic HMM has been exd¢adar-
ious different forms (Rabiner, 1989; Bishop, 2006). Onéardrof HMM is the factorial hidden
Markov model (FHMM) in which the latent state representai®distributed to multiple state

variables; the observed sequence is then conditioned drolsendependent Markov chains
instead of a single Markov chain. The FHMM provides a natway to model the regulation
of genes in GRNs as we describe in chapter 5 and 6.

2.2.2.1 Forward Backward Algorithm

An important problem of a HMM given its parameters is that néifng the posterior marginal
probabilities of hidden statex, z,,...,zr given an observed sequenggXa,...,XT. This
training of a HMM is achieved byorward backward algorithm

In forward backward algorithma; (i) denotes the probability of partial observation se-
guencexy, Xo, ..., X until timet and the state of latent varialde= i at timet given the param-
eters®; wherea$; (i) denotes the probability of partial observation sequeqce X2, ..., XT
given the state of latent variali#e= i at timet and the parametef3

at(i) = p(X17X27"'7Xt7Zt:i|e)
Be(i) = PXtt1,%t+2,...,XT,[2 =1,0).

whereaq(i) and(i) are called forward and backward variables respectivelye dlgorithm
then computes the forward probabilities for all the timeesi and states of the latent variable
z as follows,

ar(j) = Tp(xajz=j) 1<j<K (2.10)

K
arr1(j) = [Z Ajk P(Xt+1|Zt+1=]) 1<)<K1<t<T-1 (2.11)
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For backward probabilities

Br(i) = 1, 1<j<K (2.12)
K
Bu(i) = > AkP(X+alzien=j)Ba(k)  t=T-1T-2....1 (2.13)
k=1
1<j<K.

Having computed these probabilities, the task of findinggbsterior marginal probabilities
can be achieved by defining

e (KB(K)
K) = =1,2.... k<K. _
WO S oy TR E T skEK (214)

Equation (2.14) specifies the probability of being in stas timet givenX and®. These
probabilities also callednarginal state probabilities With long observation sequences, the
forward backward algorithm needs to compute extremely lsooalditional probabilities that
sometimes can result in arithmetic underflow. This situatiay also arise if multiple observed
sequences.g., multiple gene expression profiles are used to estimate thepor marginal
probabilities.

The solution to numerical instability of forward backwang@ithm is to uselog space
for calculating the conditional probabilities of equasa2.11)-(2.14) (Mann, 2006). Another
approach to circumvent this problem is to rescale theseitondl probabilities by using a scal-
ing factor that keeps these probabilities within the raniggt@ndard floating point arithmetics
(Rabiner, 1989).

As the number of genes in the analysis we perform are in therafhundreds or some-
times thousands, we also face this numerical instabilibpj@ms due to the multiplication of
large number of small emission probabilites. We use logeparcthe calculations of forward
backward algorithm with gene expression profiles as obdeseguences to avoid numerical
instabilities.

2.2.3 Linear Dynamical Systems

Figure 2.3 shows the general class of models where sequéatemt variables are used to
model the sequential data. Lets assume that the latenblesiare now continuous. In this case,
each pair of nodéx, z } represents a linear-Gaussian latent variable model. Tripies that
the joint distribution, conditional distributions and rgaral distributions all will be Gaussians.
So we can write the transition and emission probabilities as

P(zt|zi-1) = N (z|Az_1,T)
p(Xt|zi-1) = AN (%|Cz,Z)
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or equivalently in the form of linear equations as

zz = Az 1+W
Xt = Cz+vt

(2.15)
with noise terms given by

wo o~ A(wW[0,I)
Vo~ 9\C(V|O,Z)

where® = {A,I',C, X} are called the parameters of the linear dynamical systemS)land
can be determined using maximum likelihood through expiectanaximisation algorithm. In
chapter 4, we derive the inference algorithm for LDS using@proximate inference technique
where approximate inference is used due to the intractabiiithe posterior distribution. Note
that special attention needs to paid for the distributidrie@first sample in the sequence as in
case of HMM.

2.3 Expectation Maximisation Algorithm

Expectation maximisation (EM) algorithm is a general tegha for finding the maximum
likelihood estimates for model with latent variables (Destep et al., 1977; McLachlan and
Krishnan, 2008). It computes the expected values of thatlasriables and parameters of the
model iteratively in two steps: thexpectatioror E step ananaximisatioror M step.

Let X denote the set of observations with each row containing dsereation. Similarly,
Z denote the set of latent variables with one row for each easen with 1-ofK encoding.
If © denote the set of model parameters, then the log of the naigielihood of the data is
given by

Inp(X|©) =In (Z p(X,Z)) (2.16)

where the summation replaces the integration if the latanakles,Z, are continuous vari-
ables. However, this equation leaves us with one problem;stimmation in this equation
appears inside the logarithm which results in complicaguiession when estimating the max-
imum likelihood solutions. The solution to this problemasconsider theompletedata which
includes{X,Z} instead of jusK.

Most of times, we do not know the values for latent varialldsit we can calculate poste-
rior probability forZ given observationsX, which we callincompletedata) and, p(Z|X, ).
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Algorithm 1 Expectation Maximisation Algorithm

1: Initialise @°d = @0

2: repeat
3: E step: Evaluat@(Z|X,0°9)

4: M step: Evaluat®"®V as
"= argmaxQ(o, ocld)

where

Q(e,0%) =5 p(z|x,0%?)Inp(X,Z|)

4

Eold — gnew

a

6: until convergence criterion is not satisfied.

At the start, the EM algorithm initialises the model paraeng® by choosing some starting
values@?. Then it repeat the following two steps:

E step: During the E step, the current values of the param®®t are used to find the poste-
rior distribution of the latent variables. Having computed this, we can use this posterior
probability distribution to compute the expectation of kbg likelihood of complete data
evaluated for some general parameter vées

Q(,0%%) =5 p(z[X,0°)Inp(X,Z|O)
z
Note that the logarithm directly acts on the joint distribatp(X, Z) in this case.
M step: Inthe M step, we maximise our estimates of the param@duosobtain@"®V as

"= argmaxQ(©, e°ld) (2.17)

After one iteration of the EM algorithm we get the revisedne for® which are then used
in the next iteration a®°'?; @°9 is also used to compute the posterior distributiofZ|X, ©)
in the next iteration of the EM algorithm. This posteriortdizution is used to compute the
expectation of the log likelihood of the complete data. Thevergence of the algorithm can
be monitored based on the increase in the expectation ofothdiKelihood; the algorithm
iterates until the increase is less than a predefined thicesho
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2.4 Approximate Inference

Fundamental task of probabilistic modelling is the estiorabf the posterior distribution of
the latent variableZ given the observed datai.e., p(Z|X) and expectations with respect to
these distributions. In a fully Bayesian approach, all thenown parameters are given prior
distributions and treated as latent varialidesThen, using the EM algorithm, we can compute
the expectations of the log likelihood of complete datat. the posterior distributions of the
latent variables (Dempster et al., 1977). In many pracapglications, this is not feasible due
to various reasons such as dimensionality of latent vagiapace or the form of the posterior
distributions. For these modelling problems, approxioratechniques are used; these tech-
nigues can be categorised stechasticor deterministic Variational inference falls under the
category of deterministic approximation techniques (doret al., 1999; Bishop, 2006). Varia-
tional methods are used for finding an approximate solutyanestricting the range of functions
over which the approximation is applied. This restrictioaynalso be in the form of factorisa-
tion in case of the factorized variational approach as werdss later. Markov chain Monte
Carlo (MCMC) techniques fall under the category of stodleagiproximation techniques. We
will briefly describe these two approximations next.

2.4.1 Variational Bayesian Inference

Variational Bayesian inference is an approximation teghaibased on the calculus of varia-
tions. The basic idea in variational inference is to apprate the posterior distribution over
the latent variables and parameters with a simpler digtabu Variational techniques convert
a complex problem into a simpler problem by making use of #eodpling of the degree of
freedom in the original problem (Jordan et al., 1999). Tlesalipling is obtained by expand-
ing the problem to include additional parameters also knaswariational parameters that are
optimised according to the problem under consideration.

In a fully Bayesian framework, a model with a set of latentiaflesZ and a set of ob-
served variableX with joint distributionp(X,Z), our goal is to find an approximate posterior
distribution forp(Z|X) andp(X). Decomposing the log marginal probability, we get

Inp(X) =2(q) + KL(q | p) (2.18)
where: X.2)
- p(X,
_/q(Z)In[ e }dz (2.19)
p(Z | X)
L(all p) = /q In{ ) }dz (2.20)



KL(q||p)

L(q) In p(X)

Figure 2.4: lllustration of the decomposition given in equation (2.18)which holds for any choice
of distribution q(Z) (image taken from Bishop (2006))

Here, £(q) is a functional and equation (2.20) characterises the ldakH_eibler diver-
gence between approximating distributigfZ ) and the posterior distributiop(Z|X). Equa-
tion (2.19) and (2.20) differ in sign and(q) have joint distribution oK andZ while KL(q|| p)
contains conditional distribution & givenX. Using the product rule

Inp(Z,X) =Inp(Z|X)+Inp(X) (2.21)

in equation (2.19) and substituting this value in equatibh) gives the required log likelihood
given in equation (2.18) which proves the basis for this dgoosition.

Note that KL divergence is always positive or zero. If KL diyence is zero, then approxi-
mating distributiory(Z) = p(Z|X). Therefore, looking at equation (2.18), it follows thatq)
is a lower-bound on Ip(X) i.e. £(g) <Inp(X). Figure 2.4 shows the decomposition shown in
equation (2.18).

We can minimise the KL divergence by maximising the lowerrmbapecified in the equa-
tion (2.18) using optimisatiow.r.t. the distributionq(Z). The KL divergence vanishes when
the q(Z) is equal top(Z|X). However, in many cases, it is difficult to work with the form
of true posterior distribution. So, we restrict family oftlibutionsq(Z) that can be used; a
member of this family for which the KL divergence is minimisis selected as the approxi-
mating posterior distribution. The goal here is usuallydstrict the family of distributions by
choosing a flexible distribution that can best approximheettue posterior distribution. The
restriction imposed is usually for the purpose of tracighilStandard nonlinear optimisation
techniques can then be used to obtain the optimal valueegqfdrameters. One approach for
restricting the family of distributions is to use factousdistributions for approximating the
posterior distributions which is discussed next.
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2.4.1.1 Factorized Variational Approach

One way to restrict the family of approximating distributgois to factorize the distribution. In
this approach, the set of latent variabfess partitioned into disjoint groups as follows

M
Z)= _DQi<Zi); (2.22)

assuming that the distributiom factorizes with respect to these groups. The objective is to
select a distribution for which the lower bourdq) is largest. To achieve thig,(q) is to be
optimisedw.r.t all the distributionsy;(Z;); this is done by (variational) optimisation af(q)
w.r.t. each of the factors given in equation (2.22). For this pugpsesbstituting equation (2.22)

in equation (2.19) and simplifying we obtain

/|'|q. llogpx Z) Zquq. ]
_/qJ i)Eixjllogp(X,Z)]dZ; - /qJ )logq;j(Zj)dZ;j+ const (2.23)

where

Eizj[Inp(X,2Z)] /Iogp (X,Z) Dq. i)dZ; (2.24)
1#]

and all the terms that do not depend®iZ ;) are absorbed into the constant. After thujs;

is kept fixed andc (q) in equation (2.23) is maximised with respect to all possfblens for
the distributiongj(Zj). Another important fact is that equation (2.23) is negakvediver-
gence and thus maximising the equation (2.23) is equivademinimising KL divergence and
the minimum occurs wheqj(Zj) O exp(Eij[Inp(X,Z)]). The general expression for the
optimum solution is given by

logdj(Z;) = Eijllogp(X,Z)] +const (2.25)

This above framework provides the basis for variationalhods. The last equation says that
the log of the solution fog; is obtained by taking the expectation of the log of the joiist d
tribution over hidden and observed variables with respeatitother factorgy; with i £ j. We
can write the above equation as

6(z)) = X PEizilogp(X,2))
PRV [ exp(Eiy) [logp(X, 2)])dZ
Equation (2.26), forj = 1,...,M whereM is the total number of factors, represent a set

(2.26)

of consistency conditions for the maximum of the lower bauhds important to emphasise
that this equation does not represent an explicit solut®tha expression on the right-hand
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side of equation (2.26) for the optimum factpr(Z;) depends on the expectations computed
with respect to other facta(Z;j) with i # j. So, the solution to this can be computed by
first initialising all the factorsy(Z;i) and then calculating factors in a cyclic order with revised
estimates given by equation (2.26) until the convergeneaehseved.

In general, the factorisation approach of variational iefee usually underestimates the
variance of the approximate distribution to the posteristribution (Bishop, 2006). The es-
timation of the factorized approximating distributionsymaovide us with functional forms
which are still intractable; therefore usually some simglgace for posterior distributions of
the parameters is used (Beal, 2003). One advantage ofigaahtnference approach is that
any factorisation of the posterior distribution gives aéowound on the marginal likelihood.

2.4.2 Sampling Techniques

In Bayesian inference, computation of the posterior digtron is usually intractable and we
have to resort to some approximation technique like oneribestin the section 2.4.1. This
section introduces another class of approximation teclesdpased on numerical sampling
known asMonte Carlotechniques. In most inference problems, we are only intedems
evaluating the expectations rather than the posterionloligion itself. In these situations, we
can use sampling techniques to find the expectations of sonatidn f (z) w.r.t. a distribution
p(z). In case of discrete variables, expectation is computed as

E[f]= 3 f()p(i) (2.27)

In general, sampling techniques allow us to obtain a setropteszl!) wherei = 1,...,N drawn
independently from the distributiop(z). Then the expectation can be found as

S R PG
-5 21 (2.28)

Different sampling techniques are available for differtgpes of graphical models. We will
only briefly describe Gibbs sampling in the next section. ififierence in the model proposed
in chapter 6 is done via Gibbs sampling.

2.4.2.1 Gibbs Sampling

Gibbs sampling also known adternating conditional sampling defined in terms of subvec-
tors of the parameter vector. In one trace, Gibbs sampldegsybrough the subvector of the
parameters and draws samples for each subset conditioallather subsets. In each iteration
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of the Gibbs samplek steps are required to draw samples from all the subvectbegiaram-
eter vector wher& is the number of sub-vectors of the parameter vector (Gekhah, 2004).
More precisely, ifZ denotes the parameter vector a‘jldjenotes the values of the subvector
zj at iteration/timet, then eact?, is drawn from the conditional distribution given all other
subvectors as

p(zZ27}) (2.29)

wherez " is given by

2 = (A, 03 A (2.30)

J+1, ...
In many cases, it is possible to sample directly from moshefdonditional posterior dis-
tributions of the parameters and use of conjugate priossg@isvide ease in sampling.

2.5 Bayesian Nonparametric Methods

The models described in the previous sections are parasezterith a limited number of
parameters. It is often desirable, for theoretical reasmiuild models that have no limita-
tion on the parameter space. These methods, called nonglai@aBayesian methods, define
distribution of function space such as that of probabiliggasures to avoid restrictive paramet-
ric assumptions (Muller and Quintana, 2004). The priotriigtion for these nonparametric
methods must also be a nonparametric distribution with itefinumber of parameters. Non-
parametric methods provide an efficient way to analyse the where the number of latent
components are not known in advance. In the following, weulis one of these methods and
then describe its use in nonparametric mixture modelling.

2.5.1 Dirichlet Process

Dirichlet process (DP) is a stochastic process that is widekd in Bayesian nonparametric
modelling. A sample from a Dirichlet process is a discretgbpbility distribution that cannot
be described by using a finite number of parameters. A DP ctrobght of as a generalisation
of the Dirichlet distribution (Holmes, 2010; Gibbons andaktaborti, 2003).

Let G be a distribution over a spacé andn be a (real) positive number. For any finite
set of partitions ofX, A1 UAx UA¢ = X, the vectorG(A),...,G(Ay) is a random measure.
G ~ DP(Gp, n) with base measur@g and concentration parametgif

G(A1), ...,G(A) ~ Dir(NG(Ay), ...,nG(A)) (2.31)

for any measurable finite partitions Xt
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A DP can also be viewed as a distribution over distributioiity iwwo parameters. Base
distributionGg can be thought as the mean of the DP bec&ij&¢A)] = Go(A). The concen-
tration parametern can be interpreted as the inverse variance of the DP beda@&&)| =
w which implies that larger values of the concentration patamwill force DP to
concentrate more of its mass around its mean.

Based on different construction schemes, DPs can be repeelsm different ways (Teh
et al., 2006; Teh, 2007). Here we describe one method whikhae/n as thestick breaking

construction.

2.5.1.1 Stick-breaking Construction

The process fostick breakingconstruction of DP can be described as follows:

B« ~ Betaln) (2.32)
k-1

m = B J](1-Bi) fork=12,... (2.33)
kﬂ j

This process can be interpreted by considering a unit lestgtk and then breaking it accord-
ing to the proportiony = 31 ~ Beta1,n); then the remaining stick broken according to the
proportiongBx ~ Betg1,n) with the remaining proportion of the stick assignedto Collec-
tively, this construction of DP is calle@EM distribution (named after Griffiths, Engen, and
McCloskey, (Gnedin and Kerov, 2001)).

T~ GEM(1,1n) (2.34)

2.5.2 Dirichlet Process Mixture Modelling

Dirichlet process mixture model (DPMM) is an extension oftérmixture models where the
number of latent components are not knosvpriori. It is easier to understand the DPMM
by starting from finite mixture models. A graphical repras¢ion for finite mixture model is
shown in figure 2.5 whereandk are the indices for observations and clusters respectivaky
generative mechanism for finite mixtures is given by

1 ~ Dirichlet(ni,nz,...,Nk)
z|mt ~ Multinomial(m)
BkA ~ G(A)
x|z, {8}_1 ~ F(6)
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Figure 2.5: Graphical representation for finite mixture models (i = 1,...,N;k=1,... K). If
K — oo then it forms the graphical model for infinite mixture models (DPMM).

The above generative mechanism generates a data)pdintselecting one oK compo-
nents from a multinomial distribution; the prior distrilr for this multinomial distribution is a
Dirichlet distribution parameterised loywhich can be taken to be uniform witjyK, ..., n/K.
After selecting a component, a sampleis drawn from the component distributi@to gen-
erate the data poing from the distributior. For mathematical convenience, the distributions
F andG are from exponential family of distributions with as conjugate prior foF (Bishop,
2006).

In finite mixture models, the value fdt is known in advance; however, this is not the case
for infinite mixture models such as DPMM. If we change the limitkoto infinity, then the
above described generative process becomes a DPMM. ltaa biy

m ~ GEM(1,n)
z|m ~ Multinomial(T)
BA ~ G(A)
x|z, {8h1 ~ F(8s)

In case of a simple infinite mixture of Gaussians with fixedarace,G becomes the con-
jugate prior for the mean of the Gaussians wikiles Normal distribution with mean given by
G.
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2.5.3 Collapsed Gibbs Sampling for DPMM

One advantage of using conjugate prior is that we can oftegiate out the hyperparameters
of the prior distribution; this helps to a great deal whilengding for posterior analysis. We can
easily derive a Gibbs sampling scheme for DPMM if ealapsethe Gibbs sampler by inte-
grating out the component paramet@ss By doing this, we only need to take samplesZas:.
The collapsed approach to sampling is justified by Rao-Bietktheorem (Blackwell, 1947);
according to this theorem, integrating out some paramétens the conditional distributions
of a variable reduces the variance of the posterior estiofateat variable.

Let F(x|6x) belongs to the exponential family with(6x|A) as conjugate prior in the stan-
dard DPMM setting as described in section 2.5.2. The caorhti posterior distribution for
component indicator variablg, p(z = Kk|z_i, X, Tt {G}Ezl,r],)\), is conditionally dependent on
1 and B¢ so sampling from this infinite dimensional distribution istrpossible for practical
reasons; here_; denote all other component indicators exa€ptomponent. However, if we
integrate outrand{e}ff:1 then itis easy to sample from the resulting conditional @ast dis-
tribution. We can write the conditional posterior disttilom of components indicator variables
as

P(z =K|z_i,x,n,A) = p(z =KX,z_i,x_i,N,A)
O p(z =Kz-i,x-i,n,A)p(xi|z =k z—i,x-i,n,A)  (2.35)
P(z =Kz_i,n)p(xi|z =k,A) (2.36)

where we have used Bayes’ rule in equation (2.35) and comditindependence property of
Bayesian networks in equation (2.36) (fig. 2.5). The firsnter equation (2.36) can be termed
aspredictive prior, using the standard results of mixture models, it is given by

_ n_i+n/K

Mszlmm—-n+n_l (2.37)

whereny _j is the number of data items currently assigned to compaokertluding theith
item. The second term in equation (2.36) can be termepredictive likelihood It can be
obtained as

P04 xc-1:\) = [ P04[810 (Bl \) B (2.38)

using the standard results of exponential family of disiitns. For a nonparametric mixture
of Gaussian with unknown meap and unit variance, the generative process for DPMM can
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be written as

m ~ GEM(1,n)
Zlm ~ 1
WA~ aC(0,1)
x|z, {0hy ~ AC(K[Me, 1)

where the conjugate prior fqy is taken to ben  (0,1). In this case, the predictive likelihood
comes out to be

(i) = —— exp(~ %) (2.39)
P(Xi ) - 2\/ﬁ p 4 :
whereA is the set of hyperparameters of a standard Normal disiibuThe conditional pos-

terior distribution for component indicator variables igem by

. 2
o(z = Klz_i,x,n,\) = Desi /K [ L <—%>] ;

ex

n+n—-1 |2ym P

so the Gibbs sampler in this case would iteratively updatecttimponent indicator variables
for each of the observation using the updated componergrassint for all other observations
until the sampler is deemed to have converged. The samptingnge for Dirichlet process
mixture of Gaussians is summarised in algorithm 2.

2.6 Conclusion

In this chapter, we presented a brief introduction to thehmddlogies used in the rest of the
thesis. Starting with the basic framework of Bayesian iefiee, we describe different classes
of models that can be obtained from dynamic Bayesian nesMoykchanging the type of la-
tent variables. Although we do not directly use HMM in latbapters of the thesis, but we
use a variant of the HMM (factorial hidden Markov model) ahé tnference mechanism in
that model remains largely same. Then we introduce vanatiapproximation and sampling
techniques that are used for approximate inference in traelagresented in this thesis. Fi-
nally, nonparametric Bayesian methods are introducedfedhs on Dirichlet process mixture
models that we use in chapter 6.
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Algorithm 2 Gibbs sampling algorithm for DPMM
Require: {2711,
Sample newz -1}, in the following way:

1: repeat

2. fori«+1,ndo

3: Remove the data item given the cluster assignment
4: If the cluster becomes empty, then delete this cluster sartdanege the cluster indices.
5: Compute the predictive likelihood for eachkofclusters (equation 2.39).

6: for k< 1,K+1do

7: Draw a sample for new from
p(z =kk<K) O M- exp(—ﬁz)
T n+n—1[2ym 4
2
_ n X
p(z=K+1) O — {zﬁexp( 4)}
8: end for
9: If z = K+ 1, then instantiate a new cluster with index- 1.
10: Update{n}X_,.
11:  end for

12: until Gibbs sampler is deemed to have converged.
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Chapter 3

Inference Methods for Transcriptional
Regulation

3.1 Introduction

The regulation of transcription is one of the most complecpsses in living organisms. Being
fundamental to all biological systems, it plays a major inlgoverning repairs, reproduction,
respiration and various other biological processes nacg$ésr the survival of cells. The regu-
lation of transcription determines the changes in the esgioa level of target genes by altering
the transcription rates in the regulatory network. Theaadcription rates are controlled by
DNA binding proteins or TFs to control transcription of gend he expression of genes is a
basic information processing mechanism whereby inforonmagtored in genes in the form of
DNA is transcribed to mRNA. While the mRNA produced duringrscription in prokaryotes

is in ready for further processing€., translation), the mRNA produced in eukaryotes has to
undergo further modifications to become mature mRNA.

The process of gene expression consists of several phageastranscriptional regulation,
post-transcriptional modifications, translation and geatslational modifications to produce
functional gene products which are mRNA or proteins. Thelewf mMRNA after the tran-
scription stage can be measured quantitatively and is lystgérred to as gene expression
levels. These expression levels reveal how active the gameeand any abnormality in these
expression patterns indicates functional changes in thdaebehaviour.

Gene expression data is widely used as a source to recadrtsiedtdden regulatory activ-
ities in the regulatory network. In order to understand titernal dynamics of the regulatory
network in a quantitative manner, knowledge about the aunaon of TF proteins and their
downstream targets is required for all the samples in a gicéd experiment. While it is easy
to obtain the expression measurements of genes, it is hpodigible for TFs due to various
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reasons such as low concentrations of TFs, post-transergdtmodifications and rapid transi-
tion behaviour (Ptashne and Gann, 2002). Apart from this kihown that TF interactions with
genes is highly influenced by the environmental signalsijisan et al., 2004); these reasons
make the experimental measurements of TFs difficult. Howeét/ess possible to experimen-
tally determine the structure of the regulatory networkngsChromatin Immunoprecipitation
with microarray (ChlP-on-chip (Lee et al., 2002)); thisarmhation is usually helpful for sta-
tistical inference of the missing quantities in the reguigtnetwork. The information about
the structure of the regulatory network aonnectivityreveals which TFs are responsible for
regulating which genes. Although the connectivity infotioa provides a useful insight of the
regulatory network, it is prone to contain noise in the measients in the form of false pos-
itives/negatives. So, the noise in ChlP-on-chip data neztg accounted for in the methods
that employ this information for inference of regulatoryigities. The results of these meth-
ods inferring false positives/negatives in the ChlP-oipatata can then be taken as testable
hypothesis which can be tested experimentally.

Inference in transcriptional regulation has been studigd many statistical approaches.
The methods proposed for understanding of transcripticatallation reveal two different but
related aspects: the response of TF proteins to envirorahgighals in terms of the changes
in their concentrations levels dranscription factor activity(TFA); and the strengths of the
interactions orconnectivity strengtliCS) between the TF protein and the downstream target
i.e. gene. Depending upon the nature of expression data (timess® static), reconstruction
algorithms attempt to learn the unobserved regulatoryasiffFAs) and the unobserved con-
nectivity strengths (CSs). All the methods discussed hesarae that the regulatory strengths
do not change over time; however, the nature of reconstiueigulatory signal depends on
whether the expression data is time-series or not. Theseoaeican be viewed as network
inference methods for known network topology as TFs and geage be perceived as the in-
terconnected components of a network with TF playing a damntimole in controlling the
expression patterns of connected genes. Figure 3.1 deépeiateractions between TFs and
genes in a gene regulatory network. It shows that the potdone or sometimes in the form
of complexes activate or represse the expression of gehesaclivation or repression of genes
indicated by positive and negative signs implies that tlségans increases or decreases the rate
of production of mMRNA of the target genes.

One class of these methods attempts to learn the structtive nétwork as well as the TFAs
and CSs using gene expression data (Nachman et al., 2004tBda 2005). These methods
are computationally more intensive compared to inferene¢hods for regulatory activities
with known network topology. The computational complexatyses due to either exhaustive
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Figure 3.1: Schematic illustration of transcriptional regulation in gene regulatory network. Ar-
rows with positive/negatives signs represent the CS with which a particular TF is effecting the
target gene. The activities of TFs (TFAs) are inferred from the mRNA measurement of their
target genes.

search technique (Nachman et al., 2004) and the absencarmsitgronstraint (Beal et al.,
2005) which implies that the method can only be applied tolsmetworks where highly repli-
cated data is available. Due to higher computational coxitglehese methods are less feasible
for genome-wide studies. Apart from this, these methodsalemploy the known structure
of the regulatory network made available by ChIP-on-chipisTarchitectural information is
available for model organisms such B<oli and S.Cerevisiaeand unveils the regulators of
a target gene in the regulatory network. Incorporating ther fknowledge about the regula-
tory interaction in an inference method has a significanaathge; it dramatically reduces the
search space by exploiting the biological fact that onlywaT&s in the regulatory network are
regulating a particular gene. As an added benefit, the methwgbloying the prior knowledge
about the structure of the regulatory network are more Bl@ttor genome-wide studies due
to their computational efficiency. The latter class of thesthods is the subject matter of this
chapter.

In the rest of this chapter, four statistical inference rod#ior transcriptional regulation are
discussed with their merits and demerits. These methods edwroad range of methodologies
proposed for inference in transcriptional regulation evgilg different statistical components.
One aspect common to all these methods is that they employlpalogical knowledge of the
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regulatory network such as ChlP-on-chip data or sequerteg@amprove the results of infer-
ence. Each section of this chapter reviews one method frose tifferent aspects: biological
motivation, mathematical formulation and assessmentmf@gence of algorithm. At the end,
a discussion is presented to conclude the chapter.

3.2 Network Component Analysis (NCA)

Network components analysis (NCA) is a data decomposigohriique for reverse engineer-
ing the TF activities and the strengths by which TFs promotepress the target genes. This
method uses partial knowledge of regulatory network aechiire and gene expression data
to reconstruct the regulatory signals (TFA) and streng@)( As opposed to other data de-
composition techniques such principal component ana({&tA\) or independent component
analysis (ICA), this method does not ignore the biologieivork structure and provides the
decomposition of the output signal into biologically meagful signals. NCA utilises the prior
knowledge about the connectivity of the regulatory netwdrls done by subjecting the prior
knowledge to certain criteria such that this connectiuitiprmation is sufficient to solve the
network reconstruction problem and guarantees the unepseaf the decomposition. NCA
method is computationally efficient and well-suited for gere-wide network analysis.

3.2.1 Transcriptional Regulation Model of NCA

The gene expression data collected in mdriwith N genes and!l time points is decomposed
as
E=AP (3.1)

whereA is N x L matrix composed of connectivity strengths between TFs andgjP isL x M
matrix that contains the TF profiles ahds number of TFsl{ < N).

The solution to the inverse problem of (3.1) is not uniquehs®decomposition problem is
constrained by using a nonsingular madisuch that

E=AXX 1p=AP (3.2)

where the matrixX can only be a diagonal matrix due to the constraints imposechatrix
A (Liao et al., 2003). To obtain a unique decompositiorEahto A andP using NCA, the
following criteria must be satisfied:

1. The matrixA must have full column rank.
2. The matrixP must have full row rank.
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3. Each column oA must have at leagt— 1 zeros.

If all these criteria are satisfied then the decompositigqueranteed to provide a unique solu-
tion consisting of matriXA that contains the CSs between all the TFs and genes and & Ratri
that contains the TFAs for all TFs. To obtain this decompasijtan initial guess foA is con-
structed by setting all tha; = O for which there are no interactions in the regulatory nekyo
other entries are initialised to any arbitrary number. TdilWwing constraint optimisation then
provides the unique decomposition:

min||E —A P||?
AP

subject to

AcZ

aj<aj<al

p!,j <pii <P
where the norm is the matrix Frobenius norm afidis the topology derived from known
network connectivity pattern. The constrairajj.‘], a'j, p}7j and p'; are to ensure that the
elements oA andP are biologically meaningful. The above constrained ogation problem
can be solved in a two-step iterative optimisation proceduyr updating matrice& andP in
two stages as follows:

Initialisation: Zg is used to initialiseAg with all non-zeros entries set to randomly selected
non-zeros numbers.

Update for P: Using Ax_1, computeP by solving the following least-square optimisation

problem
min||E — Ax_1 P2
B I k-1 Pkl

subject to
p!,j <pij <P
Update for A: UsePk to computeAy
min]|E — Ay Py
subject to
3 <aij<al]
Ac € A(Zo).
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NCA utilises ChIP-on-chip data for constructing the prietwiork topology which is known
to contain false positives. As this is not a probabilisticdimogl, it is not clear how to identify
false positive. However, Liao et al. (2003) describe a swallie of estimated CS for a partic-
ular TF-gene interaction as an indicator for poor likelid@md use it to identify false positives
in the results of the model.

3.2.2 Convergence Criterion

The monitoring of convergence of NCA is based on the errorputed between the estimates
and the true valuese. (E — A P) after every cycle of the optimisation algorithm. If the-dif
ference is less than a convergence threshold, then theedei®gree of optimisation has been
achieved.

3.3 Bayesian Sparse Hidden Component Analysis (BNCA)

A major limitation of NCA is the non-probabilistic nature tife algorithm that cannot incor-
porate different sources of uncertainty in the modellings lalways useful to be able to see
confidence intervals with the estimated values that proaigauge for certainty of results. To
take this into account, Sabatti and James (2006) proposexdidied form of NCA (referred to
as BNCA later) which is probabilistic in nature.

This probabilistic technique is basically a two stage pssc® reconstruct the transcrip-
tional networks. First stage consists of analysing bialabiiterature to find any known TF-
gene interactions. Based on the documented biologicakeesl if TFj is known to regulate
genei thenzj = 1; all other entries o are set to zero. This topology of the network is re-
fined by analysing the DNA sequence for the target genes Weiogbulon (Sabatti and Lange,
2002). Furthermoregj = P(z; = 1) < 1; magnitude oft; encodes the prior belief that the TF
j regulates the genewhich is obtained from sequence analysis. To keep this pnorforma-
tive, one can usg; = 0.5.

3.3.1 Transcriptional Regulation model of BNCA

This network topology which provides a static picture of tegulatory network is then used as
the starting point for network reconstruction using théoi@ing model:

E=AP+l (3.3)

whereE, A andP have same meaning as before &ing [yi],yit ~ A (0,0?) is to account for
measurement error and biological variability. During teeanstruction of the network, NCA's
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identifiability criteria for the network topology are rekckto get biologically more meaningful
networks. In NCA, the position of zeros in mat#xencoding CS is assumed to be known a
priori for the sake of identifiability and some TFs are to bmosed from this matrix in order
to make it consistent with NCA criteria. BNCA, however, doet assume any prior network
topology and attempts to build the hidden regulatory at#isiof the regulatory network by
employing two sources of information at two stages of theddlgm; these two sources of
information are sequence data and gene expression data.

To cast the model in the Bayesian framework, prior probgbdistributions are specified
for all the variables in the model. Ap;; are assumed to be a priori independent and follow a
Gaussian distribution

Pjt ~ A (O, 0%)-

Similarly, &; = 0 if z; = 0 otherwiseajj ~ A( (0,02). Finally, a? (the variance ofy) is
taken to be an inverse gamma distribution with hyper-patarsa; andf;; values for which
can be computed from biological replicates or calibratiiaes of experiments.

Let Z denote the set of TFs that regulate génel denote the prior probabilities with
which the regulators of geneare regulating its expressioq,represent the vector of all the
variancess;, 2 is a diagonal matrix whose diagonal elements are elememtsnfla; encodes
the strengths with which genas regulated by its regulators. Then the posterior analyeis
be done if the following conditional posterior distributiare sampled in an MCMC iteration,

sampleZ ~ P(Z|P,0,E) fori=1,...,N
samplea; ~ P(&|Z,P,0,E) fori=1,...,N
samplepy ~ P(pt|Z,A,0,E) fort=1,....M
samples; ~ P(0?|Z,A,P,E) fori=1,...,N.
The above conditional posterior distributions are spetiie
P(ZIP,0,E) O @(1—1)1?) /0! x detPZIP[Z]' /07 +1 3/ 02) 2
1 o i, PZIPZ] i i
xexp{204e' P[Z]'( o2 +o§>P[ZI]e|}
alP,Z,0°> ~ 2((Z4P[z]e/0f,Za)
pt|A72702 ~ N(ZDIAIZZ_:LQ’ZD{>

1 Lo~
?‘A7Z7P ~ Gamma‘ahBi)
i

wherexY = ]i_,x" for two vectorx andy, a[Z] is a vector of elements @ corresponding
to non-zero entries af, P[Z] is a submatrix containing selected rowsRfor which Z # 0,
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Az is a matrix with same dimension @sand its elements are set to zeros corresponding to
zero elements of matrig, |, is an identity matrix of rank, |Z| is the number of elements

in the setZ, 5 = (P[Z]P[Z]'/0? +1,/03) %, Zp = (ALZ Az +11/03), Gi = ai + M /2, @

is the column vector ofth row of matrixE, € represent théth column of matrixE, e is

the expression level of geriein the experiment and @ = Bi + SM, (ex — S 1@ pjt)?/2.
Derivation of the above conditional posterior distribusacan be found in the supplementary
material of Sabatti and James (2006).

3.3.2 Convergence Monitoring

As the posterior estimation is based on Markov chain MontéoG&CMC) simulations, the
number of required iterations is not known. However, maffecént diagnostics are available
to test the convergence of the simulated Markov chains. Tkigoes used Cowles and Carlin
(1996) for diagnosing the convergence of MCMC simulations.

Sabatti and James (2006) provide an algorithm for the reagri®n of the regulatory net-
work where the temporal structure of the data is not takenantount. The proposed algorithm
in their work can, in principle, be extended to account forgidynamics by setting

pl ~ac(0,1) (3.4)

wherel is M x M covariance matrix. However, the conditional independestaecture used to
derive the conditional posterior distribution before does hold in this case and the authors
propose to use a different parametrisation for incorpogatime dependance in the prior and
the posterior distributions fapj. The new parametrisation involves inversion of relativaily
matrices (of the order d¥l x L) due to which genome-wide application of this method becme
less feasible but efficient inversion algorithms can be usedvercome this computational
bottleneck. Another difficulty lies with their approach taels specifying a prior over binary
connectivity matrix that can not be trivially extended fdnl€-on-chip data.

3.4 Probabilistic Inference of TFA using State Space Model

Sanguinetti et al. (2006) proposed to use a state space If88M) to infer the concentrations
of TFAs and their effect on each target gene from gene exipredata. SSM are a special case
of dynamic Bayesian networks (DBN) with Markov chain priar continuous-valued latent
variables. Although SSMs have been previously used to lgeerstructur of the regulatory
network interactions in Beal et al. (2005), prior knowled@peut the regulatory interactionsg(
ChlIP-on-chip data) was not used to explicitly infer TFAseThethod proposed in Sanguinetti
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et al. (2006) makes use of this prior knowledge in a probstilimodel to infer TFAs and
CSs which greatly reduces the search space. An efficierati@ral Bayesian expectation
maximisation (VBEM) algorithm is proposed for inferencetls model. Owing to efficient
implementation and exploitation of sparseness of the etgryt network, the proposed method
is a practical tool for genome-wide analysis in transcoiptiegulation.

3.4.1 Model for Transcriptional Regulation using SSM

This method employs a log-linear approximation to the dyicarof transcription and is based
on a state space model of the following form

q
Yn(t) = Z XnmbnmCm(t) + Hn + Ent
m=1 (3.5)

Cm(t) = YmCm(t — 1) + Nt

Here,yn(t) is the mMRNA log-expression level for geneat timet, X is a binaryconnectivity
matrix (assumed known) encoding whether gens bound by TFm, b, encodes the regu-
latory strength with which THn effects genen, andcy(t) is the concentration of active TF
m at timet, U, is the base expression level of gem&hen it is not bound by any TE, and

n are experimental and process noise respectively. The ntibelelspecifies Gaussian prior
distributions over the concentrationg(t) and strengthbny, and uses a factorized variational
approximation to infer posterior distributions given mRN#e course observations. Notice
that the probabilistic nature of the model means that ngiseated in a natural and principled
way, and estimates of the quantities of interest are alwageaated with a measure of the
corresponding uncertainty. The details about the methddfaa derivations of the proposed
VBEM algorithm can be seen in section 4.2.1 and 4.2.2.

3.4.2 Convergence Monitoring

After every iteration of the VBEM algorithm, update in thkdlihood is calculated with the new
values of model parameters and latent variables. The medeimed to have converged if the
update in the likelihood between two consecutive iteratigriess than a certain threshold.

3.4.3 TFInfer - An Open-source Implementation

An open-source implementation (TFInfer) of the method pemal in Sanguinetti et al. (2006)
is described in Asif et al. (2010). TFInfer is an open-sowstandalone software designed
to infer the relative activities of transcription factoropeins based on gene-expression data.
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Using gene-expression data combined with the architdanfi@mation about the regulatory
network, activities of transcription factor proteins caméstimated in a computationally effi-
cient way. TFInfer can handle time-series gene-expresiatamand gene-expression data from
several independent conditions with or without replicalesplementation is done using .Net
framework (or equivalent on Linux), so it is a requiremeratthser either have Microsoft.Net
on Microsoft Windows or monts on the other platforms. dnAnalyticsan open-source nu-
merical library in C# and ZedGraph, an open-source plotoagin C#, are used for the imple-
mentation of this software. This software is available orst@Ses where support for either
Microsoft.Net or mono is available. In chapter 3, we preskatdetails of the methods imple-
mented by the software and the functionalities of the saftwa

3.5 A Combined Expression-Interaction Model for Inferring
TFAs

One of the fundamental reasons to infer TFAs from gene egeslata can be attributed

to the fact that biosynthesis of proteins is not only depande transcription of genes. The

biosynthesis of proteins is also effected by post-traptional modifications (PTM) such as

post-translational modifications, phosphorylations &, inference of TFAs from expression

data accounts for post-transcriptional modifications a&sT&re treated as latent variables but
these methods do not explicitly incorporate PTMs in theideis.

While all the methods discussed in the previous sectiores pakst-transcriptional modifi-
cations into account by treating TFAs as unobserved, thetbads only use one source of
information which is expression patterns of the regulatedes. Another proxy for the activi-
ties of TFs could be the measured mRNA levels of TFs when Té&aatrpost-transcriptionally
modified. Shi et al. (2008) proposed a method to combine batinces of information in
one method. To infer TFA, they use mRNA expression levels dFavhen the TF is tran-
scriptionally regulated and mRNA expression levels of eargenes of the TF when the TF
is post-transcriptionally regulated. Based on a latentcetdr variable, that specifies whether
the TF is transcriptionally regulated or post-transcapélly modified, they select a model out
of two models to reconstruct the hidden regulatory activithiis method is referred as Post-
Transcriptional Modification Model (PTMM).

PTMM is a variant of factorial hidden Markov Model (FHMM, (@hramani and Jordan,
1997)) where activity of each TF is modelled as hidden Ma®bgain with correlation between

tht t p: / / www. mono- pr oj ect . coml
2http://dnanal ytics. codepl ex. con
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the hidden activity of a TF with its (observed) expressiorele This correlation is embedded
in FHMM by using a hidden indicator variable for each TF toidgeate if the TF is post-
transcriptionally modified or not. In case of PTM, the hiddé#A is inferred from the activity
levels of its regulators. In the other case, the hidden TFAferred by using the measured
MRNA levels of TF.

3.5.1 Post-transcriptional Modification Model

Let mbe the number of genes for which expression measuremerdsaitable under a variety
of experimental conditions. Out of thesegenes,n are TFs wheren < m. So the PTMM
models the joint probability distribution over multiplerte-series expression levels of genes,
hidden TFA and hidden post-transcriptional status of a.T6; 4; represents the observed
expression levels of geneat timet in datased where firstn genes are also TFs. Similarly,
Tj o represents the hidden activity of Tkt timet in datasetl. For each TH, a global binary
indicator variableZ; is used to denote if this TF is post-transcriptionally madifor not. Z;
follows a Bernoulli distribution with parameter Z; specifies which transcriptional model TF
j follows out of the following:

. { A (Gj,d,t—lyTg) if Zj=0
]7 7t ~ .
N (Tjae-1,Y3) if Zj=1

In case of PTMZ; = 1), activity of TF ] is modelled as hidden Markov chain w@specifying
the variability of TFA between two consecutive time-poiritscase there are no PTMj(= 0),
activity of TF j is modelled as a noisy realisation of its gene’s expressiofi@ with one time-
point lag. The initial time-point in this case is modelled Gpussian distribution with zero
mean andjﬁ variance. This dataset-specific variance allows integgadatasets with different
initial condition for TFA.

PTMM models the expression profile of a gene as the linearpopiion of contributions
(wi,j) of its regulators; if there are no regulators present foaiqgular gene in a dataset, then
the gene expression for that gene is modelled as zero measi@au

(30 Wi j Tyt B3) if genei is regulated by at least 1 TF

Gidt|T.at ~ i
i, ,t| At { 9\[(0,0(5) otherwise

Having different variancesa@ and BS) encodes the intuition that the genes without any regu-
lators may have higher variances due to the deficiencieseofibdel. PTMM uses different
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variance for each dataset which represent the variab#itywéen noise levels of different exper-
iments. As with the models previously discussed in this tdraphe interactions between TF
and genes are assumed to be time-independent and are sbaresiall the datasets. PTMM
parameters are learnt using approximate expectation nigadion algorithm (EM) which min-
imises the penalised likelihood score given by

Scorgo,h,z: W,0) =In(P(2)) +d§ In(P(0g, hg|z,W,8))
=1
33 i3 3 s 4016 4

+i:§1j§16(Wi’j :0){Ei,jT[o—|—(l—Ei7j)T[1}] (3.6)

subject to: ([{wi,jlwij #£0,1< j<n}[ <C) forall i

whereo andh are observed gene expression and hidden activity levelE®iTdatased.

This penalised likelihood score contains two regularisaterms. The first regularisation
term imposes penalty on the weightg () and forces them to be zero which has the biological
notion that most TF-gene interactions should be zeros. €bersl regularisation term incor-
porates the prior network knowledge from binding experitaevherebyE; j = 1 if genei is (a
priori) regulated by TH and 0 otherwised(.) function results in O or 1 if the condition is false
or true respectively.

There are two penalty terms too in the penalised likelihamtesof (3.6). The first penalty
termTy is used when the model selects a regulatory link which isne=tent with prior knowl-
edge while the second penalty termis used when the model selects a regulatory link which
is consistent with prior network structure. It is obvioussktp >> . C is the maximum
number of regulators for genes which represent underlyialpgical notion that most of the
genes in regulatory network are regulated by only a few TFs.

The purpose of regularisation and penalty terms in the pauhlikelihood score of equa-
tion (3.6) is to encourage the model to selection those Tiegateraction that are consistent
the with the prior knowledge. However, the results of the eloday deviate from the prior
knowledge when the incurred penalty is less than the gaimatikelihood. These deviations in
the results reflects the noise in the prior knowledge whichlmahandled efficiently by using
penalised likelihood score.
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3.5.2 EM Algorithm for PTMM

The EM algorithm for PTMM iteratively updates the model paeters (V. and6) in the M-step
and hidden variable$i(andz) in the E-step until the convergence is achieved.

E-step: In this step, two expectations are to be computed based ocutihent values of
model parameter8 andW; expected values of hidden activity levels of TFs and hidaen
dicator variables for PTM. For this purpose, a generalisedmfield algorithm (Xing et al.,
2003) is used. Xing et al. (2003) is a generalised mean figddoagh for inference in graphical
models where a complex distribution is approximated withsarithution that factorizes over
disjoint of the graph.

Based on the current value of indicator varialddésr TF | and the expected activity levels
of all other TFs, posterior distribution fdij 4+ can be inferred using one of the following two
ways: if Zj = 0, TF j is not post-transcriptionally regulated and the postedistribution of
Tjat can be computed for each time-point independently as tisemeti correlation between
Tjdt andTjqt—1. The prior in this case is a Normal distribution with meanegivby the
expression level of the gene corresponding to jT& timet — 1 and the variance given by
tg. The posterior distribution in this case is dependent orettpgession levels of the genes
regulated by TH as well as the activity levels of other TFs that are reguiathre gene for
TF j. In case ofZ; = 1, TF j is post-transcriptionally regulated then its activitygés/can be
inferred by treating it as a hidden Markov chain.

The expected values for latent indicator variables is datexd by examining which model
better explains the behaviour of Tk.e whether the TH is better explained by the model with
PTM or without it. This is done by computing the likelihoodtiviboth types of models and
selecting the value d; appropriately.

M-step: The updated values of model parameters are computed, digezxpected values
of latent variables, by maximising the likelihood scoredtion given in (3.6). An exact solu-
tion can be obtained fof, o, T by setting the derivative of score function in (3.6) equatéo.
Fora andf, maximum likelihood estimates can be obtained by fixing tReg€ne interactions
weights (V). However,W cannot be computed in closed form and a greedy search method i
proposed for inferring the the most likely estimates foneats ofW in Shi et al. (2008).

3.5.3 Convergence Monitoring

The authors in Shi et al. (2008) analyse the effect of morasgds ¢) on the performance
of proposed EM algorithm using precision recall curve. Thesults show that the results
are improved for both precision and recall when more dadamet used. The convergence is
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Method | Prob- Time Basic Inference

abilistic? | Dynamics | Model technique
NCA No No Regression-basedConstraint Optimisation
BNCA Yes No Regression-basedMCMC sampling
TFinfer Yes Yes SSM Variational EM algorithm
PTMM Yes Yes FHMM EM algorithm

Table 3.1: Comparison of different methods. This table summarises the features of the methods
discussed in this chapter which are probabilistic nature (or not), support to handle time-series
data, underlying model of the method and inference technique used.

monitored by evaluating the penalised likelihood scor&)(@ntil the desired convergence level
is achieved.

3.6 Discussion and Conclusion

This chapter provides an overview of statistical methodsgrfterence in transcriptional reg-
ulation using different statistical tools. All the methagdiscussed here aim to infer CSs and
TFAs in gene regulatory network where the network connggtpattern is known. While
BNCA does not use the network connectivity information dikefrom ChIP-on-chip data, ini-
tial guess for the regulatory network architecture is otgdifrom biological literature and is
further refined by analysing the sequence data. Howevetasteof building the regulatory net-
work architecture from biological literature is cumbersoamd analysis of sequence data poses
further challenges. An alternative, employed by other nwdrcept BNCA, is to exploit the
network connectivity pattern available from ChlP-on-chNiCA is not a probabilistic method
which means lack of confidence intervals with the results; tthis it is hard to identify false
positives. Other methods, being probabilistic, are captbldentify false positives due to the
availability of confidence intervals in their results. Tal8.1 summarises the main features of
these methods in terms of the underlying statistical moagdleyed, statistical approximation
technique used and whether the method is probabilisticor no

Another class of methods is available that learns the strecf the regulatory network us-
ing gene expression where no prior assumptions are madéthlka@rchitectural patterns of the
regulatory network (Nachman et al., 2004; Beal et al., 2088hough these methods provides
biologically meaningful results, computational cost asai®d with these techniques is usually
quite high which hinders the applicability of these methtmigenome-wides studies. Also,
these methods require large amounts of data (or highlycaeld data) which is usually not
available from biological experiments. An important featof the regulatory architecture data
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is its sparse nature. The methods employing this informatdnfer the regulatory activities
have significant advantage that it reduces the search spdicaiting the number of parameters
to be inferred based on the presence or absence of reguliatorypue to this, these methods
are more feasible for genome-wide studies.

Another criterion for selecting the appropriate model ddug the nature of approximation
technique used in the inference method. While MCMC samg@imdjvariational inference pro-
vides comparable results, convergence diagnostics angreedor sampling techniques; also,
MCMC sampling is known to be computationally expensive carag to variational inference.
On the other hand, variational methods are not consides=bdht approximation when uncer-
tainty about the results is of crucial importance; howevariational methods perform well in
terms of the associated computational cost and their cgawee is easier to monitor.

In general, the methods reviewed in this chapter make sompli§fing assumptions;
mostly these methods approximate the complex biologicatgsses such as transcriptional
regulation with additive linear models. Also, the noiselud tnicroarray is approximated by
zero mean Gaussian which effects the results of the modedth&n assumption is about the
regulatory activities which are assumed to be constanttwer. The combinatorial effect of
TFs in regulating the target genes (Asif and Sanguinetfi12& also ignored in all these meth-
ods. Most of these assumptions are made in order to make ttelndentifiable and keep it
applicable to genome-wide studies.

These methods have proven to be useful in many cases and@rawel biological insights
(Partridge et al., 2007; Davidge et al., 2009; Rolfe et &111). The availability of architec-
tural data about the gene regulatory network with abundahgene expression data means
that these methods can be routinely used to infer the hiddiéys Bind CSs. The quantita-
tive analysis reveals hidden regulatory relationshipg/bet TFs and genes which is otherwise
unavailable due to experimental difficulties in measurlmgse quantities.
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Chapter 4

TFInfer - A Tool for Probabilistic Inference
of Transcription Factor Activities

In chapter 3, a brief description of a method based on SSMgi8aatti et al., 2006) was dis-
cussed without the mathematical derivation of the VBEM gthm. In this chapter, details
of this method including the derivation of the VBEM algontHor time-series and non time-
series data are given. The VBEM algorithm is implementechin@en-source implementation
(TFInfer) with additional features as discussed later ia thapter. TFInfer is a novel open-
access, standalone tool for genome-wide inference ofdrgmi®n factor activities from gene
expression data. It has been significantly optimised in $esfiperformance, and it was given
novel functionality, by allowing the user to model both thseries and data from multiple inde-
pendent conditions. With a full documentation and int@tgraphical user interface, together
with an in-built database of yeast aRdcolitranscription factors, the software does not require
any mathematical or computational expertise to be usedtefédy.

4.1 Introduction

Transcription regulatory networks play a fundamental inlenediating external signals and
coordinating the response of the cell to its changing emvitent. Recent technological ad-
vances in molecular biology, such as ChlP-on-chip and Gelip-are uncovering an increasing
amount of data about the static structure of these netwpr&siding us with information about

interactions between promoters and specific TF. Howevspitiethese advances, intracellular
concentrations of active TF proteins remain very challeggo measure directly in a dynamic
fashion, thus limiting our ability to understand the dynesnof transcriptional regulation. To

obviate these problems, several research groups havesawgtatistical approaches that infer
TF activity levels by combining connectivity data about steicture of the regulatory network

with microarray data. In this chapter, a novel implementatf one of these methods (San-
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guinetti et al., 2006) along with the mathematical derivatis given which makes it freely
available to the academic community in an intuitive, userdly platform with additional
features as discussed later in the chapter.

In the following sections of this chapter, the VBEM algonthmplemented by TFinfer is
derived for time-series and non time-series data followeddme results on synthetic data for
two models. Then the salient features of the software asudgsed with specific implementa-
tion details. At the end, the chapter concludes with a disoas

4.2 Transcriptional Regulation Model of TFInfer

In this model, logged gene expression data from a timeseriéime-independent microarray
experiment is denoted by a matiixe ON*T, whereN is the number of genes afdis the total
number of time points or experimental conditions in the sketa The underlying assumption
is that the gene expression is driven llytranscription factors. The model is a log-linear
approximation to the non-linear relationship between geann TFAs and gene expression. A
discrete-time SSM is used where gene expression forigemaodelled as a linear combination
of the activities of its regulators

q
Yn(t) = Z XnmbnmCm(t) + Hn + €nt (4.1)
m=1

The matrixX is a binary matrix whosementry is one if and only if gena is regulated
by TF m. This matrix is known from biological literature or it can lobtained from ChIP
technique. The activity matri8 encodes the CS with which Tifd regulates the gene by
and, are given zero mean Gaussian priors. To incorporate thdit@sxpression for each
gene, vectop= [Hy] is used in the SSM model of equation (4.1). The ma@riencodingem(t))
represents the relative concentration of thenT&t specific experimental condition or time point
t. For measurement nois&y is used with i.i.d. Gaussian noise assumptigp £ A (0,02)).
The matrixX is usually very sparse showing that very few TFs bind to aifipggene and this
sparse nature of is used to ensure that only requireg, are estimated.

4.2.1 Model for Non Time-series Gene Expression Data

To incorporate the time-independent nature of the geneeegmn data, the row vector of con-
centrations is formalised as

c(1)...¢(T) ~ A (0,K), (4.2)
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the matrixK is an identity matrix in this case. The joint distributiorr fmbserved and latent
variables is

p(Y,B,C.p) = p(Y|B,C, 1 62 p(B|o®) p(Cly) p(H). (4.3)

N
p(Y,B,C,1) = [n A <yn<t>| % xnmbnmcma),oz)] . [|'| ﬁ A (bnm\o,az)]
m=1
AC ([0, K) 2l (HO,1) (4.4)

wherek is a vector obtained by concatenating the transcriptiotofasbncentrations at various
time points.

Marginalization of the above equation is intractable so &EWBalgorithm is used to ap-
proximate the true posterior distribution. The VBEM alglom is used to minimise the KL
divergence between the approximating and the true postdigsibution in the following way

In(p(Y[6)) > (In p(Y,B,C,18))ye,c+H(Q) (4.5)

()q denotes the expectation under the probability distrilougiay(B, C, ) is the approximating
distribution over the variableB, C andp; andH(q) is the entropy of the distribution. The
approximating distribution over the parameters factarae

q(B,C, 1) = q1(B)a2(C)az(W). (4.6)

Using this factorisation, the VBEM algorithm is initialdevith prior distributions forB, C
andp. The approximating distributions are, then, updated tikezly until the convergence is
achieved.

The update equations for E-step and M-step of the VBEM dligarare described next .
E-Step: During the E-step of variational Bayesian EM algorithm, @pmating distribu-
tions are updated according to the following update eqoatiorhese update equations can
easily be obtained by taking the expectation of the joirglikood in equation (4.4) w.r.t. all

the variables except the variable to be approximatedgH®), this comes out to be

N
= 1] 7 (bn|mn, =) (4.7)
n=1

where

—1
2n= < o?l + Z Xn{CtC; >qZXn>
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o2

-
Mmph =2, (Z Onlt) = <un>qg)Xn<Ct>(h> .
t=1

Xn is the diagonal matrix with™" row of X on the diagonal ank! is then™ row of B. Similarly,
the approximating distribution fa€ is given by
62(C) = AC(c(1)...¢(T) v, K') (4.8)
with
-1
K'= <K +lT®— o2 ZXn (bnb >Q1Xn>
/(yn — (bn) g

v=K
02

Holb, ).

Calculating( is efficient in this case compared to time-series data; inferther be improved
if the posterior estimation is done in the following way

N -1,
(c(t)) = (IQ + é Zan<bnb-r|1—>Q1Xn> (MXMban)-

o2

The approximating distribution fqris given by

da() = [ 2C (bnlCn, BY) (4.9)

where
4 o (Yn(t) —bf XnCt)
n— 7  —=__ o5 n - n .
1+T0—2t; n

Bi=(1+To %)

The set of equations (4.7) to (4.9) constitute the E-ste@atgsdfor the VBEM algorithm.
M-step: Fixed point update equations are availableddérando?. Fory, optimisation is
achieved using scaled conjugate gradient algorithm. Titatepequations fom? ando? are

given below,
2_ 1 A
o =N Ztrace{bn N (4.10)
n=1
1 N T
2:__|_ Z Zi >q3+<lz‘%>q3— 2(y, (t)—<Hn>Q3)<bI>q1Xn<Ct>Qz
+trace(bn n>Q1Xn<CtCt >QZXH>}~ (4.11)
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4.2.2 Model for Time-series Gene Expression Data

To model the dynamics of the transcription factor conceiaing, first order Markov process is
used as shown in equation (4.12).

Cm(t) = YmCm(t — 1) + Nmt. (4.12)

wherenm ~ 4 (0,1—v2). The variance of the process noise(§2,) ensures that the Markov
process governing the dynamics of thgt) is stationary with unit varianceg(1) ~ A (0,1)).
The parameter vector= [ym|,ym € [0,1] determines the temporal variability of Th. The
values ofyy, close to one corresponds to less variability in the acésitof TFm while the
values closer to zero indicate more variability in the attég of TFm. Intermediate values for
VYm corresponds to smoothly varying temporal profile of hF

Using the distribution given in equation 4.12 in the joikelihood and taking the expecta-
tion of the joint likelihood w.r.t.q; andgs, one obtains that

o2(k) = A (K|v,K") (4.13)
with

1
K' = <K +|T® Z Xn( bn Q1Xn>

vk (=B

Notice that the state space model prior implies that the powariance matriX is banded
which can be exploited in an efficient matrix inversion algon. For time-series data case,
is of sizeT qx T g. For genome-wide applications, size of this matrix becoveeg large while
increasing the time and space complexity for inversion; pimased inversion algorithm for
banded matrix (Asif and Moura, 2005) was used for the sakéiofency.

This is the only change required to make the VBEM algorithnnlkweith time-series gene
expression data. Apart from this, the VBEM algorithm congsuthe expectations fay (B)
andgz(p) as in the previous section.

It is important to mention that by using= 0 in equation (4.12) gives the required solu-
tion for time-independent gene expression data but it isprdationally expensive due to the
inversion of the large matrik.
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Experimental Data
Header Row
Time Series data
[] Replicates

Connectivity Data 1
() Template
O Manual
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Figure 4.1: Main Interface of TFInfer

4.3 Software Overview

The model and GUI are implemented in C# which allows an efiicimmplementation of the
variational Bayesian expectation maximisation (VBEM)althm. dnAnalytics, a C# open
source library for scientific computing, is used for the nus routines. ZedGraph, an open-
source plotting tool, is used for displaying the resultshaf inodel in graphical format.

The main interface of TFInfer is shown in figure 4.1; the stgrframe requires the user
to browse for the expression data, specify its characiesi¢time-series, replicates, etc) and
browse for the connectivity data. If template connectiigtgelected, the user is asked to select
either a file for yeast (based on available ChlP-on-chip)data file for E. coli (compiled
manually from the Ecocyc databaseOtherwise, the user can specify any binary connectivity
matrix.

Once the data is selected, a summary of the data is displayedber of genes and time
points). If this is accepted, a list of all the TFs includedha connectivity matrix is displayed;
the user can select a subset of TFs by clicking on the list &f i&mes (figure 4.2). Once
this is completed, the optimisation starts; its progresgh(vespect to a maximum number of
iterations, default 1500) is monitored through a progressabthe bottom of the screen.

Once the run is complete, the user can visualise TF activitfflps by clicking the box next

tht t p: // www. ecocyc. or g/
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Figure 4.2: TF selection window of TFInfer. User is able to select a subset of TFs available
in the connectivity file. TFInfer automatically reduces the regulatory connectivity based on the
reduced set of TFs selected by the user.
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Figure 4.3: Sample results obtained using TFInfer using yeast connectivity and simulated data

to the TF name. This displays a time series activity profilkhwaissociated error bars, and by
clicking the save plot button the graph can be saved in atyasidormats. An example of the
output of TFInfer is given in figure 4.3 (this plot was obtaingsing synthetically generated
data).

4.3.1 Software Features

Main features of the software are summarised below:
e Itis open source, and significantly more efficient compotelly;
e Itis fully documented and has an intuitive Graphical Useeiface (GUI);

e It contains template connectivity matrices tocherichia coliand Saccharomyces cere-
visiae

¢ It has been given extra functionalities, handling both teeees data and data from sev-
eral independent conditions;

¢ It can handle expression data with multiple biological iegiks;

e The results obtained using TFInfer can be saved in diffdi@mtats such as plot of the
concentration profiles or all the results in a comma sepétate
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4.3.2 Data Files Format and Software Requirements

Standard file format for TFInfer is comma separated file. Iwsstandard format supported by
many spreadsheet applications including Microsoft Extetb types of input file are required;
a csv file containing the logged gene expression data and apieifying the connectivity
matrix (which must be a binary matrix). Replicates are haddly uploading separate data files.
For logged gene expression data, the file should contairt eflgenes and the corresponding
expression levels in different experimental conditionsnfectivity is specified in the form of
grid where every entry (zero or one) specifies the connetteween the corresponding TF
and the gene; the first row of the file will contain the nameshef TFs, and the first column
the names of the genes. Forcerevisia@andE.coli, this connectivity information is supplied
as the part of the software; the gene names used are the syistbrnames forkE. coli and
the ORF identifiers for yeast. The software requires Mictiodtet framework, which is freely
downloadable. It runs on Windows platforms and on Linux/M&cMono.

4.4 Comparison of the Two Models

Here, we present some preliminary results comparing the-tiependent model with the time-
independent model. This comparison shows that the tempgremics, when incorporated
in posterior inference, help to reduce the uncertainty efrttean prediction of the our model.
We test on a very simple synthetic data set generated usengnie-dependent model. We
used the time-independent model for simulated gene expredata to infer the transcription
factor protein concentration and gene-specific regulaotiyities from microarray data. Fig-
ure 4.4 shows the comparison of the results for both timesend time-independent cases
using artificial data. From the results, it can be seen thabth cases results are similar with
slight differences in confidence intervals associated wighestimated concentration profiles
of transcription factor proteins. Another measure woulddoeompare the ratios of variance of
the expected values of a particular transcription factotgagn concentration and the associated
average error for both times-series and time-independsat drhis come out to be 11.9185
for the time series case and 17.8964 for time-independeat #eere, figure 4.4a shows better
result as the data used here is taken from a time-seriesieqydr

4.5 Conclusion

In this chapter, inference of transcription regulationdene-specific activities is modelled for
gene expression data containing different experimentadiitions. State space model in vari-
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Figure 4.4: (a) Estimated concentration profile using time-series model (b) Estimated concentra-
tion profile using time-independent model. Dashed line shows the original concentration profile
while solid line is the estimated concentration profile.
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ational framework is used to provide the basis for inferenceanscription networks. Com-
putational complexity is a prominent feature of this modéiichk is better in case of time-
independent data. Also, using specific structure of thelaggry network, genome-wide appli-
cation are possible using time-series and time-indepdm#eTe expression data.

While the approach does rely on a simplified model of trapsiom, the model’s results
have been shown to capture important physiological eff@bish have led to the formulation
and experimental validation of a number of hypotheses (@pevet al., 2009; Partridge et al.,
2007; Rolfe et al., 2011). Despite these successes, thel nvadauntil now only available as
working code in MATLAB, requiring expert intervention to lised which resulted in signifi-
cant bottlenecks in the analysis pipeline. We have now preda new release which presents
several significant advantages over the previous version.

Statistical methods for inferring TF activities are an intpat area of research in com-
putational biology due to their ability to extract inform@at which is not readily available
through standard experimental practice. We believe tletitine has arrived for these methods
to become standard software used in biological laboradoieomplement experimental work,
much in the way that sequence alignment tools are now rdytirsed by experimentalists. By
providing a simple yet powerful implementation of an alng&rted and tested method, we hope
TFInfer will become accessible and useful to a wide comnyurfiscientists working on gene
regulation.

This open-source software is fully documented to aid bislisgand requires no software
expertise. Full documentation is available at Asif (2010).
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Chapter 5

Learning Combinatorial Transcriptional
Dynamics from Gene Expression

In chapter 3, we reviewed some of the methods of inferenceFafsTirom gene expression
data. These methods, however, neglect important featfitesnscriptional regulation; in par-
ticular the combinatorial nature of regulation, which isdamental for signal integration, is
not accounted for. Combinatorial regulation implies theg genes in the regulatory network
are often regulated by more than one TFs that have a combaiatontrol over the expres-
sion of genes. The interaction between TFs in regulatingytrees is the result of different
biological/environmental signals that causes the chamgése expression patterns of genes
accordingly. In this chapter, we present a novel method fier icombinatorial regulation of
gene expression by multiple transcription factors in lesgale transcriptional regulatory net-
works. The method implements a factorial hidden Markov nhadié a non-linear likelihood
to represent the interactions between the hidden transerifactors. We explore our model’s
performance on artificial data sets and demonstrate thé&cappity of our method on genome-
wide scale for three expression data sets. The resultsxetaising our model are biologically
coherent and provide a tool to explore the nature of comobiratranscriptional regulation.

5.1 Introduction

Understanding the control of gene expression is one of therngaals of systems biology.
While gene expression is a complex process with multiplérobpoints, perhaps the most
fundamental is the control of mMRNA transcription by DNA-8ing proteins, transcription fac-
tors. A fundamental difficulty in elucidating this processr the experimental point of view
is measuring TFAs: TFs are often expressed at low levelstraidactivity state is frequently
determined by fast post-translational modifications wlagdhdifficult to measure directly.

A possible solution to this impasse has arisen due to théawigtly of experimental tools
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to determine theonnectivityof the transcriptional regulatory networke. which TFs bind
specific target genes. In particular, the large-scale tgkef ChiP-on-chip techniques has
meant that, for model organisms such as yeasttaadli, this connectivity is now available on
a high-throughput scale (Lee et al., 2002). As a result,rstaeithors have recently proposed
to integrate connectivity and gene expression data in @mente based approach to modelling
transcription, whereby TFA is treated as a latent variabletreconstructed from observations
of target gene’s expression. Broadly speaking, infereap@roaches to TFA reconstruction
have used one of two strategies: one approach is to use aingpiistic, typically log-linear
model of transcription to infer the activity of a very largamber of TFs (Liao et al., 2003;
Sabatti and James, 2006; Sanguinetti et al., 2006; Asif,2@10). This approach is relatively
well established and has already led to several novel itsighbiological studies in a range
of situations (Partridge et al., 2007; Davidge et al., 20@8yvever, the simplicity of the mod-
els, imposed by the computational constraints of workinthwarge data sets, has meant that
important features of transcriptional regulation haverbeeglectece.g, combinatorial regu-
lation. More recently, other authors have focused on infgriTFAs in small sub-networks
but employing more realistic models of transcription bagedlifferential equations (Barenco
et al., 2006; Lawrence et al., 2006). These approaches anputationally more expensive
but allow to model biologically more plausible effects sashsaturation (Rogers et al., 2007),
rapid transitions (Sanguinetti et al., 2009) and non-lineteractions between TFs (Opper and
Sanguinetti, 2010).

In the model proposed in this chapter, we aim at retainingesofithe desirable features
of small-scale inference approaches in a model capableaafiley TFAs on a genome-wide
scale. We focus on the problem of modelling interactions/bet multiple TFs; thisis a crucial
mechanism that allows cells to integrate signals (Ptashdezann, 2002). We present what,
to our knowledge, is the first statistical method for recanging combinatorial interactions
between TFs from target genes’ expression levels. We aetievby modelling TFAs as binary
switches (which naturally allow for saturation) within a MV with a non-linear emission
model which models combinatorial interactions betweertiplel TFs at a promoter.

We propose a fast structured variational approximatiomfi@rence in large scale systems.
As our model includes non-linear interaction, it is relatwvmore parametrised than simpler
models. We therefore extensively tested our model on sitedldata to check its identifia-
bility. We then applied it to three real time course datasetS. cerevisia@andE. coli, using
network architectures derived from ChlP-on-chip experita@®r curated databases of biolog-
ical interactions. The key purpose of our analysis of regh @& to investigate the extent to
which non-linear combinatorial effects are evident frorpression data. Perhaps not surpris-
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ingly, we find that the length of the time series is a criticdtbr in reducing the uncertainty

of the model’s predictions, and thus enabling the recovérnpoao-linear interactions. Despite

this, specific examples of biologically meaningful combaral effects are recovered, showing
that computational prediction of combinatorial interaos is indeed possible from analysis of
MRNA time series.

5.2 A Model for Combinatorial Transcriptional Regulation

Suppose thal genes are regulated B TFs overT conditions/time points. Throughout this
chapter we will assume TFs to be binary variables who careeltk on or off (Sanguinetti
et al.,, 2009). This modelling assumption corresponds to wadogical assumptions: TFs
switch fast from active to inactive form and vice versa, amel htumber of TF molecules per
cell is sufficient to saturate the downstream transcriptionachinery. Leg! be the mRNA
expression level of geriaat timet, and let{T;}; j € % € {1,...,M} be the set of TFs binding
genei. Our model for (log) gene expression is given by

g =ab +¢ (5.1)

whereb6; is a set of expression parameters specific for gamale is measurement noise. We
construct the vectog by appending all the possible pairwise interactions to #etaor of TF
states. For two TFs® is constructed as follows:

T
1

It is important to note tha& also encodes the connectivity information of the reguiator
networke.g, if the gend is not connected td>, then state o, and T, T, are not included in
the construction of the. For each geng 6; contains one coefficient for each TF and for each
pairwise interactions followed by the base-level exprashi




SO equation 6.1 becomes
g = AT HATEHAPTITE + + €. (5.2)

Gene expression is therefore quantised with four expredsicels corresponding to the four
possible joint states of the two regulators. This can be etkas a steady-state approximation
to the combinatorial transcription model of Opper and Samejti (2010). The assumption of
binary states of the TFs is mainly due to the transient bela\af these regulators that makes
it harder to measure experimentally at the sampling ratd umsmnost of the cases.

To cast the model (6.1) in a Bayesian framework we need tafggeeor distributions over
the various components. The prior for the paramégisassumed to be a zero mean Gaussian
with variance encoded by a hyperparameter

B ~ 2 (0,a?l).

The choice of prior over the TFA is dictated by the experimveatare modelling. If the experi-
mental design consists of a number of independent condittben a uniform prior over the TF
states at each condition may be justified. While this expeniial design is indeed very widely
used, in this chapter we will focus on the time-course expenital design. The derivations for
independent conditions experimental design are given peagix A. In the time-course ex-
perimental design, the natural prior distribution for tHeATis given by a FHMM (Ghahramani
and Jordan, 1997). Therefore, the prior probability defimesries ofa priori independent
Markov chains consisting of sequences of binary statesfaresach TF

) ) T ) .
p<T]_J77T'|!> - r!p<TtJ+l|TtJ7T]) :
t=

Each of these Markov chains depends on a matrix of hyperpeas) theéransition probabili-
ties encoding the prior probability of the TF switching fromiaetto inactive form. As the TFs
are assumed to be binary, by normalisation there are onlyrtd@pendent hyperparameters in
each transition matrix. Finally, the model is completelgdfied by the assumption that the
observation error in equation (6.1) is zero mean Gaussidmiah, so that

N T
P(GIT.0) =[] (g]a8:.07)

hereG, T and© are collective names for all the observations, TF statesgameé specific
parameters respectively.
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Transition probabilitiest(j) for transcription factors are selected such that the itians
between the on and the off states of transcription facteraat very frequent. This initiali-
sation scheme also represent the underlying biologicadrstanding. Other hyper-parameters
(a, 0) are fixed based on the empirical analysis on different é#tas

Before discussing how inference can be performed in thisalitds important to observe
that, as the paramete® and the TF state$ only appear in the model (6.1) through their
product, a basic identifiability problem exists for this nebdrlo clarify the issue, if we take the
simple case of a gene regulated by two TFs, we see that eqy&tR) is left invariant by the
transformation

T—o1-Tvte{1,... T}
b — AL+ b, All — —A1 (5.3)
AIZ — Ao+ A1, A3_2 — —A12.

This ambiguity, which is common to all statistical modebglving multiplication of latent
variables, cannot be resolved without prior knowledge.sTifioften available: for example,
it may be known that a given TF activates/represses a spé&aifiet, or that the TF is on/off
in a specific condition. Notice that knowledge about the sifjregulation for asingletarget
gene or for asingle condition/time point is sufficient to remove the ambiguitr &ll other
conditions/targets of the same TF. Another important olzgem is that the presence or absence
of a combinatorial interaction is not affected by the idgalility problem. Only the sign of
the combinatorial ternA;2 changes under the transformation (6.3).

5.3 Inference in Combinatorial Factorial Hidden Markov Mod el

Our goal is to infer from observations of gene expressioh liw¢ state of TFs and the gene-
specific expression parametésBayesian inference in model (6.1) is analytically intedudé
SO we resort to approximation techniques. The followindisas provide the details of infer-
ence in the proposed model using Gibbs sampling and varnaltioference.

In appendix (A), we provide the details of the inference fue static case of the model
where the expression data is not from a time-series mia@gaxperiment.

5.3.1 Inference with Gibbs Sampling with Time Dynamics

Gibbs sampling is a Markov Chain Monte Carlo sampling akomiwhich involves sequential
sampling from the conditional posterior distribution obéent variable given all other variables
and the observations. Figure 5.1 shows the graphical mddekeamethod presented in this
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Figure 5.1: Graphical representation of the model. TF states are modelled as a priori inde-
pendent first order Markov chains that influence the expression of gene i; pairwise interaction
between all the regulators of gene i are also contributing to the changes in the expression lev-
els of gene 1. O is the set of gene-specific parameters that encode the strength with each a
particular TF is influencing the gene i.
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chapter. This model is a variant of FHMM where the pairwideractions of latent states of
Markov chains ¢.g. T-T;?) are also effecting the observed variatgf) @long with the latent
states of Markov chainse(g. T). We refer this form of FHMM as combinatorial factorial
hidden Markov model (cFHMM) in the remainder of this chapter

By general results on inference in graphical models (Bisl2@@6), each node is condi-
tionally independent of all other nodes given its Markovrildet, which is defined as the set
of parents, set of children and parents of its children. gsims information, the conditional
posterior distribution for each TF at each time point can béewn as

P(TMT™) P TP

P(T" M) P T P(g Ty
Ty

P(T,"®) = (5.4)

where® = {T™, T™,, ™ ¢}, 8, X}.
The conditional posterior distribution f@ given the TF states and observations is a multi-

variate Gaussian and given by

tﬁm(gﬂw F),02).p(6o?)

p(Bilgl, TR, X) = (5.5)

T

gi [tljlN(QHM(TFt)’OZ)-D(GﬂaZ)

The sampling algorithm iterates sampling from each of tleeselitionals. Convergence of
the chains can be monitored using standard heuristics (&eénal., 2004) and, depending on
the scale of the problem, is usually achieved after a fewsand burn-in cycles.

5.3.2 Inference with Variational Bayesian Expectation Max  imisation Al-
gorithm with Time Dynamics

Stochastic inference approaches such as Gibbs samplingitareemployed for analytically
intractable models; unfortunately, we found that the cotafonal costs of such an approach
were too high for large scale problems. We therefore devaldgst structured mean-field
approximation which is capable of performing inference@emmMarge-scale problems.
Variational Bayesian inference is an optimisation-baggatr@ximate inference technique
originally developed in statistical physics. The basiaideto approximate the posterior dis-
tribution over the latent variables and parameters witmgpkar distribution. Variational tech-
niques convert a complex problem into a simpler problem lyodpling the degrees of free-
dom in the original problem (Jordan et al., 1999). This detiog is obtained by expanding the
problem to include additional parameters also know as tranal parameters that are optimised
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according to the problem under consideration. Comparel stiichastic approximations like
Gibbs sampling, this optimisation process is usually véfigient computationally, and has the
advantage of allowing an unambiguous monitoring of conmecg.

Variational inference relies on the following general lewseund on the log likelihood:

log[p(Gl@)] > (log p(G,0,T|@))qe.1)+H(Q) (5.6)

which follows from Jensen’s inequality (Bishop, 2006). &lér shows the expectation of the
joint likelihood under the approximating distributiap H denotes the entropy of the distri-
bution andg collectively denote the hyperparameteandao. It can be shown that the lower
bound (5.6) is saturated if and only if the approximatingrdisition g is equal to the poste-
rior distributionp(®, T|G, @). In our case, the approximating distributigiis assumed to be a
structured mean-field approximation

9(@,T) = q(©)[]a™™). (5.7)

m

Therefore, we assume the approximating distribution ttofaacross parameters and transcrip-
tion factors, bunotacross time points. The joint likelihood of the model is givmy

P(G,©,T) = p(G|T,0) p(©]a®) p(T) (5.8)

We will use a variational EM algorithm to optimise iteratiyehe lower bound w.r.t.© and
each of the TFF'; the reader is referred to (Beal, 2003) for a more thoroughugision of
variational EM algorithms in HMMs. The lower bound (5.6) isaganteed to increase after
each step of this iterative process, and the convergenceeoélgorithm can be monitored
through evaluation of the lower bound.

5.3.2.1 E-step

The log of the joint likelihood can be written as

log p(G.T.© =SS logp(TMT™ ) 4 S L g _de)?
0g p( s by ,G,O') = t; Z ng(t|tl)+i;{_ﬁ(gi_q ')}

=]
N
1 1o
+i; (—Eei 9.) +const (5.9)

Taking the expectation of the log of the joint likelihood itespect tay(6;) andq(T{ﬁm), we
get
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+i;{? (g‘ (& )gerizm Bl
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=5 (& )gerizm) (8181 ) e <Q>Q(T{ﬁm)) H

+ const (5.10)

(logp(G,T,0,0,0))

As we averaged out th@ and all other TFsi(e. 'I{j#m) we are left with an expression
depending only on thet" TF. A closer inspection of the previous equation shows tinat¢ a
constant) it is the log of the joint distribution of an HMM witransition probabilities given by
p(T"|T,™;). The emission probabilities are Gaussian with time-depehihean and variance;
their logarithm up to a constant is given by

k 1
Z{ (9' (& qcrizm (O <9i>‘§<e‘T>q<T{ﬁm><9i9iT>q<ei><Q>q<T{?§’“>)}’ 611

we can read off the expression 5.11 the actual emission pildkes at timet as

N N
log] p(gi[Tt") = log [_DN(QH<Q><9i>aGZ)] : (5.12)

so equation 5.10 simplifies to

T N
<|Og p(G, T,0,q, 0-)>q(9i)q(T{?éTm) = Z [log p<Ttm‘TtT1) + leogg\c (gH(Q) <ei>702)] (5-13)
) t= i=

which gives the transition probabilities and time-depeni@enission probabilities of the HMM
with m" TF. The posterior distribution over each TF can be easilpiobtl using the standard
forward backwardFB) algorithm (section 2.2.2.1) that provides the probids for both states
(i.e. on or off) of TFs over all the time point of the gene expressieasurements. Further
using the factorisation across TFs given in equation (@)use the FB algorithm indepen-
dently for each hidden layer of FHMM (Fig. 5.1) to provide #irgle time state marginals of
the approximate posterior distributioT ).

5.3.2.2 M-step

Taking expectations of the log of the joint likelihood (etjaa (5.9)) underT, one can see
that the approximate posterior distribution over the patams of®; is given by a multivariate
normal

N
q©) = [lN (8ilm;, %) (5.14)
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The mean and covariance of this multivariate normal distidm are given by

1 T
5 =g 2, Xi(ad g X+

>t

1 T
M= 52 [t;g% (& Dqm) X

Here ()q1) denotes the expectation undgim ), X; denotes a diagonal matrix with tieh
row of the connectivity matrixX along the diagonal. For more details about the method and
implementation, refer to supplementary material.

As the length of the time series is usually very limited, wdl wot attempt to infer hy-
perparameters of the model such as the transition matricg@observation noise variance
(even if point estimation of hyperparameters by Type Il maxn likelihood is in principle
straightforward). In chapter 6, we propose a simultaneoniegsence and clustering technique
for transcriptional regulation that provides a possibleison for inferring the transition rates
of the latent Markov chains with few time-points . In this nebdhese hyperparameters will be
fixed heuristically: transition matrices will be set to gagrior expectation of few transitions
within the time under consideration; and noise variancéhbelfixed after preliminary inspec-
tion of the data. Experiments on synthetic data showed tigattodel predictions to be fairly
insensitive to the specific values of the transition masice

Using the EM algorithm, we iteratively update the postedistributions for model param-
eters @) and latent variablesI("s encoded irg) until the model is deemed to converge. This
convergence can be monitored by evaluating the Eq. 5.9 dikéléhood of the model which
is guaranteed to decrease. It is shown in figure 5.3 for a simalilated dataset\N(= 100,

M = 15). This process of iterative optimisation using EM algon is illustrated in algorithm
3.

5.4 Comparison of Approximation with Gibbs Sampling and
Variational Inference

To evaluate the approximation of VBEM algorithm and Gibbsgkng, we ran the VBEM on
a smaller dataset consisting of 400 genes and 20 TFs ovem20pwints, and compared the
results with those obtained using the Gibbs sampler defiv&gection 5.3.1. We monitored
convergence of the Gibbs sampler by mixing of the Markoviehai® parameters. The Gibbs
sampler took almost a day to converge compared to less th&wo@anwith variational EM.
In general, both methods obtained very similar resultd) boterms of mean predictions and
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Algorithm 3 Variational Bayesian Expectation Maximisation Algorithior inference in
cFHMM

Require: Initialise ;-1 randomly or from expression dat&)

Require: 0«1

Require: 02+ 0.1

Require: Initialise transition probabilitieér) for all the TFs

1:

2:

3:

4:

niterations+ 1
repeat
for i+ 1,N do
Update the posterior distribution (Eq. 5.14) o®efor genei
end for
for j < 1,Mdo
Calculate the state marginal ﬁf:T usingFB algorithm
end for
Updatee; T using the state marginals
Calculate theNewLikelihoodusing the expected values of the latent variables and pa-

rameters in Eq. 5.9

Ensure: NewLikelihood< OldLikelihood

10:

11:

OldLikelihood« NewLikelihood

maxlterations— maxlteration— 1

12: until (nlterations> 2000 Vv (NewLikelihood- OldLikelihood> 1e7%)
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Figure 5.2: Comparison of inferred parameter using variational Bayesian inference and Gibbs
sampling for four randomly selected genes. Blue bars shows the ground truth while the green
and red bars shows the inferred values of the parameters (A1,A2,A12,b) using variational
Bayesian (VB) inference and Gibbs sampling (GS) respectively. Empty spaces in the plots
correspond to TF not bound to target gene.

in terms of associated uncertainties. Figure 5.2 shows gadson of the inferred values of
four randomly selected genes using variational Bayesigrence and Gibbs Sampling with
the true values. Variational inference are known to oftetlemestimate uncertainties; a global
comparison between MCMC and variational estimates of tleemainties indicates that in our
case this is a fairly modest effect (correlation coefficier@614 atp-value of 0.0003). Due
to higher computational complexity of Gibbs sampling, wesrefore, employ the variational
approximation for approximating the true posterior digition in the rest of this chapter.

5.5 Analysis using Variational Bayesian Expectation Maxim I-
sation Algorithm

While our model is still relatively simple, the addition odm-linear interaction terms means
that more parameters need to be estimated. On top of thampagically exact inference is
computationally unfeasible in large scale examples. Thezeas a first analysis we perform a
thorough test on the proposed model using artificial dat@tibyits identifiability in a realistic
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Figure 5.3: Convergence of VBEM algorithm on small simulated dataset (N = 100 M = 15).

simulated situation.

5.5.1 Analysis using Synthetic Data

We performed a series of experiments on artificial data geéeeérwith known parameters to
benchmark and check the consistency of the model. Spebjfitake aspects of the inferential
problem need to be investigated:

1. Is the model identifiable given realistic data, in a large scale example with relatively
few time points?

2. Does the efficient variational approximation developedaction 5.3.2 give an accurate
representation of the posterior uncertainty over the rendariables?

3. How does the length of the time series effect the inferefi@®mbinatorial interactions
of TFs at a certain noise level?

5.5.1.1 Model Identifiability

In this sections, we present a brief comparison of cFHMM twlweo methods on synthetic
data. Shi et al. (2008) used FHMMs with inputs to simultars®punfer TFAs and post-
transcriptional regulation in TFs; in our case, we are ggggd only in the TF inference part
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of the model, so that their model reduces to a simplified fofrous model {.e. a standard
FHMM) without the non-linear interactions of TFs. This methis denoted as FHMM. The
other method we compare to is the TFInfer model (chapter #A)s iE a log-linear model us-
ing a discrete-time state space model for the TFAs. To coentber binary TF states obtained
with the other two methods with the TFInfer results, we hirathe inferred TFAs using the
average of the inferred temporal profile of each TF in the ndtWactivity O if below average,
1 if above). We use three criteria to evaluate the performafiour method with these meth-
ods; run-time, mean squared error (MSE) in reconstructamegexpression profiles and the
Hamming distance between the inferred states of the TFs.

Synthetic data was generated using the cFHMM model with tfferdnt connectivities that
we take from the yeast regulatory network (Lee et al., 2002) E.coli regulatory network
Using yeast connectivity, three synthetic datasets WitfiFs were generated (30 time-points
M = 25,30,50). Another synthetic dataset was generated using thdi Eozmectivity with 30
time points and 6 transcription factors. Results obtairedgithese datasets are represented in
the table 5.1 where the comparison of different technigsisbown.

It is important to stress that these two connectivities hdifferent degree of sparsity. In
yeast connectivity data, average connectivity+s42o for three datasets while in case of E.coli
dataset, average connectivity is about 20%. Average nuaflgemes/TF in three yeast datasets
are 115, 142 and 227 respectively; while in case of E.coli connectivity, agganumber of
genes/TF is 64 that implies more potential combinatorial interactioesAeen TFs.

The Hamming distance between the inferred temporal praffl&&s (obtained using FHMM,
cFHMM and TFinfer) and the true ones are comparable in alt ttatasets. It is important
to mention here an aspect of the TFInfer inference procediesoptimisation of the hyper-
parameters that we keep fixed in our model and in FHMM.

In case of sparse yeast connectivity, FHMM and cFHMM areatioselated in terms of the
Hamming distance between the inferred temporal profileslamtrue profiles in the synthetic
data. This is mainly due to the sparse connectivity thatiesdess combinatorial interactions
and hence cFHMM results closely match with FHMM results mg of MSEs and Hamming
distances. This can be seen in the first three columns of Bable

The last column of the table 5.1 shows the results of the @xjeat with a much dense con-
nectivity (average connectivity is 20%) where cFHMM is bett reconstructing the expression
profiles of genes in the network (MSE£8099) compared to MSE of FHMM (MSE=WL87).

thttp://ecocyc. org/
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Dataset

Yeast Connectivity

Yeast Connectivity

Yeast Connectivity

E.coli Connectivity

Method
N =500M = 25 N =500M =50 N =500M =75 N=320M =6
MSE: 0.0967 MSE: 01012 MSE: 01258 MSE: 00187

FHMM HD with True=00820 HD with True=01380 HD with True=01933 HD with True=00625
HD with cFHMM=0.0300| HD with cFHMM=0.0880| HD with cFHMM=0.1273 | HD with cFHMM=0.0375
HD with TFInfer=00880 | HD with TFInfer=01340 | HD with TFInfer=01993 | HD with TFInfer=00750
MSE: 0.0931 MSE: 0.1065 MSE: 01184 MSE: 0.0099

cFHMM HD with True=00600 HD with True=01380 HD with True=02167 HD with True=0Q0667

HD with FHMM=0.0300
HD with TFInfer=00740

HD with FHMM=0.0880
HD with TFInfer=01420

HD with FHMM=0.1273
HD with TFInfer=02173

HD with FHMM=0.0375
HD with TFInfer=00542

TFInfer (Asif et al., 2010)

MSE: 00910

HD with True=00780
HD with FHMM=0.0880
HD with cFHMM=0.0740

MSE: 0.0894

HD with True=01280
HD with FHMM=0.1340
HD with cFHMM=0.1420

MSE: 0.0858

HD with True=01687
HD with FHMM=0.1993
HD with cFHMM=0.2173

MSE: 00150

HD with True=Q0792
HD with FHMM=0.0750
HD with cFHMM=0.0542

Table 5.1: Comparison of different techniques for inference of the states of transcription factors using simulated data. The states inferred with
different methods are compared using the Hamming distance (HD) between the vectors of states.
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Figure 5.4: Comparison of inferred and true values for parameter ©

5.5.1.2 Accuracy of the Posterior Estimation

We generated an artificial dataset with 1000 genes, 50 tigtisa factors and 20 time-points.
We used the connectivity information from yeast cell retpra network (Lee et al., 2002)
with random initialisation for the gene-specific param&teWWe then ran the variational EM
algorithm to infer the posterior probabilities over TF staand gene specific parameters, and
compared with the true parameter values/ TF states. Thésdsuparameter estimation are
given in figure 5.4, displaying true parameter values witbteoor mean estimates. In most
cases, it is clear that the parameters inferred using thatiaral EM algorithm match closely
with the true values. In a few cases, the inferred parameteranticorrelated with the true
parameter values; these correspond to TFs whose activitynierred to be the opposite of the
true activity. As we noted earlier, this ambiguity is unaladdle and cannot be resolved without
further knowledge.

5.5.1.3 Effects of the Length of the Time-series and Noise in Gene expression

While Figure 5.4 gives support to the identifiability of theeanpredictions of our model,
the Bayesian nature of the model means that estimates ofnitextainty of the predictions
are also available. These estimates can be precious tosabgestatistical significance of
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T 0°=0.1 0°=0.5 0°=1
Aij (%) | Avg. Post. s.d| Aij(%) | Avg. Post. s.d] Ajj(%) | Avg. Post. s.d.
10| 18 0.2273 5 0.4009 3 0.5027
20| 28 0.1655 10 0.3016 6 0.3953
30| 40 0.1342 25 0.2550 8 0.3364
40| 54 0.1088 33 0.2248 18 0.2993
50| 54 0.0996 33 0.2003 18 0.2710

Table 5.2: Combinatorial interactions found using synthetic data with different number of time-
points. Ajj is the percentage of combinatorial interactions recovered from the data. 02 stands
for the noise-level in the synthetics data. Column 3, 5 and 7 shows the corresponding inferred
average posterior standard deviation for each dataset.

predicted interactions: for example, we could say that tWs Tegulate combinatorially a
certain gene at 5% significance level if the absolute valukeposterior mean of the predicted
combinatorial term in equation (5.2) is greater than twitegredicted standard deviation. We
are interested in quantifying what fraction of combinadbnnteractions can be recovered at a
certain significance level as a function of the length of theetseries and the experimental
noise. To do this, we generated multiple artificial data sets different numbers of time-
points (Table 5.2, column 1) and varying corrupting noisele ©2 = 0.1,0.5,1.0). In all
cases the number of genes and transcription factors, aaswle network architecture and true
parameter values, was kept fixed £ 200 M = 50). It is important to note that these datasets
are generated witl® as zero mean Gaussians (with unit variance) so all the catdrial
terms used to generate the datasets are nonzero. Tabl@bt&rhe fraction of combinatorial
regulatory interactions which were recovered at 5% sigaifoe level for specific lengths of
the time series and different values of the Gaussian noigene expression. Not surprisingly,
this percentage increases monotonically with the lengthe@time series and decreases when
the additive observation noise is increased. Also, it apgptraat the level of noise somehow
determines the proportion of combinatorial interactiomet tcan be recovereeven for long
time series. Empirically, it appears that, with this netvstructure, more than 40 time points
do not lead to a significant change in the proportion of comainal interactions recovered.

5.5.2 Analysis using Real Data

We use three real datasets; in all cases, the main purpase@ilistie the extent to which com-
binatorial regulations can be learned from expression. det@se datasets are the classic and
much studied yeast cell cycle data set (Spellman et al.,)1 998 yeast metabolic cycle data
set (Tu et al., 2005) and the coli micro-aerobic shift data set (Partridge et al., 2007). Ifina
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Transcription factor profile
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Figure 5.5: Comparison of the inferred temporal profiles of transcription factor ArcA using TFinfer
(Asif et al., 2010) and cFHMM. The dotted line in the plot shows the profile of ArcA inferred using
Sanguinetti et al. (2006).

we compare our results with those obtained with two differeethods: a standard FHMM and
the TFInfer (Sanguinetti et al., 2006; Asif et al., 2010).

5.5.2.1 Micro-aerobic Shiftin E. coli

Partridge et al. (2007) studied the transcriptomic respofik.colito the withdrawal of oxygen
in a chemostat culture under controlled growth conditidasoli is a metabolically versatile
bacterium and responds to changes from aerobic to micabeeconditions by activating TF
proteins that act as oxygen sensors. The probabilisticoagprdescribed in Sanguinetti et al.
(2006) was used to infer the states of six crucial regulaiboxygen sensing and metabolism
(FNR, MetE, MetJ,ArcA, CpxR,SigE) from the mRNA expressmin302 target genes. The
analysis revealed insights in the dynamics of the key régrdaupon oxygen withdrawal, as
well as biologically interesting predictions about theiigmof TFA. The data set consists of
4 time points taken at 5, 10, 15 and 60 minutes and measuraiVecto a sample taken im-
mediately before the perturbation. Connectivity inforimatabout the regulatory network was
obtained from the ecocyc datab&s@d is available for 6 TFs and 302 genes in the supplemen-
tary material of Partridge et al. (2007).

The predictions of our model in terms of TFAs are in broad egrent with what reported
in Partridge et al. (2007) (average Pearson correlation &8 an example, Figure 5.5 shows
the inferred temporal profile of transcription factor Ara#\lie in close agreement with the pre-

2http://ecocyc. org/
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Figure 5.6: Number of Ajj > 2 s.d. for 1975 genes of Spellman et al. (1998)

dicted profile in Partridge et al. (2007). However, no corabanial interactions were predicted
at a significance level of 5%. In the light of the analysis ontkgtic data, this is probably due
to the very short time series.

5.5.2.2 Yeast Cell-cycle Data

Spellman et al. (1998) used microarray hybridization tosneathe expression profiles of most
of the yeast genes over a complete cell cycle. Three timessexperiments were conducted
on three different strains of yeast and these experiments syachronised by three indepen-
dent methodsp factor-based synchronization, size-based synchrooizatnd cdcl5-based
synchronization. We use the cdc15 synchronized data, stimgof 6181 gene expression pro-
files over 24 time-points. The connectivity information tbe yeast regulatory network was
obtained in Lee et al. (2002) using ChlP-on-chip for 113 Tkssuring their binding to 6270
genes. These two datasets are relatively old but well suahe serve as the standard bench-
mark for validating the model described here. We preprazktsese two datasets such that all
the genes are bound by at least one TF and each TF is reguddtiegst one gene; that gave
us a network of 1975 genes and 104 TFs and expression prdfil€¥6 genes. The data was
analysed using the variational approximation, since ttgelaize of this network rules out the
application of the Gibbs sampling algorithm.

Once again, the predictions in terms of TFAs matched welptkdictions of previous mod-
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Figure 5.7: Inferred TF profiles from Spellman et al. (1998) and their corresponding mRNA
expression levels. (a) Inferred TF profile for SWI5 (b) Measured mRNA expression levels for
gene SWI5 (c) Inferred TF profile for SWI4 (d) Measured mRNA expression levels for gene
SWI4.

els (such as Liao et al. (2003); Sanguinetti et al. (2006)particular recovering the periodic
pattern of key cell-cycle regulators such as SWI5 and SWIi4.dhown in figure 5.7.

An analysis of the predicted interaction terms reveals abatut 5% of the combinatorial
interactions A12 in (5.2)) are significant at 5% level as shown in figure 5.6.sTdacounts for
186 combinatorial interactions out of a total of 3886 poesgairwise interactions allowed by
the structure of the regulatory network.

A more detailed analysis of the results obtained (acrosstrgtion factor profiles) using
the model 5.2 reveals that some of the TFs in the yeast regylagtwork have a much higher
proportion of significant combinatorial interactions thha average. Figure 5.8 shows the per-
centage of significant combinatorial regulation for thetladl TFs in this dataset. It can be seen
from this plot that a group of TFs (DAL82, Pho2, GTS1, HAP3Rd| MAL13) have 15% or
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Figure 5.8: Percentage of combinatorial interactions for 104 TFs of yeast dataset (Spellman
et al., 1998)

more significant combinatorial interactions compared terall average of 5% significant com-
binatorial interactions. Looking at biological functiohtbese highly interacting proteins, we
found that our results are often plausible in terms of theedgthg biology. The transcription
factor Pho2 found to be actively involved in combinatoridulation by our model is known
to behave in a combinatorial manner (Bhoite et al. (2002ho2Pis functionally active in
many biological processes such as histidine biosysnthesiphosphate utilization (Daignan-
Fornier and Fink, 1992). Similarly, HAP3 is a global regaladf respiratory gene expression
and contains sequence contributions to both complex asggemt DNA binding (Xing et al.,
1993), Hahn et al. (1988). The contributions of these tnapison factors to multiple biological
processes indicates that plausibly these TFs will neecctwfato achieve specificity in gene
regulation.

Our model predicted that DAL82 regulatory activities cam$aa higher percentage of sig-
nificant combinatorial regulation. DAL82 is a positive régjor of allophanate inducible genes
and is one of four transcription factors that are requiredHis process (Scott et al., 2000). Ex-
perimental evidence in this case suggests that DAL81 prageequired for DAL82-dependent
transcription activation. As shown in figure 5.8, our modsbaredicted the higher percent-
age of combinatorial activity for DAL81 (approximately 1094 TS1 is a transcriptional co-
activator for the genes that exhibits the metabolism of @aydrates, requiring interactions
with other regulators to induce gene expression (Xu andutgu2007).
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Figure 5.9: Number of Ajj > 2 s.d. for 3070 genes for yeast dataset (Tu et al., 2005)

5.5.2.3 Metabolic Cycle Data

Tu et al. (2005) studied the yeast metabolic cycle (YMC) taterns the genome-wide tran-
scription of genes in a periodic manner. Budding yeast undaient-limited conditions goes
through robust cycles of respiratory bursts that in turrseaualmost half of the yeast genome
to express periodically. In this experiment, total RNA wesggared after every 25 minutes over
a period of three consecutive metabolic cycles. In ordestothis dataset with our model, we
fused the network connectivity available from two ChIP-@mnp experiments (Lee et al., 2002),
Harbison et al. (2004) and removed the genes that were nalateg by any TFs in the connec-
tivity information. The TFs not involved in regulating angrges were also eliminated leaving
a network of 3070 genes and 177 TFs. Our probabilistic agproan handle the false positive
that could arise from this dataset by assigning higher waicgy to the regulatory interactions
that are not evident from data.

Once again, the predicted activity profiles of most regutashowed a good agreement with
previously reported results Sanguinetti et al. (2006) gisiififerent inference models (results
not shown). In particular, our model confidently predictgueaodic behaviour for many of the
regulators, which is in agreement with the experimentaighes he details about the extent of
the combinatorial regulation in this dataset are shown uréd.9 where approximately 3% of
the possible combinatorial interactions are found to bessizally significant. Out of a total
of 10876 possible combinatorial interactions in this d&ta snly 322 were predicted to have
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Figure 5.10: Percentage of combinatorial interactions for 177 TFs for yeast dataset (Tu et al.,
2005)

posterior mean greater than 2 standard deviations.

Further analysis across the transcription factor profitesv&@d that a small proportion of
the TFs in this dataset have significantly higher combinaltarteractions as shown in figure
5.10. The most prominent of these highly interacting TFs Bi&L82, GAT1, GTS1, GZF3,
MTH1, PUT3, STB2, THI2, UPC2, VMS1. Some of these TFs appedrave consistently
combinatorial behaviour between the cell cycle and the bwdia cycle; e.g. DAL82 and
GTS1 could be interpreted as "housekeeping” combinatdifal. GAT1, a positive regulator
of nitrogen catabolite repression (NCR), is an essentgllegor of the NCR-sensitive genes
along with another transcription factor GLN3. The modelregulatory circuit of GAT1-GLN3
combination is discussed in Coffman et al. (1996). The niigjof the other TFs predicted to
have high combinatorial behaviour are clearly associatéu wetabolic processes: GZF3 is a
catabolite repressor, MTH1 regulates glucose sensing?2 Téulates thiamine biosynthesis,
UPC2 regulates sterol biosynthesis. This is perhaps netisurg, as metabolic genes have
higher expression changes within the metabolic cycle, @mtd presumably a lower level of
noise. However, this highlights an important feature ofloadel: even if the absolute fraction
of combinatorial interactions recovered is rather lowdrgons have higher confidence for
the specific biological processes investigated in the gexgreriment.
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5.6 Comparison with Other Methods

To assess the relative merits of our method (cFHMM), we peréal an extensive comparative
study with two published methods for reconstructing TF pesfi These include a standard
FHMM (this is used for TF inference in Shi et al. (2008) thatcahccount for post transcrip-
tional modification) and TFInfer (Asif et al., 2010).

It should be stressed that the method proposed here mo@emthlinear interactions of
the transcription factors at the promoters, somethingrtbeher of the competitor methods can
do. The flip side of this extra flexibility is that more time equired to execute the algorithm.

Table 5.3 presents the comparison of the results obtainad aar method with two other
methods on the real data sets considered in this study. |&.tleeli data set, the results of
FHMM and cFHMM are similar in terms of TF reconstruction (eage Hamming distance
0.067); this is probably due to fact that we did not find any boratorial interactions at 5%
significance level. In the other data sets, we obtained &ivela larger Hamming distances
between FHMM and both cFHMM and TFInfer.g588 and 502 respectively). These data
sets contained many more time points, which allowed thevesgaf a small but non-negligible
number of combinatorial interactions, leading to the predins of cFHMM (which does take
these interactions into account) to be significantly ddfegrfrom the two linear methods.

5.7 Conclusion

We present a novel method to infer combinatorial interaxstioetween transcriptional regula-
tors from expression data and network connectivity dataodioknowledge, this is the first
statistical method which simultaneously infers TFAs aneirtitombinatorial interactions in
large-scale networks. We model TFAs as latent binary vieesatith Markovian dynamics;
gene expression is determined by the latent TFAs througmdinear likelihood which allows
for pairwise interactions between TFs. According to our slpgdene expression is digitized,;
digitized levels of gene expression have recently been showield computational savings
and more robust predictions (Tuna and Niranjan, 2010). Timeipal novelty of our work in
this perspective is to connect the level of discretisatidh the state of underlying regulators.
We conducted experiments on simulated data (with two diffeconnectivities, the E.coli
connectivity data and the yeast connectivity with varyiegvork sizes. The data was generated
from the cFHMM model; however, we noted that both cFHMM and¥ managed to give
good reconstructions of the TF profiles (obviously FHMM abubt capture the coefficients of
the non-linear effects). This is essentially due to thespaof the connectivity; in particular,
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Dataset

Partridge et al. (2007)

Spellman et al. (1998)

Tu et al. (2005)

Method
Run time: 6 seconds Run time: 47 hours Run time: 55 hours
FHMM MSE: 00189 MSE: 01381 MSE: 04332
HD with cFHMM=0.0667 | HD with cFHMM=0.2688 | HD with cFHMM=0.2502
HD with TFInfer=00667 | HD with TFInfer=02015 | HD with TFInfer=02280
Run time: 22 seconds Run time: 42 hours Run time: 335 hours
cFHMM MSE: 00423 MSE: 01391 MSE: 04125

HD with FHMM=0.0677
HD with TFInfer=01333

HD with FHMM=0.2688
HD with TFInfer=02708

HD with FHMM=0.2502
HD with TFInfer=03021

TFInfer (Asif et al., 2010)

Run time: 45 seconds
MSE: 0.0399

HD with FHMM=0.0667
HD with cFHMM=0.1333

Run time: 10 hours
MSE: 0.1156

HD with FHMM=0.2015
HD with cFHMM=0.2708

Run time: 115 hours
MSE: 0.3811

HD with FHMM=0.2280
HD with cFHMM=0.3021

Table 5.3: Comparison of different techniques for inference of the states of transcription factors with different biological datasets. The states
inferred with different methods are compared using the Hamming distance (HD) between the vectors of states.



the connectivity matrix in the yeast data is sparser, SORRIM is a very good model for
most genes. For the dendgr coli network, the performance of cFHMM was significantly
better, particularly in terms of MSE (table 5.1). The reswlh real datasets show predictions
that are in good agreement with existing methods. Howekerangth of the time-series data
is a critical factor to obtain the statistically significam@mbinatorial interactions.

Factorial Hidden Markov Models have been previously usethtolel TFAs (Shi et al.,
2008); in that work, further dependencies were includedeeh TF mMRNA expression levels
and their predicted activities, which enabled to predidgiae post-transcriptional modifica-
tions in TFs. Naturally, it should be possible to combinehbmir approach and their approach
to give a model capable of simultaneously inferring TFAsnbmatorial interactions and post-
transcriptional regulations. This would also allow to refohe assumption, hard-wired into
our model as well as many other related models, that TFAsnatependent of their mRNA
expression levels. While in many cases this assumptiorsiffipd by the fact that measure-
ment of TF gene expression are often poor proxies for théivigcstate, it is plausible that,
at least in some situations, mRNA expression levels of Tregemill bear some influence on
their activity.
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Chapter 6

Simultaneous Inference and Clustering of
Transcriptional Dynamics in Gene
Regulatory Networks

In the last chapter, we presented a variant of FHMM to modehitiden TFAs in the regulatory
network as binary Markov chains and used a variational aqym&tion to find the posterior
estimates. The transition rates for the latent Markov chaiare not inferred in that model.
One critical factor that hinders the inference of thesesitaon rates from the experimental data
is the length of the time-series which is not sufficient is trafghe cases. In that model, we
fixed the transition rates of the latent Markov chains of tRd/M to plausible values that were
coherent with the underlying biological assumptions. Og o deal with the limited length
of time-series is to pool the data together from differemigtiseries and use it for the inference
of the transition rates. This pooling scheme serves twogaeg: firstly, no assumptions are
required to fix the transition rates in the inference; setgad a consequence, pooling the data
from different time-series also clusters the latent Mar&bains into a priori unknown number
of clusters.

In this chapter, we present a novel method for simultanewigsence and nonparametric
clustering of transcriptional dynamics from gene exp@ssiata. The proposed method uses
gene expression data to infer time-varying TF profiles andtel these temporal profiles ac-
cording to the dynamics they exhibit. We use the latent ttrecof FHMM to model the TF
profiles as Markov chains and cluster these profiles usingar@ametric mixture modelling.
An efficient Gibbs sampling scheme is proposed for inferaedatent variables and grouping
of transcriptional dynamics into a priori unknown numberchfsters. We test our model on
simulated data and explore the effect of different noiselkewof observations on the inference
results with varying network size. We also analyse our misgerformance on two expression
datasetsS. cerevisiaeell cycle data ané.coli oxygen starvation response data and show its
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applicability for genome wide analysis of expression data.

6.1 Introduction

High throughput microarray experiments generate vast atsoaf data about the expression
patterns genes. The abundance of gene expression datanparsgsnathematical and compu-
tational challenges to reverse engineer the molecularegsss responsible for transcriptional
regulation. Gene expression is regulated by the bindingFopioteins to the promoter re-
gions of genes. Reconstructing the dynamics of transorigtiregulation in gene regulatory
network, however, remains an open issue due to the diffesuitivolved in experimental mea-
surement of TF activity levels. Experimental techniquashsas ChlP-on-chip technique (Lee
et al., 2002), which directly measure the binding of TFs mnpoters, can provide a static pic-
ture of the wiring (connectivity) of the regulatory networKhis architectural information is
partially available for humans and mouse, and almost futigusnented for yeast artél.coli.
Combining this architectural information with gene exjsien data, it is possible to decipher
the role of TF proteins in the genetic machinery using gtasistools. Over the last few years,
several methods have been proposed to infer the activitiesveral TF proteins from the ex-
pression of (hundreds or thousands) of their target genas ft al., 2003; Sabatti and James,
2006; Sanguinetti et al., 2006; Asif et al., 2010), leadegjtiently to useful biological insights
(Partridge et al., 2007; Davidge et al., 2009).

One subcategory of these inference approaches is basedMN§&KKGhahramani and Jor-
dan, 1997). In FHMM-based inference methods (Shi et al.3288if and Sanguinetti, 2011),
each latent Markov chain models the (binary) activity of aprbtein, assuming priori in-
dependence between different TFs. The distributed latatd sepresentation of FHMMs pro-
vides a natural way to model the regulation of genes by maliifs. Each TF is characterised
by prior propensities to switch state (transition rated)icl also have to be determined from
the data in general. The states of the TFs are assumed tdbe @it or off that corresponds to
underlying biological assumptions that the number of TFeuoles per cell is sufficient to sat-
urate the downstream transcriptional machinery and Tkilgphanges from active to inactive
states and vice versa (Ptashne and Gann, 2002).

However, the length of the Markov chain plays a pivotal ralemabling reliable estimation
of transition rates. Most biological datasets are of vemjtkd length (at most a few tens of
time-points), making reliable estimation of transitiones effectively very difficult. While
fixing prior rates to a plausible value implying few transits may be a practical solution
in some cases (Asif and Sanguinetti, 2011), in general tiido® potentially inaccurate for
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Figure 6.1: A factorial HMM with 3 chains.

large data sets. A biologically more plausible assumptmura perhaps be obtained from the
observation that TFs rely on few different activation methims: for example, many TFs are
activated by rapid conformational changes (Ptashne and,@802), while others rely on more
gradual changes in concentration. Therefore, it is natarabsume that TF dynamics may be
clustered with several TFs sharing the same transition rates. Besiteadvantages of more
biologically interpretable results, this clustering apgueh is also attractive from the statistical
point of view: by pooling data from different TFs, it allowsmaore reliable estimation of
transition rates.

In this work, we build on the FHMM model of transcriptionagtéation (Fig. 6.1) for infer-
ence of TF profiles and employ a clustering approach to grloeptferred TF profiles based on
their dynamics. Since specifying a number of clusggpsiori is not possible, we propose to use
Dirichlet Process Mixture (DPM) models (Ferguson, 1973tohnek, 1974; Rasmussen, 2000)
to tackle the problem of model selection. Our proposed ntetloes not make any assumption
about the dynamics for TF profiles as we learn these dynanyigobling the statistics from
the groups of inferred TF profiles. In the following text, weepent the model for inference
and clustering of transcriptional dynamics and proposedfaient Gibbs sampling scheme for
inference in the hierarchical model (Fig. 6.2). Then we ¢estmodel using simulated datasets
and apply it to two well studied real datasetSimccharomyces cerevisiardEscherichia coli
showing how the model can return biologically meaningfuktérings.
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6.2 Modelling Regulatory Dynamics

Suppose thall genes are regulated by TFs overT time-points. Letgl be the (log) MRNA
expression level of genieat timet, and let{T;}; j € s C {1,...,M} be the set of TFs reg-
ulating gend. We will model (log) gene expression as a linear combinatiotne activity of
TF inputs as (Asif and Sanguinetti, 2011)

g = &6 +¢ (6.1)

whereg; is composed of the binary states of the TFs that bind gefes a set of interaction
strength parameters specific for gerende is Gaussian distributed measurement noise with
varianceo? (and mean 0). It is important to note theatis a vector of states of all the TFs that
regulate gené and thus also encodes the connectivity information of tigelletory network.
For example, in the simple case of two TFs binding geme= obtain

o = AT+ APT2+b + & (6.2)

The prior for the parameté is assumed to be a zero mean Gaussian with variance encoded
by a hyper-parameter?,

B ~ (O7a2>'

The TF states (entering the vect®) are assumed to follow Markovian dynamics, with prior
independence between different TFs. The basic architecfupur expression model is there-
fore given by a FHMM, depicted graphically in Figure 6.1. Asdent from equation (6.1), the
latent variablel and the parameté only appear through their product, leading to an identifi-
ability problem. We can take the example of equation (6.2Jaborate on this. Equation (6.2)
is invariant to following transformation

Tr—1-TWte{1,. .. T}
b — A +Db, A/1—> —As.

which we refer to as th#ipping of TF profile. This ambiguity can easily be resolved with
prior knowledge which is often available. Examples of sudorpknowledge could be the
experimental evidence that the TF is activating/represaispecific downstream target or that
a particular TF is in a specific state of activation at the beg of the time course.
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6.2.1 Clustering Temporal Profiles by Dynamics

In standard FHMM setting, each latent Markov chain is charégsed by a transition matrix
that specifies the conditional probabilities of moving frome state to another. However, we
proposed to use a shared transition matrix for multiplenfaddarkov chains of the FHMM
that have similar dynamics. This sharing of transition mea# leads to clustering of Markov
chains as we show later. Since it is impossible to know allmuhtmber of clusters that govern
the dynamics of latent Markov chains, a hon-parametric @gogr is required to deal with the
unknown number of clusters of Markov chains.

DPM models are nonparametric Bayesian methods that enbed®tural clustering prop-
erty that the prior probability of cluster membership isgadional to the size of the cluster.
DPMs have been widely used for nonparametric clusteringxpfession data (Medvedovic
and Sivaganesan, 2002; Dahl, 2006; Savage et al., 2010). iBRNbracterised by a hyper-
parameten, Dirichlet distributedtthat serves as the prior for indicator variakigsand cluster
specific parameters'.

Clustering by dynamicsnmplies that we estimate the dynamics exhibited by TF prefile
(i.e.,the transition rates) and then cluster these dynamics. Stiraaion of the dynamics from
TF profiles is based on the transitions between time pointsase of binary Markov chains,
this boils down four possible transitions in a Markov chasnage describe later. It can also be
understood as the clustering of the transition dynamicsFopiofiles rather than TF profiles
themselves.

The FHMM assigns each TF to a different Markov chain with apifferent dynamics.
This may be undesirable for biological or statistical ressoFrom a biological perspective,
there are fewer processes that regulate the transcriptimachinery compared to the number
of TFs in GRN. To take this into account, we ugeas the indicator variable that assigns mF
to one ofK clusters of the DPM model. In this way, prior over Fcan be specified as

T
p <T1m7 cee 7TTm|Zm7Tk) = r! pZm <Tt$1|Ttm7Tk>
t=

wheretK is the transition matrix for clustdrthat governs the dynamic behaviour of ffwith
Zm = k.

The individual transition probabilities af are denoted bg*; it is useful to interpreg* as
persistence probabilitig(T," = 0| ™, = 0) or p(T;" = 1|T,™; = 1)) as these probabilities are
used to construaf. The probabilities of changing states (off diagonal estdér®) are easily
obtained by normalisation. The prior over these persigtgmobabilities is taken to be given
by E'j‘ = BetaA1,A2). As we normally do not have prior information over the valoéa, we
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Figure 6.2: Graphical model (Static case)

N

will fix this hyperprior to be uniform by takingg1 = A = 1.

The graphical representation of the model (without timeadgits for simplicity) is shown
in figure 6.2. Notice that the TF profiles are independentrgifeand the cluster assignments.
It is interesting to speculate what this implies in terms bfah TFs will be clustered together.
Naturally, TFs with very similar profiles are highly likelp be clustered together. However,
clustering by dynamics implies that some clusters will atedbude very different profiles: for
example, TFs who are mainly in one state and occasionalgflypvisit the other state are
also likely to be clustered together. Biologically, thiswid mean that TFs which are only
needed at specific times during the time course are clusiegether, which can be biologically
meaningful.

We emphasise that the number of Markov chains in this modieldd and we are consider-
ing one time-series/TF profile as a single entity to estirttaesufficient statistics of the Markov
chain. The sufficient statistics obtained from a time-secentribute towards the inference of
the number of clusters and the dynamics of clusters.

6.3 Inference using Gibbs Sampling

We aim to infer the temporal profiles of TFs, strength of theajie interactions and cluster the
dynamics exhibited by TF profiles. We use gene expressiaatat connectivity information
of the regulatory network in our inference procedure. Du¢h®intractability of Bayesian
inference and highly parameterised nature of our model,esert to Gibbs sampling. Gibbs
sampling requires drawing samples from the conditionatgyas distribution (CPD) of one
set of variables given all others. Derivations of these CRRgeatly aided by the conditional
independences implied in the model (see figure 6.2).
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The CPD forg; given the TF profiles and expression measurements is a iaigtie Gaus-
sian distribution given by

N
_rlﬂ\[(ei\mi,zi) (6.3)

with mean and covariance given by

Zfl—iTx- T Xi 4+ a2
i _O'th\ e Ai

>t

1| ¢ o7
mi= t;gie[ Xi
HereX; denotes a diagonal matrix with ti¢h row of the connectivity matriX along the
diagonal.

The CPD for each TF at each time point can be obtained by usagdnditional indepen-
dence properties of graphical models. It is given by

oty Pon (R TE) P (RS ) PUGHT).
S P () Pan (T4 ) PG T

where® = {'I'tTl,'I'tTl,'I't‘m,g{,ei,X,Z,t} and pz,, is the transition matrix for clustes of
DPM such thatz,, = k. To improve the efficiency of posterior estimation, we engplb the
stochastic Forward Backward algorithm (Boys et al., 20@0)simultaneous sampling of all
the states of a Markov chain. For this purpose we run the Fonakgorithm to obtain the
forward message‘Zm('I'tm) and then use it in above equation to get

0 (Tm) P (T Te™)

P(TM|®) =
(171®) Smal (Tm) Pz, (T ™)

(6.4)

which is then used to samplg".

6.3.1 Collapsed Gibbs Sampling of Cluster Memberships

For inference ofx, we use a collapsed Gibbs sampling approach integrating antt, so
that we need to take samples frquzm = k|z_m, T1¥,n,A). To obtain the CPD of cluster
assignment variables,, we start as follows:

p(Zm = k|Z_m,T%§-|M,r],)\> = p(zm - k|z—m7TI;'r|[]7 TlTT?ﬂa)\>
0 p(zm=Kz-m 71750, p(T{t|zm =k z-m, T, N,A) (6.5)
= p(Zn=KZ_mN) (T T ™ zn =k ) (6.6)
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Herez_p is the set of clustering assignment for all TFs excEPt T T is the set of all TF
profiles except Tkn andT'f}m is the set of TFs profiles already assigned to clusecept TF
m. We use Bayes theorem in equation (6.5) and conditionapieii@ence property of graphical
models in equation (6.6). The first term in equation (6.6) lsannterpreted as the predictive
prior and is due to the marginalization Tf Using standard results in the DPM literature, we
obtain
Plan = Kiz_mn) = K

hereny _n, is the number of TFs already assigned to cluktei DPM.

(6.7)

The second term in the CPD af, is the predictive likelihood which is calculated by in-
tegrating out the cluster specific parametgts As we see later, it depends on the count of
transitions for the TF profiles that are currently assigmeclusterk excluding the THm,

p(TlTT|TI;7:'Fm7Zm = k7)\)
— [ BT Tt 2m = K P T ™ 2n =k, A) e
2 2 [ r(ak+b) k_ k_
XK : ak 4
-/ flea-) [t e-g]

J J

(6.8)

To compute the conditional posterior for the persistenobabilities, we define

‘ { #HTM=0,T™ =0} ifj=1
J

X =
HTM=1T™ =1} ifj=2

g #HTM=1Tm =0} ifj=1

: HTM=0,T™ =1} ifj=2

k K k _

Nii= > Xf, Ng= > ¥
K:Zm=k K:Zm=k

al =M +Nly b =A2+ N

The CPD for the persistence probabilitﬁ#s’s therefore given by the following distribution
gX ~ Betgal,b¥) (6.9)

Note that these transition rates are estimated by poolmgtttistics of all the TFs currently as-
signed to clustek of the DPM; this provides more robust estimates of transitades. Plugging
this back into equation (6.8), we obtain

2 T(a+bY) (@ +xr(of+ys)

M@)r(bk) ~ T(ak+x+bk+yk)

P TET™A) = (6.10)

]:
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which finally leads to the following CPD for latent indicateariables

nk,fm‘f‘n/K
M+n—-1"
2 [T (@b (@ +x9r(bk+y%

M(@)r (b)) @+ x¢+bk+y%) |

p(Zm = k|Z*m7 T%!\I—A ) r]7)\)

(6.11)

]:

The Gibbs sampling algorithm for the inference of @&l andz,, is outlined in algorithm
(4) where each random variable is sampled from the CPD iketauntil the sampler is deemed
to have converged.

6.4 Experimental Analysis

To test our model, we check its performance on two simulatgdsgts. Then we perform a
sensitivity analysis of the model using simulated datasetarying sizes with different levels
of noise. Finally we show the applicability of our model orotveal datasets.

6.4.1 Analysis using Simulated Data

One simulated dataset is relatively small compared to thie £t most regulatory networks and
consists of 20 genes, 5 TFs and two transition matrices gowgthe dynamics of the TF pro-
files N =20,M =5K =2, T = 20). The other simulated dataset is larger with 100 genes, 20
TFs and 3 transition matrices to account for TFs dynaniics-(100M = 20,K = 3, T = 20).
We start by generating the cluster assignments that redate B~ to one of the transition matri-
ces; which are then used to generate TF temporal prdfiléssing these temporal profiles with
the artificial© parameters and the known regulatory architecture, we gen#re expression
profiles for all the genes in the dataset with added Gaussisen

It is important to mention that if the persistence probdbdi in the transition matrix are
low then two temporal profiles sampled from the same trasithatrix can be sufficiently
different. It is then possible that the nonparametric @tisty approach we employ may decide
to generate an extra cluster and cluster these two TFs selyar@his scenario is elaborated
with the help of an example in section 6.4.1.2. Similar peofd may occur when the inferred
TF profile is flipped. One principled approach to avoid thegss fin simulated and real data
analysis is by incorporating the prior knowledge about theagnics of TFs at the initial time
point. In case of simulated datasets, flipping can be avdiyeassuming that all the TFs are
off at the start of the experiment and base expression le¥eld the genes is zeros when not
bound by any TF.
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Algorithm 4 Gibbs sampling algorithm for inference in DPM-FHMM

Require:
Require:
Require:
Require:

Require:

Initialise T randomly or from expression dat@)
Initialise {zn}M_;

a1

0%+ 0.1

Initialise z,,

1: repeat

2. fori+ 1,Ndo

3:

Update the CPD (Eq. 6.3) ovéy for genei given{G, TV

4: end for

5.  for m« 1,M do

Update the CPD of}% (Eq. 6.4) given{zm, T%,0,G}

7:  end for

8: Updatee; .7 using the state marginals

9: for m« 1,M do

10:

Update the CPD afy, (Eq 6.11) given{T+M

11: end for

12:  Remove empty cluster to gBtctive

13: for k <+ :I.7 Kactive do

14: for j«1,2do

15: Samplegk ~ Beta(ak, b¥) given{T1M, 7}
16: end for

17:  end for

18: until Converged
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Label switching is a major problem in mixture modelling and onodel faces the same
challenge. This reflects the possibility that same labglfivay recur in a sample with clusters
labelled differently. While there are approaches avadablthe literature for dealing with the
label switching problem in the context of finite mixture mted@eleux et al., 2000; Stephens,
2000; Fruhwirth-Schnatter, 2001), fewer are availablease of unbounded numbers of clus-
ters. One possible remedy is to useMx M co-occurrencenatrix C that, for each pair of TFs,
stores the sample fraction with both members of the painfalh the same cluster. The entries
in the symmetric matribxC, for each draw of the Gibbs sampler, are 1 along the diagamhl a
1 for rowi and columnj if TFsi andj fall in the same cluster, zero otherwise. The ma@ix
is invariant to label switching and hence identifiable. We @0 calculateC that summarises
MCMC draws ofzy, after the burn-in period of the Gibbs sampler.

We systematically compare our approach with standard FHMMughout our experi-
ments; results of these comparisons are reported in tabjevbere the proposed method is
referred to as DPM-FHMM . For the sake of comparison, we usklMHo infer the temporal
profiles of TFs, regulatory interactions and transitioresatia Gibbs sampling. The criteria
for comparison are mean squared error (MSE) in reconstgithie temporal profiles of genes
and Hamming distance (H.D.) between inferred TF profileagisur model with FHMM. In
general, the two methods provide similar MSEs with our méthetter at inferring the TFAs
(i.e. H.D.) where the experimental noise is high (see sectior2p.40bviously, our method
also has the added benefit of interpretable clustering of TFs

In order to analyse the clustering obtained from our modeluge the TF profiles inferred
using FHMM and cluster them profiles using K-means algorithith H.D. as the distance
measure. The results obtained for K-means clustering é&setbwo simulated datasets in shown
in the subsequent sections.

6.4.1.1 Simulated Dataset #1

The clustering assignment in our method is unconstrainedisonly bounded by the total
number of TFs in the dataset. Due to this, each draw of thesIbinpler may have different
number of clusters in it. The inferred co-occurrence mafwixsmall simulated dataset in
shown in figure 6.3a. The information in this co-occurrenarir lacks one critical piece of
informationi.e. the number of clusters.

To infer the number of cluster, we collect the total numberchisters present in each
MCMC draw after the burn-in period. This information is showm figure 6.3b after nor-
malisation and can be interpreted as the posterior prahadistribution over the number of
clusters. This suggest that TF profiles are best explainemhwlustered in 2 groups which is
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MSE MSE HD HD
Datasets _ .
(DPM-FHMM) | (FHMM) | (with ground truth) | (FHMM with DPM-FHMM)
Simulated dataset #1 0.0086 | 0.0086 0 0
Simulated dataset #2 0.0086 | 0.0086 0 0
Partridge et al. (2007) 0.0889 | 0.3404 N.A. 0.2333
Spellman et al. (1998) 0.2469 | 0.1607 N.A. 0.2444

Table 6.1: Comparison of the proposed method with FHMM on simulated and real datasets

consistent with the original co-occurrence matrix showfigare 6.3c.

Itis easy to find the clustering assignment of all TFs fromitifierred co-occurrence matrix.
From the co-occurrence matrix in figure 6.3a, we see that Tikd2T& 3 are grouped together
in one cluster, TF 1, 4 and 5 in another cluster. While conmggtine accuracy of our model’s
predictions in terms of inferred TF profiles with the grounath, we found our model is able
to reconstruct the TF profiles with 100% accuracy as showahlet6.1.

Figure 6.3d shows the co-occurrence matrix for the infepeafiles clustered using K-
means algorithm (wittK = 2). As the number of samples is very few this case=f 5),
K-means algorithm is unable to find the right cluster menfiprs

6.4.1.2 Simulated Dataset #2

The results for clustering of TFs for this dataset are surigediin figure 6.4a-b in the form of
co-occurrence matrices and posterior distribution ovemtlimber of clusters. The TF profiles
in this dataset are generated from 3 transition matriceshofgh our method is able to re-
construct the TF profiles without any false positive or negat(true TF profiles for simulated
dataset #2 shown in figure 6.5b), the histogram in figure 6udjgasts that there could be 4 or
5 clusters of TF profiles. This is due to considerable amotirntinability in the TF profiles
that are generated from the same transition matrix. Anmestaf this weak co-occurrence can
be seen from the co-occurrence probabilities of TF 2 and Tdnd gimilarly for TF 13 and TF
15) in figure 6.4a that are not co-clustered with high co-o@mce probability; this results in
the instantiation of a new cluster to accommodate relatigigferent dynamics of these TFs.
Thesplitting of a cluster can be seen by considering TF 2, 4, 7, 8, 10 and i3wake co-
clustered during data generation as shown figure 6.4c. A& tbak at figure 6.4a shows that the
co-occurrence probabilities for this cluster of TFs are cmnparable to other co-occurrence
probabilities. It is easy to find two groups of TFs within tlelsster with high co-occurrence
probabilities; one group for TF 2, 7 and 13 and another groug F 4, 8 and 10. Furthermore,
the subgroup with TF 2, 4 and 7 shows weak co-occurrence betW€ 2 and 13. This a
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Figure 6.3: Results using simulated dataset 1 (a) Inferred co-occurrence matrix constructed
from simulated dataset 1 (b) Posterior probability distribution over number of clusters inferred
from simulated dataset 1 (c) Co-occurrence matrix constructed from known cluster assignments
for simulated dataset 1 (d) Co-occurrence matrix constructed using K-means algorithm based
on the inferred TF profiles from FHMM.
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dataset 2 (d) Co-occurrence matrix constructed using K-means algorithm based on the inferred

TF profiles from FHMM.
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Figure 6.5: (a) True TFs profiles for simulated dataset 1 (b) True TFs profiles for simulated
dataset 2

posteriori splitting of clusters explains the high prolbiéibs for 4 or 5 clusters in the histogram
in figure 6.4b.

The results of cluster membership obtained from K-meangrihgn (with K = 3) using
TF profiles inferred from FHMM are shown in figure 6.4d in thenfoof co-occurrence matrix.
As the number of samples in this dataset is higher (M = 15 compared to simulated dataset
#1 with M = 5) the co-occurrence matrix in figure 6.4d shows cluster negsilip which is
in agreement with the original co-occurrence matrix in fegér4c except for TF 10 which
is not co-clustered correctly by K-means algorithm. Ourpmsed method also shows weak
co-occurrence probability for TF 10 as shown in figure 6.4a.

6.4.2 Sensitivity Analysis

We conducted a thorough sensitivity analysis of the proggasedel to see how it responds
to different levels of noise in the measurements of geneesgon data. As we compare the
results of the inference on the proposed model with stani@ididM, this would also allow us
gauge the accuracy of inference in two models; namely DPN#FHand FHMM.

To achieve this, we use four simulated datasets with thesstatgiven below:

e Simulated dataset # N = 100M = 15, T = 20,K = 3 with 0% = {0.1,0.5}.
e Simulated dataset # N = 200M = 30, T = 20,K = 5 with 0% = {0.1,0.5}.

We trained three methods on these four datasets: DPM-FHN8Wdard FHMM where
the transition rates for latent Markov chains are also nefédand FHMM where the transition

103



0°2=0.1 0°=05
Criteria | FHMM FHMM FHMM FHMM FHMM FHMM
(with DPM) | (with rate learning) | (with fixed rates) | (with DPM) | (with rate learning) | (with fixed rates)
MSE* 0.0860 0.0859 0.0860 0.4367 0.4537 0.4425
HD* 0.0067 0.0167 0.0067 0.0867 0.1667 0.0433
MSE** 0.0878 0.0884 0.0887 0.4405 0.4430 0.4448
HD** 0.0200 0.0433 0.0367 0.0650 0.0933 0.0467

HD*:HD on simulated dataset #1, MSIMSE on simulated dataset #1
HD**:HD on simulated dataset #2, MSEMSE on simulated dataset #2

Table 6.2: Comparison of DPM-FHMM, FHMM with transition rate learning and FHMM with
transition rates fixed to true values

rates are kept fixed to the ground truth. The inference in FHigBlone via Gibbs sampling.
As before, we used MSE and HD to find the deviation betweenrtfegred values of model
parameters and latent variables with the ground truth. E€salts of the inference on these
simulated datasets are summarised in table 6.2.

It can be seen from table 6.2 that the predictions of our maiein closer agreement with
the ground truth compared to the predictions of FHMM (whére transition rates are also
inferred) in terms of HD. This improvement in inferring tregdnt Markov chains can be seen
in both datasets. From this, we can conclude that our moaleilisy to explain the data is better
(evenin the presence of relatively large measurementrcompared to FHMM when the size
of the problem is large which is the case for most of the bimlalgsystem with hundreds of
thousands of genes and and hundreds of TFs.

It is important to mention here that our model is not only &ethan FHMM in learning
the temporal profiles of TFs but it also infers the cluster hership of TFs which a standard
FHMM cannot do.

6.4.3 Micro-aerobic Shiftin E.coli

Partridge et al. (2007) studied the changes in transcrijtdw@haviour ofE.coli against the
oxidative stressE.coli responds to changes from aerobic to micro-aerobic comdity acti-
vating TF proteins that act as oxygen sensors such as FNRaAd Bhis study measures the
MRNA expression profiles of 302 genes and employed a pras@bilechnique (Sanguinetti
et al., 2006) to infer the activities of the key regulatonsined in oxidative stress response in
E.coli. The analysis reveals the biologically plausible resubisua the activations patterns of
these regulators.

The mRNA expression data consists of 4 time-points taken Hd 515 and 60 minutes and
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Figure 6.6: (a) Inferred co-occurrence matrix from Partridge et al. (2007) dataset (b) Posterior
probability distribution over number of clusters (c) Inferred temporal profiles of six TFs (d) Co-
occurrence matrix constructed using K-means algorithm based on the inferred TF profiles from
FHMM.
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Figure 6.7: Co-occurrence matrix constructed using K-means algorithm (with K = 3) based on
the inferred TF profiles from FHMM for Partridge et al. (2007) dataset.

measured relative to a sample taken immediately beforedygem starvation. The connectivity
information about the regulatory network Bfcoli was obtained from ecocyaatabase. We
used this dataset to reconstruct the regulatory mecharismefmporal profiles and strength
of genetic interactions) and cluster the dynamics of theser&gulators. Table 6.1 shows the
predictions of our method in comparison with Shi et al. (2008

The co-occurrence matrix in figure 6.6a shows higher co4wenae probabilities for TFs
that behave similarly by switching to on states to respomukidative stress such as FNR and
ArcA. These two TFs are known as direct and indirect sensboxygens respectively (Par-
tridge et al., 2007). Another TF which is co-clustered witiiFfand ArcA is MetJ; this is due
the key role of MetJ in methionine biosynthesis which isintpted during the adaption to aer-
obic conditions (Partridge et al., 2007). Figure 6.6b shinvegosterior probability distribution
for different number of clusters. It can be seen that the @sed method predicts two clusters
of TFs with highest probability. The second cluster comssistTFs which are not following
a well-defined pattern (MetR, SigE, CpxR). A higher prohb#piior a total of 3 clusters can
be explained by the examining the profile of MetR which istdlig different than CpxR and
SigE in the second cluster. These groups of TFs can be moha wdeen combined with the
experimental setup (such as environmental perturbatiomglthe full length of experiment)
to see how perturbations are related to the dynamics of TUsserkd together.

The results of K-means clustering (wikh= 2) using TF profiles inferred from FHMM are
shown in figure 6.6d where the first four TFs are co-clusterbdewthe remaining two TFs
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in another cluster. While this is similar to the inferencsulés of our model (figure 6.6a), K-
means algorithm withk = 3 gives results that are in close agreement with the co-o=cce
matrix inferred by our proposed method. This co-occurremedrix with K = 3 is shown in
figure 6.7.

6.4.4 Yeast Cell Cycle Data

Yeast cell cycle dataset (Spellman et al., 1998) providesgpression profiles of most of the
genes in yeast over a complete cell cycle. Although thissddites old, it is well suited for
models of transcription regulation as it is well studied apdves as a standard benchmark for
comparison and validation of the model. In this study, tidi#ferent time-series experiments
were conducted on three strains of yeast and these expésiwene synchronised by three
independent methods. Here, we will focus on the cdcl5 symibed time-series expression
data, consisting of 6181 genes expression profiles over Bdllggspaced time-points. To
obtain the connectivity of GRN of yeast, we turned to Lee e(2002) where this information
is available for 113 TFs and 6270 genes. We preprocessedlatabets in such a way that each
gene is bound by at least one TF and all TFs regulate at least@mnstream target. If, for a
gene, no regulator is available we remove the expressiditgpad that gene to make both the
datasets consistent. This preprocessing leaves us 19@%gpression profiles with a network
connectivity information of 1975 genes regulated by 104.TFs

The histogram in figure 6.8b shows that the dynamics of 104aré&$est explained when
clustered in 6 clusters. We used a threshold of 0.8 for catoence probabilities to find clus-
ters of TFs and rearranged the rows of inferred co-occuerematrix such that TFs with high
co-occurrence probabilities fall together. This co-ocence matrix is shown in figure 6.8a.

As it can be seen from figure 6.8a, most of the TFs are grouptudoitarge clusters. The
cluster at the lower right corner of figure 6.8a accounts iase TFs that follow a periodic
pattern which are ACE2, SWI4, SWI5, MBP1, STB1, FKH1, FKHDDI, MCM1 and few
more. These results are consistent with Lee et al. (2002jenthese key regulators are iden-
tified as co-expressed through the cell cycle and play an titapbrole in cell division. Our
model clusters all the key cell cycle regulators identified_ee et al. (2002) except SKN7.
Furthermore, some TFs (DAL81, INO2, INO4, MET4, MSN4, YAR3\P6) with similar dy-
namics are identified in the same cluster suggesting thgintiag also play a role in regulating
the cell cycle; this hypothesis can be tested with eviderma biological experiments. An-
other large cluster groups together those TFs that are howiag a well defined pattern. One
small cluster consists of only 3 regulators at the top lefthaf co-occurrence matrix which
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Figure 6.8: (a) Inferred co-occurrence matrix from Spellman et al. (1998) dataset (b) Posterior
probability distribution over number of clusters.
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remain in the on state throughout the cell cycle.

6.5 Conclusion

We introduce a probabilistic method to infer and cluster Thvéies based on their latent dy-
namics by combining the gene expression data with ChiPhgm-data. The motivation for
clustering TF activities is twofold: first of all, biologitaonsiderations indicate that, as TF
activation can be achieved using a finite set of mechanisifisreht TFs may indeed have
very similar dynamics of activation. Secondly, the clusigmpermits a principled Bayesian
estimation of the transition probabilities of the undartyiMarkov chains, which is otherwise
extremely hard given the short time series usually avalabbiology. Using time-series data
to identify groups of Markov chains with model-based clusig (Fraley and Raftery, 2002)
provides a natural way to model (short) time-series datajngrin a multitude of different
applications. Different methods have been proposed fertdgk (Ramoni et al., 2002; Pam-
minger and Fruhwirth-Schnatter, 2010), mostly based oitefimixture of first order, time
homogeneous Markov chains. Although these methods per@iiron some applications, se-
lecting the number of clusters remains an issue in many casdsheuristics such #8C, BIC
can be problematic, and fail to quantify the uncertaintyhiis trucial modelling step. To our
knowledge, the solution we present, based on non-paranBzyiesian mixture modelling, is a
novel and elegant way of addressing this problem. NonparanBayesian methods have been
popular in the machine learning and statistics communitgaent years, and have been used
in time series modelling. In particular, a recent paper (&ael et al., 2009) discussed the use
of nonparametric Bayesian models in FHMMs. There, howdahernonparametric limit was
used to allow the number of factors to be unknown; in our cdenonparametric prior is one
step further up in the hierarchy, and is used to group diffigligctors in an unknown number of
clusters. In the bioinformatics literature, Savage et2411Q) also used nonparametric Bayesian
methods to model jointly gene expression and ChlP-on-caia tb find transcription modules;
however, in that paper the role of regulation by TF proteias \eft implicit, and dynamical
models were not considered.

We believe the encouraging results presented indicatétisahethodology may be a useful
data modelling and exploration tools. In the future, we widike to include clustering ideas in
more complex and realistic models of regulation which allom-linear regulation (Asif and
Sanguinetti, 2011; Opper and Sanguinetti, 2010).
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Chapter 7

Future Directions

In this thesis, we proposed to use latent variables to mbeeacttivities of TF profiles using
the observed characteristics of biological networks. Wedukiree methods for this: SSM,
cFHMM and DPM-FHMM.

State space models have previously been for inferencensdrmgtional regulation; how-
ever, we exploit the sparse structure of the regulatory otwn modelling latent TFAs and
gene-specific regulatory activities. This leads to comiutally efficient algorithms that can
be used on genome-wide scale unlike previous methods. Weded this method and devel-
oped a customised software package that is easy to use wahgexpertise; this software is
being used by biologist as an analysis tool to make predista®out the TF activities that are
extremely difficult to measure.

We proposed cFHMM to model the non-linear, pair-wise intéca of TFs from gene ex-
pression in chapter 5. This method provides novel bioldgisights as well as confirming the
previously known combinatorial interactions. Althougtelat variables can cope with the post-
transcriptional and translational modifications to mRNAstmethod does not explicitly model
these modifications. Another method based on FHMM (Shi e2808) has been proposed
recently that models the post-transcriptional and trapgonal modifications as well. It seems
natural to combine these approaches that can provide lealbguseful information about two
important but different aspects of regulatory activitiegene regulatory network; combinato-
rial transcriptional regulation and post-transcriptilerad translational modifications.

One challenging problem of inference in latent Markov ckdnom limited length of ob-
served sequences is that of estimating the transition oti® Markov chains. This becomes
even severe in case of biological sequences as the expretsi® are usually limited to few
time-points due to cost of the experimental setup. To addit@s issue, we propose to use
sufficient statistics from multiple Markov chains (TF pre8) in estimating the transition rates
instead of single Markov chain. This scheme has shown tagedyetter estimates of the latent
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profiles. This approach has an added benefit; data from sififgrofiles is pooled together
for estimating the transition rates which naturally leanslustering of TF profiles. This ap-
proach does not require any assumptions about the ingia$iion rates as these are inferred.
Plausibly, this estimation scheme will lead to better rsswhen used in models where initial
transition rates are kept fixed (Asif and Sanguinetti, 2011)

An important feature of the models proposed in this thesikaslarge-scale learning and
inference which requires that only realistic or somewhaipsified models of transcriptional
regulation can be considered. It would be natural to use liigering scheme proposed in
chapter 6 to more realistic models of transcriptional raiah (Opper and Sanguinetti, 2010).

DPM-FHMM clusters the TF profiles based on the TF dynamics;témporal structure
of these latent profiles is not taken into account at the teel lef the hierarchy. It would be
interesting to see how TF profiles are clustered if the tempgiructure of latent TF profiles
is considered while clustering these profiles. Intuitiyelystering based on TF profiles will
provide clusters of TFs corresponding to their role in gatar biological processes.
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Appendix A

Calculations for Inference In
Combinatorial Transcriptional Regulation
with non Time-series Data

A.1 Gibbs Sampler

We presented the inference mechanism for the dynamic cases @fombinatorial transcrip-
tional regulation model in section (5.3). Here we descrhimedtatic case of the model where
the expression data is not from a time-series microarragraxgnt.

For Gibbs sampling, conditional posterior distributioreo®; can be written by using the
conditional independence properties of graphical modgishp, 2006). It is given by

.
|19\C (9 Wi (TF),0%).p(8ila?)

p(8ilgi, TFt, X) = (A.1)

=
t 2 .
gi [th!N(g|‘M(TFt)70 )-p(Bila®)

HereTF; is the set of states of all the TFs at experimental conditjdar M = 2, TF; €
[(0,0),(0,1),(1,0),(1,1)]. w(TFy) is given in equation (5.2). Simplifying (A.1) leads to a
Normal distribution for posterior update 6f with the following mean and covariance

IR QLI 12
2; :?tz\xi ag Xi+a[|] (A.2)

2 (A.3)

1 i t T
W= t;gietxi

After updating they andz; for all genesg; is sampled from a multivariate normal distri-
bution usingy andz;.
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Again using Bayes’ rule, we can write posterior distribotaverTF; as

N
_ﬂmc(gHm(TFt),cz)-p(TF)
P(TFe|gi, 61, X) = —= (A.4)

|‘l9\£ (0K (TFy),0%).p(TF)

TFti

p(TF) is taken to be uniformﬁ‘q). At each condition there are total'® posterior probabili-
ties corresponding ta*2possible states. Each of the probabilities, pa, . .., pow) corresponds
to one of the ¥ possible states of the posterior distribution at condition

A.2 Variational Inference

Using Gibbs sampler for inference is expensive in terms @tctmputational time as the con-
ditional posterior distribution is sampled from the joinsttibution. Variational formulation
of the same model gives comparable results to the of Gibbplsamnd it is computationally
efficient than MCMC techniques. The joint likelihood of thedel is

p(dt, 6, TFt, 0%, 02) = p(gf| TF¢, 6, 02) p(6i|a?)
where
H|TF,6;,07) T A (o} |U(TF),0%)
p(g t, '70- - g l-l 70
MRG0 =[] 1@
and

9.|or ﬂﬁ\[ (0, cx

Taking the expectation of the log of the joint likelihood Wv.6; gives the posterior distribution

= .ﬁﬂ\i (6ijm, %)

The mean and covariance of this multivariate Normal digtidn are given by

over the parameters 6f

1 T
sl = Z\xi (e )Xi+a~?
t=

tig% <etT>Xi] >

Again taking the expectation of the log of joint likelihoodrw & gives posterior distribution

_0_2

over the states of all the TFs at condition

Ing*(TF¢) = ; S {t;( L g X <99T>X|ec—— e X (6 >)}
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