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Abstract 
 

Experimental autoimmune encephalomyelitis (EAE) is a CD4+ T cell mediated 
autoimmune disease of the central nervous system and shares many characteristics 
with multiple sclerosis (MS). Induction of EAE is mediated by myelin reactive CD4+ 
T helper (Th) cells, particularly Th1 and Th17 cells, which can be provoked by the 
immunization with myelin derived protein (or peptide) and Toll-like receptor (TLR) 
stimulus (eg, complete Freund¡s adjuvant, CFA). If given an injection of soluble 
peptide before immunization, mice do not develop EAE (they are tolerant). This 
approach has been widely applied, evoking tolerance in primary responses (i.e., in 
naive T cells). Therefore the first hypothesis of this thesis is that peptide induced 
protection from EAE is a result from T cell deletion or / and anergy. As MS patients 
have ongoing disease and over 85% of MS patients develop a relapsing-remitting 
course, memory T cells are key targets when considering peptide-induced tolerance 
as a therapeutic strategy. Thus, a model for ¡memory EAE¡ was established to test a 
second hypothesis that the myelin reactive memory T cells can be controlled by the 
administration of soluble peptide.  
 
Here, adoptive transfer of T cells from T cell receptor transgenic mice (2D2) 
recognizing myelin oligodendrocyte glycoprotein 35-55 (pMOG) was used to 
investigate the pMOG-reactive memory responses. Soluble pMOG administration 
could induce a transient expansion of 2D2 T cells followed by their loss through 
apoptosis. A model using double immunization was established by immunizing mice 
first with pMOG together with unmethylated CpG oligonucleotide (CpG) as an 
adjuvant, and subsequently immunizing with pMOG in CFA. This produced EAE 
with early onset and high incidence compared to mice which received pMOG/CFA 
only. Cells from mice that received the double immunization protocol produced high 
levels of IFN-γ, suggesting that memory T cell responses have been triggered in the 
mice. Administration of soluble peptide before secondary immunization could 
ameliorate EAE, indicating that memory T cells are susceptible to tolerance 
induction. pMOG-reactive memory T cells were further assessed by isolating CD4+ 

CD25- CD44high CD62Llow cells from pMOG-experienced 2D2 mice. These cells 
showed early and high production of IFN-γ, and early but transient production of 
IL-2, compared with naive population. These data provide basic information relevant 
to translating peptide-induced T cell tolerance from mice to humans. 
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Chapter 1. Introduction  

 

1.1 Immune response and adaptive immunity 

Immunity is defined as resistance to disease, specifically infectious disease. The 

immune response involving cells, tissues and molecules, is the reaction made by the 

immune system to protect the host against disease by identifying and killing 

pathogens. The immune system consists of innate immunity, which mediates the 

initial protection against infection and adaptive immunity, which mediates the later 

defense. When microorganisms successfully invade an organism, the non-specific 

innate immunity responds to pathogens immediately. Providing synergy with innate 

immunity, jawed vertebrates (fish, birds and mammals) have developed adaptive 

immunity against particular antigens to provide a specific, long-lasting and recallable 

protection (Janeway et al., 2005). There are two arms to adaptive immunity, humoral 

immunity and cellular immunity. In humoral immunity, responding B lymphocytes 

(B cells) secrete antibodies that eliminate extracellular pathogens. In cellular 

immunity, T lymphocytes (T cells) can provide synergistic molecules for eliminating 

pathogens and destroying infected cells. Both B and T cells are designed to 

specifically recognize and respond to foreign antigens by their antigen receptors, 

which are extremely diverse for different antigens. In addition, adaptive immunity 

has different responses against distinct microorganisms, specialized by mounting 

distinct effector cells (i.e. effector cytokine producing T cells or antibody secreting B 

cells). If an individual encounters an antigen and receives the same antigen in later 

life, the immune system can mount greater and faster responses due to the 

development of ¡memory cells¡ at the first encounter  with the antigen. This 

immunological memory makes immunity more efficient to repeated infections 
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(Janeway et al., 2005). Based on the properties of specificity, memory and 

specialization of adaptive immunity, this introduction concentrates on adaptive 

immunity and particularly on the role of CD4+ T cells in experimental autoimmune 

encephalomyelitis (EAE). 

 

1.1.1 T cell activation  

T cells, that develop and mature in the thymus, are an essential subset of 

lymphocytes in adaptive immunity. T cells can be separated into CD4+ and CD8+ 

cells and the expression of the CD4 molecule restricts CD4+ T cells to recognize 

major histocompatibility complex (MHC) class II molecules on antigen presenting 

cells (APC) (Guermonprez et al., 2002). APC include dendritic cells (DC), 

macrophages and B cells which are the initiators and modulators of the adaptive 

immune response. APC can respond to pathogens by up-regulating surface molecules 

and by secreting cytokines for T cell activation. T cells need antigens to be processed 

and presented to them by APC. The T cell receptor (TCR) can recognize particular 

peptide bound to MHC. The ligation of TCR / peptide / MHC initiates TCR 

downstream signalling that consequently triggers T cell activation. Despite the fact 

that the common portals of entry for pathogens are skin, gastrointestinal tract and 

respiratory tract, the only subset of APC located in the epithelium is DC. Despite that 

macrophages and B cells are able to activate naive CD4+ T cells in vitro, DC are the 

major mediators for T cell activation in vivo (Villadangos and Heath, 2005; Askew et 

al., 1995; Cassell and Schwartz, 1994). DC can capture antigens and transport them 

to draining lymph nodes, serving as the major MHC class II provider in the T cell 

area of lymph nodes, activating T cells (Steinman et al., 1997; Inaba et al., 1997).  
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1.1.2 Signal 0 for DC activation  

CD4+ cells are classified as naive T cells before they experience antigens. To activate 

naive CD4+ T cells, three signals have to be provided : A) ligation of TCR / peptide / 

MHC, B) co-stimulatory molecules, C) cytokines for polarization. Ahead of these 

three signals provided, DC have to be primed to mature by pathogen-associated 

molecular patterns (PAMP). PAMP are microorganism derived, repeating patterns of 

molecular structures. For example, gram-positive bacteria have a thick layer of 

peptidoglycan (PGN) in the cell wall, gram-negative bacteria typically have a 

lipopolysaccharide (LPS) layer surrounding the outside of the cell wall (Draing et al., 

2008), a specific sequence motif in bacterial or viral DNA consists of repeated 

unmethylated CpG, which is 20 times less common in mammalian than in bacterial 

DNA (Klinman et al., 2004). Receptors that recognize PAMP are pattern-recognition 

receptors (PRR), which are a set of evolutionary conserved proteins. Toll-like 

receptors (TLR) and C-type lectin receptors (CLR) are PRR which respond to PAMP 

and induce DC activation (van Vliet et al., 2007). As members of the IL-1 receptor 

(IL-1R) / TLR superfamily, TLR can recognize multiple PAMP, including PGN 

detected by TLR2, LPS detected by TLR4 and unmethylated CpG DNA detected by 

TLR9 (Iwasaki and Medzhitov, 2004). On the other hand, immature DC are rich in 

membrane- associated C-type lectin (CLR), a set of cell to cell adhesion receptors, 

pivotal in pathogen recognition and antigen presentation, making immature DC 

efficient at capturing pathogens (van Vliet et al., 2007).  

 

Immature DC reside in the epithelia of skin and mucosal tissues for a period of time. 

They have properties of high endocytic lasting, low levels of surface MHC and 

co-stimulatory molecules (Banchereau and Steinman, 1998). After TLR binding to 
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PAMP, immature DC are activated and matured to become matured DC, together 

with up-regulation of MHC molecules (for signal 1) and co-stimulatory molecules 

(for signal 2). In addition, different types of microorganisms have diverse PAMP 

which have different preferences for triggering particular TLR on DC and for 

provoking distinct cytokine patterns for T cell polarization (Kapsenberg, 2003). Thus, 

PAMP / TLR signalling provides a ¡signal 0¡ in DC and specializes the DC¡s 

preference for T cell activation and differentiation. DC are present in an immature 

state in tissues when there is no stimuli and are thus unable to stimulate T cells. After 

they receive signals from TLR, the immature DC are activated, rapidly lose their 

ability for endocytosis, up-regulate MHC molecules and express high levels of 

adhesion and co-stimulatory molecules, including ICAM-1, LFA-3, CD80, CD86 and 

CD40 (Banchereau and Steinman, 1998). Moreover, activated DC are able to migrate 

from non-lymphoid tissue (epidermal and mucosal, the sites DC are normally located 

in) to lymph nodes where they provide pathogen-specific CD4+ T cells with the three 

essential signals for activation and differentiation (Steinman et al., 1997).  

 

1.1.3 Signal 1 for T cell activation 

The first signal results from the ligation of the TCR by peptide associated with MHC 

class II, which determines the specificity of response. Extracellular microorganisms 

or proteins are internalized by APC into vesicles where the foreign proteins are 

broken down by proteolytic enzymes, generating various peptides. APC constantly 

synthesize class II MHC molecules in the endoplasmic reticulum (ER). Class II 

MHC molecules can be transported by exocytic vesicles which can fuse with foreign 

peptides containing vesicles, resulting in peptide binding to MHC II molecules. 

Subsequently the peptide loaded MHC (pMHC) molecules are delivered to the 
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surface, making APC ready to prime T cells (Rocha and Neefjes, 2008). Ligation of 

TCR / pMHC delivers the earliest T cell activation signal called signal 1. The TCR 

includes α and β subunits which provide the pMHC-binding site. The TCR also 

includes CD3 and TCRξ subunits containing immunoreceptor tyrosine-based 

activation motifs (ITAM). Ligation of pMHC to TCRαβ, synergistically with the 

binding of the CD4 molecule to MHC, leads to phosphorylation of the ITAM, which 

delivers a series of signals for activating transcription factors such as nuclear factor 

kappa B (NFκB), nuclear factor of activated T cells (NFAT) and activator protein 

1(AP-1), which are essential for T cell activation and proliferation (Janeway et al., 

2005). TCR downstream signalling is also important for up-regulating cell adhesion 

molecules and co-stimulatory molecules, which provide assistance for the ligation of 

TCR / pMHC and co-stimulatory signals (Banchereau and Steinman, 1998). 

Adhesion molecules on T cells recognize their ligands on APC and stabilize the 

binding of TCR / pMHC, providing physical facilitation for T cell activation. The 

most important adhesion molecule on T cells is lymphocyte function-associated 

antigen-1 (LFA-1). On naive T cells, LFA-1 is in a low-affinity state against its 

ligand intercellular adhesion molecule-1 (ICAM-1) on APC. When TCR / pMHC 

ligation occurs, the affinity of LFA-1 to ICAM-1 increases, resulting in a prolonged 

and stronger T cell / APC contact, subsequently strengthening the signal transduction 

of TCR and pMHC (Lebedeva et al., 2005).  

 

However, signal 1 alone is insufficient to provoke a valid T cell response. TCR 

signalling needs to synergize with co-stimulatory signals otherwise the inefficient 

signals may drive T cell tolerance rather than activation. 
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1.1.4 Signal 2 for T cell activation 

The second signal for T cell activation is mediated by co-stimulatory molecules 

which are surface molecules expressed on APC and T cells. Co-stimulation can 

amplify signals for T cell activation, promoting T cell proliferation and survival 

(Kroczek et al., 2004). In the absence of foreign antigens, immature DC have low 

expression of co-stimulatory molecules and MHC class II molecules, thus are unable 

to trigger co-stimulatory signalling in T cells. Co-stimulatory molecules are 

classified into two major groups : A) the immunoglobulin superfamily, such as CD28 

and inducible T-cell co-stimulator (ICOS) and B) tumor-necrosis factor receptor 

(TNFR) family, such as CD154, OX-40 (CD134), and receptor activator of NF-κB 

ligand (RANKL) (Figure 1.1; Croft, 2003). The most pivotal co-stimulation for T cell 

activation is the interaction between CD28 on the T cell and CD80 / CD86 

(B7-1/B7-2) on the APC. Ligation of CD28-CD80 / CD86 is essential for T cell 

proliferation, differentiation and survival. (Greenwald et al., 2005). As the TCR 

initially binds to pMHC, signals through CD28 facilitate TCR signalling to activate 

transcription factors (for example, NFκB and AP-1) and subsequently drive IL-2 

production, an essential growth factor for naive T cell proliferation (Parry et al., 

2003). CD28 signalling also up-regulates the anti-apoptotic molecule Bcl-XL and the 

expression of CD154 (CD40L) which support T cell proliferation (Sharpe and 

Freeman, 2002).  

 

On the other hand, some inhibitory molecules such as cytotoxic T lymphocyte 

antigen 4 (CTLA4), programmed cell death 1 (PD-1) and B and T lymphocyte 

attenuator (BTLA), can negatively regulate TCR mediated responses. These 

inhibitory molecules can antagonize T cell activation by delivering signals directly or 
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by acting as competing ligands with agonistic co-stimulators (Kroczek et al., 2004; 

Chen, 2004). As CD28 plays an essential part in T cell activation, its inhibitory 

competitor, CTLA-4, should be highlighted. CTLA-4 is an inducible surface 

molecule expressed on activated T cells (Carreno and Collins, 2002; Teft et al., 2006). 

However, CTLA-4 binds to CD80 and CD86 with greater affinity and avidity than 

CD28, thereby reducing the amount of CD28 dependent co-stimulation to the cell 

(Tivol et al., 1997; Linsley et al., 1994). Moreover, CTLA-4 has an inhibitory effect 

on the recruitment of LAT into the raft (Martin et al., 2001). The engagement of 

CTLA-4/B7 can up-regulate E3 ubiquitin ligases which may inhibit TCR and CD28 

signalling, thereby interrupting the cell cycle (Brunner et al., 1999; Li et al., 2004). 

Hence, ligation of inhibitory co-stimulatory molecules can abrogate T cell activation, 

driving T cells to tolerance.  

 

1.1.5 Signal 3 for T cell differentiation  

A T cell response needs to differentiate naive T cells into effector T cells (i.e. effector 

cytokine producing CD4+ T cells or CD8+ cytotoxic T cells) for eliminating foreign 

antigens. Apart from signal 1 and 2 mediated by membrane bound receptors and 

ligands on T cells and APC, soluble cytokines mainly secreted from APC and T cells, 

provide signals that trigger the differentiation and polarization of naive T cells 

(Figure 1.2). Effector CD4+ T cells, also called T helper (Th) cells, play an important 

role in establishing and maximizing the capabilities of the immune system 

(Kapsenberg, 2003). DC and macrophages respond to intracellular pathogens which 

trigger the production of IL-12. IL-12 binds to the IL-12 receptors on naive T cells, 

promoting the transcription factors T-box expressed in T cells (T-bet) and signal 

transducer and activator of transcription 4 (STAT4) for the further differentiation of 
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IFN-γ producing Th1 cells (Figure 1.2) (Kalinski et al., 1999; Afkarian, 2002). 

Extracellular pathogens can trigger T cells to produce autocrine cytokine IL-4, that 

polarizes naive T cells to differentiate towards Th2 cells. Polarization of Th2 cells is 

mediated by transcription factors GATA binding protein 3 (GATA3) and STAT6 

(Figure 1.2) (Yamashita et al., 2004). Recently, IL-25 (also known as IL-17E, 

produced by Th2 cells and mast cells) has been reported to be implicated in Th2 

cell¡ mediated immunity and to promote GATA3 expression, suggesting that CD25 is 

another polarizing cytokine for Th2 differentiation (Angkasekwinai et al., 2007; Tato 

et al., 2006). 

 

Recently studies have indicated that naive T cells can differentiate into IL-17 

producing T cells, independently of the development Th1 and Th2 cells. This novel 

lineage of effector CD4 T cells is called Th17 cells (Harrington et al., 2005; Park et 

al., 2005). Polarization of Th17 cells is triggered by IL-6 and tumor growth factor β 

(TGF-β) which activate the transcription factor orphan nuclear receptors RORα, 

RORγt and STAT3, that promote the differentiation from Th0 towards Th17 cells 

(Figure 1.2) (Yang et al., 2008; Bettelli, 2006; Veldhoen et al., 2006; Mangan et al., 

2006; Zhou et al., 2007). However, Th17 cells can still be generated in vivo in IL-6 

deficient mice in the absence of regulatory T cells, suggesting an alternative pathway 

other than IL-6 / TGF-β driven polarization for the differentiation of Th17 cells may 

exist. An exogenous in vitro supply of IL-21 and TGF-β can also trigger STAT3 and 

RORγt in naive T cells, indicating that IL-21 can also trigger the polarization of Th17 

cells (Wei et al., 2007; Korn et al., 2007; Nurieva et al., 2007).  

 

Over and above these effector T cells, naive T cells can be differentiated to inducible 
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regulatory T cells. Regulatory T cells are a specialized subpopulation of T cells that 

act to suppress T cell activation. Regulatory T cells can be classified into naturally 

occurring regulatory T cells (Treg) and inducible regulatory T cells (iTreg). The 

former constitutively express CD25 and the forkhead transcription factor 3 (Foxp3) 

without any stimulation. The latter originate from CD4+ CD25- naive cells that can be 

triggered to express high levels of CD25 and Foxp3 in vitro by an exogenous supply 

of TGF-β and IL-2 (Fontenot et al., 2003; Fontenot and Rudensky, 2005; Chen et al., 

2003; Zheng et al., 2004; Selvaraj and Geiger, 2007). Moreover, a transient pulse of 

exogenous TGF-β can expand CD4+ CD25+ Foxp3+ T cells that can suppress 

autoimmune disease (Peng et al., 2004). Thus, in naive T cells receiving signal 1, 

signal 2 and the polarizing cytokines TGF-β and IL-2, Foxp3 can be activated to 

trigger the differentiation of iTreg cells (Figure 1.2) (Zheng et al., 2004; Chen et al., 

2003; Horwitz et al., 2008).  

 

 1.1.6 CD4+ T cell subsets and their interactions 

Different T cell subsets can interact with each other and therefore give balance to the 

immune response. Naive CD4+ T cells begin a process of differentiation upon TCR 

stimulation with different polarizing cytokines. The Th1 / Th2 hypothesis was 

developed over 20 years ago (Coffman and Carty, 1986; Mosmann et al., 1986), 

showing that Th1 cells respond to intracellular pathogens and produce IFN-γ and 

TNF-α that drive cell-mediated immune responses and the production of IgG2a, 

leading to tissue inflammation. In contrast, Th2 cells respond to extracellular 

infections and produce IL-4, IL-5, IL-10 and IL-13 that promote allergy, IgE, mast 

cell and eosinophil responses (Coffman, 2006). Reciprocally, Th1 cells can 

negatively regulate the generation of Th2 cells through IFN-γ, whereas Th2 cells can 
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inhibit the development of Th1 cells via IL-4 (Figure 1.3). The third member of 

helper CD4+ T cells, Th17, is characterized by IL-17 secretion, which is involved in 

inflammation. An exogenous supply of IL-4 and IFN-γ in clonal activation 

conditions in vitro reduces the generation of Th17 cells and neutralizing antibodies 

against either IL-4 or IFN-γ greatly increase IL-17 production, suggesting that both 

Th1 and Th2 cytokines can inhibit Th17 differentiation (Harrington et al., 2005; Park 

et al., 2005). IL-23, an IL-12 family member produced predominantly by DC, 

comprises a unique p19 subunit that can associate with IL-12p40 (Hunter, 2005; 

Langrish et al., 2004). Although IL-23 can slightly enhance IFN-γ responses, its 

importance in maintaining the proliferation and pathogenicity of Th17 cells has more 

recently been recognized (Langrish et al., 2005; McGeachy et al., 2007). Another 

member of IL-12 family, IL-27, can enhance the early phase of Th1 responses and 

suppress Th2 and Th17 differentiation (Yashida et al., 2001). However, enhancement 

of Th1, Th2 and Th17 responses has been seen in IL-27Rα knockout mice, indicating 

an immunosuppressive role of IL-27. Recently it is found that IL-27 can promote 

IL-10 producing cells and suppress the production of IL-6 and IL-17, suggesting an 

anti-inflammatory role of IL-27 (Awasthi et al, 2007; Batten et al., 2006; Stumhofer 

et al., 2007, Batten et al., 2008).  

 

Regulatory T cells (Treg) can regulate effector Th1, Th2 and Th17 responses by 

surface inhibitory receptors and anti-inflammtory cytokines. Treg can secrete IL-10 

and TGF-β, suppressing the generation of Th1 and Th2 cells. Recent data also show 

that Treg cells can produce IL-35 which promotes the expansion of Treg and 

down-regulate the differentiation of Th17 cells (Collison et al., 2007; Niedbala et al., 

2007). Although TGF-β can trigger the generation of Treg cells, an exogenous supply 
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of TGF-β and IL-6 can also promote the differentiation of Th17 cells (Chen et al., 

2003; Veldhoen et al., 2006; Bettelli et al., 2006). In addition, IL-6 is a 

pro-inflammatory cytokine produced from Th1, Th2, and Th17 cells, and is capable 

of inhibiting TGF-β dependent Treg cells (Bettelli et al., 2006). IL-21 may be 

another inhibitor of Treg cells. IL-21 is produced by activated CD4+ T cells and NKT 

cells and was first characterized to promote Th2 responses. Experiments in IL-21 

receptor knockout mice or using anti-IL-21 neutralizing antibodies have been 

reported to have an enhancement on Th1 and Th17 responses and a reduction on Treg 

cells, suggesting an inhibitory role of IL-21 in Th1 and Th17 differentiation (Liu et 

al., 2008; Piao et al., 2007). However, current data suggest that Th17 cells can also 

produce IL-21 which enhances the generation of Th17 cells and down-regulates Treg 

in the absence of IL-6, suggesting IL-21 may have an autocrine role in Th17 

differentiation and an inhibitory role in Treg generation (Nurieva et al., 2007).  

 

1.1.7 Immunological memory  

When an antigen experienced individual contacts the same antigen in later life, the 

immune system responds more rapidly and aggressively than in the primary response 

and this is defined as immunological memory (Sprent, and Surh, 2002). 

Immunological memory is mediated by memory T cells and memory B cells. By 

skipping the stage of activation and expansion of the naive cell, memory cells can 

control the secondary infection more efficiently than naive cells, giving the 

individual an immediate protection (Sprent, 1997).  

 

1.1.8 Differentiation of memory T cells 

Mature APC trigger the activation and expansion of antigen-reactive T cells and 
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evoke the differentiation of naive T cells towards effector T cells which produce high 

levels of effector cytokines (eg. IFN-γ for Th1 cells; IL-4, IL-5 and IL-13 for Th2 

cells) (Kaech et al., 2002). It has been suggested that the initiation of naive T cell 

activation takes 24 to 48 hours in vivo after immunization with protein in adjuvant 

and needs a further 5 days for full activation (Bradley et al., 1991). Effector T cells 

are able to migrate into non-lymphoid tissues where they can trigger inflammatory 

responses (Campbell et al., 2003). This is because effector T cells express high levels 

of adhesion molecules such as CD44 and P-selectin that facilitate their homing to 

non-lymphoid tissues (Swain et al.,1999). In addition, the expression of the lymph 

homing molecule, L-selectin (CD62L), and chemokine receptors involved in 

lymphoid tissue location, chemokine C-C motif receptor 5 (CCR5) and CCR7, are 

down-regulated on effector T cells, allowing them to enter into non-lymphoid tissues 

(Roman et al., 2002). After acute infection, antigen-specific T cells expand 

dramatically, acquire effector function and mediate clearance of the pathogen. After 

resolution of the infection, 90%¡ 95% of antigen-specific T cells die, leaving behind 

around 5-10% that can become long-lived memory T cells to provide protection upon 

re-infection (Hataye et al., 2006; Williams and Bevan, 2007). However, whether the 

memory T cells are differentiated from effector T cells is still being debated. Some 

studies have provided evidence that memory T cells are originated from effector T 

cells, while others have clues that memory T cells are a lineage of activated T cells 

(Hu et al., 2001; Geginat et al., 2001; Lanzavecchia, and Sallusto, 2000; Sprent and 

Tough, 2001). It is believed that the strength of the overall signal that is received by a 

T cell determines its differentiation program, although the minimal requirements of 

activation signal (including magnitude and longitude) for T differentiation from 

naive cells to memory cells are not known (Lanzavecchia et al., 2002). Studies in 
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CD8+ T cells showed that memory cells need to undergo at least 7-10 divisions to 

develop from naive CD8+ T cells, but do not require the existence of continuing 

antigen. Cell division may be an important parameter regulating the differentiation of 

memory CD8+ T cells (Opferman et al., 1999; Kaech and Ahmed, 2001). For the 

development of memory CD4+ T cells, in contrast to CD8+ T cells, prolonged or 

repeated contact with antigen-bearing APC throughout the effector phase is required 

to induce optimal proliferation (Obst et al., 2005). Prolonged antigen expression, 

even after clearance of virus, has been reported for influenza infection and may 

contribute to efficient memory generation (Jelley-Gibbs et al., 2005). It is unknown 

how the degree of expansion influences the efficiency of memory generation. For 

example, adoptively transferred IFN-γ positive Th1 cells appear to have a lower 

potential to develop into memory T cells, compared with IFN-γ negative CD4+ T 

cells (Wu et al., 2002). In addition, IFN-γ can limit the expansion of Th1 cells during 

the effector phase and makes Th1 cells more susceptible to apoptosis (Zhang et al., 

1997). Thus, proliferation in the effector phase (which may favor AICD) must be 

balanced to provide for differentiation into a pool of resting memory cells.  

 

1.1.9 Maintenance of memory T cells 

Once established, memory T cells can persist for a long time in the absence of 

antigenic exposure. As smallpox has been eradicated since 1978, a test of smallpox 

vaccination observed that more than 90% of volunteers maintained humoral or 

cellular responses against the original antigen after 25 to 75 years post inoculation, 

suggesting that memory cells can survive in an antigen-free environment for a 

lifetime (Hammarlund et al., 2003). CD8+ memory T cells are maintained in an 

individual by mechanisms of homeostatic proliferation and survival, which are 
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dependent on IL-15, IL-7 and anti-apoptotic molecules, but not dependent on TCR / 

pMHC signalling (Sprent and Surh, 2002; Becker et al., 2002; Judge et al., 2002; 

Surh et al., 2006). On the other hand, memory CD4+ T cells are dependent on IL-7 

for survival and homeostatic proliferation, together persistent TCR signalling, 

(Seddon et al., 2003; Kondrack et al, 2003). IL-15 has also been reported to have a 

mild but significant effect in supporting background memory CD4+ T cell turnover in 

the presence of TCR stimulation (Lenz et al., 2004). Notably, memory CD4+ T cells 

can survive in the absence of MHC class II molecules, but the presence of MHC 

class II is required for their production of effector cytokines, suggesting that TCR 

signalling is dispensable in maintenance but is required for effector functions of 

memory CD4+ T cells (Kassiotis et al., 2002). For CD4+ T cells, survival of naive 

and memory cells have different requirements for cytokines. Adoptive transfer 

studies in the common cytokine receptor γ-chain deficient mice suggest that memory 

CD4+ T cells do not need common γ-chain cytokines for survival but naive CD4+ T 

cells do in the absence of TCR stimulation (Lantz et al., 2000). The common γ-chain 

is used by receptors for IL-2, IL-4, IL-7, IL-9 and IL-15. In addition, memory CD4+ 

T cells from wild type and γ-chain deficient mice proliferate similarly in response to 

antigenic stimulation in vivo, suggesting that γ-chain cytokines are dispensable for 

the proliferation of CD4+ memory T cells (Lantz et al., 2000).  

 

1.1.10 Subsets and features of memory T cells  

Memory T cells have been classified into central memory T cells (TCM) and effector 

memory T cells (TEM). Both subsets express IL-7 receptor α for maintaining survival 

and express high levels of CD44 (Kaesh et al., 2003). TCM share some characteristics 

with naive T cells, they express the high levels of lymph homing markers CD62L and 
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CCR7, which enable TCM to localize to secondary lymphoid organs (Sallusto et al., 

1999; Masopust et al., 2001). TCM also express the chemokine receptor CXCL12, 

which helps retain them in peripheral lymph nodes (Sallusto et al., 1999; Scimone et 

al., 2004). In contrast, TEM do not express CCR7 and express low levels of CD62L. 

This property makes TEM capable of penetrating blood vessel walls and entering 

tissues rather than being restricted in the secondary lymphoid organs (Weninger et al., 

2001; Sallusto, 1999; Masopust et al., 2001; Lanzavecchia and Sallusto, 2005). CD4+ 

TEM produce large amounts of effector cytokines (IFN-γ, IL-4 or IL-5) after receiving 

a polyclonal stimulation, whereas TCM do not (Sallusto, 1999). Thus, TEM are more 

efficient at responding to second encounter with antigens. 

 

Although it is not known how activated or effector T cells undergo transition to 

memory T cells, many features of effector T cells are maintained in TEM cells 

including rapid production of effector cytokines after re-stimulation, lower threshold 

of TCR stimulation and independence of co-stimulatory requirement (Swain et al., 

2006; London et al., 2000). Secondary recall responses to antigen in vivo are 

characterized by more rapid kinetics and greater magnitude compared with primary 

responses. This efficient response of memory CD4+ T cells may result from their 

properties of migration and co-stimulatory requirement (Masopust et al., 2001; 

London et al., 2000). TEM cells have a reduced expression of lymphoid organ homing 

markers (CD62L and CCR7), an increased expression of adhesion markers (CD44) 

and tissue specific chemokine receptors (CXCR4), suggesting a better ability to seek 

antigen in peripheral tissues than naive T cells (Seder and Ahmed, 2003; 

Lanzavecchia and Sallusto, 2005). These properties make CD4+ TEM cells capable of 

circulating around lymphoid and non-lymphoid tissues, even in the absence of 
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inflammation. The advantage of migration also allows TEM cells to detect and 

eliminate the foreign pathogen long before it reaches the secondary lymphoid organs 

(Reinhardt et al., 2001).  

 

Memory T cells have a rapid turnover rate compared to naive T cells (Tough and 

Sprent, 1994; Macallan et al., 2004; Sojka et al., 2004). Croft and colleagues have 

reported that memory CD4+ T cells can produce IL-2 with immobilized anti-CD3 

antibodies in the absence of APC, while naive T cell can not. In addition, antigen 

specific memory CD4+ T cells can respond to inactivated B cells or macrophages in 

the presence of antigens, suggesting that memory CD4+ T cells can be triggered by a 

wider range of APC types which are inefficient at providing co-stimulation (Croft et 

al., 1994; Ott et al., 2007). With the DO11.10 TCR transgenic mice, it has been 

reported that ovalbumin (OVA) specific memory CD4+ T cells divide faster at lower 

antigen concentrations than naive T cells. Moreover, normal effector cytokine 

production was observed when OVA specific memory CD4+ T cells were stimulated 

with antigen-loaded APC from B7 or CD40 deficient mice, compared with naive 

CD4+ T cells. These data indicate that memory CD4+ T cells have a lower TCR 

threshold and are less dependent on co-stimulation (London et al., 2000). Recent data 

has indicated that NFATc1 and NFATc2 proteins are more abundant in memory CD4+ 

T cells than in naive T cells before stimulation (Dienz et al., 2007). NFAT family 

proteins, mediated by TCR and CD28 signalling, are essential for IL-2 production in 

naive CD4+ T cells (Isakov and Altman, 2002). The pre-accumulation of NFAT 

proteins in memory T cells can facilitate the rapid production of IL-2, suggesting that 

memory CD4+ T cells are less dependent on CD28 signalling for IL-2 production 

than naive CD4+ T cells. This confirms the feature of reduced co-stimulatory 
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requirement in memory CD4+ T cells (Dienz et al., 2007).  

 

1.2 Immunological tolerance 

Immunological tolerance is a process by which the immune system does not respond 

to antigens. Naturally, the immune system of an individual develops immunological 

tolerance to self-antigens to avoid immune responses that would damage itself. 

However, tolerance can also be induced artificially. The Nobel Prize in Physiology 

and Medicine was awarded in 1960 to Medawar and Burnet for discovering that skin 

allografts can be accepted in mice if they had been pre-inoculated neonatally with 

allogeneic lymphoid cells (Burnet, 1991). They first proposed that exposure to 

antigens before the development of the immune response can abrogate immune 

responses to that antigen in later life. Therefore, immunological tolerance is an 

important mechanism not only for discriminating self and non-self antigens but also 

for avoiding harmful immune responses and autoimmune diseases. 

 

1.2.1 Central tolerance  

Central tolerance occurs in the thymus and is required due to the random generation 

of receptors that occurs during T cell differentiation, whereby a proportion of the 

cells recognize self-antigens of the host. In the thymus, T cell progenitors whose 

antigen receptors bind to MHC-self-antigen complexes on medullary thymic 

epithelial cells (mTEC) can survive, whereas cells which do not bind to 

MHC-self-antigen complexes undergo programmed cell death. This procedure is 

termed positive selection ensuring that all of the T cells are self-MHC restricted 

(Anderton, 2006). T cell progenitors are also divided into CD8+ T cells and CD4+ T 

cells based on the restriction of MHC. CD8+ T cells are restricted by MHC class I 
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and CD4+ T cells are restricted by MHC class II (Janeway et al., 2005). In the 

thymus, autoimmune regulator (AIRE) has been found to be expressed by mTEC and 

slightly expressed by DC (Anderson et al., 2002; Cheng et al., 2007). It has been 

shown that AIRE controls the ectopic transcription of the peripheral tissue antigens 

in mTEC, therefore triggering apoptosis in self-reactive T cells (Liston et al., 2003; 

Mathis and Benoist, 2007). This procedure of apoptosis is called negative selection. 

T cell progenitors bearing TCR of high affinity for self-antigens die in the thymus, so 

potentially dangerous self-reactive T cells are eliminated (Hogquist et al., 2005). 

Only the T cells that survive from the positive and the negative selection can enter 

the periphery. However, central tolerance can not eliminate all of the self-reactive T 

cells. Although thymic selection limits the majority of self-reactive T cells, some of 

them entering the periphery may damage tissues (Anderton, 2006). As unwanted T 

cell activation occurs, peripheral tolerance provides a second line that has evolved to 

guard against peripheral self-reactivity.  

 

1.2.2 Peripheral tolerance 

Three pillars of peripheral tolerance, deletion, anergy and regulation supply a 

protective shield against self-reactive T cells evading central tolerance. They may 

work individually or collectively to restrain T cell from survival, proliferation or 

producing effector cytokines (Hochweller et al., 2006). 

 

1.2.3 Peripheral tolerance : Deletion 

Immune responses against foreign antigens involve the generation of effector T cells 

through a process of activation and expansion; subsequently the majority of the 

expanded T cells are programmed to die after the foreign antigens have been 
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removed (Strasser and Pellegrini, 2004). T cell death can occur through two 

mechanisms, involving extrinsic and intrinsic pathways (Krammer et al., 2007). 

Extrinsic cell death is mediated by death receptors, including Fas (CD95) and tumor 

necrosis factor receptor (TNFR) that drive apoptosis. Through death receptors, 

pre-activated and expanded T cells can undergo activation induced cell death (AICD) 

(Krammer et al., 2007; Krueger et al., 2003). AICD is thought to play a role in the 

maintenance of self-tolerance by eliminating self-reactive lymphocytes and cannot be 

prevented by anti-apoptotic proteins of the Bcl family (Van Parijs 1998a). For 

example, the Fas / FasL-dependent AICD occurs when T cells encounter high doses 

of antigens or repeated stimulation (Ju et al., 1995; Van Parijs 1998b). The ligation of 

death receptors transmits death signals to cells and drives a caspase 8 / 10-dependent 

apoptosis (Hildeman et al., 2002). Caspases are a family of cytosolic proteases that 

cleave proteins essential to sustain cell life (Krammer et al., 2007). Administration of 

superantigen to wild type mice or peptide to peptide relevant TCR transgenic mice 

can trigger apoptosis, whereas antigen specific T cells are resistant to apoptosis when 

Fas or FasL are non-fuctional (Bonfoco et al., 1998; Pinkoski et al., 2002).  

 

The intrinsic pathway of T cell death, also called activated T cell autonomous death 

(ACAD), is mediated by the unbalance of anti-apoptotic and pro-apoptotic molecules. 

B-cell lymphoma 2 (Bcl-2) and Bcl-2 related proteins, which have Bcl-2 homology 

domains (Such as Bcl-XL, Bim, Bad, Bax and Bak), participate in this pathway 

(Hildeman et al., 2002). Anti-apoptotic proteins, such as Bcl-2 and Bcl-XL, are 

located on outer membrane of mitochondria, sequestering pro-apoptotic proteins and 

preventing cell death. During apoptotic stimulation, Bcl-2 molecules are occupied by 

Bim, driving the formation of pores in mitochondria by Bax and Bak, subsequently 
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releasing cytochrome C into the cytosol to initiate caspase 9 and caspase 3 dependent 

cell death (Krammer et al., 2007). In intrinsic cell death, the existence of IL-2 is 

crucial to up-regulate Bcl-2 and to prevent cell death (Arnold at al., 2006). However, 

production of IL-2 is strongly dependent on TCR and CD28 signalling in naive CD4+ 

T cells. Mice challenged with soluble antigens do not receive sufficient CD28 

signalling, which results in a deficit of IL-2 production and leads to intrinsic cell 

death (Krammer et al., 2007). While both extrinsic and intrinsic cell death involve 

caspases to regulate apoptosis, recent reports suggest that the strong TCR stimulation 

may induce a release of cathepsin from lysosomes and subsequently induce apoptosis, 

indicating that a caspase-independent cell death may play a role in peripheral 

tolerance (Michallet et al., 2004). 

 

1.2.4 Peripheral tolerance : Anergy 

T cell anergy is a mechanism of tolerance in which T cells are intrinsically and 

functionally inactivated following an antigen encounter, but cells remain alive for a 

period in the hyporesponsive state. First identified in vitro, anergy has been defined 

as an unresponsive state in which T cells can not proliferate and produce IL-2 

(Schwartz, 2003). It can be induced by TCR ligation in the absence of co-stimulation, 

very low dose stimulation with agonist, or by exogenous supply of suppressive 

cytokines (Andris et al., 1996; Mirshahidi et al., 2001; Faria and Weiner, 2005). 

Schwartz categorized T cell anergy into clonal anergy and adaptive tolerance. The 

former can be induced in T cells in vitro by delivering a strong TCR signal in the 

absence of co-stimulation or by stimulation with low-affinity agonist with 

co-stimulation. Once anergy is induced, T cells are resistant to further strong 

stimulation with anti-CD3 and anti-CD28 antibodies. Adaptive tolerance was 
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described using in vivo models in which antigen-reactive transgenic T cells are 

transferred into antigen expressing mice (Schwartz, 2003). The endogenous antigens 

can drive and then maintain those antigen-reactive T cells in a hyporesponsive state 

(Liblau et al., 1996; Raimondi et al., 2006). Apart from clonal anergy and adaptive 

tolerance, the Jenkins Lab has shown with an adoptive transfer system that an 

administration of soluble peptide without adjuvant results in limited cell expansion of 

antigen reactive T cells and the residual subset remained unresponsive to further 

re-stimulation in vivo and in vitro (Kearney et al., 1994; Pape et al., 1998). Clonal 

anergy, adaptive tolerance and peptide-induced tolerance all exhibit a reduction of 

proliferation and IL-2 production. However, only adaptive tolerance and 

peptide-induced tolerance appear to require a persistence of antigen and are able to 

limit the production of pro-inflammatory cytokines (Schwartz, 2003, Saibil et al., 

2007).  

 

Although T cell anergy requires signals from the TCR, this signalling is qualitatively 

distinctive from cells in an activated state (Mueller, 2004). In hyporesponsive T cells 

induced by a adaptive tolerance model, the linker of activation of T cells (LAT) was 

found to be hypophosphorylated after a subsequent stimulation by CD3 / CD28 and 

the recruitment of LAT to the immunological synapse was defective (Hundt et al., 

2006). As phosphorylated LAT is evoked by TCR / pMHC ligation and is a scaffold 

to deliver downstream signalling for T cell activation (Lin et al., 1999), activation 

and localization of LAT contributes to the induction of T cell anergy (Hundt et al., 

2006).  

TCR / pMHC ligation without CD28 signals also induces the expression of 

transcription factor of early growth response family proteins (Egr, such as Egr2 and 
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Egr3) that promote the expression of E3 ubiquitin ligases (Safford et al., 2005). The 

E3 ubiquitin ligases, such as casitas B-lineage lymphoma (Cbl), gene related to 

anergy in lymphocyte (GRAIL), and itchy homologue E3 ubiquitin protein kinase 

(ITCH), can further trigger the degradation of proteins that are involved in T cell 

activation, subsequently driving T cells to anergy (Mueller, 2004). Unresponsiveness 

in clonal anergy is reversible by adding IL-2, whereas it is irreversible in adaptive 

tolerance. Moreover, adaptive tolerance was relevant to the expression CTLA-4 

(Perez et al., 1997; Well et al., 2001). CTLA-4 can compete with CD28 for ligands 

and deliver negative signals, arrest cell cycle and block T cell proliferation (Ratts et 

al., 1999; Eagar et al., 2002; Fathman and Lineberry, 2007). Li and colleagues have 

reported that CTLA-4 deficient mice express a reduced amount of Cbl-b, which is a 

protein that negatively regulates TCR signalling by ubiquitinating the downstream 

proteins of CD28 and TCR, suggesting that CTLA-4 can affect CD28 signalling 

through Cbl-b (Li et al., 2004; Zhang et al., 2002; Fang et al., 2001). Moreover, 

peptide-induced tolerance can be abrogated by gene deficiency of Egr or by 

retroviral transduction of dominant negative Grail gene (Safford et al., 2005; 

Seroogy et al., 2004). Taken together, synergy of TCR and CD28 signalling delivers 

signals for T cell activation, whereas TCR stimulation alone delivers distinct 

signalling that down-regulates T cell proliferation and drives T cell anergy. 

 

1.2.5 Peripheral tolerance : Regulation  

There is a special subset of T cells which has regulatory properties, aiding in the 

prevention of aggressive immune responses (Itoh et al., 1999). These cells were 

named after their functions as regulatory T cells (Treg). The ¡naturally occurring¡  

Treg was first recognized as a CD4+ T cell population expressing the IL-2 receptor α 
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chain (CD25) in non-primed mice. If CD4+ CD25+ cells are eliminated, mice develop 

autoimmune diseases, whereas these diseases can be prevented by reconstituting with 

CD4+ CD25+ cells (Sakaguchi et al., 1995). Foxp3 is the other hallmark other than 

CD25 in Treg cells and is crucial in the Treg development and function (Hori, 2003; 

Sakaguchi, 2005). Foxp3 deficient or mutant mice fail to develop Treg cells and 

succumb to a lethal autoimmune syndrome, whereas naive T cells retrovirally 

transduced with the Foxp3 gene can develop a Treg-like phenotype and obtain the 

ability to suppress T cell activation and inflammation (Hori et al., 2003; Fontenot, 

2003).  

 

Inducible Treg (iTreg) can be induced from naive CD4+ CD25- cells by a polyclonal 

stimulation with TGF-β and IL-2. The expression of Foxp3 in iTreg is transient in 

vitro (removal of TGF-β led to a loss of Foxp3 expression 4 days later) but can 

persist for 28 days in vivo (Chen et al., 2003; Zheng et al., 2004; Selvaraj and Geiger, 

2007). Recently Foxp3 has also been proven to interact with NFAT and NF-κB 

(nuclear factor-kappa B) (Bettelli et al., 2005), which are key transcription factors for 

TCR and CD28 signalling. The engagement between Foxp3 and NFAT suppresses 

IL-2 production and up-regulates CD25 and CTLA-4 on Treg cells (Bettelli et al., 

2005; Wu et al., 2006). As many reports observe that Treg cells are able to inhibit 

proliferation and cytokine production of effector cells in a contact-dependent manner 

(Thornton et al., 1998), the expression of CTLA-4 and surface bound TGF-β 

contribute to their suppressive function by interacting with responder T cells or DC 

(Read et al., 2000; Nakamura et al., 2001). On the other hand, TGF-β and IL-10 

produced from Treg cells also mediate the suppression of T cell activation and 

inflammation, providing a contact-independent suppression (Asseman et al., 1999; 
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Green et al., 2003; Zuany-Amorim, 2002; von Boehmer, 2005).  

 

Apart from Foxp3+ Treg cells, some subsets of CD4+ T cells also have regulatory 

functions. Tr1 and Th3 cells are differentiated from naive T cells in the periphery 

after antigen specific activation (Roncarolo et al., 2006; Faria and Weiner, 2005). Tr1, 

characterized by the properties of IL-10 secretion, can be generated in vitro and in 

vivo upon priming naive T cells with antigen in the presence of IL-10 (Groux et 

al.,1997). Once activated, Tr1 cells can mediate anti-inflammatory and suppressive 

activity against naive CD4+ T cells through releasing IL-10 (together with TGF-β in 

some cases (Groux, 2003). Th3 cells were identified during the induction of oral 

tolerance (Faria and Weiner, 2005). In oral tolerance models, administration of high 

dose antigen triggers T cell anergy or deletion, whereas low dose antigen induces the 

generation of TGF-β secreting Th3 cells (Weiner, 2001). TGF-β secreting Th3 cells 

can suppresses both Th1 and Th2 responses during oral tolerance, while treatment 

with neutralizing antibodies against TGF-β reverses this suppression (Chen et al., 

1994).  

 

1.2.6 Peripheral tolerance : steady state DC 

DC have the potential to induce both immunity and tolerance in the periphery. When 

proteins or peptides are presented without danger signals (PAMP), subsets of 

antigen-presenting DC do not develop to mature DC but stay in a quiescent state, 

called steady state DC or tolerogenic DC (Banchereau and Steinman, 1998). Steady 

state DC remain quiescent after capturing and processing exogenous antigens, 

express low levels of surface MHC molecules and have a low frequency of 

co-stimulatory molecules, therefore they induce insufficient activation of T cells, 
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triggering T cell deletion and / or unresponsiveness (Morelli and Thomson, 2007). 

Anti-inflammatory or immunosuppressive conditions in vitro can trigger steady state 

DC to produce of IL-10, TGF-β1 and indoleamine 2,3-dioxygenase (IDO), enhancing 

expression of FasL, programmed cell death ligand 1 (PD-L1) in DC which can 

subsequently suppress inflammation (Hackstein et al., 2004). IDO is an 

immunomodulatory enzyme that regulates the degradation of tryptophan, serotonin 

and melatonin and initiates the production of neuroactive and immunoregulatory 

metabolites, including pro-apoptotic molecules. IDO expressed by DC greatly affects 

T cell proliferation and survival (Grohman et al., 2003). Moreover, Treg cells can 

trigger IDO production in DC by the ligation of CTLA-4 (Treg) and CD80 / 86 (DC), 

which results in the inhibition of T cell proliferation and T cell apoptosis (Puccetti 

and Grohmann, 2007).  

 

1.2.7 Peptide-induced tolerance  

DC are the most effective APC to present antigens. When attempting to prime naive 

CD4+ T cells, a protein antigen is presented poorly by DC, whereas antigen delivered 

as a short peptide is presented most efficiently to CD4+ T cells by DC (Constant et al., 

1995). Thus peptide antigens are also used for tolerance induction. Administration of 

soluble peptide through oral, mucosal, intravenous (i.v.), intraperitoneal (i.p.), or 

intranasal (i.n.) routes have been shown to successfully induce tolerance and 

suppress T cell-mediated autoimmune diseases, giving prospects for developing 

antigen-specific therapies (Anderton, 2001). Peptide-induced T cell tolerance can 

result from many causes. First, tolerance induction can affect T cell migration. Naive 

T cells spend their lives re-circulating through the secondary lymphoid organs. After 

priming with antigen in adjuvant subcutaneously (s.c), the antigen specific T cells 
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receive TCR signal from pMHC on DC in the paracortical region of the lymph nodes. 

T cells proliferate in the paracortical region for several days before migrating into the 

B cell rich follicle zone to interact with B cells (Kearney et al., 1994; McLachlan and 

Jenkins, 2007). However, injection of soluble antigen alone makes antigen specific T 

cells accumulate in the paracortical region but they fail to enter follicles (Kearney et 

al., 1994). This may prevent B cell maturation and antibody production. Also, 

avoidance of T-B cells contact can prevent the pMHC and co-stimulatory signal 

provided by B cells and subsequently prevents the potential activation signals 

delivered through CD40 and CD40L (Ranheim and Kipps; 1993; van Essen et al., 

1995; Grewal et al., 1995).  

 

Second, administration of high dose peptide in soluble form can induce cell death. 

High dose of soluble peptide results in reduced proliferation and enhanced apoptosis 

of the peptide-reactive T cells after immunization with peptide in adjuvant 

(Critchfield et al., 1994; Liblau et al., 1996; Klugewitz et al., 2002; Weishaupt et al., 

1997). In addition, it has been reported in adoptive transfer system that oral 

administration of OVA peptide to the mice leads to Fas / FasL mediated cell 

(OVA-reactive cells) death in the host liver (Watanabe et al., 2002).  

 

Third, tolerance induction actively triggers peptide-reactive T cell deletion and / or 

anergy. According to the two signal hypothesis for T cell activation, naive CD4+ T 

cells require both signal 1 and 2 to provide proliferative and survival signals. After 

the administration of soluble peptide without adjuvant, DC present pMHC complexes 

to T cells in a tolerogenic manner resulting from the insufficient expression of 

co-stimulatory molecules (Anderton, 2001). With the adoptive transfer system with 
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pOVA and transgenic mice specific to pOVA (OT-II), surface expression of 

co-stimulatory markers have been compared between OT-II cells re-isolated from 

tolerant (injection of soluble pOVA alone) and primed (injection of pOVA peptide 

and LPS) groups. DC from mice receiving peptide alone had a basal expression of 

CD80 / 86 and CD40 and a lack of receptor activator of nuclear factor κB (RANK) 

expression, whereas DC from the primed mice had a stronger expression of CD86, 

CD40 and RANK. In addition, OT-II cells from the primed mice showed a longer 

expression of OX40 compared to OT-II cells from the tolerance group (Hockweller 

and Anderton, 2005). As co-stimulatory markers deliver activation and survival 

signals into both T cells and DC, T cells which receive no co-stimulation by the 

steady state DC after soluble peptide treatment would undergo apoptosis or become 

unresponsive (Soroosh et al., 2006; Hochweller and Anderton, 2004; Josien et al., 

2000; Appleman and Boussiotis, 2003). Moreover, peptide-induced T cell tolerance 

can be abrogated by an exogenous injection of agonistic antibodies against 

co-stimulatory molecules (eg, anti-CD80, anti-CD86, anti-CD40 or anti-OX-40), 

indicating that the absence of co-stimulatory signals are crucial in peptide-induced 

tolerance (Bell et al., 2003; Bansal-Pakala, 2001; Hochweller, 2006). As a basal 

expression of MHC and CD80 / 86 exist, immature DC may drive a transient T cell 

expansion within a short time. However, these insufficient activation and survival 

signals cannot sustain prolonged T cell expansion. Instead, they trigger T cells 

apoptosis and anergy (Huang et al., 2003; Kearney et al., 1994; Liblau et al., 1996; 

Deng et al., 2001). Thus administration of soluble peptide (without adjuvant) fails to 

trigger IL-2 production and can induce cell death or anergy (Burstein et al., 1992, 

Critchfield et al., 1994; Gaur et al., 1992).  
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With oral and i.n. routes, administration of peptide can provoke the production of 

suppressive cytokines to Th1 responses (such as IL-4, IL-10 and TGF-β) (Burkhart et 

al., 1999; Maron et al., 2002; Khoury et al., 1992). In addition, administration of low 

doses peptide orally can induce Th3 cells within the target organ and provide 

tolerance by immunosuppressive cytokines or by physical contact inhibition, 

suggesting that the route of peptide administration can also affect T cell tolerance 

(Figure 3; Miller et al., 1992; Chen et al., 1994; Miller et al., 2007). 

 

1.3 Autoimmunity  

The immune system needs to discriminate between antigens of self and non-self 

origin to avoid a specific adaptive immune response mounted against self-antigens. 

Autoimmunity is the failure of an organism to recognize its own antigens which 

results in an immune response against its own cells and tissues (Janeway, 2005). 

Although the majority of self-antigen-responsive T cells are deleted in the thymus, 

some self-reactive T cells may escape deletion and become sustained within the 

periphery and cause a risk of autoimmunity if they are activated to respond against 

their own cells or tissues (Anderton, 2006). Prominent examples of autoimmune 

disease include type I diabetes (TID), rheumatoid arthritis (RA), systemic lupus 

erythematosus (SLE) and multiple sclerosis (MS).  

 

Autoimmunity is associated with both genetic and environmental factors (Martin and 

McFarland, 1995). Twin studies have demonstrated that if one monozygotic twin 

develops an autoimmune disease, the other twin has higher incidence to get disease, 

whereas dizygotic twins have significant low concordance of the same disease. In 

MS, the concordance to get MS in monozygotic twin is 25% and 5% in dizygotic 
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twins (Willer et al., 2003). The risk to get type I diabetes is also higher in 

monozygotic twins (long term risk is estimated 44% if one monozygotic twin 

develops diabetes) than in dizygotic twins (risk of 19%) (Kumar et al., 1993). 

Genetics therefore contributes to disease susceptibility. Studies in human leukocyte 

antigen (HLA) appear that class II HLA molecules are associated with 

susceptibilities of several autoimmune diseases (Ebringer and Wilson, 2007). In RA, 

over 90% of patients possess either HLA-DR1 or some subtypes of HLA-DR4, while 

the frequency of HLA-DR1 in the general population is 35%. Moreover, class I HLA 

molecule (HLA-B27) has been reported to be involved in ankylosing spondylitis 

(Khan et al., 2007).  

 

Environmental factors, such as infection, also affect autoimmunity. Infection may 

have a bystander effect on autoimmune disease. For example, the composition of the 

neuronal microenvironment is maintained by the blood-brain-barrier (BBB) in the 

CNS, making the CNS an inaccessible region for lymphocytes. Some bacterial or 

viral infections can break the BBB and damage the CNS, subsequently releasing 

CNS derived self-antigens. This release of self-antigens may further trigger CNS 

derived protein-reactive T cells, causing antigen specific demyelination in the CNS 

(Gay, 2007). Another potential mechanism for infection-induced autoimmunity is 

molecular mimicry. This can occur when a microorganism and its host share a similar 

immunological epitope (Oldstone, 2005; Fujinami et al., 2006). For example, 

coxsackievirus infections were associated with the induction of TID and mice 

infected with coxsackievirus developed diabetes (Tracy and Drescher, 2007). An 

immune response induced by a foreign pathogen having a cross-reactive determinant 

may therefore recognize the similar host epitope (Fujinami, 2001), providing the risk 



30 
 

of developing autoimmune disease.  

 

1.3.1 Multiple Sclerosis  

Multiple sclerosis (MS) is a chronic inflammatory and autoimmune disease of the 

central nervous system (CNS) affecting young adults. It is characterized by focal 

lesions of inflammatory demyelination in the white matter of the brain (Lassmann et 

al., 2007). Recently magnetic resonance imaging (MRI) studies have revealed a 

much more widespread and global damage of the brain and spinal cord in MS 

patients (Miller et al., 2002). Clinical signs of MS include pain, fatigue and problems 

with sight, mobility and coordination. Although MS has been known for over one 

hundred years, its causes remain unknown (Martin and McFarland, 1995). Studies in 

inheritance show the occurrence of MS is greater in close relatives of MS patients 

than in a matched control population. Similarly, the concordance rate is greater in 

monozygotic twins (25 %) than in dizygotic twins (5 %) (Willer et al., 2003). The 

increased familial risk indicates a role for genetic factors in the aetiology of MS. 

Moreover, a number of genes may influence the susceptibility to MS. An MS 

susceptibility locus in MHC (or human leukocyte antigen, HLA) is reported and a 

dataset of 98 multiplex families demonstrated a strong genetic linkage for an 

association to the HLA-DR2 allele (HLA-DR2 is a HLA-DR serotype that 

recognizes several DRB1*15 and DRB1*16 alleles) in familial MS (Haines et al., 

1998), suggesting that sporadic and familial MS share at least one common 

susceptibility marker (Kalman and Lublin, 1999). In addition, allelic variants of the 

HLA-DRB1 and HLA-DQB1 genes are associated with susceptibility to MS (Rubio 

et al., 2002). HLA-DR15 is one of the HLA-DR serotypes that recognizes the 

DRB1*15 alleles and is associated with MS (Masterman et al., 2000). Humanized 
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transgenic mice that express MS-associated HLA-DR15 spontaneously developed 

paralysis (Ellmerich et al., 2006). In addition to MHC class II, HLA class I alleles 

that increase and decrease the genetic susceptibility to MS were identified. The 

HLA-A*0301 allele increases the risk of MS, HLA-A*0201 decreases the overall 

risk (Rubio et al., 2007; Fogdell-Hahn et al., 2000), suggesting an effect on MS 

susceptibility of class I HLA molecule (Burfoot et al., 2008).  

 

Another possible cause of MS is molecular mimicry originated from infection. 

Hepatitis B virus (HBV) polymerase was found to share 6 consecutive amino acids 

with rabbit myelin basic protein (MBP). HBV infection may trigger the production of 

antibodies and mononuclear cells that cross-react with MBP (Fujinami and Oldstone, 

1985). Synthesized peptides have been tested on MBP-specific T cell clones from 

MS patients and several viral and bacterial peptides have been found to stimulate 

MBP85-99-reactive T cell clones, suggesting that peptides from some infectious 

pathogens (including Herpes simple virus, Epstein-Barr virus, Adenovirus type 12, 

Influenza type A virus, Human papillomavirus, Reovirus and Pseudomonas 

aeruginosa) may act as molecular mimics of immunodominant MBP85-99 peptide 

(Wucherpfennig and Strominger, 1995). Infectious virus may contribute to MS. For 

example, human coronaviruses (HCoV), which are responsible for up to one third of 

common colds, have been reported to be associated with MS. T cell clones derived 

from MS patients can be activated by either HCoV proteins (HCoV-OC43 or 

HCoV-229E) or myelin antigens (MBP or proteolipid protein, PLP), suggesting a 

cross-reactivity between myelin and HCoV proteins (Boucher et al., 2007). 

 

Epstein-Barr virus (EBV) is another strong candidate in MS etiology. Based on the 
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epidemiological observations in MS, all MS patients are seropositive (95 % 

seropositive) to EBV in contrast to healthy controls (90-95 % seropositive), an 

increased risk of developing MS has been associated with infectious mononucleosis 

and higher serum levels of anti-EBV antibodies, suggesting a link among EBV, B 

cells and MS (Haahr and Hollsberg, 2006). EBV is a human DNA herpesvirus that 

establishes asymptomatic latent infection in B cells in most individuals. The genome 

of EBV has been detected in cerebral spinal fluid (CSF) and MS plaques, and the 

replicating viruses exist in peripheral blood mononuclear cells prior to MS 

exacerbations (Christensen et al., 2007; Fatheringham and Jacobson, 2005; Ascherio 

and Munger, 2007). Previous studies concluded that the presence of high titres of 

IgG antibodies against the EBV nuclear antigen 1 (EBNA-1) or EBNA complex in 

healthy individuals is a strong risk factor for MS (Ascherio et al., 2001; Sundstrom et 

al., 2004; DeLorenze et al., 2006). In longitudinal analyses, a 4-fold increase in 

anti¡ EBNA-1 or anti-EBNA complex titres was associated with a 3-fold increase in 

MS risk (Levin et al., 2005). Moreover, a study with long-term follow-up appeared 

that the elevations of anti-EBNA antibodies among MS patients first occurred 15-20 

years before the onset of MS and remained constant thereafter, suggesting that the 

elevation of anti-EBNA titres may be an early event in the pathogenesis of MS 

(DeLorenze et al., 2006). Recent data using T cell lines (TCL) from MS patients 

indicated that some EBNA-1-specific CD4 TCL can selectively cross-react to myelin 

antigens and produce IFN-γ, suggesting that these EBNA-1-specific CD4 may 

contribute to the development of MS by cross-recognition of myelin antigens 

(Lunemann et al., 2008). Recent studies show that intra-cerebral accumulation of 

EBV-infected B cells and plasma cells is a regular feature of MS patients and that the 

B cell follicle is the main site of viral persistence. In addition, expansion and 
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cytotoxic activity of CD8+ T cells against EBV was found at sites of accumulation of 

EBV-infected cells in the MS brain, indicating an ongoing anti-viral immune 

response in the MS brain (Serafini et al., 2007; Jilek et al., 2008). 

 

Regardless of the precise etiology of the disease, most evidence suggests that MS is 

an autoimmune disease which is influenced by both environmental and genetic 

factors and is mediated by the adaptive immune system (Lassmann et al., 2007). 

Studies in animal models indicate that the adaptive immune response targets the CNS 

and that myelin protein specific T cells drive the inflammation in the CNS. Myelin 

protein-reactive T cells are activated and migrate into the CNS, where they trigger 

macrophage and microglia cells to damage the myelin sheath that surrounds axons. 

The damage of myelin subsequently causes apoptosis in oligodendrocytes, loss of 

axonal and subsequent blocks the neuron transmission ultimately leading to paralysis 

(McFarland and Martin, 2007; Kuhlmann et al., 2008).  

 

1.3.2 MS and immunological memory  

There are four subtype definitions in MS: relapsing remitting, secondary progressive, 

primary progressive and progressive relapsing. Around 85% to 90% of MS patients 

suffer with the relapsing-remitting form (Lublin and Reingold, 1996). A possible 

cause of MS relapse is the existence of memory cells. It has been reported that the 

majority of T cells in the CSF of MS patients exhibit the phenotype of memory cells 

(CD45RA+ CD45RO+) and this is the case for both CD4+ and CD8+ cells (Vrethem et 

al., 1998). A study with relapsing¡ remitting MS patients demonstrated that the 

percentage of CD25+CD45RO+CD4+CD3+ cells was significantly increased in 

peripheral blood and CSF of active MS patients compared with inactive MS patients. 
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A longitudinal study also showed a higher percentage of CD25+CD45RO+CD4+CD3+ 

cells in peripheral blood at the phase of exacerbation than during remission in 

relapsing¡ remitting MS patients, suggesting that the activation of memory CD4+ T 

cells is associated with the exacerbation of MS (Okuda et al., 2005). Recently, a 

population of CD4+ CD45RO+ CD26high CD62Llow memory T cell has also reported 

to be correlated with MS severity (Krakauer et al., 2006). MS relapse therefore 

appears highly likely to reflect the activation of CD4+ memory T cells. 

 

1.3.3 Experimental Autoimmune Encephalomyelitis  

Experimental autoimmune encephalomyelitis (EAE) is the most widely used 

inducible animal model for MS. In Louis Pasteur¡s landmark vaccination against 

rabies, people inoculated with the dry spinal cord from rabies virus infected rabbits 

were protected from disease. However, many cases developed encephalitogenic signs. 

Five decades later, Thomas M. Rivers injected monkeys and rabbits with rabbit brain 

extract and subsequently observed perivascular infiltrates and demyelination in the 

brain and spinal cord of the inoculated animals (Baxter, 2007). Now River¡s model 

and its derivatives are known as EAE. Clinically, EAE runs a monophasic or a 

remitting-relapse course of disease with weakness, limb paralysis, optic neuritis and 

cerebral signs. It shares many characteristics with MS including genetic susceptibility, 

lymphocyte infiltration in the CNS, production of anti-myelin antibody, 

demyelination and clinical presentation (inflammatory lesions in white matter, 

myelitis, inflammation, optic neuritis) (Steinman and Zamvil, 2005; Martin and 

McFarland, 1995). In practice, EAE can be induced by immunizing susceptible mice 

with myelin derived antigens emulsified with complete Freund¡s adjuvant (CFA), 

together with doses of pertussis toxin (PTX) which opens the BBB. EAE can be 
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induced by immunization with crude CNS tissue or myelin derived proteins such as 

myelin basic protein (MBP), myelin oligodendrocyte glycoprotein (MOG), and 

proteolipid protein (PLP). CD4+ T cells are central to the induction of EAE. Effector 

cells, including microglial cells and monocytes are triggered by IFN-γ and TNFα 

produced from myelin-reactive CD4+ T cells and participate in tissue destruction and 

demyelination (Martin and McFarland, 1995; Elenkov and Chrousos, 2002). As T 

cells recognize peptides bound to MHC molecules on the APC, synthetic peptides 

with immunodominant regions derived from MBP, PLP, and MOG have been 

identified to be able to trigger T cells and provoke EAE in susceptible mice (Zamvil 

et al., 1986; Tuohy et al., 1989; de Rosbo and Ben-Nun, 1998). The development of 

synthesized myelin peptides and their corresponding T cell line derived-TCR 

transgenic (Tg) mice give practical models to address the disease nature and the 

potential strategies for therapy.  

 

1.3.4 TCR transgenic models of EAE  

Looking into the immunodominant region of myelin proteins can provide important 

information for TCR recognition, MHC binding and for designing peptide 

vaccination. For example, MOG, a minor component of myelin protein, is expressed 

on the surface of oligodendrocytes and is a member of the Ig superfamily with high 

homology between species. Unlike other myelin proteins which are integral 

components and are not easily accessible to immune cells, exposed MOG has more 

chance to encounter antibodies (Martin and McFarland, 1995). Different synthetic 

peptides derived from MOG have been tested in H-2b mice. Peptide 35 to 55 

(MOG35-55 or pMOG) gives mice an encephalomyelitis with a paralytic disease, 

indicating that pMOG is the immunodominant peptide (Mendel et al., 1995). A TCR 
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transgenic mouse (2D2) has been generated from a pMOG-specific T cell clone 

bearing the TCRVα3.2 and Vβ11 from C57BL/6 mice. These 2D2 mice are on a 

C57BL/6 background and thus bear the I-Ab MHC class II molecules (Bettelli et al., 

2003; Mendel et al., 2004). Furthermore, analysis of overlapping short peptides, 

single residue substitutions and T cell lines have identified the core sequence of 

MOG as residue 40-48 (Ben-Nun et al., 2006; Sweenie et al., 2006). Recent data 

suggests that positions 41, 44, 46, 47 of pMOG are TCR contact sites, whereas 

positions 40, 43, 45, 48 of pMOG are MHC class II interacting sites (Petersen et al., 

2004; Sweenie et al., 2006).  

 

The MBP / Tg4 / B10.PL system is based on myelin basic protein (MBP), which is 

an abundant component of myelin comprising 30 % of myelin protein. MBP is 

located in the cytoplasm of oligodendrocytes (Martin and McFarland, 1995). The 

acetylated N-terminal peptide 1-11 (Ac1-11) of MBP was the first myelin epitope to 

be identified (Zamvil et al., 1986). As the residues 1 to 9 of MBP are the 

immunodominant residues in H-2U mice for EAE (Kumar and Sercarz, 1993), 

acetylated N-terminal peptide (Ac1-9) was applied in this thesis. Ac1-9 mediates 

encephalitogenicity in PL/J and B10.PL mice, the TCR transgenic mouse (Tg4) is on 

the B10.PL background and was generated from an encephalitogenic CD4+ T cell 

clone which expresses the TCR V 4 and Vs8.2 and is specific for Ac1-9 (Liu et al., 

1995; Kurschus et al., 2006). Ac1-9 binds to the I-Au class II molecule through 

residues 4 (lysine) and 5(arginine), with residue 4 contributing the major part of 

MHC binding. As the lysine at residue 4 interacts with the Au peptide binding cleft 

poorly, altered peptide ligands (APL) with various binding affinities have been 

developed by substituting 4Lys with Ala, Val, and Tyr (ordered by MHC affinity 



37 
 

from low to high) (Zamvil et al., 1986; Wraith et al., , 1992; Pearson et al., 1997a).  

 

1.3.5 Central tolerance in EAE 

The idea that EAE is the result of a failure in central tolerance is outwardly logical 

because the CNS is an immune privileged site with the BBB that physically separates 

the peripheral lymphocytes from the CNS (Persidsky et al., 2006). Therefore, myelin 

antigens should be excluded during central tolerance. However, evidence indicates 

that myelin antigens, including PLP, MBP and MOG, are expressed in the thymus, 

suggesting that negative selection against myelin antigens should occur in the thymus 

(Fritz and Zhao, 1996; Pribyl et al., 1993; Bruno et al., 2002; Pagany et al., 2003). 

Contradictorily, an analysis of TCRαβ repertoires expressed by MOG-specific CD4+ 

T cells showed that T cells are identical in MOG-/- and WT mice in the periphery, 

suggesting that MOG-reactive T cells are not depleted in the thymus (Fazilleau et al., 

2006). In Tg4 TCR transgenic mice relevant to MBP, an administration of MBP APL 

peptide with high affinity for MHC affinity causes a strong deletion in double 

positive thymocytes, whereas administration of low affinity peptide causes no 

depletion of thymocytes, suggesting that MBP-reactive T cells with moderate avidity 

avoid central tolerance and enter the peripheral T cell repertoire (Liu et al., 1995; 

Anderton et al., 1999).  

 

1.3.6 CD4+ T cells subsets in EAE 

Depletion of CD4+ T cells in vivo or in vitro with anti-CD4 antibody (Ab) before 

EAE induction can prevent disease, proving that CD4+ T cells are pivotal to EAE 

(Brostoff et al., 1984; Pettinelli et al., 1981). Myelin protein reactive CD4+ T cells 

can migrate and accumulate in the CNS and trigger inflammation (Flugel et al., 1999; 
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Flugel et al., 2001). It was initially believed that Th1 cells were pathogenetic T cells 

in EAE because myelin reactive T cells produced large amounts of IFN-γ (Zamvil 

and Steinman, 1990). However, many exceptions appear in this idea of ¡Th1 cell  

driven EAE¡. For example, administration of IFN -γ or TNFα protects from EAE, 

blockage of or gene deficiency of IFN-γ or IFN-γR signaling worsens EAE (Billiau 

et al., 1988; Liu et al., 1998; Chu et al., 2000; Willenborg et al., 1996). Recent data 

on IL-23 and Th17 cells have adjusted the previous concept. IL-12 which consists of 

p40 and p35 subunits is required for the development of optimal Th1 responses and 

mice lacking IL-12p40 show a resistance to EAE development (Segal et al., 1998, 

Becher et al., 2002). IL-23 consists of a unique p19 subunit and shares a common 

p40 subunit with IL-12 (Oppmann et al., 2000). IL-12p35 or IL-12R knockout mice 

are susceptible to EAE and either IL-23p19 or p40 knockout mice are less 

susceptible to EAE, indicating that IL-23 plays an essential role in EAE (Cua et al., 

2003; Becher et al., 2002; Gran et al., 2002; Zhang et al., 2003). Moreover, IL-23 

was recently proposed to contribute to EAE pathology through the expansion of 

Th17 cells. Stimulation of PLP-reactive T cells with TGF-β plus IL-6 abrogates their 

pathogenic function and pro-inflammatory chemokine secretion despite up-regulation 

of IL-17 production, whereas stimulation with IL-23 promotes expression of IL-17 

and pro-inflammatory chemokines (McGeachy et al., 2007; Langrish et al., 2005). 

Th17 cells are thought to be important in EAE as Ab blockage or gene deficiency of 

IL-23 or IL-17 reduces severity and incidence of EAE in mice (Aggarwal et al., 2003; 

Park et al., 2005; Chen et al., 2006; Komiyama et al., 2006). In addition, adoptive 

transfer of Th17 cells can induce EAE and IL-17 and IL-17+ perivascular 

lymphocytes are up-regulated in brain lesions from patients with active MS, 

indicating an important pathogenic role for IL-17+ cells in EAE and MS pathogenesis 
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(Langrish et al., 2005; Lock et al., 2002; Tzartos et al., 2008).  

 

Notably, there was a significant population of IFN-γ producing Th1 cells (5-7 % in 

splenocyte culture) generated in T cell culture supplemented with IL-23 and 

polyclonal stimulus (Langrish et al., 2005). The adoptive transfer with IL-23 driven 

¡Th17 cells¡  usually contains a certain proportion of Th1 cells. In addition, sick mice 

which had received the ¡IL-23 stimulated population¡ had 5 % and 15 % of IFN-γ 

producing donor cells harvested from spleen and CNS, respectively (McGeachy et al., 

2007). ¡Cleaner¡  populations of in vitro polarized Th1 and Th17 were generated and 

transferred into recipient mice and found that Th17 cells lack the capacity of 

inducing EAE, whereas Th1 cells were highly pathogenic (O¡Connor et al., 2008 in 

press). In active EAE, the frequency of IFN-γ+ cells was greater than IL-17+ cells in 

the CNS (Suryani and Sutton, 2007). In passive transfer models, IFN-γ producing 

cells were always over-represented in the CNS after Th17 transfer, compared with 

their frequency at the time of transfer, suggesting that Th1 cells are better able to 

access non-inflamed CNS and the establishment of Th1 cells in the CNS may 

facilitate the entry of Th17 cells (O¡Connor et al., 2008 in press). In vitro IL-12 

polarized PLP-reactive T cells have been reported to up-regulate the β-chemokine 

receptor and CCR5 in correlation with the CNS infiltration and encephalitogenic 

capacity. Also, The CCR5 ligands are expressed in the spinal cords at EAE onset 

(Bagaeva et al., 2003). Recent studies in experimental autoimmune uveitis (EAU), an 

autoimmune disease involved in Th1 and Th17 cells, showed that IL-17 knockout 

mice develop EAU (these mice showed a high enhanced frequency of Th1 cells) and 

either Th17 or Th1 effector cells can provoke disease (Luger et al., 2007). Thus, both 

Th1 and Th17 appear to contribute to EAE and EAU, possibly via different 
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mechanisms of pathology and migration. 

 

Transfer of Treg cells can limit the severity of EAE (Kohm et al., 2002). In addition, 

a marked proportion of CD4+ CD25+ Foxp3+ cells (about 30 % of CD4+ T cells) are 

seen to accumulate in the inflamed CNS during the recovery phase of EAE, 

indicating that Treg cells may directly correlate to disease alleviation (McGeachy et 

al., 2005). Depletion or inactivation of Treg cells prior to immunization can increase 

the severity of disease and enhance IFN-γ, IL-6 and IL-17 production, suggesting 

that Treg cells may suppress EAE by inhibiting the self-reactive effector T cells 

(McGeachy et al., 2005; Reddy et al., 2004; Stephens et al., 2006; Reddy et al., 

2005).  

 

1.3.7 B cells and mast cells in EAE 

In some models, B cells and antibodies appear to be dispensable in the induction of 

EAE, as EAE can be triggered in B cell deficient mice (Wolf et al., 1996; 

Hjelmstrom et al., 1998; Fillatreau et al., 2002). However, a correlation has been 

found between anti-MOG antibody titers from patients with primary and secondary 

progressive MS and disease severity (Mantegazza et al., 2004). Moreover, MS 

patients with anti-MOG and anti-MBP antibodies have an increased frequency of 

relapses than patients without these antibodies (Berger et al., 2003). Thus, the 

significance B cells and antibodies in the CNS is still a clinical hallmark in the 

diagnosis of MS (Walsh and Tourtellotte, 1986). In EAE, the administration of 

anti-myelin antibodies has been reported to enhance demyelination, suggesting an 

aggressive role of B cells and anti-myelin antibodies in EAE (Schluesener et al., 

1987; Raine et al., 1999). B cells also have another role as an immune regulator. B 
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cell deficient mice fail to progress to the recovery phase of disease and a requirement 

of IL-10-producing B cells has been identified during the recovery phase of EAE 

(Fillatreau et al., 2002). In addition, IL-10-producing B cells have been identified in 

humans (Duddy et al., 2004). Preliminary evidence shows that B cells from MS 

patients produce decreased amounts of IL-10, suggesting a regulatory role of B cells 

derived IL-10 in MS (Duddy et al., 2007). Recent data show that TLR / MyD88 

signals can regulate IL-10 production in B cells, suppress inflammatory Th1 and 

Th17 cells and drive the recovery phase of EAE (Lampropoulou et al., 2008).  

 

Mast cells (MC) contain granules rich in histamine, proteases and various hormonal 

mediators which are enhancers in allergy and anaphylaxis. Antigen specific IgE or 

IgG1 can bind to the Fc receptor (FcR) on MC after a primary humoral response. 

After secondary challenge, ligation between the antigen and the MC bound 

antibodies can activate MC to rapidly release granules, resulting in allergy or 

anaphylaxis (review in Bischoff, 2007). During the progression of EAE, 

accumulation of MC has been observed at the inflammatory sites in the CNS 

(Brenner et al., 1994). MC associated histamine and hormonal mediators are proven 

to be involved in demyelination in EAE and MS (El Behi et al., 2005). Moreover, the 

blockade of MC degranulation or MC deficiency can both reduce the severity of 

encephalomyelitis, suggesting an aggressive role of MC in EAE (Seeldrayers et al., 

1989; Secor et al., 2000).  

 

1.3.8 Peptide based tolerance in EAE  

Immunization with immunodominant myelin derived peptides mixed with CFA can 

provoke and overt EAE, whereas administration of soluble peptide before priming 
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induces T cell tolerance and prevents disease (Anderton, 2001). Extensive studies 

have used the administration of soluble peptides (containing immunodominant 

epitopes) in tolerance induction through oral, intravenous (i.v.), intraperitoneal (i.p.), 

or intranasal (i.n.) routes which all protect mice from disease development (Miller et 

al., 1993; Liu and Wraith, 1995; Metzler and Wraith, 1993; Burkhart et al., 1999). It 

has been reported that the development of tolerance requires an interval of 4-6 days 

between peptide administration and subsequent immunization, suggesting that 

systemic T cell tolerance takes a few days to become established (Metzler and Wraith, 

1993; Liu and Wraith, 1995). As mentioned in section 1.2.7, administration of 

soluble peptide may affect T cell migration and trigger T cell deletion and anergy. 

However, the efficacy of tolerance could be correlated with the affinity of pMHC 

ligation. Studies using APL have highlighted the flexibility in TCR recognition of 

pMHC complexes (Kersh and Allen, 1996). The MBP Ac1-9 (or Ac1-11 in early 

reports) has a low affinity for the class II MHC, I-Au molecule. Making a substitution 

of lysine at position 4 with Alanine or Tyrosine can increase the affinity of 

peptide-MHC ligation by 103 or 106 times, respectively (Zamvil et al., 1986; 

Fairchild et al., 1993; Mason et al., 1995; Anderton, 2001). Administration of the 

wild-type Ac1-9 peptide in soluble form has a mild influence on subsequent priming 

(mice develop a mild course of EAE after priming), whereas the tolerance effect can 

be greatly increased by using the soluble Ac1-94A and Ac1-94Y APL. Thus, increasing 

the avidity of the interaction during tolerance induction leads to a more complete 

tolerance (Liu and Wraith, 1995; Metzler and Wraith, 1993). 

 

Although soluble peptide administration can induce tolerance in non-primed mice, 

the same strategy is problematic in EAE experienced mice. Administration of soluble 
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PLP139−151 (pPLP) to pPLP experienced SJL/J mice at the recovery phase of EAE 

(day 21 or day 28) induced an anaphylactic reaction characterized by respiratory 

distress, erythema, decreased body temperature and often death. At day 21 or day 28 

after immunization, enhanced anti-PLP IgG1 and total IgE were found in the mice, 

indicating that those signs of hyperreactivity may be resulted from 

anti-pPLP-antibodies (Pedotti et al., 2001). As antibody-dependent anaphylaxis in 

mice can be mediated by the cross-linking of IgE bound to FcεRI on mast cells or by 

the cross-linking of IgG1 bound to FcγRIII on macrophages, mast cells, and / or 

other cell types, soluble pMOG challenge was tested in the pMOG experienced wild 

type mice with anti-IgE treatment or in the FcγR deficient mice. Data suggested that 

antibody-induced anaphylaxis depends on IgE / FcεRI but not IgG1/ FcRIII (Smith et 

al., 2005). However, FcγR deficient mice are less susceptible to EAE and injections 

of anti-pMOG antibodies can aggravate EAE in an FcR-independent but a 

complement-dependent fashion (Urich et al., 2006).  

 

1.3.9 Translation of peptide tolerance from mouse to human 

Antigen specific immune modulation could successfully be induced in animal 

models, leading to evaluation of synthetic peptides for immunotherapy in humans. In 

the studies of allergy, peptides derived from cat and bee venom allergens have been 

tested in human and gave encouraging results. Administration of soluble, 

allergen-derived peptides has been found to reduce sensitivity to allergen, to change 

the isotype ratio of allergen-specific antibodies, to enhance the production of 

anti-inflammatory cytokines, to down-regulate allergen specific proliferation and to 

reduce the production of Th1 and Th2 cytokines in the blood (Oldfield et al., 2002; 

Muller et al., 1998; Fellrath et al., 2003). In autoimmune disease, administration of 
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synthetic peptides derived from heat shock proteins (HSP, a group of self antigens 

involved in the inflammation in TID and RA) reduces Th1 responses, enhance Th2 

responses, increases C-peptide in TID patients and increase Treg cells in RA patients 

(Raz et al., 2001; Prakken et al., 2004). However, peptide based therapy in MS has 

been slower to translate into the clinic compared to other diseases. An antagonistic 

APL of MBP83-99 (NBI 5788) was constructed by altering TCR contact sites (91 

Lysine to 91 Alanine) and was tested in MS patients. In a placebo-controlled phase II 

trial, weekly administrations of NBI 5788 increased IL-5 and IL-13 production in the 

MBP-reactive T cells and enhanced antibodies against NBI 5788 (Kappos et al., 

2000). Although treatment with 5 mg NBI 5788 reduced the inflammatory lesions in 

brain, exacerbations of disease were found in patients received 20 mg and 50 mg 

NBI 5788. Moreover, 9 % of MS patients developed allergic signs in APL treatment, 

(Kappos et al., 2000). Cytokine secretion by MBP83-99 APL (NBI-5788)-reactive 

T-cell lines from NBI-5788-treated MS patients was more frequently Th2-like 

compared with T-cell lines from untreated MS patients ( Crowe et al., 2000), 

suggesting that peptide-induced tolerance through the mechanism of Th1 / Th2 skew 

has an associated risk of hypersensitivity. Another MBP83-99 APL (CGP77116) with 

substitutions at positions 1, 2, 7 and 8 was tested in MS patients. Four in 8 patients 

developed enhanced lesions in brains and 2 patients had enhanced frequencies of 

MBP-reactive T cells in peripheral blood and CSF after CGP77116 treatment 

(Bielekova et al., 2000). Recently a long-term clinical trial with MBP82-98 has 

reported that administration of high dose (500 mg) soluble MBP82-98 can delay 

disease progression in patients with progressive MS and with HLA-DR2 and / or 

DR4 (Warren et al., 2006).  
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Clinically, immunomodulators (such as interferon-β, glatiramer acetate, mitoxantrone 

and azathioprine) are major therapeutic drug for easing the symptoms and slowing 

the progression of MS (Stuart, 2007). However, the systemic treatment of 

immunomodulaor can affect different cells globally and usually cause side effects in 

patients. In addition, MS patients carry myelin-reactive memory T cells that may 

result in disease relapse. Therefore, a specific strategy for controlling myelin-reactive 

T cells, especial memory T cells, is of importance in MS therapy. 

 

1.4 Hypothesis 

The central hypothesis of this thesis is that peptide induced tolerance can be used to 

control an autoaggressive memory T cell population. However, the effect of peptide 

on memory T cells may differ from the effect of naive T cells. 
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Figure 1.1 Co-stimulatory molecules on T cells and DC. Signal 1 delivered by the 
ligation of TCR and pMHC alone can induce T cell tolerance. With the ligation and 
signalling through co-stimulatory molecules, such as CD28, CD154, OX40, RANK 
and ICOS, signal 1 and co-stimulatory signals (signal 2) can induce T cell activation. 
Co-inhibitory molecules including CTLA-4 and PD-1 can deliver negative signals 
that attenuate the activation signals. 
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Figure 1.2 T cell polarization. Naive CD4+ T cells can be polarized to different 
effector subsets of CD4+ T cells. Th1 cells are driven by IL-12 and transcription 
factors T-bet and STAT4, triggering production of IFN-γ and TNFα. Th2 cells are 
driven by IL-4 and transcription factors GATA3 and STAT6, triggering production of 
IL-4, IL-5, IL-10 and IL-13. Th17 cells are driven by TGF-β, IL-6 and transcription 
factors RORα, RORγt and STAT3, triggering production of IL-17, IL-21 and IL-22. 
Th3 cells were identified during the induction of oral tolerance in which an 
administration of low dose peptide can induce the generation of TGF-β secreting Th3 
cells. Treg cells are driven by TGF-β and transcription factor Foxp3 and triggering 
cytokine production of TGF-β, IL-10 and IL-35.  
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Figure 1.3 Subsets of CD4+ T cells can interact with each other. IFN-γ secreted by 
Th1 cells can inhibit Th2 and Th17 cells. Reciprocally, IL-4, 5, 10, 13 secreted by 
Th2 cells can inhibit Th1 and Th17 cells. TGF-β and IL-10 secreted by Treg cells can 
inhibit Th1, Th2 and Th17 cells. Cytokines shown in the picture represent promoters 
or inhibitors for polarization of particular subsets of CD4+ T cell. 
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Chapter 2. Materials and Methods 

 

 2.1 Mice 

TCR transgenic Thy1.1+ or Ly5.1+ 2D2 mice on the C57BL/6 (H-2b) background, 

Ly5.1+ Tg4 mice on the B10.PL (H-2u) background, as well as C57BL/6 and B10.PL 

mice were bred in the Institute of Immunology and Infection Research, University of 

Edinburgh under specific pathogen-free conditions. All mice were sex-matched 

within experiments and used at 6-10 weeks of age. (PIL No 60/10170 approved by 

the Home Office) 

 

 2.2 Reagents 

  2.2.1 Antigens and adjuvants 

MOG35-35 (pMOG, MEVGWYRSPFSRVVHLYRNGK), wild type Ac1-9 

(Ac-ASQKRPSQR) and the APL Ac1-94Y and Ac1-94V were synthesized by the 

Advanced Biotechnology Centre, Imperial College (London, UK). Complete 

Freund¡s adjuvant (CFA) containing heat-killed Mycobacterium tuberculosis H37Ra 

(1mg/ml), incomplete Freund¡s Adjuvant (IFA), Staphylococcus aureus 

peptidoglycan (PGN) and Escherichia coli lipopolysaccharide (LPS) were purchased 

from Sigma-Aldrich Company Ltd (Poole, UK). CpG oligodeoxynucleotides (ODN) 

5¡-TCCATGACGTTCCTGACGTT-3¡ was synthesized with a phosphorothioated 

backbone by MWG-biotech AG (Germany). Pertussis toxin (PTX, Speywood 

Pharmaceuticals, Maidenhead, UK) for induction of EAE was stored in glycerol 

before diluting in PBS (PBS : glycerol = 1:1) for further administration. 

 

  2.2.2 Antibodies and dyes 
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Different cell types were identified using biotin- or fluorochrome- (including 

Fluorescein isothiocyanate, FITC; Phycoerythrin, PE; PerCP-Cy5.5, PerCP; 

Allophycocyanin, APC; Alexa Fluor 700, AF700) conjugated antibodies, specific for 

Thy1.1 (clone H1S5), Ly5.1 (clone A20), CD4 (clone RM4-5 or GK1.5), CD25 

(clone PC61), CD44 (clone IM7), CD62L (clone MEL-14), CD69 (clone H1.2F3), 

Fas (clone 15A7), FasL (clone MFL3) and Foxp3 (FJK-16S), TCR Vα3.2 (clone 

RR3-16), TCR Vβ11 (clone CTVB11), IL-2 (clone JES6-5H4), IFN-γ (clone 

XMG1.2), IL-17 (clone eBio17B7) and secondary reagents for biotin detection 

(FITC-conjugated streptavidin, SA-FITC; PE-conjugated streptavidin, SA-PE; 

PerCP-conjugated streptavidin, SA-PerCP; APC-conjugated streptavidin, SA-APC) 

which were purchased from eBioscience (SD, US) and Becton Dickinson (NJ, US) 

for surface staining (see section 2.5.5 and 2.5.6). For ELISA, coating and detecting 

antibodies were from Becton Dickinson. Carboxy fluoroscein succinimidyl ester 

(CFSE, Molecular Probes, US) was use for cell division assays (see section 2.5.7). 

7-amino-actinomycin D (7-AAD, BD) and annexin V (Becton Dickinson) were used 

for apoptotic staining (see section 2.5.8). See table 2.1 for the working concentration 

of antibodies. 

 

  2.2.3 Tissue culture media 

Cells were cultured in X-VIVO15 serum free medium (BioWhittaker, Maidenhead, 

UK) supplemented with 2mM L-glutamine and 50 µM 2-mercaptoethanol (2-ME) 

unless indicated. RPMI 1640 medium, supplemented with 5 % of fetal calf serum 

(FCS, Sigma), 2mM L-glutamine and 50 µM 2-ME, 100U / ml penicillin and 100 £g 

/ ml streptomycin (all from Gibco Life Technologies, Paisley, UK) was used in 

indicated experiments. 
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  2.2.4 General buffers 

MACS buffer consisted of Hank¡s buffer (Gibco) supplemented with 5 x 10-5 M 

2-ME, 100U / ml penicillin and 100 £g / ml streptomycin and 2% FCS. FACS buffer 

for staining and flow cytometry consisted of phosphate buffered saline (PBS) 

supplemented with 2 % FCS. PBS used for in vivo injection was calcium- and 

magnesium-free PBS (Gibco). ELISA wash buffer (PBST) consisted of PBS and 0.1 

% Tween-20 (Sigma) 

 

 2.3 Cell purification 

  2.3.1 Isolation of naive CD4+ T cells 

Peripheral lymph nodes (LN) (in some experiments the draining LN, including 

inguinal nodes, lumbar nodes and sacral nodes were used) and spleens were collected, 

disaggregated by grinding tissues on sterile gauzes and re-suspended in MACS buffer. 

Red blood cells (RBC) were lysed by incubating cells in RBC lysis buffer (Sigma) 

for 2 minutes at room temperature, followed by washing in MACS buffer 3 times. 

Cells were re-suspended in MACS buffer, counted and incubated with anti-CD4 

antibody-conjugated beads (90 £l MACS buffer and 10 £l beads were added per 107 

cells) (Miltenyi Biotec, Germany) for 15 minutes at 40C. Cells were washed, 

re-suspended in MACS buffer and run through a MACS LS column (positive 

selection). The purified cells consistently contained 90-95 % CD4+ T cells. 

 

2.3.2 Sorting of memory and naive CD4+ T cells 

LN and spleens were collected from immunized mice, disaggregated and incubated 

in digest buffer containing 300 £l of 10 mg/ml collagenase (Lorne Ltd, Reading, UK), 
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100 £l of 10 mg/ml deoxribonuclease (Sigma) and 600ul of RPMI medium (final 

concentration of collagenase and deoxribonuclease were 3 mg/ml and 1 mg/ml, 

respectively) and incubated at 370C for 30 min. After depleting RBC, cells were 

washed and re-suspended in MACS buffer, counted and incubated with rat IgG 

cocktail (20 £l antibody cocktail to 107 cells) which includes antibodies against CD8 

(clone 53.6.72), B220 (clone RAB832), MAC-1 (M1/70) and class II MHC 

(M5/114.15.2) (Invitrogen, CA, USA) for 20 minutes at 40C. Cell were washed and 

re-suspended in MACS buffer with anti-rat IgG conjugated Dynabeads (200 ul 

Dynalbeads to 107 cells in total 1 ml buffer) (Invitrogen, CA, USA) for 20 minutes at 

40C, subsequently CD4+ T cells were collected by negative selection using a Dynal 

magnetic stand. The purity of CD4+ T cells was normally 90-95 %. The isolated cells 

were stained with anti-CD4-AF700 (0.125 £g to 107 cells), anti-CD25-APC (0.2 £g 

to 107 cells), anti-CD44-PE (0.5 £g to 107 cells) and anti-CD62L-FITC (1.25 £g to 

107 cells) (with 1.25 £g anti-TCR Vα3.2-FITC and 0.25 £g anti-Vβ11-biotin in 

indicated experiments). Cells were sorted by flow cytometry (BD FACS Aria) into 

CD4+ CD25- CD44high CD62Llow memory T cells and CD4+ CD25- CD44high 

CD62Llow naive T cells.  

 

2.3.3 Preparation of bone marrow derived DC (BMDC) 

Femurs and tibias were collected from mice, cut and cells were flushed out by 

injecting PBS from one end. RBC were depleted and cells were seeded into 

bacteriological petri dishes at 2 x 105 / ml in 10 ml RPMI medium supplemented with 

10% FCS and 20 £g / ml GM-CSF (Peprotech, London, UK). At day 3, a further 10 

ml of medium containing 20 £g / ml GM-CSF was added. At days 6 and 8, 10 ml 

culture supernatant was removed and replaced with 10 ml fresh culture medium 
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containing 20 £g / ml GM-CSF. Cells were collected at day 7 for further experiments 

(MacDonald et al., 2001). 

 

 2.4 In vivo manipulations 

2.4.1 Cell transfer 

For all experiments in which cells were transferred into mice, the prepared cells were 

re-suspended in PBS and i.v. injected in a total volume of 200 µl into the tail vein of 

mice. 

 

  2.4.2 EAE induction in the naive setting 

For induction of primary disease, C57BL/6 or B10.PL mice were immunized in both 

hind legs s.c. with a total volume of 100 £g pMOG or Ac1-9 emulsified with CFA. 

Each leg was injected with 50 £l peptide / CFA. Mice additionally received 200 ng of 

PTX i.p. on the same day and two days later.  

 

To induce EAE with CpG or PGN, 60 µg of CpG or 250 µg of PGN were emulsified 

with 100 µg pMOG and IFA (the ratio of volume was CpG or PGN : pMOG : IFA = 

1 : 1 : 2), followed by s.c. injection in the hind limbs and PTX injection i.p. on the 

same day and two days later.  

 

Clinical signs of EAE were assessed daily with a 0-6 scoring range (Grade 0, healthy; 

Grade 1, flaccid tail; Grade 2, impaired righting reflex and /or abnormal gait; Grade 

3, partial hind leg paralysis; Grade 4, total hind leg paralysis; Grade 5, hind leg 

paralysis with partial front leg paralysis; Grade 6, moribund or dead). Differences in 

disease burden were analyzed using Mann-Whitney U test. 
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2.4.3 EAE induction in memory setting 

For inducing a memory response, mice were primarily given 50 µg of peptide in 60 

µg of CpG or 250 µg of PGN and IFA in the left hind leg. Secondary immunization 

was given 4 weeks later with 100 µg of peptide / CFA in the right hind leg. Mice 

received 200 ng of PTX i.p on day 0 and day two of the secondary immunization.  

 

In some experiments, memory responses in EAE were tested by immunizing with 

100 µg peptide / CFA and followed by 100 µg peptide in IFA / CpG or IFA / PGN (60 

µg of CpG or 250 µg of PGN, the ratio of volume was CpG or PGN : pMOG : IFA = 

1 : 1 : 2) 4 weeks later . 

 

In some experiments, memory responses in EAE were tested by administering 

antigen-loaded DC. BMDC were purified and re-suspended at 2.5 x 106 cells / ml in 

RPMI medium and pulsed with 50 µM pMOG in the presence of 0.1 µg / ml LPS for 

2 hours. Cells were washed and re-suspended in PBS and 5 x 105 antigen-loaded DC 

were injected i.v. into recipient mice. PTX was injected i.p. on the same day and two 

days later. 

 

2.4.4 Tolerance induction in memory experiments 

Mice received peptide in PBS (soluble peptide) 7 days before EAE induction through 

the i.v. (200 µg) or i.p. (500 µg) route. For tolerance induction with i.v. injection, 

mice received soluble peptide 7 days before secondary immunization. For tolerance 

induction with i.p. injection, multiple doses of soluble peptide were applied at day 

-10, -8, -6 before secondary immunization.  
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2.4.5 Administration of LPS  

For inducing T cell immunity by the i.v. route, LPS was used as an adjuvant. Mice 

received 200 µg pMOG and 30 µg LPS in 200 µl of total volume through i.v. route at 

day 0.  

 

2.5 Ex vivo and in vitro assessment 

2.5.1 Ex vivo recall proliferation assays 

Spleen and/or lymph nodes were collected, disaggregated, washed and subsequent 

lysis the RBS to make single cells suspensions. Cells suspensions were re-suspended 

in X-VIVO15 medium containing various doses (serial 4-fold dilutions from a top 

concentration of 50 £M) of peptide and seeded in 96-well plates with concentrations 

of 8 x 105 cells / well spleen cells and 6 x 105 cells / well LN cells. After 54 hours of 

culture, 0.5 µCi / well 3H-thymidine (Amersham Biotech, Buckinghamshire, UK) 

solution was added. Cells were harvested and 3H-thymidine incorporation was 

measured at 72 hours by a liquid scintillation β counter (PerkinElmer, MA, US). 

Results are presented as mean counts per minute (CPM) of triplicate cultures. 

 

2.5.2 Primary in vitro stimulation of TCR transgenic T cells 

Cells from the lymph node and spleen of TCR transgenic mice were collected and 

cultured in RPMI medium containing 10 £M of relevant peptide for 24 hours. Cells 

were washed with medium twice and seeded in fresh RPMI medium, without peptide, 

supplemented with 20U / ml IL-2. Activated blastocytes were harvested 48 hours 

later by ficoll (NycoPrep, AXIS-SHIELD, Oslo, Norway) gradient separation. Cells 

were suspended in 30 ml RPMI medium and layered over 8 ml of ficoll. Cells were 

centrifuged at 350 x g without brake for 15 minutes and the cells located at the 
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interface were collected and washed 2 times with a large amount of medium. Cells 

were re-suspended in PBS prior to adoptive transfer. 

 

  2.5.3 Ex vivo cytokine production assay 

For cytokine production, single cell suspensions were prepared and cultured in 

X-VIVO15 medium as in the proliferation assay (section 2.5.1). Cells were cultured 

for the time indicated and 100 µl aliquots of supernatant were removed for cytokine 

ELISA assay. Microtitre plates (NUNC, Roskilde, Denmark) were coated overnight 

at 40C with 50 µl per well of 2 £g cytokine specific capture antibodies (anti-IL-2, 

clone JES-1A12; anti-IL4, clone 11B11; anti-IL-10, clone JES5-2A5; anti-IFN-γ, 

clone R4-6A2; anti-IL-17, clone TC11-18H10, all from BD Pharmingen) prepared in 

bicarbonate coating buffer (0.05 M, pH 9.6). After washing twice in PBST buffer, 

200 µl PBS / BSA (1%) was added to each well and plates were incubated at 370C 

for an hour. After 6 washes with PBST, cytokine standards (BD Pharmingen) diluted 

in PBS / BSA were added at 100 µl per well in duplicate and two-fold dilutions 

(starting at 5 ng / ml for IL-2, 5 ng / ml for IL-4, 100 ng / ml for IL-10, 100 ng / ml 

for IFN-γ and 10 ng / ml for IL-17) performed to give a standard curve for each plate. 

Samples from each culture were added at 100 µl per well in duplicate and plates 

were incubated at room temperature in a humidified atmosphere for 2 hours. Plates 

were washed 6 times with PBST and 100 µl diluted (0.5 µg / ml) biotinylated 

anti-cytokine detecting antibody (anti-IL-2, clone E56-5H4; anti-IL4, clone 

BVD6-24G2; anti-IL-10, clone SXC-1; anti-IFN-γ, clone XMG1.2; anti-IL-17, clone 

TC11-8H4.1, all from BD Pharmingen) was added and incubated for 1 hour at room 

temperature. Plates were washed 6 times with PBST and 100 µl per well of 2µg / ml 

extravidin peroxidase (Sigma) in PBS / BSA were added to each well and incubated 
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for 30 minutes at room temperature. Plates were washed 6 times with PBST and 100 

µl per well of tetramethylbenzidine (TMB, Sigma) substrate buffer (100 µl of 10 mg 

/ ml TMB in DMSO to 9.9 ml of phosphate citrate buffer pH5 and 3µl of hydrogen 

peroxidase) was added followed by 100 µl of 2M H2SO4 to stop the reaction. Optical 

absorbance values were read at 450 nm with a Multiskan plate reader (Labsystems, 

Basingstoke, UK).  

 

2.5.4 ELISA for serum antibody measurement 

Microtitre plates were coated with 50 µl / well of pMOG (4 µg / ml) in 0.1M 

bicarbonate buffer and incubated at 40C overnight. Plates were washed and blocked 

with 200 µl / well of PBS / BSA (1%) for an hour at 370C. After washing, 50µl / well 

of serially diluted serum samples (starting at 1 in 5 and then 2-fold dilutions) were 

added in duplicate and the plates were incubated for one hour at 370C. Plates were 

washed with PBST and 50 µl / well of alkaline phosphatase-conjugated anti-mouse 

Ig secondary antibody (2 µg / ml) were added. Plates were incubated at room 

temperature for one hour. Plates were washed 5 times with PBST and bound 

secondary antibody was detected with substrate buffer (para-nitrophenyl phosphate, 5 

mg pNPP in 5 ml of substrate buffer containing 50 mM MgCl2 and 9.7 % of 

diethanolamine solution). Plates were read at 405 nm with a Multiskan plate reader. 

 

  2.5.5 Cell surface markers analysis by flow cytometer  

Single cell suspensions were obtained as described in section 2.3.1. Cells were 

re-suspended in FACS buffer containing anti-Fc receptor antibodies (clone 2.4G2) 

for 15 minutes on ice. 106 cells were washed and stained with 50 µl of antibodies 

diluted in FACS buffer and incubated at 40C for 15 minutes. After washing, cells 
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were re-suspended in cold paraformaldehyde (1 % paraformaldehyde in PBS) and 

incubated for at least 20 minutes at 40C. All samples were collected on BD FACS 

Calibur or BD LSR II flow cytometer and analysed with FlowJo (Treestar, US).  

 

In some experiments, biotinylated antibodies were applied. 106 cells were stained 

with 50 µl of biotinylated antibodies and incubated at 40C for 15 minutes. Cells were 

washed and stain with fluorescently conjugated streptavidin. After incubation on ice 

for 15 min, cells were washed with FACS buffer and fixed with cold 

paraformaldehyde solution as described above for flow cytometer analysis. 

 

2.5.6 Intracellular staining 

Cells were prepared as described in section 2.3.1 and incubated in 24 well plates at 

2.5 x 106 cells / well with 1 ml RPMI medium with 10 £M pMOG for 12 hours. One 

µl of Brefeldin A (Becton Dickinson) was added into each well and cells were 

washed and harvested 4 hours later. Cells were stained with surface markers as 

described in 2.5.5, washed once with PBS and twice with permeabilizing buffer (0. 1 

% saponin and 1% BSA in PBS) and stained with anti-cytokine antibodies (0.2 µg to 

2.5 x 106 cells in 100 µl permeabilizing buffer) for 30 minutes at 40C. Cells were 

washed once with permeabilizing buffer and once with FACS buffer and 

re-suspended in FACS buffer for analysis and collection by flow cytometry.  

 

For Foxp3 staining, cells were prepared and stained with antibodies against surface 

markers as described in section 2.5.5. 2 x 106 cells were re-suspended in 500 µl Fix / 

Perm solution (eBioscience) and incubated at 40C overnight. Cells were washed once 

with PBS and once with permeabilization buffer (eBioscience). Cells were 
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re-suspended in 80 ul of eBioscience permeabilization buffer supplemented with 2 % 

normal rat serum and left at room temperature for 15 minutes. Cells were split into 

two 2 tubes (50 ul each) and 50 µl of eBioscience permeabilization buffer containing 

0.2 £g anti-Foxp3 antibodies were added to one tube and 0.2 £g isotype (IgG2a) 

antibodies were added to the other tube. Cells were incubated at 40C for 20 minutes 

followed by washing and re-suspension in FACS buffer for analysis and collection by 

flow cytometry. 

 

2.5.7 CFSE labelling 

Single cell suspensions were collected and prepared as described in section 2.3.1. 

Cells were washed twice in large volumes of serum free RPMI medium and 

re-suspended in serum free RPMI medium at a concentration of 107 cells / ml. 1 £M 

CFSE was added and incubated at 37℃ in a water bath for 8 min. Excess CFSE was 

quenched with equal volume of FCS to stop the reaction. Cells were washed twice in 

RPMI medium and re-suspended in PBS prior to adoptive transfer. 

 

  2.5.8 Apoptotic staining 

A single cell suspension was prepared and stained with antibodies to surface markers 

as described in section 2.5.5. Cells were washed with cold PBS and re-suspended in 

annexin-binding buffer (10 mM HEPES, 140 mM NaCl, and 2.5 mM CaCl2, pH 7.4) 

with annexin V (1:20 in annexin-binding buffer). Cells were incubated in the dark at 

room temperature for 15 minutes and washed twice with annexin-binding buffer. 

Immediately before collection, 300 £l annexin-binding buffer and 0.25 £g of 

propidium iodide (PI) or 4 £l of 7-AAD were added and re-suspended in FACS 
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buffer for flow cytometry. 

 
 
Table 2.1 Antibodies and reagents used for staining  
Target Clone Fluorescent / biotin 

conjugation 
Concentration used  

Thy1.1 H1S5 FITC 2.5 £g /ml  
Ly5.1 A20 FITC 2.5 £g /ml 
CD62L MEL-14 FITC 2.5 £g /ml 
IFN-γ XMG1.2 FITC 5 £g /ml 
Biotin  SA-FITC 2.5 £g /ml 
CD44 IM7 PE 1 £g /ml 
IL-2 JES6-5H4 PE 2 £g /ml 
IL-17 eBio17B7 PE 2 £g /ml 
Biotin  SA-PE 1 £g /ml 
CD4 RM4-5 PerCP 1 £g /ml 
Biotin  SA-PerCP 1 £g /ml 
CD4 GK1.5 APC 1 £g /ml 
CD25 PC61 APC 1 £g /ml 
Foxp3 FJK-16S APC 1 £g /ml 
Biotin  SA-APC 1 £g /ml 
CD4 RM4-5 AF700 0.3 £g /ml 
CD69 H1.2F3 Biotin 2.5 £g /ml 
Fas 15A7 Biotin 2.5 £g /ml 
FasL MFL3 Biotin 2.5 £g /ml 
TCR Vα3.2 RR3-16 Biotin 2.5 £g /ml 
TCR Vβ11 CTVB11 Biotin 2.5 £g /ml 

Abbreviation : Fluorescein isothiocyanate, FITC; Phycoerythrin, PE; PerCP-Cy5.5, 

PerCP; Allophycocyanin, APC; Alexa Fluor 700, AF700; streptavidin, SA. 
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Chapter 3. Characteristics of T cell tolerance induced in MBP-reactive versus 

pMOG-reactive naive T cells 

 

3.1 Introduction 

Peptide antigens have been used as an effective means of inducing T cell tolerance. 

Mice injected with the soluble peptide in PBS prior to antigen / CFA priming can be 

protected from EAE induced by the subsequent immunization of peptide / CFA. 

(Anderton, 2001). The basic protocol of tolerance is to inject mice with soluble 

peptide before immunization with antigen in CFA 7 days later. Liu and colleagues 

have suggested that peptide induced T cell tolerance needs at least 4 days to establish 

(Liu, 1995). It is established that activated CD4+ T cells are highly sensitive to 

deletion by AICD and high dose of antigen can lead to cell death of antigen-reactive 

T cells in vivo (Liblau et al., 1996; Critchfield et al., 1994). In addition, APL with 

increased MHC-binding properties are highly effective at inducing T cell tolerance 

after systemic administration in soluble form, thereby preventing EAE, whereas 

peptides with low MHC avidity are less capable at inducing T cell tolerance 

(Anderton, 2001; McCue et al., 2004). In the MBP Ac1-9 / Tg4 / B10.PL system, 

administration of the superagonist Ac1-94Y in CFA failed to trigger EAE and 70% of 

Ac1-9-reactive T cells showed annexin V positive when injected the Tg4 cells 

transferred mice with soluble Ac1-94Y (compared with 8 % of annexin V positive 

cells in soluble Ac1-9 injected mice (Anderton et al., 2001). Therefore, the first 

hypothesis of this chapter is that the administration of the superagonist Ac1-94Y in 

soluble form may induce T tolerance by cell deletion due to its ability to deliver a 

strong TCR signaling. To this hypothesis, mice were transferred with Tg4 T cells and 

next injected with either soluble Ac1-94Y or PBS, subsequently immunized with 
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Ac1-9 / CFA. T cell tolerance was assessed by cell proliferation and Tg4 cell number. 

 

In pMOG / 2D2 / C57BL/6 system, administration of soluble pMOG prior to EAE 

induction can reduce T cell proliferation and EAE (Fazilleau et al., 2006; Hochweller 

et al., 2006). Many studies of peptide induced tolerance on EAE focus on the effect 

at least 10 days after peptide / CFA priming (Gaur et al., 1992; Meyer et al., 1996; 

Smith and Miller, 2006; Galazka et al., 2007). However, less data are available on 

the effect made by soluble myelin before priming or after a short time of priming (i.e. 

within 10 days). Administration with antigen in lipopolysaccharide (LPS) can 

markedly increase antigen loading onto MHC class II and surface display of pMHC 

(Turnbull et al., 2005; Netea et al., 2002; Reis e Sausa, 2004). In addition, injection 

with peptide and LPS is a systemic and immediate stimulus that can induce strong 

but transient responses (Khoruts et al., 1998; Maxwell et al., 2002). Unlike LPS, 

CFA contains heat killed Mycobaterium tuberculosis and mineral oil, the mixture of 

peptide / CFA is a slow-releasing, water-in-oil emulsion of immunogens that can 

trigger strong and long-lasting responses. Since pMOG is not a superagonist for 

pMOG-reactive T cells, the second hypothesis of this chapter is that administration 

of soluble pMOG may induce tolerance by triggering T cell anergy, rather than T cell 

deletion. To approach this, mice were injected with 2D2 T cells, soluble pMOG and 

pMOG in LPS in turn to investigate the effect of soluble pMOG upon 2D2 T cells 

before and after priming (particularly at early time points after priming). The 

transferred 2D2 cells were harvested before and after pMOG / LPS priming for 

further analysis. 
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 3.2 Results 

3.2.1 Administration of soluble Ac1-94Y prior to EAE induction can 

induce T cell unresponsiveness and ameliorate EAE 

To test the ability of Ac1-94Y to induce tolerance, B10.PL mice were injected with 

200 £g of soluble Ac1-94Y or PBS i.v. at day -7, immunized with 100 £g of Ac1-9 / 

CFA and PTX for developing EAE at day 0 and day 2 and subsequently sacrificed for 

assays at day 27 (Figure 3.1A). Ac1-94Y treated mice had a delayed onset (day 10) 

and a reduced disease incidence, compared to control mice which developed EAE 

from day 7 post immunization (Figure 3.1B). Two in 6 mice developed EAE in 

Ac1-94Y treated mice, whereas the incidence was 4 in 6 in control mice. In addition, 

Ac1-94Y treated mice had a significantly (p < 0.001) reduced severity and an early 

recovery course, compared with the control mice. Spleen cells harvested at day 27 

from Ac1-94Y treated mice were unresponsive in the ex-vivo proliferation assay, 

whereas those from control mice gave a dose-dependent response to Ac1-9 (Figure 

3.1C). Cytokine ELISA showed that cells produced low amounts of IFN-γ in both 

groups (Figure 3.1D), whereas there was a trend of reduced IL-17 production in cells 

after Ac1-94Y treatment, compared to the cells from the control mice (Figure 3.1E).  

 

To assess peptide induced T cell tolerance in the Ac1-9 / Tg4 / B10.PL system, 

B10.PL mice received 3 x 105 CD4+ Ly5.1+ (Tg4) T cells at day -8 and were injected 

with 200 £g of soluble Ac1-94Y or PBS i.v. at day -7 and immunized as above. If we 

estimate that there are 108 CD4 cells in secondary lymphoid tissues in a mouse, 3 x 

105 of Tg4 cells is still a large number (3 ? ) compared to the endogenous 

Ac1-9-reactive CD4+ T cells (1 / 105). The populations of Ly5.1+ CD4+ Tg4 cells 

harvested from different groups could easily be assessed after a transfer of 3 x 105 
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Tg4 cells. Draining lymph nodes (LN) and spleens were harvested at day 10 post 

immunization (Figure 3.2A). The frequency of Ly5.1+ CD4+ Tg4 T cells was assessed 

and there was no significant difference between Ac1-94Y treated and control mice, in 

both LN and spleen (Figure 3.2B). In the ex-vivo recall response, spleen cells from 

the Ac1-94Y treated mice had a significantly reduced proliferative response compared 

to the control mice (Figure 3.3A, p < 0.05). The same pattern was observed in the LN 

cells, indicating that the administration of soluble Ac1-94Y induces T cell tolerance 

(Figure 3.3B). The outcome of reduced proliferation could be caused by A) the 

reduced number of transferred Tg4 cells or B) the reduced ability for in vitro 

expansion of Tg4 cells. Data of Tg4 cell frequency showed that the reduced 

proliferation of Ac1-94Y treated mice did not result from reduced cell number of 

Ac1-9 reactive T cells (Figure 3.2B). Tg4 cells harvested from Ac1-94Y treated mice 

were relatively less capable of responding to Ac1-9, compared with cells from 

control mice. Thus, administration of soluble Ac1-94Y does not induce cell deletion 

but causes unresponsiveness in Tg4 T cells. 

 

3.2.2 Administration of soluble pMOG prior to EAE induction can 

prevent disease 

To estimate peptide induced tolerance in the MOG / 2D2 / C57BL/6 system, 

C57BL/6 mice were injected with 200 £g of pMOG or PBS i.v. at day -7 and 

immunized with 100 £g of pMOG / CFA and PTX at day 0 and day 2 (Figure 3.4A). 

In the experiment shown in figure 3.4B, pMOG-treated mice had a reduced incidence 

of 20% (1 in 5), whereas control mice had an EAE incidence of 71% (5 in 7). The 

control mice developed clinical signs from day 11 and reached the peak score at day 

15 before entering a recovery phase by day 20. One mouse in the pMOG-treated 
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group developed disease on day 22 and maintained score 1 to 3 thereafter. After day 

22, the mean score of both pMOG-treated and control mice remained below 1. These 

results confirm previous reports that administration of soluble pMOG can prevent 

EAE (Fazillean et al., 2006; Hochweller et al., 2006). 

 

3.2.3 Administration of soluble pMOG prior to immunization triggers 

T cell deletion 

To assess how the administration of soluble pMOG achieves tolerance, 2 x 106 of 

Thy1.1+ CD4+ 2D2 T cells were transferred into C57BL/6 mice 1 day prior to pMOG 

injection. Mice were injected with 200 £g of soluble pMOG or PBS at day -7 and 

immunized as above (Figure 3.5A). Ten days after immunization, there were 0.68% 

of 2D2 cells among CD4+ T cells in the LN of pMOG-treated mice, whereas control 

mice had 1.7% (Figure 3.5B, p < 0.05). The same pattern was observed in the spleen 

cells. pMOG treated mice showed a two-fold reduction in 2D2 cell survival 

compared to control mice, indicating that the administration of soluble pMOG results 

in a reduced number of pMOG-reactive T cells in the secondary lymphoid organs by 

day 10 post immunization. Cells harvested at day 10 from pMOG treated mice 

showed reduced proliferation over the dose range in spleen and LN (Figure 3.6A and 

B), compared with PBS treated group, suggesting that soluble pMOG treatment prior 

to priming induced T cell deletion. The reduced proliferation of cells from 

pMOG-treated mice may reflect to the reduced frequency of 2D2 cells in the 

secondary lymphoid organs, rather than reflecting an inability to proliferate in 

response to pMOG. This demonstrates that administration of soluble pMOG induces 

T cell tolerance by depleting the pMOG-reactive T cells. 
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3.2.4 Administration of pMOG induces transient activation in 

pMOG-reactive T cells 

So far, T cell tolerance has been demonstrated in mice which were immunized 

following peptide treatment. To assess how soluble pMOG acts on pMOG-reactive T 

cells at earlier time points before priming, 2 x 106 CFSE labeled 2D2 CD4+ Thy1.1+ 

T cells were transferred into C57BL/6 mice. One day later, mice were injected with 

200 £g of pMOG and spleens were subsequently collected for analysis (Figure 3.7A). 

Spleen cells were harvested, stained and analyzed by flow cytometry. CD4+ Thy1.1+ 

2D2 cells were gated and plotted by CFSE dilution for cell division or by levels of 

7-AAD / Annexin V for apoptosis (Figure 3.7B). The frequency of transferred 2D2 

cells was assessed by staining at the day indicated (Figure 3.8A). The frequency of 

2D2 cells from pMOG-treated mice was enhanced at day 2, peaked at day 3 and 

subsequently contracted by day 4 (Figure 3.8A), whereas the frequency of 2D2 cells 

in control mice continuously decreased from day 1 and was sustained at a lower 

frequency than cells in pMOG-treated mice. To assess whether the administration of 

pMOG triggered mitosis in vivo, loss of CFSE fluorescence was assessed in the 

transferred 2D2 T cells. Cells in the PBS treated mice remained undivided 

throughout the time course (Figure 3.8B). In the pMOG-treated mice, very few 2D2 

cells had divided at day 1 and this was followed by a burst of division from day 2. In 

the pMOG-treated mice, 72%, 89%, 70% and 42% of 2D2 cells had divided in the 

spleens harvested at day 2, 3, 4 and 7, respectively (Figure 3.8B). 2D2 T cells 

expanded within 3 days and disappeared from the spleen afterwards, indicating that T 

cell division upon soluble pMOG stimulation is not maintained, suggesting that cell 

expansion under soluble pMOG stimulation occurred transiently within 3 days. 2D2 

cells from pMOG-treated mice also showed an enhanced ability to proliferate in vitro 
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in recall assays to pMOG at day 1, 2 and 3 after pMOG injection, whereas cells from 

control mice only proliferated at high pMOG concentrations in vitro (Figure 3.9). 

The enhanced frequency of 2D2 cells enhanced CFSE+ cells and enhanced 

proliferation seen at day 3 indicated the initial activation of cells in pMOG treated 

mice, whereas the later decline in frequency suggested that those activated 2D2 cells 

may have undergone cell death, or migrated out of the spleen. Further experiments 

for assessing apoptosis and migration are needed. 

 

CD69 is the earliest inducible surface marker on T cells and is a functional 

co-stimulatory molecule acquired during T cell activation (Sancho et al., 2005). As 

Figure 3.10 shows there was a high expression of CD69 in 2D2 cells from 

pMOG-treated mice at day 1. This expression of CD69 in pMOG-treated mice 

dropped to basal level comparable to that found in 2D2 cells from PBS-treated mice 

by day 3. Another surface activation marker, CD44, a glycoprotein involved in cell 

adhesion and migration was analyzed (Ponta et al., 2003). The expression of CD44 

was slightly up-regulated at day 1 and this up-regulation was further increased at day 

2 and day 3 and dropped to basal level thereafter. There were also changes in the 

expression of CD62L, an adhesion and homing marker which plays an important role 

in cell interaction between leukocytes and endothelial cells (Bevilacqua et al., 1991). 

Naive T cells tend to express high-levels of CD62L, whereas activated and effector 

memory T cells express low-levels of CD62L. CD62L expression fluctuated over the 

time course studied from CD62Lhigh to CD62Llow expression. On day 1, a 

heterogeneous population was measured in cells expressing CD62Lhigh or CD62Llow. 

The CD62Llow population in pMOG treated group was increased at day 1, 3 and 4, 

compared with the PBS treated group. At day 7, the majority of cells in both groups 
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expressed CD62Lhigh (Figure 3.10). These data suggested that 2D2 cells from soluble 

pMOG injected mice acted like activated T cells up to day 4 in terms of the 

expression of surface markers. However, this pattern of CD69high CD44high CD62Llow 

can not be sustained and cells can revert to a CD69low CD44low CD62Lhigh phenotype 

at later time point, suggesting that the cells cannot develop to memory T cells 

following soluble pMOG administration. 

 

To measure apoptosis of 2D2 cells, spleen cells were stained with annexin V and 

7-amino-actinomycin D (7-AAD) and analyzed by flow cytometry. CD4+ Thy1.1+ 

Annexin V+ 7-AAD- cells were gated as apoptotic cells (Figure 3.12A). Results in 

figure 3.11B show a reduction of apoptotic 2D2 cells in pMOG-treated mice on day 

2, a trend that was also seen on day 3 compared to the PBS-treated mice, whereas no 

apparent difference was observed between two groups at other indicated time points 

(Figure 3.11B). On the other hand, the frequency of apoptotic host cells was 

constantly between 2% to 5% and there was no difference in the frequency of CD4+ 

Thy1.1- (host) apoptotic cells in both mice (Figure 3.11C). As the frequency of 

apoptotic cells was low (ranging from 1 % to 7.5 %) in both pMOG treated and PBS 

treated mice, administration of pMOG may not change the survival rate of 2D2 T 

cells in the spleen. Collectively, these data suggested that most of the 2D2 cells 

sampled from pMOG treated mice at day 7 are non-activated cells (based on the 

patterns of CD69low CD44low CD62Lhigh in figure 3.10) and those activated 2D2 cells 

might have left the spleen. 

 

3.2.5 Administration of pMOG induces T cell unresponsiveness to 

further stimulation 
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In mice primed with peptide / CFA, only local T cells in the draining lymph nodes 

can be activated immediately. To assess the early effects of soluble peptide after 

priming, it requires an adjuvant that can facilitate a systemic and immediate T cell 

activation. Thus, LPS was substituted for CFA as an adjuvant in this experiment. 

C57BL/6 mice received 2 x 106 CD4+ Thy1.1+ (2D2) T cells on day -8 were injected 

with 200 £g of soluble pMOG or PBS i.v. on day -7 and subsequently were primed 

with 100 £g of pMOG and 30 £g of LPS on day 0 (Figure 3.12A). Spleen cells were 

harvested, stained and analyzed by flow cytometry at various time points from day 1 

to day 10. CD4+ Thy1.1+ cells were gated as transferred 2D2 cells and plotted by 

levels of 7-AAD / Annexin V for apoptosis (Figure 3.12B). Notably, the frequency of 

2D2 cells in the mice which received soluble pMOG was lower than the frequency of 

2D2 cells in the PBS-treated mice on day 0 (Figure 3.12C). It remains possible that a 

certain proportion of 2D2 cells in pMOG treated mice might have migrated out of the 

spleen.  

 

In the mice first treated with PBS, the frequency of transferred 2D2 cells increased 

dramatically at day 3, a phenomenon which was not seen in mice first given soluble 

pMOG. Mice which received pMOG prior to priming were unresponsive at all time 

points. Mice which received PBS prior to priming were able to respond and 

proliferate in response to in vitro restimulation with pMOG. This capacity of 

proliferation peaked at day 2 and subsequently decreased over time (Figure 3.13A). 

At day 10, cells from both groups were unresponsive to pMOG in ex-vivo culture. It 

suggested that the administration of pMOG induces T cell unresponsiveness against 

further priming. Consistent with this, ELISA data showed that very few IL-2 was 

produced from the cells of pMOG-treated mice after priming at every time-point, 
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whereas cells from PBS-treated mice produced high levels of IL-2 at day 2 and day 3 

(Figure 3.14A). However, there was no IFN-γ produced by cells from either group 

except for low-level IFN-γ detected at day 2 in PBS treated mice (Figure 3.14B). 

2D2 cells from spleen cells were stained for 7-AAD / Annexin V to represent 

apoptotic cells (Figure 3-15A). As low frequencies of 2D2 cells appeared after 

pMOG / LPS priming (Figure 3.12C), levels of apoptotic cells seemed relatively high. 

Increased frequencies of apoptotic 2D2 cells appeared at day 1 to day 3 in both 

groups, compared with day 0 and no significant difference was observed between 

pMOG-treated and the control mice (Figure 3.15B). Host cells had a low frequency 

(5-15 %) of apoptotic cells that showed no difference between groups (Figure 

3.15C). 

 

There were no apparent differences in the expression of CD69 between both groups 

after pMOG / LPS priming, whereas pMOG-treated mice had more CD62Llow 2D2 

cells at day 0 and day 1, suggesting that some of the 2D2 T cells in soluble pMOG 

treated mice may be activated with a faster kinetics than the control group (Figure 

3.16. Interestingly, staining with antibodies against Fas and FasL suggested that 2D2 

cells from pMOG-treated mice had a trend of enhanced expression of Fas and FasL 

at day 1 after pMOG / LPS administration, compared with the control mice. By day 2, 

2D2 T cells in both mice expressed Fas. The expression level of Fas / FasL in 2D2 

cells from pMOG-treated mice seemed to decline at day 2, compared with day 1 

(Figure 3.16) Collectively, these results suggest that the administration of soluble 

pMOG before priming can inhibit cell proliferation and IL-2 production and might 

also induce an early expression of Fas / FasL.  
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3.3 Discussion 

The degree of antigen aggregation, the presence of adjuvant and the route of antigen 

administration determine whether T cells become fully activated or tolerant (Kearney 

et al., 1994). In this chapter, administration of peptide in soluble form through the i.v. 

route can reduce T cell proliferation induced by subsequent immunization and 

prevent EAE in mice. In the Ac1-9 / Tg4 system, the occurrence of AICD has been 

reported when Tg4 T cells were cultured with APC plus Ac1-94Y (Ryan et al., 2005). 

Data in this chapter showed that administration of soluble Ac1-94Y did not trigger a 

cell loss of Tg4 T cells in Ac1-94Y treated mice but led to T cell unresponsiveness 

after subsequent Ac1-9 / CFA immunization (Figure 3.3C and D). It is possible that 

Tg4 T cells in Ac1-94Y treated mice had undergone activation, expansion and 

apoptosis and subsequently returned to an equivalent cell number to the control 

group. As the high affinity analogue Ac1-94Y can persist longer on MHC and provide 

a high density of pMHC complexes compared to wild type Ac1-9 (Konkel and 

Anderton, unpublished data; Anderton et al., 1998, McCue et al., 2004), 

administration of soluble Ac1-94Y may provide a persistent TCR signal that 

maintains the state of unresponsiveness.  

 

The existence of persisting antigen (without adjuvant) has been reported to be 

essential in keeping the hyporesponsive state of antigen- reactive T cell in vivo 

(Tanchot et al., 2001; Singh and Schwartz, 2003; Raimondi et al., 2006). The 

Schwartz lab have developed an in vivo anergy model in which CD4+ TCR 

transgenic cells specific for pigeon cytochrome c (PCC) and I-Ek are transferred to a 

T cell deficient transgenic mice that constitutively expresses PCC. The transferred 

cells underwent transient activation within 4 days but remained hyporesponsive from 
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day 7 to day 56 when cultured with PCC in vitro (Tanchot et al., 2001). A recent 

report found a reduction in quality and quantity of TCR signaling (Zap70, calcium / 

NFAT, NFκB) in this model (Chiodetti et al., 2006; Knoechel et al., 2006). On the 

other hand, T cell unresponsiveness in the adoptive transfer model with PCC 

transgenic mice (the tolerance induction protocol is similar to this chapter using 

soluble PCC peptide to induce T cell tolerance in mice given with PCC transgenic T 

cell) has been reported to be mediated by the ineffective recruitment of linker for 

activation of T cells (LAT) which affects the activity of Zap70, phospholipase C-γ1 

(PLC-γ1), PI3K and Ras and restrains T cell proliferation (Hundt et al., 2006). This 

data suggests that peptide induced T cell tolerance has different signalling characters 

from the adaptive tolerance model.  

 

In this chapter, Tg4 cells were harvested 27 days after EAE induction for 

proliferation and cytokine analysis (Figure 3.1). Presumably the time that effector 

cell numbers reached their peak would be close to (or before) the time of peak EAE 

score (around day 10-14), so that the effector cells sampled at day 27 may have died 

in both groups or migrated from secondary lymphoid organs to non-lymphoid tissues 

(Reinhardt and Jenkins, 2003). Thus, a broader range of tissues (especially the spinal 

cord and the brain) and different timing for cell harvest (for example, day 10, day 14) 

should be assessed in the future experiments.  

 

A more in depth investigation of peptide-induced tolerance was undertaken in the 

pMOG / 2D2 / C57BL6 adoptive transfer system in this chapter. The lower level of 

proliferation reflected to the lower frequency of 2D2 cells in pMOG treated mice 

(Figure 3.5 and 3.6). Unlike tolerance in the Ac1-9 / Tg4 system, the gross reduction 
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of proliferation in the soluble peptide treated group resulted from the loss of 2D2 T 

cells, therefore preventing EAE (Figure 3.4B and 3.5B). T cell deletion in response 

to antigen has been found in models in which superantigens or high dose soluble 

peptides are injected into normal mice (Kawabe and Ochi, 1991; Critchfield et al., 

1994), or the relevant peptides are injected into TCR transgenic mice (Liblau et al., 

1996). In peptide-induced tolerance, the Jenkins lab has attempted to address the 

mechanisms of tolerance induction by using an adoptive transfer model with OVA 

peptide and OVA specific TCR transgenic mice (DO11.10). It was demonstrated that 

soluble OVA peptide induced a transient accumulation and a subsequent loss of 

transferred DO11.10 CD4+ T cells that was accompanied by unresponsiveness in the 

surviving DO11.10 T cells (Kearney et al., 1994). This was confirmed in the pMOG / 

2D2 system in this chapter, with 2D2 T cells undergoing a state of transient 

activation and expansion for 3 days after the administration of tolerogenic pMOG 

(Figure 3.8A and 3.9). Normally the duration of the transient activation state can 

persist for 2-5 days depending on the model used (Kearney et al., 1994; Huang et al., 

2003; Pape et al., 1998). So there were more 2D2 cells in the pMOG treated mice on 

day 2 after pMOG treatment (Figure 3.11B). After pMOG / LPS priming, 2D2 T cells 

from pMOG treated mice expanded, produced no IL-2 and remained hyporesponsive, 

whereas cells in PBS treated mice produced IL-2 and proliferated vigorously (Figure 

3.12C, 3.13 and 3.14). In the OVA / DO11.10 adoptive transfer system, this 

unresponsive state could be reversed after 2 weeks of soluble peptide administration, 

but weekly booster injections of soluble peptide could extend the unresponsive state 

(Pape et al., 1998). This matches the adaptive tolerance model in which persisting 

antigens maintain the unresponsiveness (Knoechel et al., 2006), presumably in those 

cells that survive soluble pMOG-induced tolerance is also a transient and reversible. 
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However, there were conflicting results in 2D2 T cells from soluble pMOG treated 

mice between the priming with pMOG / LPS (unresponsiveness, figure 3.13) and 

with pMOG / CFA (responsiveness, figure 3.6). There were no differences between 

pMOG-treated and PBS-treated groups in the frequency of 2D2 T cells and in 

proliferation 10 days after pMOG / LPS priming, whereas a reduced frequency of 

2D2 T cells was found in pMOG treated mice 10 days after pMOG / CFA 

immunization (Figure 3.5B and 3.12C). Priming with pMOG / CFA provides a 

persisting, chronic release of antigen, whereas priming with pMOG / LPS is a 

systemic but not persisting source of antigen (Maxwell et al., 2002). Thus, a 

persisting stimulation of antigen and TLR stimuli (pMOG / CFA) may reverse the 

unresponsive cells into antigen responsive cells.  

 

Interestingly, 2D2 T cells from pMOG treated mice seemed to have an early 

expression of Fas / FasL one day after pMOG / LPS immunization, compared with 

the control group (Figure 3.16). It has been reported that OVA induced cell deletion 

in DO11.10 or OT-II cells does not happen in normal mice transferred with T cells 

from DO11.10 x lpr or OT-II x lpr mice (or in gld mice transferred with T cells from 

OVA transgenic mice), suggesting that the Fas / FasL pathway is possibly involved in 

peptide induced T cell deletion (Pinkoski et al., 2002; Herndon et al., 2005). In 

Pinkoski¡s report, soluble OVA administration alone in wild type mice given OVA 

specific T cells could up-regulate the expression of FasL in OVA specific T cells, 

whereas mice given with CFA immunization without soluble OVA injection had a 

reduced FasL expression compared to soluble OVA injected mice (Pinkoski et al., 

2002). However, the time point of these peptide induced Fas / FasL mediated 

apoptosis experiments were determined before priming. There is little evidence on 
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whether soluble peptide administration can facilitate Fas / FasL expression on CD4 T 

cells after subsequent priming. The rapid up-regulation of Fas / FasL in 2D2 T cells 

in pMOG treated mice after pMOG / LPS priming in this chapter suggests that 

peptide tolerized cells might be more sensitive to death receptor mediated apoptosis 

following stimulation. However, because activated cells may migrate into 

non-lymphoid tissues, assessment of apoptosis and proliferation in spleen cells might 

not represent the in vivo condition of most of the 2D2 cells. Therefore, other 

non-lymphoid tissues should be tested in the future experiments. 

 

Taken together, administration of soluble peptide induces transient T cell activation, 

T cell deletion and T cell unresponsiveness in the pMOG / 2D2 / C57BL6 system. 

The major effect of reduced severity of EAE in pMOG induced tolerance may result 

from the deletion of pMOG-reactive T cells. In contrast, administration of soluble 

Ac1-94Y in the Tg4 / B10.PL system maintains T cells in an unresponsive state. 
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Figure 3.1 Administration of peptide Ac1-94Y ameliorates EAE. A,B10.PL mice were 
injected with 200 £g of soluble Ac1-94Y or PBS i.v. on day -7, immunized with 100 £g of 
Ac1-9 in CFA on day 0 (with administration of PTX on day 0 and day 2). B, disease 
severity of the mice was scored daily post immunization (p < 0.001 by Mann-Whitney U 
test). C, on day 27 post immunization, cells were harvested from the spleen and cultured 
for 72 hours with a pulsing of thymidine for the last 18 hours. Asterisks represent 
significant difference between peptide treated and PBS mice (p < 0.05 by unpaired 
T-test). D and E, Culture supernatants was harvested for cytokine ELISA assay. Plots 
show the amount of IFN-γ (D) and IL-17 (E) against various doses of Ac1-9. Data are 
from one experiment and represent the mean ¡ SEM (6 mice in each group, SEMs reflect 
samples from different mice). 
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Figure 3.2 Administration of tolerogenic Ac1-94Y maintains Tg4 T cells. A, B10.PL 
mice were given 3 x 105 CD4+ Ly5.1+ Tg4 T cells on day -8, injected with 200 £g of 
Ac1-94Y or PBS i.v. on day -7 and immunized with 100 £g of Ac1-9/CFA on day 0 
(with administration of PTX on day 0 and day 2). B, Ten days after immunization, cells 
were harvested from draining lymph node (LN) and spleen and stained for CD4 and 
Ly5.1. Plot shows the frequency of Ly5.1+ Tg4 cells as a percentage of CD4+ T cells. 
Data are from one experiment and represent the mean ¡ SEM  (3 mice in each group, 
SEMs reflect samples from different mice). 
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Figure 3.3 Administration of soluble Ac1-94Y causes T cell unresponsiveness. Mice were 
immunized with the protocol as shown in figure 3.2A. Cells were harvested from spleen (A) 
and LN (B) on day 10 post immunization and cultured for 72 hours with a pulsing of 
thymidine for the last 18 hours. Asterisks represent significant difference between peptide 
treated and PBS mice (p < 0.05 by Unpaired T-test). Data are from one experiment and 
represent the mean ¡ SEM (3 mice in each group , SEMs reflect samples from different 
mice). 
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Figure 3.4 Administration of soluble pMOG protects mice from EAE. A, C56BL/6 
mice were injected with 200 £g of soluble pMOG or PBS i.v. on day -7 and immunized 
with pMOG/CFA on day 0 (with administration of PTX on day 0 and day 2). B, disease 
severity was scored daily post immunization. Data represent the mean ¡ SEM gathered 
from individual mice (p < 0.0001 by Mann-Whitney U test, 5-7 mice in each group, data 
are from one of three repeated experiments, SEMs reflect samples from different mice). 
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Figure 3.5 Administration of soluble pMOG reduces 2D2 T cells. A, C57BL/6 mice 
were given 2 x 106 CD4+Thy1.1+ T cells from 2D2 mice on day -8, injected with 200 
£g of pMOG or PBS i.v. on day -7 and EAE was induced with pMOG/CFA (with 
administration of PTX on day 0 and day 2). B, 10 days post immunization, cells were 
harvested from spleen and LN and stained for CD4 and Thy1.1, with the frequency of 
Thy1.1+ 2D2 cells shown as a percentage of total CD4+ T cells. Asterisks represent a 
significant difference between pMOG treated and PBS mice (p < 0.05 by Unpaired 
T-test). Data are from on e experiment and represent the mean ¡ SEM gathered from 
individual mice (3 mice in each group, SEMs reflect samples from different mice). 
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Figure 3.6 Administration of tolerogenic pMOG reduces T cell proliferation. Mice were 
immunized with the protocol shown in figure 3.5A. Cells were harvested from spleen and 
LN on day 10 post immunization. Cells were harvested from spleen (A) and LN (B) and 
cultured for 72 hours with a pulsing of thymidine for the last 18 hours. Asterisks represent a 
significant difference between pMOG treated and PBS treated mice (p < 0.05 by Unpaired 
T-test). Data are from one experiment and show the mean ¡ SEM  (3 mice in each group, 
SEMs reflect samples from different mice). 
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Figure 3.7 Administration of soluble pMOG to mice receiving 2D2 cells. A, 
C57BL/6 mice were injected with 2 x 106 CFSE labelled, CD4+ Thy1.1+ 2D2 T cells 
and injected with 200 £g of pMOG or PBS i.v. one day later. B, at the day indicated, 
spleen cells were harvested and stained for CD4 and Thy1.1. 7-AAD and Annexin V 
staining represent dead cells and apoptotic cells. Cells were gated on CD4+Thy1.1+, 
next plotted by CFSE level or by 7-AAD/Annexin V. Data are from one of three 
repeated experiments, 2 mice in each group. Data from this experiment continue in Fig 
3.8-3.10. 
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Figure 3.8 Administration of soluble pMOG induces cell division in 2D2 T cells. 
See figure 3.7A for experimental protocol. Cells were gated on CD4+ Thy1.1+ (see Fig 
3.7 B). A, The frequency of Thy1.1+ 2D2 cells is as a percentage of total CD4+ T cells 
at the day indicated. B, Histograms show the dilution of CFSE versus the number of 
2D2 cells at the day indicated. Filled histograms represent the pMOG treated mice and 
open histograms represent the control mice. The frequency in each plot represents the 
percentage of dividing 2D2 T cells in pMOG treated mice. Data are from one of three 
repeated experiments, 2 mice in each group. 
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Figure 3.9 Administration of soluble pMOG induces transient proliferation. See figure 
3.7A for experimental protocol. Spleen cells were harvested at the day indicated and cultured 
for 72 hours with a pulsing of thymidine for the last 18 hours. Asterisks represent significant 
difference between peptide treated and PBS treated mice (p < 0.05 by Unpaired T-test). Data 
are from one of three repeated experiments, 2 mice in each group (triplicate in each dose, 
each point represents mean CPM ¡ SEM).  
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Figure 3.10 Administration of soluble pMOG enhances the expression of T cell 
activation markers. See figure 3.7A for experimental protocol. Spleen cells were stained for 
CD4, Thy1.1, CD69, CD44 and CD62L at the day indicated. Cells were gated on CD4+ 
Thy1.1+cells (2D2 cells). Filled histograms represent cells from pMOG treated mice and 
open histograms represent cells from the control mice. Numbers represent the percentage of 
gated cells (pMOG group at the right and PBS group at the left). Data are from one of two 
repeated experiments, 2 mice in each group 
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Figure 3.11 pMOG-treated mice have fewer apoptotic cells. See figure 3.7A for 
experimental protocol. A, Spleen cells were gated on CD4+ Thy1.1+ (2D2) cells. B, Annexin 
V+ 7-AAD- T cells as a percentage of CD4+ Thy1.1+ cells at the day indicated. C, Plot shows 
the Annexin V+ 7-AAD- T cells as a percentage of CD4+ Thy1.1- (host) cells at the day 
indicated. Data are from one of two repeated experiments, 2 mice in each group. 
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Figure 3.12 Administration of soluble pMOG prevents the expansion of 2D2 cells 
by pMOG/LPS priming. A,C57BL/6 mice were injected with 2 x 106 CD4+ Thy1.1+ 
2D2 T cells on day -1, injected with 200 £g of pMOG or PBS i.v. on day 0 and 
subsequently primed i.v. with 100 £g of pMOG in 30£g of LPS. B, Spleen cells were 
gated on CD4+ Thy1.1+ (2D2) cells. Annexin V+ 7-AAD- cells are representative of 
apoptotic cells. C, The frequency of Thy1.1+ 2D2 cells as a percentage of CD4+ T cells 
at the day indicated. Data are from one of two repeated experiments, 2 mice in each 
group. 
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Figure 3.13 Administration of soluble pMOG prior to priming inhibits pMOG/LPS 
triggered T cell expansion. A, The injection protocol is shown in figure 3.13A. Spleen cells 
were harvested at the day indicated and cultured with pMOG for 72 hours with a pulsing of 
3H-thymidine for the last 18 hours. Asterisks represent significant difference between pMOG 
treated and PBS treated mice (p < 0.05 by Unpaired T-test). Data are from one of two 
repeated experiments, 2 mice in each group (Triplicate in each dose. Data represent the mean 
¡ SEM).   
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Figure 3.14 Administration of pMOG prior to pMOG/LPS priming inhibits IL-2 
production. The experimental protocol is shown in figure 3.13A, spleen cells were 
harvested at various time points and cultured for 48 hours (IL-2 assay) or for 72 hours 
(IFN-γ) with pMOG. Culture supernatant was collected for cytokine assay by ELISA. Plots 
show the amount of IL-2 (A) and IFN-γ (B) secreted against various doses of pMOG. 
Asterisks represent significant difference between pMOG treated and PBS treated mice (p < 
0.05 by Unpaired T-test). Data are from one of two repeated experiments, 2 mice in each 
group (Triplicate in each dose. Data represent the mean ¡ SEM). 
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Figure 3.15 T cell apoptosis after soluble pMOG administration and pMOG / LPS 
priming. The experimental protocol is shown in figure 3.13A. Spleen cells were harvested 
and stained for CD4 and Thy1.1. A, cells were gated on CD4+Thy1.1+ as transferred 2D2 
cells. Annexin V and 7-AAD staining represent dead cells and apoptotic cells. B, Annexin V+ 

7-AAD- T cells as a percentage of CD4+ Thy1.1+ 2D2 cells at the day indicated. C, Plot 
shows the Annexin V+ PI- T cells as a percentage of CD4+ Thy1.1- cells (host) at the day 
indicated. Data are from one of two repeated experiments, 2 mice in each group (N.D. 
represents not detected). 
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Figure 3.16 Administration of soluble pMOG enhances Fas/FasL expression after 
pMOG/LPS priming. The experimental protocol is shown in figure 3.13A. Spleen cells 
were harvested at the day indicated and stained for CD69, CD62L, Fas and FasL. Plots show 
the expression of surface markers versus the percentage of CD4+Thy1.1+ cells. Filled 
histograms represent cells from pMOG treated mice and open histograms represent cells 
from the control mice. Dash histograms represent un-stained control. Numbers represent the 
percentage of gated cells (pMOG group on the top and PBS group on the bottom). Data are 
from one of two repeated experiments, 2 mice in each group 
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Chapter 4. Development of a memory model for EAE 

 

4.1 Introduction 

Clinical translation of antigen-based tolerance will require the ability to control 

autoreactive memory T cells. To mimic the pathological situation of MS patients, we 

need models to study the development and control of memory T cells. Models of 

tolerance in ¡ongoing EAE¡ have been reported by injecting soluble peptide, 

recombinant peptide-MHC complexes, or fixed peptide-pulsed APC to diseased mice 

(Margot et al., 2005; Huan et al., 2004; Smith et al., 2005). However, some of the 

mice in these models developed fatal anaphylaxis immediately after the peptide 

administration (Pedotti et al., 2001). Presumably, anti-myelin peptide antibodies 

were generated after primary immunization, causing anaphylactic shock upon 

systematic administration of the same peptide. This chapter focuses on the feasibility 

of applying a ¡double immunization system¡ to investigate memory response of EAE. 

In the EAE model where mice are given primary immunization, the frequency of 

myelin-reactive T cells declines to a low level after 4 weeks and presumably the 

number of effector T cells contracts at this time point. To provoke the memory 

response, a secondary immunization was applied to the same mice, 28 day after the 

primary immunization. As we are allowed to use CFA in the same animal only once, 

mice were therefore immunized with peptide in alternative adjuvants to generate 

memory T cells prior to secondary immunization. CpG can activate DC through 

TLR9, whereas PGN can activate DC through TLR2 and nucleotide-binding 

oligomerization domain 2 (NOD2) signalling (Iwasaki and Medzhitov, 2004; Strober 

et al., 2006). EAE has been reported to be induced by administering myelin protein 

with CpG /IFA or PGN / IFA (Segal et al., 2000 Ichikawa et al., 2002; Visser et al., 
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2005). These two adjuvants were tested in this chapter. To establish a memory 

response, several protocols were tested in mice with: A) Peptide pulsed DC injection 

first and peptide / CFA immunization secondarily. B) Primary immunization with 

peptide CFA and second immunization with peptide IFA. C) Primary immunization 

with peptide / CFA and second immunization with peptide / CpG / IFA or peptide / 

PGN / IFA. D) Primary immunization with peptide / CpG / IFA or peptide / PGN / 

IFA and second immunization with peptide / CFA.  

 

4.2 Results 

4.2.1 Maintenance of transferred cells after antigen priming 

The adoptive transfer of TCR transgenic T cells was applied in several protocols to 

study the persistence of these cells under various conditions. 2 x 106 Ly5.1+CD4+ 

cells from Tg4 mice were transferred into B10.PL mice prior to immunization with 

100 £g of wild type Ac1-9 in CFA (Figure 4.1A). Based on previous observations in 

Chapter 3, Tg4 T cells would initially expand after priming and subsequently 

contract over time. As figure 4.1B shows in spleen cells harvested 10 days after 

Ac1-9 immunization, frequency of Tg4 cells was between 0.34 % and 0.92 %. 

However, this proportion decreased rapidly and dropped below 0.1% and 0.02% at 

day 20 and day 30, respectively (Figure 4.1B). Meanwhile the percentage of 

transferred cells stayed constantly low in the control group (0.01 %, 0.065 % and 

0.006 % at days 10, 20 and 30, respectively). There was no significant accumulation 

of Tg4 cells at the time point of day 30 post priming. High expression of CD44 and 

down-regulation of CD62L are both markers of activated, effector and memory T 

cells. To assess whether the cells that persisted were memory T cells, cells were 

analyzed for surface expression of CD44 and CD62L (memory T cells are CD44high 
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and CD62Llow). Non-immunized mice had a proportion of 10-15 % of CD44high Tg4 

cells and 15-30 % of CD62Llow Tg4 cells (Figure 4.2A and B). Tg4 cells in the Ac1-9 

primed mice had enhanced frequencies (24 %, 39 % and 22 % on days 10, 20 and 30, 

respectively) of CD44high T cells and enhanced frequencies (78.1 %, 77.3 % and 67 

% on days 10, 20 and 30, respectively) of CD62Llow T cells (Figure 4.2C and D). 

These data suggest that although the cell number of Tg4 cells in Ac1-9-primed mice 

expanded and contracted back to a basal level by 4 weeks after immunization, 

antigen priming resulted in a persistent memory-like phenotype (CD44high CD62Llow) 

in the surviving Tg4 cells.  

 

4.2.2 Priming with peptide-pulsed DC is inefficient to trigger EAE in 

pMOG experienced mice 

To develop a model of ¡memory EAE¡, the protocol was adapted to give the mice a 

primary immunization for the generation of memory T cells without disease followed 

by a secondary immunization for the induction of clinical EAE. Mice were 

transferred with 3 x 105 CD4+ Ly5.1+ Tg4 cells and immunized with 100 £g of Ac1-9 

in CFA. Induction of EAE was attempted by injection of Ac1-94Y-pulsed DC and 

PTX four weeks later (Figure 4.3A). This treatment did not trigger EAE (Figure 

4.3B). Ten days after DC injection, spleen cells were analyzed in ex-vivo recall 

response assays. Although there was a high background of CPM in the DC group, no 

group showed a dose response to Ac1-9 in vitro (Figure 4.3C). Unlike the primary 

response measured at day 10 with the immunization of Ac1-9 / CFA (Figure 3.3), 

secondary challenge with Ac1-94Y-pulsed DC did not expand Tg4 T cells (Figure 

4.3D).  
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A similar pattern of low incidence (20 % in pMOG-loaded DC injected mice) and 

mild severity was observed in pMOG / 2D2 / C57BL/6 system (Figure 4.4), 

indicating that double immunization with peptide / CFA primarily and peptide-pulsed 

DC secondarily was insufficient to reliably re-activate pathogenic cells. 

 

4.2.3 Peptide administration in the absence of adjuvant does not 

re-induce EAE in Ag-experienced mice. 

B10.PL mice were transferred with 3 x 105 CD4+ Ly5.1+ Tg4 T cells at day -1, 

induced to develop EAE with 100 £g of Ac1-9 / CFA one day later, then injected 

with soluble Ac1-94Y or PBS at day 27 (Figure 4.5A). As figure 4.5B shows, mice 

developed disease after primary immunization and were in the recovery phase with 

mean clinical scores lower than 1 at day 27. After injection with soluble Ac1-94Y, 

none of these Ac1-9 experienced mice developed disease. There was a trend of 

increased frequency of Tg4 T cells in soluble Ac1-94Y treated mice compared to the 

control group, at both day 30 and day 47 (day 3 and day 20 after peptide injection, 

respectively) (Figure 4.6). This suggested that soluble Ac1-94Y might sustain the 

survival of the Tg4 T cells. Ex-vivo proliferation assays showed that cells from 

Ac1-94Y and PBS injected mice remained equally responsive to Ac1-9 at day 30 and 

day 47 post immunization (Figure 4.7A and B), suggesting that Ac1-94Y does not 

re-activate T cells in Ac1-9 experienced mice.  

 

To attempt to induce a secondary episode of disease, mice were immunized with 

Ac1-9 in IFA (plus PTX) on day 33 after primary immunization. Soluble Ac1-94Y or 

PBS 6 was injected 6 days before secondary immunization to induce T cell tolerance 

(Figure 4.8A). No matter whether these mice received soluble Ac1-94Y before 
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secondary immunization or not, they did not develop any signs of EAE (Figure 4.8B). 

The Ac1-94Y treated mice had a trend of increasing the frequency of Tg4 cells 14 

days after secondary immunization, although this was not significant (Figure 4.9A). 

However, spleen cells from Ac1-94Y treated mice proliferated significantly less than 

the PBS treated mice (Figure 4.9B). Normalization of CPM with relative cell number 

showed a state of unresponsiveness in cells from the Ac1-94Y treated mice (Figure 

4.9C). Although clinical signs of EAE were not observed after secondary 

immunization, the reduced proliferation in cells from the Ac1-94Y treated mice 

suggests that the i.v. administration of soluble Ac1-94Y may have induced T cell 

tolerance in the antigen-experienced mice. Thus the memory Tg4 T cells may have 

been driven to unresponsiveness by the administration of soluble Ac1-94Y. 

 

4.2.4 Administration of soluble myelin peptide after primary 

immunization can induce anaphylactic shock 

Anaphylactic shock is clinically defined by vasodilation of arterioles, constriction of 

the airways and bronchioles in the lungs. When administering soluble peptide to 

peptide-experienced mice as the protocol shown in figure 4.5A, it was observed that 

some of the mice developed breathing difficulties. These mice subsequently died 

within 20 minutes of peptide injection. This was seen in 15% of Ac1-9-experienced 

mice (Table 4.1). When a similar protocol was applied in the pMOG / C57BL/6 

system (with primary immunization of pMOG/CFA at day 0, and various doses of 

soluble pMOG through i.v. or i.p. route at day 28), no anaphylaxis occurred in mice 

receiving 10 £g or 50 £g of soluble pMOG, while 75 % and 50 % of the mice 

developed anaphylaxis after receiving pMOG injection of 200 £g and 500 £g 

respectively. No pMOG-specific IgE was detected in sera collected 4 weeks after 
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pMOG / CFA immunization. However, high titers of anti-pMOG IgG1 were observed 

(Figure 4.10), suggesting that pMOG specific IgG1 is possibly one of the causes of 

anaphylactic shock induced by re-challenge of soluble peptide.  

 

4.2.5 Development of memory EAE with pMOG / CpG / IFA or pMOG 

/ PGN / IFA  

Segal and Laman¡s groups have reported that the immunization of encephalitogenic 

peptide in IFA, together with bacteria based TLR stimulus, unmethylated CpG (CpG) 

or peptidoglycan (PGN), can induce EAE (Segal et al., 2000; Laman et al., 2005). A 

double immunization protocol was tested as Figure 4.11. Mice received 2 x 106 of 

2D2 T cells at day -29 were injected with 100 £g of pMOG in CFA one day later and 

were subsequently induced to develop EAE with pMOG / CpG / IFA or pMOG / 

PGN / IFA. Unexpectedly, only 1 in 3 mice in pMOG / CpG / IFA immunized group 

developed disease, whereas mice had no clinical signs after receiving the 

immunization of pMOG / PGN / IFA (Figure 4.11B).  

 

The protocol was then tested in reverse. C57BL/6 mice received 2 x 106 CD4+ 

Thy1.1+ 2D2 T cells at day -29, immunized with either pMOG / CpG / IFA , pMOG / 

PGN / IFA or pMOG / IFA on day later and subsequently induced to develop EAE 

with 100 £g of pMOG in CFA at day 0 (Figure 4.12A). As Figure 4.12B shows, 

pMOG / CpG / IFA and pMOG / PGN / IFA immunized mice started to develop EAE 

from day 8 and day 10, which were 5 days and 3 days earlier than primary 

immunization control (day 13), respectively. Even the group that received a primary 

immunization with pMOG/IFA had an earlier onset of disease compared to the 

control mice. All mice that initially received pMOG / CpG / IFA and pMOG / PGN / 
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IFA immunized mice developed EAE, contrasting with 2 in 4 mice in pMOG / CFA 

control group. These data suggested that the double immunization with pMOG / CpG 

/ IFA or pMOG / PGN / IFA primarily and pMOG / CFA secondarily triggers a more 

severe and faster ¡memory¡ form of EAE. However, t ransferred 2D2 T cells could 

not be detected in either spleen, LN or CNS harvested at the time of peak EAE score 

after the secondary immunization, suggesting that pMOG-reactive T cells from 2D2 

mice may not persist in LN, spleen or CNS (data not shown). When the same 

protocol was applied to C57BL/6 mice without a transfer of 2D2 T cells (Figure 

4.13A), mice still had an early onset of EAE if initially immunized with pMOG / 

CpG / IFA. Without transfer of 2D2 T cells, mice immunized with pMOG / PGN / 

IFA did not show earlier onset and had a faster recovery, compared with the mice 

immunized only with pMOG / CFA (Figure 4.13B).  

 

Table 4.2 shows a summary of the data from different experiments using double 

immunization protocols. Mice with primary immunization of CpG or PGN as 

adjuvants had a similar incidence of disease as the pMOG / CFA immunized control 

mice (74% to 79%). The mean day of disease onset for mice receiving pMOG / CFA 

immunization only was day 11, whereas CpG, PGN or IFA based double 

immunization started disease in treated mice at day 9.9, 11.1 and 13.3, respectively. 

Although the mice with double immunization with pMOG / CFA first and pMOG / 

CpG / IFA secondarily started disease 2.7 days ahead of the control mice, this 

protocol was not chosen for future experiments due to its low incidence (50 %). For 

the mice with pMOG / CpG / IFA first and pMOG / CFA secondarily, disease onset 

was 1-2 days ahead of the control mice, giving an indication that a memory response 

of pMOG had developed in these mice.  
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4.2.6 Mice primed with pMOG/CpG/IFA or pMOG/PGN/IFA 

primarily develop a mild immune response  

Having obtained data suggesting that immunization with pMOG / CpG / IFA or 

pMOG / PGN / IFA could generate pMOG-reactive, memory T cells, it was of 

interest to analyze the primary response made in response to CpG or PGN based 

immunization. C57BL/6 mice were immunized with pMOG / CpG / IFA or pMOG / 

PGN / IFA plus PTX, with control mice receiving pMOG / CFA and PTX. 

Unexpectedly, mice did not develop EAE except in the control group receiving 

pMOG / CFA (Figure 4.14A). Spleen cells taken at day 28 were assayed for pMOG 

recall responses. In terms of proliferation, cells from pMOG / CpG / IFA immunized 

mice were as responsive as the cells from pMOG / CFA immunized mice (Figure 

4.14B). Cells from pMOG / PGN / IFA immunized mice were less responsive than 

pMOG / CpG / IFA and pMOG / CFA immunized mice, suggesting that PGN based 

immunization induces a milder T cell activation in mice. On day 28 after secondary 

immunization, there was a trend of less IL-2 production in cells of the pMOG / CpG / 

IFA group compared to pMOG / CFA group, whereas cells in pMOG / CpG / IFA 

group produced more IL-2 than cells in the pMOG / PGN / IFA group (Figure 4.15A). 

Likewise, cells from pMOG / CpG / IFA immunized mice produced greatly reduced 

amounts of IFN-γ and IL-17 compared to cells from pMOG / CFA immunized mice 

(Figure 4.15B and C), whereas cells in pMOG / PGN / IFA and pMOG / IFA groups 

did not produce IFN-γ and IL-17. These data suggest that compared with CFA, CpG / 

IFA is a milder adjuvant for activating T cells and for triggering Th1 and Th17 

responses. Also, PGN / IFA is a mild stimulus for T cell activation but it is 

insufficient to induce Th1 and Th17 responses in this system.  
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Because disease initiation in mice primarily immunized with pMOG / CpG / IFA was 

consistently ahead of the control (pMOG / CFA only) mice by 1 to 2 days in every 

individual experiment and was able to induce Th1 and Th17 responses, primary 

immunization with peptide / CpG / IFA was utilized in subsequent ¡¡memory¡¡ 

experiments.  

 

4.2.7 Comparison of the mice receiving pMOG/CpG/IFA and 

pMOG/CFA  

To further assess the immune response made after CpG based immunization, mice 

were immunized with pMOG / CpG / IFA with PTX injection, 4 weeks later spleen 

cells were analyzed for cell proliferation and intracellular cytokine production in 

response to pMOG. Two control groups were added in these experiments, pMOG / 

CFA / PTX with a supply of PTX and pMOG / CFA without a supply of PTX. All of 

the mice given pMOG / CFA / PTX developed EAE, whereas 4 in 7 mice in the 

pMOG / CFA group had mild disease (NOTE: this is highly unusual). There were no 

clinical signs of EAE observed in pMOG / CpG / IFA mice (Figure 4.16B). Cells 

from pMOG / CFA / PTX injected mice proliferated slightly greater than cells from 

pMOG / CpG / IFA and pMOG / CFA mice (Figure 4.16C), confirming the previous 

observation in figure 4.14 B. The percentage of CD4+ T cells producing cytokines in 

response to pMOG was assessed by intracellular staining. Production of IFN-γ and 

IL-17 in cells from pMOG / CFA / PTX immunized mice were significantly greater 

than in cells from pMOG / CFA and pMOG / CpG / IFA immunized mice (Figure 

4.16D and E). In addition, the pMOG / CpG group generated less IL-17+ T cells than 

pMOG / CFA group. There was a trend of reduced IFN-γ+ producing cells in pMOG / 

CpG / IFA immunized mice compared to other groups. This suggested that CFA 
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based immunization has a stronger ability to produce IFN-γ and IL-17 producing 

effector T cells and the supply of PTX can augment this. To understand whether CpG 

based immunization affects regulatory T cells (Treg), cells harvested at day 28 post 

immunization were stained with antibodies against CD4, CD25 and Foxp3. 

Immunization with pMOG / CFA / PTX resulted in an enhanced frequency of CD4+ 

CD25+ Foxp3+ Treg cells in the spleen, compared with other groups (Figure 4.17). 

This suggested that at the time of 4 weeks post immunization (the time we applied 

the secondary immunization in the double immunization protocol), pMOG / CpG / 

IFA immunization does not affect the number of Treg cells. 

 

Sera were collected from individual mice for detection of anti-pMOG Abs. Although 

anti-pMOG IgE was not detectable, sera from mice treated with pMOG / CpG / IFA 

or pMOG / CFA had enhanced titres of anti-pMOG IgG1, compared with the 

pre-immune serum collected from the same mice (Figure 4.18A). Sera from pMOG / 

CFA / PTX immunized mice had higher titres than sera in pMOG / CFA / no PTX 

group, suggesting that the injection of PTX can trigger a stronger humoral immune 

response. However, not all of the mice produced anti-pMOG IgG1. In the pMOG / 

CFA / PTX group, 3 in 7 mice had comparative high titres of anti-pMOG IgG1 

(Figure 4.18B), but this did not correspond with the highest scores of EAE. In fact, 

the mouse with the highest disease score accumulated low titres of anti-pMOG IgG1, 

indicating that disease severity is independent of anti-pMOG IgG1. 

 

4.2.8 Comparison of primary and memory response  

So far the protocol was fixed with immunization of pMOG / CpG / IFA first and 

pMOG / CFA plus PTX secondarily (double immunization) for investigating 



103 
 

¡memory EAE¡. To confirm the presence of a memory response to the secondary 

immunization, mice were immunized with pMOG / CpG / IFA, and a group of 

non-immunized mice were kept as a control. Four weeks after the primary 

immunization, all of the mice were immunized for EAE with pMOG / CFA plus PTX 

(Figure 4.19A). Similar to the observations in figure 4.12 (with a transfer of 2D2 

cells) and 4.13 (without adoptive transfer), mice with double immunization 

developed a disease with earlier onset and resolved more slowly compared with the 

primary immunized mice ( p < 0.01, Figure 4.19B). Spleen cells were collected from 

the mice at day 28 post EAE induction. The recall response assays showed that cells 

from primary and double immunization proliferated equally against pMOG ex-vivo 

(Figure 4.20A), but cells from double immunized mice produced more IFN-γ and 

less IL-17, compared with the primary immunized mice (Figure 4.20B and C). 

Previous data showed that cells from mice immunized only with pMOG / CpG / IFA 

produced very little IFN-γ and IL-17 in response to pMOG (figure 4.15B). The 

enhanced production of IFN-γ in double immunized mice suggested that double 

immunization generated a strong IFN-γ-producing memory response.  

 

 4.3 Discussion  

This chapter aimed to establish a memory model of EAE by developing a double 

immunization system. Mice immunized with pMOG / CpG / IFA can develop a weak 

Th1 and Th17 response and generate anti-pMOG IgG1 but a subsequent injection of 

soluble pMOG did not induce anaphylaxis. Mice receiving a primary immunization 

of pMOG / CpG / IFA and a secondary immunization of pMOG / CFA supplemented 

with PTX can develop EAE with an early onset and delayed recovery.  
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In adoptive transfer systems, immunization can activate and expand the transferred 

TCR transgenic cells whose number subsequently contracts to a low level. Tg4 T cell 

transferred mice receiving Ac1-9 / CFA had an equal frequency of Tg4 T cells 

compared to non-primed mice 4 weeks after immunization (Figure 4.1). Of course, it 

is possible that a certain frequency of memory T cells may have entered the 

non-lymphoid tissues. In the spleen, the surviving Tg4 T cells in primed mice 

expressed more CD44 and less CD62L compared to PBS treated mice (Figure 4.2), 

suggesting that the primary immunization had provided an Ac1-9 reactive memory T 

cell pool.  

 

Different protocols of double immunizations were tested for inducing a memory 

response of EAE in mice adoptively transferred with CD4+ T cells from TCR 

transgenic mice, but most protocols failed to induce disease (Figure 4.3, 4.4 and 4.8). 

Notably, transferred Tg4 cells could be triggered to proliferate by primary 

immunization with Ac1-9 / CFA and an injection of soluble Ac1-94Y after Ac1-9 / 

CFA immunization abrogated T cell proliferation, no matter whether the Ac1-9 / CFA 

immunized mice were given secondary immunization or not (Figure 4.7 and 4.9). 

This suggests that memory T cells can be tolerized with the administration of soluble 

peptide. However, soluble peptide injection through the i.v. route to antigen 

experienced mice can also induce a fatal anaphylaxis (Table 4.1). This side effect is 

risky in peptide-based therapy. 

 

The Steinman Lab has reported that mouse death occurs within 30 minutes in 43 % 

of PLP139-151 / CFA primed mice challenged with soluble PLP139-151 through the i.p. 

route 28 days after primary immunization (Pedotti et al., 2001). In this chapter, 15 % 



105 
 

of Ac1-9 / CFA immunized B10.PL mice and 50-75 % of pMOG / CFA immunized 

C57BL/6 mice developed anaphylaxis after soluble peptide (Ac1-94Y and pMOG, 

respectively) injection i.v. In another study, i.v. injection of soluble myelin derived 

peptides was tested in different strains of mice and 90 % of PLP139-151 / CFA 

immunized mice and showed that 80 % of pMOG / CFA immunized mice developed 

anaphylactic responses after relevant soluble peptide challenge post immunization 

(Smith et al., 2005). In the antigen-experienced mice, antigen-specific antibodies are 

generated and sustained in the serum. These antibodies can bind to mast cells by 

ligations of high-affinity IgE receptors (FcεRI) or IgG receptors (FcγRs) (Miyajima, 

1997). Upon challenge with the same soluble antigen, ligation of mast cell-bound 

IgE or IgG1 can activate mast cells, triggering the release of several immune 

mediators including histamine, prostaglandin and leukotriene, causing anaphylaxis 

(Malbec and Daeron, 2007). It has been shown that an administration of anti-pMOG 

IgG1 can aggravate EAE in a complement-dependent but not FcR-independent 

fashion (Urich et al., 2006). It has been reported that antibody-induced anaphylaxis 

depends on IgE / FcεRI, but not IgG1/ FcRIII (Smith et al., 2005). However, in that 

study, 25 % of anti-IgE treated mice still suffered anaphylaxis after secondary 

challenge of peptide in soluble form, suggesting that factors other than IgE could 

induce anaphylaxis. Data in this chapter suggest that high titres of anti-pMOG IgG1 

in pMOG / CFA immunized mice were a possible factor for inducing anaphylaxis in 

subsequent peptide challenge (Figure 4.18B). As antigen-specific IgE is often 

pre-bound to mast cells, it is possible that pMOG-specific IgE had been generated, 

but that this could not be assessed by ELISA of serum (Chen et al., 1995). To clarify 

the existence of anti-pMOG IgE, a protocol for labeling mast cell-bound, pMOG 

specific IgE would be needed in the future.  
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In the later experiments using pMOG / CpG / IFA as a primary immunization mice 

did not develop anaphylactic signs even after an i.v. injection of high doses of 

soluble pMOG (Table 4.1), although anti-pMOG IgG1 were still generated in primed 

mice (Figure 4.18A). It is not clear why mice primed with pMOG / CFA developed 

anaphylaxis after soluble pMOG challenge but mice primed with pMOG / CpG / IFA 

did not. In mice, IgG1 isotype switching is known to be partially dependent upon 

IL-4 (Coffman et al., 1988). IgG1 has been reported to comprise two functionally 

distinct phenotypes. One of these IgG1 phenotypes is able to induce passive 

cutaneous anaphylaxis (PCA) which is IL-4 dependent and the other type of IgG1 

lacks PCA ability which is IL-4 independent (Faquim-Mauro et al., 1999). The 

difference between two types of IgG1 has been found to be caused by the binding 

ability to the MC that is closely related to N-glycosylation of IgG1 molecules 

(Faquim-Mauro et al., 2003). In addition, IL-10, IL-12 and IFN-γ can inhibit the 

generation of IL-4-dependent IgG1, suggesting that anaphylaxis active IgG1 

molecules tend to be generated in a ¡Th2 environment¡ ( Faquim-Mauro et al., 1999; 

Faquim-Mauro and Macedo, 2000; Silva et al., 2006). Different TLR stimulation is 

thought to be able to affect antibody class switching, therefore different types of 

antibodies may be generated in response to the different adjuvants (Faquim-Mauro et 

al., 2000). Therefore mice immunized with pMOG / CFA may have generated 

¡dangerous IgG1¡ whilst mice immunized with pMOG / CpG / IFA did not (without 

anaphylaxis, table 4.1). Recently, we used a novel strategy of APL administration to 

test a therapeutic potential in antigen-experienced mice, by avoiding anaphylaxis. 

Single residue substitutions were made in MOG35¡ 50 and it was found that an APL 

with a substitution from Valine to Alanine on position 37 (MOG35¡ 50 37Ala) can 



107 
 

retain TCR binding but not antibody binding, suggesting that position 37 is a 

possible BCR binding site. Therefore administration of MOG35¡ 50 37Ala did not 

induce anaphylaxis in antigen experienced mice, suggesting that the TCR contact and 

antibody contact residues were sufficiently diverse (Leech et al., 2007).  

 

Injection of PGN derived from different bacterial strains can induce chronic arthritis 

and colitis in susceptible rodents (Sartor et al., 1996; Onta et al., 1993). However, in 

this chapter, mice immunized with pMOG / PGN / IFA induced a weak T cell 

proliferation, failed to induce production of IL-2, IFN-γ and IL-17 and failed to 

induce EAE (Figure 4.14 and 4.15). PGN has been shown to facilitate development  

of autoimmune disease. The Laman group has compared soluble PGN (sPGN, 

prepared from S. aureus by gel-permeation chromatography) and in insoluble form of 

PGN (iPGN, as used in this chapter) and found that immunization with low dose (25 

£g) of pMOG / sPGN / IFA can induce EAE in C57BL/6 mice. In comparison, 

administration of high dose of iPGN (250 £g, as used in this chapter) induces a 

delayed-onset and weak disease (Visser et al., 2005). PGN triggers TLR2 and 

induces IFN-γ producing Th1 response, however, iPGN is less capable of activating 

DC in vitro (Salgame, 2005; Visser et al., 2005), suggesting that mice need a stronger 

stimulation for Th1 and Th17 responses when using iPGN as an adjuvant in vivo. In 

the result shown in this chapter, double immunization with pMOG / PGN / IFA first 

and pMOG / CFA secondarily resulted in development of EAE with early onset in 

2D2 T cell transferred mice. In the absence of 2D2 T cells, pMOG / PGN / IFA 

induced early initiation of EAE compared to pMOG / CFA, suggesting a weak 

memory response is induced in mice compared to pMOG / CpG / IFA (Figure 4.12 

and 4.13). On the other hand, mice immunized with pMOG / CpG / IFA had a 
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comparable T cell proliferation and IL-2 production and a mild Th1 and Th17 

response, compared to mice immunized with pMOG / CFA (Figure 4.14 and 4.15). 

Segal has reported that SJL mice can develop EAE with an immunization with 

MBP87-106 / CpG /IFA (Segal et al., 2000), immunization with pMOG / CpG / IFA did 

not induce EAE in C57BL/6 mice in this project. Nevertheless, the weak Th1 and 

Th17 responses triggered by primary immunization with pMOG / CpG / IFA were 

not themselves pathogenic but  did allow a memory response which could be 

triggered by subsequent exposure to pMOG / CFA (Figure 4.14, 4.15). This provoked 

an EAE that developed one day ahead of the pMOG / CFA immunized control mice 

and showed a delayed-recovery phase (Figure 4.19 and Table 4.2). As the high levels 

of IFN-γ production is the hallmark of Th1 memory response (Foulds et al., 2006), 

the enhanced production of IFN-γ in cells from CpG-CFA double immunized mice 

indicates that such a memory response is induced.  

 

Notably, mice receiving a primary immunization with pMOG / CpG or pMOG / CFA 

without injections of PTX had a reduced frequency of IFN-γ and IL-17 producing 

cells, suggesting PTX can enhance Th1 and Th17 responses (Figure 4.16D and E). 

PTX can induce the maturation of DC, which results in the expansion of effector T 

cells and the differentiation of both Th1 and Th2 cells (Hofstetter et al., 2002; 

Wakatsuki et al., 2003; Hou et al., 2003). Recent data found that in vivo treatment 

with PTX induced IL-17-secreting T cells in wild type mice, suggesting that PTX can 

augment Th17 responses (Chen et al., 2007). Interestingly, data in this chapter show 

that primary immunization with PTX also increased the CD4+ CD25+ Foxp3+ Treg 

cells in mice, compared to non-immunized, pMOG / CpG / IFA and pMOG / CFA 

immunized groups (without PTX, Figure 4.17). This seems to conflict with the 
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previous reports that PTX treatment can suppress Treg cell numbers and functions 

(Chen et al., 2006; Cassan et al., 2006). This difference observed may relate to the 

timing of investigation. Other groups measured Treg cells within 2 weeks of PTX 

treatment, whereas in this project, data were collected at day 28 to fit with the timing 

of the secondary immunization. Cassan¡s paper also showed a full recovery and even 

a modest increase in Treg frequency 4 weeks after PTX treatment, suggesting that 

PTX can reduce Treg cells in a short time but the increased inflammation triggered 

by PTX can further induce Treg (probably iTreg cells) generation (Chen et al., 2006).  

 

Overall, immunization of pMOG / CpG / IFA triggers a weak Th1 and Th17 response 

which is not strong enough to induce EAE by itself. Although mice receiving pMOG 

/ CpG / IFA generate anti-pMOG IgG1, it does not trigger anaphylaxis after 

subsequent challenge of soluble pMOG, indicating a safe system in which to test for 

tolerance induction. Double immunization with pMOG / CpG / IFA and then pMOG 

CFA provides a system to study pMOG-reactive memory responses. Thus, the work 

described in this chapter allowed the subsequent studies on whether peptide induced 

tolerance could silence an autoaggressive memory response. 
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Figure 4.1 Maintenance of Tg4 cells in host mice. A, B10.PL mice received 2 x 106 
CD4+Ly5.1+ Tg4 T cells and primed with 100 £g of Ac1-9 / CFA through s.c. route one 
day later. On days 10, 20 and 30 after immunization, spleens were harvested for 
staining. B, data show CD4+Ly5.1+ T cells as a percentage of CD4+ T cells. Data are 
from one experiment, 3 mice in each group. Symbols represent mean ¡ SEM and SEMs 
reflect samples from different mice. 
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Figure 4.2 Tg4 T cells express memory markers after priming. The immunization 
protocol is shown in figure 4.1A. CD4+ Ly5.1+ (Tg4) cells were gated into two 
populations by the expression of CD44 (A) or CD62L (B) (A and B represent the cells 
from PBS treated mouse). C and D show the frequency of CD44high cells (C) and 
CD62Llow cells (D) as a percentage of Tg4 cells. Data are from one experiment, 3 mice 
in each group. Bars represent mean ¡ SEM and SEMs reflect samples from different 
mice. 
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Figure 4.3 Ac1-94Y pulsed DC are insufficient to induce EAE in antigen 
experienced mice. A, B10.PL mice were given 3 x 105 CD4+Ly5.1+ Tg4 cells on day 
-28 and immunized with 100 £g of Ac1-9/CFA s.c. one day later. On day 0, mice were 
injected with either 200 £g of Ac1-9 in PBS, 5 x 105 of Ac1-94Y-pulsed DCs or PBS i.v. 
200 ng of PTX was given on day 0 and day 2. B, Disease severity post secondary 
immunization. C, 10 days post secondary immunization, spleen cells were harvested 
and cultured for 72 hours with a pulsing of thymidine for the last 18 hours. D, plot 
shows the frequency of CD4+ Ly5.1+ (Tg4) cells as a percentage of total CD4+ cells. 
Data are from one experiment and represent the mean ¡ SEM. SEMs reflect samples 
from different mice (4-5 mice in each group). 
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Figure 4.4 pMOG pulsed DC are insufficient to induce EAE in antigen 
experienced mice. A, C57BL/6 mice were given 2 x 106 CD4+ Thy1.1+ 2D2 cells on 
day -28 and immunized with 100 £g of pMOG/CFA s.c. one day later. On day 0, mice 
were injected with either 200 £g of pMOG in PBS, 5 x 105 of pMOG-pulsed DC or 
PBS i.v. 200 ng of PTX was given on day 0 and day 2. B, data show disease severity 
post immunization. Data are from one experiment and represent the mean score ¡ SEM, 
5 mice in each group. 
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Figure 4.5 Peptide administration in the absence of adjuvant does not re-induce 
EAE in Ag-experienced mice. A, B10.PL mice were given 3 x 105 CD4+Ly5.1+ Tg4 
cells and were immunized with 100 £g of Ac1-9/CFA one day later (with PTX on day 0 
and day 2). Mice were i.v. injected with 200 £g of Ac1-94Y or PBS on day 27. B, 
disease severity was scored daily post primary immunization. Data are from one 

experiment and show mean ¡ SEM  (3-4 mice in each group). 
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Figure 4.6 Number of Tg4 cells in Ac1-9-experienced mice given soluble Ac1-94Y. The 
immunization protocol is shown in figure 4.5A. Spleen and draining lymph node (LN) cells 
were harvested on day 30 (A) an day 47 (B) post immunization. Plots show the proportion of 
CD4+ Ly5.1+ Tg4 cells as a percentage of total CD4+ T cells. Data are from one experiment 
and show the mean ¡ SEM (3 mice in each group).  
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Figure 4.7 Soluble Ac1-94Y administration does not re-activate T cells in 
Ag-experienced mice. The immunization protocol is shown in figure 4.5A. Spleen 
cells were harvested on day 30 (A) and day 47 (B) post immunization and cultured for 
72 hours with a pulsing of thymidine for the last 18 hours. Data are from one 
experiment and represent the mean CPM ¡ SEM (3 -4 mice in each group). 
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Figure 4.8 Immunization with Ac1-9 in IFA does not re-induce EAE in Ac1-9 
experienced mice. A, B10.PL mice were given 3 x 105 of CD4+Ly5.1+ Tg4 cells and 
immunized with 100 £g of Ac1-9/CFA plus PTX one day later. Mice were injected with 
200 £g Ac1-94Y or PBS through i.v. route on day 27 and subsequently given secondary 
immunization with Ac1-9/IFA (with PTX on day 33 and day 35). B, disease severity 
was scored daily after primary immunization. Data are from one experiment and show 
mean ¡ SEM (4 -5 mice in each group).  
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Figure 4.9 Administration of soluble Ac1-94Y induces T cell unresponsiveness. The 
immunization protocol is shown in figure 4.8A. Spleen and draining lymph node (LN) cells 
were harvested on day 47 (day 14 after secondary immunization). A, plot shows the 
frequency of CD4+ Ly5.1+ cells as a percentage of CD4+ T cells. B, spleen cells were 
cultured for 72 hours with a pulsing of thymidine for the last 18 hours. Data are from one 
experiment and show mean ¡ SEM (4 -5 mice in each group). 
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Table 4.1 Incidence of anaphylaxis in the antigen-experienced mice after i.v. or i.p. 
injection of soluble peptide 4 weeks after immunization 
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Figure 4.10 Mice produce anti-pMOG antibodies after pMOG/CFA immunization. 
Pre-immune sera were from C57BL/6 mice collected 7 days before immunization. The mice 
were immunized with 100 £g of pMOG/CFA plus PTX and bled on day 28 after 
immunization. The titre of anti-pMOG IgG1 was assessed by ELISA. Asterisks represent 
significant difference between samples from immunized and non-immunized mice at 
indicated dilution (p < 0.05 by Unpaired T-test). Data are from one experiment and represent 
the mean ¡ SEM (7 mice in each group).  
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Figure 4.11 Primary immunization with pMOG/CFA, followed by pMOG plus 
alternative adjuvant, is insufficient to induce EAE. A, C57BL/6 mice received 2 x 106 
CD4+ Thy1.1+ (2D2) T cells on day -29 and were immunized with either 100 £g of 
pMOG/CFA on day -28. Secondary immunization with pMOG/CpG/IFA (pMOG : CpG = 50 
£g : 60 £g), pMOG / PGN / IFA (pMOG : PGN= 50 £g : 250 £g), 50 £g of pMOG/IFA or 
PBS was on day 0 (with administration of PTX on day 0 and day 2). B, disease severity was 
scored daily post secondary immunization. Data are from one of two repeated experiments 
and represent the mean ¡ SEM (3 mice in each group).  
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Figure 4.12 Mice receiving a double immunization develop a memory response. A, 
C57BL/6 mice received 2 x 106 CD4+ Thy1.1+ 2D2 cells on day -29 and were immunized 
with pMOG/IFA, pMOG/CpG/IFA (pMOG : CpG = 50 £g : 60 £g) or pMOG/PGN/IFA 
(pMOG : PGN= 50 £g : 250 £g) on day -28. Secondary immunization was with pMOG/CFA 
on day 0 (with PTX on day 0 and day 2). Control mice were given an immunization of 
pMOG/CFA plus PTX on day 0. B, disease severity was scored daily post secondary 
immunization. Data represent the mean ¡ SEM disease. Asterisks represent significant 
difference between CpG and CFA groups. Hash symbols represent significant difference 
between PGN and CFA groups (p < 0.05T test). Data are from one of two experiments and 
represent mean ¡ SEM (4 mice in each group).  
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Figure 4.13 Mice receiving double immunization develop EAE with earlier onset 
without adoptive transfer of autoreactive T cells. A, C57BL/6 mice were immunized with 
50 £g of pMOG/IFA, pMOG/CpG/IFA (pMOG : CpG = 50 £g : 60 £g) or pMOG/PGN/IFA 
(pMOG : PGN= 50 £g : 250 £g) on day -28. Secondary immunization was with 100 £g of 
pMOG/CFA on day 0 (with administration of PTX on day 0 and day 2). Control mice were 
given an immunization of pMOG/CFA plus PTX on day 0. B, disease severity was scored 
daily post secondary immunization. Data are from one experiment and represent mean ¡ 
SEM (3-4 mice in each group). There was no significant difference between control and CpG 
groups and between control and PGN groups. (p < 0.05 between CpG and PGN groups, 
analyzed by Mann-Whitney U test). 
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Table 4.2 Incidence of EAE by immunization with pMOG in  
different adjuvants 
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Figure 4.14 Mice given a single immunization with pMOG/CpG/IFA or 
pMOG/PGN IFA do not develop EAE. C57BL/6 mice were immunized with 100£g 
of pMOG/CFA, 100£g of pMOG/IFA, pMOG/CpG/IFA (pMOG : CpG = 100 £g : 120 
£g) or pMOG/PGN (pMOG : PGN= 100 £g : 250 £g) (with administration of PTX on 
day 0 and day 2). A, disease severity was scored daily post immunization. Asterisks 
represent significant difference between CFA and other groups (p < 0.01 by Unpaired 
T-test). B, spleen cells were harvested on day 28 post immunization and cultured for 72 
hours with a pulsing of thymidine for the last 18 hours. Data are from one experiment 
and represent the mean CPM ¡ SEM. Asterisks represent significant difference between 
CpG and PGN groups. Hash symbols represent significant difference between CFA and 
PGN groups (p < 0.05 by Unpaired T-test, 5 mice in each group). 
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Figure 4.15 Cytokine productions in mice receiving pMOG/CpG/IFA or 
pMOG/PGN/IFA. The immunization protocol is shown in figure 4.13. On day 28, 
spleen cells were harvested and cultured with pMOG for cytokine ELISA. Data 
represent the mean ¡ SEM. A, production of IL-2 (48hours). Asterisk represents 
significant difference between CFA and PGN groups (p < 0.05). Hash symbol 
represents significant difference between CpG and PGN groups (p < 0.05). B and C, 
production of IFN-γ and IL-17 (72 hours). Asterisks represent significant difference 
between CFA and other groups (p < 0.05). Data are from one of three experiments (3 
mice in each group). 

 
 
 



127 
 

 
A 

 

B                                   C  

       

D                                  E 

            

Figure 4.16 Fewer Th1 and Th17 cells develop in mice immunized with 
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pMOG/CpG/IFA. A, mice were immunized with either pMOG/CFA (together with 
administration of PTX on day 0 and day 2), 100 £g of pMOG/CFA (without PTX) or 
100 £g of pMOG/CpC/IFA (pMOG : CpG = 100 £g : 120 £g, with PTX). Spleens were 
harvested 28 days after immunization for assays. B, disease severity was scored daily 
post immunization. C, spleen cells were cultured for 72 hours with a pulsing of 
thymidine for the last 18 hours. D and E, cells were cultured in medium with 10 £g of 
pMOG overnight and stained for intracellular cytokines. Plots show IFN-γ+ cells (C) 
and IL-17+ cells (D) as a percentage of CD4+ T cells. Data represent the mean ¡ SEM. 
Asterisks represent significant difference (★ represents p < 0.05; ★★ represents p < 
0.01; ★★★ represents p < 0.001 by Unpaired T-test). Data are from one experiment 

(6-7 mice in each group).  
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Figure 4.17 Immunization with pMOG / CFA / PTX results in an increased 
frequency of Treg cells within the spleen. The immunization protocol is shown in 
figure 4.16A. Spleen cells were stained for CD4, CD25 and Foxp3 on day 28 post 
immunization. Plot shows the CD4+ CD25+ Foxp3+ cells as a percentage of CD4+ T 
cells. Data represent the mean ¡ SEM. Asterisks represent significant difference ( ★ 
represents p < 0.05; ★★ represents p < 0.01; ★★★ represents p < 0.001 by Unpaired 

T-test). Data are from one experiment (6-7 mice in each group).  
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Figure 4.18 Mice immunized with pMOG/CFA plus PTX develop high titres of 
anti-pMOG IgG1. The immunization protocol is shown in figure 4.16A. A, sera were 
collected on day 28 post immunization and assessed for anti-pMOG IgG1 by ELISA. Data 
show mean optical density (O.D.) ¡ SEM at 405 nm (6 mice in the group). B, Titres of 
anti-pMOG IgG1 were assessed from the serum of individual mice in the pMOG/CFA/PTX 
immunized group. Numbers represent the highest EAE score of each mouse. Data are from  
one experiment (6-7 mice in each group). 
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Figure 4.19 Mice receiving pMOG/CpG/IFA as a primary immunization develop 
EAE with an earlier onset and slower recovery after a secondary injection of 
pMOG/CFA and PTX. A, mice were s.c. immunized with pMOG/CpC/IFA (pMOG : 
CpG = 50 £g : 60 £g) on day -28 and induced to develop EAE with 100 £g of 
pMOG/CFA on day 0 (with PTX on day 0 and day 2). Control group was given 100 £g of 
pMOG/CFA on day 0 with PTX on day 0 and day 2. B, disease severity was scored daily 
post secondary immunization (p < 0.01 by Mann-Whitney U test. Data are from 3 
experiments and show mean ¡ SEM (5 mice in each group).  
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Figure 4.20 Comparison of proliferation and cytokines production in the cells from 
primary and secondary immunized mice. The immunization protocol is shown in figure 
4.19A. A, spleen cells were harvested on day 27 and cultured for 72 hours with a pulsing of 
thymidine for the last 18 hours. B spleen cells were culture for 72 hours and medium was 
collected for cytokine assay by ELISA. Plots show the amount of IFN-γ (B) and IL-17 (C) in 
the medium with various doses of pMOG. Asterisks represent significant difference (P < 
0.05). Data are from one of three and experiments show mean ¡ SEM (3 mice in each 
group).  
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Chapter 5. Peptide induced tolerance in ¡memory EAE¡  

  

5.1 Introduction 

In previous chapters, two models for investigating peptide induced T cell tolerance 

were developed; the first a ¡naive EAE model¡ and the second a ¡memory EAE 

model¡. The latter was designed to assess me mory T cells in myelin immunized mice. 

Memory T cells possess several properties crucial for their function, including rapid 

reactivation upon antigen stimulation, wide tissue distribution, and their ability to 

survive and self-renew for long periods in the absence of cognate antigen (Sprent and 

Surh, 2002; Sojka et al., 2004; Williams and Bevan, 2007). Also, memory T cells 

have been shown to have a lower TCR threshold for activation and to enter cell cycle 

faster than naive T cells, suggesting that memory T cells are easier to trigger than 

naive T cells (Rogers et al., 2000). In human studies of MS, the frequency of 

memory CD4 T cells (CD4+ CD3+ CD25+ CD45RO+) was significantly increased in 

the peripheral blood and cerebrospinal fluid (CSF) of active MS patients and patients 

undergoing relapse, compared with inactive MS patients and patients in remission 

(Okuda et al., 2005). In addition, increases of CD8+ CCR7+ CD45RA- central 

memory and CD8+ CCR7- CD45RA- effector memory T cells were found in 

peripheral blood of patients with relapsing-remitting MS compared to healthy 

controls (Haegele et al., 2007; Liu et al., 2007). These data indicate that memory T 

cells are key targets when applying peptide induced tolerance in antigen-experienced 

individuals. We hypothesized that pMOG reactive memory T cells could be 

controlled by soluble peptide in the same way as naive T cells. To approach these 

questions, soluble peptide was applied to antigen experienced mice. To further 

characterize features of autoreactive memory T cells, effector memory T cells from 
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pMOG experienced 2D2 mice were sorted for in vitro analysis. 

 

 5.2 Results 

5.2.1 Peptide induced tolerance in memory EAE using the  

pMOG/C57BL/6 system 

The initial aim of this chapter was to determine if peptide induced tolerance could be 

established in the ¡memory EAE¡ model. C57BL/6 mice were immunized with 

pMOG / CpG / IFA (pMOG : CpG = 50 £g : 60 £g), injected with 200 £g or 50 £g of 

soluble pMOG i.v. 4 weeks later and subsequently challenged with 100 £g of pMOG 

/ CFA plus PTX for EAE induction (Figure 5.1A). Injection of soluble pMOG 

through the i.v. or i.p. route and multiple doses were tested in order to find the best 

protocol for tolerance. As Figure 5.1B shows 50 £g and 200 £g of soluble pMOG i.v. 

treated mice had incidences of 40 % and 20 %, respectively, whereas the control 

group was 57 %. Treatment with 50 £g of pMOG slightly reduced severity in mice 

compared to control group, whereas mice which received 200 £g of pMOG had 

almost no clinical signs (Figure 5.1B). Pooled data from two individual experiments 

show a similar pattern with the 200 £g pMOG injected group showing better 

protection than the 50 £g pMOG injected group (p < 0.05, Figure 5.1C). Both the 

200 £g and the 50 £g pMOG injected groups had a reduced incidence of 45 %, 

compared to 73 % in the PBS group (Figure 5.1C). Ex-vivo assays on spleen cells at 

day 30 post secondary immunization showed that cells from 200 £g and 50 £g 

pMOG-treated mice proliferated identically to cells from the control mice (Figure 

5.1D). Assays of cytokine production showed no difference between groups. 

However, there was a trend that cells from 50 £g pMOG-treated mice produced less 

IL-4 and IL-17, more IL-10 and similar IFN-γ, whereas cells from 200 μg 
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pMOG-treated mice had a trend of reduced production of IL-4, IL-10, IL-17 and 

IFN-γ, compared with the cells from the control mice on day 30 (Figure 5.2A-D). 

These data suggest that cells in the peptide injected group had a trend for reduced 

production of pro-inflammatory cytokines and that 200 £g of pMOG i.v. could 

provide effective protection from EAE in mice already exposed to pMOG.  

 

To assess the feasibility of multiple doses of soluble peptide in tolerance induction, 

mice were immunized with pMOG / CpG / IFA (pMOG : CpG = 50 £g : 60 £g) at 

day -35, injected with soluble pMOG i.p on day -8, -6 and -4 and subsequently 

challenged with 100 £g of pMOG / CFA ( with PTX on day 0 and day 2) (Figure 

5.3A). Two doses of soluble pMOG, 200 £g or 50 £g, were also applied in this 

experiment. Compared with the disease course of the control mice, mice receiving 50 

£g of pMOG developed EAE with delayed onset, reduced severity and reduced 

incidence (40 %). In contrast, mice receiving 200 £g of pMOG developed EAE with 

delayed onset, normal severity but enhanced incidence (80 %) (Figure 5.3B). Pooled 

data from two individual experiments show that the 200 £g and 50 £g pMOG-treated 

groups had similar disease course and severity (Figure 5.3C). The incidence was 54 

% in the 200 £g pMOG-treated group and 45 % in the 50 £g pMOG treated group, 

compared to 73 % in PBS injected group (Figure 5.3C). On day 30 post secondary 

immunization, spleen cells from 50 £g and 200 £g pMOG-treated mice proliferated 

in response to pMOG similarly to cells in control group (Figure 5.3D). Assays of 

cytokine production showed no difference between groups, but there was a trend 

which showed that cells from 50 £g pMOG-treated mice produced less IL-10, IFN-γ 

and IL-17, compared with cells from the control mice (Figure 5.4). Meanwhile, there 

was a trend which showed that cells from 200 £g pMOG-treated mice had a reduced 



136 
 

production of IL-4 at the low doses of pMOG, a reduced production of IL-17 and 

similar levels of IL-10 and IFN-γ. These observations suggest that the administration 

of multiple injections with low dose of pMOG i.p. is sufficient to alleviate EAE, 

although no pronounced in vitro phenotype of T cell tolerance was observed at the 

time point been sampled. 

  

Sera from individual mice were collected at day 30 post secondary immunization for 

measurement of anti-pMOG antibody. As Figure 5.5 shows, double immunized mice 

did not produce more anti-pMOG IgG, IgG1 and IgG2a, compared with the primary 

immunized control. The mice receiving soluble pMOG, in spite of showing reduced 

EAE, did not reduce their ability to generate anti-pMOG antibodies. Mice receiving 

50 £g of pMOG i.v. showed a tendency towards of higher titers of pMOG specific 

IgG, however, one mouse failed to produce any antibody, thus, resulting in no 

significant difference to control group (Figure 5.5A). These results suggest that 

peptide-induced tolerance in antigen-experienced mice does not correlate with a 

reduction of anti-pMOG IgG, IgG1 and IgG2a. 

 

5.2.2 Peptide induced tolerance in memory EAE in the Ac1-9/B10.PL 

system 

A similar protocol was tested in the Ac1-9 / B10.PL system. B10.PL mice were 

immunized with Ac1-9 / CpG / IFA (Ac1-9 : CpG = 50 £g : 60 £g), dosed with 

soluble Ac1-94Y or PBS 4 weeks later and subsequently challenged with 100 £g of 

Ac1-9 / CFA plus PTX for EAE induction 7 days after soluble peptide injection 

(Figure 5.6A). Unexpectedly, soluble Ac1-94Y had no protective effect on EAE 

development. The disease incidence in Ac1-94Y treated mice was 100 %, the disease 
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course proceeded rapidly and reached the peak score of 3.5, whereas control group 

had a peak score of 2.5 (Figure 5.6B). In contrast, spleen cells collected from 

Ac1-94Y treated mice at day 27 showed a reduced proliferative response, compared 

with cells from the control mice (Figure 5.6C). Also, cytokine production assays 

showed a trend of reduced production of IFN-γ and IL-17 in cells from Ac1-94Y 

treated mice (Figure 5.7A and B). These conflicting data showed that T cells were 

tolerized by the soluble peptide injection after secondary immunization but mice 

were not protected.  

 

5.2.3 pMOG induced tolerance in pMOG experienced 2D2 T cells 

What does soluble peptide do to the antigen experienced T cells? In an attempt to 

answer this question, Ly5.1+ 2D2 spleen cells were cultured in medium containing 10 

£M of pMOG. One day later, cells were transferred to fresh medium contained 

10U/ml of IL-2 for 2 days. The activated cells were subsequently separated from the 

dead cells by a ficoll gradient as described in Materials and Methods. The live 

activated cells were harvested and transferred into C57BL/6 mice. Mice were i.v. 

injected with 200 £g pMOG or PBS the next day. Spleen cells were collected at 

various time points for quantitative and phenotypic analysis of the transferred 2D2 

cells (Figure 5.8A). The frequency of transferred 2D2 cells contracted continuously 

in pMOG-treated and control mice (Figure 5.8B). However, the frequency was 

consistently 2-3 folds lower in pMOG-treated mice than in control mice, indicating 

that the administration of soluble pMOG either rapidly reduces the number 2D2 T 

cells or prevents an expansion continuing from the in vitro activation.  

 

Completely in reverse to the frequency of live 2D2 cells, the frequency of apoptotic 
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2D2 cells (CD4+Ly5.1+Annexin V+7-AAD-) continuously increased over time from 

0.51% (day 1) to 23.8% (day 7) in pMOG-treated mice (Figure 5.9A). Apoptotic 2D2 

cells in the control group increased in frequency from 0.41% (day 1) to 3.86% (day 

3), and remained constant at 5% Annexin V+ 7-AAD- cells thereafter. From day 2 to 

day 7, the frequency of apoptotic 2D2 cells in pMOG-treated mice was 2-3 folds 

higher than the frequency in control mice (Figure 5.9B). This enhanced frequency of 

apoptotic 2D2 cells in pMOG-treated mice suggests that soluble pMOG triggers cell 

death in pMOG experienced T cells.  

 

5.2.4 Administration of MBP Ac1-9 APL to antigen experienced Tg4 T 

cells 

To estimate the relationship between peptide-MHC binding affinity and peptide 

induced tolerance in Ag-experienced T cells, a similar protocol as used in 5.2.3 was 

tested in the Ac1-9 / Tg4 / B10.PL system using altered peptide ligands (APL). In 

vitro activated CD4+ Ly5.1+ Tg4 cells were transferred to B10.PL mice. Different 

Ac1-9 derived APL were given i.v. one day later. Spleen and LN were analyzed at 

day 2, 3 and 4 (Figure 5.10A). The peptides used were 4Tyr (Ac1-94Y), 4Val 

(Ac1-94V), wild type Ac1-9 (Ac1-9) (ordered by MHC affinity from high to low). In 

the spleens collected from peptide treated mice, the proportion of transferred Tg4 

cells in Ac1-94Y injected mice was greater than in Ac1-94V or Ac1-9 injected mice at 

day 2 and day 3, whereas the proportion in Ac1-94V injected mice was greater than 

the proportion in Ac1-9 injected mice (Figure 5.10B). Comparison of cells exposed 

to the same peptides shows that frequency of Tg4 cells started to decline from day 4 

in Ac1-94Y injected mice, while frequencies of Tg4 cells in Ac1-94V and Ac1-9 

injected mice continuously decreased over time, suggesting that soluble Ac1-94Y 
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induces a transient T cell expansion from day 1 to day 3 (Figure 5.10B). Transferred 

Tg4 cells from Ac1-9 injected mice showed an enhanced proportion of Annexin V+ 

7-AAD- apoptotic cells (30 % and 19 % at day 3 and day 4, respectively), whereas 

Tg4 cell apoptosis in Ac1-94Y and Ac1-94V injected mice remained a comparable 

proportion of 7 to 10 %, comparable with the control mice (Figure 5.10C). 

 

The transferred Tg4 cells from Ac1-94Y injected mice proliferated vigorously to 

Ac1-9 in vitro when sampled at day 2, whereas T cells in Ac1-94V, Ac1-9 and PBS 

injected mice remained only weakly responsive (Figure 5.11A). However, the higher 

responsive state of T cells from Ac1-94Y injected mice declined over time resulting in 

similar proliferative responses between all groups. This suggests that the increased 

proliferation Ac1-94Y group is a result of increased cell number. Collectively, these 

observations suggest that administration of APL with high MHC affinity in soluble 

form induces a transient T cell activation in antigen experienced T cells, whereas 

administration of soluble peptide with low MHC affinity triggers the apoptosis of 

antigen experienced T cells.  

 

To further assess the effect made by soluble Ac1-94Y in this system, mice were given 

in vitro activated Tg4 cells and either 200 £g of Ac1-94Y , 10 £g of Ac1-94Y,or PBS 

i.v. The frequency of Tg4 T cells was assessed in the spleen at days 3, 6 and 9 

(Figure 5.12A). Mice receiving 200 £g or 10 £g of Ac1-94Y had a tendency for a 

reducing frequency of Tg4 T cells over time, whereas the frequency of Tg4 T cells in 

mice receiving 200 £g Ac1-9 or PBS remained on 3% to 6 % at all indicated time 

points (Figure 5.12B). Mice receiving 200 £g of Ac1-94Y also had an enhanced 

frequency of Tg4 cells at day 6, compared with the Ac1-9 and PBS injected mice. 
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The total transferred cell number was calculated by combining Tg4 cell numbers 

from the spleen and LN and the result showed a similar trend as Figure 5.10B in that 

the Tg4 cell number at day 3 and day 6 in the mice receiving Ac1-94Y was greater 

than the original number of cells transferred (Figure 5.12C). The number of 

transferred cells in Ac1-9-treated and control mice was constantly lower than the 

original number transferred (Figure 5.12C). Over time, the number of Tg4 cells in 

mice receiving 200 £g or 10 £g Ac1-94Y was greatly reduced (Figure 5.12B and C). 

At day 9, the number of Tg4 cells in both Ac1-94Y groups reached a lower level than 

the Ac1-9 injected mice, indicating a fast contraction in Ac1-94Y groups. When 

comparing the frequency of Tg4 cells between treatments of high or low dose of 

Ac1-94Y, injection of 200 £g Ac1-94Y resulted in both a faster expansion and a faster 

contraction of Tg4 cells. Thus, the Tg4 cell number was lower in 200 £g Ac1-94Y 

treated mice than in 10 £g Ac1-94Y-treated mice at day 9.  

 

Consistent with Tg4 cell number, the cells from Ac1-94Y-treated mice showed an 

enhanced proliferation at day 3 and a reduced proliferation at day 9, compared to the 

control group (Figure 5.13A). These observations suggest that the administration of 

the high MHC affinity Ac1-94Y peptide can trigger a transient expansion in Ac1-9 

experienced Tg4 cells, but the expanded cells cannot remain active for long and the 

rapid contraction of Tg4 cells number in the spleen may reflect to either cell 

migration, or cell deletion.  

 

5.2.5 The CD4+ CD44high T cell population contains CD25+ Foxp3+ Treg 

cells 

To further estimate the pathogenicity of effector memory T cells in vivo, adoptive 
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transfer of memory T cells was performed. Tg4 mice were immunized with 50 £g of 

Ac1-9 / CFA and CD4+ CD44high (memory T cell) or CD4+ CD44low (naive T cell) 

cells were sorted from these mice 6 weeks later. CD4+ CD44high or CD4+ CD44low 

Tg4 cells were transferred into B10.PL mice one day prior to EAE induction with 

Ac1-9 / CFA plus PTX (Figure 5.14A). The disease course showed that mice 

receiving naive T cells developed EAE with a incidence of 75 %, whereas those 

receiving memory T cells were totally protected from EAE (Figure 5.14B). B10.PL 

mice normally develop disease in response to Ac1-9 immunization without a cell 

transfer, thus adoptive transfer of CD44high Tg4 cells must have protected against 

disease development. Analysis of the Tg4 populations used showed that over 50 % of 

the CD44high population expressed Foxp3 and 89% of the Foxp3+ cells were CD25high 

(Figure 5.15A and B), indicating that a mixed population with CD25+ Foxp3+ Treg 

and CD4+ CD44high T cells were co-transferred initially. To avoid the contamination 

with Treg, CD4+ CD25+ cells were excluded for further experiments.  

 

  5.2.6 Features of pMOG-reactive memory T cells 

Results shown in 5.2.3 indicated that in vitro activated pMOG-reactive T cells 

undergo rapid apoptosis in response to soluble pMOG. However, it is not clear how 

closely these cells resemble memory T cells generated in vivo. In order to generate a 

population of memory T cells in vivo, 2D2 mice were immunized with pMOG / CpG 

/ IFA. Six weeks later, LN and spleen were collected and stained for memory 

markers prior to cell sorting (Figure 5.16A). None of the pMOG immunized 2D2 

mice developed EAE. CD4+ CD25- cells were separated into two populations, 

CD44high CD62Llow and CD44low CD62Lhigh (Figure 5.16B). The population of 

CD44high CD62Llow represented to effector memory T cells, whereas the population 
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of CD44low CD62Lhigh represented to naive T cells. The sorted cells were cultured 

with irradiated APC and pMOG for 72 hours. TEM cells showed a reduced 

proliferation, a trend of reduced IL-2 production and enhanced IFN-γ production, 

compared to the naive T cells (Figure 5.17). As high IFN-γ production is a hallmark 

of memory T cells, these data indicated that the CD4+ CD25- CD44high CD62Llow cells 

were functional effector memory T cells. In a time course study of cytokine 

production (Figure 5.18A), IFN-γ production by memory cells was evident at 12 hr 

and peaked at 48 hr (100 ng/ml), whereas in naive cells IFN-γ production was only 

evident after 48 hr and reached only 20 ng/ml by 72 hr. On the other hand, IL-2 

production in TEM cells was evident at 6 hr, peaked at 24 hr and reduced thereafter 

(Figure 5.18B). At 72 hr, there was no detectable IL-2 in the medium from the TEM 

culture. Naive T cells started to produce IL-2 at 24 hr, peaked at 48 hr and continued 

producing IL-2 until 72 hr (Figure 5.18B). These observations show that memory T 

cells can respond to pMOG and this response is faster than naive T cells, in terms of 

the production of IL-2 and IFN-γ. However, detection of IL-2 production by memory 

T cells is time dependent, as IL-2 is secreted at early time points and is rapidly 

utilized by the population responding.  

 

Memory T cells produced cytokines more rapidly than naive T cells (Figure 5.18), 

but why did memory T cells proliferate less well than naive T cells (Figure 5.17A)? 

To answer this, the expression of TCR molecules in memory and naive T cells was 

assessed. Not all of the TEM cells expressed high levels of TCR Vβ11, with a 

population having a reduced expression of TCR Vβ11 (Figure 5.19A). In addition, 

two populations appeared in the TEM cells based on expression of TCR Vα3.2 with 

only 16.2 % of TEM cells showing high expression. In contrast, the naive T cells 
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appeared homogeneous as a single Vβ11high Vα3.2high population. Overlapping plots 

from naïve and memory T cells showed a reduced expression of TCR Vα3.2 and 

Vβ11 molecules on the TEM cells (Figure 5.19B and C).  

 

Comparing CD4+ CD25- Vα3.2+ and CD4+ CD25- Vα3.2- T cells showed that CD4+ 

CD25- Vα3.2- were less responsive to antigen in vitro (Figure 5.20A), indicating that 

the expression of Vα3.2 is essential for responding to pMOG. The sorting protocol 

was adjusted to collect CD4+ CD25- Vα3.2+ T cells for further experiments. 

Unexpectedly, Vα3.2+ memory T cells proliferated less than Vα3.2+ naive T cells in 

response to pMOG (Figure 5.20B). This is probably a result of the timing. Because 

the Vα3.2+ TEM cells still showed enhanced production of IFN-γ and rapid production 

of IL-2, compared to the naive T cells (Figure 5.20C and D). Presumably the in vitro 

system cannot supply sufficient IL-2 (mostly produced by TEM themselves) for the 

proliferation of Vα3.2+ TEM cells. Consistent with data from cells separated as 

CD44high CD62Llow Vα3.2+/- (Figure 5.18), these data suggest that Vα3.2+ memory 

2D2 cells produce both IFN-γ and IL-2 faster than naive 2D2 T cells.  

 

5.2.7 Adoptive transfer of effector memory 2D2 T cells 

CD4+CD25-Vα3.2+ cells from pMOG-immunized 2D2 mice were sorted into 

CD44high CD62Llow (memory) and CD44lowCD62Lhigh (naive) populations for 

adoptive transfer into C57BL/6 mice. One day later the recipients were injected with 

soluble pMOG (Figure 5.21A). The frequency of 2D2 cells from both memory and 

naive T cell transferred mice expanded by day 3 and contracted by day 7. However, 

no significant difference was found on days 1-3, whereas a reduced frequency of 2D2 

cells was observed in mice transferred with TEM cells (Figure 5.21B). Proliferation 
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assays showed that cells from both groups responded to pMOG at day 1, whereas 

cells from the mice transferred with TEM cells were less responsive to pMOG than 

cells from the naive T cell group (Figure 5.22). However, cells from memory T cell 

transferred mice were unresponsive to pMOG in vitro at day 2 and thereafter, while 

cells from naive T cells transferred mice proliferated greater at day 2 but remained 

unresponsive thereafter. These results suggest that antigen experienced Vα3.2+ TEM 

cells can be activated transiently by soluble peptide administration in vivo. However, 

naive T cells were better at responding to pMOG than TEM cells.  

 

Further memory or naive 2D2 T cells were transferred one day before injection of 

pMOG / LPS (pMOG : LPS = 100 £g : 30 £g) (Figure 5.23A). From day 3 to day 7 

after priming, the mice receiving memory T cells showed a trend of reduced 

frequency of transferred 2D2 cells, compared to those receiving naive T cells (Figure 

5.23B), suggesting that effector memory T cells are less capable of expanding than 

naive T cells after antigen priming in vivo. As memory T cells are more capable of 

entering non-lymphoid tissues upon re-stimulation, it is possible that the majority of 

TEM cells might not remain in the spleen. Thus, the frequency of transferred 2D2 

cells in spleen might not truly reflect the real frequency in the mouse. This point 

needs to be further assessed by checking the existence of 2D2 cells in non-lymphoid 

tissues. 

 

5.3 Discussion 

This chapter aimed to induce tolerance in antigen-experienced mice and to 

characterize myelin reactive memory T cells. With a double immunization system, 

administration of pMOG in mice can induce tolerance in pMOG-experienced mice. A 
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single dose with a high concentration of soluble pMOG i.v. gave the best protective 

effect, whereas multiple doses of a low concentration of pMOG i.p. also alleviated 

EAE (Figure 5.1 and 5.3). In addition, cells exposed in vivo to a high concentration 

of pMOG i.v. or multiple doses of a low concentration of pMOG i.p. had a trend of 

reduced production of IFN-γ and IL-17, suggesting that effector Th1 / Th17 cells in 

the spleen had been tolerized. Is the mechanism of tolerance in antigen-experienced 

mice or in a memory setting the same as a naive setting? Administration of pMOG to 

mice hosting activated 2D2 T cells showed an enhanced frequency of apoptosis of 

the 2D2 cells (Figure 5.8 and 5.9), consistent with antigen-induced apoptosis seen in 

other adoptive transfer models with effector or activated T cells (Klugewitz et al., 

2002; Tischner et al., 2007). This suggests that if there were pMOG reactive-effector 

2D2 T cells remaining in pMOG-experienced mice 28 days after primary 

immunization, cell deletion of those effector T cells would occur immediately after 

soluble pMOG administration.  

 

In the adoptive transfer model, few transgenic cells can survive 4 weeks after 

primary immunization (Figure 4.1), indicating that most of the effector T cells have 

contracted and it is the memory T cells that remain in the antigen-experienced mice. 

The Abbas lab has reported that memory CD4+ T cells are resistant to tolerance 

induction. In the Abbas model, in vitro activated DO11.10 T cells were transferred 

into recipient mice and rested for at least 6 weeks, generating a population of resting 

memory T cells. Administration of soluble OVA to mice containing resting memory 

DO11.10 T cells did not inhibit their ability to respond to a subsequent immunization 

(London et al., 2000). However, soluble pMOG administration to the memory EAE 

model presented within this thesis clearly protects pMOG-experienced mice from 
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EAE. Despite the belief that memory T cells have lower co-stimulatory requirements 

and can respond to antigen faster than naive T cells (Rogers et al., 2000; London et 

al., 2000; Merica et al., 2000; Dienz et al., 2007), data in this thesis show that 

memory T cells may be susceptible to peptide induced-tolerance, if we study a longer 

period after immunization (the London report only analyzed 3 days after 

immunization and did not use an disease model). Presumably, the 

hyperresponsiveness of memory T cells using a  resting-memory T cell transfer 

model in London¡s report is a transitional state and is a prelude to further cell 

deletion or unresponsiveness. In the long run, memory T cells could possible be 

induced to deletion or unresponsiveness. 

 

In the Ac1-9 / Tg4 / B10.PL system, less susceptibility to EAE induction has been 

evident in mice pre-treated with the soluble, high affinity analogues Ac1-94A and 

Ac1-94Y before immunization, whereas mice given the low affinity peptide (wild type 

peptide Ac1-9) are only moderately protected (Liu and Wraith, 1995; Anderton et al., 

2001). This difference in tolerance induction may be related to the ability of the high 

affinity analogue Ac1-94Y to persist for up to 12 days in vivo (Konkel and Anderton, 

unpublished data) and therefore to provide a high density of pMHC complexes 

compared with Ac1-9. The different tolerogenic effect among the different APL 

analogues suggests that TCR avidity against pMHC is important for tolerance 

induction (Anderton et al., 1998, McCue et al., 2004). In the model of memory EAE 

with double immunization, administration of soluble Ac1-94Y to Ac1-9 / CpG / IFA 

primed mice did not protect the Ac1-9-experienced mice from EAE and resulted in a 

severe disease course upon subsequent immunization (Figure 5.6). This could be a 

result of re-activation of Tg4 cells. It indicated that an administration of a strong 
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agonist (like Ac1-94Y) may re-activate memory T cells, and these re-activated cells 

may be harmful (inducing EAE). Reciprocally, the ability of proliferate (assessed by 

spleen cells collected on day 27) was reduced, compared with the PBS treated group. 

This point suggested that the peptide induced re-activation is transient (at least in the 

spleen cells). It has to be emphasized that the cells that remained in the spleen are not 

the cells that cause disease, so that it is would be necessary to check the cells in the 

CNS in the future experiments. 

 

Unlike the pMOG system, transferred pre-activated Tg4 cells showed transient 

expansion within 6 days after Ac1-94Y treatment, with a subsequent contraction. In 

contrast, treatment with wild type Ac1-9 increased the frequency of apoptotic cells 

immediately (Figure 5.10-5.13). This suggests that soluble peptide with high binding 

affinity for MHC can induce transient T cell activation, whereas soluble peptide with 

low MHC affinity can trigger apoptosis in antigen-experienced T cells directly. 

Ac1-94Y treatment to mice receiving activated Tg4 cells did not protect the mice 

from EAE (Figure 5.6). It is possible that a significant number of effector Ac1-9 

reactive-cells still remain in mice at day 7 after Ac1-94Y injection, the time of 

secondary immunization, so that the administration of soluble Ac1-94Y fails to induce 

tolerance. However, mice receiving activated Tg4 cells were hyporesponsive after 

Ac1-94Y treatment when spleen cells were harvested on day 27, after secondary 

immunization (Figure 5.7), suggesting that the T cell activation may be a prelude of 

unresponsiveness in this system. Notably, the frequency of Tg4 T cells was 

significantly lower in Ac1-94Y treated mice than in Ac1-9 treated mice on day 9 after 

soluble peptide injection, suggesting a better deletion effect of Ac1-94Y compared to 

Ac1-9. Of course it is also possible that Tg4 cells in the Ac1-94Y treated mice are 
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better able to migrate out from the spleen than Tg4 cells in the Ac1-9 treated mice. 

Future experiments should address these questions by collecting as many tissues 

(including lymphoid and non-lymphoid tissues) as possible and delaying the 

secondary immunization to a suitable time-point after soluble Ac1-94Y 

administration.  

 

Naive (CD4+ CD44low CD62Lhigh) and TEM (CD4+ CD44high CD62Llow) populations 

were isolated from 2D2 mice that had been given pMOG / CpG / IFA 6 weeks before. 

As the CD4+ CD44high CD62Llow population contained CD25+ Foxp3+ Treg cells that 

may inhibit T cell responses (Figure 5.14 and 5.15), CD25+ cells were excluded 

during cell sorting. At first, it seemed that TEM cells had a reduced proliferation, 

enhanced IFN-γ and transient IL-2 production compared to naive cells (Figure 5.17 

and 5.18). However, the TEM cells showed two heterogenous populations, TCR 

Vα3.2+ Vβ11high and Vα3.2- Vβ11low (Figure 5.19). As the 2D2 mice are not on a 

RAG-deficient background, it is possible that CD4+ T cells carrying other TCRα 

subunits contaminate the T cell repertoire (Rogers et al., 2000). Heterogeneous T 

cells have been reported in other adoptive transfer models in which only 65 % of 

DO11.10 T cells that encounter OVA in vivo divide, whereas adoptive transfer with 

DO11.10 RAG-2-/- T cells exhibit a responder frequency of 95-98 %, suggesting that 

the proliferative potential may depend on complete allelic exclusion at the TCRα 

locus (Gudmundsdottir et al., 1999). Moreover, TCR Vβ allelic exclusion has been 

reported to be incomplete, since a significant proportion of peripheral T cells express 

dual Vβ in both TCR transgenic and normal mice (Balomenos et al., 1995). Allelic 

exclusion at the TCRα locus is relatively inefficient compared with allelic exclusion 

at the TCRβ locus (Borgulya et al., 1992). Thus, a proportion of mature transgenic T 
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cells can express an endogenously rearranged TCRα chain (different from the 

transgenic TCRα chain) (Padovan et al., 1993).  

 

To improve the analysis of MOG-reactive cells, CD4+ CD25- Vα3.2+ cells from 

immunized 2D2 mice were isolated and separated into TEM and naive T cells. Only 

Vα3.2+ TEM responded to pMOG, Vα3.2- TEM cells did not respond (Figure 5.10). 

Comparing Vα3.2+ TEM and naive T cells, TEM cells started to produce IFN-γ and 

IL-2 earlier than naive T cells (Figure 5.20). Notably, IL-2 production in TEM cells 

was transient and ceased after 72 hours, matching the observations on memory T 

cells in the PCC / AND system (Rogers et al., 2000). Sojka and colleagues have 

shown a rapid secretion of IL-2 in vivo after stimulation of naive T cells for 1-2 hours 

and as early as 30 min in memory T cells. Maximal secretion was achieved within 

1-2 h for memory cells or 6-8 h for naive T cells (Sojka et al., 2004), confirming the 

idea of rapidly responding memory T cells (Macallan et al., 2004).  

 

Unlike the previous reports, TEM appeared to proliferate less than naive T cells ex 

vivo in this chapter. Reduced proliferation and reduced expansion of TEM cells were 

also found in TEM within host mice receiving soluble pMOG or pMOG / LPS, 

compared with naive T cell transferred groups (Figure 5.21-5.23). One possibility is 

that the early response of memory T cells does not persist. The Jenkins Lab has 

reported a DO11.10 adoptive transfer model with OVA / CFA as primary 

immunization and OVA / IFA as secondary immunization. They found the cell 

expansion and IL-2 production was earlier in DO11.10 T cells from OVA- 

experienced mice (memory cells) and the expansion was later but greater in cells 

from primary immunized mice (naive cells) (Merica et al., 2000). A recent study 
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suggested that CD4 memory T cells do not divide as efficiently as primary 

responding cells at later time points (after day 5) and fewer of the re-activated 

memory cells made IL-2 than primary responding cells (but re-activated memory 

CD4 T cells can still make IFN-γ) (Macleod et al., 2008). In other words, the timing 

of sampling is important. Memory T cells respond to stimulation faster but naive T 

cells are able to maintain their activated state for longer. The other possibility is that 

Vα3.2+ TEM cells might be more sensitive to AICD in our system, therefore Vα3.2+ 

TEM cells seem less responsive to antigen than naïve Vα3.2+ T cells. Fas deficiency 

prompts the accumulation of CD8 memory phenotype T cells in mice, suggesting Fas 

may play a more prominent role in apoptosis of memory T cells (Giese and Davidson; 

1992; Aranami et al., 2004). Recently it was reported that human CD4+ memory T 

cells have more efficient assembly and activation of proximal Fas signaling 

components (including Caspase 8 and FADD), suggesting that memory T cells are 

intrinsically more sensitive to Fas-induced apoptosis (Cruz et al., 2008). Therefore, 

memory T cells may be more sensitive to signals that trigger cytokine production and 

probably also apoptosis, compared with naive T cells. 

 

Taken together, this chapter shows that EAE can be ameliorated in pMOG 

experienced mice by a single high dose of tolerogenic pMOG injection through the 

i.v. route and by multiple low doses of tolerogenic pMOG injection through the i.p. 

route. Administration of soluble pMOG to activated 2D2 T cells in host mice induces 

apoptosis in the 2D2 T cells, whereas soluble Ac1-94Y injection induces a transient 

expansion of activated Tg4 cells in vivo and a later cell death. TEM cells from pMOG 

immunized 2D2 mice expressed less transgenic TCRαβ. TCR Vα3.2+ TEM cells have 

faster kinetics of responses to pMOG than TCR Vα3.2+ naive T cells, suggesting that 
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transgenic memory T cells may respond faster, but also die faster than naive T cells 

after antigen stimulation. 
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Figure 5.1 Peptide induced tolerance in memory EAE through the i.v. injection of a 
single dose of soluble pMOG. A, mice were immunized with pMOG/CpG/IFA (pMOG : 
CpG = 50 £g : 60 £g) on day -35, injected with soluble pMOG on day -7 and 
subsequently immunized with 100 £g of pMOG/CFA on day 0 (with PTX on day 0 and 
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day 2). Mice received either 200 £g of pMOG, 50 £g of pMOG or PBS on day -7. B, 
disease severity was scored daily post secondary immunization (PBS versus 50 £g 
pMOG, p < 0.01; PBS versus 200 £g pMOG, p < 0.0001 by Mann-Whitney U test). Data 
are from one of two repeated experiments and show mean ¡ SEM (5 -7 mice in each 
group, SEMs reflect samples from different mice). C, data are pooled by two individual 
experiments (PBS versus 50 £g pMOG, p < 0.05; PBS versus 200 £g pMOG, p < 0.05 by 
Mann-Whitney U test. 11-12 mice in each group). D, spleen cells were harvested on day 
30 post secondary immunization and cultured for 72 hours with a pulsing of thymidine 
for the last 18 hours. Data are from one of two repeated experiments and show mean ¡ 
SEM (5-7 mice in each group) 
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Figure 5.2 Cytokine productions after peptide induced tolerance through the i.v. 

injection of soluble pMOG. Mice were immunized as shown in figure 5.1A. Spleen cells 
were harvested on day 30 post secondary immunization and cultured for 72 hours for 
cytokine assay by ELISA. Plots show the amount of IL-4 (A), IL-10 (B), IFN-γ (C) and 
IL-17 (D) against various doses of pMOG. Data are from one experiment and represent mean 
¡ SEM (5 -7 mice in each group).  
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Figure 5.3 Peptide induced tolerance in memory EAE through the i.p. injection of 
multiple doses of soluble pMOG. A, mice were immunized with pMOG/CpG/IFA 
(pMOG : CpG = 50 £g : 60 £g) on day -35, injected with 3 shots of soluble pMOG on 
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days -8, -6 and -4 and subsequently challenged with 100 £g of pMOG/CFA on day 0 
(with PTX on day 0 and day 2). Mice received either 200 £g of pMOG, 50 £g doses of 
pMOG or PBS on days -8, -6 and -4. B, disease severity was scored daily post secondary 
immunization (PBS versus 50 £g pMOG, p < 0.001; PBS versus 200 £g pMOG, p < 0.01 
by Mann-Whitney U test). Data are from one of two repeated experiments and show 
mean ¡ SEM (5 -7 mice in each group). C, data are pooled by two individual experiments 
(PBS versus 50 £g pMOG, p < 0.05; PBS versus 200 £g pMOG, p < 0.05 by 
Mann-Whitney U test. 11-12 mice in each group). D, spleen cells were harvested on day 
30 post secondary immunization and cultured for 72 hours with a pulsing of thymidine 
for the last 18 hours. Data are from one of two repeated experiments and show mean ¡ 
SEM (5-7 mice in each group) 
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Figure 5.4 Cytokine productions after peptide induced tolerance through the i.p. 

injection of soluble pMOG. Mice were immunized as shown in figure 5.3A. Spleen cells 
were harvested on day 30 post secondary immunization and cultured for 72 hours for 
cytokine assay by ELISA. Plots show the amount of IL-4 (A), IL-10 (B), IFN-γ (C) and 
IL-17 (D) against various doses of pMOG. Data are from one experiment and represent mean 
¡ SEM (5 -7 mice in each group). 
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Figure 5.5 Peptide induced tolerance is independent of the production of 
anti-pMOG antibodies. Mice were immunized as shown in figures 5.1A and 5.3A. Sera 
were collected on day 30 and diluted by 100X post secondary immunization for detection 
of anti-pMOG IgG (A), anti-pMOG IgG1 (B), anti-pMOG IgG2a (C). Plots represent 
optical density obtained from ELISA. Mean values of O.D are shown in each group (5-7 
mice in each group) Data are from one experiment. 
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Figure 5.6 Administration of soluble Ac1-94Y does not induce tolerance in memory 
EAE. A, mice were immunized with 50 £g Ac1-9/CpG/IFA (Ac1-9 : CpG = 50 £g : 60 
£g) on day -35, i.v. injected with 200 £g of soluble Ac1-94Y or PBS on day -7 and 
subsequently immunized with 100 £g of Ac1-9/CFA on day 0 (with PTX on day 0 and 
day 2). B, disease severity was scored daily post secondary immunization. Asterisks 
represent significant difference between Ac1-94Y treated and PBS groups (p < 0.05 by 
Mann-Whitney U test). C, spleen cells were harvested on day 27 post secondary 
immunization and cultured for 72 hours with a pulsing of thymidine for the last 18 hours. 
Asterisks represent significant difference between Ac1-94Y treated and PBS groups (p < 
0.05 by Unpaired T-test) Data are from one experiment and show mean ¡ SEM (6 -10 
mice in each group, SEMs reflect samples from different mice). 
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Figure 5.7 Cytokine productions after the administration of soluble Ac1-94Y in 
memory EAE. The immunization protocol is shown in figure 5.6A. Cells were harvested 
from the spleen on day 27 post secondary immunization and cultured for 72 hours for 
cytokine assay by ELISA. Plots show the amount of IFN-γ (A) and IL-17 (B) against various 
doses of Ac1-9 peptide. Data represent the mean ¡ SEM (Data are from one experiment, 
6-10 mice in each group). 
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Figure 5.8 Administration of pMOG in activated 2D2 T cells. Cells from Ly5.1+ 
2D2 mice were cultured in medium with 10 £g/ml of pMOG for 24 h and rested in the 
pMOG-free medium with 10U/ml of IL-2 for 2 days. Live activated cells were 
harvested by Ficoll separation as described in Materials and Methods. A, C57BL/6 
mice received 2 x 106 activated cells on day -1 and injected with 200 £g of pMOG or 
PBS through i.v. route on day 0. B, at the day indicated, spleen cells were harvested and 
stained for CD4, Ly5.1, 7-AAD and Annexin V. Cells were gated on CD4+Ly5.1+ and 
plotted by 7-AAD / Annexin V. Annexin V single positive cells were showed as 
apoptotic cells (the frequency of apoptotic cells were showed in figure 5.9) C, The 
frequency of CD4+Ly5.1+ (2D2) T cells as a percentage of spleen CD4+ T cells. Data 
are from one of three repeated experiments (2 mice in each group). 
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Figure 5.9 Administration of soluble pMOG induces apoptosis in activated 2D2 T 
cells. Mice were treated and spleen cells were gated as shown in figure 5.8. A, Cells 
were stained for Annexin V and 7-AAD to represent dead or apoptotic 2D2 cells. B, 
The percentage of Annexin V+7-AAD- cells as a percentage of CD4+Ly5.1+ T cells on 
the day indicated. Data are from one of three repeated experiments (2 mice in each 
group). 
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Figure 5.10 Administration of Ac1-94Y expands activated Tg4 T cells transiently. 
Cells from Tg4 mice were cultured in medium with 10 £g/ml of Ac1-9 and rested in the 
Ac1-9 free medium with 10U/ml of IL-2 for 2 days. Live activated cells were harvested 
by Ficoll separation as described in Materials and Methods. A, B10/PL mice received 2 x 
106 activated cells on day -1 and were injected with 200 £g of Ac1-94Y, Ac1-94V, Ac1-9 
or PBS on day 0. B, plot shows CD4+ Ly5.1+ Tg4 cells as a percentage of CD4+ T cells on 
the day the indicated. C, Annexin V+ 7-AAD- cells as a percentage of CD4+Ly5.1+ Tg4 T 
cells on the day indicated. Data are from one experiment (2 mice in each group).  
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Figure 5.11 Administration of soluble, high affinity peptide induces T cell proliferation. 
Mice were treated as shown in figure 5.10A. A, spleen cells were harvested on day 2, 3, 4 
and cultured for 72 hours with a pulsing of thymidine for the last 18 hours. Asterisks 
represent significant difference between Ac1-94Y treated group and other groups (p < 0.05 by 
Unpaired T-test). Asterisks represent significant difference between 2 groups (p < 0.05 by 
Unpaired T-test). Data are from one experiments and show mean ¡ SEM (2 mice in each 
group). 
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Figure 5.12 Soluble Ac1-94Y treatment induces transient expansion of activated Tg4 
T cells. Cells from Tg4 mice were activated as described in figure 5.10. A, B10.PL mice 
received 2 x 106 activated Tg4 cells on day -1 and were injected with either 200 £g of 
Ac1-94Y, 10 £g of Ac1-94Y ,200 £g of Ac1-9, or PBS on day 0. Spleen cells were 
harvested and stained for CD4 and Ly5.1. B, CD4+ Ly5.1+ (Tg4) cells as a percentage of 
total CD4+ T cells on the day indicated. C, plot represents the counting number of Tg4 
cells isolated from spleen and LN. Dashed line represents 2 x 106 of Tg4 cells, the cell 
number for adoptive transfer. Data are from one of two repeated experiments (2 mice in 
each group). 
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Figure 5.13 Soluble Ac1-94Y treatment can induce a transient reactivation of 
antigen-experienced Tg4 T cells. Mice were treated as shown in figure 5.12A. A, spleen 
cells were harvested on day 3, 6 and 9 and cultured with Ac1-9 for 72 hours with a 
pulsing of thymidine for the last 18 hours. Asterisks represent a significant difference 
between 200 £g Ac1-94Y treated group and other groups (p < 0.05 by Unpaired T-test). 
Hashes represent a significant difference between 10 £g Ac1-94Y treated group and 200 
£g Ac1-9 group (p < 0.05 by Unpaired T-test). Data are from one of two repeated 
experiments and show the mean ¡ SEM, 2 mice in each group).  
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Figure 5.14 Transfer of memory and naive Tg4 cells before EAE induction. Tg4 mice 
were immunized with 50 £g of Ac1-9 in CpG/IFA. Six weeks later, cells were collected from 
spleen and LN and stained for CD4, Ly5.1, CD44 and CD62L. A, CD4+ CD44high CD62Llow 
and CD4+CD44lowCD62Lhigh cells were sorted by flow cytometry and 3 x 105 cells were 
transferred into B10.PL mice on day -1. Mice were induced to develop EAE with 100 £g of 
Ac1-9/CFA on day 0 (with PTX on day 0 and day 2). B, daily EAE score after disease 
induction (p < 0.0001 by Mann-Whitney U test). Data show mean ¡ SEM (Data are from one 
of two repeated experiments, 4 mice in each group).  
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Figure 5.15 CD4+CD44high cells express high levels of Foxp3. Tg4 mice were 

immunized with 50 £g of Ac1-9 in CpG/IFA. T cells from immunized Tg4 mice were 
harvested from spleen and LN 6 weeks post immunization and stained for CD4, CD25 and 
Foxp3. Plots show the expression of Foxp3 in CD4+CD44high and CD44low cells (A) and 
CD4+CD25+ and CD25- cells (B). 
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Figure 5.16 Memory and naive T cells from pMOG/CpG/IFA immunized 2D2 mice. A, 
mice were immunized with 50 £g of pMOG in CpG/IFA. Cells were harvested from draining 
lymph node and spleen 6 weeks after immunization. B, cells from immunized mice were 
stained for CD4, CD25, CD44 and CD62L for cell sorting. Two populations, 
CD44highCD62Llow (memory T cell) and CD44low CD62Lhigh (naive T cell) were isolated.  
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Figure 5.17 Proliferation and cytokine productions of memory and naive T cells. 

Mice were immunized as shown in figure 5.16. Cells were isolated based on their CD44 and 
CD62L expression and cultured with various doses of pMOG. 5 x 104 sorted cells were 
cultured with 5 x 105 of irradiated APC (72 hours with a pulsing of thymidine for the last 18 
hours). A, Proliferation assay. Asterisks represent significant difference between 2 groups (p 
< 0.05 by Unpaired T-test). B and C, Cytokine assay by ELISA. Plots show the amount of 
IFN-γ (B) and IL-2 (C) at 72 hours against various doses of pMOG. The population of 
CD44highCD62Llow represents memory T cells and the population of CD44low CD62Lhigh cells 
represents naive T cells. Data are from one of two repeated experiments.  
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Figure 5.18 Time course of cytokine production in memory and naive T cells. Memory 
and naive T cells were separated as shown in figure 5.16. Cells were cultured in medium 
with 10 £g/ml of pMOG (5 x 104 of sorted cells with 5 x 105 of irradiated APC) for ELISA. 
Plots show the amount of IFN-γ (A) and IL-2 (B) at the time indicated. The population of 
CD44highCD62Llow represents memory T cells and the population of CD44low CD62Lhigh cells 
represents naive T cells. Data are from one experiment.
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Figure 5.19 Expression of TCR Vα3.1 and Vβ11 in the memory and naïve 2D2 T cells. 
Cells were obtained from the immunized 2D2 mice as shown in figure 5.16 and stained for 
CD4, CD25, CD44, CD62L, TCR Vα3.2 and TCR Vβ11. A, CD4+CD25- cells were 
separated into 2 populations as figure 5.16B (CD44highCD62Llow and CD44low CD62Lhigh). 
Expression of TCR Vα3.2 and TCR Vβ11 is shown for these populations. Open histograms 
show unstained baseline, shadowed histograms show stained samples. B and C, Plots 
represent the expression of TCR Vα3.2 (B) and TCR Vβ11 (C) with overlapping graphs of 
CD44highCD62Llow (shadowed histograms) and CD44low CD62Lhigh (open histograms). 
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Figure 5.20 Comparison of effector memory and naive T cells. 2D2 mice were 
immunized as in figure 5.16A. CD4+CD25- CD44high CD62Llowcells were collected and 
sorted into TCRVα3.2+ and TCRVα3.2- populations. 5 x 104 sorted cells were cultured with 5 
x 105 irradiated APC for 72 hours with a pulsing of thymidine for the last 18 hours (A). B-D, 
memory and naïve T cells with Vα3.2+ were cultured in medium with 10 £g/ml of pMOG for 
72 hours (5 x 104 sorted cells with 5 x 105 irradiated APC with a pulsing of thymidine for the 
last 18 hours) (B). C and D, after culture for the time indicated, supernatants were harvested 
and analyzed for cytokines by ELISA. Plots show the amount of IFN-γ (C) and IL-2 (C) at 
the time indicated. The population of CD44highCD62Llow represents memory T cells and the 
population of CD44low CD62Lhigh cells represents naive T cells. Asterisks represent 
significant difference between 2 groups (p < 0.05 by Unpaired T-test). Data are from one of 
two repeated experiments. 
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Figure 5.21 Administration of soluble pMOG triggers a transient expansion in both 
memory and naive T cells transferred groups. Memory (CD4+CD25-Vα3.2+ 
CD44highCD62Llow) and naive (CD4+CD25-Vα3.2+ CD44lowCD62Lhigh) T cells were 
sorted from immunized 2D2 mice as shown in figure 5.16. A, Mice received either 
memory or naive T cells on day -1 and were injected with 200 £g of pMOG i.v. on day 0. 
B, spleen cells were harvested and stained for CD4 and Thy1.1. CD4+ Thy1.1+ (2D2) 
cells are shown as a percentage of CD4+ T cells at the day indicated. Data are from one 
experiment (2 mice in each group).  
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Figure 5.22 Administration of soluble pMOG can expand both memory and naive T 
cells transiently. The transfer and immunization protocol is shown in figure 5.21A. 
Spleen cells were harvested from indicated host mice and cultured for 72 hours with a 
pulsing of thymidine for the last 18 hours. Asterisks represent significant difference 
between 2 groups (p < 0.05 by Unpaired T-test). Data show mean ¡ SEM (Data are from 
one experiment, 2 mice in each group).  
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Figure 5.23 Naive 2D2 cells are more able to expand than memory 2D2 cells after 
pMOG /LPS priming in vivo. Memory (CD4+CD25-Vα3.2+ CD44highCD62Llow) and 
naive (CD4+CD25-Vα3.2+ CD44lowCD62Lhigh) T cells were sorted from immunized 2D2 
mice as in figure 5.16. A, Mice received either memory or naive T cells on day -1 and 
were injected with 200 £g of pMOG and 30 £g of LPS i.v. on day 0. B, cells were 
harvested from spleen and stained for CD4 and Thy1.1. Plot shows CD4+Thy1.1+ (2D2) 
cells as a percentage of CD4+ T cells on the day indicated. Data are from one experiment 
(2 mice in each group).  
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Chapter 6. Discussion 

 

The population of T cells specific to given antigenic peptide is undetectable in 

unimmunized individual (less than 1 / 105) and small in an immunized individual 

(around 1/ 104) (Tse et al., 1980). The system with adoptive transfer of transgenic 

cells provides a traceable in vivo model in which the pMHC-specific population is 

large enough to be detected by flow cytometry (Pape et al., 1997). However, there 

are some important issues when attempting to obtain memory T cells by immunizing 

2D2 mice with pMOG / CFA and subsequently collecting these memory T cells for 

use in an adoptive transfer model. First, the frequency of memory T cells obtained 

from 2D2 mice primed with pMOG is still low (5-10 %), probably as a consequence 

of AICD, or migration of memory T cell (to the non-lymphoid tissues). Second, the 

non-transgenic population with endogenous TCR Vα (non-TCR Vα) is constantly 

present, recombinant activating gene (RAG) is functional in these mice. It seemed 

that the heterogeous TCR were only found in memory 2D2 T cells (most of naive T 

cells were transgenic cells), whereas only 16.2 % of TEM are Vα3.2+ Vβ11+ 

transgenic cells in pMOG immunized 2D2 mice (Figure 6.19). In the OVA / DO11.10 

system, only 6 % of memory T cells carried transgenic TCR (TCR Vα2+ Vβ8+) in 

non-immunized DO11.10 mice. In addition, non-immunized DO11.10 x RAG-/- mice 

lost 50 % of CD44high memory T cells and had a 2-fold enhancement of naive T cells 

compared to DO11.10 RAG+/+ mice (Lee et al., 1996). As memory T cells were 

absent in mice raised in a germ-free environment, possibly those memory T cells 

bearing non-transgenic TCR Vα were derived from the stimulation of environmental 

antigen (Pape et al., 1997; Turner et al., 2004). Third, it has been reported that about 

30% of polyclonal memory CD4+ T cells express CD62L (Kassiotis and Stockinger, 
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2004). When collecting the memory CD4+ T cells, excluding the CD62Lhigh 

population may exclude some of memory cells. Therefore, the criteria for sorting the 

memory population should be adjusted. In future experiments, IL-7Rα, CCR7 and 

CCR5 would be considered as substitutes for CD62L for identifying the memory T 

cells. 

 

The immune response against infection depends on antigen-specific memory T cells 

that survive for many years following initial exposure to antigen (Jameson, 2002). In 

adoptive transfer models, the number of transgenic cells contracts after antigen 

triggered expansion and it is hard to sustain a significant frequency for long (i.e. over 

one month) in the host. A Jenkins report showed that transgenic CD4+ T cells quickly 

declined at high transferred frequency but persisted at low transferred frequency after 

adoptive transfer, indicating that the inter-clonal competition among diverse T cells 

can help T cell survival (Hataye et al., 2006). Recently CD8 and NK cells have been 

found to contribute to the loss of transgenic CD4+ T cells after adoptive transfer, as 

cell deletion of either CD8 or NK cells can rescue transgenic DO11.10 cells in the 

wild type host (Duffy et al., 2008). Since the 2D2 cells are difficult to detect one 

month after primary immunization, the memory EAE model in this thesis was 

eventually applied in non-transfer systems. Recently some labs have constructed 

expression cassettes encoding the extracellular domains of murine I-Ab α- and 

β-chains and pMOG peptide. The MHC II-peptide molecules were linked to 

streptavidin to make the MHC II tetramer, helping to track MOG-reactive T cells in 

non-transferred system (Korn et al., 2007; Sabatin et al., 2008). However, neither of 

these tetramers binds to 2D2 cells. As T cells derived from pMOG immunized B6 

mice have a preference of TCR Vβ8.2 (about 50% of T cell hybridomas are TCR 



179 
 

Vβ8.2+) ( A. Carillo-Vico and S. Anderton, personal communication), the original 

2D2 clone might represent a minor population in the pool of pMOG reactive T cells. 

 

In this project, administration of tolerogenic peptide can inhibit EAE under naive and 

memory settings. However, cells harvested at the time of 4 weeks after EAE 

induction sometimes showed no significant difference in proliferation, IFN-γ or 

IL-17 production (figure 3.1, 5.2 and 5.4). Although primary immunization can 

generate Th1 and Th17 cells in mice (figure 4.16), it seems to have a weak link 

between IFN-γ / IL-17 and EAE score. Presumably, the timing of sampling (around 

day 28 in some experiments) and the organ sampled (mostly spleen) prevent a 

complete picture of the physical disease course. Thus, earlier harvesting (day 10-14 

after EAE induction), non-lymphoid tissues, the CNS and assays for cytokine 

producing cells should be incorporated into future experiments. In addition, more 

evidence should be provided from different techniques. For example, apoptosis can 

be tested by TUNEL staining, staining for caspase and for Bcl-family proteins.  

 

Both Th1 and Th17 cells can contribute to EAE (O¡Connor et al., 2008; McGeachy 

et al., 2007). A recent study showed that IL-12 polarized MBP-reactive T cells can 

up-regulate P-selectin glycoprotein ligand-1 (PSGL-1, CD162) which is co-localized 

with P-selectin (CD62P) on CNS blood vessels. Anti-PSGL-1 treatment significantly 

reduced passive EAE in mice, suggesting that IL-12-driven PSGL-1 expression can 

facilitate the infiltration of myelin-reactive T cells (Deshpande et al., 2006). In fact, 

the Segal lab has found that adoptive transfer of IL-12-modulated MBP-reactive T 

cells triggered a macrophage-rich infiltration in the CNS and predominantly 

up-regulated chemokine (C-X-C motif) ligand 9 (CXCL9), CXCL10, CXCL11 and 
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nitric oxide synthase 2 (NOS2, a product of activated macrophages and microglia) in 

the CNS and induced EAE. In contrast, adoptive transfer of IL-23-modulated 

MBP-reactive T cells triggered a dominant infiltration of neutrophils and 

up-regulated CXCL1, CXCL2 and granulocyte-colony- stimulating factor (G-CSF, 

activation and growth factor for neutrophils) in the CNS, indicating that IL-12- and 

IL-23 modulated cells transfer a passive encephalomyelitis by using distinct 

pro-inflammatory pathways involving distinct chemokine profiles in the CNS 

(Kroenke et al., 2008). We have seen T cells deletion and unresponsive after the 

induction peptide-induced tolerance, thus it is of interest that whether treatment of 

tolerogenic peptide can affect chemokines / receptors and CNS infiltration. 

 

Memory CD4 T cells promote more robust immunity than do naive cells because 

they respond to antigen more rapidly and promote a more vigorous effector response 

as compared with naive cells. As memory T cells can survive in an individual for 

long periods (Reinhardt et al., 2001), finding that the systemic administration of 

peptide in soluble form can induce tolerance in memory T cell is of importance, and 

relevant to translational application. Recently we have used MOG35-50 APL 

(p30-5037A) to induce tolerance in pMOG-experienced mice. The injection of 

MOG35-50 APL either before or after secondary immunization can inhibit EAE 

(Leech et al., 2007). In this project, wild type pMOG was also proved to have 

protective effects in antigen-experienced mice, suggesting a feasible therapeutic 

strategy for MS.  

 

When considering the translation of peptide therapy from EAE to MS, three lessons 

about memory T cell tolerance have arisen from this thesis. The first is that peptide 
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avidity matters. In the Ac1-9 system, low affinity peptide seemed to induce 

immediate loss of activated T cells (probably by apoptosis), whereas the high affinity 

peptide could induce a transient activation, before their subsequent loss (Figure 5.6). 

The Sadegh-Nasseri lab reported that memory, but not activated or naive, CD4+ T 

cells were anergized upon the presentation of low densities of specific peptide, 

whereas peptide with a high avidity stimulation induced T cell activation (Mirshahidi 

et al., 2001; Mirshahidi et al., 2004), suggesting that a proper avidity should be 

applied to induce memory T cell tolerance. Second, the transient activated cells 

generated by the administration of high affinity peptide (like Ac1-94Y) to antigen 

experienced mice have potential to enhance pathology. It has been reported that after 

soluble peptide treatment in vivo, CD4+ T cells can transiently produce IL-2 and 

IFN-γ and a transfer of these cells to recipient mice can damage tissues (Huang et al., 

2003). Recently a study using an adoptive transfer system showed that memory T 

cells produce effector cytokines rapidly but show identical delays (3 days) in onset of 

cell division after in vivo stimulation, compared with naive T cells (Whitmire et al., 

2008), suggesting that soluble peptide treatment may facilitate inflammation if the 

time point of tolerogenic injection is too closed to disease induction in the EAE 

model. Third, the double immunization system can provide a memory response in a 

mouse. However, memory responses and primary responses can overlap in time. It is 

possible that the secondary immunization triggers a ¡memory response¡  that is the 

net effect of a true memory response together with a primary response. An adoptive 

transfer system with memory cells or a non-adoptive system with a proper probe for 

memory T cells should be considered in future experiments. Therefore, a proper 

avidity of peptide, timing of tolerogenic injection, injection route and dose, and 

proper tool to identify memory T cells should be taken into consideration in 
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peptide-induced tolerance in memory T cells.  

 

Figure 6.1 shows the model developed in this thesis in which soluble peptide 

administration provides signal 1 that can induce a transient activation to naive CD4 T 

cells, with subsequent cell deletion. Those cells that survive are in an anergic state. 

Tolerance in naive CD4 T cells protects the mice from ¡primary induced EAE¡. 

When cells initially encounter peptide / CFA (or peptide /CpG / IFA), signal 1 and 

signal 2 can fully activate naive T cells. A further administration of low affinity 

peptide can induce cell death immediately to those activated T cells, whereas a high 

affinity peptide can re-activate and expand those activated T cells transiently before 

they enter apoptosis. Cell death occurs in 90% to 95% of activated cells, the 

survivors differentiate into memory T cells. A subsequent administration of soluble 

peptide may induce memory T cell tolerance and control the memory responses.  

 

To further approach the issue of memory T cell tolerance, some new directions are 

worth exploring. First, RAG-deficient 2D2 mice should be applied in the adoptive 

transfer system to assure that pMOG-specific T cells are targeted. To transfer 

memory T cells from 2D2 x RAG-/- mice can assure the mechanisms of peptide 

induced tolerance. Because 2D2 cells are not currently detectable by pMOG-Ab 

tetramers, a non-transfer system (with B6 mice in which pMOG-Ab tetramers can be 

used to assess the pMOG-reactive T cells) could be used. By matching the cytokine 

production profile, the early IFN-γ producing, tetramer positive cells can be 

identified as the re-activated memory CD4 T cells (although the later effector T cells 

are difficult to distinguish from those derived from naive cells). If a soluble peptide 

injection can down-regulate those IFN-γ producing, tetramer positive cells, this could 
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indicate that memory T cells are being controlled. Second, memory T cells can 

efficiently enter non-lymphoid tissues to survey for antigen, facilitating the early 

detection of and rapid response to infection. Whether memory T cells are 

substantially lost or just alter their ability of migration is unclear. A wider range of 

tissues can be sampled for assessing the frequency of memory T cells. Also, 

information about the expression of homing markers by memory T cells can be 

obtained by an adoptive transfer system (either with or without peptide 

administration). These approached should provide basic information relevant to 

translating peptide-induced T cell tolerance from mice to humans. 
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Figure 6.1 Models for peptide induced tolerance in naive, activated and memory 
T cells. Naive T cells received signal 1 only can be activated transiently and 
subsequent be deleted, leaving survival cells in anergic state. When both signal 1 and 
signal 2 exist, naive T cells can be fully activated. The further administration of weak 
signal 1 can induce cell death immediately to those activated cells, whereas a strong 
signal 1 can re-activate and expand the activated cells transiently before they fate to 
apoptosis. Most of the activated / effector T cells die after the antigen are cleared, 
while a few survivals become memory T cell. A further signal 1 provided by soluble 
peptide administration may induce memory T cell tolerance.  
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