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Abstract

Data Exchange is the problem of transforming data in one format (the source schema)

into data in another format (the target schema). Its core component is a schemamapping,

which is a high level speci�cation of how such transformation should be done. Relational

data exchange has been extensively studied, but exchanging XML data have been paid

much less attention. �e goal of this thesis is to develop a theory of XML data exchange

with expressive schema mappings, extending a previous work using restricted mappings.

Our mapping language is based on tree patterns that can use horizontal navigation and

data comparison in addition to downward navigation.

First we look at static analysis problems concerning a single mapping. More specif-

ically, we consider consistency problems with di�erent �avours. One such problem, for

instance, asks if any tree has a solution under the given mapping. �en we turn to analyse

the complexity of mapping themselves, i.e., recognising pairs of trees such that the one

is mapped to the other. For both problems, we provide classi�cations based on sets of

features used in the mappings.

Secondwe investigate the composition of XML schemamappings. Generally it is hard,

or rather simply impossible, to achieve closure under composition in XML settings unlike

in relational settings. Nevertheless we identify a class of XML schema mappings that is

closed under composition.

Lastly we consider the problem of query answering. It is important to exchange data

so that we can feasibly answer queries while it o�en leads to intractability. We identify the

dividing line between tractable and intractable cases: answering queries with extended

features is always intractable while tractability of answering simple queries can be retained

in extended mappings.
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Chapter 1

Introduction

�is thesis is about XML data exchange. In particular we mostly deal with two problems:

static analysis of schema mappings and query answering.

In the problem of data exchange, source data (conforming to a source schema) must

be restructured to form a solution conforming to a target schema. �e restructuring must

be done according to a schema mapping, a speci�cation given by a set of rules (source-to-

target dependencies) describing the relationship between the two schemas. Usually, there

are many ways of doing this and the goal is to �nd a solution that would be as general as

possible, thus making it possible to answer queries over the target without inventing facts.

While data exchange is an old problem [92], recently it has become even more impor-

tant due to the proliferation of data in various formats. It has been a topic of active research

over the past few years. By now we have a very good understanding of relational data ex-

change (see e.g., [15, 22, 66]); several advanced prototypes for specifying and managing

mappings have been developed and incorporated into commercial systems [78, 88].

Schema mappings are important components in data exchange, and also essential for

data integration tasks as well as for peer-to-peer data management. All ETL (extract-

transform-load) tools come with languages for specifyingmappings. �ere are techniques

for using such mappings in data integration and exchange, and tools for handling map-

pings themselves, for example, for de�ning various operations on them [4, 21, 22, 37, 48,

66, 73, 82].

Query answering in relational data exchange is also well understood. Usually, there

are many possibilities (solutions) of restructuring a source database. �e important no-

tions were universal solutions and cores, which in a way correspond to “most general”

solutions. �ey were �rst introduced and studied in [45, 47]; a sophisticated method of
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chapter 1. introduction 1.1 Related Work

feasibly computing cores was developed in [56].

Meanwhile, exchanging XML data and mappings between XML schemas have been

paid much less attention. While commercial ETL tools o�en claim to provide support for

XML schemamappings, this is typically done either via relational translations, or bymeans

of very simple mappings that establish connections between attributes in two schemas.

Transformation languages of such tools tend to concentrate onmanipulating values rather

than changing structure. In research literature, most XML schemamappings are obtained

by various matching tools (see, e.g., [77, 79]) and thus are quite simple from the point of

view of their transformational power. More complex mappings were used in the study of

information preservation inmappings, either in XML-to-relational translations (e.g., [14])

or in XML-to-XML mappings, where simple navigational queries were used in addition

to relationships between attributes [50]. One extra step was made in [12], which studied

extensions of relational data exchange techniques to XML, and introduced XML schema

mappings1 that could use (vertical) navigation as well as bind attribute variables. But even

the mappings of [12] cannot reason about the full structure of XML documents: for exam-

ple, they completely disregard horizontal navigation and do not allow even the simplest

joins, something that relational mappings use routinely [45, 66, 78].

Our goal is to develop the theory of XML data exchange under expressive mappings

that use horizontal navigation and data comparisons in addition to simple downward nav-

igation. We would like to introduce a formalism that will be an analog of the commonly

accepted formalism of source-to-target dependencies used in relational schemamappings

[13, 45, 47, 48, 49, 66]. We would also like to understand the basic properties of such map-

pings, including their complexity, static analysis questions related to them, as well as op-

erations on XML schemamappings. Furthermore, we study how extendingmappings and

query language with more expressive tree patterns a�ect the complexity of query answer-

ing problem.

1.1 RelatedWork

1.1.1 Relational Data Exchange

�e origin of data exchange dates back to 70’s [92], and it has revived as a research topic

in recent years due to increasing demand for exchange data in a variety of formats, e.g., in

e-business applications [9]. As mentioned earlier, one example of advanced prototypes is

1which they called XML data exchange settings.

8



chapter 1. introduction 1.1 Related Work

Clio, which has been developed and is now a part of DB2[78, 88].

Motivated by issues surrounding Clio project, a formal study of relational data ex-

change was initiated by people (mostly) at IBM Almaden [45, 47]. In [45], they de�ned

the formal semantics of relational data exchange and that of query answering, adapting

the certain answers semantics. �ey further studied which solutions are better than oth-

ers, using a graph-theoretic notion of core in [47].

�e complexity issues concerning computing solutions was investigated in [67]. An

interesting aside in the undecidability proof of this paper is that it uses the embedding

problem from universal algebra, which is actually equivalent to the word problem.

�e complexity of query answering was already studied in [45], but there was a subtle

gap: it is shown there that union of conjunctive queries with atmost inequality per disjunct

can be answered in polynomial timewhile thosewith at least six inequalities leads to coNP-

completeness of query answering. �ey conjectured two inequalities would be su�cient to

get coNP-hardness, which is in fact proved to be the case in [74]. A way to accommodate

inequalities was considered in [11], with a simpli�ed proof of the intractability of queries

with two inequalities.

Although the semantics of [45] is quite natural and widely accepted, some counter-

intuitive behaviour was pointed out in [10]. Libkin [70] observed that considering the

semantics with Closed World Assumption (CWA) leads to a resolution of the anomaly.

�eCWA semantics was further extended in [57] to deal with schemamapping with target

dependencies; Libkin and Sirangelo [72] considered mixed approach of Open and Closed

World Assumption. In [3], answering aggregate queries in data exchange was considered,

and was shown to require a strong restriction of CWA semantics.

�ere has been research on operations on schema mappings, mostly in the frame-

work of meta data management [20, 22]. �e most extensively studied is composition of

schema mappings, i.e., how to de�ne a schema mapping representing the (set-theoretic)

composition of two mappings. �e problem was �rst studied in [48], where it was shown

that conjunctive query formalism cannot be generally composed and the minimal class

of mappings that is closed under composition requires extension with Skolem functions.

�e inverse of mappings is also a well-studied operation. So far it seems that there has

been no standard de�nition. Initial attempt was done in [43]. �e problem was that the

existence of inverse is rather rare. �en it was remedied in [44] while a di�erent approach

was given in [13]. Yet another attempt was made in [49], where source instances are also

allowed to have nulls. In [46], optimisation of schema mapping was considered.

Another line of data exchange research is peer data exchange [54, 55], where there are
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chapter 1. introduction 1.1 Related Work

multiple sources and targets. Also, a closely related area of research is data integration

[68], where the problem is not totally transforming data but materialising a view from

multiple sources. �is connection is explored for example in [55].

1.1.2 Theory of XML, with or without Data

XML as Node-labelled Trees

Formal language theory, or theory of �nite automata, is one of the oldest branches in theo-

retical computer science, and tree languages were already considered in the 60’s ([42, 96]).

Since then a lot of results have been established on tree automata, but largely for their own

andwithoutmuch application. Automata theory regained applicability in the 80’s through

program veri�cation ([100]): Tree languages were used as abstractions of programs. In-

terests in tree languages got even wider with the appearance of XML (Extensible Markup

Language) as a data representation language. �us from the beginning of XML research,

tree automata theory has been one of the most frequently used ([32, 84, 101, 102]).

�ere have been many aspects of XML research where automata are useful: Schema

languages, query languages, transformation of documents, just to name a few. See [89] for

a survey. Also automata are inseparably attached to logics since the fundamental result

of Büchi that showed the equivalence of �nite automata and monadic second order logic

([33, 34]; see also [97, 98]). �us lots of logics have been considered for trees as well. See

[71] for a survey.

Towards In�nity

Abstracting XML documents as (node-labelled) trees always requires one thing: neglect

of data values (PCDATA). Most research had followed this line and focused on analysing

structures of XML documents. �e problem with data values is that the domain of those

data is not �nite: For example, it can be natural numbers. Any automata model depends

strongly on the �niteness of its alphabet, so the nice tool of automata is no longer usable

and analysis of XML with data tends to become much more involved. As such, sparse had

been work that does take into account data values in XML: In [51], integrity constraints

such as keys in XML databases were studied; In [18], satis�ability of various fragments

of XPath were considered, in particular including fragments that allow data comparison;

Also [5] investigates typechecking (schema validation) XML documents transformed ac-

cording to XSLT-like rules.

In recent years, however, XML with data has started to attract much attention. It is
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actually not only about data in XML documents, but also is motivated by program veri-

�cation, where there are many sources of in�nity such as variables ranging over natural

numbers.

Undecidability and high complexity seems to be a price for considering data values. In

[28], the authors showed that FO with three variables is already undecidable over words

with data (modelled by the built-in equivalence relation) and studied two variable frag-

ment, showing its decidability. �ey also considered its tree analogue in[27] with lim-

ited decidability results. Temporal logics over data words and data trees were de�ned in

[40, 62]. Extending these, Figueira revisited in [52, 53] the satis�ability problem of XPath

with data comparison, taking up where [18] le� o�. In [29, 87], it was shown that evalua-

tion of XPath with data comparison can be done in linear combined complexity.

Quite naturally automata models over data words/trees were also considered. In fact

there are lots of them ([24, 26, 31, 85, 94, 95]; see also [90]). �is proliferation seemingly

suggests that there is no such thing as “the” automata model for structures with data.

Apart from works mentioned above, logics interpreted over structures with built-in

equivalence relations (essentially, �rst-order relational structure with data in the above

terms) are considered for their own sake, for example in [63, 64, 65].

1.2 Collaboration

Collaborating with other people has been a great part of the work presented in this thesis.

While the whole text is composed by the author, it should be mentioned that the results

were obtained through collaboration with Claire David, Leonid Libkin, and Filip Murlak.

�e author would like to mention in particular that the involved proof of theorem 3.12 is

due to Filip Murlak.

1.3 Publications

�e work contained in this thesis is (to be) published in [7] and [6]. Roughly the chapters

3 and 4 correspond to the former and the chapter 5 to the latter.

1.4 Thesis Structure

�is thesis consists of six chapters, the �rst of which is current. In chapter 2, we �x ter-

minology and notation. In particular we quickly summarise the results in relational data

11



chapter 1. introduction 1.4�esis Structure

exchange. We also de�ne tree automata and our (standard) abstraction of XML docu-

ments. In chapter 3, we study our version of classical static analysis, namely consistency

of XML schema mappings. Expressive mappings leads to undecidability, and even with

restriction on DTDs complexity of the problem is signi�cantly higher than that of simple

mappings. Chapter 4 is concerned with composing XML schema mappings, which had

not been considered before. We show that it is rather di�cult to compose, even with the

help of Skolem functions, unlike the relational case. Nevertheless we identify a compos-

able class of mappings and present an algorithm to compute its syntactic representation.

In chapter 5, we turn to the problem that really involves exchanging data – that of query

answering. What we observe there is that querying about order in certain answers is rather

costly, easily leading to coNP-hardness. On the other hand, extending mapping language

alone still allows us to retain tractable query answering. In the �nal chapter we mention

some future directions and draw conclusions.

12



Chapter 2

Preliminaries

A�er �xing some standard notation, we review relational data exchange, tree automata

and basic facts about them, and XML documents and DTDs.

2.1 Notation

Let us be clear about notation from mathematics and logic. We denote by [n] the set

{1, . . . , n}. A tuple ā ∈ An from a set A is identi�ed with a function from [n] to A. In

general we use ā to mention a tuple of unspeci�ed length. As a convention, a, b, c, . . . are

used for constants, and x , y, z, . . . are used for variables.

A relation R has its associated arity; when it is 1, R is a unary relation; when it is 2, R is

a binary relation; in general when it is k, R is a k-ary relation. A k-ary relation over a set

A is a subset of Ak . We use notation such as D(⋅) to mean D is unary, E(⋅, ⋅) to mean E is

binary and so on.

2.2 Relational Data Exchange

2.2.1 SchemaMappings and Their Semantics

Before we de�ne the formal semantics of relational schema mappings, we �rst explain

what they are. �e presentation of this section largely follows the survey by Kolaitis [66].

A relational schema R is a sequence ⟨R1, . . . , Rn⟩ of relational symbols, where each

Ri has its arity ai . An instance I of a relational schema R is a sequence ⟨RI
1 , . . . , R

I
n⟩ of

relations, where RI
i is a (�nite) relation of the same arity as Ri . Given twomutually disjoint

relational schema S = ⟨S1, . . . , Sn⟩ and T = ⟨T1, . . . , Tm⟩, we write K = ⟨I, J⟩ for the

13



chapter 2. preliminaries 2.2 Relational Data Exchange

instance over ⟨S1, . . . , Sn , T1, . . . , Tm⟩ such that SKi = SIi for i ∈ [n] and TK
j = T J

j for

j ∈ [m]. When it clear from the context, we drop superscript in RI and confuse a relation

with the corresponding symbol. Also we sometimes denote by I the domain of I, the set

of elements appearing in relations in I.

�e last component of a relational schema mapping is the speci�cation of how in-

stances over two relational schemas should be related. �ese speci�cations are called de-

pendencies, or constraints. Since a relational database can be seen as a logical structure,

we can naturally use some logic to specify them. In particular conjunctive queries are used

and dependencies are classi�ed as follows.

Let S and T be two disjoint relational schemas.

➠ A source-to-target tuple-generating dependency (s-t tgd) is a �rst-order formula of

the form

∀x̄∀ ȳ(φ(x̄ , ȳ)→ ∃z̄ψ(x̄ , z̄)),

where φ(x̄ , ȳ) is a conjunction of atoms with relation symbols from S1 and ψ(x̄ , z̄)
a conjunction of atoms with relation symbols from T.

➠ A target tuple-generating dependency (target tgd) is a �rst-order formula of the same

form as above, where φ and ψ are both conjunctions of atoms with relation symbols

from T.

➠ A target equality-generating dependency (target egd) is a �rst-order formula of the

form

∀x̄φ(x̄)→ (xi = x j),

where φ is a conjunction of atoms with relation symbols from T.

De�nition 2.1 A relational schema mapping2 is a triple ⟨S,T, Σst ∪ Σt⟩, where S and T

are relational schemas, called the source schema and the target schema, respectively, Σst is

a set of source-to-target dependencies (stds), and Σt is the set of target (tuple- or equality-

generating) dependencies.

�e following is a natural de�nition of “two instances being related according to a

schema mapping”. We assume two in�nite sets: Const is the set of constants; Var is the set

of nulls. We use �, �1, . . . to denote nulls.

De�nition 2.2 Let M = ⟨S,T, Σ⟩ be a relational schema mapping.

1 x̄ denotes a sequence of variables x1 , . . . , xn .
2�is is also called a data exchange setting.

14



chapter 2. preliminaries 2.2 Relational Data Exchange

➠ An instance of M is an instance ⟨I, J⟩ (written ⟨I, J⟩ ⊧ M) where

➥ I is an instance over S, which is called the source instance and whose domain

is contained in Const;

➥ J is an instance over T, which is called the target instance and whose domain

is contained in Const ∪ Var;

➥ For any s-t tgd of the form ∀x̄∀ ȳ∃z̄φ(x̄ , ȳ) → ψ(x̄ , z̄), and any tuples ā, b̄

(from Const) such that I ⊧ φ(ā, b̄), there exist a tuple c̄ (from Const ∪ Var)

such that J ⊧ ψ(ā, c̄);

➥ For any target dependency δ, J ⊧ δ.

➠ JMK denotes the set of all instances of M. In symbols, JMK = {⟨I, J⟩ ∣ ⟨I, J⟩ ⊧ M};

➠ Given an instance I over S, we say that an instance J over T is a solution for I under

M if ⟨I, J⟩ ∈ JMK;

➠ For an instance I over S, SolM(I) denotes the set of all solutions for I under M. In

symbols, SolM(I) = {J ∣ ⟨I, J⟩ ∈ JMK}.

Example Consider two schemas S = ⟨E(⋅, ⋅)⟩ and T = ⟨D(⋅)⟩. Let I = {E(1, 2)} be
an instance over S and M = ⟨S,T, {∀xyE(x , y) → D(x),∀xyE(x , y) → D(y)}. �en

J = {D(1),D(2)} is the solution for I under M. Note that any instance containing J

(as a substructure) is a solution as well. For example, J′ = {D(1),D(2),D(3)} or J′′ =
{D(1),D(2),D(�)} is just as perfect a solution as J is.

2.2.2 Good Solutions and Query Answering

One of the most fundamental problems in data exchange is query answering, in which we

have a source instance and a query over the target schema. As seen in the example in the

preceding section, a solution is not unique given a source instance. �is raises the natural

questions: 1) what does it mean to answer a query in data exchange?; 2) which solution is

better, or appropriate to materialise? In this section we brie�y review the answers to these

questions.

Universal solutions and cores

We start by answering the second question. Recall the example at the end of the preced-

ing subsection. An instance J = {D(1),D(2)} is a solution for E(1, 2) under the mapping
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chapter 2. preliminaries 2.2 Relational Data Exchange

{∀xyE(x , y)→ D(x),∀xyE(x , y)→ D(y)}. Also solutions are J′ = {D(1),D(2),D(3)}
and J′′ = {D(1),D(2),D(�)}. �ese may look trivial and J would look better than the

others. But why is this? It is natural to say J is in some sense cleaner - or minimal than the

others.

In [45], this intuitive notion of “good” solutions are de�ned through homomorphisms,

a standard algebraic notion. Formally:

De�nition 2.3 (homomorphism) Let J and J′ be instances over T whose domains are

contained in Const ∪ Var. A homomorphism from J to J′ is a mapping h ∶ J → J′ which

satis�es the following:

➠ h is the identity map on Const, i.e., h(c) = c for all c ∈ Const;

➠ h preserves relations, i.e., (a1, . . . , an) ∈ RJ implies (h(a1), . . . , h(an)) ∈ RJ′ for

any n-ary relation R ∈ T.

De�nition 2.4 (universal solution ([45])) Let M be a relational schema mapping and S

a source instance for M. A solution T for S under M is a universal solution if for every

solution T ′ ∈ SolM(S) there exists a homomorphism from T to T ′.

�is explains why J is better than J′ in the example above. But note that universal

solutions are not unique. Again in the example above, J′′ is also a universal solution (by

a mapping that sends � to 1 or 2). Fagin et al. argued that the smallest universal solutions

are best ones. �ey formalised it using a notion from graph theory:

De�nition 2.5 (core ([47, 58])) Let T be an instance over T. An instance C ⊆ T is a core

of T , if there is a homomorphism h ∶T → C and there is no homomorphism from T to

any proper substructure C′ of C.

A core of a graph is unique (up to isomorphism). It is also known that a core of a uni-

versal solution is again a universal solution, ensuring that the core of a universal solution

is indeed the smallest universal solution.

Before we de�ne the query answering problem, it would be natural to mention the

problem asking the existence of a solution. Let M be a relational schema mapping.

Problem: existence-of-solution(M)
Input: A source instance S

Question: Is SolM(S) = ∅?

�e problem in general is undecidable:
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�eorem 2.6 ([67]) �ere is a relational schema mapping Mu = ⟨S,T, Σst , Σt⟩ such that

existence-of-solution(Mu) is undecidable.

A closely related problem is that of checking if there exists a universal solution, which

is also undecidable ([57]).

Query Answering

In the query answering problem, we have a (�xed) query over target schema and a (�xed)

schema mapping, and are given a source instance. Solutions are not unique, so what

does that mean to answer a query? Note that target instance can be seen as incomplete

databases, where it is generally agreed that the right semantics of query answering is that

of certain answers (see [61, 68]). Fagin et al. [45] followed this tradition. Formally we

de�ne the set of certain answers of Q with respect to I under M, as follows:

certainM(Q , I) = ⋂{Q(J) ∣ J ∈ SolM(I)}.

Here Q(J) = {ā ∣ ā is a tuple from J such that J ⊧ Q(ā)}. Also for a Boolean query Q,

certainM(Q , I) is true if Q is true for all the solutions J ∈ SolM(I).
�e central tool in computing solutions is the chase procedure, which was originally

introduced as a procedure to solve the implication problems of data dependencies ([17, 75];

see also [1]). Since existence-of-solution is undecidable as mentioned previously, we

cannot tell whether the chase procedure will terminate. Fortunately, there is a class of

dependencies for which the chase will always terminate, and even better, in polynomial

time.�is class of is calledweakly acyclic. We do not go into its de�nition, but justmention

the following result.

�eorem 2.7 ([47]) Let M = ⟨S,T, Σst ∪ Σt⟩ be a �xed relational schema mapping such

that Σt consists of a set of target egds and a weakly acyclic set of target tgds. �en there exists

an algorithm that, given a source instance I, check if there is a solution for I and when there

is, computes the core of the universal solutions for I.

Any universal solution represent the certain answers in the sense that the following

holds for any universal solution J of I under M:

certainM(Q , I) = Q(J),

so that the above theorem provides a feasible algorithm for query answering.
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A more sophisticated way to compute a core was investigated in [56], re�ning the al-

gorithm in [47]. Recently ten Cate et al. introduce a novel way to compute a core with

SQL queries [35]. Also a generalisation of weak acyclicity was looked at in [41].

2.2.3 Composing SchemaMappings

Say we are given two schema mappings such that the target of the one is the same as the

source of the other, and we try to �nd one single schema mapping from the source of the

one to the target of the other. �is is what composing schema mappings is about. In the

following, only s-t tgd is considered.

De�nition 2.8 ([48]) LetM12 = ⟨S1, S2, Σ12⟩ andM23 = ⟨S2, S3, Σ23⟩ be two schemamap-

pings, where every pair of Si ’s has no relation symbol in common.

A schema mapping M13 = ⟨S1, S3, Σ13⟩ is a composition of M12 and M23 if for every I1

over S1 and I3 over S3, the following are equivalent:

➠ ⟨I1, I3⟩ ⊧ Σ13.

➠ �ere is some instance I2 over S2 such that ⟨I1, I2⟩ ⊧ Σ12 and ⟨I2, I3⟩ ⊧ Σ23.

�at is, the semantics of composition is set-theoretically de�ned: JM13K = JM12K ○ JM23K.

One computational problem of note is the composition query of M12 and M23:

Given two instances I1 and I3, is ⟨I1, I3⟩ in JM12K ○ JM23K?

�is was shown to be NP-complete in [48].

A more fundamental question in composing relational mappings is whether a class

of relational mappings is closed under composition: Given two schema mappings, is their

composition always de�nable? In general, the answer is no as shown in [48]. �ere is

settings such that there is no �nite set of dependencies that de�ne their composition. It is

also known that when restricting attention to the s-t tgds of the form ∀x̄(φ(x̄) → ψ(x̄))
(called full tgd), the composition is always de�nable.

Now we want to �nd more expressive language so that every composition of two set-

tings is always de�ned in the language. In [48], second-order tuple-generating dependencies

(SO tgd) are proposed.

De�nition 2.9 Let S and T be two disjoint relational schemas. A second-order tuple-

generating dependency over ⟨S,T⟩ is a formula of the form

∃ f1⋯∃ fm(∀x̄1(φ1 → ψ1) ∧⋯ ∧∀x̄n(φn → ψn)),
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where

➠ Each fi is a function symbol;

➠ Each φi is a conjunction of

➥ atomic formulae R(y1, . . . , yk), where R is a k-ary relation symbol in S and

yi ’s are variables in xi , not necessarily distinct, and

➥ equalities of the form t = t′, where t and t′ are terms built from fi ’s and vari-

ables in x̄ j;

➠ Eachψi is a conjunction of atomic formulae S(t1, . . . , tl), where S is an l-ary relation
symbol from T and ti ’s are terms built from fi ’s and variables in x j;

➠ Each variable in x̄i appears in a relational atomic formula of φi .

�e following result from [48] shows that SO tgd is closed under composition:

�eorem 2.10 If M12 = ⟨S1, S2, Σ12⟩ and M23 = ⟨S2, S3, Σ23⟩ are two schema mappings

with Σ12 and Σ23 being SO tgds, then there is an SO tgd Σ13 such that JM12K ○ JM23K =

J⟨S1, S3, Σ13⟩K.

2.3 Tree Automata

In this section we recall basic facts about (tree) automata.

We use the following notation for string automata and languages: DFA andNFA stand

for deterministic automata and nondeterministic automata, respectively. For an automa-

ton A, L(A) denotes the language accepted by A; Similarly, L(r) denotes the language
matching a regular expression r. Recall that given a regular expression r, an NFA Ar with

L(Ar) = L(r) can be constructed in polynomial time. For general background in (string)

language theory, see [60, 93].

A set of trees can be ranked or unraked. �e di�erence is whether there is a priori

bound on the number of children of each node. We �rst de�ne automata over ranked

alphabet. Suppose Γ is a �nite set of alphabet. For each σ ∈ Γ, rank(σ) is its rank, i.e., the
number of children that a node labelled σ should have. A k-ary tree is a tree the rank of

whose alphabet is at most k. We say a tree is binary if k ≤ 2.

A nondeterministic (bottom-up) �nite tree automaton (NFTA) on binary trees over

alphabet Γ is a quadruple A = ⟨Q , q0, δ, F⟩, where
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➠ Q is the set of states;

➠ q0 ∈ Q is the initial state;

➠ δ ∶ Γ × Q × Q → 2Q is the transition function;

➠ F ⊆ Q is the set of �nal states.

Given a (binary) tree T whose nodes are labelled alphabets from Γ, a run of A on T is a

function ρA ∶T → Q that assigns a state to each node in T and satis�es the following:

➠ For a leaf node s ∈ T labelled a, ρA(s) ∈ δ(a, q0, q0);

➠ For a non-leaf node s ∈ T that is labelled a and have children s1, s2,

ρA(s) ∈ δ(a, ρA(s1), ρA(s2)).

A tree T is accepted by A if there is a run ρA such that ρ(r) ∈ F for the root node r ∈ T .

Like string languages, L(A) denotes the set of trees, or the tree language, accepted by A.

In symbols L(A) = {T ∣T is accepted by A.}.
�e basic computational problems mentioned in this thesis are the following:

➠ emptiness: Given an NFTA A, is L(A) = ∅?

➠ universality: Given an NFTA A, is there a tree that is not accepted by A?

�e emptiness problems is known to be solvable in time linear in the size of A ([38]);�e

universality problem is known to be EXPTIME-complete ([91]).

We turn to automata models over unranked trees. Unranked trees over a �nite alpha-

bet Γ are the same as ranked trees except that each letter in Γ does not have rank: thismeans

that a node in an unraked tree can have arbitrary many (albeit �nitely many) children. An

unranked nondeterministic �nite tree automaton (UNFTA) on ordered unranked trees3

is a triple A = ⟨Q , δ, F⟩ where

➠ Q is the set of states;

➠ δ ∶Q × Γ → 2Q
∗
is the transition function such that δ(q, a) is a regular (string)

language over the alphabet Q for any q ∈ Q and a ∈ Γ;

3Note that for unranked tree automata there is no real distinction between being bottom-up and being

top-down. �at is, it only depends how the set F is construed: if F is seen as “�nal” then the automaton is

bottom-up; if it is seen as “initial” then it is top-down.
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➠ F ⊆ Q is the set of �nal states.

Given an ordered unranked tree T , a run of A on T is a function ρA ∶T → Q that assigns

states to nodes and satis�es the following conditions:

➠ For a leaf node s ∈ T labelled a, є ∈ δ(q, a);

➠ For a non-leaf node s ∈ T that is labelled a and have children s1, . . . , sn (in this

order), ρA(s1)⋯ρA(sn) ∈ δ(q, a).

A tree T is accepted by A if there is a run ρA such that ρA(r) ∈ F for the root r of T .

�e complexity results on ranked tree automata can be transferred to unranked automata:

emptiness is linear and universality is EXPTIME-complete.

A standard representation of UNFTA uses NFAs for transitions: δ maps each pair of

a state and a letter to an NFA over Q. It is known that testing nonemptiness can be done

in polynomial time (see [83]).

For more comprehensive information on tree automata see [38].

2.4 XML Documents and DTDs

We view XML documents as unranked trees. Each node has an element type andmay also

have attribute values associatedwith attribute names. We assume the following in�nite sets

are given:

➠ Element: a set of in�nite element types;

➠ Attribute: a set of attribute names4;

➠ V : a set of possible attribute values (which are usually strings).

�roughout the following, unless otherwise speci�ed, we always assume Γ andAtt are

�nite subsets of Element and Attribute, respectively.

Formally, an XML document over a �nite labelling alphabet Γ (element types) and a

�nite set of attribute names Att is a structure T = ⟨T , ↓,→, lab, (ρa)a∈Att⟩, where

➠ �e set T is an unranked tree domain, i.e., a subset of N
∗ such that n ⋅ i ∈ T implies

n ⋅ j ∈ T for all j < i;

4In the following attribute names are pre�xed by @.
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➠ �e binary relations ↓ and→ are child relation (n ↓ n ⋅ i) and next-sibling relation

(n ⋅ i → n ⋅ (i + 1));

➠ �e function lab is a labelling from T to Γ;

➠ Each ρa is a partial function from T to V . We say that a node s ∈ T has the value v

for the attribute @a when ρa(s) = v.

Most o�en we refer to XML documents as trees and write T instead of T.

A document type de�nition (DTD) over a labelling alphabet Γ and a set of attributes

Att is a triple D = ⟨r, PD ,AD⟩, where

➠ r is a distinguished root symbol;

➠ PD is a function assigning regular expressions over Γ − {r} to the elements of Γ,

usually written as ℓ → e;

➠ AD is a function from Γ to 2Att which assigns attribute names to each element type.

For notational simplicity we assume that attribute names come in some order and omit

attribute names, just as in relational case where attribute names for a relation R is ordered

in some way so that we can write R(a1, . . . , an). Similarly, we describe a node that is

labelled ℓ and has n attributes with values a1, . . . , an as ℓ(a1, . . . , an).
A tree T conforms to a DTD D if its root is labelled with r and for each node s ∈ T with

lab(s) = ℓ it holds that

➠ ρa(s) is de�ned i� @a ∈ AD(ℓ),

➠ the sequence of labels of children of s is in the language PD(ℓ).

DTDs (without attributes) can be naturally represented by tree automata. A DTD D

over a set E of element types is represented by a UNFTA AD where the set of states is E,

δ(ℓ, ℓ) is an NFA for PD(ℓ), and δ(ℓ, ℓ′) = ∅ for all ℓ′ ≠ ℓ, and F = {r}.

Remark What we use here is a common abstraction of DTD. DTD is not the absolute

standard of XML schema language, but only one of many. �ere are classi�cation and

characterisations of other XML schema languages like XML Schema and Relax NG [76,

81].

�e presence of DTDs in general makes things di�cult, as witnessed for example by

[16, 18]. We pay special attention to the class of nested relationalDTDs, a generalisation of
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nested relations. A DTD is nested relational if it is non-recursive (i.e., the graph in which

we put edges between ℓ and the element types in PD(ℓ) does not contain cycles) and all

its productions are of the form ℓ → ℓ̂1⋯ℓ̂m, where ℓi ’s are distinct elements of Γ and ℓ̂i is

one of ℓi , ℓ
∗
i , ℓ
+
i , ℓi?

5. Such DTDs are quite common in practice and account for 70% of

real-word DTDs according to one study [23].

5where we de�ne ℓ+ == ℓ i ℓ
∗
i and ℓ i? = ℓ i ∣є
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Chapter 3

Static Analysis in XML Data

Exchange

We now begin to describe what is an XML schema mapping and investigate problems

concerning a single mapping. Recall that a relational schema mapping is a quadruple

⟨S,T, Σ⟩, where S and T are relational schemas (called the source schema and the target

schema, respectively), Σ is a set of dependencies.

In XML context, DTDs replace relational schemas naturally. On the other hand, using

conjunctive queries as the speci�cation language is cumbersomebecausewehave two sorts

of objects in an XML database: tree nodes and data values. Instead, we use tree patterns,

�rst introduced in [12].

A�er de�ning tree patterns, we explore basic patterns. �en we go on to explore two

types of consistency problem, which we call (plain) consistency and absolute consistency.

�e former is a natural analogue of traditional static analysis in query languages, but since

our problem involves two structures, the solution requires signi�cantly di�erent insights.

�e latter problem is a more restrictive property of a mapping. A motivation comes from

the topic of the next chapter: composition.

3.1 Tree Patterns

We de�ne extended tree patterns as given by the following grammar. �e main di�erence

from the original pattern language [12] is that we can specify sequences, i.e., use horizontal

ordering.
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π := ℓ(x̄)[λ] patterns

λ := є ∣ µ ∣ //π ∣ λ, λ sets

µ := π ∣ π → µ ∣ π →∗ µ sequences

(3.1)

Here ℓ is a label, x̄ is a sequence of variables, and є is the empty sequence. Futhermore we

allow the wildcard _, matching any label. We use ℓ/π as an abbreviation for ℓ[π]. We call

ℓ(x̄) an attribute formula.

A tree T satis�es a tree pattern φ at a node s, written (T , s) ⊧ φ, i� the following

conditions hold:

(T , s) ⊧ _ i� true

(T , s) ⊧ ℓ(ā) i� s is labelled by ℓ and ā is the tuple of

attributes of s;

(T , s) ⊧ ℓ(ā)[λ1, λ2] i� (T , s) ⊧ ℓ(ā)[λ1] and (T , s) ⊧ ℓ(ā)[λ2];
(T , s) ⊧ ℓ(ā)[µ] i� (T , s) ⊧ ℓ(ā) and (T , s′) ⊧ µ

for some s′ with s ↓ s′;

(T , s) ⊧ ℓ(ā)[//π] i� (T , s) ⊧ ℓ(ā) and (T , s′) ⊧ π

for some descendant s′ of s;

(T , s) ⊧ π → µ i� (T , s) ⊧ π and (T , s′) ⊧ µ

for some s′ with s → s′;

(T , s) ⊧ π →∗ µ i� (T , s) ⊧ π and (T , s′) ⊧ µ

for some younger sibling s′ of s;

We write T ⊧ φ for (T , є) ⊧ φ.

Observe that semantically ‘sets’ in tree patterns are literally sets: for a node satisfying

ℓ(ā)[λ1, λ2], the child witnessing λ1 is not necessarily distinct from the one witnessing λ2.

If we remove the sequences from the de�nition above, we obtain the language used in [12].

A source-to-target dependency (std) is an expression of the form

π(x̄ , ȳ), α=,≠(x̄ , ȳ) Ð→ π′(x̄ , z̄), α′=,≠(x̄ , z̄),

where π, π′ are tree patterns in which no variable appears more than once, and α=,≠, α
′
=,≠

are sets of equalities and inequalities.

A pair of trees ⟨T , T ′⟩ satis�es an std of the form above if for each tuple ā, b̄ such that

T ⊧ π(ā, b̄) and α(ā, b̄) holds, there exists a tuple c̄ such that T ′ ⊧ π′(ā, c̄) and α′(ā, c̄)
holds.
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An XML schema mapping is a triple M = ⟨Ds ,Dt , Σ⟩, where

➠ Ds is the source DTD, Dt is the target DTD,

➠ Σ is a set of stds.

Given a tree T conforming to Ds, a solution for T under M is a tree T ′ such that

➠ T ′ conforms to Dt ;

➠ ⟨T , T ′⟩ satis�es all the stds in Σ (written ⟨T , T ′⟩ ⊧ Σ).

We also pay special attention to a restricted set of stds, called fully-speci�ed stds. Pat-

terns for fully-speci�ed stds are given by the grammar:

π := ℓ(x̄)[λ], where ℓ ∈ L

λ := є ∣ π ∣ λ, λ
(3.2)

In other words, (3.2) disallows wildcard and descendant compared to (3.1).

As seen later in this chapter and the following chapters, the restriction of stds to fully-

speci�ed ones leads to a tractable subclass of the problem.

3.1.1 An Example of XML SchemaMapping

In this subsection we give a concrete example of XML schema mapping, to clarify the

de�nition above.

Consider the following DTD, and a tree T1 conforming to it depicted in Figure 1.

novels→ novel∗

novel→ authoryear novel∶@name

author→ є author∶@name

year→ є year∶@year

Let us consider the following mapping. �e dependency takes a pair of novels by

the same author, and put the earlier novel (assuming the original database follows the

chronological order as in �gure 1) with the child node indicating what is the next novel by

the author.

novels[novel(x)/author(y)→ novel(z)/author(y)]
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novels

novel

(�e Heart of Midlothian)

author

(Walter Scott)
year

(1818)

novel

(Ivanhoe)

author

(Walter Scott)
year

(1819)

novel

(New Arabian Nights)

author

(R.L.Stevenson)
year

(1882)

novel

(Treasure Island)

author

(R.L.Stevenson)
year

(1883)

Figure 1. a small Scottish literature library

novels

novel

(�e Heart of Midlothian)

author

(Walter Scott)
next

(Ivanhoe)

novel

(New Arabian Nights)

author

(R. L. Stevenson)
next

(Treasure Island)

Figure 2. a small Scottish literature library, transformed

→ novels/novel(x)[author(y), next(z)]

A solution for T1 is depicted in Figure 2.

Note that the semantics of data exchange speci�es only the lowerbound and cannot

specify the upperbound, in the sense that it speci�es what there should be but not what

there should not be. �us the tree in Figure 3 is another solution for T1.

3.1.2 Classification of schemamappings

In general, mappings can use vertical and horizontal navigation as well as data compar-

isons. For restricted classes of schema mappings we use the following notation. For a

subset σ ⊆ {↓, ↓∗,→,→∗, =, ≠}, we write SM(σ) to denote the class of schema mappings

novels

novel

(�e Heart of Midlothian)

author

(Walter Scott)
next

(Ivanhoe)

novel

(New Arabian Nights)

author

(R.L.Stevenson)
next

(Treasure Island)

novel

(Prince Otto)

author

(R.L.Stevenson)
next

(Strange Case of Dr
Jekyll and Mr Hyde)

Figure 3. a small Scottish literature library: another solution

27



chapter 3. static analysis in xml data exchange 3.2 Complexity of Tree Patterns

in which stds use only the operations from σ .

A special attention is paid to the class of nested relational schemamappings, i.e., schema

mappings with nested relational DTDs. By SMnr(σ) we denote the class of nested rela-

tional schemamappings in SM(σ). �e exemplary mapping described above is in SMnr(↓
,→).

To simplify notations, we use abbreviations:

➠ ⇓ for {↓, ↓∗} (vertical navigation);

➠ ⇒ for {→,→∗} (horizontal navigation);

➠ ∼ for {=, ≠} (data value comparisons).

Under these notations, SM(⇓) is the precisely the class of mappings studied in [12] (as in

[12], we do not restrict variable reuse in target patterns).

3.2 Complexity of Tree Patterns

We �rst look at some basic properties related to satis�ability of patterns, the complexity

of their evaluation, both the data and the combined complexity of it.

�e �rst problem is the satis�ability for tree patterns. Its input consists of aDTDD and

a pattern π(x̄); the problem is to check whether there is a tree T that conforms to D and

has a match for π (i.e., π(T) ≠ ∅). �is problem is NP-complete; the result is essentially

folklore as it appeared in many incarnations in the literature on tree patterns and XPath

satis�ability (see, e.g.,[8, 19, 25, 59]). For the sake of completeness we give a simple proof,

which applies to patterns in the way they are de�ned here.

Lemma 3.1 �e satis�ability problem for tree patterns in NP-complete.

Proof. We start by introducing two concepts that will be used in several proofs. By domT

we denote domain of the tree T , and by T(v) we understand the label of the node v. A

realisation of a tree pattern φ in a tree T is a consistent assignment of a node to each subfor-

mula of φ. Each realisation ξ of φ yields exactly one valuation of φ’s variables; we denote

it by val(ξ). Clearly, T ⊧ φ[a] i� there exists a realisation ξ of φ in T such that val(ξ) = a.
Analogously, we can de�ne realisation for a formula and a partial valuation of its variables.

Suppose T ⊧ φ and let ξ be a realisation of φ in T . Let Z = {v ∈ domT ∶ ∃w vw ∈ im ξ},
and let T ′ be obtained from T by restricting the domain to Z. We will call T ′ the support

of ξ and denote it supp ξ.
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r

a

a1

a2

a3

b

c d

a4

e f

(a) A realisation in a tree

r

a a2

a3

b

c

a4

e

(b) �e support of the realisation

Figure 4. A realisation of r[//a, //b/c, //e] in a tree and its support

For example, consider a tree pattern φ = r[//a, //b/c, //e]. �is pattern is satis�ed

by a tree T given in Figure 3.4(a) with the obvious assignment ξ which appropriately as-

signs subformulae to the encircled nodes. To obtain supp ξ, we remove the nodes that are

“beyond” im ξ. �e result is shown in Figure 3.4(b).

First, let us see that for each φ satis�able with respect to a DTD D over Γ, there exists

a realisation with O(∣∣φ∣∣ ⋅ ∣Γ∣)-support. Take a tree T conforming to D and satisfying φ.

Let ξ be a realisation of φ in T . Divide the nodes of supp ξ into three categories: the nodes

from the image of ξ’s are red, the nodes which are not red and have more then one child

are green, the others are blue. For example, in Figure 3.4(b) the encircled nodes are red, a2

is green, a3, a4 are blue. Let Nred, Ngreen, and Nblue be the numbers of red, green, and blue

nodes.

By de�nition, Nred ≤ ∣∣φ∣∣. Also Ngreen ≤ ∣∣φ∣∣: when going bottom-up, each green node

decreases the number of subtrees containing a red node by at least one, and since in the

root we arrive with one subtree containing a red node, Ngreen ≤ Nred. By a pumping

argument wemay assume that all blue paths in supp ξ are not longer than ∣Γ∣. �e number

of maximal blue paths is at mostNred+Ngreen. Hence there are at most 2∣∣φ∣∣ ⋅ ∣Γ∣ blue nodes.
All together we have at most 2∣∣φ∣∣ ⋅ (∣Γ∣ + 1) nodes.

Now, to decide satis�ability, �rst guess a polynomial support and a realisation. Ver-

ifying the realisation is polynomial in the size of the formula and the support, hence it

is polynomial. Verifying that the support is actually a restriction of a tree conforming to

D requires a consistency check which amounts to deciding if a given word w is a subse-

quence of a word from the language de�ned by a given regular expression. �e latter can
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be done in polynomial time. Translate the regular expression into a non-deterministic

automaton A. Add epsilon transition from p to q whenever q is reachable from p. �e

modi�ed automaton accepts subsequences of words accepted by A.

To get NP-completeness we do a standard 3CNF SAT reduction. In fact, we will only

use SM○(↓). Take a formula φ = ⋀k
j=1 Z

1
j∨Z

2
j ∨Z

3
j with Z

i
j ∈ {x1, x2, . . . , xn , x̄1, x̄2, . . . , x̄n}.

Consider a DTD D

r → x1x2⋯xn

xi → {C j ∣ ∃ℓZℓ
j = xi}∣{C j ∣ ∃ℓZℓ

j = x̄i} 1 ≤ i ≤ n

over the alphabet {x1, x2, . . . , xn ,C1,C2, . . . ,Ck}. In the second rule, interpret each set as

a concatenation of all its elements.

�e labels C j are intended to correspond to Z1
j ∨ Z2

j ∨ Z3
j . Each tree conforming to D

encodes a valuation of all variables xi : for each xi it stores either all conjuncts made true

by assigning 1 to xi , or all conjuncts made true by assigning 0 to xi .

�e satis�ability of the given 3SAT formula φ is equivalent to the satis�ability of a

formula r[_/C1, _/C2, . . . , _/Ck] with respect to D.

We next look at data and combined complexity of evaluating tree patterns. For data

complexity, we �x a pattern π, andwewant to check for a given treeT and a tuple āwhether

T ⊧ π(ā). For combined complexity, the question is the same, but the input includes T , ā

and π.

Since patterns are essentially conjunctive queries over trees, the data complexity is in

DLOGSPACE (and the bound cannot be lowered in general, since transitive closures of

↓ and → may have to be computed). And since they are nicely structured conjunctive

queries, the combined complexity is tractable as well. More precisely, we have:

Proposition 3.2 �e data complexity of evaluating tree patterns is DLOGSPACE-complete,

and the combined complexity is in PTIME.

Proof. Take a tree pattern π, a valuation ā and a tree T . Checking that T ⊧ π[ā] can be

done in PTIME by a bottom up evaluation of the sub-patterns of π[ā]. Annotate each
node v with a set Φ(v) containing those subformulae of π[ā] which are satis�ed in v. If v
is a leaf labelled with σ and storing a tuple b̄, let Φ(v) contain all sub-patterns of π[ā] of
the form σ ′(b̄), with σ ′ ∈ {σ , _}. If v is an internal node labelled with σ , having children

v1, v2, . . . , vk , and storing a tuple b, let Φ(v) contain all sub-patterns of π[ā] of the form
σ ′(b̄)[λ1, λ2, . . . , λp] satisfying
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➠ σ ′ ∈ {σ , _},

➠ for each λi = //π1 there exists a node v j such that //π1 ∈ Φ(v j) or π1 ∈ Φ(v j),

➠ for each λi = π1 ↝1 π2 ↝2 . . . ↝r−1 πr there exists a sequence 1 ≤ n1 < n2 < . . . <

nr ≤ k such that π j ∈ Φ(vn j), and if↝ j=→ then n j+1 = n j + 1 for all j,

and all sub-patterns of π[ā] of the form //π1 satisfying π1 ∈ Φ(v j) or //π1 ∈ Φ(v j) for
some j. T ⊧ π[ā] i� π[ā] ∈ Φ(ε).

Let us now consider the data-complexity, i.e., suppose we are given T and ā and are

to check if T ⊧ π[ā] for some �xed pattern π. In order to store a realisation of π[ā] in
T , we need only logarithmic space: a �xed number of “pointers” to the tree. Verifying a

given realisation amounts to reachability tests in the tree plus local consistency checks,

which can be done in DLOGSPACE. Hence, if only we can do the reachability test in

DLOGSPACE, we can get a DLOGSPACE algorithm by simply iterating over all possible

realisations until we get a correct one, or �nd out that none such exists.

To see that we can do reachability tests, notice that one can compute the descendant

and the younger-sibling relations in a tree in DLOGSPACE since reachability is known to

be in DLOGSPACE over graphs in which every node has at most one outgoing edge. �is

is the case for the next-sibling relation; for the child relation, we simply invert it, obtaining

the parent relation that satis�es the property, compute its transitive closure, which gives

us the ancestor relation, and then invert it to get descendant.

Finally, DLOGSPACE-hardness follows from the hardness of reachability over successor-

relations [86]; hence even evaluating r[a →∗ b] over a tree of depth 1 is DLOGSPACE-

hard.

3.3 Consistency

We start by analysing consistency. As its name suggests, this is essentially our version of

satis�ability. But the di�erence from classical versions is that we have to reason about two

structures. Also our tree pattern language is fairly positive, not allowing use of negation.

Because of these the proof cannot be a simple adaptation of the known results, for example,

in XPath or FO2.

We say that a mapping is consistent if Mod(M) ≠ ∅; that is, if SolM(T) ≠ ∅ for some

T ⊧ Ds. �e main problem we consider is the following:
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Problem: cons(σ)
Input: A mapping M = (Ds ,Dt , Σ) ∈ SM(σ)

Question: Is M consistent?

�e important observation made in [12] was that data values can be ignored when

dealing with downward mappings. We de�ne α○ for an attribute formula α as follows.

➠ _○=_;

➠ ℓ○=ℓ;

➠ ℓ(x1, . . . , xn)○=ℓ.

We write φ○ for the expression obtained by substituting α○ for every attribute formula α

in φ, and Σ○ is obtained by every ψ ∶− φ ∈ Σ replaced with ψ○ ∶− φ○.

Fact 3.3 ([12]) Both cons(⇓) and cons○(⇓) are EXPTIME-complete. If we restrict to

nested-relational DTDs in schemamappings, then cons(⇓) is solvable in polynomial (cubic)

time.

First we show that in absence of data comparison, the complexity stays the same.

�eorem 3.4 �e problem cons(⇓,⇒) is solvable in EXPTIME (and thus it is EXPTIME-

complete).

Before proving the theorem, we separately state two lemmas. �e original proof was

for mapping/patterns using only downward navigation, but it can easily extended to ac-

commodate horizontal navigation.

�e following result shows that, without data comparisons, cons(⇓,⇒) is no harder

than cons○(⇓,⇒).

Proposition 3.5 ([12]) An XML schema mapping M = ⟨D1,D2, Σ12⟩ ∈ SM(⇓,⇒) is con-
sistent if and only if ⟨D1,D2, Σ

○
12⟩ is consistent.

Also important is that we can use automata to reason about tree patterns as long as it

does not use variables.

Proposition 3.6 ([12]) �ere is an exponential time algorithm that , given a variable-free

tree-pattern formula φ, constructs a deterministic tree automaton A(φ) such that

T ⊧ φ i� A(φ) accepts T
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Note that we can construct the complementary automata in exponential time since it is de-

terministic.

Proof of �eorem 3.4. For a mapping ⟨Ds ,Dt , Σ⟩ to be consistent, there must exist a pair

⟨T1, T2⟩ such that for all φ → ψ ∈ Σ it holds that T1 ⊧ φ implies T2 ⊧ ψ. Suppose Σ =

{φi → ψi ∣ i = 1, 2, . . . , n}. �en the existence of such a pair is equivalent to the existence

of a subset I ⊆ {1, 2, . . . , n} satisfying

➠ there exists T1 ⊧ Ds such that T1 /⊧ φ j for all j /∈ I,

➠ there exists T2 ⊧ Dt such that T2 ⊧ ψi for all i ∈ I.

�is amounts to nonemptiness of the following automata:

➠ ADs ×∏ j/∈I Ā(φ j),

➠ ADt ×∏ j∈I A(ψ j).

It is known (see [38]) that testing nonemptiness of A1 × ⋯ × Ak can be done in time

O(∣A1∣×⋯× ∣Ak ∣). Since the construction of each A(φ) takes exponential time, the overall

complexity is EXPTIME.

�e impact of horizontal ordering becomes apparent when we consider nested rela-

tional mappings. Unlike the downward fragment SM(⇓), we are not able to check consis-
tency feasibly (unless P=PSPACE).

Proposition 3.7 cons(⇓,→) over nested relational DTDs is PSPACE-hard.

Proof. We show PSPACE-hardness using reduction from Q3SAT. Suppose we are given a

formula Q1x1⋯Qnxn C1 ∧C2 ∧ . . . ∧Cm, where Qi ∈ {∀, ∃} and each conjunct Ci consists

of 3 atomic disjuncts, e.g., (x1 ∨ x̄3 ∨ x7).
De�ne the source DTD Ds over the alphabet {r, ♯, ♮, t1, t2, . . . , tn , f1, f2, . . . , fn} as

r → ♯ t1 f1 ♮ if Q1 = ∀

r → ♯ t1? f1? ♮ if Q1 = ∃

ti , fi → ♯ ti+1 fi+1 ♮ for all i < n such that Qi+1 = ∀

ti , fi → ♯ ti+1? fi+1? ♮ for all i < n such that Qi+1 = ∃

tn , fn → є

�e target DTD Dt is simply r → є. Note that both DTDs are nested-relational.
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Intuitively, ti means that xi is assigned “true”, and fi means it is assigned “false”. For

universally quanti�ed variables the DTD requires branching, which corresponds to two

values of the variable. For existentially quanti�ed variables we have to choose one truth

value, but it does not prevent us from choosing none or both. �is will be taken care of by

the constraints.

�e key observation is that in the presence of sibling orderwe can enforce the existence

of a node. Let � be a tree pattern incompatible with the target DTD, r[ f ] for instance.
Consider the following constraints:

r//_[♯→ ♮]→ � ,

r//_[ti , fi]→ � for all i ≤ n such that Qi = ∃ .

�e �rst one says that at least one of ti and fi appear. �e second one says that if Qi = ∃,

at most one of ti and fi appear.

Finally, for each Ci we add a constraint enforcing that it is satis�ed, e.g., for a conjunct

(xi ∨ x̄ j ∨ xk), we add

r// fi//t j// fk → � .

It is straightforward to see that consistency of this mapping is equivalent to satis�ability

of the given Q3SAT formula.

We now move to classes of schema mappings that allow comparisons of attribute val-

ues. It is common to lose decidability (or low complexity solutions) of static analysis prob-

lems once data values and their comparisons are considered [27, 39, 51, 90]. Here we wit-

ness a similar situation. �e proofs, however, cannot be simple adaptations of existing

proofs which showed undecidability of such formalisms as FO3 [27] or Boolean combina-

tions of patterns with data value comparisons [39].�e reason is the very “positive” nature

of stds in schemamappings: the use of negation is limited to the implication in stds, while

known undecidable formalisms can use negation freely.

Nevertheless, we can prove a very strong undecidability result: having either descen-

dant or next sibling, together with either = or ≠, leads to undecidability of consistency.

�eorem 3.8 �e following problems are undecidable:

➠ cons(↓∗, =);

➠ cons(↓∗, ≠);
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➠ cons(→, =);

➠ cons(→, ≠).

In particular, cons(⇓,⇒, ∼) is undecidable.

Proof. Wedescribe reduction fromhalting problemof 2-registermachine, which is known

to be undecidable ([80]). �at is, given a 2-register machine (de�ned below), we construct

a schema mapping that is consistent i� the machine halts. Trees encoding runs of a 2-

register machine will be of the form:

r

I1(0, 0)

I1(1, 0)

⋮

R(0)

R(1)

⋮

Intuitively, the le� branch is meant to represent sequence of states with data values rep-

resenting registers while the right one is a sequence to represent natural numbers. We do

not have any equality test against a constant (say, a natural number). So, what we really

do is simulate values by the depth from the root. More concretely 0 and 1 above might as

well be ♯ and ∗. Whatever they are, we simply take the value at the 0th level as 0 and the

1st level as 1, and so on. �e above tree can be easily described by a DTD. To make sure it

is a proper run of the given machine, we use stds to check that the registers change their

values according to legal transitions.

Let us now describe the reduction in detail. A 2-register machine M consists of a set

of states Q = {1, 2, . . . , f }, a list of instructions I = ⟨Ii ∣ i ∈ Q ∖ { f }⟩ (one instruction
for each state apart from the last state f ), and two registers r1 and r2, each containing a

natural number. An instantaneous description (ID) of M is a triple ⟨i ,m, n⟩ where i ∈ Q
and m, n ∈ N are natural numbers stored in r1 and r2, respectively.

An instruction of 2-register machine is either increment or decrement, and de�nes the

transition relation→M between IDs.

increment Ii = ⟨r, j⟩, where i ∈ Q and r is one of r1 and r2. �is means that M in state i

increments r and goes to state j:

⟨i ,m, n⟩→M

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

⟨ j,m + 1, n⟩ if r = r1 ,

⟨ j,m, n + 1⟩ if r = r2 .
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decrement Ii = ⟨r, j, k⟩, where i , j, k ∈ Q and r is one of the two registers. �is means

that M in state i can test whether r is 0, and go to state j if it is, or decrement r and

go to k if it is not. In symbols,

⟨i ,m, n⟩→M

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⟨ j, 0, n⟩ if r = r1 and m = 0 ,

⟨ j,m − 1, n⟩ if r = r1 and m ≠ 0 ,

⟨ j,m, 0⟩ if r = r2 and n = 0 ,

⟨ j,m, n − 1⟩ if r = r2 and n ≠ 0 .

�e initial ID is ⟨1, 0, 0⟩ and the �nal ID is ⟨ f , 0, 0⟩. �e halting problem for 2-register

machine is to decide, given a 2-register machine M, whether ⟨1, 0, 0⟩→∗M ⟨ f , 0, 0⟩.
Let us now describe how to construct a mapping, which is consistent i� the given

machine halts. �e source DTD Ds over the alphabet {r, I1, I2, . . . , I f , R, ♯} is given by

r → I1R

Ii → I j for all i such that Ii = ⟨r, j⟩

Ii → I j∣Ik for all i such that Ii = ⟨r, j, k⟩

R → R∣ ♯

I f , ♯→ ε

where each Ii has two attributes corresponding to the values of the registers, and R has

one attribute. �e target DTD Dt is simply {r → є}. �e stds Σ are described below.

As mentioned above, the sequence of R’s is meant to be that of natural numbers, but

what represents a number is the depth in the tree instead of a value itself. In other words,

the data values are used as indices, so they must be unique. �e following disallows two

values to appear more than once.

//R(x)//R(x)→ �

Let us now deal with the le� branch, which is meant to encode the run itself. We have

assumed that the initial ID is ⟨1, 0, 0⟩; the constraints below exclude other situations.

r[I1(x , y), //_/R(x)]→ �

r[I1(x , y), //_/R(y)]→ �
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Now, let us check that we proceed correctly. For each i such that Ii = ⟨r1, j⟩, we need to

enforce that there is a number in the R-branch to set the value of r1 to, and that the next

con�guration is indeed obtained by increasing r1.

r[//Ii(x , y), //R(x)/ ♯]→ �

r[//Ii(x , y)/I j(x′, y′), //R(x)/R(x′′)]→ x′ = x′′, y′ = y

For each i such that Ii = ⟨r1, j, k⟩, we need to say: if the next state is k, then r1 stores 0,

and both registers stay the same; if the next state is j, then r1 does not store 0, the register

r1 gets decreased, and r2 stays the same.

r[//Ii(x , y)/Ik(x′, y′), R(x′′)]→ x = x′′, x′ = x , y′ = y

r[//Ii(x , y)/I j , R(x)]→ �

r[//Ii(x , y)/I j(x′, y′), //R(x′′)/R(x)]→ x′ = x′′, y′ = y

For each i such that Ii = ⟨r2, j⟩ or Ii = ⟨r2, j, k⟩ we add analogous stds.

Finally, we have to make sure that we end properly. In each source tree, the le� branch

must end with I f , so we do not need to check that. It is enough to say that both registers

are set to 0.

r[//Ii(x , y)/ ♯, //_/R(x)]→ �

r[//Ii(x , y)/ ♯, //_/R(y)]→ �

�e obtained mapping ⟨Ds ,Dt , Σ⟩ is consistent i� there is a halting run of the given

2-register machine.

Rotating the encoding by 90 degrees, we get undecidability of cons(→,→∗, =). �e

source DTD is now de�ned as

r → ♯R∗ ♮{I1, I2, . . . , I f }∗ ♭

and the target DTD remains r → ε. We have lost the restriction on consecutive labels Ii ,

so we need to enforce it with the stds:

r[Ii → I j]→ � for all i , j such that Ii ∉ {⟨r, j⟩, ⟨r, j, k⟩, ⟨r, k, j⟩ ∣ k ∈ Q , r = r1, r2} ,

r[♮→ I j]→ � for all j ≠ 1 ,

r[Ii → ♭]→ � for all i ≠ f .
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A�er rotating, all stds apart from //R(x)//R(x)→ � can be written naturally without

→∗. For instance, r[I1(x , y), //_/R(x)] → � becomes r[♮ → I1(x , y), _ → _ → R(x)] →
�, and r[//Ii(x , y)/I j , R(x)] → � becomes r[Ii(x , y) → I j , ♯ → R(x)] → �. �e std

//R(x)//R(x)→ � can be rewritten as r[R(x)→∗ R(x)]→ �.

In order to get undecidability of cons(→, =), we need to enforce the property above

without →∗. Due to non-injective semantics of tree patterns, we cannot distinguish be-

tween something happening once and twice, which means we need a trick. �e idea is

to disallow having two consecutive data values equal (the �rst std), and switching from

one data value to two di�erent ones (the second std), or switching to a data value and the

ending marker (the third std).

r [R(x)→ R(x)]→ �

r [R(x)→ R(x′), R(y)→ R(y′)] , x′ = y′ → x = y

r [R(x)→ R, R(x)→ ♯]→ �

�ese three conditions imply that a value cannot repeat in two consecutive nodes, and if

it repeats in two distinct nonconsecutive nodes, the sequence of children between these

two nodes has to repeat forever. �e latter obviously cannot happen in a �nite tree, which

means that all the data values stored in the R nodes are di�erent.

In is not di�cult to rewrite all the stds in the vertical and horizontal version with

≠ instead of =. First, get rid of equality on the target side: replace all stds of the form

φ → x = y, z = w with φ, x ≠ y → � and φ, z ≠ w → �. On the source side, we only used

equality in the form of the variable x repeating twice. To get rid of this, in the stds obtained

in the previous stage replace the two occurrences of x with x1 and x2, add x1 ≠ x2 on the

target side and remove �. �is proves undecidability of cons(↓∗, ≠) and cons(→, ≠).

�is result raises the question whether there is any useful decidable restriction of

SM(⇓,⇒, ∼). We know from papers such as [51] that getting decidability results for static

analysis problems that involve data values is a very nontrivial problem. �is time, nested-

relational DTDs give us a decidable restriction, if there are no horizontal axes.

�eorem 3.9 Under the restriction to nested-relational DTDs:

➠ the problem cons(⇓, ∼) is NEXPTIME-complete;

➠ the problem cons(⇓,⇒, ∼) is undecidable.
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Proof. We use reduction from satis�ability of Bernays-Schoen�nkel formulae, which is

known to be NEXPTIME-hard ([30, 69, 86]). Let the given formula be

∃x1⋯∃xm∀xm+1⋯∀xn
k

⋀
i=1

ℓ

⋁
j=1

Ci , j ,

whereCi j is an atomor a negated atom. It is known that if a Bernays-Schoen�nkel formula

has a model at all, it has a model of size N = m+maxR ar(R). �e idea is to guess a model

in the source tree, with assistance of the target tree. We encode models as trees of the

following form:

x1

x2

⋮
xm

xm+1,1

xm+2,1

⋮

xn,1

∧

∨1
C1,1 C1,2

⋯ ∨k

⋯

⋯ xm+2,N

⋯

⋯ xm+1,N

⋯

Each xi and xi , j holds a value (as an attribute). �e initial sequence of xi ’s encodes the

existential guesses. Below, each of the branching xi , j paths corresponds to the universal

guesses. �us each path from x1 to xn, j is a valuation of all variables. At the bottom of each

path we store truth values of the literals Ci , j with respect to this valuation. One remaining

problem is that we have to make sure that all the values come from a �xed N-element

universe. For that purpose we will encode the universe in target trees of the form

r

v1 ⋯ vN

and ensure that each value appearing in the source appears in the target.

Let us now formalise these ideas. De�neDs over {r, v , x1, x2, . . . , xm ,∧,∨1,∨2, . . . ,∨k}∪
{yi , j}ni=1

N
j=1 ∪ {Ci , j}ki=1

ℓ
j=1 as

r → t f x1
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xi → v xi+1 1 ≤ i < m

xm → v y1,1 y1,2⋯ y1,N

yi , j → v yi+1,1 yi+1,2⋯ yi+1,N 1 ≤ i < n, 1 ≤ j ≤ N

xn,i → v ∧ 1 ≤ i ≤ N

∧→ ∨1 ∨2 ⋯∨k

∨i → Ci ,1 Ci ,2⋯Ci ,ℓ

Ci , j∶@attr 1 ≤ i ≤ k, 1 ≤ j ≤ ℓ

v , t, f ∶@attr

and Dt over {r, v , v1, v2, . . . , vN} as

r → v1 v2⋯ vN

vi → v 1 ≤ i ≤ N

v∶@attr

Apart from the the encoding of the model described above, we store sample truth

values in the nodes t (true) and f (false). Note that each “variable” node has a child v (not

in the picture above), which is meant to hold the assigned value. �e attribute of each

node labelled with Ci , j will be used to store the truth value wrt the valuation encoded by

the path leading to this node.

Let us now describe the stds. To avoid confusion with the Bernays-Schoen�nkel for-

mula’s variables, we will be using capital letters for variables in stds.

First, make sure that the sample truth values are not equal, and that each value stored

in a Ci , j node is one of the sample truth values:

r[t(X), f (X)]→ �

r[t(T), f (F), //Ci , j(X)], X ≠ T , X ≠ F → � for all i , j .

Second, check that all the “variable” values are taken from the universe encoded by the

target tree:

//v(X)→ //v(X) .

Since each branching for xi with i > m is meant to be a universal quanti�cation, all the
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data values must be di�erent:

//_[xi ,p[v(X)], xi ,q[v(X)]] ∶− � for all i > m and p ≠ q .

Next, we need to make sure that the truth values of relations are consistent. Let us

de�ne an auxiliary tree pattern pathi(X1, . . . , Xi)[ψ] as

path1(X1)[ψ] = _[v(X1),ψ] ,

pathi+1(X1, X2, . . . , Xi+1)[ψ] = _[v(X1), pathi(X2, X3, . . . , Xi+1)[ψ]] .

We omit the subscript i, since it is clear from the number of arguments: for instance,

path(X ,Y , Z)[ψ] = _[v(X), _[v(Y), _[v(Z),ψ]]]. To enhance appropriate intuitions, we
slightly abuse the notation, writing path(X1, . . . , Xn)/ψ instead of path(X1, . . . , Xn)[ψ];
and also path(X1, X2, . . . , Xn)//ψ instead of path(X1, X2, . . . , Xn)[//ψ].

Take Ci , j = K(xi1 , xi2 , . . . , xis) and Ci′ , j′ = M(xi′1 , xi′2 , . . . , xi′s), with K ,M ∈ {R, R̄}
for some relational symbol R used in our formula. We have to check that for every two

valuations ā and b̄ for which aip = b jp , the values of Ci ,i′[ā] and C j, j′[b̄] coincide. For
K = M this is expressed by

r [path(X1, X2, . . . , Xn)//Ci , j(V), path(X′1 , X
′
2, . . . , X

′
n)//Ci′ , j′(V ′)] ,

Xi1 = X
′
i′1
, . . . , Xis = X

′
i′s
→ V = V ′

and for K ≠ M replace V = V ′ with V ≠ V ′.

Finally, we have to ensure the truth values assigned make our formula true:

r[ f (F), //∨i [Ci ,1(F), . . . ,Ci ,ℓ(F)]→ � for all 1 ≤ i ≤ k .

It is straightforward to see that themapping is consistent i� the given formula is satis�able.

LetM = ⟨Ds ,Dt , Σ⟩ be a schema mapping with Ds and Dt nested-relational. First

recall that tree pattern formulae (even with =, ≠, and→∗) are monotone in the following

sense: for any tree pattern formula φ, if T ′ is obtained from T by erasing some subtrees

and T ′ ⊧ φ, then T ⊧ φ. Roughly speaking, this allows us to consider the smallest tree

possible with regard to a DTD.We de�ne an operation ○ on DTDs as turning every ℓ∗ and

ℓ? into є and ℓ+ into ℓ, as in [12]. �emappingM is consistent i� ⟨D○s ,Dt , Σ⟩ is consistent.
Since disjunctions are not allowed in productions, we have only one tree conforming to

D○s (up to data values stored in the attributes). �e size of this tree is at most ∣∣Ds ∣∣∣∣Ds ∣∣.
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Suppose S ⊧ D○s , and T is a solution for S. We show that there exists a solution T ′,

single exponential in the size of the mapping. �e depth of a tree conforming to Dt is

bounded by ∣Dt ∣, as Dt is non-recursive, so we only need a bound on the branching width.

Consider

A = {ψ[ā] ∣ (φ, φ=,≠ → ψ,ψ=,≠) ∈ Σ and S ⊧ φ, φ=,≠[ā]} .

We already know that if ψ[ā] ∈ A, then ψ=,≠[ā] holds, since T is a solution for S. Hence,

T ′ is a solution for S i� T ′ ⊧ ψ[ā] for each ψ[ā] ∈ A. For each ψ[ā] ∈ A �x a realisation

ξψ[ā] in T . We will now trim unnecessary nodes from T . Fix a node v in T , and consider

its children. Let the child be red if it has a descendant used by one of the realisations ξψ[ā],

otherwise let the child be green. �e number of children painted red because of a single

realisation ξψ[ā] can be generously bounded by ∣∣Σ∣∣. Hence, the number of all red children

of v can be bounded by ∣∣Σ∣∣ ⋅ ∣A∣. In the worst case A contains ∣S∣∣var Σ∣ instances of the
target side of each pattern in Σ, hence we can bound the number of red children of v by

∣∣Σ∣∣ ⋅ ∣Σ∣ ⋅ ∣S∣∣∣Σ∣∣ ≤ ∣∣Σ∣∣2 ⋅ ∣∣Ds ∣∣∣∣Ds ∣∣∣∣Σ∣∣. Let T ′ be obtained from T as follows: for each v labelled

with ℓ cut o� those green children, whose label is under ∗ or + in the production for ℓ

(save for one if the label occurs under +). �us obtained T ′ conforms to Dt . Since no

node used by any ξψ[ā] has been removed, T ′ is a solution for S. �e number of children

of each node in T ′ can be bounded by b = ∣∣Σ∣∣2 ⋅ ∣∣Ds ∣∣∣∣Ds ∣∣∣∣Σ∣∣ + ∣∣Dt ∣∣, so the size of T ′ can be

bounded by (∣∣Σ∣∣2 ⋅ ∣∣Ds ∣∣∣∣Ds ∣∣∣∣Σ∣∣ + ∣∣Dt ∣∣)∣∣Dt ∣∣, which is clearly single exponential in the size of

the mapping.

With these bounds in mind, the algorithm for consistency is as follows: guess S ⊧

D○s with the data values in {1, 2, . . . , bs} and T ⊧ Dt with branching bounded by bt and

with data values in {1, 2, . . . , bt} (both trees are single exponential) and check if (S , T) ∈
JΣK. �e last check cannot be done in PTIME in general, but a naïve algorithm checking

each constraint against each possible valuation requires at most ∣Σ∣ ⋅ (∣S∣ + ∣T ∣)∣∣Σ∣∣ checks
polynomial in the size of S, T , and Σ. �at still gives an algorithm single exponential in

the size of the original input. Altogether this works in NEXPTIME.

Actually, we prove that even cons(→, =, ≠) restricted to nested-relational DTDs is

undecidable. �e proof is yet another modi�cation of the 2-register machine reduction.

Recall the proof for cons(→, =) . Observe that the reason the mapping used there is not

nested-relational is that we let the labels Ii interleave. We will get rid of it by introducing

one new label I, and storing the state i as an attribute. It will require a bit of hassle to make

sure the attributes are valued in the �xed set representing Q, and �nd out which state a

given value represents.
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Let the source DTD be

r → ♯ R∗ ♮ I∗ ♭ I1 I2 . . . I f

where I has 3 attributes, R and I j have 1 attribute. �e target DTD is still r → ε.

Wewant to think of the data value stored in Ii as the name of the state i of our 2-register

machine. For that purpose it is enough to say that no two are equal:

r [Ii(x), I j(x)]→ � for all i ≠ j

Next, let us make sure that each I node stores a state in its �rst attribute:

r [I1(x1), I2(x2), . . . , I f (x f ), I(y, y′, y′′)] , y ≠ x1, y ≠ x2, . . . , y ≠ x f → �

Now in the constraints used to prove undecidability of cons(→,→∗, =) replace each
occurrence of Ii(x , y) with I(zi , x , y), and add to the highest level of the tree pattern in

question a subformula Ii(zi) (for an occurrence of Ii take fresh variables z′, z′′ and write

I(zi , z′, z′′)). For instance, r[Ii(x , y) → I j , ♯ → R(x)] → � should now be rewritten as

r[Ii(zi), I j(z j), I(zi , x , y)→ I(z j , z′, z′′), ♯→ R(x)]→ �.

In the above we use both = and ≠. �e procedure used in the previous subsection to

replace = with ≠ will not work, since in stds like

r[Ii(zi), I j(z j), I(zi , x , y)→ I(z j , z′, z′′), ♯→ R(x)]→ �

we use two equalities, and we cannot replace them with inequalities on the target side

without disjunction.

Slightlymodifying theDTDswe could obtain undecidability ofcons(→, =) for nested-
relational DTDs.

3.4 Absolute Consistency

We now switch to a stronger notion of consistency. Recall that a mapping is consistent if

SolM(T) ≠ ∅ for some T ⊧ Ds. We say that M is absolutely consistent if SolM(T) ≠ ∅ for

all T ⊧ Ds. We consider the problem:
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Problem: abs-cons(σ)
Input: Mapping M = (Ds ,Dt , Σ) ∈ SM(σ)

Question: Is M absolutely consistent?

Reasoning about the complexity of absolute consistency is signi�cantly harder than

reasoning about the consistency problem. We know that cons(⇓) can be easily reduced

to cons○(⇓). However, eliminating data values does not work for absolute consistency.

Proposition 3.10 �ere exists an XML schema mapping ⟨DS ,DT , Σ⟩ that is not absolutely
consistent while ⟨DS ,DT , Σ

○⟩ is.

Proof. Consider the following setting.

DS = ⟨{r → ℓℓ, ℓ → є}, {⟨ℓ, a⟩}, r⟩

DT = ⟨{r → ℓ′, ℓ′ → є}, {⟨ℓ′, a⟩}, r⟩

Σ = {ℓ(x)→ ℓ′(x)}

If we consider Σ○, then this setting is easily seen to be absolutely consistent: For any tree

conforming to DS , r → ℓ′ is a solution. On the other hand, if we don’t drop data value, the

tree

r

ℓ(s1) ℓ(s2)

with s1 ≠ s2 conforms toDS , but has no solution.�is is because the onlyway to distinguish

node with tree-pattern formula is by di�erent data values. Hence the above tree enforces

two ℓ′’s, which violates DT .

�us, we cannot use purely automata-theoretic techniques for reasoning about abso-

lute consistency, even for downward navigation. In fact, the above example indicates that

to reason about absolute consistency even in that case, we need to reason about counts of

occurrences of di�erent data values.

Herewe settle the problemof absolute consistency in the case of downward navigation,

i.e., abs-cons(⇓).
We start with a simpler case of abs-cons○(⇓), i.e., checking absolute consistency of

mappingsM○ in which all references to attribute values have been removed. We show that

it has lower complexity than cons○(⇓). For such mappings, Σ is of the form {πi → π′i}i∈I ,
where patterns have no variables. To check consistency of such a mapping, we need to
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check whether there exists a set J ⊆ I such that Dt and all the π
′
j , j ∈ J are satis�able, while

Ds together with the negations of πk , k /∈ J, are satis�able. We know that this problem is

EXPTIME-complete [12]. On the other hand, for checking absolute consistency, we need

to verify that there does not exist J ⊆ I so that Ds and π j , j ∈ J, are satis�able but Dt

and π′j , j ∈ J, are not. Notice that absolute consistency eliminates the need for checking

satis�ability of negations of patterns. In fact, since satis�ability of patterns and DTDs is in

NP, the above shows that absolute consistency of mappings M○ falls into the 2nd level of

the polynomial hierarchy. We can be more precise:

Proposition 3.11 Checking whether M○ is absolutely consistent is Π
p
2 -complete.

Proof. Let us give a Σ
p
2 algorithm for the complementary problem. Let ⟨Ds ,Dt , {φi →

ψi ∣ i = 1, . . . , n}⟩ be a mapping. Guess a set I ⊆ {1, . . . , n} and verify that {φi ∣ i ∈ I} is
satis�ablewith respect toDs , and {ψi ∣ i ∈ I} is not satis�ablewith respect toDt . Checking

satis�ability of a set of tree patterns is easily reduced to single tree pattern satis�ability, e.g.,

for {r[γ1, γ2], r[δ1, δ2]} an equivalent single formula is r[γ1, γ2, δ1, δ2]. By Lemma 3.1 this

can be done in NP.�is shows that absolute consistency without data values is in Π
p
2 .

For Π
p
2 -hardness, we give a reduction form the validity of Π2 quanti�ed Boolean for-

mulae. For the sake of readability we write α/β/γ[ψ,ψ′] for α[β[γ[ψ,ψ′]]]. Satis�ability
of ∀x1⋯xm∃xm+1⋯xn⋀k

j=1 Z
1
j ∨ Z2

j ∨ Z3
j is equivalent to the absolute consistency of the

following mapping over the alphabet {t, f , x1, x2, . . . , xn ,C1,C2, . . . ,Ck}, where C j is in-

tended to correspond to Z1
j ∨ Z2

j ∨ Z3
j :

Ds ∶ r → x1x2⋯xm

xi → t∣ f 1 ≤ i ≤ m

Dt ∶ r → x1x2⋯xmxm+1⋯xn

xi → t{C j ∣ ∃ℓZℓ
j = xi}∣ f {C j ∣ ∃ℓZℓ

j = x̄i} 1 ≤ i ≤ n

Σ ∶ r/xi/t → r/xi/t 1 ≤ i ≤ n

r/xi/ f → r/xi/ f 1 ≤ i ≤ n

r → r/_/C j 1 ≤ j ≤ k

In the second rule for Dt , interpret each set as a concatenation of all its elements. Each

source tree encodes a valuation of the universally quanti�ed variables. Each target tree
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encodes a valuation of all variables xi and for each variable xi it stores all conjuncts made

true by assigning this particular value to xi .�e �rst two lines of constraintsmake sure that

the valuations coincide on common variables. �e third line checks that each conjunct is

true.

�e followingmain result proves decidability of absolute consistency for schemamap-

pings based on downward navigation:

�eorem 3.12 abs-cons(⇓) is decidable. In fact, the problem is solvable in EXPSPACE and

NEXPTIME-hard.

�e decidability proof is quite involved – we only give the main idea of it. Below we

�rst give the sketch of decidability, and then prove its NEXPTIME-hardness, stating them

as separate theorems. A slightly more detailed description of the decidability will be given

in the next subsection.

Lemma 3.13 abs-cons(⇓) is in EXPSPACE.

Proof. �e idea of the proof is actually quite simple, and standard. �e main goal is to

prove that we need a �nite number of data values to obtain a counterexample for absolute

consistency. To be more concrete, the proof culminates in the following lemma1:

Lemma3.14 Given a schemamappingM = ⟨Ds ,Dt , Σ⟩, we can compute M′ = ⟨D′s ,D
′
t , Σ
′⟩

such that

➠ Ds ,Dt are both non-recursive and do not use
∗ in productions;

➠ D′s ,D
′
t generate trees of size at most exponential in the size of Ds ,Dt , respectively;

➠ if M′ is not absolute consistent, then there exists a counterexample using at most

ℓD′s(ℓD′t + 1) data values, where ℓD is the maximum number of leaves that D can

have so that in particular ℓD′s , ℓD′t are at most exponential in the size of original DTDs

Ds ,Dt , respectively.

Let us see this implies the statement of the theorem. Consider themapping ⟨Ds ,Dt , Σ⟩
with the data-domain restricted to the set {1, 2, . . . , ℓDs(ℓDt + 1)}. One can check the

absolute consistency of this mapping in exponential space in the following way.

By Savitch’s�eorem, it is enough to give a non-deterministic algorithm for the com-

plementary problem. For this simply guess a subset of constraints {ψ1 → φ1, . . . ,ψk →

1�is is a little imprecise: see the next subsection.
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φk} ⊆ Σ together with a set A of valuations of var{ψ1, . . . ,ψk} in {1, 2, . . . , ℓDs(ℓDt + 1)},
and check that {ψ1, . . . ,ψk}[A] is satis�able with respect toDs, and {φ1, . . . , φk}[A] is not
satis�able with respect to Dt . �is can be done just like ordinary satis�ability (cf. proof of

Lemma 3.1)

Aside: We cannot use automata nonemptiness to get the desired bound since the num-

ber of patterns (which is essentially the size of an assignment) is exponential. It would give

a double exponential algorithm.

�e algorithm described above is in fact a Π
p
2 procedure run over exponentially large

data. Below we show that the absolute consistency problem is NEXPTIME-hard. �is

hardly leaves space for improvement.

�eorem 3.15 Absolute consistency is NEXPTIME-hard even if we allow only nested rela-

tional DTDs and only one of the operation _, //.

Proof. Wewill reduce satis�ability of Bernays-Schoen�nkel formulae [69] to absolute con-

sistency. Let

φ = ∃x1∃x2 . . . ∃xm∀xm+1∀xm+2 . . .∀xn
k

⋀
i=1

ℓ

⋁
j=1

Ci , j .

If φ is satis�able, it has a model with at most N = m +maxR ar(R) elements. De�ne Ds

over {r, t, f , v , v1, v2, . . . , vN} as

r → v1 v2⋯ vN t f

vi → v 1 ≤ i ≤ N

v , t, f ∶@attr

and Dt over {r, v , y1, y2, . . . , ym ,∧,∨1,∨2, . . . ,∨k} ∪ {xi , j}ni=1
N
j=1 ∪ {Ci , j}ki=1

ℓ
j=1 as

r → x1,1 x1,2⋯x1,N y1

xi , j → v xi+1,1 xi+1,2⋯ xi+1,N 1 ≤ i < n, 1 ≤ j ≤ ℓ

xn,i → v ∧ 1 ≤ i ≤ N

∧→ ∨1 ∨2 ⋯∨k

∨i → Ci ,1 Ci ,2⋯Ci ,ℓ 1 ≤ i ≤ k

Ci , j → ww+

w ,w+ → u
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yi → yi+1 1 ≤ i < m

ym , v , u → ε

yi , v , u∶@attr 1 ≤ i ≤ m

In the source treeswe think of the data values stored in v-nodes as elements of the universe.

�e data values in t and f are intended to mean “true” and “false”. In the target tree each

x1,i1x2,i2⋯xn,in path encodes a valuation of φ’s variables. At the end of such a path we store

the truth values of literals with respect to the valuation given by the path: w stores the truth

value of the literal Ci j and w+ stores the truth value of the underlying atom. �e values in

y1, y2, . . . , ym are meant to witness the existential quanti�ers.

Like in the previous reduction from satis�ability of Bernays-Schoen�nkel formulae,

we use the abbreviation pathi , j(Xi , . . . , X j)/ψ de�ned on page 41, and write variables as

capital letters. Let us describe the constraints. First, make sure that the encoded truth

values yield φ true.

r[_/v(Xm+1), _/v(Xm+2), . . . , _/v(Xn), t(T)]

→ r[y1(X1)/⋯/ym(Xm), path(X1, . . . , Xn)/ ∧ [∨1/_/w/u(T), . . . ,∨k/_/w/u(T)]] .

Next, check that the truth values under w and w+ are assigned consistently. For each

negative literal Ci , j add

r[_/v(X1), _/v(X2), . . . , _/v(Xn), t(T), f (F)]

→ r/path(X1, X2, . . . , Xn)/ ∧ / ∨i /Ci , j[_/u(T), _/u(F)] ,

and for each positive literal Ci , j add

r[_/v(X1), _/v(X2), . . . , _/v(Xn)]

→ path(X1, . . . , Xn)/ ∧ / ∨i /Ci , j[w/u(W),w+/u(W)] .

Finally, make sure that the truth values of relations are consistent. Take subformulaeCi ,i′ =

K(xi1 , xi2 , . . . , xis) andC j, j′ = M(x j1 , x j2 , . . . , x js), withK ,M ∈ {R, R̄} for some relational

symbol R. We have to check that for every two valuations ā and b̄ for which aip = b jp , the

values of Ci ,i′[ā] and C j, j′[b̄] coincide. �is is expressed by

r[_/v(X1), _/v(X2), . . . , _/v(Xn), _/v(Y1), . . . , _/v(Yn), _/v(Z1), . . . , _/v(Zn)]
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→ r[path(Ξ1, . . . , Ξn)/∧/∨i/Ci ,i′/w+/u(W), path(Υ1, . . . , Υn)/∧/∨ j/C j, j′/w+/u(W)],

where the variables Ξp and Υp are computed as follows. Let

G = ⟨{Ξp , Υp ∣ p = 1, 2, . . . , n}, {{Ξip , Υjp} ∣ p = 1, 2, . . . , s}⟩ .

For each connected component S of the graph G: if S = {Ξp}, set Ξp = Xp; if S = {Υp},
set Υp = Yp; else, set each variable in S to the �rst so far unused variable Zq. For instance,

for Ci ,i′ = R(x2, x2), C j, j′ = R(x1, x2), and n = 2, we have two connected components,

{Ξ1} and {Ξ2, Υ1, Υ2}, so we set Ξ1 = X1, Ξ2 = Υ1 = Υ2 = Z1, and the obtained std is

r[_/v(X1), _/v(X2), _/v(Y1), _/v(Y2), _/v(Z1), _/v(Z2)] →

→ r[path(X1, Z1)/∧/∨i/Ci ,i′/w+/u(W), path(Z1, Z1)/∧/∨ j/C j, j′/w+/u(W)].

Let us now see that the reduction works as intended. Suppose that the mapping is

absolutely consistent. Take a tree S such that the data value stored under vi is the natural

number i, and the values stored under t and f are ⊺ and �, respectively. Since themapping

is absolutely consistent, there exists a solution T for S. It is easy to see that the constraints

enforce that T encodes a model for φ.

Conversely, suppose that φ has a model over {1, 2, . . . ,N}. Take a tree T encoding

this model, with data values ⊺ and � used to denote truth values. Let S ⊧ D1. Denote the

value stored under vi by ai , and the values stored under t and f by at and a f . Relabelling

data values we may assume that {a1, a2, . . . , aN} ⊆ {1, 2, . . . ,N}. If at ≠ a f , then we may

assume again that at = ⊺ and a f = �, and it is easy to see that T is a solution for S. If

at = a f , assume at = a f = ⊺ and replace each � in T with ⊺ to obtain a solution for S.

�is shows that absolute consistency is NEXPTIME-hard if we are allowed to use _

in the constraints. For the second case simply observe that replacing all occurrences of _

with // does not change the semantics of the constraints.

�eorem 3.12 indicates that any algorithm for solvingabs-cons(⇓)will run in double-
exponential time, and hence will be impractical unless restrictions are imposed. Restric-

tions to nested-relational DTDs o�en worked for us, but in this case they alone do not

su�ce, as we shall see shortly. In addition to nested relational DTDs, we shall need a re-

striction to fully-speci�ed stds, introduced in [12] to obtain tractable algorithms for query

answering in data exchange.
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�e combination of nested-relational DTDs and fully speci�ed stds gives us tractabil-

ity. Notice that this tractability is essentially tight: due to the preceding theorem, if we al-

low wildcard or descendant in patterns, the problem becomeNEXPTIME-hard for nested

relational DTDs.

�eorem 3.16 With restriction to nested relational DTDs and fully speci�ed stds, the prob-

lem abs-cons(⇓) is solvable in PTIME.

Proof. Nested relational DTDs allows only basic counting – one or many. As previously,

we assume, without loss of generality, that (1) attributes only appear leaves, (2) any label

has at most one attribute, and (3) no distinct dependencies share variables in the set of

stds. A variable x is 1-bounded with respect to a DTD D and a set of tree patterns Φ if it

appears in (a subformula of a formula in) Φ as r/σ1/⋯/σn(x), where none of σi ’s appear
with ∗ in D. Otherwise it is unbounded. It is clear that any unbounded variable on the

source side must also be unbounded, for a setting to be absolutely consistent.

�ere is another thing we have to check. Recall the example in Proposition 3.10. �e

problem is that DTDs might require that all the data on the source is the same. To detect

this kind of constraints, we need to check if a pair of variable will be “equated” or not. For

instance, if we have r[a(x), a(y)] with the DTD r → a, x and y will be necessarily equal.

In general we de�ne a binary relation x ∼ y on variable appearing in Φ: x ∼D,Φ y i� x and

y appear on the same path in Φ that is unique with respect to D.

Given a setting ⟨Ds ,Dt , Σ⟩, where Φ is the set of source patterns in Σ and Ψ is that of

target, we have the setting is absolutely consistent if and only if for all variables,

➠ x ∼Dt ,Ψ y implies x ∼Ds ,Φ y;

➠ and if x is unbounded on the source, then it is unbounded on the target.

Since both conditions are easy to check, we have tractability (quadratic, in fact) for abso-

lute consistency for nested relational DTDs and fully speci�ed stds.

3.4.1 Appendix: a Closer Look at the Proof of Theorem 3.13

�is subsection is dedicated to giving an outline of�eorem 3.13. As already mentioned,

the key is that we can bound the data domain.

Recall Proposition 3.10. �e failure of absolute consistency comes from the fact that

the source DTD can (generate a tree that can) hold two data values while the target can

only one.
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Storage

As suggested by this example, checking if a mapping is absolutely consistent amounts to

how many tuples the source DTD can hold compared with how many the target can. To

do this, we de�ne the notion of storage. Without loss of generality, we assume the data

domain is N.

Let us start with an example. �e storage of a DTD D with respect to a tree pattern φ

depends on the structure of sets A for which we can provide target trees. Consider a DTD

D de�ned as

r → a a

a → b c∗ ∣ b∗ c c

b, c∶@attr

and φ = r/a[b(x), c(y)]. It is straightforward to see that for arbitrary large natural num-

bers M ,N , there exists a tree T ⊧ D such that T ⊧ φ[a] for all assignments (from varφ to

N) a ∈ {0} × {0, 1, . . . ,N} ∪ {0, 1, . . . ,M} × {0, 1}. Also note that there does not exist a

tree conforming to D that satis�es φ for all valuations in {0, 1}×{0, 1, 2}. �us intuitively

the storage of D with respect to φ contains {0}× {0, 1, . . . ,N}∪ {0, 1, . . . ,M}× {0, 1} for
any M ,N but not {0, 1} × {0, 1, 2}.

Formally, for a DTDD and a set of formulae Φ, we de�ne the storage ofD with respect

to Φ as

val(D, Φ) = {val(T , Φ) ∣ T ⊧ D} ,

where val(T , Φ) is the set of partial valuations a ∶ var(Φ)⊸→ N such that for each φ ∈ Φ:

either varφ ∩ dom a = ∅, or varφ ⊆ dom a and T ⊧ φ[a] (no two formulae of Φ share a

free variable). Note that for a singleton {φ} this reduces to

val(D, {φ}) = {{a ∣ a∶ varφ → N , T ⊧ φ[a]} ∣ T ⊧ D} .

For instance,

val(D, {φ}) = {A× A′ ∪ B × B′ ∣ ∣A∣ ≤ 1 ; ∣B∣ ≤ 2; ∣A′∣, ∣B′∣ are both �nite.} .

We de�ne the following order on storage: For storage S , T ,

S ≤ T ⇐⇒ ∀A∈S∃B∈T∀a∈A∃b∈B a ⊆ b .
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We write S ≡ T when S ≤ T and T ≤ S.

�is order captures the absolutely consistency as witnessed by the following lemma:

Lemma 3.17 A mapping ⟨Ds ,Dt , {φi → ψi ∣ i = 1, . . . , n}⟩ is absolutely consistent i�

val(Ds , {φ1, . . . , φn}) ≤ val(Dt , {ψ1, . . . ,ψn}) .

Normal Guiding DTDs

Since our semantics is non-injective, a pattern r[b(1), b(2)] requires two b nodes below r

while r[b(1), b(1)] does not. As such we want to distinguish them in such a way that we

can construct trees T1, T2 with the following properties:

➠ T1 ⊧ φ[1, 2], but T1 /⊧ φ[1, 1];

➠ T2 ⊧ φ[1, 1] and T2 ⊧ φ[2, 2], but T2 /⊧ φ[1, 2].

Since this is impossible in the classical setting we have been working in, we equip a sort of

annotation with trees and modify the notion of attribute.

�e annotation is done to indicate which patterns are satis�ed in a node. Fix two

alphabets Γ and Γ′. A guiding tree over Γ, Γ′ is an ordinary data tree over the alphabet

Γ′×P(ΠΓ), where ΠΓ is the set all tree patterns over the alphabet Γ. We call Γ the labelling

alphabet and Γ′ the auxiliary alphabet. Even though ΠΓ is in�nite, we only consider �nite

trees. In fact, we always consider only a �nite fragment of ΠΓ, usually a set of subformulae

of some given �nite set of tree patterns.

�emodelling relation for guiding trees is de�ned just like for ordinary data trees, only

to determine if φ is satis�ed in v, instead of looking at the head functor of φ, we check if

φ is contained in the second component of v’s label. More formally, a realisation ξ of φ

in a guiding tree T assigns consistently to each subformula ψ of φ a node labelled with

(σ , Θ), such that ψ ∈ Θ. Like for ordinary trees, a realisation yields exactly one valuation

of φ’s variables. We say that T ⊧ φ[a] i� there exists a realisation of φ in T yielding the

valuation a.

We can have T1, a guiding tree, de�ned as

(r, {r[b(x), b(y)]})

(b, {b(x)})

1

(b, {b(y)})

2
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where 1 and 2 are data values stored in attributes.

DTDs de�ning sets of guiding trees will be called guiding DTDs, or gDTDs for short.

Note that the auxiliary alphabet is of no importance for the satisfaction of the formulae.

We only use it to be able to de�ne all needed sets of guiding trees by means of gDTDs.

Equivalently we could use extended DTDs, but for technical reasons we prefer to include

the speci�cation as a part of the label.

We next introduce the notion of multiattribute. �is is the opposite of the construct

above, so thatwe canprevent assignment of variables to di�erent values. While a nodewith

an ordinary attribute stores a single data value, a node with a multiattribute stores a set of

data values. Amultiattribute of multiplicitym,m-attribute for short, storesm data values,

called instances of themultiattribute. Intuitively, the semantics ofmultiattributes say that if

we are in a leaf v and have formulae σ1(x1), σ2(x2), . . . , σk(xk) to evaluate, we must pick

one instance of the multiattribute and assign its value to all the variables x1, x2, . . . , xk .

�is should be contrasted with the rule we apply for ordinary nodes, where we can chose

a di�erent child for each sub-formula.

For instance, we can now de�ne T2 satisfying the postulates above as

(r, {r[b(x), b(y)]})

(b, {b(x), b(y)})

{1, 2}

where {1, 2} is the content of the 2-attribute of the (b, {b(x), b(y)}) node. To repeat, we
have to pick one of 1, 2 for the b node in the tree, end up assigning the same value to both

x and y.

�e notion of a DTD is extended in a natural way to capture the multiattributes: for

each leaf-type we specify the multiplicity of the attribute it has, we are also allowed to use

∗ here, which means that in a tree we may �x any multiplicity of a given multiattribute.

In some sense, guiding trees can be seen trees (in the former sense) coupled with

information about (potential) assignments of values to variables.

�ere are two cases where a pattern can be satis�ed arbitrarily many times. One is

because of ∗ in productions of aDTD; the other is because of recursion in aDTD. Basically,

we replace both kinds of unboundedness with ∗-attribute, removing recursions and ∗ in

productions.

We need another de�nition before providing the formal statement of the above. A

realisation of a tree pattern in guiding tree is exhaustive in a node if the node is assigned
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to all formulae from the auxiliary label, or is not assigned to any formula. In other words,

a realisation is exhaustive when the auxiliary label completely describe the assignment of

formulae to node or is totally irrelevant. Now a gDTD is Φ-normal if it is non-recursive,

does not use ∗ in productions, and only admits realisations of formulae from Φ which are

exhaustive in ∗-attribute leaves.

Finally we can state that recursion and ∗ in productions can be removed:

Lemma 3.18 For each Φ and each DTD D one can compute in EXPTIME a Φ-normal

gDTD N such that

➠ N generates trees of size at most exponential in the size of D;

➠ val(D, Φ) ≡ val(N , Φ).

(Recall ≡ is the equivalence relation induced by ≤ on storage.)

Combining this and the following lemma, the exact statement of Lemma 3.14 can be

obtained:

Lemma 3.19 Let ⟨Ds ,Dt , {ψ1 → φ1, . . . , ψn → φn}⟩ be a mapping such that Ds is a

Ψ-normal gDTD, Dt is a Φ-normal gDTD, Ψ = {ψ1, . . . ,ψn}, Φ = {φ1, . . . , φn}. If the
mapping is not absolutely consistent, there exists a counter example using atmost ℓDs(ℓDt+1)
data values.

�e rest of the proof goes as shown in the previous section.
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Composing schema mappings

We now look at the most commonly studied operation on schema mappings: their com-

position. �e de�nition of the composition is exactly the same as in the relational case

[48], where JMK is de�ned as a binary relation. We de�ne the composition of two map-

pingsM andM′ simply as JMK○ JM′K. �at is, for two mappingsM12 = (D1,D2, Σ12) and
M23 = (D2,D3, Σ23), their composition consists of pairs of trees (T1, T3) such that:

1. T1 ⊧ D1 and T3 ⊧ D3; and

2. there exists T2 ⊧ D2 such that (T1, T2) ⊧ Σ12 and (T2, T3) ⊧ Σ23.

We consider the following problems:

➠ Consistency of composition: is JM12K ○ JM23K empty?

➠ Complexity of composition; and

➠ Syntactic de�nability of composition: can we �nd a mapping M13 = (D1,D3, Σ13)
such that JM13K = JM12K ○ JM23K?

4.1 Consistency of Composition

We say that the composition of M and M′ is consistent if JMK ○ JM′K ≠ ∅.

�ere are two �avors of the consistency of composition problem. One is simply to

check whether the composition of two given mappings is consistent. �is is not very dif-

ferent from the usual consistency problem: by composing a mapping with a trivial one

(e.g., sending the source root to the target root) we can use consistency of composition to

test consistency of the mapping itself.
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A more interesting version of consistency is when we know that both inputs them-

selves are consistent:

Problem: ConsComp(σ)
Input: Two consistent mappings

M ,M′ ∈ SM(σ)
Question: Is the composition ofM and

M′ consistent?

It turns out that the complexity of this problem is the same as the complexity ofcons(σ).

�eorem 4.1 �e complexity of ConsComp(σ) is:

➠ EXPTIME-complete for σ = {⇓} or {⇓,⇒}.

➠ undecidable for σ = {⇓, ∼} or σ = {⇒, ∼}.

Proof. We �rst prove that ConsComp(⇓,⇒) is in EXPTIME.�e idea is the same as for

cons(⇓,⇒). �e composition of ⟨D1,D2, Σ12⟩ and ⟨D2,D3, Σ23⟩ is consistent i� the com-

position of ⟨D1,D2, Σ
○
12⟩ and ⟨D2,D3, Σ

○
23⟩ is consistent, so we may assume that DTDs

have no arguments, and tree patterns have no variables. Suppose Σ12 = {φi → ψi ∣ i ∈
1, 2, . . . , n} and Σ23 = {φ′j → ψ′j ∣ j = 1, 2, . . . ,m}. �e composition is consistent i� there

exist I ⊆ {1, 2, . . . , n} and J ⊆ {1, 2, . . . ,m} such that there are XML trees T1, T2, T3 with

T1 ⊧ D1 ∧⋀
i/∈I

¬φi ,

T2 ⊧ D2 ∧⋀
i∈I

ψi ∧⋀
j/∈J

¬φ′j ,

T3 ⊧ D3 ∧⋀
j∈J

ψ′j .

Equivalently we need to check nonemptiness of the following automata for all possible I

and J:

AD1 ×∏
i/∈I

Ā(φi) ,

AD2 ×∏
i∈I

A(ψi) ×∏
j/∈J

Ā(ψ′j) ,

AD3 ×∏
j∈J

A(ψ′j) .

Like for cons(⇓,⇒), this gives an exponential algorithm.
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Next we show how to reduce consistency of a single mapping to consistency of a com-

position of two consistent mappings. Suppose we are given M = ⟨Ds ,Dt , Σ⟩. We provide

two consistent mappings, M1 and M2, such that M is consistent i� the composition of M1

and M2 is consistent.

Let � be a fresh symbol, not used in M. Let D� be the DTD obtained from D by

extending the alphabet with �, and replacing the production for the root, r → α, with the

production r → α ∣�. De�ne

M1 = ⟨D�s ,D
�
t , Σ ∪ {r/�→ r/�}⟩ , M2 = ⟨D�t ,D, {r/�→ r/�}⟩ ,

where D is just r → ε. Observe that both mappings are consistent: (r[�], r[�]) ∈ JM1K,

and (T , r) ∈ JM2K for any T ⊧ Dt .

Let us check that their composition is consistent i� M is consistent. If (S , T) ∈ JMK,

then (S , T) ∈ JM1K, (T , r) ∈ JM2K, and so (S , r) ∈ JM1 ○ M2K. Conversely, suppose

(T1, T2) ∈ JM1K and (T2, T3) ∈ JM2K. Note that � gets propagated to T3 if it occurs in

T1 or T2. In consequence, T1 and T2 do not contain �. But then, T1 ⊧ Ds and T2 ⊧ Dt .

Since the pair (T1, T2) satis�es all the constraints from Σ∪{r/�→ r/�}, we conclude that
(T1, T2) ∈ JMK.

Observe that ifM uses neither = nor ≠, so doM1 andM2. Hence, the reduction proves

that consistency of composition is EXPTIME-hard in the absence of = and ≠, and is un-

decidable in their presence.

�e decidability result carries over to an arbitrary number ofmappings. We can de�ne

composition of an arbitrary number of mappings M1, . . . ,Mn simply as the composition

of binary relations JMiK’s.

Proposition 4.2 �e problem of checking whether the composition of n schema mappings

M1, . . . ,Mn from SM(⇓,⇒) is consistent is solvable in EXPTIME.

Proof. �e idea used in the proof of�eorem 4.1 can be extended to consistency of mul-

tifold composition. Suppose we are given ⟨D1,D2, Σ1⟩, . . . , ⟨Dn ,Dn+1, Σn⟩, where Σi =

{φi
j → ψ i

j ∣ j = 1, 2, . . . , ni} for i = 1, 2, . . . , n and we want to know if there are trees

T1, . . . , Tn such that (Ti , Ti+1) ∈ J⟨Di ,Di+1, Σi⟩K for i = 1, 2, . . . , n.
Like before, without loss of generality we can assume that the mappings use no at-

tributes and no variables, and the problem becomes reducible to automata nonemptiness.

For every n-tuple (I1, . . . , In) ∈ ∏i{1, 2, . . . , ni}, test nonemptiness of the following au-
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tomata:

AD1 ×∏
i/∈I1

Ā(φ1
i) ,

⋮

AD j+1
×∏

i∈I j

A(ψ j
i) × ∏

i/∈I j+1

Ā(φ j+1
i ) ,

⋮

ADn+1 ×∏
i∈In

A(ψn
i ) .

�e composition of the given nmappings is consistent i� these products are nonempty

for some (I1, . . . , In).

4.2 Data and Combined Complexity

By analogy with the complexity of schema mappings, we de�ne data and combined com-

plexity of composition:

➠ Data complexity of composition. For �xed mappingsM andM′, check, for two trees

T and T ′, whether (T , T ′) ∈ JMK ○ JM′K.

➠ Combined complexity of composition. Check, for two mappings M and M′ and two

trees T and T ′, whether (T , T ′) ∈ JMK ○ JM′K.

Data complexity of relational composition is known to be in NP, and could be NP-

complete for somemappings [48]. For XMLmappings, the problem becomes undecidable

once data value comparisons are allowed. Without such comparisons, it is decidable: the

data complexity goes a little bit up compared to the relational case, and we have the usual

exponential gap between data and combined complexity.

�eorem 4.3

➠ For schema mappings from SM(⇓,⇒), the combined complexity of composition is

in 2-EXPTIME and NEXPTIME-hard, and the data complexity of composition is

EXPTIME-complete.

➠ For schema mappings from both SM(⇓, ∼) and SM(⇒, ∼), the combined complexity

of composition is undecidable.
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By saying that the data complexity is EXPTIME-complete we mean that it is always in

EXPTIME, and there exist mappings M ,M′ such that checking whether the input trees

(T , T ′) belong to JMK ○ JM′K is EXPTIME-hard.

Proof. Combined complexity of composition membership for SM(⇓,⇒)
First we show that combined complexity of composition membership is not worse

than 2-EXPTIME. Fix two mappings, ⟨D1,D2, Σ12⟩ and ⟨D2,D3, Σ23⟩, with Σ12 = {φi →

ψi ∣ i = 1, 2, . . . , n} and Σ23 = {γ j → δ j ∣ j = 1, 2, . . . ,m}. Given trees S ⊧ D1 and T ⊧ D3,

we have to check if there is an interpolating tree U .

For a start, consider a variable and attribute-free situation. What are the constraints on

the interpolating tree? Clearly, what is imposed by S, is that some of the target sides of stds

from Σ12 have to be satis�ed in U . In contrast, what is imposed by T , is that some source

sides of stds from Σ23 are not satis�ed in U : indeed, U ⊧ γ Ô⇒ T ⊧ δ is equivalent to

T /⊧ δ Ô⇒ U /⊧ γ. �erefore, the existence of an interpolating tree U is equivalent to

nonemptiness of

AD2 × ∏
i∶S⊧φ i

A(ψi) × ∏
j∶T /⊧δ j

Ā(γ j) .

�is gives an EXPTIME algorithm for the case without data values.

Let us now consider the general case, with variables. Still, neither equality nor inequal-

ity is allowed. In particular, no variable can be used more than once on the source side.

�e main idea is simply to throw in every data value used in S to the alphabet. A tentative

set of constraints imposed on U by S would then be

Ψ = {ψ(ā) ∣ φ → ψ ∈ Σ12 , ā∶ varφ → A , S ⊧ φ(ā)} .

�e problem is that ψ(ā) might still contain free variables which makes it impossible to

use automata.

�e solution is guess data values for the remaining free variables. What should be the

domain of our guess? Let A be the set of data values used in S, and B the set of data values

used in T . It is not di�cult to see that in an intermediate tree U each data value not in

A ∪ B can be safely replaced by any �xed data value, in particular, by a �xed data value

form B. �is holds because we do not use = nor ≠. Hence, we can assume that U only

uses data values from A∪ B, and guess the values for outstanding variables in ψ(ā) from
A∪ B. Let Ψ′ denote the set Ψ with guessed data values for free variables (independently

59



chapter 4. composing schema mappings 4.2 Data and Combined Complexity

for each element of Ψ) and let

Γ = {γ(ā) ∣ γ → δ ∈ Σ23 , ā∶ var γ ∪ var δ → A∪ B , T /⊧ δ(ā)} .

�e compositionmembership algorithm should construct the set Ψ (atmost ∣Σ12∣∣S∣∣∣Σ12 ∣∣

polynomial checks), and construct Γ (atmost ∣Σ23∣(∣S∣+∣T ∣)∣∣Σ23 ∣∣ polynomial checks).�en

it is enough to check nonemptiness of

AD2 × ∏
ψ∈Ψ′

A(ψ) ×∏
γ∈Γ

Ā(γ) ,

iterating over all possible values of Ψ′ (at most (∣A∣ + ∣B∣)∣∣Σ12 ∣∣∣A∣
∣∣Σ12 ∣∣

iterations, each taking

time exponential in the size of Ψ′ and Γ, i.e., double exponential in the size of the input).

�is gives a 2-EXPTIME algorithm.

To show NEXPTIME-hardness, recall the reduction of Bernays-Schoen�nkel satis�-

ability to absolute consistency of mappings from SM(⇓) (proof of �eorem 3.15). For a

given formula φ a mapping Mφ = ⟨D1,D2, Σ⟩ was constructed such that φ was satis�-

able i� Mφ was absolutely consistent. In fact, Mφ satis�ed the following property: φ is

satis�able i� there exists T such that (S , T) ∈ JMφK for

S = r[v1/v(1), v2/v(2), . . . , vN/v(N), t(⊺), f (�)] ,

where N equals number of existential quanti�ers plus maximum of relations’ arities. In

consequence, φ is satis�able i� (S , r) ∈ JMφ ○ ⟨Dt , {r → ε},∅⟩K, which reduces Bernays-

Schoen�nkel satis�ability to composition membership for SM(⇓).
Data complexity of composition membership for SM(⇓,⇒)

Let us examine the algorithm above with assumption that the mappings are �xed.

�en, the size of Ψ′ and Γ is polynomial, so each iteration takes single exponential time.

�e number of iterations is bounded by (∣A∣ + ∣B∣)∣∣Σ12 ∣∣∣A∣
∣∣Σ12 ∣∣

, which is also single expo-

nential for �xed Σ12. In consequence, data complexity of composition membership is not

worse than EXPTIME for mappings from SM(⇓,⇒).
To showEXPTIME-completeness for SM(⇓,⇒), wewill reduce fromnon-universality

problem for bottom-up nondeterministic automata on binary trees, modifying a proof

from [12].

First, de�ne D3 over {r, label, state, nontransition, rejecting} as

r → ♯ state∗ ♮ label∗ ♭ nontransition∗
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state→ rejecting?

rejecting , label, nontransition→ ε

label, state ∶ @attr

nontransition ∶ @le�, @right, @label, @up

A tree conforming to D3 is meant to encode an automaton. It stores the alphabet in the

label-nodes, state space in the state-nodes (we assume that the initial state is stored as

�rst, just a�er ♯), and the complement of the transition relation. �e reason we store the

complement is that we do not have negation. We do not have to enforce anything on

such a tree, since we will be constructing it ourselves based on a given automaton, when

preparing input for composition membership algorithm. In particular, we will make sure,

that all states, labels, and non-transitions are stored correctly.

Next, let D2 over {r, node, label, state, leaf , yes, no} be given by

r → node

node→ label ♯ state∗ ♮ (nodenode ∣ leaf )

state→ yes ∣no

leaf , label → ε

state, label ∶ @attr

A tree conforming toD2 is meant to encode a rejecting run of the corresponding power set

automaton.�is time wewill need to ensure that it really is a correct rejecting runwith the

stds, since this is precisely the tree that will be produced by the composition membership

algorithm.

Finally, we de�ne D1 simply as r → ε. �e only tree conforming to D1 will be used as

a stub.

Let us now describe Σ23, which will enforce the correctness of the run. First, we make

sure that label-nodes store labels.

//label(x)→ r/label(x)

Second, we need to check that for each node-node, each state is stored in exactly one state-

node, and that nothing else is stored there. We do this using the switching trick from the
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proof of�eorem 3.8 again.

//node[♯→ state(x)]→ r[♯→ state(x)]

//node[state(x)→ state(y)]→ r[state(x)→ state(y)]

//node[state(x)→ ♮]→ r[state(x)→ ♮]

//node[state(x)→∗ state(y)]→ r[state(x)→∗ state(y)]

�e last std guarantees that we do not store a state twice, which ensures that for each state

we either have a yes-node, or a no-node.

Next, we make sure that the yes/no nodes are properly assigned in the leaves, and then

properly propagated up the tree.

//node[state(x)/no, label(u), leaf ]→ r[♯→ state(y), nontransition(y, y, u, x)]

//node[state(x)/no, label(u), node/state(y)/yes → node/state(z)/yes]

→ r/nontransition(y, z, u, x)

Finally, check that the run is rejecting.

r/node/state(x)/yes→ r/state(x)/rejecting

Let us see that membership for ⟨D1,D2,∅⟩ ○ ⟨D2,D3, Σ23⟩ is indeed EXPTIME-hard.

Take an automatonA = ⟨Γ,Q , δ, q0, F⟩with Γ = {a1, a2, . . . , am} andQ = {q0, q1, . . . , qn}.
Without loss of generality we may assume that F = {qk , qk+1, . . . , qm}. Let Q × Q × Γ ×

Q ∖ δ = {(p1, r1, b1, s1), (p2, r2, b2, s2), . . . , (pℓ , rℓ , bℓ , sℓ)}. Encode A as a tree TA de�ned

as

r[♯, state(q0)/rejecting , state(q1)/rejecting , . . . , state(qk−1)/rejecting ,

state(qk), state(qk+1), . . . , state(qn), ♮,

label(a1), label(a2), . . . , label(am), ♭,

nontransition(p1, r1, b1, s1), . . . , nontransition(pℓ , rℓ , bℓ , sℓ)]

Proving that A rejects some tree i� (r, TA) ∈ J⟨D1,D2,∅⟩ ○ ⟨D2,D3, Σ23⟩K is straightfor-
ward.

In the above, we need both ⇓ and ⇒. �e NP lower bound for data complexity of
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mappings from SM(⇓) and SM(⇒) comes from the relational case (see [48]). �e upper

bound being still EXPTIME, this leaves a substantial gap.

Composition membership for SM(⇓, ∼) and SM(⇒, ∼)
Let us now turn to the undecidability part. Our argument relies upon a particular

property of the reductions used to show undecidability in the proof of�eorem 3.8. In all

the cases considered there, halting of a 2-register machine R was reduced to consistency of

a mappingMR = ⟨Ds ,Dt , Σ⟩whose all stds were of the form φ, φ=,≠ → ψ=,≠. For such stds,

the target side’s satisfaction does not depend on the target tree! With this in mind we can

reduce halting of a 2-register machine to composition membership: for every 2-register

machineM, (r, r) ∈ J⟨{r → ε},Ds ,∅⟩○MRK if and only ifMR is consistent, which in turn

is equivalent to halting ofM. �is shows that compositionmembership is undecidable for

mappings from SM(⇓, ∼) and SM(⇒, ∼).
In fact, we obtain undecidability for SM(↓∗, =), SM(↓∗, ≠), SM(→, =), and SM(→, ≠).

Using the usual trick of simulating disjunction in the DTDs with ? and→, we can also get

undecidability for SM(→, =) restricted to nested-relational DTDs.

4.3 Closure under restrictions

Finally we consider the question of whether there is a class of XML schemamappings that

is closed under composition. Recall that a class C of schema mappings is said to be closed

under composition if the following holds: given two mappings M1,M2 ∈ C, there exists

M3 ∈ C such that JM3K = JM1K ○ JM2K.

In relational data exchange, as was explained in Chapter 2, the known results can be

summarised in the following two point:

➠ �e class of (mappingswith) stds using conjunctive queries is not closed under com-

position;

➠ Skolem function helps – the class of second-order tgds is closed under composition.

Since the proof of non-closure in the relational case carries over to the XML case, it im-

mediately follows that we need Skolem function. It turns out, however, that the situation

is much worse: Various structural features in our tree pattern already provide cases for

which we cannot de�ne composition.

We �rst describe several features of tree patterns that lead to non-closure. Basically the

problem is that we can create mappings that require a disjunction for their composition.
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Note that these are orthogonal to the non-closure described in [48] so that they cannot be

remedied with Skolem functions.

Proposition 4.4 �e class of schema mappings that uses any one of (a) wildcard; (b) de-

scendant; (c) next-sibling; (d) inequality is not closed under composition.

Proof. For each of _ , //, →, ≠ we provide three DTDs D1,D2,D3 and two sets Σ12, Σ12 of

constraints such that the semantics of ⟨D1,D2, Σ12⟩ ○ ⟨D2,D3, Σ23⟩ is

{(r, r[c1]), (r, r[c2]), (r, r[c1, c2]), (r, r[c1, c3]), (r, r[c2, c3]), (r, r[c1, c2, c3])},

where we (ab)use tree patterns to describe trees, and thus is not expressible as a single

mapping without disjunction1. �e alphabets of DTDs are shown in parentheses, where

bracketed numbers indicate the number of attributes of the label, e.g., a[1] means that

elements labelled with a have one attribute; ℓ[0] is written as ℓ.

Let us start with _ .

D1 = {r → ε} ({r})

D2 = {r → a∗1 a
∗
2 ; ai → b} ({r, a1, a2, b})

D3 = {r → c1?c2?c3?} ({r, c1, c2, c3})

Σ12 = {r → r/_/b}

Σ23 = {r/a1 → r/c1; r/a2 → r/c2}

Note that Σ12 requires b in the tree conforming to D2, which in turn require a1 or a2 in

the ‘middle’. And the presence of ai induces ci in the tree conforming D3, so that the

semantics of the composition is as desired. In the rest we only give the necessary DTDs

and stds since the idea is similar.

For an example for // just replace _ with // in the above.

An example for→ is similar:

D1 = {r → ε} ({r})

D2 = {r → ab?c} ({r, a, b, c})

D3 = {r → c1?c2?c3?} ({r, c1, c2, c3})

1Note that the tree r[c3] is not a solution of the tree r under the mapping JM1K ○ JM2K. Our composition

is expressed by r → r[c1 ∨ c2] if we allow disjunction.
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Σ12 = ∅

Σ23 = {r[a → c]→ r/c1; r[b → c]→ r/c2}

For inequality we make use of the fact that x ≠ y Ô⇒ x ≠ z ∨ y ≠ z for all x , y, z:

D1 = {r → ε} ({r})

D2 = {r → a∗b∗c∗} ({r, a[1], b[1], c[1]})

D3 = {r → c1?c2?c3?} ({r, c1, c2, c3})

Σ12 = {r → r[a(x), b(y), c(z)], x ≠ y}

Σ23 = {r[a(x), c(z)], x ≠ z → r/c1; r[b(y), c(z)], y ≠ z → r/c2}

�us we have to restrict the stds in the mappings. �e following shows that we have

to restrict the DTDs as well since disjunctions in DTDs naturally cause similar problems.

Proposition 4.5 �e class of schema mappings where (a) disjunction or (b) repeat of the

same label is used in the DTDs is not closed under composition, with fully speci�ed stds.

Proof. �e idea is the same as above. For disjunction, it is actually easier. Consider

D1 = {r → ε} ({r})

D2 = {r → a1 ∣ a2} ({r, a1, a2})

D3 = {r → c1?c2?c3?} ({r, c1, c2, c3})

Σ12 = ∅

Σ23 = {r/a1 → r/c1; r/a2 → r/c2}

It is easy to see that the semantics of the composition is the one required throughout the

preceding proof, requiring c1 or c2 in the target.

For the repeat of the same label, consider:

D1 = {r → a∗} ({r, a[1})

D2 = {r → bb} ({r, b[1]})
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D3 = {r → є} ({r})

Σ12 = {r/a(x)→ r/b(x)}

Σ23 = ∅

�e �rst mapping states that the values in amust be copied to those in b in the second tree.

Due to the DTD D2, this means a can have at most two di�erent values. Again, we need

disjunction in the mapping here to express the composition, i.e., r[a(x), a(y), a(z)] →
x = y ∨ y = z ∨ z = x.

In short, the following features make composition problematic by requiring capabili-

ties (disjunction in mappings) that are not even understood in the relational case:

➠ wildcard, descendant, next-sibling, and inequalities in stds (by Proposition 4.4);

➠ non-nested-relational DTDs2 (by Proposition 4.5);

We now eliminate them all: we look at mappings with fully-speci�ed stds (given by

(3.2), to eliminate wildcard, descendant, and next-sibling) with no inequalities and nested

relational DTDs (to eliminate disjunctions and repeating labels).

For this class, a natural extension of stds with Skolem functions gives us closure un-

der composition. We add Skolem functions to XML schema mappings as it was done

for relational mappings in [48], by using terms in place of variables. For a valuation of

function symbols f̄ and a valuation of variables ā, the meaning of T ⊧ φ(t̄)[ f̄ , ā] is as
usual. For a mapping M = (Ds ,Dt , Σ) with Skolem functions, (T , T ′) ∈ JMK i� there

exist functions f̄ such that for each (φ, α= → ψ, α′=) ∈ Σ and each ā, if T ⊧ φ, α=[ f̄ , ā]
then T ′ ⊧ ψ, α′=[ f̄ , ā]. Note that we can use the same function symbol in more than one

constraint.

�eorem4.6 �eclass ofmappingswith Skolem functions and equality, restricted to nested-

relational DTDs and fully speci�ed stds, is closed under composition.

�e rest of this section is devoted to the proof of the above.

Like in the proof of�eorem 3.12, without loss of generality we may assume that there

is a single attribute @attr available, it is only allowed in leaves, and each leaf has it. Since

2Strictly speaking, we have not settled the possibility that mappings that use expressions like (ab)∗ is

closed under composition.
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we are using Skolem functions, a valuation now assigns values in N to all variables and

functions N
k → N to all function symbols.

Let us �rst describe the outline of the composing algorithm:

1. We are given two mappings with sets of dependencies Σ12 = {φi → ψi ∣i ∈ [n]} and
Σ23 = {γi → δi ∣i ∈ [m]};

2. Our goal is to compute Σ13 that represents composition.

3. Wemodify dependencies in such a way that “missing” patterns in dependencies are

remedied. E.g., if we have r → a; a → b in the DTD and r/a in an std, we make it

r/a/b;

4. We go over all subsets {φik} of the source patterns of Σ12, and do the following;

➠ Compute the set ∆ of dependencies, a subset of {δi ∣i ∈ [m]} that are implied

by {ψik} with respect to Σ23;

➠ Add to Σ13 a dependency

⋀{φik}→⋀∆.

(Note that we have the comma “,” as conjunction.)

We turn to the more detailed description of the algorithm. First we need to formalise

the “remedy” patterns, which we call completion. We denote by StepτΦ the set of children

in Φ below τ.

Algorithm 1 Computing Compl(σ , Φ,D).

Require: Φ is satis�able wrt Dσ

if σ → σ1 . . . σkρ1? . . . ρℓ?τ
∗
1 . . . τ

∗
m then

Φ1 ∶= {Compl(τ, StepτΦ,D) ∣ τ = σ1, . . . , σk}
Φ2 ∶= {Compl(τ, StepτΦ,D) ∣ τ = ρ1, . . . , ρℓ and StepτΦ ≠ ∅}
Φ3 ∶= {Compl(τ, StepτΦ,D) ∣ τ = τ1, . . . , τm and η ∈ StepτΦ}
return σ[Φ1 ∪Φ2 ∪Φ3]

else // σ is a leaf, and hence Φ is a singleton

let {φ} = Φ
return φ

end if

Let Φ be a set of tree patterns satis�able with respect to a DTDD. Algorithm 1 invoked

for (r, Φ,D) computes a tree pattern ComplD(Φ) called the completion of Φ with respect
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to D. �e intuition behind it is that of combining the conditions imposed on a tree by

Φ and by D together. For instance, if Φ requires the root to have an a-node, and DTD

requires each a-node to have a b-node, then the completion should require a path r/a/b.

Lemma 4.7 For each set of fully speci�ed tree patternsΦ satis�able with respect to a nested-

relational DTD D it holds that for each T ⊧ D and each valuation ( f̄ , ā), T ⊧ Φ[ f̄ , ā] i�
T ⊧ ComplD(Φ)[ f̄ , ā].

Proof. By induction on the depth of D following the steps of Algorithm 1.

An embedding of a tree pattern φ in a tree pattern ψ is a substitution of φ’s variables θ

and mapping h ∶ Sub(φ)→ Sub(ψ) preserving

➠ the labelling: h(ℓ[λ]) = ℓ[λ′]),

➠ the structure of tree patterns: if h(ℓ[φ1, . . . , φm]) = ℓ[ψ1, . . . ,ψn], then h(φi) ∈
{ψ1, . . . ,ψn} for all i,

➠ and the structure of terms (h(ℓ(t)) = (ℓ(t))θ).

Lemma 4.8 If (h, θ) is an embedding of φ in ψ, then for all T and ( f̄ , ā), if T ⊧ ψ[ f̄ , ā]
then T ⊧ φθ[ f̄ , ā].

Proof. Let ξ be a realisation of ψ in T with the valuation f̄ , ā. From the de�nition of

embedding it follows that ξ ○ h is a realisation of φθ in T with the valuation f̄ , ā.

Before presenting the algorithm to compute the composition of schema mappings,

we need one more de�nition. A fully-speci�ed pattern φ can be seen as a conjunction

of (fully-speci�ed) paths; for example r[a[b, c]] is a conjunction of r/a/b and r/a/c. As
seen in the proof of Proposition 4.5, DTDs impose some cardinality constraints on the

number of di�erent data values in the source document.�e important property of nested

relational DTDs is that each path is admitted at most once or arbitrarily many. We say a

path ℓ1/ℓ2/⋯/ℓk is non-unique in a DTDD if one of ℓi ’s appears as ℓ
∗
i or ℓ

+ inD; otherwise

it is unique. Note that non-unique paths may contain pre�x that is a unique path in D.

We call these pre�xes unique pre�xes.

Now we present the algorithm to compose mappings in Algorithm 2. In the algo-

rithm and the proof below we use notation r[Φ] for Φ = {φ1, φ2, . . . , φn} to denote

r[φ1, φ2, . . . , φn].
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Algorithm 2 Composing schema mappings.

//�e goal is to construct Σ13 that expresses JM12K ○ JM23K

Σ13 ∶= {φ, φ= → ψ= ∣ φ, φ= → ψ,ψ= ∈ Σ12}
for all φ(x̄), φ=(x̄)→ ψ(x̄),ψ=(x̄) ∈ Σ12 do

for all paths p in ψ and unique pre�xes of the form p′/ℓ(t) of p do
x̄′ = (x′1 , . . . , x

′
p)// A tuple of fresh variables

Σ13 ∶= Σ13 ∪ {φ(x̄), φ(x̄′), φ=(x̄) ∪ φ=(x̄′)→ t = t[x̄′/x̄]}
end for

end for

m ∶=max(γ→δ)∈Σ23
∣Sub γ∣

Σ̂12 ∶= ∅

for all φ(x̄), φ=(x̄)→ ψ(x̄),ψ=(x̄) ∈ Σ12 and i = 1, 2, . . . ,m do

x̄i ∶= (x1,i , x2,i , . . . , xp,i)
Σ̂12 ∶= Σ̂12 ∪ {φ(x̄i), φ=(x̄i)→ ψ(x̄i),ψ=(x̄i)}

end for

// Σ̂12 contains m copies of each std from Σ12

for all Γ ⊆ Σ̂12 do

let Γ = {r[Φi], φi
= → ψi ,ψ

i
= ∣ i = 1, . . . , k}

Ψ ∶= {ψ1, . . . ,ψk}
if Ψ is not satis�able with respect to D2 then

Σ13 ∶= Σ13 ∪ {r[Φ1 ∪ . . . ∪Φk], φ1
=, . . . , φ

k
= → �}

else

for all γ, γ= → δ, δ= ∈ Σ23 do

for all embeddings (θ , h) of γ in Compl(r, Ψ,D2) do
Σ13 ∶= Σ13 ∪ {r[Φ1 ∪ . . . ∪Φk], φ1

=, . . . , φ
k
=, γ=θ → δθ , δ=θ}

end for

end for

end if

end for

Proof of �eorem 4.6. Beforewe proceedwith the proof, let us justify three simpli�cations.

First, we would like to enforce that leaf labels are only used in formulae of the form σ(x)
and never as σ . One easily transforms each constraint to an equivalent one satisfying this

property: simply replace each occurrence of σ with a formula σ(z) for a fresh variable z.

Second, we need all the variables to occur on the source side. To transform a constraint to
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this form replace each variable y occurring only on the target side with fy(x1, x2, . . . , xn)
where fy is a fresh function symbol and x1, x2, . . . , xn are all the variables used on both

sides of the constraint. Finally, it will be convenient to have no functions symbols and

no repetitions of variables in the tree pattern on the source side: we replace all nontrivial

terms and all repeated occurrences of variables with fresh variables, and add a suitable

equality to the source side.

�us, without loss of generality we may assume that we have M12 = ⟨D1,D2, Σ12⟩ and
M23 = ⟨D2,D3, Σ23⟩ satisfying all three restrictions. Let ⟨D1,D3, Σ13⟩ be themapping com-

puted by Algorithm 2. Let us prove that indeed M12 ○M23 = M13. Assume that T1, T2, T3

satisfy (T1, T2) ∈ JM12K and (T2, T3) ∈ JM23K. We need to show that (T1, T3) ∈ JM13K. Ob-

serve that the algorithm does not introduce new function symbols. Let f̄ be a valuation of

the function symbols witnessing (T1, T2) ∈ JM12K and (T2, T3) ∈ JM23K. Pick a constraint

from Σ13. Suppose �rst that it is of the form

φ, φ= → ψ=

with φ, φ= → ψ,ψ= ∈ Σ12. Take a valuation of variables ā such that T1 ⊧ φ, φ=[ f̄ , ā]. �en

T2 ⊧ ψ=[ f̄ , ā], and so T3 ⊧ ψ=[ f̄ , ā], since the satisfaction of equalities depends only on

the valuations and not on the trees. We can similarly prove the validity of dependencies

of the form

φ(x̄), φ(x̄′), φ=(x̄) ∪ φ=(x̄′)→ t = t[x̄′/x̄].

Next, suppose that the constraint is of the form

r[Φ1 ∪ . . . ∪Φk], φ1
=, . . . , φ

k
= → �

with {r[Φi], φi
= → ψi ,ψ

i
= ∣ i = 1, . . . , k} ⊆ Σ̂12 and Ψ = {ψ1, . . . ,ψk} not satis�able with

respect to D2. Since T2 cannot satisfy Ψ for any valuation, T1 does not satisfy r[Φ1 ∪ . . . ∪

Φk], φ1
=, . . . , φ

k
= for any valuation, and so (T1, T3) satis�es this constraint.

Finally, assume the constraint is of the form

r[Φ1 ∪ . . . ∪Φk], φ1
=, . . . , φ

k
=, γ=θ → δθ

where {r[Φi], φi
= → ψi ,ψ

i
= ∣ i = 1, . . . , k} ⊆ Σ̂12, Ψ = {ψ1, . . . ,ψk}, (γ, γ= → δ, δ=) ∈ Σ23,

and (θ , h) is an embedding of γ in ComplD2
(Ψ). Pick a valuation (of variables) ā such

that T1 ⊧ r[Φ1 ∪ . . . ∪Φk], φ1
=, . . . , φ

k
=, γ=θ[ f̄ , ā]. �en T2 ⊧ Ψ[ f̄ , ā] and in consequence

T2 ⊧ ComplD2
(Ψ)[ f̄ , ā]. By Lemma 4.8, T2 ⊧ γθ[ f̄ , ā], so T2 ⊧ γθ , γ=θ[ f̄ , ā]. Hence,
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T3 ⊧ δθ[ f̄ , ā].
�us we have proved JM12 ○M23K ⊆ JM12K. Let us check that the converse inclusion

holds as well. Take (T1, T3) ∈ JM13K. We need to de�ne an intermediate tree T2 such

that (T1, T2) ∈ JM12K and (T2, T3) ∈ JM23K. Let f̄ be the witnessing valuation of function

symbols. Let

∆ = {ψā ∣ φ, φ= → ψ,ψ= ∈ Σ12 and T1 ⊧ φ, φ=[ f̄ , ā]},

where ψā is obtained by replacing each variable x in ψ with zā(x) and z1, z2, . . . is a �xed

set of fresh variables. Observe that if T1 ⊧ φ, φ=[ f̄ , ā]} for some φ, φ= → ψ,ψ= ∈ Σ12,

then by Σ13 the conjunction of equalities ψ=[ f̄ , ā] is satis�ed. Hence, for the valuation ȷ

assigning j to z j, a tree T2 ⊧ D2 is a solution for T1 if and only if T2 ⊧ ∆[ f̄ , ȷ].
Suppose that ∆ is not satis�able wrt to D2. Since D2 is nested-relational, there exists

a formula δ ∈ ∆ which is not satis�able wrt D2, and further, there exists a constraint

φ, φ= → ψ,ψ= in Σ12, such that T1 ⊧ φ, φ=[ f̄ , ā] and ψ is not satis�able wrt D2. But in

such case Σ13 contains a constraint φ, φ= → �, and thus T3 ⊧ �, which is a contradiction.

Hence, ∆ is satis�able and we can consider ComplD2
(∆). Let T2 be a tree obtained

from ComplD2
(∆) in the usual way with the terms evaluated according to f̄ , ȷ. From the

de�nition of completion it follows that T2 ⊧ D2. It is also straightforward to check that

T2 ⊧ ComplD2
(∆)[ f̄ , ȷ]. By Lemma 4.7, T2 ⊧ ∆[ f̄ , ȷ] and so (T1, T2) ∈ JM12K with the

valuation f̄ witnessing it.

It remains to verify that (T2, T3) ∈ JM23K. Pick a constraint γ, γ= → δ, δ= from Σ23.

Suppose that T2 ⊧ γ, γ=[ f̄ , ā] and let ξ be a witnessing realisation. Since γ uses each

variable once and contains no function symbols, ξ assigns to each x the data value ā(x)
stored in the attribute of a node vx . Let θ(x) be the term from ComplD2

(∆) that yielded
the data value stored in vx . Obviously, θ(x)[ f̄ , ȷ] = ā(x).

By the de�nition of T2 we may interpret (θ , ξ) as an embedding of γ in ComplD2
(∆).

Examining Algorithm 1 reveals to see that (θ , ξ) can be also seen as an embedding in

ComplD2
(∆′), where ∆′ ⊆ ∆ and ∣∆′∣ ≤ ∣im h∣ ≤ ∣Sub γ∣. But then in Algorithm 2, for some

Γ = {r[Φi], φi
= → ψi ∣ i = 1, . . . , k} ⊆ Σ̂12 and Ψ = {ψ1, . . . ,ψk} we have Ψ = ∆′ (up to a

renaming of variables which we omit for the sake of simplicity), which entails that (θ , ξ)
is an embedding of γ in ComplD2

(Ψ) = ComplD2
(∆′). By Algorithm 2, Σ13 contains a

constraint r[Φ1 ∪ . . . ∪Φk], φ1
=, . . . , φ

k
=, γ=θ → δθ , δ=θ.

On the other hand, by the de�nition of ∆, for some valuation ȷ′ coinciding with ȷ on

the variables used in θ, it holds that

T1 ⊧ r[Φ1 ∪ . . . ∪Φk], φ1
=, . . . , φ

k
=[ f̄ , ȷ

′].
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Furthermore, the equalitiesγ=θ[ f̄ , ȷ′] hold since θ(x)[ f̄ , ȷ′] = θ(x)[ f̄ , ȷ] = ā(x). Hence,
T3 ⊧ δθ , δ=θ[ f̄ , ȷ], and so T3 ⊧ δ, δ=[ f̄ , ā].
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Query Answering

In this chapter we consider the problem of query answering in XML data exchange. Fol-

lowing previous approaches, we adapt the certain answers semantics. �e central result

in [12] about query answering was the dichotomy on classes of DTDs: they identi�ed a

class of DTDs (called univocal) for which query answering is tractable and any extension

of which leads to intractable query answering.

It turns out that queries with extended features are almost always intractable while we

can feasibly answer simple queries in extended mappings.

A�er giving formal de�nition of our query language, we show that the query answer-

ing can be done in coNP.We then go on to prove the tractable algorithm for extendedmap-

pings. Finally we explore various (im)possibilities, trying to obtain cases where queries

with extended features become tractable.

5.1 Query Language

For querying the XML documents we use the same language as for the dependencies: tree

patterns augmented with equalities and inequalities. Additionally, we allow projection.

�us, a query is an expression of the form ∃x̄(π1 ∧ ⋯ ∧ πn , α=,≠), where each πi is a tree

pattern and α=,≠ is a set of equalities and inequalities. �e semantics is de�ned in the

obvious way. �is class of queries is denoted by CTQ≠ (conjunctive tree queries with

inequality).

We also consider unions of such queries: UCTQ≠ denotes the class of queries of the

formQ1(x̄)∪⋯∪Qm(x̄), where eachQi is a query fromCTQ≠. Like for schemamappings,

we write CTQ(σ) and UCTQ(σ) for σ ⊆ {↓, ↓∗,→,→∗, =, ≠} to denote the subclass of
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novels

novel

(�e Heart of Midlothian)

author

(Walter Scott)
next

(Ivanhoe)

novel

(New Arabian Nights)

author

(R. L. Stevenson)
next

(Treasure Island)

Figure 5. a small Scottish literature library, to be queried

queries using only the symbols in σ .

As an example, let us consider querying the document depicted in 5, the small Scottish

Literature Library that appeared in Chapter 3.

�e following is a simple query asking who are the authors in the library:

∃x(novels[novel(x)[author(y)]]).

Query this over the library returns the set {Walter Scott, R. L. Stevenson}.
Yet another example is

novels[novel(y)[author(x)]] ∪ ∃z(novels[novel(z)[author(x), next(y)]]),

which returns the pairs of author and his work, i.e., the set

{⟨Walter Scott,�e Heart of Midlothian⟩, ⟨Walter Scott, Ivanhoe⟩,

⟨R. L. Stevenson, New Arabian Nights⟩, ⟨R. L. Stevenson, Treasure Island⟩}.

5.2 Certain Answers

Data exchange is the problem of transforming data in the source schema into data in the

target schema, according to stds. As we have already explained, the result of this trans-

formation may not be unique. �e fundamental problem of data exchange is to answer

queries over the target data. Suppose we are given a mapping M, a query Q, and a source

tree T conforming to Ds. What answer should we return if there is more than one solution

for T? Following [12, 45], we adapt the certain answers semantics, i.e., we return the tuples

which would be returned for every possible solution:

certainM(Q , T) = ⋂{Q(T ′) ∣ T ′ is a solution for T under M}.
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In particular, when Q is a Boolean query, we say that certainM(Q , T) is true if and only if
Q is true for all the solutions.

Fix an XML schema mapping M and a query Q. We are interested in the following

computational problem.

Problem: certainM(Q)
Input: a tree T , a tuple s̄

Question: s̄ ∈ certainM(Q , T) ?

Note that we are working on data complexity [99]. In the following, we focus on the

fragments of the problem, where “simple” generally means downward mappings/queries.

5.3 Complexity

�e structure of this section is as follows. We �rst summarise the known results in the fol-

lowing subsection; Next we prove that the coNP upper bound still holds and then present

PTIME algorithm for simple queries in extended settings; Finally we deal with queries

with horizontal order, showing that for them tractability cannot be achieved in any rea-

sonable mapping.

5.3.1 Simple mappings

First we recall from [12] what is already known about simple settings, i.e., mappings from

SM(↓, ↓∗, =) andqueries fromUCTQ(↓, ↓∗, =). In general the problem is co-NP complete.

�ere are three natural parameters of the problem: DTDs, stds, and queries. It turns out

that in order to get tractability we have to restrict the �rst two parameters simultaneously.

�e general idea behind the restrictions is to avoid guessing: the mapping has to be

as speci�c as possible. In terms of DTDs this restriction is well captured by the notion of

nested relational DTDs. But guessing is also involved whenever wildcard and descendant

are used in the stds. �e mappings which do not use ↓∗ nor _ in the stds are called fully

speci�ed. �e following theorem summarises the results on simple mappings.

�eorem5.1 (Arenas&Libkin [12]) For a schemamapping M ∈ SM(↓, ↓∗, =) and a query
Q ∈ CTQ(↓, ↓∗, =)

➠ certainM(Q) is in coNP,

➠ certainM(Q) is in PTIME, if M is fully speci�ed and nested relational.
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Moreover, if one of the hypotheses in (2) is dropped, one can �nd a mapping M and a query

Q such that certainM(Q) is coNP-complete.

In fact, for fully speci�ed mappings there is a dichotomy in the �rst parameter: if there is

enough nondeterminism in the DTDs, the problem is coNP-hard, otherwise it is polyno-

mial. �e exact class of tractable DTDs is the one using so called univocal regular expres-

sions (see [12] for a de�nition). Intuitively, it extends nested-relational DTDs with just a

bit of disjunction.

In addition to restrictions on DTDs and mappings, we must also disallow inequality

in the query languages, as it leads to coNP hardness already in the relational case [45, 74].

Since the usual translation form the relational setting to the XML setting produces fully

speci�ed nested relational mappings, we have the following result.

Proposition 5.2 �ere exist a nested-relational fully speci�ed schemamapping M ∈ SM(↓)
and a query Q ∈ CTQ(↓, =, ≠) such that certain(Q) is coNP-complete.

Now our question is the following: Can we �nd σ1 ⊇ {↓, =} and σ2 ⊇ {↓, ↓∗, =} such
that certainM(Q) is tractable for allM ∈ SMnr(σ1) and Q ∈ UCTQ(σ2). In what follows

we show that it is possible to extend schemamappings, but it is almost impossible to extend

the query language.

5.3.2 Extendedmappings

We consider the mapping with horizontal ordering and data comparisons in this section.

Let us see that the coNP upper bound carries over to the case where we have the full-

�edged mappings and queries. �e proof is done by making clear the connection of our

problem with query answering in incomplete XML [16]. Also of note is that the proof of

the coNP upper bound in [12] contains a bug and that our proof here remedies it.

Proposition 5.3 For every mapping M ∈ SM(↓, ↓∗,→,→∗, =, ≠) and every query Q ∈

CTQ(↓, ↓∗,→,→∗, =, ≠), the problem certainM(Q) is in coNP.

Proof. We reduce the problem to the problem of computing certain answers over XML

with incomplete information.

First we describe the problem of query answering over XML with incomplete infor-

mation (see [16] for details).

An XML tree with incomplete information, or simply incomplete XML tree, is a pair

⟨π(t̄), α=,≠(t̄)⟩, where π(t̄) is a partially evaluated tree pattern and α=,≠ is the set of equal-
ities and inequalities.
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Formally, the pattern language for incomplete XML trees, is de�ned by the grammar1:

π := ℓ(t̄)[λ] patterns

λ := є ∣ µ ∣ //π ∣ λ, λ sets

µ := π ∣ π → µ ∣ π →∗ µ sequences

Here t̄ is a sequence of constants and variables.

�e notion of certain answers over an incomplete tree ⟨π, α⟩ is introduced in the nat-

ural way. Given a query Q in UCTQ≠ and a DTD D, we de�ne:

certainD(Q , ⟨π, α⟩) = ⋂{Q(T)∣T ⊧ D and T ⊧ π, α}.

�e query answering over incomplete trees can be formulated as:

Problem: inc-certainD(Q)
Input: an incomplete tree ⟨π, α=,≠⟩, tuple s̄

Output: yes if s̄ ∈ certainD(Q , ⟨π, α⟩)

Proposition 5.4 (Essentially [16]) For any �xed query Q ∈ UCTQ≠ and any �xed DTD

D, inc-certainD(Q) is in coNP.

Proof. �e statement of theorem 6.1 in [16] is actually for an incomplete trees without

inequalities and queries in UCTQ(↓, ↓∗,→,→∗, =), but the proof is valid in the setting

above as well.

�e idea of the proof is standard: we exhibit a polynomial size counterexample. With-

out loss of generality, we may consider only Boolean queries. Fix a query Q, a DTD D,

and suppose an incomplete XML tree ⟨π, α⟩ is given. If certainD(Q , ⟨π, α⟩) is false, there
is a counter example, i.e., a tree T that satis�es ⟨π, α⟩ and falsi�esQ. We prove that we can

prune T in such a way that the resulting T ′ of polynomial size is still a counterexample.

First we label all the nodes in T witnessing ⟨π, α⟩. Consider an FO formula equivalent to

Q, and let k be its quanti�er rank.�en, roughly, for any pair u, v of non-witnessing nodes

with the same FO rank-k type2, we cut the nodes in-between and merge u, v (provided

that cutting neither removes any witnessing node nor leads to violation of the DTD). Note

1�e notation is di�erent in [16]. For instance, ∥ is used in places where we use ‘,’(comma) in patterns (to

mean the patterns are unordered). Also they have extra features such as marking node with ‘�rst-child’ and

so on.
2Two nodes having the same FO rank-k types means that they satisfy the same FO formulae with at most

quanti�er rank k.
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that the number of FO rank-k types is �nite. Since it depends only on the query, it is �xed.

By cutting this way, vertically and horizontally, we make sure all the witnesses are not too

far apart, and the resulting tree has polynomial size.

�us guessing a counterexample of polynomial size provides coNP algorithm for the

problem inc-certainD(Q).

We now show how to reduce the query answering in XML data exchange to the query

answering in incomplete XML trees. Suppose that we have a query Q ∈ UCTQ≠ and an

XML schemamappingM = ⟨Ds ,Dt , Σ⟩. Given a tree T , we construct an incomplete XML

tree Ψ such that certainM(Q , T) is equivalent to certainDt(Q , Ψ). For each dependency

in Σ of the form

φ(x̄ , ȳ), α=,≠(x̄ , ȳ)→ ψ(x̄ , z̄), α′=,≠(x̄ , z̄),

and for each pair of tuples s̄, t̄ such that T ⊧ φ(s̄, t̄), α(s̄, t̄), the constraint (on the target)

is a tree patternψ(s̄, z̄′) and a set of (in)equalities α′(s̄, z̄′), where z̄′ is a renaming of z̄. We

collect all such patterns, of which there are at most polynomially many: at most ∣T ∣∣x∣+∣y∣

for each dependency and the number of dependency is �xed.

Now let Ψ be ⟨η, β⟩, where η is the result of merging at the root all the patterns that

are obtained as above (for all the stds) and β is the union of all the (in)equalities (for all

the stds). It is straightforward to see that the problem of certainM(Q , T) is equivalent to
certainDt(Q , Ψ). Since Ψ is polynomial in the size of the input, the coNP algorithm for

certainDt(Q , Ψ) gives a coNP algorithm for certainM(Q , T).

�eorem 5.5 Suppose M is a fully speci�ed schema mapping in SMnr(↓,→,→∗, =, ≠) and
q ∈ UCTQ(↓, ↓∗, =). �en certain(Q) is in PTIME.

Proof. �e algorithm follows the same lines with the one in�eorem 6.2 [12]. It constructs

a canonical solution T∗ such that Q(T) = certainM(Q , T), working in two stages: First,

it constructs a tree called canonical presolution. Second, it tries to make it conform to the

target DTD. With the extended mapping language, we have to do another check between

these two stages, as shown below. Due to the extended mapping language, the merging

part becomes more complicated.

First of all, we note an important property of queries inUCTQ(↓, ↓∗, =): Intuitively, it
is ignorant to the (horizontal) ordering in trees so that it does notmatter whether solutions

are ordered.

Before we state the proposition formally, we need some de�nitions. An unordered

XML tree T is a structure ⟨T , ↓, labT , (ρa)@a∈Att⟩, where T is a tree domain, labT is a
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labeling element types to each node, ρa assigns an attribute value for @a as appropriate.

We will simply write T instead of T below.

An unordered XML tree T ′ is a solution for T if there exists an (ordered) XML tree

T̂ into which T ′ can be obtained by ignoring the sibling order relation. For a schema

mapping M and a query Q, certain∗M(Q , T) denotes the set of unordered XML trees that

are solutions for T under M.

Now we can formalise the property. �e following essentially says ‘it does not matter

whether or not solutions are ordered’.

Proposition 5.6 Let M be an XML schema mapping, T an XML tree and Q a query in

UCTQ(↓, ↓∗, =). �en the following holds:

certainM(Q , T) = certain∗M(Q , T)

With this property at hand, we describe the algorithm that, given a source tree T ,

constructs an unordered XML tree T∗ such that certainM(Q , T) = Q(T∗). In the rest of

the proof, without loss of generality, we assume that there is no element type that appears

in the mapping without associated attributes. �at is, if an element type a has an attribute,

it always used in the mapping as a(x) and not just as a.

As mentioned earlier, the �rst step is the construction of the canonical presolution.

�e canonical presolution is simply the result of putting together all the target patterns

required by the given source tree T . Formally for each fully-speci�ed dependency of

the form φ(x̄ , ȳ), α=,≠(x̄ , ȳ) → ψ(x̄ , z̄), α′=,≠(x̄ , z̄) and for every tuples s̄, s̄′ with T ⊧

φ, α=,≠[s̄, s̄′], we have ψ(s̄, �̄), α′(s̄, �̄) where �̄ is a sequence of distinct nulls and α′=,≠

is a set of (in)equalities. In the end we have ψ(s̄, t̄), α′(s̄, t̄), where s̄ is a tuple of strings
and t̄ is a tuple of constants and nulls. We have polynomially many of these patterns and

polynomially many equalities and inequalities, which we denote by α. We further replace

nulls in the patterns as speci�ed by α, that is, we put the same null if α so speci�es by

equality, and replace a null with a constant if it is equalised to a constant in α. Finally, we

obtain a canonical presolution merging all the patterns at the root.

At this stage, if α contains any non-satis�able (in)equality3, we return ‘no solution’.

�e size of the canonical presolution is polynomial and the construction can be done in

PTIME.

Example We describe the computation of canonical presolutions by example. Consider

3E.g., if there is a dependency like x ≠ y → x = y, then there could be an equality like 1 = 2 in α.
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r

A(d1) B(d2) B(d3)

(a) a source tree

r

A(d1) B(d2) A(d1) B(d3)

(b) a canonical presolution for M1

r

A(d1) B(d2) A(d1) B(d3)

(c) a canonical presolution for M2

Figure 6. a source tree and its canonical presolutions

two simple mappings, one with sibling-order and the other without,

M1 = ⟨Ds ,Dt , {r[a(x), b(y)]→ r[a(x)→ b(y)]}⟩;

M2 = ⟨Ds ,Dt , {r[a(x), b(y)]→ r[a(x), b(y)]},

where Ds ,Dt are both r → ab∗.

For the tree depicted in Figure 5.6(a), its canonical presolutions forM1 andM2 will be

those in Figures 5.6(b) and 5.6(c), respectively.

We now have a canonical presolution that contains all the constraints induced by the

source tree T under the mapping. Obviously the problem is that it might not conform

to the target DTD. �e second part of the algorithm processes the canonical presolution

to enforce the conformation to the target DTD. To do this, we work level by level, from

the root to the bottom, trying to ‘repair’ each level so that it is compatible with the corre-

sponding regular language.

Observe that the sibling-order in target trees imposes the extra constraint on whether

or not a solution exists. Again consider the example above. In the tree of Figure 5.6(b)

we have to merge the two ‘A(d1)’s so that the tree conforms the DTD r → ab∗. In the

unordered case of 5.6(c) we could just merge them, but this time we have to maintain the

next-sibling relation, which is impossible since we cannot merge B(d2) and B(d3). �us

we have to do a more careful check for the existence of solution than when we don’t have

order in the mapping. (Note that this is not complete check for existence of solution: it

might turn out that there is no solution later on.)

�e repair is done in several steps.

First, we check all the sequences appearing in the target are compatible with (appro-

priate) regular expressions. For instance, if a sequence a → c appears in the pattern while
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the corresponding regular expression is abc, then we exit the algorithmwith “no solution”.

Second, we put the nodes that are required by the target DTD but not present in the

canonical presolution. For example if the regular expression under consideration is abc

(or a+bc or abc+ or a+bc+) and we have only a node labeled b, then we add nodes labeled

a and c.

�ird, we will do the sequence consistency check. We have to merge and at the same

time check if the all the next-sibling relation can be maintained upon merging. Consider

a pair of sequences appearing in the canonical presolution of the form σ(d1)→ τ(d2) and
σ(d1)→ τ(d3), where σ , τ are element types, di ’s are distinct data values. Further assume

that σ appears in the target DTD as σ or σ? (i.e., unstarred) and that τ appears as τ∗ or τ+

(i.e., starred). In this case we exit the algorithm with “no solution”. �e following cases are

also treated in the similar way:

➠ σ → τ1 and σ → τ2, where τ1, τ2 are distinct element types;

➠ the symmetric case where we have σ starred and τ unstarred;

➠ σ → τ(�1) and σ → τ(�2) and �1 ≠ �2 is in α.

➠ sequences longer than two can be checked in the same way.

We will do the above check for all the pairs of sequences in the canonical presolution. �e

number of these pairs is at most quadratic in the size of canonical presolution, so that we

can do it in polynomial time.

Finally, a�er we process all the sequences in the presolution, we will remove all the

next-/following-sibling orders and replace themwith commas.�enwe do the nodemerg-

ing. For any pair of nodes a(d1) and a(d2), we merge if a appears in the current regular

expression as a or a?. �us, as before, if d1 = d2 we successfully merge and go on to the

next pair of nodes; otherwise we stop and return ‘no solution’. Similarly, if we have a(�1)
and a(�2) and have to merge them, we return ‘no solution’ when �1 ≠ �2 ∈ α; otherwise

we remove a(�2) and replace α with α[�1/�2], i.e., the set of (in)equalities where each �2
in α is replaced with �1.

We repeat the repair procedure above for each level. Clearly this algorithm terminates

because of the following two facts: First, the target DTD is nonrecursive and hence of

constant depth. Second, we add nodes only when it is required by the DTD so that we add

only constant number of children under each node in the canonical presolution.

When the algorithm terminates, we have either “no solution”, which means there is no

solution for the input tree T , or a tree T∗. T∗ is a solution, i.e., satisfying the target DTD
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and all the tree patterns imposed by T . Also it is a minimal solution, in the sense that for

any solution T ′, there is a homomorphism from T∗ to T ′. �e existence of homomor-

phism can be proved using the fact that we put everything imposed by the mapping and

the source tree. From this property we can conclude certainM(Q , T) = Q(T∗).

5.3.3 Extended query language

In this section we examine various possibilities of extending the query language. We start

with the simplemappings, for which tractability was obtained in [12], and show that exten-

sions of query language lead immediately to intractability. �en we consider two modi�-

cations of this simple class, exploring two complementary directions. �e �rst deals with

mappings which fully specify the sibling order, the second investigates mappings based on

DTDs invariant under sibling permutations.

Simple mappings

We �rst show that the class of mappings for which we can answerUCTQ(↓, ↓∗, =) feasibly
[12]. �e next theorem shows that use horizontal order in queries easily destroys this

tractability.

�eorem 5.7 �ere exist a fully-speci�ed schema mapping M ∈ SMnr(↓), and queries Q1 ∈

CTQ(↓,→, =) and Q2 ∈ CTQ(↓,→∗, =) such that both certainM(Q1) and certainM(Q2)
are coNP-complete. In fact, both Q1 and Q2 do not use even _.

Proof. �e coNP upperbound follows from 5.3.

For the lowerbound, we prove the �rst claim of the theorem, and the proof for the

second can be obtained by replacing→∗ with→ in the following proof.

We describe an XML schema mapping M and a query Q ∈ CTQ(↓,→, =) such that

3SAT is reducible to the complement of certainM(Q). More speci�cally, there exist an

XML schema mapping M and a query Q for which the following holds:

certainM(Q , Tφ) is false i� φ is satis�able., (5.1)

where Tφ is a tree encoding of a formula.

�e idea of the reduction is the following: we transform a 3CNF formula φ into a

source tree Tφ. �e mapping is de�ned so that a solution of Tφ corresponds to a selection

of (at least) one literal for each clause in the formula. Finally we provide a query that is

true when such a selection contains a variable and its negation. �us the existence of a
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solution falsifying the query means the existence of a well-de�ned (partial) assignment

that satis�es the formula φ.

Suppose we are given a 3-CNF formula φ = ∧n
i=1 ∨

3
j=1 ci j, where ci j is a literal. We

construct a source tree Tφ by the following encoding, which we explain with a concrete

example. A formula (x1 ∨ ¬x3 ∨ x4) ∧ (x2 ∨ x3 ∨ ¬x4) is encoded as follows:

r

C
(1)

H1

(1)
H1

(6)
H1

(7)

C
(2)

H1

(3)
H1

(5)
H1

(8)

L
(1,2)

L
(3,4)

L
(5,6)

L
(7,8)

Each L node has two attribute values encoding a variable and its negation, respectively.

For example L(1, 2) indicates that x1 is encoded by the data value ‘1’ and ¬x1 by ‘2’. In

general, for each variable we have an L node encoding it and its negation with distinct

values. Also for each clause in the formula we have C node that has three children labeled

H1,H2,H3, respectively. �e data value held at C is an identi�er for it4, and Hi holds the

data value encoding i-th literal in the clause. In the example above, the second literal of

the �rst clause is ¬x3 and hence the data value of H1 under the middle C node is ‘6’.

Formally the source DTD Ds is

r → C∗L∗ C∶@a1 L∶@a2, @a3

C → H1H2H3 H1,H2,H3∶@b1.

�e target DTD Dt is quite similar to the source DTD above:

r → C∗L∗ C∶@a1 L∶@a2, @a3

C → H∗ H∶@b1

�e last component of schema mapping are the stds Σ. �e idea for the mapping is

that, given Tφ, we essentially copy it in the target, but allow the reordering of children

under each C node with the use of ‘,’(comma). �is reordering corresponds to ‘choosing

one literal per clause’ mentioned earlier. Intuitively, we choose a literal having more than

two younger-siblings. Since each C node has three H nodes below, clearly at least one

literal is chosen for each clause.

4�is feature is le� unused in this proof, but will be useful in later ones.
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r[C[H1(x),H2(y),H3(z)]]→ r[C[H(x),H(y),H(z)]]

r[L(x , y)]→ r[L(x , y)]

Finally we de�ne the query. It is true if a variable and its negations are contained

among the chosen literals.

∃x∃y(r[L(x , y),C[H(x) → H → H],C[H(y)→ H → H]]) (5.2)

Formally, the correctness of reduction can be proved as follows. To be precise, we

prove that certainM(Q , Tφ) is false if and only if a 3-CNF formula φ is satis�able.

(⇒) Suppose certainM(Q , Tφ) is false. �en there exists a tree T ′ that is a solution for

the tree encoding φ and falsi�es the query. We extract an assignment v from T ′ as follows.

For each fragmentmatching r[C[H(x)→ H → H]], v assigns true to the variable encoded
by x. �is assignment is consistent since the query is false over T ′. Finally the assignment

satis�es φ. �e dependency requires that there should be at least threeH’s (holding values

appearing in the source) below a C node. Hence, for each C node, there is at least one H

node beneath it that has two younger siblings, so that the corresponding literal is true by

the assignment.

(⇐) Suppose that φ is satis�able. Assume v is a satisfying assignment. �en we con-

struct a solution of themapping for Tφ that falsies the query in the followingway. Basically

what we do is to change the order ofH’s under eachC node so that, for each clause, a literal

assigned true has at least two younger siblings. More speci�cally, for each tree fragment of

the form r[C[H1(d1),H2(d2),H3(d3)]], the corresponding clause has at least one literal
that is assigned true by v. We choose the data encoding one such literal 5. For example,

suppose it is d2. �en we make the tree fragment r[C[H(d2)→ H(d1)→ H(d3)]]. A�er
we process all the fragments corresponding to clauses, we simply copy all the L nodes in

the target. Since v never assigns true to a variable and its negation, the query is false over

the constructed tree.

Even More Fully Speci�ed Mappings

We have seen that even if we stick to basic downward mappings, we cannot extend the

query language. But, can’t we �nd a more suitable class of mappings?

5We choose the one corresponding to a literal with the smallest index if there are more than one literals v
assigns true.
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Observe that using commas in the stds is essential in the proof above, since it induces

nondeterminism in the order of nodes. What if we disallow using commas? In other

words, what if we always have to specify the order of children? We will call suchmappings

→∗-fully speci�ed. An even stronger restriction is that we always have to specify the exact

order of children with →. We call this mappings → fully speci�ed. For example, an std

using a[b, c] is neither→- nor→∗-fully speci�ed; a[b →∗ c] is→∗-fully speci�ed, but not
→-fully speci�ed.

Below we consider classes of→- or→∗- fully speci�ed mappings and show that these

cases are still hard. We deal with the former class �rst.

�eorem 5.8 �ere exist a→-fully-speci�ed schemamapping M ∈ SMnr(↓,→) and a query
Q ∈ CTQ(↓,→, =) such that certain(Q) is coNP-complete.

Proof. As in the previous proof, wewill provide anXML schemamappingM = ⟨Ds ,Dt , Σ⟩
and a queryQ such thatwe can reduce 3SAT to the complement of certainM(Q , Tφ), where
Tφ is the same encoding of formulae as in the previous proof.

�e idea of the reduction is the following: we transform a 3CNF formula φ into a

source tree Tφ. �e mapping is de�ned so that a solution of Tφ corresponds to a selection

of (at least) one literal for each clause in the formula. Finally we provide a query that is

true when such a selection contains a variable and its negation. �us the existence of a

solution falsifying the query means the existence of a well-de�ned (partial) assignment

that satis�es the formula φ. �e di�erence from the previous proof is how we “choose”

literals.

�e source DTD Ds is:

r → C∗L∗ C∶@a1 L@a2, @a3

C → H1H2H3 H1,H2,H3∶@b1,

�e target DTD is again almost the same as the source, except that it has Gi ’s. With

these extra element types, we ‘choose’ a literal from each clause. Intuitively we select Hi ’s

that are ‘two step to the right of G1’.

r → C∗L∗ L∶@a1, @a2

C → G1G2?G3?H1H2H3 H1,H2,H3∶@b1.

85



chapter 5. query answering 5.3 Complexity

�e stds are simply copying precisely the source to the target.

r[C[H1(x)→ H2(y)→ H3(z)]]→ r[C[H1(x)→ H2(y)→ H3(z)]]

r[L(x , y)]→ r[L(x , y)]

�e query Q is the following. �e query is true if a variable and its negation are both

‘chosen’, just as in the previous proof.

∃x∃y(r[L(x , y),C[G1 → _→ _→ _(x)],C[G1 → _→ _→ _(x)])

In order to formally prove the correctness of the reduction, we have to prove that

certain(Q , Tφ) is false i� φ is satis�able.

(⇒) To prove the le�-to-right direction, suppose certain(Q , Tφ) is false, whichmeans

there is a target tree T ′ that is a solution for T and falsi�es Q. �en we de�ne the truth

assignment from T ′ as follows: for each C node corresponding a clause, �nd the node

below it that is two steps away from G1 (whose element type must be one of Hi). Say, it

is Hi(n), by the dependency it encodes a literal. If n encodes x j (resp. ¬x j), then assign

true (resp. false) to x j. By the target DTD each clause contains a true literal. Furthermore,

since the query is false T ′, the truth assignment does not assign true to a variable and its

negation, hence the assignment is well-de�ned.

(⇐) For the other direction, suppose the formula is satis�able with an assignment v.

We shall construct a solution of the mapping for Tφ base on v. First we copy every L node.

Next for each fragment of the form r[C[H1(d1) → H2(d2) → H3(d3)]], we will copy it
and put G1 to the le� of H1 with possibly putting G2 and G3 in-between. If v assigns true

to the �rst literal in the corresponding clause, then we put both G2 and G3 between G1

and H1 (to make H1 “two steps to the le� of G1); otherwise if it is the second literal that

is assigned true by v, then we put G2 alone; otherwise we put neither G2 nor G3. Since a

truth assignment doesn’t assign true to both a variable and its negation, it will not happen

that the values paired in L, i.e. those encoding a variable and its negation, are both two

steps away from G1. �us the query is false in the constructed tree, as desired.

Next we deal with→∗-fully-specifed mappings. Despite the similarity of the proof, it

should be noted that it is not a mere translation of the preceding proof.

�eorem 5.9 �ere exist a →∗-fully-speci�ed schema mapping M ∈ SMnr(↓,→∗) and a

query Q ∈ CTQ(↓,→∗, =) such that certain(Q) is coNP-complete.
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Proof. As before we provideM = ⟨Ds ,Dt , Σ⟩ and a query Q to which 3SAT is reducible to

certainM(Q).
�e idea of the reduction is the following: we transform a 3CNF formula φ into a

source tree Tφ. �e mapping is de�ned so that a solution of Tφ corresponds to a selection

of (at least) one literal for each clause in the formula. Finally we provide a query that is

true when such a selection contains a variable and its negation. �us the existence of a

solution falsifying the query means the existence of a well-de�ned (partial) assignment

that satis�es the formula φ. �e di�erence from the previous proofs is how we “choose”

literals.

Ds is quite similar as before:

r → C∗L∗ C∶@a1 L∶@a2, @a3

C → H∗ H∶@b1

Note that the subscript in H is dropped. We encode a given 3CNF formula φ as Tφ, by

simply dropping the subscript in the previous encoding .

�e target DTD is the following very simple one.

r → A∗L∗ A∶@b1, @b2 L∶@a2, @a3

�e constraint is the following: it “�attens” the structure using multi-attributes. Each

A node contains two attributes, the �rst of which indicates a clause and the second of

which encodes a literal. Formally the stds are:

r/C(x)/H(y)→ r/a(x , y)

r/L(x , y)→ r/L(x , y)

In a target tree, we choose a literal that has at least two younger sibling in each clause (i.e.,

with the same �rst attribute value).

Lastly we de�ne the query Q as follows. As in the previous reductions, the query is

true when the set of selected literals contains a variable and its negation.

∃xyvwu1u2u3u4(r[L(x , y), r[a(v , x)→∗ a(v , u1)→∗ a(v , u2)],

a(w , y)→∗ a(w , u3)→∗ a(w , u4)])
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Toprove formally the reduction, wewill show that, given a formulaφ, certainM(Q , Tφ)
is false i� φ is satis�able.

(⇒) Suppose certain(Q , Tφ) is false. We have a solution T ′ for Tφ that falsi�es the

query Q above. We extract a truth assignment as follows. For any fragment matching

r[a(d , d1)→∗ a(d , d2)→∗ a(d , d3)], where each di is a data value encoding a literal (i.e,

appears in some L node in the source) and d is a data value encoding a clause (i.e., appears

in C in the source), the variable encoded by d1 is assigned true. Since T ′ falsi�es Q, our

assignment is consistent. Also it satis�es φ. For each clause C(d) in the source has three

children (labeled H), so we have at least three nodes of the form a(d , d′) in the target.

Hence at least one literal in the clause will be assigned true.

(⇐) Assume φ is satis�able, with a satisfying assignment v. We need to construct a

solution of the mapping for the source tree Tφ. First we copy all the L nodes from the

source. For each fragment of the form r[C(d)[H1(d1),H2(d2),H3(d3)]], a solutionmust

contain the three fragments r[a(d , d1)], r[a(d , d2)], and r[a(d , d2)] in some order. �e

order of the above three fragments is decided according to which literal is assigned true

by v, as follows. If it is the �st literal, we put r[a(d , d1)→ a(d , d2)→ a(d , d3)]; otherwise
if it is the second literal, we put r[a(d , d2) → a(d , d1) → a(d , d3)]; otherwise we put
r[a(d , d3) → a(d , d1) → a(d , d2)] Repeating this for each fragments encoding a clause,

we obtain a tree that conforms to the target DTD and is a solution for Tφ. Since v does not

assign true to both a variable and its negation, the constructed tree falsi�es the query.

Note that we cannot replace →∗ with → here because the above constraints do not

guarantee all the a’s with the same �rst coordinate (identi�er for clause) appear consecu-

tively in the target.

Also this gives another proof of coNP-hardness of CTQ(↓,→∗, =) (�eorem 5.7).

�reshold DTDs

Our last attempt stems from the following example. Suppose we have a source-to-target

dependency φ(x , y) → r[a(x) → b(y)] with the target DTD being r → a∗b∗. Once

a source tree has more than one pair satisfying φ(x , y), it does not have solution since

a(v1) → b(v2) and a(v3) → b(v4) can never coexist (assuming v1 ≠ v3 or v2 ≠ v4). Ar-

guably this is rather anomalous and it is more natural, at least for nested relational DTDs,

to allow arbitrary permutations of letters. �is is precisely what is done in [2]. A thresh-

old DTD assigns each element type ℓ itsmultiplicity atom µ(ℓ), an expression of the form

ℓ̂1⋯ℓ̂m, where ℓ̂ is one of ℓi , ℓ
∗
i , ℓ
+, and ℓ? = ℓi , which limits the number of children of
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type ℓi of a node labelled ℓ in the obvious way, without imposing any restriction on the

order of the children. We write SMth and SMth(σ) for classes of schema mappings using

threshold DTDs.

Do such mappings admit a better algorithm for computing certain answers? Again,

the answer is (almost) no. For CTQ(↓,→∗, =), the proof carries over. For CTQ(↓,→, =)
the original proof breaks down, but we can show hardness for UCTQ(↓,→, =).

�eorem5.10 �ere exist a→-fully-speci�ed schemamappingM ∈ SM(↓,→) using thresh-
old DTDs and a query Q ∈ UCTQ(↓,→, =) such that certain(Q) is coNP-complete.

Proof. We will describe an XML schema mapping M = ⟨Ds ,Dt , Σ⟩ and a query Q such

that 3SAT is reducible to certainM(Q). �e same encoding Tφ of a given 3CNF formula

φ is used as in the proof of 5.7.

�e idea of the reduction is the following: we transform a 3CNF formula φ into a

source tree Tφ. �e mapping is de�ned so that a solution of Tφ corresponds to a selection

of (at least) one literal for each clause in the formula. Finally we provide a query that is

true when such a selection contains a variable and its negation. �us the existence of a

solution falsifying the query means the existence of a well-de�ned (partial) assignment

that satis�es the formula φ. �e di�erence from the previous proofs is how we “choose”

literals.

�e source DTD Ds is the familiar one:

r → C∗L∗ C∶ a1 L∶@a1, @a2

C → H1H2H3 H1,H2,H3∶@b1

�e target DTD Dt is the following. �e di�erence from the source DTDs is that each

Hi has A, B below. Since we are working with a threshold DTD, A, B can appear in either

order. �e set of the selected (values encoding) literals having “A→ B” below.

r → C∗L∗ L∶@a1, @a2

C → H1H2H3 H1,H2,H3∶@b1

Hi → AB

�e stds are copying., Note that they are→-fully-speci�ed.

r[C[H1(x)→ H2(y)→ H3(z)]]→ r[C[H1(x)→ H2(y)→ H3(z)]]

r[L(x , y)→ r[L(x , y)]
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We de�ne the query that is true when both a variable and its negation are selected or

there is a clause where no literal is selected. Formally, it is q1 ∪ q2, where

q1 ∶= ∪i , j∈[3]∃xy(r[L(x , y),C[Hi(x)[B → A]],C[H j(y)[B → A]]])

q2 ∶= r[C[H1[B → A]→ H2[B → A]→ H3[B → A]]]

To prove the correctness of reduction, we shall prove that, given a 3-CNF formula φ,

certainM(Q , Tφ) is false i� φ is satis�able.

(⇒) Suppose certainM(Q , Tφ) is false. �en there exists a solution of the mapping T ′

for Tφ that is a solution and falsi�es Q, that is, falsi�es both of q1 and q2. Extraction of a

truth assignment is done as described earlier: A variable xi is assigned true (resp. false) if

there is a node H(d), where d encodes xi , that has A → B (resp. B → A) below it. Note

that some H(d) has A → B in one place and B → A in another. In this case the variable

encode by d is assigned true. Recall that T ′ falsi�es both q1 and q2. Because of falsifying

q1, no variable and its negation are assigned true, whence the assignment is consistent.

Also due to falsifying q2, each C node has at least oneH having L → R, meaning that each

clause has at least one literal assigned true.

(⇐) For the other direction, assume we have a satisfying assignment v for φ. We can

construct the solution of the mapping for Tφ by putting L → R under H’s holding the

data encoding literals assigned true and R → L under those having data encoding false

literals. We need to show that Q = q1 ∪ q2 is false over this constructed tree. Since any

assignment does not assign true to both a variable and its negation, q1 is falsi�ed. Again by

the de�nition of satisfying assignment, it assigns true to at least one literal in each clause,

so that q2 is falsi�ed as well.

5.4 Digression: on querying incomplete DOM-trees

Recall that the coNP upperbound (Proposition 5.3) for query answering was obtained by

reducing the problem to query answering over incomplete XML trees. In this section, we

show that the above proof leads to a new result in querying answering over incomplete

trees, which draws a line between when node ids domake di�erence and when they don’t.

In [16], one of the key factors considered to obtain tractable cases was the notion of

node ids. Having node ids in patterns essentially corresponds to “injective semantics”, as

called in [39], of tree patterns.

�e di�erence is whether we may ‘collapse’ nodes or not. As a very simple example,
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consider a tree pattern π = r[a, a]. �e pattern π as an incomplete tree without node ids

is satis�ed by a tree r[a] while π i with node ids is not satis�ed by the same tree since a

tree must have (at least) two a nodes to satisfy π i .

To be more precise, the following change is made to the semantics of ‘,’ (comma):

(T , s) ⊧ ℓ(ā)[λ1, λ2] i� s satis�es ℓ(ā) and has distinct children s1 and s2

witnessing λ1 and λ2, respectively.

Formally, an incomplete tree with node ids π i , or an incomplete DOM-tree, is a tree

pattern de�ned by the same grammar as incomplete trees, with the change above to its

semantics

We restate the query answering problem over incomplete trees. Suppose Q is a union

of conjunctive tree queries.

Problem: inc-certain(Q)
Input: an incomplete tree π, tuple s̄

Question: s̄ ∈ certain(Q , π)?

We refer as inc-certaini(Q) to the query answering problem where inputs are incom-

plete DOM-trees.

�e following result (�eorem 6.7 [16]) states that for a class of shallow queries node

ids make di�erence. �e depth of queries is de�ned in a natural way, starting from 1 at the

root. (�us trees of depth 2 means essentially strings.)

�eorem 5.11

➠ For any variable-free query Q inCTQ(↓,→) of depth 2, inc-certaini(Q) is solvable
in PTIME.

➠ �ere exists a variable-free query Q in CTQ(↓,→) of depth 2, for which
inc-certain(Q) is coNP-complete.

In the rest of this section we show that the theoremmentioned above cannot go much

further: increasing depth by 1 and allowing use of variables leads to intractability even for

incomplete DOM-trees.

�eorem 5.12 �ere is a query Q in CTQ(↓,→) of depth 3 such that inc-certaini(Q) is
coNP-complete.

Proof. �e upperbound follows from Proposition 5.3.
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For the lowerbound, we reduce 3SAT to the complement of our problem. Speci�cally,

we describe a (�xed Boolean) query Q such that a given 3SAT formula φ is satis�able i�

certain(Q , π i
φ) is false, where π

i
φ is a encoding of φ as an incomplete DOM-tree.

We encode a formula in the same way as previous proofs (see the proof of �eorem

5.7). Note that we actually have an incomplete tree that is nearly complete – the only

information missing is how the children under each C-node is ordered. �is means that

any realisation of the above incomplete tree materialises one of the possible orders of H

nodes under eachC node. Also since it contains only values, the semantics of comma does

not a�ect the proof.

Next we de�ne the query.

∃x∃y(r[L(x , y)] ∧ r[C[H(x)→ _→ _]] ∧ r[C[H(y)→ _→ _]]) (5.3)

�e intuition behind the reduction is the following. As just mentioned, a realisation

of π i
φ reorders the children of each C node. Since each C node has three H nodes beneath

it, at least one H node has two nodes to the right. We then choose literals (as being true)

in each clause by picking those “having two nodes on the right”. �e above query checks

if a variable and its negation are among the selected literals, so that the falsity of the query

ensures the consistency of the assignment.

Formally, the correctness of reduction can be proved as follows. To be concrete, we

prove that certain(Q , π i
φ) is false if and only if a 3-CNF formula φ is satis�able.

(⇒) Suppose certainM(Q , π i
φ) is false. �en there exists a tree T that is a realisation

of π i
φ and falsi�es the query. We extract an assignment v from T ′ as follows. For each

fragmentmatching r[C[H(x)→ _→ _]], v assigns true to the variable encoded by x.�is

assignment is consistent since the query is false over T . Finally the assignment satis�es φ.

�e dependency requires that there should be at least three H’s (holding values appearing

in the source) below each C node. Hence, for each C node, there is at least one H node

beneath it that has two younger siblings, so that the corresponding literal is true by the

assignment.

(⇐) Suppose that φ is satis�able with an assignment v. �en we construct a solution

of the mapping for π i
φ that falsies the query in the following way. Basically what we do is

to change the order of H’s under each C node so that, for each clause, a literal assigned

true has at least two younger siblings. More speci�cally, for each tree fragment of the form

r[C[H(d1),H(d2),H(d3)]] in π i
φ, the corresponding clause has at least one literal that

is assigned true by v. When it is d1, we put r[C[H(d1) → H(d2) → H(d3)]]; otherwise
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when it is d2, we put r[C[H(d2) → H(d1) → H(d3)]]; otherwise when it is d3, we put

r[C[H(d3) → H(d1) → H(d2)]]. �e constructed tree is a realisation of π i
φ since we

merely reordered the children of each C node, and it falsi�es the query since v is a valid

assignment.

93



Chapter 6

Conclusion

Let us summarise what is described in this thesis and make a few observations.

We considered the problem of XML data exchange under expressive mappings that

use horizontal navigation and data comparison as well as downward navigation. Naturally

static analysis and query answering get harder with these features.

�e static analysis problemwe investigatedmost thoroughlywas the consistency prob-

lem. In contrast to what was known about simple mappings, the presence of data com-

parison makes the problem undecidable. We also observed that non-monotone nature of

horizontal ordering leads to intractability where simple mappings admit tractable consis-

tency check. While these gives an overall picture of the problem, there are some technical

questions le� open. Most of the problem are related to the following problem: given a

DTD D and two sets of patterns P+ and P−, can we �nd a tree T ⊧ D that matches all the

patterns in P+ and none in P−? We know that the problem is in EXPTIME and NP-hard;

knowing its exact complexity will help us close the complexity gaps. More precisely, what

we don’t know is if this problem is easier when we have restricted patterns, e.g. the class

with only child navigation. Absolute consistency was the other extreme of consistency

of which we have decidability for downward fragment without data comparison. With

extended features, decidability is le� open.

We looked at themost commonly studied operation of composition onmappings. Our

�nding is that with extended features in tree patterns and non-nested relational DTDs

examples showing non-closure can easily be found. �e main di�culty is that some sort

of disjunction is required. We stripped down these features and found a class of mappings

that is closed under composition, with the remedy of Skolem functions.

We have studied query answering for XML data exchange, adopting the certain an-
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swers semantics. Earlier work on XML data exchange with a less expressive language

showed that query answering is tractable for simple mappings, and coNP-complete for

more complex ones. Our main �nding is that we can naturally extend the simple map-

pings with horizontal navigation and inequality, retaining tractability, provided we stick

to the basic query language. On the other hand, tractability is lost when extended query

languages are considered, even for very simple mappings. �is shows that one must re-

strict the usage of sibling order and inequality to the mappings.

6.1 FutureWork

�ere are several directions to extend the current work.

One of the basic questions le� untouched is constructing target instances: Given a

source tree, how to compute a target tree? �is is important in data integration and ex-

change tasks, but so far good algorithms are lacking, even for very simple mappings al-

ready introduced in [12]. We also would like to work further on operations on schema

mappings. We have identi�ed a natural class that is closed under composition, but we do

not know anything about its maximality, nor do we know anything about other opera-

tions such as inverse [13, 43, 44, 49] or merge [22]. Also, we would like to extend struc-

tural results of [36] from relational to XML mappings (in fact we already have results for

instance-level justi�cation of classes of mappings). As alreadymentioned, the decidability

of absolute consistency for extended mappings is le� open.

As for query answering, so far we have concentrated on data complexity of the prob-

lem. We would like to look at combined complexity in future in order to have a better

understanding of query answering in XML data exchange.

Concerning another direction, although we have shown that it is rather di�cult to

extend the query language, there might still be some hope to extend it in a limited way, as

was done for queries with inequalities in relational data exchange [11].

Yet anther dimension that hasn’t been investigated is the distinction between open

world assumption (OWA) and closed world assumption (CWA). Here, we have worked

exclusively under OWA. In relational case, an anomaly is observed when the query in-

volves negation [10, 45]. As a remedy to such unintuitive behaviour, the notion of solu-

tions under CWA was proposed in [70], further extended in [57, 72]. �is direction is

hardly explored for XML: it is not even clear how to de�ne the notion of CWA in the XML

context.

At more abstract level, we would like to conduct a clearer and more uni�ed investiga-
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tion on the di�erence between ordered and unordered trees. Traditionally they are treated

asmore or less the same. But fromour study it seems that, at least with the presence of data,

horizontal ordering in trees has some impact. Apart from our results, the decidability of

the vertical fragment of XPath (with data comparison) is still an open problem as stated in

[52] while with horizontal ordering it is undecidable as shown in its follow-up [53]. Also it

is interesting to see if there is a case where ordering introduces much complexity beyond

the area of XML research, say in programming language theory.
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