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Abstract

Computational systems biology is an emerging area of research that focuses on understanding

the holistic view of complex biological systems with the help of statistical, mathematical and

computational techniques. The regulation of gene expression in gene regulatory network is

a fundamental task performed by all known forms of life. In this subsystem, modelling the

behaviour of the components and their interactions can provide useful biological insights. Sta-

tistical approaches for understanding biological phenomena such as gene regulation are proving

to be useful for understanding the biological processes that are otherwise not comprehensible

due to multitude of information and experimental difficulties. A combination of both the ex-

perimental and computational biology can potentially leadto system level understanding of

biological systems.

This thesis focuses on the problem of inferring the dynamicsof gene regulation from the

observed output of gene expression. Understanding of the dynamics of regulatory proteins in

regulating the gene expression is a fundamental task in elucidating the hidden regulatory mech-

anisms. For this task, an initial fixed structure of the network is obtained using experimental

biology techniques. Given this network structure, the proposed inference algorithms make use

of the expression data to predict the latent dynamics of transcription factor proteins.

The thesis starts with an introductory chapter that familiarises the reader with the physi-

cal entities in biological systems; then we present the basic framework for inference in tran-

scriptional regulation and highlight the main features of our approach. Then we introduce the

methods and techniques that we use for inference in biological networks in chapter 2; it sets

the foundation for the remaining chapters of the thesis. Chapter 3 describes four well-known

methods for inference in transcriptional regulation with pros and cons of each method.

Main contributions of the thesis are presented in the following three chapters. Chapter 4 de-

scribes a model for inference in transcriptional regulation using state space models. We extend

this method to cope with the expression data obtained from multiple independent experiments

where time dynamics are not present. We believe that the timehas arrived to package methods

like these into customised software packages tailored for biologists for analysing the expression

data. So, we developed an open-sources, platform independent implementation of this method

(TFInfer) that can process expression measurements with biological replicates to predict the

activities of proteins and their influence on gene expression in gene regulatory network.

The proteins in the regulatory network are known to interactwith one another in regulating

the expression of their downstream target genes. To take this into account, we propose a novel

method to infer combinatorial effect of the proteins on geneexpression using a variant of fac-
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torial hidden Markov model. We describe the inference mechanism incombinatorial factorial

hidden model(cFHMM) using an efficient variational Bayesian expectation maximisation al-

gorithm. We study the performance of the proposed model using simulated data analysis and

identify its limitation in different noise conditions; then we use three real expression datasets

to find the extent of combinatorial transcriptional regulation present in these datasets. This

constitutes chapter 5 of the thesis.

In chapter 6, we focus on problem of inferring the groups of proteins that are under the

influence of same external signals and thus have similar effects on their downstream targets.

Main objectives for this work are two fold: firstly, identifying the clusters of proteins with

similar dynamics indicate their role is specific biologicalmechanisms and therefore potentially

useful for novel biological insights; secondly, clustering naturally leads to better estimation of

the transition rates of activity profiles of the regulatory proteins. The method we propose uses

Dirichlet process mixtures to cluster the latent activity profiles of regulatory proteins that are

modelled as latent Markov chain of a factorial hidden Markovmodel; we refer to this method

as DPM-FHMM. We extensively test our methods using simulated and real datasets and show

that our model shows better results for inference in transcriptional regulation compared to a

standard factorial hidden Markov model.

In the last chapter, we present conclusions about the work presented in this thesis and

propose future directions for extending this work.
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Chapter 1

Introduction

This chapter provides the background on biological systemsand introduces the terminologies

used throughout this thesis. It starts with a discussion about the importance of system level

understanding of the biological systems. Then it introduces the biology of gene regulation

while identifying key components of basic biological systems. Experimental techniques used

to obtain the quantitative measurements of these biological systems are briefly discussed while

identifying the potential sources of noises in these measurements. Then it describes the ap-

proach followed in this thesis to analyse the data obtained from biological systems. Finally,

this chapter provides a summary of the rest of the chapters ofthe thesis and highlights the main

contributions of the thesis.

1.1 Systems Biology

Biological systems are comprised of large sub-systems thatinteract selectively and nonlin-

early to produce coherent behaviour. The sub-systems in complex biological systems are often

diverse and multi-functional in nature. This behaviour heavily depends on combination of ele-

ments and the specific elements in the sub-systems. Neither the sub-systems nor the elements

of the sub-systems can produce the same functionality in isolation due to the symbiotic nature

of the underlying system. To understand the behaviour of biological systems, experimental and

computational research is combined to get system-level view of these complex systems. This

approach is often referred to asSystems biology. Systems biology is an emerging field that can

potentially unveil the basic functionality of living organisms and can lead to breakthroughs in

medical science and engineering.

Molecular biology, on the other hand, focuses on the individual elements of complex bio-

logical systems. It states that the complex behaviour of biological systems is the result of the

1



interaction of these simple elements. Molecular biology has produced a large volume of in-

formation related to genome sequence and protein properties. This information, alone, can not

help to understand the basic functionalities of biologicalsystems as the interactions between

the components of these complex biological systems are poorly understood. Also, these biolog-

ical systems are the result of evolution so focusing on the system-level understanding can help

to solve the mysteries of complex biological processes. This holistic view is the main driving

force behind the approach advocated in systems biology.

Computational approaches in systems biology (usually referred to as computational sys-

tems biology (Kitano, 2002)) are necessary to tackle the multitude of information. Even in

the simplest of living organisms such as unicellular bacteria, the amount of experimental mea-

surements and related biological information is so vast that it is not possible to analyse all that

without efficient computational techniques. Also, poorly understood biological phenomena

can be modelled in computational models that have proven to provide useful biological in-

sights. Due to the intrinsic complexity of biological systems and vast amount of experimental

data, a combination of experimental and computational approaches promises to provide deeper

understanding of biological systems.

1.2 Biological Systems

All living organisms consist of one or more cells. The cells have a membrane that separates the

internal components of the cellular machinery from the external environment. Among other

components of the cellular machinery such as organelles that are required for various cellular

functions, the most important one is the genetic material that is responsible for producing var-

ious types of proteins and enzymes required for the important cellular functions and for the

survival of cells. The genetic material is compartmentalised within nucleus in case ofeukary-

otes( including multi-cellular organisms) whereas theprokaryotes(bacteria and archaea) lack

a defined boundary to separate the genetic material from the rest of the cellular machinery. The

genetic material consists of double strandeddeoxyribonucleic acid(DNA) which is mainly

used to store the genetic information for development and functioning of the cells. DNA is

one of the three types ofbiopolymerthat is produced by living organisms; other two types are

ribonucleic acid(RNA) and proteins.

The DNA in the cell is organised into long structures calledchromosomes. DNA consists

of two strands ofnucleotidejoined together to form a helix. These nucleotides are nucleic acid

units that serve as the basic building blocks of DNA. It is thesequence of these nucleotides

that stores the genetic information. Four nucleotides are present in a DNA strand: adenine(A),

2



guanine (G), cytosine (C) and thymine (T). Ageneis a segment of DNA that contains long

sequence of nucleotides encoding the instructions for the production of a particular type of

protein.

A genomeconsists of the collection of all the chromosomes inside thecell. The informa-

tion encoded in the form of chromosomes contains the blueprint required for the synthesis of

proteins that are of vital importance. The process of synthesising proteins from the information

stored in DNA is calledgene expression. Understanding of gene expression is of paramount

importance as this process is the core function performed byall known forms of life. Gene

expression process serves the basis for cellular differentiation and mainly controls function

and behaviour of cells. The genetic code stored in the genetic material is interpreted by gene

expression which gives rise to organism’sphenotype.

1.2.1 The Regulation of Gene Expression

Biological cells are made up of several thousand proteins that interact with one another. Each

cell produces different proteins while sensing different environmental conditions e.g., when

sugar molecules are sensed, the cells react by producing enzymes that can transport the sugar

into the cell. Gene expression is the process that produces all the proteins required for the

survival and functioning of living cells.

The production of proteins based on the encoded instructions in the gene requires other

components of the regulatory machinery to work in an orchestral manner. Generally, all the

genes contain a regulatory region calledpromoter(Fig. 1.1). An enzyme called RNA poly-

merase (RNAp) binds to the promoter region of a gene and open the DNA double helix to start

reading (transcribing) the encoded sequence to generate messenger RNA (mRNA) which is a

complementary copy of the nucleotide sequence encoded by the gene. This is the first step of

gene expression and is calledtranscription. The direct interaction between genes and TFs is

the simplest form oftranscriptional regulation. The mRNA produced at this stage of gene ex-

pression is not in the mature form and needs processing to become mature mRNA. Next major

step in gene regulation (excluding the post-transcriptional modification of the mRNA produced

in case of eukaryotes) is the translation of mRNA to functional products called proteins.

During transcription, the RNAp binds to the promoter regionof almost all the genes. The

rate of transcription is, however, mainly governed by special proteins called transcription factor

(TF) proteins. TFs are synthesised as the result of transcription of genes in a cell which are in

turn regulated by other TFs. TFs change the transcription rate of their target genes by binding

to the specific sites in promoter region of their target genes(cis-regulatory elements, Fig. 1.1).
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Figure 1.1: The regulation of gene expression.
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Figure 1.2: The regulatory network of E.coli with expression data measurements taken from

(Graham et al., 2011); red colour of the nodes in the network shows under-expressed genes

while green color shows over-expressed genes. The nodes with blue colour are the TFs that are

regulating these genes.
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When a TF is bound to a target gene, it changes the affinity (probability per unit time) that

RNAp also binds the promoter to produce a mRNA molecule.

TFs can increase or decrease the rate of transcription of their target genes based on which

they are categorised asactivatorsor repressors. Depending on a specific environmental change,

these transcription factors usually change from active to inactive state. Active transcription

controls the rate at which specific target genes are transcribed into mRNA and translated into

proteins. This set of interactions among TF proteins, genesand other cellular components form

a network calledgene regulatory network(GRN, figure 1.2). GRN is a dynamical system that

determines the rate of production of different proteins.

Generally, each mRNA molecule is translated to a protein which may serve a wide range

of purposes. In some situations, protein will accumulate atthe cell-wall to serve the structural

need. In some other cases, these proteins are enzymes that are used to speedup a chemical

reaction. The rest of them carry out other functions of living cells such as repairs within the

cell.

1.2.2 Combinatorial Transcriptional Regulation

It is understood that the process of transcription for a particular gene is under the control of

multiple TFs where the interactions between TFs regulatingthe target gene play an important

role. The combinatorial control of multiple TFs over the expression of a gene have different

biological functions: this can result in differential expression of the target gene; it can also

act as a step in transcription whereby multiple signals fromdifferent environmental stimuli

are integrated. The interactions between TFs can be in different forms too: TFs form protein

complexes that regulate the target gene; multiple TFs boundto the promoter region of the target

gene at the same time and contribute towards the expression of the gene at different rates; all the

TFs having combinatorial control over the expression of thegene are only required to be bound

during transcription. It is due to the combinatorial transcriptional regulation that two interacting

TFs with low concentrations are more likely to transcribe the target gene compared to when

only one TF with low concentration is bound to the target gene(in which case transcription

will not be initiated due to the low concentration of the single regulator). In case when two

TFs are bound to the target gene simultaneously, and the binding sites of the regulators are not

adjacent, the combinatorial control requires the intervening DNA to be looped to facilitate the

interactions.

There are many regulatory proteins that have combinatorialcontrol over the expression

of their target genes in yeast regulatory network and in higher-level organisms in particular.
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In yeast regulatory network, TF Pho2 is known to act in cooperation with other TFs in the

network. It requires Pho4 to activate the transcription of Pho5 and Swi5 for the transcription

of HO respectively (Bhoite et al., 2002). Another example ofthe combinatorial regulation is

human interferon-β gene which is only regulated when all three of its regulatorsare bound

to it in the active form. This shows the powerful role played by combinatorial transcription

regulation in integrating the physiological signals as thethree activator of interferon-β gene are

actually driven by three signal transduction pathways (Ptashne and Gann, 2002).

1.3 Experimental Methods

To study the regulation of gene expression, we need to measure the mRNA expression levels

of the genes experimentally in response to different environmental signals. The changes in

the expression profile of a gene indicate that the gene is playing an important role under the

experimental conditions by altering the rate of productionof the encoded proteins under the

influence of TFs. Measuring the proteins produced during gene expression would be ideal to

analyse the gene regulation; however, experimental difficulties make it very hard to measure it.

The mRNA expression levels of genes are relatively easier tomeasure owing to technological

advancements such as DNA microarrays.

Chromatin Immunoprecipitation (ChIP) with Microarray (chip) or ChIP-on-chip is microar-

ray based technology that is used to analyse the binding of specific proteins to DNA sequences

on a genome-wide scale. These type of proteins are more commonly found in thechromatin

of the nucleus. The chromatin is the collection of DNA and proteins that comprise the nu-

cleus of the cell. Using ChIP-on-chip, the interactions of proteins of interest such as TFs with

gene sequences can be obtained; this set of interactions canbe viewed as a static picture (or

wiring) of the GRN. This architectural information proves to be useful in statistical modelling

of regulatory interactions. We will describe these methodsin next sections.

1.3.1 Microarray Technology

DNA microarray technology has made it possible to measure the expression profiles of large

number of genes in a genome. A DNA microarray is a solid surface with thousands of micro-

scopic DNA spots. Each DNA spot on the microarray, calledprobe, contains a small amount of

a particular DNA sequence which is used to attract the complementary DNA (cDNA) sequence

of the sample. The main idea behind DNA microarray ishybridisationof complementary DNA

strands (figure 1.3). Complementary DNA sequences have the property that the complemen-
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tary strands of DNA will pair with each other due to the complementary nucleotide base pairs.

DNA strands with higher number of complementary base pairs will have stronger bonds and

thus will remain hybridised after washing off. The sample whose expression level is to be mea-

sured is fluorescently labelled and after binding to its cDNAgenerates a signal that depends on

the strength of the hybridisation. Total strength of this signal from the spot on the microarray

depends on the amount of the sample bound to the probes at thatspot. Then the intensity of the

microarray spot (under the influence of experimental conditions or query sample) is compared

to the intensity of the reference microarray spot to assess what are changes in the expression

level due to the changes in environmental/experimental conditions.

Figure 1.3: Hybridisation of the target to the probe in DNA microarray (Wikipedia, 2012b).

The underlying assumption of microarray data analysis is that the strength of the signal from

microarray represents its relative expression. In order tocompare the measured levels (or in-

tensity of the signal), normalisation of the measured intensities is required to make meaningful

comparison. In order to find those genes which significantly over-expressed or under-expressed

given the query and reference sample (sayQ andR respectively), then the relative expression

level of genei can be computed as

Gi =
Qi

Ri
(1.1)

This ratio provides a measure for characterising the genes based on their expression levels.

These ratios are also termed asfold changes. Using this measure, gene with fold change of two
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Figure 1.4: Gene expression values from microarray experiments can be represented as heat

maps to visualise the result of data analysis. This heat map shows the expression values of

a subset of genes from Graham et al. (2011); genes expression measurements are clustered

using hierarchical clustering algorithm.
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can be considered as up-regulated by factor of two; however,genes that are down-regulated by

a factor of 2 have fold change which is 0.5. To overcome this problem, fold change ratios are

usually analysed after taking the logarithm (base 2) which produces a continuous spectrum of

values. Figure 1.4 shows the expression measurements of genes (log2 fold changes) in the form

of a heat map where the these expression measurements are also clustered using hierarchical

clustering in Cytoscape (Smoot et al., 2011; Morris et al., 2011). More transformation and

normalisation techniques for microarray data are described in Quackenbush et al. (2002).

1.3.1.1 Sources of Noise in Microarray Experiments

Primarily, there are two sources of noise in gene expressionmeasurements: biological and

technical.

The process of gene regulation is intrinsically stochasticin nature (McAdams and Arkin,

1997; Nachman, 2004). All the events in gene regulation suchas transcription, post-transcriptional

modification and decay of mRNA are subjected to variability and hence this process cannot be

described deterministically. Due to this, statistical models using gene expression data to de-

scribe the hidden biological phenomena should take this variability into account.

While conducting microarray experiments, there are many factors that can influence the

outcome of the experiment such as hybridisation efficiency of different probes, temperature

conditions, amount of sample per probe, sample solution properties. Another major source of

noise could be due to samples taken from different cultures.These potential sources of noise

should be taken into account before making predictions about the expression patterns of genes.

1.3.2 Chromatin Immunoprecipitation with Microarray

Also known as ChIP-on-chip, it combines the chromatin immunoprecipitation with microarrays

to find the interactions between proteins and DNAin vivo on a genome-wide scale. Using

this technique, experiments can be conducted for an organism to find all the protein-DNA

interactions that provide a overall picture of the genome under consideration. Lee et al. (2002)

conducted a ChIP-on-chip experiment on yeast to find the regulatory interactions that have

been used as the fixed structure of yeast regulatory network in statistical models where such

information is required.

A ChIP-on-chip experiment can be divided into two major phases. The first phase starts

with cross-linkingin which a protein of interest (POI) is cross-linked to a DNA sequence.

Then the cells are broken down to obtain cross-linked POI-DNA complexes using immuno-
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Figure 1.5: Overview of the workflow of ChIP-on-chip (in wet-lab) experiment (Wikipedia,

2012a).

precipitation (IP). After this, the cross-linking of protein-DNA sequences is reversed and the

single stranded DNA obtained are labelled with fluorescent tags. The DNA segments are then

poured into a microarray for hybridisation to form double stranded DNA fragments. Finally,

the microarray is illuminated with fluorescent light and those probes on microarray that are

hybridised to labelled segments emit light signals with is captured with the help a camera. This

phase is the wet-lab portion ChIP-on-chip experiments and is summarised in figure 1.5. In the

second phase, the raw data in the image captured by the camerais then used to obtain numerical

values that are used in statistical analysis. This constitute the dry-lab phase of a ChIP-on-chip

experiment.

1.4 Inference in Transcriptional Regulation

Inferring the quantitative relationship between TFs and genes within the GRN is an area of in-

tensive research (Lawrence et al., 2010). Most of the methods for this task use gene expression

measurements to analyse the operation of GRNs. A major problem with the use of the expres-

sion data generated from high-throughput techniques is that the output signal is affected by the

modulation of TFs as well as by the intra- and inter-cellularsignalling mechanism and many
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TF 1 TF 2 TF 3

Gene 1 Gene 2 Gene 3

Figure 1.6: A bipartite network of genes and TFs

other cellular processes. Inference of the hidden mechanism governing the regulation of genes

only from gene-expression is a challenging task given theseinteractions. Problems associated

when modelling these data are: TF expression is often noisy and low; while post-transcriptional

regulation makes the task of modelling more difficult. The task of extracting the structure and

dynamics of cellular processes is difficult because of the stochastic nature of the underlying

dynamical system involving many hidden factors.

Gene regulatory network can be viewed as a network of proteins and genes where TFs are

regulating the production of proteins by controlling the expression rate of their downstream

targets (figure 1.6). In this setting, genes and TFs are the nodes of this bipartite network and

the edges between the TFs and genes are the regulatory interactions between the nodes of the

network. Only the expression measurement of genes are available with a certain degree of

noise; the task of modelling is to infer the latent profiles ofTFs that are mainly driving the reg-

ulation of genes; these TF are in turn under the influence of known experimental/environmental

conditions.

1.4.1 Our Approach

Owing to recent advancements in high-throughput techniques (Lee et al., 2002; Boyer et al.,

2005; Harbison et al., 2004), a lot of connectivity information is available about GRN, but there

is a need to analyse this qualitative connectivity information to generate quantitative network

structures. Many statistical techniques are available forgene transcription analysis that are

reviewed in detail in chapter 3. We propose to use latent variable models for inferring the

relationship among latent TF activities with the observed gene expression measurements. We

have used factorial hidden Markov models (FHMM) to model theregulation of gene expression
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under the influence of TFs using both linear and non-linear models. The FHMM provides a

natural way to model the regulation of genes by multiple TFs as we describe later in this thesis.

The structure of the regulatory network in terms of the interactions between genes and TFs

is presumed known in the methods proposed in this thesis. There are two primary methods of

obtaining this structural information. One is to determinethe architecture of the GRN exper-

imentally by techniques such as ChIP-on-chip that providesa static picture of the regulatory

interactions between all the TFs and genes on genome-wide scale. The other source of informa-

tion about the architecture of GRN is biological literature. Biological databases such as ecocyc

(Karp et al., 2002; Keseler et al., 2011) or biocyc (Caspi et al., 2008) provide enormous infor-

mation about the regulatory interactions so the regulatorynetwork architecture can be compiled

from these database. It is important to note that both these sources of network architectural data

are known to include false positives and false negatives. Our probabilistic approach towards in-

ference is able to identify the these and therefore providesa means of generating new biological

hypotheses.

The methods proposed in this thesis are primarily focused onanalysing expression data

from time-course microarray experiments. However, we alsopropose an extension of San-

guinetti et al. (2006) where time-independent version of the model is derived (in chapter 4).

The model presented in chapter 5 for combinatorial transcriptional regulation is also derived

for non time-series data in appendix A.

One of the highlights of the proposed models in this thesis isthe probabilistic nature of

the models. The probabilistic approach towards inference provides a principled way to handle

the noise in the expression measurements as well as to handlefalse positives/negatives in the

network architecture data. It is also important to associate credibility intervals with the results

obtained using gene transcription analysis. As the methodswe propose are fully probabilistic in

nature, our methods are able to infer confidence measures associated with the inference results.

1.5 Outline of the Thesis

The rest of the thesis is organised as follows:

Chapter 2: This chapter introduces the methodologies that are used throughout this thesis. It

starts with a brief introduction to the Bayesian inference framework; then it introduces differ-

ent classes of latent variables models such as linear dynamical systems and hidden Markov

models. Then we describe Bayesian nonparametric methods with focus on Dirichlet process

and Dirichlet process mixtures. Finally, we introduce approximate inference techniques such

as variational Bayesian inference and Markov chain Monte Carlo (MCMC) sampling.
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Chapter 3: This chapter provides a review of prominent statistical inference techniques for

transcriptional regulation. We review four of these methods at depth and describe the advan-

tages and disadvantages of these methods.

Chapter 4: This chapter describes a model for inference of TF activities usingstate space

model(SSM) and extend it to analyse the expression data with independent experimental con-

dition possibly with replicate. It also discusses a novel, open source and platform independent

implementation of this method with an intuitive user interface. The work presented in this

chapter is published inPRIB2009(Asif and Sanguinetti, 2009) andBioinformatics(Asif et al.,

2010) and used for modelling of transcriptional regulationin Rolfe et al. (2011).

Chapter 5: This chapter includes a statistical method for inference of combinatorial interac-

tions of TFs in GRN on genome-wide scale. It describes a novelmethod based on factorial

hidden Markov models to explore the combinatorial nature oftranscription regulation. An

efficient variational Bayesian expectation maximisation approach is proposed for posterior in-

ference in the model with a detailed analysis on real and simulated data. This work is published

in Bioinformatics(Asif and Sanguinetti, 2011).

Chapter 6: This chapter introduces an approach for simultaneous inference and clustering of

TF profiles from gene expression data. The proposed method infers the latent chains (TF pro-

files ) of the FHMM and also clusters the latents chains using nonparametric mixture modelling.

We propose a collapsed Gibbs sampling approach for the nonparametric mixture modelling in

this model and perform the detailed analyses of the model using simulated and real datasets.

Chapter 7: This chapter discusses possible future directions for extending the work presented

in this thesis.
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Chapter 2

Methodologies

This chapter introduces the basic framework for Bayesian inference with an introduction to

different classes of Bayesian networks. It then provides a brief introduction to approximate

inference using variational inference and MCMC sampling. Towards the end, an introduc-

tion to Bayesian nonparametric methods is presented while focusing on nonparametric mixture

modelling using Dirichlet process mixture models.

2.1 The Framework of Bayesian Inference

Bayesian inference is a branch of statistics in which all forms of uncertainty about the system

under consideration are expressed in terms of probabilities. As an initial step for Bayesian

inference, a model is used to characterise the system that closely represents the system that

we want to model. This mathematical model contains some unknown parameters that we want

to infer. The unknown parameters of the model are treated asrandom variablesto account

for the uncertainty associated with these parameters. Random variables can be thought of as

quantities whose values are not fixed but subject to variations by chance; aprobability distri-

butiondescribes the probability of a random variable taking on different values. We useprior

distributionsto reflect our prior belief about the values of these unknown parameters. After

seeing the data, the unknown parameters of the model are updated using Bayes’ rule to obtain

posterior distributionsfor the unknown parameters of the system. The posterior distributions

over unknown parameters of the system represent our posterior belief after seeing the observed

behaviour of the system.

Bayes’ rule defines the logic of uncertainty in the observed behaviour of a system (Jaynes

et al., 2003). To understand the Bayes’ rule, let us consideran example system that we want

to model; the set of unknown parameters of the model for this system are denoted byΘ and
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the data generated by this system is denoted byD . We collect our prior knowledge about the

unknown parameters of the model in the form of prior distribution for Θ. In most simple form,

Bayes’ rule is given by

posterior=
likelihood × prior
normalising factor

(2.1)

or

p(Θ|D ) = p(D |Θ) p(Θ)

p(D )
(2.2)

The above equation can be interpreted as ”degree of belief” in Θ before and after observing

D . p(Θ) is theprior belief aboutΘ before observing the data;p(D |Θ) represent thelikelihood

function of the observed data; likelihood function represents how probable the data is for a

given setting of the parametersΘ. p(Θ|D ) is the posteriorbelief after observing the data.

p(D ) is themarginalprobability of data. Our belief about the outcome of the system is subject

to the observed behaviour (D ) of the system so we define it in terms ofconditionalprobabilities.

Conditional probabilities reduce the set of possible outcomes based on the condition that some

event have already occurred or known to occuree.g., the probability of a certain range of

values for the parametersΘ is increased based on the condition thatD is observed; similarly,

the probability of a certain range of values for the parameters Θ is decreased after observing

D .

An important aspect of Bayesian inference is that the unknown parameters and the observed

data are all treated as random random variables.Hiddenor latent variablesare random vari-

ables that are not observed directly; but they can be inferred from the observed variables with

the help of inference. These variables are sometimes referring to physical quantities in the

system under consideration such as TF concentrations in thecontext of GRN which can not

be measured for practical reasons. In some other situationsthese variables refer to an abstract

concept such as cluster membership in the context of clustering. The main advantage in using

random variables is the reduction in the dimensionality of the data. This is achieved by ac-

cumulating many observed variables into one abstract entity that helps to understand the data

better. The reduction of dimensionality in case of clustering can be seen in fewer number of

clusters compared to the number of observations.

One of the main advantages in using Bayesian inference is thereduced complexity of the

model obtained by the use ofmarginalisation. This method automatically prefers simple mod-

els that sufficiently explain the observed data without increasing the complexity of the model.

This is true even when prior over the unknown parameters are completely uninformative (Tip-
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Figure 2.1: Bayesian network for joint distribution p(a,b,c)

ping, 2004). However in practice, this approach requires integration over the variables and in

complex systems sometimes these computations are analytically intractable. Then, approxi-

mation techniquese.g.,MCMC sampling and variational approximation are used whichare

described later in this chapter.

Conditional independenceis a widely used concept in Bayesian inference. In case of three

random variablesa, b andc such that the conditional distribution ofa is independent of the

value ofb given the value ofc,

p(a|b,c) = p(a|c) (2.3)

thena is said to be statistically independent ofb given the value ofc. The conditional indepen-

dence can also be derived from the joint distribution ofa andb as follows:

p(a,b|c) = p(a|b,c)p(b|c)
= p(a|c)p(b|c)

by using product rule of probabilities with equation (2.3).For two random variablesa andb to

conditionally independent of a third variablec, one of the above two conditions must be true

for all possible of the variablec. This independence relationship plays a very important rule

in probabilistic modelling. Using conditional independence relation, the structure of the model

and the computations needed for inference and learning are simplified to a significant deal.

2.2 Bayesian Networks

Bayesian networks are graphical representation of the conditional independencies between ran-

dom variables of a model in a form of directed acyclic graph (DAG). Conditional independence

in Bayesian networks implies that the random variables (nodes in DAG) are only dependent on

its parents and independent of other nodes in DAG given its parent.
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The nodes in the Bayesian network are random variables and directed links represent the

probabilistic relationships among the nodes of the network. The following joint distribution

over random variablesa, b andc

p(a,b,c) = p(a|c)p(b|c)p(c) (2.4)

can be represented as a Bayesian network as shown in figure 2.1. The joint distribution is fac-

tored into simpler probability distributions by the application of product rules of probabilities

and this factorisation holds for any choice of the joint distribution. The arrows in this figure

represent the probabilistic relation between two random variables that can be observed or la-

tent. The nodec in the graphical model is theparentof nodesa andb as there are directed

edges froma to b andc. In general, the joint distribution for a Bayesian network can be written

as a product of the individual probability distributions. It can be written as

p(x) = ∏
v∈V

p(xv|xpa(v)) (2.5)

wherepa(v) is the set of parents of nodev in the graphical model andx represents the random

variables in the Bayesian network.

2.2.1 Dynamic Bayesian Networks

To model the time dynamics of the sequential data, Bayesian networks are adapted to represent

the sequence of variables over time to form dynamic Bayesiannetwork (DBN). In this case,

the observed data can not be treated asindependent and identically distributed(i.i.d), so we

need to model the sequence of observation under the assumption that the sequence follows a

Markov process. Markov process is a stochastic process withMarkov property; it implies that

the conditional probability of the observation at present state only depends on the previous

state.

p(xt |x1, . . . ,xt−1) = p(xt |xt−1)

In this case, equation (2.5) becomes

p(x) =
T

∏
t=1

p(xt |xt−1) (2.6)

whereT is the total number of observations. Equation (2.6) is also known asfirst order Markov

chain(figure 2.2).

A simple example of DBN is the HMM which is shown in figure 2.3. The shaded nodes in

Bayesian networks are considered observed variables whilethe other nodes are latent variables.
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x1 x2 x3 x4

Figure 2.2: A first order Markov chain

2.2.2 Hidden Markov Models

Let zt be a latent variable for each of the observationsxt in a sequence ofT observations in

equation (2.6) wherezt can have different dimensionality thanxt . If we move the Markov

property assumption to the latent variableszt instead ofxt , then the resultant graphical repre-

sentation can be shown as figure 2.3. Based on the discrete or continuous choices for latent

variablezt , we can get two different types of models. If both the latent and observed variables

are Gaussians with a linear dependence of the conditional distributions on their parent nodes

then we getlinear dynamical systems; whereas if the latent variables are discrete then we obtain

hidden Markov models(HMM). The general class of these models is calledstate space model

(SSM).

In a HMM, latent variablezt is a multinomial random variable that describes which stateof

the latent variable is responsible for generating observation xt . These variables can be thought

of asK dimensional vectors where only one entry of the vector is non-zero (1-of-K representa-

tion). The joint probability of a HMM can be written as

p(X,Z) = p(z1)

[

T

∏
t=2

p(zt |zt−1)

]

.
T

∏
t=1

p(xt |zt) (2.7)

whereX = {x1,x2, . . . ,xT} andZ = {z1,z2, . . . ,zT}. In the HMM jargon,p(zt |zt−1) is called

transition probabilityor transition ratewhile p(xt |zt) is calledemission probability. The initial

transition probability att = 1 has a special meaning; it specifies the initial value of latent

zt−1 zt zt+1

xt−1 xt xt+1

Figure 2.3: A hidden Markov model
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variablez1 and is usually denoted byπ. The transition probabilities are usually denoted byA

with K(K−1) independent parameters encoding the probabilities

A jk = p(zt,k = 1|zt−1, j = 1); 0≤ A jk ≤ 1,∑
k

A jk = 1 (2.8)

The emission probability vector,p(xt |zt ,B), with B as the parameter for this distribution

consists ofK values corresponding toK possible states of the latent variablezt . Now the joint

probability of all the variables can be specified as

p(X,Z|Θ) = p(z1|π)
[

T

∏
t=2

p(zt |zt−1,A)

]

.
T

∏
t=1

p(xt|zt ,B) (2.9)

whereΘ = {A,B,π} is the set of model parameters. The basic HMM has been extended to var-

ious different forms (Rabiner, 1989; Bishop, 2006). One variant of HMM is the factorial hidden

Markov model (FHMM) in which the latent state representation is distributed to multiple state

variables; the observed sequence is then conditioned on a set of K independent Markov chains

instead of a single Markov chain. The FHMM provides a naturalway to model the regulation

of genes in GRNs as we describe in chapter 5 and 6.

2.2.2.1 Forward Backward Algorithm

An important problem of a HMM given its parameters is that of finding the posterior marginal

probabilities of hidden statesz1,z2, . . . ,zT given an observed sequencex1,x2, . . . ,xT . This

training of a HMM is achieved byforward backward algorithm.

In forward backward algorithm,αt(i) denotes the probability of partial observation se-

quencex1,x2, . . . ,xt until time t and the state of latent variablezt = i at timet given the param-

etersΘ; whereasβt(i) denotes the probability of partial observation sequencext+1,xt+2, . . . ,xT

given the state of latent variablezt = i at timet and the parametersΘ

αt(i) = p(x1,x2, . . . ,xt,zt = i|Θ)

βt(i) = p(xt+1,xt+2, . . . ,xT , |zt = i,Θ).

whereαt(i) andβt(i) are called forward and backward variables respectively. The algorithm

then computes the forward probabilities for all the time slices and states of the latent variable

zt as follows,

α1( j) = πkp(x1|z1 = j) 1≤ j ≤ K (2.10)

αt+1( j) =

[

K

∑
k=1

αt(k)A jk

]

p(xt+1|zt+1 = j) 1≤ j ≤ K,1≤ t ≤ T−1. (2.11)
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For backward probabilities

βT( j) = 1, 1≤ j ≤ K (2.12)

βt( j) =
K

∑
k=1

A jkp(xt+1|zt+1 = j)βt+1(k) t = T−1,T−2, . . . ,1 (2.13)

1≤ j ≤ K.

Having computed these probabilities, the task of finding theposterior marginal probabilities

can be achieved by defining

γt(k) =
αt(k)βt(k)

∑K
k=1 αt(k)βt(k)

t = 1,2. . . . ,T, 1≤ k≤ K. (2.14)

Equation (2.14) specifies the probability of being in statek at timet givenX andΘ. These

probabilities also calledmarginal state probabilities. With long observation sequences, the

forward backward algorithm needs to compute extremely small conditional probabilities that

sometimes can result in arithmetic underflow. This situation may also arise if multiple observed

sequencese.g.,multiple gene expression profiles are used to estimate the posterior marginal

probabilities.

The solution to numerical instability of forward backward algorithm is to uselog space

for calculating the conditional probabilities of equations (2.11)-(2.14) (Mann, 2006). Another

approach to circumvent this problem is to rescale these conditional probabilities by using a scal-

ing factor that keeps these probabilities within the range of standard floating point arithmetics

(Rabiner, 1989).

As the number of genes in the analysis we perform are in the order of hundreds or some-

times thousands, we also face this numerical instability problems due to the multiplication of

large number of small emission probabilites. We use log space for the calculations of forward

backward algorithm with gene expression profiles as observed sequences to avoid numerical

instabilities.

2.2.3 Linear Dynamical Systems

Figure 2.3 shows the general class of models where sequence of latent variables are used to

model the sequential data. Lets assume that the latent variables are now continuous. In this case,

each pair of node{xt ,zt} represents a linear-Gaussian latent variable model. This implies that

the joint distribution, conditional distributions and marginal distributions all will be Gaussians.

So we can write the transition and emission probabilities as

p(zt |zt−1) = N (zt |Azt−1,Γ)

p(xt|zt−1) = N (xt |Czt ,Σ)
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or equivalently in the form of linear equations as

zt = Azt−1+wt

xt = Czt +vt

(2.15)

with noise terms given by

w ∼ N (w|0,Γ)
v ∼ N (v|0,Σ)

whereΘ = {A,Γ,C,Σ} are called the parameters of the linear dynamical systems (LDS) and

can be determined using maximum likelihood through expectation maximisation algorithm. In

chapter 4, we derive the inference algorithm for LDS using anapproximate inference technique

where approximate inference is used due to the intractability of the posterior distribution. Note

that special attention needs to paid for the distributions of the first sample in the sequence as in

case of HMM.

2.3 Expectation Maximisation Algorithm

Expectation maximisation (EM) algorithm is a general technique for finding the maximum

likelihood estimates for model with latent variables (Dempster et al., 1977; McLachlan and

Krishnan, 2008). It computes the expected values of the latent variables and parameters of the

model iteratively in two steps: theexpectationor E step andmaximisationor M step.

Let X denote the set of observations with each row containing one observation. Similarly,

Z denote the set of latent variables with one row for each observation with 1-of-K encoding.

If Θ denote the set of model parameters, then the log of the marginal likelihood of the data is

given by

ln p(X|Θ) = ln

(

∑
Z

p(X,Z)

)

(2.16)

where the summation replaces the integration if the latent variables,Z, are continuous vari-

ables. However, this equation leaves us with one problem; the summation in this equation

appears inside the logarithm which results in complicated expression when estimating the max-

imum likelihood solutions. The solution to this problem is to consider thecompletedata which

includes{X,Z} instead of justX.

Most of times, we do not know the values for latent variablesZ but we can calculate poste-

rior probability forZ given observations (X, which we callincompletedata) andΘ, p(Z|X,Θ).
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Algorithm 1 Expectation Maximisation Algorithm

1: InitialiseΘold = Θ0

2: repeat

3: E step: Evaluatep(Z|X,Θold)

4: M step: EvaluateΘnew as

Θnew= argmax
Θ

Q(Θ,Θold)

where

Q(Θ,Θold) = ∑
z

p(Z|X,Θold) ln p(X,Z|Θ)

5: Θold = Θnew

6: until convergence criterion is not satisfied.

At the start, the EM algorithm initialises the model parametersΘ by choosing some starting

valuesΘ0. Then it repeat the following two steps:

E step: During the E step, the current values of the parameterΘold are used to find the poste-

rior distribution of the latent variablesZ. Having computed this, we can use this posterior

probability distribution to compute the expectation of thelog likelihood of complete data

evaluated for some general parameter valueΘ as

Q(Θ,Θold) = ∑
z

p(Z|X,Θold) ln p(X,Z|Θ)

Note that the logarithm directly acts on the joint distribution p(X,Z) in this case.

M step: In the M step, we maximise our estimates of the parametersΘ to obtainΘnew as

Θnew= argmax
Θ

Q(Θ,Θold) (2.17)

After one iteration of the EM algorithm we get the revised values forΘ which are then used

in the next iteration asΘold; Θold is also used to compute the posterior distribution,p(Z|X,Θ)

in the next iteration of the EM algorithm. This posterior distribution is used to compute the

expectation of the log likelihood of the complete data. The convergence of the algorithm can

be monitored based on the increase in the expectation of the log likelihood; the algorithm

iterates until the increase is less than a predefined threshold.
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2.4 Approximate Inference

Fundamental task of probabilistic modelling is the estimation of the posterior distribution of

the latent variablesZ given the observed dataX i.e., p(Z|X) and expectations with respect to

these distributions. In a fully Bayesian approach, all the unknown parameters are given prior

distributions and treated as latent variablesZ. Then, using the EM algorithm, we can compute

the expectations of the log likelihood of complete dataw.r.t. the posterior distributions of the

latent variables (Dempster et al., 1977). In many practicalapplications, this is not feasible due

to various reasons such as dimensionality of latent variable space or the form of the posterior

distributions. For these modelling problems, approximation techniques are used; these tech-

niques can be categorised asstochasticor deterministic. Variational inference falls under the

category of deterministic approximation techniques (Jordan et al., 1999; Bishop, 2006). Varia-

tional methods are used for finding an approximate solution by restricting the range of functions

over which the approximation is applied. This restriction may also be in the form of factorisa-

tion in case of the factorized variational approach as we describe later. Markov chain Monte

Carlo (MCMC) techniques fall under the category of stochastic approximation techniques. We

will briefly describe these two approximations next.

2.4.1 Variational Bayesian Inference

Variational Bayesian inference is an approximation technique based on the calculus of varia-

tions. The basic idea in variational inference is to approximate the posterior distribution over

the latent variables and parameters with a simpler distribution. Variational techniques convert

a complex problem into a simpler problem by making use of the decoupling of the degree of

freedom in the original problem (Jordan et al., 1999). This decoupling is obtained by expand-

ing the problem to include additional parameters also knownasvariationalparameters that are

optimised according to the problem under consideration.

In a fully Bayesian framework, a model with a set of latent variablesZ and a set of ob-

served variablesX with joint distributionp(X,Z), our goal is to find an approximate posterior

distribution forp(Z|X) andp(X). Decomposing the log marginal probability, we get

ln p(X) = L (q) + KL (q ‖ p) (2.18)

where:

L (q) =
∫

q(Z) ln

[

p(X,Z)
q(Z)

]

dZ (2.19)

KL(q ‖ p) =−
∫

q(Z) ln

[

p(Z | X)

q(Z)

]

dZ (2.20)
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Figure 2.4: Illustration of the decomposition given in equation (2.18)which holds for any choice
of distribution q(Z) (image taken from Bishop (2006))

Here,L (q) is a functional and equation (2.20) characterises the Kullback-Leibler diver-

gence between approximating distributionq(Z) and the posterior distributionp(Z|X). Equa-

tion (2.19) and (2.20) differ in sign andL (q) have joint distribution ofX andZ while KL(q‖ p)

contains conditional distribution ofZ givenX. Using the product rule

ln p(Z,X) = ln p(Z|X)+ ln p(X) (2.21)

in equation (2.19) and substituting this value in equation (2.18) gives the required log likelihood

given in equation (2.18) which proves the basis for this decomposition.

Note that KL divergence is always positive or zero. If KL divergence is zero, then approxi-

mating distributionq(Z) = p(Z|X). Therefore, looking at equation (2.18), it follows thatL (q)

is a lower-bound on lnp(X) i.e. L (q)≤ ln p(X). Figure 2.4 shows the decomposition shown in

equation (2.18).

We can minimise the KL divergence by maximising the lower bound specified in the equa-

tion (2.18) using optimisationw.r.t. the distributionq(Z). The KL divergence vanishes when

the q(Z) is equal top(Z|X). However, in many cases, it is difficult to work with the form

of true posterior distribution. So, we restrict family of distributionsq(Z) that can be used; a

member of this family for which the KL divergence is minimised is selected as the approxi-

mating posterior distribution. The goal here is usually to restrict the family of distributions by

choosing a flexible distribution that can best approximate the true posterior distribution. The

restriction imposed is usually for the purpose of tractability. Standard nonlinear optimisation

techniques can then be used to obtain the optimal values of the parameters. One approach for

restricting the family of distributions is to use factorised distributions for approximating the

posterior distributions which is discussed next.
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2.4.1.1 Factorized Variational Approach

One way to restrict the family of approximating distributions is to factorize the distribution. In

this approach, the set of latent variablesZ is partitioned into disjoint groups as follows

q(Z) =
M

∏
i=1

qi(Z i); (2.22)

assuming that the distributionq factorizes with respect to these groups. The objective is to

select a distribution for which the lower boundL (q) is largest. To achieve this,L (q) is to be

optimisedw.r.t all the distributionsqi(Z i); this is done by (variational) optimisation ofL (q)

w.r.t. each of the factors given in equation (2.22). For this purpose, substituting equation (2.22)

in equation (2.19) and simplifying we obtain

L (q) =
∫

∏
i

qi(Z i)

[

logp(X,Z)−∑
i

logqi(Z i)

]

dZ

=
∫

q j(Z j)Ei 6= j [logp(X,Z)]dZ j −
∫

q j(Z j) logq j(Z j)dZ j +const (2.23)

where

Ei 6= j [ln p(X,Z)] =
∫

logp(X,Z)∏
i 6= j

qi(Z i)dZ i (2.24)

and all the terms that do not depend onq j(Z j) are absorbed into the constant. After this,qi 6= j

is kept fixed andL (q) in equation (2.23) is maximised with respect to all possibleforms for

the distributionq j(Z j). Another important fact is that equation (2.23) is negativeKL diver-

gence and thus maximising the equation (2.23) is equivalentto minimising KL divergence and

the minimum occurs whenq j(Z j) ∝ exp(Ei 6= j [ln p(X,Z)]). The general expression for the

optimum solution is given by

logq̂ j(Z j) = Ei 6= j [logp(X,Z)]+const (2.25)

This above framework provides the basis for variational methods. The last equation says that

the log of the solution forq j is obtained by taking the expectation of the log of the joint dis-

tribution over hidden and observed variables with respect to all other factorsqi with i 6= j. We

can write the above equation as

q̂ j(Z j) =
exp(Ei 6= j [logp(X,Z)])∫

exp(Ei 6= j [logp(X,Z)])dZ j
(2.26)

Equation (2.26), forj = 1, . . . ,M whereM is the total number of factors, represent a set

of consistency conditions for the maximum of the lower bound. It is important to emphasise

that this equation does not represent an explicit solution as the expression on the right-hand
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side of equation (2.26) for the optimum factor ˆq j(Z j) depends on the expectations computed

with respect to other factorqi(Z j) with i 6= j. So, the solution to this can be computed by

first initialising all the factorsqi(Z i) and then calculating factors in a cyclic order with revised

estimates given by equation (2.26) until the convergence isachieved.

In general, the factorisation approach of variational inference usually underestimates the

variance of the approximate distribution to the posterior distribution (Bishop, 2006). The es-

timation of the factorized approximating distributions may provide us with functional forms

which are still intractable; therefore usually some simpler space for posterior distributions of

the parameters is used (Beal, 2003). One advantage of variational inference approach is that

any factorisation of the posterior distribution gives a lower bound on the marginal likelihood.

2.4.2 Sampling Techniques

In Bayesian inference, computation of the posterior distribution is usually intractable and we

have to resort to some approximation technique like one described in the section 2.4.1. This

section introduces another class of approximation techniques based on numerical sampling

known asMonte Carlo techniques. In most inference problems, we are only interested in

evaluating the expectations rather than the posterior distribution itself. In these situations, we

can use sampling techniques to find the expectations of some function f (z) w.r.t. a distribution

p(z). In case of discrete variables, expectation is computed as

E[ f ] = ∑
i

f (i)p(i) (2.27)

In general, sampling techniques allow us to obtain a set of samplesz(i) wherei = 1, . . . ,N drawn

independently from the distributionp(z). Then the expectation can be found as

f̂ =
1
N

N

∑
i=1

f (z(i)) (2.28)

Different sampling techniques are available for differenttypes of graphical models. We will

only briefly describe Gibbs sampling in the next section. Theinference in the model proposed

in chapter 6 is done via Gibbs sampling.

2.4.2.1 Gibbs Sampling

Gibbs sampling also known asalternating conditional samplingis defined in terms of subvec-

tors of the parameter vector. In one trace, Gibbs sampler cycles through the subvector of the

parameters and draws samples for each subset conditional onall other subsets. In each iteration
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of the Gibbs sampler,k steps are required to draw samples from all the subvector of the param-

eter vector wherek is the number of sub-vectors of the parameter vector (Gelmanet al., 2004).

More precisely, ifZ denotes the parameter vector andzt
j denotes the values of the subvector

zj at iteration/timet, then eachzt
j is drawn from the conditional distribution given all other

subvectors as

p(zj |zt−1
− j ) (2.29)

wherezt−1
− j is given by

zt−1
− j = (zt

1, . . . ,z
t
j−1,z

t−1
j+1, . . . ,z

t−1
k ) (2.30)

In many cases, it is possible to sample directly from most of the conditional posterior dis-

tributions of the parameters and use of conjugate priors also provide ease in sampling.

2.5 Bayesian Nonparametric Methods

The models described in the previous sections are parameterised with a limited number of

parameters. It is often desirable, for theoretical reason,to build models that have no limita-

tion on the parameter space. These methods, called nonparametric Bayesian methods, define

distribution of function space such as that of probability measures to avoid restrictive paramet-

ric assumptions (Müller and Quintana, 2004). The prior distribution for these nonparametric

methods must also be a nonparametric distribution with infinite number of parameters. Non-

parametric methods provide an efficient way to analyse the data where the number of latent

components are not known in advance. In the following, we discuss one of these methods and

then describe its use in nonparametric mixture modelling.

2.5.1 Dirichlet Process

Dirichlet process (DP) is a stochastic process that is widely used in Bayesian nonparametric

modelling. A sample from a Dirichlet process is a discrete probability distribution that cannot

be described by using a finite number of parameters. A DP can bethought of as a generalisation

of the Dirichlet distribution (Holmes, 2010; Gibbons and Chakraborti, 2003).

Let G be a distribution over a spaceX andη be a (real) positive number. For any finite

set of partitions ofX, A1∪A2∪Ak = X, the vectorG(A1), . . . ,G(Ak) is a random measure.

G∼ DP(G0,η) with base measureG0 and concentration parameterη if

G(A1), . . . ,G(Ak)∼ Dir(ηG(A1), . . . ,ηG(Ak)) (2.31)

for any measurable finite partitions ofX.
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A DP can also be viewed as a distribution over distributions with two parameters. Base

distributionG0 can be thought as the mean of the DP becauseE[G(A)] = G0(A). The concen-

tration parameterη can be interpreted as the inverse variance of the DP becauseV[G(A)] =
G0(A)(1−G0(A))

η+1 which implies that larger values of the concentration parameter will force DP to

concentrate more of its mass around its mean.

Based on different construction schemes, DPs can be represented in different ways (Teh

et al., 2006; Teh, 2007). Here we describe one method which isknown as thestick breaking

construction.

2.5.1.1 Stick-breaking Construction

The process forstick breakingconstruction of DP can be described as follows:

βk ∼ Beta(1,η) (2.32)

π = βk

k−1

∏
j=1

(1−β j) f ork= 1,2, . . . (2.33)

This process can be interpreted by considering a unit lengthstick and then breaking it accord-

ing to the proportionπ1 = β1 ∼ Beta(1,η); then the remaining stick broken according to the

proportionsβk ∼ Beta(1,η) with the remaining proportion of the stick assigned toπk. Collec-

tively, this construction of DP is calledGEM distribution (named after Griffiths, Engen, and

McCloskey, (Gnedin and Kerov, 2001)).

π∼GEM(1,η) (2.34)

2.5.2 Dirichlet Process Mixture Modelling

Dirichlet process mixture model (DPMM) is an extension of finite mixture models where the

number of latent components are not knowna priori. It is easier to understand the DPMM

by starting from finite mixture models. A graphical representation for finite mixture model is

shown in figure 2.5 wherei andk are the indices for observations and clusters respectively. The

generative mechanism for finite mixtures is given by

π ∼ Dirichlet(η1,η2, . . . ,ηK)

zi|π ∼ Multinomial(π)

θk|λ ∼ G(λ)

xi |zi,{θ}Kk=1 ∼ F(θzi)
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Figure 2.5: Graphical representation for finite mixture models (i = 1, . . . ,N,k = 1, . . . ,K). If
K→ ∞ then it forms the graphical model for infinite mixture models (DPMM).

The above generative mechanism generates a data pointxi by selecting one ofK compo-

nents from a multinomial distribution; the prior distribution for this multinomial distribution is a

Dirichlet distribution parameterised byη which can be taken to be uniform withη/K, . . . ,η/K.

After selecting a component, a sampleθk is drawn from the component distributionG to gen-

erate the data pointxi from the distributionF. For mathematical convenience, the distributions

F andG are from exponential family of distributions withG as conjugate prior forF (Bishop,

2006).

In finite mixture models, the value forK is known in advance; however, this is not the case

for infinite mixture models such as DPMM. If we change the limit ofK to infinity, then the

above described generative process becomes a DPMM. It is given by

π ∼ GEM(1,η)

zi |π ∼ Multinomial(π)

θk|λ ∼ G(λ)

xi |zi ,{θ}∞
k=1 ∼ F(θzi )

In case of a simple infinite mixture of Gaussians with fixed variance,G becomes the con-

jugate prior for the mean of the Gaussians whileF is Normal distribution with mean given by

G.
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2.5.3 Collapsed Gibbs Sampling for DPMM

One advantage of using conjugate prior is that we can often integrate out the hyperparameters

of the prior distribution; this helps to a great deal while sampling for posterior analysis. We can

easily derive a Gibbs sampling scheme for DPMM if wecollapsethe Gibbs sampler by inte-

grating out the component parametersθzi . By doing this, we only need to take samples forzis.

The collapsed approach to sampling is justified by Rao-Blackwell theorem (Blackwell, 1947);

according to this theorem, integrating out some parametersfrom the conditional distributions

of a variable reduces the variance of the posterior estimateof that variable.

Let F(xi |θk) belongs to the exponential family withG(θk|λ) as conjugate prior in the stan-

dard DPMM setting as described in section 2.5.2. The conditional posterior distribution for

component indicator variablezi , p(zi = k|z−i,x,π,{θ}Kk=1,η,λ), is conditionally dependent on

π andθk so sampling from this infinite dimensional distribution is not possible for practical

reasons; herez−i denote all other component indicators exceptith component. However, if we

integrate outπ and{θ}Kk=1 then it is easy to sample from the resulting conditional posterior dis-

tribution. We can write the conditional posterior distribution of components indicator variables

as

p(zi = k|z−i ,x,η,λ) = p(zi = k|xi,z−i ,x−i ,η,λ)

∝ p(zi = k|z−i ,x−i,η,λ)p(xi|zi = k,z−i ,x−i,η,λ) (2.35)

= p(zi = k|z−i ,η)p(xi|zi = k,λ) (2.36)

where we have used Bayes’ rule in equation (2.35) and conditional independence property of

Bayesian networks in equation (2.36) (fig. 2.5). The first term in equation (2.36) can be termed

aspredictive prior; using the standard results of mixture models, it is given by

p(zi = k|z−i,η) =
nk,−i +η/K

n+η−1
(2.37)

wherenk,−i is the number of data items currently assigned to componentk excluding theith

item. The second term in equation (2.36) can be termed aspredictive likelihood. It can be

obtained as

p(xi |xk,−i ,λ) =
∫

p(xi |θk)p(θk|xk,−i,λ)dθk (2.38)

using the standard results of exponential family of distributions. For a nonparametric mixture

of Gaussian with unknown meanµk and unit variance, the generative process for DPMM can
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be written as

π ∼ GEM(1,η)

zi |π ∼ π

µk|λ ∼ N (0,1)

xi |zi,{θ}∞
k=1 ∼ N (xi |µk,1)

where the conjugate prior forµk is taken to beN (0,1). In this case, the predictive likelihood

comes out to be

p(xi |xk,−i,λ) =
1

2
√

π
exp(−x2

i

4
) (2.39)

whereλ is the set of hyperparameters of a standard Normal distribution. The conditional pos-

terior distribution for component indicator variables is given by

p(zi = k|z−i ,x,η,λ) =
nk,−i +η/K

n+η−1

[

1
2
√

π
exp(−x2

i

4
)

]

;

so the Gibbs sampler in this case would iteratively update the component indicator variables

for each of the observation using the updated component assignment for all other observations

until the sampler is deemed to have converged. The sampling scheme for Dirichlet process

mixture of Gaussians is summarised in algorithm 2.

2.6 Conclusion

In this chapter, we presented a brief introduction to the methodologies used in the rest of the

thesis. Starting with the basic framework of Bayesian inference, we describe different classes

of models that can be obtained from dynamic Bayesian networks by changing the type of la-

tent variables. Although we do not directly use HMM in later chapters of the thesis, but we

use a variant of the HMM (factorial hidden Markov model) and the inference mechanism in

that model remains largely same. Then we introduce variational approximation and sampling

techniques that are used for approximate inference in the models presented in this thesis. Fi-

nally, nonparametric Bayesian methods are introduced withfocus on Dirichlet process mixture

models that we use in chapter 6.
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Algorithm 2 Gibbs sampling algorithm for DPMM

Require: {zt−1
i }ni=1

Sample new{zt−1
i }ni=1 in the following way:

1: repeat

2: for i← 1,n do

3: Remove the data itemxi given the cluster assignmentzi .

4: If the cluster becomes empty, then delete this cluster and rearrange the cluster indices.

5: Compute the predictive likelihood for each ofK clusters (equation 2.39).

6: for k← 1,K+1 do

7: Draw a sample for newzi from

p(zi = k,k≤ K) ∝
nk,−i

n+η−1

[

1
2
√

π
exp(−x2

i

4
)

]

p(zi = K+1) ∝
η

n+η−1

[

1
2
√

π
exp(−x2

i

4
)

]

8: end for

9: If zi = K +1, then instantiate a new cluster with indexK+1.

10: Update{nk}Kk=1.

11: end for

12: until Gibbs sampler is deemed to have converged.
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Chapter 3

Inference Methods for Transcriptional
Regulation

3.1 Introduction

The regulation of transcription is one of the most complex processes in living organisms. Being

fundamental to all biological systems, it plays a major rolein governing repairs, reproduction,

respiration and various other biological processes necessary for the survival of cells. The regu-

lation of transcription determines the changes in the expression level of target genes by altering

the transcription rates in the regulatory network. These transcription rates are controlled by

DNA binding proteins or TFs to control transcription of genes. The expression of genes is a

basic information processing mechanism whereby information stored in genes in the form of

DNA is transcribed to mRNA. While the mRNA produced during transcription in prokaryotes

is in ready for further processing (i.e., translation), the mRNA produced in eukaryotes has to

undergo further modifications to become mature mRNA.

The process of gene expression consists of several phases such as transcriptional regulation,

post-transcriptional modifications, translation and post-translational modifications to produce

functional gene products which are mRNA or proteins. The levels of mRNA after the tran-

scription stage can be measured quantitatively and is usually referred to as gene expression

levels. These expression levels reveal how active the genesare and any abnormality in these

expression patterns indicates functional changes in the cellular behaviour.

Gene expression data is widely used as a source to reconstruct the hidden regulatory activ-

ities in the regulatory network. In order to understand the internal dynamics of the regulatory

network in a quantitative manner, knowledge about the concentration of TF proteins and their

downstream targets is required for all the samples in a biological experiment. While it is easy

to obtain the expression measurements of genes, it is hardlypossible for TFs due to various
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reasons such as low concentrations of TFs, post-transcriptional modifications and rapid transi-

tion behaviour (Ptashne and Gann, 2002). Apart from this, itis known that TF interactions with

genes is highly influenced by the environmental signals (Harbison et al., 2004); these reasons

make the experimental measurements of TFs difficult. However, it is possible to experimen-

tally determine the structure of the regulatory network using Chromatin Immunoprecipitation

with microarray (ChIP-on-chip (Lee et al., 2002)); this information is usually helpful for sta-

tistical inference of the missing quantities in the regulatory network. The information about

the structure of the regulatory network orconnectivityreveals which TFs are responsible for

regulating which genes. Although the connectivity information provides a useful insight of the

regulatory network, it is prone to contain noise in the measurements in the form of false pos-

itives/negatives. So, the noise in ChIP-on-chip data needsto be accounted for in the methods

that employ this information for inference of regulatory activities. The results of these meth-

ods inferring false positives/negatives in the ChIP-on-chip data can then be taken as testable

hypothesis which can be tested experimentally.

Inference in transcriptional regulation has been studied with many statistical approaches.

The methods proposed for understanding of transcriptionalregulation reveal two different but

related aspects: the response of TF proteins to environmental signals in terms of the changes

in their concentrations levels ortranscription factor activity(TFA); and the strengths of the

interactions orconnectivity strength(CS) between the TF protein and the downstream target

i.e. gene. Depending upon the nature of expression data (time-series or static), reconstruction

algorithms attempt to learn the unobserved regulatory signal (TFAs) and the unobserved con-

nectivity strengths (CSs). All the methods discussed here assume that the regulatory strengths

do not change over time; however, the nature of reconstructed regulatory signal depends on

whether the expression data is time-series or not. These methods can be viewed as network

inference methods for known network topology as TFs and genes can be perceived as the in-

terconnected components of a network with TF playing a dominant role in controlling the

expression patterns of connected genes. Figure 3.1 depictsthe interactions between TFs and

genes in a gene regulatory network. It shows that the proteins alone or sometimes in the form

of complexes activate or represse the expression of genes. The activation or repression of genes

indicated by positive and negative signs implies that the proteins increases or decreases the rate

of production of mRNA of the target genes.

One class of these methods attempts to learn the structure ofthe network as well as the TFAs

and CSs using gene expression data (Nachman et al., 2004; Beal et al., 2005). These methods

are computationally more intensive compared to inference methods for regulatory activities

with known network topology. The computational complexityarises due to either exhaustive
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Figure 3.1: Schematic illustration of transcriptional regulation in gene regulatory network. Ar-
rows with positive/negatives signs represent the CS with which a particular TF is effecting the
target gene. The activities of TFs (TFAs) are inferred from the mRNA measurement of their
target genes.

search technique (Nachman et al., 2004) and the absence of sparsity constraint (Beal et al.,

2005) which implies that the method can only be applied to small networks where highly repli-

cated data is available. Due to higher computational complexity, these methods are less feasible

for genome-wide studies. Apart from this, these methods do no employ the known structure

of the regulatory network made available by ChIP-on-chip. This architectural information is

available for model organisms such asE.coli andS.Cerevisiaeand unveils the regulators of

a target gene in the regulatory network. Incorporating the prior knowledge about the regula-

tory interaction in an inference method has a significant advantage; it dramatically reduces the

search space by exploiting the biological fact that only a few TFs in the regulatory network are

regulating a particular gene. As an added benefit, the methods employing the prior knowledge

about the structure of the regulatory network are more suitable for genome-wide studies due

to their computational efficiency. The latter class of thesemethods is the subject matter of this

chapter.

In the rest of this chapter, four statistical inference methods for transcriptional regulation are

discussed with their merits and demerits. These methods cover a broad range of methodologies

proposed for inference in transcriptional regulation employing different statistical components.

One aspect common to all these methods is that they employ prior biological knowledge of the
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regulatory network such as ChIP-on-chip data or sequence data to improve the results of infer-

ence. Each section of this chapter reviews one method from three different aspects: biological

motivation, mathematical formulation and assessment of convergence of algorithm. At the end,

a discussion is presented to conclude the chapter.

3.2 Network Component Analysis (NCA)

Network components analysis (NCA) is a data decomposition technique for reverse engineer-

ing the TF activities and the strengths by which TFs promote or repress the target genes. This

method uses partial knowledge of regulatory network architecture and gene expression data

to reconstruct the regulatory signals (TFA) and strengths (CS). As opposed to other data de-

composition techniques such principal component analysis(PCA) or independent component

analysis (ICA), this method does not ignore the biological network structure and provides the

decomposition of the output signal into biologically meaningful signals. NCA utilises the prior

knowledge about the connectivity of the regulatory network; it is done by subjecting the prior

knowledge to certain criteria such that this connectivity information is sufficient to solve the

network reconstruction problem and guarantees the uniqueness of the decomposition. NCA

method is computationally efficient and well-suited for genome-wide network analysis.

3.2.1 Transcriptional Regulation Model of NCA

The gene expression data collected in matrixE with N genes andM time points is decomposed

as

E = A P (3.1)

whereA is N×L matrix composed of connectivity strengths between TFs and genes;P isL×M

matrix that contains the TF profiles andL is number of TFs (L≪N).

The solution to the inverse problem of (3.1) is not unique so this decomposition problem is

constrained by using a nonsingular matrixX such that

E = A X X−1 P= Ā P̄ (3.2)

where the matrixX can only be a diagonal matrix due to the constraints imposed on matrix

A (Liao et al., 2003). To obtain a unique decomposition ofE into A andP using NCA, the

following criteria must be satisfied:

1. The matrixA must have full column rank.

2. The matrixP must have full row rank.

38



3. Each column ofA must have at leastL−1 zeros.

If all these criteria are satisfied then the decomposition isguaranteed to provide a unique solu-

tion consisting of matrixA that contains the CSs between all the TFs and genes and a matrix P

that contains the TFAs for all TFs. To obtain this decomposition, an initial guess forA is con-

structed by setting all theai j = 0 for which there are no interactions in the regulatory network;

other entries are initialised to any arbitrary number. The following constraint optimisation then

provides the unique decomposition:

min
A,P
‖E−A P‖2

subject to

A ∈ Z0

al
i, j ≤ ai, j ≤ au

i, j

pl
i, j ≤ pi, j ≤ pu

i, j

where the norm is the matrix Frobenius norm andZ0 is the topology derived from known

network connectivity pattern. The constraintsal
i, j , au

i, j , pl
i, j and pu

i, j are to ensure that the

elements ofA andP are biologically meaningful. The above constrained optimisation problem

can be solved in a two-step iterative optimisation procedure by updating matricesA andP in

two stages as follows:

Initialisation: Z0 is used to initialiseA0 with all non-zeros entries set to randomly selected

non-zeros numbers.

Update for P: Using Ak−1, computePk by solving the following least-square optimisation

problem

min
Pk
‖E−Ak−1 Pk‖2

subject to

pl
i, j ≤ pi, j ≤ pu

i, j .

Update for A: UsePk to computeAk

min
Ak

‖E−Ak Pk‖2

subject to

al
i, j ≤ ai, j ≤ au

i, j

Ak ∈ A(Z0).
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NCA utilises ChIP-on-chip data for constructing the prior network topology which is known

to contain false positives. As this is not a probabilistic method, it is not clear how to identify

false positive. However, Liao et al. (2003) describe a smallvalue of estimated CS for a partic-

ular TF-gene interaction as an indicator for poor likelihood and use it to identify false positives

in the results of the model.

3.2.2 Convergence Criterion

The monitoring of convergence of NCA is based on the error computed between the estimates

and the true valuesi.e. (E−A P) after every cycle of the optimisation algorithm. If the dif-

ference is less than a convergence threshold, then the desired degree of optimisation has been

achieved.

3.3 Bayesian Sparse Hidden Component Analysis (BNCA)

A major limitation of NCA is the non-probabilistic nature ofthe algorithm that cannot incor-

porate different sources of uncertainty in the modelling. It is always useful to be able to see

confidence intervals with the estimated values that providea gauge for certainty of results. To

take this into account, Sabatti and James (2006) proposed a modified form of NCA (referred to

as BNCA later) which is probabilistic in nature.

This probabilistic technique is basically a two stage process to reconstruct the transcrip-

tional networks. First stage consists of analysing biological literature to find any known TF-

gene interactions. Based on the documented biological evidence, if TF j is known to regulate

genei thenzi j = 1; all other entries ofZ are set to zero. This topology of the network is re-

fined by analysing the DNA sequence for the target genes usingVocabulon (Sabatti and Lange,

2002). Furthermore,πi j = P(zi j = 1)< 1; magnitude ofπi j encodes the prior belief that the TF

j regulates the genei which is obtained from sequence analysis. To keep this prioruninforma-

tive, one can useπi j = 0.5.

3.3.1 Transcriptional Regulation model of BNCA

This network topology which provides a static picture of theregulatory network is then used as

the starting point for network reconstruction using the following model:

E = A P+Γ (3.3)

whereE, A andP have same meaning as before andΓ = [γit ],γit ∼ N (0,σ2
i ) is to account for

measurement error and biological variability. During the reconstruction of the network, NCA’s
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identifiability criteria for the network topology are relaxed to get biologically more meaningful

networks. In NCA, the position of zeros in matrixA encoding CS is assumed to be known a

priori for the sake of identifiability and some TFs are to be removed from this matrix in order

to make it consistent with NCA criteria. BNCA, however, doesnot assume any prior network

topology and attempts to build the hidden regulatory activities of the regulatory network by

employing two sources of information at two stages of the algorithm; these two sources of

information are sequence data and gene expression data.

To cast the model in the Bayesian framework, prior probability distributions are specified

for all the variables in the model. Allp jt are assumed to be a priori independent and follow a

Gaussian distribution

p jt ∼ N (0,σ2
p).

Similarly, ai j = 0 if zi j = 0 otherwiseai j ∼ N (0,σ2
a). Finally, σ2

i (the variance ofγi) is

taken to be an inverse gamma distribution with hyper-parametersαi andβi ; values for which

can be computed from biological replicates or calibration slides of experiments.

Let zi denote the set of TFs that regulate genei, πi denote the prior probabilities with

which the regulators of genei are regulating its expression,σ represent the vector of all the

variancesσi , Σ is a diagonal matrix whose diagonal elements are elements ofσ andai encodes

the strengths with which genei is regulated by its regulators. Then the posterior analysiscan

be done if the following conditional posterior distribution are sampled in an MCMC iteration,

samplezi ∼ P(zi|P,σ,E) for i = 1, . . . ,N

sampleai ∼ P(ai |Z,P,σ,E) for i = 1, . . . ,N

sample pt ∼ P(pt |Z,A,σ,E) for t = 1, . . . ,M

sampleσi ∼ P(σ2
i |Z,A,P,E) for i = 1, . . . ,N.

The above conditional posterior distributions are specified as

P(zi|P,σ,E) ∝ πi(zi)(1−πi)(1−zi)/σ|z
i |

a ×det(P[zi]P[zi]′/σ2
i + I |zi |/σ2

a)
− 1

2

×exp{ 1
2σ4ei′P[zi]′(

P[zi]P[zi]′

σ2
i

+
I zi

σ2
a
)P[zi]ei}

ai|P,Z,σ2 ∼ N (Σai P[zi]e
i/σ2

i ,Σai )

pt |A,Z,σ2 ∼ N (Σpt A
′
ZΣ−1et ,Σpt )

1

σ2
i

|A,Z,P ∼ Gamma(α̃i, β̃i)

wherexy = ∏r
i=1xyi

i for two vectorx andy, a[zi] is a vector of elements ofa corresponding

to non-zero entries ofzi, P[zi] is a submatrix containing selected rows ofP for which zi 6= 0,
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AZ is a matrix with same dimension asA and its elements are set to zeros corresponding to

zero elements of matrixZ, I r is an identity matrix of rankr, |zi| is the number of elements

in the setzi , Σai = (P[zi]P[zi]′/σ2
i + I zi/σ2

a)
−1, Σpt = (A′ZΣ−1AZ + IL/σ2

p), α̃i = αi +M/2, ei

is the column vector ofith row of matrixE, et represent thetth column of matrixE, eit is

the expression level of genei in the experimentt and β̃i = βi +∑M
t=1(eit −∑L

j=1ai j p jt )
2/2.

Derivation of the above conditional posterior distributions can be found in the supplementary

material of Sabatti and James (2006).

3.3.2 Convergence Monitoring

As the posterior estimation is based on Markov chain Monte Carlo (MCMC) simulations, the

number of required iterations is not known. However, many different diagnostics are available

to test the convergence of the simulated Markov chains. The authors used Cowles and Carlin

(1996) for diagnosing the convergence of MCMC simulations.

Sabatti and James (2006) provide an algorithm for the reconstruction of the regulatory net-

work where the temporal structure of the data is not taken into account. The proposed algorithm

in their work can, in principle, be extended to account for time dynamics by setting

p j ∼ N (0,Γ) (3.4)

whereΓ is M×M covariance matrix. However, the conditional independencestructure used to

derive the conditional posterior distribution before doesnot hold in this case and the authors

propose to use a different parametrisation for incorporating time dependance in the prior and

the posterior distributions forp j . The new parametrisation involves inversion of relativelybig

matrices (of the order ofM×L) due to which genome-wide application of this method becomes

less feasible but efficient inversion algorithms can be usedto overcome this computational

bottleneck. Another difficulty lies with their approach towards specifying a prior over binary

connectivity matrix that can not be trivially extended for ChIP-on-chip data.

3.4 Probabilistic Inference of TFA using State Space Model

Sanguinetti et al. (2006) proposed to use a state space model(SSM) to infer the concentrations

of TFAs and their effect on each target gene from gene expression data. SSM are a special case

of dynamic Bayesian networks (DBN) with Markov chain prior on continuous-valued latent

variables. Although SSMs have been previously used to learnthe structur of the regulatory

network interactions in Beal et al. (2005), prior knowledgeabout the regulatory interactions (i.e.

ChIP-on-chip data) was not used to explicitly infer TFAs. The method proposed in Sanguinetti
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et al. (2006) makes use of this prior knowledge in a probabilistic model to infer TFAs and

CSs which greatly reduces the search space. An efficient variational Bayesian expectation

maximisation (VBEM) algorithm is proposed for inference inthis model. Owing to efficient

implementation and exploitation of sparseness of the regulatory network, the proposed method

is a practical tool for genome-wide analysis in transcription regulation.

3.4.1 Model for Transcriptional Regulation using SSM

This method employs a log-linear approximation to the dynamics of transcription and is based

on a state space model of the following form

yn(t) =
q

∑
m=1

Xnmbnmcm(t)+µn+ εnt

cm(t) = γmcm(t−1)+ηmt.

(3.5)

Here,yn(t) is the mRNA log-expression level for genen at timet, X is a binaryconnectivity

matrix (assumed known) encoding whether genen is bound by TFm, bnm encodes the regu-

latory strength with which TFm effects genen, andcm(t) is the concentration of active TF

m at timet, µn is the base expression level of genen when it is not bound by any TF,ε and

η are experimental and process noise respectively. The modelthen specifies Gaussian prior

distributions over the concentrationscm(t) and strengthsbnm and uses a factorized variational

approximation to infer posterior distributions given mRNAtime course observations. Notice

that the probabilistic nature of the model means that noise is treated in a natural and principled

way, and estimates of the quantities of interest are always associated with a measure of the

corresponding uncertainty. The details about the method and the derivations of the proposed

VBEM algorithm can be seen in section 4.2.1 and 4.2.2.

3.4.2 Convergence Monitoring

After every iteration of the VBEM algorithm, update in the likelihood is calculated with the new

values of model parameters and latent variables. The model is deemed to have converged if the

update in the likelihood between two consecutive iterations is less than a certain threshold.

3.4.3 TFInfer - An Open-source Implementation

An open-source implementation (TFInfer) of the method proposed in Sanguinetti et al. (2006)

is described in Asif et al. (2010). TFInfer is an open-sourcestandalone software designed

to infer the relative activities of transcription factor proteins based on gene-expression data.
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Using gene-expression data combined with the architectural information about the regulatory

network, activities of transcription factor proteins can be estimated in a computationally effi-

cient way. TFInfer can handle time-series gene-expressiondata and gene-expression data from

several independent conditions with or without replicates. Implementation is done using .Net

framework (or equivalent on Linux), so it is a requirement that user either have Microsoft.Net

on Microsoft Windows or mono1s on the other platforms. dnAnalytics2, an open-source nu-

merical library in C# and ZedGraph, an open-source plottingtool in C#, are used for the imple-

mentation of this software. This software is available on most OSes where support for either

Microsoft.Net or mono is available. In chapter 3, we presentthe details of the methods imple-

mented by the software and the functionalities of the software.

3.5 A Combined Expression-Interaction Model for Inferring
TFAs

One of the fundamental reasons to infer TFAs from gene expression data can be attributed

to the fact that biosynthesis of proteins is not only dependent on transcription of genes. The

biosynthesis of proteins is also effected by post-transcriptional modifications (PTM) such as

post-translational modifications, phosphorylations etc.So, inference of TFAs from expression

data accounts for post-transcriptional modifications as TFAs are treated as latent variables but

these methods do not explicitly incorporate PTMs in their models.

While all the methods discussed in the previous sections take post-transcriptional modifi-

cations into account by treating TFAs as unobserved, these methods only use one source of

information which is expression patterns of the regulated genes. Another proxy for the activi-

ties of TFs could be the measured mRNA levels of TFs when TFs are not post-transcriptionally

modified. Shi et al. (2008) proposed a method to combine both sources of information in

one method. To infer TFA, they use mRNA expression levels of aTF when the TF is tran-

scriptionally regulated and mRNA expression levels of target genes of the TF when the TF

is post-transcriptionally regulated. Based on a latent indicator variable, that specifies whether

the TF is transcriptionally regulated or post-transcriptionally modified, they select a model out

of two models to reconstruct the hidden regulatory activity. This method is referred as Post-

Transcriptional Modification Model (PTMM).

PTMM is a variant of factorial hidden Markov Model (FHMM, (Ghahramani and Jordan,

1997)) where activity of each TF is modelled as hidden MarkovChain with correlation between

1http://www.mono-project.com/
2http://dnanalytics.codeplex.com/
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the hidden activity of a TF with its (observed) expression level. This correlation is embedded

in FHMM by using a hidden indicator variable for each TF to designate if the TF is post-

transcriptionally modified or not. In case of PTM, the hiddenTFA is inferred from the activity

levels of its regulators. In the other case, the hidden TFA isinferred by using the measured

mRNA levels of TF.

3.5.1 Post-transcriptional Modification Model

Let mbe the number of genes for which expression measurements areavailable under a variety

of experimental conditions. Out of thesem genes,n are TFs wheren < m. So the PTMM

models the joint probability distribution over multiple time-series expression levels of genes,

hidden TFA and hidden post-transcriptional status of all TFs. Gi,d,t represents the observed

expression levels of genei at timet in datasetd where firstn genes are also TFs. Similarly,

Tj ,d,t represents the hidden activity of TFj at timet in datasetd. For each TFj, a global binary

indicator variableZ j is used to denote if this TF is post-transcriptionally modified or not.Z j

follows a Bernoulli distribution with parameterρ. Z j specifies which transcriptional model TF

j follows out of the following:

Tj ,d,t ∼
{

N (G j ,d,t−1,τ2
d) if Z j = 0

N (Tj ,d,t−1,γ2
d) if Z j = 1

In case of PTM (Z j = 1), activity of TF j is modelled as hidden Markov chain withγ2
d specifying

the variability of TFA between two consecutive time-points. In case there are no PTM (Z j = 0),

activity of TF j is modelled as a noisy realisation of its gene’s expression profile with one time-

point lag. The initial time-point in this case is modelled byGaussian distribution with zero

mean andσ2
d variance. This dataset-specific variance allows integrating datasets with different

initial condition for TFA.

PTMM models the expression profile of a gene as the linear superposition of contributions

(wi, j ) of its regulators; if there are no regulators present for a particular gene in a dataset, then

the gene expression for that gene is modelled as zero mean Gaussian:

Gi,d,t |T:,d,t ∼
{

N (∑n
j=1wi, jTj ,d,t,β2

d) if genei is regulated by at least 1 TF

N (0,α2
d) otherwise

Having different variances (α2
d andβ2

d) encodes the intuition that the genes without any regu-

lators may have higher variances due to the deficiencies of the model. PTMM uses different
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variance for each dataset which represent the variability between noise levels of different exper-

iments. As with the models previously discussed in this chapter, the interactions between TF

and genes are assumed to be time-independent and are shared across all the datasets. PTMM

parameters are learnt using approximate expectation maximisation algorithm (EM) which min-

imises the penalised likelihood score given by

Score(o,h,z : W,θ) = ln(P(z))+
D

∑
d=1

ln(P(od,hd|z,W,θ))

−λ1

m

∑
i=1

n

∑
j=1
|wi, j |−λ2

[

m

∑
i=1

n

∑
j=1

δ(wi, j 6= 0){Ei, jπ1+(1−Ei, j)π0}

+
m

∑
i=1

n

∑
j=1

δ(wi, j = 0){Ei, jπ0+(1−Ei, j)π1}
]

(3.6)

subject to:
(
∣

∣{wi, j |wi, j 6= 0,1≤ j ≤ n}
∣

∣≤C
)

for all i

whereo andh are observed gene expression and hidden activity levels of TFs in datasetd.

This penalised likelihood score contains two regularisation terms. The first regularisation

term imposes penalty on the weights (wi, j ) and forces them to be zero which has the biological

notion that most TF-gene interactions should be zeros. The second regularisation term incor-

porates the prior network knowledge from binding experiments wherebyEi, j = 1 if genei is (a

priori) regulated by TFj and 0 otherwise.δ(.) function results in 0 or 1 if the condition is false

or true respectively.

There are two penalty terms too in the penalised likelihood score of (3.6). The first penalty

termπ0 is used when the model selects a regulatory link which is inconsistent with prior knowl-

edge while the second penalty termπ1 is used when the model selects a regulatory link which

is consistent with prior network structure. It is obvious tosetπ0 >> π1. C is the maximum

number of regulators for genes which represent underlying biological notion that most of the

genes in regulatory network are regulated by only a few TFs.

The purpose of regularisation and penalty terms in the penalised likelihood score of equa-

tion (3.6) is to encourage the model to selection those TF-gene interaction that are consistent

the with the prior knowledge. However, the results of the model may deviate from the prior

knowledge when the incurred penalty is less than the gain in the likelihood. These deviations in

the results reflects the noise in the prior knowledge which can be handled efficiently by using

penalised likelihood score.
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3.5.2 EM Algorithm for PTMM

The EM algorithm for PTMM iteratively updates the model parameters (W andθ) in the M-step

and hidden variables (h andz) in the E-step until the convergence is achieved.

E-step: In this step, two expectations are to be computed based on thecurrent values of

model parametersθ andW; expected values of hidden activity levels of TFs and hiddenin-

dicator variables for PTM. For this purpose, a generalised mean field algorithm (Xing et al.,

2003) is used. Xing et al. (2003) is a generalised mean field approach for inference in graphical

models where a complex distribution is approximated with a distribution that factorizes over

disjoint of the graph.

Based on the current value of indicator variablesz for TF j and the expected activity levels

of all other TFs, posterior distribution forTj ,d,t can be inferred using one of the following two

ways: if Z j = 0, TF j is not post-transcriptionally regulated and the posteriordistribution of

Tj ,d,t can be computed for each time-point independently as there is not correlation between

Tj ,d,t and Tj ,d,t−1. The prior in this case is a Normal distribution with mean given by the

expression level of the gene corresponding to TFj at time t − 1 and the variance given by

τ2
d. The posterior distribution in this case is dependent on theexpression levels of the genes

regulated by TFj as well as the activity levels of other TFs that are regulating the gene for

TF j. In case ofZ j = 1, TF j is post-transcriptionally regulated then its activity levels can be

inferred by treating it as a hidden Markov chain.

The expected values for latent indicator variables is determined by examining which model

better explains the behaviour of TFj i.e whether the TFj is better explained by the model with

PTM or without it. This is done by computing the likelihood with both types of models and

selecting the value ofZ j appropriately.

M-step: The updated values of model parameters are computed, given the expected values

of latent variables, by maximising the likelihood score function given in (3.6). An exact solu-

tion can be obtained forγ, σ, τ by setting the derivative of score function in (3.6) equal tozero.

Forα andβ, maximum likelihood estimates can be obtained by fixing the TF-gene interactions

weights (W). However,W cannot be computed in closed form and a greedy search method is

proposed for inferring the the most likely estimates for elements ofW in Shi et al. (2008).

3.5.3 Convergence Monitoring

The authors in Shi et al. (2008) analyse the effect of more datasets (d) on the performance

of proposed EM algorithm using precision recall curve. Their results show that the results

are improved for both precision and recall when more datasets are used. The convergence is
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Method Prob- Time Basic Inference
abilistic? Dynamics Model technique

NCA No No Regression-basedConstraint Optimisation
BNCA Yes No Regression-basedMCMC sampling
TFInfer Yes Yes SSM Variational EM algorithm
PTMM Yes Yes FHMM EM algorithm

Table 3.1: Comparison of different methods. This table summarises the features of the methods
discussed in this chapter which are probabilistic nature (or not), support to handle time-series
data, underlying model of the method and inference technique used.

monitored by evaluating the penalised likelihood score (3.6) until the desired convergence level

is achieved.

3.6 Discussion and Conclusion

This chapter provides an overview of statistical methods for inference in transcriptional reg-

ulation using different statistical tools. All the methodsdiscussed here aim to infer CSs and

TFAs in gene regulatory network where the network connectivity pattern is known. While

BNCA does not use the network connectivity information directly from ChIP-on-chip data, ini-

tial guess for the regulatory network architecture is obtained from biological literature and is

further refined by analysing the sequence data. However, thetask of building the regulatory net-

work architecture from biological literature is cumbersome and analysis of sequence data poses

further challenges. An alternative, employed by other models except BNCA, is to exploit the

network connectivity pattern available from ChIP-on-chip. NCA is not a probabilistic method

which means lack of confidence intervals with the results; due to this it is hard to identify false

positives. Other methods, being probabilistic, are capable to identify false positives due to the

availability of confidence intervals in their results. Table 3.1 summarises the main features of

these methods in terms of the underlying statistical model employed, statistical approximation

technique used and whether the method is probabilistic or not.

Another class of methods is available that learns the structure of the regulatory network us-

ing gene expression where no prior assumptions are made about the architectural patterns of the

regulatory network (Nachman et al., 2004; Beal et al., 2005). Although these methods provides

biologically meaningful results, computational cost associated with these techniques is usually

quite high which hinders the applicability of these methodsto genome-wides studies. Also,

these methods require large amounts of data (or highly replicated data) which is usually not

available from biological experiments. An important feature of the regulatory architecture data

48



is its sparse nature. The methods employing this information to infer the regulatory activities

have significant advantage that it reduces the search space by limiting the number of parameters

to be inferred based on the presence or absence of regulatorylink. Due to this, these methods

are more feasible for genome-wide studies.

Another criterion for selecting the appropriate model could be the nature of approximation

technique used in the inference method. While MCMC samplingand variational inference pro-

vides comparable results, convergence diagnostics are required for sampling techniques; also,

MCMC sampling is known to be computationally expensive compared to variational inference.

On the other hand, variational methods are not considered the best approximation when uncer-

tainty about the results is of crucial importance; however,variational methods perform well in

terms of the associated computational cost and their convergence is easier to monitor.

In general, the methods reviewed in this chapter make some simplifying assumptions;

mostly these methods approximate the complex biological processes such as transcriptional

regulation with additive linear models. Also, the noise of the microarray is approximated by

zero mean Gaussian which effects the results of the model. Another assumption is about the

regulatory activities which are assumed to be constant overtime. The combinatorial effect of

TFs in regulating the target genes (Asif and Sanguinetti, 2011) is also ignored in all these meth-

ods. Most of these assumptions are made in order to make the model identifiable and keep it

applicable to genome-wide studies.

These methods have proven to be useful in many cases and provide novel biological insights

(Partridge et al., 2007; Davidge et al., 2009; Rolfe et al., 2011). The availability of architec-

tural data about the gene regulatory network with abundanceof gene expression data means

that these methods can be routinely used to infer the hidden TFAs and CSs. The quantita-

tive analysis reveals hidden regulatory relationships between TFs and genes which is otherwise

unavailable due to experimental difficulties in measuring these quantities.
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Chapter 4

TFInfer - A Tool for Probabilistic Inference
of Transcription Factor Activities

In chapter 3, a brief description of a method based on SSM (Sanguinetti et al., 2006) was dis-

cussed without the mathematical derivation of the VBEM algorithm. In this chapter, details

of this method including the derivation of the VBEM algorithm for time-series and non time-

series data are given. The VBEM algorithm is implemented in an open-source implementation

(TFInfer) with additional features as discussed later in this chapter. TFInfer is a novel open-

access, standalone tool for genome-wide inference of transcription factor activities from gene

expression data. It has been significantly optimised in terms of performance, and it was given

novel functionality, by allowing the user to model both time-series and data from multiple inde-

pendent conditions. With a full documentation and intuitive graphical user interface, together

with an in-built database of yeast andE. coli transcription factors, the software does not require

any mathematical or computational expertise to be used effectively.

4.1 Introduction

Transcription regulatory networks play a fundamental rolein mediating external signals and

coordinating the response of the cell to its changing environment. Recent technological ad-

vances in molecular biology, such as ChIP-on-chip and ChIP-seq, are uncovering an increasing

amount of data about the static structure of these networks,providing us with information about

interactions between promoters and specific TF. However, despite these advances, intracellular

concentrations of active TF proteins remain very challenging to measure directly in a dynamic

fashion, thus limiting our ability to understand the dynamics of transcriptional regulation. To

obviate these problems, several research groups have proposed statistical approaches that infer

TF activity levels by combining connectivity data about thestructure of the regulatory network

with microarray data. In this chapter, a novel implementation of one of these methods (San-
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guinetti et al., 2006) along with the mathematical derivation is given which makes it freely

available to the academic community in an intuitive, user-friendly platform with additional

features as discussed later in the chapter.

In the following sections of this chapter, the VBEM algorithm implemented by TFInfer is

derived for time-series and non time-series data followed by some results on synthetic data for

two models. Then the salient features of the software are discussed with specific implementa-

tion details. At the end, the chapter concludes with a discussion.

4.2 Transcriptional Regulation Model of TFInfer

In this model, logged gene expression data from a time-series or time-independent microarray

experiment is denoted by a matrixY ∈ℜN×T , whereN is the number of genes andT is the total

number of time points or experimental conditions in the dataset. The underlying assumption

is that the gene expression is driven byM transcription factors. The model is a log-linear

approximation to the non-linear relationship between changes in TFAs and gene expression. A

discrete-time SSM is used where gene expression for genen is modelled as a linear combination

of the activities of its regulators

yn(t) =
q

∑
m=1

Xnmbnmcm(t)+µn+ εnt (4.1)

The matrixX is a binary matrix whosenm entry is one if and only if genen is regulated

by TF m. This matrix is known from biological literature or it can beobtained from ChIP

technique. The activity matrixB encodes the CS with which TFm regulates the genen. bnm

andµn are given zero mean Gaussian priors. To incorporate the baseline expression for each

gene, vectorµ= [µn] is used in the SSM model of equation (4.1). The matrixC (encodingcm(t))

represents the relative concentration of the TFmat specific experimental condition or time point

t. For measurement noise,εnt is used with i.i.d. Gaussian noise assumption (εnt ∼ N (0,σ2)).

The matrixX is usually very sparse showing that very few TFs bind to a specific gene and this

sparse nature ofX is used to ensure that only requiredbnm are estimated.

4.2.1 Model for Non Time-series Gene Expression Data

To incorporate the time-independent nature of the gene expression data, the row vector of con-

centrations is formalised as

c(1) . . .c(T)∼ N (0,K), (4.2)
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the matrixK is an identity matrix in this case. The joint distribution for observed and latent

variables is

p(Y,B,C,µ) = p(Y|B,C,µ,σ2)p(B|α2)p(C|γ)p(µ). (4.3)

p(Y,B,C,µ) =

[

N

∏
n=1

T

∏
t=1
N

(

yn(t)|
q

∑
m=1

Xnmbnmcm(t),σ2

)]

.

[

N

∏
n=1

q

∏
m=1
N
(

bnm|0,α2)
]

.N (κ|0,K)N (µ|0, I) (4.4)

whereκ is a vector obtained by concatenating the transcription factor concentrations at various

time points.

Marginalization of the above equation is intractable so a VBEM algorithm is used to ap-

proximate the true posterior distribution. The VBEM algorithm is used to minimise the KL

divergence between the approximating and the true posterior distribution in the following way

ln(p(Y|θ))≥ 〈ln p(Y,B,C,µ|θ)〉q(B,C,µ)+H(q) (4.5)

〈〉q denotes the expectation under the probability distribution q; q(B,C,µ) is the approximating

distribution over the variablesB, C andµ; andH(q) is the entropy of the distribution. The

approximating distribution over the parameters factorizes as

q(B,C,µ) = q1(B)q2(C)q3(µ). (4.6)

Using this factorisation, the VBEM algorithm is initialised with prior distributions forB, C

andµ. The approximating distributions are, then, updated iteratively until the convergence is

achieved.

The update equations for E-step and M-step of the VBEM algorithm are described next .

E-Step: During the E-step of variational Bayesian EM algorithm, approximating distribu-

tions are updated according to the following update equations. These update equations can

easily be obtained by taking the expectation of the joint likelihood in equation (4.4) w.r.t. all

the variables except the variable to be approximated. Forq1(B), this comes out to be

q1(B) =
N

∏
n=1
N (bn|mn,Σn) (4.7)

where

Σn =

(

α2I +
1

σ2

T

∑
(t=1)

χn〈ctcT
t 〉q2χn

)−1
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mn = Σn

(

T

∑
t=1

(yn(t)−〈µn〉q3)

σ2 χn〈ct〉q2

)

.

χn is the diagonal matrix withnth row of X on the diagonal andbT
n is thenth row of B. Similarly,

the approximating distribution forC is given by

q2(C) = N (c(1) . . .c(T)|ν,K ′) (4.8)

with

K
′
=

(

K−1+ IT⊗
1

σ2

N

∑
n=1

χn〈bnbT
n 〉q1χn

)−1

ν = K
′
(

yn−〈µn〉q3

σ2 χn〈bn〉q1

)

.

CalculatingK
′
is efficient in this case compared to time-series data; this can further be improved

if the posterior estimation is done in the following way

〈c(t)〉=
(

Iq+
1

σ2

N

∑
n=1

χn〈bnbT
n 〉q1χn

)−1(
yn−〈µn〉q3

σ2 χn〈bn〉q1

)

.

The approximating distribution forµ is given by

q3(µ) =
N

∏
n=1
N (µn|ζn,β2

n) (4.9)

where

ζn =
σ−2

1+Tσ−2

T

∑
t=1

(yn(t)−bT
n χnct).

β2
n = (1+Tσ−2)−1

The set of equations (4.7) to (4.9) constitute the E-step updates for the VBEM algorithm.

M-step: Fixed point update equations are available forα2 andσ2. For γ, optimisation is

achieved using scaled conjugate gradient algorithm. The update equations forα2 andσ2 are

given below,

α−2 =
1
N

N

∑
n=1

trace〈bnbT
n 〉q1 (4.10)

σ2 =
1

NT

N

∑
n=1

T

∑
t=1

[

y2
n(t)−2yn(t)〈µn〉q3+ 〈µ2

n〉q3−2(yn(t)−〈µn〉q3)〈bT
n 〉q1χn〈ct〉q2

+trace(〈bnbT
n 〉q1χn〈ctcT

t 〉q2χn)
]

. (4.11)
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4.2.2 Model for Time-series Gene Expression Data

To model the dynamics of the transcription factor concentrations, first order Markov process is

used as shown in equation (4.12).

cm(t) = γmcm(t−1)+ηmt. (4.12)

whereηm∼ N (0,1− γ2
m). The variance of the process noise (1− γ2

m) ensures that the Markov

process governing the dynamics of thecm(t) is stationary with unit variance (cm(1)∼ N (0,1)).

The parameter vectorγ = [γm],γm ∈ [0,1] determines the temporal variability of TFm. The

values ofγm close to one corresponds to less variability in the activities of TFm while the

values closer to zero indicate more variability in the activities of TFm. Intermediate values for

γm corresponds to smoothly varying temporal profile of TFm.

Using the distribution given in equation 4.12 in the joint likelihood and taking the expecta-

tion of the joint likelihood w.r.t.q1 andq3, one obtains that

q2(κ) = N (κ|ν,K ′) (4.13)

with

K ′ =

(

K−1+ IT⊗
1

σ2

N

∑
n=1

χn〈bnbT
n 〉q1χn

)−1

ν = K ′
(

yn−〈µn〉q3

σ2 χn〈bn〉q1

)

Notice that the state space model prior implies that the prior covariance matrixK is banded

which can be exploited in an efficient matrix inversion algorithm. For time-series data case,K

is of sizeTq×Tq. For genome-wide applications, size of this matrix becomesvery large while

increasing the time and space complexity for inversion; an optimised inversion algorithm for

banded matrix (Asif and Moura, 2005) was used for the sake of efficiency.

This is the only change required to make the VBEM algorithm work with time-series gene

expression data. Apart from this, the VBEM algorithm computes the expectations forq1(B)

andq3(µ) as in the previous section.

It is important to mention that by usingγ = 0 in equation (4.12) gives the required solu-

tion for time-independent gene expression data but it is computationally expensive due to the

inversion of the large matrixK .
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Figure 4.1: Main Interface of TFInfer

4.3 Software Overview

The model and GUI are implemented in C# which allows an efficient implementation of the

variational Bayesian expectation maximisation (VBEM) algorithm. dnAnalytics, a C# open

source library for scientific computing, is used for the numerical routines. ZedGraph, an open-

source plotting tool, is used for displaying the results of the model in graphical format.

The main interface of TFInfer is shown in figure 4.1; the starting frame requires the user

to browse for the expression data, specify its characteristics (time-series, replicates, etc) and

browse for the connectivity data. If template connectivityis selected, the user is asked to select

either a file for yeast (based on available ChIP-on-chip data) or a file for E. coli (compiled

manually from the Ecocyc database1). Otherwise, the user can specify any binary connectivity

matrix.

Once the data is selected, a summary of the data is displayed (number of genes and time

points). If this is accepted, a list of all the TFs included inthe connectivity matrix is displayed;

the user can select a subset of TFs by clicking on the list of TFs names (figure 4.2). Once

this is completed, the optimisation starts; its progress (with respect to a maximum number of

iterations, default 1500) is monitored through a progress bar at the bottom of the screen.

Once the run is complete, the user can visualise TF activity profiles by clicking the box next

1http://www.ecocyc.org/
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Figure 4.2: TF selection window of TFInfer. User is able to select a subset of TFs available
in the connectivity file. TFInfer automatically reduces the regulatory connectivity based on the
reduced set of TFs selected by the user.
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Figure 4.3: Sample results obtained using TFInfer using yeast connectivity and simulated data

to the TF name. This displays a time series activity profile with associated error bars, and by

clicking the save plot button the graph can be saved in a variety of formats. An example of the

output of TFInfer is given in figure 4.3 (this plot was obtained using synthetically generated

data).

4.3.1 Software Features

Main features of the software are summarised below:

• It is open source, and significantly more efficient computationally;

• It is fully documented and has an intuitive Graphical User Interface (GUI);

• It contains template connectivity matrices forEcherichia coliandSaccharomyces cere-

visiae;

• It has been given extra functionalities, handling both time-series data and data from sev-

eral independent conditions;

• It can handle expression data with multiple biological replicates;

• The results obtained using TFInfer can be saved in differentformats such as plot of the

concentration profiles or all the results in a comma separatefile.
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4.3.2 Data Files Format and Software Requirements

Standard file format for TFInfer is comma separated file. Thisis a standard format supported by

many spreadsheet applications including Microsoft Excel.Two types of input file are required;

a csv file containing the logged gene expression data and a filespecifying the connectivity

matrix (which must be a binary matrix). Replicates are handled by uploading separate data files.

For logged gene expression data, the file should contain a list of genes and the corresponding

expression levels in different experimental conditions. Connectivity is specified in the form of

grid where every entry (zero or one) specifies the connectionbetween the corresponding TF

and the gene; the first row of the file will contain the names of the TFs, and the first column

the names of the genes. ForS. cerevisiaeandE.coli, this connectivity information is supplied

as the part of the software; the gene names used are the systematic b names forE. coli and

the ORF identifiers for yeast. The software requires Microsoft .Net framework, which is freely

downloadable. It runs on Windows platforms and on Linux/Macvia Mono.

4.4 Comparison of the Two Models

Here, we present some preliminary results comparing the time-dependent model with the time-

independent model. This comparison shows that the temporaldynamics, when incorporated

in posterior inference, help to reduce the uncertainty of the mean prediction of the our model.

We test on a very simple synthetic data set generated using the time-dependent model. We

used the time-independent model for simulated gene expression data to infer the transcription

factor protein concentration and gene-specific regulatoryactivities from microarray data. Fig-

ure 4.4 shows the comparison of the results for both time-series and time-independent cases

using artificial data. From the results, it can be seen that inboth cases results are similar with

slight differences in confidence intervals associated withthe estimated concentration profiles

of transcription factor proteins. Another measure would beto compare the ratios of variance of

the expected values of a particular transcription factor protein concentration and the associated

average error for both times-series and time-independent data. This come out to be 11.9185

for the time series case and 17.8964 for time-independent data. Here, figure 4.4a shows better

result as the data used here is taken from a time-series experiment.

4.5 Conclusion

In this chapter, inference of transcription regulation forgene-specific activities is modelled for

gene expression data containing different experimental conditions. State space model in vari-
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Figure 4.4: (a) Estimated concentration profile using time-series model (b) Estimated concentra-
tion profile using time-independent model. Dashed line shows the original concentration profile
while solid line is the estimated concentration profile.
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ational framework is used to provide the basis for inferencein transcription networks. Com-

putational complexity is a prominent feature of this model which is better in case of time-

independent data. Also, using specific structure of the regulatory network, genome-wide appli-

cation are possible using time-series and time-independent gene expression data.

While the approach does rely on a simplified model of transcription, the model’s results

have been shown to capture important physiological effectswhich have led to the formulation

and experimental validation of a number of hypotheses (Davidge et al., 2009; Partridge et al.,

2007; Rolfe et al., 2011). Despite these successes, the model was until now only available as

working code in MATLAB, requiring expert intervention to beused which resulted in signifi-

cant bottlenecks in the analysis pipeline. We have now produced a new release which presents

several significant advantages over the previous version.

Statistical methods for inferring TF activities are an important area of research in com-

putational biology due to their ability to extract information which is not readily available

through standard experimental practice. We believe that the time has arrived for these methods

to become standard software used in biological laboratories to complement experimental work,

much in the way that sequence alignment tools are now routinely used by experimentalists. By

providing a simple yet powerful implementation of an already tried and tested method, we hope

TFInfer will become accessible and useful to a wide community of scientists working on gene

regulation.

This open-source software is fully documented to aid biologists and requires no software

expertise. Full documentation is available at Asif (2010).
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Chapter 5

Learning Combinatorial Transcriptional
Dynamics from Gene Expression

In chapter 3, we reviewed some of the methods of inference of TFAs from gene expression

data. These methods, however, neglect important features of transcriptional regulation; in par-

ticular the combinatorial nature of regulation, which is fundamental for signal integration, is

not accounted for. Combinatorial regulation implies that the genes in the regulatory network

are often regulated by more than one TFs that have a combinatorial control over the expres-

sion of genes. The interaction between TFs in regulating thegenes is the result of different

biological/environmental signals that causes the changesin the expression patterns of genes

accordingly. In this chapter, we present a novel method to infer combinatorial regulation of

gene expression by multiple transcription factors in large-scale transcriptional regulatory net-

works. The method implements a factorial hidden Markov model with a non-linear likelihood

to represent the interactions between the hidden transcription factors. We explore our model’s

performance on artificial data sets and demonstrate the applicability of our method on genome-

wide scale for three expression data sets. The results obtained using our model are biologically

coherent and provide a tool to explore the nature of combinatorial transcriptional regulation.

5.1 Introduction

Understanding the control of gene expression is one of the major goals of systems biology.

While gene expression is a complex process with multiple control points, perhaps the most

fundamental is the control of mRNA transcription by DNA-binding proteins, transcription fac-

tors. A fundamental difficulty in elucidating this process from the experimental point of view

is measuring TFAs: TFs are often expressed at low levels, andtheir activity state is frequently

determined by fast post-translational modifications whichare difficult to measure directly.

A possible solution to this impasse has arisen due to the availability of experimental tools
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to determine theconnectivityof the transcriptional regulatory network,i.e. which TFs bind

specific target genes. In particular, the large-scale take-up of ChIP-on-chip techniques has

meant that, for model organisms such as yeast andE.coli, this connectivity is now available on

a high-throughput scale (Lee et al., 2002). As a result, several authors have recently proposed

to integrate connectivity and gene expression data in an inference based approach to modelling

transcription, whereby TFA is treated as a latent variable to be reconstructed from observations

of target gene’s expression. Broadly speaking, inferential approaches to TFA reconstruction

have used one of two strategies: one approach is to use a very simplistic, typically log-linear

model of transcription to infer the activity of a very large number of TFs (Liao et al., 2003;

Sabatti and James, 2006; Sanguinetti et al., 2006; Asif et al., 2010). This approach is relatively

well established and has already led to several novel insights in biological studies in a range

of situations (Partridge et al., 2007; Davidge et al., 2009); however, the simplicity of the mod-

els, imposed by the computational constraints of working with large data sets, has meant that

important features of transcriptional regulation have been neglectede.g,combinatorial regu-

lation. More recently, other authors have focused on inferring TFAs in small sub-networks

but employing more realistic models of transcription basedon differential equations (Barenco

et al., 2006; Lawrence et al., 2006). These approaches are computationally more expensive

but allow to model biologically more plausible effects suchas saturation (Rogers et al., 2007),

rapid transitions (Sanguinetti et al., 2009) and non-linear interactions between TFs (Opper and

Sanguinetti, 2010).

In the model proposed in this chapter, we aim at retaining some of the desirable features

of small-scale inference approaches in a model capable of learning TFAs on a genome-wide

scale. We focus on the problem of modelling interactions between multiple TFs; this is a crucial

mechanism that allows cells to integrate signals (Ptashne and Gann, 2002). We present what,

to our knowledge, is the first statistical method for reconstructing combinatorial interactions

between TFs from target genes’ expression levels. We achieve this by modelling TFAs as binary

switches (which naturally allow for saturation) within a FHMM with a non-linear emission

model which models combinatorial interactions between multiple TFs at a promoter.

We propose a fast structured variational approximation forinference in large scale systems.

As our model includes non-linear interaction, it is relatively more parametrised than simpler

models. We therefore extensively tested our model on simulated data to check its identifia-

bility. We then applied it to three real time course datasetsin S. cerevisiaeandE. coli, using

network architectures derived from ChIP-on-chip experiments or curated databases of biolog-

ical interactions. The key purpose of our analysis of real data is to investigate the extent to

which non-linear combinatorial effects are evident from expression data. Perhaps not surpris-
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ingly, we find that the length of the time series is a critical factor in reducing the uncertainty

of the model’s predictions, and thus enabling the recovery of non-linear interactions. Despite

this, specific examples of biologically meaningful combinatorial effects are recovered, showing

that computational prediction of combinatorial interactions is indeed possible from analysis of

mRNA time series.

5.2 A Model for Combinatorial Transcriptional Regulation

Suppose thatN genes are regulated byM TFs overT conditions/time points. Throughout this

chapter we will assume TFs to be binary variables who can either be on or off (Sanguinetti

et al., 2009). This modelling assumption corresponds to twobiological assumptions: TFs

switch fast from active to inactive form and vice versa, and the number of TF molecules per

cell is sufficient to saturate the downstream transcriptional machinery. Letgt
i be the mRNA

expression level of genei at timet, and let{Tj}i j ∈ J i ∈ {1, . . . ,M} be the set of TFs binding

genei. Our model for (log) gene expression is given by

gt
i = etθi + ε (5.1)

whereθi is a set of expression parameters specific for genei andε is measurement noise. We

construct the vectoret by appending all the possible pairwise interactions to the vector of TF

states. For two TFs,et is constructed as follows:

et =















T1
t

T2
t

T1
t T2

t

1















.

It is important to note thatet also encodes the connectivity information of the regulatory

networke.g., if the genei is not connected toT2, then state ofT2 andT1T2 are not included in

the construction of theet . For each genei, θi contains one coefficient for each TF and for each

pairwise interactions followed by the base-level expressionbi

θi =















A1
i

A2
i

A12
i

bi














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so equation 6.1 becomes

gt
i = A1

i T1
t +A2

i T2
t +A12

i T1
t T2

t +bi + ε. (5.2)

Gene expression is therefore quantised with four expression levels corresponding to the four

possible joint states of the two regulators. This can be viewed as a steady-state approximation

to the combinatorial transcription model of Opper and Sanguinetti (2010). The assumption of

binary states of the TFs is mainly due to the transient behaviour of these regulators that makes

it harder to measure experimentally at the sampling rate used in most of the cases.

To cast the model (6.1) in a Bayesian framework we need to specify prior distributions over

the various components. The prior for the parametersθi is assumed to be a zero mean Gaussian

with variance encoded by a hyperparameterα2,

θi ∼ N (0,α2I).

The choice of prior over the TFA is dictated by the experimentwe are modelling. If the experi-

mental design consists of a number of independent conditions, then a uniform prior over the TF

states at each condition may be justified. While this experimental design is indeed very widely

used, in this chapter we will focus on the time-course experimental design. The derivations for

independent conditions experimental design are given in appendix A. In the time-course ex-

perimental design, the natural prior distribution for the TFA is given by a FHMM (Ghahramani

and Jordan, 1997). Therefore, the prior probability definesa series ofa priori independent

Markov chains consisting of sequences of binary states, onefor each TF

p
(

T j
1 , . . . ,T

j
T

)

=
T

∏
t=1

p
(

T j
t+1|T

j
t ,τ j

)

.

Each of these Markov chains depends on a matrix of hyperparameters, thetransition probabili-

ties, encoding the prior probability of the TF switching from active to inactive form. As the TFs

are assumed to be binary, by normalisation there are only twoindependent hyperparameters in

each transition matrix. Finally, the model is completely specified by the assumption that the

observation error in equation (6.1) is zero mean Gaussian and i.i.d., so that

p(G|T,Θ) =
N

∏
i=1

T

∏
t=1
N
(

gt
i |etθi ,σ2)

hereG, T and Θ are collective names for all the observations, TF states andgene specific

parameters respectively.
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Transition probabilities (τ j ) for transcription factors are selected such that the transitions

between the on and the off states of transcription factors are not very frequent. This initiali-

sation scheme also represent the underlying biological understanding. Other hyper-parameters

(α,σ) are fixed based on the empirical analysis on different datasets.

Before discussing how inference can be performed in this model, it is important to observe

that, as the parametersΘ and the TF statesT only appear in the model (6.1) through their

product, a basic identifiability problem exists for this model. To clarify the issue, if we take the

simple case of a gene regulated by two TFs, we see that equation (5.2) is left invariant by the

transformation

T1
t → 1−T1

t ∀t ∈ {1, . . . ,T}
b′→ A1+b, A′1→−A1

A′2→ A2+A12, A′12→−A12.

(5.3)

This ambiguity, which is common to all statistical models involving multiplication of latent

variables, cannot be resolved without prior knowledge. This is often available: for example,

it may be known that a given TF activates/represses a specifictarget, or that the TF is on/off

in a specific condition. Notice that knowledge about the signof regulation for asingletarget

gene or for asinglecondition/time point is sufficient to remove the ambiguity for all other

conditions/targets of the same TF. Another important observation is that the presence or absence

of a combinatorial interaction is not affected by the identifiability problem. Only the sign of

the combinatorial termA12 changes under the transformation (6.3).

5.3 Inference in Combinatorial Factorial Hidden Markov Mod el

Our goal is to infer from observations of gene expression both the state of TFs and the gene-

specific expression parametersθ. Bayesian inference in model (6.1) is analytically intractable

so we resort to approximation techniques. The following sections provide the details of infer-

ence in the proposed model using Gibbs sampling and variational inference.

In appendix (A), we provide the details of the inference for the static case of the model

where the expression data is not from a time-series microarray experiment.

5.3.1 Inference with Gibbs Sampling with Time Dynamics

Gibbs sampling is a Markov Chain Monte Carlo sampling algorithm which involves sequential

sampling from the conditional posterior distribution of a latent variable given all other variables

and the observations. Figure 5.1 shows the graphical model of the method presented in this
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Figure 5.1: Graphical representation of the model. TF states are modelled as a priori inde-
pendent first order Markov chains that influence the expression of gene i; pairwise interaction
between all the regulators of gene i are also contributing to the changes in the expression lev-
els of gene i. Θ is the set of gene-specific parameters that encode the strength with each a
particular TF is influencing the gene i.
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chapter. This model is a variant of FHMM where the pairwise interactions of latent states of

Markov chains (e.g. T1
t T2

t ) are also effecting the observed variable (gt
i ) along with the latent

states of Markov chains (e.g. T1
t ). We refer this form of FHMM as combinatorial factorial

hidden Markov model (cFHMM) in the remainder of this chapter.

By general results on inference in graphical models (Bishop, 2006), each node is condi-

tionally independent of all other nodes given its Markov blanket, which is defined as the set

of parents, set of children and parents of its children. Using this information, the conditional

posterior distribution for each TF at each time point can be written as

P(Tm
t |Φ) =

P(Tm
t |Tm

t−1)P(T
m

t+1|Tm
t )P(gi

t|T i
t )

∑
Tm

t

P(Tm
t |Tm

t−1)P(T
m

t+1|Tm
t )P(gi

t|T i
t )

(5.4)

whereΦ = {Tm
t−1,T

m
t+1,T

′m
t ,gi

t ,θi,X}.
The conditional posterior distribution forθi given the TF states and observations is a multi-

variate Gaussian and given by

p(θi |gt
i ,TFt ,X) =

T

∏
t=1
N (gt

i |µi(TFt),σ2).p(θi|α2)

∑
θi

[

T

∏
t=1
N (gt

i |µi(TFt),σ2).p(θi|α2)

] (5.5)

The sampling algorithm iterates sampling from each of theseconditionals. Convergence of

the chains can be monitored using standard heuristics (Gelman et al., 2004) and, depending on

the scale of the problem, is usually achieved after a few thousand burn-in cycles.

5.3.2 Inference with Variational Bayesian Expectation Max imisation Al-
gorithm with Time Dynamics

Stochastic inference approaches such as Gibbs sampling areoften employed for analytically

intractable models; unfortunately, we found that the computational costs of such an approach

were too high for large scale problems. We therefore developa fast structured mean-field

approximation which is capable of performing inference in very large-scale problems.

Variational Bayesian inference is an optimisation-based approximate inference technique

originally developed in statistical physics. The basic idea is to approximate the posterior dis-

tribution over the latent variables and parameters with a simpler distribution. Variational tech-

niques convert a complex problem into a simpler problem by decoupling the degrees of free-

dom in the original problem (Jordan et al., 1999). This decoupling is obtained by expanding the

problem to include additional parameters also know as variational parameters that are optimised
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according to the problem under consideration. Compared with stochastic approximations like

Gibbs sampling, this optimisation process is usually very efficient computationally, and has the

advantage of allowing an unambiguous monitoring of convergence.

Variational inference relies on the following general lower bound on the log likelihood:

log[p(G|φ)] ≥ 〈log p(G,Θ,T|φ)〉q(Θ,T)+H(q) (5.6)

which follows from Jensen’s inequality (Bishop, 2006). Here 〈〉 shows the expectation of the

joint likelihood under the approximating distributionq, H denotes the entropy of the distri-

bution andφ collectively denote the hyperparameterα andσ. It can be shown that the lower

bound (5.6) is saturated if and only if the approximating distribution q is equal to the poste-

rior distributionp(Θ,T|G,φ). In our case, the approximating distributionq is assumed to be a

structured mean-field approximation

q(Θ,T) = q(Θ)∏
m

q(Tm). (5.7)

Therefore, we assume the approximating distribution to factor across parameters and transcrip-

tion factors, butnotacross time points. The joint likelihood of the model is given by

p(G,Θ,T) = p(G|T,Θ) p(Θ|α2) p(T) (5.8)

We will use a variational EM algorithm to optimise iteratively the lower bound w.r.t.Θ and

each of the TFsT i ; the reader is referred to (Beal, 2003) for a more thorough discussion of

variational EM algorithms in HMMs. The lower bound (5.6) is guaranteed to increase after

each step of this iterative process, and the convergence of the algorithm can be monitored

through evaluation of the lower bound.

5.3.2.1 E-step

The log of the joint likelihood can be written as

log p(G,T,Θ,α,σ) =
T

∑
t=1

[

M

∑
m=1

logp(Tm
t |Tm

t−1)+
N

∑
i=1

{

− 1
2σ2

(

gt
i −eT

t θi
)2
}

]

+
N

∑
i=1

(

− 1
2α2θT

i θi

)

+const. (5.9)

Taking the expectation of the log of the joint likelihood with respect toq(θi) andq(T j 6=m
1:T ), we

get
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〈logp(G,T,Θ,α,σ)〉
q(θi)q(T

j 6=m
1:T )

=
T

∑
t=1

[

logp(Tm
t |Tm

t−1)

+
N

∑
i=1

{

1
σ2

(

gt
i

〈

eT
t

〉

q(T j 6=m
1:T )
〈θi〉q(θi)

−1
2

〈

eT
t

〉

q(T j 6=m
1:T )

〈

θiθT
i

〉

q(θi)
〈et〉q(T j 6=m

1:T )

)}]

+ const. (5.10)

As we averaged out theθi and all other TFs (i.e. T j 6=m
t ) we are left with an expression

depending only on themth TF. A closer inspection of the previous equation shows that (up to a

constant) it is the log of the joint distribution of an HMM with transition probabilities given by

p(Tm
t |Tm

t−1). The emission probabilities are Gaussian with time-dependent mean and variance;

their logarithm up to a constant is given by

N

∑
i=1

{

1
σ2

(

gt
i

〈

eT
t

〉

q(T j 6=m
1:T )
〈θi〉q(θi)

− 1
2

〈

eT
t

〉

q(T j 6=m
1:T )

〈

θiθT
i

〉

q(θi)
〈et〉q(T j 6=m

1:T )

)}

, (5.11)

we can read off the expression 5.11 the actual emission probabilities at timet as

log
N

∏
i=1

p(gt
i |Tm

t ) = log

[

N

∏
i=1
N (gt

i |〈et〉〈θi〉,σ2)

]

, (5.12)

so equation 5.10 simplifies to

〈logp(G,T,Θ,α,σ)〉
q(θi)q(T

j 6=m
1:T )

=
T

∑
t=1

[

logp(Tm
t |Tm

t−1)+
N

∑
i=1

logN (gt
i |〈et〉〈θi〉,σ2)

]

(5.13)

which gives the transition probabilities and time-dependent emission probabilities of the HMM

with mth TF. The posterior distribution over each TF can be easily obtained using the standard

forward backward(FB) algorithm (section 2.2.2.1) that provides the probabilities for both states

(i.e. on or off) of TFs over all the time point of the gene expressionmeasurements. Further

using the factorisation across TFs given in equation (5.7),we use the FB algorithm indepen-

dently for each hidden layer of FHMM (Fig. 5.1) to provide thesingle time state marginals of

the approximate posterior distributionq(T).

5.3.2.2 M-step

Taking expectations of the log of the joint likelihood (equation (5.9)) underT, one can see

that the approximate posterior distribution over the parameters ofΘi is given by a multivariate

normal

q(Θ) =
N

∏
i=1
N (θi |mi,Σi) (5.14)
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The mean and covariance of this multivariate normal distribution are given by

Σ−1
i =

1
σ2

T

∑
t=1

X i
〈

eteT
t

〉

q(T)X i +α−2I

mi =
1

σ2

[

T

∑
t=1

gt
i

〈

eT
t

〉

q(T)X i

]

Σ−1
i

Here〈〉q(T) denotes the expectation underq(T), X i denotes a diagonal matrix with thei-th

row of the connectivity matrixX along the diagonal. For more details about the method and

implementation, refer to supplementary material.

As the length of the time series is usually very limited, we will not attempt to infer hy-

perparameters of the model such as the transition matrices and observation noise variance

(even if point estimation of hyperparameters by Type II maximum likelihood is in principle

straightforward). In chapter 6, we propose a simultaneous inference and clustering technique

for transcriptional regulation that provides a possible solution for inferring the transition rates

of the latent Markov chains with few time-points . In this model, these hyperparameters will be

fixed heuristically: transition matrices will be set to givea prior expectation of few transitions

within the time under consideration; and noise variance will be fixed after preliminary inspec-

tion of the data. Experiments on synthetic data showed that the model predictions to be fairly

insensitive to the specific values of the transition matrices.

Using the EM algorithm, we iteratively update the posteriordistributions for model param-

eters (Θ) and latent variables (Tms encoded inet) until the model is deemed to converge. This

convergence can be monitored by evaluating the Eq. 5.9 of thelikelihood of the model which

is guaranteed to decrease. It is shown in figure 5.3 for a smallsimulated dataset (N = 100,

M = 15). This process of iterative optimisation using EM algorithm is illustrated in algorithm

3.

5.4 Comparison of Approximation with Gibbs Sampling and
Variational Inference

To evaluate the approximation of VBEM algorithm and Gibbs Sampling, we ran the VBEM on

a smaller dataset consisting of 400 genes and 20 TFs over 20 time-points, and compared the

results with those obtained using the Gibbs sampler derivedin Section 5.3.1. We monitored

convergence of the Gibbs sampler by mixing of the Markov chains ofΘ parameters. The Gibbs

sampler took almost a day to converge compared to less than anhour with variational EM.

In general, both methods obtained very similar results, both in terms of mean predictions and
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Algorithm 3 Variational Bayesian Expectation Maximisation Algorithmfor inference in

cFHMM
Require: Initialisee1:T randomly or from expression data (G)

Require: α2← 1

Require: σ2← 0.1

Require: Initialise transition probabilities(τ) for all the TFs

nIterations← 1

1: repeat

2: for i← 1,N do

3: Update the posterior distribution (Eq. 5.14) overθi for genei

4: end for

5: for j← 1,M do

6: Calculate the state marginal ofT j
1:T usingFB algorithm

7: end for

8: Updatee1:T using the state marginals

9: Calculate theNewLikelihoodusing the expected values of the latent variables and pa-

rameters in Eq. 5.9

Ensure: NewLikelihood< OldLikelihood

10: OldLikelihood← NewLikelihood

11: maxIterations←maxIteration−1

12: until (nIterations> 2000)∨ (NewLikelihood−OldLikelihood> 1e−4)
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Figure 5.2: Comparison of inferred parameter using variational Bayesian inference and Gibbs
sampling for four randomly selected genes. Blue bars shows the ground truth while the green
and red bars shows the inferred values of the parameters (A1,A2,A12,b) using variational
Bayesian (VB) inference and Gibbs sampling (GS) respectively. Empty spaces in the plots
correspond to TF not bound to target gene.

in terms of associated uncertainties. Figure 5.2 shows a comparison of the inferred values of

four randomly selected genes using variational Bayesian inference and Gibbs Sampling with

the true values. Variational inference are known to often underestimate uncertainties; a global

comparison between MCMC and variational estimates of the uncertainties indicates that in our

case this is a fairly modest effect (correlation coefficient0.8614 atp-value of 0.0003). Due

to higher computational complexity of Gibbs sampling, we, therefore, employ the variational

approximation for approximating the true posterior distribution in the rest of this chapter.

5.5 Analysis using Variational Bayesian Expectation Maxim i-
sation Algorithm

While our model is still relatively simple, the addition of non-linear interaction terms means

that more parameters need to be estimated. On top of that, asymptotically exact inference is

computationally unfeasible in large scale examples. Therefore, as a first analysis we perform a

thorough test on the proposed model using artificial data to verify its identifiability in a realistic
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Figure 5.3: Convergence of VBEM algorithm on small simulated dataset (N = 100, M = 15).

simulated situation.

5.5.1 Analysis using Synthetic Data

We performed a series of experiments on artificial data generated with known parameters to

benchmark and check the consistency of the model. Specifically, three aspects of the inferential

problem need to be investigated:

1. Is the model identifiable given realistic data,i.e. in a large scale example with relatively

few time points?

2. Does the efficient variational approximation developed in section 5.3.2 give an accurate

representation of the posterior uncertainty over the random variables?

3. How does the length of the time series effect the inferenceof combinatorial interactions

of TFs at a certain noise level?

5.5.1.1 Model Identifiability

In this sections, we present a brief comparison of cFHMM two other methods on synthetic

data. Shi et al. (2008) used FHMMs with inputs to simultaneously infer TFAs and post-

transcriptional regulation in TFs; in our case, we are interested only in the TF inference part
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of the model, so that their model reduces to a simplified form of our model (i.e. a standard

FHMM) without the non-linear interactions of TFs. This method is denoted as FHMM. The

other method we compare to is the TFInfer model (chapter 4). This is a log-linear model us-

ing a discrete-time state space model for the TFAs. To compare the binary TF states obtained

with the other two methods with the TFInfer results, we binarize the inferred TFAs using the

average of the inferred temporal profile of each TF in the network (activity 0 if below average,

1 if above). We use three criteria to evaluate the performance of our method with these meth-

ods; run-time, mean squared error (MSE) in reconstructing gene expression profiles and the

Hamming distance between the inferred states of the TFs.

Synthetic data was generated using the cFHMM model with two different connectivities that

we take from the yeast regulatory network (Lee et al., 2002) and E.coli regulatory network1.

Using yeast connectivity, three synthetic datasets withM TFs were generated (30 time-points

M = 25,30,50). Another synthetic dataset was generated using the E.coli connectivity with 30

time points and 6 transcription factors. Results obtained using these datasets are represented in

the table 5.1 where the comparison of different techniques is shown.

It is important to stress that these two connectivities havedifferent degree of sparsity. In

yeast connectivity data, average connectivity is 2−4% for three datasets while in case of E.coli

dataset, average connectivity is about 20%. Average numberof genes/TF in three yeast datasets

are 11.5, 14.2 and 22.7 respectively; while in case of E.coli connectivity, average number of

genes/TF is 60.1 that implies more potential combinatorial interactions between TFs.

The Hamming distance between the inferred temporal profilesof TFs (obtained using FHMM,

cFHMM and TFInfer) and the true ones are comparable in all four datasets. It is important

to mention here an aspect of the TFInfer inference procedure; the optimisation of the hyper-

parameters that we keep fixed in our model and in FHMM.

In case of sparse yeast connectivity, FHMM and cFHMM are closely related in terms of the

Hamming distance between the inferred temporal profiles andthe true profiles in the synthetic

data. This is mainly due to the sparse connectivity that implies less combinatorial interactions

and hence cFHMM results closely match with FHMM results in terms of MSEs and Hamming

distances. This can be seen in the first three columns of table5.1.

The last column of the table 5.1 shows the results of the experiment with a much dense con-

nectivity (average connectivity is 20%) where cFHMM is better at reconstructing the expression

profiles of genes in the network (MSE=0.0099) compared to MSE of FHMM (MSE=0.0187).

1http://ecocyc.org/
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X
X
X
X
X
X
X
X
X

X
X
X

Method
Dataset

Yeast Connectivity Yeast Connectivity Yeast Connectivity E.coli Connectivity

N = 500,M = 25 N = 500,M = 50 N = 500,M = 75 N = 320,M = 6

MSE: 0.0967 MSE: 0.1012 MSE: 0.1258 MSE: 0.0187
FHMM HD with True=0.0820 HD with True=0.1380 HD with True=0.1933 HD with True=0.0625

HD with cFHMM=0.0300 HD with cFHMM=0.0880 HD with cFHMM=0.1273 HD with cFHMM=0.0375
HD with TFInfer=0.0880 HD with TFInfer=0.1340 HD with TFInfer=0.1993 HD with TFInfer=0.0750

MSE: 0.0931 MSE: 0.1065 MSE: 0.1184 MSE: 0.0099
cFHMM HD with True=0.0600 HD with True=0.1380 HD with True=0.2167 HD with True=0.0667

HD with FHMM=0.0300 HD with FHMM=0.0880 HD with FHMM=0.1273 HD with FHMM=0.0375
HD with TFInfer=0.0740 HD with TFInfer=0.1420 HD with TFInfer=0.2173 HD with TFInfer=0.0542

MSE: 0.0910 MSE: 0.0894 MSE: 0.0858 MSE: 0.0150
TFInfer (Asif et al., 2010) HD with True=0.0780 HD with True=0.1280 HD with True=0.1687 HD with True=0.0792

HD with FHMM=0.0880 HD with FHMM=0.1340 HD with FHMM=0.1993 HD with FHMM=0.0750
HD with cFHMM=0.0740 HD with cFHMM=0.1420 HD with cFHMM=0.2173 HD with cFHMM=0.0542

Table 5.1: Comparison of different techniques for inference of the states of transcription factors using simulated data. The states inferred with
different methods are compared using the Hamming distance (HD) between the vectors of states.
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Figure 5.4: Comparison of inferred and true values for parameter Θ

5.5.1.2 Accuracy of the Posterior Estimation

We generated an artificial dataset with 1000 genes, 50 transcription factors and 20 time-points.

We used the connectivity information from yeast cell regulatory network (Lee et al., 2002)

with random initialisation for the gene-specific parameters. We then ran the variational EM

algorithm to infer the posterior probabilities over TF states and gene specific parameters, and

compared with the true parameter values/ TF states. The results for parameter estimation are

given in figure 5.4, displaying true parameter values with posterior mean estimates. In most

cases, it is clear that the parameters inferred using the variational EM algorithm match closely

with the true values. In a few cases, the inferred parametersare anticorrelated with the true

parameter values; these correspond to TFs whose activity was inferred to be the opposite of the

true activity. As we noted earlier, this ambiguity is unavoidable and cannot be resolved without

further knowledge.

5.5.1.3 Effects of the Length of the Time-series and Noise in Gene expression

While Figure 5.4 gives support to the identifiability of themeanpredictions of our model,

the Bayesian nature of the model means that estimates of the uncertainty of the predictions

are also available. These estimates can be precious to assess the statistical significance of
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T σ2 = 0.1 σ2 = 0.5 σ2 = 1
Ai j (%) Avg. Post. s.d. Ai j (%) Avg. Post. s.d. Ai j (%) Avg. Post. s.d.

10 18 0.2273 5 0.4009 3 0.5027
20 28 0.1655 10 0.3016 6 0.3953
30 40 0.1342 25 0.2550 8 0.3364
40 54 0.1088 33 0.2248 18 0.2993
50 54 0.0996 33 0.2003 18 0.2710

Table 5.2: Combinatorial interactions found using synthetic data with different number of time-
points. Ai j is the percentage of combinatorial interactions recovered from the data. σ2 stands
for the noise-level in the synthetics data. Column 3, 5 and 7 shows the corresponding inferred
average posterior standard deviation for each dataset.

predicted interactions: for example, we could say that two TFs regulate combinatorially a

certain gene at 5% significance level if the absolute value ofthe posterior mean of the predicted

combinatorial term in equation (5.2) is greater than twice the predicted standard deviation. We

are interested in quantifying what fraction of combinatorial interactions can be recovered at a

certain significance level as a function of the length of the time series and the experimental

noise. To do this, we generated multiple artificial data setswith different numbers of time-

points (Table 5.2, column 1) and varying corrupting noise levels (σ2 = 0.1,0.5,1.0). In all

cases the number of genes and transcription factors, as wellas the network architecture and true

parameter values, was kept fixed (N = 200,M = 50). It is important to note that these datasets

are generated withΘ as zero mean Gaussians (with unit variance) so all the combinatorial

terms used to generate the datasets are nonzero. Table 5.2 reports the fraction of combinatorial

regulatory interactions which were recovered at 5% significance level for specific lengths of

the time series and different values of the Gaussian noise ingene expression. Not surprisingly,

this percentage increases monotonically with the length ofthe time series and decreases when

the additive observation noise is increased. Also, it appears that the level of noise somehow

determines the proportion of combinatorial interactions that can be recoveredeven for long

time series. Empirically, it appears that, with this network structure, more than 40 time points

do not lead to a significant change in the proportion of combinatorial interactions recovered.

5.5.2 Analysis using Real Data

We use three real datasets; in all cases, the main purpose is to probe the extent to which com-

binatorial regulations can be learned from expression data. These datasets are the classic and

much studied yeast cell cycle data set (Spellman et al., 1998), the yeast metabolic cycle data

set (Tu et al., 2005) and theE. coli micro-aerobic shift data set (Partridge et al., 2007). Finally,
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Figure 5.5: Comparison of the inferred temporal profiles of transcription factor ArcA using TFinfer
(Asif et al., 2010) and cFHMM. The dotted line in the plot shows the profile of ArcA inferred using
Sanguinetti et al. (2006).

we compare our results with those obtained with two different methods: a standard FHMM and

the TFInfer (Sanguinetti et al., 2006; Asif et al., 2010).

5.5.2.1 Micro-aerobic Shift in E. coli

Partridge et al. (2007) studied the transcriptomic response ofE.coli to the withdrawal of oxygen

in a chemostat culture under controlled growth conditions.E.coli is a metabolically versatile

bacterium and responds to changes from aerobic to micro-aerobic conditions by activating TF

proteins that act as oxygen sensors. The probabilistic approach described in Sanguinetti et al.

(2006) was used to infer the states of six crucial regulatorsof oxygen sensing and metabolism

(FNR, MetE, MetJ,ArcA, CpxR,SigE) from the mRNA expressionof 302 target genes. The

analysis revealed insights in the dynamics of the key regulators upon oxygen withdrawal, as

well as biologically interesting predictions about the timing of TFA. The data set consists of

4 time points taken at 5, 10, 15 and 60 minutes and measured relative to a sample taken im-

mediately before the perturbation. Connectivity information about the regulatory network was

obtained from the ecocyc database2 and is available for 6 TFs and 302 genes in the supplemen-

tary material of Partridge et al. (2007).

The predictions of our model in terms of TFAs are in broad agreement with what reported

in Partridge et al. (2007) (average Pearson correlation 0.9). As an example, Figure 5.5 shows

the inferred temporal profile of transcription factor ArcA to be in close agreement with the pre-

2http://ecocyc.org/
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Figure 5.6: Number of Ai j ≥ 2 s.d. for 1975 genes of Spellman et al. (1998)

dicted profile in Partridge et al. (2007). However, no combinatorial interactions were predicted

at a significance level of 5%. In the light of the analysis on synthetic data, this is probably due

to the very short time series.

5.5.2.2 Yeast Cell-cycle Data

Spellman et al. (1998) used microarray hybridization to measure the expression profiles of most

of the yeast genes over a complete cell cycle. Three time-series experiments were conducted

on three different strains of yeast and these experiments were synchronised by three indepen-

dent methods;α factor-based synchronization, size-based synchronization and cdc15-based

synchronization. We use the cdc15 synchronized data, consisting of 6181 gene expression pro-

files over 24 time-points. The connectivity information forthe yeast regulatory network was

obtained in Lee et al. (2002) using ChIP-on-chip for 113 TFs measuring their binding to 6270

genes. These two datasets are relatively old but well studied and serve as the standard bench-

mark for validating the model described here. We preprocessed these two datasets such that all

the genes are bound by at least one TF and each TF is regulatingat least one gene; that gave

us a network of 1975 genes and 104 TFs and expression profiles of 1975 genes. The data was

analysed using the variational approximation, since the large size of this network rules out the

application of the Gibbs sampling algorithm.

Once again, the predictions in terms of TFAs matched well thepredictions of previous mod-
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Figure 5.7: Inferred TF profiles from Spellman et al. (1998) and their corresponding mRNA
expression levels. (a) Inferred TF profile for SWI5 (b) Measured mRNA expression levels for
gene SWI5 (c) Inferred TF profile for SWI4 (d) Measured mRNA expression levels for gene
SWI4.

els (such as Liao et al. (2003); Sanguinetti et al. (2006)), in particular recovering the periodic

pattern of key cell-cycle regulators such as SWI5 and SWI4. It is shown in figure 5.7.

An analysis of the predicted interaction terms reveals thatabout 5% of the combinatorial

interactions (A12 in (5.2)) are significant at 5% level as shown in figure 5.6. This accounts for

186 combinatorial interactions out of a total of 3886 possible pairwise interactions allowed by

the structure of the regulatory network.

A more detailed analysis of the results obtained (across transcription factor profiles) using

the model 5.2 reveals that some of the TFs in the yeast regulatory network have a much higher

proportion of significant combinatorial interactions thanthe average. Figure 5.8 shows the per-

centage of significant combinatorial regulation for the allthe TFs in this dataset. It can be seen

from this plot that a group of TFs (DAL82, Pho2, GTS1, HAP3, HIR1, MAL13) have 15% or
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Figure 5.8: Percentage of combinatorial interactions for 104 TFs of yeast dataset (Spellman
et al., 1998)

more significant combinatorial interactions compared to overall average of 5% significant com-

binatorial interactions. Looking at biological function of these highly interacting proteins, we

found that our results are often plausible in terms of the underlying biology. The transcription

factor Pho2 found to be actively involved in combinatorial regulation by our model is known

to behave in a combinatorial manner (Bhoite et al. (2002)). Pho2 is functionally active in

many biological processes such as histidine biosysnthesisand phosphate utilization (Daignan-

Fornier and Fink, 1992). Similarly, HAP3 is a global regulator of respiratory gene expression

and contains sequence contributions to both complex assembly and DNA binding (Xing et al.,

1993), Hahn et al. (1988). The contributions of these transcription factors to multiple biological

processes indicates that plausibly these TFs will need cofactors to achieve specificity in gene

regulation.

Our model predicted that DAL82 regulatory activities contains a higher percentage of sig-

nificant combinatorial regulation. DAL82 is a positive regulator of allophanate inducible genes

and is one of four transcription factors that are required for this process (Scott et al., 2000). Ex-

perimental evidence in this case suggests that DAL81 protein is required for DAL82-dependent

transcription activation. As shown in figure 5.8, our model also predicted the higher percent-

age of combinatorial activity for DAL81 (approximately 10%). GTS1 is a transcriptional co-

activator for the genes that exhibits the metabolism of carbohydrates, requiring interactions

with other regulators to induce gene expression (Xu and Tsurugi, 2007).
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Figure 5.9: Number of Ai j ≥ 2 s.d. for 3070 genes for yeast dataset (Tu et al., 2005)

5.5.2.3 Metabolic Cycle Data

Tu et al. (2005) studied the yeast metabolic cycle (YMC) thatgoverns the genome-wide tran-

scription of genes in a periodic manner. Budding yeast undernutrient-limited conditions goes

through robust cycles of respiratory bursts that in turn causes almost half of the yeast genome

to express periodically. In this experiment, total RNA was prepared after every 25 minutes over

a period of three consecutive metabolic cycles. In order to use this dataset with our model, we

fused the network connectivity available from two ChIP-on-chip experiments (Lee et al., 2002),

Harbison et al. (2004) and removed the genes that were not regulated by any TFs in the connec-

tivity information. The TFs not involved in regulating any genes were also eliminated leaving

a network of 3070 genes and 177 TFs. Our probabilistic approach can handle the false positive

that could arise from this dataset by assigning higher uncertainty to the regulatory interactions

that are not evident from data.

Once again, the predicted activity profiles of most regulators showed a good agreement with

previously reported results Sanguinetti et al. (2006) using different inference models (results

not shown). In particular, our model confidently predicted aperiodic behaviour for many of the

regulators, which is in agreement with the experimental design. The details about the extent of

the combinatorial regulation in this dataset are shown in figure 5.9 where approximately 3% of

the possible combinatorial interactions are found to be statistically significant. Out of a total

of 10876 possible combinatorial interactions in this data set, only 322 were predicted to have
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Figure 5.10: Percentage of combinatorial interactions for 177 TFs for yeast dataset (Tu et al.,
2005)

posterior mean greater than 2 standard deviations.

Further analysis across the transcription factor profiles showed that a small proportion of

the TFs in this dataset have significantly higher combinatorial interactions as shown in figure

5.10. The most prominent of these highly interacting TFs are: DAL82, GAT1, GTS1, GZF3,

MTH1, PUT3, STB2, THI2, UPC2, VMS1. Some of these TFs appear to have consistently

combinatorial behaviour between the cell cycle and the metabolic cycle; e.g. DAL82 and

GTS1 could be interpreted as ”housekeeping” combinatorialTFs. GAT1, a positive regulator

of nitrogen catabolite repression (NCR), is an essential regulator of the NCR-sensitive genes

along with another transcription factor GLN3. The model forregulatory circuit of GAT1-GLN3

combination is discussed in Coffman et al. (1996). The majority of the other TFs predicted to

have high combinatorial behaviour are clearly associated with metabolic processes: GZF3 is a

catabolite repressor, MTH1 regulates glucose sensing, THI2 regulates thiamine biosynthesis,

UPC2 regulates sterol biosynthesis. This is perhaps not surprising, as metabolic genes have

higher expression changes within the metabolic cycle, and hence presumably a lower level of

noise. However, this highlights an important feature of ourmodel: even if the absolute fraction

of combinatorial interactions recovered is rather low, predictions have higher confidence for

the specific biological processes investigated in the givenexperiment.
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5.6 Comparison with Other Methods

To assess the relative merits of our method (cFHMM), we performed an extensive comparative

study with two published methods for reconstructing TF profiles. These include a standard

FHMM (this is used for TF inference in Shi et al. (2008) that also account for post transcrip-

tional modification) and TFInfer (Asif et al., 2010).

It should be stressed that the method proposed here models the non-linear interactions of

the transcription factors at the promoters, something thatneither of the competitor methods can

do. The flip side of this extra flexibility is that more time is required to execute the algorithm.

Table 5.3 presents the comparison of the results obtained using our method with two other

methods on the real data sets considered in this study. In theE. coli data set, the results of

FHMM and cFHMM are similar in terms of TF reconstruction (average Hamming distance

0.067); this is probably due to fact that we did not find any combinatorial interactions at 5%

significance level. In the other data sets, we obtained a relatively larger Hamming distances

between FHMM and both cFHMM and TFInfer (0.2688 and 0.2502 respectively). These data

sets contained many more time points, which allowed the recovery of a small but non-negligible

number of combinatorial interactions, leading to the predictions of cFHMM (which does take

these interactions into account) to be significantly different from the two linear methods.

5.7 Conclusion

We present a novel method to infer combinatorial interactions between transcriptional regula-

tors from expression data and network connectivity data. Toour knowledge, this is the first

statistical method which simultaneously infers TFAs and their combinatorial interactions in

large-scale networks. We model TFAs as latent binary variables with Markovian dynamics;

gene expression is determined by the latent TFAs through a non-linear likelihood which allows

for pairwise interactions between TFs. According to our model, gene expression is digitized;

digitized levels of gene expression have recently been shown to yield computational savings

and more robust predictions (Tuna and Niranjan, 2010). The principal novelty of our work in

this perspective is to connect the level of discretisation with the state of underlying regulators.

We conducted experiments on simulated data (with two different connectivities, the E.coli

connectivity data and the yeast connectivity with varying network sizes. The data was generated

from the cFHMM model; however, we noted that both cFHMM and FHMM managed to give

good reconstructions of the TF profiles (obviously FHMM could not capture the coefficients of

the non-linear effects). This is essentially due to the sparsity of the connectivity; in particular,
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X
X
X
X
X
X
X
X
X
X
X
X

Method
Dataset

Partridge et al. (2007) Spellman et al. (1998) Tu et al. (2005)

Run time: 6 seconds Run time: 4.7 hours Run time: 5.5 hours
FHMM MSE: 0.0189 MSE: 0.1381 MSE: 0.4332

HD with cFHMM=0.0667 HD with cFHMM=0.2688 HD with cFHMM=0.2502
HD with TFInfer=0.0667 HD with TFInfer=0.2015 HD with TFInfer=0.2280

Run time: 22 seconds Run time: 42 hours Run time: 335 hours
cFHMM MSE: 0.0423 MSE: 0.1391 MSE: 0.4125

HD with FHMM=0.0677 HD with FHMM=0.2688 HD with FHMM=0.2502
HD with TFInfer=0.1333 HD with TFInfer=0.2708 HD with TFInfer=0.3021

Run time: 45 seconds Run time: 10 hours Run time: 115 hours
TFInfer (Asif et al., 2010) MSE: 0.0399 MSE: 0.1156 MSE: 0.3811

HD with FHMM=0.0667 HD with FHMM=0.2015 HD with FHMM=0.2280
HD with cFHMM=0.1333 HD with cFHMM=0.2708 HD with cFHMM=0.3021

Table 5.3: Comparison of different techniques for inference of the states of transcription factors with different biological datasets. The states
inferred with different methods are compared using the Hamming distance (HD) between the vectors of states.
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the connectivity matrix in the yeast data is sparser, so thatFHMM is a very good model for

most genes. For the denserE. coli network, the performance of cFHMM was significantly

better, particularly in terms of MSE (table 5.1). The results on real datasets show predictions

that are in good agreement with existing methods. However, the length of the time-series data

is a critical factor to obtain the statistically significantcombinatorial interactions.

Factorial Hidden Markov Models have been previously used tomodel TFAs (Shi et al.,

2008); in that work, further dependencies were included between TF mRNA expression levels

and their predicted activities, which enabled to predict possible post-transcriptional modifica-

tions in TFs. Naturally, it should be possible to combine both our approach and their approach

to give a model capable of simultaneously inferring TFAs, combinatorial interactions and post-

transcriptional regulations. This would also allow to remove the assumption, hard-wired into

our model as well as many other related models, that TFAs are independent of their mRNA

expression levels. While in many cases this assumption is justified by the fact that measure-

ment of TF gene expression are often poor proxies for their activity state, it is plausible that,

at least in some situations, mRNA expression levels of TF genes will bear some influence on

their activity.
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Chapter 6

Simultaneous Inference and Clustering of
Transcriptional Dynamics in Gene

Regulatory Networks

In the last chapter, we presented a variant of FHMM to model the hidden TFAs in the regulatory

network as binary Markov chains and used a variational approximation to find the posterior

estimates. The transition rates for the latent Markov chains were not inferred in that model.

One critical factor that hinders the inference of these transition rates from the experimental data

is the length of the time-series which is not sufficient is most of the cases. In that model, we

fixed the transition rates of the latent Markov chains of the FHMM to plausible values that were

coherent with the underlying biological assumptions. One way to deal with the limited length

of time-series is to pool the data together from different time-series and use it for the inference

of the transition rates. This pooling scheme serves two purposes: firstly, no assumptions are

required to fix the transition rates in the inference; secondly, as a consequence, pooling the data

from different time-series also clusters the latent Markovchains into a priori unknown number

of clusters.

In this chapter, we present a novel method for simultaneous inference and nonparametric

clustering of transcriptional dynamics from gene expression data. The proposed method uses

gene expression data to infer time-varying TF profiles and cluster these temporal profiles ac-

cording to the dynamics they exhibit. We use the latent structure of FHMM to model the TF

profiles as Markov chains and cluster these profiles using nonparametric mixture modelling.

An efficient Gibbs sampling scheme is proposed for inferenceof latent variables and grouping

of transcriptional dynamics into a priori unknown number ofclusters. We test our model on

simulated data and explore the effect of different noise levels of observations on the inference

results with varying network size. We also analyse our model’s performance on two expression

datasets;S. cerevisiaecell cycle data andE.coli oxygen starvation response data and show its

89



applicability for genome wide analysis of expression data.

6.1 Introduction

High throughput microarray experiments generate vast amounts of data about the expression

patterns genes. The abundance of gene expression data posesmany mathematical and compu-

tational challenges to reverse engineer the molecular processes responsible for transcriptional

regulation. Gene expression is regulated by the binding of TF proteins to the promoter re-

gions of genes. Reconstructing the dynamics of transcriptional regulation in gene regulatory

network, however, remains an open issue due to the difficulties involved in experimental mea-

surement of TF activity levels. Experimental techniques such as ChIP-on-chip technique (Lee

et al., 2002), which directly measure the binding of TFs to promoters, can provide a static pic-

ture of the wiring (connectivity) of the regulatory network. This architectural information is

partially available for humans and mouse, and almost fully documented for yeast andE.coli.

Combining this architectural information with gene expression data, it is possible to decipher

the role of TF proteins in the genetic machinery using statistical tools. Over the last few years,

several methods have been proposed to infer the activities of several TF proteins from the ex-

pression of (hundreds or thousands) of their target genes (Liao et al., 2003; Sabatti and James,

2006; Sanguinetti et al., 2006; Asif et al., 2010), leading frequently to useful biological insights

(Partridge et al., 2007; Davidge et al., 2009).

One subcategory of these inference approaches is based on FHMMs (Ghahramani and Jor-

dan, 1997). In FHMM-based inference methods (Shi et al., 2008; Asif and Sanguinetti, 2011),

each latent Markov chain models the (binary) activity of a TFprotein, assuminga priori in-

dependence between different TFs. The distributed latent state representation of FHMMs pro-

vides a natural way to model the regulation of genes by multiple TFs. Each TF is characterised

by prior propensities to switch state (transition rates), which also have to be determined from

the data in general. The states of the TFs are assumed to be either on or off that corresponds to

underlying biological assumptions that the number of TF molecules per cell is sufficient to sat-

urate the downstream transcriptional machinery and TF rapidly changes from active to inactive

states and vice versa (Ptashne and Gann, 2002).

However, the length of the Markov chain plays a pivotal role in enabling reliable estimation

of transition rates. Most biological datasets are of very limited length (at most a few tens of

time-points), making reliable estimation of transition rates effectively very difficult. While

fixing prior rates to a plausible value implying few transitions may be a practical solution

in some cases (Asif and Sanguinetti, 2011), in general this will be potentially inaccurate for
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Figure 6.1: A factorial HMM with 3 chains.

large data sets. A biologically more plausible assumption could perhaps be obtained from the

observation that TFs rely on few different activation mechanisms: for example, many TFs are

activated by rapid conformational changes (Ptashne and Gann, 2002), while others rely on more

gradual changes in concentration. Therefore, it is naturalto assume that TF dynamics may be

clustered, with several TFs sharing the same transition rates. Besides the advantages of more

biologically interpretable results, this clustering approach is also attractive from the statistical

point of view: by pooling data from different TFs, it allows amore reliable estimation of

transition rates.

In this work, we build on the FHMM model of transcriptional regulation (Fig. 6.1) for infer-

ence of TF profiles and employ a clustering approach to group the inferred TF profiles based on

their dynamics. Since specifying a number of clustersa priori is not possible, we propose to use

Dirichlet Process Mixture (DPM) models (Ferguson, 1973; Antoniak, 1974; Rasmussen, 2000)

to tackle the problem of model selection. Our proposed method does not make any assumption

about the dynamics for TF profiles as we learn these dynamics by pooling the statistics from

the groups of inferred TF profiles. In the following text, we present the model for inference

and clustering of transcriptional dynamics and propose an efficient Gibbs sampling scheme for

inference in the hierarchical model (Fig. 6.2). Then we testour model using simulated datasets

and apply it to two well studied real datasets inSaccharomyces cerevisiaeandEscherichia coli,

showing how the model can return biologically meaningful clusterings.
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6.2 Modelling Regulatory Dynamics

Suppose thatN genes are regulated byM TFs overT time-points. Letgt
i be the (log) mRNA

expression level of genei at timet, and let{Tj}i j ∈ J i ⊂ {1, . . . ,M} be the set of TFs reg-

ulating genei. We will model (log) gene expression as a linear combinationof the activity of

TF inputs as (Asif and Sanguinetti, 2011)

gt
i = eT

t θi + ε (6.1)

whereet is composed of the binary states of the TFs that bind genei, θi is a set of interaction

strength parameters specific for genei andε is Gaussian distributed measurement noise with

varianceσ2 (and mean 0). It is important to note thatet is a vector of states of all the TFs that

regulate genei and thus also encodes the connectivity information of the regulatory network.

For example, in the simple case of two TFs binding genei, we obtain

gt
i = A1

i T1
t +A2

i T2
t +b + ε. (6.2)

The prior for the parameterθi is assumed to be a zero mean Gaussian with variance encoded

by a hyper-parameterα2,

θi ∼ N (0,α2).

The TF states (entering the vectoret) are assumed to follow Markovian dynamics, with prior

independence between different TFs. The basic architecture of our expression model is there-

fore given by a FHMM, depicted graphically in Figure 6.1. As evident from equation (6.1), the

latent variableT and the parameterΘ only appear through their product, leading to an identifi-

ability problem. We can take the example of equation (6.2) toelaborate on this. Equation (6.2)

is invariant to following transformation

T1
t → 1−T1

t ∀t ∈ {1, . . . ,T}
b′→ A1+b, A′1→−A1.

which we refer to as theflipping of TF profile. This ambiguity can easily be resolved with

prior knowledge which is often available. Examples of such prior knowledge could be the

experimental evidence that the TF is activating/repressing a specific downstream target or that

a particular TF is in a specific state of activation at the beginning of the time course.
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6.2.1 Clustering Temporal Profiles by Dynamics

In standard FHMM setting, each latent Markov chain is characterised by a transition matrix

that specifies the conditional probabilities of moving fromone state to another. However, we

proposed to use a shared transition matrix for multiple latent Markov chains of the FHMM

that have similar dynamics. This sharing of transition matrices leads to clustering of Markov

chains as we show later. Since it is impossible to know about the number of clusters that govern

the dynamics of latent Markov chains, a non-parametric approach is required to deal with the

unknown number of clusters of Markov chains.

DPM models are nonparametric Bayesian methods that encode the natural clustering prop-

erty that the prior probability of cluster membership is proportional to the size of the cluster.

DPMs have been widely used for nonparametric clustering of expression data (Medvedovic

and Sivaganesan, 2002; Dahl, 2006; Savage et al., 2010). DPMis characterised by a hyper-

parameterη, Dirichlet distributedπ that serves as the prior for indicator variableszm and cluster

specific parametersτk.

Clustering by dynamicsimplies that we estimate the dynamics exhibited by TF profiles

(i.e.,the transition rates) and then cluster these dynamics. The estimation of the dynamics from

TF profiles is based on the transitions between time points; in case of binary Markov chains,

this boils down four possible transitions in a Markov chain as we describe later. It can also be

understood as the clustering of the transition dynamics of TF profiles rather than TF profiles

themselves.

The FHMM assigns each TF to a different Markov chain with a priori different dynamics.

This may be undesirable for biological or statistical reasons. From a biological perspective,

there are fewer processes that regulate the transcriptional machinery compared to the number

of TFs in GRN. To take this into account, we usezm as the indicator variable that assigns TFm

to one ofK clusters of the DPM model. In this way, prior over TFm can be specified as

p
(

Tm
1 , . . . ,Tm

T |zm,τk
)

=
T

∏
t=1

pzm

(

Tm
t+1|Tm

t ,τk
)

whereτk is the transition matrix for clusterk that governs the dynamic behaviour of TFmwith

zm = k.

The individual transition probabilities ofτk are denoted byξk
j ; it is useful to interpretξk

j as

persistence probabilities(p(Tm
t = 0|Tm

t−1= 0) or p(Tm
t = 1|Tm

t−1 = 1)) as these probabilities are

used to constructτk. The probabilities of changing states (off diagonal entries of τk) are easily

obtained by normalisation. The prior over these persistence probabilities is taken to be given

by ξk
j = Beta(λ1,λ2). As we normally do not have prior information over the valuesof λ, we
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M ∞

N

Figure 6.2: Graphical model (Static case)

will fix this hyperprior to be uniform by takingλ1 = λ2 = 1.

The graphical representation of the model (without time dynamics for simplicity) is shown

in figure 6.2. Notice that the TF profiles are independent given τk and the cluster assignments.

It is interesting to speculate what this implies in terms of which TFs will be clustered together.

Naturally, TFs with very similar profiles are highly likely to be clustered together. However,

clustering by dynamics implies that some clusters will alsoinclude very different profiles: for

example, TFs who are mainly in one state and occasionally briefly visit the other state are

also likely to be clustered together. Biologically, this would mean that TFs which are only

needed at specific times during the time course are clusteredtogether, which can be biologically

meaningful.

We emphasise that the number of Markov chains in this model isfixed and we are consider-

ing one time-series/TF profile as a single entity to estimatethe sufficient statistics of the Markov

chain. The sufficient statistics obtained from a time-series contribute towards the inference of

the number of clusters and the dynamics of clusters.

6.3 Inference using Gibbs Sampling

We aim to infer the temporal profiles of TFs, strength of the genetic interactions and cluster the

dynamics exhibited by TF profiles. We use gene expression data and connectivity information

of the regulatory network in our inference procedure. Due tothe intractability of Bayesian

inference and highly parameterised nature of our model, we resort to Gibbs sampling. Gibbs

sampling requires drawing samples from the conditional posterior distribution (CPD) of one

set of variables given all others. Derivations of these CPDsis greatly aided by the conditional

independences implied in the model (see figure 6.2).
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The CPD forθi given the TF profiles and expression measurements is a multivariate Gaus-

sian distribution given by
N

∏
i=1
N (θi|mi ,Σi) (6.3)

with mean and covariance given by

Σ−1
i =

1
σ2

T

∑
t=1

X ieteT
t X i +α−2I

mi =
1

σ2

[

T

∑
t=1

gt
ie

T
t X i

]

Σ−1
i

HereX i denotes a diagonal matrix with thei-th row of the connectivity matrixX along the

diagonal.

The CPD for each TF at each time point can be obtained by using the conditional indepen-

dence properties of graphical models. It is given by

P(Tm
t |Φ) =

pzm(T
m

t |Tm
t−1)pzm(T

m
t+1|Tm

t )p(gi
t |T i

t )

∑Tm
t

pzm(T
m

t |Tm
t−1)pzm(T

m
t+1|Tm

t )p(gi
t|T i

t )

whereΦ = {Tm
t−1,T

m
t+1,T

−m
t ,gi

t ,θi,X,Z,τ} andpzm is the transition matrix for clusterk of

DPM such thatzm = k. To improve the efficiency of posterior estimation, we employed the

stochastic Forward Backward algorithm (Boys et al., 2000) for simultaneous sampling of all

the states of a Markov chain. For this purpose we run the Forward algorithm to obtain the

forward messageαt
zm
(Tm

t ) and then use it in above equation to get

P(Tm
t |Φ) =

αt
zm
(Tm)pzm(T

m
t+1|Tm

t )

∑Tm
t

αt
zm
(Tm)pzm(T

m
t+1|Tm

t )
(6.4)

which is then used to sampleTm
t .

6.3.1 Collapsed Gibbs Sampling of Cluster Memberships

For inference ofzm, we use a collapsed Gibbs sampling approach integrating outπ andτk, so

that we need to take samples fromp(zm = k|z−m,T1:M
1:T ,η,λ). To obtain the CPD of cluster

assignment variableszm, we start as follows:

p(zm = k|z−m,T1:M
1:T ,η,λ) = p(zm = k|z−m,T−m

1:T ,T
m
1:T ,η,λ)

∝ p(zm = k|z−m,T−m
1:T ,η,λ)p(T

m
1:T |zm = k,z−m,T−m

1:T ,η,λ) (6.5)

= p(zm = k|z−m,η)p(Tm
1:T |T

k,−m
1:T ,zm= k,λ) (6.6)
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Herez−m is the set of clustering assignment for all TFs exceptTm, T−m
1:T is the set of all TF

profiles except TFmandTk,−m
1:T is the set of TFs profiles already assigned to clusterk except TF

m. We use Bayes theorem in equation (6.5) and conditional independence property of graphical

models in equation (6.6). The first term in equation (6.6) canbe interpreted as the predictive

prior and is due to the marginalization ofπ. Using standard results in the DPM literature, we

obtain

p(zm = k|z−m,η) =
nk,−m+η/K

M+η−1
(6.7)

herenk,−m is the number of TFs already assigned to clusterk of DPM.

The second term in the CPD ofzm is the predictive likelihood which is calculated by in-

tegrating out the cluster specific parametersτk. As we see later, it depends on the count of

transitions for the TF profiles that are currently assigned to clusterk excluding the TFm,

p(Tm
1:T |T

k,−m
1:T ,zm = k,λ)

=

∫
p(Tm

1:T |τk,zm = k)p(τk|Tk,−m
1:T ,zm = k,λ) dτk

=
∫ 2

∏
j=1

[

(ξk
j)

xk
j (1−ξk

j)
yk

j

] 2

∏
j=1

[

Γ(ak
j +bk

j)

Γ(ak
j)Γ(b

k
j)
(ξk

j)
ak

j−1(1−ξk
j)

bk
j−1

]

dξk
j

(6.8)

To compute the conditional posterior for the persistence probabilities, we define

xk
j =

{

#{Tm
t = 0,Tm

t−1 = 0} if j = 1

#{Tm
t = 1,Tm

t−1 = 1} if j = 2

yk
j =

{

#{Tm
t = 1,Tm

t−1 = 0} if j = 1

#{Tm
t = 0,Tm

t−1 = 1} if j = 2

Nk
j1 = ∑

κ:zm=k

xκ
j , Nk

j2 = ∑
κ:zm=k

yκ
j

ak
j = λ1+Nk

j1 , bk
j = λ2+Nk

j2

The CPD for the persistence probabilitiesξk
j is therefore given by the following distribution

ξk
j ∼ Beta(ak

j ,b
k
j) (6.9)

Note that these transition rates are estimated by pooling the statistics of all the TFs currently as-

signed to clusterk of the DPM; this provides more robust estimates of transition rates. Plugging

this back into equation (6.8), we obtain

p(Tm
1:T |T

k,−m
1:T ,λ) =

2

∏
j=1

Γ(ak
j +bk

j)

Γ(ak
j)Γ(b

k
j)

.
Γ(ak

j +xk
j )Γ(b

k
j +yk

j )

Γ(ak
j +xk

j +bk
j +yk

j)
. 1 (6.10)
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which finally leads to the following CPD for latent indicatorvariables

p(zm = k|z−m,T1:M
1:T ,η,λ) =

nk,−m+η/K

M+η−1
.

2

∏
j=1

[

Γ(ak
j +bk

j)

Γ(ak
j)Γ(b

k
j)
.
Γ(ak

j +xk
j )Γ(b

k
j +yk

j )

Γ(ak
j +xk

j +bk
j +yk

j)

]

. (6.11)

The Gibbs sampling algorithm for the inference of theΘ,T andzm is outlined in algorithm

(4) where each random variable is sampled from the CPD iteratively until the sampler is deemed

to have converged.

6.4 Experimental Analysis

To test our model, we check its performance on two simulated datasets. Then we perform a

sensitivity analysis of the model using simulated datasetsof varying sizes with different levels

of noise. Finally we show the applicability of our model on two real datasets.

6.4.1 Analysis using Simulated Data

One simulated dataset is relatively small compared to the scale of most regulatory networks and

consists of 20 genes, 5 TFs and two transition matrices governing the dynamics of the TF pro-

files (N = 20,M = 5,K = 2,T = 20). The other simulated dataset is larger with 100 genes, 20

TFs and 3 transition matrices to account for TFs dynamics (N = 100,M = 20,K = 3,T = 20).

We start by generating the cluster assignments that relate each TF to one of the transition matri-

ces; which are then used to generate TF temporal profilesT. Using these temporal profiles with

the artificialΘ parameters and the known regulatory architecture, we generate the expression

profiles for all the genes in the dataset with added Gaussian noise.

It is important to mention that if the persistence probabilities in the transition matrix are

low then two temporal profiles sampled from the same transition matrix can be sufficiently

different. It is then possible that the nonparametric clustering approach we employ may decide

to generate an extra cluster and cluster these two TFs separately. This scenario is elaborated

with the help of an example in section 6.4.1.2. Similar problems may occur when the inferred

TF profile is flipped. One principled approach to avoid these flips in simulated and real data

analysis is by incorporating the prior knowledge about the dynamics of TFs at the initial time

point. In case of simulated datasets, flipping can be avoidedby assuming that all the TFs are

off at the start of the experiment and base expression levelsof all the genes is zeros when not

bound by any TF.
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Algorithm 4 Gibbs sampling algorithm for inference in DPM-FHMM

Require: InitialiseT randomly or from expression data (G)

Require: Initialise{zm}Mm=1

Require: α2← 1

Require: σ2← 0.1

Require: Initialisezm

1: repeat

2: for i← 1,N do

3: Update the CPD (Eq. 6.3) overθi for genei given{G,T1:M
1:T }

4: end for

5: for m← 1,M do

6: Update the CPD ofTm
1:T (Eq. 6.4) given{zm,τk,Θ,G}

7: end for

8: Updatee1:T using the state marginals

9: for m← 1,M do

10: Update the CPD ofzm (Eq 6.11) given{T1:M
1:T }

11: end for

12: Remove empty cluster to getKactive

13: for k← 1,Kactive do

14: for j ← 1,2 do

15: Sampleξk
j ∼ Beta(ak

j ,b
k
j) given{T1:M

1:T , Z}
16: end for

17: end for

18: until Converged
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Label switching is a major problem in mixture modelling and our model faces the same

challenge. This reflects the possibility that same labelling may recur in a sample with clusters

labelled differently. While there are approaches available in the literature for dealing with the

label switching problem in the context of finite mixture models (Celeux et al., 2000; Stephens,

2000; Frühwirth-Schnatter, 2001), fewer are available incase of unbounded numbers of clus-

ters. One possible remedy is to use anM×M co-occurrencematrixC that, for each pair of TFs,

stores the sample fraction with both members of the pair falling in the same cluster. The entries

in the symmetric matrixC, for each draw of the Gibbs sampler, are 1 along the diagonal and

1 for row i and columnj if TFs i and j fall in the same cluster, zero otherwise. The matrixC

is invariant to label switching and hence identifiable. We useC to calculateĈ that summarises

MCMC draws ofzm after the burn-in period of the Gibbs sampler.

We systematically compare our approach with standard FHMM throughout our experi-

ments; results of these comparisons are reported in table 6.1, where the proposed method is

referred to as DPM-FHMM . For the sake of comparison, we use FHMM to infer the temporal

profiles of TFs, regulatory interactions and transition rates via Gibbs sampling. The criteria

for comparison are mean squared error (MSE) in reconstructing the temporal profiles of genes

and Hamming distance (H.D.) between inferred TF profiles using our model with FHMM. In

general, the two methods provide similar MSEs with our method better at inferring the TFAs

(i.e. H.D.) where the experimental noise is high (see section 6.4.2). Obviously, our method

also has the added benefit of interpretable clustering of TFs.

In order to analyse the clustering obtained from our model, we use the TF profiles inferred

using FHMM and cluster them profiles using K-means algorithmwith H.D. as the distance

measure. The results obtained for K-means clustering for these two simulated datasets in shown

in the subsequent sections.

6.4.1.1 Simulated Dataset #1

The clustering assignment in our method is unconstrained and is only bounded by the total

number of TFs in the dataset. Due to this, each draw of the Gibbs sampler may have different

number of clusters in it. The inferred co-occurrence matrixfor small simulated dataset in

shown in figure 6.3a. The information in this co-occurrence matrix lacks one critical piece of

informationi.e. the number of clusters.

To infer the number of cluster, we collect the total number ofclusters present in each

MCMC draw after the burn-in period. This information is shown in figure 6.3b after nor-

malisation and can be interpreted as the posterior probability distribution over the number of

clusters. This suggest that TF profiles are best explained when clustered in 2 groups which is
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Datasets
MSE MSE HD HD

(DPM-FHMM) (FHMM) (with ground truth) (FHMM with DPM-FHMM)

Simulated dataset #1 0.0086 0.0086 0 0
Simulated dataset #2 0.0086 0.0086 0 0
Partridge et al. (2007) 0.0889 0.3404 N.A. 0.2333
Spellman et al. (1998) 0.2469 0.1607 N.A. 0.2444

Table 6.1: Comparison of the proposed method with FHMM on simulated and real datasets

consistent with the original co-occurrence matrix shown infigure 6.3c.

It is easy to find the clustering assignment of all TFs from theinferred co-occurrence matrix.

From the co-occurrence matrix in figure 6.3a, we see that TF 2 and TF 3 are grouped together

in one cluster, TF 1, 4 and 5 in another cluster. While comparing the accuracy of our model’s

predictions in terms of inferred TF profiles with the ground truth, we found our model is able

to reconstruct the TF profiles with 100% accuracy as shown in table 6.1.

Figure 6.3d shows the co-occurrence matrix for the inferredprofiles clustered using K-

means algorithm (withK = 2). As the number of samples is very few this case (M = 5),

K-means algorithm is unable to find the right cluster membership.

6.4.1.2 Simulated Dataset #2

The results for clustering of TFs for this dataset are summarised in figure 6.4a-b in the form of

co-occurrence matrices and posterior distribution over the number of clusters. The TF profiles

in this dataset are generated from 3 transition matrices. Although our method is able to re-

construct the TF profiles without any false positive or negatives (true TF profiles for simulated

dataset #2 shown in figure 6.5b), the histogram in figure 6.4b suggests that there could be 4 or

5 clusters of TF profiles. This is due to considerable amount of variability in the TF profiles

that are generated from the same transition matrix. An instance of this weak co-occurrence can

be seen from the co-occurrence probabilities of TF 2 and TF 3 (and similarly for TF 13 and TF

15) in figure 6.4a that are not co-clustered with high co-occurrence probability; this results in

the instantiation of a new cluster to accommodate relatively different dynamics of these TFs.

Thesplittingof a cluster can be seen by considering TF 2, 4, 7, 8, 10 and 13 which are co-

clustered during data generation as shown figure 6.4c. A close look at figure 6.4a shows that the

co-occurrence probabilities for this cluster of TFs are notcomparable to other co-occurrence

probabilities. It is easy to find two groups of TFs within thiscluster with high co-occurrence

probabilities; one group for TF 2, 7 and 13 and another group for TF 4, 8 and 10. Furthermore,

the subgroup with TF 2, 4 and 7 shows weak co-occurrence between TF 2 and 13. This a
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Figure 6.3: Results using simulated dataset 1 (a) Inferred co-occurrence matrix constructed
from simulated dataset 1 (b) Posterior probability distribution over number of clusters inferred
from simulated dataset 1 (c) Co-occurrence matrix constructed from known cluster assignments
for simulated dataset 1 (d) Co-occurrence matrix constructed using K-means algorithm based
on the inferred TF profiles from FHMM.
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Figure 6.4: Results using simulated dataset 2 (a) Inferred co-occurrence matrix for simulated
dataset 2 (b) Posterior probability distribution over number of clusters inferred from simulated
dataset 2 (c) Co-occurrence matrix constructed from known cluster assignments for simulated
dataset 2 (d) Co-occurrence matrix constructed using K-means algorithm based on the inferred
TF profiles from FHMM.
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Figure 6.5: (a) True TFs profiles for simulated dataset 1 (b) True TFs profiles for simulated
dataset 2

posteriori splitting of clusters explains the high probabilities for 4 or 5 clusters in the histogram

in figure 6.4b.

The results of cluster membership obtained from K-means algorithm (with K = 3) using

TF profiles inferred from FHMM are shown in figure 6.4d in the form of co-occurrence matrix.

As the number of samples in this dataset is higher (i.e. M= 15 compared to simulated dataset

#1 with M = 5) the co-occurrence matrix in figure 6.4d shows cluster membership which is

in agreement with the original co-occurrence matrix in figure 6.4c except for TF 10 which

is not co-clustered correctly by K-means algorithm. Our proposed method also shows weak

co-occurrence probability for TF 10 as shown in figure 6.4a.

6.4.2 Sensitivity Analysis

We conducted a thorough sensitivity analysis of the proposed model to see how it responds

to different levels of noise in the measurements of gene expression data. As we compare the

results of the inference on the proposed model with standardFHMM, this would also allow us

gauge the accuracy of inference in two models; namely DPM-FHMM and FHMM.

To achieve this, we use four simulated datasets with the statistics given below:

• Simulated dataset # 1:N = 100,M = 15,T = 20,K = 3 with σ2 = {0.1,0.5}.

• Simulated dataset # 2:N = 200,M = 30,T = 20,K = 5 with σ2 = {0.1,0.5}.

We trained three methods on these four datasets: DPM-FHMM, standard FHMM where

the transition rates for latent Markov chains are also inferred and FHMM where the transition

103



Criteria
σ2 = 0.1 σ2 = 0.5

FHMM FHMM FHMM FHMM FHMM FHMM
(with DPM) (with rate learning) (with fixed rates) (with DPM) (with rate learning) (with fixed rates)

MSE∗ 0.0860 0.0859 0.0860 0.4367 0.4537 0.4425
HD∗ 0.0067 0.0167 0.0067 0.0867 0.1667 0.0433
MSE∗∗ 0.0878 0.0884 0.0887 0.4405 0.4430 0.4448
HD∗∗ 0.0200 0.0433 0.0367 0.0650 0.0933 0.0467

HD∗:HD on simulated dataset #1, MSE∗:MSE on simulated dataset #1
HD∗∗:HD on simulated dataset #2, MSE∗∗:MSE on simulated dataset #2

Table 6.2: Comparison of DPM-FHMM, FHMM with transition rate learning and FHMM with
transition rates fixed to true values

rates are kept fixed to the ground truth. The inference in FHMMis done via Gibbs sampling.

As before, we used MSE and HD to find the deviation between the inferred values of model

parameters and latent variables with the ground truth. The results of the inference on these

simulated datasets are summarised in table 6.2.

It can be seen from table 6.2 that the predictions of our modelare in closer agreement with

the ground truth compared to the predictions of FHMM (where the transition rates are also

inferred) in terms of HD. This improvement in inferring the latent Markov chains can be seen

in both datasets. From this, we can conclude that our model’sability to explain the data is better

(even in the presence of relatively large measurement errors) compared to FHMM when the size

of the problem is large which is the case for most of the biological system with hundreds of

thousands of genes and and hundreds of TFs.

It is important to mention here that our model is not only better than FHMM in learning

the temporal profiles of TFs but it also infers the cluster membership of TFs which a standard

FHMM cannot do.

6.4.3 Micro-aerobic Shift in E.coli

Partridge et al. (2007) studied the changes in transcriptomic behaviour ofE.coli against the

oxidative stress.E.coli responds to changes from aerobic to micro-aerobic conditions by acti-

vating TF proteins that act as oxygen sensors such as FNR and ArcA. This study measures the

mRNA expression profiles of 302 genes and employed a probabilistic technique (Sanguinetti

et al., 2006) to infer the activities of the key regulators involved in oxidative stress response in

E.coli. The analysis reveals the biologically plausible results about the activations patterns of

these regulators.

The mRNA expression data consists of 4 time-points taken at 5, 10, 15 and 60 minutes and
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Figure 6.6: (a) Inferred co-occurrence matrix from Partridge et al. (2007) dataset (b) Posterior
probability distribution over number of clusters (c) Inferred temporal profiles of six TFs (d) Co-
occurrence matrix constructed using K-means algorithm based on the inferred TF profiles from
FHMM.
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Figure 6.7: Co-occurrence matrix constructed using K-means algorithm (with K = 3) based on
the inferred TF profiles from FHMM for Partridge et al. (2007) dataset.

measured relative to a sample taken immediately before the oxygen starvation. The connectivity

information about the regulatory network ofE.coli was obtained from ecocyc1 database. We

used this dataset to reconstruct the regulatory mechanism (TF temporal profiles and strength

of genetic interactions) and cluster the dynamics of these key regulators. Table 6.1 shows the

predictions of our method in comparison with Shi et al. (2008).

The co-occurrence matrix in figure 6.6a shows higher co-occurrence probabilities for TFs

that behave similarly by switching to on states to respond tooxidative stress such as FNR and

ArcA. These two TFs are known as direct and indirect sensors of oxygens respectively (Par-

tridge et al., 2007). Another TF which is co-clustered with FNR and ArcA is MetJ; this is due

the key role of MetJ in methionine biosynthesis which is interrupted during the adaption to aer-

obic conditions (Partridge et al., 2007). Figure 6.6b showsthe posterior probability distribution

for different number of clusters. It can be seen that the proposed method predicts two clusters

of TFs with highest probability. The second cluster consists of TFs which are not following

a well-defined pattern (MetR, SigE, CpxR). A higher probability for a total of 3 clusters can

be explained by the examining the profile of MetR which is slightly different than CpxR and

SigE in the second cluster. These groups of TFs can be more useful when combined with the

experimental setup (such as environmental perturbation during the full length of experiment)

to see how perturbations are related to the dynamics of TFs clustered together.

The results of K-means clustering (withK = 2) using TF profiles inferred from FHMM are

shown in figure 6.6d where the first four TFs are co-clustered while the remaining two TFs

1www.ecocyc.org
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in another cluster. While this is similar to the inference results of our model (figure 6.6a), K-

means algorithm withK = 3 gives results that are in close agreement with the co-occurrence

matrix inferred by our proposed method. This co-occurrencematrix with K = 3 is shown in

figure 6.7.

6.4.4 Yeast Cell Cycle Data

Yeast cell cycle dataset (Spellman et al., 1998) provides the expression profiles of most of the

genes in yeast over a complete cell cycle. Although this dataset is old, it is well suited for

models of transcription regulation as it is well studied andserves as a standard benchmark for

comparison and validation of the model. In this study, threedifferent time-series experiments

were conducted on three strains of yeast and these experiments were synchronised by three

independent methods. Here, we will focus on the cdc15 synchronised time-series expression

data, consisting of 6181 genes expression profiles over 24 equally spaced time-points. To

obtain the connectivity of GRN of yeast, we turned to Lee et al. (2002) where this information

is available for 113 TFs and 6270 genes. We preprocessed bothdatasets in such a way that each

gene is bound by at least one TF and all TFs regulate at least one downstream target. If, for a

gene, no regulator is available we remove the expression profile of that gene to make both the

datasets consistent. This preprocessing leaves us 1975 gene expression profiles with a network

connectivity information of 1975 genes regulated by 104 TFs.

The histogram in figure 6.8b shows that the dynamics of 104 TFsare best explained when

clustered in 6 clusters. We used a threshold of 0.8 for co-occurrence probabilities to find clus-

ters of TFs and rearranged the rows of inferred co-occurrence matrix such that TFs with high

co-occurrence probabilities fall together. This co-occurrence matrix is shown in figure 6.8a.

As it can be seen from figure 6.8a, most of the TFs are grouped intwo large clusters. The

cluster at the lower right corner of figure 6.8a accounts for those TFs that follow a periodic

pattern which are ACE2, SWI4, SWI5, MBP1, STB1, FKH1, FKH2, NDD1, MCM1 and few

more. These results are consistent with Lee et al. (2002) where these key regulators are iden-

tified as co-expressed through the cell cycle and play an important role in cell division. Our

model clusters all the key cell cycle regulators identified in Lee et al. (2002) except SKN7.

Furthermore, some TFs (DAL81, INO2, INO4, MET4, MSN4, YAP5,YAP6) with similar dy-

namics are identified in the same cluster suggesting that they may also play a role in regulating

the cell cycle; this hypothesis can be tested with evidence from biological experiments. An-

other large cluster groups together those TFs that are not following a well defined pattern. One

small cluster consists of only 3 regulators at the top left ofthe co-occurrence matrix which
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Figure 6.8: (a) Inferred co-occurrence matrix from Spellman et al. (1998) dataset (b) Posterior
probability distribution over number of clusters.
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remain in the on state throughout the cell cycle.

6.5 Conclusion

We introduce a probabilistic method to infer and cluster TF activities based on their latent dy-

namics by combining the gene expression data with ChIP-on-chip data. The motivation for

clustering TF activities is twofold: first of all, biological considerations indicate that, as TF

activation can be achieved using a finite set of mechanisms, different TFs may indeed have

very similar dynamics of activation. Secondly, the clustering permits a principled Bayesian

estimation of the transition probabilities of the underlying Markov chains, which is otherwise

extremely hard given the short time series usually available in biology. Using time-series data

to identify groups of Markov chains with model-based clustering (Fraley and Raftery, 2002)

provides a natural way to model (short) time-series data, arising in a multitude of different

applications. Different methods have been proposed for this task (Ramoni et al., 2002; Pam-

minger and Frühwirth-Schnatter, 2010), mostly based on finite mixture of first order, time

homogeneous Markov chains. Although these methods performwell on some applications, se-

lecting the number of clusters remains an issue in many cases, and heuristics such asAIC, BIC

can be problematic, and fail to quantify the uncertainty in this crucial modelling step. To our

knowledge, the solution we present, based on non-parametric Bayesian mixture modelling, is a

novel and elegant way of addressing this problem. Nonparametric Bayesian methods have been

popular in the machine learning and statistics community inrecent years, and have been used

in time series modelling. In particular, a recent paper (VanGael et al., 2009) discussed the use

of nonparametric Bayesian models in FHMMs. There, however,the nonparametric limit was

used to allow the number of factors to be unknown; in our case,the nonparametric prior is one

step further up in the hierarchy, and is used to group different factors in an unknown number of

clusters. In the bioinformatics literature, Savage et al. (2010) also used nonparametric Bayesian

methods to model jointly gene expression and ChIP-on-chip data to find transcription modules;

however, in that paper the role of regulation by TF proteins was left implicit, and dynamical

models were not considered.

We believe the encouraging results presented indicate thatthis methodology may be a useful

data modelling and exploration tools. In the future, we would like to include clustering ideas in

more complex and realistic models of regulation which allownon-linear regulation (Asif and

Sanguinetti, 2011; Opper and Sanguinetti, 2010).
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Chapter 7

Future Directions

In this thesis, we proposed to use latent variables to model the activities of TF profiles using

the observed characteristics of biological networks. We used three methods for this: SSM,

cFHMM and DPM-FHMM.

State space models have previously been for inference in transcriptional regulation; how-

ever, we exploit the sparse structure of the regulatory network in modelling latent TFAs and

gene-specific regulatory activities. This leads to computationally efficient algorithms that can

be used on genome-wide scale unlike previous methods. We extended this method and devel-

oped a customised software package that is easy to use without any expertise; this software is

being used by biologist as an analysis tool to make predictions about the TF activities that are

extremely difficult to measure.

We proposed cFHMM to model the non-linear, pair-wise interaction of TFs from gene ex-

pression in chapter 5. This method provides novel biological insights as well as confirming the

previously known combinatorial interactions. Although latent variables can cope with the post-

transcriptional and translational modifications to mRNA, this method does not explicitly model

these modifications. Another method based on FHMM (Shi et al., 2008) has been proposed

recently that models the post-transcriptional and transcriptional modifications as well. It seems

natural to combine these approaches that can provide biologically useful information about two

important but different aspects of regulatory activities in gene regulatory network; combinato-

rial transcriptional regulation and post-transcriptional and translational modifications.

One challenging problem of inference in latent Markov chains from limited length of ob-

served sequences is that of estimating the transition ratesof the Markov chains. This becomes

even severe in case of biological sequences as the expression data are usually limited to few

time-points due to cost of the experimental setup. To address this issue, we propose to use

sufficient statistics from multiple Markov chains (TF profiles) in estimating the transition rates

instead of single Markov chain. This scheme has shown to provide better estimates of the latent
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profiles. This approach has an added benefit; data from similar TF profiles is pooled together

for estimating the transition rates which naturally leads to clustering of TF profiles. This ap-

proach does not require any assumptions about the initial transition rates as these are inferred.

Plausibly, this estimation scheme will lead to better results when used in models where initial

transition rates are kept fixed (Asif and Sanguinetti, 2011).

An important feature of the models proposed in this thesis isthe large-scale learning and

inference which requires that only realistic or somewhat simplified models of transcriptional

regulation can be considered. It would be natural to use the clustering scheme proposed in

chapter 6 to more realistic models of transcriptional regulation (Opper and Sanguinetti, 2010).

DPM-FHMM clusters the TF profiles based on the TF dynamics; the temporal structure

of these latent profiles is not taken into account at the top level of the hierarchy. It would be

interesting to see how TF profiles are clustered if the temporal structure of latent TF profiles

is considered while clustering these profiles. Intuitively, clustering based on TF profiles will

provide clusters of TFs corresponding to their role in particular biological processes.
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Appendix A

Calculations for Inference in
Combinatorial Transcriptional Regulation

with non Time-series Data

A.1 Gibbs Sampler

We presented the inference mechanism for the dynamic case ofthe combinatorial transcrip-

tional regulation model in section (5.3). Here we describe the static case of the model where

the expression data is not from a time-series microarray experiment.

For Gibbs sampling, conditional posterior distribution over θi can be written by using the

conditional independence properties of graphical models (Bishop, 2006). It is given by

p(θi |gt
i ,TFt ,X) =

T

∏
t=1
N (gt

i |µi(TFt),σ2).p(θi|α2)

∑
θi

[

T

∏
t=1
N (gt

i |µi(TFt),σ2).p(θi|α2)

] (A.1)

HereTFt is the set of states of all the TFs at experimental conditiont; for M = 2, TFt ∈
[(0,0),(0,1),(1,0),(1,1)]. µi(TFt) is given in equation (5.2). Simplifying (A.1) leads to a

Normal distribution for posterior update ofθi with the following mean and covariance

Σ−1
i =

1
σ2

T

∑
t=1

XT
i eteT

t X i +
1
α

2

[I ] (A.2)

µi =
1

σ2

[

T

∑
t=1

gt
ie

T
t X i

]

Σi (A.3)

After updating theµi andΣi for all genes,θi is sampled from a multivariate normal distri-

bution usingµi andΣi .
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Again using Bayes’ rule, we can write posterior distribution overTFt as

p(TFt |gt
i ,θi ,X) =

N

∏
i=1
N (gt

i |µi(TFt),σ2).p(TF)

∑
TFt

N

∏
i=1
N (gt

i |µi(TFt),σ2).p(TF)

(A.4)

p(TF) is taken to be uniform (12M ). At each conditiont there are total 2M posterior probabili-

ties corresponding to 2M possible states. Each of the probabilities(p1, p2, . . . , p2M) corresponds

to one of the 2M possible states of the posterior distribution at conditiont.

A.2 Variational Inference

Using Gibbs sampler for inference is expensive in terms of the computational time as the con-

ditional posterior distribution is sampled from the joint distribution. Variational formulation

of the same model gives comparable results to the of Gibbs sampler and it is computationally

efficient than MCMC techniques. The joint likelihood of the model is

p(gt
i ,θi,TFt ,σ2,α2) = p(gt

i |TFt ,θi,σ2) p(θi |α2)

where

p(gt
i |TFt ,θi ,σ2) =

N

∏
i=1

T

∏
t=1
N (gt

i |µ(TF),σ2)

and

p(θi |α2) =
N

∏
i=1
N (0,α2)

Taking the expectation of the log of the joint likelihood w.r.t. θi gives the posterior distribution

over the parameters ofθi

q∗(θi) =
N

∏
i=1
N (θi |m,Σ)

The mean and covariance of this multivariate Normal distribution are given by

Σ−1 =
1

σ2

T

∑
t=1

X i
〈

eteT
t

〉

X i +α−2I

m =
1

σ2

[

T

∑
t=1

gt
i

〈

eT
t

〉

X i

]

Σ−1

Again taking the expectation of the log of joint likelihood w.r.t. et gives posterior distribution

over the states of all the TFs at conditiont

lnq∗(TFt) =−
1
2

N

∑
i=1

{

T

∑
t=1

(

1
σ2eT

t X i
〈

θiθT
i

〉

X iet −
2

σ2gt
ie

T
t X i 〈θi〉

)

}
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q∗(TFt) = exp

[

−1
2

N

∑
i=1

{

T

∑
t=1

(

1
σ2eT

t X i
〈

θiθT
i

〉

X iet −
2

σ2gt
ie

T
t X i 〈θi〉

)

}]
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